
Redpaper

Developing Web Applications using
JavaServer Pages and Servlets

This IBM® Redpaper™ publication illustrates how to develop Java Platform, Enterprise
Edition (Java EE) applications using JavaServer Pages (JSP), Java EE servlet technology,
and static HTML pages. IBM Rational® Application Developer can help you work with these
technologies, and a Redbank example is used to guide you through its features. This paper is
intended for web developers interested in Java development.

IBM Rational Application Developer for WebSphere® Software V8 is an Eclipse 3.6
technology-based development platform for developing Java Platform, Standard Edition
Version 6 (Java SE 6), and Java EE Version 6 (Java EE 6) applications. It focuses on
applications to be deployed to IBM WebSphere Application Server and IBM WebSphere
Portal. The platform also provides integrated development tools for all development roles,
including web developers, Java developers, business analysts, architects, and enterprise
programmers.

The paper begins by describing the major tools that are available for web developers in
Rational Application Developer and then introduces the new features of the latest version.
Next, the ITSO RedBank application is built and tested by using Rational Application
Developer. The paper concludes with a list of additional information sources about Java EE
web components and Rational Application Developer.

The paper is organized into the following sections:

� Introduction to Java EE web applications
� Web development tooling
� Rational Application Developer new features
� RedBank application design
� Implementing the RedBank application
� Web application testing

The sample code for this paper is in the \4880code\webapp folder. For more information about
how to download the sample code, see “Locating the web material” on page 64.

Martin Keen
Rafael Coutinho
Sylvi Lippmann

Salvatore Sollami
Sundaragopal Venkatraman

Steve Baber
Henry Cui

Craig Fleming
© Copyright IBM Corp. 2012. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

This paper was originally published as a chapter in the IBM Redbooks® publication, Rational
Application Developer for WebSphere Software V8 Programming Guide, SG24-7835. The full
publication includes working examples that show how to develop applications and achieve the
benefits of visual and rapid application development. The book is available at the following
website:

http://www.redbooks.ibm.com/abstracts/sg247835.html?Open

Introduction to Java EE web applications

Java EE is an application development framework that is the most popular standard for
building and deploying web applications in Java. Two of the key underlying technologies for
building the web components of Java EE applications are servlets and JSP. Servlets are Java
classes that provide the entry point to logic for handling a web request and return a Java
representation of the web response. JSP are a mechanism to combine HTML with logic
written in Java. After they are compiled and deployed, JSP run as a servlet, where they also
take a web request and return a Java object that is representing the response page.

Typically, in a large project, the JSP and servlets are part of the presentation layer of the
application and include logic to invoke the higher level business methods. The core business
functions are separated into a clearly defined set of interfaces, so that these components can
be used and changed independently of the presentation layer (or layers, when using more
than one interface).

Enterprise JavaBeans (EJB) are also a key feature included in the Java EE framework and
are an option to implement the business logic of an application. The separation of the
presentation logic, business logic, and the logic to combine them is referred to as the model
view controller (MVC) pattern and is described later in this paper.

Technologies, such as Struts, JavaServer Faces (JSF), various JSP tag libraries, and even
newer developments, such as Ajax, were developed to extend the JSP and servlets
framework to improve various aspects of Java EE web developments. For example, JSF
facilitates the construction of reusable user interface (UI) components that can be added to
JSP pages. We describe several of these technologies in the original IBM Redbooks
publication from which this paper is excerpted (Rational Application Developer for
WebSphere Software V8 Programming Guide, SG24-7835). However, the underlying
technologies of these tools are extensions to Java servlets and JSP.

When planning a new project, the choice of technology depends on several criteria, such as
the size of the project, previous implementation patterns, maturity of technology, and skills of
the team. Using JSP with servlets and HTML is a comparatively simple option for building
Java EE web applications.
2 Developing Web Applications using JavaServer Pages and Servlets

http://www.redbooks.ibm.com/abstracts/sg247835.html?Open

Figure 1 shows the relationships among the Java EE, enterprise application, web
applications, EJB, servlets, JSP, and additions, such as Struts and JSF.

Figure 1 Java EE-related technologies

The focus of this paper is mainly on developing web applications by using JSP, servlets, and
static pages that use HTML with the tools included with Rational Application Developer. After
you master these concepts, you can more easily understand the other technologies that are
available.

Java EE applications

At the highest level, the Java EE specification describes the construction of two application
types that can be deployed on any Java EE-compliant application server:

� Web applications, which are represented by a web archive (WAR) file
� Enterprise applications, which are represented by an enterprise archive (EAR) file

Both files are constructed in a compressed file format, with a defined directory and file
structure. Web applications generally contain the web components that are required to build
the information presented to the user and lower-level logic. The enterprise application
contains an entire application, including the presentation logic and logic that implements its
interactions with an underlying database or other back-end system.

An EAR file can include one or more WAR files where the logic within the web applications
usually invokes the application logic in the EAR.

Enterprise applications
An enterprise application project contains the collection of resources that are required to
deploy an enterprise (Java EE) application to WebSphere Application Server. It can contain a
combination of web applications (WAR files), EJB modules, Java libraries, and application

Java EE Specification

Java Servlet Specification

JavaServer Pages (JSP)
Specification

JSP Tag Libraries
Specification

Struts

JavaServer Faces
(JSF)

Enterprise JavaBeans (EJB)
Specification

EJB 2.1

EJB 3.0

JPA

Web Components Enterprise Application
Components
 Developing Web Applications using JavaServer Pages and Servlets 3

client modules (all stored in JAR format). They also must include a deployment descriptor (an
applicaton.xml file in the META-INF directory), which contains meta information to guide the
installation and execution of the application.

On deployment, the EAR file is unwrapped by the application server and the individual
components (EJB modules, WAR files, and associated JAR files) are deployed individually.
The JAR files within an enterprise application can be used by the other contained modules.
This allows code to be shared at the application level by multiple Web or EJB modules.

The use of EJB is not compulsory within an enterprise application. When developing an
enterprise application (or even a web application), the developer can write whatever Java
logic is the most appropriate for the situation. EJB are the defined standard within Java EE for
implementing application logic, but many factors can determine the decision for implementing
this part of a solution. In the RedBank sample application, the business logic is implemented by
using standard Java classes that use HashMaps to store data.

Web applications
A web application server publishes the contents of a WAR file under a defined URL root
(called a context root) and then directs web requests to the correct resources and returns the
appropriate web response to the requestor. Certain requests can be mapped to a simple
static resource, such as HTML files and images. Other requests, which are referred to as
dynamic resources, are mapped to a specific JSP or servlet class. Through these requests,
the Java logic for a web application is initiated and calls to the main business logic are
processed.

When a web request is received, the application server looks at the context root of the URL to
identify for which WAR the request is intended, and the server reviews the contents after the
root to identify to which resource to send the request. This resource might be a static
resource (HTML file), the contents of which are returned, or a dynamic resource (servlet or
JSP), where the processing of the request is handed over to JSP or servlet code.

In every WAR file, descriptive meta information describes this information and guides the
application server in its deployment and execution of the servlets and JSP within the web
application.

The structure of these elements within the WAR file is standardized and compatible between
various web application servers. The Java EE specification defines the hierarchical structure
for the contents of a web application that can be used for deployment and packaging
purposes. All Java EE-compliant servlet containers, including the test web environment
provided by Rational Application Developer, support this structure.
4 Developing Web Applications using JavaServer Pages and Servlets

Figure 2 shows the structure of a WAR file, an EAR file, and a JAR file.

Figure 2 Structures of EAR, WAR, and JAR files

The Java Specification Requests (JSR) 315: Java Servlet 3.0 Specification (see
http://jcp.org/en/jsr/detail?id=315) includes a series of Java annotations for declaring
the fundamental classes that make up a JEE web application. These classes are used to
define servlets, URL mappings to servlets, security (definition of which user groups can
access a particular set of URLs), filters (a mechanism to call certain Java code before a
request is processed), listeners (a mechanism to call specific Java code on certain events),
and configuration parameters to be passed to servlets or the application as a whole. In
previous versions, these classes were defined in the web.xml file and the new version
removes this dependency. However, it still can be used if required and Rational Application
Developer includes tooling support for Version 2.5 and Version 3.0 of the Servlet
specification.

A key extension in the latest version of the JEE specification (Version 6) is the addition of Web
Fragment projects. Web Fragment projects are a mechanism to partition the web components
in a WAR file into separate JAR files (called Web Fragments), which enhance or provide
utility/framework logic to the main WAR file.

There are no requirements for the directory structure of a web application outside of the
WEB-INF directory. All these resources are accessible to clients (general web browsers)
directly from a URL, given the context root. Naturally, you must structure the web resources in
a logical way for easy management. For example, use an images folder to store graphics.

Enterprise Archive (EAR)
Includes following files:
 /META-INF/application.xml - deployment descriptor
 .jar - Utility Java libraries
 .jar - Enterprise JavaBean (EJB) JARs
 .war - Web Applications (WAR files)

Web Application Archive (WAR)
Includes following files:
 /WEB-INF/web.xml - deployment descriptor
 /WEB-INF/classes/* - Java classes used by application
 /WEB-INF/lib/* - Java libraries used by application
 /*.html, *.css, ... - HTML files, templates, style sheets
 - All other files within WAR are accessible directly as Web
 resources including html, jsps, jsp tag libraries, images,
 sounds, etc.

may contain
one or more

Web Project Fragment (JAR)
Includes following files:
 /META-INF/web-fragment.xml - deployment descriptor
 /<package name>/*.class - Java classes supplied by fragment
 /*.jar - Java libraries supplied by fragment

may reference
one or more
 Developing Web Applications using JavaServer Pages and Servlets 5

http://jcp.org/en/jsr/detail?id=315

Java EE web APIs
Figure 3 shows the main classes that are used within the Java EE framework and the
interactions between them. The application servlet class is the only class outside of the Java
EE framework and contains the application logic.

Figure 3 Java EE web component classes

The Java EE framework has the following main classes:

� HttpServlet (extends Servlet): The main entry point for handling a web request. The
doGet, doPost, and other methods invoke the logic for building the response given the
request and the underlying business data and logic. In the JEE Servlet 3.0 specification,
these classes are identified by the @WebServlet annotation.

� HttpJSPServlet (extends Servlet): The WebSphere Application Server automatically
compiles a JSP page into a class that extends this type. It runs similarly to a normal
servlet, and its only entry point is the _jspService method.

� HttpRequest (extends Request): This class provides an API to access all pertinent
information in a request.

� HttpResponse (extends Response): This class provides an API to create a response to a
request and the application state.

� HttpSession: This class stores any information required to be stored across a user
session with the application (as opposed to a single request).

� RequestDispatcher: Within a web application, redirecting the processing of a request to
another servlet is required. This class provides methods to redirect the processing of a
request to another servlet.

Other classes are available in the Java EE web components framework. For a full description
of the classes that are available, see “More information” on page 63, which provides a link to
the Java EE servlet specifications.

ServletRequest
String getParameter(String p)
void set Attribute(String s,
Object o)
Object getAttribute(String s)
ServletInputStream getInputStream()
...

HttpServletRequest
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
...

Servlet
void init(..)
void service(ServletRequest, ServletResponse)
void destroy(..)
...

ServletResponse
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
ServletInputStream getInputStream()
...

HttpServletResponse
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
...

HttpServlet
doGet(..)
doPost(..)
doPut(..)
...

JSPServlet
_jspService(..)

RequestDispatcher
void forward(..)
void include(..)
...

HttpSession
void setAttribute(String s, Object o)
Object getAttribute(String s)
..

 Application Servlet

Application Server calls service(..) for
each web request

Get request
properties

Build response

Forward requests
to other pages

Store session
information
6 Developing Web Applications using JavaServer Pages and Servlets

JSP
You can include any valid fragment of Java code in a JSP page and mix it with HTML. In the
JSP file, the Java code is marked by <% and %>. On deployment (or sometimes the first page
request, depending on the configuration), the JSP is compiled into a servlet class. This
process combines the HTML and the scriptlets in the JSP file in the _jspService method that
populates the HttpResponse variable. Combining many complex Java code with HTML can
result in a complicated JSP file. Except for simple examples, avoid this practice.

One way around this situation is to use custom JSP tag libraries. These libraries are tags
defined by developers that initiate calls to a Java class within a JSP page. These classes
implement Tag, BodyTag, or IterationTag interfaces from the javax.servlet.jsp.tagext
package, which is part of the Java EE framework. Each tag library is defined by a .tld file that
includes the location and content of the taglib class file. Although not strictly required, you
need to include a reference to this file in the deployment descriptor.

The most widely available tag library is the JavaServer Pages Standard Tag Library (JSTL),
which provides simple tags to handle simple operations required in most JSP programming
tasks, including looping, globalization, XML manipulation, and even processing of SQL result
sets. The RedBank application uses JSTL tags to display tables and add URLs to a page.
The final section of this paper contains references to learn more about JSP and tag libraries.

Model view controller pattern

The model view controller (MVC) concept is a pattern used often when describing and
building applications with a user interface component, including Java EE applications.

Following the MVC concept, a software application or module must have its business logic
(model) separated from its presentation logic (view). This separation is desirable, because it
is likely that the view will change over time, and it might not be necessary to change the
business logic each time. Also, many applications might have multiple views of the same
business model. If the view is not separated, adding a view causes considerable disruptions
and increases the complexity of the component.

You can achieve this separation through the layering of the component into a model layer
(responsible for implementing the business logic) and a view layer (responsible for rendering
the user interface to a specific client type). In addition, the controller layer sits between those
two layers, intercepting requests from the view (or presentation) layer and mapping them to
calls to the business model, then returning the response based on a response page selected
by the controller layer. The key advantage provided by the controller layer is that the
presentation can focus only on the presentation aspects of the application and leave the flow
control and mapping to the controller layer.

You can achieve this separation in Java EE applications in several ways. Various
technologies, such as JSF and Struts, differ in the ways that they apply the MVC pattern. Our
focus in this paper is on JSP and servlets that fit into the view and controller layers of the
MVC pattern. If only servlets and JSP are used in an application, the details of how to
implement the controller layer are left to whatever mechanism the development team decides
is appropriate and that they can create by using Java classes.

XML-based tag files: JSP 2.0 introduces XML-based tag files. Tag files no longer require
a .tld file. Tags can now be developed by using JSP or XML syntax.
 Developing Web Applications using JavaServer Pages and Servlets 7

In the example later in this paper, a command pattern (see Eric Gamma, and others, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley, 1995, ISBN
0-201-63361-2) is applied to encompass the request to the business logic and interactions
made with the business logic through a facade class. In the other interactions, the request is
sent directly to a servlet that makes method calls through the facade.

Web development tooling

Rational Application Developer includes many web development tools for building static and
dynamic web applications. Many of these web development tools focus on technologies, such
as Web 2.0 technologies, portals, and JSF. In this section, we highlight the following tools and
features, which focus on the more fundamental aspects of web development:

� Web perspective and views
� Page Designer
� Page templates
� CSS Designer
� Security Editor
� File creation wizards

Web perspective and views

The Web perspective helps web developers build and edit web resources, such as servlets,
JSP, HTML pages, style sheets images, and deployment descriptor files.

To open the Web perspective, from the workbench, select Window Open Perspective
Web. Figure 4 on page 9 shows the default layout of the Web perspective with a simple
index.html that was published to the local test service and is being viewed.
8 Developing Web Applications using JavaServer Pages and Servlets

Figure 4 Web perspective in Rational Application Developer

In the Web perspective, many views are accessible (by selecting Window Show View),
several of which are already open in the Web perspective default setting.

By default, the following views are available in the Web perspective:

� Console view: This view shows output to SystemOut from any running processes.

� Outline view: This view shows an outline of the file that is being viewed. For HTML and
JSP, this view shows a hierarchy of tags around the current cursor position. Selecting a tag
in this view moves the cursor in the main view to the selected element. This view is useful
for moving quickly around a large HTML file.

� Page Data view: When editing JSP files, this view gives a list of any page or scripting
variables available.

� Page Designer view: This view is a “what you see is what you get” (WYSIWYG) editor for
JSP and HTML that consists of four tabs:

– Design: the user can drag components to the page
– Source: shows the HTML
– Split: shows the Design in the top half and the Source in the bottom half
– Preview: shows how the final page looks in either Internet Explorer or Firefox
 Developing Web Applications using JavaServer Pages and Servlets 9

� Palette view: When editing JSP or HTML files, this view provides a list of HTML items
(arranged in drawers) that can be dragged onto pages.

� Problems view: This view shows ding errors, warnings, or informational messages for the
current workspace.

� Enterprise Explorer view: This view shows a hierarchy view of all projects, folders, and
files in the workspace. In the Web perspective, it structures the information within web
projects in a way that makes navigation easier.

� Properties view: This view shows the properties for the item currently selected in the main
editor.

� Quick Edit view: When editing HTML or JSP files, this view provides a mechanism to
quickly add Java Script to a window component on certain events, for example, onClick.

� Servers view: Use this view if you want to start or stop test servers while debugging.

� Services view: This view shows a summary of all the web services present in the projects
on the workspace.

� Snippets view: In this view, you can edit small bits of code, including adding and editing
actions assigned to tags. You can drag items from the Snippets view to the Quick Edit
view.

� Styles view: With this view, you can edit and apply both pre-built and user-defined styles
sheets to HTML elements and files.

� Thumbnails view: Given the selection of a particular folder in the Project Explorer view, this
view shows the contents of the folder.

Page Designer

The Page Designer is the primary editor within Rational Application Developer for building
HTML, XHTML, JSP, and JSF source code. Web designers can drag web page items from the
Palette view to the desired position on the web page.

It provides the following representations of a page:

� The Design tab provides a WYSIWYG environment to visually design the contents of the
page. A good development technique is to work within the Design tab of the Page
Designer and build up the HTML contents by clicking and dragging items from the Palette
view onto the page and arranging them with the mouse or editing properties directly from
the Properties view. Tags can be positioned as absolute instead of relative.

� The Source tab provides access to the page source code that shows the raw HTML or JSP
contents. You can use the Source tab to change details that are not immediately obvious
in the Design tab.

� The Split tab (Figure 5 on page 11) combines the Source tab and either the Design tab or
the Preview tab in a split-screen view. The Split tab is helpful to see the Design tab and
Source tab in one view; the changes are immediately reflected.
10 Developing Web Applications using JavaServer Pages and Servlets

Figure 5 Page Designer Split tab

� The Preview tab shows how the page looks when it is displayed in a web browser. You can
use the Preview tab throughout the process to verify the look of the final result in either
Firefox or Internet Explorer.

Another important feature of Page Designer is the ability to automatically convert HTML
elements to related elements. For example, there are menu options to convert Text entry
fields to Password entry fields, which you can achieve from the context menu (Convert
Widget HTML Form Widgets) of the element in the design view (see Figure 6 on
page 12). Rational Application Developer comments the original element for reference.
Rational Application Developer supports conversions between selected HTML and Dojo
widgets.

Split tab

Palette view
 Developing Web Applications using JavaServer Pages and Servlets 11

Figure 6 Convert Widget in Page Designer

Finally, HTML content is often provided to a development team and created from tools other
than Rational Application Developer. These files can be imported by using the context menu
on the target directory, selecting File Import General File System, browsing to the
new file, and clicking Import. When an imported file is opened in the Page Designer, all the
standard editing features are available.

Page templates

A page template contains common areas that you want to appear on all pages, and content
areas that are intended to be unique on each page. Page templates are used to provide a
common design for a web project.

The Page Template File creation wizard is used to create these files. After being created, the
file can be modified in the Page Designer. The page templates are stored as *.htpl files for
HTML pages and *.jtpl files for JSP pages. Changes to the page template are reflected in
pages that use that template. Templates can be applied to individual pages, groups of pages,
or applied to an entire web project, and they can be replaced or updated for a website. Areas
can be marked as read-only, meaning that the Page Designer does not allow the developer to
modify those areas, ensuring that certain designated areas are never changed accidentally.

When creating a page template, you are prompted to choose whether the template is a
dynamic page template or a design-time template:

� Dynamic page templates use Struts-Tiles technology to generate pages on the web
server.

� Design-time templates allow changes to be made and applied to the template at design or
build time. However, after an application is deployed and running, the page template
cannot be changed. Design time templates do not rely on any technologies other than the
standard Java EE servlet libraries.

More information: For a detailed example of using the Page Designer, see “Developing
the static web resources” on page 35, and “Working with JSP” on page 46.
12 Developing Web Applications using JavaServer Pages and Servlets

CSS Designer

Cascading style sheets (CSS) are used with HTML pages to ensure that an application has
consistent colors, fonts, and sizes across all pages. You can create a default style sheet when
creating a project. Several samples are included with Rational Application Developer.

At the start of the development effort, decide on the overall theme (color or fonts) for a web
application and create the style sheet. Then, as you create the HTML and JSP files, you can
select that style sheet to ensure that web pages have a consistent design. Style sheets are
commonly kept in the WebContent/theme folder.

The CSS Designer is used to modify cascading style sheet (*.css) files. It provides two
panels. On the right side, it shows all the text types and their respective fonts, sizes, and
colors, which are all editable. On the left side, you see a sample of how the various settings
look. Any changes that are made are immediately applied to the design in the Page Designer
if the HTML file is linked to the CSS file.

Security Editor

Rational Application Developer features the Security Editor, which provides a wizard to
specify security groups within a web application and the URLs to which a group has access.
With the Java EE specification, you can define, in the deployment descriptor, security groups
and levels of access to defined sets of URLs. The Security Editor (Figure 7 on page 14)
provides an interface for this information.

Selecting an entry in the Security Roles pane shows the resources members of that role in
the Resources pane and the constraint rules that are applicable for the role and resource (if
one is selected). Each entry in the Constraints window has a list of resource collections that
specify the resources available to it and which HTTP methods can be used to access these
resources. Using context menus, it is possible to create new roles and security constraints
and to add resource collections to these constraints.

More information: For an example of customizing style sheets used by a page template,
see “Customizing a style sheet” on page 33.
 Developing Web Applications using JavaServer Pages and Servlets 13

Figure 7 Security Editor

The Java EE security specification defines the mechanism for declaring groups and the URL
sets that each group can access, but it is up to the Web container to map this information to
an external security system. The WebSphere administrative console provides the mechanism
to configure an external Lightweight Directory Access Protocol (LDAP) directory. See the IBM
Redbooks publication Experience J2EE! Using WebSphere Application Server V6.1,
SG24-7297.

File creation wizards

Rational Application Developer provides many web development file creation wizards. You
can access them by selecting File New Other. Then from the Select a wizard window,
expand the Web folder and select the type of file required. These wizards prompt you for the
key features of the new artifact and can help you to quickly get a skeleton of the component
that you need. You can always manipulate the artifact created by the wizard directly, if
necessary.
14 Developing Web Applications using JavaServer Pages and Servlets

The following wizards are available in the Web perspective:

� CSS: You can use the CSS file wizard to create a new cascading style sheet (CSS) in a
specified folder.

� Dynamic Web Project: This wizard steps you through the creation of a new web project,
including which features the project uses and any page templates present.

� Web Fragment Project: This wizard guides you through the steps to make a web fragment
project, including the link to the target dynamic web project.

� Filter: This wizard constructs a skeleton Java class for a Java EE filter, which provides a
mechanism for processing on a web request before it reaches a servlet. The wizard also
updates the web.xml file with the filter details.

� Filter Mapping: This wizard steps you through the creation of a set of URLs with which to
map a Java EE filter. The result of this wizard is stored in the deployment descriptor.

� HTML: This wizard steps you through the creation an HTML file in a specified folder, with
the option to use HTML Templates.

� JSP: This wizard steps you through the creation of a JSP file in a specified folder, with the
option to use JSP Templates.

� Listener: You can use a listener to monitor and react to events in the lifecycle of a servlet
or application by defining methods that are started when lifecycle events occur. This
wizard guides you through the creation of such a listener and to select the application
lifecycle events to which to listen.

� Security Constraint: You can use this wizard to populate the <security-constraint> in the
deployment descriptor that contains a set of URLs and a set of http methods, which
members of a particular security role are entitled to access.

� Security Role: This wizard adds a <security-role> element to the deployment descriptor.

� Servlet: You can use this wizard to create a skeleton servlet class and add the servlet with
appropriate annotations or add to the deployment descriptor.

� Servlet Mapping: This wizard steps you through the creation of a new URL to servlet
mapping and adds appropriate annotations or information to the deployment descriptor.

� Static Web Project: This wizard steps you through building a new web project that contains
only static pages.

� JSP Tag: This wizard steps you through creating a Tag library file.

� Web Page: By using this wizard, you can create an HTML or JSP file in a specified folder,
with the option to create from many page templates.

� Web Page Template: The Page Template File wizard is used to create new page template
files in a specified folder. You can optionally create from a page template or create as a
JSP fragment and define the markup language (HTML, HTML Frameset, Compact HTML,
XHTML, XHTML Frameset, and Wireless Markup Language (WML) 1.3). You can select
from one of the following models: Template containing Faces Components, Template
containing only HTML, or Template containing JSP.

Dojo, Struts, and JSF: Several wizards are available in the Web perspective specifically
for Dojo, widgets, and JSF, which are discussed in the original IBM Redbooks publication
from which this paper is excerpted (Rational Application Developer for WebSphere
Software V8 Programming Guide, SG24-7835).
 Developing Web Applications using JavaServer Pages and Servlets 15

Rational Application Developer new features

Significant improvements to the previous version of Rational Application Developer were
made in the tools that are available for creating artifacts within a web application:

� Support for JEE Servlet 3.0 specification: The Servlet 3.0 specification revision is a major
revision of the specification and includes the following changes:

– Use of annotations versus deployment descriptor: Under the servlet 3.0 specification,
servlets, servlet mappings, filters, and listeners can be declared by using annotations
rather than being declared in the deployment descriptor. This feature reduces the
amount of configuration required for each web application. The tooling support in
Rational Application Developer was changed to cater for declarations made in
annotations or the deployment descriptor.

– Support for Web Fragment projects: A Web Fragment project is a new project type that
allows logical partitioning of the web application in such a way that the utility projects or
frameworks that are used within the web application can define all the artifacts without
requiring you to edit or add information in web.xml. There is a reference inside the web
project to the Web Fragment project, which contributes to it. You do not need to update
the deployment descriptor to declare the web fragment project used.

– Ability to store an EJB directly in a WAR: New to the Servlet 3.0 specification and
Rational Application Developer is the ability to include EJBs directly in the WAR.

– Ability to programmatically add and remove servlets: The Servlet 3.0 specification
includes API changes to allow developers to add and remove servlets as an application
runs. However, there are no specific features to achieve this capability in Rational
Application Developer.

� HTML support: Page Designer does not support the new elements and attributes that are
defined in the HTML5 specification. HTML5 is only supported in our source editors. Page
Designer support for earlier versions of HTML remains. Elements, such as frameset, and
the height/width, spacing, and padding attributes within tables are not recommended in
HTML5. If these elements and attributes are used, Page Designer underlines the attribute
or element and raises a warning.

� Page Designer enhancements:

– The preview tab now includes options for previewing a web page in Internet Explorer or
Mozilla Firefox.

– There is a feature to convert HTML widgets to related widgets through a context menu.

– Users can show all pages affected by a CSS style rule. When a CSS file is edited,
users can see the affected HTML or JSP files in the search view and decide whether to
keep the modified style rule or not.

– There is support for Scalable Vector Graphics (SVG) images and Flash widgets in
Page Designer.

– JSP fragment files (JSPF) are a mechanism to break up JSP pages into reusable
blocks (fragments) that can be assembled on a standard JSP page. Page Designer
now includes additional tooling to understand how a fragment is used when it is
included in separate contexts.
16 Developing Web Applications using JavaServer Pages and Servlets

RedBank application design

In this section, we describe the design for the ITSO RedBank web application. We outline the
design of the RedBank application and explain how it fits into the Java EE web framework,
particularly about JSP and servlets.

Model

The model for the RedBank project is implemented by using a simple Java project and exposed
to other components through a facade interface (called ITSOBank). The main ITSOBank object
is a Singleton object, accessible by a single static public method called getBank.

The ITSOBank object is composed of the other business objects that make up the application,
including Customer, Account, and Transaction. The facade into the bank object includes
methods, such as getCustomer, getAccounts, and withdraw, deposit, and transfer. Figure 8
shows a simplified Unified Modeling Language (UML) class diagram of the model.

Figure 8 Class diagram for RedBank model

The underlying technology to store data that is used by the ITSOBank application involves Java
HashMaps. These Java HashMaps are populated at startup in the constructor, and the data is
lost every time that the application is restarted. In an actual client example, the data might be
stored in a database. For the purposes of this example, HashMaps are acceptable.

For information about how to modify the ITSOBank model to run as EJB and Java Persistence
API (JPA) entities and how to store the application data in a database, see the IBM Redpaper
publication, Developing Enterprise JavaBeans Applications, REDP-4885.

Bank (interface)
searchCustomerBySsn()
getAccountsForCustomer()
SearchAccountByAccountNumber()
getTransactionsForAccount()
addCustomer()
updateCustomer()
deposit()
withdraw()
transfer()
......

Customer
getSsn()
getFirstName()
getLastName()
getTitle()
getAccounts()

Account
getBalance()
getAccountNumber()
getTransactions()
processTransaction()

Transaction (abstract class)
get/setTimeStamp()
get/setAmount()
getTransactionId()
getTransactionType()
process()

ITSOBank
static Bank getBank()
...

stores HashMap of

DebitCredit
 Developing Web Applications using JavaServer Pages and Servlets 17

View layer

The view layer of the RedBank application consists of four HTML files and four JSP files. The
application home page is the index.html file that contains a link to four HTML pages (the
welcome.html, rates.html, insurance.html, and redbank.html pages). The welcome.html,
rates.html, and insurance.html pages are simple static HTML pages that show information
without forms or entry fields.

The redbank.html page contains a single form in which a user can type the customer ID to
access customer services, such as accessing a balance and performing transactions.
Although the account number is verified, we do not cover security issues (logon and
password) in this example.

From the redbank.html page, the user sees the listAccounts.jsp page, which shows the
customer’s details, a list of accounts, and a button to log out.

Selecting an account opens the accountDetails.jsp page, which shows the balance for the
selected account and a form through which a transaction can be performed. This page also
shows the current account number and balance, which are both dynamic values. A simple
JavaScript code controls whether the amount and destination account fields are available,
depending on the option selected. One of the transaction options on the accountDetails.jsp
page is List Transactions, which invokes the listTransactions.jsp page.

If anything goes wrong in the regular flow of events, the exception page (showException.jsp)
is displayed to inform the user of the error.

The listAccounts.jsp, accountDetails.jsp, listTransactions.jsp, and showException.jsp
JSP pages make up the dynamic pages of the RedBank application.

Controller layer

The controller layer was implemented by using two strategies, one straightforward strategy
and one complex strategy, which is more applicable to an actual client situation.

The application has the following servlets:

ListAccounts Gets the list of accounts for one customer.

AccountDetails Shows the account balance and the selection of operations: list
transactions, deposit, withdraw, and transfer.

Logout Invalidates the session data.

PerformTransaction Performs the selected operation by calling the appropriate control
action: ListTransactions, Deposit, Withdraw, or Transfer.

UpdateCustomer Updates the customer information.

The first three servlets use a simple function call from the servlet to the model classes to
implement their controller logic and then use RequestDispatcher to forward control to another
JSP or HTML resource. Figure 9 on page 19 shows the pattern that is used in the sequence
diagram.
18 Developing Web Applications using JavaServer Pages and Servlets

Figure 9 ListAccounts sequence diagram

PerformTransaction uses a separate implementation pattern. It acts as a front controller,
receiving the HTTP request and passing it to the appropriate control action object. These
objects are responsible for carrying out the control of the application. Figure 10 on page 20
shows a sequence diagram for the list transaction operation from the account details page,
including the function calls through PerformTransaction, the ListTransactionsCommand class,
onto the model classes, and forwarding to the appropriate JSP.

User fills out SSN on
RedBank panel and
clicks Submit HttpPost to

ListAccounts
servlet

calls doPost()

searchCustomerBySsn()

getAccountsForCustomer()

Returns page
showing the list
of accounts

forwardRequest()
(through the RequestDispatcher)

User's
Browser

 Application
Server

List
Accounts

Servlet

ITSOBank listAccounts.jsp
 Developing Web Applications using JavaServer Pages and Servlets 19

Figure 10 PerformTransaction sequence diagram

The Struts framework provides a much more detailed implementation of this strategy and in a
standardized way.

Implementing the RedBank application

In this section, we use an example to introduce you to the tools within Rational Application
Developer that facilitate the development of web applications. In the example, we create
separate web artifacts (including page templates, HTML, JSP, and servlets) and demonstrate
how to use the available tools.

The section is organized in the following way:

� Creating the web project
� Importing the Java RedBank model
� Defining the empty web pages
� Creating frameset pages
� Customizing frameset web page areas
� Customizing a style sheet
� Verifying the site navigation and page templates

User's
Browser

Application
Server

PerformTransaction
Servlet

ListTransactions
Command

ITSOBank

User selects List Transactions
from the account details panel

HttpPost to
ListAccounts
servlet.

calls doPost() with
transaction=list calls execute()

Returns page
showing the list
of accounts

listTransactions.jsp

searchAccountByAccountNumber()

getTransactionsForAccount()

forwardRequest()
(through the RequestDispatcher)

getForwardView()

Action objects: Action objects, or commands, are part of the Command design pattern.
For more information, see Eric Gamma, et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995, ISBN 0-201-63361-2.
20 Developing Web Applications using JavaServer Pages and Servlets

� Developing the static web resources
� Developing the dynamic web resources
� Working with JSP

At the end of this section, the RedBank application is ready for testing.

Creating the web project

The first step is to create a web project in the workspace.

Two types of web projects are available in Rational Application Developer: static and
dynamic. Static web projects contain static HTML resources and no Java code and thus are
comparatively simple. To demonstrate as many features of Rational Application Developer as
possible, and because the RedBank application contains both static and dynamic content, we
use a dynamic web project for this example.

In Rational Application Developer, perform the following steps:

1. Select Window Open Perspective Web to open the Web perspective.

2. To create a web project, select File New Dynamic Web Project.

3. In the New Dynamic Web Project window (Figure 11 on page 22), enter the following
items:

a. In the Name field, type RAD8BankBasicWeb.

b. For Project location, select Use Default (default). This setting specifies where to place
the project files on the file system. It is also acceptable to use the default option of
leaving them in the workspace.

c. The Target Runtime option shows the supported test environments that are installed.
Select WebSphere Application Server v8.0 Beta.

d. For the Dynamic Web Module version, select 3.0.

e. For Configuration, define the configuration as the last item.

f. For the EAR Membership, select Add module to an EAR (default). Dynamic web
projects, such as the one we are creating, run exclusively within an enterprise
application. For this reason, you must either create an EAR project or select an existing
project.

g. For the EAR Project Name, enter RAD8BankBasicWebEAR (the default). Because we
select Add module to an EAR, the wizard creates an EAR project.

Enabling web capabilities: Before you begin, ensure that web capabilities are enabled.
Select Windows Preferences, expand General Capabilities, and ensure that the
Web Developer options (including basic, typical, and advanced) are selected.

Target Server Environment: Although it is possible to re-create the sample by
using WebSphere Application Server V7.0 Beta, the sample code provided in this
paper does not work if WebSphere Application Server V7 is chosen. It is written in
Servlet Version 3.0, which is only supported by WebSphere Application Server V8
Beta and later.
 Developing Web Applications using JavaServer Pages and Servlets 21

Figure 11 New Dynamic Web Project window

h. For the Configuration section, click Modify.

4. In the Project Facets window (Figure 12 on page 23), select the additional features
Default Style Sheet and JSTL. Click OK and the configuration changes to <custom>.
22 Developing Web Applications using JavaServer Pages and Servlets

Figure 12 Dynamic Web Project facets

5. Click Next. In the Java window for the New Dynamic Web Project (Figure 13 on page 24),
accept the value src.

This action specifies the directory where any Java source code used by the web
application is stored. The default value of src is sufficient for most cases.

Tips:

� For the options that have a down arrow, you can alter the underlying version of the
feature that is selected. By default, the latest version that is available is selected.

� From this window, to save the configuration for future projects, you can click Save
and enter a configuration name and a description.
 Developing Web Applications using JavaServer Pages and Servlets 23

Figure 13 New Dynamic Web Project: Java window

6. In the Web Module window (Figure 14 on page 25), accept the following default options:

a. For the Context Root, accept the value RAD8BankBasicWeb.

The context root defines the base of the URL for the web application. The context root
is the root part of the URI under which all the application resources are going to be
placed, and by which they are referenced later. It is also the top-level directory for your
web application when it is deployed to an application server.

b. For the Content Directory, accept the value WebContent.

This value specifies the directory where the files intended for the WAR file are created.
All the contents of the WEB-INF directory, HTML, JSP, images, and any other files that
are deployed with the application are contained under this directory. Usually, the folder
WebContent is sufficient.

c. Select Generate web.xml deployment descriptor to create the web.xml file and IBM
extensions.

d. Click Finish.
24 Developing Web Applications using JavaServer Pages and Servlets

Figure 14 New Dynamic Web Project: Web Module window

The Technology Quickstart window opens. You can browse the Help topics for the features.
When you finish, close the Technology Quickstart.

Figure 15 on page 26 shows the web project directory structure for the newly created
RAD8BankBasicWeb project and its associated RAD8BankBasicEAR project (enterprise
application).

The following folders are shown under the web project:

� Deployment Descriptor

This folder shows an abstracted view of the contents of the web.xml file of the project. It
includes subfolders for the major components that make up a web project configuration,
including servlets and servlet mappings, filters and filter mappings, listeners, security
roles, and references.

� Web Site Navigation

Clicking this folder starts the tool for editing the page navigation structure.

� Java Resources: src

This folder contains the Java source code for regular classes, JavaBeans, and servlets.
When resources are added to a web project, they are automatically compiled, and the
generated class files are added to the WebContent\WEB-INF\classes folder.

� WebContent

This folder holds the contents of the WAR file that is deployed to the server. It contains all
the web resources, including compiled Java classes and servlets, HTML files, JSP, and
graphics needed for the application.
 Developing Web Applications using JavaServer Pages and Servlets 25

Figure 15 Web project directory structure

Importing the Java RedBank model

In this section, we explain how to import the project files. If you already have the final project
in the workspace, you can skip this import process.

To import the RedBank model, follow these steps:

1. Locate the file \jsp\RAD80Java.zip.

2. From the Import menu option (File Import), select General Existing Projects into
Workspace and click Next.

3. Choose the Select archive file option that is selected and click Browse. Browse to
RAD80Java.zip and click OK.

4. Click Finish. The Java project is imported into the workspace.

Important: Files that are not under WebContent are not deployed when the web project
is published. Typically, these files include Java source and SQL files. Make sure that
you place everything that is to be published under the WebContent folder.

Structured view into web
deployment descriptor

Java source code

WebContent folder that is
deployed to the WebSphere
Application Server

Web deployment descriptor
files

Structured view into EAR
deployment descriptor
26 Developing Web Applications using JavaServer Pages and Servlets

To verify that the model is running, you can run the main method of the
itso.rad80.bank.client.BankClient class, which invokes the bank facade classes directly,
makes simple transactions directly, and prints the results to the console.

We add a reference to the RAD80Java project in the RAD8BankBasicWeb web application in
“Adding the RAD80Java JAR to the web project” on page 39.

Defining the empty web pages

In this section, we show how to define the skeleton pages for both the static and dynamic web
pages that make up the RedBank application. We use the New Web Page wizard. When we
finish, we have a working application that demonstrates the page navigation of the
application.

We create an HTML or JSP page for each of the rows shown in Table 1.

Table 1 Web pages of the RedBank application

Importing web resources for the RedBank application
Before we create the web pages, we must import resources to provide the correct design for
web pages used in our example, such as images and CSS files. To import the resources,
follow these steps:

1. Expand RAD8BankBasicWeb WebContent,and from the context menu, select
Import.

2. Select General File System and click Next.

3. In the From directory, type c:\4880code\webapp, select the images and theme folders and
click Finish.

The itso_logo.gif and c.gif images and the gray.css file are imported.

HTML or JSP file HTML version

welcome.html 5

index.html 4.01

rates.html 5

insurance.html 5

redbank.html 5

listAccounts.jsp 5

accountDetails.jsp 5

listTransactions.jsp 5

showException.jsp 5
 Developing Web Applications using JavaServer Pages and Servlets 27

Defining the empty HTML pages
To create the welcome.html web page, complete the following steps:

1. From the Menu, select New Web Page.

2. In the New Web Page window, enter the following values:

a. For the File name, type welcome.html.

b. For the Folder, type /RAD8BankBasicWeb/WebContent.

c. For the Template, expand Basic Templates and select HTML/XHTML.

d. Configure the document markup options by clicking Options. Ensure that the Markup
Language is set to HTML. Ensure that the Document Type is set to HTML 5.

e. Select Style Sheets, enter /theme/gray.css as the style sheet, and remove the
Master.css.

3. Click Close and then click Finish to create the HTML page.

4. If the Split view does not happen automatically, open the new file in the Page Designer
view and move to the Split view.

5. Locate the title tag and change the value stored inside it to the following value:

<title>ITSO Home</title>

The title that is shown in the top half reflects the new title.

6. Locate the body tag and enter text to identify the page:

<body>Welcome to Redbank</body>

7. Save the web page.

Complete the previous steps to create HTML pages for the other HTML pages (rates.html,
insurance.html, and redbank.html).

Defining the empty JSP pages
To create the listAccounts.jsp web page, complete the following steps:

1. From the top Menu, select New Web Page.

2. In the New Web Page window, complete the following actions:

a. For the File name, type listAccounts.jsp.

b. For the Template, expand Basic Templates and select JSP.

c. Click Options. Verify the gray.css cascade style sheet and that the document type is
HTML 5.

d. Click Close.

3. Click Finish to create the page. Close the editor that opens.

Complete the previous steps to create HTML pages for the other JSP pages
(accountDetails.jsp, listTransactions.jsp, and showException.jsp).

Important: The spelling and capitalization of the JSP file names must be typed exactly as
shown.
28 Developing Web Applications using JavaServer Pages and Servlets

Creating frameset pages

The RedBank user interface (view) is made up of a combination of static HTML pages and
dynamic JSP. In this section, we explain how to create an HTML frameset page (index.html)
that defines the layout of the web pages created in “Defining the empty web pages” on
page 27.

Frameset pages provide an efficient method for creating a common layout for the user
interface of the web application. A frameset page has the same structure as a table, where
the rows are defined in a tag element called <frameset> and the columns are individually
defined in a tag element called <frame>. An alternative approach is to use Page Templates for
which Rational Application Developer also has tooling support.

In our example, we have only three areas and no column separations:

� Header area: With the company logo and the navigation bar to other pages
� Workspace area: Where the rest of the operational pages are displayed
� Footer area: With the option to return to the main menu

Creating an HTML frameset page
To create a HTML frameset page (index.html) to use for the RedBank layout, complete the
following steps:

1. Right-click WebContent and select New Web Page.

2. In the New Web Page window (Figure 16 on page 30), enter the following values:

a. For the File name, type index.html.

b. For the Template, select Basic Templates HTML/XHTML.

c. Click Options. In the New Web Page Options window, for the Markup Language, select
XHTML Frameset. For the Document Type, select HTML 4.01 Frameset. Click
Close.

d. Click Finish to create the index.html frameset.

index.html: By default, a web server looks for the index.html (or index.htm) page when a
web project is run. Although you can change this behavior, use index.html as the top-level
page name.

Important: In this example, the index.html page is HTML 4.01, and all other pages
are HTML5. This difference demonstrates the support for both standards and also
because the index.html page uses frameset tags. Frameset tags are not
recommended for HTML5. There is no support for building these frameset tags in
Rational Application Developer.
 Developing Web Applications using JavaServer Pages and Servlets 29

Figure 16 Creating a frameset page

Creating an HTML header for all web pages
Create the static HTML web page for the header area that shows the logo and heading
information:

1. Right-click WebContent and select New Web Page.

2. In the New Web Page window, enter the following values:

a. For the File name, type header.html.

b. For the Template, select Basic Templates HTML/XHTML.

c. Click Options. In the New Web Page Options window, for the Markup Language, select
HTML. For the Document Type, select HTML 5 and click Close.

d. Click Finish to create the static header.html.

3. Import the code for the logo, title, and action bar into the header.html file:

a. Locate the c:\4880code\webapp\html\SnippetForHeaderHTML.txt file and open it in a
simple text editor (for example, Notepad).

b. Open the header.html file in the Page Designer and select the Source tab.

c. Paste the code from SnippetForHeaderHTML.txt between the <body> and </body> tags.

d. Save the header.html file. Select the Preview tab to verify that the page has the ITSO
RedBank text and logo as desired.
30 Developing Web Applications using JavaServer Pages and Servlets

Creating an HTML footer for all web pages
Create the web page that holds the source of the footer area in the same manner as for the
header page:

1. Create a web page named footer.html under WebContent.

2. Copy and paste the code from SnippetForFooterHTML.txt between the <body> and
</body> tags.

3. Save the footer.html file. Select the Preview tab to see the newly created link.

Customizing frameset web page areas

Next we add frame references to the pages that are part of the user interface frame areas. We
explain how to customize the following elements of the HTML page template (index.html,
header.html, and footer.html).

Defining the areas in the frameset
To create the mentioned areas/frames in the frameset and link the areas with the previously
created header.html and footer.html web pages, complete these steps:

1. In the Enterprise Explorer, expand RAD8BankBasicWeb WebContent and open the
index.html web page.

2. In the Page Designer, select the Split tab to work simultaneously with the source code and
interface design.

3. To define the frameset areas, add a rows attribute to the frameset tag by following these
steps:

a. In the Outline view, right-click the frameset tag and select Add Attribute New
Attribute.

b. In the New Attribute window, for the Name, type rows. For the value, type 20%,70%,10%
and click OK.

c. Verify in the Source tag the value <frameset rows="20%,70%,10%">.

4. Link the header area with the header.html web page by following these steps on
index.html:

a. In the Outline view, expand html frameset and select the frame node.

b. In the Properties view (Figure 17 on page 32), select the following attributes on the
frame tab:

i. For the URL, type header.html. Or, click the Browse icon () and select File.
Then in the File Selection window, select header.html and click OK.

ii. For the Frame name, type headerArea.

iii. Leave the rest of the values by default, and save the changes.

Warnings: The sample provided uses tags that are invalid for HTML5, and Rational
Application Developer generates warnings that indicate these attributes and tags are
obsolete. To be fully HTML5-compliant, refactor this information. However, these
warnings do not affect the operation of the RedBank application, because
HTML5-compliant web browsers are compatible with an earlier version.
 Developing Web Applications using JavaServer Pages and Servlets 31

Figure 17 Frameset properties for index.html

c. On the Split tab of the Page Designer, verify that the <frame> code was replaced by
<frame src="header.html" name="headerArea">.

5. To link the workspace area, create a frame and link it to the welcome.html web page by
following these steps:

a. In the Outline view, right-click the frame tag and select Add After frame.

b. In the Properties view, set the URL to welcome.html and the Frame name to
workspaceArea.

6. To link the footer area, create a frame and link it to the footer.html web page and frame
name footerArea.

7. From the Design tab, click the Show frames icon () to see the frames in position
(Figure 18).

Figure 18 Frame design

Outline view of
the index.html
page
32 Developing Web Applications using JavaServer Pages and Servlets

Customizing a style sheet

You can create style sheets when a web project is created (by selecting the Default style
sheet (CSS File) option in the Project Facets window), when a page template is created from
a sample, or at any time by starting the CSS File creation wizard.

In the RedBank example, a style sheet named gray.css was imported as part of the process of
“Importing web resources for the RedBank application” on page 27. Both the HTML and the
JSP web pages that we created reference the gray.css style sheet to have a common
appearance of fonts and colors.

In the following example, we customize the colors that are used on the navigation bar links
when you hover over a link. By default, the link text in the navigation bar is orange (#cc6600)
when hovering. We customize this color to red (#ff0000).

To customize the gray.css style sheet, complete the following steps:

1. Open the theme/gray.css file in the CSS Designer (Figure 19).

Figure 19 CSS Designer: gray.css

By selecting the text style .nav-h-normal A:hover in the right pane (scroll down to locate
the style, or find the style in the Styles view at the lower left), the text in the left pane is
displayed and highlighted. Selecting the text style makes it easy to change the settings
and see the change immediately.

2. Change the Hex HTML color code for .nav-h-normal A:hover from color: #cc6600;
(orange) to color: #ff0000; (red).

3. Customize the footer highlighted link text. Locate the .nav-f-normal A:hover style, and
change the color from #ff6600 (orange) to #ff0000 (red).

4. Save the file.
 Developing Web Applications using JavaServer Pages and Servlets 33

Now when you hover over the links in the header and footer, the color changes to red, which
can be demonstrated on the Preview tab of index.html. Any number of changes can be
applied to the style sheets to change the design of the application.

Verifying the site navigation and page templates

At this stage, although the pages have no content, verify that the page templates look as
expected and that the navigation links in the header and footer navigation bars work as
required:

1. Add text to identify each of the web pages created in the Web Site Navigation:

a. Open the welcome.html page in the Page Designer and go to the Source tab.

b. Type Welcome Page between the tags <body></body>. The final code is displayed:

<body>Welcome Page</body>

c. Repeat these steps to indicate the names in the body page for rates.html,
redbank.html, and insurance.html.

d. Start the WebSphere Application Server v8.0 Beta server in the Servers view if it is not
running. On the Servers view, from the context menu, select Start and wait until the
status indicator says Started.

2. In the Enterprise Explorer view, right-click index.html in RAD8BankBasicWeb and select
Run As Run on Server.

3. In the Run Server window, select Choose an existing server and choose WebSphere
Application Server v8.0 Beta. Click Finish.

After the application is published to the server, the browser pane shows the index page.
You can click the tabs for rates, redbank, and insurance to move between these pages
(Figure 20).

Figure 20 ITSO RedBank website

4. To remove the project from the test server, in the Servers view, right-click WebSphere
Application Server v8.0 Beta, select Add Remove Projects, and remove
RAD8BankBasicEAR.

Alternatively, expand WebSphere Application Server v8.0 Beta, right-click the
RAD8BankBasicEAR project, and select Remove.

Hover with the
mouse over a link
34 Developing Web Applications using JavaServer Pages and Servlets

Developing the static web resources

In this section, we create the content for the four static pages of our sample with the objective
of highlighting several of the features of the Page Designer. The Page Designer facilitates the
building of HTML pages by allowing the user to add HTML elements from the Pallet view by
using the drag-and-drop method. HTML fragments can also be imported directly into the
source tab, as we also demonstrate.

This section covers the following topics:

� Creating the welcome.html page content (text and links)
� Creating the rates.html page content (tables)
� Importing the insurance.html page contents
� Importing the redbank.html page contents

Creating the welcome.html page content (text and links)
The RedBank home page is index.html. The links to the child pages are included as part of
the header and footer of our page template. In the following example, we add static text to the
page and add a link to the page to the Redbooks website:

1. Open the welcome.html file in Page Designer.

2. Select the Design tab.

3. Insert the welcome message text:

a. Delete the Welcome Page text.

b. Insert two line breaks:

i. In the Context Area, right-click and select Insert Line Break. Leave Type as
Normal (default).

ii. Repeat these steps for the second line break.

c. In the Context Area, right-click and select Insert Paragraph Heading 1.

d. Enter the text Welcome to the ITSO RedBank! at the current cursor position, which
places the text between the <h1> tags.

4. Insert a link to the Redbooks website:

a. Add an empty line after the heading.

b. From the menu bar, select Insert Paragraph Normal.

c. In the new area, enter the text For more information on the ITSO and IBM Redbooks,
please visit our Internet site.

d. Highlight the text Internet site, right-click, and select Insert Link.

e. In the Insert Link window, select HTTP. In the URL field, type
http://www.ibm.com/redbooks and click OK.

5. Customize the text font face, size, and color. In the Properties view, perform these steps:

a. Select Red in Redbooks from the text created in the previous step (use the keyboard
Shift and arrow keys).

b. On the Text tab of the Properties view, select the color Red to make this partial word
stand out. The source changes to ...IBM Redbooks, ...

6. Save the page.
 Developing Web Applications using JavaServer Pages and Servlets 35

7. Select the Preview tab to view the page (Figure 21). Verify that the page looks correct in
both Firefox and Internet Explorer.

Figure 21 Preview of the welcome.html page

Creating the rates.html page content (tables)
In this example, you add a static table that contains interest rates by using the Page Designer:

1. Open the rates.html file in Page Designer and select the Design tab.

2. Delete the Rates Page text.

3. In the Palette, expand HTML Tags.

4. Select and drag a Table from the Palette to the content area.

5. In the Insert Table window, for the Rows, Columns, and Padding inside cells fields, enter
5.Then click OK.

6. Resize the table as desired.

7. Enter the descriptions and rates (as seen in Figure 22 on page 37) in the table.

8. Select each heading text, and in the Properties view, click the Bold icon ().

9. Save the page.

Use to toggle between IE and Firefox views

Table option: You can add additional table rows and columns or delete rows and
columns by using the Table menu option.
36 Developing Web Applications using JavaServer Pages and Servlets

10.Select the Preview tab to view the page (Figure 22).

Figure 22 Preview of the rates.html page

Importing the insurance.html page contents
Next, import the body of the insurance.html file:

1. Locate the c:\4880code\webapp\html\SnippetForInsuranceHTML.txt file and open it in a
simple text editor (for example, Notepad).

2. Open the insurance.html file in Page Designer and select the Source tab.

3. Select the text between the tags: <body></body>.

4. Insert the text from the SnippetForInsuranceHTML.txt file.

5. Save the file and switch to the Preview tab (Figure 23).

Figure 23 Preview of the insurance.html page
 Developing Web Applications using JavaServer Pages and Servlets 37

Importing the redbank.html page contents
Repeat the import of the body of the redbank.html file:

1. Locate the c:\4880code\webapp\html\SnippetForBankHTML.txt file.

2. Replace the existing content area text with the text from the snippet.

3. Switch to the Preview tab (Figure 24).

Figure 24 Preview of the redbank.html page

The static HTML pages for the RedBank application are now complete. You can navigate the
site by using the header action bar and the footer itsohome link.

Developing the dynamic web resources

In addition to the tools created for building HTML content and designing the flow and
navigation in a web application, Rational Application Developer provides several wizards to
help you quickly build JavaServer Pages (JSP) and Java servlets. You can use the products of
these wizards as is or modify them to fit specific needs.

The wizards support the creation of servlets and JSP. They also compile the Java code and
store the class files in the correct folders for publishing to your application servers. As the
wizards generate project resources, the appropriate annotations are added to the generated
classes (Servlet 3.0 and up) or the deployment descriptor file (web.xml) is updated
automatically with the appropriate configuration information for the servlets that are created
(versions earlier than Servlet 3.0).

In the previous section, we explained how to create each of the static web pages. In this
section, we demonstrate the process of creating and working with servlets. The example
servlets are first built by using the wizards. Then the code contents are imported from the
sample solution. In “Working with JSP” on page 46, the JSP pages, which invoke the logic in
these servlets, are created.

Working with servlets
As described in “Introduction to Java EE web applications” on page 2, servlets are flexible
and scalable server-side Java components based on the Java Servlet API, as defined in the
JEE Servlet Specification. Servlets generate dynamic content by responding to web client
38 Developing Web Applications using JavaServer Pages and Servlets

requests. When an HTTP request is received by the application server, the web server
determines, based on the request URI, which servlet is responsible for answering that
request and forwards the request to that servlet. The servlet then performs its logic and builds
the response HTML that is returned to the web client, or forwards the control to a JSP page.

Rational Application Developer supports Version 3.0 of the JEE servlet specification which
means that servlets are defined by the WebServlet annotation in the servlet class rather than
by an entry in the web.xml file.

Rational Application Developer provides the features to make servlets easy to develop and
integrate into your web application. From the workbench, you can develop, debug, and deploy
servlets. You can also set breakpoints within servlets and step through the code in a
debugger. Any changes made are dynamically folded into the running web application,
without restarting the server each time.

In the sections that follow, we implement the ListAccounts, UpdateCustomer, AccountDetails,
and Logout servlets. Then the command or action pattern is applied in Java to implement the
PerformTransaction servlet.

Adding the RAD80Java JAR to the web project
Before the implementation of the servlet classes can proceed, we must add a reference from
the RAD8BankBasicWeb project to the RAD80Java project, because the servlets call the methods
from classes in this project. Adding this reference is achieved in Rational Application
Developer by using a feature called Deployment Assembly, which is available in the Properties
window for each web project.

To add RAD80Java to the Deployment Assembly for RAD8BankBasicWeb, complete the following
steps.

To add the JAR file to the class path of the RAD8BankBasicWeb project, follow these steps:

1. Highlight the RAD8BankBasicWeb project, right-click and select Properties.

2. On the Properties for RAD8BankBasicWeb dialog window, select the Deployment
Assembly link and click Add.

3. From the New Assembly Directive: Select Directive Type window, select Project and click
Next.

4. From the New Assembly Directive: Projects window, highlight the RAD80Java project and
click Finish.

RAD80Java.jar now appears in the Java Build path of the project under Web App Libraries
(see Figure 25 on page 40), which indicates that the Java classes are available at compile
time. RAD80Java.jar also appears in the Web Deployment Assembly list (see Figure 26 on
page 40), which indicates that the JAR file is added to a WAR file generated from
RAD8BankBasicWeb. Click OK to close the Properties dialog window.

Creating the reference: In previous versions of Rational Application Developer, this
reference was created in the J2EE Module Dependencies dialog window. The new
Deployment Assembly dialog window can be used to achieve the same result.
 Developing Web Applications using JavaServer Pages and Servlets 39

Figure 25 Updated Java Build Path for RAD8BankBasicWeb

Figure 26 Updated Web Deployment Assembly for RAD8BankBasicWeb

Adding the ListAccounts servlet to the web project
Rational Application Developer provides a servlet wizard to assist you in adding servlets to
your web application:

1. Select File New Other and then select Web Servlet. Click Next.

2. In the first window of the Create Servlet wizard (Figure 27 on page 41), for the Java
package, type itso.rad8.webapps.servlet. For the Class name, type ListAccounts. Click
Next.

Tip: You can also access the Create Servlet wizard by right-clicking the project and
selecting New Servlet.
40 Developing Web Applications using JavaServer Pages and Servlets

Figure 27 New Servlet wizard: Create Servlet window (part 1 of 3)

The second window (Figure 28) provides space for the name and description of the new
servlet.

Figure 28 New Servlet wizard: Create Servlet window (part 2 of 3)
 Developing Web Applications using JavaServer Pages and Servlets 41

On this window, you can also add servlet initialization parameters, which are used to
parameterize a servlet. You can change servlet initialization parameters at run time from
within the WebSphere Application Server administrative console.

The wizard automatically generates the URL mapping /ListAccounts for the new servlet.
If other, or additional, URL mappings are required, you can add them here. In our sample,
we do not require additional URL mappings or initialization parameters. Click Next.

3. In the third window (Figure 29), click Finish. In this window, you can have the wizard
create method stubs for methods that are available from the HttpServlet interface. The
init method is called at start, and destroy is called at shutdown.

The doPost, doGet, doPut, and doDelete methods are called when an HTTP request is
received for this servlet. All of the do methods have two parameters: an
HttpServletRequest and an HttpServletResponse. These methods are responsible for
extracting the pertinent details from the request and for populating the response object.

Figure 29 New Servlet wizard: Create Servlet window (part 3 of 3)

For the ListAccounts servlet, ensure that only doGet and doPost are selected. Usually,
HTTP gets are used with direct links, when no information has to be sent to the server.
HTTP posts are typically used when information in a form has to be sent to the server.

No initialization is required for the new servlet. Therefore, the init method is not selected.

The servlet is generated and added to the project. You can find the source code in the
Java Resources folder of the project.

4. Expand the deployment descriptor list for the RAD8BankBasicWeb (immediately under
the project in the Enterprise Explorer), and you see that the ListAccounts servlet is
shown.
42 Developing Web Applications using JavaServer Pages and Servlets

Implementing the ListAccounts servlet
A skeleton servlet now exists, but it does not perform any actions when it is started. Now add
code to the servlet to implement the required behavior. The ListAccounts.java code of the
servlet is already opened.

Follow these steps:

1. Locate the c:\4880code\webapp\servlet\ListAccounts.java file.

2. Replace the contents of ListAccounts.java with the sample file. The file compiles
successfully with no errors.

3. Examine the source code for the ListAccounts.java servlet. Note the annotation before
the class definition:

@WebServlet("/ListAccounts")

This annotation declares the class as a servlet for the web project and describes the URL
mapping.

This class implements the doPost and doGet methods, both of which call the performTask
method.

The performTask method does the following tasks:

a. The method deals with the HTTP request parameters supplied in the request. This
servlet expects to either receive a parameter called customerNumber or none at all. If
the parameter is passed, we store it in the HTTP session for future use. If it is not
passed, we look for it in the HTTP session, because it was stored there earlier.

b. The method implements the control logic. Access to the Bank facade is obtained
through the ITSOBank.getBank method, and it is used to retrieve the customer object
and the array of accounts for that customer.

c. The third section adds the customer and account variables to the HttpRequest object
so that the presentation renderer (listAccounts.jsp) receives the parameters that it
requires to perform its job. The control of processing the request is then passed
through to listAccounts.jsp by using the RequestDispatcher.forward method, which
builds the response to be shown on the browser.

d. The final part of the method is the error handler. If an exception is thrown in the
previous code, the catch block ensures that control is passed to the showException.jsp
page.

Figure 9 on page 19 shows a sequence diagram of the design of this class.

The ListAccounts servlet is now complete.

4. Save the changes and close the source editor.

Implementing the UpdateCustomer servlet
The UpdateCustomer servlet is used for updating the customer information and is started from
the ListAccounts JSP through a push button.

The servlet requires that the Social Security number (SSN) of the customer that is to be
updated is already placed on the session (as must be done in the ListAccounts servlet). It
extracts the title, firstName, and lastName parameters from the HttpRequest object, calls
the bank.getCustomer(String customerNumber) method, and uses the simple setters on the
Customer class to update the details.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on page 40 and
“Implementing the ListAccounts servlet” on page 43 to build the servlet, including the doGet
 Developing Web Applications using JavaServer Pages and Servlets 43

and doPost methods. The code to use for this class is in the
c:\4880code\webapp\servlet\UpdateCustomer.java file.

Implementing the AccountDetails servlet
The AccountDetails servlet retrieves the account details and forwards control to the
accountDetails.jsp page to show these details. The servlet expects the parameter
accountId, which specifies the account for which data must be shown, in the request. The
servlet calls the bank.getAccount(..) method, which returns an Account object and adds it
as a variable to the request. It then uses the RequestDispatcher to forward the request onto
the accountDetails.jsp.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on page 40 and
“Implementing the ListAccounts servlet” on page 43 to build the servlet. The code to use for
this class is in the c:\4880code\webapp\servlet\AccountDetails.java file.

Implementing the Logout servlet
The Logout servlet is used for logging the customer off from the RedBank application. The
servlet requires no parameters. The only logic performed in the servlet is to remove the SSN
from the session, simulating a logoff action. You remove the SSN by calling the
session.removeAttribute and session.invalidate methods. Finally, the servlet uses the
RequestDispatcher class to forward the browser to the index.html page.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on page 40 and
“Implementing the ListAccounts servlet” on page 43 to build the servlet. The code to use for
this class is in the c:\4880code\webapp\servlet\Logout.java file.

Implementing the PerformTransaction command classes
In the PerformTransaction servlet, a Command design pattern is used to implement it as a
front controller class that forwards control to one of the four command objects: Deposit,
Withdraw, Transfer, and ListTransactions.

You can find this design in, “Controller layer” on page 18. This implementation is based on the
sequence diagram (Figure 10 on page 20).

Next we import the code for the commands package. The source is in the
C:\4880code\webapp\command folder. Follow these steps:

1. Create the itso.rad8.webapps.command package. In the Enterprise Explorer, right-click
the Java Resources: src folder and select New Package.

2. For the package name, type itso.rad8.webapps.command and click Finish.

3. From the context menu of the new package, click Import and select General File
system. Click Next.

4. Click Browse and navigate to the C:\4880code\webapp\command folder. Click OK.

5. Select the following Java files and click Finish:

– Command.java
– DepositCommand.java
– ListTransactionsCommand.java

Security and authorization: An actual client implementation performs security and
authorization where the current user has the required access rights to the requested
account. You can implement security and authorization by using the Security Editor tool, as
described in, “Security Editor” on page 13.
44 Developing Web Applications using JavaServer Pages and Servlets

– TransferCommand.java
– WithdrawCommand.java

The command classes perform the operations on the RedBank model classes (from the
RAD80Java project) through the Bank facade. They also return the file name for the next page
to be displayed after the command runs.

Implementing the PerformTransaction servlet
Now that all the commands for the PerformTransaction framework are realized, you can
create the PerformTransaction servlet. The servlet uses the value of the transaction request
parameter to determine which command to execute.

You can use the Create Servlet wizard to create a servlet named PerformTransaction. The
servlet class must be placed in the itso.rad8.webapps.servlet package.

Follow the procedures in “Implementing the ListAccounts servlet” on page 43 to prepare the
servlet, including the doGet and doPost methods. The code to use for this class is in the
c:\4880code\webapp\servlet\PerformTransaction.java file.

PerformTransaction stores a HashMap of the action strings (deposit, withdraw, transfer, and
list) to instances of Command classes. Both the doGet and doPost methods call performTask. In
the performTask method, the execute method is called on the appropriate Command class that
performs the transaction on the Bank classes. After the execute method completes, the
getForwardView method is called on the Command class, which returns the next page to display,
and PerformTransaction uses the RequestDispatcher to forward the request to the next
page.

After this step, all the servlets required for the sample application are built. The Enterprise
Explorer view shows a list of all the servlets in the web project and the URL mappings to
these servlets (Figure 30 on page 46).
 Developing Web Applications using JavaServer Pages and Servlets 45

Figure 30 Servlets and Servlets Mappings in Enterprise Explorer

Working with JSP

JSP files are edited in the Page Designer, which is the same editor that is used to edit the
HTML page. When working with a JSP page in the Page Designer, the Palette view has a
separate drawer for JSP Tags, which includes elements, such as JavaBean references,
JavaServer Pages Standard Tag Library (JSTL) tags, and scriptlets that contain Java code.

In this section, we describe the implementation of listAccounts.jsp in detail, and the other
JSP (accountDetails.jsp, listTransactions.jsp, and showException.jsp) are imported
from the solution.

Implementing the List Accounts JSP
Customizing a JSP file by adding static content is done in the Page Designer tool in the same
way that an HTML file can be edited. You can also add the standard JSP declarations,
scriptlets, expressions, tags, or any other custom tag that is developed or retrieved from the
Internet.
46 Developing Web Applications using JavaServer Pages and Servlets

In this example, the listAccounts.jsp file is built by using page data variables for customer
and accounts (and an array of Account classes for that customer). These variables are added
to the page by the ListAccounts servlet and are accessible to the Java code and tags used in
the JSP.

To complete the body of the listAccounts.jsp file, perform the following steps:

1. Open the listAccounts.jsp in Page Designer and select the Design tab.

2. Add the customer and accounts variables to the page data meta information in the Page
Data view (by default, one of the views in the upper-left corner). These variables are
added to the request object in the ListAccounts servlet, as discussed in “Implementing
the ListAccounts servlet” on page 43. Page Designer must be aware of these variables.
Complete these steps:

a. In the Page Data view, expand Scripting Variables, right-click requestScope, and
select New Request Scope Variable.

b. In the Add Request Scope Variable window, complete the following tasks:

i. For the Variable name, select customer.
ii. Type itso.rad80.bank.model.Customer.
iii. Click OK.

c. Repeat this procedure to add the following request scope variable:

i. For the Variable name, select accounts.
ii. Type itso.rad80.bank.model.Account[].

3. In the Palette view, select Form Tags Form and click anywhere on the JSP page in the
content table. A dashed box appears on the JSP page, representing the new form.

4. In the Properties view for the new Form element, enter the following items:

a. For the Action, type UpdateCustomer.
b. For the Method, select Post.

5. Add a table with the customer information:

a. In the Page Data view, expand and select Scripting Variables requestScope
customer (itso.rad80.java.model.Customer).

b. Select and drag the customer object to the form that was previously created.

c. In the Insert JavaBean window (Figure 31 on page 48), follow these steps:

i. Select Displaying data (read-only).

ii. Use the arrow up and down buttons to arrange the fields in the order shown and
type over the labels.

iii. Clear the accounts field (we do not display the accounts).

Tip: You can use the browse button (marked with an ellipsis (...)) to find the class
that is using the class browser.

Important: The square brackets indicate that the variable accounts is an array of
accounts.

Tip: You can use the Outline view to navigate to the form tag quickly.
 Developing Web Applications using JavaServer Pages and Servlets 47

Figure 31 Inserting the customer JavaBean

d. Click Finish to add the Data control for the Customer.

e. Right-click the last row of the newly created table (select the LastName cell) and select
Table Add Row Below.

6. In the Palette view, select Form Tags Submit Button and click in the right cell of the
new row. In the Label field, enter Update and click OK. You can leave the Name field
empty.

7. In the Palette view, select HTML Tags Horizontal Rule and click in the area
immediately beneath the form.

8. In the Page Data view, expand Scripting Variables requestScope accounts
(itso.rad8.java.model.Account[]).

9. Drag the accounts object beneath the Horizontal Rule that was created.

10.In the Insert JavaBean: Configure Data Controls wizard (Figure 32 on page 49), follow
these steps:

a. Clear transactions. We do not display the transactions.

b. For both fields, in the Control Type column, select Output link.

c. In the Label field for the accountNumber field, enter AccountNumber.

d. Ensure that the order of the fields is accountNumber and balance.

Customer data in table: The newly created table with customer data is changed in
a later stage to use input fields for the title, first name, and last name fields. Creating
an editable version of this information is not possible with the available wizards.
48 Developing Web Applications using JavaServer Pages and Servlets

e. Click Finish. The accounts bean is added to the page and is displayed as a list.

Figure 32 Inserting the accounts JavaBean

f. The wizard inserts a JSTL c:forEach tag and an HTML table with headings, as entered
in the Insert JavaBean window. Because we selected Output link as the Control Type
for each column, corresponding c:url tags are inserted. We now edit the URL for
these links to make sure that they are identical and to pass the accountId variable as a
URl parameter:

g. From the Design view, select the first <c:url> tag under the heading AccountNumber,
which has the text ${varAccounts.accountNumber}{}. In the Properties view (Figure 33
on page 50), in the Value field, enter AccountDetails.

The tag changes to AccountDetails{}.
 Developing Web Applications using JavaServer Pages and Servlets 49

Figure 33 Configuring the AccountDetails URL

h. Under the heading Balance, which has the text ${varAccounts.balance}{}, select the
second <c:url> tag. In the Properties view, in the Value field, enter AccountDetails.
This value specifies the target URL for the link, which, in this case, maps to the
AccountDetails servlet.

i. Add a parameter to this URL to ensure that the link maps to the correct account. In the
Palette view, select JSP Tags Parameter () and click the first <c:url> in the
AccountNumber column. The column has the text AccountDetails{} as shown in
Figure 34 on page 51.

j. In the Properties view, on the c:param tab, in the Name field, enter accountId, and in
the Value field, enter ${varAccounts.accountNumber}. This action adds a parameter to
the account URL with a name of accountId and the value of the accountNumber request
variable.

Click here

Change this value
50 Developing Web Applications using JavaServer Pages and Servlets

Figure 34 Adding parameters to c:url tags

k. Repeat the two previous steps to add a parameter to the second <c:url> tag in the
Balance column, showing the text Account Number{}. In the Name field, type
accountId, and in the Value field, type ${varAccounts.accountNumber}.

11.Click anywhere in the Balance column and select the td tag in the Properties view. In the
Horizontal alignment list box, select Right to right-align the contents of the Balance cells.

12.Select the Source tab and compare the code to display the accounts to the code that is
shown in Example 1 on page 52. This JSP code shows the accounts as a list, uses the
<c:forEach> tag to loop through each account, and uses the <c:out> tag to reference the
current loop variable. The <c:url> tag builds a URL to AccountDetails and the <c:param>
tag adds the accountId parameter (with the account number value) to that URL.

Click there to add parameters to the c:url tags
 Developing Web Applications using JavaServer Pages and Servlets 51

Example 1 JSP code with JSTL tags to display accounts (formatted)

<c:forEach var="varAccounts" items="${requestScope.accounts}">
<tr>

<td>
<c:url value="AccountDetails" var="urlVariable">

<c:param name="accountId"
value="${varAccounts.accountNumber}"></c:param>

</c:url>
<a href="<c:out value='${urlVariable}' />">

<c:out value="${varAccounts.accountNumber}"></c:out>

</td>
<td align="right">

<c:url value="AccountDetails" var="urlVariable">
<c:param name="accountId"

value="${varAccounts.accountNumber}"></c:param>
</c:url>
<a href="<c:out value='${urlVariable}' />">

<c:out value="${varAccounts.balance}" />

</td>
</tr>

</c:forEach>

13.Select the Split tab. From the Palette view, select HTMLTags Horizontal Rule and click
in the area beneath the account details table.

14.Add a logout form:

a. In the Palette view, select Form Tags Form and click beneath the new horizontal
rule. A dashed box is displayed on the JSP page, representing the new form.

b. In the Properties view for the new form tag, enter the following items:

i. For the Action, type Logout.
ii. For the Method, select Post.

c. In the Palette view, select Form Tags Submit Button and click in the new form.
When you click the Logout button, the doPost method is called on the Logout servlet.

d. In the Insert Submit Button window, in the Label field, enter Logout and click OK.

15.Change the title, first name, and last name to entry fields, so that the user can update the
customer’s details. To convert the Title, First name, and Last name text fields to allow text
entry, follow these steps:

a. Select the ${requestScope.customer.title} field.

b. Select the Source tab and you can see the following code:

<td><c:out value="${requestScope.customer.title}" /></td>

c. Change the code to this code:

<td><input type="text" name="title"
value="<c:out value='${requestScope.customer.title}' />" /></td>
52 Developing Web Applications using JavaServer Pages and Servlets

d. Repeat these steps for the first name and last name fields:

<td><input type="text" name="firstName"
value="<c:out value='${requestScope.customer.firstName}' />" /></td>

......
<td><input type="text" name="lastName"

value="<c:out value='${requestScope.customer.lastName}' />" /></td>

The customer fields change from display-only fields to editable fields, so that the details
can be changed.

You can change the length of the three input fields in the Properties view. For example,
you can specify 6 columns and 3 as the maximum length for the title, and 32 columns for
the names.

You can also change the width of the content areas in the source code.

16.Format the account balance, which is a BigDecimal. Otherwise, it is displayed with many
digits. Complete these steps:

a. In the Balance column, click the balance field ${varAccounts.balance}.

b. From the context menu, select JSP Insert Custom.

c. In the Insert Custom Tag window (Figure 35), click Add to add another tag library.

d. Locate and select the http://java.sun.com/jsp/jstl/fmt URI and click OK.

e. Select the new tag library and select formatNumber as the custom tag. Click Insert
and click Close.

Figure 35 Inserting a custom tag

f. On the Source tab, select the <fmt:formatNumber> tag. In the Properties view, set
maxFractionDigits and minFractionDigits to 2. For the value, type
${varAccounts.balance}.

g. Remove the <c:cout value=.... > and </c:cout> tags:

<a href="<c:out value='${urlVariable}' />">
<c:out value="${varAccounts.balance}" />
<fmt:formatNumber maxFractionDigits="2" minFractionDigits="2"

value="${varAccounts.balance}"></fmt:formatNumber>
</c:cout>

 Developing Web Applications using JavaServer Pages and Servlets 53

17.Select any field in the accounts table. In the Properties view, select the table tab. Set the
width to 100 and select %.

18.Select the Account Number heading. In the Properties view, set the horizontal alignment
to Left. Select the Balance heading and set the horizontal alignment to Right.

19.Save the file.

Figure 36 shows the JSP in the Design tab.

Figure 36 List AccountsJSP finished

Implementing the other JSP
The other JSPs are already created as part of the model solution. We built them by using a
similar process of adding request beans to the JSP and building HTML and JSP elements
around them.

To import the other JSP files and to view them in Page Designer, perform the following steps:

1. Select the WebContent folder, click Import, and select General File System. Click
Next.

2. Click Browse and navigate to the c:\4880code\webapps\jsp file.

3. Select all the JSP files, except listAccounts.jsp (which is completed). Click Finish.

4. When prompted whether to override the existing files, click Yes to All.

JSP source code for the listAccounts.jsp file: The JSP source code for the
listAccounts.jsp is in the c:\4880code\webapp\jsp\ directory. You can import the code
into the WebContent folder, or copy and paste it directly into Rational Application Developer.
54 Developing Web Applications using JavaServer Pages and Servlets

Add the required variables to the appropriate Page Data view by following the next steps for
each JSP file in Table 2:

1. Open each JSP file in the Page Designer by double-clicking the file from the Project
Explorer view.

2. In the Page Data view, select Scripting Variables New Request Scope Variable
and add the variables for each JSP, as specified in Table 2.

Table 2 Request scope variables for each JSP

The following sections describe briefly the logic that is contained within each JSP.

Account Details JSP
The acountDetails.jsp page shows the details for a particular customer account and gives
options to execute a transaction:

� The JSP uses a single request variable called account to populate the top portion of the
body of the page, which shows the account number and balance.

� The middle section is a simple static form, which provides fields for the details of a
transaction (transaction type, amount, and destination account) and posts the request to
the PerformTransaction servlet for processing.

� The Customer Details button brings the user to the listAccounts.jsp page.

Figure 37 on page 56 shows the Page Designer view of this page.

Associated request beans of the imported pages: The imported pages do not have the
associated request beans that show in the Page Data view, because they are maintained
in the .jspPersistence file immediately under the web project directory. You have to
specifically add them to the Page Data view.

JSP file Variable Type

accountDetails.jsp account itso.rad80.bank.model.Account

listTransactions.jsp account itso.rad80.bank.model.Account

listTransactions.jsp transactions itso.rad80.bank.model.Transaction[]

showException.jsp message java.lang.String

showException.jsp forward java.lang.String
 Developing Web Applications using JavaServer Pages and Servlets 55

Figure 37 Completed accountDetails.jsp in a preview

List Transactions JSP
The listTransactions.jsp page shows a read-only view of the account, including the
account number and balance, plus a list of all transactions:

� The JSP uses two request variables called account and transactions. The first section of
the page uses the account request bean to populate a table that shows the account
number and balance.

� The middle section uses the transactions[] request bean to show a list of transactions.
This transaction array bean uses the JSTL tag library to iterate through the transaction list
and build up an HTML representation of the transaction history.

� The Account Details button returns the browser to the accountDetails.jsp page.

Figure 38 on page 57 shows the Page Designer view of this page.

Uses the
account
bean

Form to
perform
transactions
56 Developing Web Applications using JavaServer Pages and Servlets

Figure 38 Completed listTransactions.jsp in a preview

Show Exception JSP
The showException.jsp page is displayed when an exception occurs in the processing of a
request:

� The JSP shows a simple error message and gives a link to another page within the
RedBank application to allow the user to continue.

� Two request beans are used on this page. The message bean stores the text to display to
the user, and the forward bean stores a URL for the next page to continue. The URL is
hidden behind the text Click here to continue.

Uses the account bean to show number/balance

Uses the transaction array bean to show the transaction history
 Developing Web Applications using JavaServer Pages and Servlets 57

Figure 39 shows this page in the Design view of the Page Designer.

Figure 39 Completed showException.jsp in a preview

The RedBank application is finished and ready to be tested.

Web application testing

In this section, we demonstrate how to run the sample RedBank application that we built in the
previous sections.

Prerequisites to run the sample web application

To run the RedBank application, you must choose one of the following actions:

� Complete the sample that follows the procedures that are described in “Implementing the
RedBank application” on page 20.

� Import the completed projects from \4880codesolution\jsp\RAD8Web-JSP.zip.

Running the sample web application

To run the RedBank web application in the test environment, follow these steps:

1. Right-click RAD8BankBasicWeb in the Enterprise Explorer view and select Run As
Run on Server.

2. In the Server Selection window, select Choose an existing server and select
WebSphere Application Server v8.0 Beta. Select the Always use this server when
running my project option so that this step can be skipped next time. Click Finish.

The main page of the web application is displayed in a web browser inside Rational
Application Developer.

Uses the forward page variable

Uses the message
page variable
58 Developing Web Applications using JavaServer Pages and Servlets

Verifying the RedBank web application

After you start the application by running it on the test server, verify that the web application
works properly:

1. From the main page, select the redbank menu option.

2. On the RedBank page (Figure 40), type a customer’s Social Security number (SSN), for
example, 222-22-2222.

Figure 40 ITSO RedBank login page
 Developing Web Applications using JavaServer Pages and Servlets 59

3. Click Submit. The page now lists the customer and accounts (Figure 41).

Figure 41 Listing of customer accounts

4. From the list of accounts, choose one of the following actions. In this example, we click an
account to view the account information.

– Change the customer title or name fields. For example, change the title to Sir. Then
click Update to perform the doPost method of the UpdateCustomer servlet.

– Click Logout to return to the Login page.

– Re-enter the Social Security number (SSN), click Submit, and verify that the Customer
name changed.

5. Click the link for one of the accounts, and from the account view (Figure 42 on page 61),
choose one of the following actions:

– Select List Transactions and click Submit. There are no transactions yet.

– Select Deposit or Withdraw, enter an amount, and click Submit to execute a banking
transaction. The page is redisplayed with the updated balance.

– Select Transfer and enter an amount and a target account. Then click Submit. The
page is redisplayed with the updated balance.

– Click Customer Details to return to the account listing.
60 Developing Web Applications using JavaServer Pages and Servlets

In this example, we run a few transactions (deposit, withdraw, and transfer). Then we
select List Transactions and click Submit.

Figure 42 Details for a selected account
 Developing Web Applications using JavaServer Pages and Servlets 61

Figure 43 shows the transaction listing.

Figure 43 List of transactions for an account

6. Try a withdrawal of an amount greater than the balance. The Show Exception JSP shows
an error message (Figure 44 on page 63).
62 Developing Web Applications using JavaServer Pages and Servlets

Figure 44 Withdrawal over the limit error

More information

The RedBank application can be improved in many ways; for example, by adding features or by
using other technologies. These methods are explained in the following chapters of the
original IBM Redbooks publication from which this paper is excerpted (Rational Application
Developer for WebSphere Software V8 Programming Guide, SG24-7835):

� To use a database rather than HashMaps, see Chapter 9.
� To use EJB to store the model, see Chapter 12.
� To use JSF components rather than JSTL, see Chapter 19.
� To debug the application, see Chapter 28.

The book is available at the following website:

http://www.redbooks.ibm.com/abstracts/sg247835.html?Open

The Help feature provided with Rational Application Developer includes many topics about
developing websites and applications. It contains reference information for all the features
presented in this paper and further information about topics only covered briefly here,
including JSP tag libraries and security.

For more information about the topics in this paper, see the following websites:

� Oracle Java Servlet Technology home page, which contains links to the specification, API
Javadoc, and articles about servlets:

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
 Developing Web Applications using JavaServer Pages and Servlets 63

http://www.redbooks.ibm.com/abstracts/sg247835.html?Open
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

� Oracle JavaServer Pages Technology home page for technical information about JSP:

http://www.oracle.com/technetwork/java/javaee/jsp/index.html

� JavaServer Pages Standard Tag Library (JSTL) home page for technical information about
JSTL:

http://www.oracle.com/technetwork/java/index-jsp-135995.html

� “JSP and Servlets best practices,” article that articulates clearly the various ways of
applying an MVC pattern to JSP and servlets:

http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

http://www.redbooks.ibm.com/abstracts/sg246316.html?Open

Locating the web material

The web material that is associated with this paper is available in softcopy on the Internet
from the IBM Redbooks web server. Enter the following URL in a web browser and then
download the two ZIP files:

ftp://www.redbooks.ibm.com/redbooks/SG247835

Alternatively, you can go to the IBM Redbooks website:

http://www.ibm.com/redbooks

Accessing the web material

Select Additional materials and open the directory that corresponds with the IBM Redbooks
publication form number, REDP-4880.

The additional web material that accompanies this paper includes the following files:

File name Description
4880code.zip Compressed file that contains sample code
4880codesolution.zip Compressed file that contains solution interchange files

System requirements for downloading the web material

We recommend the following system configuration:

Hard disk space: 20 GB minimum
Operating system: Microsoft Windows or Linux
Processor: 2 GHz
Memory: 2 GB

Additional information: For more information about the additional material, see Rational
Application Developer for WebSphere Software V8 Programming Guide, SG24-7835.
64 Developing Web Applications using JavaServer Pages and Servlets

http://www.redbooks.ibm.com/abstracts/sg246316.html?Open
ftp://www.redbooks.ibm.com/redbooks/SG247835
http://www.ibm.com/redbooks
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html

The team who wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Martin Keen is a Consulting IT Specialist at the ITSO, Raleigh Center. He writes extensively
about WebSphere products and service-oriented architecture (SOA). He also teaches IBM
classes worldwide about WebSphere, SOA, and enterprise service bus (ESB). Before joining
the ITSO, Martin worked in the EMEA WebSphere Lab Services team in Hursley, U.K. Martin
holds a Bachelors degree in Computer Studies from Southampton Institute of Higher
Education.

Rafael Coutinho is an IBM Advisory Software Engineer working for Software Group in the
Brazil Software Development Lab. His professional expertise covers many technology areas
ranging from embedded to platform-based solutions. He is currently working on IBM
Maximo® Spatial, which is the geographic information system (GIS) add-on of IBM Maximo
Enterprise Asset Management (EAM). He is a certified Java enterprise architect and
Accredited IT Specialist, specialized in high-performance distributed applications on
corporate and financial projects.

Rafael is a computer engineer graduate from the State University of Campinas (Unicamp),
Brazil, and has a degree in Information Technologies from the Centrale Lyon (ECL), France.

Sylvi Lippmann is a Software IT Specialist in the GBS Financial Solutions team in Germany.
She has over seven years of experience as a Software Engineer, Technical Team Leader,
Architect, and Customer Support representative. She is experienced in the draft, design, and
realization of object-oriented software systems, in particular, the development of Java
EE-based web applications, with a priority in the surrounding field of the WebSphere product
family. She holds a degree in Business Informatic Engineering.

Salvatore Sollami is a Software IT Specialist in the Rational brand team in Italy. He has been
working at IBM with particular interest in the change and configuration area and web
application security. He also has experience in the Agile Development Process and Software
Engineering. Before joining IBM, Salvatore worked as a researcher for Process Optimization
Algorithmic, Mobile Agent Communication, and IT Economics impact. He developed the
return on investment (ROI) SOA investment calculation tool. He holds the “Laurea” (M.S.)
degree in Computer Engineering from the University of Palermo. In cooperation with IBM, he
received an M.B.A. from the MIP - School of Management - polytechnic of Milan.

Sundaragopal Venkatraman is a Technical Consultant at the IBM India Software Lab. He
has over 11 years of experience as an Architect and Lead working on web technologies,
client server, distributed applications, and IBM System z®. He works on the WebSphere stack
on process integration, messaging, and the SOA space. In addition to handling training on
WebSphere, he also gives back to the technical community by lecturing at WebSphere
technical conferences and other technical forums.

Steve Baber has been working in the Computer Industry since the late 1980s. He has over
15 years of experience within IBM, first as a consultant to IBM and then as an employee.
Steve has supported several industries during his time at IBM, including health care,
telephony, and banking and currently supports the IBM Global Finance account as a Team
Lead for the Global Contract Management project.
 Developing Web Applications using JavaServer Pages and Servlets 65

Henry Cui works as an independent consultant through his own company, Kaka Software
Solution. He provides consulting services to large financial institutions in Canada. Before this
work, Henry worked with the IBM Rational services and support team for eight years, where
he helped many clients resolve design, development, and migration issues with Java EE
development. His areas of expertise include developing Java EE applications with Rational
Application Developer tools and administering WebSphere Application Server servers,
security, SOA, and web services. Henry is a frequent contributor of IBM developerWorks®
articles. He also co-authored five IBM Redbooks publications. Henry holds a degree in
Computer Science from York University.

Craig Fleming is a Solution Architect who works for IBM Global Business Services® in
Auckland, New Zealand. He has worked for the last 15 years leading and delivering software
projects for large enterprises as a solution developer and architect. His area of expertise is in
designing and developing middleware solutions, mainly with WebSphere technologies. He
has worked in several industries, including Airlines, Insurance, Retail, and Local Government.
Craig holds a Bachelor of Science (Honors) in Computer Science from Otago University in
New Zealand.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

http://www.ibm.com/redbooks/residencies.html

Stay connected to IBM Redbooks publications

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
66 Developing Web Applications using JavaServer Pages and Servlets

http://www.ibm.com/redbooks/residencies.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright International Business Machines Corporation 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 67

®

Redpaper™

This document REDP-4880-00 was created or updated on July 24, 2012.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbooks@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

developerWorks®
Global Business Services®
IBM®
Maximo®

Rational®
Redbooks®
Redpaper™
Redbooks (logo) ®

System z®
WebSphere®

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
68 Developing Web Applications using JavaServer Pages and Servlets

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/legal/copytrade.shtml

	Go to the current abstract on ibm.com/redbooks
	Developing Web Applications using JavaServer Pages and Servlets
	Introduction to Java EE web applications
	Java EE applications
	Model view controller pattern

	Web development tooling
	Web perspective and views
	Page Designer
	Page templates
	CSS Designer
	Security Editor
	File creation wizards

	Rational Application Developer new features
	RedBank application design
	Model
	View layer
	Controller layer

	Implementing the RedBank application
	Creating the web project
	Importing the Java RedBank model
	Defining the empty web pages
	Creating frameset pages
	Customizing frameset web page areas
	Customizing a style sheet
	Verifying the site navigation and page templates
	Developing the static web resources
	Developing the dynamic web resources
	Working with JSP

	Web application testing
	Prerequisites to run the sample web application
	Running the sample web application
	Verifying the RedBank web application

	More information
	Locating the web material
	Accessing the web material
	System requirements for downloading the web material

	The team who wrote this paper
	Now you can become a published author, too!
	Stay connected to IBM Redbooks publications

	Notices
	Trademarks

