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Preface

In today’s fast-paced, ever-growing digital world, you face various new and complex business 
problems. To help resolve these problems, enterprises are embedding artificial intelligence 
(AI) into their mission-critical business processes and applications to help improve 
operations, optimize performance, personalize the user experience, and differentiate 
themselves from the competition. 

Furthermore, the use of AI on the IBM® zSystems platform, where your mission-critical 
transactions, data, and applications are installed, is a key aspect of modernizing 
business-critical applications while maintaining strict service-level agreements (SLAs) and 
security requirements. This colocation of data and AI empowers your enterprise to optimally 
and easily deploy and infuse AI capabilities into your enterprise workloads with the most 
recent and relevant data available in real time, which enables a more transparent, accurate, 
and dependable AI experience.

This IBM Redpaper publication introduces and explains AI technologies and hardware 
optimizations, such as IBM zSystems Integrated Accelerator for AI, and demonstrates how to 
leverage certain capabilities and components to enable solutions in business-critical use 
cases, such as fraud detection and credit risk scoring on the platform. Real-time inferencing 
with AI models, a capability that is critical to certain industries and use cases such as fraud 
detection, now can be implemented with optimized performance thanks to innovations like 
IBM zSystems Integrated Accelerator for AI embedded in the Telum chip within IBM z16™.

This publication also describes and demonstrates the implementation and integration of the 
two end-to-end solutions (fraud detection and credit risk), from developing and training the AI 
models to deploying the models in an IBM z/OS® V2R5 environment on IBM z16 hardware, 
and to integrating AI functions into an application, for example an IBM z/OS Customer 
Information Control System (IBM CICS®) application.

We describe performance optimization recommendations and considerations when 
leveraging AI technology on the IBM zSystems platform, including optimizations for 
micro-batching in IBM Watson® Machine Learning for z/OS (WMLz). The benefits that are 
derived from the solutions also are described in detail, which includes how the open-source 
AI framework portability of the IBM zSystems platform enables model development and 
training to be done anywhere, including on IBM zSystems, and the ability to easily integrate to 
deploy on IBM zSystems for optimal inferencing. You can uncover insights at the transaction 
level while taking advantage of the speed, depth, and securability of the platform.

This publication is intended for technical specialists, site reliability engineers, architects, 
system programmers, and systems engineers. Technologies that are covered include 
TensorFlow Serving, WMLz, IBM Cloud Pak® for Data (CP4D), IBM z/OS Container 
Extensions (zCX), IBM Customer Information Control System (IBM CICS), Open Neural 
Network Exchange (ONNX), and IBM Deep Learning Compiler (zDLC).
© Copyright IBM Corp. 2022. vii
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Summary of changes

This section describes the technical changes that were made in this edition of the paper and 
in previous editions. This edition also might include minor corrections and editorial changes 
that are not identified.

Summary of Changes 
for Optimized Inferencing and Integration with AI on IBM Z Introduction, Methodology, and 
Use Cases, REDP-5661
as created or updated on November 30, 2022.

November 2022, Second Edition

This revision includes the following new and changed information.

New information
� IBM Db2 for z/OS 13 SQL Data Insights (SQL DI) functions

� Capabilities comparison between IBM Watson Machine Learning for z/OS (WMLz) 2.4 and 
WMLz Online Scoring Community Edition (OSCE) and recommendations on when to 
leverage which solution for optimal results

� Credit card payments fraud detection use case scenario:

– Description and business case 

– Data science and fraud detection (long short-term memory (LSTM)) model 
development details (understanding and preparing the data, selecting the model, data 
mapping, and training the model)

– Fraud detection model deployment and evaluation on IBM zSystems (importing and 
deploying the model with WMLz, Open Neural Network Exchange (ONNX) conversion, 
reshaping the model for WMLz micro-batching, and testing the model with WMLz)

– Application integrations and considerations (IBM Customer Information Control System 
(IBM CICS) program with LINK to ALNSCORE, and CICS program with 
Representational State Transfer (REST) application programming interface (API))

� Performance-tuning considerations and recommendations, including micro-batching for 
better performance 

Changed information
� Added details regarding using artificial intelligence (AI) technology and optimizations on 

the IBM zSystems platform, such as the IBM zSystems Integrated Accelerator for AI within 
IBM z16

� Included feature updates for WMLz 2.4 (including CICS LINK calling for ONNX models)

� Addition of Db2 AI for z/OS 1.5.0 features

� Additional information added to the open source on IBM zSystems discussion

� Planning steps that are required to deploy models to IBM zSystems

� Additional deployment to IBM zSystems options: ONNX, Predictive Model Markup 
Language (PMML), and TensorFlow
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� Additional information for inferencing on IBM zSystems options: WMLz, WMLz OSCE, 
TensorFlow Scoring Server, and IBM zSystems Deep Learning Compiler (zDLC)

� Cloud Pak for Data (CP4D) 4.5.x updated capabilities 
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Chapter 1. Foundations of artificial 
intelligence

With much interest in recent years and new use cases emerging everyday, artificial 
intelligence (AI) can give the illusion of being a new technology. However, the concept of AI 
dates back to ancient Greece and resurfaced in the early 1950s in a paper that was published 
by Alan Turing: Computing Machinery and Intelligence.1

The excitement around AI took off in the mid-1950s, when the term AI was coined by John 
McCarthy at the debut AI conference at Dartmouth College. Over a period of several weeks, 
foundational AI terms and concepts were developed, and later that same year the first ever AI 
software program was run. 

After the inception and a boom phase, the field of AI underwent long periods of stagnation to 
which AI historians refer to as “AI winters”. Lack of access to affordable high-computing 
power and data storage are one of the key reasons for these AI winters. As a result, in the 
period of 1950 - 1990, AI confined itself mostly to research labs. Events in the late 1990s like 
IBM Deep Blue beating Garry Kasparov in 1997 marked the end of the last AI winter. 

Today's implementations of AI systems and applications go much further, encompassing 
technologies such as natural language processing (NLP), natural language understanding 
(NLU), and image generation from text and image recognition. When we discuss AI today, we 
are referring to modern implementations of concepts that date back to research from the 
mid-20th century. 

It is imperative to understand what is meant by and encompassed in the term AI, what drives 
the development and adoption of AI technologies, and how bringing AI systems onto the 
IBM zSystems platform can result in business-critical benefits. This chapter introduces you to 
these concepts and includes the following topics: 

� 1.1, “What is artificial intelligence” on page 2
� 1.2, “Advantages and value of data and AI on IBM zSystems” on page 4
� 1.3, “Building and training anywhere and deploying and infusing on IBM zSystems” on 

page 8

1

1  https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf
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1.1  What is artificial intelligence

According to a 2004 paper that was written by John McCarthy and published by Stanford 
University, AI is defined as: 

“It is the science and engineering of making intelligent machines, especially intelligent 
computer programs. It is related to the similar task of using computers to understand human 
intelligence, but AI does not have to confine itself to methods that are biologically 
observable.”2

AI is a field of technology that focuses on building intelligent systems that can perform tasks 
that can be too complex to confine to a finite set of instructions to a computer. Rather than 
providing computers with a set of rules, AI techniques enable you to train these intelligent 
systems by using past data and letting the system learn patterns to solve a problem. 

Take the example of a system that recognizes human faces. If you must design a computer 
program purely based on rules, then you must provide modules to mathematically define 
different features of a face, like eyes, eye-brows, and a nose. This program also must account 
for wide variability in features because not every face looks the same. The result is a complex 
set of rules. 

Thanks to AI techniques like deep neural networks (DNNs) and convolutional neural networks 
(CNNs), any software developer can build a facial recognition program by using a few lines of 
code and training the model on a few hundred images. The best part about AI techniques is 
that if the data changes, they can be retrained on the new data and evolve.

There is no question that infusing AI into products and services offers a great deal of 
competitive advantage to organizations. The digital transformation from the 1960s enabled us 
to collect, catalog, and store huge amounts of data, but today’s AI can enable organizations to 
make sense of that data and provide better products and services. The key drivers of high 
adoption of AI in the last few decades can be broken down into two technical influential 
factors: large amounts of usable data, and increased access to cheap computing power. 

Thanks to all the recent advances, today AI is everywhere: It is in your cellphone as a 
speech-to-text feature in messaging, or speech recognition to perform voice searches with AI 
Assistants like Apple Siri and IBM Watson Assistant for businesses. Most businesses today 
are incorporating AI into their customer service experience through chat bots and virtual 
agents. 

Corporations like CVS Health are leveraging Watson Assistant to effectively handle a 10-fold 
spike in call volume for COVID-19 vaccines.3 Additionally, McDonalds worked with IBM to 
improve their customer’s drive-through experience by using AI.4 These partnerships are a few 
of the many examples of how enterprises are leveraging AI to improve processes and 
experiences for themselves and their customers. 

AI techniques like neural networks are data hungry and require huge amounts of data to train, 
test, and deploy a usable and trustworthy model of acceptable quality. Along with the key 
drivers of affordable storage and easy access to computing power, cloud computing is 
another key technology that makes AI more accessible by enabling anyone with access to the 
internet to build, train, and deploy complex AI models. 

2  https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Ol
d/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf

3  https://www.linkedin.com/pulse/fueling-cvs-healths-covid-response-ai-shobhit-varshney/
4  https://newsroom.ibm.com/Joint-Statement-from-McDonalds-and-IBM
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Today, AI has come far from being a research domain, and its use cases span many 
mission-critical areas for businesses, including better customer experience, cybersecurity, 
and improved operational efficiency.

As part of the IBM Hybrid Cloud and AI strategy, huge investments were made in infusing AI 
into IBM products, and bringing modern AI capabilities to IBM zSystems is at the core of that 
strategy. Before we explain the value and capability of AI on IBM zSystems, we must describe 
the differences in the terminology. 

AI is a term that encompasses subdisciplines, such as machine learning (ML) and deep 
learning (DL). These terms are often used interchangeably, but it is important to understand 
the nuances that differentiate them from each other. 

1.1.1  Artificial intelligence, machine learning, and deep learning

When discussing AI, ML, and DL, it is important to understand the differences between each 
of these terms. Figure 1-1 shows the key differences between these terms and the inclusion 
hierarchy into which the terms fall. 

Figure 1-1   Differences between AI, ML, and DL

The term AI refers to techniques that embody the purpose of mimicking human behavior. The 
purpose is to enable computers to perform tasks that are regarded as uniquely human, that 
is, processes that require intelligence. However, for certain problem classes, AI algorithms 
surpass humans. 

ML is a subfield of AI techniques that is sometimes referred to as classical or nondeep AI. ML 
focuses on using a certain class of algorithms and statistical methods for problem solving. 
Although any AI technique is only as good as the quality of the data on which it is trained, ML 
techniques depend heavily on features. Features represent attributes that are used as input 
for the model to train. For that reason, ML algorithms typically require a structured data set 
and have a high emphasis on feature engineering. Algorithms like logistic regression, 
decision trees, random forests, and support vector machines fall under ML techniques. Use 
cases that typically involve ML techniques include data insight and prediction from structured 
data sets. 

DL is yet another subfield of AI techniques that is a subfield within ML. DL techniques build 
on ML techniques with more complex algorithms, and focus on the usage of neural networks 
for problem solving. 
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As implied in their name, neural networks are based on the biological neural networks of the 
human brain and are structured to mimic its behavior. However, the latest innovations, such 
as DNNs, CNNs, recurrent neural networks (RNNs), and transformers have evolved, and they 
have little to no commonality with biological neural networks. 

As opposed to ML techniques, DL techniques need little feature engineering and need huge 
amounts of data to train. Because they require minimal feature engineering, DL models are 
sometimes referred as “black-box” models. As a result, a great deal of recent research 
focuses on the explainability of DL models. Where a typical ML model has hundreds of 
parameters, some modern DL models have billions of parameters. DL techniques work well 
when the problems involve unstructured data like text, images, audio, and video, which is why 
DL techniques outperform ML techniques when it comes to complex problems such as image 
object detection, NLP, and speech recognition.

1.2  Advantages and value of data and AI on IBM zSystems

Now that you have a better understanding of the foundation of AI and its subdisciplines, we 
move on to AI on IBM zSystems. This section guides you through some of the different 
options that are available on IBM zSystems for AI solutions; why IBM zSystems is the 
platform of choice for AI; and how integrating AI on IBM zSystems with other platforms and 
tools (including open source) is easier than before and continuously expanding. 

1.2.1  Delivering innovation with AI and IBM z16

When seeking to understand the different offerings that are available on IBM zSystems in the 
context of data and AI, it is helpful to map the offerings into the following architectural layers: 

� Data layer
� Analytics Engine layer
� AI platform layer
� AI solutions layer

Each of these layers has specific product offerings and solutions to help enable data and AI 
capabilities on the IBM zSystems platform. Each layer, and everything that layer 
encompasses, is critical to the success of your AI implementation on any platform. 

Data layer
The data layer includes data source offerings, such as databases. These data sources can be 
on the IBM zSystems platform or on an alternative platform, for example, an x86 platform. In 
either case, offerings such as IBM Data Virtualization Manager for z/OS (DVM) offer data 
access to various different data sources, enabling you to accomplish the following tasks:

� Combine and integrate non-relational and relational data.
� Integrate IBM zSystems and non IBM zSystems data.
� Incorporate unstructured data with structured data.
� Provide SQL access to non-relational data.
� Modernize mainframe applications and enhance non-mainframe applications with 

mainframe data. 

For the complete list of DVM for z/OS supported data sources and types and other technical 
details, see Supported data sources.
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Analytics Engine layer
This layer includes offerings that are commonly referred to as the “engine” for analytics and AI 
on the IBM zSystems platform. One of the Analytics Engine solutions on IBM zSystems is 
IBM Open Data Analytics for z/OS (IzODA). IzODA is a foundation for ML, and it offers Spark 
and Anaconda run times for software solutions, such as IBM Watson Machine Learning for 
z/OS (WMLz). Additionally, IzODA provides an optimized data layer that serves as a common 
interface for analytics applications to access z/OS data sources, such as IBM Db2, VSAM, 
and SMF. 

For more information about IzODA, see IBM Open Data Analytics for z/OS.

In addition to the ML engine, various open source images and AI compiler images on IBM 
zSystems can be accessed at the IBM zSystems and LinuxONE Container Registry, which is 
described in “IBM zSystems and LinuxONE Container Registry” on page 8. 

AI platform layer
Included in the AI platform layer are offerings that provide enterprise-ready capabilities to 
develop, train, score, and retrain ML and DL models. This layer also includes the scoring and 
inferencing capability of AI models. WMLz is an example of a such an offering in this layer that 
enables organizations to place ML and DL models on z/OS, where transactions originate for 
IBM zSystems customers. 

Aside from offering model development and lifecycle management, WMLz primarily focuses 
on deploying and inferencing AI models closer to where business-critical transactions occur. 
This function helps ensure real-time scoring with optimal performance and scalability while 
keeping business-critical data secure by using IBM zSystems strengths like the IBM z16 
Integrated Accelerator for AI. To improve the ease of adoption and integration, WMLz 
supports many AI frameworks that are widely adopted in the data science world, and it 
supports standard exchange formats such as Predictive Model Markup Language (PMML) 
and Open Neural Network Exchange (ONNX).5

For more information about WMLz, see IBM Watson Machine Learning for z/OS.

IBM Cloud Pak for Data (CP4D) is another offering that is instrumental to the future of Al 
solutions on IBM zSystems. CP4D runs on the IBM zSystems infrastructure in addition to 
other platforms based on Red Hat OpenShift, and it is deeply integrated with WMLz. Typical 
use cases involve performing model development, training, and bias checks on CP4D, and 
the model deployment and scoring on WMLz. 

For more information about the latest release of CP4D, see IBM Cloud Pak for Data. 

For more information about potential use cases that leverage the strengths of the IBM 
zSystems infrastructure with the capabilities that are offered by CP4D, see Capabilities on 
Linux on IBM zSystems and IBM LinuxONE.

AI solutions layer
The AI solutions layer includes “black-box” solutions that use AI for a specific purpose or to 
solve a specific problem. Such solutions are designed to help automate the more complex ML 
and data science processes by infusing AI throughout an organization and into business 
processes and applications. These solutions are referred to as “black-box” solutions because 
they transform these difficult to understand, complex tasks and processes into simple, 
actionable steps without requiring a specific skillset, and provide clarity and understanding 
around the decisions that are made by a model. 

5  https://www.ibm.com/docs/en/wml-for-zos/2.4.0?topic=owz-supported-algorithms-data-sources-data-types
-model-types
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Solutions in the area of IT Operational Analytics (ITOA), such as IBM Db2 AI for z/OS 
(Db2ZAI) or IBM zSystems Operations Analytics (IZOA) are built on and powered by the ML 
services that are provided by WMLz to help optimize operational performance and maintain 
system and subsystem health by using deep, AI-driven insights. 

IBM Db2 13 for z/OS SQL Data Insights (SQL DI) is an excellent example of an AI-driven 
“black-box” solution for business insights. SQL DI uses DL and IBM zSystems technology to 
enable the industry first ability to infer hidden information within Structured Query Language 
(SQL) queries in a relational database by detecting and extracting semantic similarities 
between two records to enhance traditional data processing. For more information about SQL 
DI, see “IBM Db2 13 SQL Data Insights” on page 84.

For more information about Db2ZAI, SQL DI, and IZOA, see the following websites:

� IBM Db2 AI for z/OS 
� Running AI SQL Queries with SQL Data Insights 
� IBM zSystems Operations Analytics overview 

Other AI solutions on the IBM zSystems platform use different architectural approaches, for 
example, TensorFlow. For more information about the use of container technology, see 3.2, 
“Credit risk assessment use case scenario” on page 48. This section features a use case in 
which TensorFlow and WMLz (both on the IBM zSystems platform) are integrated to score a 
DL model.

Why AI on IBM zSystems
One of the many benefits of implementing your AI solution on IBM zSystems is the broad 
range of offerings that are available on the platform to support each stage of your data and AI 
solution. The IBM zSystems infrastructure also offers a robust, secure, and scalable 
infrastructure for enterprise applications and transactions. 

Because most business transactions of large enterprises are processed on IBM zSystems, 
performing analytics and AI predictions on the platform positions those processes close to the 
source of the transaction and data. This phenomenon of moving AI applications and 
frameworks close to the business data is called data gravity. Data gravity enables real-time 
analytics, leaves sensitive data in a secure data environment, and reduces latency and 
network traffic because the need for data movement is removed. 

IBM is making substantial investments in ensuring that IBM zSystems is a highly optimized 
platform for AI. Developments such as the IBM Telum processor chip with the IBM zSystems 
Integrated Accelerator for AI are positioning IBM as the premier platform provider for 
inference workloads. This hardware innovation speaks to the commitment and focus IBM 
made to support and enable AI and improve inferencing at scale. 

For more information about the IBM zSystems Integrated Accelerator for AI on z16, see the 
following resources:

� IBM z16 (3931) Technical Guide, SG24-8951
� IBM Telum Processor: the next-gen microprocessor for IBM zSystems and IBM LinuxONE 
� IBM z16 puts innovation to work while unlocking the potential of your hybrid cloud 

transformation 

For more information about use cases for the IBM zSystems Integrated Accelerator for AI, see 
5.1, “Key technologies for AI on IBM zSystems” on page 96. 
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1.2.2  Open-source frameworks on IBM zSystems

Together, IBM and Red Hat are one of the top three organizations with the most active 
open-source contributors and over 6,300 combined active contributors in 2022 as of 
September, according to the Open Source Contributor Index.6 

This commitment to open-source enablement is not a new trend for IBM. The enterprise was 
one of the earliest champions of open source, dating back to the 1990s with contributions to 
Linux. Some of the most notable IBM open-source contributions over the years include 
contributions to the Linux kernel; Java: open-source cloud projects including Cloud Foundry; 
open-source container projects including Docker and the Open Container initiative; the 
blockchain Hyperledger project; Node.js; JavaScript, and quantum projects.

IBM is heavily invested in working with public communities to bring the best of the 
open-source world to IBM zSystems. There is a sustained focus on expanding the availability 
of data science and ML capabilities on the platform by offering many open-source frameworks 
on Linux on IBM zSystems and z/OS natively. To support this focused effort, IBM created the 
IBM Center for Open-source Data and AI Technologies.

In addition to formal offerings that bring great value to AI capabilities on IBM zSystems, the 
best of the open-source community can be leveraged on the platform. IBM is an active 
contributor to the open-source AI community, and it contributes to projects such as 
TensorFlow, Kubeflow, Project Jupyter, Apache Spark, and PyTorch. 

Some of the readily available AI frameworks for use on the IBM zSystems platform include 
scikit-learn, XGBoost, Apache Spark, PyTorch, and TensorFlow. 

With TensorFlow being one of the most widely used open-source frameworks for ML and DL, 
it was critical for IBM to enable the use of the TensorFlow framework on the IBM zSystems 
infrastructure. For more information about how IBM enabled the TensorFlow framework on 
IBM zSystems, see 1.3, “Building and training anywhere and deploying and infusing on IBM 
zSystems” on page 8.

PyTorch is another DL open-source framework that was widely adopted by enterprises 
because of its simplicity, flexibility, and modularity. Developers and data scientists can use 
PyTorch to create or import AI applications on the IBM zSystems platform in a simple and 
intuitive way and easily integrate with other Python libraries. You can use PyTorch on the 
platform by building your own PyTorch package or by using the Anaconda support package 
for IBM zSystems.

Anaconda is available on IBM zSystems with various supported packages with which data 
scientists can build, import, and test open-source solutions on the IBM zSystems platform 
while still working with their choice of tools and frameworks, such as scikit-learn, PyTorch, 
and Jupyter. Because Anaconda runs natively on Linux on IBM zSystems and through 
IBM z/OS Container Extensions (zCX) in z/OS, your AI solution can leverage and benefit from 
the data gravity of the platform. To access a full list of Anaconda on IBM zSystems supported 
packages, see Packages for 64-bit Linux on IBM zSystems CPUs with Python 3.8.

6  https://opensourceindex.io/

Note: TensorFlow and PyTorch can both be run as container images in zCX or in Linux on 
IBM zSystems, as described in “IBM zSystems and LinuxONE Container Registry” on 
page 8. 
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Enabling the use of these popular open-source AI frameworks on IBM zSystems is a critical 
element in bringing AI to where your mission-critical applications and data are kept. 
Collocating your data and applications on IBM zSystems and infusing them with AI while 
leveraging the platform’s strengths, such as supporting the use of the IBM Integrated 
Accelerator for AI in the z16, allows your business to gain real-time insights and unlock new 
business value. 

IBM zSystems and LinuxONE Container Registry
On IBM zSystems, popular AI frameworks are available as Linux-based container images, 
which can be used to create containers in zCX or Linux on IBM zSystems. These container 
images consist of executable application code, tools, libraries, and required dependencies for 
the framework to run in a container. Images can be reused as templates for building custom 
containers, so it is possible to create an environment fitting your development needs. 

Although possible, most developers do not build container images from scratch. Instead, they 
are generally pulled from a private or trusted public repository, such as the IBM Cloud® 
Container Registry, which provides a multi-tenant private image registry that is highly 
available (HA), scalable, and encrypted to store, access, and manage your containers. You 
can also use IBM Cloud Container Registry to access public images that are provided by IBM. 

The IBM zSystems Container Image Registry is a mechanism for obtaining prebuilt container 
images of popular open-source software. The images in this repository are built from source, 
optimized for s390x architecture, build-tested, and scanned for known vulnerabilities. Several 
popular AI frameworks such as PyTorch, TensorFlow, and TensorFlow Serving are available 
as container images in the repository. You can access the registry by going to IBM zSystems 
and LinuxONE Container Registry.

The open-source system IBM supports is a vast and growing resource that elevates all the 
features that IBM zSystems offers. For more information about open-source packages that 
are portable or validated on corresponding distribution versions by IBM, see IBM zSystems 
and LinuxONE Community Validated Open Source Software.

1.3  Building and training anywhere and deploying and infusing 
on IBM zSystems

The ability to build and train AI models anywhere, deploy them on IBM zSystems, and infuse 
models into workload applications with seamless optimization adds value to the platform. 
Such an ability allows enterprises to maximize their investments in AI platforms and for data 
scientists to use the framework that best suits their skill set. 

Taking a model, deploying it on IBM zSystems, and infusing models into workload 
applications while benefiting from the platform’s unparalleled qualities of service is valuable 
for an organization that hopes to reliably leverage business-critical insights that are gained 
from the model and the data that it is powered by. This section introduces the DL ecosystem 
on IBM zSystems and the process to deploy models on the platform. 

Figure 1-2 on page 9 illustrates the process that an enterprise can follow to deploy an AI 
model on IBM zSystems. Start with building and training a model on any public cloud or 
on-premises infrastructure by using a preferred model framework. Then, easily deploy that 
model on IBM z16 to seamlessly take advantage of innovative hardware optimizations, such 
as the IBM z16 Integrated Accelerator for AI, to infuse AI into every transaction. 
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Figure 1-2   Training anywhere and then deploying on IBM zSystems

Data that is specific to the business problem that must be addressed must be organized from 
various sources. Depending on the AI model that is built, this data might be images, text, 
audio, database tables, VSAM data sets, SMF data, or a table from a data warehouse. It is 
important to be cognizant of the data sources that are used to build and train the model 
because they must be present at the time of inferencing. If you are leveraging the data gravity 
of the IBM zSystems platform by using model input data that is on the platform, then you 
minimize your inferencing latencies. 

A DL or ML model, depending on the business challenge, must be built and trained by data 
scientists with the support of people that possess domain knowledge. The development and 
the training are done by using a framework that is familiar to the data scientist and can be 
completed on IBM zSystems or any another platform. With this approach, you can maximize 
existing or future infrastructure investments.
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Figure 1-3 shows several supported AI frameworks and libraries that can be used to import 
many developed models into various runtime environments on IBM zSystems, and the 
hardware exploitation that the model can benefit from during inferencing. Many popular model 
types from several frameworks can be imported into the IBM zSystems platform seamlessly 
into their native runtime environment, which typically refers to an Anaconda, Python, or Spark 
environment in Linux on IBM zSystems or zCX. 

Figure 1-3   AI frameworks on IBM zSystems

To import the model to the IBM zSystems platform, you can use the Linux Secure Copy 
Protocol (SCP) to transfer the model between two different systems by using the SSH 
protocol. For more information about deployment options, see 1.3.1, “Modernizing z/OS 
applications by infusing AI” on page 12. 

Some classical ML model types, such as gradient boosting machine, random forest, and extra 
trees, can take advantage of the IBM zSystems Integrated Accelerator for AI by using the 
Snap ML format. Snap ML is an ML framework that is developed by IBM Research® Zurich to 
accelerate the training and inferencing of traditional ML models by efficiently using computing 
resources through parallelism while maintaining high model accuracy. For development 
purposes, documentation for the Snap ML format can be found at Snap machine learning.

Snap ML was designed to deal with the challenges that enterprises face when training or 
retraining models on vast quantities of data, such as long training times and massive resource 
utilization. Additionally, Snap ML is seamless for data scientists to use if they are used to 
creating models in the scikit-learn library, which can be installed by using a simple pip 
command. Some scikit-learn models after an intermediate conversion to a PMML format can 
be converted to the Snap ML format to realize greatly reduced inferencing latency, even when 
running on CPU. 
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In this example notebook that is provided by IBM on GitHub, 
Example_credit_card_fraud.ipynb, a random forest model that was converted to the Snap ML 
random forest model format experienced an inferencing speedup of 26 times. This speed-up 
result depends on the model and data that are used, so it is a best practice to compare 
inferencing speeds for your specific use case. During training or conversion, you can decide 
whether to run the model on a CPU or use the IBM zSystems Integrated Accelerator for AI. 

DL models that are built with AI frameworks such as TensorFlow, PyTorch, mxnet, SAS, 
Caffe2, MATLAB, Microsoft Cognitive Toolkit, and several others support conversion to the 
ONNX format. ONNX is an open and platform-neutral format for describing AI models that 
facilitates the production deployment of models independent from their training environment 
and framework. For more information about the ONNX open-source project, see Open Neural 
Network Exchange.

After the model is converted to an ONNX format, it can be compiled by using the 
IBM zSystems Deep Learning Compiler (zDLC) to take advantage of the IBM z16 Integrated 
Accelerator for AI. You can use the zDLC for ONNX model compilation automatically within 
WMLz or manually within a container image of the zDLC. The Integrated Accelerator for AI is 
engineered for accelerating the processing of several complex mathematical operations that 
typically are found within DL models. As of IBM z16, the Integrated Accelerator for AI 
supports the following mathematical operations that are found within models:

� Long short-term memory (LSTM) activation
� GRU Activation
� Fused Matrix Multiply, Bias op
� Fused Matrix Multiply (with broadcast)
� Batch Normalization
� Fused Convolution, Bias Add, ReLU
� Max Pool 2D
� Average Pool 2D
� Softmax
� ReLU
� Tanh
� Sigmoid
� Add
� Subtract
� Multiply
� Divide
� Min
� Max
� Log

TensorFlow models can be imported to a native model run time on IBM zSystems, but you 
must account for several considerations. For example, if the TensorFlow model was trained on 
an s390x architecture in a TensorFlow release before Version 2.7, then the memory byte 
order (endianess) of the model is the opposite of the format that is expected by IBM 
zSystems. The model will not be transferred correctly, and you must use a utility to switch the 
endianess of the TensorFlow model’s protobuf graph. You can access the endian converter at 
Endian_convertor. 

Disclaimer: Performance results always depend on the hardware and software 
environment. For more information about the environment that was used to run this 
notebook, see Example_credit_card_fraud.ipynb. 
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Therefore, IBM developed a method for inferencing a TensorFlow model on IBM z16 while 
taking advantage of the Integrated Accelerator for AI. Available as an open-beta program, 
IBM provides a TensorFlow container image in the IBM zSystems Container Registry that is 
named IBM zSystems Optimized for TensorFlow, which supported native runtime 
acceleration within a container. TensorFlow models can be built and trained on any platform 
with TensorFlow core 2.7 and deployed to this container. When the model performs 
inferencing operations within the container, the TensorFlow graph execution transparently 
targeted the Integrated Accelerator for AI, which requires no changes to the model. You can 
toggle between using the CPU and the Integrated Accelerator for AI for inferencing requests 
by modifying an environmental variable in the container, which you might want to do for 
testing purposes.

AI offerings for IBM zSystems increasingly support open-source technology and open 
standards, as described in 1.2.2, “Open-source frameworks on IBM zSystems” on page 7. 
This support allows an exchange of assets within IBM zSystems and with other platforms. 
Models can be developed and trained anywhere, that is, on any infrastructure and with any 
supported tool. 

In the next section, we explore different deployment options that are present on 
IBM zSystems. 

1.3.1  Modernizing z/OS applications by infusing AI

Before we describe the different options and offerings that enable AI on IBM zSystems, you 
must understand the deployment options that are available on the platform. In the context of 
this publication, deployment refers to the process of configuring an AI model to integrate with 
other applications or users on IBM zSystems. 

Traditionally, when you think of running applications and services on the IBM zSystems 
platform, you think of doing so with the z/OS operating system. Being an operating system, 
z/OS offers significant benefits, including a secure environment for high availability (HA) 
enterprise workloads. 

Containerized applications
z/OS has zCX, which enables you to run Linux based containers through a Docker interface 
within a z/OS environment. This capability allows the deployment of Linux on IBM zSystems 
applications as Linux-based containers within a z/OS system to directly support workloads 
with an affinity to z/OS. No special IBM zSystems skills are needed to manage the Linux 
workloads running in zCX, so existing Linux development, administration, and container skills 
can easily be leveraged. 

Note: TensorFlow models that are trained in TensorFlow 2.7 or later can be imported into 
IBM zSystems without endian conversion. If any issues are encountered, contact the AI on 
IBM zSystems team by sending an email to aionz@us.ibm.com. 

TensorFlow models that are imported with this method cannot leverage the IBM z16 
Integrated Accelerator for AI. 

Note: With this option, inferencing is accelerated only within the container itself, which 
means that predictions must be driven from within the container. There is no 
Representational State Transfer (REST) application programming interface (API) function 
like with TensorFlow Serving, so you must custom-build that function.
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Also, running these containerized applications on z/OS enables you to streamline your 
DevOps environment and retain the benefits of z/OS qualities of service, such as security and 
HA. With zCX, applications’ resources can be managed by z/OS Workload Manager and 
disaster recovery (DR) can be provided by leveraging an IBM Parallel Sysplex®. 

Managing and running containerized applications by using Red Hat OpenShift 
Container Platform

Complementing these benefits is the ability to use the Red Hat OpenShift Container Platform 
on IBM zSystems. Red Hat OpenShift Container Platform is a platform that is used to manage 
and run containerized applications. It enables safe software deployment by automating and 
securing application container orchestration and lifecycle management within its cluster. 

Red Hat OpenShift Container Platform helps position IBM zSystems to be an essential and 
optimal environment for hybrid cloud and traditional enterprise computing. For more 
information about Red Hat OpenShift Container Platform on IBM zSystems, see Red Hat 
OpenShift Container Platform on IBM zSystems and LinuxONE: Reference Architecture.

Collocating containerized applications with traditional workloads on IBM 
zSystems

The ability to colocate containerized applications, including cloud-native applications, with 
traditional workloads that are running in Linux on IBM zSystems or z/OS brings the AI 
application close to the data and introduces the advantage of reduced inferencing latency. AI 
models can be deployed in z/OS container extensions, Red Hat OpenShift Container 
Platform, and natively within z/OS. 

AI deployment solutions on IBM zSystems
There are several solutions that built for deploying AI models on IBM zSystems, such as the 
following ones:

� Deploying with IBM Watson Machine Learning for z/OS

� Deploying with WMLz Online Scoring Community Edition

� Deploying with TensorFlow Serving

� Deploying with IBM zSystems Deep Learning Compiler

The first three solutions that are listed above provide several useful deployment features, 
such as model versioning, RESTful API scoring functions, and high scalability. To leverage 
the Integrated Accelerator for AI within custom-built applications or scoring services, an 
enterprise can use the IBM zDLC to compile an ONNX model into an executable shared 
object library. Additionally, models can be used for inferencing within their native Python or 
Anaconda runtime environment for use by custom applications within a Linux on 
IBM zSystems, or zCX environment.

Deploying with IBM Watson Machine Learning for z/OS
WMLz is an enterprise-grade, production-ready, ML platform that enables embedding ML and 
DL models into transactional applications for real-time insights. With WMLz, organizations 
can build, deploy, and run models on IBM zSystems and leverage several essential 
enterprise-grade ML features, such as model versioning, auditing, and monitoring. 

Note: Using this methodology requires development effort if you want support for RESTful 
API scoring calls from z/OS applications. Additionally, other enterprise-grade model 
serving features must be created.
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For z/OS users, WMLz is a good-fit platform for deploying models that were trained on other 
platforms and converted to a PMML (an XML-based file format for describing ML models and 
pipelines) or the ONNX model format. Many ML frameworks and tools, such as scikit-learn, 
R Studio, IBM SPSS® Modeler, and SAS, support converting and persisting models in PMML 
format. 

ONNX is a standard format that also is used for ML models that is especially versatile at 
representing many DL models that are built in various frameworks. ONNX defines a set of 
common operators and a common file format that enables the portability of DL models across 
frameworks and platforms. Several ML frameworks, such as TensorFlow, PyTorch, and 
scikit-learn, support conversion to the ONNX format. 

Additionally, WMLz is designed for HA, strong security, high performance, and low inference 
latency. It supports model deployment monitoring through IBM Watson OpenScale in CP4D. 
With Watson OpenScale, an enterprise can analyze AI model deployments to transparently 
understand and explain why an AI model is making certain predictions. In addition, 
deployments can be monitored for bias and accuracy drift, enabling trustworthy AI practices. 

When an ONNX model is imported in WMLz and deployed in WMLz, the zDLC is 
automatically used to optimize the model for the IBM zSystems Integrated Accelerator for AI. 
When the model is optimized for the platform, it can be deployed to an online scoring service, 
which allows any z/OS applications to obtain inferencing predictions by using a RESTful API 
call. Alternatively, an option that might appeal to enterprises that want to embed a model 
within an IBM Customer Information Control System (IBM CICS) transaction is the ability to 
deploy a model directly to a CICS region. With this option, inferencing calls can be triggered 
by using CICS GET and PUT container commands versus doing a RESTful API call.

For more information about model interoperability and technical details regarding the process 
of the zDLC and WMLz integration to deploy a model, see 2.2, “Integration and deployment 
best practices” on page 24.

Deploying with WMLz Online Scoring Community Edition
The WMLz Online Scoring Community Edition (OSCE) is a special, no-charge version of 
WMLz that is intended for simple, non-production testing of the real-time scoring function of 
pretrained ONNX models in WMLz. WMLz OSCE is packaged as an s390x Docker container 
image that is easily deployed in a zCX. WMLz OSCE can be used for rapid use case 
evaluation of embedding DL models in transactional z/OS applications while leveraging the 
Integrated Accelerator for AI. You can download the trial code for WMlz OSCE at IBM Watson 
Machine Learning for z/OS. 

Deploying with TensorFlow Serving
TensorFlow Serving is an open-source, high-performance deployment option that is a good fit 
for enterprises that are heavily invested in the TensorFlow ecosystem or have complex model 
pipelines. 

TensorFlow Serving is available as a container image in the IBM zSystems Container Image 
Registry, and it can be used in a zCX or a Linux on IBM zSystems environment. Any z/OS 
application can access the TensorFlow model by using a REST API call. The TensorFlow 
model that is deployed in the TensorFlow Serving server cannot leverage the IBM z16 
Integrated Accelerator for AI. 
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Another TensorFlow deployment option is available in the form of a container image in the 
IBM zSystems Container registry. This option is named IBM zSystems Optimized for 
TensorFlow. TensorFlow models can be built and trained on any platform with TensorFlow 
core 2.7, and then deployed to this container. When the model performs inferencing 
operations within the container, the TensorFlow graph execution transparently targets the 
Integrated Accelerator for AI with no changes being required to the model. With this option, 
inferencing is accelerated only within the container itself, meaning that predictions must be 
driven from within the container running in a zCX or Linux on IBM zSystems environment. 
There is no REST API function, so inferencing requests from z/OS applications are not 
possible without more development. 

Deploying with IBM zSystems Deep Learning Compiler
Another open-source deployment option that is available on the platform is by using the zDLC 
container image to compile and optimize ONNX models. The zDLC is available as a container 
image in the IBM zSystems Container Image Registry, and it can be used in a zCX or a Linux 
on IBM zSystems environment to create custom applications. 

You can use the zDLC to compile an ONNX model to a shared object library that can be 
leveraged by C, C++, Java, and Python applications to take advantage of the IBM zSystems 
Integrated Accelerator for AI. Custom scoring services can be created, or new applications 
that require optimized inferencing can be built. 

For more information about or to access the zDLC container images, see IBM zDLC GitHub.

IBM continues to extend the capabilities of the IBM zSystems platform. Broadening the 
integration capabilities for the platform enables diverse AI development and deployment 
processes. For more information about the future of AI technology on IBM zSystems, see 5.3, 
“Future of AI technologies on IBM zSystems” on page 98.

Note: Any RESTful API functions or z/OS interoperability must be developed.
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Chapter 2. Methodology and tools

Machine learning (ML) attempts to solve business problems that can be resolved by 
discovering specific patterns in available data. It uses different types of algorithms that learn 
and improve through data versus programming. 

In this chapter, we describe the methodology and tools for IBM zSystems for ML projects. We 
introduce the methods and processes, and describe the different considerations and 
components of the tools that are involved in each process, including recommended 
architectures for your first ML project.

This chapter includes the following topics:

� 2.1, “Developing a machine learning model” on page 18
– Defining the business problem
– Approaches and selecting an approach
– Machine learning lifecycle

� 2.2, “Integration and deployment best practices” on page 24
– Model interoperability
– Piloting your first project
– IBM Watson Machine Learning for z/OS overview and integration points
– Batch versus online inference
– Continuous integration and continuous delivery in ML
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2.1  Developing a machine learning model

An ML model is the result of training an ML algorithm with data over time. As the algorithms 
import the training data, the model accuracy improves and produces a more precise model 
that is based on that data, which in turn provides better business value. 

However, model accuracy is not solely dependent upon how many times you iterate through 
the training process. It is also heavily dependent upon the quality and quantity of the data that 
is being used to train the model. Bad training data can lead to misinterpreting trends, bias, not 
recognizing new patterns, unexplainable model responses, and more. The training data must 
be large enough in quantity and be refined, accurate, consistent, and meaningful. 

Before getting too caught up in the exciting benefits you can achieve with implementing an ML 
model, it is important for the success of your artificial intelligence (AI) project to ensure that 
your expectations are reasonably set, and that a plan is established. 

2.1.1  Defining the business problem

At the beginning of every AI project exists a business problem that you must solve. To solve a 
problem, you first must clearly define the exact problem. Having a good understanding of the 
nature of the business problem at hand is a critical component to successfully apply ML 
techniques to solve the problem and support business strategy. For example, a sudden 
increase in fraudulent activity or unexplainable performance issues that are hurting your core 
business. 

Another important consideration to make when you define and try to understand the business 
problem is what data sources are available. The use of untapped data sources within your 
enterprise can help uncover hidden insights. Taking advantage of these sources is critical to 
gain a better understanding of threats and opportunities for your business goals.

After you have a clear idea of your problem, you can attempt to find a solution. This process 
can take many forms, from classifying transactions and blocking them if you suspect 
fraudulent behavior, to analyzing vast amounts of data in batches to make predictions. 

Best-for-fit solutions often depend on the industry in which you operate, the type of data you 
can access, and the results that you want to achieve. Along with establishing what the 
solution should look like, you must establish parameters for success. To help establish these 
parameters, consider asking questions that are similar to the following examples:

� How accurate does the model need to be?
� How will you measure the effect of the model?
� What are the performance targets?

Depending on your business and the problem you are addressing, ethical, and regulatory 
concerns or requirements might need to be addressed. Although outside the scope of this 
IBM Redbooks publication, these ethical and regulatory concerns and requirements are an 
important consideration.
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2.1.2  Approaches and selecting an approach

As part of your model, you must define the inputs and the wanted output. The inputs can be 
as easy as the fields of a loan application form, or the performance statistics that are obtained 
through some type of monitoring interface. 

However, perhaps the inputs must be supplemented by historical data, or other data sources 
that are available to you. For training the model, you need a larger number of examples of this 
input data to shape the model to your business needs. The type of data that you are working 
with affects the approach that you take to training and developing your model. 

One important item to consider is whether your model requires labeled data. Labeled data 
describes raw data that includes labels to identify that data and specify its context for the 
model. When working with labeled data, you can create a training data set that contains 
labeled input and output data and use that information to train the model and obtain accurate 
predictions. 

For example, your data set contains customer’s inputs to a loan application form, including 
whether they defaulted on the loan. You use that data set to train the model through iterative 
prediction making, measuring its own accuracy by comparing it to the correct output, and 
adjusting for the correct answer improving its accuracy. This approach to ML is called 
supervised learning. 

When you are setting up your training data, creating labeled data requires domain expertise, 
more effort, and more time because the value of the label must be expertly and accurately 
assigned. You must establish the value of your label for each sample in your training data set. 
Depending on the problem, this process might require human intervention, which results in a 
higher likelihood for human error. 

For example, if you were to classify pictures of animals, you first need a human to correctly 
label all pictures before you can train your model. However, the use of a supervised learning 
approach to your ML algorithm can offer a valuable solution to eliminate manual classification 
work and to make predictions that are based on labeled data.

For unlabeled data, we use an approach called unsupervised learning. Unsupervised 
learning uses ML algorithms to find groupings, or hidden patterns, in the data without the 
need for human intervention. An example is a recommendation engine that suggests add-on 
items to customers in an online shop, based on the purchases of similar customers. 

Because you do not need to label the data in unsupervised learning, it does not require 
human intervention at the beginning of the process. Therefore, you can start training the 
model sooner. 

However, the model still needs human intervention because the interpretation of the patterns 
it discovers is not part of the model. Also, you might discover that some of the insights that are 
uncovered by your model might not be of value. 

Building on our example, an online shop might notice that diapers are often purchased 
together with red wine; however, it might not make sense to recommend the cross-selling of 
diapers and red wine. This distinction requires human intervention.

But what if labeled and unlabeled data exists in your data set and labeling that data is too 
costly? When this issue occurs, we use an approach that is called semi-supervised learning. 
Semi-supervised learning uses a smaller labeled data set for the supervised portion of the 
training. It also performs the feature extraction through unsupervised learning of a larger 
unlabeled data set.
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Unsupervised learning is a valuable approach to explore masses of data that you want to 
analyze, but are not sure what exactly it is you are looking for. The goal for unsupervised 
learning is to get valuable insights from large volumes of new data. Supervised learning is the 
right approach if you know what you are looking for and must predict outcomes for new data. 

Other approaches also are available, such as reinforced learning that requires no data in 
advance, and semi-supervised learning. For simplicity, we focus here on supervised and 
unsupervised learning.

2.1.3  Machine learning lifecycle

The ML lifecycle is a multi-phase, partially iterative cycle to ensure trustworthy, explainable, 
consistent, and reliable predictions (see Figure 2-1). Each phase includes specific processes 
that are described next.

Figure 2-1   Machine learning lifecycle

Ingest data
The first step in the ML lifecycle is the data ingestion phase. This phase describes a process 
by which data of varying types and sources is moved and stored, or imported, into some 
storage medium. This ingestion can happen in real time or in batches. Those storage 
mediums are often data warehouses, databases, or similar products. As part of the data 
ingestion process, the data is cleaned and transformed, which makes it easily accessible in 
an analytics environment. 

Prepare data
The next step is the data preparation phase, where you clean the data set by removing faulty 
and irrelevant data. It is also important that you deal with any missing values in the data set in 
this phase. Optionally, you also might want to enrich your data through the addition of data 
from different data sources, such as historical or personal data.

Extract features
It is common for data sets to have many features and having too many features as part of 
your model can lead to over-fitting of your model. Over-fitting occurs when the model is too 
complex or too specific, which results in accurate predictions on data it was trained on, but 
inaccurate predictions against new unseen data. 

In a case of over-fitting, feature extraction is a vital part of your process. In the feature 
extraction phase, the goal is to reduce the number of features that is used by the model going 
forward. This process leads to more accurate predictions and faster training. The easiest way 
to achieve this goal is feature selection, where you choose a few of the features and discard 
the rest. Other techniques include dimensionality reduction, where you reduce the number of 
features by combining several features into one new feature.
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Choose algorithm
After your data is ready, you move to the algorithm selection phase. Each of the approaches 
that we discussed can be split into methods or the types of problems they aim to solve, and 
those types of problems contain various types of algorithms that can be used in ML 
processes. 

Supervised learning is split into classification and regression problems; unsupervised 
learning is split into clustering, association, and dimensionality reduction problems. 

Often, several types of ML algorithms can be used to solve your problem. Part of the 
development process is to test different models and evaluate which best fits your needs. 

For example, if you want to predict whether a customer might default on a loan, a Logistic 
Regression algorithm can be used to solve this problem. However, a Random Forest or a 
Neural Network also are potential solutions. 

Important considerations to make when selecting an ML algorithm include evaluating your 
input data to know what you are working with, defining the problem that you must solve and 
goals for that outcome, and reviewing and testing your options when deciding on which 
algorithm to implement. 

Recent IBM publications have shown how AI that ingests raw data can automatically perform 
data preparation; select the best performing ML or deep learning (DL) algorithm; and find the 
optimal hyper parameters to result in the “best” trained model. The IBM Research blog AI for 
AI set to make it easy to create machine learning algorithms demonstrates a new DL design 
approach that is aimed at automating the AI model creation process through optimizing the 
complicated and time-intensive tasks that are typically associated with AI model selection. 

Ultimately, this research work led to a product enhancement of automated machine learning 
(AutoML) to become AutoAI.1 It extends the automation of model building to the entire AI 
lifecycle. Like AutoML, AutoAI applies intelligent automation to the steps of building predictive 
ML models. These steps include preparing data sets for training; identifying the best type of 
model for the data, such as a classification or regression model; and choosing the columns of 
data that best support the problem that the model is solving, known as feature selection. 
Then, AutoAI tests several hyper parameter tuning options to reach the best result as it 
generates and ranks model-candidate pipelines that are based on metrics such as accuracy 
and precision. The best performing pipelines can be put into production to process new data 
and deliver predictions that are based on the model training.

1  https://www.ibm.com/cloud/watson-studio/autoai
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Train model
Before training your model, you must randomly split your data into training, validation, and test 
data. Splitting the data into these categories helps to avoid over-fitting. 

During the training process, the model is fed the training data, which accounts for the largest 
portion of data so the model can see as many examples as possible. Then, the model is 
slightly adjusted to increase its accuracy. This process is repeated several times, which 
continuously improves the model each time, as illustrated in Figure 2-2. 

Then, the validation data helps to adjust the hyper parameters and feature selection, which is 
sometimes referred to as tuning the model. 

Figure 2-2   Inner loop of the ML lifecycle to continuously train and evaluate the ML model 

Hyper parameters are properties that must be set before the model is trained; for example, 
the learning rate for neural networks. Also, hyper parameters must be optimized; that is, you 
must find the optimal values for the hyper parameters to improve your performance metrics. 

As the algorithm is fed validation data, it learns relationships in the data and identifies which 
data points serve as the best predictors for your wanted outcome. 

Finally, the test data is ready to be used. With the test data, you can evaluate and compare 
the tuned models to obtain insight into their accuracy and whether they generalize well to new 
data inputs. This process of selecting the best performing algorithm is call model 
optimization. 

Deploy model
You want to bring in collaborators, such as software engineers or business analysts, to 
validate the quality of the model. After you develop, build, train, and select the most optimal 
model, you want to make it available to applications and users, a process that also is known 
as deployment. 

Two common types of deployment are available:

� Online deployment involves real-time requests and responses where the model is started 
by using a Representational State Transfer (REST) application programming interface 
(API). 

� Batch deployment involves reading and writing from a static data source and also can be 
started by using a REST API. 

When selecting a deployment method, it is important to consider how often you must make 
predictions and whether any latency requirements must be met. You also must consider the 
number of applications that need access to the model, and whether will they score a single 
input or batch inputs. 

If you need several applications to access the model, consider a single online deployment of 
the model and make it accessible to all applications by way of an API. For example, deploy 
your model on a web server and provide a REST API to be called from applications. 
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However, you might want the model to score numerous data in batches on a weekly cadence. 
In this case, it is likely better to implement a batch deployment locally, and potentially as a 
stand-alone application.

Make prediction
This final stage of the ML lifecycle is about the use of your model in production and adding 
value to your business. To make a prediction, the steps that are in Figure 2-3 must be 
repeated, similar to the repetition that is performed in model training. 

Figure 2-3   Making a prediction

The first step is to enrich and prepare the model input data that is in your application. Then, 
the features must be extracted. These steps must be conducted in the same manner as they 
were during model training so that your model can correctly interpret the inputs. 

It is important to ensure that the data that your model is importing is relevant to the problem 
that the model is trying to solve and whether new, more relevant data sets are available to 
help improve the accuracy of predictions. Then, you can begin making predictions based on 
new input data, which looks different depending on your deployment scenario. 

Continuous monitoring, feedback, and retraining
While your model is deployed in production, you must monitor and manage it as with any 
other software. You look for errors and track latency, performance, accuracy drift, bias, and 
business key performance indicators (KPIs). 

You also must track the accuracy of your model because the model accuracy can deteriorate 
over time as your test data shifts from the original data that was used to train the model 
(referred to as model drift). All the information that you collect as a part of monitoring and 
managing the model serves as feedback to the reliability and explainability of the model. This 
feedback enables fine-tuning of the model through model retraining. 

You can retrain a model through a direct data retraining approach that uses more recent and 
relevant data, or through a full lifecycle retraining approach, which retrains the model through 
all stages of the ML lifecycle. Continuous monitoring, feedback, and retraining as described in 
Figure 2-2 on page 22 is vital to maintaining trust in the model through transparent prediction 
making and mitigating bias. The inability to understand how and why a model makes a 
prediction and the concern around bias in AI can expose your business to significant 
reputational and financial risk.

Note: In this context, making a prediction is synonymous with obtaining any outcome, 
which can be a score or a classification instead of a prediction. 
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2.2  Integration and deployment best practices

The methodology of developing models is the foundation and core of an AI project; however, 
having trusted and accurate models is not the final success of an AI implementation. 

The goal of building ML models is to solve a business problem. This process is achieved only 
when the models are deployed to production and actively used by applications for business 
decisions. When we say deployment, we are referring to the process of configuring the model 
to integrate with other applications or user access. 

Because difficulties with the deployment process are a major inhibitor of enterprise AI 
adoption, it is important to understand the details regarding these key challenges and best 
practice solutions for integration into the production environment. 

2.2.1  Model interoperability

One key challenge of ML model integration and deployment is the infrastructure difference 
between the model training environment and the production environment, especially when the 
goal of the project is to optimize business decisions in applications by using AI.

Today, many different ML and DL frameworks are available for data scientists to use for model 
development. These frameworks include scikit-learn, TensorFlow, PyTorch, Caffe, and 
programming languages such as Python, R, and Java. 

In a production environment (especially for traditional industries, such as banking, insurance, 
health care, and government), we mainly are referring to online transaction processing 
(OLTP) and online analytical processing (OLAP) applications. These OLTP and OLAP 
applications are written in different programming languages such as Java, COBOL, C, and 
run on different platforms, such as Linux, cloud, and IBM zSystems. 

It is not practical, even impossible, to rebuild production infrastructure to use different types of 
ML models. Instead, it is a best practice to convert the framework and language-specific 
models into some exchangeable format. Doing so ensures that models are interoperable 
among the training environment and different production deployment targets. 

The models can work with these other environments and targets. As of this writing, the most 
widely used exchangeable formats for model interoperability are Predictive Model Markup 
Language (PMML) and Open Neural Network Exchange (ONNX). 

Predictive Model Markup Language
PMML is an XML-based file format for describing ML models and pipelines. Many ML 
frameworks and tools, such as scikit-learn, R Studio, IBM SPSS Modeler, and SAS support 
converting and persisting models in PMML format.

Open Neural Network Exchange
ONNX is a standard format that also is used for ML models, and it is especially versatile for 
representing DL models. It defines a set of common operators and a common file format that 
enables the portability of DL models across frameworks and platforms. Because of this 
feature, ONNX is a key technology in supporting the IBM zSystems AI strategy to enable 
clients to build and train models anywhere, and perform a simple deployment on 
IBM zSystems with seamless optimization (see Figure 2-4 on page 25).
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Figure 2-4   Deep learning ecosystem on IBM zSystems

Today, most available DL frameworks support the conversion of models that were trained with 
a specific framework to the standard ONNX format by using the command-line interface (CLI) 
or APIs. For example, tf2onnx is one of the most popular open-source projects that can 
convert models that are trained by TensorFlow and Keras to ONNX, which makes them 
portable to IBM zSystems. 

In addition to TensorFlow, PyTorch is a popular DL framework that supports the direct export 
of models to the ONNX format. 

With ONNX, DL models that are created by using different frameworks can be deployed to a 
unified environment for inferencing so that model development and model deployment 
processes are decoupled. It also provides flexibility to data scientists to use their skills and 
choose the model development framework, while also easing the model deployment to 
production process. 

For more information about exporting or converting a model to ONNX format and to access 
the tf2onnx converter, see TensorFlow-ONNX GitHub.

2.2.2  Piloting your first project

Often, data scientists analyze a problem and decide on a modeling technique that is based on 
the characteristics of the problem. In these circumstances, you might be tasked with 
deploying the model, as described in 3.2.2, “Credit risk model deployment and evaluation on 
IBM zSystems” on page 55. 

If you are exploring the usage of ML to solve a problem, you must establish where the 
opportunity for growth exists within your enterprise. As a best practice, start with a small 
project that is directly connected to a business outcome. 

Another important consideration to make when looking at opportunities for growth and 
deciding which problem might benefit most from your ML project is to have a good idea of the 
data that is readily available and the data that might be made available to enable the success 
of the project. Understanding this situation enables you to better realize how that data can 
help solve your problem and the nature of the problem. Start with writing out the business 
problem, the type of data that is to be used, and the purpose of your ML project. 
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As a best practice, use data that you have on hand or that can be collected without a 
significant investment of time. The data also should be data that requires little cleaning and 
preparation. 

The feature extraction and data manipulation must be handled manually until your project 
proves successful and you move on to more robust ML projects. As a best practice, start your 
ML effort with a supervised learning approach because that approach is considered easier to 
understand when compared to other approaches. Also, the value that the predictions bring to 
your enterprise can be more easily assessed with a supervised learning approach. As 
described in “Choose algorithm” on page 21, use tools that are available to help decide the 
algorithmic approach that is best suited for your specific use case. 

Depending on the amount of data that you plan to use for training the model, the training can 
be performed by using a single workstation or a cloud computing service. Model performance 
depends on the data scientists performing the training, their skill set, and their domain 
knowledge of the business challenge. 

Various open source frameworks such as scikit-learn, TensorFlow, PyTorch, and Keras can 
be used to develop and train your model, which can then be seamlessly deployed to 
IBM zSystems. Several open-source integrated development environments (IDEs) also are 
available to provide an easy-to-use interface for training a model, such as Jupyter Notebooks, 
RStudio, and Google Colab. 

To enable collaboration in model training, data scientists use open-source version control 
systems, such as Git, or a Git-based version control system for ML. Conversely, you can use 
products such as IBM Cloud Pak for Data (CP4D), Watson Studio, and IBM SPSS Modeler to 
enable AutoAI functions, such as hyper parameter optimization (HPO) and feature selection, 
open-source integration enablement, and a collaborative environment to support the different 
phases of your ML lifecycle. 

As a best practice, serve your trained model as a service by using a REST API so that you 
are not restricted in accessing the model, and can easily leverage the model from anywhere. 

This type of pilot project likely serves as marketing material inside the enterprise, and it can 
be used to convince and demonstrate to decision makers how ML can be applied to your 
business problems and result in significant improvements. The project also can serve as a 
stepping stone to solving a much larger problem within the enterprise by building on the 
project and by using everything that was learned from it. You might even discover some 
valuable insights while developing your pilot project that might not be noticed otherwise. 

Pilot projects equip the enterprise with a clear, unbiased understanding of the business in a 
unique way, which helps evaluate assumptions that are made by the business about trends 
and customers. It also shows the benefits of applying ML to solve a business problem.

2.2.3  IBM Watson Machine Learning for z/OS overview and integration points

IBM Watson Machine Learning for z/OS (WMLz) is an enterprise-grade ML platform that 
enables embedding ML and DL models in transactional applications for real-time insights. 
WMLz is a production-ready ML platform that delivers several essential enterprise-grade ML 
features, such as model versioning, auditing, and monitoring. Additionally, WMLz is designed 
for high availability (HA), strong security, high performance, and low inference latency. 
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As the best unified ML platform on z/OS, WMLz automates the entire flow of ONNX model 
import, compilation, deployment, and scoring by using the IBM zSystems Deep Learning 
Compiler (zDLC) transparently. The WMLz ONNX engine supports Version 13 of the ONNX 
operation set (opset). When importing DL models with WMLz, the model automatically 
compiles and optimizes for the IBM zSystems Integrated Accelerator for AI, if it is present. 
PMML models can be configured with a similar flow to that of ONNX models. 

By using WMLz, you can easily integrate PMML, ONNX, and CP4D models that are trained 
on platforms other than IBM zSystems. The built-in online scoring service of WMLz includes 
the zDLC capability and features an accessible interface that is used to easily upload and 
deploy models for inferencing. It also makes available a REST API for each deployed model, 
which can be called from z/OS applications. 

Any applications that are running on IBM zSystems can use the unified scoring REST API for 
real-time model inferencing after obtaining the scoring endpoint from the WMLz GUI. Also, 
WMLz allows you to configure the online scoring service in an IBM Customer Information 
Control System (IBM CICS) region by using data gravity as a result of the colocation of your 
transactions and scoring service. Then, you can analyze that data where it originates to drive 
better business decisions. 

Supported data sources in WMLz are determined by the type of data access method that are 
you are using: Java Database Connectivity (JDBC) or Mainframe Data Service (MDS). By 
using the JDBC data access method, WMLz supports access to Db2 for z/OS data sources in 
Scala and Python. By using the MDS data access method, WMLz supports access to Db2 for 
z/OS, IMS, SMF, and VSAM data sources in Scala and Python. 

When you take advantage of the data gravity attribute of your approach, you close the gap 
between where the data is generated and where insights and decisions are made. This 
closure results in lower costs, simpler infrastructure, security improvements with less data 
movement, and better data governance. 
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WMLz architecture and components
WMLz is composed of two elements: a required base component (WMLz base) and an 
optional data science integrated development environment (IDE) (WMLz IDE). An 
architectural diagram of WMLz is shown in Figure 2-5, which shows the interaction between 
the two elements and their respective components. The WMLz base is deployed on IBM z/OS 
and consists of a user interface, online and batch scoring services, model and deployment 
management services, and IBM Open Data Analytics for z/OS (IzODA). 

As a bundled component, IzODA serves as the data processing cluster for WMLz, and it 
provides advanced data analytics capabilities through z/OS Spark (Spark), z/OS Anaconda 
(Anaconda), and Mainframe Data Service (MDS). Spark provides the analytics engine for 
large-scale data processing; Anaconda provides various Python packages for model training; 
and MDS provides the ability to access z/OS data sources and connect them to the data 
processing engines.

WMLz IDE runs on Red Hat OpenShift Container Platform and can be installed on an s390x 
or x86 server. With the WMLz IDE, data scientists can easily work with data originating on 
IBM zSystems and use several ML libraries to create and train models. Using Scala or Python 
within the WMLz IDE, MDS can be used to access Db2 for z/OS, IMS, System Management 
Facility (SMF), and VSAM data sets. A data scientist can create collaborative project 
environments, build Jupyter Notebooks, and create SPSS Modeler flows. Models that are 
created in the WMLz IDE can be easily imported into WMLz base for management and 
deployment. 

Figure 2-5   IBM WMLz architecture diagram
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At the time of writing, WMLz IDE supports creating and deploying MLeap, SparkML, 
scikit-learn, XGBoost, ARIMA, and Seasonal ARIMA models in the integrated Jupyter 
Notebook editor. In addition, there are several model types that can be created by the 
integrated SPSS flow editor. 

For more information and nuances about the supported model types, see Supported 
algorithms, data sources, data types, and model types.

WMLz deployment features 
With WMLz, several enterprise-grade deployment features are provided. Models can be 
deployed to highly available (HA) and performant online scoring servers in z/OS or within a 
CICS region. After a model is deployed, you can monitor the amount of inferencing requests 
coming to the deployment, and the average inferencing latency. 

A downloadable API specification is provided that describes how your applications use the 
API. This API specification is in the format of a Swagger YAML file that describes the 
operations that the API supports, the needed parameters, usage of authorization tokens, the 
input format that is expected, and the output format that is returned. The Swagger file’s 
machine-readable format is advantageous because it can be used to greatly simplify the 
embedding of API calls within z/OS applications by using a service such as IBM Integration 
Bus or ZIBM z/OS Connect EE.

WMLz also supports model deployment monitoring through IBM Watson OpenScale in CP4D. 
With IBM Watson OpenScale, an enterprise can analyze AI model deployments to 
transparently understand and explain why an AI model is making certain predictions. 
Additionally, WMLz supports deployment monitoring for bias and accuracy degradation, which 
are critical components for trustworthy AI, by evaluating and re-evaluating a model to combat 
accuracy drift. SparkML and PMML model deployments can be scheduled for periodic 
re-evaluation to continuously ensure adequate accuracy. The results of the evaluations can 
be seen on the WMLz dashboard, and SparkML models can be automatically retrained if the 
result of the evaluation is not satisfactory. For more information, see 2.2.5, “Continuous 
integration and continuous delivery in ML” on page 33. 

During the ONNX model deployment process, WMLz offers the option of micro-batching, 
where the WMLz ONNX scoring engine queues a configurable quantity of inferencing 
requests before sending them to the IBM z16 Integrated Accelerator for AI. By processing 
multiple inferencing requests at once, the IBM zSystems Integrated Accelerator for AI 
maximizes throughput and reduces the response latency compared to processing inferencing 
requests one at a time. In addition to the customizable micro-batching quantity, a maximum 
latency time can also be defined for the deployment, which means that the scoring server 
waits only a certain amount of time before passing the accumulated inferencing requests to 
the Integrated Accelerator for AI. 

Note: At the time the writing, IBM z/OS Container Extensions (zCX) is a required 
component for compiling the ONNX model into executable files for scoring. Scoring itself 
does not require zCX because the scoring that uses the compiled executable files is 
natively on z/OS. The IBM WMLz development team plans to release a product temporary 
fix (PTF) enhancement that lifts the requirement of zCX so that it instead supports running 
the ONNX compilation procedure on Linux on IBM zSystems server. For more information 
about IBM WMLz 2.4 PTFs, see IBM WMLz Customer Support.

Note: For a model to be eligible for micro-batching, it must have one input dimension that 
is dynamic and one output dimension that is dynamic.
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For more information about implementing micro-batching, see “Reshaping an ONNX model to 
take advantage of WMLz micro-batching” on page 69. 

IBM zSystems Deep Learning Compiler and WMLz
The IBM zSystems platform is suitable for model interoperability through support for open 
standards. By using the solutions that are available on the platform, you can seamlessly 
integrate traditional ML and DL models that are trained on distributed platforms to 
IBM zSystems for inferencing. 

When deploying an ML model, use technology that enables you to create an inference 
solution that is suitable for IBM zSystems workloads. The zDLC, sometimes referred to as the 
ONNX model compiler, is a key component in achieving the goal of a low latency AI inference 
solution that meets service-level agreement (SLA) requirements while running alongside 
these business-critical workloads. 

As key project organizers, IBM Research leads the zDLC development effort by building on 
the ONNX-Multi-Level Intermediate Representation (MLIR) open-source project. The 
compiler optimizes ONNX model inferencing, which is Multi-Level Intermediate 
Representation (MLIR)-based and used to transform your ONNX model to a highly optimized 
shared object library that can target the latest IBM zSystems hardware optimizations. This 
highly optimized shared object library represents an optimized, lightweight, and minimal 
program that can be started for inferencing that is based on the input ONNX model when 
output by the compiler. 

Recent enhancements in the zDLC design enable models that are compiled by using the 
zDLC to quickly and easily take advantage of the IBM Telum processor's Integrated 
Accelerator for AI inferencing capabilities, in addition to other benefits, such as increased 
throughput and reduced latency. The compiled models take advantage of IBM zSystems 
technologies, including single instruction, multiple data (SIMD) on IBM z13® and later, and 
the Integrated Accelerator for AI, which is available on IBM z16, without requiring changes to 
the original model. The Telum processor enables real-time embedded AI directly in 
transactional workloads, which further accelerates inference performance for high-volume 
workloads at scale for the next generation of the IBM zSystems platform. 

Also, the compiler is an integrated capability for WMLz to improve deployment efficiency. For 
more information about the ONNX-MLIR open source project, see ONNX-MLIR GitHub.

Comparing WMLz Online Scoring Community Edition and WMLz 2.4
The WMLz Online Scoring Community Edition (WMLz OSCE) is a special no-charge, 
feature-limited version of WMLz that is intended for simple testing of WMLz real-time scoring 
of pretrained ONNX models. WMLz OSCE is packaged as an s390x Docker container image 
that is easily deployed in an zCX. WMLz OSCE can be used for rapid use case evaluation of 
embedding DL models in transactional z/OS applications. The scoring endpoint is deployed 
within zCX, and it can be accessed by z/OS applications through a RESTful API call. 

WMLz OSCE is not intended for enterprise production use, and it has a much more limited 
feature set than WMLz. 

For more information about the features that are included in WMLz and WMLz OSCE, see 
What’s new in WML for z/OS 2.4.0?
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2.2.4  Batch versus online inference

As with model deployment approaches, model inferencing also uses batch and online 
approaches. To decide whether batch inference or online inference is best for your models, 
you first must have a solid understanding of your use case. The answer can vary by case, 
depending on the business problem that is being addressed. 

The inference approach that you select is important because it leads to varying infrastructure 
requirements. The differences between batch inference and online inference are discussed 
next. 

Batch inference
Batch inference, or offline inference, is the process of generating predictions for several 
records at once by using batch jobs. Batch jobs for inferencing are normally scheduled to run 
regularly (for example, hourly, daily, or weekly) based on the business requirements. 

Because of its recurring nature, batch inference cannot be used for real-time predictions. 
Typically, the prediction results that are generated by batch inference jobs are written to and 
stored in database tables so that they be further analyzed by data analysts or processed by 
other applications. 

As an offline process, batch inference can run from minutes to hours. If it can fit into the batch 
window, which most latency requirements do, latency is not a significant concern. 

Batch inference also tends to be CPU and memory intensive because of the large volumes of 
records being processed simultaneously. To mitigate this issue, you can use big data 
technologies, such as Spark, to optimize the performance and lower the cost when building 
up your infrastructure for batch inference. 

Online inference
Conversely, we have online inference, which is the process of generating predictions on 
demand, in real time. Typically, online inference is embedded in online transactions as a 
synchronized process that processes one or several records for prediction at a time. 

Online inference unlocks an entire new space for traditional applications to benefit from ML 
with real-time insights as needed. Compared with batch inference, online inference tends to 
be more complex because the inference engine must meet the response time, scalability, and 
HA requirements and enforce transaction SLAs. 

Batch versus online inference process in WMLz
When planning for the production integration of your AI models, you must clearly define which 
inference strategy you plan to implement for the models. 

Generally, online inference is required whenever predictions are needed for on demand, 
real-time insights. For example, if your goal is to embed AI in your instant payment 
transactions to enable fraud detection in real time, you must use online inference because 
you need the prediction results that are returned in several milliseconds to identify and 
prevent fraudulent activity as soon as possible. 

However, batch inference should be used in a case where latency is not critical. For example, 
predicting customer churn analysis, where it is sufficient to get the prediction results daily, or 
even weekly, for your customer retention actions. 
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After you decide on the inference strategy, the next step is to set up the infrastructure to 
support your wanted goal. You can use WMLz to fulfill your needs for batch inference and 
online inference (see Figure 2-6). 

Figure 2-6   WMLz batch inference versus online inference process

The process begins when you import your models into your WMLz base component, or if it 
was previously imported into your WMLz model repository. Then, after you deploy a model 
from either starting point, you choose your deployment type (online or batch). 

The WMLz base component includes batch and online scoring services, which expose 
unique REST endpoints that are accessed through REST APIs for each deployed model. 
Batch scoring then takes the group of records from database tables as input, and writes the 
prediction results for the group back to the database tables for storing and access by the 
application. 

The WMLz batch scoring service uses Spark for z/OS for high performance, zIIP eligible, 
in-memory data processing. WMLz online scoring service processes one or several new 
records as input in real time, and then, returns the prediction for direct access by the 
application and provides optimized performance for different types of models.

WMLz online scoring services can support low latency inferencing, even in the single digit 
milliseconds for some models. Factors, such as model complexity, greatly affect the latency 
that can be achieved. 

WMLz also supports HA scoring clusters for online inference and batch inference to reduce 
the downtime of your applications that are running on z/OS. 
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Figure 2-7 shows an example architecture that includes an online scoring cluster that is 
deployed on a SYSPLEX with two logical partitions (LPARs). 

Figure 2-7   WMLz online scoring cluster example

The scoring cluster has four scoring service instances, which are separated by two instances 
on each LPAR. The application calls the scoring cluster through one REST endpoint, which is 
then routed to available scoring instances by using Sysplex Distributor capabilities. 

The Sysplex Distributor is used to provide TCP/IP load-balancing between multiple LPARs to 
optimally distribute requests to achieve and optimize workload balancing. In addition to HA, 
scoring clusters also can help enable scalability to support high transaction throughputs.

2.2.5  Continuous integration and continuous delivery in ML

Because models are trained by using historical data, the model is likely to experience model 
drift where the accuracy of a deployed model degrades over time as new data flows are 
introduced to the algorithm. It is essential to the integrity of your AI systems that you 
continuously monitor, retrain, test, and integrate into the production environment every model 
that was deployed. 

Integrating an infrastructure and automated process to manage the essential iterative process 
of maintaining your models lifecycle can be critical to the success of your AI implementation 
over time. This supporting infrastructure is the core of continuous integration and continuous 
delivery (CI/CD) in ML. 

Data access
The first part of your pipeline is having the infrastructure to support access of various volumes 
and types of data from multiple different sources. Data growth continues to occur at an 
exponential rate with a growing number of data storage mediums, which results in an 
increase in the complexity of data, and data movement security risks, expenses, and efforts. 
Chapter 2. Methodology and tools 33



Data Virtualization is a recommended approach to data access over traditional data 
movement approaches to avoid outdated insights and security risks. It connects multiple data 
sources into a single self-balancing collection of data sources or databases, which enables 
independently designed data structures to be used together with minimal added processing 
costs. 

IBM offers the IBM Data Virtualization Manager for z/OS (DVM) for virtual, integrated views of 
data that is the IBM zSystems platform. This tool eliminates the need to move, replicate, or 
transform data instead enabling data access by using industry-standard APIs (when 
combined with IBM z/OS Connect). 

In turn, you can enrich your insights with live, transactional data at speed, and benefit from 
DVM natively running on IBM zSystems zIIP processors. DVM enables access to many 
varying data sources, such as VSAM, IMS, ADABAS, IBM MQ, and non IBM zSystems data. 

DVM also provides access to almost any application by using industry-standard APIs, 
including JSON, Structured Query Language (SQL), SOAP, and REST, by using 
IBM zSystems hardware benefits. This access to native IBM zSystems data sources in real 
time helps simplify your ML model development from IBM zSystems data and reduces the 
costs that are associated with moving data to other platforms. 

For more information about DVM, see IBM Data Virtualization Manager for z/OS, SG24-8514.

Building on the capabilities of Data Virtualization is CP4D 4.5.x. CP4D provides a connection 
to different data sources, such as IBM Db2, Oracle, Hive, Microsoft SQL Server, Teradata, 
and Hadoop. 

The Data Virtualization service in CP4D virtualizes the data by taking data with similar 
sources and joining them into unified virtual tables through the extract, transform, and load 
process. The service then groups the tables by schema, which are then ready for data 
governance rules and project associations to be applied before being ready for use by 
projects and applications. This process allows querying across multiple data sources in the 
same way you query against a single data source, without compromising query performance 
by using parallel processing. 

When you incorporate CP4D into your CI/CD pipeline, you are equipped with a central 
location for access control and data governance. You can connect and query multiple data 
sources and use the virtualized data, which breaks down data silos and simplifies data 
analytics throughout the enterprise.

For more information about data virtualization tools and solutions on IBM zSystems, 
see IBM Data virtualization tools and solutions.

Developing and deploying ML assets in a CI/CD workflow across z/OS by 
using WMLz
IBM recognizes the critical requirement of allowing businesses to keep their sensitive, 
mission-critical data where they want it and providing solutions that bring cognitive 
capabilities to the data. WMLz is the solution that enables you to use ML capabilities on the 
IBM zSystems platform to extract actionable insights from sensitive, mission-critical data 
while keeping the data in the security-rich IBM zSystems environment and leveraging existing 
IBM zSystems capabilities. It provides an enterprise-grade ML solution on the IBM zSystems 
platform for running ML with data in place, with HA, and developer-friendly APIs for 
applications on the IBM zSystems and Red Hat OpenShift Container platforms.
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HA and real-time predictions with minimum impact to transaction processing are the key 
requirements for enterprises looking to leverage ML on the IBM zSystems platform. To enable 
these predictions, WMLz takes this requirement to heart in the architecture of the scoring 
services that run natively on z/OS, bringing state-of-the-art ML technology behind the firewall 
on IBM zSystems. WMLz also provides powerful advanced features to assist the integration 
of your model lifecycle management into your enterprise’s current CI/CD pipeline as part of 
your DevOps process, which significantly reduces and simplifies development and 
deployment tasks.

During model development, you can use IBM Cognitive Assistant for Data Scientists (CADS), 
which automates the selection of the best performing algorithm from your algorithm 
candidates for the model, which are accessible from WMLz by using the supported Scala 
APIs and CADS APIs. In addition to CADS, you also can use the HPO estimator, which is 
accessed by using the CADS API and automatically selects the hyper parameter that helps 
produce the best-performing model for the algorithm. 

The ability that is enabled by WMLz to use advanced proprietary cognitive technologies from 
IBM Research while seamlessly integrating with the most commonly used open-source 
packages with which data scientists are familiar makes it possible to condense a weeks-long 
process into days or hours. For more information about the technical details regarding the 
WMLz CADS APIs and the HPO estimator, including examples, see IBM CADS (Cognitive 
Assistant for Data Scientists) API.

You can even automate feature recommendations by using the capabilities of WMLz to select 
relevant features based on correlation analysis. Also, WMLz provides APIs that can be called 
to store, deploy, update, and delete models in the repository, which provides access to other 
tools and processes in the pipeline and enables automated deployments to test and 
production environments (see Figure 2-8). 

Figure 2-8   Model lifecycle management by using WMLz
Chapter 2. Methodology and tools 35

https://www.ibm.com/docs/en/wml-for-zos/2.4.0?topic=apis-cads-api
https://www.ibm.com/docs/en/wml-for-zos/2.4.0?topic=apis-cads-api


When integrating ML models into the production system, data scientists can choose to enable 
the automated retraining option. With this feature enabled, WMLz continuously monitors the 
performance of the model. It automatically triggers retraining after it detects the degradation 
of the accuracy of the model reached a specified threshold. The auto-retrain then generates a 
new version of the model and stores it in the WMLz repository. 

CP4D can be used with WMLz to enable the access and management of all enterprise data 
on and off the IBM zSystems platform. Another benefit of the usage of the tools together is 
the many colocation scenarios that you can implement, which influences data gravity by 
reducing data movement. You can use DVM for z/OS to provision IBM zSystems data to 
CP4D for Data Virtualization. Together, they offer a powerful combination of capabilities to 
manage and use your data and AI. 

The CI/CD pipeline build process can call the API that is provided by your WMLz service to 
detect whether a new version was generated for the deployed model. After it detects a new 
model version is available, the build process uses the WMLz API to deploy the new version to 
the scoring server that is running in the testing environment. After testing of the new model 
version is complete, the build process calls the WMLz service to integrate and deploy the new 
version to the production system. This entire process can be automated, which requires no 
human intervention.

The model lifecycle is much larger than what this chapter covers, so your CI/CD solution for 
ML is likely to be much more robust than what was described here. For more information 
about the tools and capabilities to enable the usage of ML in your CI/CD pipeline at each 
stage of your model lifecycle, see AI Model Lifecycle Management: Overview.
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Chapter 3. Real-time, in-transaction scoring 
use case scenarios

Real-time, in-transaction analytics provides companies the ability to truly tap into their rich 
vein of historical system of record information. It enables mining to automatically 
discover insights and generate predictive models with scoring capabilities to take advantage 
of all the data that they are capturing. Therefore, instead of looking into the past for 
generating reports, businesses can predict what might occur in the future based on analysis 
of their data. 

Having this ability makes it possible to achieve many benefits, such as personalizing every 
client interaction, reducing risks, detecting fraud, cross and up selling, customer 
categorization, inventory optimization, and many others that are meant to increase your 
revenue and disrupt competition. 

This chapter describes the business value of real-time, in-transaction artificial intelligence (AI) 
scoring for various industries and how IBM zSystems hardware and software enable an 
enterprise to inference all its business transactions. We describe and demonstrate the 
end-to-end implementation of two use cases that are focused on real-time, in-transaction 
scoring. In the first use case scenario, we explore integrating a credit risk AI model with an 
IBM Customer Information Control System (IBM CICS) application. In the second use case 
scenario, we demonstrate training and deploying a deep learning (DL) credit card fraud model 
into IBM Watson Machine Learning for z/OS (WMLz).

This chapter includes the following topics:

� 3.1, “Business value of in-transaction scoring” on page 38
� 3.2, “Credit risk assessment use case scenario” on page 48
� 3.3, “Credit card payments fraud detection use case scenario” on page 60
� 3.4, “Summary” on page 78 
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3.1  Business value of in-transaction scoring

The value of real-time, in-transaction scoring is rooted in its ability to use the most recent and 
relevant available data to uncover valuable business insights. This process leads to trusted, 
actionable results and the development of more accurate machine learning (ML) models to 
make optimal decisions that drive business value. 

More simple solutions generally include the use of post-transaction analytics with aged data, 
which results in suboptimal decision making. It also can lead to missed opportunities and 
decreased customer satisfaction and retention. 

Real-time transactional scoring can arm your enterprise with actionable insights on every 
transaction, increase revenue, reduce risk, and improve trust with access to the most current 
data for the best analytical outcome, all while maintaining service-level agreements (SLAs). 
Real-time in-transaction scoring delivers better, more profitable decisions that use the latest 
data at the point of customer impact and in turn enables the following benefits:

� Engage in more informed customer interactions, which improve customer service, and 
increases revenue per customer ratio. It also leads to more personalized 
recommendations that increase cross and up selling opportunities, improves 
effectiveness, and heightens customer retention.

� Improves accurate fraud identification and prevention efforts with the latest data, which in 
turn reduces risk and vulnerability to new approaches to fraud, and cost of recovery 
actions.

� Improvements in the speed and accuracy of scoring to drive better business insights and 
profitable decisions by using new and relevant data directly within the online transaction 
processing (OLTP) application. 

� Deliver the performance that is required to meet and exceed the SLAs of OLTP 
applications.

� Improve resource usage, which minimizes demand on the network, hardware, software, 
and resources.

� Discover and drive new business opportunities through better business insights and 
enable quick responses to market changes before it impacts the bottom line. 

� A single infrastructure for reduced complexity and redundancy of hardware software, and 
administration resources.

� AI systems are more reliable by leveraging the same high qualities of service as the OLTP 
systems on which they are deployed. 

3.1.1  Industry-specific scenarios that use in-transaction scoring

The following industry-specific use cases use ML and real-time in-transaction scoring to 
obtain valuable business insights and benefits:

� Health care: Aided diagnosis, and disease prevention

� Finance: Payment and credit card fraud prevention, financial trade optimization, streamline 
account setup and customer acquisition, automate compliance, loan approvals, and 
reporting

� Insurance: Faster claim validation, underwriting processing, policy issuance, and fraud 
prevention 

� Retail: Marketing personalization, and improved customer service
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� Security: Security screening optimization, and improved cybersecurity

� Media and Entertainment: Ad targeting, and audience prediction

� Utilities: Usage pattern analysis, and identify efficiency opportunities

� Telecom: Customer churn and retention, and network performance

� Transportation: Self-driving cars, and traffic congestion prediction

� Government: Automate claims and benefits processing, and verify property appraisals

An in-transaction scoring solution that is embedded with ML can be implemented for the 
following various use cases within an enterprise to solve business problems:

� Fraud detection

An implementation example of an anti-fraud use case is embedding point-of-sale 
transaction processing with fraud detection, which means predicting whether a customer 
transaction (for example a credit card charge) is fraudulent and should be blocked or 
flagged by the financial institution. Then, based on the risk level, minimize or eradicate in 
real time the effect and cost of fraudulent transactions for the institution and customers. 

� Anti-money laundering (AML) 

An example includes an implementation of ML and fuzzy matching to augment 
in-transaction monitoring to improve and scale AML compliance efforts. This 
implementation enables better prioritizing of risks and reduces false positives of 
suspicious transaction alerts, which in turn allows analysts to focus on suspicious 
behaviors and quickly resolve low-risk alerts. It also significantly speeds up AML 
investigations.

� Risk aggregations

An example includes streamlining and automating risk reporting processes, which enable 
reports to be generated with data from multiple perspectives in an integrated view for a 
simpler, more comprehensive understanding. This ability helps satisfy risk reporting 
requirements with less effort and improve performance issues with accurate, holistic risk 
assessments across the enterprise. 

� Credit risk assessment

This type of assessment automates the credit risk assessment process of customers and 
achieves a better understanding of the results through decision-making transparency. This 
process improves trust between the financial institution and the customer, increases loan 
application processing speed, and obtains more accurate credit risk assessment results 
before any lending is approved.

� Third-party risk management

When engaging in business with third parties, such as vendors and subcontractors, a 
scalable process can be achieved for managing the risk and compliance that is associated 
with such third parties. This process can lead to a clearer understanding of how third 
parties relate to key business processes. It also enables the enterprise to effectively and 
quickly identify and resolve third-party risks or regulatory compliance issues through 
activity monitoring across the enterprise. 

� Treasury or currency risk management 

By using pre-trade risk analysis and continuous risk modeling trade scenario implications 
on portfolios can be predicted, including the consideration of the cost of risk capital, while 
understanding risk exposure in real time. This ability enables the enterprise to mitigate the 
rising costs of inefficient margin calculations and present the most accurate capital-ratio 
impact predictions to customers before trades are completed.
Chapter 3. Real-time, in-transaction scoring use case scenarios 39



� Accounts payable management

Automate the process of matching documents to invoices through automated data 
capturing to enable automatic approval routing. As a result, errors are reduced and fraud 
prevention is enabled by way of background controls.

3.1.2  Optimizing in-transaction decisions at scale with AI on IBM zSystems

The strategy around AI on IBM zSystems is focused on obtaining valuable business insights 
and operational excellence by using a holistic approach. This strategy includes the following 
key components:

� Enables the use of open source data science packages on the platform, such as 
TensorFlow or PyTorch.

� Optimizes libraries and compilers for the IBM zSystems architecture and new AI hardware 
developments, such as the IBM Integrated Accelerator for AI.

� Uses open source directly or with IBM AI offerings, such as IBM WMLz or IBM Cloud Pak 
for Data (CP4D).

� Offers an extensive portfolio of technologies on the platform to enable embedding and 
integrating AI into client workloads and IBM delivered offerings.

Challenges, such as the timeliness of data availability, irrelevant insights from degraded or 
incomplete data, a lack of confidence in the accuracy of the data and resulting predictions, 
increases in costs, and delayed response times, prevents enterprises from fully using their 
data and capitalizing on new business opportunities. Deploying AI-infused applications on the 
IBM zSystems platform, where the transactions occur and transactional data originates, 
presents unique business benefits that can help enterprises overcome these challenges. 

A significant amount of business-critical data originates and is stored on the IBM zSystems 
platform as a result of processing billions of daily transactions. When response time is critical 
to SLAs, calling off platform for inferencing can introduce intolerable levels of overhead and 
latency. 

Scoring these transactions on the platform results in reduced latency to more easily meet 
these stringent SLAs. This faster scoring latency is a result of the data gravity of the platform, 
where it is more efficient to bring the scoring to where the data is rather than move the data to 
be scored off-platform. Data gravity also enables real-time insights from the most current data 
in business-critical workloads. With IBM zSystems, an enterprise can infuse AI into every 
business transaction at scale with high throughput and low latency with minimal application 
changes. 

DL-based fraud models emerged as a way to efficiently analyze transactional data at scale to 
detect fraudulent patterns. This approach is more effective than traditional fraud models. 
However, these models are difficult to use within a transaction due to the complexity of the 
mathematical operations that must be performed by the model during inferencing and 
because historically these inferencing requests were sent off platform. Enterprises who want 
to use DL models in transactions can leverage the IBM z16 Integrated Accelerator for AI, 
which is optimized for processing a DL model’s inferencing request. 

Also, because business-critical data is on IBM zSystems, data movement across the 
organization for inferencing can raise concerns about security, trust, and data quality. With 
real-time in-transaction scoring on IBM zSystems, the need for data movement is reduced. 
This reduction in data movement also reduces risks around security and trust, which 
improves data quality by using metadata that might otherwise be lost. It also reduces 
decision-making time. 
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The ability to scale AI on IBM zSystems to score every transaction in real time reduces the 
opportunity for fraudulent behavior, saves costs, increases customer satisfaction, and 
achieves lower and more consistent response times. You no longer need to take on unwanted 
risk by inferencing off platform. Furthermore, you have the time to run critical business 
processes within the transaction, such as fraud detection, without reneging on your SLAs.

Using a system that allows you to seamlessly embed AI into z/OS applications helps 
accelerate your enterprise’s AI journey and realize positive outcomes sooner. WMLz is a key 
enablement technology in this system that readily embeds ML and DL models in transactional 
applications to deliver real-time insights.

WMLz also enables the retention of models with current data, which improves accuracy and 
trust, and delivers simplified and streamlined model management. It enables inferencing of 
every transaction with direct calls from transactional workloads to model scoring services with 
minimal effect on operational processing SLAs for no-compromise AI.

3.1.3  Solution architecture overview

Recall from 1.3, “Building and training anywhere and deploying and infusing on IBM 
zSystems” on page 8, that you can develop and train ML models by using the platform of your 
choice. One of the reasons that this task can be done is because of the growing number of 
supported model formats on IBM zSystems, in particular the Open Neural Network Exchange 
(ONNX) format. 

When deploying a model on IBM zSystems that was developed off-platform, numerous 
deployment options are available, and of those options, we explore three of the more popular 
approaches that are optimized for IBM zSystems scoring:

� Scoring with TensorFlow Serving
� Scoring with WMLz Online Scoring Community Edition
� Scoring with IBM Watson Machine Learning for z/OS

Scoring with TensorFlow Serving
The first deployment option uses TensorFlow Serving on IBM zSystems to serve models that 
are developed with the TensorFlow framework on any platform.

The process flow of in-transaction scoring that uses TensorFlow on IBM zSystems is shown in 
Figure 3-1 on page 42 and includes the following steps:

1. Receive inbound transaction from a system of engagement.

2. A z/OS CICS application receives control and processes the inbound transaction. 

In addition to standard business logic, a credit scoring check is initiated to validate the 
transaction.

3. The CICS application interacts with the IBM Db2 database, which stores account history, 
data, and related information to retrieve account data and update records as needed.

4. The CICS application drives a Representational State Transfer (REST) request to the 
inference service, which is hosted in an IBM z/OS Container Extensions (zCX) instance on 
the IBM zSystems platform.
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5. An online data preparation service receives control to handle any data preprocessing and 
aggregation that is not implemented as part of the TensorFlow model. This step is 
optional.

6. The model that is hosted in TensorFlow Serving is started to process the prediction and 
passes the result back through the calling stack. There, the application logic determines 
how to proceed based on the prediction that is returned.

Figure 3-1   Flow of in-transaction scoring with TensorFlow on IBM zSystems

TensorFlow
One major component of this architecture is TensorFlow. TensorFlow is an end-to-end open 
source platform for ML. It includes a comprehensive, flexible system of tools, libraries, and 
community resources that allows researchers to push the state-of-the-art in ML and enables 
developers to easily build and deploy ML infused applications. 

It is one of the most widely used open source DL frameworks with AI pipeline management 
and efficient inferencing capabilities for deep neural networks. With IBM focusing on enabling 
the use of open source AI frameworks on the IBM zSystems platform, you can use 
TensorFlow to build, train, and serve ML models, all within the secure high-performance 
environment of IBM zSystems, where your mission-critical data and applications are stored. 

Model building and training are simplified with TensorFlow through its use of intuitive 
high-level application programming interfaces (APIs), which makes for immediate model 
iteration and simple debugging. The framework can run on the CPU, GPU, or TPU on servers, 
desktops, and even mobile devices. 

After a trained model is created and ready to be deployed, TensorFlow Serving facilitates 
deploying models to begin serving prediction requests. This function simplifies and speeds up 
the process of taking a model into production. You can deploy on different operating systems 
and platforms, such as cloud, on-premises, in the browser, or on-device, regardless of the 
programming language that is used. 
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Opting to use TensorFlow as model serving on IBM zSystems is ideal in the following 
circumstances:

� When running multiple models on a large scale.
� When you require direct support of TensorFlow assets (models, pipelines, and so on).
� If you want a consistent TensorFlow system experience. 
� When you must configure serving infrastructure to scale.
� When REST API overhead is acceptable.

Although TensorFlow is not yet ported to z/OS natively, you can still deploy it to your z/OS 
environment by using zCX. zCX can run Linux on IBM zSystems compatible containers in a 
z/OS address space, which is a requirement to build TensorFlow by using the TensorFlow 
Linux on IBM zSystems Docker image. This feature enables you to deploy TensorFlow Docker 
images directly on zCX in proximity to mission-critical z/OS workloads. 

zCX provides the functions to expand and modernize your z/OS software system to include 
Linux applications, which can leverage your IBM zSystems investment and its renowned 
qualities of service. For more information about the most up-to-date TensorFlow Linux on 
IBM zSystems Docker image, see IBM zSystems Container Image Registry.

Scoring with WMLz Online Scoring Community Edition
The second deployment option, and the one we chose to implement for our credit risk model 
deployment, is using WMLz Online Scoring Community Edition (OSCE) as the scoring 
engine. The model development and deployment is described in further detail in 3.2, “Credit 
risk assessment use case scenario” on page 48. 

WMLz serves as an end-to-end ML platform for AI on z/OS. It delivers predictive analytics 
capabilities to the platform and enables the generation of real-time insights at the source. It 
also provides essential model versions, auditing, and monitoring with high availability (HA), 
high performance, low latency, and ML model automation or ML as-a-service. 

WMLz OSCE offers a no-charge option to test the WMLz feature of real-time inferencing of 
pre-trained DL ONNX models. Neural network models can be served to z/OS applications 
through a REST API. For more information about the use of this feature, see 3.2.2, “Credit 
risk model deployment and evaluation on IBM zSystems” on page 55.

Note: TensorFlow Serving can be used for other types of models in addition to TensorFlow 
models.
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The process flow of in-transaction scoring by using WMLz OSCE is shown in Figure 3-2 and 
includes the following steps.

Figure 3-2   Flow of in-transaction scoring with WMLz

1. Receiving an inbound transaction from a system of engagement triggers the scoring 
process.

2. The z/OS CICS application receives control to process the transaction. 

In addition to standard business logic, a credit scoring check starts validation of the 
transaction.

3. The CICS application communicates with the Db2 database to access and retrieve 
account history, data, and related information that is necessary to make an accurate 
prediction and update records as needed.

4. The CICS application triggers a REST API request (or REST call) to the WMLz OSCE 
server that is inside a zCX instance.

5. The WMLz OSCE scoring service receives the request, starts an instance of the scoring 
model to process the prediction, and then returns the inference result back through the 
calling stack to the CICS application, where the application logic can act based on the 
value that is returned. 

6. Optionally, you can use the WMLz integrated development environment (IDE) for model 
training and development. The WMLz IDE provides various ML modeling tools, run times, 
and libraries with which data scientists can explore mission-critical data on IBM zSystems 
and train models to extract actionable insights from that data. 

You also can install and use WMLz IDE on Linux on IBM zSystems or x86. Then, you can 
import those trained models into WMLz for deployment and management. 

Alternatively, you can use CP4D with IBM Watson Studio to build ML models for optimized 
decision-making. You can use CP4D to enable a hybrid cloud approach to AI for 
accelerated insights across cloud and on-premises sources, improvements in productivity 
with reduced data integration requests, and cost savings by eliminating manual 
cataloging. CP4D and Watson Studio run on Red Hat OpenShift on Linux on 
IBM zSystems, and x86 servers. 

For more information about the many fit-for-need CP4D deployment options that are 
available to expand your AI services, see IBM Cloud Pak for Data Deployments.
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Scoring with IBM Watson Machine Learning for z/OS
The third deployment option, WMLz, is used to use our DL credit card fraud model for our 
second use case. This implementation is described in more detail in 3.3, “Credit card 
payments fraud detection use case scenario” on page 60. 

WMLz delivers predictive analytics capabilities to the platform and enables the generation of 
real-time insights at the source of a transaction. It offers a flexible model development 
environment with which you develop on your platform of choice, and deploy models with your 
transaction services to benefit from low latency, high performance, greater resiliency, and the 
security rich environment of IBM zSystems. It also provides essential model versions, 
auditing, and deployment monitoring. 

We chose to implement our credit card fraud model in WMLz instead of TensorFlow Serving 
because of the ease of leveraging the IBM Integrated Accelerator for AI through WMLz. This 
acceleration is essential for enterprises hoping to leverage AI in high-throughput transactional 
environments. Another unique feature that WMLz provides is the ability to deploy a model to a 
z/OS CICS region, which eliminates the RESTful API impact that is present with the 
TensorFlow Serving implementation. 

The process flow for our credit card fraud deployment, which is shown in Figure 3-3, includes 
the following high-level steps.

Figure 3-3   WMLz ONNX deployment and score process flow

1. Import: When a TensorFlow Deep Learning credit card fraud model is trained by a data 
scientist, it is converted to the ONNX model format and imported into WMLz.

2.Compile: When the model is imported into WMLz, it is compiled by the IBM zSystems Deep 
Learning Compiler (zDLC), which is run within a container in a zCX instance. The ONNX 
model is now optimized for the IBM Integrated Accelerator for AI and transferred to WMLz 
for storage in its metadata repository. 

3. Deploy: The compiled model is deployed to a scoring server that is running within a Liberty 
Java virtual machine (JVM) in a CICS region. The model is now ready to complete 
inferencing requests that are sent to it by CICS applications. 
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These steps are described in more detail in 3.3.2, “Fraud detection model deployment and 
evaluation on IBM zSystems” on page 66.

Also shown in Figure 3-3 on page 45 is the process flow of inferencing a credit card 
transaction for potential fraud within the transaction. The steps are as follows: 

1. An inbound transaction is received by z/OS from the point-of-sale system. 

2. The z/OS CICS COBOL application that is responsible for processing the credit card 
transaction takes control.

3. The CICS application communicates with the Db2 database to access and retrieve 
account transaction history, data, and related information that is necessary to make a 
fraud prediction and update records as needed.

4. The CICS application triggers the fraud scoring call by using a WMLz provided program 
that is called ALNSCORE. A CICS LINK command is used, and a CICS PUT command is 
used to transfer the model inputs from the COBOL program to the ALNSCORE program. 

The ALNSCORE program passes along the input data to the ONNX scoring service. 

5. The ONNX scoring service within the Liberty JVM performs the optimized inferencing 
request leveraging the IBM Integrated Accelerator for AI. 

The fraud prediction result is returned to ALNSCORE. 

6. A CICS GET command is used to retrieve the outputs from the inferencing request for this 
transaction. The CICS program has an indication whether the current customer 
transaction is fraudulent or not and can either deny or complete the transaction. 

In addition to the components that previously were described (TensorFlow Serving, zCX, 
CP4D, WMLz OSCE, and WMLz), the high-level solution architecture for in-transaction 
scoring on IBM zSystems might include the following components and integrations (described 
in the corresponding sections):

� IBM CICS Transactions Server for z/OS
� IBM Db2 database for z/OS
� Docker containers

IBM CICS Transactions Server for z/OS
Starting with our sample application, IBM CICS Transactions Server for z/OS (CICS) is a 
mixed-language application server that runs on the IBM zSystems platform. An application 
server provides the environment to host applications. 

CICS is used as an application server by many enterprises in various industries, especially by 
enterprises in the financial services sector that require high levels of security, scalability, and 
cost efficiency for processing billions of high throughput workloads, such as credit card 
transactions, across the world daily. 

With its mixed-language capability, CICS can host applications that are written in many 
different languages (from Java EE to COBOL), and these mixed-language applications can 
share core programming concepts. This feature enables developers to write applications in 
the best language for the requirements and use modern languages without the rework of 
existing applications. The IBM CICS program logic manages the following tasks:

� Creates the scoring input record.
� Starts the REST call to the credit risk model for scoring.
� Prints the scoring result to the CICS region.
� Reads preprocessed credit application data from the input.
� Prints the score for each application to an output file.
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For more information about the application logic for our sample CICS application, see 3.2.3, 
“CICS application integration for real-time credit risk scoring” on page 58.

IBM Db2 database for z/OS
Because your model might use data that is not normally part of the transaction, this data must 
be collected. An example of this type of information might be more information about your 
customer that is based on the customer’s ID. This customer data might be personal or 
historical data that was saved in a database. 

The database that is used in the architecture that is shown in Figure 3-2 on page 44 is the 
IBM Db2 database for z/OS. This database is a highly scalable, reliable, and cost-effective 
relational database management system that runs on the platform. 

A relational database is a database in which all of the data is logically contained in tables and 
organized according to the relational model. By using Db2 for z/OS, data can be defined and 
manipulated by using Structured Query Language (SQL), which is the standard language for 
accessing data in relational databases. 

Db2 for z/OS provides the functions that are needed to handle rapid changes in diverse and 
unpredictable workloads while providing optimal resource usage and investment. The 
database stores the historical and real-time data that is required to make accurate 
predictions. The tight integration that Db2 for z/OS has with the IBM zSystems architecture 
and the z/OS environment creates a synergy that allows Db2 to use advanced z/OS 
functions.

Docker containers
To enable WMLz OSCE in a z/OS environment, you must enable and configure z/OS 
Container Extensions. Also, you must provision a zCX instance to host the WMLz OSCE 
server that is running as a Docker container. The WMLz OSCE server Docker container is 
composed of the web user interface, the ONNX scoring service, and the ONNX compiler 
service. Additionally, WMLz requires a zCX instance only for the ONNX compiler service, 
which runs within a container.

Deploying the container in a zCX instance makes it possible to modify the deployment 
scenario to deploy to a Linux on IBM zSystems system, if needed. 

Many AI libraries and frameworks support the functions of exporting or converting a trained 
model to ONNX format. After a model is in an ONNX format, it is portable to any platform 
without any runtime dependencies that are based on the libraries or framework on which it 
was trained. 

As part of the import process (see “Deploying the model with WMLz OSCE” on page 55), the 
ONNX compiler service compiles our model into executable code that is optimized for the 
IBM zSystems platform for scoring with the help of the zDLC. The ONNX scoring service 
handles the REST request from the application, starts the inference process, and returns the 
scoring result to the application.

A REST API, also known as RESTful API, is an API that conforms to the constraints of the 
REST architectural style and allows for interaction with RESTful web services. An API is a set 
of definitions and protocols for building and integrating application software. You can think of 
an API as a mediator between the users or customers, and the resources or web services 
that they want to get. It is also a way for an organization to share resources and information 
while maintaining security, control, and authentication, which determines who can access 
specific information.
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3.2  Credit risk assessment use case scenario

Current credit risk assessment processes tend to be largely manual, resource-intensive, and 
untrustworthy due to a lack of transparency around decision making, and they cannot use the 
high volumes of complex data from various sources at rest or in motion. 

Enterprises need an automated solution that provides explainable AI to increase customer 
trust and protect themselves from potential liability. They must do so while maintaining 
increasingly strict regulatory compliance requirements and meet stringent SLAs with agility 
and flexibility. Through infusing AI into credit risk assessment applications with ML models, 
financial institutions can do just that. 

Our use case demonstrates how we easily infuse AI into an IBM CICS application that is on 
IBM zSystems by using a TensorFlow ML model that is started by a REST API call. 
Additionally, that model is deployed with WMLz OSCE and used by providing ML-based credit 
risk scoring within a loan application. 

We also briefly describe the same scenario by using TensorFlow as the scoring engine 
instead of WMLz. The purpose of our example application is to start the deployed model, use 
financial data to make trusted predictions about an applicant’s default risk, and present that 
risk assessment to the user. This assessment result serves as the foundation for credit or 
loan approval or denial and the reasoning behind the decision. 

When a customer applies for a loan, the lending institution must evaluate whether the 
applicant can reliably repay the principal loan amount and any accrued interest. Lenders or 
banks commonly use measures of profitability and leverage to assess credit risk. 

The concept of leverage helps determine whether the applicant is a risk or an investment that 
is worth making. When referring to a high leverage applicant, it is understood that the 
applicant has more debt than equity, which increases the risk level of the applicant.

Given two loan applicants (one with high profitability and high leverage, and the other with low 
profitability and low leverage), which applicant has lower credit risk? 

The complexity of answering this question multiplies when banks incorporate the many other 
dimensions that they examine during the credit risk assessment. These other dimensions 
typically include other financial information, such as liquidity ratio, or behavioral information, 
such as loan or trade credit payment behavior to gain a more holistic view of the specific 
applicant. 

Summarizing all these various dimensions into one predictive score is challenging, but ML 
techniques help achieve this goal with speed and a customer focus. 

3.2.1  Data science and credit risk model development

Now that we have a better understanding of the architecture that supports and enables our 
use case implementation, we provide an overview of the data science process of our neural 
network credit risk model development. The goal of the process is to create a simple neural 
network that predicts whether approving a loan for a customer poses a risk.
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Understanding and preparing the data
When building a successful AI solution, your insights and analytics are only as good as the 
data. Therefore, it is critical that understanding the data becomes a team effort. That team 
includes (but it not limited to) members with the following expertise:

� Data scientists
� Business analysts
� Subject matter experts
� Data stewards

In our implementation, we use a prepared synthetic credit risk data set of 5000 customers 
that was obtained from the UCI Machine Learning Repository1. For more information, see 
UCI Machine Learning Repository: Statlog.

To help better understand this data, we document some data descriptors that are included in 
the data set. The following data aspects are included in our data set:

� Customer ID 
� Seven-integer valued variables
� A total of 13 categorical features that are represented by strings
� Risk label that is represented by strings

By using a Google Colaboratory Notebook, complete the following steps:

1. Eliminate the CustomerID from the data set because it features missing values.

2. Encode all categorical values and our Risk label where No Risk = 0 and Risk = 1.

3. Save the encoding in our data dictionary, as shown in Example 3-1.

Google Colaboratory is a hosted Jupyter Notebook service (called Colab Notebook), 
which was developed by Google Research to write and run Python code in a web browser.

Example 3-1   Encoding the variables with Google Colab

#remove CustomerID as it holds no value for our model
df = df.drop(columns=['CustomerID'], axis=1)

#encode the label
df = df.replace({'Risk': {'No Risk': 0, 'Risk': 1}})

#encode categorical values
dictionaries = dict()
for col in df:
  if df[col].dtype != 'int64':
    unique = df[col].unique()
    unique_size = unique.size
    dictionary = dict(zip(unique, range(unique_size)))
    df = df.replace({col:dictionary})
    dictionaries[col] = dictionary

#save the encoding
np.save('/content/dictionaries.npy', dictionaries)

1  Hofmann, Hans. (1994). Statlog (German Credit Data). UCI Machine Learning Repository.
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The first thing that must be reviewed in the data set (before encoding is done) is the 
distribution of the variables, starting with the Risk label that is shown in Example 3-2. This 
review is done to familiarize ourselves with the data set.

Example 3-2   Distribution of the target variable

Risk
No Risk  3330
Risk  1670

When reviewing the explanatory variables in your data set, pay attention to the ranges for 
which you have data. Histograms provide a valuable method to visualize your data and 
observe the distribution of variables within the data set. 

Data is considered useful when it is evenly distributed among all potential values for each 
feature. In our example, we can see from the histograms that are formulated from our data set 
in Figure 3-4 that a Loan Duration for up to 36 months and a Loan Amount of less than $7,500 
are represented in our data set. 

Figure 3-4   Distribution of the numerical values

However, longer durations are less represented. By using this information, we conclude that 
the resulting model from this data provides accurate scores for loans that amount to less than 
US $7,500 and have a duration of less than 36 months. That is, the model is best suited for 
shorter term, smaller value loans. This information also indicates that the same model 
provides less accurate scores for longer term, larger value loans, such as a 10-year term loan 
for US $50,000.

Similarly, we can see that little representative data exists for people over the age of 60; 
therefore, the usage of the model to make a prediction about someone of that age or older 
might result in poor performance and inaccurate results. For transparency, this type of 
analysis must be documented with the model so that the users are informed about its 
limitations.
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Finally, we review the categorical data variables, which are shown in Example 3-3. We can 
easily obtain the number of occurrences of each category in our data set with the pandas 
function, value_counts, which is applied to each column separately. In doing so, we can see 
that almost all our data points are from foreign workers. This information tells us that the 
model might not perform well for non-foreign workers.

Example 3-3   Distribution of the categorical variables

CheckingStatus CreditHistory
0_to_200  1304 all_credits_paid_back  769
greater_200  305   credits_paid_to_date  1490
less_0   1398     no_credits     117
no_checking 1993 outstanding_credit   938

prior_payments_delayed 1686

LoanPurpose ExistingSavings
appliances 561   100_to_500  1133
business  146   500_to_1000  1078
car_new  945  greater_1000  558
car_used  808  less_100  1856
education  167 unknown   375
furniture  853
other   113  EmploymentDuration
radio_tv  755  1_to_4  1470
repairs  283 4_to_7  1400
retraining 164 greater_7  930
vacation  205 less_1   904

unemployed  296

Sex OthersOnLoan
female 1896 co-applicant  717
male  3104 guarantor  110

none   4173

OwnsProperty InstallmentPlans
car_other    1540 bank  466
real_estate  1087 none  3517
savings_insurance 1660 stores 1017
unknown  713

Housing Job
free  739 management_self-employed  641
own  3195 skilled      3400
rent 1066 unemployed     286

unskilled     673

Telephone ForeignWorker
none 2941 no  123
yes  2059 yes 4877

After becoming familiar with our data, you can think about the business problem and credit 
risk, and consider how you can use the data to answer the business problem. You must 
predict how much of a credit risk the customer poses. This data understanding and 
preparation work helps prevent rework in the next stage: model creation.
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Selecting the credit risk model
For our real-time credit scoring implementation, we use a neural network DL model for the 
following reasons:

� Neural networks are capable models that can be used in various circumstances.
� We can easily transport this model type by using the ONNX format. 

DL neural networks are mathematical models for representing data. They allow computer 
programs to recognize patterns and solve common problems in the field of AI, ML, and DL. 

The name and structure of neural networks are inspired by the human brain and mimics 
neurons. Neural networks are composed of node layers, input layers, and one or more hidden 
layers. These node layers consists of multiple layers of neurons, which hold specific weights 
that are trained or updated when data is provided at the input. 

Each node connects to another and has an associated weight and threshold. Nodes are 
activated by producing an output that is greater than the specified threshold, which then 
sends data to the next layer of nodes. Neural networks rely on training data to learn and 
improve their accuracy over time and represent the data more accurately when a large 
amount of data is used for training.

Neural networks use an activation function to get the output of a node. Two types of activation 
functions are available:

� Linear: When an activation function is linear, no output range exists because the functions 
range is unlimited.

� Nonlinear: These functions are the most commonly used activation functions. They make 
it easy for a model to adapt to various data and differentiate between the output. 

For our model, we use two activation functions: a sigmoid activation function, and a Rectified 
Linear Unit (ReLU) activation function. The sigmoid activation function resembles an ‘S’ 
shape and is a nonlinear activation function, which exists between (0,1). The ReLU activation 
function is another nonlinear activation function and is mostly used on convolutional neural 
networks with a range of (0, infinity). 

Consider each individual node as its own linear regression model. The node is composed of 
input data, weights, a bias (threshold), and an output. The way that the nodes are composed 
is with an input layer for the training data to enter; then, the deep neural network that is made 
up of multiple hidden layers has the nodes communicating with each other and passing data 
to the next layer until the data reaches the dropout layer to produce an output. 

Training the credit risk model
Many frameworks are available to develop and train neural networks, such as PyTorch or 
TensorFlow. In our implementation, we use TensorFlow because of the familiarity of the 
framework, and its use of Keras libraries to build neural networks. 

One of the advantages of the “Train anywhere and deploy on IBM zSystems” approach is that 
you can choose the development environment that best suits your needs. In our example, 
Google Colab is the training environment of choice. It is a web-based development 
environment that runs on Python, uses Jupyter Notebooks, and does not require any 
installation. 

Because Google Colab is web-based, the code and run time can be easily shared with all the 
members of our team regardless of their geographic location, which enables better global 
collaboration.
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The first step in model development is to load the data into the Google Colab Notebook by 
using the following command and replacing URL to CSV file with our specific URL to the 
following data file:

df = pandas.read_csv("URL to CSV file")

Eliminate the customer ID and encode the categorical data, as shown in Example 3-1 on 
page 49. 

In our example, we chose to use a simple encoding and assign numbers to each of the 
categories. If we had more time and resources, other encoding options are available: one hot 
encoding, or a more thoughtful encoding into numbers. 

We must get the data prepared for use to build and train the model, as shown in Example 3-4. 

Example 3-4   Shuffling, splitting, and saving the data

#shuffle the data
df = df.sample(frac=1, random_state=123)

#split into train and test data
train, validate, test = \
       np.split(df.sample(frac=1, random_state=123), 
            [int(.8*len(df)), int(.9*len(df))])

#save the data splits
train.to_csv('/content/german_credit_data_num_train.csv', index=False)
validate.to_csv('/content/german_credit_data_num_validate.csv', index=False)
test.to_csv('/content/german_credit_data_num_test.csv', index=False)

Shuffle the data, split it into training, validate it, and test the data by using the 80/10/10 model 
in which 80% of the data is dedicated to training, 10% is for validation, and 10% is for testing. 
Then, the data splits are saved. For the training data, split the target variable into separate 
data frames.

We are ready to start building the model. Start with creating a normalization layer, 
normalizer, in the Notebook: 

normalizer = tf.keras.layers.Normalization(axis=-1)

This normalization technique helps ensure that the scale of the values is balanced and the 
range of the values are maintained and proportional because our numerical values were on 
different scales. After creating the normalization layer, adapt the normalization data to our 
data by using the following command:

normalizer.adapt(x_train)
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After we adapt the normalization layer, we can create a simple neural network in the 
Notebook with normalizer as our input. After we create the model with the input, we can 
create our first dense, or hidden, layer with 64 neurons, and the activation function ReLU. The 
commands that support the creation of our neural network with normalizer as the input, the 
first dense layer, and the activation function are shown in Example 3-5. ReLU is the most 
commonly used activation function, and when we train a production-ready model, we must 
select the optimum activation function based on tests. 

Example 3-5   Commands to create a simple neural network with normalizer as input

model = Sequential()
model.add(normalizer)
model.add(Dense(64, activation='relu'))

A dense layer includes every neuron that is connected to every input from the previous layer. 
In our case, all 64 neurons take all 20 features as input. To improve the performance of our 
model, we apply a dropout layer of 50% by using the following command: 

model.add(Dropout(0.5))

During training, this dropout layer randomly sets inputs from the previous dense layer to zero. 
The remaining inputs are scaled so that the sum of the inputs remains the same. The idea 
behind dropout is to prevent over-fitting. After we apply the first dropout layer, we add another 
dense layer with 64 neurons and another dropout layer with 50% dropout, and another dense 
layer with 64 neurons by using the following commands:

model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))

Finally, a dense layer exists with a single neuron and the sigmoid activation function is added 
by using the following command: 

model.add(Dense(1, activation='sigmoid'))

We use the sigmoid activation function because the function exists 0 - 1. Because we are 
predicting probability, we are looking for output of zero or one. This neuron takes all neurons 
from our previous layer as inputs and outputs a value between zero and one because of the 
sigmoid function. 

In our model, zero means no risk and one means risk. Therefore, a high value, such as 0.91, 
indicates that the model suspects risk; a low value, such as 0.07, indicates that the model 
does not suspect the credit applicant to be a risk. 

After creating the model, we must configure it for training. To do so, select an optimizer (adam), 
loss function (tf.keras.losses.BinaryCrossentropy()), and our metric for success 
(accuracy) by using the following commands:

model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(), 
metrics=['accuracy'])

Now, we can train our model by using our training data while also providing data for validation 
by using the following command: 

model.fit(x_train,y_train, validation_data=(x_val, y_val), epochs=40)

After we train our model, convert it to an ONNX model format and save it to a file with the help 
of the tf2onnx library by using the following command: 

tf2onnx.convert.from_keras(model, output_path='/content/credit-risk-num.onnx')
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Finally, we are ready to deploy our model on IBM zSystems.

For more information about the full Notebook, see Appendix B, “Additional material” on 
page 105.

3.2.2  Credit risk model deployment and evaluation on IBM zSystems

Deploying a model means to take the built and tested model and integrate it with other 
business applications. By deploying the model, it is made available for consumption across 
the enterprise. After we deploy a model, we can score the model to generate predictions, 
evaluate it, and retrain it as needed. To deploy our neural network credit risk model, we use 
WMLz OSCE and the APIs that it provides to store, deploy, update, and delete models.

Deploying the model with WMLz OSCE
To enable a simple and smooth deployment of our model, we use the WMLz OSCE User 
Interface (UI). Before the model can be deployed, we first install and configure the OSCE 
service and obtain access to the OSCE UI. Because we must allow multi-user access to the 
OSCE UI, we note the full URL of the OSCE UI and the access token to share with the team 
after the OSCE server successfully starts:

OSCE UI URL: http://129.40.23.87:8080/#/models/2
Access token: 5301acb9-af3e-4676-a601-a0020f2b5c2a

After the OSCE is running, complete the following steps to import the ONNX model by using 
the OSCE UI: 

1. Log in to the OSCE UI, shown in Figure 3-5, by using the access token that was generated 
during the OSCE installation and configuration, 5301acb9-af3e-4676-a601-a0020f2b5c2a. 

Figure 3-5   WMLz OSCE UI login
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2. Select the Models tab and click Import Model, as shown in Figure 3-6. 

Figure 3-6   Importing a model into WMLz OSCE UI

3. The Import Model page opens, in which the model name can be specified: 

Credit_Risk

4. Upload the model source file (credit-risk-num.onnx) which we can see is in the required 
ONNX format by its .onnx file name extension. 

The model source file can be uploaded by using the file browser method, or by dropping 
the file into the Upload field. 

5. After the model source file is selected, click Import, and wait for a successful compile to 
complete. A valid status is shown on the Models page. This process can take some time, 
depending on the size of the model. 

After the model is imported, the ONNX model compiler and the zDLC compile it. This process 
can be a time-consuming task depending on the size and complexity of the model that is 
uploaded. For our example, the model upload and zDLC compilation process completed 
quickly because of the simplicity of our model. 

After the import and compile process is complete, the status (Deployed) appears, and 
includes a green checkmark next to it (see Figure 3-7).

Figure 3-7   Model shows that it successfully deployed
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Some useful information now can be gathered about the model and tested by clicking 
CreditRisk (see the Name column in Figure 3-7 on page 56), or by clicking the three stacked 
dots menu (see the Action column in Figure 3-7 on page 56). 

When you select the General tab, you can see the URL for the scoring endpoint (we use 
REST calls to this URL to score our model). Select the Schema tab to show the format of the 
input and output that the model expects. Finally, select the Test tab to run test cases against 
the model.

Testing the model with WMLz OSCE
When testing a model, you can score one or more inputs simultaneously by enclosing all the 
inputs in square brackets and separating them by using commas. For our example, we test 
score on a single record from our test data, which the model has not yet seen. After the test 
data is entered for the model, click Submit to score it, as shown in Figure 3-8. 

Figure 3-8   Test model input in WMLz OSCE
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After submitting the test data to the model for scoring, you can view the returned results, 
including a description of the returned data and the data that is available (see Figure 3-9). In 
general, when interpreting the resulting probability score that predicts whether an applicant is 
risky, the closer a risk probability score is to 1 than 0, the greater the likelihood that the 
applicant presents a high credit risk. Conversely, the closer a risk probability score is to 0 than 
1, the greater the likelihood that the applicant presents a low credit risk. Scoring results are 
likely to be broken down into multiple risk levels to more accurately represent the business 
case. In our example, we received a score of 0.9678754210472107, which means that our 
model predicts that providing credit to this applicant presents risk.

Figure 3-9   Viewing the test model result in WMLz OSCE

Next, call this model by using the REST API. For the sake of simplicity, use a curl command:

curl \
-X POST http://129.40.23.87:8080/v1/api/models/3/prediction \
-H 'Authorization: 5301acb9-af3e-4676-a601-a0020f2b5c2a' \
-H 'Content-Type: application/json' \
-d '[{"normalization_1_input": [[2,29,1,2,4061,4,3,4,0,1,3,3,45,0,0,2,0,1,1,0]]}]'

The result is the same return as the result from testing in WMLz OSCE, shown in Figure 3-9:

[[{"name":"dense_7","dims":[1,1],"data":[0.9678754210472107]}]]

Similarly, the model can be accessed from any program that supports HTTP calls.

3.2.3  CICS application integration for real-time credit risk scoring

In-transaction scoring that is integrated into a CICS application is about the usage of the 
real-time scoring model to calculate a risk score for the available data in real time inside the 
transaction. As shown in Figure 3-10 on page 59, we use CICS Region PLX7CIC1 and create 
and install all the resources and assets under CICS GROUP ALNGROUP. 
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Figure 3-10   Installed resources and assets in ALNGROUP

The sample application uses the following CICS resources and assets: 

� PROGRAM(CREDRSCR): The credit risk score prediction program. This program reads 
preprocessed customer credit application data from an input file, calls PROGRAM(DFH0WBC2) 
for scoring service, and prints the scoring result for each application to the CICS region on 
an output file.

� PROGRAM(DFH0WBC2): This program makes the REST API call to the credit risk scoring 
model that is deployed on WMLz OSCE. 

� TRANSACTION(CRED): This transaction calls the COBOL program CREDRSCR to demonstrate 
the capability of calling our Credit_Risk model scoring in real time within a CICS 
transaction. 

� CREDRURI - URIMAP(CREDRURI): This item is defined with the use type CLIENT, and it points 
to the Credit_Risk model that is deployed to the WMLz OSCE server. This URIMAP 
definition specifies the URL http://129.40.23.87:8080/#/models/2, which is used when 
the CICS application makes a request to the HTTP OSCE server, which points to our 
deployed model.

To test the model for real-time in-transaction scoring by using our CICS application, run the 
transaction that calls the credit risk score prediction program to start the inferencing process. 
To start a CICS transaction, press the CLEAR or DELETE key to clear the window. Then, 
enter the transaction identifier (by itself or followed by data) on the CLI of the window. For our 
example, run the CRED transaction to call the CREDRSCR program, as shown in Figure 3-11. At 
the completion of the transaction, the STATUS message of SESSION ENDED appears.

Figure 3-11   Running TRANSACTION(CRED)
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Now, you can check the scoring input and output in the CICS region address space log (see 
Figure 3-12) and interpret the results.

Figure 3-12   Scoring input and output in CICS region address space log

The result from our real-time in-transaction scoring is a risk score of 0.9606726765632629, 
which indicates that this applicant shows risk and might not be an ideal borrower for the 
lending institution. This result helps guide credit approval decisions that are based on 
business logic.

For more information about the source code for our sample CICS application and the 
resources that are used, see Appendix B, “Additional material” on page 105.

3.3  Credit card payments fraud detection use case scenario

Detecting credit card fraud is an area of great importance for credit card companies, payment 
processing companies, and banks. According to a Nilson Report, in 2020 alone, companies 
worldwide collectively lost $28.58 billion US Dollars to card fraud. With the explosion of 
e-commerce in recent years, in part due to the COVID-19 pandemic, “card-not-present” 
transactions have increased, making it the majority of credit card fraud and contributing to the 
ongoing upwards trend of high industry losses due to fraud.2

Preventing fraudulent transactions is paramount to maintaining trust and improving customer 
experience. Therefore, payment processing companies and banks have fraud prevention 
systems in place to help detect and prevent fraud. These systems contain a myriad of AI 
models and rule-based methods to detect fraud. While building and implementing fraud 
detection systems, keep the false positive rate, for example, flagging non-fraudulent 
transactions as fraud to a minimum because it creates a negative user experience for loyal 
customers. By leveraging AI methods in fraud prevention systems, you can enrich the existing 
rule-based engine approach to fraud detection by increasing the accuracy of models through 
reduced false positive and false negatives.

As fraud prevention systems are evolving and deploying advanced AI methods, fraudsters are 
getting smarter. Therefore, IT companies must stay on top of the latest fraud methods and 
use that information to build better fraud prevention systems in real time. 

Transaction duration is a key metric to keep in mind when implementing a fraud prevention 
system because it can negatively impact the customer experience if it takes too long to 
process transactions. For example, if payment processing is taking place on IBM zSystems, it 
makes sense to deploy the fraud prevention model on IBM zSystems too. This action saves 
time and reduces the risk that is involved in moving data from IBM zSystems to an external 
system for inference. Such a scenario was not feasible a few years ago, but thanks to the 
functions that are offered by WMLz combined with the latest hardware upgrades of IBM z16, 
such as the IBM Integrated Accelerator for AI, it is now feasible to facilitate in-transaction AI 
inferencing in real time with optimal inferencing performance. 

2  https://nilsonreport.com/upload/content_promo/NilsonReport_Issue1209.pdf
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In this section, we demonstrate how an in-transaction fraud detection and prevention scenario 
can be implemented by using a DL model that is served by WMLz running on IBM z16. Using 
a similar approach with our credit risk assessment use case, we demonstrate how we can 
easily implement a CICS application that infuses an AI-based fraud detection algorithm into 
an online transaction. Unlike in the previous use case, the AI model is deployed to WMLz, 
instead of the more limited WMLz OSCE version. As before, a REST API endpoint is created 
for serving the model, but additional WMLz deployment features are leveraged. 

The scenario is based on a large, labeled transactional data set that features samples of 
fraudulent transactions and legitimate transactions. We attempt to demonstrate a relationship 
between the legitimacy of a customer’s current transaction based on their historical 
transactions. This relationship is modeled by using a DL algorithm. We provide details about 
the training data and how the model is trained, which are followed by more details about the 
deployment of the model to WMLz and the usage of RESTful APIs to serve the model. 

For more information an a deeper description about the business case for fraud detection 
solutions, see 4.1.1, “Business-related use case scenarios” on page 82.

3.3.1  Data science and fraud detection model development

The first step toward building a DL model for detecting fraudulent credit card transaction is to 
obtain the data that has sufficient amount of fraudulent and non-fraudulent transactions to 
train the model. After we explain the data, we go through the modeling approach.

Understanding and preparing the data
The data that we used for demonstrating the use case includes credit card transactions. 
There are 29,757 fraudulent transactions out of 24,386,901 total transactions from 20,000 
users. To access and download this sample data set, go to the following IBM GitHub 
repository.
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The fields of the data table (see Figure 3-13) include the following ones:

� User
� Card
� Year
� Month
� Day
� Time
� Amount
� Use Chip
� Merchant Name
� Merchant City
� Merchant State
� Zip
� MCC
� Errors?
� Is Fraud?

Figure 3-13   Sample credit card transaction data

The GitHub repository provides a Jupyter Notebook for training a model and generating the 
following ONNX model:

ccf_220_keras_lstm_static-OS.ipynb

The Notebook starts with splitting the data into testing, training, and validation sets. Before 
splitting the data, the following process is done to have fair representation of each credit card 
in each set:

1. Find all the credit card numbers and put them in a list.

2. The six previous customer credit card transactions are grouped together.

3. Split the remaining transactions randomly into training, testing, and validation test sets 
such that:

a. 50% of the data is put in the training set.

b. 30% of the data is put in the validation set 

c. 20% of the data is put in the test set.

Selecting the fraud detection model 
Like the use case in 3.2, “Credit risk assessment use case scenario” on page 48, we need a 
DL neural network for creating a model that can be used for detecting fraudulent credit card 
payments. 

Note: It is assumed the current transaction and the six previous transactions for a credit 
card provide sufficient context to identify whether a transaction is fraudulent.
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This time, we deal with time series data, which means that we need the data for the current 
transaction and the six previous transactions for the credit card to decide whether the 
transaction is fraudulent. 

For time series data sets, a long short-term memory (LSTM) model is an optimal option to 
learn the relationships between current and past transactions. In LSTM models, additional 
layers of neurons are used to retain the weights longer, which helps with accounting for the 
historical data when evaluating the input data.

In the fraud detection solution, an LSTM model is implemented by using the code in 
Example 3-6.

Example 3-6   Creating an LSTM model

lstm_model = tf.keras.models.Sequential([
    tf.keras.layers.LSTM(units[0], input_shape=tf_input, batch_size=7, 
time_major=True, return_sequences=True),
    tf.keras.layers.LSTM(units[1], return_sequences=True, time_major=True),
    tf.keras.layers.Dense(output_size, activation='sigmoid')
])

This LSTM model implementation results in the following model parameters:

Model: “sequential”
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm (LSTM)                  (7, 16, 200)              336800    
_________________________________________________________________
lstm_1 (LSTM)                (7, 16, 200)              320800    
_________________________________________________________________
dense (Dense)                (7, 16, 1)                201       
=================================================================
Total params: 657,801
Trainable params: 657,801
Non-trainable params: 0

Data mapping and training the fraud detection model
After the training, validation, and testing sets are created, the next step in the Notebook is to 
map the data into reasonable numerical values. We do this task so that DL algorithms can 
process the non-numeric data within our data set. We can convert some of the data by using 
data mappers from the scikit-learn Python package. Also, some defined custom mappers are 
used for converting the data into representative values. Custom mappers include the following 
items:

� timeEncoder for converting time to numerical representative values

� amtEncoder for converting the payment amount

� decimalEncoder for converting names such as city names or merchant names
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After the data preparation and mapping completes, the TensorFlow “fit” method is used to 
train the model, and the model is validated. Sixteen batches of training inputs are sent to the 
model at once, and checkpoint data consisting of the model weights is saved during each 
training epoch to the directory that is referenced in checkpoint_dir (see Example 3-7). This 
checkpoint data is used later to restore the model. 

Example 3-7   TensorFlow training parameters

steps_per_epoch = 50000
checkpoint_dir = "./checkpoints/ccf_220_keras_lstm_static/"
filepath = checkpoint_dir + "iter-{epoch:02d}/model.ckpt"
batch_size = 16

#callback to periodically save the model during training
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=filepath, 

save_weights_only=True, verbose=1)

#generate batches of training inputs
train_generate = gen_training_batch(tdf,mapper,train_indices,batch_size)

#train the lstm model 
lstm_model.fit(train_generate, epochs=20, steps_per_epoch=steps_per_epoch, 

verbose=1, callbacks=[cp_callback])

The accuracy of the model on the test data was found to be over 99%. However, accuracy is a 
misleading metric when dealing with a mis-balanced data set, where the positive class (fraud) 
is less than 1% of the data set. In our data set, a model might predict that all transactions are 
legitimate, and have an accuracy of 99.88%. It is more valuable to examine confusion 
matrices and F1 scores on test sets. 

An example confusion matrix for our use case is shown in Table 3-1 and allows a holistic view 
of how our model predicts the legitimacy of transactions. The rows of the confusion matrix 
represent what our model predicted for the test data, either classifying as legitimate or 
fraudulent. The columns of the confusion matrix represent what the classification of the test 
data is. A confusion matrix can be used to visually examine how fraudulent and legitimate 
transactions might be getting misclassified.

Table 3-1   Labeled confusion matrix

Actually a legitimate 
transaction

Actually a fraudulent 
transaction

Predicted as a legitimate 
transaction

True Negative Count False Negative Count

Predicted as a fraudulent 
transaction

False Positive Count True Positive Count
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Our goal is to maximize the amount of True Negatives and True Positives (correct predictions) 
that our model is predicting. The metrics within the confusion matrix are described in further 
detail below:

� True Negatives: The number of legitimate transactions that are correctly classified as 
legitimate.

� False Negatives: The number of fraudulent transactions that are incorrectly classified as 
legitimate.

� False Positives: The number of legitimate transactions that are incorrectly classified as 
fraudulent.

� True Positives: The number of fraudulent transactions that are correctly classified as 
fraudulent.

In addition to examining confusion matrices, also explore the F1 Score metric. The F1 score 
can be interpreted as a weighted average of the precision and recall, where an F1 score 
reaches its best value at 1 and worst score at 0. The relative contribution of precision and 
recall to the F1 score are equal. When the classes in an ML problem are mis-balanced, F1 
scores are an effective way to determine the performance of the model. 

The precision metric formula is shown below. Precision is the ability of the classifier not to 
predict intuitively a legitimate transaction as a fraudulent one.

Precision = True Positive / (True Positive + False Positive)

The recall metric formula is shown below. Recall is the ability of the classifier to find intuitively 
all the fraudulent transaction in our test set. 

Recall = True Positive / (True Positive + False Negative)

From precision and recall, we can calculate the F1 Score, for which the formula is shown 
below:

F1 = 2 * (Precision * Recall) / (Precision + Recall)

The confusion matrices of the first and second test sets are shown in Table 3-2 and Table 3-3.

Table 3-2   Confusion matrix for the first test set

Table 3-3   Confusion matrix for the second test set

Actually a legitimate 
transaction

Actually a fraudulent 
transaction

Predicted as a legitimate 
transaction

99849 33

Predicted as a fraudulent 
transaction

1 117

Actually a legitimate 
transaction

Actually a fraudulent 
transaction

Predicted as a legitimate 
transaction

4862456 1595

Predicted as a fraudulent 
transaction

327 5622
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The F1 scores for the two test sets and the commands to obtain those F1 scores are outlined 
in Example 3-8.

Example 3-8   F1 scores for the two test sets

#print F1 score for first test set
print(f1([[99849,33],[1,117]]))

#print F1 score for second test set
print(f1([[4862456,1595],[327,5622]]))

->0.873134328358209
->0.8540179249582257

We see that in our first test set that 33 fraudulent transactions were incorrectly classified as 
legitimate out of 150, but only one legitimate transaction was not classified correctly by the 
model. For our second test set, 1595 fraudulent transactions were incorrectly classified as 
legitimate out of 7217, and 327 legitimate transactions were incorrectly classified as 
fraudulent. The model achieved good F1 scores for both test data sets. 

Now that the TensorFlow model is ready, the next step is to convert the model to the ONNX 
format, deploy the model to WMLz, and start serving it. ONNX conversion is described and 
demonstrated in “ONNX conversion” on page 67.

3.3.2  Fraud detection model deployment and evaluation on IBM zSystems

Now that the TensorFlow LSTM model is trained, we must decide how we deploy the credit 
card fraud model on IBM zSystems. Credit card transactions are high volume and demand 
low latency, with hundreds of thousands of transactions occurring on an IBM zSystems per 
second, typically requiring single-digit millisecond response times. As such, the performance 
of an inferencing call during a credit card transaction must also be high throughput and low 
latency. Because most credit card transactions are processed by using z/OS, a deployment 
option that has an affinity to z/OS applications should be leveraged. WMLz is a natural choice 
due to its ability to simply deploy models close to z/OS applications and specifically in CICS 
regions.

Importing and deploying the model with WMLz 
WMLz does not support TensorFlow models, so we must convert the model to an ONNX 
format and deploy it by using WMLz. WMLz offers two options that can be leveraged during 
the deployment of a model on IBM z16 to increase inferencing performance: micro-batching, 
and on-chip AI acceleration. 

When micro-batching is enabled during the deployment of an ONNX model in WMLz, the 
WMLz ONNX scoring engine queues a configurable quantity of inferencing requests before 
sending them to the IBM Integrated Accelerator for AI on z16. By processing multiple 
inferencing requests at once, the AI accelerator maximizes throughput and reduces the 
response latency compared to processing inferencing requests one at a time. In addition to 
the customizable micro-batching quantity, a maximum latency time can be defined for the 
deployment, which means that the scoring server waits only a certain amount of time before 
passing the accumulated inferencing requests to the Integrated Accelerator for AI. For a 
model to be eligible for micro-batching, it must have one input dimension that is dynamic and 
one output dimension that is dynamic. 
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To leverage the AI accelerator, the ONNX model must be compiled by using either the zDLC 
or the ONNX-Multi-Level Intermediate Representation (MLIR) compiler. As of IBM z16, the 
following operations are supported on the IBM Integrated Accelerator for AI: 

� LSTM Activation
� GRU Activation
� Fused Matrix Multiply, Bias op
� Fused Matrix Multiply (with broadcast)
� Batch Normalization
� Fused Convolution, Bias Add, ReLU
� Max Pool 2D
� Average Pool 2D
� Softmax
� ReLU
� Tanh
� Sigmoid
� Add
� Subtract
� Multiply
� Divide
� Min
� Max
� Log

For the most up-to-date list of IBM Integrated Accelerator for AI supported operations, see 
Leveraging the IBM z16 Integrated Accelerator for AI.

Because our credit card fraud model contains multiple LSTM layers, the AI accelerator is 
leveraged. During the deployment of our model, WMLz uses the zDLC, which is run in a 
container within a zCX instance to compile the model to target the IBM z16 Integrated 
Accelerator for AI. 

ONNX conversion 
To convert the TensorFlow model to an ONNX format, we use the tf2onnx Python package. 

We define variables that describe the model parameters; redefine the model that we created 
during training; and load model checkpoint weights into the newly defined model. As in 3.3.2, 
“Fraud detection model deployment and evaluation on IBM zSystems” on page 66, we define 
the number of units in the two LSTM layers of the model.

We define the input size of the model (204 features) and the input shape that the first layer of 
the TensorFlow model expects. There is one output from our model, which represents 
whether the transaction was fraudulent or legitimate. 

Note: To use micro-batching or on-chip AI acceleration during the deployment of a model, 
the IBM zSystems Deep Neural Network (zDNN) library must be installed on the IBM z16. 
zDNN is the IBM open-source API library for using the Integrated Accelerator for AI. For 
more information, see zDNN GitHub.
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We define the path to the directory where we saved model parameter values during the 
training of the model. We use the final checkpoint data that is recorded during the 20th epoch 
training. This process is outlined in Example 3-9.

Example 3-9   Redefining the original LSTM model variables

#define the number of units in the two LSTM layers
units = [200,200]

#define the input size and input shape of the model 
input_size = 204
tf_input = ([None, input_size])

#define the output size
output_size = 1

#define the path to the directory where model checkpoint values from model 
training are saved
restore_dir = "./checkpoints/iter-20/model.ckpt" 

We redefine the model with the same layers and parameters that we used during the original 
creation and training of the model (see Example 3-10).

Example 3-10   Redefining the model with original layers and parameters

new_model = tf.keras.models.Sequential([
    tf.keras.layers.LSTM(units[0], input_shape=tf_input, batch_size=7, 
time_major=True, return_sequences=True),
    tf.keras.layers.LSTM(units[1], return_sequences=True, time_major=True),
    tf.keras.layers.Dense(output_size, activation='sigmoid',name='dense') 
])

Because we defined our LSTM layers with the time_major parameter as True, the model input 
has the format (transaction series, batch, features), with the series data coming first.3

We might notice that the variable batch_size is representative of the transaction series length 
in our case. As shown in Example 3-11, the model is expecting seven transactions (six 
previous transactions and the current transaction), each with 204 features as input.

Example 3-11   LSTM model input shape

new_model.input_shape
(7, None, 204)

The None value in the second dimension of the input shape (see Example 3-12 on page 69) is 
representative of the dynamic batch size of the model. This dynamic dimension allowed us to 
use batching during model training to send multiple transaction sequences to the model at 
once. For inferencing of the model, having a dynamic dimension in the model input means 
that the model can inference several customer transaction series for fraud at the same time, 
increasing inferencing throughput.

3  https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
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We now load the checkpoint data from our restore directory as the weights of our new model 
and compile the model with the same optimizer algorithm and loss function that we used 
originally (see Example 3-12). 

Example 3-12   Loading weights and compiling a new model

#load weights from checkpoint data in restore directory
new_model.load_weights(restore_dir)

#compile new model with original optimizer and loss function
new_model.compile(optimizer='adam', loss='binary_crossentropy')

With the TensorFlow model restored to a “trained” state, we are now ready to convert the 
model to an ONNX format (see Example 3-13).

It is important to specify explicitly the operation set (opset) version to be used during the 
conversion. At the time of writing, The WMLz ONNX engine supports Version 13 of ONNX 
opsets. 

Example 3-13   Converting the model to the ONNX format

#Save the converted onnx model to file ‘ccf.onnx’ in current working directory
save_path = "ccf.onnx" 

#convert model to ONNX format and set opset
onnx_model = tf2onnx.convert.from_keras(new_model,output_path=save_path,opset=13)

Reshaping an ONNX model to take advantage of WMLz micro-batching
Now that the model is in the ONNX format, we must explicitly define the input and output 
shape of the model to leverage the micro-batching functions of WMLz. To use micro-batching, 
WMLz requires one dynamic dimension in both the input and output of the model. As you can 
see in Example 3-14, we use the onnx Python package, which has a useful function for 
redefining the dimensions of the model input and output. You can find the package at this 
GitHub repository. 

Example 3-14   Reshaping the ONNX model for micro-batching in WMLz

#import onnx python package
import onnx

#define input and output shape to leverage micro-batching
from onnx.tools.update_model_dims import update_inputs_outputs_dims

The function that updates the onnx model dimensions requires the name of the input and 
output layers of the model. In Example 3-15, we store those layer names in the input_name 
and output_name variables. 

Example 3-15   Assigning input and output layer names to variables 

#store input and output layer names as variables
input_name = new_model.input_names[0]
output_name = new_model.output_names[0]
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As shown in Example 3-16, we explicitly specify the dimensions of our model input and output 
layer in the Python Dictionaries input_dims and output_dims. 

Example 3-16   Updating the input and output dimensions to include a dynamic dimension

#specify the dimensions of model output layer
output_dims = {
                output_name: [7,-1,1] #-1 represents a dynamic dimension
}

specify the dimensions of model input layer
input_dims = { 
                input_name:[7,-1,204]
}

#reload model
onnx_model = onnx.load('ccf.onnx')

#update input and output dimensions of model
new_onnx_model = update_inputs_outputs_dims(onnx_model,input_dims,output_dims)

#save the reshaped model
onnx.save_model(new_onnx_model,'ccf_reshaped.onnx')

Because we specified return_sequences as True when redefining the layers of the model 
(see Example 3-10 on page 68), the output that is returned by the model contains seven fraud 
predictions, one for each of the seven transactions. To determine whether the “current” 
transaction is fraudulent, we analyze only the last inferencing result of the seven results that 
are returned. 

As input, the model expects a series of seven transactions containing 204 features. The -1 
value that is present in both the output and input dimension array is representative of a 
dynamic dimension. 

We reload the onnx model that we created earlier with the tf2onnx package, update the input 
and output dimensions of the model by using the update_inputs_outputs_dims function, and 
save the reshaped model (see Example 3-16). With these two dynamic dimensions explicitly 
defined in both the input and output dimensions of our ONNX model, we are ready to leverage 
micro-batching in WMLz during scoring requests. 

Importing and deploying the model with WMLz
Now that our original TensorFlow model is converted to the ONNX format and its input and 
output dimensions are updated to include a dynamic dimension, we are ready to leverage the 
IBM z16 Integrated Accelerator for AI and micro-batching by using WMLz. 

We import the model into WMLz by using the following process (see Figure 3-14 on page 71):

1. Log in to WMLz.

2. When we are logged in to WMLz, we select the Models tab and click Import model. 

3. Select From file and type in the Name of the model, ccf_model.

4. Select ONNX as the Model type. 

5. Browse your system for the model .onnx file.

6. Click Import to upload the model to WMLz. 
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Figure 3-14   WMLz model import

After the model is imported into WMLz, it is compiled in the background by using the WMLz 
ONNX compiler, which is running in a container on a zCX instance. After the model has a 
“green check” as its Status indication on the Models tab, as shown in Figure 3-15, the model 
is ready to be deployed. To do so, click the three vertical-dot action menu, and select the 
Deploy option from the drop-down menu. 

Figure 3-15   Deploying a model from the WMLz models section
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Select Models → Create deployment. In the window that opens in Figure 3-16, complete the 
details to create a deployment environment for our model by completing the following steps:

1. Enter a unique name for the deployment in the Deployment namespace (ccf_deployment).

2. Select the deployment type Online from the drop-down menu.

3. Select the version of the model (1) from the Model version drop-down menu if multiple 
versions exist. 

Figure 3-16   Creating an ONNX deployment in WMLz

Decide what scoring server to which to deploy the model. In our example, we use a 
stand-alone scoring service that is running in a CICS region. This scoring service is 
embedded in a JVM, and we can use a CICS LINK command to perform online inferencing 
requests within a COBOL program. 

Complete the following steps:

1. Select a Scoring service (stand-alone or in a cluster) from the drop-down menu:

PLX7CIC1 (129.40.23.1:60083)

2. Select the Use on-chip AI accelerator checkbox.

3. Select the Enable micro-batching checkbox:

a. Configure the Maximum batch size (maxBatchSize) by entering it or using the arrows 
to set the size limit (for our example, we set the limit to 8). 

b. Configure the Maximum latency in milliseconds by entering it or using the arrows to set 
the limit (for our example, we set the limit to 5).
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4. When you are satisfied with the deployment parameters, click Create to create the 
deployment.

During a performance test that uses the same model and WMLz deployment micro-batch 
size, we found that “An IBM z16 system can process up to 228 K z/OS CICS credit card 
transactions per second with 6 ms response time, each with an in-transaction fraud detection 
inference operation that uses a DL model.”4

Testing the model with WMLz
With our model deployed, we can now test an inferencing API call by completing the following 
steps:

1. Go to the Deployments tab of WMLz.

2. We find our deployment name, ccf_deployment, in the list, and we click the three vertical 
dots action menu to select the Test API call option from the drop-down menu, as shown in 
Figure 3-17.

Figure 3-17   WMLz Deployments window

On the Test API page, we can provide the values for an inferencing call in either a Table 
format (an array), or as a JSON variable. A sample JSON input is provided in the text file, 
fraud-detection-sample-json.txt, which you can obtain by following the instructions in 
Appendix B, “Additional material” on page 105. We chose to use the table input method.

Note: As a best practice, tune these two server-side batching parameters to discover 
the combination that results in the best inferencing performance in your environment. 

4  Disclaimer: This performance result is extrapolated from IBM internal tests running a CICS credit card transaction 
workload with inference operations on an IBM z16. A z/OS V2R4 logical partition (LPAR) that was configured with 
six CPs and 256 GB of memory was used. Inferencing was done with WMLz 2.4 running on IBM WebSphere® 
Application Server Liberty 21.0.0.12 that used a synthetic credit card fraud detection model from this GitHub 
repository, and the Integrated Accelerator for AI. Server-side batching was enabled on WMLz with a size of eight 
inference operations. The benchmark ran with 48 threads performing inference operations. The results represent a 
fully configured IBM z16 with 200 CPs and 40 TB storage. Results might vary. 
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As an input for this method of testing an API call, we can use a test vector from our earlier 
testing. Figure 3-18 shows the Input and Result after performing an inferencing call to the 
model by passing along the last seven transaction feature vectors as input and clicking 
Submit. 

Figure 3-18   WMLz Test API call

In the Result pane, the model’s predictions are returned in JSON format. The key fields in the 
result include the following ones:

� dense: The name of the output layer of the model.
� data: The model’s prediction for each transaction.
� dims: The dimensions of the output that is returned by the model. 

Looking at the last array value in the data key, we see the models prediction for the current 
credit card transaction. Our model performs a binary classification, which means that a 
probability score is returned with each prediction. 

If the probability score of the model output is closer to 1 than 0, the transaction is considered 
fraudulent because we labeled fraudulent transactions as our positive class, or ‘1’, and 
legitimate transactions as the negative class, or ‘0’, when training the model. 

Because the value 0.97753906 is closer to 1, the model predicted that the current customer 
credit card transaction is fraudulent. The first six customer transactions have probability 
scores that suggest that the transactions were legitimate. 

After we confirmed that the model is predicting as expected, we can start integrating the 
model deployment’s REST API scoring services with z/OS applications. 

By clicking the ccf_deployment text near the top of the browser, we can examine the specific 
details of the deployment, as shown in Figure 3-19 on page 75. 
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Figure 3-19   WMLz deployment details

Here we can see specific details that are related to the API endpoint, including the address of 
the endpoint and a downloadable API specification that provides details to your applications 
about how they will use the API. 

This API specification is in the format of a Swagger YAML file that details the operations that 
the API supports, the needed parameters, the usage of authorization tokens, the input format 
that is expected, and the output format that is returned. The Swagger file’s machine-readable 
format is advantageous because it can be used to simplify the embedding of API calls within 
z/OS applications by using a service such as IBM Integration Bus or z/OS Connect EE.

From the Deployments details window of our ccf_deployment, we also see important 
performance metrics, such as the average elapsed time, as seen from the scoring server, for 
an inferencing call. The number of inferencing invocations is also displayed. We can confirm 
that the model input and output schemas are the same as the model input and output shapes 
that we defined in “Reshaping an ONNX model to take advantage of WMLz micro-batching” 
on page 69. 

Our model is ready for consumption by CICS COBOL programs, either through RESTful API 
calls or by using a CICS LINK command.

3.3.3  Application integrations and considerations

When the model is deployed, there are two possible options in CICS to integrate WMLz and 
leverage the model for in-transaction AI inferencing:

� Use the CICS LINK command and the program ALNSCORE to invoke the model.

� Using REST API calls to invoke the model and get a decision.
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Online scoring with ALNSCORE
WMLz provides a scoring service that is integrated in the CICS region through a program 
called ALNSCORE. It can be used in a CICS LINK command for scoring SparkML, Predictive 
Model Markup Language (PMML), and ONNX models by using special containers to transfer 
the scoring input and output between the COBOL program and ALNSCORE program, as shown 
in Figure 3-20.

After the CICS region is configured to run the scoring service, there are further steps that are 
involved in preparing the model, such as generating copybooks and Java helper classes that 
are based on the input and output schemas of the model, and by using special CICS 
containers to pass input parameters and receive the output from ALNSCORE. 

Figure 3-20   CICS integrated online scoring with ALNSCORE

This solution can yield optimized performance because the scoring server is colocated with 
the transaction within the CICS region itself. Coding the COBOL program, for example, by 
using the utilities that are provided in WMLz to construct the input/output layout for the scoring 
server might be easier compared to constructing the JSON input/output manually when using 
REST APIs.

For more information, see the following related WMLz documentation, including a sample 
CICS COBOL program and sample JCL/JOB to create the copybooks and Java helper 
classes:

� Preparing a model for onlin scoring with CICS program ALNSCORE 

� Configuring WML for z/OS scoring services in a CICS region 

Online scoring with a CICS program by using a REST API
Online scoring can also be implemented by making a REST API call to the scoring service on 
WMLz like what is shown in 3.2.3, “CICS application integration for real-time credit risk 
scoring” on page 58. The COBOL application that we used for our credit risk assessment use 
case, CREDRSCR.CBL, can be easily modified to include the sample JSON that is provided in 
the text file fraud-detection-sample-json.txt. For more information about obtaining both 
files, see Appendix B, “Additional material” on page 105. 
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To update the existing COBOL scoring application so that it can be used for the fraud 
detection model, complete the following steps:

1. Download the file CREDRSCR.CBL by following the instructions in Appendix B, “Additional 
material” on page 105, and open it in the editor of your choice.

2. In the WORKING-STORAGE SECTION of the DATA DIVISION section in the COBOL program, find 
the following line of code:

01 REC PIC X(100) VALUE SPACE.

3. Replace ‘X(100)’ with ‘X(8000)’ because the input is much longer than our previous 
input.

4. In the COBOL program, go to the READNEXT procedure in PROCEDURE DIVISION and update 
the procedure to read the JSON text file fraud-detection-sample-json.txt, as shown in 
Example 3-17.

Example 3-17   Updated READNEXT procedure to read the JSON sample file

READNEXT. 
      *Read one line from the file 
           EXEC CICS READNEXT FILE ('fraud-detection sample-json') 
              INTO (WS-STD-REC) 
              RIDFLD (WS-STD-REC-KEY) 
              RESP(WS-CICS-RESP) 
              RESP2(WS-CICS-RESP2) 
              RBA 
             END-EXEC. 
             IF WS-CICS-RESP = DFHRESP(ENDFILE) THEN 
               MOVE 'Y' to LASTREC 
             END-IF 
             MOVE WS-STD-REC TO REC. 

5. Download the file DFH0WBC2.CBL by following the instructions in Appendix B, “Additional 
material” on page 105, and open it in the editor of your choice.

6. In the DFH0WBC2-00 procedure within DFH0WBC2-MAIN SECTION of PROCEDURE DIVISION in the 
COBOL program, update the token for the model by replacing the text with the most 
current token.

7. When creating the CICS resources by using the process that is outlined in CICS 
Application-CRED.docx, which you can find by following the instructions in Appendix B, 
“Additional material” on page 105, ensure that HOST (the host component of the URI) and 
PATH (th path component of the URI to which the map applies) attributes of the URIMAP 
matches the URL for the fraud detection model that is deployed to WMLz (scoring 
endpoint in Figure 3-19 on page 75).
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Fraud detection solution
One example of leveraging WMLz for detecting fraudulent activities is through a payment 
system. From the fraud detection flow diagram in Figure 3-21, the customer initiates the 
following flow of actions:

1. Payee initiates a payment transaction to the system through the UI.

2. When the request is received, the fraud detection model is invoked for inferencing. 

3. The model gathers the available historical transactions for this customer, compares them 
against the current payment that was made, and returns a prediction on whether the 
transaction is fraudulent. 

4. Based on this prediction, an action is triggered to either reject or accept the payment, and 
the customer is notified.

Figure 3-21   Fraud detection flow diagram

3.4  Summary

Organizations often miss the greatest opportunities that ML offers because tapping into those 
opportunities requires real-time predictive analytics. 

To optimize large-scale business processes, which is a vital endeavor for your business, 
predictive analytics must occur right at the moment of every interaction. The good news is 
that you are likely already using the hardware to handle this endeavor; that is, the same 
system that is running your high-volume transactions (oftentimes IBM zSystems). 

However, completing the effort often requires supportive leadership and a willingness for 
change throughout the organization. These high stakes include a tragic case of analysis 
paralysis and as a result, organizations often fumble the opportunity. 

Do not let the profound capabilities of AI obscure the simplicity of its fundamental duty. The 
capability of learning from data to generate a predictive model translates into tangible value 
by way of the predictive scores the model generates, which in turn drives millions of 
operational decisions.
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In some cases, unhurried, offline scoring works well enough. For example, in direct mail 
targeting, you might have 10 million contacts to be scored according to the likelihood of 
whether they are inclined to buy if sent a brochure. Even with that many records, your system 
must score only a few hundred per second to complete the task overnight, or only a couple of 
dozen per second if you have a few days and a few computers available. 

For large-scale business processes, scoring cannot violate two main performance 
requirements: 

� Time per transaction, which often requires performance times within single-digit 
milliseconds

� Transactions per second, which often requires the completion of thousands (even tens of 
thousands) of transactions per second

For some operations, the first requirement is more demanding than the second, which is the 
case for high-velocity operations. For example, an automated financial trading system that 
loses only a few milliseconds can lose the opportunity to purchase at the optimal price. 

For other operations, the second requirement is a higher priority, which is the case for 
high-volume operations. For example, credit card fraud detection demands many transactions 
be processed per second for the sheer overall volume of transactions that are occurring.

To achieve predictive analytics within large-scale operations without violating performance 
requirements, you can perform model training on another system. Because this first phase of 
ML training is almost always performed offline, real-time systems that are busy handling 
operations do not need to be burdened. 

Instead, this “heavy-lifting” number crunching process is best run with separate resources 
that are allocated to data scientists for model development. Also, you can use your 
operational system to perform scoring with the model. 

To meet performance requirements, including those requirements that are dictated by SLAs, 
your organization should follow best practices by using a high-performance system such as 
IBM zSystems that operates on-premises rather than in the cloud. This system can likely 
handle the process, or in the case of IBM zSystems handles the introduction of model 
scoring, and integrate it so that only a limited impact on its overall performance. 

Deploying predictive models in real time seizes the greatest of opportunities of ML. The 
highest-frequency operations are likely to be the most abundant because velocity means 
volume.
Chapter 3. Real-time, in-transaction scoring use case scenarios 79



80 Optimized Inferencing and Integration with AI on IBM zSystems: Introduction, Methodology, and Use Cases



Chapter 4. Other use case scenarios

Driving smart evolution within your enterprise can be fully realized with the help of artificial 
intelligence (AI) services. By using and accelerating AI integration throughout your enterprise, 
you can generate better business growth and outcomes in many areas within the business. 

Whether it is AI for IT operations, advertising, health care, financial operations, risk and 
compliance, or security, AI solutions provide cross industry capabilities. You can improve 
customer service by cutting costs and providing faster, better service. 

You also can realize an increase in workflow efficiency, reduce churn, and manage 
applications and infrastructure across environments. Supply chain insights can be garnered 
in real time, which enable agile operations control, or helps halt financial crimes, such as 
money laundering, as they occur, for improved regulatory compliance. 

Whichever use case best aligns with your business challenges, an AI solution is available that 
fits your needs to solve your problems. 

This chapter includes the following topics:

� 4.1, “The overall picture of your AI use case” on page 82
� 4.2, “Detecting CICS anomalies on IBM zSystems scenario” on page 89
� 4.3, “Object detection from geospatial images for cadastral analysis on IBM zSystems” on 

page 92

4

© Copyright IBM Corp. 2022. 81



4.1  The overall picture of your AI use case

When looking at possible AI use cases on IBM zSystems, start with identifying which 
business problems that you want to address by using AI technologies. After you understand 
the business challenges that need addressing, for example, by participating in an AI on 
IBM zSystems Discovery Workshop, you can match that information with one of the more 
generalized use cases that are defined by IBM. 

After you define the business challenges and select a use case, you can start discovering 
what AI technologies and open source frameworks that are available to integrate into your 
IBM solution and enable your goals. 

The next step is to explore and choose an enterprise solution for your AI implementation on 
IBM zSystems. After you have all of that information and decisions are made, you are ready 
to start integrating the solution into your mission-critical business applications, and begin to 
fully realize the benefits achieved.

For example, after potential use cases are identified, you can explore available AI 
technologies and frameworks that were introduced in “Why AI on IBM zSystems” on page 6. 
When the evaluation is done, ask yourself the following questions: 

� Where does the data that is used for training originate from and how is it stored?
� How large is the training data and how frequently is it updated?
� From where does the data that was used for the AI training and inferencing originate? 
� Where does the application that uses the AI model run? 
� What are the latency and data security requirements for the application that you are trying 

to infuse AI into?

The answers to these questions reveal whether the AI use case has good affinity for 
IBM zSystems and must be implemented with or on IBM zSystems. 

Next, we describe the typical AI on IBM zSystems use cases that are seen by IBM. At a high 
level, these use cases can be categorized into two categories: business-related and 
IT-related. 

There are many more potential use cases than the ones that are mentioned here. Because AI 
use cases are highly individualistic, a use case discovery workshop like the AI on 
IBM zSystems Discovery Workshop that we describe in 5.2, “What is next for your AI on IBM 
zSystems journey” on page 96 is highly recommended.

4.1.1  Business-related use case scenarios

The main reason to run AI on IBM zSystems for business use cases is to infuse AI into every 
business transaction and decision that is running on the IBM zSystems platform, and to 
derive real-time insights from predictive analytics to guide better, more informed business 
decisions. 

Deep learning (DL) can be used for some traditional business problems, such as fraud 
detection and credit risk scoring. Consider the use of DL when you have a large amount of 
training data because DL is powered by data. The more data that is fed to the algorithm, the 
better the performance of the trained model. 

For more information about a DL business-related use case scenario, see 4.3, “Object 
detection from geospatial images for cadastral analysis on IBM zSystems” on page 92.
82 Optimized Inferencing and Integration with AI on IBM zSystems: Introduction, Methodology, and Use Cases



Fraud detection
One example of a business-related use case is fraud detection. Fraud detection is of vital 
importance for banks, insurance agencies, and other organizations that deal with massive 
amounts of financial transactions and are at higher risk of suffering from financial fraud. 

Traditionally, fraud detection typically uses a rule-based engine approach, which has the 
following two main disadvantages: 

� Detection occurs after the transaction completes in a “pay and chase” mode. The losses 
that are caused by these fraudulent transactions are difficult to recover because the 
transactions already are complete.

� Rule-based engine approaches cannot adapt quickly for new fraud patterns, which lead to 
outdated detection methods and undetected fraudulent behavior. 

However, AI methods are useful when there is a need to learn new fraud patterns quickly. AI 
methods can enrich the existing rule-based engine approach to fraud detection by increasing 
the accuracy of models through reduced false positive and false negatives. The goal here is 
not to remove the rules-based approach to fraud detection, but instead enrich it with AI for 
better and more accurate results.

False positives create more overhead through process bottlenecks because they must check 
every false positive by using a manual process and negatively affect revenue due to customer 
friction when valid transactions are rejected. False negatives are fraudulent transactions that 
slip through the cracks and incorrectly labeled as a valid transaction, which results in loss due 
to fraud (sometimes even permanent financial losses). 

According to a Celent study that was commissioned by IBM, applying DL models for 
anti-fraud efforts resulted in a 36% decline in false positives. Additionally, the significant 
number of false positives that is experienced in anti-money laundering (AML) operations, 
which led to severe operational burden and costly regulatory fines, can benefit from 
leveraging DL models to help improve the accuracy of AML behavior detection and reduce 
false positives.1

By using the IBM Watson Machine Learning for z/OS (WMLz) enterprise solution, you can 
continuously monitor the model and retrain it to adapt to new fraud patterns automatically. 
Moreover, the high performance online inferencing capability of IBM zSystems enables you to 
embed the fraud detection flow as part of the online transaction to detect a fraudulent 
transaction before it completes. Allowing your organization to be proactive instead of reactive 
in their fraud detection efforts mitigates loss and recovery costs.

Supervised and unsupervised machine learning (ML) approaches can be used for fraud 
detection modeling. With supervised learning, you can create classification models that use 
labeled data, for example, fraud versus non-fraud. 

One key challenge of supervised ML modeling for fraud detection use cases is the lack of 
balanced training data because classification models expect balanced data. You can mitigate 
this challenge by using techniques such as data sampling and grouped models. 

If you use unlabeled data for fraud detection modeling, you can leverage unsupervised 
learning, which is commonly used to create anomaly detection models. The lack of balanced 
training data is not a challenge for anomaly detection models because the models expect the 
data to be imbalanced. 

1  https://www.ibm.com/downloads/cas/DOXY3Q94
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Implementation of an AI-powered fraud detection solution that can be embedded into the 
transaction and defines the business logic that deals with detection provides an important tool 
for detecting and preventing fraudulent transactions. For more information about the technical 
details regarding a fraud detection use case, see 3.3, “Credit card payments fraud detection 
use case scenario” on page 60.

Churn prevention
AI and ML technologies can be used when predicting the probability of churn and when to act 
before a customer is lost. You can apply AI churn prevention solutions to several industries, 
such as banking, insurance, retail, and health care. 

If the critical customer-related data for churn analysis originates on IBM zSystems, it is 
optimal to perform model training and scoring on the IBM zSystems platform for the most 
benefits. Training on the platform helps mitigate security exposures by removing the need to 
off load data from the IBM zSystems platform. It also helps avoid the cost of data masking, 
and ensures the most efficient churn prevention process. An alternative to training the model 
on IBM zSystems is to use pseudonymous customer data for training off-platform and then 
perform inferencing on IBM zSystems to still benefit from the platform’s inferencing 
optimizations. 

Risk scoring
Taking from the concept of churn prevention, the attempt to score, or inference, by use of 
linear regression methods can be used for other use cases to predict any type of risk. For 
example, to predict the risk of credit card insolvency or fraud at the conclusion of a contract. 

Implementing such a use case on IBM zSystems where your business-critical data is stored 
enables you to avoid data movement, leverage the colocation of data and applications and 
inferencing, and benefit from the proven value of the IBM zSystems infrastructure. 

For more information about the implementation of a risk scoring use case, see 3.2, “Credit 
risk assessment use case scenario” on page 48.

Customer segmentation and insight
Through customer segmentation, you can gain AI-driven insight into your customer base and 
use that insight to personalize service and product offerings for single customers. This 
personalization and customer behavior prediction can be made at the ideal point in the 
transaction for optimal up- and cross-selling strategies. 

Supply chain optimization
AI on IBM zSystems technology may be used for supply chain optimization or other 
optimization challenges.

Pre-built IBM solutions
IBM is using AI technology to infuse their own product with new capabilities. A short example 
for IBM Db2 for z/OS is described in “IBM Db2 13 SQL Data Insights”.

IBM Db2 13 SQL Data Insights
IBM Db2 13 for z/OS SQL Data Insights (SQL DI) is a newly introduced function that enables 
AI queries on existing Db2 for z/OS data by using built-in Structured Query Language (SQL) 
functions. It enables business users and application developers to create AI queries without 
offloading sensitive Db2 for z/OS data. It also lowers the barrier of using that data for AI by 
removing the requirement of data science skills.
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Db2 13 for z/OS function level (FL) 500 offers three built-in AI functions, which are outlined in 
Table 4-1.

Table 4-1   SQL Data Insights semantic query types

For more information about more architecture descriptions and example use cases, see 
Chapter 6, “SQL Data Insights”, in IBM Db2 13 for z/OS and More, SG24-8527.

4.1.2  IT-related use case scenarios 

The emerging requirements in the business domain added increasing challenges to IT 
infrastructure management because the traditional IT operations techniques can no longer 
cope with the business transformation and agility needs. 

Organizations are looking at how to integrate AI and ML in their IT operations to improve 
efficiency. Such integration enables quick resolutions and reduced monitoring so that IT 
teams can focus on what really matters. This integration is known as IT Operational Analytics 
(ITOA).

As the general system that is hosting the infrastructure for enterprise applications and 
transactions, large amounts of operational and performance data is generated on the 
IBM zSystems platform daily. Applying ITOA and ML capabilities on this data with 
IBM zSystems can provide the following key benefits: 

� Enable faster and more accurate anomaly detection with real-time performance data 
collection in run time.

� Avoid the cost and security vulnerability of offloading operational and performance data off 
the IBM zSystems platform.

Db2 built-in AI semantic 
function

Semantic query type Explanation of AI semantic function

AI_SIMILARITY Similarity and dissimilarity 
query

Given the attributes of an object, find 
other objects with similar or dissimilar 
attributes. 
The result is a similarity or dissimilarity 
score -1.0 - 1.0, where -1.0 means that 
the values are least similar, and 1.0 
means that they are most similar or 
dissimilar.

AI_SEMANTIC_CLUSTER Inductive reasoning 
semantic clustering query

Given a cluster of up to three entities, 
calculate a semantic clustering score 
indicating how well other entities fit into 
that cluster. 
The result is a score -1.0 - 1.0, where a 
larger positive value indicates a better 
fit into the cluster than a lower value.

AI_ANALOGY Inductive reasoning 
analogy query

Given a pair of related values, find 
other values that have the same 
relationship (A is to B as C is to ?). 
The result is an analogy score, where 
larger-valued positive results indicate a 
better analogy than smaller results.
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� Ensure that the latest data is available and accessible for modeling so that the system 
behavioral pattern that is derived is current.

� Use the ML solutions that are available on the IBM zSystems platform for easy adoption 
and implementation. 

ITOA use cases on IBM zSystems are described in “Anomaly detection”.

Anomaly detection
Anomaly detection refers to the case of identifying abnormal behaviors of the system (or 
applications) by using ML techniques. Anomaly detection can be helpful and applicable to 
almost all the key components on IBM zSystems; for example, Db2 for z/OS system and 
applications, IBM Customer Information Control System (IBM CICS) transactions, IMS 
transactions, IBM MQ, and batch jobs. 

All of these components generate large amounts of performance data, such as System 
Management Facility (SMF) data and logs, in their daily operations. SMF collects and records 
system and job-related information that can be used to generate different types of reports, 
such as profiling system resource use reports, and reliability reports. The key idea here is to 
use ML methodologies to build models to depict the normal behavioral pattern, or baselines 
of the key performance indicators (KPIs), which can then be used to score against new data 
to detect anomalies.

Compared with traditional anomaly detection methods that typically include the use of 
predefined thresholds for KPIs in monitoring tools or having domain experts analyze 
performance data manually, the ML approach supports detecting anomalies for a broader 
scope of KPIs with improvements in accuracy and efficiency while adapting automatically to 
changing workload patterns. In particular, unsupervised methods are suitable for this type of 
anomaly detection that is based on the time series approach.

Time series data is a sequence of data points that are collected over time. Each data point 
can have two metrics: the time when the data point was generated, and the value of the data 
point. 

The KPIs that fit best for time series analysis are the KPIs that are time-oriented and 
repeatedly sampled; for example, the transaction volume, CPU time, and elapsed time. Most 
of the performance KPIs that are collected by the z/OS system, Db2, CICS, and IMS are time 
series data. 

Combined with a statistical profiling approach, you can build baseline models that define the 
normal upper bound and lower bound of the KPIs over the time where the baseline models 
can be used to score against the new data. Any data point that falls beyond the normal range 
of the KPI can be detected as an anomaly. 

The time series method can discover the overall common trend of a certain KPI and the cyclic 
pattern of the KPI value. Therefore, the baseline models that are built carry the dynamic 
thresholds that can show the normal behavior of the KPIs across different days of the week, 
different hours of the day, or even on a minute interval. 

Compared with the use of fixed thresholds, this ML method can detect anomalies more 
accurately and proactively. Figure 4-1 on page 87 shows an example of the use of a time 
series-based dynamic baseline model to detect anomalies for Db2 statistics trace, KPI 
ACTIVE_DBATS.
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Figure 4-1   Using a dynamic baseline model for Db2 anomaly detection

For more information about an anomaly detection use case, see 4.2, “Detecting CICS 
anomalies on IBM zSystems scenario” on page 89.

Batch job management
Batch job management is one of the daily responsibilities of system operators and 
administrators, and is yet another area that can be optimized by AI and ML. 

Batch job profiling
Batch job profiling is the recommended first step in batch job management and is a process 
that can help you better understand your batch jobs. 

You might have hundreds, or even thousands, of batch jobs that are running on the system 
every day and belong to different batch applications. All of these jobs generate operational 
data that is collected as type 30 SMF records. By applying statistical and ML methodologies 
to the historical SMF 30 data records by way of visualization, time series analysis, correlation 
analysis, or another method, you can gain valuable insights regarding the execution pattern of 
the batch jobs. 

These valuable insights can help you answer critical questions about job execution, including 
the following examples:

� How frequently are the jobs run: daily, weekly, or monthly? 

� What are the most resource-intensive jobs on the system?

� What is the batch elapsed time for different nightly batch applications? Does a seasonal 
pattern exist?

� What are the influential jobs that affect the batch elapsed time?

Correlation analysis
A large percentage of the batch jobs, especially nightly batch jobs, connect to daily business 
transactions; for example, credit card payment batch processing. The credit card transactions 
are captured and accumulate during the daytime and wait to be settled by the nightly batch 
jobs. 

In this case, some business factors (transaction volumes of the day, number of accounts, and 
so on) can influence the batch window at night. Combing those business factors with SMF 30 
data records for correlation analysis, you can identify and visualize the relationship among 
online business transactions and batch applications, which creates the foundation for the next 
step of batch job management; that is, batch window prediction. 
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Batch window prediction
One key challenge of batch job management is to ensure that he batch window is respected, 
while simultaneously ensuring it does not overuse system resources. You can create ML 
models to predict the batch window to mitigate this challenge. The model can be created by 
using the data that is collected for the daytime transactions to form predictions of the batch 
window at night. 

However, your batch window must show strong correlation to the daily business transactions. 
The prediction can be run nightly before the batch job starts so that you can evaluate whether 
you must allocate more system resources to enforce the allowed batch window. 

The predictions also can be made spontaneously during the batch execution as an alternative 
approach. This feature is helpful for long-running batch jobs that can take hours to complete. 

The general process flow is shown in Figure 4-2. 

Figure 4-2   Batch job prediction during batch execution

In between the start of the first job of the batch through the completion of the last job of the 
batch, many small, medium, and large jobs are run in sequence or in parallel. How long the 
entire batch takes often is affected by some of the key jobs in the batch. 

Through the combination of ML methods and experience from domain experts, you can 
identify a set of key jobs that are called milestone jobs. These milestone jobs are represented 
by M1, M2, …, Mn in Figure 4-2. 

After you identify the milestone jobs, a model can be built for each milestone by using the 
performance data that is collected by SMF 30 records for the jobs. This SMF 30 record 
includes data, such as, CPU time, elapsed time, and I/O counts. 

During the batch execution, scoring can be called at every milestone to get a fresh prediction 
regarding when the batch finishes. In this way, you can monitor the batch evolution as it runs 
and dynamically adjust system resources to get the most optimal balance between batch 
window and resource consumption. 

“Black-box” solutions
In the ITOA space, you also can use the “black-box” solutions that are provided by IBM to 
accelerate ML adoption in your company. These solutions use the capabilities of ML that you 
can benefit from without the cost of any data science efforts that often are needed for model 
development. 
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The “black-box” solutions on IBM zSystems offer the following key features:

� IBM Db2 AI for z/OS (Db2ZAI): Db2ZAI learns patterns from your unique operating 
environment to improve Db2 for z/OS application and system performance by using ML, 
with a focus on the following areas: 

– SQL optimization: Uses ML to help the Db2 Optimizer choose the best access path. 

– System assessment: Uses AI to learn what is normal, performs exception-based 
analysis, and provides performance tuning recommendations on the system level. 

– Performance Insights: Uses ML for interactive Db2 performance analysis on an 
application level.

– Distributed connection control: Uses AI to learn the distributed connection behavior to 
control the handling of connections and threads.

For more information and resources regarding Db2ZAI, see “IBM Db2 AI for z/OS 1.5.0” 
on page 102.

� IBM zSystems Operations Analytics (IZOA): IZOA uses ML for anomaly detection in Db2 
for z/OS and CICS. Through visualizations, it helps you find hidden problems in the 
workloads and perform root cause analysis quickly. 

For more information and resources regarding IZOA, see “IBM zSystems Operations 
Analytics” on page 104.

4.2  Detecting CICS anomalies on IBM zSystems scenario

In this section, we describe an ITOA on IBM zSystems use case scenario in which a fictional 
customer, Customer X, uses WMLz with a focus on detecting CICS anomalies.

4.2.1  Background and business goal

To ensure the best performance and control resource consumption, Customer X implemented 
a performance reporting process for CICS and Db2 for z/OS. This performance reporting 
process runs regularly to collect, aggregate, correlate, and externalize CICS performance 
data from SMF records to CSV files. 

The customer used an Analytics Engine with statistical algorithms to analyze the CSV files in 
addition to visualizing the data. Then, experts reviewed the data regularly to identify potential 
anomalies within the previous day. 

The identification of the root cause was found through further manual analysis. With this 
approach, Customer X detected a specific number of anomalies in a specified period. 
However, this approach was still overly time-consuming and resource-intensive. Customer X 
needed a solution that detects anomalies quickly, and free up their experts’ time for more 
pressing matters. 

The goal became to implement CICS performance anomaly detection by using WMLz. The 
implementation included the target to detect anomalies faster than Customer X was 
performing at the time. Cases also exist in which some anomalies were not detected easily by 
humans or static thresholds. This issue might be the case for a slow decrease or increase of 
a performance-related metric or an increase of a performance-related metric in a valley.
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Figure 4-3 shows example scenarios that must be covered by the anomaly detection model. 
Trends in the consumption of service units (SUs) by a single transaction can be seen. Service 
units were chosen as an indicator and the anomaly detection is done on the transaction level.

Figure 4-3   Examples of typical scenarios that are covered by the anomaly detection approach

The benefits of implementing such a solution for Customer X’s use case are an increase in 
the speed of accurate anomaly detection. Especially after an application change, the quick 
detection of performance-related metrics is critical. As the AI solution, WMLz can detect more 
anomalies in a specific period than the initial manual approach of Customer X.

4.2.2  Architecture

This use case uses CICS performance-related SMF data that is converted to CSV format, 
which serves as the data source for WMLz and the AI model. 

Thinking further, Customer X can use IBM Data Virtualization Manager (DVM) for z/OS to 
directly access the SMF data, which enabled an automatic data flow process and improves 
process speeds. 

Figure 4-4 on page 91 shows the components and procedure flow of this use case 
architecture. The procedure includes the following steps:

1. SMF data is transformed to CSV data:

– Serves as the data input for the model development and for scoring of the model to get 
the prediction. 

– Various timeframes were selected that consisted of weeks to months. For a production 
implementation, the usage of data that consists of years might be considered. 
However, the data scientist must consider that metrics can change with the introduction 
of a new application. They also must ensure that this issue is not classified as a false 
anomaly.

2. CSV data is loaded into the WMLz integrated development environment (IDE). 

3. Data exploration is performed to understand the meaning of the provided data, identify 
correlations between metrics, and choose the relevant features for anomaly detection. 

4. Dynamic baseline models for a selected subset of transactions are created and trained.
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Having a trained model, the anomaly detection with WMLz base is performed by using the 
dynamic baseline models. For this process, we use Python in Jupyter Notebooks.

Figure 4-4   Components and data flow of our IT-based use case

Thinking further and establishing more AI on IBM zSystems use cases, IBM Cloud Pak for 
Data (CP4D) can be considered as a data science platform for creating and training the ML 
model instead of the WMLz IDE.

4.2.3  Summary

You can adapt this use case approach to other customers or use cases. We recommend the 
following steps (see Figure 4-5) to help you discover the value of AI on IBM zSystems.

Figure 4-5   AI on IBM zSystems engagement actions

1. Facilitate a discussion with key stakeholders from multiple departments, such as IT, 
business, or data science departments, regarding your business goal and the selection of 
an AI on IBM zSystems use case. 

As a best practice, include an AI on IBM zSystems Discovery Workshop, which is 
described in 5.2, “What is next for your AI on IBM zSystems journey” on page 96, as a part 
of this multi-disciplinary, facilitated discussion. Doing so helps all the teams that are 
involved learn about the solutions that are available for AI on IBM zSystems and identify 
use cases for your organization.
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2. Identify relevant data for your use case and run a proof of concept (PoC) that is based on 
your data and environment.

3. Discuss and present the results of your PoC and begin discussing what your next steps 
must be to turn everything that you learned into actionable insights and predictions to 
enrich your business. 

4.3  Object detection from geospatial images for cadastral 
analysis on IBM zSystems

In this section, we describe a business-related AI use case scenario on IBM zSystems in 
which a customer, Customer Y, use DL model inferencing on IBM zSystems for object 
detection in images. 

4.3.1  Background and business goal

Being a trusted partner for various departments, Customer Y uses the IBM zSystems 
platform and related products. They want to use AI, particularly DL models, for geospatial 
images and cadastral data analysis, pattern recognition, and identification and comparison of 
buildings by using object detection.

To do so, they use the combination of their expertise and IBM expertise to create a PoC. The 
main objective of the PoC is to evaluate the Open Neural Network Exchange (ONNX) scoring 
capability on IBM zSystems that uses WMLz. The goal of the project is to verify that a DL 
model, created on any platform, can be taken and deployed on IBM zSystems, It provides the 
possibility to score directly on IBM zSystems for detecting buildings in the specific images.

As an IT service provider for public clients, Customer Y works to continuously improve their 
operational efficiency and qualities of service by using AI and ML capabilities. Because their 
core business is running on IBM zSystems, doing the model inferencing on IBM zSystems 
enables them to use IBM zSystems infrastructure for new types of workloads. 

At the same time, Customer Y can benefit from the hardware consolidation, security, and high 
availability (HA) that is provided by the platform.

4.3.2  Architecture

Because the only objective was to verify the ONNX scoring capabilities on z/OS, IBM WMLz 
Online Scoring Community Edition (WMLz OSCE) was chosen. 

WMLz OSCE simplifies the engagement and allows the focus to be on the technical 
evaluation. WMLz OSCE server is a Docker container that runs in IBM z/OS Container 
Extensions (zCX) instance on the z/OS logical partition (LPAR), as shown in Figure 4-6 on 
page 93. The container can be managed by the provided script that is included with the 
OSCE package. As a lightweight version of WMLz, the process of getting WMLz OSCE up 
and running can be done easily.
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Figure 4-6   Object detection use case architecture

The WMLz OSCE server provides a web user interface from which the DL model, which is 
trained on any platform and converted into ONNX format, can be imported to the server in an 
intuitive and simple way. 

After the model is imported, OSCE uses the IBM zSystems Deep Learning Compiler (zDLC) 
technology to compile the model into executable C++ code, and deploys the compiled model 
to the server. For each deployed model, a unique Representational State Transfer (REST) 
endpoint is exposed. Applications that are running on any platform can use the REST 
application programming interface (API) to call the model for online inferencing. 

The model that is used for the project is an object detection “You Only Look Once” (YOLO) 
model that was trained by using the Keras high-level API of TensorFlow. YOLO is a 
convolutional neural network (CNN)-based algorithm that is used for detecting and 
recognizing objects in an image. YOLO is a popular model today because of its advantages in 
accuracy and efficiency. 

After the model is trained, it is converted into ONNX format by using keras2onnx converter. 
The size of the converted ONNX model file is approximately 200 MB. The keras2onnx 
converter is available at this GitHub web page.

The input of the model is a multi-dimensional array with type float32[N,M1,M2,3]. The first 
level “N” indicates the number of input images. The second and third levels “M1” and “M2” 
indicate the size of the input image, the height, and the width. The fourth level “3” carries the 
RGB value of each pixel in the image. 

The model can take any number of images of any size for scoring. 
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The model features two outputs: bounding boxes and confidence score. Bounding boxes 
depict the rectangle boxes that enclose the detected objects in the image. The confidence 
score indicates how confident it is that a bound box encloses some object. In the PoC project, 
this ONNX model was imported to WMLz OSCE for testing the model online scoring 
capabilities.

4.3.3  End-to-end testing

In the PoC, aerial images with sizes 416 x 416 and 1664 x 1664 were used for the testing. A 
Python application was created to test building detection in the geospatial images end-to-end. 

As shown in Figure 4-6 on page 93, the Python application can read in an image file from a 
local disk, transform the image to be represented by multi-dimensional array, and generate 
the scoring input. Then, it calls the WMLz OSCE server to use the imported YOLO model for 
inferencing given the scoring input. 

After the scoring is done, the result is returned to the Python application, and is 
post-processed by the application to generate an output image with detected buildings 
enclosed by rectangle boxes. 

4.3.4  Summary

The PoC was successful in proving that WMLz OSCE can run DL models on z/OS for 
detecting objects in images. One key challenge that was faced was two operators in the 
YOLO model were not supported by the zDLC, which was mitigated quickly by IBM. 

Closely working with the IBM team is a valuable part of the journey to AI for Customer Y. The 
collaboration enables IBM to continuously improve and expand the list of supported ONNX 
operators. It also enables the customer to immediately receive the benefits from the 
supported operators. 

Because of the success of the PoC, Customer Y is ready to take their solution to the next level 
of implementation and scale. As the next steps, Customer Y and IBM continue to collaborate 
and expand the solution for the use case. They move from the use of WMLz OSCE to the 
official version of WMLz, which can provide enterprise-grade model lifecycle management 
capabilities, HA, and more, for production deployment. 

Significant performance improvements can be seen by model inferencing through Customer 
Y, who uses the IBM zSystems Integrated Accelerator for AI in z16, which is available as part 
of the Telum processor. 
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Chapter 5. Key takeaways

This publication describes various methods that can be used to develop, train, and deploy 
artificial intelligence (AI) models on the IBM zSystems infrastructure, including integration 
points with other platforms and solutions. This chapter summarizes some of the key points 
that are addressed throughout the publication, and includes the following topics:

� 5.1, “Key technologies for AI on IBM zSystems” on page 96
� 5.2, “What is next for your AI on IBM zSystems journey” on page 96
� 5.3, “Future of AI technologies on IBM zSystems” on page 98

5
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5.1  Key technologies for AI on IBM zSystems

Throughout this IBM Redpaper publication, we focused on key use case implementations that 
use IBM Watson Machine Learning for z/OS (WMLz) as a key component in an AI solution 
that leverages an AI model that was developed off-platform and then deployed to 
IBM zSystems by using WMLz. This configuration enables solutions that are vital to the 
IBM zSystems server, and enables enterprises to leverage the IBM zSystems platform 
strengths, for example, the IBM Integrated Accelerator for AI within the z16 Telum chip. 

Combining the usage and integration of open-source technologies with the functions that are 
offered in WMLz supports the strategy of build and train anywhere, and then deploy and 
infuse on IBM zSystems. Following this strategy, you have access to many open-source 
container images that run on IBM zSystems, in addition to increased integration points of AI 
on IBM zSystems products. 

Performing scoring and deployment on the IBM zSystems infrastructure is the best way to get 
the most out of your existing infrastructure investments and improve your inference 
performance metrics through optimized inferencing by using the Integrated Accelerator for AI, 
if it is present. This approach is the most practical and securable strategy due to the data 
gravity that the platform offers, which reduces or eliminates the need to move data between 
environments.

Combining the running of the AI model on the same Telum chip as the core transactions 
enables a more energy-efficient and much faster execution of the model when compared to 
using traditional accelerators, such as GPUs. A powerful GPU contributes to high energy 
consumption in the system. The Integrated Accelerator for AI can work much faster with the 
data on the cache structure of the Telum chip versus sending data to the GPU over the PCIe 
lanes to a GPU for inferencing. 

From a customer’s perspective, machine learning (ML) and deep learning (DL) open exciting 
new possibilities with timely, intelligent AI-driven insights. You can get started on your AI on 
IBM zSystems journey without any up-front cost with no-cost services, such as WMLz Online 
Scoring Community Edition (OSCE). Furthermore, the IBM continued focus on open-source 
frameworks allows for an easy transfer of skills and enables you to use the knowledge of your 
own data science team of experts.

5.2  What is next for your AI on IBM zSystems journey

Early in your AI on (and with) IBM zSystems journey, you should connect with your colleagues 
and determine about the benefits of AI on (and with) IBM zSystems. Also, you should 
cooperate with the data science team within your organization to combine knowledge and 
domain expertise because AI projects are a team effort. 

A best practice approach is to engage in a no-charge, IBM Client Engineering AI on 
IBM zSystems Discovery Workshop, co-creating with an IBM squad of deeply skilled and 
multi-disciplinary technology experts. This workshop is designed to help you discover and 
better understand the AI technology on the IBM zSystems platform and develop the 
architecture, practices, and hands-on experience to successfully begin leveraging these AI 
and analytic capabilities to gain new insights from your business-critical workloads and data. 
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The workshop, which is outlined in Figure 5-1, brings together your business and technology 
context, sponsorship, subject matter experts (SMEs), data; and IBM global expertise, 
technical accelerators, and proven patterns to co-create innovative solutions for your 
business opportunities by leveraging the latest AI on IBM zSystems technologies, including 
the IBM z16 Integrated Accelerator for AI. 

Figure 5-1   AI on IBM zSystems Discovery Workshop

By engaging in this kind of a facilitated collaboration, you can accelerate your AI on (and with) 
IBM zSystems journey. At the end of this workshop, you achieve the following goals:

� Co-create a list of potential AI on (and with) IBM zSystems use cases for your 
environment.

� Learn best practice recommendations for using AI on the IBM z16 technologies that are 
described in the workshop.

� Provide skills enablement for your teams.

� Obtain recommendations for initial AI on IBM zSystems adoption.

� (Optional) Define use case requirements and outcomes, architecture, and a configuration 
and practical implementation plan.

If you are interested in this workshop, contact your local IBM zSystems Architect or your 
IBM zSystems Sales contact.
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5.3  Future of AI technologies on IBM zSystems

The focus of this publication was heavily targeted on WMLz, which we used as the scoring 
and deployment platform for our implemented use case. Abid Alam, an IBM Product Manager 
for WMLz for AI on IBM zSystems, gave the following statement about the WMLz Strategy 
Direction:

“IBM WMLz enables organizations to operationalize ML and DL models on z/OS, where most 
transactions originate for IBM zSystems customers. This effectively extends their current 
investment in the platform for those models that require the lowest latency within a 
security-rich environment. WMLz offers a hybrid cloud approach to model training, 
deployment, and lifecycle management. Customers have the flexibility to train models 
anywhere they want and deploy those models on the IBM zSystems platform - closer and 
colocated with their mission-critical transactional workloads, which ensures scalability, 
security, and reliability while meeting the most stringent of service-level agreements (SLAs).

Supported models include Spark, Python (such as SnapML, XGBoost, and scikit-learn), 
Predictive Model Markup Language (PMML), and Open Neural Network Exchange (ONNX) 
DL models (such as TensorFlow, Keras, PyTorch, and Caffe). WMLz is the flagship 
end-to-end ML product and a key component in the overall AI on IBM zSystems strategy. In 
addition to business application use cases, it also enables solutions that are vital to the 
IBM zSystems system, including Db2 AI for z/OS, IBM zSystems Operations Analytics, and 
other upcoming AI-Powered solutions. The future direction of WMLz is focused on continuous 
product enhancements to support a wider array of use cases and the use of the Telum chip 
(an on-chip AI accelerator) to support DL models to accelerate the adoption of AI on 
IBM zSystems.”

Instead of WMLz, there are several other AI on IBM zSystems software solutions that are 
mentioned in this publication. Depending on your use case, look at black-box solutions like 
IBM Db2 AI for z/OS (Db2zAI), IBM zSystems Operations Analytics (IZOA) or IBM Db2 13 for 
z/OS SQL Data Insights (SQL DI). 

IBM Cloud Pak for Data (CP4D) is another offering that is instrumental to the future of AI 
solutions on IBM zSystems. CP4D runs on the IBM zSystems infrastructure in addition to 
other platforms that are based on Red Hat OpenShift, and it is deeply integrated with WMLz. 
Typical use cases involve performing model development, training, and bias checks on CP4D, 
and the model deployment and scoring on WMLz.

For more information about CP4D, see IBM Cloud Pak for Data. For more information about 
the potential use cases that leverage the strengths of the IBM zSystems infrastructure, see 
Capabilities on Linux on IBM zSystems and IBM LinuxONE.

IBM also focuses on AI in their hardware design with the OpenBLAS library usage for AI with 
single instruction, multiple data (SIMD) (starting with IBM z14®) and recently with leveraging 
the Integrated Accelerator for AI within the Telum chip for AI acceleration (starting with 
IBM z16). The new chip has an innovative centralized design, which allows customers to use 
the full power of the AI processor for AI-specific workloads, which makes it ideal for financial 
services workloads, such as fraud detection, loan processing, clearing and settlement of 
trades, anti-money laundering, and risk analysis.

With these innovations, customers are positioned to enhance rules-based fraud detection or 
use ML, accelerate credit approval processes, improve customer service and profitability, 
identify which trades or transactions might fail, and propose solutions to create a more 
efficient settlement process.1

1  https://newsroom.ibm.com/2021-08-23-IBM-Unveils-On-Chip-Accelerated-Artificial-Intelligence-Processor
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Appendix A. Installation and configuration 
pointers

This appendix provides planning, installation, and configuration pointers for several 
components that are described throughout this publication.

This appendix includes the following topics:

� “IBM z/OS Container Extensions 2.5” on page 100
� “Red Hat OpenShift Container Platform” on page 100
� “IBM Data Virtualization Manager for z/OS” on page 101
� “IBM Open Data Analytics for z/OS” on page 101
� “IBM Watson Machine Learning for z/OS 2.4.0” on page 101
� “IBM Db2 AI for z/OS 1.5.0” on page 102
� “IBM Db2 for z/OS 13 with SQL Data Insights” on page 102
� “AI on IBM zSystems” on page 103
� “ONNX resources” on page 103
� “TensorFlow resources” on page 103
� “IBM CICS Transaction Server for z/OS resources” on page 103
� “IBM zSystems Operations Analytics” on page 104
� “IBM Cloud Pak for Data” on page 104
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IBM z/OS Container Extensions 2.5

IBM z/OS Container Extensions (zCX) can be evaluated before purchasing the full feature 
code by using the limited-time no-charge trial. The trial lasts 90 days and requires an IBM z14 
or later. For more information about the trial, including how to set it up, the next steps after the 
trial ends, and encountering trial errors, see zCX Trial.

For more information about technical details and resources regarding hardware and software 
requirements and considerations for your system when planning to deploy a zCX instance, 
see Planning for zCX.

Additionally, the IBM zSystems and LinuxONE Content Solutions provide a zCX content 
solution web page that describes zCX functions, business benefits that can be derived from 
the solution, and technical resources to help you get started with using zCX in your 
environment. The following list briefly describes the steps that are outlined in the content 
solution that are required to get started with zCX:

1. Research and decide whether zCX is the correct solution for your IBM z/OS system.

2. Prepare your system and plan for your zCX instance. These steps are about how to decide 
on the allocations and variables that are needed for your zCX instances.

3. Provision your zCX instance by using an IBM z/OS Management Facility (z/OSMF) 
workflow.

4. Deploy a Linux container in your zCX instance. Log in to zCX and deploy a Docker 
container by using the Docker command-line interface (CLI).

5. Manage and maintain your zCX instance. z/OSMF has additional workflows to manage 
the lifecycle of your zCX appliance, including a provisioning workflow, a backup 
configuration workflow, a reconfiguration workflow, a restore configuration workflow, an 
add data disks workflow, an upgrade workflow, a rollback workflow, and a deprovisioning 
workflow.

You can access the IBM zSystems and LinuxONE Content Solution for zCX 
at z/OS Container Extensions (zCX).

Red Hat OpenShift Container Platform

For more information about how to install Red Hat OpenShift Container Platform V4 on 
IBM zSystems, see the following resources:

� Chapter 16. Installing with IBM z/VM on IBM zSystems and LinuxONE

� Chapter 17. Installing with Red Hat Enterprise Linux KVM on IBM zSystems and 
LinuxONE 

� Red Hat OpenShift reference architectures 

For more information about how Red Hat OpenShift Container Platform enables cloud-native 
integration and acceleration with IBM zSystems to bring your artificial intelligence (AI) vision 
to life, see Hybrid cloud with IBM zSystems.
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IBM Data Virtualization Manager for z/OS

For more information and resources about how to install, configure, and verify Data 
Virtualization Manager for z/OS 1.1.0 (DVM) in your environment, see Installing IBM Data 
Virtualization Manager for z/OS.

For more information and detailed descriptions about the significant tasks that help you 
virtualize your data by using DVM for z/OS to securely connect to and access data in your 
z/OS environment by, see Getting started with IBM Data Virtualization Manager for z/OS.

IBM Open Data Analytics for z/OS

The IBM Open Data Analytics for z/OS (IzODA) 1.1.0 content solution describes the functions 
and business benefits that are offered by IzODA, such as simplified data analysis among 
others. The content solution also contains technical resources to help you get IzODA running 
in your z/OS environment today. The following list briefly describes the steps that are outlined 
in the content solution that are required to get started with IzODA:

1. Install and configure IzODA and create a user ID.

2. For Apache Spark, customize the directory structure, and configure the client 
authentication.

3. Configure the network, ports, firewalls, memory, and CPU options.

4. Configure a workload manager (WLM).

5. Set up security authorizations and authorized program facility (APF)-authorize LOAD 
library data sets.

6. Customize Apache Spark, Mainframe Data Service (MDS), and Anaconda.

The content solution also identifies specific roles and corresponding tasks for each role in that 
process to get started, such as the z/OS System Programmer, the System/Network 
Administrator, and the Security Administrator. You can access the IBM zSystems and 
LinuxONE Content Solution for IzODA at IBM Open Data Analytics for z/OS (IzODA).

For more information about Open Data Analytics for z/OS, see IBM Open Data Analytics for 
z/OS.

IBM Watson Machine Learning for z/OS 2.4.0

You can find details regarding the configuration steps that are taken for our example
IBM Watson Machine Learning for z/OS (WMLz) deployment for the implemented solutions in 
Chapter 3, “Real-time, in-transaction scoring use case scenarios” on page 37 in the WMLz 
configuration.pdf. Appendix B, “Additional material” on page 105 describes how to obtain 
this PDF. 

At a high level, the planning steps to implement WMLz should include the following ones:

1. Review the architecture requirements and install any prerequisite hardware and software, 
which are available at Overview of WML for z/OS.

2. Decide on an installation option. 

For more information about choosing the best installation option for your needs, see 
Choosing an installation option.
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3. After you review the architecture requirements and select an installation option, verify or 
install any prerequisite hardware and software for your chosen installation option. 

For more information about these prerequisites, see Installing prerequisite hardware and 
software for WML for z/OS base.

4. Begin the roadmap for planning, installing, and configuring WMLz. 

This high-level roadmap outlines and describes the steps to manage, coordinate, and 
track all major activities for the planning, installation, and configuration of WML for z/OS, 
and includes the following major components: 

– Sequence of steps in the process

– Task and instructions for the task

– Priority (optional or non-optional)

– Type of task (planning, installation, or configuration)

– IT roles and skills (suggested IT role and skill set required to perform the task). 

The roadmap can be accessed at Roadmap for installing and configuring WML for z/OS.

The following list contains more WMLz resources to help with your integration and usage of 
the product within your existing infrastructure:

� Algorithm, data source, data type, and model type support in WMLz

For more information about WMLz supported algorithms, data sources, data types, and 
model types, see Supported algorithms, data sources, data types, and model types.

� Open Neural Network Exchange (ONNX) compiler service for WMLz base 

For more information about how to configure the ONNX compiler service for your WMLz 
base to import, deploy, and manage your ONNX models with WMLz for z/OS base, see 
Configuring the ONNX compiler service for your WML for z/OS base.

� Online scoring with IBM Customer Information Control System (IBM CICS) in WMLz

For more information about the integration of WMLz base scoring services in a CICS 
region for the online scoring of models in WMLz by using the ALNSCORE program, see 
Preparing a model for online scoring with CICS program ALNSCORE.

� WMLz and IBM Watson OpenScale

For more information about how to integrate your WMLz base with the IBM Watson 
OpenScale service on IBM Cloud Pak for Data (CP4D) to validate models, mitigate bias, 
and explain results, see Validating a model with IBM Watson OpenScale.

IBM Db2 AI for z/OS 1.5.0

For more information about and the procedure for installing and configuring IBM Db2 AI for 
z/OS (Db2ZAI), see the Installing and configuring the IBM Db2 AI for z/OS solution.

IBM Db2 for z/OS 13 with SQL Data Insights

For more information about IBM Db2 for z/OS 13, see What is Db2 for z/OS?

For more information about leveraging IBM Db2 13 for z/OS SQL Data Insights (SQL DI), see 
Running AI queries with SQL Data Insights.
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Both Db2 V13 and the SQL DI functions also are described in IBM Db2 13 for z/OS and More, 
SG24-8527.

AI on IBM zSystems

For more information about use cases, code samples, and other content that serves as a 
technical resource for your AI on IBM zSystems journey, see AI on IBM zSystems 101.

ONNX resources

For more information about how to configure the ONNX compiler service for your WMLz base, 
see Configuring the ONNX compiler service for your WML for z/OS base.

For more information about the ONNX community-provided tools to help create, optimize, and 
deploy deep learning (DL) models, see ONNX supported tools.

For more information about ONNX converters, what they are, how they are used, and what 
converting libraries are available for converting AI models into ONNX, see ONNX Coverters.

TensorFlow resources

For more information about the benefits of using TensorFlow framework on IBM zSystems 
and LinuxONE, see TensorFlow on IBM zSystems and LinuxONE.

You can access the TensorFlow, TensorFlow Serving, and IBM zSystems Optimized for 
TensorFlow container images for IBM zSystems and LinuxONE at the IBM zSystems and 
LinuxONE Container Registry.

For more information about how to download and use the IBM zSystems Optimized for 
TensorFlow container image to transparently target the IBM zSystems Integrated Accelerator 
for AI for several compute-intensive operations during inferencing with no changes to the 
TensorFlow models, see the IBM zSystems Optimized for TensorFlow Documentation and 
Samples GitHub repository.

For educational resources that focus on the TensorFlow framework, including code samples, 
tutorials, and implementations, see IBM Developer: About TensorFlow.

For more information about installing TensorFlow 2 on your specific system, see Install 
TensorFlow 2.

IBM CICS Transaction Server for z/OS resources

For more information about CICS, including setting it up in your own environment, select the 
appropriate version distribution for your system at IBM CICS Transaction Server for z/OS 
product documentation.
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IBM zSystems Operations Analytics

For more information about IBM zSystems Operations Analytics, its capabilities, components, 
and other key concepts, see IBM zSystems Operations Analytics overview.

IBM Cloud Pak for Data

For more information about the CP4D product offering, see IBM Cloud Pak for Data.

For more information about CP4D on the IBM zSystems infrastructure and potential use 
cases that leverage the platform strengths, see Capabilities on Linux on IBM zSystems and 
IBM LinuxONE.
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Appendix B. Additional material

This paper refers to additional material that can be downloaded from the internet, as 
described in the following sections.

Locating the web material

The web material that is associated with this paper is available in softcopy on the internet 
from the IBM Redbooks web server:

ftp://www.redbooks.ibm.com/redbooks/REDP5661

Alternatively, you can go to the IBM Redbooks website:

ibm.com/redbooks

Search for REDP-5661, select the title, and then click Additional materials to open the 
directory that corresponds with the IBM Redpaper form number, REDP5661.

Using the web material

The additional web material that accompanies this paper includes the following files. The 
AddM.zip compressed file contains all the other files.

File name Description

CICS Application-CRED.docx Document that includes steps to create CICS 
resources and run the application. Also includes 
source codes.

CREDFILE.JCL JCL for creating a file that includes sample credit 
(application data - small).

CREDFILE1.JCL JCL for creating a file that includes sample credit 
(application data - large).
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CreditRiskNum Notbeook.ipynb Data science Notebook that is used to create a 
credit risk model. 

CreditRiskNum Notbeook.pdf PDF of the Notebook that used to create a credit 
risk model. 

CREDRSCR.CBL Credit risk score prediction COBOL program.

DFH0WBC2.CBL Program to make a Representational State 
Transfer (REST) application programming 
interface (API) call to a credit risk model.

ccf_lstm_to_onnx_RB.ipynb Data science Notebook showing how to reload a 
TensorFlow model from saved checkpoint weights, 
convert the model to an Open Neural Network 
Exchange (ONNX) format, change the input/output 
shape of the model to only one dynamic dimension 
to ensure that micro-batching in an IBM Watson 
Machine Learning for z/OS (WMLz) deployment 
can be used, which creates some test inputs to 
validate that micro-batching works as expected.

ccf_220_keras_lstm_static-OS.ipynb Data science Notebook showing how the fraud 
detection model is trained and converted to ONNX 
format.

fraud-detection-sample-json.txt Sample JSON data that is used when invoking the 
fraud detection model by using the WMLz User 
Interface (UI) or the IBM Customer Information 
Control System (IBM CICS) COBOL application.

WMLz configuration.pdf Our WMLz 2.4 installation and configuration 
details.

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web 
material AddM.zip file into this folder.
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Related publications

The publications that are listed in this section are considered suitable for a more detailed 
description of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topics in this 
document. Some publications that are referenced in this list might be available in softcopy 
only.

� Accelerating Digital Transformation on Z Using Data Virtualization, REDP-5523

� Art of the Possible with AI on IBM zSystems: A Collection of Enterprise Experiences, 
CRSE0402

� Become Data Driven with IBM Z Infused Data Fabric, REDP-5680

� Demystifying Data with AI on IBM Z, REDP-5633

� Enabling Real-time Analytics on IBM z Systems Platform, SG24-8272

� Getting started with z/OS Container Extensions and Docker, SG24-8457

� IBM Data Virtualization Manager for z/OS, SG24-8514

� IBM Db2 13 for z/OS and More, SG24-8527

� IBM z/OS Container Extensions (zCX) Use Cases, SG24-8471

� IBM z16 (3931) Technical Guide, SG24-8951

� IBM z16 Configuration Setup, SG24-8960

� IBM z16 Technical Introduction, SG24-8950

� IBM Z Connectivity Handbook, SG24-5444

� Installing and Configuring IBM Db2 AI for IBM z/OS v1.4.0, REDP-5643

� Real-time Fraud Detection Analytics on IBM System z, SG24-8066

� Turning Data into Insight with IBM Machine Learning for z/OS, SG24-8421

� What AI Can Do for You: Use Cases for AI on IBM Z, REDP-5679

You can search for, view, download, or order these documents and other Redbooks, 
Redpapers, web docs, drafts, and additional materials at the following website: 

ibm.com/redbooks
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Online resources

The following websites also are relevant as further information sources:

� AI Model Lifecycle Management Overview blog:

https://www.ibm.com/cloud/blog/ai-model-lifecycle-management-overview

� Announcing Anaconda for Linux on IBM zSystems and LinuxONE:

https://www.ibm.com/blogs/systems/announcing-anaconda-for-linux-on-ibm-z-linuxo
ne/

� Artificial intelligence (AI) on IBM zSystems: Examples of model conversion to Open Neural 
Network Exchange (ONNX) format:

https://github.com/IBM/ai-on-z-samples/tree/main/

� COMPUTING MACHINERY AND INTELLIGENCE, found at: 

https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf

� The Data and AI on IBM zSystems portfolio at the nexus of your hybrid cloud:

https://www.ibm.com/resources/guides/data-ai-hybridcloud-on-ibmz/

� Data fabric overview and details: 

https://www.ibm.com/analytics/data-fabric

� IBM CICS overview:

https://www.ibm.com/it-infrastructure/z/cics

� IBM Cloud Pak for Data 4.5.x - Virtualizing data with Data Virtualization:

https://www.ibm.com/docs/en/cloud-paks/cp-data/4.5.x?topic=data-virtualizing

� IBM Cloud Pak for Data Deployments:

https://www.ibm.com/products/cloud-pak-for-data/deployment-model-options

� IBM Cloud Pak for Data on IBM zSystems:

https://www.ibm.com/downloads/cas/YBL2KLER

� IBM Data Virtualization Manager for z/OS product documentation:

https://www.ibm.com/products/data-virtualization-manager-for-zos

� IBM Db2 AI for z/OS product page:

https://www.ibm.com/products/db2-ai-for-zos

� IBM Developer on TensorFlow:

https://developer.ibm.com/components/tensorflow/

� IBM Open Data Analytics for z/OS product documentation:

https://www.ibm.com/products/open-data-analytics-for-zos

� IBM Telum processor blog:

https://www.ibm.com/blogs/systems/ibm-telum-processor-the-next-gen-microprocess
or-for-ibm-z-and-ibm-linuxone/

� IBM Watson Machine Learning for z/OS overview:

https://www.ibm.com/products/machine-learning-for-zos

� IBM Watson Machine Learning for z/OS product documentation:

https://www.ibm.com/products/machine-learning-for-zos
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� IBM zSystems Content Solutions: z/OS Container Extensions

https://www.ibm.com/support/z-content-solutions/container-extensions/

� IBM zSystems and LinuxONE Container Registry: 

https://ibm.biz/zregeap

� IBM zSystems in a hybrid cloud world:

https://www.linkedin.com/pulse/ibm-z-hybrid-cloud-world-c%C3%BCneyt-g%C3%B6ksu/

� IBM z/OS Operating Systems Overview:

https://www.ibm.com/it-infrastructure/z/zos

� IBM zSystems Operations Analytics product documentation:

https://www.ibm.com/products/z-anomaly-analytics

� Installing a Red Hat OpenShift cluster with z/VM on IBM zSystems and LinuxONE:

https://docs.openshift.com/container-platform/4.9/installing/installing_ibm_z/i
nstalling-ibm-z.html

� Linux on IBM zSystems overview:

https://www.ibm.com/it-infrastructure/z/os/linux

� ONNX-Multi-Level Intermediate Representation (MLIR) open source project GitHub:

https://github.com/onnx/onnx-mlir

� ONNX website:

https://onnx.ai/

� Red Hat OpenShift Container Platform on IBM zSystems and LinuxONE Reference 
Architecture:

https://www.ibm.com/docs/en/linux-on-systems?topic=architecture-platform

� Software for enterprise analytics and machine learning:

https://www.ibm.com/analytics/data-and-ai-on-ibm-z

� What’s new in WML for z/OS 2.3.0:

https://www.ibm.com/docs/en/wml-for-zos/2.3.0?topic=zos-whats-new

� What is Artificial Intelligence?, found at: 

http://jmc.stanford.edu/articles/whatisai/whatisai.pdf

� What is Db2 for z/OS:

https://www.ibm.com/docs/en/db2-for-zos/12?topic=getting-started-db2-zos

� What is z/OS Container Extensions:

https://www.ibm.com/docs/en/zos/2.4.0?topic=extensions-what-is-zos-container

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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ronyms
AI artificial intelligence

AML anti-money laundering

APF authorized program facility

API application programming interface

AutoML automated machine learning

CADS Cognitive Assistant for Data 
Scientists

CI/CD continuous integration and 
continuous delivery (CI/CD)

CICS IBM Customer Information Control 
System

CLI command-line interface

CNN convolutional neural network

CODAIT Center for Open-source Data and 
AI Technologies

CP4D Cloud Pak for Data

Db2ZAI IBM Db2 AI for z/OS

DL deep learning

DNN deep neural network

DR disaster recovery

DVM IBM Data Virtualization Manager for 
z/OS

FL function level

HA high availability or highly available

HPO hyper parameter optimization

IBM International Business Machines 
Corporation

IDAA IBM Db2 Analytics Accelerator

IDE integrated development 
environment

ITOA IT Operational Analytics

IZOA IBM zSystems Operations Analytics

IzODA IBM Open Data Analytics for z/OS

JDBC Java Database Connectivity

JVM Java virtual machine

KPI key performance indicator

LPAR logical partition

LSTM long short-term memory

MDS Mainframe Data Service

ML machine learning

MLIR Multi-Level Intermediate 
Representation

Abbreviations and ac
© Copyright IBM Corp. 2022.
NLP natural language processing

NLU natural language understanding

OLAP online analytical processing

OLTP online transaction processing

ONNX Open Neural Network Exchange

opset operation set

OSCE Online Scoring Community Edition

PMML Predictive Model Markup Language

PoC proof of concept

PTF product temporary fix

ReLU Rectified Linear Unit

REST Representational State Transfer

RNN recurrent neural network

SCP Secure Copy Protocol

SIMD single instruction, multiple data

SLA service-level agreement

SMF System Management Facility

SQL Structured Query Language

SQL DI IBM Db2 13 for z/OS SQL Data 
Insights

SU service unit

UI user interface

WLM workload manager

WMLz IBM Watson Machine Learning for 
z/OS

YOLO You Only Look Once

z/OSMF z/OS Management Facility

zCX z/OS Container Extensions

zDLC IBM zSystems Deep Learning 
Compiler

zDNN IBM zSystems Deep Neural 
Network
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