
Redpaper

Front cover

Red Hat OpenShift Container Platform on
IBM Z and LinuxONE

Lydia Parziale

Rakesh Krishnakumar

Shrirang Kulkarni

Li Liyong

Anilkumar Patil

Richard Young

2 Red Hat OpenShift on IBM Z and LinuxONE

IBM Redbooks

Red Hat OpenShift Container Platform on IBM Z and
LinuxONE

July 2024

REDP-5711-00

© Copyright International Business Machines Corporation 2024. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2024)

This edition applies to IBM z/VM 7.3, Red Hat Enterprise Linux 9.1, and
Red Hat OpenShift Container Platform 4.13.

This document was created or updated on July 3, 2024.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xi
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and
LinuxONE . 1

1.1 Red Hat OpenShift overview. 2
1.2 Red Hat OpenShift on IBM Z and LinuxONE . 3

1.2.1 Red Hat OpenShift capabilities on IBM Z and LinuxONE . 3
1.2.2 Red Hat OpenShift benefits on IBM Z or LinuxONE . 6
1.2.3 Red Hat OpenShift deployment options on IBM Z and LinuxONE 8

Chapter 2. Red Hat OpenShift Container Platform architecture 13
2.1 Red Hat OpenShift components overview . 14
2.2 Red Hat OpenShift components and their roles . 17

2.2.1 Bootstrap node . 17
2.2.2 Control plane. 17
2.2.3 Compute Node . 18
2.2.4 Bastion node . 18

Chapter 3. Implementation architectural considerations . 21
3.1 Red Hat OpenShift product deployment requirements . 22

3.1.1 Load balancer . 22
3.1.2 Network Configuration Management. 24
3.1.3 Bastion host . 24
3.1.4 Hosting hypervisor environment . 25

3.2 Number of hosting logical partitions for a cluster . 25
3.3 Deployment architectures used in this paper . 26

3.3.1 Single-LPAR deployment configuration . 26
3.3.2 Three-LPAR deployment configuration . 27

3.4 Storage architecture . 28
3.4.1 FCP-attached SCSI and FICON-attached ECKD storage 28
3.4.2 CoreOS node storage . 28
3.4.3 RHEL virtual server disk storage. 28
3.4.4 Red Hat OpenShift Persistent Storage . 29

3.5 Multitenancy with other workloads . 31
3.5.1 LPAR level controls in IBM Z and LinuxONE . 31
3.5.2 Guest controls in KVM . 31
3.5.3 Guest controls in IBM z/VM. 32

3.6 Recovery site considerations . 32
3.7 IBM Secure Execution. 33
3.8 IBM CEX high-performance hardware security modules requirements 33
3.9 FIPS requirements . 33
3.10 Multus for a second network interface . 34
© Copyright IBM Corp. 2024. iii

3.11 Authenticating . 34
3.12 Monitoring . 35
3.13 Logging . 35

Chapter 4. Resource considerations for Red Hat OpenShift . 37
4.1 LPAR adjustments and weights . 38

4.1.1 General LPAR adjustments . 38
4.1.2 IBM z/VM weights . 40
4.1.3 Adjustments for Red Hat OpenShift . 40

Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 41
5.1 Deployment topology criteria. 42

5.1.1 Data gravity . 42
5.1.2 Consolidation and TCO Reduction . 42
5.1.3 Business continuity . 42
5.1.4 Vertical Solutions . 43

5.2 IBM z/VM One LPAR cluster implementation . 43
5.2.1 Resource planning . 43
5.2.2 DNS configuration. 44
5.2.3 HAPROXY configuration. 45
5.2.4 Ignition files and the HTTP server. 47
5.2.5 USER DIRECT and PARM files for OCP nodes . 51
5.2.6 Building the Red Hat OpenShift Container Platform cluster 54
5.2.7 Using Ansible playbooks. 55

5.3 IBM z/VM three-LPAR cluster implementation . 64
5.3.1 Architecture. 64
5.3.2 Planning resources . 65
5.3.3 HAPROXY configuration. 66
5.3.4 USER DIRECT and PARM files for OCP nodes . 71
5.3.5 Building the OCP cluster . 74

5.4 KVM single hypervisor cluster implementation . 75
5.4.1 Architecture. 75
5.4.2 Planning resources . 76
5.4.3 DNS configuration. 79
5.4.4 Ansible controller configuration. 82
5.4.5 Load balancer configuration . 83
5.4.6 File server for Ansible Playbook . 84
5.4.7 Building the OCP cluster through Ansible . 85
5.4.8 Validating the deployment. 93

5.5 KVM three-LPAR cluster implementation . 95
5.5.1 Architecture. 95
5.5.2 Hypervisor preparation . 99
5.5.3 DNS server configuration . 103
5.5.4 DHCP server configuration . 106
5.5.5 Highly available load balancer configuration. 108
5.5.6 Rapidly creating the guests that provide the support infrastructure 113
5.5.7 Creating the Red Hat OpenShift cluster . 121
5.5.8 Completing the initial installation of Red Hat OpenShift 4.12 130

Chapter 6. Best practices and moving forward . 137
6.1 Applying best practices . 138

6.1.1 CPU entitlement and vCPU number . 138
6.1.2 Disabling transparent huge pages . 138
6.1.3 Enabling RFS . 139
iv Red Hat OpenShift on IBM Z and LinuxONE

6.1.4 Infrastructure nodes . 139
6.1.5 HyperPAV . 139
6.1.6 Specific for KVM . 140

6.2 Post-installation configurations . 141
6.2.1 Defining an identity provider . 141
6.2.2 Configuring persistent storage . 143
6.2.3 Configuring the NTP Server . 145
6.2.4 Disabling kubeadmin. 145
6.2.5 Backing up the etcd database. 146

6.3 Sample application deployment . 146
6.3.1 Application architecture. 147
6.3.2 Deployment . 147

Appendix A. Additional material . 153
Locating the web material . 153
Using the web material. 153

System requirements for downloading the web material . 153
Downloading and extracting the web material . 153

Related publications . 155
IBM Redbooks . 155
Online resources . 155
Help from IBM . 155
 Contents v

vi Red Hat OpenShift on IBM Z and LinuxONE

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2024. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at https://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

FICON®
GDPS®
IBM®
IBM Cloud®
IBM Consulting™

IBM Spectrum®
IBM Z®
IBM z Systems®
Parallel Sysplex®
Redbooks®

Redbooks (logo) ®
z Systems®
z/OS®
z/VM®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Red Hat, Ansible, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Red Hat OpenShift on IBM Z and LinuxONE

https://www.ibm.com/legal/copytrade.shtml

Preface

Whether you need to run mission-critical workloads, handle massive data volumes or support
high-demand applications, Red Hat OpenShift Container Platform on IBM® Z or
IBM LinuxONE can give you the tools you need to build, deploy and manage your
containerized applications.

Red Hat OpenShift provides enterprise-level support and additional features for large-scale
container deployments. It includes advanced security and compliance features, as well as
management tools for monitoring and scaling containerized applications.

With advanced security features and flexible deployment options, Red Hat OpenShift on
IBM Z or IBM LinuxONE provides scalability, performance, reliability and security.

This IBM Redpaper publication provides a basic understanding of Red Hat OpenShift on
IBM Z and LinuxONE, discusses architectural considerations for implementation as well as
resource considerations, basic deployment examples and some best practices to move
forwards in your own implementations. It has been written for IT architects and IT specialists.

Authors

This paper was produced by a team of specialists from around the world working at IBM
Redbooks, Poughkeepsie Center.

Lydia Parziale is a Project Leader for the IBM Redbooks® team in Poughkeepsie, New York,
with domestic and international experience in technology management including software
development, project leadership, and strategic planning. Her areas of expertise include
business development and database management technologies. Lydia is a PMI certified PMP
and an IBM Certified IT Specialist with an MBA in Technology Management and has been
employed by IBM for over 30 years in various technology areas.

Rakesh Krishnakumar is working as an IBM zStack Principal zArchitect for the United
Kingdom/Ireland region. He has been working with IBM for 15 years with total industry
experience spanning 26 years, predominantly in the IBM Z brand. Rakesh has been helping
clients to embrace, modernize, and adopt new technology solutions around IBM Z. His
primary skills center around customer advocacy, leading development and testing practices
involving Linux on IBM Z, as well as providing technical support services for IBM Z clients.
Rakesh has been part of various IBM Redbooks residency programs in the past and has
co-authored multiple IBM Redbooks publications involving Linux on IBM Z.
© Copyright IBM Corp. 2024. ix

Shrirang Kulkarni is a LinuxONE and Cloud Architect who has been with IBM over 18 years
working with IBM System Labs as a LinuxONE and Cloud Architect supporting
IBM Z® Global System Integrators. He has worked with various clients in over 25 countries
worldwide from IBM Dubai as a Lab services consultant for IBM Z in the MEA region. He has
achieved “IBM Expert Level IT specialist” and “The Open Group Certified Master IT
Specialist” certifications. He co-authored IBM Redbooks Security for Linux on System z,
SG24-7728 and Implementing, Tuning, and Optimizing Workloads with Red Hat OpenShift on
IBM Power, SG24-8537. He also authored “Bringing Security to Container Environments,
Performance Toolkit and Streamline Fintech Data Management With IBM Hyper Protect
Services”, which was published in IBM System Magazine. His areas of expertise include
Linux on IBM Z, IBM z/VM®, cloud solutions, IBM z/OS® Container Extensions (zCX),
Red Hat OpenShift, architecture design and solutions for z/VM and Linux on IBM Z,
performance tuning Linux on IBM Z, IBM z/VM, Oracle, IBM Power, and IBM System x.

Li Liyong is a Certified Consulting IT Specialist and open source enthusiast. Liyong is the
technical lead within IBM System Expert Labs organization in ASEAN, helping customers in
adopting new technologies, such as hybrid cloud solutions on IBM Z and LinuxONE,
Red Hat OpenShift Container Platform and Ansible Automation Platform. He has been with
IBM for 17 years, and holds a degree in Computer Science. He has written and contributed to
several IBM Redbooks publications on Cloud, IBM z/VM, and Linux.

Anilkumar Patil is an Executive Cloud Architect and Solution Thought Leader in Hybrid
Cloud Services within IBM Consulting, US. He is a Certified Thought leader in Architect and
Solution Consultant with 23 years of IT experience in design, development, architecture and
Cloud migration for large and complex projects and deal solutions. His core experience is in
IBM Cloud®, Red Hat OpenShift, Amazon Web Services (AWS), Cloud Application
Engineering and Migration services. He is Chief Architect and Solution Consultant Leader for
various clients in North America within cross industries. Anil is an IBM Redbooks publication
author for different Redbooks and technical contributor for various IBM materials and blogs.
Anil is employed with IBM for more than 10 years and holds a BE degree in Electronics and
Executive MBA in finance and strategy from Rutgers Business School, New Jersey.

Richard Young is an Executive I.T. Specialist in IBM US. He has extensive experience and is
a leader within IBM for Linux and Virtualization technologies. He holds degrees in Computer
Science and Business from the University of Wisconsin. His most recent focus has been
helping clients with large scale consolidation of Linux on to IBM Z and LinuxONE platforms.

Thanks to the following people for their contributions to this project:

Robert Haimowitz and Wade Wallace
IBM Redbooks, Poughkeepsie Center

Tom Ambrosio and Bill Lamastro
IBM CPO

Gerald Hosch and Holger Wolf
IBM
x Red Hat OpenShift on IBM Z and LinuxONE

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

https://www.linkedin.com/groups/2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/subscribe

� Stay current on recent Redbooks publications with RSS Feeds:

https://www.redbooks.ibm.com/rss.html
 Preface xi

https://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.redbooks.ibm.com/contacts.html
https://www.linkedin.com/groups/2130806
https://www.redbooks.ibm.com/subscribe
https://www.redbooks.ibm.com/rss.html

xii Red Hat OpenShift on IBM Z and LinuxONE

Chapter 1. Introduction to Red Hat
OpenShift Container Platform on
IBM Z and LinuxONE

This chapter provides an overview of Red Hat OpenShift Container Platform on IBM Z and
LinuxONE. It highlights the unique capabilities and benefits that Red Hat OpenShift brings to
IBM Z and LinuxONE, as well as the potential synergies between the two platforms.

1

© Copyright IBM Corp. 2024. 1

1.1 Red Hat OpenShift overview

Red Hat OpenShift is a cloud-native application platform powered by containers and
Kubernetes. It offers standardized workflows, support for multiple environments, continuous
integrations, and release management, allowing developers to consistently deploy
applications across multiple environments.

Enterprises are using microservices and containers to build applications faster by adopting
greenfield projects, modernization initiatives, or cloud-native application development.
Red Hat OpenShift empowers developers, DevOps, and Site Reliability Engineers (SREs) to
quickly build, deploy, run and manage applications anywhere, securely and at scale.

Red Hat OpenShift is a self-managed application platform that includes
Red Hat Enterprise Linux® CoreOS, Kubernetes, over-the-air updates, container runtime,
networking, ingress, monitoring, logging, container registry, authentication, and authorization
solutions. The platform provides supplementary tooling around the complete life cycle of
applications, from building and continuous integration/continuous delivery (CI/CD) to
monitoring and logging. These components are tested together for unified operations on a
complete Kubernetes platform

Figure 1-1 presents an overview of the Red Hat OpenShift architecture and capabilities.

Figure 1-1 Red Hat OpenShift architectural and capabilities overview
2 Red Hat OpenShift on IBM Z and LinuxONE

1.2 Red Hat OpenShift on IBM Z and LinuxONE

Organizations face the challenge of delivering extraordinary customer experiences by
developing new applications, while modernizing existing applications to speed up their
cloud-native journey. For developers and IT operations teams, this requires flexibility and
agility to develop and deploy applications across multiple infrastructures, from on-premises to
public cloud. Red Hat OpenShift on IBM Z and LinuxONE empowers organizations to
accelerate transformation with greater flexibility and agility through integrated tooling and a
security-focused and resilient foundation for cloud-native development.

Red Hat OpenShift is a trusted Kubernetes enterprise platform that supports modern,
hybrid-cloud application development and provides a consistent foundation for applications
anywhere, across physical, virtual, private, and public cloud environments. Red Hat
OpenShift and IBM Cloud Paks helps teams to develop, deploy and orchestrate cloud-native
applications consistently, while taking advantage of the security, reliability, scalability, and
reduced carbon footprint of the IBM Z and LinuxONE infrastructure.

1.2.1 Red Hat OpenShift capabilities on IBM Z and LinuxONE

The Red Hat OpenShift Container Platform subscription includes a set of developer and
operations services and tools enabled for IBM Z and LinuxONE. The proven platform includes
services that empower developers to code with speed and agility, as well as services
providing flexibility and efficiency for SREs and operations teams.

Some of these capabilities include the following:

� Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh offers a unified approach to interconnecting, governing,
and monitoring microservices-based applications, making it easier to manage and secure
communication between services as their complexity increases. Based on the open
source Istio project, Red Hat OpenShift Service Mesh helps developers increase
productivity by integrating communications policies without changing application code or
integrating language-specific libraries. For more information, see Red Hat OpenShift
Service Mesh.

� Red Hat OpenShift Pipelines

Red Hat OpenShift Pipelines is a cloud-native CI/CD solution based on the open source
Tekton project. It provides a Kubernetes-native CI/CD framework to design and run
pipelines and is designed to run each step of the CI/CD pipeline in its own container,
allowing each step to scale independently to meet the demands of the pipeline. For more
information, see Cloud-native CI/CD on Red Hat OpenShift.
Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE 3

https://www.redhat.com/en/technologies/cloud-computing/openshift/what-is-openshift-service-mesh
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-is-openshift-service-mesh
https://www.redhat.com/en/technologies/cloud-computing/openshift/ci-cd
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-is-openshift-service-mesh
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-is-openshift-service-mesh
https://www.redhat.com/en/technologies/cloud-computing/openshift/ci-cd

� Red Hat OpenShift Serverless

A serverless cloud computing model providing developers with a modern, cloud-native
app dev stack for hybrid clouds. Serverless lets developers focus on their code without
worrying about the infrastructure.

Red Hat OpenShift Serverless is a serverless platform based on the open source Knative
project, offering an enterprise-grade solution for developing and deploying cloud-native,
source-centric applications across hybrid and multi-cloud environments. By utilizing Red
Hat OpenShift Serverless, organizations can leverage the portability and consistency
provided by Knative, enabling developers to create and manage a series of Custom
Resource Definitions (CRDs) and associated controllers in Kubernetes for their
applications.

For more information, see “Why Choose Red Hat OpenShift Serverless?”.

� Red Hat OpenShift Do

Red Hat OpenShift Do (odo) is an open source command-line interface (CLI) tool
designed to facilitate the writing and deployment of applications on Red Hat OpenShift and
Kubernetes. By offering a user-friendly and intuitive interface, odo enables developers to
focus on their code and application logic, without needing to navigate through complex
configuration files or manage infrastructure.

For more information, see OpenShift Do developer CLI (odo).

� Red Hat OpenShift GitOps

Red Hat OpenShift GitOps is built from the open source Argo CD project and lets IT teams
implement GitOps workflows for cluster configuration and application delivery for more
speed, security, and scalability software development. It provides a declarative way of
continuous deployment (CD) workflows integrating into an application development
platform.

For more information, see Red Hat OpenShift GitOps.

� Red Hat OpenShift Dev Spaces

Red Hat Dev Spaces is a cloud-native, container-based in-browser integrated
development environment (IDE) for rapid application development that uses Kubernetes
and containers to provide developers and other IT team members with a consistent,
protected, and zero-configuration development environment on Red Hat OpenShift.

For more information, see Red Hat OpenShift Dev Spaces.

Additional Red Hat products are available to provide benefits for Red Hat OpenShift clusters
on IBM Z and LinuxONE that are not included in the Red Hat OpenShift subscription. These
products include the following:

� Red Hat Advanced Cluster Management for Kubernetes

Red Hat Advanced Cluster Management for Kubernetes provides comprehensive
management, visibility, and control over your entire Kubernetes cluster and application
lifecycle. This solution enhances security and compliance across various data centers and
public cloud environments, ensuring a seamless experience for your organization.
Red Hat Advanced Cluster Management offers a hybrid cloud management platform,
addressing common challenges faced by administrators and SREs in managing various
environments, including multiple data centers, private clouds, and public clouds, all
running Kubernetes clusters.

For more information, see Red Hat Advanced Cluster Management for Kubernetes.
4 Red Hat OpenShift on IBM Z and LinuxONE

https://www.redhat.com/en/topics/microservices/why-choose-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/cli_tools/openshift-do-developer-cli-odo
https://www.redhat.com/en/technologies/cloud-computing/openshift/gitops
https://access.redhat.com/products/red-hat-openshift-dev-spaces/
https://www.redhat.com/en/resources/advanced-cluster-management-kubernetes-datasheet
https://www.redhat.com/en/topics/microservices/why-choose-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/cli_tools/openshift-do-developer-cli-odo
https://www.redhat.com/en/technologies/cloud-computing/openshift/gitops
https://access.redhat.com/products/red-hat-openshift-dev-spaces/
https://access.redhat.com/products/red-hat-openshift-dev-spaces/
https://www.redhat.com/en/resources/advanced-cluster-management-kubernetes-datasheet

� Red Hat Advanced Cluster Security for Kubernetes Support

Red Hat Advanced Cluster Security for Kubernetes Support (ACS) offers visibility into the
security of your cluster, vulnerability management, and security compliance through
auditing, network segmentation awareness and configuration, security risk profiling,
security-related configuration management, threat detection, and incident response. In
addition, Red Hat ACS grants an ability to pull the actions from that tooling deep into the
application code development process through APIs. These security features represent
the primary work any developer or administrator faces as they work across a range of
environments, including multiple data centers, private clouds, or public clouds that run
Kubernetes clusters.

For more information on the Red Hat Advanced Cluster Security, see Red Hat Advanced
Cluster Security for Kubernetes.

� Red Hat Runtimes

Red Hat Runtimes is a collection of enterprise-grade, production-ready runtimes and
frameworks that offers developers access to established and emerging technologies. By
incorporating industry standards such as OpenJDK, JBoss Enterprise Application
Platform, JBoss Web Server, Red Hat Data Grid, and Quarkus, Runtimes enables
developers to boost their productivity and reduce time to market. Also, the suite includes
popular cloud-native runtimes like vert.x and Spring Boot, fostering the development of
modern, cloud-based applications.

For more information, see Accelerate app dev and delivery with Red Hat Runtimes.

� Red Hat AMQ Streams

Red Hat AMQ Streams is a massively scalable, distributed, and high-performance data
streaming platform based on the Apache Kafka project that offers a distributed backbone
for microservices and other applications to share data with high throughput and low
latency.

For more information, see Streams for Apache Kafka.

� Red Hat 3scale API Management

Red Hat 3scale API Management is an infrastructure platform that allows users to share,
secure, distribute, control, and monetize APIs.

For more information, see Red Hat 3scale API Management.

� Red Hat Fuse

Red Hat Fuse is an integration platform that provides agile integrations solutions. The
API-centric, container-based architecture decouples services so they can be created,
extended, and deployed independently.

For more information on the Red Hat Fuse, see “What is Red Hat Application
Foundations?”.
Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE 5

https://www.redhat.com/en/resources/advanced-cluster-security-for-kubernetes-datasheet
https://www.redhat.com/en/resources/advanced-cluster-security-for-kubernetes-datasheet
https://www.redhat.com/en/resources/runtimes-datasheet
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/fuse
https://www.redhat.com/en/technologies/jboss-middleware/fuse
https://access.redhat.com/products/red-hat-amq-streams/
https://www.redhat.com/en/resources/advanced-cluster-security-for-kubernetes-datasheet
https://www.redhat.com/en/resources/advanced-cluster-security-for-kubernetes-datasheet
https://www.redhat.com/en/resources/runtimes-datasheet
https://access.redhat.com/products/red-hat-amq-streams/
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/fuse
https://www.redhat.com/en/technologies/jboss-middleware/fuse

1.2.2 Red Hat OpenShift benefits on IBM Z or LinuxONE

In this section we describe some of the benefits of using Red Hat OpenShift on IBM Z or
LinuxONE.

Security-rich and resilient foundation
IBM Z and LinuxONE deliver robust data protection through IBM Crypto Express (CEX)
adapters, which meet stringent Federal Information Processing Standard (FIPS) 140-2 Level
4 security standards and incorporate quantum-safe cryptography. These systems offer
Confidential Computing within a hardware-based attested Trusted Execution Environment
(TEE), ensuring maximum data privacy and regulatory compliance. The integrated HSMs
enable efficient and productive management of cryptographic operations while maintaining
the highest level of security.

Red Hat OpenShift applications can benefit from the IBM CEX adapters using the Kubernetes
device plug-in for IBM CEX adapters, which can be downloaded from the Red Hat certified
container catalog.

A TEE that can isolate and protect machine state and memory information is provided
through IBM Secure Execution. Red Hat provides a unique image for Secure Execution since
Red Hat OpenShift 4.13.

The IBM Z and LinuxONE servers help to avoid or recover from failures to minimize business
disruptions, realized through component reliability, redundancy and features that assist in
providing fault avoidance and tolerance, as well as permitting concurrent maintenance and
repair.

The unified OpenShift container security and IBM Z and LinuxONE cryptographic hardware
form a distinguished, security-focused solution. This powerful combination delivers
comprehensive protection for your applications and data, ensuring a secure and compliant
environment.

Flexibility and scalability
As organizations modernize existing applications to cloud-native architectures, it is essential
to have the flexibility to manage and deploy the entire application portfolio across different
infrastructures to scale. IBM Z and LinuxONE provide organizations the possibility to scale on
a single system with the ability to nondisruptively add capacity on demand and grow
processing with minimal impact on energy usage, floor space, and staffing. Alongside the
IBM z/VM® hypervisor, Kernel-based Virtual Machine (KVM) as included with RHEL, are the
supported virtualization options on IBM Z and LinuxONE for Red Hat OpenShift.

Together with IBM Z and LinuxONE, organizations can scale on a single system with the
ability to add capacity on demand and grow processing with minimal impact on energy usage,
floor space, and staffing. Teams can take advantage of the high flexibility through dynamic
resource sharing and reconfiguration and continue to deliver excellent customer experiences
with ultra low latency and large volume data serving and transaction processing.
6 Red Hat OpenShift on IBM Z and LinuxONE

Sustainability
Running Red Hat OpenShift on a centralized infrastructure such as IBM Z and LinuxONE can
contribute to fewer greenhouse gas emissions and a more environmentally sustainable IT
environment. IBM Z and LinuxONE are designed to make a powerful improvement in
sustainability by decreasing electricity consumption, reducing the number of standing servers,
and enabling high compute and resource utilization.

IBM Z and LinuxONE are in a long line of machines that are designed for system and data
center energy efficiency with differentiated architectural advantages, including on-chip
compression, high per-core performance, and encryption that is designed to sustain 90%
utilization along with new embedded on-chip AI acceleration to seamlessly integrate real-time
AI insights into business-critical transactions.

The biggest opportunity for energy savings with IBM Z and LinuxONE come through workload
modernization and consolidation of distributed x86 systems. Many enterprises cannot easily
grow their data centers, but the vertical scalability of IBM Z and LinuxONE can address this
problem while reducing your power usage.

Colocation efficiency and economic advantages
The colocation of Red Hat OpenShift apps side by side with workloads running on IBM z/OS
or Linux provide the unique opportunity to integrate and modernize without disruption on one
system, thereby benefiting in throughput, latency, and operational efficiency. With the
immense capacity of IBM Z and LinuxONE servers, all environments and workloads can be
expanded at the same time without the need to add an additional server.

By deploying Red Hat OpenShift on IBM Z and LinuxONE, organizations can indeed unlock
significant economic advantages. The platform's security-rich nature, coupled with IBM Z and
LinuxONE's unmatched resiliency, scalability, flexibility, and low environmental impact,
contributes to a more cost-effective solution. Furthermore, the colocation benefits and
superior quality of service offered by IBM Z and LinuxONE can lead to further cost savings
and improved operational efficiency. Therefore, running Red Hat OpenShift on IBM Z and
LinuxONE can provide a strong economic case for businesses.
Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE 7

1.2.3 Red Hat OpenShift deployment options on IBM Z and LinuxONE

IBM Z provides two options to run Red Hat OpenShift:

� Red Hat OpenShift can be run inside an IBM z/OS address space called
IBM zCX Foundation for Red Hat OpenShift (IBM zCX for Red Hat OpenShift).

� Red Hat OpenShift can be run in virtual machines (VMs) based on IBM z/VM or
KVM.

Both Red Hat OpenShift environments can run in parallel, as in parallel with z/OS and Linux
environments on a single IBM Z server, while Red Hat OpenShift in virtual machines can run
in parallel to Linux environments on LinuxONE servers.

Figure 1-2 provides an example overview on the deployment options.

Figure 1-2 Red Hat OpenShift deployment options on IBM Z and LinuxONE

IBM zCX for Red Hat OpenShift
IBM zCX for Red Hat OpenShift provides customers with an option to deploy containerized
Linux for IBM Z applications on Red Hat OpenShift on z/OS. This extends the capabilities
clients have with the IBM zCX for Red Hat OpenShift running Docker containers with the
addition of a Red Hat OpenShift orchestrated containerized environment guaranteeing the
same quality of services of traditional z/OS applications.
8 Red Hat OpenShift on IBM Z and LinuxONE

IBM zCX for Red Hat OpenShift architecture
IBM zCX for Red Hat OpenShift supports a user provisioned infrastructure deployment where
the system administrator is responsible for managing firewall and DNS configurations. This
architecture is illustrated in Figure 1-3.

Figure 1-3 IBM z/OS environment with IBM zCX Foundation for Red Hat OpenShift

IBM zCX for Red Hat OpenShift benefits
Some of the benefits of IBM zCX for Red Hat OpenShift include the following.

� Workload modernization:

– Enable existing or new IBM z/OS applications to use services that were previously
unavailable.

– Access a large ecosystem of open source and container for Linux on IBM Z workloads,
colocated on the IBM z/OS platform with no porting required.

� IBM Z Quality of Service:

– Easily scale resources up or down as needed, ensuring optimal performance and
efficient use of resources.

– Achieve fully automated fail-over capability, ensuring high availability and data integrity,
with IBM GDPS® offerings.

– Leverage FIPS 140-2 Level 4 IBM CEX cards to encrypt data at rest and in transit,
enhancing security and regulatory compliance.

– Integration with IBM z/OS Workload Manager (WLM) to optimize, which manages
various resource allocation policies based on business priorities.
Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE 9

� Operational efficiency:

– Get more out of existing hardware investments by enabling optimal utilization.

– By employing IBM Z and LinuxONE certified Red Hat OpenShift, businesses can
significantly reduce time to value and minimize effort in their Red Hat OpenShift
deployments.

– IBM zCX for OpenShift empowers businesses to overcome cross-platform cultural and
operational challenges, fostering resource efficiency and innovation.

IBM zCX for Red Hat OpenShift is also provisioned and managed by
IBM z/OS Management Facility (z/OSMF) workflows in a similar fashion as it is performed for
IBM zCX.

For more information, see zCX Foundation for Red Hat OpenShift 1.1.0.

Red Hat OpenShift in virtual machines
Red Hat OpenShift in VMs based on IBM z/VM or KVM provides clients the option to run the
Red Hat supported Red Hat OpenShift environment with all
Red Hat OpenShift services and tools on IBM Z and LinuxONE. Figure 1-4 illustrates that
Red Hat OpenShift environment.

Figure 1-4 Red Hat OpenShift in virtual machines based on IBM z/VM or KVM
10 Red Hat OpenShift on IBM Z and LinuxONE

https://www.ibm.com/docs/en/zcxrhos/1.1.0
https://www.ibm.com/docs/en/zcxrhos/1.1.0

Benefits of Red Hat OpenShift in VMs
Some of the benefits of Red Hat OpenShift in VMs include the following:

� Workload modernization:

– Enable existing and new containerized applications for IBM Z to benefit from the
capabilities of the Red Hat OpenShift environment, including the related services and
tools, on IBM Z and LinuxONE.

– Modernize existing workloads and integrate them with digital services across the
hybrid cloud - while keeping the data safe, encrypted and resilient.

� IBM Z Quality of Service:

– Benefit from data protection and privacy at scale through confidential computing.

– Generate up to 100,000 certificates per second using protected keys exploiting
IBM CEX adapters.

– IBM Z, in conjunction with Red Hat OpenShift, IBM GDPS®, IBM DS8000® series
storage, and IBM HyperSwap®, offers an unmatched high availability solution,
guaranteeing 99.99999% uptime.

� Operational Efficiency:

– Scale containers on a single IBM z16 for nondisruptive vertical and horizontal growth to
accommodate increases of workloads on demand.

– By colocating existing and new Linux, IBM z/OS, and Red Hat OpenShift workloads on
a single IBM Z server, you can take advantage of the platform's low latency and high
throughput.

– The IBM z16, powered by IBM Z, can seamlessly scale out to support 192
Red Hat OpenShift Container Platform Compute Nodes, allowing you to deploy and
manage up to 40,000 NGINX pods.

– Establish a cloud operation model across the enterprise, including IBM Z and
IBM LinuxONE.

For more information, see Red Hat OpenShift Container Platform 4.14. release notes.
Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE 11

https://docs.openshift.com/container-platform/4.14/release_notes/ocp-4-14-release-notes.html

12 Red Hat OpenShift on IBM Z and LinuxONE

Chapter 2. Red Hat OpenShift Container
Platform architecture

In this chapter, we delve into Red Hat OpenShift features and tools, offering a comprehensive
understanding of the OpenShift Container Platform components and their relevance to
operations. We also discuss essential considerations for managing and operating
Red Hat OpenShift effectively.

2

© Copyright IBM Corp. 2024. 13

2.1 Red Hat OpenShift components overview

Figure 2-1 provides an overview of the components for Red Hat OpenShift.

Figure 2-1 Overview of components
14 Red Hat OpenShift on IBM Z and LinuxONE

Figure 2-2 shows the components of Red Hat Open Container Platform and their relevance to
operations.

Figure 2-2 Components of Red Hat OpenShift Container Platform

Kubernetes
Kubernetes is a cluster management system for managing containerized applications across
multiple hosts, providing mechanisms for deployment, maintenance, and scaling of
applications. Kubernetes, a key component of the Red Hat OpenShift Container Platform,
plays a pivotal role in streamlining container management. By automating the deployment,
networking, scaling, and availability of containerized workloads and services, Kubernetes
enables businesses to efficiently manage and orchestrate their container environments,
ensuring optimal performance and resource utilization.

Red Hat OpenShift Container Platform
Red Hat OpenShift Container Platform is an open source, enterprise-grade Kubernetes
platform for building, deploying, and managing containerized applications. It extends
Kubernetes with additional features and tooling to simplify deployment, management, and
scalability of containerized applications.

Red Hat Enterprise Linux CoreOS
Red Hat Enterprise Linux CoreOS is a lightweight, secure operating system based on RHEL.
It serves as the foundation for Red Hat OpenShift Container Platform, providing a stable and
secure environment for running containerized workloads. Specifically, Red Hat Enterprise
Linux CoreOS is the only supported operating system for Red Hat OpenShift Container
Platform control plane nodes and compute nodes.
Chapter 2. Red Hat OpenShift Container Platform architecture 15

This unique relationship between Red Hat Enterprise Linux CoreOS and Red Hat OpenShift
ensures a cohesive and integrated solution for managing and deploying containerized
applications, enabling organizations to streamline their application development and
deployment processes.

Docker
Docker is a platform that allows developers to easily deploy their applications in containers to
run on Linux. Docker allows users to package an application with all of its dependencies into
a standardized unit for software development. Containers do not have high overhead and
hence enable more effective usage of the underlying system and resources. Containers also
provide full control over resources, giving your infrastructure improved efficiency, which can
result in better utilization of your computer resources.

Security
Red Hat OpenShift Container Platform provides various security features and best practices,
including Role-Based Access Control (RBAC), container image scanning, and vulnerability
management. Security is a top concern in containerized environments. Red Hat OpenShift
provides strong encryption controls to protect sensitive data, including platform secrets and
application configuration data. Red Hat OpenShift optionally uses FIPS 140-2 Level 1
compliant encryption modules. For more information, see How Red Hat OpenShift enables
container security.

Networking
Red Hat OpenShift Container Platform provides advanced networking features.
Understanding networking concepts such as service discovery, load balancing, and network
policies is essential for managing and securing container communications. Red Hat
OpenShift Container Platform uses software-defined networking (SDN). It provides a unified
cluster network that enables communication between pods across the cluster.

Operators
Red Hat OpenShift Operators automate the creation, configuration, and management of
instances of Kubernetes-native applications. Understanding how to develop, install, and
maintain Operators is important for efficient operations. For more information, see “What are
Red Hat OpenShift Operators?”.

Registry
Red Hat OpenShift Container Platform includes a container registry, such as Red Hat Quay,
where container images are stored and distributed. The registry plays a crucial role in the
container life cycle, and operations personnel need to be familiar with image management,
security, and distribution processes. For more information, see Red Hat Quay.

Monitoring and Logging
Red Hat OpenShift Container Platform offers built-in monitoring and logging capabilities that
leverage popular tools like Prometheus and Elasticsearch. Red Hat OpenShift Logging
components include a collector deployed to each node in the
Red Hat OpenShift Container Platform cluster that collects all node and container logs and
writes them to a log store. Familiarity with these tools and their integration with
Red Hat OpenShift Container Platform is important for identifying issues, troubleshooting,
and optimizing the platform.
16 Red Hat OpenShift on IBM Z and LinuxONE

https://www.redhat.com/en/technologies/cloud-computing/openshift/security
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
https://www.redhat.com/en/technologies/cloud-computing/quay
https://www.redhat.com/en/technologies/cloud-computing/openshift/security
https://www.redhat.com/en/technologies/cloud-computing/openshift/security
https://www.redhat.com/en/technologies/cloud-computing/openshift/security
https://www.redhat.com/en/technologies/cloud-computing/openshift/security
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
https://www.redhat.com/en/technologies/cloud-computing/quay

2.2 Red Hat OpenShift components and their roles

In this section, we delve into the specifics of Red Hat OpenShift components and their
functions.

2.2.1 Bootstrap node

The bootstrap node is a dedicated node that uses the Red Hat Enterprise Linux CoreOS. The
bootstrap node is the main deployment and management server for the Red Hat OpenShift
Container Platform cluster. Bootstrap is used as the logon node for the cluster administrators
to perform system deployment and management operations. The bootstrap node is a
temporary node that is used to create the controller nodes that make up the control plane.
The control plane nodes then create the compute nodes. To remotely access an instance, you
need to access the bastion instance. Then, through another SSH connection, you are able to
access the intended Red Hat OpenShift instance. After the cluster initializes, the bootstrap
node can be released if you need to use the resources to perform another installation or
increase cluster capacity.

2.2.2 Control plane

The Red Hat OpenShift control plane performs control functions for the whole cluster
environment. The control plane is responsible for the creation, scheduling, and management
of all objects specific to Red Hat OpenShift. These nodes use Kubernetes services in the
background and they are responsible for managing and controlling the entire
Red Hat OpenShift cluster while taking advantage of the operating system technology to
deploy container workloads on IBM Z.

The control plane components of the system are organized into groups based on the types of
resources that they manage. These groups of machines are called machine configuration
pools (MCPs). Each MCP manages a set of nodes and its corresponding machine
configurations. An example of this is shown in Figure 2-3.

Figure 2-3 Red Hat OpenShift Control Plane
Chapter 2. Red Hat OpenShift Container Platform architecture 17

2.2.3 Compute Node

The Red Hat OpenShift compute nodes run containerized applications created and deployed
by developers. The compute node hosts use Red Hat Enterprise Linux CoreOS. The Red Hat
OpenShift compute node houses the node components, which include the container engine,
an open source, community-driven container engine (CRI-O), the node agent Kubelet, and a
service proxy (kube-proxy). These components work together to manage and orchestrate
containerized workloads and services on the Red Hat OpenShift platform. Compute nodes
are responsible for running workloads for the cluster users.

2.2.4 Bastion node

The bastion node is a dedicated node that serves as the key deployment and management
server for the Red Hat OpenShift cluster. The bastion node can be any Linux distribution
(RHEL, SUSE Linux Enterprise Server, or Ubuntu) and it can be hosted on any hardware
platform, including IBM Z, as shown in Figure 2-4.

Figure 2-4 Architecture on IBM Z or LinuxONE
18 Red Hat OpenShift on IBM Z and LinuxONE

Red Hat OpenShift Container Platform is comprised of numerous key components that work
together to deliver a robust container application platform. Figure 2-5 shows some of the main
components.

Figure 2-5 Sample of main components

The main components include:

� Etcd is used by Red Hat OpenShift to store cluster state and configuration information.
Etcd is a distributed key-value store used for storing and retrieving cluster configuration
data.

� The control plane node is responsible for managing and orchestrating the cluster. It
includes components such as the API server, controller manager, and scheduler.

� The compute node is a compute machine in the Red Hat OpenShift cluster. It runs
containerized applications using the Kubernetes runtime and communicates.

� Kubernetes is an open source container orchestration platform that Red Hat OpenShift is
built on. It leverages Kubernetes features for container management, scaling, networking,
and scheduling.

� Red Hat OpenShift Operators automate the creation, configuration, and management of
instances of Kubernetes-native applications. Understanding how to develop, install, and
maintain Operators is important for efficient operations.

� The Red Hat OpenShift Image Registry stores and distribute container images, allowing
developers to build, push, and pull container images as part of their application
development and deployment process.

� Source-to-Image is a framework within Red Hat OpenShift that enables developers to build
reproducible container images from source code.

� Red Hat OpenShift CLI is a command-line interface (CLI) tool that allows users to interact
with and manage Red Hat OpenShift clusters. It provides a set of commands for deploying
applications, scaling resources, managing users and permissions, and more.
Chapter 2. Red Hat OpenShift Container Platform architecture 19

20 Red Hat OpenShift on IBM Z and LinuxONE

Chapter 3. Implementation architectural
considerations

This chapter describes some of the key requirements and options when deploying
Red Hat OpenShift on IBM Z or LinuxONE. Selecting a particular architecture does not
necessarily mean locking it in as the final state. In practical terms, you can begin by deploying
a Red Hat OpenShift cluster onto a single LPAR within an IBM Z or LinuxONE central
processor complex (CPC). Once the cluster is up and running, you may then decide to
distribute the cluster nodes across multiple LPARs for better resource utilization,
maintenance, or performance reasons. Similarly, individual nodes within the cluster can be
moved to different LPARs or even other IBM Z or LinuxONE CPCs, allowing for flexible and
scalable cluster management.

It is also important not to over architect or over engineer the deployment. This can cause
delays in deployment and increase costs of the overall solution.

The ability to endure an individual component outage is built into the design of
Red Hat OpenShift. For example, the loss of a single control plane, infrastructure, or
application compute node should not cause a loss of function. This removes any hard
requirement for live relocation or live migration capabilities in the hosting hypervisors.

Initially, deploying a cluster with Dynamic Host Configuration Protocol (DHCP) can simplify
the process of modifying certain aspects of the cluster in the future. For instance, if you need
to replicate the cluster to another location for site failure recovery and require the CoreOS
nodes to boot onto new IP addresses, DHCP facilitates this change by providing a supported
method for updating IP addresses. Without DHCP, you may face limitations in making such
modifications, potentially requiring more complex workarounds.

3

© Copyright IBM Corp. 2024. 21

3.1 Red Hat OpenShift product deployment requirements

Red Hat has published the requirements for an Red Hat OpenShift deployment. For
information on Kernel-based Virtual Machine (KVM), see Preparing to install RHEL KVM on
IBM Z and IBM LinuxONE. For information on IBM z/VM, see Preparing to install with z/VM on
IBM Z and IBM LinuxONE.

For a basic cluster, the resource requirements are roughly 100 GB of memory, 1 TB of disk,
and 6 IBM Integrated Facilities for Linux (IFLs). The documented preferred starting resource
requirement is 3 LPARs each with 6 IFLs.

Enabling additional features can more than double the baseline CPU consumption compared
to having no additional features enabled.

Failure to properly deploy a domain name server (DNS) and load balancer configuration in a
product-required manner is one of the most common deploy failure reasons we have
observed.

3.1.1 Load balancer

The load balancer infrastructure handles two separate aspects for a Red Hat OpenShift
cluster: API traffic and Application Ingress traffic. Both of these are critical functions for a
viable cluster. The loss of either of these functions severely impacts the cluster’s ability to
function. Per the production documentation, “[i]f you want to deploy the API and application
ingress load balancers with a Red Hat Enterprise Linux (RHEL) instance, you must purchase
the RHEL subscription separately.”1

The load balancer function can be met by using HAProxy on a traditional Linux server. For a
nonproduction environment, a single instance of HAProxy may be sufficient. For
environments with higher availability requirements, you may need a load balancer with
multiple instances that can stand in when the activated instance is no longer viable. In the
case of multiple load balancer instances, you can use technologies such as Keepalived to
provide the floating IP address that represents the logical composite of all three HAProxy
instances.

You may also meet this requirement by using commercial solutions such as F5 or similar.

Note: When planning for a Red Hat OpenShift cluster deployment, consider the initial
resource requirements for the cluster itself, such as the number of nodes, CPU cores, and
memory. However, these figures should not account for application workload resource
demands or optional features that may be enabled later. To accommodate these factors
and ensure the cluster's long-term stability and performance, allocate additional resources
as needed. The product documentation usually offers guidance on the resources required
to support each additional function, allowing you to make informed decisions about how to
scale and optimize your Red Hat OpenShift cluster over time.

1 https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/installing-ibm-z-kvm.
html#installation-load-balancing-user-infra_installing-ibm-z-kvm
22 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-load-balancing-user-infra_installing-ibm-z-kvm
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-load-balancing-user-infra_installing-ibm-z-kvm
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z-kvm.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z-kvm.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z-kvm.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z-kvm.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z.html
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/preparing-to-install-on-ibm-z.html

Do not confuse these load balancers that run outside of the Red Hat OpenShift cluster with
the Ingress Routers (HAProxy) that are a part of the Red Hat OpenShift cluster and run on
CoreOS nodes. You will have both types of load balancing.

Additionally, you may even introduce a third layer of load balancing between
Red Hat OpenShift clusters in different data centers, which is referred to as a Global Traffic
Manager (GTM). The load balancer within a given data center for a cluster is typically referred
to as a Local Traffic Manager (LTM).

If you use HAProxy, remember to open the load balancer ports in the Linux firewall and also to
tell SELinux to allow HAProxy to bind to the ports by issuing the following command:

setsebool -P haproxy_connect_any=1

Red Hat OpenShift 4.12 API load balancer requirements
The conditions are as follows:

� Implement Layer 4 load balancing, which can be referred to as Raw TCP, SSL
pass-through, or SSL Bridge mode. When using SSL Bridge mode, ensure that Server
Name Indication (SNI) is enabled for the API routes.

� Utilize a stateless load-balancing algorithm.

Ports 6443 and 22623 are used on the front-end and back-end for the bootstrap node and the
control plane nodes. The bootstrap node is removed from the load balancer configuration
after the cluster is established early in the deployment.

For more information, see Load-balancing requirements for user-provisioned infrastructure.

Red Hat OpenShift 4.12 application load balancer requirements
The conditions for application ingress are similar:

� Layer 4 load balancing.
� Connection or session persistence is recommended.

In the context of a Red Hat OpenShift cluster, ports 80, 443, and 1936 are designated for
application ingress. To configure the load balancer's back end, direct it to the
Red Hat OpenShift Ingress Routers that run on the compute nodes initially. However, you can
later modify this configuration to have the Ingress Routers run only on Infrastructure compute
nodes, after which the load balancer back end can be adjusted to point solely to the
Infrastructure compute nodes. This process enables more efficient management and scaling
of the OpenShift cluster.

For more information, see Load-balancing requirements for user-provisioned infrastructure.
Chapter 3. Implementation architectural considerations 23

https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-load-balancing-user-infra_installing-ibm-z-kvm
https://docs.openshift.com/container-platform/4.12/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-load-balancing-user-infra_installing-ibm-z-kvm

3.1.2 Network Configuration Management

Failure to properly deploy any of these components can lead to installation or operational
failures. It is crucial to have a highly available DNS and DHCP environment for production
use, with no single point of failure. Using multiple DNS and Network Time Protocol (NTP)
servers is always recommended. Before deploying the OpenShift cluster, thoroughly test DNS
entries for forward and reverse lookups.

DNS entries should be tested for forward and reverse lookups before attempting to deploy the
cluster.

DNS
DNS is indeed a hard requirement for deploying and using Red Hat OpenShift. While it is
possible to use a local bind DNS server during initial deployment to get the server up and
running, it is generally recommended to use a corporate or enterprise DNS server after
deployment for production use. This is because users of the cluster must use DNS names to
access the cluster and its applications.

While it is theoretically possible to have entries in two different DNS servers, it is generally not
recommended due to the added complexity and potential for conflicts. Instead, it is better to
use a single, centralized DNS server for the Red Hat OpenShift cluster to simplify
management and ensure consistency.

DHCP
Red Hat OpenShift supports both Static and DHCP-based IP address assignment. When
using DHCP, the IP address assignment is expected to be fixed and persist to the given Media
Access Control (MAC) address of the CoreOS node, in relation to the DNS entries. Changing
static IP assignments after the initial deployment can be problematic. If you need to change IP
addresses and corresponding DNS entries for the CoreOS nodes, using a DHCP server
would be ideal. Such a change would need to be coordinated across components and may
require downtime. DHCP offers additional benefits, such as allowing you to set DNS servers
to use and Maximum Transmission Unit (MTU) size to use in the CoreOS nodes.

NTP
Public NTP servers are configured by default. If you do not allow access to the public time
servers you will need to configure the Red Hat OpenShift cluster to use locally provided time
servers with its Chrony services, after the cluster is deployed. This should be done as soon as
possible, as time may drift on the CoreOS guest operating systems. Common time is critical
to the operation of a cluster.

3.1.3 Bastion host

The bastion host is a critical component in deploying and administering the Red Hat
OpenShift Cluster. It is designed to provide secure and direct access to the cluster for
administrators and users. While it is expected that the bastion host remains available and
operational, there is a small risk that it could experience a momentary outage. However, this
is not expected to impact the operation of the cluster itself.

The standard Red Hat OpenShift architecture includes only a single Bastion host, but the oc
command interface and content can be replicated on to other hosts for redundancy and
improved performance. This allows for a more resilient and scalable architecture, as the load
of the oc command interface can be distributed across multiple hosts.
24 Red Hat OpenShift on IBM Z and LinuxONE

https://www.redhat.com/sysadmin/chrony-time-services-linux

3.1.4 Hosting hypervisor environment

Red Hat OpenShift requires deployment under either KVM or IBM z/VM as a software-based
hypervisor. At the time of writing, Bare Metal installs of Red Hat OpenShift on IBM Z or
LinuxONE are not currently supported. Both KVM and IBM z/VM are full supported by Red
Hat OpenShift and you may select to use either or both.

According to the Red Hat OpenShift Container Platform on IBM Z and IBM LinuxONE
reference architecture, it is recommended that you spread your Red Hat OpenShift cluster
across three LPARs because any one LPAR can be taken out of service at any time for
planned or unplanned events. If the recommended reference architecture is followed, the
cluster can survive the loss of any one LPAR at a time.

While both hypervisors support Live Migration or Live Guest Relocation, we generally do not
plan to use these features due to the nature of Red Hat OpenShift already having the built-in
ability to respond automatically to both planned and unplanned outages when deployed on
the proper architecture. Live migrations or relocations do have the potential for adverse
reactions such as node etcd leader elections or loss of quorum from a cluster, due to delayed
responses.

In this IBM Redbooks publication, we demonstrate deployments that use both hypervisors.

3.2 Number of hosting logical partitions for a cluster

Red Hat OpenShift can be deployed into a single LPAR or multiple LPARs. A single LPAR may
meet all of your requirements for nonproduction environments. Production environments
typically require enhanced resiliency and availability. They need to be serviceable for
maintenance updates, without causing full application outages.

Single or multiple LPAR deployments in an IBM Z CPC or LinuxONE system can be modified
over time to accommodate changing business needs. The different components that make up
the Red Hat OpenShift cluster, such as the Red Hat OpenShift Container Platform, etcd
database, and Operators, can be moved to different partitions, either on the same or different
LinuxONE or IBM Z CPCs. Additionally, you can add more CoreOS nodes that can be hosted
on different LPARs as well.

With the right planning and preparation, there is no need to delay deploying a
Red Hat OpenShift cluster because the second, third, or nth partition environment was not
ready. These partitions can be made part of the cluster after the initial installation, allowing for
a more flexible and scalable architecture.

The use of at least three LPARs is recommended for production environments for enhanced
resiliency and serviceability. In a three-LPAR environment you would place one control plane
node in each LPAR. The same can be done with infrastructure and application compute
nodes. While they do not have a requirement for three nodes because of quorum, like the
control plane, it becomes logical to take advantage of the three LPARs in that way. Also, when
deploying Red Hat OpenShift Data Foundation, you need three Red Hat OpenShift Data
Foundation nodes for quorum and replication purposes. You would place one node in each of
the three LPARs.
Chapter 3. Implementation architectural considerations 25

https://www.ibm.com/docs/en/linux-on-z?topic=architecture-platform
https://www.ibm.com/docs/en/linux-on-z?topic=architecture-platform

3.3 Deployment architectures used in this paper

Both a single LPAR and a three LPAR configuration are deployed in this paper as references.
Details on these deployments can be found in Chapter 5, “Red Hat OpenShift deployment
topologies on IBM Z” on page 41.

3.3.1 Single-LPAR deployment configuration

In this Red Hat OpenShift cluster, the single LPAR architecture consists of three RHEL
servers and seven CoreOS servers. The hypervisor uses two network bonds: bond0 and
bond1. Bond0 consists of the pair of Open Systems Adapters (OSA) that are used for
hypervisor administration, while bond1 consists of the pair of Remote Direct Memory Access
(RDMA) over Converged Ethernet (RoCE) adapters that are used for the Red Hat OpenShift
cluster and supported RHEL guests.

The OSA adapters in bond0 provide high-speed network connectivity for the hypervisor, while
the RoCE adapters in bond1 provide low-latency, high-bandwidth network connectivity for the
Red Hat OpenShift cluster and RHEL guests.

In the single LPAR configuration, we use Ansible to deploy the Red Hat OpenShift cluster. We
manually deploy the DNS and load balancer services as we do not desire to host them on the
bastion node.

Figure 3-1 shows our configuration for the single LPAR architecture.

Figure 3-1 Single LPAR

For more information, see 5.2, “IBM z/VM One LPAR cluster implementation” on page 43.
26 Red Hat OpenShift on IBM Z and LinuxONE

3.3.2 Three-LPAR deployment configuration

In this paper, the second deployment utilizes three LPARs for enhanced availability and
potentially to bring additional compute, network, or storage capacity. The three LPAR
configuration does allow for maintenance of an LPAR/hypervisor without reducing or
removing cluster function.

For the three LPAR configuration we do not use Ansible so we can show you the simple steps
needed to deploy the cluster. For more complex deployments, Ansible automation may not
always meet your needs without modification.

We implement the three LPAR configuration according to Fast-track installation by using a
prepackaged QCOW2 disk image. The initial storage requirements with this method is
dramatically reduced.

Figure 3-2 shows our configuration for the three LPAR architecture.

Figure 3-2 Three LPAR Configuration

For more information, see 5.3, “IBM z/VM three-LPAR cluster implementation” on page 64.
Chapter 3. Implementation architectural considerations 27

https://docs.openshift.com/container-platform/4.11/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-user-infra-machines-iso-ibm-z_kvm_installing-ibm-z-kvm
https://docs.openshift.com/container-platform/4.11/installing/installing_ibm_z/installing-ibm-z-kvm.html#installation-user-infra-machines-iso-ibm-z_kvm_installing-ibm-z-kvm

3.4 Storage architecture

Disk storage must be viewed and understood from multiple different perspectives. IBM Z and
LinuxONE support Fibre Channel Protocol (FCP) attached Small Computer System Interface
(SCSI) Logical Unit Numbers (LUNs), IBM FICON® attached Enterprise Computing Control
Model Disk (ECKD), as well as Internal NVMe storage. CoreOS nodes are each deployed
with a single boot disk that is recommended to be at least 120 GB. Red Hat OpenShift has
Ephemeral and Persistent storage. Ephemeral storage is a transient workspace for the pods
that lacks some of the manageability of persistent storage. The data in ephemeral storage
does not live beyond the life of the pod.

3.4.1 FCP-attached SCSI and FICON-attached ECKD storage

When working with FICON-attached ECKD, plan for use of Parallel Access Volumes (PAVs)
because the size of the ECKD devices being used. In the case of IBM z/VM, the PAVs should
be directly available to the guest containers the CoreOS is operating in. In the case of KVM,
the PAVs only need to be in the hypervisor itself, as the Virtio interface does not have any
need or concept for PAVs.

Multipathing is highly recommended for FCP-attached SCSI LUNs. When using IBM z/VM
and dedicating the FCP devices to a guest, multipathing is needs to be enabled within the
CoreOS guest. When using KVM the multipathing is performed in the KVM host. The Virtio
device, when passed to a guest, does not require multipathing.

3.4.2 CoreOS node storage

Each CoreOS node has the need for a single disk that it boots from. This disk is
recommended to be 120 GB. When backing this with ECKD storage, plan for a loss of 20% of
usable space due to the interblock gaps, assuming a maximum 4 K block size.

In the KVM use case, the QCOW2 images used are typically hosted in
/var/lib/libvirt/images. This might be a logical volume composed of one to many physical
volumes. QCOW2 images can be sparse and each guest can share base QCOW2 images
where there is a unique delta file per guest. This will greatly reduce the initial storage
required, but you will still need to plan to support the total required values over time. You can
also use discard=unmap in this hypervisor to keep the QCOW2 image actual disk usage lower.

If you deploy Red Hat OpenShift Data Foundation, you will add additional disk to these nodes
after they have been deployed.

3.4.3 RHEL virtual server disk storage

You may need to support one or more RHEL virtual servers to support your cluster. There is
always a bastion host, which is not a CoreOS system. You may choose to host other functions
on additional RHEL servers. DNS, DHCP, Network File System (NFS), and HAProxy are
common examples. The installation instructions for Red Hat OpenShift document the use of a
100 GB disk for NFS to host the image repository function. This may be fine initially but you
may want to consider hosting your persistent storage on a more resilient solution such as Red
Hat OpenShift Data Foundation or
IBM Spectrum® Scale Container Native Storage Access (CNSA). These may not only provide
enhanced performance but enhanced resiliency as well.
28 Red Hat OpenShift on IBM Z and LinuxONE

3.4.4 Red Hat OpenShift Persistent Storage

Persistent storage is a key aspect to plan for when deploying your cluster. The requirement for
persistent storage can exist even when you do not plan to deploy middleware such as
databases or messaging systems. Applications can utilize persistent storage as well as
Red Hat OpenShift infrastructure such as monitoring and logging. In our example
environment in this paper will not show deploying Red Hat OpenShift Data Foundation or
IBM Spectrum Scale CNSA.

Red Hat OpenShift Data Foundation
Red Hat OpenShift Data Foundation is one way to provide persistent storage for your
containers within the Red Hat OpenShift Container Platform. It can be used to deliver block,
file, or object storage on the platform. Much of the Red Hat OpenShift Data Foundation
technology is based in Ceph. Ceph clusters replicate their data across multiple nodes to
guarantee high availability and prevent data loss if there is hardware failure. While commodity
storage devices can be used for basic setups, enterprise-grade storage servers often include
redundancy features that eliminate the need for additional commodity storage. These
systems are designed to handle high availability and data replication requirements efficiently,
making them suitable for mission-critical applications.

When planning to deploy Red Hat OpenShift Data Foundation, pay special attention to the
required number of processors and the amount of memory that must be allocated to your
compute nodes. Red Hat OpenShift Data Foundation may fail to deploy, or provide reduced
function, if the required processor and memory resources are not provided. Actual processor
consumption observed after deployment is typically well below the number of virtual
processors allocated during deployment.

It is important to also understand that Red Hat OpenShift Data Foundation replicates storage
between its nodes over the network to ensure availability of the persistent storage it is
providing. For example, if your application requires 2 TB of persistent storage, you would
provide a 2 TB disk in each of your nodes. When providing 2 TB of persistent storage to a
container, 6 TB of disk is consumed. Red Hat OpenShift Data Foundation does not include a
built-in Logical Volume Manager (LVM) that merges multiple physical disks into a single
logical volume. To create a 4 TB persistent disk, you must provision a minimum of 4 TB of disk
space on each node in the OpenShift cluster. This ensures that each node has sufficient
resources to handle the required disk size. Since the size of these disks is significant, when
using ECKD, plan for PAVs and the 20% loss of usable disk space when presented to Linux.

In Red Hat OpenShift Container Platform 4.12, Red Hat OpenShift Data Foundation clusters
are only supported as internal clusters and cannot be deployed externally for IBM Z and
LinuxONE.
Chapter 3. Implementation architectural considerations 29

https://docs.ceph.com/en/quincy/

IBM Spectrum Scale Container Native Storage Access
IBM Spectrum Scale CNSA is another way to provide persistent storage to your
Red Hat OpenShift containers. IBM Spectrum Scale is deployed in a cluster made up of an
odd number of nodes, typically a minimum of three. When used with Red Hat OpenShift,
there are two main parts:

� The IBM Spectrum Scale cluster that is external to Red Hat OpenShift that functions the
same as any IBM Spectrum Scale deployment without Red Hat OpenShift.

� The second part is the deployment of the IBM Spectrum Scale CNSA portion within the
Red Hat OpenShift cluster that provides high-performance, scalable storage for
applications running within the Red Hat OpenShift environment.

IBM Spectrum Scale CNSA provides shared file access to containers in Red Hat OpenShift
as persistent storage.

IBM Spectrum Scale CNSA differs from Red Hat OpenShift Data Foundation in that it does
not require a separate set of Red Hat OpenShift Container Platform compute nodes. You
designate which Red Hat OpenShift nodes you want the IBM Spectrum Scale CNSA
containers to operate in. The IBM Spectrum Scale CNSA containers build their own
IBM Spectrum Scale cluster within the Red Hat OpenShift Container Platform nodes.

IBM Spectrum Scale CNSA can be configured to provide storage over a Internet Protocol
network connection or by direct Fibre Channel or FICON attachment. IBM Spectrum Scale
can also combine multiple physical disks together in the IBM® General Parallel File System
(GPFS™) and present them as one logical disk to the Red Hat OpenShift cluster. In its default
configuration, IBM Spectrum Scale would not replicate disk storage to other nodes; however,
it does have the means to perform replication if needed.

Local Storage Operator
The Local Storage Operator can be used to provide statically created persistent volumes in
your Red Hat OpenShift cluster. With the Local Storage Operator, the storage is not shared
across the nodes of your cluster; it only exists locally to the node it is attached to. At first this
may seem problematic; however, there are several use cases where it may be an ideal fit. For
example, if deployed with EnterpriseDB (EDB) Postgres where the database exists on a three
node cluster in your Red Hat OpenShift Container Platform cluster, the database handles all
the replication to each node and its local storage.

If your hypothetical EDB Postgres database needs to serve 4 TB of data, you would need
three 4 TB disks for the local storage operator. Alternatively, if you use Red Hat OpenShift
Data Foundation with the standard three replica configuration, each EDB Postgres node
needs a unique 4 TB persistent disk, backed up in
Red Hat OpenShift Data Foundation by three 4 TB disks, for a total of nine 4 TB disks.

The Local Storage Operator may lack some of the advanced features you would enjoy with
Red Hat OpenShift Data Foundation or IBM Spectrum Scale CNSA, such as snapshotting,
but you may not have those needs. You may be able to perform your backups live with the
middleware you plan to use and not need those snapshots.

NFS persistent storage
NFS is another way to provide persistent storage to an NFS cluster as shared file storage. It
might be a quick way to deploy initial persistent storage, but it is often viewed to be less
enterprise-ready. You might find that it lacks certain integrated features such as snapshotting,
encryption, replication, and the uninterrupted resiliency provided by Red Hat OpenShift Data
Foundation or IBM Spectrum Scale CNSA single node restarts versus NFS server restarts.
30 Red Hat OpenShift on IBM Z and LinuxONE

3.5 Multitenancy with other workloads

Multitenancy is a concept that manifests in various ways across different contexts. In the
realm of IBM Z and LinuxONE systems, multitenancy can be observed in several scenarios:

� Workloads in Different LPARs: An LPAR is a virtualized environment that runs its own
operating system and applications. When multiple LPARs are present within the same
IBM Z or LinuxONE system, each LPAR represents a separate tenant, ensuring isolation
and security for each workload.

� Workloads in Different Guests: Within a single LPAR, multiple virtual machines or
containers (guests) can be created to host different workloads. Each guest can be
considered a separate tenant, with its own resources and isolation mechanisms.

� Workloads in the Same Red Hat OpenShift Cluster: Red Hat OpenShift is an open source
containerization and orchestration platform that allows for the deployment and
management of multiple applications and services across a cluster. In a multitenant
Red Hat OpenShift cluster, each application or service represents a separate tenant, with
its own set of resources and configurations.

During our discussion, we focus on the unique controls and considerations associated with
multitenancy in IBM Z and LinuxONE systems, as these environments offer robust security
and isolation features tailored to the needs of highly regulated industries. The Red Hat
OpenShift production documentation provides comprehensive coverage of multitenancy in
the context of that platform.

3.5.1 LPAR level controls in IBM Z and LinuxONE

LPARs have a high degree of ability to isolate workloads. They have been evaluated under
Common Criteria at Evaluation Assurance Level 5+. For more information on the BSI issued
certificates, see BSI-DSZ-CC-1133-2020 and BSI-DSZ-CC-1160-2021.

When managing a system with multiple LPARs, the primary concern for a systems
administrator often involves striking an optimal balance between resource allocation and
isolation for each tenant or workload.

3.5.2 Guest controls in KVM

RHEL (the product in which the KVM we used is shipped) was Common Criteria certified by
National Information Assurance Partnership (NIAP). It was tested and certified for ISO/IEC
15408 to follow 4.2.1 of the NIAP General Purpose Operating System Protection Profile
including Extended Package for Secure Shell (SSH). Previously, RHEL operating systems
were certified at EAL4+. The treaty the countries use to recognize Common Criteria
certifications now only recognizes up to EAL2.

RHEL has also received FIPS 140-2 and 140-3 certifications for its key cryptographic
modules.

For a list of all Red Hat product certifications, see Compliance Activities and Government
Standards.

The US Defense Information Systems Agency (DISA) publishes a Secure Technical
Implementation Guide for RHEL that can be found here STIGS Document Library.
Chapter 3. Implementation architectural considerations 31

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Serveranwendungen_Virtualisierung/1133.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Serveranwendungen_Virtualisierung/1160.html
https://access.redhat.com/articles/2918071
https://access.redhat.com/articles/2918071
https://public.cyber.mil/stigs/downloads/
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Serveranwendungen_Virtualisierung/1160.html
https://access.redhat.com/articles/2918071
https://access.redhat.com/articles/2918071

Also, KVM has several fine controls for resource allocation and priorities between different
domains hosting different workloads. Virtual process and memory allocation can be
configured in the domain XML for a guest. A shares value can be specified to indicate the
processor priority of one domain over another on a relative basis. Period and Quota can be
specified to control process consumption as more an absolute limit. Numerous other cgroup
controls exist as well.

3.5.3 Guest controls in IBM z/VM

IBM z/VM has completed its Common Criteria certification, which certifies the product is in
accordance with NIAP Virtualization Protection Profile (VPP) and with Server Virtualization
Extended Package. IBM z/VM has been FIPS 140-2 validated, and also Common Criteria
EAL 4+ certified. The certificates can be found at the following websites:

� OCSI
� Cryptographic Module Validation Program
� IBM® z/VM® Version 7 Release 2 System SSL Cryptographic Module

As a systems administrator, managing multitenancy in a system with multiple guests involves
several key tasks related to resource allocation and prioritization:

� Guest Configuration: Properly configuring each guest with relative or absolute share
values, the number of virtual processors, and the amount of virtual memory is crucial for
ensuring fair resource distribution and preventing resource contention. These settings can
be adjusted at run time using the IBM z/VM SET SHARE command.

� Dynamic Resource Allocation: Adjusting resource allocation during runtime based on
changing workload demands is essential for maintaining system performance and stability.
The IBM z/VM SET SHARE command allows for dynamic modification of relative and
absolute shares for each guest.

� Monitoring and Reporting: Regularly monitoring and reporting on system performance
and resource utilization helps identify potential bottlenecks, resource contention, or
security vulnerabilities. This information can be used to fine-tune resource allocation and
isolation strategies for each guest.

� Isolation Mechanisms: Implementing robust isolation mechanisms between guests is vital
for maintaining security and data privacy. This includes configuring access controls,
network segmentation, and virtualization technologies to prevent unauthorized access and
data leakage.

3.6 Recovery site considerations

When providing mission-critical applications, organizations endeavor to plan for failures from
the smallest components, such as an individual network card, to a full site or region failure,
where processing must be resumed as soon as possible at a distant location.

Decades ago, recovering at a remote location meant restoring from tape backups. This is a
slow and very manual process. Testing this took weeks of planning and often a week to run.
As technology has evolved, disk replication has replaced tape technologies. Migrating an
existing system to a new data center can be time-consuming and complex, with potential
recovery time taking hours and requiring changes to IP addresses, gateways, and other
aspects, potentially causing disruptions at inconvenient times. To activate your Red Hat
OpenShift cluster at a remote location, consider using a DHCP server to help automate some
of the change. Unlike RHEL, Red Hat OpenShift CoreOS nodes do not have a published
supported way to changes IP address when you do not use DHCP.
32 Red Hat OpenShift on IBM Z and LinuxONE

https://www.ocsi.gov.it/documenti/certificazioni/ibm/zvm/cr_zvm_v7r2_vpp_v1.0_en.pdf
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4007
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp4007.pdf
https://www.ocsi.gov.it/documenti/certificazioni/ibm/zvm/cr_zvm_v7r2_vpp_v1.0_en.pdf
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4007
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp4007.pdf

One modern method that enjoys near zero downtime is to build Red Hat OpenShift clusters at
the primary and secondary or recovery sites. For stateless workloads, this is easily managed
with Global Traffic Managers (GTMs) that route traffic to the proper data center. In this case,
you can run both sites active simultaneously.

3.7 IBM Secure Execution

IBM Z and LinuxONE have a unique technology called IBM Secure Execution. It can isolate
and protect machine state and memory information to provide a Trusted Execution
Environment. The design is to isolate this from everything outside of the virtual server. The
KVM Hypervisor, the HMC, and the Support Element have no way to access the memory or
state information of the guest. The guest is built to be accessible from only specific IBM Z or
LinuxONE machines you designate and the disk storage the guest uses is encrypted.

Secure Execution for Linux isolates and protects KVM guests from hypervisor access. The
hypervisor administrator can still manage and deploy workloads, but cannot view data on a
guest. Multiple tenants (applications) running in an LPAR as second-level guests under KVM
have fully isolated environments, which help protect intellectual property and proprietary
secrets.

IBM Secure Execution is available since Red Hat OpenShift 4.13 and Red Hat provides a
unique QCOW2 image for Secure Execution. Each Red Hat OpenShift node gets encrypted
with a unique Linux Unified Key System (LUKS) key.

For more information on deploying IBM Secure Execution, see Installing RHCOS using IBM
Secure Execution and IBM Secure Execution for Linux.

3.8 IBM CEX high-performance hardware security modules
requirements

The IBM CEX adapter can be configured to act as a tamper proof hardware security module
or HSM. For more information, see IBM Crypto Express meets RHOCP on IBM Z/LinuxONE.

Red Hat OpenShift supports the IBM CEX adapter through the Kubernetes device plug-in for
IBM CEX cards, which provides access to IBM CEX adapters for IBM Z and LinuxONE
Kubernetes container loads. The IBM CEX adapter provides fast hardware cryptography, as
well as protecting keys in an HSM, providing the strengths of IBM Z/IBM® LinuxONE
regarding advanced security. For more information, see the Kubernetes device plug-in for IBM
Crypto (CEX) cards - Installation and User Guide.

3.9 FIPS requirements

FIPS mode can be enabled for a cluster, but must be done so in the install-config.yaml
before deployment. This cannot be changed after deployment. When enabling FIPS, expect
to encounter some additional processor consumption.
Chapter 3. Implementation architectural considerations 33

https://docs.openshift.com/container-platform/4.13/installing/installing_ibm_z/installing-ibm-z-kvm.html#installing-rhcos-using-ibm-secure-execution_installing-ibm-z-kvm
https://docs.openshift.com/container-platform/4.13/installing/installing_ibm_z/installing-ibm-z-kvm.html#installing-rhcos-using-ibm-secure-execution_installing-ibm-z-kvm
https://www.ibm.com/downloads/cas/O158MBWG
https://community.ibm.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=c035ec42-98a0-b6b1-1b0f-0fd71ebe3913&forceDialog=0
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-kubernetes-crypto-plug-in
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-kubernetes-crypto-plug-in
https://community.ibm.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=c035ec42-98a0-b6b1-1b0f-0fd71ebe3913&forceDialog=0

3.10 Multus for a second network interface

If you require HiperSockets with Red Hat OpenShift, using Multus as a method for
Red Hat OpenShift nodes to communicate externally through a RoCE or OSA adapter, and
communicate internally to each other or an adjacent z/OS LPAR through HiperSockets, can
be a good solution. The IBM z/OS would need to use IBM z/OS HiperSockets Converged
Interface (HSCI) for Layer 2 support. On the Linux LPARs, the
IBM z/VM LPAR has HiperSockets Bridge and KVM LPARs have HSCI support as well.
Multus does not use the Red Hat OpenShift software-defined networking (SDN), which can
introduce some additional latency in communications.

If you are considering using Multus, you may want to start with a MacVTap deployment using
the ipam-tool command and whereabouts for IP address assignments in your Red Hat
OpenShift containers. For more information, see Configuration for a MACVLAN additional
network.

Also, pay attention to the MTU sizes allocated in your nodes for your network connections and
your cluster maximum MTU size. For more information, see Changing the MTU for the cluster
network.

3.11 Authenticating

Initially, credentials for the kubeadmin user ID are generated as an output of the installation
process. For more information, see Supported identity providers.

It is one of the first configuration changes typically made after a cluster ID is deployed. The
simplest one may be the htpasswd method, as there is no need to integrate with other
systems and you can eliminate that shared user ID of kubeadmin quickly. One of the other
most common methods is to use LDAP. The 389 LDAP server in Red Hat Identity Manager is
known to work well as an LDAP source and there are multiple Red Hat Knowledge Base
articles on the topic. In general, there are no IBM Z or LinuxONE specific aspects to this topic.
34 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/networking/multiple_networks/configuring-additional-network.html#nw-multus-macvlan-object_configuring-additional-network
https://docs.openshift.com/container-platform/4.12/networking/multiple_networks/configuring-additional-network.html#nw-multus-macvlan-object_configuring-additional-network
https://docs.openshift.com/container-platform/4.12/networking/changing-cluster-network-mtu.html
https://docs.openshift.com/container-platform/4.12/networking/changing-cluster-network-mtu.html
https://docs.openshift.com/container-platform/4.12/authentication/understanding-identity-provider.html#supported-identity-providers

3.12 Monitoring

There are multiple aspects or layers to monitoring that can be considered because the
architecture includes more than Red Hat OpenShift itself. For the IBM Z and LinuxONE HMC
you can monitor the partitions, and physical resources and adapters. The performance data is
kept for 36 hours on the HMC. For more information, see the IBM Z HMC Prometheus
Exporter.

It uses Prometheus to store the data and Grafana Dashboards to visualize the data. You can
find a full set of s390x Prometheus binaries at Prometheus DOWNLOAD, including
node_exporter and alertmanager. node_exporter can also be installed on your
RHEL systems and used to send your performance/capacity data to Prometheus and
visualized in Grafana. This would apply to your KVM hosts, bastion hosts, load balancers, and
DNS/DHCP servers. HAProxy can also directly feed its performance data to Prometheus. For
IBM z/VM environments, Performance Toolkit and ITM / Omegamon are typically used to
record and analyze performance.

Within the Red Hat OpenShift Cluster, Prometheus and Grafana are also used. For more
information, see Configuring the monitoring stack.

Typical initial customization is to move the monitoring stack to the Infrastructure Nodes and
that have taints implemented on them. One of the next customizations is to implement
persistent storage for the monitoring stack. Without doing so, the performance data is lost
when a node is rebooted. Finally, there are a series of steps to enable the monitoring of user
projects (your applications), in addition to the default Red Hat OpenShift infrastructure.

3.13 Logging

There are several logging options to consider in Red Hat OpenShift. None of the
considerations are specific to the IBM Z or LinuxONE platforms, although knowledge of the
options can be helpful.

One option is to not even store the logs on the platform in the cluster at all. Red Hat OpenShift
comes with a log forwarding capability. So, if you have an Enterprise Logging solution, such
as Splunk, you may choose to forward all the logs there. You can send logs or portions of logs
to multiple locations. You may also have need to send the logs to Security devices that
perform security information and event management (SIEM) functions.

A long-time option now has been to use the Elasticsearch provided in Red Hat OpenShift. If
your logging requirements are modest, you may find this sufficient. The one observation we
have had is that Elasticsearch can require significant additional processor and memory
requirements well beyond the minimal number of IFLs required to install a cluster.

A third option is the new Loki-based logging stack. For more information, see Logging and
using LokiStack.
Chapter 3. Implementation architectural considerations 35

https://zhmc-prometheus-exporter.readthedocs.io/en/stable/intro.html
https://zhmc-prometheus-exporter.readthedocs.io/en/stable/intro.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/index#configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.9/nodes/scheduling/nodes-scheduler-taints-tolerations.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.10/html/logging/cluster-logging-loki
https://docs.redhat.com/en/documentation/openshift_container_platform/4.10/html/logging/cluster-logging-loki
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/index#configuring-the-monitoring-stack
https://prometheus.io/download/

36 Red Hat OpenShift on IBM Z and LinuxONE

Chapter 4. Resource considerations for Red
Hat OpenShift

As businesses continue to adopt containerization technologies and leverage the benefits of
virtualization, it is critical to understand the intricacies of managing resources effectively.

In this chapter, we provide an overview of LPAR adjustments and weights, IBM z/VM weights
and their assignment, KVM scheduling and management, and the prioritization of resources
between production and nonproduction environments.

Running Red Hat OpenShift on IBM z/VM or KVM brings the power and reliability of IBM Z
and IBM LinuxONE together with a robust and flexible infrastructure for containerized
workloads. To ensure optimal performance and resource utilization, administrators must
consider various factors and make informed decisions.

4

© Copyright IBM Corp. 2024. 37

4.1 LPAR adjustments and weights

LPAR adjustments and weights play a vital role in managing resources on IBM Z. LPAR
technology allows the subdivision of a physical server into multiple virtual machines, providing
isolation and resource allocation. By adjusting LPAR weights, administrators can prioritize the
allocation of resources among different partitions, ensuring that critical workloads receive the
necessary computing power.

By assigning weights to individual virtual machines, IBM z/VM ensures that resources are
allocated proportionally based on their assigned weights. Understanding how to assign these
weights effectively is crucial to optimizing resource utilization and balancing the workload
across multiple virtual machines.

4.1.1 General LPAR adjustments

On IBM Z and LinuxONE, the physical resources of a system can be divided into numerous
LPARs. Each LPAR looks and functions like its own physical machine, independent of and
without knowledge of, other partitions with diverse configurations, processors, storage, I/O,
and operating system.

LPARs are used for hardware consolidation and workload balancing. Partitions are managed
by a Processor Resource/Systems Manager (PR/SM) hypervisor that runs natively on the
machine. PR/SM hardware is utilized by two IBM products: a microcode feature called Logical
Partitioning Mode and VM/XA Multiple Preferred Guest. Work is dispatched on a logical
processor basis, not on the partition as a whole. Tasks from different partitions can be
operating in parallel on different physical processors. Up to 85 partitions can be defined and
active at any given time. The activation profile contains configuration details such as the
number and type of processors, amount of storage etc. The activation is done manually
through the Hardware Management Console (HMC) or automatically at Power on Reset
(POR).

When an LPAR is defined, the amount of central and expanded storage allocated to it is
specified in 1 MB increments. This storage is dedicated and is not shared with or accessible
in any way by other LPARs. Individual processors, such as IFLs or Central Processors (CPs),
on the other hand, can either be dedicated to or shared among LPARs. Dedicated IFLs are
used exclusively by the LPAR and are not controlled in any way by the PR/SM feature. LPARs
can have multiple logical IFLs defined, but the number cannot exceed the number of IFLs
under PR/SM control.

When you divide your central processing complex into separate logical partitions, each
partition is assigned its own LPAR weight, which corresponds to the percentage of overall
processing power that is guaranteed to the work in that partition.

PR/SM shares IFL processor resources among LPARs through weighted prioritization. The
weighting for each LPAR can be dynamically modified. PR/SM will not take control of a CP
when the logical processor goes into a wait state but leaves the CP under the control of the
LPAR for the entire duration of the time slice.
38 Red Hat OpenShift on IBM Z and LinuxONE

Processing weights
As an example, consider a system with six IFLs and three LPARs defined in Table 4-1.

Table 4-1 LPAR weight table

Processing weights can range from 1 - 999. The processing weights for all active, sharing
Logical Partitions are added together. This total is considered to be 100% of the processing
resource available to shared IFL. The share of processing resources for each LPAR is
calculated by dividing the processing weight for each sharing LPAR by the total processing
weight, as shown in Example 4-1.

Example 4-1 Share of processing resources

LNXVM1 300/1300 = 23.1%
LNXVM2 100/1300 = 7.7%
LNXVM3 900/1300 = 69.2%

The share of processing resources for each online logical core with Hyper Dispatch disabled
in the logical partition is calculated by dividing the share for each LP by the number of online
logical cores. The percentage is used to determine the priority for I/O interruptions is shown in
Example 4-2.

Example 4-2 Priority for I/O interruptions

LNXVM1 23.1/1 IFL = 23.1%
LNXVM2 7.7/6 IFL = 1.3%
LNXVM3 69.2/2 IFL= 34.6%

The PR/SM capping function provides the capability of limiting CPU resource usage for one
or more processor types for one or more logical partitions. The relative processing weight of a
processor type for a logical partition is its capping value for that processor type.

For more information, see 4.15, ABCs of z/OS System Programming Volume 10, SG24-6990
as well as the PRSM Planning Guide, SB10-7178.

LPAR Name Number of IFLs Weight

LNXVM1 1 300

LNXVM2 6 100

LNXVM3 2 900
Chapter 4. Resource considerations for Red Hat OpenShift 39

4.1.2 IBM z/VM weights

IBM z/VM weights are a mechanism that allows administrators to allocate resources based on
the relative priority of virtual machines (VMs) within an LPAR. By assigning weight values to
VMs, IBM z/VM dynamically adjusts resource allocations to optimize performance and
resource utilization in IBM Z systems.

4.1.3 Adjustments for Red Hat OpenShift

When setting up an IBM z/VM or KVM environment for Red Hat OpenShift, several LPAR
adjustments can be made to optimize the performance and resource utilization:

� CPU Allocation: Ensure that an adequate number of CPUs is allocated to the LPAR
hosting the Red Hat OpenShift environment. The number of CPUs should be based on the
expected workload and resource requirements of the containerized applications. Consider
factors such as the number of concurrent pods, the CPU-intensive nature of the
applications, and any specific requirements of the workloads.

� Memory Allocation: Allocate sufficient memory to the LPAR to accommodate the
Red Hat OpenShift environment and the containerized applications. The memory
allocation should consider the size and number of containers running concurrently, along
with any additional memory requirements for other system processes and services.
Monitor the memory usage of the environment and adjust the allocation as needed.

� Disk Space: Ensure that an appropriate amount of disk space is allocated to the
IBM z/VM LPAR to accommodate the Red Hat OpenShift environment, VM images, and
storage requirements of the containerized applications. Consider the expected workload,
the size of the container images, and any persistent storage requirements. Regularly
monitor disk space utilization to prevent storage constraints and ensure smooth operation.

� Networking: Configure the networking settings of the LPAR to support the networking
requirements of Red Hat OpenShift. This includes assigning appropriate IP addresses,
setting up network interfaces, ensuring appropriate bandwidth, and configuring network
routing.

� I/O Configuration: Optimize the I/O configuration of the LPAR to provide efficient disk and
network I/O for the Red Hat OpenShift environment. This involves configuring I/O
adapters, disk subsystems, and network interfaces for optimal performance. Consider
enabling features such as virtual SCSI (VSCSI) or virtual Ethernet (VETH) to enhance I/O
performance.

� Monitoring and Resource Management: Implement a monitoring and resource
management solution to track the performance and resource utilization of the LPAR and
the Red Hat OpenShift environment. Utilize tools such as IBM z/VM Performance Toolkit
(IBM z/VM Perfkit) for or other monitoring solutions to gain insights into CPU usage,
memory utilization, disk I/O, and network traffic.

The specific LPAR adjustments may vary based on the scale, workload, and performance
requirements of your Red Hat OpenShift deployment. It is essential to monitor the system
regularly and make adjustments as needed to ensure efficient resource allocation and
optimal performance for containerized applications. For more information, see
Recommended host practices for IBM Z & IBM® LinuxONE environments.
40 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.13/scalability_and_performance/ibm-z-recommended-host-practices.html

Chapter 5. Red Hat OpenShift deployment
topologies on IBM Z

The need to have a standard DevOps pipeline which would help in rapidly building, deploying,
and maintaining applications across various architectures and hardware platforms has
become a basis for clients to adopt a hybrid cloud deployment topology for their workloads.

This chapter describes the various deployment topologies to follow while planning to deploy
Red Hat OpenShift on IBM Z.

Red Hat OpenShift Container Platform on IBM Z and LinuxONE, which is based on
Kubernetes framework, provides IT Organizations and business leaders with a secure
platform to build containerized applications as part of their hybrid cloud strategy.

5

© Copyright IBM Corp. 2024. 41

5.1 Deployment topology criteria

The deployment topology of an Red Hat OpenShift Container Platform cluster is driven by
several factors, which we describe in this section.

5.1.1 Data gravity

Red Hat OpenShift Container Platform exploits the key platform capabilities of IBM Z and
LinuxONE by moving processing to the data when colocating containerized applications with
traditional workloads (for example data lakes, databases, transactional systems, or other
traditional workloads running in Linux on IBM Z or IBM z/OS). In this case, the applications
have close proximity to the data, resulting in reduced latency, response time, deployment,
security, service and cost.

The resulting synergy can dramatically improve performance and total cost of ownership
(TCO).

5.1.2 Consolidation and TCO Reduction

By consolidating an Red Hat OpenShift Container Platform environment onto IBM Z or
IBM LinuxONE, you can achieve many economic and operational advantages.
Three-dimensional scalability (vertical, horizontal and combined) results in high flexibility
without the need for a new hardware footprint. This is a key advantage for dynamic workloads
and unpredicted growth. The other key benefit you may achieve from a consolidation
perspective is contributing towards sustainability goals by cutting down on the requirements
around energy usage and floor space.

5.1.3 Business continuity

For business continuity, consider these two aspects:

� High availability
� Disaster recovery

For high availability (HA), IBM Z and IBM LinuxONE provide an internal network with
significantly more reliability based on a higher degree of redundancy in the hardware.
Because virtualization happens within a single hardware environment, the networking traffic
is more predictable with less latency.

In an environment with IBM z/VM, you can take advantage of IBM z/VM Single System Image
(SSI) and Live Guest Relocation (LGR), which can help reduce operational costs (though this
option requires shared ECKD Direct access storage devices (DASDs)). As mentioned in
3.1.4, “Hosting hypervisor environment” on page 25, this is not the recommended approach.

Building a disaster recovery (DR) setup with IBM Z and IBM LinuxONE is much simpler in
such an environment, because you have to deal with fewer hardware units. Most of all, you
can take advantage of current Extended Disaster Recovery (xDR) solutions for IBM Z and
IBM LinuxONE - based on IBM Geographically Dispersed Parallel Sysplex® (GDPS).

In IBM Z, hardware consolidation means that capacity, operational analytics, and analysis are
simplified because all results are consolidated on the single hardware machine for the entire
Red Hat OpenShift Container Platform environment versus having a distributed environment
with many physical servers. As a result, capacity planning is more predictable.
42 Red Hat OpenShift on IBM Z and LinuxONE

5.1.4 Vertical Solutions

Red Hat OpenShift Container Platform is intended for generic orchestration and life-cycle
management of containerized workloads. While it is used widely among industries, the most
relevant background of Red Hat OpenShift Container Platform for IBM Z and IBM LinuxONE
customers is in industries like:

� Banking and insurance: With a strong focus on high availability, transactions, and security

� Government: Strong focus on high availability and security

� Retail: Strong focus on scalability and coping with peak loads

� Cloud and computing services: Strong focus on high availability and variable load /
scalability

5.2 IBM z/VM One LPAR cluster implementation

In this section, we describe the procedure to deploy a Red Hat OpenShift cluster on an
IBM z/VM LPAR. The architecture was briefly described in 3.3.1, “Single-LPAR deployment
configuration” on page 26.

5.2.1 Resource planning

As mentioned in Chapter 3, “Implementation architectural considerations” on page 21, we
deploy the Load Balancer services and DNS separately as we choose not to host them on the
bastion node. Our LPAR cluster resource planning is shown in Table 5-1.

Table 5-1 One LPAR cluster resources planning

Purpose OS VM Name CPU Memory (Min/Max) Size (Cyl) - 40G DASD Grp

Bastion RHEL9.1 BASTION2 4 24G/256G 50150 DASD400

DNS RHEL9.1 DNS2 4 24G/256G 50150 DASD400

HAPROXY RHEL9.1 HAPROXY2 4 24G/256G 50150 DASD400

Bootstrap RHCOS4.12.10 OCP2B0 4 24G/256G 50150 DASD400

Controller1 RHCOS4.12.10 OCP2M1 4 24G/256G 50150 DASD400

Controller2 RHCOS4.12.10 OCP2M2 4 24G/256G 50150 DASD400

Controller3 RHCOS4.12.10 OCP2M3 4 24G/256G 50150 DASD400

Worker1 RHCOS4.12.10 OCP2W1 4 24G/256G 50150 DASD400

Worker2 RHCOS4.12.10 OCP2W2 4 24G/256G 50150 DASD400

Infra1 RHCOS4.12.10 OCP2F1 4 24G/256G 50150 DASD400

Infra2 RHCOS4.12.10 OCP2F2 4 24G/256G 50150 DASD400
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 43

Our network resource planning is shown in Table 5-2. In our lab environment, we use an
IBM z/VM VSWITCH for the network connectivity. To configure RoCE cards, see 5.3, “IBM
z/VM three-LPAR cluster implementation” on page 64.

Table 5-2 Network resources

5.2.2 DNS configuration

There are challenges in deploying DNS in our Red Hat OpenShift environment. In a
production environment, you typically use your enterprise DNS servers. In our lab
environment, we configured the named.conf file with our DNS server. Example 5-1 shows our
lab environment’s content for our 62.76.9.in-addr.arpa.zone, which is a part of the
named.conf file.

Example 5-1 Sample content for 62.76.9.in-addr.arpa.zone

151 IN PTR ocp2m1.zvm2.rdbk.com.
152 IN PTR ocp2m2.zvm2.rdbk.com.
153 IN PTR ocp2m3.zvm2.rdbk.com.
154 IN PTR ocp2w1.zvm2.rdbk.com.
155 IN PTR ocp2w2.zvm2.rdbk.com.
156 IN PTR ocp2f1.zvm2.rdbk.com.
157 IN PTR ocp2f2.zvm2.rdbk.com.
160 IN PTR ocp2b0.zvm2.rdbk.com.

Purpose VM Name VSWITCH IP Address OCP Domain Name

Bastion BASTION2 VSWITCH1 9.76.62.150 bastion2.zvm2.rdbk.com

DNS DNS2 VSWITCH1 9.76.62.146 dns2.zvm2.rdbk.com

HAPROXY HAPROXY2 VSWITCH1 9.76.62.145 haproxy2.zvm2.rdbk.com

Bootstrap OCP2B0 VSWITCH1 9.76.62.160 ocp2b0.zvm2.rdbk.com

Controller1 OCP2M1 VSWITCH1 9.76.62.151 ocp2m1.zvm2.rdbk.com

Controller2 OCP2M2 VSWITCH1 9.76.62.152 ocp2m2.zvm2.rdbk.com

Controller3 OCP2M3 VSWITCH1 9.76.62.153 ocp2m3.zvm2.rdbk.com

Worker1 OCP2W1 VSWITCH1 9.76.62.154 ocp2w1.zvm2.rdbk.com

Worker2 OCP2W2 VSWITCH1 9.76.62.155 ocp2w2.zvm2.rdbk.com

Infra1 OCP2F1 VSWITCH1 9.76.62.156 ocp2f1.zvm2.rdbk.com

Infra2 OCP2F2 VSWITCH1 9.76.62.157 ocp2f2.zvm2.rdbk.com
44 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-2 shows our sample content for the zvm2.rdbk.com.zone.

Example 5-2 Sample content for zvm2.rdbk.com.zone

dns2 IN A 9.76.62.146
bastion IN A 9.76.62.150
api IN A 9.76.62.145
api-int IN A 9.76.62.145
apps IN A 9.76.62.145
*.apps IN A 9.76.62.145
ocp2b0 IN A 9.76.62.160
ocp2m1 IN A 9.76.62.151
ocp2m2 IN A 9.76.62.152
ocp2m3 IN A 9.76.62.153
ocp2w1 IN A 9.76.62.154
ocp2w2 IN A 9.76.62.155
ocp2f1 IN A 9.76.62.156
ocp2f2 IN A 9.76.62.157

5.2.3 HAPROXY configuration

For the load balancer in our lab environment, we configure the HAProxy.conf file and enable
port 1936 for HAProxy statistics monitoring. An example of your load balancer link would have
the following pattern, where HAProxy_ip_address is your HAProxy IP address:

http://haproxy_ip_address/haproxy?stats

Example 5-3 shows our lab environment’s HAProxy.cfg content.

Example 5-3 Sample content for HAProxy.cfg

listen stats
 bind 0.0.0.0:1936
 mode http
 log global
 maxconn 10
 timeout queue 100s
 stats enable
 stats hide-version
 stats refresh 30s
 stats show-node
 stats auth admin:password
 stats uri /haproxy?stats
global
 log 127.0.0.1 local2
 chroot /var/lib/haproxy
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user HAProxy
 group HAProxy
 daemon
 #stats socket /var/lib/haproxy/stats
 ssl-default-bind-ciphers PROFILE=SYSTEM
 ssl-default-server-ciphers PROFILE=SYSTEM
defaults
 mode http
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 45

 log global
 option httplog
 option dontlognull
 option http-server-close
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 30m
 timeout server 30m
 timeout http-keep-alive 10s
 timeout check 10s
 maxconn 3000
frontend ocp4-kubernetes-api-server
 mode tcp
 option tcplog
 bind api.zvm2.rdbk.com:6443
 bind api-int.zvm2.rdbk.com:6443
 default_backend ocp4-kubernetes-api-server
frontend ocp4-machine-config-server
 mode tcp
 option tcplog
 bind api.zvm2.rdbk.com:22623
 bind api-int.zvm2.rdbk.com:22623
 default_backend ocp4-machine-config-server
frontend ocp4-router-http
 mode tcp
 option tcplog
 bind apps.zvm2.rdbk.com:80
 default_backend ocp4-router-http
frontend ocp4-router-https
 mode tcp
 option tcplog
 bind apps.zvm2.rdbk.com:443
 default_backend ocp4-router-https
backend ocp4-kubernetes-api-server
 mode tcp
 balance source
 server ocp2b0 ocp2b0.zvm2.rdbk.com:6443 check
 server ocp2m1 ocp2m1.zvm2.rdbk.com:6443 check
 server ocp2m2 ocp2m2.zvm2.rdbk.com:6443 check
 server ocp2m3 ocp2m3.zvm2.rdbk.com:6443 check
backend ocp4-machine-config-server
 mode tcp
 balance source
 server ocp2b0 ocp2b0.zvm2.rdbk.com:22623 check
 server ocp2m1 ocp2m1.zvm2.rdbk.com:22623 check
 server ocp2m2 ocp2m2.zvm2.rdbk.com:22623 check
 server ocp2m3 ocp2m3.zvm2.rdbk.com:22623 check
backend ocp4-router-http
 mode tcp
 server ocp2w1 ocp2w1.zvm2.rdbk.com:80 check
 server ocp2w2 ocp2w2.zvm2.rdbk.com:80 check
46 Red Hat OpenShift on IBM Z and LinuxONE

 server ocp2f1 ocp2f1.zvm2.rdbk.com:80 check
 server ocp2f2 ocp2f2.zvm2.rdbk.com:80 check
backend ocp4-router-https
 mode tcp
 server ocp2w1 ocp2w1.zvm2.rdbk.com:443 check
 server ocp2w2 ocp2w2.zvm2.rdbk.com:443 check
 server ocp2f1 ocp2f1.zvm2.rdbk.com:443 check
 server ocp2f2 ocp2f2.zvm2.rdbk.com:443 check

5.2.4 Ignition files and the HTTP server

In this section, we describe how to create Red Hat OpenShift Container Platform ignition files
and setup an HTTP server for holding the rootfs image and ignition files.

Downloading RHOCP rootfs image to an HTTP server
The following steps assume that the HTTP server is up and running on the bastion node on
port 8080.

1. Create a directory by using the following command:

/var/www/html/rootfs

2. Navigate to the newly created directory:

cd /var/www/html/rootfs

3. Perform the following command to download the file:

wget -O 4.12.10.rootfs.img
https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.12/4.1
2.10/rhcos-4.12.10-s390x-live-rootfs.s390x.img

4. Verify the location of the file with the following command:

[root@bastion2 html]# tree rootfs
rootfs
|__ 4.12.10.rootfs.img

Downloading the client to the bastion node
The following steps enable you to download the Red Hat OpenShift Container Platform client
to the bastion node.

1. Change the directory by using the following command:

cd /usr/local/bin/

2. Download the Red Hat OpenShift Container Platform client and installation utilities specific
for your bastion operating system by using the following command:

curl -L
https://mirror.openshift.com/pub/openshift-v4/s390x/clients/ocp/4.12.10/
openshift-install-linux-4.12.10.tar.gz | tar xvz openshift-install

3. Download the Red Hat OpenShift command-line interface (oc) with the following
command.

curl -L
https://mirror.openshift.com/pub/openshift-v4/s390x/clients/ocp/4.12.10/openshi
ft-client-linux-4.12.10.tar.gz | tar xvz oc
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 47

4. Change the file permission by using the following commands:

chmod +x /usr/local/bin/oc
chmod +x /sur/local/bin/openshift-install

5. Verify the location of the files by using the following command:

[root@bastion2 html]# tree /usr/local/bin/
/usr/local/bin/
|--oc
|--openshift-install

Create the ignition files
The Red Hat OpenShift Container Platform installation program creates the ignition
configuration files that you need to deploy your cluster. The following steps provide
instructions on how to create these ignition files.

1. Create an SSH key pair with the following command:

ssh-keygen -t rsa -b 2048 -N '' -C 'OCP-4-Admin' -f /root/.ssh/id_rsa

2. Get the pull secret file by logging into the following web site and download the pull secret,
as shown in Figure 5-1.

https://cloud.redhat.com/openshift/install/pull-secret

Figure 5-1 Get the pull secret

3. Save it to bastion node, for example, /root/ocp/pull-secret.

4. Generate install-config.yaml.

Refer to the sample shown in Example 5-4 as a template for the Ansible deployment.
Change the variables sshKey and pullSecret, according to your own environment.

Example 5-4 Template for install-config.yaml

apiVersion: v1
baseDomain: "{{ cluster_base_domain }}"
{% if install_proxy is defined %}
proxy:
 httpProxy: http://{{ install_proxy }}:3128
 httpsProxy: http://{{ install_proxy }}:3128
 noProxy: .{{ cluster_domain_name }},169.254.169.254,{{ subnet_cidr }}
{% endif %}
compute:
- hyperthreading: Enabled
48 Red Hat OpenShift on IBM Z and LinuxONE

 name: worker
 replicas: 0
controlPlane:
 hyperthreading: Enabled
 name: master
 replicas: {{ cluster_nodes.masters | length }}
metadata:
 name: "{{ cluster_name }}"
networking:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
pullSecret: '{“auths”:{ your ocp4_pull_secret | to_json }}'
sshKey: '{{ bastion_pubkey.content | b64decode }}'
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 49

Example 5-5 shows the yaml file that we use in our lab environment. Insert your own
pullSecret and sshKey, as ours have been masked in this example.

Example 5-5 Our lab environment install-config.rdbk1.yaml file

apiVersion: v1
baseDomain: "rdbk.com"
compute:
- hyperthreading: Enabled
 name: worker
 replicas: 0
controlPlane:
 hyperthreading: Enabled
 name: master
 replicas: 3
metadata:
 name: "zvm"
networking:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
pullSecret: '{"auths": {"cloud.openshift.com": {"auth":
"b3BlbnNoaWZ0LXJlbGVhc2UtZGV2K2Ric19pdG8xYjZucGdudTVpNnhwZDVsbTlrdDV5OHVhZXE6Sj
lKWE9SQ0Q1WjczOFBOVkZVM1Y3MEs3UlZBNjE2UTZFWU9CMEgxU0tSVExUV1hWSVZVWlNBOTYzNUwyU
FI3WQ==", "email": "nobody@ibm.com"}, "zxyz.io": {"auth":
"b3BlbnNoaWZ0LXJlbGVhc2UtZGV2K2Ric19pdG8xYjZucGdudTVpNnhwZDVsbTlrdDV5OHVhZXE6Sj
lKWE9SQ0Q1WjczOFBOVkZVM1Y3MEs3UlZBNjE2UTZFWU9CMEgxU0tSVExUV1hWSVZVWlNBOTYzNUwyU
FI3WQ==", "email": "nobody@ibm.com"}, "registry.connect.redhat.com": {"auth":
"NTMyNDM0Njl8dWhjLTFiNm5wR25VNUk2eFBkNUxNOWt0NXk4VUFFcTpleUpoYkdjaU9pSlNVelV4TW
lKOS5leUp6ZFdJaU9pSTBaak5tTjJZ", "email": "nobody@ibm.com"},
"registry.redhat.io": {"auth":
"NTMyNDM0Njl8dWhjLTFiNm5wR25VNUk2eFBkNUxNOWt0NXk4VUFFcTpleUpoYkdjaU9pSlNVelV4TW
lKOS5leUp6ZFdJaU9pSTBaak5tT", "email": "nobody@ibm.com"}, "registry:5000":
{"auth": "bXl1c2VyOm15cGFzc3dvcmQ=", "email": "me@working.me"}}}'
sshKey: 'ssh-rsa
AAAAB3NzaC1yc2EAAAAv/V3SnlkhLqguUY4W6xsbRe+akr/Gv4+sCrI6ABxfyl1S/OCP-4-Admin
'

50 Red Hat OpenShift on IBM Z and LinuxONE

5. Create manifests by using the following command:

/usr/local/bin/openshift-install --dir=`/root/ocp` create manifests

6. Make the controller node unschedulable with the following command:

sed -i 's/true/false/g' /root/ocp/manifests/cluster-scheduler-02-config.yml

7. Create the ignition configuration files:

/usr/local/bin/openshift-install --dir=`/root/ocp` create ignition-configs

8. Copy the ignition configuration files to the HTTP server by using the following commands:

cp /root/ocp/*.ign /var/www/html/ignition
chmod o+r /var/www/html/ignition/*.ign

9. Make the Red Hat OpenShift Container Platform environment ready on the bastion node
with the following commands:

mkdir ~/.kube
cp /root/ocp/auth/kubeconfig ~/.kube/config

5.2.5 USER DIRECT and PARM files for OCP nodes

This step is only applicable to the IBM z/VM environment. In this section, we define the VM
definitions and prepare the PARM files for OCP nodes, which contain settings and options
that are used to customize the behavior of the VM or the IBM z/VM system.

USER DIRECT
The IBM z/VM user directory specifies the configuration and operating characteristics of VMs.

Example 5-6 shows our USER DIRECT file for the bootstrap node.

Example 5-6 Bootstrap node

USER OCP2B0 LBYONLY 24G 256G G
 INCLUDE INSTALL
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL CMS PARM AUTOCR
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 NICDEF 1000 TYPE QDIO DEVICES 3 LAN SYSTEM VSWITCH1
 MDISK 0100 3390 330551 50150 RRLX01 MR
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 51

Example 5-7 shows our USER DIRECT file for the controller node.

Example 5-7 Controller node

USER OCP2M1 LBYONLY 24G 256G G
 INCLUDE INSTALL
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL CMS PARM AUTOCR
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 NICDEF 1000 TYPE QDIO DEVICES 3 LAN SYSTEM VSWITCH1
 MDISK 0100 3390 180301 50150 RRLX02 MR

Example 5-8 shows our USER DIRECT file for the compute node.

Example 5-8 Compute node

USER OCP2W1 LBYONLY 24G 256G G
 INCLUDE INSTALL
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL CMS PARM AUTOCR
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 NICDEF 1000 TYPE QDIO DEVICES 3 LAN SYSTEM VSWITCH1
 MDISK 0100 3390 380701 50150 RRLX01 MR

USER PARM
For each node, an ignition file has to be created. These files contain necessary configuration
data for the Red Hat OpenShift Core OS and are typically created in a temporary directory,
such as /root/rhcos-bootfiles. Example 5-9 shows our sample configuration data to boot
the bootstrap.

Example 5-9 Bootstrap node

OCP2B0 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm2.rdbk.com
 coreos.inst.install_dev=/dev/dasda
 coreos.live.rootfs_url=http://9.76.62.150:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.150:8080/ignition/bootstrap.ign
 ip=9.76.62.160::9.76.62.1:255.255.255.0:::none nameserver=9.76.62.146
rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0
rd.dasd=0.0.0100
52 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-10 shows our sample configuration data to boot the control plane node.

Example 5-10 Controller node

OCP2M1 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm2.rdbk.com
 coreos.inst.install_dev=/dev/dasda
 coreos.live.rootfs_url=http://9.76.62.150:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.150:8080/ignition/master.ign
 ip=9.76.62.151::9.76.62.1:255.255.255.0:::none nameserver=9.76.62.146
rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0
rd.dasd=0.0.0100

Example 5-11 shows our sample configuration data to boot the compute node.

Example 5-11 Compute node

OCP2W1 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm2.rdbk.com
 coreos.inst.install_dev=/dev/dasda
 coreos.live.rootfs_url=http://9.76.62.150:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.150:8080/ignition/worker.ign
 ip=9.76.62.154::9.76.62.1:255.255.255.0:::none nameserver=9.76.62.146
rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0
rd.dasd=0.0.0100

USER DIRECT OCP kernel and initrd files
Example 5-12 is the sample REXX EXEC script for booting up the VM.

Example 5-12 REXX EXEC script to boot the VM

OCP41210 EXEC Z1 V 130 Trunc=130 Size=9 Line=0 Col=1 Alt=0
/* */
'CL RDR'
'PURGE RDR ALL'
'SPOOL PUNCH * RDR'
'PUNCH OCP41210 KERNEL A (NOH'
'PUNCH ' userid() ' PRM A (NOH'
'PUNCH OCP41210 INITRD A (NOH'
'CH RDR ALL KEEP NOHOLD'
'I 00C'
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 53

Upload the following two files to IBM z/VM. They should be transferred in binary format with a
fixed record length of 80.

OCP41210 INITRD Z1 F 80 877284 17135 4/28/23 12:41:02
OCP41210 KERNEL Z1 F 80 94163 1818 4/28/23 12:41:25

5.2.6 Building the Red Hat OpenShift Container Platform cluster

In this section, we describe the next step: to build the Red Hat OpenShift Container Platform
cluster. When using a a single LPAR cluster, you only need to log into one IBM z/VM system
to start up the virtual machines:

1. Start up the bootstrap node by using the following command, where OCP2B0 is your VM
name. For more information, see Table 5-1 on page 43.

XAUTOLOG OCP2B0

2. Check if Bootstrap node is ready by using the following command:

openshift-install --dir <installation_directory> wait-for bootstrap-complete
--log-level=info

3. Check if port 22623 is ready:

curl https://<haproxy_ip>:22623/config/master

4. Start up the Controller and compute nodes, as shown in Example 5-13.

Example 5-13 Start up the nodes

XAUTOLOG OCP2M1
XAUTOLOG OCP2M2
XAUTOLOG OCP2M3
XAUTOLOG OCP2W1
XAUTOLOG OCP2W2
XAUTOLOG OCP2F1
XAUTOLOG OCP2F2

5. During the OCP building process, approve the Certificate Signing Requests. Use the
following command:

oc get csr -o name | xargs /usr/local/bin/oc adm certificate approve

Common ways to check the build process
In this section, we provide commands and the URL for checking the progress of your build.

Commands:
oc get nodes
oc get co
openshift-install --dir <installation_directory> wait-for install-complete

Browser:
http://<haproxy_ip>:1936/haproxy?stats

Note: The user id and password for the website is admin and password.
54 Red Hat OpenShift on IBM Z and LinuxONE

5.2.7 Using Ansible playbooks

In this section, we describe how to leverage Ansible playbooks to automatically deploy a
Red Hat OpenShift Cluster in an IBM z/VM environment.

Prerequisites
The following are prerequisites for enabling Ansible automated deployment:

1. Ansible controller: The Ansible controller could be on any platform (LinuxONE, x86, power,
Mac), as long as the Ansible controller node can connect to the target controlled
environment. In our case, we use the following commands to install Ansible:

yum -y install python39 python39-pip
yum -y install gcc libffi-devel python-devel OpenSSL-devel cargo
pip3 install cryptography
pip3 install netaddr paramiko
pip3 install ansible

There are many ways to set up authentication between the Ansible controller node and
target controlled systems. The following commands are an example:

ssh-keygen
ssh-copy-id 9.76.62.149 (zvmagent)
ssh-copy-id 9.76.62.146 (dns)
ssh-copy-id 9.76.62.145 (haproxy)

2. IBM z/VM configuration: For each controlled IBM z/VM system, we need to create some
small Linux virtual machines. In our case, we create the following profiles and virtual
machines on IBM z/VM.

The INSTALL profile (Example 5-14) is used for installing Red Hat OpenShift nodes. After
successfully installing the nodes, we configure the profiles to include the LNXDFLT profile.

Example 5-14 Install profile

PROFILE INSTALL
 COMMAND SET RUN ON
 COMMAND SET VSWITCH VSWITCH1 GRANT &USERID
 CPU 00 BASE
 CPU 01
 IPL CMS PARM AUTOCR
 LOGONBY IBMVM1
 MACHINE ESA 64
 OPTION APPLMON
 CONSOLE 0009 3215 T MAINT
 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 LINK MAINT 0190 0190 RR
 LINK LNXMAINT 0192 0191 RR
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 55

The LNXDFLT profile (Example 5-15) is used for regular Linux use, not for installation.

Example 5-15 LNXDFLT profile

PROFILE LNXDFLT
 COMMAND SET RUN ON
 COMMAND SET VSWITCH VSWITCH1 GRANT &USERID
 CPU 00 BASE
 CPU 01
 IPL CMS
 LOGONBY IBMVM1
 MACHINE ESA 64
 OPTION CHPIDV ONE APPLMON
 CONSOLE 0009 3215 T
 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A

The ZVMAGENT (Example 5-16) links the LNXMAINT 192 minidisk, where we put the kernel,
the initrd disk, and all the PARM files for installing the Linux Red Hat Core OS.

Example 5-16 ZVMAGENT profile

USER ZVMAGENT LBYONLY 4G 64G G
 INCLUDE LNXDFLT
 COMMAND SET VCONFIG MODE LINUX
 IPL 0100
 IUCV ANY
 LOGONBY IBMVM1
 MACHINE ESA 32
 LINK LNXMAINT 0192 0192 MR
 MDISK 0100 3390 30051 10016 RRLX01 MR

We granted the System Management API (SMAPI) authorization to ZVMAGENT by editing
the file VSMWORK1 AUTHLIST and adding ZVMAGENT at the end, as the following shows:

VSMWORK1 AUTHLIST P1 F 195 Trunc=195 Size=4 Line=0 Col=1 Alt=0
DO.NOT.REMOVE
DO.NOT.REMOVE
MAINT ALL
IBMVM1 ALL
ZVMAGENT ALL
56 Red Hat OpenShift on IBM Z and LinuxONE

3. IBM z/VM Agent: ZVMAGENT is a virtual machine that is used for executing smcli
commands (an IBM z/VM SMAPI command line utility) to define USERID, and the
XAUTOLOG virtual machine on IBM z/VM. Very limited resources are required for this IBM
z/VM agent. You generally only need one virtual Central Processing Unit (vCPU), 4 GB
memory, and a 10 GB volume.

a. Set up read-write to the LNXMAINT 192 disk from ZVMAGENT.

Upload the following two files to the LNXMAINT 192 disk. They should be transferred in
BINARY format and FIX record length 80:

OCP41210 INITRD Z1 F 80 877284 17135 4/28/23 12:41:02
OCP41210 KERNEL Z1 F 80 94163 1818 4/28/23 12:41:25

Filename OCP41210 means that we are installing OCP 4.12.10.

The commands shown in Example 5-17 make the LNXMAINT 192 minidisk accessible
from Linux.

Example 5-17 Make LNXMAINT accessible from Linux-commands and output

[root@zvmagent ~]# cat /etc/rc.local
#!/bin/bash
...
cmsfs-fuse -a -o noauto_cache -o rw /dev/dasdb /mnt/lnxmaint

[root@zvmagent ~]# systemctl status rc-local
? rc-local.service - /etc/rc.d/rc.local Compatibility
 Loaded: loaded
(;;file://zvmagent/usr/lib/systemd/system/rc-local.service/usr/lib/systemd/s
ystem/rc-local.service;;; enabled-runtime; vendor preset: d>
 Active: active (running) since Sat 2023-05-13 22:02:58 CDT; 1h 8min ago
 Docs:
;;man:systemd-rc-local-generator(8)man:systemd-rc-local-generator(8);;
 Process: 1228 ExecStart=/etc/rc.d/rc.local start (code=exited,
status=0/SUCCESS)
 Tasks: 1 (limit: 23651)

Note: We use the cmsfs utility (the CMS file system package that allows access to
CMS files on CMS minidisks that are owned or linked by a Linux on IBM Z guest on
IBM z/VM) to mount the IBM z/VM PARM disk to the Linux Operating System, where
Ansible creates PARM files. There are other options available to achieve the same
purpose such as using a VMNFS server on IBM z/VM, and exported to Linux. For
more details on how to setup NFS server on IBM z/VM, please refer to TCP/IP
Planning and Customization.

There are some ways to avoid uploading these two files to IBM z/VM beforehand,
but this activity is required one time only. In our case, we upload them to the
LNXMAINT 192 disk. Other options are, but not limited to:

� Leverage the vmur utility (from the s390-tools package) to punch the above two
files into the IBM z/VM reader. For more information, see Preparing the z/VM
reader as an IPL device for Linux.

� znetboot makes it easy to bring up Linux on IBM z/VM by issuing the command
znetboot. For more information, see znetboot.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 57

https://www.vm.ibm.com/library/730pdfs/73633100.pdf
https://www.vm.ibm.com/library/730pdfs/73633100.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=examples-zvm-reader-as-ipl-device
https://www.ibm.com/docs/en/linux-on-systems?topic=examples-zvm-reader-as-ipl-device
https://www.ibm.com/docs/en/linux-on-systems?topic=examples-zvm-reader-as-ipl-device
https://www.ibm.com/docs/en/linux-on-systems?topic=examples-zvm-reader-as-ipl-device
https://github.com/trothr/znetboot
https://github.com/trothr/znetboot

 Memory: 832.0K
 CPU: 9ms
 CGroup: /system.slice/rc-local.service
 ??1269 cmsfs-fuse -a -o noauto_cache -o rw /dev/dasdb
/mnt/lnxmaint

May 13 22:02:58 zvmagent systemd[1]: Starting /etc/rc.d/rc.local
Compatibility...
May 13 22:02:58 zvmagent systemd[1]: Started /etc/rc.d/rc.local
Compatibility.
[root@zvmagent ~]# df -h
Filesystem Size Used Avail Use% Mounted on
...
/dev/dasdb 704M 128M 576M 19% /mnt/lnxmaint
...

b. Install smcli with the following commands:

yum install git make gcc
git clone https://github.com/openmainframeproject/feilong.git

In our lab environment, we used the following command for RHEL 9.1:

ln -s /usr/lib64/libtirpc.so.3 /usr/lib64/libtirpc.so

Issue the following command to install smcli:

cd feilong/zthin-parts; OS_IS_RHEL8=1 make; make install; make post

Verify smcli is working:

/opt/zthin/bin/smcli Image_Query_DM -T MAINT730
58 Red Hat OpenShift on IBM Z and LinuxONE

Deploying a cluster with Ansible playbook
In this section, we provide step-by-step instructions to deploy a cluster with an Ansible
playbook.

1. Download the Ansible Playbooks and unzip using the following commands:

git clone
https://github.com/IBMRedbooks/REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-L
inuxONE.git
cd REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE
tar -zxvf chapter_5_ansible_on_linuxone_rdbk-main.tar.gz

2. Modify the variables with the following commands:

cd ansible_on_linuxone_rdbk-main
vi groups_vars/all.yml

In this sample, we prepare Linux OS for Bastion, DNS, and HAProxy. To put all these
services onto a single system, please specify the same IP address for following variables:

dns_nameserver:
haproxy_server:
bastion_public_ip_address:
bastion_private_ip_address:

Create your cluster using the configuration file show in Example 5-18.

Example 5-18 Create the configuration file for your cluster

Environment
out_path: /root/zvm
workdir: /root/ocp
bootfile_dest: "{{workdir}}"

############ z/VM Settings ##########
load_address: 100
install_mode: "zvm"
guest_profile: "LNXDFLT"
zvm_vsw_name: "VSWITCH1"

For NFS persistent Storage
nfs_server: "9.76.62.150"
nfs_share_folder: "/nfs_share"

############ OCP ##########

Pull-secret
path_ps:
"/REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE/ansible_on_linuxone_r
dbk-main/test1_pull_secret"
ocp4_pull_secret: "{{ lookup('file', path_ps) | from_json }}"

OCP parameters
controller_schedulable: false
cluster_name: "zvm2"
cluster_base_domain: "rdbk.com"
cluster_domain_name: "{{cluster_name}}.{{cluster_base_domain}}"
dns_nameserver: "9.76.62.146"
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 59

dns_hostname: "dns1"
haproxy_server: "9.76.62.145"
subnet_gateway: "9.76.62.1"
subnet_netmask: "255.255.255.0"
subnet_cidr: "9.76.62.0/24"
bastion_public_ip_address: "9.76.62.150"
bastion_private_ip_address: "9.76.62.150"
ocp_repo_type: "Online"
ocp_idp: "RDBK2_HTPASSWD"
ocp_idp_users_secret: "users-secret"
ocp_version: "4.12"
ocp_minor_version: "4.12.10"
rhcos_version: "4.12.10-s390x"

cluster_nodes: {
 bootstrap: [
 { hostname: "ocp2b0",
 ip: "9.76.62.160",
 ign_profile: "bootstrap.ign",
 vm_uname: "OCP2B0",
 eckd_disk: ["rd.dasd=0.0.0100"],
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 install_mode: "zvm",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 }],
 masters: [
 { hostname: "ocp2m1",
 ip: "9.76.62.151",
 ign_profile: "master.ign",
 vm_uname: "OCP2M1",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
 { hostname: "ocp2m2",
 ip: "9.76.62.152",
 ign_profile: "master.ign",
 vm_uname: "OCP2M2",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
60 Red Hat OpenShift on IBM Z and LinuxONE

 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
 { hostname: "ocp2m3",
 ip: "9.76.62.153",
 ign_profile: "master.ign",
 vm_uname: "OCP2M3",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 }],
 workers: [
 {hostname: "ocp2w1",
 ip: "9.76.62.154",
 ign_profile: "worker.ign",
 vm_uname: "OCP2W1",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
 {hostname: "ocp2w2",
 ip: "9.76.62.155",
 ign_profile: "worker.ign",
 vm_uname: "OCP2W2",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 61

 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
 {hostname: "ocp2f1",
 ip: "9.76.62.156",
 ign_profile: "worker.ign",
 vm_uname: "OCP2F1",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
 {hostname: "ocp2f2",
 ip: "9.76.62.157",
 ign_profile: "worker.ign",
 vm_uname: "OCP2F2",
 eckd_disk: ["rd.dasd=0.0.0100"],
 install_mode: "zvm",
 vol_type: "3390",
 vol_size: "50150",
 vol_grp: "DASD400",
 vcpu: 4,
 min_mem: "24G",
 max_mem: "256G",
 kvm_network: "",
 vm_node: "RDBKZVMD",
 vm_agent: "9.76.62.149"
 },
]}

3. Prepare the pull secret, depending on the variable that you specify in Step 2. In our case,
we change the following variable:

path_ps:
"/REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE/ansible_on_linuxone_r
dbk-main/test1_pull_secret"

We upload the pull secret file to the directory on the Ansible Controller:

/REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE/ansible_on_linuxone_rd
bk-main/test1_pull_secret
62 Red Hat OpenShift on IBM Z and LinuxONE

4. Run the Ansible playbooks to deploy Red Hat OpenShift Container Platform:

cd ansible_on_linuxone_rdbk-main
ansible-playbook -i inventory -c paramiko -e @secrets_file.enc
--vault-password-file password_file playbooks/rdbk/module_ocp_deploy_zadmin.yml

Approve the Certificate Signing Request:

ansible-playbook -i inventory -c paramiko playbooks/rdbk/configure-csr.yml

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/module_ocp_update_user_direct_zadmin.yml

5. Run the Ansible playbook For Day2 Operations:

cd ansible_on_linuxone_rdbk-main

a. Disable Transparent Huge Pages (THP):

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-disable-thp.yml

b. Enable Network Receive Flow Steering (RFS):

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-network-rfs-control.yml
ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-network-rfs-compute.yml

c. Set up the NFS-Client for the automated Persistent Volume Claim (PVC):

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-nfs-client.yml

d. Enable NFS as the default Storage Class:

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-default-sc.yml

e. Move Image Registry to NFS storage:

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-image-registry.yml

f. Create HTPASSWD user credential:

This step creates the user id admin001 as cluster-admin and the password is specified
in the encrypted secrets_file.enc. We can issue the ansible-vault edit
secrets_file.enc command to change the password.

ansible-playbook -i inventory -c paramiko -e @secrets_file.enc
--vault-password-file password_file playbooks/rdbk/ocp-day2-user.yml

Note: If you do not have sensitive information (such as a password) in the
secrets_file.enc, the command could be shorter, for example:

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/module_ocp_deploy_zadmin.yml

Important: After you verify the Red Hat OpenShift Cluster is running, execute the
following Ansible playbook to update USER DIRECT and installation status and log in to
IBM z/VM to make sure that the USER DIRECT for the cluster node is using IPL 100
(load address), instead of IPL CMS PARM AUTOCR.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 63

g. Disable the kubeadmin user:

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-disable-kubeadmin.yml

h. Back up Etcd database:

ansible-playbook -i inventory -c paramiko
playbooks/rdbk/ocp-day2-backup-etcd.yml -e
'controller_node=ocp1m1.zvm.rdbk.com'

i. Finally, copy to the bastion node:

scp -rp core@ocp1m1.zvm.rdbk.com:/home/core/ocpbkp /tmp/

5.3 IBM z/VM three-LPAR cluster implementation

In this section, we describe the procedure to deploy a Red Hat OpenShift cluster on three
IBM z/VM LPARs. Most of the steps are the same as one LPAR cluster; therefore, we only
describe the steps that differ when we deploy to a production environment.

5.3.1 Architecture

The three-LPAR cluster architecture is shown in Figure 5-2 and was briefly described in 3.3.2,
“Three-LPAR deployment configuration” on page 27.

Figure 5-2 Three LPAR cluster architecture
64 Red Hat OpenShift on IBM Z and LinuxONE

5.3.2 Planning resources

As mentioned in Chapter 3, “Implementation architectural considerations” on page 21, we
deploy three HAProxy servers for high availability, and all the nodes are distributed on three
LPARs.

The three-LPAR cluster resources planning is shown in Table 5-3.

Table 5-3 Three-LPAR cluster resources planning

Purpose VM Name Node CPU Memory (Min/Max) Size (Cyl) - 48G DASD Grp

Bastion BASTION2 RDBKZVMA 4 24G/256G 60101 DASD54

DNS DNS1 RDBKZVMB 4 24G/256G 60101 DASD54

Haproxy1 HAPROXY1 RDBKZVMA 4 24G/256G 60101 DASD54

Haproxy2 HAPROXY2 RDBKZVMB 4 24G/256G 60101 DASD54

Haproxy3 HAPROXY3 RDBKZVMC 4 24G/256G 60101 DASD54

Bootstrap OCP2B0 RDBKZVMA 4 24G/256G 60101 DASD54

Controller1 OCP2M1 RDBKZVMA 4 24G/256G 60101 DASD54

Controller2 OCP2M2 RDBKZVMB 4 24G/256G 60101 DASD54

Controller3 OCP2M3 RDBKZVMC 4 24G/256G 60101 DASD54

Worker1 OCP2W1 RDBKZVMA 4 24G/256G 60101 DASD54

Worker2 OCP2W2 RDBKZVMB 4 24G/256G 60101 DASD54

Worker3 OCP2W3 RDBKZVMC 4 24G/256G 60101 DASD54

Infra1 OCP2F1 RDBKZVMA 4 24G/256G 60101 DASD54

Infra2 OCP2F2 RDBKZVMB 4 24G/256G 60101 DASD54

Infra3 OCP2F3 RDBKZVMC 4 24G/256G 60101 DASD54
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 65

Network resource planning is shown in Table 5-4. In our lab environment, we use RoCE.

Table 5-4 Network resources

5.3.3 HAPROXY configuration

For the load balancer, in our lab environment, we leverage the Keepalived routing software to
archive high availability of the HAProxy services.

Sample high availability architecture is shown in Figure 5-3.

Figure 5-3 HAproxy service high availability with Keepalived

Purpose OS VM Name PCI Functions IP Address OCP Domain Name

Bastion RHEL 9.1 BASTION2 9.76.62.150 bastion.zvm.rdbk.com

DNS RHEL 9.1 DNS2 9.76.62.141 dns1.zvm.rdbk.com

HAPROXY1 RHEL 9.1 HAPROXY1 9.76.62.145 haproxy1.zvm.rdbk.com

HAPROXY2 RHEL 9.1 HAPROXY2 9.76.62.142 haproxy2.zvm.rdbk.com

HAPROXY3 RHEL 9.1 HAPROXY3 9.76.62.143 haproxy3.zvm.rdbk.com

Bootstrap RHCOS4.12.10 OCP2B0 00003425 9.76.62.140 ocp2b0.zvm.rdbk.com

Controller1 RHCOS4.12.10 OCP2M1 00003125 9.76.62.131 ocp2m1.zvm.rdbk.com

Controller2 RHCOS4.12.10 OCP2M2 00003126 9.76.62.132 ocp2m2.zvm.rdbk.com

Controller3 RHCOS4.12.10 OCP2M3 00003127 9.76.62.133 ocp2m3.zvm.rdbk.com

Worker1 RHCOS4.12.10 OCP2W1 00003525 9.76.62.134 ocp2w1.zvm.rdbk.com

Worker2 RHCOS4.12.10 OCP2W2 00003526 9.76.62.135 ocp2w2.zvm.rdbk.com

Worker3 RHCOS4.12.10 OCP2W3 00003527 9.76.62.136 ocp2w2.zvm.rdbk.com

Infra1 RHCOS4.12.10 OCP2F1 00003725 9.76.62.137 ocp2f1.zvm.rdbk.com

Infra2 RHCOS4.12.10 OCP2F2 00003726 9.76.62.138 ocp2f2.zvm.rdbk.com

Infra3 RHCOS4.12.10 OCP2F3 00003727 9.76.62.139 ocp2f2.zvm.rdbk.com
66 Red Hat OpenShift on IBM Z and LinuxONE

Keepalived installation
To install the Keepalived software package, follow these instructions:

1. Install packages:

yum install keepalived psmisc

2. Enable IP forwarding:

sysctl -w net.ipv4.ip_forward="1"
sysctl -w net.ipv4.ip_nonlocal_bind="1"

3. Update /etc/keepalived/keepalived.conf configuration file with the values shown in the
following examples:

Here is an example on HAProxy1: (Example 5-19)

Example 5-19 Primary

global_defs {
 notification_email {
 sysadmin@firewall.loc
 }
 vrrp_version 3
 notification_email_from sysadmin@firewall.loc
 smtp_server 192.168.200.1
 smtp_connect_timeout 30
 router_id LVS_DEVEL
 vrrp_skip_check_adv_addr
 #vrrp_strict
 vrrp_garp_interval 0
 vrrp_gna_interval 0
 process_names
 enable_script_security
 script_user root
}
vrrp_script chk_haproxy {
 script "/usr/bin/systemctl is-active --quiet HAProxy"
 fall 2 # 2 fails required for failure
 rise 2 # 2 OKs required to consider the
 # process up after failure
 interval 5 # check every 5 seconds
 weight 51 # add 50 points rc=0
}
vrrp_instance VI_1 {
 state MASTER
 interface enc1000
 virtual_router_id 1
 priority 100
 advert_int 3
 # check that 10er network is up
 track_interface {
 enc1000 weight 50
 }
 # check that HAProxy is up
 track_script {
 chk_haproxy
 }
 virtual_ipaddress {
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 67

 9.76.62.144/32 dev enc1000 label enc1000:0
 }
}

Here is an example on HAProxy2: (Example 5-20).

Example 5-20 BACKUP - PRIORITY 90

global_defs {
 notification_email {
 sysadmin@firewall.loc
 }
 vrrp_version 3
 notification_email_from sysadmin@firewall.loc
 smtp_server 192.168.200.1
 smtp_connect_timeout 30
 router_id LVS_DEVEL
 vrrp_skip_check_adv_addr
 #vrrp_strict
 vrrp_garp_interval 0
 vrrp_gna_interval 0
 process_names
 enable_script_security
 script_user root
}
vrrp_script chk_haproxy {
 script "/usr/bin/systemctl is-active --quiet HAProxy"
 fall 2 # 2 fails required for failure
 rise 2 # 2 OKs required to consider the
 # process up after failure
 interval 5 # check every 5 seconds
 weight 51 # add 50 points rc=0
}
vrrp_instance VI_1 {
 state BACKUP
 interface enc1000
 virtual_router_id 2
 priority 90
 advert_int 3
 # check network is up
 track_interface {
 enc1000 weight 50
 }
 # check that HAProxy is up
 track_script {
 chk_haproxy
 }
 virtual_ipaddress {
 9.76.62.144/32 dev enc1000 label enc1000:0
 }
}

68 Red Hat OpenShift on IBM Z and LinuxONE

Here is an example on HAProxy3: (Example 5-21).

Example 5-21 BACKUP - PRIORITY 80

global_defs {
 notification_email {
 sysadmin@firewall.loc
 }
 vrrp_version 3
 notification_email_from sysadmin@firewall.loc
 smtp_server 192.168.200.1
 smtp_connect_timeout 30
 router_id LVS_DEVEL
 vrrp_skip_check_adv_addr
 #vrrp_strict
 vrrp_garp_interval 0
 vrrp_gna_interval 0
 process_names
 enable_script_security
 script_user root
}
vrrp_script chk_haproxy {
 script "/usr/bin/systemctl is-active --quiet HAProxy"
 fall 2 # 2 fails required for failure
 rise 2 # 2 OKs required to consider the
 # process up after failure
 interval 5 # check every 5 seconds
 weight 51 # add 50 points rc=0
}
vrrp_instance VI_1 {
 state BACKUP
 interface enc1000
 virtual_router_id 3
 priority 80
 advert_int 3
 # check network is up
 track_interface {
 enc1000 weight 50
 }
 # check that HAProxy is up
 track_script {
 chk_haproxy
 }
 virtual_ipaddress {
 9.76.62.144/32 dev enc1000 label enc1000:0
 }
}

Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 69

4. Configure the firewall to allow the VRRP protocol:

firewall-cmd --permanent --new-service=VRRP
firewall-cmd --permanent --service=VRRP --set-description="Virtual Router
Redundancy Protocol"
firewall-cmd --permanent --service=VRRP --set-short=VRRP
firewall-cmd --permanent --service=VRRP --add-protocol=vrrp
firewall-cmd --permanent --service=VRRP --set-destination=ipv4:224.0.0.18
firewall-cmd --add-service=VRRP --permanent

5. Configure SELinux:

grep keepalived_t /var/log/audit/audit.log|audit2allow -M keepalived_custom
semodule -i keepalived_custom.pp

6. Enable and start Keepalived service:

systemctl enable keepalived --now

HAPROXY configuration
Example 5-22 shows some minor changes needed for HAProxy configuration. These
changes are optional but allow use of a virtual IP address or the host IP address.

Example 5-22 HAProxy optional configuration changes

frontend ocp4-kubernetes-api-server
...
 bind *:6443
...

frontend ocp4-machine-config-server
...
 bind *:22623
...

frontend ocp4-router-http
...
 bind *:80
...

frontend ocp4-router-https
...
 bind *:443

...
70 Red Hat OpenShift on IBM Z and LinuxONE

DNS configuration
Example 5-23 shows minor changes to the DNS configuration to allow use of virtual IP
addresses.

Example 5-23 Configurations changes for virtual IP addresses

[root@dns1 ~]# cat /var/named/zvm.rdbk.com.zone
api IN A 9.76.62.144

api-int IN A 9.76.62.144

apps IN A 9.76.62.144

*.apps IN A 9.76.62.144
...

At this point, you should be able to connect to the Red Hat OpenShift Cluster Console using
the same domain name, but with virtual IP addresses for the HAProxy services.

5.3.4 USER DIRECT and PARM files for OCP nodes

This step is only applicable to the IBM z/VM environment. Here we define the VM definitions
and prepare the PARM files for OCP nodes. In this scenario, we use RoCE card instead of an
OSA card.

USER DIRECT
The IBM z/VM user directory specifies the configuration and operating characteristics of VMs.

Example 5-24 shows our USER DIRECT file for the bootstrap node.

Example 5-24 Bootstrap node

USER OCP1B0 LBYONLY 24G 256G G
 INCLUDE INSTALL
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 COMMAND ATT PCIF 00003425 OCP1B0 00003425
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL CMS PARM AUTOCR
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 MDISK 0100 3390 1 60101 RRLX0A MR
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 71

Example 5-25 shows our USER DIRECT file for the controller node.

Example 5-25 Controller node

USER OCP1M1 LBYONLY 24G 256G G
 INCLUDE LNXDFLT
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 COMMAND ATT PCIF 00003125 OCP1M1
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL 100
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 MDISK 0100 3390 1 60101 RRLX0B MR

Example 5-26 shows our USER DIRECT file for the compute node.

Example 5-26 Compute node

USER OCP1W1 LBYONLY 24G 256G G
 INCLUDE LNXDFLT
 COMMAND TERM MORE 0 0
 COMMAND TERM HOLD OFF
 COMMAND ATT PCIF 00003525 OCP1W1
 CPU 00 BASE
 CPU 01
 CPU 02
 CPU 03
 IPL 100
 LOGONBY MAINT IBMVM1
 MACHINE ESA 64
 MDISK 0100 3390 1 60101 RRLX0I MR
72 Red Hat OpenShift on IBM Z and LinuxONE

USER PARM
Example 5-27 shows our sample configuration data to boot the bootstrap.

Example 5-27 Bootstrap node

OCP1B0 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm.rdbk.com
 coreos.inst.install_dev=/dev/dasda nameserver=9.76.62.141
 coreos.live.rootfs_url=http://9.76.62.130:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.130:8080/ignition/bootstrap.ign
 ip=9.76.62.140::9.76.62.1:255.255.255.0::bond0:none
 bond=bond0:ens1877:mode=active-backup,fail_over_mac=1
rd.dasd=0.0.0100

Example 5-28 shows our sample configuration data to boot the control plane node.

Example 5-28 Controller node

OCP1M1 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm.rdbk.com nameserver=9.76.62.141
 coreos.inst.install_dev=/dev/dasda
 coreos.live.rootfs_url=http://9.76.62.130:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.130:8080/ignition/master.ign
 ip=9.76.62.131::9.76.62.1:255.255.255.0::bond0:none
 bond=bond0:ens1621:mode=active-backup,fail_over_mac=1
rd.dasd=0.0.0100

Example 5-29 shows our sample configuration data to boot the compute node.

Example 5-29 Compute node

OCP1W1 PRM Z1 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
rd.neednet=1 dfltcc=off
 console=ttysclp0
 searchdomain=zvm.rdbk.com nameserver=9.76.62.141
 coreos.inst.install_dev=/dev/dasda
 coreos.live.rootfs_url=http://9.76.62.130:8080/rootfs/4.12.10.rootfs.img
 coreos.inst.ignition_url=http://9.76.62.130:8080/ignition/worker.ign
 ip=9.76.62.134::9.76.62.1:255.255.255.0::bond0:none
 bond=bond0:ens1877:mode=active-backup,fail_over_mac=1
rd.dasd=0.0.0100
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 73

5.3.5 Building the OCP cluster

In this step, you build the OCP cluster for a three-LPAR cluster case. Log in to the three
IBM z/VM systems to start up the VMs. In an IBM z/VM SSI cluster environment, you could
issue the command RDBKZVMx CMD Xautolog nodename to start a specific system from a single
IBM z/VM node.

1. To start up the bootstrap node, issue the following commands:

Logon to RDBKZVMA
XAUTOLOG OCP2B0

Check if the bootstrap node is ready with the following command:

openshift-install --dir <installation_directory> wait-for bootstrap-complete
--log-level=info

Check if port 22623 is ready or not with the following command.

curl https://<haproxy_ip>:22623/config/master

2. Start up the Controller and compute nodes. In our lab environment, we use the following
commands:

RDBKZVMA: XAUTOLOG OCP2M1
RDBKZVMB: XAUTOLOG OCP2M2
RDBKZVMC: XAUTOLOG OCP2M3
RDBKZVMA: XAUTOLOG OCP2W1
RDBKZVMB: XAUTOLOG OCP2W2
RDBKZVMC: XAUTOLOG OCP2W3
RDBKZVMA: XAUTOLOG OCP2F1
RDBKZVMB: XAUTOLOG OCP2F2
RDBKZVMC: XAUTOLOG OCP2F3
74 Red Hat OpenShift on IBM Z and LinuxONE

5.4 KVM single hypervisor cluster implementation

In our single hypervisor example environment we perform an Ansible-based installation using
a user-provided installer (UPI) approach. For more information, see Ansible-Automated
OpenShift Provisioning on KVM on IBM zSystems / LinuxONE.

The playbook can install a KVM host into an LPAR, but in our environment this was already
installed. Additionally, the playbook requires a Dynamic Partition Manager (DPM) enabled
host to achieve the automated installation and our lab is not using a DPM enabled system.

The document for the UPI playbook indicates we need a file server and an Ansible Controller
node. We will not need the jump host mentioned for a NAT network. As a best practice, we are
not going to add file server or controller functions to the KVM host, as they both reside in a
single RHEL guest system. We will call this guest domain controller. In our example
deployment, we also place the DNS server in its own virtual server. The load balancer, along
with the bastion host, and the OCP cluster itself will be deployed by the Ansible Playbook
automation.

5.4.1 Architecture

Figure 5-4 shows our Single LPAR Ansible-automated architecture. There are eight RoCE
ports on four adapter cards that are configured to four Linux network bonds in active Stand-By
mode. The bastion, DNS, load balancer, and controller are RHEL virtual servers. The
remainder are Red Hat CoreOS nodes that compose our Red Hat OpenShift 4.12 cluster. The
Red Hat CoreOS nodes could be moved to other LPARs, where you could easily convert the
Single LPAR deployment in to a three-LPAR deployment. The Ansible code does support a
multi-LPAR deployment. We only use Ansible in this single LPAR deployment so you have the
opportunity see deployments through both methods.

Figure 5-4 Single LPAR Ansible Automated Architecture
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 75

https://ibm.github.io/Ansible-OpenShift-Provisioning
https://ibm.github.io/Ansible-OpenShift-Provisioning

5.4.2 Planning resources

We map all of our RHEL and Red Hat CoreOS servers with virtual CPU, memory, and disk
allocations as required, as well as network adapter usage. We create four different bonds
across the different RoCE adapters. We can utilize all of them across the different Red Hat
OpenShift nodes as needed. While we start with use a single bond for the Red Hat CoreOS
guests, we could easily add others as needed. Since we use active/standby mode, we could
potentially have up to 100 GB (4 x 25) of bandwidth if needed.

We also map out the DNS entries. DNS entries and load balancer configuration are two of the
most common problem areas during an Red Hat OpenShift deployment.

If you add up the QCOW disk sizes they total almost 1.3 TB. However, because the QCOW2
files are sparse, even weeks after the deployment we see less than 200 GB of disk usage.
The Ansible script does deploy the nodes with discard=unmap, so any files deleted within the
virtual server frees up the space in the file system. Additionally, because the QCOW2 are
hosted on a logical volume manager (LVM), the requirement to use extended address
volumes (EAVs) is eliminated. However, you still may use them if you wish.

Since we use ECKD EAVs as well as Parallel Access Volumes (PAVs) for parallelism of I/O.
The single LPAR cluster resource plan is shown in Table 5-5.

Table 5-5 Resource planning by function

Function KVM Domain Hypervisor Virtual
CPU

Initial Domain
Memory in GB

Max QCOW2 Size
GB

Ansible
Controller

controller rdbkkvm4 4 16 20

Bastion/Load
Balancer

bastion rdbkkvm4 4 8 20

DNS dnsdhcp rdbkkvm4 4 16 20

Bootstrap bootstrap rdbkkvm4 4 16 120

Control Plane cp1 rdbkkvm4 4 16 120

Control Plane cp2 rdbkkvm4 4 16 120

Control Plane cp3 rdbkkvm4 4 16 120

Application
Worker

aw1 rdbkkvm4 4 16 120

Application
Worker

aw2 rdbkkvm4 4 16 120

Application
Worker

aw3 rdbkkvm4 4 16 120

Infra Worker iw1 rdbkkvm4 4 16 120

Infra Worker iw2 rdbkkvm4 4 16 120

Infra Worker iw3 rdbkkvm4 4 16 120
76 Red Hat OpenShift on IBM Z and LinuxONE

Table 5-6 provides our resource plan for the RoCE adapters and bond mappings.

Table 5-6 RoCE adapter and port to bond mappings

Table 5-7 on page 78 provides our guest domain, bond, and IP address mappings.

Table 5-7 Guest domain, bond, IP address mappings

RoCE
PCHID

RoCE Port LPAR 4Net-Dev Bond

11c 0 ens12616 bond1

11c 1 ens12872 bond2

1b0 0 ens13128 bond3

1b0 1 ens13384 bond4

158 0 ens13640 bond1

158 1 ens13896 bond2

1fc 0 ens14152 bond3

1fc 1 ens14408 bond4

KVM
Domain

Host Name
(Short)

Bond IP Address

bastion bastion bond4 9.76.61.82

controller controller bond4 9.76.61.95

dnsdhcp dnsdhcp bond4 9.76.61.94

bootstrap bootstrap bond4 9.76.61.84

cp1 cp1 bond4 9.76.61.85

cp2 cp2 bond4 9.76.61.86

cp3 cp3 bond4 9.76.61.87

aw1 aw1 bond4 9.76.61.91

aw2 aw2 bond4 9.76.61.92

aw3 aw3 bond4 9.76.61.93

iw1 iw1 bond4 9.76.61.88

iw2 iw2 bond4 9.76.61.89

iw3 iw3 bond4 9.76.61.90
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 77

Table 5-7 shows our forward and reverse DNS with their domain name and IP addresses.

Table 5-7 Forward and Reverse DNS

Host name domain IP Address

controller ocp1.ibm.com 9.76.61.95

bastion ocp1.ibm.com 9.76.61.82

bootstrap ocp1.ibm.com 9.76.61.84

cp1 ocp1.ibm.com 9.76.61.85

cp2 ocp1.ibm.com 9.76.61.86

cp3 ocp1.ibm.com 9.76.61.87

aw1 ocp1.ibm.com 9.76.61.91

aw2 ocp1.ibm.com 9.76.61.92

aw3 ocp1.ibm.com 9.76.61.93

iw1 ocp1.ibm.com 9.76.61.88

iw2 ocp1.ibm.com 9.76.61.89

iw3 ocp1.ibm.com 9.76.61.90

api ocp1.ibm.com 9.76.61.82

api-int ocp1.ibm.com 9.76.61.82

apps ocp1.ibm.com 9.76.61.82

*.apps ocp1.ibm.com 9.76.61.82

dnsdhcp ocp1.ibm.com 9.76.61.94
78 Red Hat OpenShift on IBM Z and LinuxONE

5.4.3 DNS configuration

DNS is a requirement to deploy and use Red Hat OpenShift. In a production environment, you
usually use be the enterprise DNS servers. We configured named for the DNS server. Our
example DNS configuration consists of the following three files:

� File: /var/named/named.61.76.9.in-addr.arpa.zone shown in Example 5-30
� File: /var/named/named.ocp1.ibm.com shown in Example 5-31 on page 80
� File: /etc/named.conf shown in Example 5-32 on page 81

Example 5-30 File: /var/named/named.61.76.9.in-addr.arpa.zone

$TTL 900
@ IN SOA dnsdhcp.ocp1.ibm.com. admin.ocp1.ibm.com. (
 2022020202 ; serial
 3600 ; refresh
 1800 ; retry
 604800 ; expire
 86400 ; negative cache ttl
)

; NameServer

@ IN NS dnsdhcp.ocp1.ibm.com.

;reverse for name server

80 IN PTR lb0.ocp1.ibm.com.
80 IN PTR lb1.ocp1.ibm.com.

82 IN PTR bastion.ocp1.ibm.com.
84 IN PTR bootstrap.ocp1.ibm.com.
85 IN PTR cp1.ocp1.ibm.com.
86 IN PTR cp2.ocp1.ibm.com.
87 IN PTR cp3.ocp1.ibm.com.
91 IN PTR aw1.ocp1.ibm.com.
92 IN PTR aw2.ocp1.ibm.com.
93 IN PTR aw3.ocp1.ibm.com.
88 IN PTR iw1.ocp1.ibm.com.
89 IN PTR iw2.ocp1.ibm.com.
90 IN PTR iw3.ocp1.ibm.com.
83 IN PTR nfs.ocp1.ibm.com.
94 IN PTR dnsdhcp.ocp1.ibm.com.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 79

Example 5-31 File: /var/named/named.ocp1.ibm.com

cat named.ocp1.ibm.com
$TTL 3H
;base domain name
$ORIGIN ocp1.ibm.com.

@ IN SOA @ ocp1.ibm.com. (
 2022020202 ; serial
 1D ;refresh
 1H ;retry
 1W ;expire
 3H ;minimum
)
;Names servers for this domain
 IN NS dnsdhcp.ocp1.ibm.com.
;Mail servers
; none
;A Records
lb0 IN A 9.76.61.80
lb1 IN A 9.76.61.81
bastion IN A 9.76.61.82
bootstrap IN A 9.76.61.84
cp1 IN A 9.76.61.85
cp2 IN A 9.76.61.86
cp3 IN A 9.76.61.87
aw1 IN A 9.76.61.91
aw2 IN A 9.76.61.92
aw3 IN A 9.76.61.93
iw1 IN A 9.76.61.88
iw2 IN A 9.76.61.89
iw3 IN A 9.76.61.90
nfs IN A 9.76.61.83
api IN A 9.76.61.82
api-int IN A 9.76.61.82
apps IN A 9.76.61.82
*.apps IN A 9.76.61.82
dnsdhcp IN A 9.76.61.94
80 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-32 File: /etc/named.conf

acl internal_nets { 9.76.61/24; };

options {
 listen-on port 53 { any; };
 listen-on-v6 port 53 { ::1; };
 listen-on-v6 port 53 { none; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 secroots-file "/var/named/data/named.secroots";
 recursing-file "/var/named/data/named.recursing";
 allow-query { localhost; internal_nets; };
 forwarders { 9.0.0.2; };
 allow-recursion { localhost; internal_nets; };
 allow-query-cache { localhost; internal_nets; };

 recursion yes;
 dnssec-validation no;

 managed-keys-directory "/var/named/dynamic";
 geoip-directory "/usr/share/GeoIP";
 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";

 querylog yes;
 allow-transfer { none; };

 include "/etc/crypto-policies/back-ends/bind.config";

};

logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

zone "ocp1.ibm.com" {
 type master;
 file "/var/named/named.ocp1.ibm.com";
 allow-query { any; };
 allow-transfer { none; };
 allow-update { none; };
};
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 81

zone "61.76.9.in-addr.arpa" {
 type master;
 file "/var/named/named.61.76.9.in-addr.arpa.zone";
 allow-query {any;};
 allow-transfer {none;};
 allow-update {none;};
};

5.4.4 Ansible controller configuration

We used virt-install (a CLI tool for creating a new KVM) and kickstart (a method for
automated installation of RHEL systems) to automate the installation of the controller. The
resource requirements of the controller node are modest. We just need a bit of disk space to
contain the playbooks and also serve files, since it is also acting as our file server for the
Ansible playbooks. Our controller’s kickstart file is shown in Example 5-33.

Example 5-33 controller.ks

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=controller.ocp1.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
nginx
ansible-core
chrony
sysstat
tmux
iotop
82 Red Hat OpenShift on IBM Z and LinuxONE

cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot

The command to install the Ansible controller virtual server is shown in Example 5-34.

Example 5-34 Install the Ansible controller virtual server

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name controller --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,discard=unmap,driver.iothread=1
--network network=default --network
type=direct,source=bond4,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw --location
/var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/controller.ks --extra-args "inst.ks=file:/controller.ks"
--console pty,target_type=serial --autoconsole text

5.4.5 Load balancer configuration

The load balancer function on this Ansible based deployment was placed onto the bastion
host and used the bastion host single IP address. Deploying a load balancer with a unique IP
address can provide the benefit of being able to more easily move that IP address/load
balancing function to another server. While the Ansible script did fully configure the HAProxy
based load balancer function, it did not open the firewall for port 1936, which provides HTTP
based statistics on the load balancer operation. The other firewall ports are automatically
configured by the Ansible playbook.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 83

5.4.6 File server for Ansible Playbook

We use Nginx to provide the file-serving function of the Ansible playbook. Our Nginx file
serving configuration is shown in Example 5-35. This not only serves the
RHEL 8.7 ISO image required by the playbook, but also the configuration files and Red Hat
OpenShift artifacts generated or obtained by the playbook automation. The playbook
assumes the content is under /home/<<userid>>. Our content is placed in /home/admin1. In
that directory, we have a directory called ocpauto (containing the playbooks), ocp-config, and
a RHEL 8.7 upon which the RHEL ISO file is loop mounted.

We add a location directive for /home/admin1 to our nginx.conf configuration file (see
Example 5-35) and restart it.

Example 5-35 Nginx file serving configuration

server {
 listen 80;
 listen [::]:80;
 server_name _;
 root /usr/share/nginx/html;

 # Load configuration files for the default server block.
 include /etc/nginx/default.d/*.conf;

 location /home/admin1 {
 alias /home/admin1 ;

autoindex on;

}

location / {
}

We also open the relevant firewall ports for http and https by using the commands shown in
Example 5-36.

Example 5-36 Commands to open ports

[root@controller admin1]# firewall-cmd --add-port=80/tcp --perm
success
[root@controller admin1]# firewall-cmd --add-port=443/tcp --perm
success
[root@controller admin1]# firewall-cmd --add-port=443/tcp
success
[root@controller admin1]# firewall-cmd --add-port=80/tcp
success
84 Red Hat OpenShift on IBM Z and LinuxONE

5.4.7 Building the OCP cluster through Ansible

There are eight playbooks for deploying Red Hat OpenShift on Linux on IBM Z and
LinuxONE:

1. Set up Playbook
2. Create LPAR Playbook
3. Create KVM Host Playbook
4. Setup KVM Host Playbook
5. Create Bastion Playbook
6. Setup Bastion Playbook
7. Create Nodes Playbook
8. OCP Verification Playbook

For more information, see Ansible-Automated OpenShift Provisioning on KVM on IBM
zSystems / LinuxONE.

In our environment we run the Setup Playbook, and skip both the Create LPAR and Create
KVM Host playbooks as the LPAR and KVM host already exist. We run the Setup KVM Host
playbook through the OCP Verification Playbook. We run the process from our non-root user
id admin1.

1. We begin by installing pip on our server using the following command:

[root@controller admin1]# yum install python3-pip

2. Next, we create and change to the ocpauto subdirectory from the admin1 home directory,
using the following commands:

[admin1@controller ~]$ mkdir ocpauto
[admin1@controller ~]$ cd ocpauto/

3. Next, we clone the playbook from GitHub:

[admin1@controller ocpauto]$ git clone
https://github.com/IBM/Ansible-OpenShift-Provisioning.git

4. In additional to installing the playbook, there are a few prerequisite galaxy collections. We
use the following command to do this:

[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-galaxy collection
install community.general community.crypto ansible.posix community.libvirt
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 85

https://ibm.github.io/Ansible-OpenShift-Provisioning/
https://ibm.github.io/Ansible-OpenShift-Provisioning/
https://ibm.github.io/Ansible-OpenShift-Provisioning/
https://ibm.github.io/Ansible-OpenShift-Provisioning/
https://ibm.github.io/Ansible-OpenShift-Provisioning/

5. In the host_vars Ansible subdirectory,
/home/admin1/ocpauto/Ansible-OpenShift-Provisioning/inventories/default/host_va
rs, we create a file named rdbkkvm4.yaml from the KVMhostname1-here.yaml.template.
The contents of rdbkkvm4.yaml are shown in Example 5-37.

Example 5-37 Our Ansible inventory YAML file

Section 1 - KVM Host
networking:
 hostname: rdbkkvm4
 ip: 9.76.61.184
 subnetmask: 255.255.255.0
 gateway: 9.76.61.1
 nameserver1: 9.0.0.2
nameserver2:
 device1: bond3
device2:

storage:
 pool_path: /var/lib/libvirt/images

##
Variables below this point only need to be filled out if
env.z.lpar1.create is True. Meaning, if the LPARs you will
be using as KVM host(s) already exist and have RHEL #
installed, the variables below are not required.
##

Section 2 - CPC & HMC
cpc_name: #X
hmc:
 host: #X
 auth:
 user: #X
 pass: #X

Section 3 - LPAR
lpar:
 name: #X
 description: #X
 access:
 user: #X
 pass: #X
 root_pass: #X

Section 4 - IFL & Memory
 ifl:
 count: #X
 initial_memory: #X
 max_memory: #X
 initial_weight: #X
 min_weight: #X
 max_weight: #X

Section 5 - Networking
 networking:
86 Red Hat OpenShift on IBM Z and LinuxONE

 subnet_cidr: #X
 nic:
 card1:
 name: #X
 adapter: #X
 port: #X
 dev_num: #X
card2:
name:
adapter:
port:
dev_num:

Section 6 - Storage
 storage_group_1:
 name: #X
 type: fcp
 storage_wwpn:
 - #X
 - #X
 - #X
 - #X
 dev_num: #X
 lun_name: #X
storage_group_2:
auto_config: True
name:
type: fcp
storage_wwpn:
-
-
-
-
dev_num:
lun_name:

6. The other file we need to tailor is all.yaml in the group_vars subdirectory of our Ansible
code. We remove our “Pull Secret” content and replace it with “<<your pull secret here>>”
for readability. We did a similar change for the Red Hat credentials. You will need to supply
your own Red Hat credentials. Our file is shown in Example 5-38.

Example 5-38 Our all.yaml file

#
Section 1 - Ansible Controller
env:
 controller:
 sudo_pass: its0

Section 2 - LPAR(s)
 z:
 high_availability: False
 ip_forward: True
 lpar1:
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 87

 create: False
 hostname: rdbkkvm4
 ip: 9.76.61.184
 user: lnxadmin
 pass: lnx4rdbk
 lpar2:
 create: False
hostname:
ip:
user:
pass:
 lpar3:
 create: False
hostname:
ip:
user:
pass:

Section 3 - File Server
 file_server:
 ip: 9.76.61.95
 user: admin1
 pass: its0
 protocol: http
 iso_mount_dir: /home/admin1/RHEL/8.7
 cfgs_dir: ocp-config

Section 4 - Red Hat
 redhat:
 username: <<your Red Hat credentials>>>
 password: <<<your Red Hat credentials>>>
 # Make sure to enclose pull_secret in 'single quotes'
 pull_secret: '<<<your pull secret here>>>'

Section 5 - Bastion
 bastion:
 create: True
 vm_name: bastion
 resources:
 disk_size: 30
 ram: 8192
 swap: 4096
 vcpu: 4
 networking:
 ip: 9.76.61.82
 hostname: bastion
 base_domain: ocp1.ibm.com
 subnetmask: 255.255.255.0
 gateway: 9.76.61.1
 nameserver1: 9.76.61.94
nameserver2:
 forwarder: 9.76.61.94
 interface: enc1
 access:
 user: admin1
88 Red Hat OpenShift on IBM Z and LinuxONE

 pass: its0
 root_pass: its0
 options:
 dns: False
 loadbalancer:
 on_bastion: True
 public_ip: 9.76.61.82
 private_ip: 9.76.71.82

Section 6 - Cluster Networking
 cluster:
 networking:
 metadata_name: ocp1
 base_domain: ibm.com
 subnetmask: 255.255.255.0
 gateway: 9.76.61.1
 nameserver1: 9.76.61.94
nameserver2:
 forwarder: 9.0.0.2

Section 7 - Bootstrap Node
 nodes:
 bootstrap:
 disk_size: 120
 ram: 16384
 vcpu: 4
 vm_name: bootstrap
 ip: 9.76.61.84
 hostname: bootstrap

Section 8 - Control Nodes
 control:
 disk_size: 120
 ram: 16384
 vcpu: 4
 vm_name:
 - cp1
 - cp2
 - cp3
 ip:
 - 9.76.61.85
 - 9.76.61.86
 - 9.76.61.87
 hostname:
 - cp1
 - cp2
 - cp3

Section 9 - Compute Nodes
 compute:
 disk_size: 120
 ram: 16384
 vcpu: 4
 vm_name:
 - aw1
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 89

 - aw2
 - aw3
 ip:
 - 9.76.61.91
 - 9.76.61.92
 - 9.76.61.93
 hostname:
 - aw1
 - aw2
 - aw3

Section 10 - Infra Nodes
 infra:
 disk_size: 120
 ram: 16384
 vcpu: 4
 vm_name:
 - iw1
 - iw2
 - iw3
 ip:
 - 9.76.61.88
 - 9.76.61.89
 - 9.76.61.90
 hostname:
 - iw1
 - iw2
 - iw3

###
########
All variables below this point do not need to be changed for a default
installation #
###
########

Section 11 - (Optional) Packages
 pkgs:
 galaxy: [ibm.ibm_zhmc, community.general, community.crypto, ansible.posix,
community.libvirt]
 controller: [openssh, expect]
 kvm: [libguestfs, libvirt-client, libvirt-daemon-config-network,
libvirt-daemon-kvm, cockpit-machines, virt-top, qemu-kvm, python3-lxml,
cockpit, lvm2]
 bastion: [HAProxy, httpd, bind, bind-utils, expect, firewalld, mod_ssl,
python3-policycoreutils, rsync]
 hypershift: [make, jq, git, virt-install]

Section 12 - OpenShift Settings
 openshift:
 version: 4.12.0
 install_config:
 api_version: v1
 compute:
 architecture: s390x
90 Red Hat OpenShift on IBM Z and LinuxONE

 hyperthreading: Enabled
 control:
 architecture: s390x
 hyperthreading: Enabled
 cluster_network:
 cidr: 10.128.0.0/14
 host_prefix: 23
 type: OVNKubernetes
 service_network: 172.30.0.0/16
 fips: 'false'

Section 13 - (Optional) Proxy
proxy:
http:
https:
no:

Section 14 - (Optional) Misc
 language: en_US.UTF-8
 timezone: America/New_York
 keyboard: us
 root_access: false
 ansible_key_name: ansible-ocpz
 ocp_ssh_key_comment: OpenShift key
 bridge_name: bond4
 network_mode:

#jumphost if network mode is NAT
 jumphost:
 name:
 ip:
 user:
 pass:
 path_to_keypair:

Section 15 - RHCOS (CoreOS)

rhcos_download_url with '/' at the end !
rhcos_download_url:
"https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.12/4.
12.3/"

For rhcos_os_variant use the OS string as defined in 'osinfo-query os -f
short-id'
rhcos_os_variant: rhel8.6

RHCOS live image filenames
rhcos_live_kernel: "rhcos-4.12.3-s390x-live-kernel-s390x"
rhcos_live_initrd: "rhcos-4.12.3-s390x-live-initramfs.s390x.img"
rhcos_live_rootfs: "rhcos-4.12.3-s390x-live-rootfs.s390x.img"

Section 16 - Hypershift

hypershift:
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 91

 kvm_host:
 kvm_host_user:
 bastion_hypershift:
 bastion_hypershift_user:
 mgmt_cluster_nameserver:

 go_version: "1.19.5" # Change this if you want to install any other version
of go
 oc_url:

 #Hosted Control Plane Parameters

 hcp:
 clusters_namespace:
 hosted_cluster_name:
 basedomain:
 pull_secret_file: /root/ansible_workdir/auth_file
 ocp_release:
 machine_cidr:
 arch:
 # Make sure to enclose pull_secret in 'single quotes'
 pull_secret:

 # AgentServiceConfig Parameters

 asc:
 url_for_ocp_release_file:
 db_volume_size:
 fs_volume_size:
 ocp_version:
 iso_url:
 root_fs_url:
 mce_namespace: "multicluster-engine" # This is the Recommended Namespace
for Multicluster Engine operator

path_to_key_pair: /home/admin1/.ssh/ansible-ocpz.pub
92 Red Hat OpenShift on IBM Z and LinuxONE

7. Next, we ran each of the playbooks by using the commands shown in Example 5-39. The
output of each command has been omitted due to its length for readability.

Example 5-39 Commands to run playbooks

[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/0_setup.yaml
[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/3_setup_kvm_host.yaml
[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/4_create_bastion.yaml
[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/5_setup_bastion.yaml
[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/6_create_nodes.yaml

[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/7_ocp_verification.yaml

After deploying the cluster we did notice that the playbooks did not remove the bootstrap node
from our load balancer configuration. This is a recommended step in the Red Hat OpenShift
product documentation.

5.4.8 Validating the deployment

There are a number of ways to validate the initial deployment. One way is to simply log in
through the command line interface (CLI) and list the cluster operators from the CLI with the
command oc get co (Example 5-40 on page 94). A second way is through the WebUI.
Figure 5-5 shows the Web UI. You can also use the list playbook as a validation step
(Example 5-41 on page 95).

Figure 5-5 Red Hat OpenShift Web UI Overview
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 93

Example 5-40 List cluster operators from the CLI

[root@bastion ocpinst]# oc get co
NAME VERSION AVAILABLE PROGRESSING
DEGRADED SINCE MESSAGE
authentication 4.12.0 True False
False 158m
baremetal 4.12.0 True False
False 4h49m
cloud-controller-manager 4.12.0 True False
False 4h53m
cloud-credential 4.12.0 True False
False 4h52m
cluster-autoscaler 4.12.0 True False
False 4h49m
config-operator 4.12.0 True False
False 4h50m
console 4.12.0 True False
False 164m
control-plane-machine-set 4.12.0 True False
False 4h49m
csi-snapshot-controller 4.12.0 True False
False 4h49m
dns 4.12.0 True False
False 4h49m
etcd 4.12.0 True False
False 4h47m
image-registry 4.12.0 True False
False 4h39m
ingress 4.12.0 True False
False 167m
insights 4.12.0 True False
False 4h43m
kube-apiserver 4.12.0 True False
False 4h44m
kube-controller-manager 4.12.0 True False
False 4h47m
kube-scheduler 4.12.0 True False
False 4h46m
kube-storage-version-migrator 4.12.0 True False
False 4h50m
machine-api 4.12.0 True False
False 4h49m
machine-approver 4.12.0 True False
False 4h50m
machine-config 4.12.0 True False
False 4h48m
marketplace 4.12.0 True False
False 4h49m
monitoring 4.12.0 True False
False 165m
network 4.12.0 True False
False 4h49m
node-tuning 4.12.0 True False
False 166m
94 Red Hat OpenShift on IBM Z and LinuxONE

openshift-apiserver 4.12.0 True False
False 4h42m
openshift-controller-manager 4.12.0 True False
False 4h45m
openshift-samples 4.12.0 True False
False 4h41m
operator-lifecycle-manager 4.12.0 True False
False 4h49m
operator-lifecycle-manager-catalog 4.12.0 True False
False 4h49m
operator-lifecycle-manager-packageserver 4.12.0 True False
False 4h42m
service-ca 4.12.0 True False
False 4h50m
storage 4.12.0 True False
False 4h50m

Example 5-41 List playbook

[root@bastion ocpinst]#
[admin1@controller Ansible-OpenShift-Provisioning]$ ansible-playbook
playbooks/7_ocp_verification.yaml

5.5 KVM three-LPAR cluster implementation

For the three-LPAR installation we did not use Ansible to provide a different perspective in
case Ansible did not fit your needs. You could still use Ansible whether it is a one or three
LPAR install if you wish. For this installation we used shell scripts for most of the necessary
commands.

5.5.1 Architecture

The goal of the three LPAR approach is not just to potentially have access to more capacity
but to provide resiliency where one of the three LPARs can be taken out of service for
maintenance and the Red Hat OpenShift cluster is still fully functional.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 95

In Figure 5-6 you can see our DNS also serves as a DHCP server in this deployment. Our
three load balancers use keepalived and a floating IP address to provide a highly available
load balancing layer. In this configuration, we did not use Ansible so we could better illustrate
all of the steps that would be performed if you chose not to use Ansible. The Ansible playbook
can deploy a three-LPAR configuration as we discuss in this section.

Figure 5-6 Our three LPAR architecture
96 Red Hat OpenShift on IBM Z and LinuxONE

The three-LPAR cluster resources plan is shown in Table 5-8 with initial resource allocations.
These do not include any resources requirements for enabling additional Red Hat OpenShift
features or actual application workload.

Table 5-8 Resource planning by function

Table 5-9 RoCE adapter and port to bond mappings

Function KVM Domain Hypervisor Virtual
CPU

Initial Domain
Memory in GB

Max QCOW2 Size
GB

Bastion bastion rdbkkvm1 4 4096 20

DNS/DHCP dnsdhcp rdbkkvm1 4 4096 20

Load Balancer lb1 rdbkkvm1 4 4096 20

Load Balancer lb2 rdbkkvm2 4 4096 20

Load Balancer lb3 rdbkkvm3 4 4096 20

Bootstrap bootstrap rdbkkvm1 4 16384 120

Control Plane cp1 rdbkkvm1 4 16384 120

Control Plane cp2 rdbkkvm2 4 16384 120

Control Plane cp3 rdbkkvm3 4 16384 120

Application
Worker

aw1 rdbkkvm1 8 16384 120

Application
Worker

aw2 rdbkkvm2 8 16384 120

Application
Worker

aw3 rdbkkvm3 8 16384 120

Infra Worker iw1 rdbkkvm1 6 16384 120

Infra Worker iw2 rdbkkvm2 6 16384 120

Infra Worker iw3 rdbkkvm3 6 16384 120

RoCE
PCHID

RoCE Port LPAR 1 Net-Dev LPAR 2 Net-Dev LPAR 3 Net-Dev Bond

11c 0 ens12613 ens12614 ens12615 bond1

11c 1 ens12869 ens12870 ens12871 bond2

1b0 0 ens13125 ens13126 ens13127 bond3

1b0 1 ens13381 ens13382 ens13383 bond4

158 0 ens13637 ens13638 ens13639 bond1

158 1 ens13893 ens13894 ens13895 bond2

1fc 0 ens14149 ens14150 ens14151 bond3

1fc 1 ens14405 ens14406 ens14407 bond4
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 97

Table 5-10 Guest domain, bond, MAC, and IP address mappings

Table 5-11 Forward and Reverse DNS

KVM
Domain

Host Name
(Short)

Bond Mac IP Address

bastion bastion bond1 Auto-Generate 9.76.61.23x

dnsdhcp dnsdhcp bond1 Auto-Generate 9.76.61.141

lb1 lb1 bond1 Auto-Generate 9.76.61.145

lb2 lb1 bond1 Auto-Generate 9.76.61.142

lb3 lb3 bond2 Auto-Generate 9.76.61.143

bootstrap bootstrap bond1 52:54:23:11:45:01 9.76.61.236

cp1 cp1 bond1 52:54:23:11:45:02 9.76.61.237

cp2 cp2 bond1 52:54:23:11:45:03 9.76.61.238

cp3 cp3 bond1 52:54:23:11:45:04 9.76.61.239

aw1 aw1 bond1 52:54:23:11:45:05 9.76.61.243

aw2 aw2 bond1 52:54:23:11:45:06 9.76.61.244

aw3 aw3 bond1 52:54:23:11:45:07 9.76.61.245

iw1 iw1 bond1 52:54:23:11:45:0b 9.76.61.240

iw2 iw2 bond1 52:54:23:11:45:0c 9.76.61.241

iw3 iw3 bond1 52:54:23:11:45:0d 9.76.61.242

Host name Domain IP Address

lb0 ocp3.ibm.com 9.76.61.230

lb1 ocp3.ibm.com 9.76.61.231

lb2 ocp3.ibm.com 9.76.61.232

lb3 ocp3.ibm.com 9.76.61.233

bastion ocp3.ibm.com 9.76.61.234

bootstrap ocp3.ibm.com 9.76.61.236

cp1 ocp3.ibm.com 9.76.61.237

cp2 ocp3.ibm.com 9.76.61.238

cp3 ocp3.ibm.com 9.76.61.239

aw1 ocp3.ibm.com 9.76.61.243

aw2 ocp3.ibm.com 9.76.61.244

aw3 ocp3.ibm.com 9.76.61.245

iw1 ocp3.ibm.com 9.76.61.240
98 Red Hat OpenShift on IBM Z and LinuxONE

5.5.2 Hypervisor preparation

There are only a few steps we needed to take at the hypervisor level. Enable PAVs, obtain a
copy of the RHEL 9 ISO image, and setup network bonds on your RoCE adapter.

Enabling the PAVs persistently can be performed with a single chzdev command on each of
our three LPARs as shown in Example 5-42.

Example 5-42 PAV alias activation

[root@rdbkkvm1 ~]# chzdev -e dasd-eckd 0.0.90f0-0.0.90ff
ECKD DASD 0.0.90f0 configured
ECKD DASD 0.0.90f1 configured
ECKD DASD 0.0.90f2 configured
ECKD DASD 0.0.90f3 configured
ECKD DASD 0.0.90f4 configured
ECKD DASD 0.0.90f5 configured
ECKD DASD 0.0.90f6 configured
ECKD DASD 0.0.90f7 configured
ECKD DASD 0.0.90f8 configured
ECKD DASD 0.0.90f9 configured
ECKD DASD 0.0.90fa configured
ECKD DASD 0.0.90fb configured
ECKD DASD 0.0.90fc configured
ECKD DASD 0.0.90fd configured
ECKD DASD 0.0.90fe configured
ECKD DASD 0.0.90ff configured

iw2 ocp3.ibm.com 9.76.61.241

iw3 ocp3.ibm.com 9.76.61.242

api ocp3.ibm.com 9.76.61.230

api-int ocp3.ibm.com 9.76.61.230

apps ocp3.ibm.com 9.76.61.230

*.apps ocp3.ibm.com 9.76.61.230

dnsdhcp ocp3.ibm.com 9.76.61.249

Host name Domain IP Address
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 99

The lsdasd command will indicate which DASD devices are alias, as shown on
Example 5-43.

Example 5-43 lsdasd with alias devices activated

[root@rdbkkvm1 ~]# lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
===
=
0.0.90f0 alias ECKD
0.0.90f1 alias ECKD
0.0.90f2 alias ECKD
0.0.90f3 alias ECKD
0.0.90f4 alias ECKD
0.0.90f5 alias ECKD
0.0.90f6 alias ECKD
0.0.90f7 alias ECKD
0.0.90f8 alias ECKD
0.0.90f9 alias ECKD
0.0.90fa alias ECKD
0.0.90fb alias ECKD
0.0.90fc alias ECKD
0.0.90fd alias ECKD
0.0.90fe alias ECKD
0.0.90ff alias ECKD
0.0.90dd active dasda 94:0 ECKD (ESE) 4096 313031MB 80136000
0.0.90ed active dasdb 94:4 ECKD (ESE) 4096 313031MB 80136000

To create network bonds of pairs of RoCE adapters on a LinuxONE system, we developed a
small script. This script configures the bonds with ports from different RoCE cards, ensuring
that they connect to separate network switches. Additionally, the script sets the Maximum
Transmission Unit (MTU) size on the RoCE cards, optimizing network performance.
Neglecting to set the MTU size can lead to significant performance degradation, potentially
reducing it by nearly half. A sample of our script is shown in Example 5-44.

Example 5-44 Network Manager CLI (nmcli) bonds

#/bin/bash

nmcli conn
nmcli dev

nmcli conn del bond1
nmcli conn del bond1-ens12613
nmcli conn del bond1-ens13637

nmcli connection add type bond con-name bond1 ifname bond1 bond.options
"mode=active-backup,fail_over_mac=1"
nmcli connection modify bond1 ipv6.method "disabled"
nmcli connection modify bond1 ipv4.method "disabled"
nmcli connection add type ethernet slave-type bond con-name bond1-ens12613
ifname ens12613 master bond1
100 Red Hat OpenShift on IBM Z and LinuxONE

nmcli connection add type ethernet slave-type bond con-name bond1-ens13637
ifname ens13637 master bond1
nmcli connection modify bond1 connection.autoconnect-slaves 1
nmcli connection modify bond1-eno1 802-3-ethernet.mtu 8992
nmcli connection modify bond1-eno9 802-3-ethernet.mtu 8992
nmcli connection modify bond1 802-3-ethernet.mtu 8992
nmcli connection down bond1
nmcli connection up bond1

nmcli conn del bond2
nmcli conn del bond2-ens12869
nmcli conn del bond2-ens13869

nmcli connection add type bond con-name bond2 ifname bond2 bond.options
"mode=active-backup,fail_over_mac=1"
nmcli connection modify bond2 ipv6.method "disabled"
nmcli connection modify bond2 ipv4.method "disabled"
nmcli connection add type ethernet slave-type bond con-name bond2-ens12869
ifname ens12869 master bond2
nmcli connection add type ethernet slave-type bond con-name bond2-ens13869
ifname ens13869 master bond2
nmcli connection modify bond2 connection.autoconnect-slaves 1
nmcli connection modify bond2-ens12869 802-3-ethernet.mtu 8992
nmcli connection modify bond2-ens13869 802-3-ethernet.mtu 8992
nmcli connection modify bond2 802-3-ethernet.mtu 8992
nmcli connection down bond2
nmcli connection up bond2

nmcli conn del bond3
nmcli conn del bond3-ens13125
nmcli conn del bond3-ens14149

nmcli connection add type bond con-name bond3 ifname bond3 bond.options
"mode=active-backup,fail_over_mac=1"
nmcli connection modify bond3 ipv6.method "disabled"
nmcli connection modify bond3 ipv4.method "disabled"
nmcli connection add type ethernet slave-type bond con-name bond3-ens13125
ifname ens13125 master bond3
nmcli connection add type ethernet slave-type bond con-name bond3-ens14149
ifname eno14149 master bond3
nmcli connection modify bond3 connection.autoconnect-slaves 1
nmcli connection modify bond3-ens13125 802-3-ethernet.mtu 8992
nmcli connection modify bond3-ens14149 802-3-ethernet.mtu 8992
nmcli connection modify bond3 802-3-ethernet.mtu 8992
nmcli connection down bond3
nmcli connection up bond3

nmcli conn del bond4
nmcli conn del bond4-ens13381
nmcli conn del bond4-ens14405
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 101

nmcli connection add type bond con-name bond4 ifname bond4 bond.options
"mode=active-backup,fail_over_mac=1"
nmcli connection modify bond3 ipv6.method "disabled"
nmcli connection modify bond3 ipv4.method "disabled"
nmcli connection add type ethernet slave-type bond con-name bond4-ens13381
ifname ens13381 master bond4
nmcli connection add type ethernet slave-type bond con-name bond4-ens14405
ifname eno14405 master bond4
nmcli connection modify bond4 connection.autoconnect-slaves 1
nmcli connection modify bond4-ens13381 802-3-ethernet.mtu 8992
nmcli connection modify bond4-ens14405 802-3-ethernet.mtu 8992
nmcli connection modify bond4 802-3-ethernet.mtu 8992
nmcli connection down bond4
nmcli connection up bond4

nmcli conn
nmcli dev

ip l
ip a

We obtained a copy of the RHEL 9 ISO by a transfer through SFTP to the
/var/lib/libvirt/images directory.
102 Red Hat OpenShift on IBM Z and LinuxONE

5.5.3 DNS server configuration

DNS is requirement to deploy and use Red Hat OpenShift. In production environment, usually
it will be the enterprise DNS servers. In our lab environment, we configured named for our DNS
server. Our example DNS configuration consists of the following three files:

� Example 5-45

� Example 5-46 on page 104

� Example 5-47 on page 105

Example 5-45 File: /var/named/named.61.76.9.in-addr.arpa.zone

$TTL 900
@ IN SOA dnsdhcp.ocp3.ibm.com. admin.ocp3.ibm.com. (
 2022020202 ; serial
 3600 ; refresh
 1800 ; retry
 604800 ; expire
 86400 ; negative cache ttl
)

; NameServer

@ IN NS dnsdhcp.ocp3.ibm.com.

;reverse for name server

230 IN PTR lb0.ocp3.ibm.com.
231 IN PTR lb1.ocp3.ibm.com.
232 IN PTR lb2.ocp3.ibm.com.
233 IN PTR lb3.ocp3.ibm.com.

234 IN PTR bastion.ocp3.ibm.com.
236 IN PTR bootstrap.ocp3.ibm.com.
237 IN PTR cp1.ocp3.ibm.com.
238 IN PTR cp2.ocp3.ibm.com.
239 IN PTR cp3.ocp3.ibm.com.
243 IN PTR aw1.ocp3.ibm.com.
244 IN PTR aw2.ocp3.ibm.com.
245 IN PTR aw3.ocp3.ibm.com.
240 IN PTR iw1.ocp3.ibm.com.
241 IN PTR iw2.ocp3.ibm.com.
242 IN PTR iw3.ocp3.ibm.com.
235 IN PTR nfs.ocp3.ibm.com.
249 IN PTR dnsdhcp.ocp3.ibm.com.
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 103

Example 5-46 File: /var/named/named.ocp3.ibm.com

$TTL 3H
;base domain name
$ORIGIN ocp3.ibm.com.

@ IN SOA @ ocp3.ibm.com. (
 2022020202 ; serial
 1D ;refresh
 1H ;retry
 1W ;expire
 3H ;minimum
)
;Names servers for this domain
 IN NS dnsdhcp.ocp3.ibm.com.
;Mail servers
; none
;A Records
lb0 IN A 9.76.61.230
lb1 IN A 9.76.61.231
lb2 IN A 9.76.61.232
lb3 IN A 9.76.61.233
bastion IN A 9.76.61.234
bootstrap IN A 9.76.61.236
cp1 IN A 9.76.61.237
cp2 IN A 9.76.61.238
cp3 IN A 9.76.61.239
aw1 IN A 9.76.61.243
aw2 IN A 9.76.61.244
aw3 IN A 9.76.61.245
iw1 IN A 9.76.61.240
iw2 IN A 9.76.61.241
iw3 IN A 9.76.61.242
nfs IN A 9.76.61.235
api IN A 9.76.61.230
api-int IN A 9.76.61.230
apps IN A 9.76.61.230
*.apps IN A 9.76.61.230
dnsdhcp IN A 9.76.61.249
104 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-47 File: /etc/named.conf

acl internal_nets { 9.76.61/24; };

options {
 listen-on port 53 { any; };
 listen-on-v6 port 53 { ::1; };
 listen-on-v6 port 53 { none; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 secroots-file "/var/named/data/named.secroots";
 recursing-file "/var/named/data/named.recursing";
 allow-query { localhost; internal_nets; };
 forwarders { 9.0.0.2; };
 allow-recursion { localhost; internal_nets; };
 allow-query-cache { localhost; internal_nets; };

 recursion yes;
 dnssec-validation no;

 managed-keys-directory "/var/named/dynamic";
 geoip-directory "/usr/share/GeoIP";
 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";

 querylog yes;
 allow-transfer { none; };

 include "/etc/crypto-policies/back-ends/bind.config";

};

logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

zone "ocp3.ibm.com" {
 type master;
 file "/var/named/named.ocp3.ibm.com";
 allow-query { any; };
 allow-transfer { none; };
 allow-update { none; };
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 105

};

zone "61.76.9.in-addr.arpa" {
 type master;
 file "/var/named/named.61.76.9.in-addr.arpa.zone";
 allow-query {any;};
 allow-transfer {none;};
 allow-update {none;};
};

5.5.4 DHCP server configuration

DHCP deployments are valuable for a number of reasons. It allows you to centrally set and
change all the IP address, MTU sizes, and DNS servers utilized by each client. In our
examples, in addition to setting the IP address, we set the MTU and DNS servers that were
utilized. This is very handy if you later want to switch from your own DNS server to a
enterprise DNS. Example 5-48 provides and example of our configuration file to do this.

Example 5-48 File: /etc/dhcp/dhcpd.conf

#
DHCP Server Configuration file.
see /usr/share/doc/dhcp-server/dhcpd.conf.example
see dhcpd.conf(5) man page
#

option domain-name "ocp3.ibm.com";
option domain-name-servers 9.76.61.249;

default-lease-time 86400;
authoritative;

Host definitions

host bootstrap.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:01;
 fixed-address 9.76.61.236;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host cp1.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:02;
 fixed-address 9.76.61.237;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host cp2.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:03;
 fixed-address 9.76.61.238;
106 Red Hat OpenShift on IBM Z and LinuxONE

 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host cp3.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:04;
 fixed-address 9.76.61.239;
 option domain-name-servers 9.76.61.249 ;
 option interface-mtu 8992;
}

host aw1.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:05;
 fixed-address 9.76.61.243;
 option domain-name-servers 9.76.61.249 ;
 option interface-mtu 8992;
}

host aw2.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:06;
 fixed-address 9.76.61.244;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host aw3.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:07;
 fixed-address 9.76.61.245;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host iw1.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:0b;
 fixed-address 9.76.61.240;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host iw2.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:0c;
 fixed-address 9.76.61.241;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

host iw3.ocp3.ibm.com {
 hardware ethernet 52:54:23:11:45:0d;
 fixed-address 9.76.61.242;
 option domain-name-servers 9.76.61.249;
 option interface-mtu 8992;
}

subnet 9.76.61.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 107

 option domain-name-servers 9.76.61.249;
 option routers 9.76.61.1;
 option broadcast-address 9.76.61.255;
 max-lease-time 172800;

}

5.5.5 Highly available load balancer configuration

For the load balancer service, in this scenario, we utilized thee HAProxy servers. Keepalived
is used to transparently manage a floating IP address to an active HAProxy. The
haproxy.conf configuration is common on all three load balancer virtual servers. The
Keepalived configuration is unique on each of the three virtual servers

Port 1936 was enabled for HAProxy statistics monitoring. Our sample link looked as follows:

http://haproxy_ip_address:1936/stats

Example 5-49 contains a sample configuration in /etc/haproxy/haproxy.cfg

Example 5-49 Sample configuration in /etc/haproxy/haproxy.cfg

#---
global
 #
 log 127.0.0.1 local2

 chroot /var/lib/haproxy
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user HAProxy
 group HAProxy
 daemon

 # turn on stats unix socket
 stats socket /var/lib/haproxy/stats

 # utilize system-wide crypto-policies
 ssl-default-bind-ciphers PROFILE=SYSTEM
 ssl-default-server-ciphers PROFILE=SYSTEM

#---
defaults
 mode http
 log global
 option dontlognull
 option http-server-close
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 1m
 timeout server 1m
 timeout http-keep-alive 10s
108 Red Hat OpenShift on IBM Z and LinuxONE

 timeout check 10s
 maxconn 3000

frontend stats
 bind *:1936
 mode http
 log global
 maxconn 10
 stats enable
 stats hide-version
 stats refresh 30s
 stats show-node
 stats show-desc Stats for ocp3 cluster
 stats auth admin:ocp3
 stats uri /stats

listen api-server-6443
 bind *:6443
 mode tcp
 server bootstrap bootstrap.ocp3.ibm.com:6443 check inter 1s backup
 server cp1 cp1.ocp3.ibm.com:6443 check inter 1s
 server cp2 cp2.ocp3.ibm.com:6443 check inter 1s
 server cp3 cp3.ocp3.ibm.com:6443 check inter 1s

listen machine-config-server-22623
 bind *:22623
 mode tcp
 server bootstrap bootstrap.ocp3.ibm.com:22623 check inter 1s backup
 server cp1 cp1.ocp3.ibm.com:22623 check inter 1s
 server cp2 cp2.ocp3.ibm.com:22623 check inter 1s
 server cp3 cp3.ocp3.ibm.com:22623 check inter 1s

listen ingress-router-80
 bind *:80
 mode tcp
 balance source
 server aw1 aw1.ocp3.ibm.com:80 check inter 1s
 server aw2 aw2.ocp3.ibm.com:80 check inter 1s
 server aw3 aw3.ocp3.ibm.com:80 check inter 1s
 server iw1 iw1.ocp3.ibm.com:80 check inter 1s
 server iw2 iw2.ocp3.ibm.com:80 check inter 1s
 server iw3 iw3.ocp3.ibm.com:80 check inter 1s

listen ingress-router-443
 bind *:443
 mode tcp
 balance source
 server aw1 aw1.ocp3.ibm.com:443 check inter 1s
 server aw2 aw2.ocp3.ibm.com:443 check inter 1s
 server aw3 aw3.ocp3.ibm.com:443 check inter 1s
 server iw1 iw1.ocp3.ibm.com:443 check inter 1s
 server iw2 iw2.ocp3.ibm.com:443 check inter 1s
 server iw3 iw3.ocp3.ibm.com:443 check inter 1s

#---
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 109

Our example Keepalived configuration on lb1 file /etc/keepalived/keepalived.conf is
shown in Example 5-50.

Example 5-50 Sample keepalived configuration file for load balancer 1

global_defs {
 notification_email {
 admin1@ibm.com
 }

 notification_email_from admin1@ibm.com
 smtp_server mail.ibm.com
 smtp_connect_timeout 30
 router_id ocp3ibm
 vrrp_skip_check_adv_addr
! vrrp_strict
! vrrp_garp_interval 0
! vrrp_gna_interval 0

}

vrrp_instance HAProxy-vip {
 state MASTER
 priority 100
 interface enc9 # Network card
 virtual_router_id 60
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1111
 }

 unicast_src_ip 9.76.61.231 # The IP address of this machine
 unicast_peer {
 9.76.61.232 # lb2
 9.76.61.233 # lb3
 }

 virtual_ipaddress {
 9.76.61.230/23 # The VIP address
 }

}

110 Red Hat OpenShift on IBM Z and LinuxONE

Our example Keepalived configuration on lb2 file /etc/keepalived/keepalived.conf is
shown in Example 5-51.

Example 5-51 Sample Keepalived configuration file for load balancer 2

global_defs {
 notification_email {
 admin1@ibm.com
 }

 notification_email_from admin1@ibm.com
 smtp_server mail.ibm.com
 smtp_connect_timeout 30
 router_id ocp3ibm
 vrrp_skip_check_adv_addr
! vrrp_strict
! vrrp_garp_interval 0
! vrrp_gna_interval 0

}

vrrp_instance HAProxy-vip {
 state MASTER
 priority 100
 interface enc9 # Network card
 virtual_router_id 60
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1111
 }

 unicast_src_ip 9.76.61.232 # The IP address of this machine
 unicast_peer {
 9.76.61.231 # lb1
 9.76.61.233 # lb3
 }

 virtual_ipaddress {
 9.76.61.230/23 # The VIP address
 }

}

Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 111

Our example Keepalived configuration on lb3 file /etc/keepalived/keepalived.conf is
shown in Example 5-51 on page 111.

Example 5-52 Sample Keepalived configuration file for load balancer 3

global_defs {
 notification_email {
 admin1@ibm.com
 }

 notification_email_from admin1@ibm.com
 smtp_server mail.ibm.com
 smtp_connect_timeout 30
 router_id ocp3ibm
 vrrp_skip_check_adv_addr
! vrrp_strict
! vrrp_garp_interval 0
! vrrp_gna_interval 0

}

vrrp_instance HAProxy-vip {
 state MASTER
 priority 100
 interface enc9 # Network card
 virtual_router_id 60
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1111
 }

 unicast_src_ip 9.76.61.233 # The IP address of this machine
 unicast_peer {
 9.76.61.231 # lb1
 9.76.61.232 # lb2
 }

 virtual_ipaddress {
 9.76.61.230/23 # The VIP address
 }

}

112 Red Hat OpenShift on IBM Z and LinuxONE

5.5.6 Rapidly creating the guests that provide the support infrastructure

We can very quickly create the guests with supporting infrastructure by using virt-install
and Red Hat kickstart for a fully unattended installation. Each RHEL 9.1 server is installed
in an automated fashion. On our virtual machine, rdbkkvm1, we install the bastion, dnsdhcp,
load balancer 1(lb1), and NFS. On rdbkkvm2, we install lb2, and on rdbkkvm3 we install lb3.
The virt-install commands are slightly longer than they need to be as we incorporated
some of the best practices up front such as iothreads, caching, and multiple queues.

On rdbkkvm1, we issue the following virt-install commands, which could be placed in
single or multiple script files:

� For the guest domain bastion:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name bastion --memory 16384 --vcpus=4
--disk size=20,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cs
sid=0xfe,address.ssid=0,address.devno=0x0009,address.type=ccw --location
/var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
 --initrd-inject=/root/bastion.ks --extra-args "inst.ks=file:/bastion.ks"
--console pty,target_type=serial --autoconsole text

� For the guest domain dnsdhcp:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name dnsdhcp --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw,driver.queues=4
 --location /var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/dnsdhcp.ks --extra-args "inst.ks=file:
/dnsdhcp.ks" --console pty,target_type=serial --autoconsole text

� For the guest domain lb1:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name lb1 --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw,driver.queues=4 -
-location /var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/lb1.ks --extra-args "inst.ks=file:/lb1.ks"
 --console pty,target_type=serial --autoconsole text
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 113

� For the guest domain NFS:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name nfs --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw,driver.queues=4 -
-location /var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/nfs.ks --extra-args "inst.ks=file:/nfs.ks"
 --console pty,target_type=serial --autoconsole text

On rdbkkvm2, we issue the following virt-install commands, which could be placed in a
script file:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name lb2 --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw,driver.queues=4 --location
/var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/lb2.ks --extra-args "inst.ks=file:/lb2.ks" --console
pty,target_type=serial --autoconsole text

On rdbkkvm3, we issue the following virt-install commands, which could be placed in a
script file. For guest domain lb3:

virt-install --input keyboard,bus=virtio --input mouse,bus=virtio --graphics
vnc,listen=0.0.0.0 --video virtio --name lb3 --memory 16384 --vcpus=4
--iothreads=2 --disk
size=20,format=qcow2,cache=none,sparse=yes,driver.iothread=1 --network
network=default --network
type=direct,source=bond1,source_mode=bridge,address.cssid=0xfe,address.ssid=0,a
ddress.devno=0x0009,address.type=ccw,driver.queues=4 --location
/var/lib/libvirt/images/RHEL-9.1.0-20221027.3-s390x-dvd1.iso
--initrd-inject=/root/lb3.ks --extra-args "inst.ks=file:/lb3.ks" --console
pty,target_type=serial --autoconsole text
114 Red Hat OpenShift on IBM Z and LinuxONE

For each of the guest domains and virt-install commands there is a unique Kickstart file that
we used. They are mostly similar except for package content that is unique per the function of
the server. We do also use the full domain name as the hostname. We included the qualifier
that has the cluster name, ocp3. This can help add clarity when you are managing multiple
clusters.

Here is our Kickstart file for the bastion node, which is named bastion.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=bastion.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 115

Here is the Kickstart file for dnsdhcp, which is named dnsdhcp.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=dnsdhcp.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
bind
dhcp-server
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
116 Red Hat OpenShift on IBM Z and LinuxONE

Here is the Kickstart file for lb1, which is named lb1.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=lb1.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
haproxy
keepalived
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 117

Here is the Kickstart file for lb2, which is named lb2.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=lb1.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
haproxy
keepalived
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
118 Red Hat OpenShift on IBM Z and LinuxONE

Here is the Kickstart file for lb3, which is named lb3.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=lb3.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
haproxy
keepalived
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 119

Here is the Kickstart file for nfs, which is named nfs.ks:

authselect --enableshadow --passalgo=sha512
cdrom
text
firstboot --enable
ignoredisk --only-use=vda
keyboard --vckeymap=us --xlayouts='us'
lang en_US.UTF-8
Network information
firewall --enabled --ssh
network --device=enc1 --bootproto=dhcp --noipv6
network --device=enc9 --bootproto=static --noipv6 --noipv4
network --hostname=nfs.ocp3.ibm.com
rootpw --plaintext its0
System services
services --enabled="chronyd"
System timezone
timezone America/New_York
user --groups=wheel --name=admin1 --password=its0 --plaintext --gecos="admin1"
System bootloader configuration
bootloader --append="crashkernel=auto dfltcc=always transparent_hugepages=never
" --location=mbr --boot-drive=vda
#Partitioning
clearpart --all --initlabel --disklabel=gpt --drives=vda
part / --fstype="xfs" --ondisk=vda --grow
#Packages
%packages --ignoremissing --instLangs=en_US
@base
@core
nfs-utils
chrony
sysstat
tmux
iotop
cockpit
kexec-tools
%end
%addon com_redhat_kdump --enable --reserve-mb='auto'
%end
%post --log=/root/ks-post.log
ip addr
df -h
%end
eula --agreed
reboot
120 Red Hat OpenShift on IBM Z and LinuxONE

5.5.7 Creating the Red Hat OpenShift cluster

Creating the Red Hat OpenShift Cluster after the all the required resources are in place
involves obtaining the CLI and installation code for Red Hat OpenShift, creating the
install-config.yaml file and install-config directory, building the ignition files, creating the
CoreOS guests on the KVM hosts, and signing the certificate requests. Except for creating
the CoreOS guests, all steps are performed from the bastion host.

We place all of our artifacts in /root/ocp412 on our bastion host.

We start with a short script to obtain the Red Hat OpenShift CLI and installation code, shown
in Example 5-53.

Example 5-53 Example getTheCode.sh

#/bin/bash

wget
https://mirror.openshift.com/pub/openshift-v4/s390x/clients/ocp/stable/openshif
t-client-linux.tar.gz
wget
https://mirror.openshift.com/pub/openshift-v4/s390x/clients/ocp/stable/openshif
t-install-linux.tar.gz

tar -xzvf openshift-client-linux.tar.gz
tar -xzvf openshift-install-linux.tar.gz

An example of our install-config.yaml is provided in Example 5-54.

Example 5-54 Example install-config.yaml

apiVersion: v1
baseDomain: ibm.com
compute:
- hyperthreading: Enabled
 name: worker
 replicas: 0
 architecture: s390x
controlPlane:
 hyperthreading: Enabled
 name: master
 replicas: 3
 architecture: s390x
metadata:
 name: ocp3
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OVNKubernetes
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 121

fips: false
pullSecret: '<<<Your Pull Secret Here>>>'
sshKey: 'ssh-ed25519
AAAAC3NzaC1lZDI1NTE5AAAAIIj28PrpMZOkhsnoINl+UzaDv0DsHnqDRkr+sZZKVZ2U
root@bastion.ocp3.ibm.com'

We created a simple script called buildit.sh to combine the steps we need to execute. It is
shown in Example 5-55.

Example 5-55 Sample script

#/bin/bash

cd /root/ocp412
mkdir /root/ocp412/install-config
cp install-config.yaml /root/ocp412/install-config
./openshift-install create manifests --dir /root/ocp412/install-config
sed /master/s/true/false/ -i
/root/ocp412/install-config/manifests/cluster-scheduler-02-config.yml
./openshift-install create ignition-configs --dir /root/ocp412/install-config

Next, we create and run a script called sendit.sh (Example 5-56). This uploads the ignition
files to the respective KVM hosts. SSH keys were exchanged in advance.

Example 5-56 Example sendit.sh script

#/bin/bash

sftp root@192.168.122.1 <<DELIM
cd /var/lib/libvirt/images
lcd /root/ocp412/install-config
mput *ign
ls
DELIM

sftp root@9.76.61.186 <<DELIM
cd /var/lib/libvirt/images
lcd /root/ocp412/install-config
mput *ign
ls
DELIM

sftp root@9.76.61.182 <<DELIM
cd /var/lib/libvirt/images
lcd /root/ocp412/install-config
mput *ign
ls
DELIM
122 Red Hat OpenShift on IBM Z and LinuxONE

We created a simple two-line script to automate the necessary environment entries called
setupbashrc.sh and is shown in Example 5-57.

Example 5-57 Example setupBashrc.sh

#/bin/bash
echo "export KUBECONFIG=/root/ocp412/install-config/auth/kubeconfig" >>
~/.bashrc
echo "export PATH=$PATH:/root/ocp412" >> ~/.bashrc

At this point we need to create the Red Hat OpenShift CoreOS nodes from each of the KVM
hosts. Example 5-58 to Example 5-60 on page 127 show the scripts that are used.

Example 5-58 Example rebuild412.sh for hypervisor rdbkkvm1

#/bin/bash

cp /var/lib/libvirt/images/bootstrap.ign /
cp /var/lib/libvirt/images/worker.ign /
cp /var/lib/libvirt/images/master.ign /
chown qemu /*.ign

chmod 755 /*.ign
ausearch -c 'qemu-kvm' --raw | audit2allow -M my-qemukvm ; semodule -X 300 -i
my-qemukvm.pp
semanage fcontext -a -t virt_image_t '/worker.ign' ; restorecon -v
'/worker.ign'
semanage fcontext -a -t virt_image_t '/master.ign' ; restorecon -v
'/master.ign'
semanage fcontext -a -t virt_image_t '/bootstrap.ign' ; restorecon -v
'/bootstrap.ign'

virsh list

virsh destroy bootstrap
virsh destroy cp1
virsh destroy aw1
virsh destroy iw1

virsh list

virsh undefine bootstrap
virsh undefine cp1
virsh undefine aw1
virsh undefine iw1

virsh list --all

rm -rf /var/lib/libvirt/images/bootstrap.qcow2
rm -rf /var/lib/libvirt/images/cp1.qcow2
rm -rf /var/lib/libvirt/images/aw1.qcow2
rm -rf /var/lib/libvirt/images/iw1.qcow2

cd /var/lib/libvirt/images
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 123

qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 bootstrap.qcow2
100g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 cp1.qcow2 100g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 aw1.qcow2 100g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 iw1.qcow2 100g

virt-install --noautoconsole --connect qemu:///system --name bootstrap
--memory 16384 --vcpus 4 --disk /var/lib/libvirt/images/bootstrap.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:01
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/bootstrap.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name cp1
--memory 16384 --vcpus 4 --disk /var/lib/libvirt/images/cp1.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:02
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/master.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name aw1
--memory 16384 --vcpus 8 --disk /var/lib/libvirt/images/aw1.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:05
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name iw1
--memory 16384 --vcpus 6 --disk /var/lib/libvirt/images/iw1.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:0b
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"
124 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-59 Example rebuild412.sh for hypervisor rdbkkvm2

#/bin/bash

cp /var/lib/libvirt/images/bootstrap.ign /
cp /var/lib/libvirt/images/worker.ign /
cp /var/lib/libvirt/images/master.ign /
chown qemu /*.ign

chmod 755 /*.ign
#ausearch -c 'qemu-kvm' --raw | audit2allow -M my-qemukvm ; semodule -X 300 -i
my-qemukvm.pp

semanage fcontext -a -t virt_image_t '/worker.ign' ; restorecon -v
'/worker.ign'
semanage fcontext -a -t virt_image_t '/master.ign' ; restorecon -v
'/master.ign'
semanage fcontext -a -t virt_image_t '/bootstrap.ign' ; restorecon -v
'/bootstrap.ign'

virsh list

virsh destroy cp2
virsh destroy aw2
virsh destroy iw2

virsh list

virsh undefine cp2
virsh undefine aw2
virsh undefine iw2

virsh list --all

rm -rf /var/lib/libvirt/images/cp2.qcow2
rm -rf /var/lib/libvirt/images/aw2.qcow2
rm -rf /var/lib/libvirt/images/iw2.qcow2

cd /var/lib/libvirt/images

qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 cp2.qcow2 120g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 aw2.qcow2 120g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 iw2.qcow2 120g

virt-install --noautoconsole --connect qemu:///system --name cp2
--memory 16384 --vcpus 4 --disk /var/lib/libvirt/images/cp2.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:03
--osinfo rhel8.6 --qemu-commandline="-drive
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 125

if=none,id=ignition,format=raw,file=/master.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name aw2
--memory 16384 --vcpus 8 --disk /var/lib/libvirt/images/aw2.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:06
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name iw2
--memory 16384 --vcpus 6 --disk /var/lib/libvirt/images/iw2.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:0c
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"
126 Red Hat OpenShift on IBM Z and LinuxONE

Example 5-60 Example rebuild412.sh for hypervisor rdbkkvm3

#/bin/bash

cp /var/lib/libvirt/images/bootstrap.ign /
cp /var/lib/libvirt/images/worker.ign /
cp /var/lib/libvirt/images/master.ign /
chown qemu /*.ign

chmod 755 /*.ign

semanage fcontext -a -t virt_image_t '/worker.ign' ; restorecon -v
'/worker.ign'
semanage fcontext -a -t virt_image_t '/master.ign' ; restorecon -v
'/master.ign'
semanage fcontext -a -t virt_image_t '/bootstrap.ign' ; restorecon -v
'/bootstrap.ign'

virsh list

virsh destroy cp3
virsh destroy aw3
virsh destroy iw3

virsh list

virsh undefine cp3
virsh undefine aw3
virsh undefine iw3

virsh list --all

rm -rf /var/lib/libvirt/images/cp3.qcow2
rm -rf /var/lib/libvirt/images/aw3.qcow2
rm -rf /var/lib/libvirt/images/iw3.qcow2

cd /var/lib/libvirt/images

qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 cp3.qcow2 120g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 aw3.qcow2 120g
qemu-img create -f qcow2 -F qcow2 -b
/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2 iw3.qcow2 120g

virt-install --noautoconsole --connect qemu:///system --name cp3
--memory 16384 --vcpus 4 --disk /var/lib/libvirt/images/cp3.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:04
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/master.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 127

virt-install --noautoconsole --connect qemu:///system --name aw3
--memory 16384 --vcpus 8 --disk /var/lib/libvirt/images/aw3.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:07
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

virt-install --noautoconsole --connect qemu:///system --name iw3
--memory 16384 --vcpus 6 --disk /var/lib/libvirt/images/iw3.qcow2
--accelerate --import --network
type=direct,model=virtio,source_mode=bridge,source=bond1,mac=52:54:23:11:45:0d
--osinfo rhel8.6 --qemu-commandline="-drive
if=none,id=ignition,format=raw,file=/worker.ign,readonly=on -device
virtio-blk,serial=ignition,drive=ignition,devno=fe.0.1234"

Here is an example output from running rebuild412.sh on the first LPAR is shown in
Example 5-61. Run the script on all three LPARs as each of the scripts is unique.

Example 5-61 Example output from running rebuild412.sh on the first LPAR

[root@rdbkkvm1 ~]# ./rebuild412.sh
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i my-qemukvm.pp

Relabeled /worker.ign from unconfined_u:object_r:admin_home_t:s0 to
unconfined_u:object_r:virt_image_t:s0
Relabeled /master.ign from unconfined_u:object_r:admin_home_t:s0 to
unconfined_u:object_r:virt_image_t:s0
Relabeled /bootstrap.ign from unconfined_u:object_r:admin_home_t:s0 to
unconfined_u:object_r:virt_image_t:s0
 Id Name State

 1 nfs running
 2 lb1 running
 3 dnsdhcp running
 4 bastion running

error: failed to get domain 'bootstrap'

error: failed to get domain 'cp1'

error: failed to get domain 'aw1'

error: failed to get domain 'iw1'

 Id Name State

 1 nfs running
 2 lb1 running
 3 dnsdhcp running
 4 bastion running
128 Red Hat OpenShift on IBM Z and LinuxONE

error: failed to get domain 'bootstrap'

error: failed to get domain 'cp1'

error: failed to get domain 'aw1'

error: failed to get domain 'iw1'

 Id Name State

 1 nfs running
 2 lb1 running
 3 dnsdhcp running
 4 bastion running

Formatting 'bootstrap.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=128849018880
backing_file=/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2
backing_fmt=qcow2 lazy_refcounts=off refcount_bits=16
Formatting 'cp1.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=128849018880
backing_file=/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2
backing_fmt=qcow2 lazy_refcounts=off refcount_bits=16
Formatting 'aw1.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=128849018880
backing_file=/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2
backing_fmt=qcow2 lazy_refcounts=off refcount_bits=16
Formatting 'iw1.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=128849018880
backing_file=/var/lib/libvirt/images/rhcos-4.12.17-s390x-qemu.s390x.qcow2
backing_fmt=qcow2 lazy_refcounts=off refcount_bits=16

Starting install...
Creating domain...
| 0 B 00:00:00
Domain creation completed.

Starting install...
Creating domain...
| 0 B 00:00:00
Domain creation completed.

Starting install...
Creating domain...
| 0 B 00:00:00
Domain creation completed.

Starting install...
Creating domain...
| 0 B 00:00:00
Domain creation completed.
[root@rdbkkvm1 ~]# virsh list
 Id Name State

 1 nfs running
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 129

 2 lb1 running
 3 dnsdhcp running
 4 bastion running
 23 bootstrap running
 24 cp1 running
 25 aw1 running
 26 iw1 running

5.5.8 Completing the initial installation of Red Hat OpenShift 4.12

After creating CoreOS nodes, the initial installation of Red Hat OpenShift requires several
steps to be completed. Common issues stem from misconfigured DNS or Load Balancer
settings. To ensure proper configuration, follow these steps:

� Validate that the CoreOS nodes have correctly propagated their DNS records.

� Configure the DNS server to forward queries for the OpenShift cluster domain to the
appropriate IP addresses.

� Set up a Load Balancer to distribute traffic across the OpenShift cluster nodes.

� Verify that the Load Balancer is correctly routing traffic to the OpenShift cluster nodes.

� Check that the OpenShift cluster is accessible from the internet.

The first thing you need to do is wait for the bootstrap to complete, as shown in Example 5-62

Example 5-62 wait-for bootstrap-complete

[root@bastion ocp412]# ./openshift-install --dir /root/ocp412/install-config
wait-for bootstrap-complete --log-level=info
INFO Waiting up to 20m0s (until 9:44AM) for the Kubernetes API at
https://api.ocp3.ibm.com:6443...
INFO API v1.25.8+37a9a08 up
INFO Waiting up to 30m0s (until 9:54AM) for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
INFO Time elapsed: 0s
[root@bastion ocp412]#
130 Red Hat OpenShift on IBM Z and LinuxONE

When you see the INFO It is now safe to remove the bootstrap resources message,
remove the bootstrap entries from the Load Balancer configuration. At this point the bootstrap
node is no longer required. You may shut it down and remove it. Figure 5-7 shows the
HAProxy Statistics Report console. You can see our bootstrap entry shutting down and the
three control plane nodes are up and green. After you remove the bootstrap entry from the
configuration, the red lines for bootstrap will no longer show in the statistics display.

Figure 5-7 HAProxy statistics display first page

Figure 5-8 show the bottom half of the load balancer statistics display. For ports 80 and 443,
notice that only iw1 and iw2 are green. This is the expected initial state because by default
there are two replicas of the ingress router. They can exist on any of our compute nodes
during the initial installation configuration. It was just by chance that they were placed on iw1
and iw2. Use label infrastructure nodes and taints to ensure the ingress router only runs on
the infrastructure nodes.

Figure 5-8 HAProxy statistics display second page
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 131

You will want to verify you can run oc commands successfully but before executing the oc
whoami command. Ensure the KUBECONFIG environment variable is set and the PATH
environment variable includes a directory with the oc command. The expected results from
the oc whoami command should identify your user name, as shown in Example 5-63.

Example 5-63 Output of whoami command

[root@bastion ocp412]# oc whoami
system:admin

Validate your control plane nodes are in a ready state by executing the oc get nodes
command, as shown in Example 5-64.

Example 5-64 Output of oc get nodes

[root@bastion ocp412]# oc get nodes
NAME STATUS ROLES AGE VERSION
cp1.ocp3.ibm.com Ready control-plane,master 46m v1.25.8+37a9a08
cp2.ocp3.ibm.com Ready control-plane,master 46m v1.25.8+37a9a08
cp3.ocp3.ibm.com Ready control-plane,master 46m v1.25.8+37a9a08

Check the certificate signing requests:

[root@bastion ocp412]# oc get csr
NAME AGE SIGNERNAME
REQUESTOR
REQUESTEDDURATION CONDITION
csr-d4kmf 7m57s
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-d9dvw 46m
kubernetes.io/kubelet-serving system:node:cp3.ocp3.ibm.com
<none> Approved,Issued
csr-gtbhb 38m
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-jqbdf 47m
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Approved,Issued
csr-kzvpd 38m
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-lfmzc 38m
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-mpkgx 46m
kubernetes.io/kubelet-serving system:node:cp1.ocp3.ibm.com
<none> Approved,Issued
csr-r2msq 47m
kubernetes.io/kube-apiserver-client-kubelet
132 Red Hat OpenShift on IBM Z and LinuxONE

system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Approved,Issued
csr-r6l5m 7m56s
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-s2x5n 46m
kubernetes.io/kubelet-serving system:node:cp2.ocp3.ibm.com
<none> Approved,Issued
csr-spwdm 7m48s
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Pending
csr-zgdvn 47m
kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
<none> Approved,Issued
system:openshift:openshift-authenticator-87wph 44m
kubernetes.io/kube-apiserver-client
system:serviceaccount:openshift-authentication-operator:authentication-operator
<none> Approved,Issued
system:openshift:openshift-monitoring-mbqpb 43m
kubernetes.io/kube-apiserver-client
system:serviceaccount:openshift-monitoring:cluster-monitoring-operator
<none> Approved,Issued
[root@bastion ocp412]#

Approve pending CSR requests. All requests can be signed. In our example, we show all
outstanding requests approved.

[root@bastion ocp412]# oc get csr -o go-template='{{range .items}}{{if not
.status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc
adm certificate approve
certificatesigningrequest.certificates.k8s.io/csr-d4kmf approved
certificatesigningrequest.certificates.k8s.io/csr-gtbhb approved
certificatesigningrequest.certificates.k8s.io/csr-kzvpd approved
certificatesigningrequest.certificates.k8s.io/csr-lfmzc approved
certificatesigningrequest.certificates.k8s.io/csr-r6l5m approved
certificatesigningrequest.certificates.k8s.io/csr-spwdm approved
[root@bastion ocp412]#

You may need to repeat the process of approving certificate requests multiple times. When all
of your certificate signing requests (CSRs) requests have been approved, oc get nodes
should show all of your nodes in a ready state.

[root@bastion ocp412]# oc get nodes
NAME STATUS ROLES AGE VERSION
aw1.ocp3.ibm.com Ready worker 69s v1.25.8+37a9a08
aw2.ocp3.ibm.com Ready worker 68s v1.25.8+37a9a08
aw3.ocp3.ibm.com Ready worker 72s v1.25.8+37a9a08
cp1.ocp3.ibm.com Ready control-plane,master 63m v1.25.8+37a9a08
cp2.ocp3.ibm.com Ready control-plane,master 63m v1.25.8+37a9a08
cp3.ocp3.ibm.com Ready control-plane,master 63m v1.25.8+37a9a08
iw1.ocp3.ibm.com Ready worker 15m v1.25.8+37a9a08
iw2.ocp3.ibm.com Ready worker 15m v1.25.8+37a9a08
iw3.ocp3.ibm.com Ready worker 15m v1.25.8+37a9a08
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 133

The next step is to validate all of the cluster operators are available and not degraded or
progressing. The process for them all to become available can vary but it may take15 - 20
minutes.

[root@bastion ocp412]# oc get co
NAME VERSION AVAILABLE PROGRESSING
DEGRADED SINCE MESSAGE
authentication 4.12.15 True False
False 7m8s
baremetal 4.12.15 True False
False 60m
cloud-controller-manager 4.12.15 True False
False 64m
cloud-credential 4.12.15 True False
False 174m
cluster-autoscaler 4.12.15 True False
False 61m
config-operator 4.12.15 True False
False 61m
console 4.12.15 True False
False 12m
control-plane-machine-set 4.12.15 True False
False 60m
csi-snapshot-controller 4.12.15 True False
False 61m
dns 4.12.15 True False
False 60m
etcd 4.12.15 True False
False 59m
image-registry 4.12.15 True False
False 53m
ingress 4.12.15 True False
False 15m
insights 4.12.15 True False
False 54m
kube-apiserver 4.12.15 True False
False 51m
kube-controller-manager 4.12.15 True False
False 58m
kube-scheduler 4.12.15 True False
False 57m
kube-storage-version-migrator 4.12.15 True False
False 61m
machine-api 4.12.15 True False
False 60m
machine-approver 4.12.15 True False
False 60m
machine-config 4.12.15 True False
False 60m
marketplace 4.12.15 True False
False 60m
monitoring 4.12.15 True False
False 13m
network 4.12.15 True False
False 61m
134 Red Hat OpenShift on IBM Z and LinuxONE

node-tuning 4.12.15 True False
False 57s
openshift-apiserver 4.12.15 True False
False 51m
openshift-controller-manager 4.12.15 True False
False 57m
openshift-samples 4.12.15 True False
False 54m
operator-lifecycle-manager 4.12.15 True False
False 61m
operator-lifecycle-manager-catalog 4.12.15 True False
False 61m
operator-lifecycle-manager-packageserver 4.12.15 True False
False 54m
service-ca 4.12.15 True False
False 61m
storage 4.12.15 True False
False 61m
[root@bastion ocp412]#

When all of the cluster operators are Available, run the wait-for-install-complete
command. Below is the example output from our cluster’s wait-for-install-complete.

[root@bastion ocp412]# ./openshift-install --dir /root/ocp412/install-config
wait-for install-complete
INFO Waiting up to 40m0s (until 11:01AM) for the cluster at
https://api.ocp3.ibm.com:6443 to initialize...
INFO Checking to see if there is a route at openshift-console/console...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run
'export KUBECONFIG=/root/ocp412/install-config/auth/kubeconfig'
INFO Access the OpenShift web-console here:
https://console-openshift-console.apps.ocp3.ibm.com
INFO Login to the console with user: "kubeadmin", and password:
"zsQND-JE8q3-Eq722-QxSYF"
INFO Time elapsed: 0s
[root@bastion ocp412]#
Chapter 5. Red Hat OpenShift deployment topologies on IBM Z 135

Next we validate access from the web UI, based on the URL and credentials supplied above.
Using the UI does require DNS entries or host file entries to be in place and used by the
system running the web browser to access the console application. Figure 5-9 shows the
Web UI login window.

Figure 5-9 Red Hat OpenShift Container Platform initial login window

To complete the login process, supply the credential given in the
wait-for-bootstrap-complete output. Figure 5-10 shows the initial Overview screen of our
Red Hat OpenShift cluster.

Figure 5-10 Initial Red Hat OpenShift console initial screen after login

Your cluster is now ready to be tailored to your specific sites needs.
136 Red Hat OpenShift on IBM Z and LinuxONE

Chapter 6. Best practices and moving
forward

In this chapter, we discuss what activities should be considered after
Red Hat OpenShift Container Platform is installed.

6

© Copyright IBM Corp. 2024. 137

6.1 Applying best practices

This section describes some of the recommended practices for running
Red Hat OpenShift Container Platform on LinuxONE.

For more information, see Recommended host practices for IBM Z & IBM® LinuxONE
environments.

6.1.1 CPU entitlement and vCPU number

CPU entitlement and vCPU number should be examined first to check if the performance is
reported as an issue in the LinuxONE environment.

See 3.5.1, “LPAR level controls in IBM Z and LinuxONE” on page 31, 3.5.2, “Guest controls in
KVM” on page 31 and 3.5.3, “Guest controls in IBM z/VM” on page 32 to adjust the LPAR
CPU weight for the LinuxONE machine. The general rules are as follows:

� Avoid using a larger IFL ratio than 1:5 (physical to vCPU). Instead, share the IFLs and
dedicate fewer vCPUs.

� Reduce the vCPU count as close as possible to the actual CPU consumption of the guest.

� Avoid dedicating IFLs to a single LPAR unless there is a specific business requirement.

6.1.2 Disabling transparent huge pages

Transparent Huge Pages (THPs) attempt to handle huge page allocation automatically, which
might impact the performance for some workloads. Consider disabling Transparent Huge
Pages. Perform the following steps to accomplish this task:

1. Copy the tuned sample shown in Example 6-1into a YAML file. For example,
thp-s390-tuned.yaml.

Example 6-1 YAML file

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: thp-workers-profile
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom tuned profile for OpenShift on IBM Z to turn off THP on
worker nodes
 include=openshift-node
 [vm]
 transparent_hugepages=never
 name: openshift-thp-never-worker
 recommend:
 - match:
 - label: node-role.kubernetes.io/worker
 priority: 35
 profile: openshift-thp-never-worker
138 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html
https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html

2. Create the resource definition by using the following command:

$ oc apply -f thp-s390-tuned.yaml

3. Verify that the status of the huge pages with the following command:

$ ssh core@workernode1 sudo cat /sys/kernel/mm/transparent_hugepage/enabled

6.1.3 Enabling RFS

Enabling Receive Flow Steering (RFS) can generally help to reduce network latency and
improve network performance for application workloads.

To verify if RFS is enabled on the platform, issue the following commands:

$ ssh core@workernode1 sudo cat /proc/sys/net/core/rps_sock_flow_entries
$ ssh core@workernode1 sudo cat /sys/class/net/enc1000/queues/rx-0/rps_flow_cnt

For more information, see Recommended host practices for IBM Z & IBM® LinuxONE
environments.

6.1.4 Infrastructure nodes

The concept of an infrastructure node, or infra node, is to enable compute nodes to
concentrate on handling application workloads without the responsibility of managing
infrastructure services like monitoring, ingress routers, and logging. By doing so, the
infrastructure node can optimize resources and improve overall system efficiency.

To move infrastructure services from compute nodes to infra nodes, perform the following
steps:

1. Add the following label to the compute nodes that you want to act as an infrastructure
node.

$ oc label node <node-name> node-role.kubernetes.io/infra=""

2. Move services to the infrastructure nodes. For more information, see Moving Resources to
infrastructure machine sets.

6.1.5 HyperPAV

This practice only applies to the environment that uses ECKD volumes. ECKD volumes have
different model numbers such as mod-9, mod-27, mode-54, and so on. Usually if you are
using mod-54 volumes and above, the HyperPAV feature is recommended to increase I/O
access paths, and achieve better I/O performance. This would be helpful in I/O intensive
environments, for example, if you are running ODF storage nodes.

1. Update the USER DIRECT, as shown in Example 6-2.

Example 6-2 USER DIRECT

USER ODFNODE1 LNX4VM 24G 256G G
 INCLUDE LNXPDFLT
 COMMAND DEFINE HYPERPAV A000 FOR BASE 120
 COMMAND DEFINE HYPERPAV A001 FOR BASE 120
 COMMAND DEFINE HYPERPAV A002 FOR BASE 120
 COMMAND DEFINE HYPERPAV A003 FOR BASE 120
 MDISK 120 3390 DEVNO 9120 MR
Chapter 6. Best practices and moving forward 139

https://docs.openshift.com/container-platform/4.12/machine_management/creating-infrastructure-machinesets.html#moving-resources-to-infrastructure-machinesets
https://docs.openshift.com/container-platform/4.12/machine_management/creating-infrastructure-machinesets.html#moving-resources-to-infrastructure-machinesets
https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html
https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html

2. Copy the HyperPAV sample shown in Example 6-3 into a YAML file named, for example,
05-worker-kernelarg-hpav.yaml.

Example 6-3 HyperPAV sample file

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=120,A000-A003

3. Create the resource definition by using the following command.

$ oc apply -f 05-worker-kernelarg-hpav.yaml

6.1.6 Specific for KVM

In our lab environment, we applied the following recommended configurations during the
deployment phase:

� We utilize HyperPAV for our storage setup because we were previously employing ECKD
volumes.

� We disable the use of transparent huge pages to enhance system performance.

� We configure multiple queues for our VirtIO network interfaces to improve network
throughput and reduce latency.

� We employ I/O threads for our virtual block devices to accelerate I/O operations and
enhance overall performance.

� We eschew the use of virtual SCSI devices in favor of native storage solutions.

� We enable guest caching for disk to optimize disk I/O operations and improve system
responsiveness.

See sections 5.4, “KVM single hypervisor cluster implementation” on page 75 and 5.5, “KVM
three-LPAR cluster implementation” on page 95 for more details.

For more information, see Recommended host practices for IBM Z & IBM® LinuxONE
environments.
140 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html
https://docs.openshift.com/container-platform/4.12/scalability_and_performance/ibm-z-recommended-host-practices.html

6.2 Post-installation configurations

This section describes some common post-installation configurations that should be down
before trying to deploy an application onto the cluster.

6.2.1 Defining an identity provider

By default, only the kubeadmin user id is able to log onto the Red Hat OpenShift Container
Platform. To add an identity provider, create a custom resource (CR) and then add it to the
cluster.

We mention two commonly used types of identity providers. For more information, see
Understanding identity provider configuration.

htpasswd
Configure the htpasswd identity provider to allow users to log in to the
Red Hat OpenShift Container Platform with credentials from an htpasswd file. To do this,
perform the following steps:

1. Create an htpasswd file to store the user id and password information by using the
following command:

htpasswd -c -B -b users.htpasswd admin001 passw0rd

To add an additional user id to the htpasswd file, use the following command:

htpasswd -B -b users.htpasswd app001 passw0rd

2. To use the htpasswd identity provider, you must define a secret object that contains the
htpasswd user file. To create a secret object, issue the following command:

oc create secret generic users-secret --from-file=htpasswd=users.htpasswd -n
openshift-config

3. Create a CR for the identity provider by applying a YAML file. We create the YAML file
users-cr.yaml shown in Example 6-4.

Example 6-4 Custom resource YAML file

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: RDBK_HTPASSWD
 mappingMethod: claim
 type: HTPasswd
 htpasswd:
 fileData:
 name: users-secret

4. We then apply the defined custom resource YAML file using the following command:

oc apply -f users-cr.yaml

5. Create the user with the following command:

oc create user admin001
Chapter 6. Best practices and moving forward 141

https://docs.openshift.com/container-platform/4.12/authentication/understanding-identity-provider.html

6. Create the Red Hat OpenShift Container Platform identity by issuing the following
command.

oc create identity RDBK_HTPASSWD:admin001

RDBK_HTPASSWD is the identity-provider you created when you applied the custom resource
file from Example 6-4 on page 141 for the htpasswd file.

7. Bind the cluster-admin to the specific user that you created using the following command:

oc adm policy add-cluster-role-to-user cluster-admin admin001

8. Create the mapping for the user and identity:

oc create useridentitymapping RDBK_HTPASSWD:admin001 admin001

LDAP
For details on creating the LDAP identity provider, see Configuring an LDAP identity provider.
142 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/authentication/identity_providers/configuring-ldap-identity-provider.html

6.2.2 Configuring persistent storage

In this section, we describe the steps to configure an NFS server as persistent storage.

1. Create a directory called nfs-client that contains each of the YAML files shown in this
section for the nfs-client-provider. The YAML files that should be included are:

Example 6-5 deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-client-provisioner
 labels:
 app: nfs-client-provisioner
 namespace: nfs-client-provisioner
spec:
 replicas: 1
 strategy:
 type: Recreate
 selector:
 matchLabels:
 app: nfs-client-provisioner
 template:
 metadata:
 labels:
 app: nfs-client-provisioner
 spec:
 serviceAccountName: nfs-client-provisioner
 containers:
 - name: nfs-client-provisioner
 image:
gcr.io/k8s-staging-sig-storage/nfs-subdir-external-provisioner:s390x-linux-cana
ry
 #image: quay.io/external_storage/nfs-client-provisioner:latest
 volumeMounts:
 - name: nfs-client-root
 mountPath: /persistentvolumes
 env:
 - name: PROVISIONER_NAME
 value: nfs-client-provisioner/nfs
 - name: NFS_SERVER
 value: {{ nfs_server }}
 - name: NFS_PATH
 value: /home/data/nfs_share
 volumes:
 - name: nfs-client-root
 nfs:
 server: {{ nfs_server }}
 path: /home/data/nfs_share
Chapter 6. Best practices and moving forward 143

Example 6-6 sc.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: managed-nfs-storage
provisioner: nfs-client-provisioner/nfs # or choose another name, must match
deployment's env PROVISIONER_NAME'
parameters:
 archiveOnDelete: "false"

Example 6-7 rbac.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: nfs-client-provisioner
 namespace: nfs-client-provisioner

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nfs-client-provisioner-runner
rules:
 - apiGroups: [""]
 resources: ["persistentvolumes"]
 verbs: ["get", "list", "watch", "create", "delete"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "update"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["events"]
 verbs: ["create", "update", "patch"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: run-nfs-client-provisioner
subjects:
 - kind: ServiceAccount
 name: nfs-client-provisioner
 namespace: nfs-client-provisioner
roleRef:
 kind: ClusterRole
 name: nfs-client-provisioner-runner
 apiGroup: rbac.authorization.k8s.io

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: leader-locking-nfs-client-provisioner
 namespace: nfs-client-provisioner
144 Red Hat OpenShift on IBM Z and LinuxONE

rules:
 - apiGroups: [""]
 resources: ["endpoints"]
 verbs: ["get", "list", "watch", "create", "update", "patch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: leader-locking-nfs-client-provisioner
 namespace: nfs-client-provisioner
subjects:
 - kind: ServiceAccount
 name: nfs-client-provisioner
 # replace with namespace where provisioner is deployed
 namespace: nfs-client-provisioner
roleRef:
 kind: Role
 name: leader-locking-nfs-client-provisioner
 apiGroup: rbac.authorization.k8s.io

2. Create a namespace with the following command.

oc new-project nfs-client-provisioner

3. Apply the YAML files that are in the directory you created in Step 1 by using the following
command. In our example here, we created a directory named nfs-client.

oc apply -f nfs-client

4. Grant authority with the following command:

oc adm policy add-scc-to-user hostmount-anyuid
system:serviceaccount:nfs-client-provisioner:nfs-client-provisioner

6.2.3 Configuring the NTP Server

Time synchronization is always crucial for running a cluster and that would include
Red Hat OpenShift Container Platform. You can either configure the NTP server during the
installation phase or post-installation.

For more details, see Installer-provisioned postinstallation configuration.

6.2.4 Disabling kubeadmin

User kubeadmin is a temporary administrative user. After defining an identity provider and
creating a new cluster-admin user, consider removing the kubeadmin to improve cluster
security.

Delete the kubeadmin secrets with the following command:

oc delete secrets kubeadmin -n kube-system

IMPORTANT: Do not remove the kubeadmin user unless you are sure that you have a
working cluster-admin user defined.
Chapter 6. Best practices and moving forward 145

https://docs.openshift.com/container-platform/4.12/installing/installing_bare_metal_ipi/ipi-install-post-installation-configuration.html

6.2.5 Backing up the etcd database

The etcd database plays a very important role in a Red Hat OpenShift Cluster. The following
are the instructions to backup the etcd database.

1. Use the following command to back up etcd

oc debug node/{{controller_node}} -- chroot /host
/usr/local/bin/cluster-backup.sh /home/core/ocp412/

2. Change the file permissions if needed with the following command:

oc debug node/{{controller_node}} -- chroot /host chmod -R o+r
/home/core/ocp412

3. To retrieve the backup data, use the following command:

scp -rp core@{{controller_node}}:/home/core/ocp412 /root/ocp412_bkp/

For more information, see Backing up etcd.

6.3 Sample application deployment

In our sample application architecture, we deploy an open-source, lightweight, microservices
based application called the Voting App. It is cross-platform and can be deployed on any
architecture. We use this application as an example to demonstrate how to deploy
applications on a Red Hat OpenShift Container Platform, which runs on IBM LinuxONE.

For more information, see the GitHub repository.

Important: Back up your cluster’s etcd data regularly and store in a secure location, ideally
outside of the Red Hat OpenShift Container Platform environment.
146 Red Hat OpenShift on IBM Z and LinuxONE

https://docs.openshift.com/container-platform/4.12/backup_and_restore/control_plane_backup_and_restore/backing-up-etcd.html
https://github.com/OpenShift-Z/voting-app
https://github.com/OpenShift-Z/voting-app
https://github.com/OpenShift-Z/voting-app

6.3.1 Application architecture

Our application architecture is shown in Figure 6-1.

Figure 6-1 Sample Voting application architecture

The application provides the user with a choice to vote for any of two given options, such as
coffee versus tea.

On Red Hat OpenShift Cluster on LinuxONE
In a Red Hat OpenShift Cluster on LinuxONE environment, the application architecture
consists of several microservices working together. The Python web front end allows users to
interact with the application and view available options. When users make selections, their
choices are sent to the Redis microservice for temporary storage.

Redis acts as an in-memory cache, temporarily storing the received votes until they are
processed by another Python microservice. This microservice then persists the votes in a
PostgreSQL database for long-term storage.

A final Node.js microservice displays the current voting results as they accumulate in the
PostgreSQL database. The microservices-based design enables individual scaling of each
component, allowing for seamless replacement of components with alternative solutions
without affecting the overall application.

6.3.2 Deployment

In this section, we discuss our deployment of the Voting application.

Environment
Our environment consisted of a Red Hat OpenShift Cluster on IBM LinuxONE. To deploy the
application, get the GitHub personal access token that will be used for generating a secret.
Chapter 6. Best practices and moving forward 147

Procedures
We performed the following steps to start the deployment.

1. Set the environment variables $PROJECT, $GIT_REPO, and $GIT_TOKEN by using the following
commands.

PROJECT=voting
GIT_REPO=https://github.com/liyong-li/voting-app-rdbk.git
GIT_TOKEN=/root/git_token

2. Create the new project by using the following command:

oc new-project ${PROJECT}

3. Create the secret by using the following command:

oc create secret generic git-token --from-file=password=${GIT_TOKEN}
--type=kubernetes.io/basic-auth

4. Import images with the following commands:

oc import-image rhel8/nodejs-12 --from=registry.redhat.io/rhel8/nodejs-12
--confirm
oc import-image ubi8/python-38 --from=registry.redhat.io/ubi8/python-38
--confirm

5. Deploy the Postgres database service with the following commands. Figure 6-2 provides
our results of these commands:

oc new-app --name new-postgresql --template=postgresql-persistent \
--param=DATABASE_SERVICE_NAME=new-postgresql \
--param=POSTGRESQL_USER=admin \
--param=POSTGRESQL_DATABASE=db \
--param=POSTGRESQL_PASSWORD=admin \

--param=POSTGRESQL_VERSION=latest

Figure 6-2 Sample output for Postgres Pod
148 Red Hat OpenShift on IBM Z and LinuxONE

6. Deploy the Redis service with the following commands. Figure 6-3 provides our results of
these commands.

oc new-app --name new-redis --template=redis-persistent \
--param=DATABASE_SERVICE_NAME=new-redis \
--param=REDIS_PASSWORD=admin \

--param=REDIS_VERSION=latest

Figure 6-3 Sample output for Redis Pod

7. Deploy the Python compute by using the following commands. Figure 6-4 provides our
results of these commands.

oc new-app python-38:latest~${GIT_REPO} \
--source-secret=git-token \
--context-dir=worker-python \
--name=voting-app-worker-py \
-e DB_NAME="db" \
-e DB_USER="admin" \
-e DB_PASS="admin" \
-e REDIS_PASSWORD="admin"

Figure 6-4 Sample output for Python compute Pod

8. Deploy the voting application front-end with the following commands. Figure 6-5 provides
our results of these commands.

oc new-app python-38~${GIT_REPO} \
--source-secret=git-token \
--context-dir=/vote \
--name=voting-app-py \
-e REDIS_PASSWORD="admin"

Figure 6-5 Sample output for Voting App frontend pod
Chapter 6. Best practices and moving forward 149

9. Create the voting application front-end route by using the following commands. Figure 6-6
provides our results of these commands.

oc create route edge demo-py --service=voting-app-py --port=8080

Figure 6-6 Sample output for Voting App front-end route

10.Deploy the Node.js result front-end application by using the following commands.
Figure 6-7 provides our results of these commands.

oc new-app nodejs-12:latest~${GIT_REPO} \
--source-secret=git-token \
--context-dir=result \
--name=voting-app-nodejs \
-e POSTGRES_CONNECT_STRING="postgres://admin:admin@new-postgresql/db"

Figure 6-7 Sample output for Node.js result front-end pod

11.Create the Nodejs result front-end route by using the following commands. Figure 6-8
provides our results of these commands.

oc create route edge demo-nodejs --service=voting-app-nodejs --port=8080

Figure 6-8 Sample output for Node.js result front-end route
150 Red Hat OpenShift on IBM Z and LinuxONE

Accessing the application through a web browser
In our lab environment, we accessed the Voting App through a web browser and URL:
https://demo-py-voting.apps.zvm2.rdbk.com. The resulting web page is shown in
Figure 6-9.

Figure 6-9 Sample Voting App frontend

The Voting application results were shown using the URL:
https://demo-nodejs-voting.apps.zvm2.rdbk.com. Our results are shown in Figure 6-10.

Figure 6-10 Sample output for Voting App Result
Chapter 6. Best practices and moving forward 151

152 Red Hat OpenShift on IBM Z and LinuxONE

Appendix A. Additional material

This paper refers to additional material that can be downloaded from the Internet as
described in the following sections.

Locating the web material

The web material associated with this paper is available at
REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE.

The Voting application used in this IBM Redbooks publication can be found at the GitHub
repository.

Using the web material

The additional web material that accompanies this paper includes the following files:

� chapter_5_ansible_on_linuxone_rdbk-main.tar.gz
� chapter_6_voting-app-rdbk-main.tar.gz

System requirements for downloading the web material

The web material requires the following system configuration:

Hard disk space: 253 MB
Operating System: Windows/Linux

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation and extract the contents of the folder into
this folder.

A

© Copyright IBM Corp. 2024. 153

https://github.com/IBMRedbooks/REDP5711-Red-Hat-OpenShift-on-IBM-zSystems-and-LinuxONE
https://github.com/OpenShift-Z/voting-app
https://github.com/OpenShift-Z/voting-app
https://github.com/OpenShift-Z/voting-app
https://github.com/OpenShift-Z/voting-app

154 Red Hat OpenShift on IBM Z and LinuxONE

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publication provides additional information about the topic in this
document. Note that this publication might be available in softcopy only.

� The Virtualization Cookbook for IBM Z Volume 2: Red Hat Enterprise Linux 8.2,
SG24-8303

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, web docs, drafts and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Install Red Hat OpenShift Container Platform 4 on IBM zSystems and IBM LinuxONE

https://developer.ibm.com/learningpaths/get-started-ibmz/red-hat-openshift-on-i
bmz/install-openshift-container-platform-on-ibmz/

� Red Hat OpenShift for IBM zSystems and IBM LinuxONE

https://www.redhat.com/en/resources/openshift-ibm-z-linuxone-datasheet

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2024. 155

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://developer.ibm.com/learningpaths/get-started-ibmz/red-hat-openshift-on-ibmz/install-openshift-container-platform-on-ibmz/
https://www.redhat.com/en/resources/openshift-ibm-z-linuxone-datasheet
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

156 Red Hat OpenShift on IBM Z and LinuxONE

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461512

REDP-5711-00

®

http://www.redbooks.ibm.com
https://www.linkedin.com/groups/2130806

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction to Red Hat OpenShift Container Platform on IBM Z and LinuxONE
	1.1 Red Hat OpenShift overview
	1.2 Red Hat OpenShift on IBM Z and LinuxONE
	1.2.1 Red Hat OpenShift capabilities on IBM Z and LinuxONE
	1.2.2 Red Hat OpenShift benefits on IBM Z or LinuxONE
	1.2.3 Red Hat OpenShift deployment options on IBM Z and LinuxONE

	Chapter 2. Red Hat OpenShift Container Platform architecture
	2.1 Red Hat OpenShift components overview
	2.2 Red Hat OpenShift components and their roles
	2.2.1 Bootstrap node
	2.2.2 Control plane
	2.2.3 Compute Node
	2.2.4 Bastion node

	Chapter 3. Implementation architectural considerations
	3.1 Red Hat OpenShift product deployment requirements
	3.1.1 Load balancer
	3.1.2 Network Configuration Management
	3.1.3 Bastion host
	3.1.4 Hosting hypervisor environment

	3.2 Number of hosting logical partitions for a cluster
	3.3 Deployment architectures used in this paper
	3.3.1 Single-LPAR deployment configuration
	3.3.2 Three-LPAR deployment configuration

	3.4 Storage architecture
	3.4.1 FCP-attached SCSI and FICON-attached ECKD storage
	3.4.2 CoreOS node storage
	3.4.3 RHEL virtual server disk storage
	3.4.4 Red Hat OpenShift Persistent Storage

	3.5 Multitenancy with other workloads
	3.5.1 LPAR level controls in IBM Z and LinuxONE
	3.5.2 Guest controls in KVM
	3.5.3 Guest controls in IBM z/VM

	3.6 Recovery site considerations
	3.7 IBM Secure Execution
	3.8 IBM CEX high-performance hardware security modules requirements
	3.9 FIPS requirements
	3.10 Multus for a second network interface
	3.11 Authenticating
	3.12 Monitoring
	3.13 Logging

	Chapter 4. Resource considerations for Red Hat OpenShift
	4.1 LPAR adjustments and weights
	4.1.1 General LPAR adjustments
	4.1.2 IBM z/VM weights
	4.1.3 Adjustments for Red Hat OpenShift

	Chapter 5. Red Hat OpenShift deployment topologies on IBM Z
	5.1 Deployment topology criteria
	5.1.1 Data gravity
	5.1.2 Consolidation and TCO Reduction
	5.1.3 Business continuity
	5.1.4 Vertical Solutions

	5.2 IBM z/VM One LPAR cluster implementation
	5.2.1 Resource planning
	5.2.2 DNS configuration
	5.2.3 HAPROXY configuration
	5.2.4 Ignition files and the HTTP server
	5.2.5 USER DIRECT and PARM files for OCP nodes
	5.2.6 Building the Red Hat OpenShift Container Platform cluster
	5.2.7 Using Ansible playbooks

	5.3 IBM z/VM three-LPAR cluster implementation
	5.3.1 Architecture
	5.3.2 Planning resources
	5.3.3 HAPROXY configuration
	5.3.4 USER DIRECT and PARM files for OCP nodes
	5.3.5 Building the OCP cluster

	5.4 KVM single hypervisor cluster implementation
	5.4.1 Architecture
	5.4.2 Planning resources
	5.4.3 DNS configuration
	5.4.4 Ansible controller configuration
	5.4.5 Load balancer configuration
	5.4.6 File server for Ansible Playbook
	5.4.7 Building the OCP cluster through Ansible
	5.4.8 Validating the deployment

	5.5 KVM three-LPAR cluster implementation
	5.5.1 Architecture
	5.5.2 Hypervisor preparation
	5.5.3 DNS server configuration
	5.5.4 DHCP server configuration
	5.5.5 Highly available load balancer configuration
	5.5.6 Rapidly creating the guests that provide the support infrastructure
	5.5.7 Creating the Red Hat OpenShift cluster
	5.5.8 Completing the initial installation of Red Hat OpenShift 4.12

	Chapter 6. Best practices and moving forward
	6.1 Applying best practices
	6.1.1 CPU entitlement and vCPU number
	6.1.2 Disabling transparent huge pages
	6.1.3 Enabling RFS
	6.1.4 Infrastructure nodes
	6.1.5 HyperPAV
	6.1.6 Specific for KVM

	6.2 Post-installation configurations
	6.2.1 Defining an identity provider
	6.2.2 Configuring persistent storage
	6.2.3 Configuring the NTP Server
	6.2.4 Disabling kubeadmin
	6.2.5 Backing up the etcd database

	6.3 Sample application deployment
	6.3.1 Application architecture
	6.3.2 Deployment

	Appendix A. Additional material
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

