Skip to main content

WebSphere MQ Telemetry

Web Doc

Note: This is publication is now archived. For reference only.

thumbnail 

Published on 09 August 2012, updated 23 August 2012

  1. View in HTML
  2. .PDF (0.8 MB)

Share this page:   

IBM Form #: TIPS0876


Authors: Martin Keen

menu icon

Abstract

IBM® WebSphere® MQ Telemetry is a feature of IBM WebSphere MQ that extends the universal messaging backbone with the MQ Telemetry Transport (MQTT) protocol to a wide range of remote sensors, actuators and telemetry devices. MQTT is a messaging protocol that is lightweight enough to be supported by the smallest devices, yet robust enough to ensure that important messages get to their destinations every time. With the MQTT protocol, such devices as smart energy meters, cars, trains, satellite receivers, and personal healthcare devices can communicate with each other and with other systems or applications.

Contents

IBM® WebSphere® MQ Telemetry is a feature of IBM WebSphere MQ that extends the universal messaging backbone with the MQ Telemetry Transport (MQTT) protocol to a wide range of remote sensors, actuators, and telemetry devices (Figure 1). The MQTT messaging protocol is lightweight enough to be supported by the smallest devices, yet robust enough to ensure that important messages get to their destinations every time. With the MQTT protocol, smart energy meters and other devices, such as for cars, trains, satellite receivers, and personal healthcare, can communicate with each other and with other systems or applications.

This solution guide provides an overview of the MQTT support that is provided by WebSphere MQ Telemetry. It provides information about the architecture of an MQTT solution and includes scenarios for use.


Figure 1. WebSphere MQ Telemetry helps connect remote sensors, actuators, and telemetry devices


Did you know?

With the rise of various smart devices, the internet will evolve to an Internet of Things - billions of interconnected smart devices measuring, moving, and acting upon, sometimes independently, all the bits of data that make up daily life. The world is already increasingly instrumented, with examples ranging from tiny sensors and RFID tags in stand-alone products, through smartphones and location-aware GPS devices to notebook PCs and embedded systems. The next steps, then, are gathering all of the data that is collected by these small, medium, or even large devices, routing that data to where it is best interpreted, and using the world’s vast computational resources to understand what is happening and respond as necessary to make life better. This is where MQTT can help.


Business value

IBM WebSphere MQ has long served as a reliable, universal messaging backbone enabling any-to-any connectivity. It runs on wide variety of platforms, has a number of language bindings, and a stable, backward-compatible API. It has become the accepted method of gluing disparate applications together.

The piece that has been missing until recently is the ability to reliably connect the edges, the frontiers of the data network. Systems already exist that understand what actions to take based on the status of the remote device. However, communicating that status to the system has been a challenge, particularly if the network is constrained or if the device lacks the computational power required for traditional messaging.

With MQTT the following components are just some examples of those that can communicate with each other and with other systems or applications:

 

Others who read this also read

Special Notices

The material included in this document is in DRAFT form and is provided 'as is' without warranty of any kind. IBM is not responsible for the accuracy or completeness of the material, and may update the document at any time. The final, published document may not include any, or all, of the material included herein. Client assumes all risks associated with Client's use of this document.