
WebSphere Application Server V7:
Deploying Applications

In Chapter 14, Packaging Applicatons for Deployment, we discuss how to use
the Rational® Application Developer Assembly and Deploy Features for
WebSphere® 7.0 (RAD-AD) to perform common tasks for packaging an
application.

In this chapter, we show you how to deploy the application. We take you through
setting up the environment for the application, and then deploying the application
itself. Next, we explain how to deploy the client part of the application. The
deployment tasks in this chapter can also be automated using command-line
tools, as explained in Chapter 8, Administration with scripting.

We cover the following topics:

� Preparing the environment
� Deploying the application
� Deploying application clients
� Updating applications

Chapter 15 of WebSphere
Application Server V7

Administration and Configuration
Guide, SG24-7615
© Copyright IBM Corp. 2009. All rights reserved. 1

http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html

Preparing the environment

In this chapter, we show you how to set up a fairly complete environment for the
ITSO Bank application and deploy the EAR file. You will not always need or want
to customize the environment as extensively as we do in this chapter. Some
steps are optional. If all you want to do is deploy your application quickly, using
the WebSphere defaults for directory names, log files, and so forth, skip to
“Deploying the application” on page 20.

The steps in this section are performed typically by the application deployer. To
deploy the ITSO Bank application, do the following steps:

1. Create the DB2® database for ITSO Bank. This step is required.

2. Create an environment variable for ITSO Bank server. This step is optional.

3. Create an application server to host the application. This step is optional.

4. Customize the IBM® HTTP Server configuration. This step is optional.

5. Define a JDBC™ provider, data source, and authentication alias. This step is
required if you are not using an Enhanced EAR.

6. Define virtual hosts. This step is optional and not required if you are using an
Enhanced EAR.

Note: The application that we prepared is the ITSO Bank application, which
was developed by the team who wrote the Rational Application Developer
V7.5 Programming Guide, SG24-7672, Redbooks® publication. The
application can be downloaded from the Additional Materials section in that
book, available at:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247672.html?Open

The Additional Materials section contains two ZIP files. To prepare for this
chapter, download the 7672code.zip file and unpack it to a directory on your
computer. The database directory in this ZIP file contains scripts that we will
use to prepare the database for the application.

If you are working on a pre-JEE 5 application or are using EJB 2.1, or earlier,
modules, also refer to Chapter 14 in the WebSphere Application Server v6.1,
SG24-7304, Redbooks publication for specific details on earlier versions,
available at:

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open
2 WebSphere Application Server V7: Deploying Applications

http://www.redbooks.ibm.com/redpieces/abstracts/sg247672.html?Open
http://www.redbooks.ibm.com/abstracts/sg247304.html?Open

If the application to be deployed is a WebSphere Enhanced EAR file, the
resources configured in the Enhanced EAR file are created automatically when
the application is deployed.

Creating the ITSO Bank DB2 database

To set up the DB2 database, make sure you have DB2 installed and running.
Then run the following commands:

� Open a command prompt.

� Change directory to the database\db2 folder in the 7672code folder created
when unzipping the additional material.

� Execute the createbank.bat file to define the database and table.

� Execute the loadbank.bat file to delete the existing data and add records.

� Execute the listbank.bat file to list the contents of the database.

Each command opens a new window where the DB2 script executes. Each
command also leaves a connection to the database open, so you might want to
execute a db2 connect reset command in each window opened to disconnect
from the database so no unused connections are kept open.

Creating an environment variable

We recommend that you use WebSphere environment variables, rather than
hard-coded paths when deploying an application. In the following sections, we
assume that you have declared an ITSOBANK_ROOT variable. You will use it
when specifying, for example, the JVM™ log’s location.

Be certain you declare this variable at the right scope. For example, if you define
this variable at the application server scope, it will only be known at that level. As
long as you work with the WebSphere Application Server Base or Express
editions, this is fine. But if you later decide to use the Network Deployment
edition and you create a cluster of application servers, the ITSOBANK_ROOT
variable will need to be defined at the cluster or cell level.

Use the steps outlined in Chapter 5, Administration consoles and commands to
create a ITSOBANK_ROOT variable with a value of C:\apps\ITSOBANK.

There are several ways to organize WebSphere applications. Some companies
prefer to create a directory for each application, as we do in our example, such
as C:\apps\application_name, and keep all resources and directories required by
the application in subdirectories under this directory. This strategy works well
when deploying only one application per application server, again as we do in
 WebSphere Application Server V7: Deploying Applications 3

http://www.redbooks.ibm.com/abstracts/sg247615.html

our example, because the application server’s log files could then all be changed
to point to c:\apps\application_name\logs.

Other companies prefer to organize resources by resource type, and so create
directories such as c:\apps\logs\application_name.log,
c:\apps\properties\application_name.properties, and so on.

And some companies prefer to stick with the vendor defaults as far as possible.
For WebSphere, that means that the applications are installed in the
profile_root/installedApps directory and the logs files are written to the
profile_root/logs/server_name directory.

Which option you choose is a matter of personal preferences and corporate
guidelines.

Creating the ITSO Bank application server

In a distributed server environment, you have the option of using a single
application server, or creating multiple application servers or clusters.

The advantages of deploying multiple applications to a single application server
is that it consumes less resources. There is no overhead for any extra application
server processes. Another benefit is that applications can make in-process calls
to each other. For example, servlets in one EAR file could access Local
interfaces of EJBs in another EAR file.

One alternative to using a single application server is to deploy each application
to its own server. The advantages of deploying only one application on an
application server is that it gives you greater control over the environment. The
JVM heap sizes and environment variables are set at application server level, so
all applications running in an application server share the JVM memory given to
the application server and they would all see the same environment variables.
Running each application in its own application server could also make it easier
to perform problem determination. For example, if an application runs amok and
consumes a lot of CPU, you could see which application it is by looking at the
process ID of the application server.

In our example, we create a unique application server on which to run the ITSO
Bank sample application.

Note: Make sure you create the target directory you specify for the
ITSOBANK_ROOT variable before proceeding. If the directory is not created,
the application server will not start.
4 WebSphere Application Server V7: Deploying Applications

To create an application server, do the following steps:

1. Select Servers → Server Types → WebSphere application servers.

2. Click the New button and provide the information node and server name, as
shown in Figure 1.

Figure 1 Creating the ITSO Bank application server

As you can see in the figure, the application server name will be
ITSOBankServer1.

Click Next.

3. In Step 2, select which server template to use as the base for this new
application server.

The DeveloperServer template is used when setting up a server for
development use and will cause the JVM to prioritize for a quick start-up (by
disabling bytecode verification, and performing JIT compilations with a lower
optimization level). This option should not be used on a production server,
where long run throughput is more important than early server startup.

If you have not created any templates on your own, then select the
WebSphere default. Otherwise, select the server template you want to use
and click Next.

4. In step 3, you can select to have WebSphere generate a unique set of port
numbers for this application server. This ensures the ports defined for this
server do not conflict with another server currently configured on this node.
Check the Generate Unique Http Ports box and click Next.

5. On the Summary page, click Finish.

Note: For a discussion of application server properties, see Chapter 6,
Administration of WebSphere processes.
 WebSphere Application Server V7: Deploying Applications 5

http://www.redbooks.ibm.com/abstracts/sg247615.html

Changing the working directory
The next thing we want to do is to change the working directory for the
application server process. This directory is the relative root for searching files.
For example, if you do a File.open(“foo.gif”), foo.gif must be present in the
working directory. This directory will be created by WebSphere if it does not exist.
We recommend that you create a specific working directory for each application
server.

1. Select the server, ITSOBankServer1, you just created.

2. Expand the Java™ and Process Management in the Server Infrastructure
section and select Process Definition.

3. Scroll down the page and change the working directory from
${USER_INSTALL_ROOT} to ${ITSOBANK_ROOT}/workingDir.

4. Click OK.

Changing the logging and tracing options
Next, we want to customize the logging and tracing properties for the new
application server. There are several ways to access the logging and tracing
properties for an application server.

� Select Troubleshooting → Logs and Trace in the navigation bar, then
select a server.

� Select Servers → Server Types → WebSphere application servers, select
a server, and then select Logging and Tracing from the Troubleshooting
section.

� Select Servers → Server Types → WebSphere application servers, select
a server, select Process definition from the Java and Process Management
section. Select Logging and Tracing from the Additional Properties section.

Because we have just finished updating the application server process definition,
we will take the third navigation path to customize the location of the JVM logs,
the diagnostic trace logs, and the process logs.

1. Select Logging and Tracing.

2. Select JVM Logs.

This allows you to change the JVM standard output and error file properties.
Both are rotating files. You can choose to save the current file and create a

Note: The working directory will not be created automatically if you use a
composed path, such as C:/apps/ITSOBANK/workingDir. If you want to use
such a path, create it before starting the application server, or the startup
sequence fails.
6 WebSphere Application Server V7: Deploying Applications

new one, either when it reaches a certain size, or at a specific moment during
the day. You can also choose to disable the output of calls to
System.out.print() or System.err.print().

We recommend that you specify a new file name, using an environment
variable to specify it, such as:

${ITSOBANK_ROOT}/logs/SystemOut.log
${ITSOBANK_ROOT}/logs/SystemErr.log

On this page you can also modify how WebSphere will rotate your log files.

Click OK.

3. Select Diagnostic Trace.

Each component of the WebSphere Application Server is enabled for tracing
with the JRas interface. This trace can be changed dynamically while the
process is running using the Runtime tab, or added to the application server
definition from the Configuration tab. As shown in Figure 2, the trace output
can be either directed to memory or to a rotating trace file.

Change the trace output file name so the trace is stored in a specific location
for the server using the ITSOBANK_ROOT variable and select the Log
Analyzer format.
 WebSphere Application Server V7: Deploying Applications 7

Figure 2 Specifying diagnostic trace service options

Click OK.

4. Select Process Logs.

Messages written by native code (JNI™) to standard out and standard error
streams are redirected by WebSphere to process logs, usually called
native_stdout.log and native_stderr.log. Change the native process logs to:

${ITSOBANK_ROOT}/logs/native_stdout.log
${ITSOBANK_ROOT}/logs/native_stderr.log

Click OK.

5. All log files produced by the application server are now redirected to the
${ITSOBANK_ROOT}/logs directory. Save the configuration.
8 WebSphere Application Server V7: Deploying Applications

Defining the ITSO Bank virtual host

Web modules need to be bound to a specific virtual host. For our sample, we
chose to bind the RAD75EJBWeb Web module to a specific virtual host called
itsobank_host. This virtual host has the following host aliases:

� www.itsobank.ibm.com:80
� www.itsobank.ibm.com:9080

Any request starting with itsobank_host_alias/RAD75EJBWeb, such as
http://www.itsobank.ibm.com:9080/RAD75EJBWeb, is served by the
RAD75EJBWeb application.

To create the itsobank_host virtual host, do the following steps:

1. Select the Environment → Virtual Hosts entry in the navigation pane.
2. Click New.
3. Enter the virtual host name, itsobank_host.
4. Click Apply.
5. Select Host Aliases in the Additional Properties section.

Note: The rest of this example assumes a default HTTP port of 9080 for the
Web container. Before proceeding, check the application server you created to
determine the port you should use:

1. Select Servers → Server Types → WebSphere application servers.
2. Select the ITSOBankServer1.
3. Select Ports in the Communications section.
4. Scroll down the page and note the port listed for WC_defaulthost.

Enhanced EAR file users: If you are using an Enhanced EAR file, the virtual
host can be defined at packaging time. See Chapter 14, Packaging
applications for deployment.

Tip: You can restrict the list of hosts used to access the Web application by
removing hosts from the virtual host definition.

Imagine you want to prevent users from directly accessing the ITSO Bank
application from the WebSphere internal HTTP server when they invoke
http://www.itsobank.ibm.com:9080/RAD75EJBWeb. In other words, you want to
force all requests to go through the Web server plug-in. You can achieve this
by removing www.itsobank.ibm.com:9080 from the virtual host aliases list.
 WebSphere Application Server V7: Deploying Applications 9

http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html

6. Add the two aliases shown in Figure 3 by clicking New, entering the values,
and clicking OK.

Figure 3 WebSphere Bank virtual host aliases

7. Click OK.
8. Save the configuration.

Creating the virtual host for IBM HTTP Server and Apache

Now that we have defined a itsobank_host virtual host, we need to configure the
Web server to serve the host aliases in the virtual host. The steps below are valid
for both the IBM HTTP Server V7 and Apache 2.x.

Configuring virtual hosting

Creating virtual hosts is done using the VirtualHost directive, as in Example 1.

Example 1 Using VirtualHost

<VirtualHost www.itsobank.ibm.com:80>
ServerAdmin webmaster@itsobank.ibm.com
ServerName www.itsobank.ibm.com
DocumentRoot "C:\IBM\HTTPServer\htdocs\itsobank"
ErrorLog logs/itsobank_error.log
TransferLog logs/itsobank_access.log

</VirtualHost>

Note: It is not necessary to create a virtual host in httpd.conf. It is required
only if you want to customize the configuration, for example, by separating the
logs for each virtual host. This is not normally done.
10 WebSphere Application Server V7: Deploying Applications

If you want to have multiple virtual hosts for the same IP address, you must use
the NameVirtualHost directive. See Example 2.

Example 2 Using the NameVirtualHost and VirtualHost directives

NameVirtualHost 9.11.12.13:80

<VirtualHost itso_server:80>
ServerAdmin webmaster@itso_server.com
ServerName itso_server
DocumentRoot "C:\IBM\HTTPServer\htdocs\itso_server"
ErrorLog logs/itso_server_error.log
TransferLog logs/itso_server_access.log

</VirtualHost>

<VirtualHost www.itsobank.ibm.com:80>
ServerAdmin webmaster@itsobank.ibm.com
ServerName www.itsobank.ibm.com
DocumentRoot "C:\IBM\HTTPServer\htdocs\itsobank"
ErrorLog logs/itsobank_error.log
TransferLog logs/itsobank_access.log

</VirtualHost>

The www.itsobank.ibm.com and the itso_server hosts have the same IP address,
9.11.12.13. We have set this by inserting the following line in the machine hosts
file, located in %windir%\system32\drivers\etc or in /etc on UNIX® systems):

9.11.12.13 www.itsobank.ibm.com itso_server

In a real-life environment, this would probably be achieved by creating aliases at
the DNS level. In any event, you must be able to ping the host you have defined,
using commands such as ping www.itsobank.ibm.com.

As you can see in Example 2, each virtual host has a different document root.
Make sure that the directory you specify exists before you start the HTTP server.
While testing the setup, you can place an index.html file at the document root
stating which virtual host is being called. This lets you easily see which virtual
host is being used.

You must restart the IBM HTTP Server to apply these changes. If you are
running a Windows® system, we recommend that you try to start the server by
running apache.exe from the command line rather than from the Services
window. This allows you to spot error messages thrown at server startup.
 WebSphere Application Server V7: Deploying Applications 11

If your virtual hosts are correctly configured, invoking
http://www.itsobank.ibm.com or http://itso_server returns different HTML
pages.

Creating a DB2 JDBC provider and data source

The ITSO Bank sample application uses a relational database, via Java
Persistence API, to store information. To access this database, a data source
needs to be defined with a JNDI name that matches the data source
configuration in the JPA module's persistence.xml file. The ITSO Bank sample
application is configured for Derby by default. In Chapter 14, Packaging
applications for deployment, however, we modified the ITSO Bank application to
run against a DB2 database instead. We will now create the DB2 JDBC provider,
data source, and JAAS authentication alias required to run against DB2.

For detailed information about JDBC providers and data sources, refer to
Chapter 9, Accessing databases from WebSphere.

Configuring environment variables for DB2 JDBC driver
For the DB2 JCC JDBC Provider to find its classes, the
DB2_JCC_DRIVER_PATH and DB2_JCC_DRIVER_NATIVEPATH environment
variables must be set up. To set up these variables, do the following steps:

1. Select Environment → WebSphere Variables.

2. Locate and click the DB2_JCC_DRIVER_PATH entry.

3. In the value field, enter the path to where the DB2 JDBC driver is located. For
example, for DB2, the location is likely to be:

C:\Program Files\IBM\SQLLIB\java

See Figure 4.

Enhanced EAR file users: If you are using an Enhanced EAR file, the JDBC
provider, data source, and J2C authentication entry can be defined at
packaging time. See Chapter 14, Packaging applications for deployment.
12 WebSphere Application Server V7: Deploying Applications

http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html

Figure 4 Configuring DB2 Driver Path

Click OK.

4. Repeat the process for the DB2_JCC_DRIVER_NATIVEPATH variable. For
DB2, it should use the same path, C:\Program Files\IBM\SQLLIB\java.

Configuring J2C authentication data
The user ID and password required to access the database are specified in a
J2C authentication data entry:

1. Select Security → Global Security. Expand the Java Authentication and
Authorization Service section under the Authentication section and select
J2C authentication data.
 WebSphere Application Server V7: Deploying Applications 13

2. Click New, and specify the following information to create the authentication
data. Once completed, the authentication information should be similar to
Figure 5.

Figure 5 Creating ITSO Bank JAAS authentication alias

3. Click OK.

Creating the ITSO Bank JDBC provider
The following steps take you through the creation of a JDBC provider targeting a
DB2 database. To create a JDBC provider from the administrative console, do
the following steps:

1. Expand the Resources entry and then the JDBC entry. Then select the
JDBC Providers entry.

2. Select the scope of this resource. In a stand-alone server environment, it is
sufficient to create the data source at the server level. Otherwise, define it at
the cluster or cell level. A rationale for this is to be able to share the definition
across multiple servers in a cluster. To change this, select the server you are
deploying to in the scopes list.

3. Click the New button.

4. In the Configuration dialog box, select the general properties for the JDBC
provider, as shown in Figure 6.
14 WebSphere Application Server V7: Deploying Applications

Figure 6 Creating a DB2 JDBC provider

– Database type: DB2

– Provider type: DB2 Using IBM JCC Driver

– Implementation type: XA data source

– Name: DB2 Using IBM JCC Driver (XA)

Click Next.
 WebSphere Application Server V7: Deploying Applications 15

5. The next window allows you to change the location for the JDBC driver files,
but because we configured the paths earlier, we do not need to do it again.
Click Next.

6. On the Summary page, click Finish.

Creating the ITSO Bank data source
The next step is to create the data source for the ITSO Bank DB2 database. To
create a data source, do the following steps:

1. Select Resources → JDBC → JDBC Providers.

2. Select the DB2 Using IBM JCC Driver (XA) and select Data Sources under
Additional Properties.

3. Click New to add the new data source. See Figure 7.

Note: We used the DB2 XA-capable JDBC Driver for the ITSO Bank
sample. If your application does not require two-phase commit capabilities,
use the regular driver. If using an XA-capable driver, it is a best practice to
indicate that it is an XA-capable driver by including XA in its name, such as
MyJDBCDriverXA.
16 WebSphere Application Server V7: Deploying Applications

Figure 7 ITSO Bank basic data source properties

– Data source name

Enter the data source name, which must be unique in the administrative
domain or cell. We recommend that you use a value indicating the name
of the database this data source is targeting, such as “ITSOBankDS”.

– JNDI name

Enter the name by which applications access this data source. If not
specified, the JNDI name defaults to the data source name prefixed with
jdbc/. For the ITSO Bank, set this field to jdbc/itsobank. This value can be
changed at any time after the data source has been created.

4. Click Next. On the second page, enter the information shown in Figure 8.
 WebSphere Application Server V7: Deploying Applications 17

Figure 8 ITSO Bank data source database properties

– Driver type

Select the driver type to use.

If the database is on the same machine as the WebSphere installation you
can use a type 2 driver and do not need to enter a server name. If the
database is on a remote machine you use either a type 4 driver, which
allows WebSphere to connect remotely to the database over TCP/IP, or a
type 2 driver.

To use a type 2 driver with a remote database you need a local DB2 Client
installation on the WebSphere machine and catalog the database on the
DB2 Client. WebSphere then sees the database as local and the DB2
Client handles the remote calls. In our setup the database is on the same
machine as the WebSphere installation so we choose a type 2 driver and
do not enter a Server name.

– Database name

Enter the name of the database, ITSOBANK in our example.

– Port number

Our DB2 installation uses port 50000 so we keep the default value.

– Use this Data Source in container-managed persistence (CMP)
18 WebSphere Application Server V7: Deploying Applications

Because the ITSO Bank uses Java Persistence API for database
persistence instead of CMP EJBs the data source does not need to be set
up for CMP EJBs. So uncheck this option.

5. Click Next. On the third page, enter the information shown in Figure 9.

Figure 9 ITSO Bank database security alias properties

– Container-managed authentication alias

This is the preferred method for specifying authentication information for
the database. Enter the J2C alias used for connecting to the data source
by selecting the authentication alias created previously, cell
name/itsobank.

6. Click Next, and then on the summary page, click OK.

7. Save the configuration.

8. Test the connection by selecting the data source and clicking the Test
Connection button.
 WebSphere Application Server V7: Deploying Applications 19

Deploying the application

In this section, we show the steps required to deploy the application to
WebSphere Application Server. The EAR file we deploy is the
RAD75EJBWebEAR file, which is a regular EAR file and not an Enhanced EAR
file.

Follow these steps to deploy the application:

1. Select Applications → New Application from the administrative console
navigation bar and click the New Enterprise Application on the panel
shown.

2. Check the Local file system box and click the Browse button to locate the
RAD75EJBWebEAR.ear file. Select the file and click Open.

From the install windows, you can install files that are located either on the
same machine as the browser you are using to access the WebSphere
administrative console, the local file system option, or on the WebSphere
Application Server itself, the remote file system option. If you select the Local
file system option, the administrative console automatically uploads the file
you select to the application server, or to the deployment manager if this is a
distributed server environment. If you select the Remote file system check
box, you can browse all the nodes in the cell to find the file. The file is then, if
necessary, uploaded to the application server or deployment manager.

When you have made your selection, click the Next button.

3. WebSphere Application Server allows you to take a shortcut when installing
an application. If you select the Fast Path - Prompt only when additional
information is required option, only the windows where you actually need to
fill out some information during installation are shown.

For this example, however, we will explain the options, so select Detailed -
Show all installation options and parameters.

If you expand the Choose to generate default bindings and mapping you
can alter the bindings for the application you are deploying. If you select the
Generate Default Bindings option, WebSphere Application Server
completes any incomplete bindings in the application with default values, but

Note: In Chapter 14, Packaging applications for deployment, we created a
business level application and added this application to it. As a result, the
application was installed. With the exception of this first step, the rest of
this process reflects the steps you will see regardless of whether you are
installing the application as the result of adding as an asset to a BLA, or
are installing the application and creating a BLA as part of the process.
20 WebSphere Application Server V7: Deploying Applications

http://www.redbooks.ibm.com/abstracts/sg247615.html

it does not alter any existing bindings. Checking the Override existing
bindings allows you to specify a bindings file which contains new bindings.

The contents of the application or module that you are installing determines
which options are displayed on the bindings page. For our ITSO Bank
application the options documented in Table 1 are displayed.

Because or application uses JEE 5 and EJB 3.0 and rely on the bindings and
mappings generated automatically by the EJB container there is no need to
override our bindings, so we leave all check boxes cleared.

Table 1 Application default bindings

Click Next.

4. The rest of the wizard is divided into steps. The number of steps depends on
your application, for example, if it contains EJB modules or Web modules,
you will see windows prompting for the information necessary to deploy them.

5. Step 1: Select installation options.

Step 1 gives you a chance to review the installation options. You can specify
various deployment options, such as JSP™ precompiling, and whether you
want to generate EJB deployment code (not applicable for EJB 3.0 beans).

– If you are deploying an Enhanced EAR file, this is where you make the
decision whether to use the resource configuration information packaged
in the Enhanced EAR file or not. If the EAR file you are installing is an
Enhanced EAR, the install window preselects the Process embedded
configuration check box. If you do not want to use the resource
configuration information packaged in the Enhanced EAR file, you must
deselect this check box. Because we have already configured the
necessary resources needed, we make sure the Process embedded
configuration check box is not selected.

– Selecting the Pre-compile JavaServer™ Pages files option makes
WebSphere compile all JSPs in the EAR file during install time. This

Binding name Detailed information

Specific bindings
file

You can create a specific bindings file using your favorite editor
and load it during application installation by clicking Browse next
to the specific bindings file.

Unique prefix for
beans

You can generate default EJB JNDI names using a common
prefix. EJBs for which you did not specify a JNDI name will get a
default name, built by concatenating the prefix and the EJB name.
If you specify a prefix of myApp/ejb, then JNDI names default to
myApp/ejb/EJBName, such as myApp/ejb/Account.

Virtual host
bindings

You can bind all Web modules to a specific virtual host, such as
itsobank_host.
 WebSphere Application Server V7: Deploying Applications 21

causes the time-consuming task of JSP compilation to be performed
during install time instead of during runtime, preventing the first user that
accesses the application to pay that penalty.

A second alternative to pre-compiling JSPs is to use the
JspBatchCompiler script found in the bin directory of the profile you are
using, to compile the JSPs after the application has been installed.

– This page also allows you to specify file permissions for files in your
application. To use one of the predefined file permissions, select it, and
then click Set file permissions. You can also specify your own file
permissions using regular expressions.

– The administrative console displays the Application Build ID of the
application being installed. This string is specified in the MANIFEST.MF
file in the EAR file’s META-INF folder and can be set using the Rational
Application Developer Assembly and Deploy tool.

The following is an example of a version number specified in the
MANIFEST.MF file:

Implementation-Version: Version 1.2.3

– The dispatching and servicing of remote resources are extensions to the
Web container that allows frameworks, servlets, and JSPs to include
content from outside of the current executing resource’s JVM as part of
the response sent to the client.

To enable these features, select the corresponding check boxes to allow
dispatching or servicing includes to/from remote resources.

– The Allow EJB reference targets to resolve automatically option is
used for EJB 2.1 or earlier or Web 2.3 or earlier modules and allows
WebSphere Application Server to provide a default value or automatically
resolve EJB references for any EJB reference that does not have a
binding. Because our application is at EJB 3.0 this option does not apply
to our application.

Click Next.

6. Step 2: Map modules to servers.

Select the server on which you want each module deployed. For better
performance, we recommend that you deploy all modules from one
application in a single server. Especially, do not separate the EJB clients,
usually servlets in Web modules, from the EJBs themselves.

Click the icon to select all modules in the ITSO Bank EAR file. In the
Clusters and Servers box, select ITSOBankServer1. Then click Apply. This
assigns all modules to the ITSOBankServer1 application server. If you deploy
to a cluster, select the cluster instead of the single application server.
22 WebSphere Application Server V7: Deploying Applications

See Figure 10.

Figure 10 Mapping modules to application servers

Click Next.

7. Step 3: Provide JSP reloading options for Web modules.

This setting allows you to configure if and how often WebSphere should
check for updates to JSP files, and if they should be reloaded or not. In a
production environment, you might want to disable this to improve
performance.

Click Next.

8. Step 4 and 5: Map shared libraries, and Map shared library relationships

If your application depends on shared libraries, you can specify them here.
Click Next.

9. Step 6: Initialize parameters for servlets.

For servlets that honor initialization parameters (specified by the init-param
tag in the Web module’s web.xml deployment descriptor) you can configure
the value of the parameters.

10.Step 7: Provide JNDI names for beans.

Use this window to bind the enterprise beans in your application or module to
a JNDI name. Because our application is at EJB 3.0 level we can leave it
blank to have WebSphere Application Server use the default names.

Web servers: If you have a Web server defined, select both the Web
server and ITSOBankServer1 in the server list. Press and hold the CTRL
key to select multiple servers. Mapping Web modules to Web servers
ensures the Web server plug-in will be generated properly.
 WebSphere Application Server V7: Deploying Applications 23

Click Next.

11.Step 8: Bind EJB Business interfaces to JNDI names.

This window allows you to specify a JNDI name for the business interfaces of
your EJBs. Because our application is at EJB 3.0 level we can leave it blank
to have WebSphere Application Server assign default JNDI name.

12.Step 9: Map EJB References to beans.

Each EJB reference defined in your application must be mapped to an
enterprise bean. Because our Web module is at Web 2.5 level we can leave it
blank to have WebSphere Application Server use the default names. If the
reference was in an EJB 2.x or earlier or Web 2.3 or earlier module we could
check the Allow EJB reference targets to resolve automatically and would
then not need to specify a target JNDI name either.

Click Next.

13.Step 10: Map virtual hosts for Web modules.

Select the virtual host we created for the application (itsobank_host).

Click Next.

14.Step 11: Map context roots for Web modules.

Select the context root to bind the module against.

Click Next.

15.Step 12: Metadata for modules.

Checking the metadata-complete attribute tells WebSphere Application
Server to ignore any deployment information specified in source code
annotations. Leave both check boxes cleared to use the information from the
annotations.

Click Next.

16.Step 13: Summary.

The Summary window gives an overview of application deployment settings.
If those settings are fine, click Finish to deploy the application.

17.Save the configuration.

Note: If deploying an Enhanced EAR file with a virtual host configured the
install panel does not display and make the virtual host name selectable.
Instead only those virtual host definitions configured in the WebSphere
environment are displayed. To map the Web modules to the virtual host
defined in the Enhanced EAR file you need to configure that after
deploying the application.
24 WebSphere Application Server V7: Deploying Applications

If you are working in a distributed server environment, make sure you
synchronize the changes with the nodes so the application is propagated to
the target application servers.

18.If you mapped the Web modules to a Web server, make sure the Web server
plug-in is regenerated and propagated to the Web server. For a quick refresh,
restart the Web server.

Deployment of the RAD75EJBWebEAR application is now complete. After
starting the application you can now verify that the application works by pointing
your browser to:

http://www.itsobank.ibm.com:9080/RAD75EJBWeb

If successful it should display the Web page for the ITSO Bank application. Click
the RedBank button and provide customer number 222-22-2222 to see an
example of a customer’s accounts, as shown in Figure 11.

Figure 11 ITSO Bank Web application
 WebSphere Application Server V7: Deploying Applications 25

If you have any problems related to virtual hosts, restart the server and try again.
WebSphere Application Server might need a restart to pick up virtual hosts
changes.

Deploying application clients

To run a Java-based client/server application, the client application executes in a
client container of some kind. You might, for example, use a graphical Swing
application that calls EJBs on an application server. WebSphere Application
Server V7 supports several different application client environments:

� Java EE client (JEE client):

This client uses services provided by the JEE client container.

This client is a Java application program that accesses EJBs, JDBC
databases, and JMS queues. The JEE application client program runs on
client machines. This program allows the same Java programming model as
other Java programs. However, the JEE application client depends on the
application client runtime to configure its execution environment, and it uses
the JNDI name space to access resources, the same as you would in a
normal server application (like a servlet).

The JEE application client brings the JEE programming model to the client,
and provides:

– XML deployment descriptors

– JEE naming (java:comp/env), including EJB references and resource
references

The JEE application client is launched using the launchClient script, which
sets up the environment with the necessary classpaths, and so on, for you.

� Java thin client:

This client does not use services provided by the JEE client container.

This client provides a lightweight Java client programming model and is best
suited for use in situations where a Java client application exists, but the
application must be enhanced to make use of EJBs. It can also be used
where the client application requires a thinner, more lightweight environment
than the one offered by the JEE application client. The thin client supports
JVMs from IBM, Sun™ and HP-UX. When launching the thin application
client, you must set up the correct classpaths yourself and make sure that the
required libraries for your application and the WebSphere libraries are
included.
26 WebSphere Application Server V7: Deploying Applications

� Pluggable application client:

This client does not use services provided by the JEE Client Container.

This client is similar to the Thin application client, but does not include a JVM.
The user is required to provide a JVM, and it can use the Sun JDK™ or the
IBM JDK.

� Applet application client:

In the Applet client model, a Java applet embedded in an HTML document
executes in a Web browser. With this type of client, the user accesses an
enterprise bean in the application server through the Java applet in the HTML
document.

� ActiveX® to EJB Bridge application client:

The ActiveX application client allows ActiveX programs to access enterprise
beans through a set of ActiveX automation objects. The ActiveX application
client uses the Java Native Interface (JNI) architecture to programmatically
access the Java virtual machine (JVM) API. Therefore, the JVM code exists in
the same process space as the ActiveX application (Visual Basic®, VBScript,
or Active Server Pages files) and remains attached to the process until that
process terminates. The ActiveX to EJB Bridge is supported on Windows
only.

For detailed capabilities of each client container, search the Information Center
for Client Applications, or visit:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/ccli_clientapps.html

Install the application client environments from the WebSphere installation
windows by selecting the Launch the installation wizard for WebSphere
Application Clients option. The installation package contains the following
installable components:

� IBM Java Runtime Environment (JRE™), or an optional full Software
Development Kit

� Java EE application client and Java thin application client

� ActiveX to EJB Bridge runtime for ActiveX to EJB Bridge application client
applications (only for Windows)

� Pluggable Client (deprecated)

� Samples for the various application client containers

Note: The pluggable client is deprecated in WebSphere Application Server
V7, and replaced by the Java thin client.
 WebSphere Application Server V7: Deploying Applications 27

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/ccli_clientapps.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/ccli_clientapps.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/ccli_clientapps.html

Defining application client bindings

The ITSO Bank application also has a standalone application client which we will
use to demo the WebSphere Application Server application client container.

First we need to import the project containing the standalone application client
into Rational Application Developer Assembly and Deploy and export it as an
EAR file. Refer to Chapter 14, Packaging applications for deployment for details
on how to perform such tasks. Do the following steps:

1. Import the appclient\RAD75AppClient.zip Project Interchange™ file from the
7672codesolution.zip file. Select both projects when importing.

2. Because the RAD75AppClient project has a specific binding configured for
the EJBBankBean in the RAD75EJBEAR file we need to modify this binding
to point to the same bean in the RAD75EJBWebEAR file, which is the
application we have installed on our server.

a. To do this expand the RAD75AppClient project and double-click the
RAD75AppClient deployment descriptor.

b. Then click the Open WebSphere Bindings link from the right panel.

c. Select the EJB Reference (ejb/bank) and change the name from
ejb/RAD75EJBEAR/RAD75EJB.jar/EJBBankBean#itso.bank.service.EJBBan
kRemote to itso.bank.service.EJBBankRemote.

By using the short name we rely on the Autolink feature to search for and
invoke a matching EJB interface. This works fine in our environment where
we only have one instance of the EJB installed and running.

d. Press Ctrl-S to save the deployment descriptor.

3. Export the RAD75AppClientEAR project and its RAD75AppClient module as
described in Chapter 14, Packaging applications for deployment.

Launching the J2EE client

A JEE client application needs a container to run in. In this example, we will use
the JEE application client container. This container can be started using the
launchClient program in the install_root/bin directory. The launchClient program
has the following syntax:

Note: The JEE client is automatically installed as part of a full WebSphere
install. In other words, if you will run the client application on a machine that
already has WebSphere installed, you do not need to install the WebSphere
JEE client on top.
28 WebSphere Application Server V7: Deploying Applications

http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html

Usage: launchClient [-profileName pName | -JVMOptions options | -help |
-?] <userapp> [-CC<name>=<value>] [app args]

The elements of syntax are:

-profileName This option defines the profile of the application server
process in a multi-profile installation. The -profileName
option is not required for running in a single profile
environment or in an application client installation. The
default is default_profile.

-JVMOptions This is a valid Java standard or nonstandard option string.
Insert quotation marks around the option string.

-help, -? Print the usage information.

<userapp.ear> Type the path/name of the .ear file containing the client
application.

The -CC properties are for use by the application client runtime. There are
numerous parameters available and because of this we only describe the more
commonly used ones. For full explanation of all parameters, execute
launchClient -help.

-CCverbose Use this option with <true | false> to display additional
informational messages. The default is false.

-CCclasspath This property is a classpath value. When an application is
launched, the system classpath is not used. If you need to
access classes that are not in the EAR file or part of the
resource classpaths, specify the appropriate classpath
here. Multiple paths can be concatenated.

-CCjar This is the name of the client JAR file within the EAR file
that contains the application you want to launch. This
argument is only necessary when you have multiple client
JAR files in the EAR file.

-CCBootstrapHost This option is the name of the host server you want to
connect to initially.

-CCBootstrapPort This option is the server port number. If not specified, the
WebSphere default value (2809) is used.

-CCproviderURL This option provides bootstrap server information that the
initial context factory can use to obtain an initial context. A
WebSphere Application Server initial context factory can
use either a CORBA object URL or an IIOP URL. CORBA
object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. This value can contain
more than one bootstrap server address. This feature can
 WebSphere Application Server V7: Deploying Applications 29

be used when attempting to obtain an initial context from
a server cluster. In the URL, you can specify bootstrap
server addresses for all servers in the cluster. The
operation will succeed if at least one of the servers is
running, eliminating a single point of failure. The address
list does not process in a particular order. For naming
operations, this value overrides the -CCBootstrapHost
and -CCBootstrapPort parameters. An example of a
CORBA object URL specifying multiple systems is:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.co
m:9810,:mybackupserver.mycompany.com:2809

-CCtrace Use this option with <true | false> to have WebSphere
write debug trace information to a file. The value true is
equivalent to a trace string value of com.*=all=enabled.
Instead of the value true you can specify a trace string, for
example, -CCtrace=com.ibm.ws.client.*=all=enabled.
Multiple trace strings can be specified by separating them
with a colon (:). You might need this information when
reporting a problem to IBM Service. The default is false.

-CCtracefile This option is the name of the file to which to write trace
information. The default is to output to the console.

-CCpropfile This option is the name of a properties file containing
launchClient properties. In the file, specify the properties
without the -CC prefix. For example: verbose=true.

The app args are for use by the client application and are ignored by
WebSphere.

To start the ITSO Bank standalone application client using the launchClient
command, execute the command shown in Example 3.

Example 3 Launching ITSO Bank standalone application client

C:\IBM\WebSphere\AppServer\profiles\ITSOBank\bin>launchClient.bat
c:\RAD75AppClientEAR_withModifiedBinding.ear

IBM WebSphere Application Server, Release 7.0
Java EE Application Client Tool
Copyright IBM Corp., 1997-2008
WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the Java EE Application Client Environment.
[2009-04-04 13:42:04:546 CEST] 00000000 W UOW=null
source=com.ibm.ws.ssl.config.SSLConfig org=IBM prod=WebSphere
component=Application Server thread=[P=321234:
O=0:CT]
30 WebSphere Application Server V7: Deploying Applications

 CWPKI0041W: One or more key stores are using the default
password.
WSCL0035I: Initialization of the Java EE Application Client Environment
has completed.
WSCL0014I: Invoking the Application Client class
itso.rad75.client.control.BankDesktopController

The application will open and display a graphical window, as shown in Figure 12.

Figure 12 Running ITSO Bank standalone application client

Updating applications

WebSphere Application Server has features that allow applications to be
updated and restarted at a fine-grained level. It is possible to update only parts of
an application or module and only the necessary parts are restarted. You can:

� Replace an entire application (.ear file).

� Replace, add, or remove a single module (.war, EJB™ .jar, or connector .rar
file).

� Replace, add, or remove a single file.

� Replace, add and remove multiple files by uploading a compressed file
describing the actions to take.
 WebSphere Application Server V7: Deploying Applications 31

If the application is running while being updated, WebSphere Application Server
automatically stops the application, or only its affected components, updates the
application, and restarts the application or components.

When updating an application, only the portion of the application code that
changed needs to be presented to the system. The application management
logic calculates the minimum actions that the system needs to execute in order to
update the application. Under certain circumstances, the update can occur
without stopping any portion of the running application.

WebSphere Application Server also has support for managing applications in a
cluster for continuous availability. The action, Rollout Update, sequentially
updates an application installed on multiple cluster members across a cluster.
After you update an application's files or configuration, use the Rollout Update
option to install the application's updated files or configuration on all cluster
members of a cluster on which the application is installed.

Rollout Update does the following for each cluster member in sequence:

1. Saves the updated application configuration.
2. Stops all cluster members on a given node.
3. Updates the application on the node by synchronizing the configuration.
4. Restarts the stopped cluster members on that node.

This action updates an application on multiple cluster members while providing
continuous availability of the application.

Replacing an entire application EAR file

To replace a full EAR with a newer version, do the following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to update and click the Update button.

2. On the Preparing for the application update window, select the Replace the
entire application option.

3. Select either the Local file system or Remote file system option. Click the
Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining windows and make any changes necessary.
For information about the windows, see “Deploying the application” on
page 20. On the Summary window, click Finish.

5. When the application has been updated in the master repository, select the
Save link.

6. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.
32 WebSphere Application Server V7: Deploying Applications

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Replacing or adding an application module

To replace only a module, such as an EJB or Web module of an application, do
the following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to update and click the Update button.

2. On the Preparing for the application update window, select the Replace or
add a single module option.

3. In the Specify the path beginning with the installed application archive file...
field, enter the relative path to the module to replace. For example, if you were
to replace the HelloWeb module, enter HelloWeb. If you enter a path or file
that does not exist in the EAR file, it will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to select the updated module.

5. Click Next.

6. Proceed through the remaining windows and make any necessary changes.
For information about the windows, see “Deploying the application” on
page 20. On the Summary window, click Finish.

7. When the application has been updated in the master repository, select the
Save link.

8. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.

Note: It might take a few seconds for the WebSphere runtime to pick up the
changes and restart the application as necessary. If your changes do not
seem to have effect, wait and try again. You can also look at the
SystemOut.log file for the application server to see when it has restarted the
application.

Note: If you are adding a Web module, make sure you select the detailed
install option. This allows you to select the correct target server for the
module in the Map modules to servers step, as well as specifying a context
root for the module.
 WebSphere Application Server V7: Deploying Applications 33

9. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Replacing or adding single files in an application or module

To replace a single file, such as a GIF image or a properties file in an application
or module, do the following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to update and click the Update button.

2. On the Preparing for the application installation window, select the Replace
or add a single file option.

3. In the Relative path to file field, enter the relative path to the file to replace in
the EAR file. For example, if you were to replace the logo.gif in the images
directory of the HelloWeb.war Web module, you would enter
HelloWeb.war/images/logo.gif. If you enter a path or file that does not exist in
the EAR file, it will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to locate the updated file. Click Next.

5. On the Updating Application window, click OK.

6. When the application has been updated in the Master repository, select the
Save link.

7. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.

Tip: Modules can also be managed using the Manage Modules page. Select
Applications → Application Types → WebSphere enterprise applications
and click the link for the application. Then click the Manage Modules link in
the Modules section. Select the module to modify and then click the Remove,
Update, or Remove File buttons.

Be aware: When writing this book, we added a new Web module to an
already installed enterprise application. When we later selected the Manage
Modules link for the application, the new module did not show. Selecting View
Deployment Descriptor did not show the new module either. However, when
exporting the whole application as an EAR file, the new module was included,
so it had in fact been added.
34 WebSphere Application Server V7: Deploying Applications

Removing application content

Files can also easily be removed either from an EAR file or from a module in an
EAR file.

Removing files from an EAR file
To remove a file from an EAR file, do the following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to remove the file from and click the
Remove File button.

2. In the Remove file dialog box, select the file to be removed and click OK.

3. Save the configuration.

Removing files from a module
To remove a file from a module, do the following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications and click the link for the application to which the module
belongs.

2. Click the Manage Modules link under the Modules section.

3. Select the module to remove the file from and click the Remove File button.

4. In the Remove a file from a module dialog, select the file to be removed and
click OK.

5. Save the configuration.

Performing multiple updates to an application or module

Multiple updates to an application and its modules can be packaged in a
compressed file, .zip, or .gzip format, and uploaded to WebSphere Application
Server. The uploaded file is analyzed and the necessary actions to update the
application are taken.

Depending on the contents of the compressed file, this method to update an
application can replace files in, add new files to, and delete files from the
installed application all in one single administrative action. Each entry in the
compressed file is treated as a single file, and the path of the file from the root of
the compressed file is treated as the relative path of the file in the installed
application.

� To replace a file, a file in the compressed file must have the same relative
path as the file to be updated in the installed application.
 WebSphere Application Server V7: Deploying Applications 35

� To add a new file to the installed application, a file in the compressed file must
have a different relative path than the files in the installed application.

� To remove a file from the installed application, specify metadata in the
compressed file using a file named META-INF/ibm-partialapp-delete.props at
any archive scope.

The ibm-partialapp-delete.props file must be an ASCII file that lists files to be
deleted in that archive with one entry for each line. The entry can contain a
string pattern, such as a regular expression that identifies multiple files. The
file paths for the files to be deleted must be relative to the archive path that
has the META-INF/ibm-partialapp-delete.props file.

� To delete a file from the EAR file (not a module), include a
META-INF/ibm-partialapp-delete.props file in the root of the compressed file.
In the .props file, list the files to be deleted. File paths are relative to the root
of the EAR file.

For example, to delete a file named docs/readme.txt from the root of the
HelloApp.ear file, include the line docs/readme.txt in the
META-INF/ibm-partialapp-delete.props file in the compressed file.

� To delete a file from a module in the EAR, include a
module_uri/META-INF/ibm-partialapp-delete.props file in the compressed file.
The module_uri part is the name of the module, such as HelloWeb.war.

For example, to delete images/logo.gif from the HelloWeb.war module,
include the line images/logo.gif in the
HelloWeb.war/META-INF/ibm-partialapp-delete.props file in the compressed
file.

� Multiple files can be deleted by specifying each file on its own line in the
metadata .props file.

Regular expressions can also be used to target multiple files. For example, to
delete all JavaServer Pages (.jsp files) from the HelloWeb.war file, include the
line .*jsp in the HelloWeb.war/META-INF/ibm-partialapp-delete.props file. The
line uses a regular expression, .*jsp, to identify all .jsp files in the HelloWeb.war
module.

As an example, assume we have prepared the compressed HelloApp_update.zip
file shown in Figure 13.
36 WebSphere Application Server V7: Deploying Applications

Figure 13 HelloApp_update.zip compressed file

The META-INF/ibm-partialapp-delete.props file contains the following line:

docs/readme.txt

The HelloWeb.war/META-INF/ibm-partialapp-delete.props contains the following
lines:

images/logo.gif

When performing the partial application update using the compressed file,
WebSphere does the following actions:

� Adds the log4j.jar file to the root of the EAR.

� Updates the entire HelloEJB.jar module.

� Deletes the docs/readme.txt file (if it exists) from the EAR file, but not from
any modules.

� Adds the images/newlogo.jpg file to the HelloWeb.war module.

� Updates the HelloServlet.class file in the
WEB-INF/classes/com/itso/wrd/servlets directory of the HelloWeb.war
module.

� Deletes the images/logo.gif file from the HelloWeb.war module.
 WebSphere Application Server V7: Deploying Applications 37

To perform the actions specified in the HelloWeb_updated.zip file, do the
following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to update and click the Update button.

2. On the Preparing for the application installation window, select the Replace,
add, or delete multiple files option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the compressed ZIP file with the modifications
you have created. Click Next.

4. On the Updating Application window, click OK.

5. When the application has been updated in the Master repository, select the
Save To Master Configuration link.

6. If in a distributed server environment, make sure the Synchronize changes
with Nodes option is selected so that the application is distributed to all
nodes. Click the Save button. The application is distributed to the nodes,
updated, and restarted as necessary

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Rolling out application updates to a cluster

The Rollout Update feature allows you to easily roll out a new version of an
application, or part of an application using the techniques described previously,
to a cluster. The Rollout Update feature takes care of stopping the cluster
members, distributing the new application, synchronizing the configuration, and
restarting the cluster members. The operation is done sequentially over all
cluster members in order to keep the application continuously available.

When stopping and starting the cluster members, the Rollout Update feature
works on node level, so all cluster members on a node are stopped, updated,
and then restarted, before the process continues to the next node.

Because the Web server plug-in module is not able to detect that an individual
application on an application server is unavailable, the Rollout Update feature
always restarts the whole application server hosting the application. Because of
this, if HTTP session data is critical to your application, it should either be
persisted to database or replicated to other cluster members using the
memory-to-memory replication feature.
38 WebSphere Application Server V7: Deploying Applications

The order in which the nodes are processed and the cluster members are
restarted is the order in which they are read from the cell configuration repository.
There is no way to tell the Rollout Update feature to process the nodes and
cluster members in any particular order.

Assume that we have an environment with two nodes, ITSOBankNode1 and
ITSOBankNode2, and a cluster called ITSOBankCluster, which has one cluster
member on each node (ITSOBankServer1 on ITSOBankNode1 and
ITSOBankServer2 on ITSOBankNode2). Assume we have an application called
RAD75EJBWebEAR deployed and running on the cluster.

To update this application using the Rollout Update feature, we would do the
following steps:

1. Select Applications → Application Types → WebSphere enterprise
applications. Select the application to update and click the Update button.

2. On the Preparing for the application installation window, select the
appropriate action depending on the type of update. In this example, we will
update the entire application EAR to a new version, so we select the Replace
the entire application option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining windows and make any changes necessary.
For information about the windows, see “Deploying the application” on
page 20. On the Summary window, click Finish.
 WebSphere Application Server V7: Deploying Applications 39

5. When the application has been updated in the master repository, the status
window shown in Figure 14 is displayed.

Figure 14 Preparing for application rollout

You then have two options to start the rollout action:

– Click the Rollout Update link.

– Click the Manage Applications link and on the Enterprise Applications
window, select the application and click the Rollout Update button.

Note: Do not click the Save directly to the master configuration link or
otherwise save the configuration yourself. The Rollout Update will do that
for you. If you save the configuration yourself, the rollout update action will
be canceled and it will be handled as a normal application update.
40 WebSphere Application Server V7: Deploying Applications

During the rollout, the window in Figure 15 is displayed in the status window.

Figure 15 Rolling out an application

For each node, the cluster members are stopped, the application is
distributed, and they are restarted. When the rollout has completed (the last
message says “The application rollout succeeded”, click Continue.

6. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Note: The automatic file synchronization of the node agent is temporarily
disabled during the rollout process and then re-enabled afterwards, if it was
previously enabled. The Rollout Update feature works regardless of the
automatic file synchronization setting. However, in production systems, the
automatic synchronization is often disabled anyway to give the administrator
greater control over exactly when changes made to the cell configuration are
distributed to the nodes.
 WebSphere Application Server V7: Deploying Applications 41

Although the Rollout Update feature makes it very easy to roll out an application
to a cluster while keeping the application continuously available, make sure that
your application can handle the roll out.

For example, assume you have version 1.0 of an application running in a cluster
consisting of two application servers, server1 and server2, and that HTTP
session data is persisted to a database. When you roll out version 2.0 of the
application and server1 is stopped, the Web server plug-in redirects the users on
server1 to server2. Then, when server1 is started again, bringing up version 2.0
of the application, the plug-in will start distributing requests to server1 again.
Now, if the application update incurred a change in the interface of any class
stored in the HTTP session, when server1 tries to get these session objects from
the database, it might run into a deserialization or class cast exception,
preventing the application from working properly.

Another situation to consider is when the database structure changes between
application versions, as when tables or column names change name or content.
In that case, the whole application might need to be stopped and the database
migrated before the new version can be deployed. The Rollout Update feature
would not be suitable in that kind of scenario.

So it is very important to understand the changes made to your application
before rolling it out.

WebSphere Virtual Enterprise: If you want even more advanced rollout and
application versioning capabilities than what is available in WebSphere
Application Server, take a look at the WebSphere Virtual Enterprise product
at:

http://www.ibm.com/software/webservers/appserv/extend/virtualenterpr
ise/

WebSphere Virtual Enterprise extends an existing WebSphere infrastructure
and brings, among many other features, functions to validate new versions of
applications in production environments, and then to roll them out seamlessly,
with features to drain application servers from existing users before taking
them offline for the update.
42 WebSphere Application Server V7: Deploying Applications

http://www.ibm.com/software/webservers/appserv/extend/virtualenterprise/

Hot deployment and dynamic reloading

Hot deployment and dynamic reloading characterize how application updates are
handled when updates to the applications are made by directly manipulating the
files on the server. In either case, updates do not require a server restart, though
they might require an application restart:

� Hot deployment of new components:

Hot deployment of new components is the process of adding new
components, such as WAR files, EJB JAR files, EJBs, servlets, and JSP files
to a running application server without having to stop and then restart the
application server.

However, in most cases, such changes require the application itself to be
restarted, so that the application server runtime reloads the application and
its changes.

� Dynamic reloading of existing components:

Dynamic reloading of existing components is the ability to change an existing
component without the need to restart the application server for the change to
take effect. Dynamic reloading can involve changes to the:

– Implementation of an application component, such as changing the
implementation of a servlet

– Settings of the application, such as changing the deployment descriptor for
a Web module

To edit the files manually, locate the binaries in use by the server (see Chapter
14, Packaging applications for deployment). Although the application files can be
manually edited on one or more of the nodes, these changes will be overwritten
the next time the node synchronizes its configuration with the deployment
manager. Therefore, we recommend that manual editing of an application’s files
should only be performed in the master repository, located on the deployment
manager machine.

Note: Unless you are familiar with updating applications by directly
manipulating the server files, it might be better to use the administrative
console Update wizard.
 WebSphere Application Server V7: Deploying Applications 43

http://www.redbooks.ibm.com/abstracts/sg247615.html

There are three settings that affect dynamic reload:

� Reload classes when application files are updated:

In order for application files to be reloaded automatically after an update, the
Override class reloading settings for Web and EJB modules setting must
be enabled and the Polling interval for updated files setting must be greater
than 0.

Select Applications → Application Types → WebSphere enterprise
applications, and click the link for the application. In the Detail properties
section, click the Class loading and update detection link.

� Application Server class loader policy:

The application server’s class loader policy should be set to Multiple. If it is set
to Single, the application server will need to be restarted after an application
update.

Select Servers → Server Types → WebSphere application servers, and
click the server name. The setting is found in the General Properties section.

� JSP Reload options for Web modules:

A Web container reloads a Web module only when this setting is enabled.

Select Applications → Application Types → WebSphere enterprise
applications, and click the link for the application. In the Web Module
Properties section, click the JSP and JSF options, and then select the JSP
enable class reloading option and enter a polling interval.

For more information about using hot deployment and dynamic reload, see the
topics, Updating applications and Hot deployment and dynamic reloading, in the
Information Center.
44 WebSphere Application Server V7: Deploying Applications

© Copyright International Business Machines Corporation 2009. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 45

®

Redpaper™

This document REDP-4583-00 was created or updated on October 13, 2009.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099, 2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
IBM®

Rational®
Redbooks®

Redbooks (logo) ®
WebSphere®

The following terms are trademarks of other companies:

Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S.
and other countries.

EJB, J2EE, Java, JavaServer, JDBC, JDK, JNI, JRE, JSP, JVM, Sun, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

ActiveX, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
46 WebSphere Application Server V7: Deploying Applications

http://www.ibm.com/legal/copytrade.shtml
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	WebSphere Application Server V7: Deploying Applications
	Preparing the environment
	Creating the ITSO Bank DB2 database
	Creating an environment variable
	Creating the ITSO Bank application server
	Defining the ITSO Bank virtual host
	Creating the virtual host for IBM HTTP Server and Apache
	Creating a DB2 JDBC provider and data source

	Deploying the application
	Deploying application clients
	Defining application client bindings
	Launching the J2EE client

	Updating applications
	Replacing an entire application EAR file
	Replacing or adding an application module
	Replacing or adding single files in an application or module
	Removing application content
	Performing multiple updates to an application or module
	Rolling out application updates to a cluster
	Hot deployment and dynamic reloading

	Notices
	Trademarks

