
Redpaper

Front cover

Do More with Less: Automating IBM 
Storage FlashSystem Tasks with 
REST APIs, Scripting, and Ansible

Vasfi Gucer

Sergei Kubin

Uwe Schreiber





IBM Redbooks

Do More with Less: Automating IBM Storage 
FlashSystem Tasks with REST APIs, Scripting, and 
Ansible

October 2024

REDP-5736-00



© Copyright International Business Machines Corporation 2024. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2024)

This edition applies to IBM Storage Virtualize Version 8.7.

This document was created or updated on October 10, 2024.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1  Increased agility and faster storage provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2  Reduced human error and improved consistency. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3  Simplified management of complex storage tasks . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2  Example use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1  Automated provisioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2  Automated backup and recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3  Performance optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4  Automating storage reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.5  Automated user access control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.6  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3  Infrastructure as Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1  Role of IaC in automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4  Storage Virtualize automation opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2.  User management and security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1  System security introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1  System security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2  Data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2  User management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1  Users and roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2  Password policies and account locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3  Setting session timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3  Superuser security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1  Superuser specifics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2  Locking and unlocking the superuser account  . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3  Superuser password reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4  Additional security with MFA and TPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1  Multifactor Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2  Two person integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5  TLS Certificates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3.  Automation with CLI scripting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1  Secure restricted shell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2  General tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3  Internal scripting commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4  Script examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 4.  Automation with REST API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
© Copyright IBM Corp. 2024. iii



4.1  REST API on IBM Storage Virtualize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1  REST API Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2  Using curl to access REST API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2  Using REST API with PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1  Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2  Submitting REST API requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3  Using REST API in Python and Perl scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1  Python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2  Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 5.  Automation with Red Hat Ansible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1  Introduction to Ansible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1  Key features of Ansible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2  Common use cases for Ansible  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2  Automation with Red Hat Ansible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1  Red Hat Ansible  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2  Red Hat Ansible editions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4  Essential terminology in an Ansible environment . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.5  Automating IBM Storage with Ansible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.6  Getting started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.7  Securing credentials in Ansible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.8  Creating an Ansible playbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.9  More automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
iv Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2024. v



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at https://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

FlashCopy®
IBM®
IBM FlashSystem®

IBM Security®
QRadar®
Redbooks®

Redbooks (logo) ®
Storwize®

The following terms are trademarks of other companies:

ITIL is a Registered Trade Mark of AXELOS Limited.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive 
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Red Hat and Ansible are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United 
States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in 
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others. 
vi Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/legal/copytrade.shtml


Preface

The ever-expanding demands of data storage in today's information-intensive landscape 
place a significant burden on IT professionals that are tasked with managing storage 
infrastructure. Manual processes for provisioning resources, troubleshooting issues, and 
performing routine maintenance tasks can be time-consuming and resource-intensive, 
hindering overall efficiency. 

This IBM® Redpaper describes how to automate essential IBM FlashSystem® and IBM SAN 
Volume Controller tasks through the implementation of REST APIs, scripting languages, and 
Ansible. Practical examples are provided to illustrate the concepts and guide your learning 
process.

The target audience of this book is IBM Storage FlashSystem administrators and Storage 
Automation Professionals. 

Authors

This paper was produced by a team of specialists from around the world.

Vasfi Gucer leads projects for the IBM Redbooks® team, 
leveraging his 20+ years of experience in systems 
management, networking, and software. A prolific writer and 
global IBM instructor, his focus has shifted to storage and cloud 
computing in the past eight years. Vasfi holds multiple 
certifications, including IBM Certified Senior IT Specialist, PMP, 
ITIL V2 Manager, and ITIL V3 Expert.

Sergei Kubin is a Senior Storage Support Engineer working in 
GBM Qatar. He holds an Electronics Engineer degree from 
Ural Federal University in Russia and has more than 15 years 
of experience in IT. In GBM, he provides support and guidance 
for customers using IBM and multi-vendor storage solutions. 
His expertise includes file and block storage, and storage area 
networks.

Uwe Schreiber is a Solution Architect at SVA System Vertrieb 
Alexander GmbH. He has been working with Storage Virtualize 
and IBM SAN Volume Controller since 2002 (until 2011 as a 
customer and since 2012 as a Business Partner employee). 
Uwe is an experienced professional, providing technical 
pre-sales and post-sales solutions for IBM server and storage 
systems since 1995. He holds an engineering diploma in 
Computer Sciences from the University of Applied Science in 
Darmstadt, Germany.
© Copyright IBM Corp. 2024. vii



Thanks to the following people for their contributions to this project:

Elias Luna
IBM USA

Lucy Harris, Evelyn Perez, Chris Bulmer
IBM UK

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an IBM Redbooks residency project and help write a book 
in your area of expertise, while honing your experience using leading-edge technologies. Your 
efforts will help to increase product acceptance and customer satisfaction, as you expand 
your network of technical contacts and relationships. Residencies run from two to six weeks 
in length, and you can participate either in person or as a remote resident working from your 
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
viii Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.redbooks.ibm.com/contacts.html


Stay connected to IBM Redbooks

� Find us on LinkedIn:

https://www.linkedin.com/groups/2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/subscribe

� Stay current on recent Redbooks publications with RSS Feeds:

https://www.redbooks.ibm.com/rss.html
 Preface ix

https://www.linkedin.com/groups/2130806
https://www.redbooks.ibm.com/subscribe
https://www.redbooks.ibm.com/rss.html


x Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Chapter 1. Introduction

This chapter includes the following topics:

� 1.1, “Introduction” on page 2
� 1.2, “Example use cases” on page 3
� 1.3, “Infrastructure as Code” on page 4
� 1.4, “Storage Virtualize automation opportunities” on page 5

1

© Copyright IBM Corp. 2024. 1



1.1  Introduction

Automating the management of IBM Storage Virtualize systems, which includes BM Storage 
FlashSystem and IBM SAN Volume Controller, offers numerous benefits that can enhance 
the efficiency and reliability of storage operations. 

1.1.1  Increased agility and faster storage provisioning

Increased agility and faster storage provisioning can provide the following benefits. 

Rapid deployment
Automation enables the quick deployment of storage resources, empowering organizations to 
adapt swiftly to evolving business needs. Instead of time-consuming manual provisioning, 
automation scripts and tools configure storage systems in minutes, helping ensure agility and 
responsiveness.

Scalability
Automated storage management helps businesses scale effortlessly. As data needs evolve, 
storage scales automatically, preventing disruptions and helping ensure consistent 
performance for your applications. This translates to uninterrupted business operations and a 
competitive edge.

Adaptability
You can use automation with IBM Storage FlashSystem to handle new workloads and 
applications quickly. This streamlined approach helps ensure efficient storage support for 
your ever-changing business needs.

1.1.2  Reduced human error and improved consistency

Reduced human error and improved consistency can provide the following benefits. 

Standardized procedures
The use of automation streamlines storage management tasks and helps guarantee 
consistent execution every time. Scripts and workflows eliminate the inconsistencies inherent 
in manual processes, which leads to standardized configurations and smoother operations.

Error reduction
Manual storage management can be prone to human error and can cause downtime and data 
loss. Automation offers a reliable solution by minimizing errors through automating repetitive 
and complex tasks. This helps ensure consistent and reliable storage operations.

Compliance and best practices
Automation enforces adherence to industry standards and best practices, automatically 
ensuring that all configurations meet predefined security and performance requirements. This 
simplifies compliance and minimizes risk for your storage environment.
2 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



1.1.3  Simplified management of complex storage tasks

Simplified management of complex storage tasks can provide the following benefits.

Task automation
Automating complex storage tasks like replication, backups, and tiered storage management 
streamlines IT operations. This frees up valuable IT staff time, so the IT staff can focus on 
strategic initiatives that drive business value.

Centralized control
Automation tools transform storage management by offering centralized interfaces. This 
approach allows administrators to more easily monitor and control multiple storage systems 
and tasks from a single console. The unified view simplifies management, saving time and 
minimizing potential errors.

Predictive maintenance and optimization
Automated systems go beyond basic automation by using analytics and machine learning. 
This proactive approach predicts potential issues before they occur and optimizes storage 
performance for peak efficiency. Automated tuning and load balancing, for example, help 
ensure optimal usage of storage resources.

1.2  Example use cases

This section describes several example use cases for automation.

1.2.1  Automated provisioning

Automation streamlines the process of onboarding new applications. When storage 
requirements emerge, automation tools automatically handle provisioning, configuration, and 
preparation, eliminating manual steps and helping ensure a smooth workflow for IT teams.

1.2.2  Automated backup and recovery

Automation scripts streamline data protection by scheduling regular backups, verifying their 
integrity automatically, and guaranteeing the readiness of recovery processes. This 
eliminates manual intervention and human error, ensuring a reliable and efficient backup and 
recovery system.

1.2.3  Performance optimization

Automation helps ensure your applications always run smoothly. Automated systems 
continuously monitor and optimize storage performance, eliminating bottlenecks and 
dynamically allocating resources. This translates to consistently high performance and 
uninterrupted business operations.

1.2.4  Automating storage reporting

Automation can generate reports about storage usage, performance, and capacity trends.
Chapter 1. Introduction 3



1.2.5  Automated user access control

Automation can be used to manage user access to storage resources and enforce security 
policies.

1.2.6  Conclusion

Automating IBM Storage FlashSystem management delivers agility, speed, and reduced 
errors. This translates to efficient, reliable storage that empowers you to excel in today's 
data-driven world.

1.3  Infrastructure as Code 

Infrastructure as Code (IaC) is a modern, foundational IT practice that involves managing and 
provisioning computing infrastructure through machine-readable configuration files, rather 
than through manual processes or interactive configuration tools. This approach allows for the 
automation and codification of the setup, configuration, and management of infrastructure.

By treating infrastructure configuration as code, organizations can achieve more reliable, 
efficient, and scalable IT environments.

The IaC includes the following key concepts.

Declarative versus imperative
Declarative IaC describes the wanted state of the infrastructure. Tools like Ansible, 
Terraform, and CloudFormation follow this model, where you specify the end configuration, 
and the tool determines how to achieve it.

Imperative IaC describes the exact commands that are needed to achieve the wanted 
configuration. This approach involves specifying step-by-step instructions.

Version control
IaC files are treated as code and stored in version control systems, such as Git. This allows 
for tracking changes, collaboration, and rollback capabilities in case of issues.

Idempotency
Idempotent operations help ensure that applying the same configuration multiple times has 
the same effect, preventing unintended changes and maintaining consistency.

Reusability and modularity
IaC promotes the use of reusable and modular code, which simplifies the management of 
infrastructure by breaking it down into smaller, manageable pieces.
4 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



1.3.1  Role of IaC in automation

IaC has an important role in automation.

Consistency and reliability
IaC ensures that infrastructure is configured consistently across different environments that 
include development, testing, and production. This reduces the chances of configuration drift 
and human errors.

Speed and efficiency
Automation with IaC allows for rapid provisioning and de-provisioning of infrastructure, 
significantly speeding up deployment processes and reducing manual intervention.

Scalability
IaC enables the scaling of infrastructure. By defining configurations in code, additional 
resources can be provisioned automatically based on demand.

Improved collaboration
Because IaC files are stored in version control systems, they facilitate better collaboration 
among teams. Changes can be reviewed, tested, and approved in a controlled manner.

Documentation
IaC serves as a form of living documentation for the infrastructure. The code itself describes 
how the infrastructure is configured and managed, providing clear and up-to-date 
documentation.

1.4  Storage Virtualize automation opportunities

IBM Storage Virtualize systems can be included in your automation landscape by using 
different methods.

� Secure CLI with SSH access

IBM Storage Virtualize provides a CLI for system’s administration. It is available with SSH 
protocol, and it can run bash-like scripts directly on the system. You can also include 
non-interactive SSH command calls into bash or PowerShell scripts running on the 
management host.

� REST API 

IBM Storage Virtualize systems have a RESTful API server that can be accessed with 
HTTPS protocol. It provides a set of command targets, which allows passing arguments to 
the Storage Virtualize CLI. A full set of CLI commands is available through the REST API, 
which means that absolutely every storage management task can be performed with it.

� Ansible playbooks

IBM provides an Ansible Collection ibm.storage_virtualize, which is a set of Ansible 
modules and plug-ins for interacting with the IBM Storage Virtualize products to be used in 
your Ansible Playbooks.

All the methods are available and consistent through all of the Storage Virtualize portfolio 
Scripts or playbooks can be written once and used for all members of the family.
Chapter 1. Introduction 5



6 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Chapter 2. User management and security

This chapter provides an overview of system features for securing access to management 
interfaces, including GUI, CLI, and REST API. It covers the following topics:

� 2.1, “System security introduction” on page 8
� 2.2, “User management” on page 8
� 2.3, “Superuser security” on page 13
� 2.4, “Additional security with MFA and TPI” on page 16
� 2.5, “TLS Certificates” on page 19

2

© Copyright IBM Corp. 2024. 7



2.1  System security introduction

IBM Storage Virtualize features multiple levels of security to protect against threats and to 
keep the attack vector as small as possible:

� Strict verification features that prevent unauthorized users from using login interfaces and 
gaining access to the system and its configuration

� Least privilege features that restrict the environment and limit any effect if a malicious 
actor managed to gain access to a system configuration interface

� Minimal, locked down mode to prevent damage spreading to the kernel and the rest of the 
operating system

� Protection of data at rest that is stored on the system from theft, loss, and malicious or 
accidental data corruption

Security measures available on the system can be broadly divided into two categories: 
System security and data security.

2.1.1  System security

System security includes features that prevent unauthorized access to the system, protect the 
logical configuration of the storage system, and restrict what actions users can perform. 
System security also ensures visibility and reporting of system-level events that can be used 
by a Security Information and Event Management (SIEM) solution, such as IBM QRadar®. 

These features include, but are not limited to, multifactor authentication (MFA), role-based 
access control (RBAC), object-based access control (OBAC), disabling access to the 
command-line interface (CLI), graphical user interface (GUI), and Representational State 
Transfer interface (REST) API.

2.1.2  Data security

This chapter focuses on system security features, specifically those related to administrative 
access protection and separation of duties.

These features help ensure the system's data is protected against theft, loss, or attack. 
Although data security features like Data-at-Rest Encryption (EDAR) and IBM Safeguarded 
Snapshot also play a crucial role, they are outside the scope of this chapter. This chapter 
explores how to improve default configurations for enhanced security.

2.2  User management

This section discusses how to choose appropriate user settings and how to set security 
restrictions on them. Also, advanced system security features such as two person integrity 
(TPI), MFA, and single sign-on (SSO) are covered.

2.2.1  Users and roles

To administer, configure, and monitor the system, an authenticated user is required. The 
system supports local and remote users. Local users are defined on the system itself and 
managed internally by the system. This must be done on each individual Storage Virtualize 
8 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



system. Remote users are defined and maintained in an authentication service external to the 
Storage Virtualize system, for example in your organization’s LDAP directory.

Each user belongs to a user group. Each user group is assigned a role that is associated with 
a set of privileges. The user group privileges determine which configuration commands can 
be run by the users that are members of this group.

As a general best practice, every user must have the most restrictive role that allows them to 
fulfill their duties. For example, a user created to run scripts or make REST API calls solely for 
extracting performance statistics is assigned to a group with Monitor permissions. Table 2-1 
shows use cases, user roles, and their main characteristics.

Table 2-1   Choosing a user role

Use case User/Role Abilities

Read the system’s status and 
configured objects states, 
check system performance

Monitor role Cannot make any changes on 
the system and can run 
commands that only show 
system information

Read states and run 
specialized tasks

Copy operator, 
IBM FlashSystem administrator 
role

Same as monitor plus run 
commands that create or 
change objects related to the 
role

Base system service and 
maintenance

Not recommended for using 
with automation

Service role Same as monitor, plus 
add/reboot/remove nodes and 
perform software update

Daily administrative tasks Administrator role Can perform most of the tasks 
but not user management: 
� Create/Remove regular 

volumes and pools, hosts, 
and mappings

� Grow/Shrink volumes and 
pools

� Can configure Safeguarded 
Snapshot function but 
cannot remove 
Safeguarded snapshots

Maintenance tasks; 
Administrative tasks without a 
permission to delete objects

Restricted Admin role All that an admin can do, but 
cannot remove volumes, hosts 
or mappings

TPI when managing users and 
Safeguarded snapshots

Security Admin + TPI = 
Restricted Security 
Administrator

Can do everything as a Security 
Admin, but requires approval 
from another Security Admin to 
complete risky or critical tasks 
Chapter 2. User management and security 9



In addition to the role’s restrictions, by using the commands mkusergrp and chusergrp, a user 
group can be configured to prohibit some of the access methods. For example, it is possible 
to configure a user group to accept only REST API calls, or restrict GUI access and leave only 
REST and CLI (Example 2-1). For more information, see User management and access 
control commands. 

Example 2-1   Creating a user group with monitor role that allows only REST API access

IBM_FlashSystem:ITSO:securityadmin>mkusergrp -name REST_only -role Monitor 
-disablegui yes -disablecli yes
Modifying the authentication setting for this user group will affect logins for 
all users in the group. Are you sure you want to continue? (y/yes to confirm)  y
User Group, id [6], successfully created
IBM_FlashSystem:ITSO:securityadmin>lsusergrp REST_only
id 6
name REST_only
role Monitor
remote no
owner_id
owner_name
multi_factor no
password_sshkey_required no
gui_disabled yes
cli_disabled yes
rest_disabled no
cim_disabled yes

User and 
authentication 
management; manage 
Safeguarded 
snapshots 

Not recommended for using 
with automation

Security Administrator role All that an admin can do, plus:
� User management: create 

and delete user and user 
groups

� Change system date time 
settings and time

� Change security settings
� LDAP server settings
� Change certificates
� Password rules
� MFA settings
� Change Safeguarded 

snapshot configuration
� Delete Safeguarded 

snapshots

Full control

Not recommended for using 
with automation.

superuser Security Administrator with 
extra privileges: 
� Has highest authority
� Is unrestricted
� Can run maintenance 

commands and perform 
initial setup

� Can reboot nodes in a 
failure state

� Can install software in 
service state

Use case User/Role Abilities
10 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=reference-user-management-access-control-commands
https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=reference-user-management-access-control-commands


A local user is a user whose account is managed entirely within the system itself. A local user 
can belong to one user group only. It must have a password, an SSH public key, or both. Each 
user has a username, which must be unique across all users in a system. 

When you connect to the CLI by using an SSH client, SSH public key authentication is 
attempted first with the username and password combination available as an alternative. The 
SSH key authentication method is available for CLI access and for file transfer by using 
Secure copy protocol (SCP). For GUI access, only the combination of username and 
password is used. Locally administered users can coexist with remote authentication.

Remote users are administered in the organization’s LDAP directory infrastructure, where the 
actual authentication of remote users is done. The LDAP infrastructure can be a single, 
dedicated LDAP server, or part of a more complex environment, such as Microsoft Active 
Directory Services (MSAD) or Red Hat Directory Server. 

For instructions on how to set up remote authentication, see Remote Authentication.

Another way to delegate user management from the Storage Virtualize system is to configure 
authentication with Single Sign-On (SSO). In distinction to remote users authenticating with 
LDAP, SSO-authenticated users can log in only to GUI, and cannot use CLI or REST API. For 
more information, see Single Sign-On.

2.2.2  Password policies and account locking

For remote users, Directory Services can define the password requirements and lifecycle for 
remote users. For local users, a password policy can be configured. A policy is system-wide 
and applies to all users, including superuser. However, superuser is immune to user account 
locking policy unless it is explicitly enabled.

Only Security Administrator group member or Restricted Security Administrator with an active 
privilege escalation can set password policy.

The following attributes can be defined:

� Minimum password length: 6–64 characters
� Minimum number of: 

– Uppercase characters: 0–3
– Lowercase characters: 0–3
– Special characters: 0–3
– Digits: 0–3

� History check (0–10) before password reuse
� Password expiry: 0–365 days
� Password expiry warning (0–30 days), which is displayed on CLI at login only
� Password age (1–365 days), which is the minimum age before a password can change

A user with an expired password can log in to the system, but until they change their 
password, they cannot run any commands that modify configuration, which includes svctask 
group commands or the commands that do not start with ls*.

Complete the following steps to set the password policy in the GUI: 

1. Select Settings → Security.

Note: The built-in account of superuser does not follow settings for the default 
SecurityAdmin group and has separate controls to enable or disable GUI and REST API 
access, MFA, and SSH key requirements. For more information, see chsecurity.
Chapter 2. User management and security 11

https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=commands-chsecurity
https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=security-remote-authentication
https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=security-single-sign


2. Select the Password Policies tab, as shown in Figure 2-1. 

Figure 2-1   Configuring password policy

3. Set required password parameters in Password creation and Password expiration and 
account lockout sections. Additional input windows are shown when you click a feature 
enable checkbox.

4. After all attributes are set, click Save.

5. You can also command the system to expire all existing local user passwords immediately, 
so all users are forced to create a new password at their next login. 

Alternatively, you can use the chsecurity command, as demonstrated in Example 2-2. For 
more information, see chsecurity.

Example 2-2   Using CLI to change password policy

IBM_FlashSystem:ITSO:securityadmin>chsecurity -checkpasswordhistory yes 
-expirywarning 14 -maxpasswordhistory 6 -minpasswordage 1 -minpasswordlength 8 
-passworddigits 1 -passwordexpiry 0 -passwordlowercase 1 -passwordspecialchars 1 
-passworduppercase 1

The chsecurity command with the maxfailedlogins and lockoutperiod parameters controls 
user account locking. When a user exceeds the maximum number of allowed failed login 
attempts, their account gets locked, preventing them from logging in to the system. This 
lockout period determines how long the account remains inaccessible. If the lockoutperiod is 
set to 0, the account becomes permanently locked and requires manual unlocking by a 
Security Administrator.

Example 2-3 shows CLI commands for manual locking and unlocking of a user account.

Example 2-3   Locking and unlocking user accounts

IBM_FlashSystem:ITSO:securityadmin>chuser -lock Alice
IBM_FlashSystem:ITSO:securityadmin>chuser -unlock Bob

2.2.3  Setting session timeouts

You can also use the Security settings window to configure Inactivity Logout settings. These 
settings are independent for the CLI and GUI, letting you define the time (in minutes) after 
which a user is automatically logged off from the respective interface.
12 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=commands-chsecurity


This same interface panel also manages the validity period of REST API security tokens. 
When a token expires, it becomes invalid and requires regeneration for continued API access. 

Figure 2-2 shows the settings including the allowed values: 

� A configurable CLI timeout of 5–240 minutes
� A configurable GUI timeout of 5–240 minutes
� A REST API token timeout of 10–120 minutes

In the CLI, the chsecurity command with guitimeout, clitimeout, and restapitimeout 
parameters is used to control user authorization timeout settings. For more information, see 
chsecurity.

Figure 2-2   Setting session timeouts and REST API token timeout

2.3  Superuser security

During initial configuration, the system defines a single local Security Administrator user that 
is called superuser. 

For cluster maintenance and recovery tasks that are performed through Service Assistant, 
only the superuser login account has the necessary permissions. This superuser account has 
a higher level of access than a Security Administrator.

2.3.1  Superuser specifics

The superuser ID is always present on the system and cannot be deleted or configured for 
remote authentication. However, for greater system security, it can be disabled so that it 
cannot be used as a login ID, and it can temporarily be reenabled when required.

A superuser password must be changed immediately after the cluster is created. The system 
enforces the change and you cannot perform the configuration before it is done. The 
superuser password cannot be set or reset to match the default value until the cluster 
configuration is intentionally deleted. It is crucial to set a strong password and to store it 
securely.

If you choose to leave the superuser account enabled, implement the strongest possible 
security measures to protect it. Use a complex password and limit knowledge of the 
password.

Superuser is the only account that can run commands with the Service Assistant prefixes, 
satask and sainfo. The following tasks can be performed exclusively by superuser:
Chapter 2. User management and security 13

https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=commands-chsecurity


� Initial system setup
� Rebooting nodes in a failure state
� Installing software in a failure or service state
� Cluster recovery (T3 recovery)

For other superuser Service Assistant tasks, equivalent cluster commands exist that start with 
svctask or svcinfo. Refer to Table 2-2 for a list of commands that can be used to replace 
superuser-only commands in Storage Virtualize 8.6.0 and later.

Table 2-2   Svctask and svcinfo replacement for satask/sainfo commands

Superuser is a member of the default SecurityAdmin user group. However, access settings for 
the group do not apply to superuser. For example, even if you set up SecurityAdmin group to 
reject GUI logins, superuser can still do it. 

Task Service Assistant command Cluster command

Change or set the node’s 
Service Assistant IP address 
(service IP)

satask chserviceip chnodeserviceip
chnodecanisterserviceip
svctask chnodeserviceip 

Runs on active config node 
unless the -node parameter is 
specified.

Put a node into a service state satask startservice stopsystem 
-enterservicestate

Requires the -node parameter.

Exit from a service state to 
candidate state or to return to 
the cluster

satask stopservice startsystem 
-exitservicestate

Requires the -node parameter.

Restart one of the services 
running on the node without 
affecting I/O processing on that 
node

satask restartservice restartservice

Runs on the active config node 
unless the -node parameter is 
specified.

Check the node status and VPD 
data.

sainfo lsservicestatus lsnodestatus
lsnodecanisterstatus

Runs on the active config node 
unless the -node parameter is 
specified.

Tip: Cluster commands include the word node on SVC and nodecanister on 
enclosure-based systems, for example, lsnodestatus and lsnodecanisterstatus. By 
adding the optional prefix svctask or svcinfo to the SVC commands, for example svctask 
lsnodestatus, you can make them work on both SVC and enclosure-based platforms. 
14 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



2.3.2  Locking and unlocking the superuser account

As an additional measure to increase the security level and to minimize the attack surface, the 
superuser account can be locked. A good use case includes the use of a remote 
authentication-only system and disabling local account access: 

1. Configure remote authentication

2. Create a remote security administrator

3. Disable the local superuser

Locking the superuser account is a two-step process:

1. Enable superuser locking

2. Run a command to lock it 

Steps to disable the superuser account by using the CLI are shown in Example 2-4:

Example 2-4   Disabling superuser account

IBM_FlashSystem:ITSO:security_admin>chsecurity -superuserlocking enable
Changing the system security settings could result in a loss of access to the 
system via SSH or the management GUI. Refer to the Command Line Interface help for 
more information about the risks associated with each parameter. Are you sure you 
wish to continue? (y/yes to confirm) yes
IBM_FlashSystem:ITSO:security_admin>chuser -lock superuser

A user cannot lock their own account, so the second step must be done from a non-superuser 
Security Administrator account.

To unlock the superuser account, log in with another Security Administrator user account. The 
Security Administrator account must be configured before locking superuser. It can be a local 
account with additional security measures (for example, configured to require both password 
and SSH key, or password and MFA), or a remote account (LDAP).

There are also emergency unlock methods:

� Unlock by logging in through the dedicated Technician port. This method requires physical 
access to the hardware. 

� If Remote Support Assistance is configured, an IBM support engineer can unlock 
superuser. For more information, see Support assistance.

2.3.3  Superuser password reset

If superuser password is lost or forgotten, another Security Administrator can change it. 

If it is not possible to log in with a remote or local Security Administrator account, you must 
have physical access to the system hardware to reset the superuser password. You see the 

Note: Disabling the superuser account and session timeouts are available only on plat-
forms with a dedicated Technician port.

Note: If superuser locking is enabled, but the account is not explicitly locked, superuser 
follows the defined password policy for account expiration and locking. This means it can 
be locked automatically, for example, after several unsuccessful login attempts.
Chapter 2. User management and security 15

https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=support-assistance


superuser password reset link when you access the system Service Assistant GUI through 
the Technician port. Alternatively, you can use the USB flash drive interface with satask 
resetpassword command. This method is also suitable for systems that do not have a 
dedicated Technician port. With the command, you must specify a new password, and you 
cannot use the default one. For more information, see When to use the USB flash drive.

If the superuser account is locked, it is automatically unlocked when the password is reset.

Storage Virtualize offers the option to disable the superuser password reset function. 
However, this decision requires careful consideration. If the superuser password is lost, if 
there are no other Security Administrators, and if the password cannot be reset, then you 
cannot recover superuser access to the cluster. In such a scenario, recovering access 
requires the following steps: 

1. Migrating data off the system using host-side tools

2. Destroying the existing cluster

3. Recreating the cluster from scratch

This process can be time-consuming and disruptive.

If the password_reset_enabled key in sainfo lsservicestatus or svcinfo lsnodestatus 
shows no, then there is no option to reset the superuser password by using the USB interface 
or technician port. Refer to Example 2-5 for CLI commands to disable the password reset 
function.

Example 2-5   Working with password reset disable feature

# check if password reset is allowed 
IBM_FlashSystem:ITSO:superuser>setpwdreset -show
Password status: [1]
IBM_FlashSystem:ITSO:superuser>lsnodecanisterstatus | grep reset
password_reset_enabled yes
# disable superuser password reset and check the result
IBM_FlashSystem:FlashSystem:superuser>setpwdreset -disable
IBM_FlashSystem:FlashSystem:superuser>setpwdreset -show
Password status: [0]
IBM_FlashSystem:FlashSystem:superuser>lsnodecanisterstatus | grep reset
password_reset_enabled no
# enable password reset
IBM_FlashSystem:FlashSystem:superuser>setpwdreset -enable

2.4  Additional security with MFA and TPI

MFA and TPI are security features that can be configured to strengthen system security. 

Multifactor authentication requires users to provide multiple pieces of information when they 
log in to the system to prove their identity. MFA can be configured for both remote (LDAP) and 
local user, it can also be configured for superuser. It supports both CLI and GUI interfaces but 
cannot be used with REST API.

Note: If you disable password reset and you do not have local or remote Security 
Administrator users except superuser, there is no way to restore management access if the 
superuser password is lost. 
16 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=interface-when-use-usb-flash-drive


Two Person Integrity (TPI), also known as the four-eyes-principle, makes a defined set of 
administration tasks require agreement between two administrators, so a single person, such 
as a rogue user with administration permissions, cannot perform them. TPI limits only several 
tasks that are normally performed by the Security Administrator and works in GUI and CLI. 
TPI does not affect REST API usage. 

When TPI is enabled, the superuser account is automatically locked.

2.4.1  Multifactor Authentication

In addition to username and password, a second factor is required to log in when MFA is 
enabled. The second factor can be, for example, an application or a device generating a 
one-time passcode (OTP) The second factor can also be a biometric characteristic such as a 
fingerprint or a retinal scan.

For a list of supported MFA providers, see IBM Storage Virtualize Supported Authentication 
Providers.

MFA uses OpenID Connect (OIDC) authentication protocol for GUI authentication and 
provides an API for CLI access.

For detailed configuration instructions, which include the configuration information from the 
authentication provider, see Multifactor authentication.

The overall configuration workflow includes the following steps:

� Configure DNS unless you plan to specify the authentication server by IP address.

� Allow network access from a system to the provider’s endpoint (directly or through a 
proxy).

� Verify that inactivity timeouts for the GUI and CLI are longer than the time needed to 
receive an OTP password.

� Receive MFA provider endpoint address and credentials.

� Configure MFA provider endpoint and credentials for GUI and CLI on the system.

� Configure existing user groups or create new user groups to use MFA.

� If required, enable MFA for superuser.

� Check the MFA failback policy.

The MFA failback policy defines system behavior when the authentication provider cannot be 
contacted. It can be set to allow or deny users that are configured to use MFA. By default, it 
denies logins. Therefore, if MFA is configured for all users including superuser, and if 
communication to the provider fails, then you must have physical access to the system to 
access the system’s management interfaces. With physical access to the system, superuser 
is able to log in with the technician port, regardless of the MFA configuration.

2.4.2  Two person integrity

When TPI is enabled, all users with the Security Administrator role are changed to the 
Restricted Security Administrator role, and the superuser account is automatically locked. 
When a configuration task requires privileges that are exclusive to Security Administrator, 
Restricted Security Administrator requests temporary privilege elevation, which must be 
approved by a second user with Restricted Security Administrator role. This privilege 
elevation is limited to a maximum time allowed of 24 hours.
Chapter 2. User management and security 17

https://www.ibm.com/support/pages/ibm-storage-virtualize-supported-authentication-providers
https://www.ibm.com/support/pages/ibm-storage-virtualize-supported-authentication-providers
https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=security-multifactor-authentication


Enabling TPI is restricted to IBM Storage Virtualize systems featuring a Technician Port. This 
is to avoid users locking themselves out of the system because a locked superuser account 
can be unlocked from the Technician Port interface. 

At least two local users with Security Administrator role (excluding superuser), or a remote 
user group with this role, must be set up before TPI is configured.

The set of tasks that require privilege elevation is fixed and includes system-critical and 
security-related tasks:

� Create or change users or user groups
� Change security settings related to LDAP, MFA, SSO
� Change certificates
� Change the system time or NTP settings
� Remove and change Safeguarded backups and Safeguarded backup locations
� Delete Safeguarded snapshots
� Remove the Safeguarded snapshot policy association from a volume group

For more information, which includes configuration instructions, see Two person integrity. 

Note that if you are logged in as superuser to enable the feature, you cannot continue as the 
changes are applied immediately, as Example 2-6 shows.

Example 2-6   Superuser loses access as soon as TPI is enabled

IBM_FlashSystem:ITSO:superuser>chsecurity -twopersonintegrity yes
Changing the system security settings could result in a loss of access to the 
system via SSH or the management GUI. Refer to the Command Line Interface help for 
more information about the risks associated with each parameter. Are you sure you 
wish to continue? (y/yes to confirm)  y
IBM_FlashSystem:ITSO:superuser>lscurrentuser
CMMVC6510E The task has failed because the user name or password is not correct.

When TPI is enabled, all Security Administrator users are switched to the Restricted Security 
Administrator role. Restricted SecurityAdmin can issue a request for privilege elevation. 
Another Restricted SecAdmin approves this request but can limit the approved time. After the 
request is approved, the role immediately changes to Security Administrator. See 
Example 2-7.

Example 2-7   Elevating the Restricted SecurityAdmin role

IBM_FlashSystem:ITSO:rsecadmin>lscurrentuser
name rsecadmin
role RestrictedSecurityAdmin
...
IBM_FlashSystem:ITSO:rsecadmin>mktwopersonintegrityrequest -minutesrequested 90
Two person integrity request, id [0], successfully created

Demonstration video: To view a demonstration video, see Configuring Two Person 
Integrity with IBM Storage Virtualize V8.6.

Note: Only local users and users authenticated through LDAP Remote Authentication with 
Security Administrator privileges can request a role elevation. This functionality is not avail-
able to users who are authenticated through SSO, even if they have Security Administrator 
privileges within SSO.
18 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://ibm.biz/BdMcg4
https://ibm.biz/BdMcg4
https://ibm.biz/BdMcg4
https://ibm.biz/BdMcg4
https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=security-two-person-integrity


### Another Restricted SecAdmin logs in and approves, but sets shorter limit
IBM_FlashSystem:ITSO:approver>lscurrentuser
name approver
role RestrictedSecurityAdmin
...
IBM_FlashSystem:ITSO:approver>lstwopersonintegrityrequest
request_id user_name      is_remote minutes_requested minutes_approved ....
0          rsecadmin no        90                0                ....
IBM_FlashSystem:ITSO:approver>chtwopersonintegrityrequest -approve 
-minutesapproved 30 -username rsecadmin
IBM_FlashSystem:ITSO:approver>lstwopersonintegrityrequest
request_id user_name      is_remote minutes_requested minutes_approved ....
0          rsecadmin no        90                30               ....

### Role of a user who requested elevation changes
IBM_FlashSystem:ITSO:rsecadmin>lscurrentuser
name ITSO:rsecadmin
role SecurityAdmi

2.5  TLS Certificates

During system initialization, a Transport Layer Security (TLS) certificate is automatically 
generated and signed by the system-internal root certificate authority (CA). 

The purpose of the internal Root CA of an IBM Storage Virtualize system is to add its 
certificate to truststores on systems communicating through TLS-encrypted paths. This can 
include administrator workstations that are used to access the management GUI, Encryption 
Key Servers or other Storage Virtualize systems in a Policy Based Replication partnership. 
The advantage of applying the internal root CA certificate over using the system’s certificate 
is that the communication can seamlessly continue between these systems, even if the 
certificate was renewed after it expired.

Your organization’s policy might restrict usage of certificates not signed by a trusted Root CA. 
The certificate might be either an internal one, for example part of your organization’s own 
Public Key Infrastructure (PKI), or a public trusted CA such as GlobalSign, Let’s Encrypt, and 
others. Web browsers maintain a list of trusted CAs that are identified by their root certificate. 
The root certificate must be included in this list for the signed certificate to be trusted so that 
no security warning is raised. 

Organization-internal Root CAs are usually configured as trusted authorities across your 
company. 

To see the details of your system’s certificate in the GUI, select Settings → Security and 
then click System Certificates, as shown in Figure 2-3 on page 20. In the CLI, you can use 
the command lssystemcert.

Note: TLS succeeded the deprecated Secure Sockets Layer (SSL) protocol. However, TLS 
certificates are commonly still referred to as SSL certificates. Therefore, the terms TLS and 
SSL can be used interchangeably.
Chapter 2. User management and security 19



Figure 2-3   Accessing the System Certificates window

Depending on your organization’s security policies and needs, you can create a new 
certificate, which is self-signed by the system. Another option is to create a Certificate Signing 
Request (CSR), which can be submitted to be signed by a CA within your own organization or 
by an external, trusted CA. Also, beginning with Storage Virtualize V8.5.3, the option to use a 
system-internal root CA was added, which can be used to sign certificate signing requests 
created for this system. 

If automatic renewal is enabled, an internally signed system certificate can be renewed 
automatically 30 days before its expiration date. You can also regenerate it manually. Key type 
requirements or any of the other certificate properties must be changed. For instructions, see 
Updating an internally signed certificate.

If your company’s security policy requests certificates to be signed by a trusted certificate 
authority (CA), see Requesting and installing an externally signed certificate. The workflow 
includes the following steps:

1. Prepare a certificate sign request (CSR) by using the system’s GUI or CLI. For tips about 
entering the information, see Requesting and installing an externally signed certificate. For 
the Country field, use a two-letter country code according to ISO 3166-1 alpha-2. 

2. Sign CSR with your CA. The resulting generated certificate must be saved in PEM format. 
The whole certificate chain (endpoint certificate and intermediate CA certificates) must be 
concatenated together in a single file. The root certificate can optionally be excluded. 
Concatenation can be done in any order. Example 2-8 shows an example if a file in 
base64-encoded PEM format that the system expects.

Example 2-8   TLS Certificate chain in PEM format

-----BEGIN CERTIFICATE-----
MIIFODCCBCCgAwIBAgIIRNDAZIllU80wDQYJKoZIhvcNAQELBQAwgZgxCzAJBgNV
....
1U3o4s0+Tb712Wd9HZT/xXvzibK023cryRwGVsGtBcGg+9xloIa0be5VQFw=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
BAYTAkFUMQ0wCwYDVQQIEwRXaWVuMQ0wCwYDVQQHEwRXaWVuMQ0wCwYDVQQKEwRC
....
IvY/T3hzJz15ZdxoowCDIsHjlURk9RDSV/ccgw/E3Ig5EOIE69E0OErnMhB=
-----END CERTIFICATE-----
20 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=certificates-updating-internally-signed-certificate
https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=certificates-requesting-installing-externally-signed-certificate
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://www.ibm.com/docs/en/flashsystem-7x00/8.7.x?topic=certificates-requesting-installing-externally-signed-certificate


3. Install the certificate chain on the Storage Virtualize system.

4. If required, export certificate and install it to the services that must be aware of the 
updated system’s certificate (for example, if MFA with IBM Security® Verify is in use).
Chapter 2. User management and security 21



22 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Chapter 3. Automation with CLI scripting 

This chapter describes how to manage IBM Storage Virtualize systems for seamless 
integration into your automation and management processes. The topics include advanced 
command-line interface (CLI) usage best practices and unveils the power of CLI commands 
for writing and running complex scripts and streamlining your storage operations.

The chapter also describes management methods that can be used to control and monitor 
the IBM Storage Virtualize system by using the CLI and basic scripts. 

Scripting can be used to automate management tasks or for reporting and monitoring. For 
complex management tasks, the use of Ansible or REST API is usually preferred.

The following topics are included: 

� 3.1, “Secure restricted shell” on page 24
� 3.2, “General tips” on page 24
� 3.3, “Internal scripting commands” on page 27
� 3.4, “Script examples” on page 28

3

© Copyright IBM Corp. 2024. 23



3.1  Secure restricted shell

SSH is the only supported method for accessing the system’s CLI. It is a network protocol that 
enables secure communication and operation over an insecure network.

To authenticate on the system, a user ID and password or an SSH key pair is used. For 
scripting purposes, an SSH key is the recommended method. 

IBM Storage Virtualize provides SSH clients with a functional Unix bash-like shell, running in 
a restricted environment. For more information, see Command-line interface.

Interactive shell
The use of an SSH client within a shell is a common way of running commands. When using 
interactive shell, it is still possible to use scripts, but there is no way to save script source code 
or script outputs on the system itself. 

Non-interactive shell
Instead of opening an interactive session, you can use an SSH client to run a command on 
the remote system, and forward the output to the local computer.

You can use SSH for remote command execution so that you can write scripts for 
IBM Storage Virtualize. The following list provides examples of functions of a script:

1. Collect data from the storage system

2. Transfer the collected data to your local machine

3. Process the data on your local computer by using a wider range of tools and utilities 
available at your disposal

Example 3-1 shows how to use SSH to run the command svcinfo lssystem on the 
IBM Storage Virtualize system called mystorage with the privileges of myuser and piping the 
output to the local system to filter only a line that shows system’s code version.

Example 3-1   Using ssh and grabbing selected information

$ ssh -i /path/to/key -o "BatchMode yes" myuser@mystorage 'svcinfo lssystem' | grep code

Batch mode is recommended for scripts running in unattended or non-interactive mode. 
When it is enabled, the system tries to authenticate by using a provided key. However, if 
authentication with the key fails, the system does not failback to password authentication. So, 
an unattended script does not hang on a password request but generates an error and exits.

3.2  General tips

Consider the following general tips when writing SSH scripts.

Implement error checking
Although error checking might seem unnecessary for simple scripts, it becomes crucial for 
complex, multi-step ones.
24 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=system-command-line-interface


With effective error checking and handling, the script can adapt its behavior in case of issues, 
which includes the following actions: 

� Stopping execution. If an SSH connection problem arises, the script can terminate 
gracefully.

� Modifying execution logic. If the IBM Storage Virtualize response indicates an error, the 
script can adjust its subsequent steps accordingly.

By incorporating error handling, you can ensure that your scripts are robust and can handle 
unexpected situations.

In both interactive and non-interactive shells, IBM Storage Virtualize uses exit codes to 
indicate command success or failure:

� Exit code 0: Successful command execution.

� Exit code 1: A CMMVC error message was encountered.

� Exit codes 2-225: Other execution failures.

By checking the exit code, scripts can define logic to handle errors, such as taking specific 
actions or stopping script execution.

When running a command by using SSH from a host over a non-interactive shell, the host 
displays the exit code. Any error text is sent to the host's standard error (STDERR). 
Example 3-2 shows command exit codes.

Example 3-2   Command exit codes

IBM_FlashSystem:ITSO:redbooks>lsvdisk 0
CMMVC5753E The specified object does not exist or is not a suitable candidate.
IBM_FlashSystem:ITSO:redbooks>echo $?
1
IBM_FlashSystem:ITSO:redbooks>lsvdis 0
rbash: lsvdis: command not found
IBM_FlashSystem:ITSO:redbooks>echo $?
127
....
[user@host] $ ssh redbooks@9.18.77.111 lsvdisk -badparameter
CMMVC5709E [-badparameter] is not a supported parameter.
[user@host] $ echo $?
1

Prefixes svcinfo and svctask
In the past, all IBM Storage Virtualize cluster commands required prefixes like svcinfo or 
svctask. Although these prefixes are now optional in all supported releases, it is 
recommended to keep using them for your scripts. This practice helps ensure better 
compatibility and readability.

There might be slight variations in CLI commands between different IBM Storage Virtualize 
products. For instance, the lsnode command is not available in IBM FlashSystem, which uses 
lsnodecanister for the same function.

Recommendation: To maintain compatibility across different storage systems, use the 
command svcinfo lsnode. This command works on both IBM FlashSystem and SAN 
Volume Controllers. If you are targeting only IBM Storage Virtualize controllers, then the 
use of lsnode alone is acceptable.
Chapter 3. Automation with CLI scripting 25



Generally, cluster commands that return information on the current state or start with ls, can 
use the svcinfo prefix. Commands that modify the current state of the system use the 
svctask prefix.

Service-level task commands and information commands require sainfo and satask prefixes. 
It cannot be omitted or replaced with svcinfo or svctask.

Selectable delimiter for outputs
By default, output fields in ls* commands are separated by a single or multiple spaces to 
make them easier for a human to read but are not convenient for automated parsing. 

The ls* commands support -delim parameter so that you can provide a single, selectable 
character to insert between columns of the output instead of spaces. The colon (:) or tilde (~) 
is often used as delimiters because they are not found in most of the data fields, so they do 
not interfere with parsing the results. 

Extended data tables
Commands such as lsdrive or lsvdisk that display a list of objects contain only major 
details of the object. To see more details, you must use the same command with the object’s 
ID or name as an argument, but you must issue a command against each particular object.

Many ls* commands in IBM Storage Virtualize can use the -gui parameter. You can use the 
-gui parameter to retrieve an extended data table similar to the output displayed in the 
IBM Storage Virtualize GUI. It provides more detailed information for all objects of the 
requested type. For a comparison, see Example 3-3, which shows the output headers of the 
lsdrive command with and without the -gui parameter.

Example 3-3   lsdrive outputs without and with -gui parameter

IBM_FlashSystem:ITSO:redbooks>lsdrive -delim '~'
id~status~error_sequence_number~use~tech_type~capacity~mdisk_id~mdisk_name~member_
id~enclosure_id~slot_id~node_id~node_name~auto_manage~drive_class_id
...
IBM_FlashSystem:ITSO:redbooks>lsdrive -delim '~' -gui
id~status~error_sequence_number~use~UID~tech_type~capacity~block_size~vendor_id~pr
oduct_id~FRU_part_number~FRU_identity~RPM~firmware_level~FPGA_level~mdisk_id~mdisk
_name~member_id~enclosure_id~slot_id~node_id~node_name~quorum_id~port_1_status~por
t_2_status~was_spare~interface_speed~auto_manage~drive_class_id~write_endurance_us
ed~transport_protocol~compressed~physical_capacity~physical_used_capacity~effectiv
e_used_capacity~date_of_manufacture~protection_enabled~write_endurance_usage_rate~
replacement_date~anomaly_detection_active
...

Remove unwanted information
The -nohdr parameter eliminates the need for code to skip the header line in the output of the 
ls* command output. In addition, when used with the -nomsg parameter, object creation 
commands like mkvdisk return only the created object ID and do not display the successfully 
created message. You can see the output comparison in Example 3-4. This method can 
simplify the parsing of the object creation command results and you can reuse the object ID in 
your script.

Example 3-4   mkvdisk command with -nomsg parameter

IBM_FlashSystem:ITSO:redbooks>mkvdisk -mdiskgrp 0 -size 1 -unit gb
Virtual Disk, id [3], successfully created
26 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



IBM_FlashSystem:ITSO:redbooks>mkvdisk -mdiskgrp 0 -size 1 -unit gb -nomsg
4

Control command rate
Running frequent complex command queries, especially on systems with thousands of 
configured objects, can be resource consuming and is not recommended. Running CLI 
commands that return hundreds of lines of the output multiple times per second can impact 
the system’s management. 

3.3  Internal scripting commands

Scripts can be run on the administrator's system, where the administrator can prepare and 
potentially send CLI commands to the storage system. Alternatively, scripts can be written 
directly within the IBM Storage Virtualize CLI environment. When writing scripts directly on 
the storage system, you have access to a set of internal bash and system commands.

Loops: for and while
CLI supports while and for loops. Loop structure is shown in Example 3-5.

Example 3-5   Loop structure

IBM_FlashSystem:ITSO:redbooks>i=0; while [ $i -lt 5 ]; do i=$((i+1)); echo $i; 
done
IBM_FlashSystem:ITSO:redbooks>for loop_count in {1..5}; do echo $loop_count; done

While loops run until the given statement is no longer true. Example 3-5 shows a loop that 
prints numbers 1 to 5.

For loops provide the same output. It iterates over the provided set of values and changes 
the loop variable with each iteration. This set can be defined in several ways:

� Range

Using curly braces {start..end} to specify a range of values such as in the following 
example: 

for i in {1..5}; do ... .

� Space-separated list

Separating values with a space such as in the following example: 

for i in Monday Tuesday Wednesday; do ... 

� Command substitution 

Running a command and using its output as the list as in the following example

for i in $(lsdrive -nohdr -delim : | cut -d : -f 1); do ...

Both type of loops can be stopped with the Ctrl-C combination.

Key point: This flexibility allows you to choose the approach that best suits your needs. 
You can use your existing scripting environment or write scripts directly on the storage 
system by using the provided internal commands.
Chapter 3. Automation with CLI scripting 27



Data parsing
There is a set of data filtering and parsing tools available in the CLI.

� grep is a GNU grep command implementation. When a command output is piped to grep, 
it processes the command string by string and search for the specified pattern.

� cut is a GNU cut. It is used to print only selected parts of the line with delimiters.
� sort is GNU sort. 
� wc is a GNU tool to print newline, word, and byte counts in the input stream.
� sed is a GNU line-oriented text processing utility.

For available command options, issue the command with --help parameter in the system’s 
CLI, or refer to the appropriate Unix documentation.

3.4  Script examples

Use the following examples to write IBM Storage Virtualize scripts that fit your purpose. 
Scripts are shown in multi-line notation for better readability. They can be submitted as shown 
or in a one-line notation.

Example 3-6 shows a script that creates four 100 GB vdisks with the provided names and 
then immediately maps them to the existing host with ID 0.

Example 3-6   Vdisk creation and mapping script

for name in Prod_DB1 Prod_DB2 Test_DB1 Test_DB2;
do

id=$(svctask mkvdisk -mdiskgrp 0 -size 100 -unit gb -name $name -nomsg);
mkvdiskhostmap -host 0 $id;

done

Example 3-7 shows a script that monitors the system code update process.

The script works in the following manner: 

1. The script enters an infinite loop.

2. Within the loop, it uses grep to search the output of the lsupdate command for a line that 
begins with status. This line indicates the current update state.

3. The script then uses cut to extract the current update status value, which is the second 
field in the line that is separated by a colon (:).

4. The script displays the current state and the cluster time.

5. If the status indicates successful completion, the script exits the loop.

6. If the update is not yet complete, the script waits for 15 seconds before starting the next 
iteration.

7. You can manually stop the script by using Ctrl-C if the update takes longer than expected.

Example 3-7   Process tracking script

while true; 
do 

result=$(lsupdate -delim : | grep ^status | cut -d : -f 2); 
echo $(svqueryclock) - $result; 
[[ "$result" == "success" ]] && break;
sleep 15; 
28 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



done

Example 3-8 demonstrates a script that extracts Used Capacity data for virtual disks (vdisks), 
which isn't available in the standard or extended object listing view.

The script works in the following manner: 

1. It displays a table header that includes the Used Capacity column.

2. It retrieves a list of all vdisk IDs by using an lsvdisk command.

3. The script iterates through each vdisk ID.

a. For each ID, it retrieves detailed vdisk properties, including capacity information in 
bytes.

b. It uses grep to filter the output and isolate the capacity parameters.

c. sed is used to extract these parameters and assign them to separate variables.

4. Before displaying the results, the script converts the capacities from bytes to gibibytes so 
that the output is easier to read. 

Example 3-8   Volume capacity report script

echo ID:Name:Capacity:Used_capacity; 
lsvdisk -nohdr | while read -r id rest; 
do   

details=$(svcinfo lsvdisk -bytes -delim : $id | grep -E 
'^(name|capacity|used_capacity):' | cut -d : -f 2);

name=$(echo "$details" | sed -n 1p); 
capacity=$(echo "$details" | sed -n 2p);   
used=$(echo "$details" | sed -n 3p);   
echo "$id:$name:$((capacity/1024/1024/1024)):$((used/1024/1024/1024))"; 

done
Chapter 3. Automation with CLI scripting 29



30 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Chapter 4. Automation with REST API

This chapter provides methods of managing IBM Storage Virtualize systems that can be used 
to integrate the system in your automation and management processes. 

It describes the REST API interface and provides several examples of how to interact with it.

This chapter has the following sections:

� 4.1, “REST API on IBM Storage Virtualize” on page 32
� 4.2, “Using REST API with PowerShell” on page 36
� 4.3, “Using REST API in Python and Perl scripts” on page 40

4

© Copyright IBM Corp. 2024. 31



4.1  REST API on IBM Storage Virtualize

The IBM Storage Virtualize Representational State Transfer (REST) application programming 
interface (API) consists of command targets that are used to retrieve system information and 
to create, modify, and delete system resources. These command targets allow command 
parameters to pass through unedited to the IBM Storage Virtualize command-line interface 
(CLI), which handles parsing parameter specifications for validity and error reporting. 
Hypertext Transfer Protocol Secure (HTTPS) is used to communicate with the REST API 
server.

API limits
Rate limiting helps with security and the prevention of an attack, such as a denial of service in 
which unlimited work is sent to the system. Rate limiting is implemented at second granularity 
and creates a return code of 429 - too many requests when a violation occurs. REST API 
rate limits are listed in the documentation Storage Virtualize RESTful API.

4.1.1  REST API Explorer

The REST API Explorer is based on the Swagger UI and runs within a browser. It offers an 
easier way to become familiar with the API and to test the commands that it contains. 

The use of the REST API Explorer requires authentication with login and password that are 
used for generating a token, which is needed for all further actions. Figure 4-1 on page 33 
shows how to create an authentication token within the IBM SAN Volume Controller 
information and IBM SAN Volume Controller Task actions.

To access the REST API Explorer, enter the following URL in a browser:

https://<management_ip>:7443/rest/explorer

To view the REST API documentation, see Storage Virtualize RESTful API. Support can also 
be found directly on the system within the REST API Explorer.

Figure 4-1 on page 33 also shows the following outputs after successful authentication:

� The curl command that is required to perform the action
� Request URL, which was addressed during the running of the action
� Server response, which includes the Response body and the response headers

The token is displayed in JSON notation in the response body.
32 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=interface-storage-virtualize-restful-api
https://www.ibm.com/docs/en/sanvolumecontroller/8.7.x?topic=interface-storage-virtualize-restful-api
https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=interface-storage-virtualize-restful-api
https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=interface-storage-virtualize-restful-api


Figure 4-1   REST API Explorer authentication

After a token is generated, more actions can be completed in the REST API Explorer. 
Figure 4-2 on page 34 shows an example for the request body boilerplate, modified to create 
a mirrored vdisk with the required parameters and the output within the response body.
Chapter 4. Automation with REST API 33



Figure 4-2   REST API Explorer mkvdisk page

4.1.2  Using curl to access REST API

Another way to interact with the storage system by using the REST API is by using the curl 
utility to make an HTTPS command request with a valid configuration node URL destination. 
For more information, see curl: command line tool and library. 

Each curl command uses the following format:

curl -k -L -X POST –H <header_1> –H <header_2> ... -d <JSON input> 
https://StorageVirtualize_ip_address:7443/rest/<api_version>/<target>/<ID>
34 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://curl.se


For the command, the following definitions apply:

� -k parameter is required is self-signed certificates are used on the Storage Virtualize 
system;

� -L parameter allows curl to follow redirects;

� -X POST instructs curl to use the only HTTPS method that the Storage Virtualize REST 
API supports;

� Headers <header_1> and <header_2> are individually specified HTTP headers, such as, 
Content-Type and X-Auth-Username.

� Parameter -d followed by the input in Java script Object Notation (JSON) is used to 
provide command parameters, if they are required, such as ‘{“raid_level”: “raid5”}’.

� <StorageVirtualize_ip_address> is the IP address of the IBM Storage Virtualize system 
to which you are sending requests.

� <api_version> specifies which version of the API should get used. v1 is recommended.

� <target> is the target command to be run.

� <ID> is an object id, against which a command given in target is run.

Authentication
Other than data encryption, the HTTPS server requires authentication of a valid username 
and password for each API session. It is required to specify two authentication header fields 
for your credentials: X-Auth-Username and X-Auth-Password.

Initial authentication requires that you POST the authentication target (/auth) with the 
username and password. The REST API server returns a JWT token. The token remains 
authorized only for the configured time, 10 to 120 minutes. You can also set a limit for how 
long an unused token is valid

Example 4-1 demonstrates how to obtain an authentication token by using a user ID and 
password, how to parse the received JSON response with jq, and how to store the token in a 
variable for subsequent use.

Example 4-1   Authenticating with REST API

$ token=$(curl -k -L -X POST -H 'X-Auth-Username: rest_user' -H 'X-Auth-Password: 
passw0rd'  https://itso.lab:7443/rest/auth | jq -r '.token')
$ curl -k -L -X POST -H X-Auth-Token:$token https://itso.lab:7443/rest/v1/lssystem
{ "id": ....... "on" }

The X-Auth-Token header in combination with the authentication token replaces the 
username and password for all further actions. 

REST API query with parameters and arguments
Most actions can be taken only after authentication. To see a list of available actions and 
parameters that they require and return, see Swagger endpoint interface, which is available 
on your system at https://<management_ip>/rest/explorer/. 

Technically, for almost every cluster-level command, that is, commands that do not need 
sainfo or satask prefixes, there is a REST target. Also, with REST API it is possible to 

Note: Compatibility with an earlier version is implemented by auto redirection of 
non-versioned requests to v0. It is recommended to use versioned endpoints for 
guaranteed behavior.
Chapter 4. Automation with REST API 35



download files such as performance statistics, IP quorum apps and support packages 
(snaps) from the node’s internal locations.

Review the following examples to see how commands can be converted to REST API 
queries. According to the command syntax shown in Example 4-2, the command requires 
one parameter -node, and one argument, which is a numeric ID of the port, which is port id 2 
in the example. 

Example 4-2   CLI command syntax

IBM_FlashSystem:ITSO:redbooks>lsportstats -?
..
>>-lsportstats-- -node--node_id_or_name--+---------+-----------><
                                         '-port_id-'

IBM_FlashSystem:ITSO:redbooks>lsportstats -node node1 2
... output truncated ...

To convert that into a REST API query, parameters must be provided in json notation. Also, 
include a Content-Type header to specify the kind of provided POST data. The command’s 
argument is converted to the endpoint ID and specified in the URL. See Example 4-3. 

Example 4-3   Supplying parameters to REST API query

$ curl -k -L -X POST -H X-Auth-Token:$token -H 'Content-Type: application/json' 
https://itso.lab:7443/rest/v1/lsportstats/2 --data-raw '{"node": "node1"}'
[{ "... output truncated ..."}]

The same approach is used if you want to refer an object by its name instead of the id. 

If you need to supply parameters to a command that does not require a value, such as 
-bytes, they need to be set to true in the json. 

See Example 4-4 showing these concepts.

Example 4-4   Requesting object details by its name with REST API

IBM_FlashSystem:ITSO:redbooks>lsmdisk -bytes MDisk1
... output truncated ...

$ curl -k -L -X POST -H X-Auth-Token:$token -H 'Content-Type: application/json' 
https://itso.lab:7443/rest/v1/lsmdisk/MDisk1 --data-raw '{"bytes": true}'
[{ "... output truncated ..."}]

4.2  Using REST API with PowerShell

A PowerShell script inherits the security settings for TLS/SSL from the operating system if 
they are not explicitly set in the script. This might cause communication failures if the 
TLS/SSL setting does not match the configuration of lssecurity (sslprotocol) on the Storage 
Virtualize system.

By default, a Storage Virtualize system uses self-signed SSL certificates.

During deployment, you can choose to use the same certificates or replace them with 
CA-signed certificates. Additional consideration is required in the PowerShell script when 
working with self-signed certificates.
36 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



The examples in this chapter are basic because the intention is mainly to demonstrate the 
command syntax for different use cases with PowerShell.

For an actual deployment of a script, use recommended practices. For example, use 
PowerShell credentials, secure strings, or hash files on disk for credentials, instead of having 
them in plain text in the script.

It is possible to access the REST API by using two PowerShell cmdlets:

� Invoke-WebRequest
� Invoke-RestMethod

The examples within this chapter focus on the Invoke-RestMethod.

Table 4-1 shows a syntax comparison of Curl, PowerShell, and PowerShell Core

Table 4-1   Syntax comparison

There are some differences in the PowerShell language between Windows PowerShell and 
PowerShell (Core). The differences are most notable in the availability and behavior of 
PowerShell cmdlets between Windows and non-Windows platforms and the changes 
resulting from the differences between the .NET Framework and the .NET Core.

PowerShell on Linux and macOS uses .NET Core, which is a subset of the full .NET 
Framework on Microsoft Windows. This is important because PowerShell provides direct 
access to the underlying framework types and methods.

This difference becomes visible when using the Invoke-RestMethod cmdlet to determine a 
specific SSL/TLS version or SSL verification behavior.

Although the Invoke-RestMethod cmdlet from PowerShell Core provides dedicated options 
for this, using the cmdlet with Windows PowerShell requires a separate command or 
additional scripting.

Description curl Windows PowerShell
Invoke-RestMethod

PowerShell Core
Invoke-RestMethod

SSL/TLS version --tlsX.Y Separate command -SslProtocol

SSL verification -k Custom scripting 
needed

-SkipCertificateCheck

HTTP method X -Method -Method

Headers -H -Headers -Headers

Content Type Header -H -ContentType -ContentType

Data -d -Body -Body

URL/URI argument -Uri -Uri
Chapter 4. Automation with REST API 37



4.2.1  Authentication

The script that is shown in Example 4-5 shows an example of the authentication and creation 
of an access token by using the Windows PowerShell cmdlet Invoke-RestMethod.

Example 4-5   Using the REST API by using Windows PowerShell

# Storage management IP or FQDN and according credentials
$myStorage = 'myStorage' 
$myUser = 'myUser'
$myPassword = 'myUserPassword'

# Force TLS V1.2
[System.Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12

#Code to handle self signed certificates
if (-not 
([System.Management.Automation.PSTypeName]'ServerCertificateValidationCallback').Type)
{
$certCallback = @"
    using System;
    using System.Net;
    using System.Net.Security;
    using System.Security.Cryptography.X509Certificates;
    public class ServerCertificateValidationCallback
    {
        public static void Ignore()
        {
            if(ServicePointManager.ServerCertificateValidationCallback ==null)
            {
                ServicePointManager.ServerCertificateValidationCallback += 
                    delegate
                    (
                        Object obj,
                        X509Certificate certificate,
                        X509Chain chain,
                        SslPolicyErrors errors
                    )
                    {
                        return true;
                    };
            }
        }
    }

"@
    Add-Type $certCallback
}
[ServerCertificateValidationCallback]::Ignore()
# Get auth token
$token = Invoke-RestMethod -Method 'Post' -Headers @{'X-Auth-Username' = $($myUser); 
'X-Auth-Password' = $($myPassword)} -ContentType 'application/json' -Uri 
https://$($myStorage):7443/rest/v1/auth

The script that is shown in Example 4-6 on page 39 shows an example of the authentication 
and creation of an access token by using the PowerShell Core cmdlet Invoke-RestMethod.

Because the PowerShell Core cmdlet offers the SslProtocol and SkipCertificateCheck 
parameters, there is no need for additional code to address SSL-related concerns within the 
38 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



script. The example assumes that credential variables are already set as in the previous 
example.

Example 4-6   Using the REST API to get a token by using PowerShell Core

# Get auth token
$token = Invoke-RestMethod -SslProtocol Tls12 -SkipCertificateCheck-Method 'Post' -Headers 
@{'X-Auth-Username' = $($myUser); 'X-Auth-Password' = $($myPassword)} -ContentType 
'application/json' -Uri https://$($myStorage):7443/rest/auth

4.2.2  Submitting REST API requests

The script that is shown in Example 4-7 shows an example of an API query to create a vdisk 
by using the Windows PowerShell cmdlet Invoke-RestMethod. The script assumes that a 
token is already received and stored in the $token variable.

Example 4-7   Using the REST API by using Windows PowerShell - providing data as body

#Define a hash table with the parameters that you would like to pass to the REST API call 
in "-body"
$body = @{
"mdiskgrp" = 1
"unit" = "gb"
"size" = 100
"name" = "my_vDisk_01"
}
#It is required to convert the content defined within the body to JSON format
$body_json = $body | ConvertTo-Json

# Create vdisk
Invoke-RestMethod -Method 'Post' -Headers @{'X-Auth-Token' = $Token.token} -ContentType 
'application/json' -Body $body_json -Uri https://$($myStorage):7443/rest/v1/mkvdisk

The script that is shown in Example 4-8 shows an API request to list pool properties. This 
example demonstrates how to pass a Boolean value to -Body from a dictionary, for example a 
parameter like‚ -bytes does not have an argument so passing a Boolean value is required.

Example 4-8   Using the REST API by using Windows PowerShell - passing Boolean values

#Define a hash table with the parameters for passing to the REST API call in "-body"
$body = @{

"bytes" = [bool]::Parse('true')
}

#It is required to convert the content defined within the body to JSON format
$body_json = $body | ConvertTo-Json

# Get mdisksgroups
Invoke-RestMethod -Method 'Post' -Headers @{'X-Auth-Token' = $Token.token} -ContentType 
'application/json' -Body $body_json -Uri https://$($myStorage):7443/rest/v1/lsmdiskgrp

With PowerShell core, the script is almost the same. As it was previously mentioned, the only 
difference is that you can specify the SSL version and skip certificate check. An example is 
shown in Example 4-9 on page 40 where it is assumed that the token was previously created 
and saved as a variable.
Chapter 4. Automation with REST API 39



Example 4-9   Getting MDisk list with PowerShell Core

# Get mdisks
Invoke-RestMethod -SslProtocol Tls12 -SkipCertificateCheck -Method 'Post' -Headers 
@{'X-Auth-Token' = $Token.token} -ContentType 'application/json' -Uri 
https://$($myStorage):7443/rest/v1/lsmdisk 

4.3  Using REST API in Python and Perl scripts

This section describes how to use REST API in Python and Perl scripts.

4.3.1  Python

The script that is shown in Example 4-10 shows an authentication and creation of an access 
token for further use in the context of querying all available MDisks with a Python script.

The output of the script provides the following information about each MDisk:

� Name
� Name of the providing controller
� Name of the MDisk group 
� Capacity
� Status

The script uses the getpass module to prompt for the password and prevent the storage of the 
credentials in clear text within the script.

Example 4-10   Using the REST API by using Python

#!/usr/bin/python

import json
import requests
import getpass

myStorage = 'myStorage'
myUser = 'myUser'
myPassword = getpass.getpass()

### disable SSL verification
ssl_verify = False

### ignore warning for SSL not being used
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

### get session token
tokenRequest = requests.post('https://' + myStorage + ':7443/rest/v1/auth',
        headers={
                'Content-type':         'application/json',
                'X-Auth-Username':      myUser,
                'X-Auth-Password':      myPassword
                },
        params="", data="", verify=ssl_verify)

### convert to JSON
_token = json.loads(tokenRequest.text)
40 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



token = _token['token']

### get mdisks
mdiskRequest = requests.post('https://' + myStorage + ':7443/rest/v1/lsmdisk',
        headers={
                'Content-type':         'application/json',
                'X-Auth-token':         token
                },
        params="", data="", verify=ssl_verify)

_mdisks = json.loads(mdiskRequest.text)

print( '{:32.32s} {:20.20s} {:32.32s} {:8.8s} {:10.10s}' \
        .format("name","controller_name","mdisk_grp_name","capacity","status") )

for mdisk in _mdisks:
        print( '{:32.32s} {:20.20s} {:32.32s} {:8.8s} {:10.10s}' \
.format(mdisk['name'],mdisk['controller_name'],mdisk['mdisk_grp_name'],mdisk['capacity'],md
isk['status']) )

The use of the verify=False option allows insecure SSL connections. By default, every SSL 
connection is verified to be secure. This option allows the request to get proceed; otherwise, 
the connection is considered insecure. If you use a signed SSL certificate, you do not need 
this option.

4.3.2  Perl

The script that is shown in Example 4-11 is an example of the authentication and creation of 
an access token for further use in the context of querying all available MDisks.

The output of the script provides the following information about each MDisk:

� Name
� Name of the providing controller
� Name of the MDisk group 
� Capacity
� Status

The script uses the IO::Prompter module to prompt for the password and prevent the storage 
of the credentials in clear text within the script.

Example 4-11   Using the REST API by using Perl

#!/usr/bin/perl

use strict;
use JSON;
use REST::Client;
use IO::Prompter;

my $myStorage = 'myStorage';
my $myUser = 'myUser';

my $myPassword = prompt 'Please enter your password:', -echo=>"*";

my $restURL = 'https://' . $myStorage . ':7443/rest/v1/';

### get the session token
my $tokenRequest = REST::Client->new();
Chapter 4. Automation with REST API 41



$tokenRequest->addHeader('Content-type', 'application/json');
$tokenRequest->addHeader('X-Auth-Username' , $myUser);
$tokenRequest->addHeader('X-Auth-Password', $myPassword);
$tokenRequest->getUseragent()->ssl_opts('verify_hostname' => 0);
$tokenRequest->POST($restURL . '/auth');
my $token = decode_json($tokenRequest->responseContent())->{'token'};

### get the list of mdisks
my $mdiskRequest = REST::Client->new();
$mdiskRequest->addHeader('Content-type', 'application/json');
$mdiskRequest->addHeader('X-Auth-Token', $token);
$mdiskRequest->getUseragent()->ssl_opts('verify_hostname' => 0);
$mdiskRequest->POST($restURL . '/lsmdisk');

my $mdiskList = $mdiskRequest->responseContent();
my @mdiskListJSON = @{decode_json($mdiskList)};

for my $key (@mdiskListJSON) {
        printf "%32s %20s %32s %8s %10s\n",
                $key->{'name'},
                $key->{'controller_name'},
                $key->{'mdisk_grp_name'},
                $key->{'capacity'},
                $key->{'status'};
}

The use of the getUseragent()->ssl_opts('verify_hostname' => 0) method allows 
insecure SSL connections. By default, every SSL connection is verified to be secure. This 
option allows the request to proceed; otherwise, the connection is considered insecure. If you 
use a signed SSL certificate, you do not need this option.
42 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Chapter 5. Automation with Red Hat Ansible

This chapter provides information about scripting and automation tasks that can occur in an 
IBM Storage Virtualize environment that uses Ansible.

This chapter includes the following topics:

� 5.1, “Introduction to Ansible” on page 44
� 5.2, “Automation with Red Hat Ansible” on page 45

5

© Copyright IBM Corp. 2024. 43



5.1  Introduction to Ansible

Ansible is a widely used open source tool that revolutionizes the way infrastructure and 
applications are managed. As a powerful Infrastructure as Code (IaC) tool, Ansible allows IT 
professionals to automate the deployment, configuration, and management of systems and 
applications.

5.1.1  Key features of Ansible

The key features of Ansible are as follows.

Agentless architecture
Unlike many other automation tools, Ansible operates without requiring agents to be installed 
on remote systems. It uses SSH for Linux/Unix systems and WinRM for Windows systems to 
communicate and run tasks.

Simple yet powerful
Ansible's configuration files, known as playbooks, are written in YAML, which is 
human-readable and can be easier to write. This simplicity doesn't compromise its power and 
flexibility, making it suitable for complex automation tasks.

Idempotency
Ansible helps ensure that applying the same configuration multiple times results in the same 
state, preventing unintended changes and ensuring consistency across deployments.

Extensive respository
Ansible has a vast collection of modules that cover a wide range of tasks, from provisioning 
and configuration management to application deployment and orchestration. The Ansible 
Galaxy is a community-driven repository where users can share and access pre-written roles 
and playbooks.

Cross-platform support
Ansible supports a wide range of operating systems and cloud providers, making it a versatile 
tool for managing diverse IT environments, including on-premises servers, cloud instances, 
and containerized applications.

Scalability
Designed to handle both small and large-scale environments, Ansible can manage everything 
from a few servers to thousands of nodes, scaling as your infrastructure grows.

Integration with DevOps practices
Ansible integrates well with other DevOps tools and practices, facilitating continuous 
integration, continuous delivery (CI/CD), and infrastructure as code (IaC). This integration 
streamlines the deployment pipeline and enhances collaboration between development and 
operations teams.
44 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



5.1.2  Common use cases for Ansible

The following list describes some common use cases for Ansible:

� Provisioning

Automatically setting up new servers and cloud instances with the necessary software and 
configurations

� Configuration management

Helping ensure that systems remain in the wanted state by managing configuration files, 
packages, and services

� Application deployment

Automating the deployment of applications, helping ensure consistency across different 
environments (development, testing, production)

� Orchestration

Coordinating complex workflows and interdependencies between multiple systems and 
services

� Security and compliance

Implementing security policies and helping ensure compliance with industry standards by 
automating audits and enforcement

5.2  Automation with Red Hat Ansible

Automation is a priority for maintaining today’s busy storage environments. Automation 
software allows for the creation of repeatable sets of instructions. It also reduces the need for 
human interaction with computer systems. 

Red Hat Ansible and other third-party automation tools are being used more often in 
enterprise IT environments, and their use might increase as they become more popular.

5.2.1  Red Hat Ansible

The IBM Storage Virtualize family includes integration with Red Hat Ansible automation 
platform. This integration allows IT to create an Ansible playbook that automates repetitive 
tasks across an organization in a consistent way, which helps improve outcomes and reduces 
errors.

Ansible is an agentless automation management tool that uses primarily the SSH protocol.

REST API support
Ansible itself does not have a built-in REST API, but you can achieve interaction with external 
REST APIs over HTTPS within Ansible playbooks using the following methods:

� Uniform Resource Identifier (URI) module

Ansible provides the URI module with which you can make HTTP/HTTPS requests to 
external APIs. This module can be used within playbooks to interact with various REST 
APIs secured with HTTPS. You can use the URI module to specify the URL, method (GET, 
POST, PUT, and so on), headers, and body for the HTTP/HTTPS request.
Chapter 5. Automation with Red Hat Ansible 45



� Community modules

Community modules offer additional functionality specific to the API that they are designed 
for, such as authentication handling or automatic data parsing.

Some of the modules in SpecV Ansible collection use REST API over HTTPS.

Supported platforms for Ansible include Red Hat, SUSE, Debian, CentOS, macOS, and any 
of the Berkeley Software Distribution (BSD) versions.

Windows support 
The recommended and officially supported platform for the Ansible control node is a Linux 
distribution. You can use Windows Subsystem for Linux (WSL) to run a Linux environment 
within Windows 10 or later versions. It can be used for some basic Ansible tasks, but it might 
not be ideal for production environments because of potential performance limitations or 
compatibility issues.

5.2.2  Red Hat Ansible editions

The following Red Hat Ansible editions are available:

� Ansible Core

Ansible Core is the command-line tool that is installed from community repositories or the 
official Red Hat repositories for Ansible.

� Ansible Tower

Ansible Tower is the GUI tool that is used to run Ansible tasks. Tower requires a license 
that is based on the number of systems Ansible Tower is to manage. Ansible Tower is 
available as Standard or Premium Edition. With Premium Edition, 24x7 support is 
included.

5.2.3  Requirements

The Ansible server (Control Node) features the following requirements:

� Python 3 versions 3.9 and later.

� Host requirements:

– Although you do not need a daemon on your managed nodes, you need a way for 
Ansible to communicate with them. 

– For most managed nodes, Ansible makes a connection over SSH and transfers 
modules by using SFTP. If SSH works but SFTP is not available on some of your 
managed nodes, you can switch to SCP in ansible.cfg. 

– For any machine or device that can run Python, you also need Python 2 version 2.7 or 
later or Python 3 version 3.5 or later.

– In addition, for non-Python machines, PowerShell 3–5.1 can be used.

Note: Certain control node plug-ins might have additional requirements. Refer to the 
plug-in documentation for details.

Note: Some modules feature more requirements that must be met on the target machine 
(the managed node). These requirements are listed in ibm.spectrum_virtualize.
46 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://galaxy.ansible.com/ibm/spectrum_virtualize


5.2.4  Essential terminology in an Ansible environment

The Ansible environment features the following essential terminology: 

Ansible Galaxy A hub for finding and sharing Ansible content.

Ansible server The machine with Ansible installed, which runs all tasks and 
playbooks.

Playbook A framework where Ansible automation tasks are defined (written in 
YAML).

Task A section that contains a single procedure that you want to be run.

Tag A name that you can assign to a task.

Play The execution of a playbook.

Hosts The devices that you manage with Ansible.

Modules A command or set of commands that are made for execution on the 
client side.

Handler A task that is called only if a notifier is present.

Notifier A section that is assigned to a task that calls a handler if the output is 
changed.

Inventory A file that contains Ansible client/server data.

Fact Information that is retrieved from the client from global variables by 
using the gather-facts operation. 

Roles A structured way of grouping tasks, handlers, variables, and other 
properties.

Container Ansible Container uses Ansible roles to build images, initialize 
projects, and add services to projects.

5.2.5  Automating IBM Storage with Ansible

IBM data storage provides simple storage solutions that address modern data requirements 
and provides a solution to your hybrid multicloud strategy.

With the speed, scale, and complexity of hybrid multicloud and even traditional on-premises 
environments, automation became a priority. 

IBM Storage FlashSystem family for hybrid multicloud includes integration with Red Hat 
Ansible Automation Platform. It allows IT to create an Ansible playbook that automates the 
tasks that are repeated across an organization in a consistent way, which helps improve 
outcomes and reduces risk.

It also standardizes how IT and application owners interact together and features the 
following benefits:

� With Red Hat Ansible Automation Platform and IBM Storage, customers can easily 
automate tasks, such as configuration management, provisioning, workflow orchestration, 
application deployment, and lifecycle management.

� By using Red Hat Ansible Automation Platform and IBM Storage, customers can reduce 
system inconsistencies with the automation modules.

� Red Hat Ansible Automation Platform can also be used to configure end-to-end 
infrastructure in an orchestrated fashion.
Chapter 5. Automation with Red Hat Ansible 47



� Ansible provides a single pane of glass visibility to multicluster, multicloud environments, 
which allows lines of business to use playbooks to accomplish their goals without needing 
to understand the details of how the work is being done.

As a Red Hat-certified support module vendor, IBM provides simplified management for the 
following commands within the IBM Storage Virtualize Ansible Collection:

Collect facts

Collect basic information, including hosts, host groups, snapshots, consistency groups, 
and volumes.

Manage hosts  

Create, delete, or modify hosts.

Manage volumes  

Create, delete, or extend the capacity of volumes.

Manage MDisk  

Create or delete a managed disk.

Manage pool  

Create or delete a pool (managed disk group).

Manage volume map  

Create or delete a volume map.

Manage consistency group snapshot 

Create or delete consistency group snapshots.

Manage snapshot

Create or delete snapshots.

Manage volume clones

Create or delete volume clones.

The previous list is a subset of commands. For up-to-date information, see in 
ibm.spectrum_virtualize.

This collection provides a series of Ansible modules and plug-ins for interacting with the 
IBM Storage Virtualize family storage products. The modules in the IBM Storage Virtualize 
Ansible collection use the REST API to connect to the IBM Storage Virtualize storage system, 
which includes the following products:

� IBM SAN Volume Controller

� IBM Storage FlashSystem family members that are built with IBM Storage Virtualize 

� IBM Storwize® family

� IBM Storage Virtualize for Public Cloud

For more information, see Automate and Orchestrate Your IBM FlashSystem Hybrid Cloud 
with Red Hat Ansible, REDP-5598.

For IBM Storage Virtualize modules, Ansible version 2.14 or later is required. For more 
information about IBM Storage Virtualize modules, see the Ansible web page 
ibm.spectrum_virtualize. Also, see Using Ansible.
48 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible

https://galaxy.ansible.com/ibm/spectrum_virtualize
https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=started-using-ansible
https://galaxy.ansible.com/ibm/spectrum_virtualize


5.2.6  Getting started

The Ansible Collection (ibm.storage_virtualize) provides a series of Ansible modules and 
plug-ins for interacting with the IBM Storage Virtualize family storage products,.

As of this writing, the Ansible collection for IBM Storage Virtualize is available in version 2.4.

All information in this section is based on version 2.4.

Prerequisites for using the modules
Paramiko must be installed to use ibm_svctask_command and ibm_svcinfo_command modules.

Paramiko is a Python (2.7, 3.4+) implementation of the SSH v2 protocol, and provides client 
and server functions. 

Although Paramiko is a Python C extension for low-level cryptography, it is a pure Python 
interface around SSH networking concepts.

Current limitations
The modules in the IBM Storage Virtualize Ansible collection use the REST API to connect to 
the IBM Storage Virtualize storage system. 

This collection includes the following limitations: 

� The use of the REST API to list more than 2000 objects might create a loss of service from 
the API side because it automatically restarts because of memory constraints. 

� The Ansible collection can run on all supported IBM Storage Virtualize storage versions.

� It is not possible to access the REST API by using a cluster IPv6 address.

� With the release of Storage Virtualize Ansible v1.8.0, automation of license agreement 
acceptance, including the EULA, is only available for Licensed Machine Code (LMC) 
systems. Non-LMC systems require users to accept the license agreement through a GUI 
setup wizard during login, regardless of whether Ansible modules were used for initial 
configuration.

Differences between LMC and non-LMC code
Licensed Machine Code
Licensed Machine Code (LMC) is the code that is provided by the storage system vendor, for 
example IBM and Storage Virtualize software and is subject to a specific license agreement, 
often an End-User License Agreement (EULA). LMC typically includes critical firmware, 
microcode, and other essential code that governs the core operations of the storage system. 
The vendor retains ownership of the LMC, and its use is governed by the terms of the license 
agreement. This can include restrictions on copying, modifying, or reverse engineering the 
code.

Non-Licensed Machine Code
Non-LMC code encompasses code that does not fall under the vendor's specific licensing 
terms. It can include the following types of code:

– Open-source code. Some storage systems might use open source components that 
are not subject to vendor licensing restrictions.

User-developed code. Users might be able to write custom scripts or programs for the storage 
system by using supported APIs. These user-developed codes are not considered to be LMC.
Chapter 5. Automation with Red Hat Ansible 49



Prerequisites
Ensure that the following prerequisites are met:

� Ansible is installed and configured on a controller node.

� Ansible Galaxy Collection ibm.storage_virtualize is installed on the same controller 
node.

� Network access is available from the controller node to IBM Storage Virtualize 
Management IP.

� A user with sufficient authorization to create or delete objects on IBM Storage Virtualize.

� IBM Storage Virtualize version 8.1.3 or later with the exceptions of versions 8.3.1.3, 
8.3.1.4, and 8.3.1.5.

Installing or upgrading Ansible Galaxy Collection ibm.storage_virtualize
To install the IBM Storage Virtualize collection that is hosted in Galaxy, use the following 
command:

ansible-galaxy collection install ibm.storage_virtualize

To upgrade to the latest version of the IBM Storage Virtualize collection, use the following 
command:

ansible-galaxy collection install ibm.storage_virtualize --force

Functions provided by IBM Storage Virtualize Ansible modules
Table 5-1 list the modules provided by the ibm.storage_virtualize collection version 2.0.0.

Table 5-1   Provided modules with ibm.spectrum_virtualize collection version 2.0.0

Name of module Description

ibm_svc_auth Generates an authentication token for a user on 
the IBM Storage Virtualize family storage 
system.

ibm_svc_complete_initial_setup Completes the initial setup configuration for 
Licensed Machine Code (LMC) systems. For 
non-LMC systems, logging in to the user 
interface is required to complete the automation 
of Day 0 configuration.

ibm_svc_host Manages hosts that are on the IBM Storage 
Virtualize system.

ibm_svc_hostcluster Manages the host cluster that is on the 
IBM Storage Virtualize system.

ibm_svc_info Collects information about the IBM Storage 
Virtualize system.

ibm_svc_initial_setup Manages initial setup configuration on the 
IBM Storage Virtualize system.

ibm_svc_manage_callhome Manages configuration of the Call Home feature 
on the Storage Virtualize system.

ibm_svc_manage_consistgrp_flashcopy Manages the FlashCopy consistency groups that 
are on the IBM Storage Virtualize system.
50 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



ibm_svc_manage_cv Manages the change volume in remote copy 
replication that is on the IBM Storage Virtualize 
system.

ibm_svc_manage_flashcopy Manages the FlashCopy mappings that are on 
the IBM Storage Virtualize system.

ibm_svc_manage_ip Manages IP provisioning on the IBM Storage 
Virtualize system.

ibm_svc_manage_migration Manages volume migration between clusters on 
IBM Storage Virtualize systems.

ibm_svc_manage_mirrored_volume Manages the mirrored volumes that are on the 
IBM Storage Virtualize system.

ibm_svc_manage_ownershipgroup Manages ownership groups on the IBM Storage 
Virtualize system.

ibm_svc_manage_portset Manages IP portset on IBM Storage Virtualize 
system.

ibm_svc_manage_replication Manages the remote copy replication that is on 
the IBM Storage Virtualize system.

ibm_svc_manage_replicationgroup Manages the remote copy consistency group on 
the IBM Storage Virtualize system.

ibm_svc_manage_safeguarded_policy Manages safeguarded policy configuration on 
the IBM Storage Virtualize system.

ibm_svc_manage_sra Manages the remote support assistance 
configuration on the IBM Storage Virtualize 
system.

ibm_svc_manage_storage_partition Manages storage partitions on the IBM Storage 
Virtualize system.

ibm_svc_manage_syslog_server Manages syslog server on the IBM Storage 
Virtualize system.

ibm_svc_manage_user Manages users on the IBM Storage Virtualize 
system.

ibm_svc_manage_usergroup Manages user groups on the IBM Storage 
Virtualize system.

ibm_svc_manage_volume Manages the standard volumes on the 
IBM Storage Virtualize system.

ibm_svc_manage_volumegroup Manages the volume groups that are on the 
IBM Storage Virtualize system.

ibm_svc_mdisk Manages the MDisks for IBM Storage Virtualize 
system.

ibm_svc_mdiskgrp Manages pools for IBM Storage Virtualize 
system.

ibm_svc_start_stop_flashcopy Starts or stops the FlashCopy mapping and 
consistency groups that are on the IBM Storage 
Virtualize system.

Name of module Description
Chapter 5. Automation with Red Hat Ansible 51



ibm_svc_start_stop_replication Starts or stops the remote copy relationship or 
group on the IBM Storage Virtualize system.

ibm_svc_vol_map Manages the volume mapping for IBM Storage 
Virtualize system.

ibm_svcinfo_command Runs the svcinfo CLI command on the 
IBM Storage Virtualize system over an SSH 
session.

ibm_svctask_command Runs the svctask CLI commands on the 
IBM Storage Virtualize system over and SSH 
session.

ibm_sv_manage_awss3_cloudaccount Manages Amazon S3 cloud account 
configuration on IBM Storage Virtualize system.

ibm_sv_manage_cloud_backups Manages cloud backup on the IBM Storage 
Virtualize system.

ibm_sv_manage_drive This module manages drives on IBM Storage 
Virtualize family storage systems.

ibm_sv_manage_fc_partnership Manages Fibre Channel (FC) partnership on the 
IBM Storage Virtualize system.

ibm_sv_manage_fcportsetmember Manages addition or removal of ports from the 
Fibre Channel (FC) portsets on the IBM Storage 
Virtualize system.

ibm_sv_manage_ip_partnership Manages IP partnership configuration on the 
IBM Storage Virtualize system.

ibm_sv_manage_provision_policy Manages provisioning policies on the 
IBM Storage Virtualize system.

ibm_sv_manage_replication_policy Manages policy-based replication configuration 
on the IBM Storage Virtualize system.

ibm_sv_manage_security Manages security options on IBM Storage 
Virtualize family systems.

ibm_sv_manage_snapshot Manages snapshots (mutual consistent images 
of a volume) on the IBM Storage Virtualize 
system.

ibm_sv_manage_snapshotpolicy Manages snapshot policy configuration on the 
IBM Storage Virtualize system.

ibm_sv_manage_ssl_certificate Exports an existing system certificate on to 
IBM Storage Virtualize system.

ibm_sv_manage_truststore_for_replicati
on

Manages certificate truststores for replication on 
the IBM Storage Virtualize system.

ibm_sv_restore_cloud_backup Restores cloud backups on IBM Storage 
Virtualize system.

ibm_sv_switch_replication_direction Switches the replication direction on the 
IBM Storage Virtualize system.

Name of module Description
52 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



Getting help for IBM Storage Virtualize Ansible modules
To get the online documentation for a specific module that is displayed, use the following 
command:

ansible-doc <collection-name>.<module-name>

The output of the help includes all permissible options and some examples of how to use the 
module (see Example 5-1).

Example 5-1   Example displaying online help

ansible-doc ibm.storage_virtualize.ibm_svc_manage_volume

> IBM_SVC_MANAGE_VOLUME 
Ansible interface to manage 'mkvolume', 'rmvolume', and 'chvdisk' volume commands.

  * This module is maintained by The Ansible Community
OPTIONS (= is mandatory):

- buffersize
        Specifies the pool capacity that the volume will reserve as a buffer for 
thin-provissioned and compressed volumes.
        Parameter 'thin' or 'compressed' must be specified to use this parameter.
        The default buffer size is 2%.
        `thin' or `compressed' is required when using `buffersize'.
        Valid when `state=present' to create a volume.
        [Default: (null)]
        type: str

= clustername
        The hostname or management IP of the Storage Virtualize storage system.

        type: str

5.2.7  Securing credentials in Ansible

When working with Ansible, you can create several playbooks, inventory files, variable files, 
and so on. Some of the files might contain sensitive data, such as access credentials. To 
protect this kind of data, Ansible provides the Ansible Vault, which helps to prevent this data 
from being exposed. Sensitive data and passwords are kept in an encrypted file rather than in 
plain text files.

5.2.8  Creating an Ansible playbook

The playbook consistently automates the tasks that are repeated across an organization, 
which helps to improve outcomes and reduces risk. It also standardizes how IT and 
application owners interact.

Note: Beginning with version 1.6.0, the ibm_svc_vdisk module is considered a deprecated 
feature. A new module (ibm_svc_manage_volume) was introduced to manage standard 
volumes.
Chapter 5. Automation with Red Hat Ansible 53



This section describes the creation of an Ansible playbook. The creation of the playbook is 
based on the use case that is used here.

For a new VMware ESX cluster that consists of two new servers, two vdisks are to be created 
and mapped to the host cluster object. 

Table 5-2 lists the variable parameters and their values for the example playbook.

Table 5-2   Variable parameters and their values for the example playbook

The steps that are used to create an Ansible playbook are described next.

Step 1: Authentication
Example 5-2 shows the required YAML notation for the part of the playbook to authenticate at 
the IBM Storage Virtualize REST API to obtain a token for further use. To avoid storing the 
password in clear text within the playbook, the password was encrypted in a vault. 

The generation of a token is an optional task that is only required for optimization purposes 
because all modules accept username and password for authentication.

Example 5-2   YAML notation for obtaining an authentication token

vars:
    clustername: <Cluster management ip | hostname>
    domain: <FQDN>
    username: myuser
    password: !vault |
              $ANSIBLE_VAULT;1.1;AES256
62653531313434393266646438306537396264306433653638343439643136333238383139616561
6530373430636265316639626234376336306630343333640a326332626564656233323336333239
39633132656631353030386430663736363631656438343364346235653534316333333233333531
3166343263626538360a633664616264326133643339336333363638323232373962393839356637
              6138
tasks:

Note: The idempotency property might be included in a mathematics or computer science 
operation. It roughly means that an operation can be carried out multiple times without 
changing the result.

The IBM Storage Virtualize Ansible modules provide idempotency in Ansible playbooks.

The IBM Storage Virtualize Ansible modules check whether the object to be created exists 
in the defined state and does not attempt to create it again.

Attribute Value

Name of new host cluster ESX-Cluster-1

Name of new host 1 ESX-Host-1

WWPNs of new host 1 100000109C400798, 1000001AB0440446

Name of new host 2 ESX-Host-2

WWPNs of new host 2 100000109B600424, 1000001BC0660146

Name of vdisk 1 Datastore1

Name of vdisk 2 Datastore2
54 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



    - name: Obtain an authentication token
      register: result
      ibm_svc_auth:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        username: "{{ username }}"
        password: "{{ password }}"

For more information about how to work with Ansible vaults, see Protecting sensitive data with 
Ansible vault.

Step 2: Creating the host cluster object
Example 5-3 shows the required YAML notation for the part of the playbook to create an 
empty host cluster object.

Example 5-3   YAML notation for creating an empty host cluster

- name: Define a new host cluster
      ibm_svc_hostcluster:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"

token: "{{ result.token }}"
log_path: "{{ log_path }}"

        name: <hostcluster_name>
        state: present

Step 3: Creating an FC host
Example 5-4 shows the required YAML notation for the part of the playbook to create an FC 
host object.

Example 5-4   YAML notation for creating a new FC host object

- name: Define a new FC host
      ibm_svc_host:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        name: "{{ hostname }}"
        state: present
        fcwwpn: "{{ fcwwpn(s) }}"
        iogrp: 0:1:2:3
        protocol: scsi
        type: generic

  hostcluster: "{{ hostcluster_name }}"

Step 4: Creating a thin-provisioned volume
Example 5-5 on page 56 shows the required YAML notation for the part of the playbook to 
create a thin-provisioned volume.

Note: It is valid to use the parameter <domain> when a hostname is used for the 
parameter <clustername>.
Chapter 5. Automation with Red Hat Ansible 55

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html


Example 5-5   YAML notation to create a thin-provisioned volume

- name: Create a thin-provisioned volume
      ibm_svc_manage_volume:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        name: "volume_name"
        state: "present"
        pool: "<pool_name>"
        size: "<size>"
        unit: "<size_unit>"
        thin: true
        buffersize: 10%

Step 5: Mapping the new volume to the host cluster object
Example 5-6 shows the required YAML notation for the part of the playbook to map the new 
volume to the hostcluster.

Example 5-6   YAML notation to map a volume to the hostcluster

    - name: Map a volume to a hostcluster
      ibm_svc_vol_map:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        volname: <volume_name>
        hostcluster: <hostcluste_-name>
        state: present

If a SCSI-Id must be specified, use the scsi: <scsi-id> parameter.

Putting it all together
Example 5-7 shows the combined required tasks for the use of the IBM Storage Virtualize 
collection to create hostcluster volumes to be used as a playbook by Ansible. This use case is 
featured in this chapter. All customized lines of the playbook are highlighted in bold in the 
example.

Example 5-7   Complete playbook for specified use-case

- name: Using Storage Virtualize collection to create hostcluster - hosts - 
volumes
  hosts: localhost
  collections:
    - ibm.storage_virtualize
  gather_facts: no
  connection: local

# definition of global variables
  vars:
    clustername: mySVC
56 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



    domain: mydomain.com
    username: myuser
    password: !vault |
              $ANSIBLE_VAULT;1.1;AES256
62653531313434393266646438306537396264306433653638343439643136333238383139616561
6530373430636265316639626234376336306630343333640a326332626564656233323336333239
39633132656631353030386430663736363631656438343364346235653534316333333233333531
3166343263626538360a633664616264326133643339336333363638323232373962393839356637
6138
    log_path: /tmp/redbook-example.log

# define variables for running the playbook
# hostcluster
    hostcluster_name: ESX-Cluster-1

# host 1
    host1_name: ESX-Host-1
    host1_fcwwpn: 100000109C400798{{":"}}1000001AB0440446

# host 2
    host2_name: ESX-Host-2
    host2_fcwwpn: 100000109B600424{{":"}}1000001BC0660146

# pools to use for volume mirror
    pool1_name: pool1
    pool2_name: pool2

#  volume 1
    volume1_name: Datastore1
    volume1_size: '10'
    volume1_size_unit: tb

#  volume 2
    volume2_name: Datastore2
    volume2_size: '10'
    volume2_size_unit: tb

tasks:
# creating an authentication token for further usage within the playbook
    - name: Obtain an authentication token
      register: result
      ibm_svc_auth:
        clustername: "{{  clustername  }}"
        domain: "{{  domain }}"
        username: "{{  username }}"
        password: "{{  password }}"
        log_path: "{{  log_path  }}"

# create the hostcluster object
    - name: Create the hostcluster
      ibm_svc_hostcluster:
        clustername: "{{  clustername  }}"
        domain: "{{  domain  }}"
        token: "{{  result.token  }}"
        log_path: "{{  log_path  }}"
Chapter 5. Automation with Red Hat Ansible 57



        name: "{{  hostcluster_name  }}"
        state: present

# create first host object
    - name: Define first FC host
      ibm_svc_host:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        name: "{{ host1_name }}"
        state: present
        fcwwpn: "{{ host1_fcwwpn }}"
        iogrp: 0:1:2:3
        protocol: scsi
        type: generic
        hostcluster: "{{ hostcluster_name }}"

# create second host object
    - name: Define second FC host
      ibm_svc_host:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token}}"
        log_path: "{{ log_path }}"
        name: "{{ host2_name }}"
        state: present
        fcwwpn: "{{ host2_fcwwpn }}"
        iogrp: 0:1:2:3
        protocol: scsi
        type: generic
        hostcluster: "{{ hostcluster_name }}"

# create first mirrored thin-provisioned volume
    - name: Create first thin-provisioned volume
      ibm_svc_manage_volume:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        name: "{{ volume1_name }}"
        state: "present"
        pool: "{{  pool1_name }}:{{ pool2_name }}"
        size: "{{ volume1_size }}"
        unit: "{{ volume1_size_unit }}"
        thin: true
        buffersize: 10%

# create second mirrored thin-provisioned volume
    - name: Create second thin-provisioned volume
      ibm_svc_manage_volume:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
58 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



        name: "{{ volume2_name }}"
        state: "present"
        pool: "{{ pool1_name }}:{{ pool2_name }}"
        size: "{{ volume2_size }}"
        unit: "{{ volume2_size_unit }}"
        thin: true
        buffersize: 10%

# mapping of first volume to the hostcluster
    - name: Map first volume to the hostcluster
      ibm_svc_vol_map:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        volname: "{{ volume1_name }}"
        hostcluster: "{{ hostcluster_name }}"
        state: present

# mapping of second volume to the hostcluster
    - name: Map second volume to the hostcluster
      ibm_svc_vol_map:
        clustername: "{{ clustername }}"
        domain: "{{ domain }}"
        token: "{{ result.token }}"
        log_path: "{{ log_path }}"
        volname: "{{ volume2_name }}"
        hostcluster: "{{ hostcluster_name }}"
        state: present

5.2.9  More automation

The use case that is described in this chapter can be extended by completing the following 
steps:

1. Create the required FC zoning.
2. Scan the HBA for the newly created volumes.
3. Create a VMFS data store on the discovered volumes.
4. Create one or more virtual machines (VMs).

For more information about the Brocade FOS FC collection on Ansible Galaxy, see the 
Ansible web page brocade.fos.

For more information about the community.vmware Ansible Collection on Ansible Galaxy, see 
this Ansible web page community.vmware.
Chapter 5. Automation with Red Hat Ansible 59

https://galaxy.ansible.com/brocade/fos
https://galaxy.ansible.com/community/vmware


60 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible



ronyms
API application programming interface

BSD Berkeley Software Distribution

CA certificate authority

CDM Copy Data Management

CI/CD Continuous Integration/Continuous 
Delivery

CLI Command Line Interface

CSM Copy Services Manager

CSR Certificate Signing Request

DMP Directed Maintenance Procedure

DR Disaster Recovery

EDAR Encryption

EULA End-User License Agreement

FC Fibre Channel

FS9100 FlashSystem 9100

GM Global Mirror

GMCV Global Mirror with Change Volumes

GUI Graphical User Interface

HA High Availability

HTTPS Hypertext Transfer Protocol Secure

IBM International Business Machines 
Corporation

ISL Inter-Switch Link

IaC Infrastructure as Code

JSON Java script Object Notation

LMC Licensed Machine Code

MFA Multifactor Authentication

MSAD Microsoft Active Directory Services

Mbps Megabits per second

OBAC Object-based Access Control

OIDC OpenID Connect

OTP One-time Passcode

PBHA Policy-based HA

PBR Policy-based replication

PKI Public Key Infrastructure

QoS Quality of Service

RBAC Role-based Access Control

RDMA Remote Direct Memory Access

REST Representational State Transfer

RPO Recovery Point Objective

RTO Recovery Time Objective

Abbreviations and ac
© Copyright IBM Corp. .
RTT Round-trip Time

SCP Secure copy protocol

SIEM Security Information and Event 
Management

SSL Secure Sockets Layer

SSO Single Sign-On

SVC SAN Volume Controller

TLS Transport Layer Security

TPI Two Person Integrity

VMs Virtual Machines

WSL Windows Subsystem for Linux

mTLS mutual Transport Layer Security
 61



62 



Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

� Unleash the Power of Flash: Getting Started with IBM Storage Virtualize Version 8.7 on 
IBM Storage FlashSystem and IBM SAN Volume Controller, SG24-8561

� Automate and Orchestrate Your IBM FlashSystem Hybrid Cloud with Red Hat Ansible, 
REDP-5598

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Documentation - Using Ansible

https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=started-using-ansible/

� IBM Documentation - Storage Virtualize RESTful API

https://www.ibm.com/docs/en/flashsystem-9x00/8.7.x?topic=interface-storage-virt
ualize-restful-api

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2024. 63

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/


64 Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting, and Ansible





ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 073846175X

REDP-5736-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Introduction
	1.1.1 Increased agility and faster storage provisioning
	1.1.2 Reduced human error and improved consistency
	1.1.3 Simplified management of complex storage tasks

	1.2 Example use cases
	1.2.1 Automated provisioning
	1.2.2 Automated backup and recovery
	1.2.3 Performance optimization
	1.2.4 Automating storage reporting
	1.2.5 Automated user access control
	1.2.6 Conclusion

	1.3 Infrastructure as Code
	1.3.1 Role of IaC in automation

	1.4 Storage Virtualize automation opportunities

	Chapter 2. User management and security
	2.1 System security introduction
	2.1.1 System security
	2.1.2 Data security

	2.2 User management
	2.2.1 Users and roles
	2.2.2 Password policies and account locking
	2.2.3 Setting session timeouts

	2.3 Superuser security
	2.3.1 Superuser specifics
	2.3.2 Locking and unlocking the superuser account
	2.3.3 Superuser password reset

	2.4 Additional security with MFA and TPI
	2.4.1 Multifactor Authentication
	2.4.2 Two person integrity

	2.5 TLS Certificates

	Chapter 3. Automation with CLI scripting
	3.1 Secure restricted shell
	3.2 General tips
	3.3 Internal scripting commands
	3.4 Script examples

	Chapter 4. Automation with REST API
	4.1 REST API on IBM Storage Virtualize
	4.1.1 REST API Explorer
	4.1.2 Using curl to access REST API

	4.2 Using REST API with PowerShell
	4.2.1 Authentication
	4.2.2 Submitting REST API requests

	4.3 Using REST API in Python and Perl scripts
	4.3.1 Python
	4.3.2 Perl


	Chapter 5. Automation with Red Hat Ansible
	5.1 Introduction to Ansible
	5.1.1 Key features of Ansible
	5.1.2 Common use cases for Ansible

	5.2 Automation with Red Hat Ansible
	5.2.1 Red Hat Ansible
	5.2.2 Red Hat Ansible editions
	5.2.3 Requirements
	5.2.4 Essential terminology in an Ansible environment
	5.2.5 Automating IBM Storage with Ansible
	5.2.6 Getting started
	5.2.7 Securing credentials in Ansible
	5.2.8 Creating an Ansible playbook
	5.2.9 More automation


	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

