
Redpaper

Front cover

Introduction to R in IBM
SPSS Modeler

Wannes Rosius

International Technical Support Organization

Introduction to R in IBM SPSS Modeler

October 2016

REDP-5388-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2016)

This edition applies to Version 18, Release 03 of IBM SPSS Modeler (product number 5725-A65).

This document was created or updated on October 13, 2016.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

IBM Redbooks promotions . vii

Preface . ix
Introduction to this paper . ix
Authors. .x
Now you can become a published author, too! .x
Comments welcome. .x
Stay connected to IBM Redbooks . xi

Chapter 1. System setup . 1
1.1 Installing R . 2
1.2 Enabling the R nodes . 2

Chapter 2. R basics . 3
2.1 Getting started with R . 4

Chapter 3. The basics of R nodes in IBM SPSS Modeler . 7
3.1 The R nodes . 8
3.2 Simple R code example . 8

3.2.1 modelerData . 9
3.2.2 modelerDataModel . 12
3.2.3 modelerModel . 14

3.3 Some general remarks . 15
3.4 Read data options . 16

Chapter 4. Custom Dialog Builder . 19
4.1 About the Custom Dialog Builder . 20
4.2 Tools . 20
4.3 Custom dialogs . 21
4.4 Simple example. 21

Chapter 5. Tips and tricks . 29
5.1 R code. 30

5.1.1 ibmspsscf70 library . 30
5.1.2 Some useful parts of R code. 31

5.2 Custom Dialog Builder tips . 33
5.2.1 How to save and share a custom dialog . 33
5.2.2 Link to dialog and script . 33

5.3 What about SQL Pushback? Hadoop Pushback? . 35
5.4 What about real-time scoring? and IBM SPSS Modeler Solution Publisher? 36
5.5 More about the metadata in modeler and the consequences on R integration. 37
© Copyright IBM Corp. 2016. All rights reserved. iii

iv Introduction to R in IBM SPSS Modeler

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

developerWorks®
IBM®
IBM PureData®

PureData®
Redbooks®
Redpaper™

Redbooks (logo) ®
SPSS®
WebSphere®

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
vi Introduction to R in IBM SPSS Modeler

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redpaper™ publication focuses on the integration between IBM SPSS® Modeler
and R. The paper is aimed at people who know IBM SPSS Modeler and have only a very
limited knowledge of R.

Chapters 2, 3, and 4 provide you with a high level understanding of R integration within SPSS
Modeler enabling you to create or recreate some very basic R models within SPSS Modeler,
even if you have only a basic knowledge of R.

Chapter 5 provides more detailed tips and tricks. This chapter is for the experienced user and
consists of items that might help you get up to speed with more detailed functions of the
integration and understand some pitfalls.

Introduction to this paper

Although there are several very good articles and blogs related to IBM SPSS Modeler, many
people still struggle with both R and the integration between IBM SPSS Modeler and R. The
goal of this paper is to help with this situation.

At every point in the paper, we try to include R examples you can easily copy into the
appropriate R node in SPSS Modeler. Unless specified otherwise, the code snippets are
always based on the telco.sav data set which can be found in the demo folder of your SPSS
Modeler installation. After the source node, attach a type node, and then the appropriate R
node. However, sometimes there are just abstracts of code to show you the idea. We clearly
indicate when the code is incomplete. You will find the code backs into several code frames
throughout this document.

Some useful web addresses to help you get started:

� Essentials for R - Installation Instructions

https://github.com/IBMPredictiveAnalytics/R_Essentials_Modeler/releases/downloa
d/18.0/SPSS_Modeler_R_Essentials_18.0_Installation_Doc_ML.zip

� IBM SPSS Modeler Extensions

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/
ModelerExtensions.pdf

� IBM developerWorks® web page IBM SPSS Predictive Analytics Downloads

https://developer.ibm.com/predictiveanalytics/downloads/

� IBM developerWorks blog post - SPSS Modeler and R integration - Getting started

https://developer.ibm.com/predictiveanalytics/2014/11/25/spss-modeler-and-r-int
egration-getting-started
© Copyright IBM Corp. 2016. All rights reserved. ix

https://github.com/IBMPredictiveAnalytics/R_Essentials_Modeler/releases/download/18.0/SPSS_Modeler_R_Essentials_18.0_Installation_Doc_ML.zip
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerExtensions.pdf
https://developer.ibm.com/predictiveanalytics/downloads/
https://developer.ibm.com/predictiveanalytics/2014/11/25/spss-modeler-and-r-integration-getting-started
https://developer.ibm.com/predictiveanalytics/2014/11/25/spss-modeler-and-r-integration-getting-started

Authors

This paper was produced by the following author:

Wannes Rosius is a data scientist based in Brussels, Belgium working for IBM within the
center of excellence team of IBM predictive solutions. He has over a decade experience in
data science across multiple industry sectors. He has experience in a wide variety of data
science tools, including IBM SPSS, SAS, R, Python, and others. He holds Masters degrees in
Mathematics and Statistics, and has an in-depth knowledge of applying data mining
techniques. He is experienced in a wide range of industry application areas including
customer churn, customer profitability, cross-selling, retail demand forecasting, fraud
intelligence, CRM, econometric modelling, debt management, behavioral credit risk
modelling, and site location.

Thanks to the following people for their contributions to this project:

Martin Keen, LindaMay Patterson
International Technical Support Organization

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
x Introduction to R in IBM SPSS Modeler

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii Introduction to R in IBM SPSS Modeler

Chapter 1. System setup

This chapter discusses setting up your system. It is assumed that you have a valid installation
of IBM SPSS Modeler on your machine. For more installation topics, see the installation
instructions.

This chapter contains the following sections:

� Installing R
� Enabling the R nodes

1

© Copyright IBM Corp. 2016. All rights reserved. 1

1.1 Installing R

Depending on the version of your IBM SPSS Modeler, install the associated version of R as
shown in Table 1-1.

Table 1-1 SPSS Modeler version to R version link

After you have downloaded and installed R, you have a working R instance on your computer.
Similar to SPSS Modeler, you can have several versions of R installed on your computer
without any problem.

1.2 Enabling the R nodes

You need to install the IBM SPSS Modeler essentials for R. Perform the following steps:

1. Go to the SPSS Community Downloads page to find the essentials, at this web address:

https://developer.ibm.com/predictiveanalytics/downloads/

2. Select option 2 Get Essentials for SPSS and click Get R Essentials for SPSS Modeler.

3. Now you are at github. Select and download the Modeler 18 Essentials for R for your
particular platform. If you require Essentials for R for earlier Modeler versions, the page
provides links to older versions.

4. Execute the installation. The installation asks you the path of your R installation and the
path to the bin files of your SPSS Modeler installation.

This installation places the R nodes in your SPSS Modeler node palette and includes the
necessary R libraries in your R installation folder.

SPSS Modeler version R version and download link

16.02.15.2 Download R 2.15.2 for Windows
https://cran.r-project.org/bin/windows/base/old/2.15.2/

17.03.1 Download R 3.1.0 for Windows
https://cran.r-project.org/bin/windows/base/old/3.1.0/

17.13.1 Download R 3.1.0 for Windows
https://cran.r-project.org/bin/windows/base/old/3.1.0/

18.03.2 Download R 3.2.0 for Windows
https://cran.r-project.org/bin/windows/base/old/3.2.0/

Note: The prefilled path is the default path to a SPSS Modeler server. You need to
change this path if you want to configure your client.
2 Introduction to R in IBM SPSS Modeler

https://cran.r-project.org/bin/windows/base/old/2.15.2/
https://cran.r-project.org/bin/windows/base/old/3.1.0/
https://cran.r-project.org/bin/windows/base/old/3.1.0/
https://cran.r-project.org/bin/windows/base/old/3.2.0/
https://developer.ibm.com/predictiveanalytics/downloads/

Chapter 2. R basics

There are a wide variety of R courses publicly available through several channels. It is not our
intend to replace these courses. You do not need to be an R expert to use this document.
However, there are some basics of R code and R terminology you need to understand to
exploit the integration of R and IBM SPSS Modeler.

This chapter contains the following sections:

� Getting started with R

2

© Copyright IBM Corp. 2016. All rights reserved. 3

2.1 Getting started with R

Open R in its original graphical user interface (GUI), by going to the R installation folder and
opening the \bin\x64\RGUI.exe file.

Figure 2-1 shows the R console.

Figure 2-1 R console

The R console is ready to run commands. You might see the term RStudio, which is a
development environment on top of this R GUI. You might prefer to use RStudio, which is a
powerful and productive user interface for R. Installation of RStudio is not required for this
introduction, but might be handy for future use.

R is a powerful programming language and environment for statistical computing and
graphics. R is a programming language, unlike IBM SPSS Modeler. It is built on objects that
are defined by the user. Example 2-1 shows R code you can type in the R console to see the
R outputs.

Example 2-1 R code

x <- 1+1
y <- 2*x
xyVector <- c(x,y)
z <- mean(xyVector)
print(z)
4 Introduction to R in IBM SPSS Modeler

In Example 2-1, x is an object. This statement fills the object x with the value of the evaluated
formula 1 + 1 equals 2. Whenever the program refers to x, it is interpreted as 2. In the
second line, y is defined as twice the value of x. In the third line, a vector is created containing
the content of x and y, calculating the mean of these two objects and placing the result in an
object z. The operator “<-” could also be replaced by “=”, but for various reasons many R
users prefer to write the equation this way. Actually it is not exactly the same, but that is
ignored for the purpose of this paper. If you feel more comfortable using “=”, then do so.

Similar to the way x, y, and z were populated with some numbers, any R object can be filled
with a variety of types. The following list shows important types:

� Vector

Vector is a sequence of data elements of the same type (for example, numeric or
character). This type includes vectors of length 1, which can be interpreted as just being
numbers. You can create a vector with the R function c(). Example 2-1 on page 4 shows
all the values of x, y and z are vectors of length one. xyVector is a vector of length 2,
containing the values of (the vector) x followed by (the vector) y. Trying to link it back to
SPSS Modeler, you can interpret a vector as the values of a single data column.

� Data frame

Data frame is a list of vectors of equal length. If you look at a vector as the values of a
variable, a data frame could be interpreted as a two dimensional data set with columns
(the number of vectors) and lines (the size of each vector). Example 2-2 shows the use of
a data frame.

Example 2-2 Using a data frame

n <- c(2, 3, 5, 3, 9) #A first vector of 5 numeric values
n2 <- c(1, 3, 2, 5, 4) #A second vector of 5 numeric values
s <- c("aa", "bb", "cc", "aa", "zz") #A third vector of 5 string values
b <- c(TRUE, FALSE, TRUE, TRUE, TRUE) #A fourth vector of 5 flag values
Data <- data.frame(n, s, b, New = n+n2) #A data frame containing 4 vectors
#Note n+n2 will be a new vector called "New" with the sum of the n + n2: c(3,
6, 7, 8, 13)
dim(Data) #Will show you it is a 5x4 dataset.
Data[2,4] #Will give back the value on the 2nd line, the 3rd column
colnames(Data) #Will give the column names as a vector ("n","s","b", "New")
Data$n[1] #Will give back the first value of the vector n within the data
frame.
iris #predefined data frame.

There are also several predefined data frames installed within R. One of them is called
iris.

� Model class

Model class is actually a specific list containing predefined objects defining a statistical
model. For example, a linear model class can be a list containing, among others, the
coefficients of the regression model.

� List

List is an ordered collection of objects. As an example, you can have a list where the first
element is a vector, the second is a data frame, and the third is a model.

Note: A data frame is a special type of a list where all the elements are vectors of equal
sizes.
Chapter 2. R basics 5

6 Introduction to R in IBM SPSS Modeler

Chapter 3. The basics of R nodes in IBM
SPSS Modeler

This chapter discusses the use of R with IBM SPSS Modeler.

This chapter contains the following sections:

� The R nodes
� Simple R code example
� Some general remarks
� Read data options

3

© Copyright IBM Corp. 2016. All rights reserved. 7

3.1 The R nodes

After R essentials is installed, you see three new nodes in your node palettes. There is also a
fourth R node, which is the R nugget. The four objects have these characteristics:

� Output

The output node causes data to be sent to R. Output never goes back to SPSS Modeler
because it is a terminal node. The only thing that can go back to SPSS is the outputs
generated by R presented within an SPSS output window.

� Transform

For the transform node, data goes from SPSS to R and goes back to SPSS enabling the
SPSS process to continue.

� Model

The model node is similar to the output node because it is a terminal node, which means
that data does not go back to SPSS. However, there is a reusable R object created within
a nugget.

� Nugget

The nugget node is similar to the transform node. The nugget is a reusable R object that
can be used in the R code.

Table 3-1 shows basic information about various R nodes.

Table 3-1 Node details

3.2 Simple R code example

All the examples in this section are intentionally kept simple to explain the interaction in a
functional and structured way. The examples are simple enough for non R programmers to
understand. Most of the R code snippets in this chapter could easily be implemented using
standard SPSS Modeler functionality.

There are three important and reserved R objects that you should keep in mind when you use
the SPSS Modeler R integration:

� modelerData

The modelerData object is a R data frame filled by the data entering in this R node. This
data frame can be used and changed within your R code. Eventually, it is this data frame
that will be send back to SPSS Modeler as a data set. It only contains the content of the
data, not (necessarily) the data column names and other metadata items.

Node R Output R Transform R Model R Syntax

Name R output node R transform node R model node R syntax node

Palette tab Output Record Ops Model N/A

Data back to SPSS No Yes No Yes

Reusable R object No No Create Use
8 Introduction to R in IBM SPSS Modeler

� modelerDataModel

The modelerDataModel object is a R data frame that contains the metadata of the data that
is sent to R and back to SPSS Modeler. It contains most of the information that you might
expect within an SPSS Modeler type node. This object might seem strange for
experienced R users.

� modelerModel

The modelerModel R object can be filled by the user with any type of R object. It does not
need to have a certain structure. It is calculated in the R model node, after which it is
saved within the R nugget, where it can be used in the R-syntax.

In the following sections, the usage of these objects is explained.

3.2.1 modelerData

If data flows into any R node within SPSS Modeler, the data is converted to a data frame
called modelerData. You can use this data frame to perform the desired calculations,
transformations, and outputs in R.

Example 3-1 shows manipulating tenure data using a modelerData R object.

Example 3-1 Summary results of data using modelerData

#Print the first 6 lines of the data
head(modelerData)
#Give a summary of the data
summary(modelerData)
#create a histogram of the variable tenure
hist(modelerData$tenure, xlab = "years", main = "Tenure histogram")
#change the tenure unit from months to years
modelerData$tenure <- modelerData$tenure/12
#recreate the histogram, now in months
hist(modelerData$tenure, xlab = "months", main = "Tenure histogram")

Execution of this node results in an SPSS Modeler output window with all the R outputs
assembled. These outputs are always divided in two tabs: Text output (see Figure 3-1 on
page 10) and graph output (see Figure 3-2 on page 11). In this case the text output is linked
to the code on line 2 and 5. This code prints the first 6 lines (head) of the data, and then
provides summary statistics for each column.

Note: R code is case sensitive and so are these object names.
Chapter 3. The basics of R nodes in IBM SPSS Modeler 9

Figure 3-1 shows the R text output.

Figure 3-1 R text output
10 Introduction to R in IBM SPSS Modeler

Figure 3-2 shows R graph output.

Figure 3-2 R graphic output

The graph output (Figure 3-2) is two histograms. One for the tenure in months. The other is
the same column, after dividing the original value by twelve to give the tenure in years (notice
the X-axis scale).

As shown in the example stream “Explain modelerData.str”(Example 3-1), you can also copy
exactly this same code into a transform node and attach a table node to it. After running this
table node, you do not see any R output (as none is expected). That means that, even though
the output code has run, no outputs are given. However the data frame of modelerData is
sent back to SPSS Modeler. In this case you see the value of tenure being divided by 12.
Chapter 3. The basics of R nodes in IBM SPSS Modeler 11

3.2.2 modelerDataModel

Metadata is very important in SPSS Modeler. Within the modeler, metadata is represented by
the type node, which specifies the type of each variable in the dataset (such as, numeric, ag,
String, and storage). At all times, modeler will know exactly all the metadata at every step in
the stream.

R does not handle the metadata in a similar way as SPSS Modeler. The modelerDataModel
taking over the role of the “type node”. This modelerDataModel is a data frame of the following
structure (see Table 3-2).

Table 3-2 Data fields

This data set always has six lines with fixed names (in R, the lines have names). The thing
with this data set is that it is completely the responsibility of the user to align this metadata
with the appropriate data. If you would like to add a variable with R, you must manually add a
column in modelerDataModel to make sure modelerData correctly goes back to SPSS
Modeler. Example 3-1 on page 9 did not make any changes to the modelerDataModel and it
was not needed because the metadata did not change (dividing a number by 12 does not
change the metadata).

Based on Example 3-1 on page 9, rather than changing the value of tenure in the same data
variable, we will create another one. As a result, we have to update the metadata (shown in
Example 3-2).

Example 3-2 Tenure in a new variable

#Create the vector of tenure in years:
Rcolumn <- modelerData$tenure/12
#Paste this vector to the right of the dataset:
modelerData <- cbind(modelerData,Rcolumn)
#create the metadata for the column to add
newVar <- c(fieldName="tenureYears", fieldLabel="",fieldStorage="real",
fieldMeasure="",
fieldFormat="", fieldRole="")
#paste the new column metadata to the existing metadata
modelerDataModel <- cbind(modelerDataModel,newVar)

Field X1 X2 ... Xn

fieldName Region Tenure ... Age

fieldLabel Geographic indicator Months with services ... Age in years

fieldStorage Real Real ... Real

fieldMeasure Nominal Continuous ... Continuous

fieldFormat Standard Standard ... Standard

fieldRole Input Input ... Input
12 Introduction to R in IBM SPSS Modeler

Running a table node downstream of this transform node, shows you the new variable with
the name tenureYears. Following are some important things to realize about this code
change:

� fieldName and fieldStorage are the only two required rows that need to be filled in for any
new column. All the other lines of code are empty, meaning they are filled in by the stream
default. For a list of available values, refer to the IBM SPSS Modeler Extensions document
at this web address:

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/
ModelerExtensions.pdf

� Because modelerDataModel is only useful when you go back to SPSS Modeler, you
generally only use/change this object in non-terminal R-nodes. It might still be handy to
use it in terminal nodes, if the value of the modelerDataModel is important for your output.
For example, to run a histogram of all continuous variables.

� When data goes back to SPSS modeler, it is the content of the data frame excluding the
column and row names. That means, that even though the column in the modelerData is
called Rcolumn, the name of the column in SPSS Modeler is defined by the metadata
within the row fieldName. In this case it is called tenureYears.

� The only link between modelerData and modelerDataModel is the order of the columns.
The first column in the data is given the metadata of the first column of modelerDataModel.
If the metadata (modelerDataModel) does not match the modelerData, an error is
produced. Figure 3-3 shows a schematic of how this works.

You can think of it this way: There are two tables in R, which leads to one table in SPSS
Modeler. The first table only takes the values (x’s). The names are taken from the second
table. Because of this situation, make sure that the first column of xs correspond to the
first column in the second table.

Figure 3-3 Schematic of modelerDataModel

This concept might see unusual to standard R users. To people who know SPSS Modeler,
you can summarize it as modelerDataModel taking over the role of the type node.
Chapter 3. The basics of R nodes in IBM SPSS Modeler 13

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerExtensions.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerExtensions.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerExtensions.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerExtensions.pdf

3.2.3 modelerModel

modelerModel is the R object that is stored within the R nugget. This object is populated within
the R model node, after which you could use modelerModel within the R nugget for scoring.
This approach works the same way as IBM Modeler works, in that you ask a model node to
calculate a formula. After the calculation, that formula is stored within the nugget, together
with the way it should be used to calculate a scoring.

You only use this object within the R model node and nugget. Within the R model node, there
are two syntax windows:

� R model building calculates whatever you want to store within modelerModel that could be
used within your nugget calculations to score your data. This thing can be any object
within R. As any SPSS Model builder node, this is a terminal code, meaning no data goes
back to SPSS Modeler. Optionally, some outputs and the modelerModel are stored within
the nugget.

� R model scoring is the syntax to define how you use the object modelerModel. The
modelerModel object contains what you assigned to it in the R model building syntax. After
you have done this, you can use modelerModel to derive new data. Apart from the use of
modelerModel, this is very similar to the R transform node.

Example 3-3 shows creating a basic linear model for the variable tenure. This model’s formula
should be saved in the modelerModel, after which it can be used in the scoring.

Example 3-3 Create and save a modelerModel

#Create the model and save it in modelerModel
modelerModel <- lm(tenure ~ age + region + ed + income, data= modelerData)
#Add some summary of the model in the nugget
summary(modelerModel)
#together with a histogram
hist(modelerModel$residuals, main = "residual histogram")
#and the residual vs actuals scatterplot
plot(modelerData$tenure, modelerModel$fitted.values, xlab = "actual", ylab =
"predicted")
#All of these output will be stored in the modeler nugget tabs

__

#Use the model to make a prediction, and add it to the existing data.
pred <- predict(modelerModel, modelerData)
modelerData <- cbind(modelerData,pred)
#Take care of the metadata!
newVar <-c(fieldName="$L-tenure", fieldLabel="", fieldStorage="real",
fieldMeasure="",
fieldFormat="", fieldRole="")
modelerDataModel <- cbind(modelerDataModel,newVar)

It is important to note that modelerModel can be filled with any type of object, but is very often
a model class. Example 3-3 shows using the modelerModel for predictions. The object stored
was clearly a (statistical) model.

Example 3-4 on page 15 shows saving two numbers (M and SD) within the modelerModel
object. Imagine you want to calculate the z-values of a certain variable. To create the
z-values, you need the mean and the standard deviation of the column. Store both of these
values within modelerModel, after which you can use them in the scoring syntax.
14 Introduction to R in IBM SPSS Modeler

Example 3-4 shows you do not need to store a statistical model within your modelerModel
object. The results can be any R object.

Example 3-4 Calculate mean and standard deviation and calculate z scores

#calculate mean and standard deviation
M <- mean(modelerData$tenure)
SD <- sd(modelerData$tenure)
#and save it in a list called modelerModel.
modelerModel <- list(avg = M, sDev = SD)

__

#calculate z scores using the elements in modelerModel
zTenure <- (modelerData$tenure - modelerModel$avg)/modelerModel$sDev
modelerData <- cbind(modelerData,zTenure)
#define new metadata column and add it.
newVar <- c(fieldName="zTenure", fieldLabel="",fieldStorage="real",
fieldMeasure="",
fieldFormat="", fieldRole="")
modelerDataModel <- cbind(modelerDataModel,newVar)

3.3 Some general remarks

This section covers general remarks and examples to help you speed up by using this
interaction between R and SPSS Modeler:

� You are not required to build modelerData from the existing data within that frame.
modelerData is filled with the dataset you have in Modeler. However, nothing stops you
from throwing that data away in R and defining some new data coming from another data
source in R. As an example, imagine a link from The Weather Company web site. This
website gives the weather history in Brussels, Belgium in the month of November 2015.
Example 3-5 shows R code to retrieve the weather data (into modelerData) and redefining
the data into a modelerDataModel object.

Example 3-5 Access weather data and redefine as modelerDataModel

#Define the link
linkPath <- "http://www.wunderground.com/history/airport/EBBR/2015/11/01/
MonthlyHistory.html?req_city=Brussels&format=1"
#Read the data as csv
modelerData <- read.csv(linkPath)
modelerData[,1] <- as.Date(modelerData[,1])
#Redefining modelerDataModel, all are real numbers, except the first column is
the date.
modelerDataModel <- as.data.frame(t(data.frame(fieldName =
colnames(modelerData),
fieldLabel = "", fieldStorage = c("date",rep("real",ncol(modelerData)-1)),
fieldMeasure = "", fieldFormat = "", fieldRole = "")))

Note: There is a very good reason this example is not combined in an R Transform node.
For further details, see 3.4, “Read data options” on page 16.
Chapter 3. The basics of R nodes in IBM SPSS Modeler 15

As you can see, this code does not use the old definition of the defined R objects, but
completely redefines them. Placing this in a R transform node gives this new dataset to
the modeler. You can use this approach to create an R input node.

� Within an R model node, there are places for two scripts. The building script is the script
populated within the R nugget. It is not run when you run the model node. As a result,
these two scripts are independent. The only thing the scripts share is the value of the
object modelerModel, which is saved within the nugget when running the building syntax
and picked up within the R scoring syntax. Eventual R-libraries that are required should be
loaded in both scripts. Example 3-6 shows a model for a random forest and using the
randomForest library to make a prediction, adding it to the existing data.

Example 3-6 Random forest model and making predictions

#Load the library
library("randomForest")
#Create the model and save it in modelerModel
modelerModel <- randomForest(tenure ~ age + region + ed + income, data=
modelerData, ntree=50)

#Load the library
library("randomForest")
#Use the model to make a prediction, and add it to the existing data.
pred<- predict(modelerModel, modelerData)
modelerData <- cbind(modelerData,pred)
#Take care of the metadata!
newVar <-
c(fieldName="$RF-tenure",fieldLabel="",fieldStorage="real",fieldMeasure="",
fieldFormat="",fieldRole="")
modelerDataModel <- cbind(modelerDataModel,newVar)

� A package is a collection of R objects defined for a certain purpose. These packages often
are specific statistical functionalities, such as randomForest in Example 3-6. A basic R
installation comes with the standard packages, however, there are many more packages
available that are made available by the R community, on CRAN1.

Packages need to be installed and made locally available in libraries. After the package is
installed on the system as a library, you can load this library in any R session by the code
library(<name>). To install a package, you have several options. The easiest is to write a
code such as install.packages (“randomForest”) within R. You select a CRAN mirror
where this library is downloaded from, and the download is automatic. Normally you do
this activity once. Although possible, it is not recommended to run this package installation
command from within SPSS. The reason is that these libraries are saved in a temporary
folder and afterwards are deleted. If you still want to do this through SPSS, you have to
hard code the installation path.

3.4 Read data options

This section discusses settings within the node under Read data options. The basics of the R
integration with SPSS Modeler can be done without the knowledge of the settings, as more
advanced R knowledge is helpful. The user guide still has a good explanation of these items.
However, there is one more thing that might be important. For SPSS Modeler version 17 and

1 CRAN, https://cran.r-project.org/
16 Introduction to R in IBM SPSS Modeler

https://cran.r-project.org/

lower, the R integration of non-terminal nodes (that is transform and nuggets), are by default
done in batches of 1000. This approach allows these R nodes to work on Hadoop and other
clustered environments. As a result, it is very important to realize that any R code that would
span multiple lines of data would lead to false results. For a workaround for this, see 5.1.1,
“ibmspsscf70 library” on page 30.

In Example 3-4, you could calculate the mean and the standard deviation of the variable in a
non-terminal node. This action would start with running this code for the first 1000 lines of
data. That leads to a specific mean, deviation, and corresponding z-scores. However, the next
1000 lines, a new mean and deviation would be calculated and the z scores are based on
these new values. To solve this situation, the means and standard deviations are calculated in
the R model (that is a terminal node) over all the data and used in the R nugget to calculate
the z scores.

Note: This approach might lead to a very slow integration between SPSS and R in the
case of streaming R nodes in a local, non-clustered environment. However, as of IBM
SPSS Modeler version 17.1, there is a default option not to use this approach of batch
processing or to increase the batch size. For the lower versions, there is a workaround
possible if you still want to increase this batch size or turn it off.
Chapter 3. The basics of R nodes in IBM SPSS Modeler 17

18 Introduction to R in IBM SPSS Modeler

Chapter 4. Custom Dialog Builder

This chapter discusses the Custom Dialog Builder.

This chapter contains the following sections:

� About the Custom Dialog Builder
� Tools
� Custom dialogs
� Simple example

4

© Copyright IBM Corp. 2016. All rights reserved. 19

4.1 About the Custom Dialog Builder

The Custom Dialog Builder allow you to create and manage R nodes with prefilled R code to
use inside IBM SPSS Modeler streams. In this way, users can create their own nodes. You
can start the Custom Dialog Builder in the Tools menu under Custom Dialog Builder.

When opening Custom Dialog Builder, you see two windows. One window is the custom
dialog (Figure 4-1) itself, the other is the toolset to populate the dialog.

Figure 4-1 Custom Dialog Builder

4.2 Tools

The tools window is a list of items you can place within your dialog. This window includes the
field chooser, check and combo boxes, text and number controls, tabs, and more. You can
select any item and drag it onto the dialog. You can select any of these items and drag them
onto the dialog.

After you have an item in the dialog, you can select it so you see the item properties. These
properties are specific to this item and might change dependent on the type of item. The most
important are the identifier (the way it is referenced within the script) and the Title (the one
that is visual in the dialog).
20 Introduction to R in IBM SPSS Modeler

4.3 Custom dialogs

The big gray window is the dialog itself. For the moment it is empty waiting to be populated
with items from the Tools list. Click this gray dialog to show the dialog properties. Similar to
main items, the dialog includes the name and title of the dialog, the script, and the type and
position of the created node.

With regards to the script to be written, the global rule is that you reference the items within
the dialog using their identifier between double percentages: %%<identifier>%%.

After you finish creating the custom node, you can install it by clicking the green arrow in the
toolbar. You can also save intermediate versions to disk.

4.4 Simple example

Create a custom dialog for the randomForest model (Example 3-6 on page 16) created in 3.3,
“Some general remarks” on page 15.

The most important thing is ensuring flexibility in the code for the user. In the case of this
model, there might be three things that you want flexible:

� Input variables
� Target
� Number of trees in the forest

Perform the following steps to create a custom dialog:

1. Fill in the custom dialog properties as shown in Figure 4-2.

Figure 4-2 Dialog properties for RandomForest
Chapter 4. Custom Dialog Builder 21

2. In this fixed example, the target is tenure, but a user might choose another field. As a
result, place a field chooser on the dialog. Change the properties as shown in Figure 4-3.
The variable filter properties allows you to select only categorical variables.

Figure 4-3 TARGET variable
22 Introduction to R in IBM SPSS Modeler

3. In the example, the inputs include age and income. In some cases, the user could choose
any other field. To support this, you need to place a field chooser on the dialog. The
difference is that you can select several variables as there might be different inputs. To
make it easier, you can separate these values by a “+” (plus) sign. Change the properties
as shown in Figure 4-4.

Figure 4-4 Change INPUTS property
Chapter 4. Custom Dialog Builder 23

4. Add the number of trees in the forest. In the original script the value was 50, which is the
default. However, you can choose any integer value between 1 and 1000. Add a number
control on the dialog and change the properties (Figure 4-5).

Figure 4-5 Set number of trees
24 Introduction to R in IBM SPSS Modeler

5. The dialog is ready. Next add the script to the dialog. Select the Edit option and choose
Script Template. This action brings you to an empty window for the script. In this case
there is a tab for building code and one for the scoring script. If the scoring script is greyed
out, you set the dialog property “Score from the Model” to True. See Figure 4-6.

Figure 4-6 Script template
Chapter 4. Custom Dialog Builder 25

6. Start with the scoring script because it is easier. The only thing that needs to be adapted
for custom input is the variable name sent back to SPSS Modeler. Copy the scoring code
and change the name tenure to %%TARGET%% (this is the name of the identifier of the target).
See Figure 4-7.

Figure 4-7 Score script using %%TARGET%%

7. Fill in the code for the building script (Figure 4-8) and change as shown for the target
(Figure 4-3 on page 22) and set the values and input variables, together with the number
of trees. Press OK to close the script window.

Figure 4-8 Build script
26 Introduction to R in IBM SPSS Modeler

8. At the Custom Dialog Builder, save the dialog in the appropriate location (Figure 4-9). To
deploy the dialog, click the green deploy arrow in the toolbar. Close the dialog builder.

Figure 4-9 Save Dialog

You see the new node in the model palette. You can use this node within your stream.

Place the resulting cfe file in the correct location as explained in 5.2.1, “How to save and
share a custom dialog” on page 33) and a stream where it is deployed.
Chapter 4. Custom Dialog Builder 27

28 Introduction to R in IBM SPSS Modeler

Chapter 5. Tips and tricks

This chapter provides a detailed view into what actually happens with the code.

This chapter contains the following sections:

� R code
� Custom Dialog Builder tips
� What about SQL Pushback? Hadoop Pushback?
� What about real-time scoring? and IBM SPSS Modeler Solution Publisher?
� More about the metadata in modeler and the consequences on R integration

5

© Copyright IBM Corp. 2016. All rights reserved. 29

5.1 R code

This section provides example R code.

5.1.1 ibmspsscf70 library

Lets take a more detailed look at what actually happens with the R code. The IBM delivered R
package ibmspsscf70 is installed in the library folder of your R installation. This library
contains several functions that handle the data traffic between IBM SPSS Modeler and R.

Running any R node in SPSS does not only run the code you write. It also runs some extra
code ‘behind the scenes.’ You can see this code in the Console output window of the R node.
Looking for example at this tab for an R nugget, you see that your code is similar to
Example 5-1.

Example 5-1 R nugget with IBM R package code

modelerModel <- ibmspsscfoutput.GetModel()
while(ibmspsscfdata.HasMoreData()){
modelerDataModel <- ibmspsscfdatamodel.GetDataModel()
modelerData <- ibmspsscfdata.GetData(rowCount=1000, missing=NA, rDate="None",
logicalFields=FALSE)
@Your R code
ibmspsscfdatamodel.SetDataModel(modelerDataModel)
ibmspsscfdata.SetData(modelerData)
}

All the functions starting with ibmspsscf are functions within the R package ibmspsscf70
library. It is this part of the code that is responsible for the transfer of the data and the
metadata to R. Also, you see a while loop, indicating that the data goes to R in batches of
1000. The other options are the values of the data read options within the node.

The last lines of the code (Example 5-1) prepares the data to be send back to SPSS Modeler.
Notice the closing brace, which is the end of the while loop.

Because this library is loaded with every interaction between SPSS and R, you are free to use
these functions within your code as well. If you would like to avoid these runs in batches of 1K
and you do not have SPSS Modeler version 17.1 available, you can start your R code with
another loop to first continue filling the modelerData and then start your actual code.
Example 5-2 shows what your R node should start with.

Example 5-2 Starter code

while(ibmspsscfdata.HasMoreData())
{
modelerData
<-rbind(modelerData,ibmspsscfdata.GetData(rowCount=100000,missing=NA,rDate="None",
logicalFields=FALSE))
}
@Some more code using modelerData which is now the complete dataset
30 Introduction to R in IBM SPSS Modeler

5.1.2 Some useful parts of R code

The following sections provide useful R code snippets.

Make sure a package is installed
Whenever you have created a R node using packages, be sure that anyone using this node
has this package installed on their machine, while trying to minimize user interference.
Example 5-3 shows verifying the packages are present.

Example 5-3 Verify package is present

packages <- function(x){
x <- as.character(match.call()[[2]])
if (!require(x,character.only=TRUE)){
install.packages(pkgs=x,repos="http://cran.r-project.org")
require(x,character.only=TRUE)
}
}
packages(rpart)

The code verifies that the library is installed on the system, if not it will silently install it from
the CRAN mirror (you can change this to another mirror or a local repository if needed). The
installation only happens the first time the node is used.

Create the metadata corresponding to the R data frame
Sometimes your data is transformed compared to the original data, such that it is difficult to
build your metadata starting from the original data. In this situation, you might want to change
the metadata to link to the data in R independent of the original. This approach is particularly
useful if you want to use R as a sort node. Example 5-4 shows a function that asks for a data
frame and creates modelerData and modelerDataModel accordingly.

Example 5-4 Create modelerData and modelerDataModel

sendToModeler <- function (dataFrame) {
if(is.null(dim(dataFrame))){
stop("Invalid data received: not a data.frame")}
if (dim(dataFrame)[1]<=0) {
print("Warning : modelerData has no line, all fieldStorage fields set to strings")
getStorage <- function(x){return("string")}
} else {
getStorage <- function(x) {
x <- unlist(x)
res <- NULL
#if x is a factor, typeof will return 'integer' so we handle this case first
if(is.factor(x)) {
res <- "string"
} else {
res <- switch(typeof(x), integer="integer", double = "real", "string")
}
return (res)
}
}
col = vector("list", dim(dataFrame)[2])
for (i in 1:dim(dataFrame)[2]) {
col[[i]] <- c(fieldName= names(dataFrame[i]) ,fieldLabel = "", fieldStorage=
Chapter 5. Tips and tricks 31

getStorage(dataFrame[i]), fieldMeasure = "", fieldFormat = "", fieldRole = "")
}
mdm<-do.call(cbind,col)
modelerDataModel<<-data.frame(mdm)
modelerData <<- dataFrame
}
sendToModeler(iris)

If you use this code, you should make sure you only use this on data frames that are not very
dependent on the content of the original modelerData. If results are not as expected, you
might find an answer to this situation in 5.5, “More about the metadata in modeler and the
consequences on R integration” on page 37.

Looping through several variables
Looping through several variables is common functionality that is relatively easy in R.
However, with the Custom Dialog Builder, it might be more difficult because the string
%%INPUTS%% is exactly replaced by the string age + income + gender or something similar
(you can change the “+” sign to commas or spaces depending on the separator chosen).

Now the problem is that to loop in R, you need to transform this string into the R vector c
(“age”, “income”, “gender”), as shown in Example 5-5.

Example 5-5 Function to remove trailing spaces

#Create a function to remove trailing spaces
trim <- function(x) gsub("^\\s+|\\s+$", "", x)
#Create the vector of using the strsplit functions
InputsAsVector <- trim(strsplit("%%INPUTS%%","+")[[1]])
for (input in inputAsVector){
@Some more code to run for every
eld de
ned
}

One important remark is that this method never works if you have variable names containing
trailing spaces or + symbols. This is because this code recognizes every + as the symbol to
separate the variables, and removes the trailing spaces. It is difficult in this way to distinguish
between a + coming from a variable name or a + being a separator.

Use predefined roles
Predefined roles is an option SPSS Modeler users are used to that you might want to extend
to R usage. The idea is to distinguish between inputs and targets (and others) merely in the
Type-node. After this type-node is defined, all the modeling nodes by default use these
settings and variables.

You might want to use some R code to distinguish between inputs and targets. The code
example in Example 5-6 shows looking for the ag targets and for all the input variables.

Example 5-6 Look for ag targets and input variables

TARGET <- modelerDataModel[1,(modelerDataModel[6,] == "target" &
modelerDataModel[4,] == "
flag")]
INPUTS <- as.vector(t(modelerDataModel[1,(modelerDataModel[6,] == "input"]))
@Some more code
32 Introduction to R in IBM SPSS Modeler

Removing columns
Sometimes you just want to remove a column in both modelerData and modelerDataModel.
You should make sure to delete the appropriate column, as the link between data and
metadata is merely the order. You can use Example 5-7 R code to remove the column tenure.

Example 5-7 Code to remove the column ttenure

#define the remove function
removeColumn <- function(name){
modelerDataModel[,modelerDataModel[1,]==name]<<-NULL
modelerData[,colnames(modelerData)== name] <<- NULL
}
#apply the function to the tenure variable
removeColumn("tenure")
@Some more code

5.2 Custom Dialog Builder tips

This section discusses tips on using Customer Dialog Builder.

5.2.1 How to save and share a custom dialog

The specifications of a custom dialog can be saved to an external file, with the extension .cfd
or .mpe for SPSS Modeler Version 18. This file can be saved and reopened through the
general save buttons on the custom dialog tool bar.

After you deploy the dialog to your palette, this dialog is saved as a local file, under a slightly
different extension .cfe. You can find this cfe file in the path
c:\ProgramData\IBM\SPSS\Modeler\XX\CDB (replace XX with the version of your IBM SPSS
Modeler installation).

To share this node with others, this node needs to be copied within the same folder on the
other SPSS Modeler instance.

5.2.2 Link to dialog and script

If you have an identifier called TARGET and you fill in a variable churn in these dialog, all the
references of %%TARGET%% are replaced in your code by churn. If you have multiple variables
selected (say age and income in the identifier INPUTS) and you select “+” as the separator,
then within the code %%INPUTS%% is replaced by the verbatim age + income.

Although this is valid in default cases, it is not entirely true. There is still another level. It is
dependent on the tool property in called “R script”.

Within this line, the value %%ThisValue%% is replaced by whatever you fill in the dialog. And it is
the value of this R script property that verbatim replaces your identifier in the main R code.
Because often the value of R script is just %%ThisValue%%, there is no need for any change.
Chapter 5. Tips and tricks 33

This R-script property starts to be useful when you work with radio buttons, in which case you
might like to run different codes for each button. In general there are two ways to do this
activity:

� Create your R script using if statements, as shown in Example 5-8.

Example 5-8 R script with if statements

If ‘%%choice%%’ ==’A’ then
else if ‘%%choice%%’ == ‘B’ then

� Write the full code that has to be run when the bullet radio button is selected.

Imagine the following scenario. The user selects some variables and some computations are
done on each of them. Depending on the outcome of the computations and defined cutoffs,
you can choose between any of these actions:

� Remove the columns
� Keep the columns as data but automatically set the role to “None”
� Do nothing and just let the data flow back to the modeler without changes

There are different levels that you can work with. You can first add a radio button group in the
dialog and call it WHATTODO. See Figure 5-1.

Figure 5-1 WHATTODO radio button

The value of the R script variable is not changed. Click through to the radio button itself, you
want the results to look similar to Figure 5-2.

Figure 5-2 Radio Group Properties
34 Introduction to R in IBM SPSS Modeler

Figure 5-2 on page 34 shows the three options, each with its corresponding R code:

� removeColumn (input) referring to a function written to remove columns

� modelerDataModel[6,modelerDataModel[1,]==input] <- “none”, to change the role of
that field to “None”

� Basically an empty string

With these settings, your code %%WHATTODO%% is replaced by the corresponding R code
depending on which radio button the user selects. The R script behind the dialog is shown in
Example 5-9.

Example 5-9 R script for %%WHATTODO%%

trim <- function (x) gsub("^\\s+|\\s+$", "", x)
inputAsVector <- trim(strsplit("%%INPUTS%%",",")[[1]])
for (input in inputAsVector){
%%WHATTODO%%
}
@Some more code

This approach simplifies the possibility of running different R codes depending on the end
users choice.

5.3 What about SQL Pushback? Hadoop Pushback?

SQL pushback supports R nodes for IBM PureData® for Analytics, SAP Hana, and Oracle by
utilizing their R support. Databases need to have the appropriate vendor provided R
extensions installed. Depending upon the vendor, a subset of libraries or scrips are
supported.

Let’s discuss R usage on PureData for Analytics which has R nuggets available for SQL
pushback. The reason for R nuggets is that data is divided onto the several Synergistic
Processor Units (SPUs) of PureData for Analytics. R code is independently being run on the
different SPUs and never on the entire table.

Example 5-10 shows the code that cannot be pushed back to the PureData for Analytics
environment.

Example 5-10 Code not pushed to PureData for Analytics

@This code cannot be pushed back to PureData for Analytics, as it is a model
building node
#Create the model and save it in modelerModel
modelerModel <- lm(tenure ~ ., data= modelerData)

__

@This code can be pushed back to PDA, as it is a model scoring node
#Make sure they are considered as factors, as PDA will by default only have
numerics
modelerData$marital <- as.factor(modelerData$marital)
modelerData$ed <- as.factor(modelerData$ed)
modelerData$region <- as.factor(modelerData$region)
modelerData$churn <- as.factor(modelerData$churn)
#Use the model to make a prediction, and add it to the existing data.
Chapter 5. Tips and tricks 35

pred <- predict(modelerModel, modelerData)
modelerData <- cbind(modelerData,pred)
#Take care of the metadata!
newVar <-c(fieldName="TenureSQLScore", fieldLabel="", fieldStorage="real",
fieldMeasure="",
fieldFormat="", fieldRole="")
modelerDataModel <- cbind(modelerDataModel,newVar)

Another item to consider is that the modelerModel is always a local object. Within the R code
that is pushed back, this object is transferred to PureData for Analytics behind the scenes.
This transfer is not always a problem. However, the size of modelerModel can often be quite
big. For example, a linear model for the telco data set is approximately 370 KB. As a
comparison, the size where that model is run is approximately 50 KB. RandomForests data set
is 50 KB. RandomForests or any other type of models can be huge. The transfer to PureData
for Analytics is something that needs to be considered when using this approach.

Because everything runs on the different SPUs R and all the necessary libraries have to be
installed on both the host and every SPU on the PureData for Analytics environment. For the
R libraries, you do not do that in the same way as loading R libraries on a local system,
because PureData for Analytics is not connected to the internet. How to solve this situation is
more a question of the R-PureData for Analytics link, rather than SPSS. Example 5-11 shows
a small R script to load a package on the PureData for Analytics from the local R instance.

Example 5-11 Local R script

@Note this will be a local R script.
#Load PDA local R libraries
library(nzr)
library(nza)
#Connect to the appropriate DSN
nzConnectDSN('PDA-DSN')
#install the library on PDA
nzInstallPackages("http://cran.r-project.org/src/contrib/rpart_4.1-10.tar.gz")

This code installs the package rpart onto PureData for Analytics (assuming you are logged on
with appropriate credentials). You can choose to run this code in native R or within SPSS
Modeler in a R output node. Both options work. After it is installed on the PureData for
Analytics, you can use the libraries as normal.

5.4 What about real-time scoring? and IBM SPSS Modeler
Solution Publisher?

Both the real-time scoring and Solution Publisher are supported. You should make sure the R
and the R extensions are installed with these considerations:

� For Solution Publisher, you should just install the R extension in the /ext/bin directory of
your Solution publisher. Install R on the machine where your solution is published.

� For real-time scoring, you should ensure that the R extensions are installed in the
/components/modeler/ext/bin directory of both your server and your scoring server.
Functionally, only R transform and R nuggets are relevant for this part. Install R on the
machine where your application server (for example IBM WebSphere® Application
Server) is installed.
36 Introduction to R in IBM SPSS Modeler

5.5 More about the metadata in modeler and the consequences
on R integration

Metadata in SPSS Modeler is something particular and is very important for the way SPSS
Modeler works.

It is important that SPSS Modeler knows at all times all the metadata of the data at every
node within the stream. You might have already noticed that when you add a new field (with a
derive node), all the type nodes downstream immediately take into account this extra field. In
order to do this, behind the scenes, SPSS Modeler lets some small dummy data flow around.
This data only has to verify the metadata in near real-time.

If you want to know what this dummy data looks like, you can add an R transform node just
after the source node and use the following syntax (Example 5-12) to write out the data that is
passed by SPSS through R and back. This code does not do anything with the data. It just
writes it back into a file.

Example 5-12 Syntax to write data passed by SPSS to disk

path <- "C:/test.txt"
sink(path)
writeLines(as.character(Sys.time()))
writeLines("Data:")
print(modelerData)

After these lines are added to the R transform node and continue creating the stream, you
see that this file is already populated without running anything. You can see the data that is
passed through the node only contains five lines of data with 1-2-3-4-5 and “a-b-c-d-e” (some
enclosed by quotes, for the string variables) depending on the metadata. These five lines of
dummy data modeler are going around the stream every time SPSS Modeler needs/wants to
check the metadata.

You can even append this script with print(modelerModel) to see the value of modelerModel
is not yet assigned. modelerModel cannot play any role in the assigning of modelerDataModel.

This approach has some consequences with the R integration. It explains a lot of the
“strange” behavior in your projects, where the reason is not always obvious. Let’s say you
have a multinomial logistic model with n different categories. You want to have a column back
for all the categories. A naive approach is shown in Example 5-13.

Example 5-13 One example being the naive approach.

library("rpart")
modelerModel <- rpart(custcat ~ tenure+age+income, data = modelerData)
print (summary(modelerModel))

__

library("rpart")
probs <- predict(modelerModel,modelerData,type="prob")
modelerData <- cbind(modelerData,probs)
for (x in colnames(probs)){
modelerDataModel<-cbind(modelerDataModel, c(fieldName=paste("$P-",x,sep = ""),
fieldLabel=""
Chapter 5. Tips and tricks 37

,fieldStorage="real", fieldMeasure="", fieldFormat="", fieldRole=""))
}

Running this approach in R natively produces the correct modelerData and modelerDataModel
objects. However, this approach does not work in SPSS Modeler because modelerModel is
not assigned when modeler assesses the metadata. This code runs with an empty
modelerModel and the five dummy records. As a result probs are empty so nothing within the
for loop runs.

A work around is to derive the number of columns not from the modelerModel, but in another
way. Example 5-14 shows this different approach.

Example 5-14 Work around approach

library("rpart")
modelerModel <- rpart(custcat ~ tenure+age+income, data = modelerData)
print (summary(modelerModel))

library(rpart)
probs <- predict(modelerModel,modelerData,type="prob")
modelerData <- cbind(modelerData,probs)
for (x in c(1,2,3,4)){
modelerDataModel<-cbind(modelerDataModel, c(fieldName=paste("$P-",x,sep = ""),
fieldLabel=""
,fieldStorage="real", fieldMeasure="", fieldFormat="", fieldRole=""))
}

However, with this approach there is path a problem because it needs to hardcode the values
of the for loop. The reason behind this approach with SPSS Modeler is that this metadata
should be available in near real-time. However, modelerData and modelerModel are objects
that can be very big and lead to a large delay in obtaining this metadata.
38 Introduction to R in IBM SPSS Modeler

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738455601

REDP-5388-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Introduction to this paper
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. System setup
	1.1 Installing R
	1.2 Enabling the R nodes

	Chapter 2. R basics
	2.1 Getting started with R

	Chapter 3. The basics of R nodes in IBM SPSS Modeler
	3.1 The R nodes
	3.2 Simple R code example
	3.2.1 modelerData
	3.2.2 modelerDataModel
	3.2.3 modelerModel

	3.3 Some general remarks
	3.4 Read data options

	Chapter 4. Custom Dialog Builder
	4.1 About the Custom Dialog Builder
	4.2 Tools
	4.3 Custom dialogs
	4.4 Simple example

	Chapter 5. Tips and tricks
	5.1 R code
	5.1.1 ibmspsscf70 library
	5.1.2 Some useful parts of R code

	5.2 Custom Dialog Builder tips
	5.2.1 How to save and share a custom dialog
	5.2.2 Link to dialog and script

	5.3 What about SQL Pushback? Hadoop Pushback?
	5.4 What about real-time scoring? and IBM SPSS Modeler Solution Publisher?
	5.5 More about the metadata in modeler and the consequences on R integration

	Back cover

