
WebSphere Application Server V7:
Packaging Applications for
Deployment

In this chapter we discuss packaging of Java™ Platform, Enterprise Edition 5
(JEE 5) applications using Enterprise JavaBeans™ 3.0 (EJB™ 3.0). We also
provide a section on working with business-level applications, a new concept
introduced in WebSphere Application Server v7.0.

We cover the packaging of the following JEE artifacts:

� Enterprise Archives (EAR)
� EJB 3.0 modules
� Web modules
� JPA persistence units
� Working with Enhanced EAR files

We also describe some of the IBM® enhancements WebSphere Application
Server v7.0 supports in addition to the JEE specification. If you are working on a
pre-JEE 5 application or are using EJB 2.1 or earlier modules, for details on the
earlier versions, also refer to Chapter 13 in the Redbooks® publication,
WebSphere Application Server V6.1: System Management and Configuration,
SG24-7304, which is available at:

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open

Chapter 14 of WebSphere
Application Server V7

Administration and Configuration
Guide, SG24-7615
© Copyright IBM Corp. 2009. All rights reserved. 1

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html
http://www.redbooks.ibm.com/abstracts/sg247615.html

JEE 5 EAR files

WebSphere Application Server v7.0 supports the JEE 5 and the EJB 3.0
specifications, which make use of annotations. Because developers annotate the
source code with information about how it should be deployed, much of the
packaging and deployment tasks that were necessary in previous versions of
WebSphere Application Server are no longer relevant. Annotations also reduce
the number of classes and interfaces the developer needs to manage within the
project. With the introduction of JEE 5 developing, packaging and deploying Java
enterprise applications have been greatly simplified.

As with previous versions of the Java 2 Enterprise Edition (J2EE™) specification
JEE 5 applications are packaged in Enterprise Archive (EAR) files. An EAR file
can contain Web Archive (WAR) files, EJB modules (packaged as EJB JARs),
Resource Adapter Archive (RAR) files, Java Utility Projects (packaged as JAR
files), and Application Client modules. Figure 1 shows a schematic overview of a
JEE EAR file.

Figure 1 JEE 5 EAR file structure

Resource DD Client DD Client Bind DD

Client Ext DD Client Ext PME
DD

EAR DD EAR Bind DD

EAR Ext DD EAR Ext PME DD

Persistence DD ORM DD

Web DD Web Bind DD

Web Ext DD Web Ext PME DD

Web Svcs DD

EJB Module Java Utility
Module

Resource
Adapter

EJB 3.0
Module

Java Utility
JAR

Resource
Adapter

Application
Client

Module

JPA
Persistence

Unit

EJB DD EJB Bind DD

EJB Ext DD EJB Ext PME DD

Web ModuleWeb
Module

JEE 5
Application

EAR file
2 WebSphere Application Server V7: Packaging Applications for Deployment

One major difference between JEE 5 applications and previous J2EE
applications is that, if the source code is properly annotated, in many cases the
EAR file or modules do not need to contain any deployment descriptors. In
previous J2EE versions, deployment descriptors were necessary to tell the
application server how to deploy the modules and how clients should locate EJB
interfaces, for example.

JEE 5, on the other hand, relies on default values, and as long as the default
values are acceptable, you do not need to include a deployment descriptor.
However, an optional deployment descriptor can be included and it will then
override the defaults and the settings given by the annotations in the source
code. This gives the deployer the flexibility to deploy the application as preferred
for the target environment.

In Figure 1 on page 2 the required deployment descriptors are marked with light
gray color and the optional ones with dark gray.

Table 1 lists the deployment descriptors valid for a WebSphere Application
Server v7.0 EAR file.

Table 1 Enterprise Archive Deployment Descriptors

Development tools

The development tools Rational® Application Developer for WebSphere
Software 7.5 (RAD) and Rational Application Developer Assembly and Deploy
Features for WebSphere 7.0 (RAD-AD) provide editors for all the deployment
descriptors.

Filename Required Content

application.xml No Defines modules and security roles
used by the enterprise application.

ibm-application-bnd.xml No Mappings for security roles.

ibm-application-ext.xml No WebSphere®-specific application
extensions.

ibm-application-ext-pme.xml No Configuration for WebSphere’s
programming extensions to the JEE
specification.
 WebSphere Application Server V7: Packaging Applications for Deployment 3

RAD-AD comes with the WebSphere Application Server license and is a subset
of the RAD product. It contains only the Eclipse plug-ins needed to develop, test,
package, and deploy J2EE/JEE applications for WebSphere Application Server
v7.0, but not the productivity enhancements features found in RAD. RAD-AD 7.0
also only supports testing on a WebSphere Application Server v7.0, while RAD
7.5 supports testing also on previous versions of WebSphere Application Server.

Working with deployment descriptors

To work with the deployment descriptors, start RAD or RAD-AD and create a
new JEE application project, or import an existing. To create a new project select
File → New → Enterprise Application Project and follow the wizards. To
import an existing project select File → Import... and follow the wizards.

Then, in the Enterprise Explorer view, right-click the JEE project and select Java
EE → Generate Deployment Descriptor Stub.

Expanding the JEE projects META-INF folder reveals the created
application.xml deployment descriptor file. To edit it, either double-click the file
or double-click the EAR file’s deployment descriptor icon, as shown in Figure 2.

Figure 2 JEE EAR deployment descriptor icon in RAD-AD

On the right hand side of the deployment descriptor editor is a panel with fields
for the information that can be entered into the deployment descriptor. See
Figure 3. Fill out the fields and then press Ctrl-S to save the deployment
descriptor.
4 WebSphere Application Server V7: Packaging Applications for Deployment

Figure 3 JEE EAR deployment descriptor editor

To create any of the other optional JEE EAR-file level deployment descriptors,
right-click the JEE EAR project. Select Java EE and then one of the remaining
deployment descriptor options; Bindings, Extensions, or Programming Model
Extensions Deployment Descriptor. Selecting any of these options creates the
corresponding deployment descriptor file in the JEE EAR file’s META-INF folder.
The file can then be accessed either by double-clicking it in the META-INF folder,
or by clicking the corresponding link under the Actions heading on the main JEE
EAR deployment descriptor editor (Figure 3).

EJB 3.0 modules

EJB 3.0 modules are packaged similar to EJB 2.x modules. One major
difference, however is that with EJB 3.0 there is no such thing as Container
Manager Persistence (CMP) or Bean Managed Persistence (BMP) beans.
 WebSphere Application Server V7: Packaging Applications for Deployment 5

Instead, EJB 3.0 modules should use JPA for data persistence. EJB 2.x and
earlier modules still support CMP and BMP beans as per the J2EE specifications
and are still supported by WebSphere Application Server v7.0. Table 2 lists the
deployment descriptors for an EJB 3.0 module.

Table 2 EJB 3.0 Deployment Descriptors

EJB interface bindings
WebSphere Application Server v7.0 binds EJB 3.0 interfaces and homes into two
distinct JNDI namespaces, one JVM™-local and one global namespace. Local
interfaces and homes are bound to the JVM-local namespace, and remote
interfaces and homes are bound to the global namespace.

Unless overridden by explicitly assigned bindings, the interfaces are bound using
default names generated automatically by the EJB container. Each default name
has a short version and a long version. The short name consists of only the Java
package name and class name of the interface. The long name prefixes the short
name with a component ID, which is composed of the enterprise application
name, the module name and the component name.

Consider an enterprise application called RAD75EJBWebEAR that has an EJB
module called RAD75EJB.jar with the following bean and interfaces:

� A session bean with an implementation class called EJBBankBean
� A local interface called itso.bank.service.EJBBankService
� A remote interface called itso.bank.service.EJBBankRemote

The auto-generated short and long names for the bean’s interfaces are:

� ejblocal:itso.bank.service.EJBBankService

� ejblocal:RAD75EJBWebEAR/RAD75EJB.jar/EJBBankBean#itso.bank.service.EJB
BankService

� itso.bank.service.EJBBankRemote

Filename Required Content

ejb-jar.xml No EJB and EJB method definitions, transaction
attributes, resource references, and so on.

ibm-ejb-jar-bnd.xml No Explicit binding names for EJBs, and EJBs
and resource references.

ibm-ejb-jar-ext.xml No Configuration of WebSphere extensions to
the JEE EJB module specification.

ibm-web-ext-pme.xml No Configuration for WebSphere Programming
Extensions to the JEE specification.
6 WebSphere Application Server V7: Packaging Applications for Deployment

� ejb/RAD75EJBWebEAR/RAD75EJB.jar/EJBBankBean#itso.bank.service.EJBBankR
emote

The local names are bound into the JVM-local namespace called ejblocal. The
remote names are bound to the global namespace, and to avoid cluttering the
root of the namespace the long name is prefixed with ejb/.

The auto-generated default names can be overridden by placing a file named
ibm-ejb-jar-bnd.xml in the EJB JAR module's META-INF directory with the
preferred names. By overriding the default names you can define your own
naming convention independently from how the beans are packaged into the
application/module hierarchy.

EJB reference resolution using the AutoLink feature
When an EJB client (typically a servlet, or another EJB) wants to call an EJB,
it first needs to locate the EJB home in the JNDI namespace. In EJB 2.1, and
earlier, this had to be done with a few lines of code written explicitly by the EJB
client developer. However, with the EJB 3.0 support and source code
annotations WebSphere Application Server v7.0 uses a feature called AutoLink
which automates this task in many cases, making the lookup code superfluous.

When the EJB container encounters an annotation for an EJB reference, it tries
to automatically look up the referenced EJB. The AutoLink algorithm first looks to
see if the EJB interface has been explicitly given a name in the module’s bindings
file. If not found, AutoLink searches within the referring module for an EJB that
implements the interface. If it does not find exactly one EJB that implements the
interface within the same module, AutoLink expands the search scope and
searches within other modules defined in the application. If it finds exactly one
EJB that implements the interface, it uses that as the reference target.

The scope of AutoLink is limited to the enterprise application in which the EJB
reference appears and within the application server on which the referring
module is assigned. If the target EJB resides in an application other than the
client’s, or it is deployed on an application server other than the client’s, then
AutoLink does not work. In this case, target bindings must be explicitly defined in
the client’s bindings file. For an EJB module, this is the ibm-ejb-jar.bnd.xml file,
and for a Web module, it is the ibm-web-bnd.xmi file.

For more information and some examples of how to do this, refer to Chapter 9 in
the Redbooks publication, WebSphere Application Server Version 6.1 Feature
Pack for EJB 3.0, SG24-7611, which is available at:

http://www.redbooks.ibm.com/abstracts/sg247611.html?Open

The AutoLink feature only handles EJB references and is available for clients
running in the EJB container, Web container, or application client container.
 WebSphere Application Server V7: Packaging Applications for Deployment 7

http://www.redbooks.ibm.com/abstracts/sg247611.html?Open

Just-In-Time generation of EJB deployed code
EJB modules must contain EJB deployed code in order for an application server
to be able to run the EJBs. EJB deployed code contains application server
specific code that bridges the EJB interface and implementation code to the
application server’s EJB implementation.

In previous versions of WebSphere Application Server and with previous
versions of J2EE, the EJB deployed code could be generated using three
methods:

� During development, using the Prepare for Deploy action in Rational
Application Developer or the Application Server Toolkit

� Before installing an EAR file to WebSphere Application Server, using the
EJBDeploy tool from command line

� During installation of an EAR file to WebSphere Application Server, using the
install panels in the administrative console

WebSphere Application Server v7.0 and the EJB 3.0 support introduces a new
feature called Just-In-Time deployment. This feature removes the need to
process the EJB modules to generate the deployed code. Instead, the EJB
container dynamically generates the necessary code in-memory as needed
when the application is running. This feature simplifies and speeds up the
development, packaging, and deployment of EJBs.

Note: If you installed the Feature Pack for EJB 3.0 WebSphere Application
Server v6.1, the default was to scan annotations during the installation of an
EJB 3.0 module. For WebSphere Application Server v7.0, the default is not to
scan pre-Java EE 5 modules during the application install or at server startup.

To preserve backward compatibility with both the Feature Pack for EJB 3.0
and the Feature Pack for Web Services, you have a choice whether or not to
scan legacy Web modules for additional metadata. A server level switch is
defined for each feature pack scan behavior. If the default is not appropriate,
the switch must be set on each server and administrative server that requires
a change in the default. The switches are the server custom properties
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy={true|false} and
com.ibm.websphere.ejb.UseEJB61FEPScanPolicy={true|false}.

Go to Servers → Server Types → WebSphere application servers →
server_name → Java and Process Management → Process Definition →
Java Virtual Machine → Custom Properties, and add a new property.
8 WebSphere Application Server V7: Packaging Applications for Deployment

For EJB 3.0 clients that are not running inside a Web container, EJB container,
or client container that has been upgraded to the EJB 3.0 level, the Just-In-Time
development does not generate the necessary classes. In this case, the
createEJBStubs tool should be used and the generated classes would be made
available on the client’s classpath.

An example scenario where this is applicable is a servlet running in WebSphere
Application Server v6.1 calling an EJB 3.0 bean running in WebSphere
Application Server v7.0. In this case, the EJB stubs should be created manually
and the generated classes added to the servlet’s Web module.

For details and syntax on the createEJBStubs tool, refer to the WebSphere
Application Server v7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/rejb_3stubscmd.html

Mixing different EJB versions in an EAR file
WebSphere Application Server v7.0 allows you to mix EJB 1.1, 2.x and 3.0
beans in the same JEE 5 enterprise application. EJB 1.1 and 2.x beans can be
directly carried forward in EJB 1.1 and EJB 2.x modules respectively. WebSphere
can also handle EJB 1.1, 2.x and 3.0 session beans, and EJB 2.x message
driven beans within the same EJB 3.0 module. CMP and BMP entity beans are
not supported in EJB 3.0 modules and must remain in EJB 1.1 or EJB 2.x
modules.

JPA persistence units

Persistence units using Java Persistence API (JPA) can be packaged either into
the module that uses the persistence unit or in a separate utility JAR file
(packaged as a standard .jar file). If packaged as a separate utility JAR file, it
must be referenced from the module that uses the persistence unit using the
module’s META-INF.MF Class-path directive.

Persistence units require a persistence.xml file, which defines a JPA entity
manager’s configuration. Among other information, the persistence.xml file lists
the entity classes and the data source to use.

A persistence unit can also include an optional orm.xml file which specifies the
object-relational mapping configuration. The orm.xml file is an alternative to
using annotations and can be used to override annotations in the source code to
specify how the objects should be persisted to the database.

Table 3 lists the deployment descriptors valid for a JPA persistence unit.
 WebSphere Application Server V7: Packaging Applications for Deployment 9

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rejb_3stubscmd.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rejb_3stubscmd.html

Table 3 JPA Persistence Units Deployment Descriptors

JPA access intents

WebSphere Application Server provides an optimization enhancement for EJB
2.x entity beans called access intents. However, because the EJB 3.0
specification does not support entity beans, the access intents support is not
available for EJB 3.0 beans. Instead, WebSphere Application Server v7.0
provides JPA access intents which can be used to improve performance and
scalability for JPA applications.

JPA access intents specify the isolation level and lock level used when reading
data from a data source. JPA access intents can be used, providing that the
following restrictions are honored:

� Access intent is available for the application in the Java EE server
environment

� Access intent is applicable to non-query entity manager interface methods.
Query should use query hint interface to set its isolation and read lock values.

� Access intent is only available for DB2® databases.

� Access intent is in effect only when pessimistic lock manager is used. To
specify a pessimistic lock manager add the following statement to the
persistence unit's property list:

<property name="openjpa.LockManager" value="pessimistic"/>.

Table 4 compares EJB 2.x access intents to JPA access intents.

Table 4 JPA Access Intents properties

Filename Required Content

persistence.xml Yes Entity manager’s configuration, entity classes, data
sources, and so on.

orm.xml No Object-to-relational mapping annotation overrides.

EJB 2.x entity bean
access intent

JPA access intent Description

optimistic isolation: Read Committed Data is read but no lock is
held. Version id is used on
update to insure data
integrity. Other
transactions can read and
update data.

lockManager: Optimistic

query Hint:
ReadLockMode: READ
10 WebSphere Application Server V7: Packaging Applications for Deployment

JPA access intents are specified in the persistence.xml deployment descriptor.

For more information about access intents, search the Information Center for
JPA Access Intent.

For information about EJB 2.x access intents, see Section 13.5 in the Redbooks
publication, WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304, available at:

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open

Resource adapters

A resource adapter archive (RAR) module, also called a connector module,
contains code that implements a library for connecting with a back-end
Enterprise Information System (EIS), such as CICS®, SAP®, and PeopleSoft®.
RAR files (called connectors) are packaged as a standard Java Archive with a
.rar file extension. A resource adapter can be installed as a stand alone adapter

pessimistic read isolation: Repeatable Read Data is read with shared
locks. Other transactions
attempting to update data
are blocked.

lockManager: Optimistic

query Hint:
ReadLockMode: READ

pessimistic update isolation: Repeatable Read Data is retrieved with
update or exclusive lock.
Other writes are blocked
until commit. This access
intent can be used to
serialize update access to
data when there are
multiple writers.

lockManager: Pessimistic

query Hint:
ReadLockMode: WRITE

pessimistic exclusive isolation: Serializable Data is retrieved with
update or exclusive lock.
Other writes are blocked
until commit. This access
intent can be used to
serialize update access to
data when there are
multiple writers.

lockManager: Pessimistic

query Hint:
ReadLockMode:WRITE

EJB 2.x entity bean
access intent

JPA access intent Description
 WebSphere Application Server V7: Packaging Applications for Deployment 11

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open

or as part of an enterprise application, in which case the resource adapter is
referred to as an embedded adapter.

A connector module contains a mandatory deployment descriptor file named
ra.xml, residing in the module’s META-INF directory.

Web modules

JEE 5 Web modules are packaged just like Web modules in earlier J2EE
versions. A Web module can contain servlet code, JSPs, static HTML pages,
images, JavaScript™, stylesheets, and so on.

A common challenge when working with Web modules is to make sure the right
version of a required Java library is loaded. Often Web application developers
need to include specific third party libraries such as log4j, or Xalan/Xerces, and
must make sure that the correct version of a library is loaded for an application.
This requires knowledge on how the EAR and Web module’s class loaders work.
Refer to Chapter 13, Understanding class loaders for detailed information about
this topic.

A Web module supports several deployment descriptors, as shown in Table 5.

Table 5 Web module deployment descriptors

Filename Required Purpose

web.xml Yes Servlet definitions, URL mappings, and init
parameters, servlet listeners, and so on.

ibm-web-bnd.xml No Mapping of logical resources used by the
Web module to their runtime managed

resources.

ibm-web-ext.xml No Configuration of WebSphere extensions to the
JEE Web module specification.

ibm-web-ext-pme.xml No Configuration for WebSphere Programming
Extensions to the JEE specification.

webservices.xml No Configuration of Web services, and
implementation code.
12 WebSphere Application Server V7: Packaging Applications for Deployment

http://www.redbooks.ibm.com/abstracts/sg247615.html

WebSphere extensions to Web modules

WebSphere Application Server provides multiple extensions for Web modules.
These are configured in the ibm-web-ext.xml deployment descriptor in the Web
module. To create this file in RAD or RAD-AD, right-click the Web module in the
Enterprise Explorer view and select Java EE → Generate WebSphere
Extensions Deployment Descriptor. To edit the file, either expand the Web
module’s WebContent/WEB-INF folder and double-click the ibm-web-ext.xml
file, or click the Open WebSphere Extensions link on the Web module’s
deployment descriptor editor for the web.xml file, as shown in Figure 4.

Figure 4 Web module’s deployment descriptor editor

Note: If an application.xml deployment descriptor is not included in the EAR
file, the context root for a Web module defaults to the Web module’s name
without the .war extension.
 WebSphere Application Server V7: Packaging Applications for Deployment 13

The Web module extensions editor is shown in Figure 5.

Figure 5 Editing WebSphere Web module extensions

File serving

When dealing with static content (HTML pages, images, style sheets, and so on),
you can choose to have these resources served by WebSphere, or have them
served by the HTTP server itself.

Note: Previous versions of WebSphere Application Server provided a
mechanism to share HTTP sessions across Web modules. Because this
mechanism is not compliant with the servlet API specification, it had to be
explicitly enabled for applications that required it. In WebSphere Application
Server v7.0, this mechanism has been deprecated. If you have used this
feature, you should redesign your application so that sessions are scoped at
the Web module instead. If data really must be shared across Web module
boundaries, use the IBM-enhanced session object, IBMApplicationSession,
instead. You can search the Information Center for IBMApplicationSession for
information about this.
14 WebSphere Application Server V7: Packaging Applications for Deployment

If you want WebSphere to serve the static content of your application, you must
enable file serving. Enabling this activates a servlet which serves up any
resource file packaged in the WAR file. The File serving enabled attribute is set
to true by default. By changing it to false, the Web server plug-in will not send
requests for static content to WebSphere, but leave it up to the HTTP server to
serve them.

If you want the Web server to serve static content, you can experience better
performance than using WebSphere in this instance, because the Web server is
serving the content directly. Moreover, a Web server has more customization
options than the file servlet can offer.

However, using the WebSphere file serving servlet has the advantage of keeping
the static content organized in a single, deployable unit with the rest of the
application. Additionally, this allows you to protect the static pages using
WebSphere security.

To enable this option, check the Enable File Serving box.

Web application auto reload

If you check the Enable Reloading option, the class path of the Web application
is monitored and all components, JAR or class files, are reloaded whenever a
component update is detected. The Web module’s class loader is shut down and
restarted. The Reload Interval is the interval between reloads of the Web
application. It is set in seconds.

The auto reload feature plays a critical role in hot deployment and dynamic
reload of your application.

This option is enabled by default, with the reload interval set to three (3) seconds.
This means that classloader checks the classes on the classpath for updates
every 3 seconds, and if any changes are found those classes are reloaded. But
unless changes are detected nothing should happen to the classloader or the
classes loaded. In production mode, you might consider making the reload
interval much higher.

Important: You must set the Enable Reloading enabled option to true for
JSP™ files to be reloaded when they are changed on the file system.
Reloading a JSP does not trigger the reload of the Web module, because
separate class loaders are used for servlets and JSP.
 WebSphere Application Server V7: Packaging Applications for Deployment 15

Serve servlets by class name

The invoker servlet can be used to invoke servlets by class name. Note that there
is a potential security risk with leaving this option set in production. It should be
seen as more of a development-time feature, for quickly testing your servlets.

A better alternative than this option is to define servlet mappings in the Web
deployment descriptor for the servlets that should be available.

The invoker servlet is configured by the Enable Serving Servlets By Class
Names option.

Default error page

This page will be invoked to handle errors if no error page has been defined, or if
none of the defined error pages matches the current error.

Directory browsing

This Boolean defines whether it is possible to browse the directory if no default
page has been found.

This option should be turned off for improved security.

Pre-compile JSPs

When a JSP is hit for the first time, it is automatically compiled into a servlet and
then executed. To avoid this performance penalty the first time a JSP is hit,
WebSphere allows JSPs to be pre-compiled during application installation
instead of at first invocation. Selecting this option will cause the installation of the
application to WebSphere to take longer, but the JSPs will be served faster on
the first hit.

Automatic HTTP request and response encoding

The Web container no longer automatically sets request and response
encodings and response content types. The programmer is expected to set these
values using the methods available in the Servlet 2.4, and later, API. If you want
the application server to attempt to set these values automatically, check the
Auto Encode Requests option in order to have the request encoding value set.
Similarly, you can check the Auto Encode Responses option in order to have
the response encoding and content type set.
16 WebSphere Application Server V7: Packaging Applications for Deployment

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.4 specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code uses the setCharacterEncoding(String encoding)
method.

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:

1. Looks at the character set (charset) in the Content-Type header.

2. Attempts to map the server’s locale to a character set using defined
properties.

3. Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one
is set.

4. Uses the ISO-8859-1 character encoding as the default.

If you set the autoResponseEncoding value to true and the following conditions
are true:

� The client did not specify character encoding in the request header.

� The code does not include the setCharacterEncoding(String encoding)
method.

Then the Web container performs the following actions:

� It attempts to determine the response content type and character encoding
from information in the request header.

� It uses the ISO-8859-1 character encoding as the default.

Example: Packaging an application

As an example of how to package a JEE 5 application using EJB 3.0 beans,
we use the same ITSOBank application developed by the team who wrote the
Redbooks publication, Rational Application Developer V7.5 Programming Guide,
SG24-7672. To download the sample application, go to:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247672.html?Open
 WebSphere Application Server V7: Packaging Applications for Deployment 17

http://www.redbooks.ibm.com/redpieces/abstracts/sg247672.html?Open

From there, click the Additional Material link. Then download the file
7672codesolution.zip and unpack it to a directory on your computer. Unpacking
the ZIP file creates a number of directories. The directory that we are interested
in is the ejb directory. This directory contains two ZIP files with RAD project
interchange files. We will now import both files into RAD-AD:

1. Start RAD-AD.

2. To import the code select File → Import... Expand the Other section and
select Project Interchange™. Click Next.

3. Click the Browse button next to the From zip file field and browse to the ejb
directory where you unzipped the sample code. Select the RAD75EJB.zip file
and click Open.

4. Click the Select All button to select all projects in the file.

5. Then click Finish.

6. Repeat the process for the RAD75EJBWeb.zip project.

When the project files have been imported, the Enterprise Explorer view in RAD
should look like Figure 6.

Figure 6 ITSO Bank application imported into RAD-AD
18 WebSphere Application Server V7: Packaging Applications for Deployment

The Problems view shows 15 Warnings, but none of them are critical.

The workspace now has two Enterprise Application (EAR) projects, called
RAD75EJBEAR and RAD75EJBWebEAR. RAD75EJBEAR contains some EJBs
and a simple servlet for testing (in the RAD75EJBTestWeb project). A more
sophisticated Web application is available in the RAD75EJBWeb project, and this
is the one we will use in our example.

The RAD75EJBWeb project uses the EJBs in the RAD75EJB project, which in
turn relies on the Persistence Unit in the RAD75JPA project.

We will customize the RAD75EJBWeb project a little and export it as an EAR file
The EAR file will be deployed in Chapter 15: Deploying applications.

None of the actions that we do here are actually necessary for getting the ITSO
Bank application to work, because the development team has done everything
necessary in the Redbooks publication, Rational Application Developer V7.5
Programming Guide, SG24-7672. However, to show you some common
packaging tasks and the functionality of the RAD-AD development tool, we do
some customizations to the application.

The first thing we will is to remove the unnecessary deployment descriptors,
which were included in the application by the development team.

� Expand the RAD75EJB project and expand ejbModule. Then expand the
META-INF folder and delete the ejb-jar.xml file.

� Expand the RAD75EJBWebEAR project and expand its META-INF folder. Delete
the application.xml file.

� Expand the RAD75JPA project and expand src. Then expand the META-INF
folder and delete the orm.xml file.

The RAD75EJB project depends on the Persistence Unit defined in the
RAD75JPA project. To verify that this dependency is correctly set up, right-click
the RAD75EJB project and select Properties. Then click Java EE Module
Dependencies in the left pane. The right pane shows that the RAD75JPA.jar
project is selected, which means that the EJB project can access the classes in
the JPA project. See Figure 7.
 WebSphere Application Server V7: Packaging Applications for Deployment 19

http://www.redbooks.ibm.com/abstracts/sg247615.html

Figure 7 Java EE Module Dependencies

Configuring Web module extensions

For our application we customize the WebSphere Web module extensions:

1. Expand the RAD75EJBWeb project and double-click the RAD75EJBWeb
heading (Figure 8) to open the Web module deployment descriptor.
20 WebSphere Application Server V7: Packaging Applications for Deployment

Figure 8 Opening the Web module deployment descriptor

2. When the panel opens, click the Open WebSphere Extensions link in the
bottom right corner as shown in Figure 9 to open the extensions editor.

Figure 9 Web module deployment descriptor editor
 WebSphere Application Server V7: Packaging Applications for Deployment 21

3. The Web module extensions editor contains options to configure the optional
WebSphere extensions to Web modules. In our application, we do not want to
serve servlets by classname and we also want to prevent directory browsing.

4. Therefore, we uncheck the corresponding check boxes as shown in
Figure 10. It is a best practice to disable these options in production
environments so only the servlets and folders the developers had intended to
are accessible.

Figure 10 Web module extensions editor

5. When done, press Ctrl-S to save the deployment descriptor.

Exporting to an EAR file

To export the RAD75EJBWebEAR application as an EAR file with all its
dependent modules, do the following steps:

1. Select the RAD75EJBWebEAR project and right-click. Select Export... and
EAR file from the pop-up menu.

2. In the Export dialog, browse to a destination, such as C:\, as shown in
Figure 11.
22 WebSphere Application Server V7: Packaging Applications for Deployment

Figure 11 Exporting Enterprise Project to EAR file

3. Click Finish.

4. The EAR file exported is now prepared for installation in WebSphere
Application Server v7.0.

You can optionally add more configuration details to the EAR file by creating a
WebSphere Enhanced EAR file.

WebSphere Enhanced EAR

A WebSphere enhanced EAR is a regular JEE EAR file, but with additional
configuration information for resources required by JEE applications. While
adding this extra configuration information at packaging time is not mandatory, it
can simplify deployment of JEE applications to WebSphere if the environments
where the application is to be deployed are similar.

When an Enhanced EAR is deployed to WebSphere Application Server,
WebSphere can automatically configure the resources specified in the Enhanced
 WebSphere Application Server V7: Packaging Applications for Deployment 23

EAR. This reduces the number of configuration steps required to set up the
WebSphere environment to host the application.

When an Enhanced EAR is uninstalled, the resources that are defined at the
application level scope are removed as well. However, resources defined at a
scope other than application level are not removed because they might be in use
by other applications. Resources created at the Application level scope are
limited in visibility to only that application.

Table 6 shows the resources supported by the Enhanced EAR and the scope in
which they are created.

Table 6 Scope for resources in WebSphere Enhanced EAR file

J2C Resource Adapters can be configured either as embedded or external
resources. An embedded RAR is packaged within an enterprise application
(EAR), deployed as a part of JEE application installation, and is removed when
the application is uninstalled from the server. An external RAR is packaged as a
standalone RAR file, is deployed explicitly on a WebSphere node, and is not
managed as a JEE application. If an adapter is used only by a single application,
it should be configured as an embedded RAR. If it is to be shared between
multiple applications, it should be an external RAR.

To view the application scoped resources using the administrative console,
select Applications → Application Types → WebSphere Enterprise
Applications → <application>. Select Application scoped resources in the
References section. If there are no application scoped resources, you will not see
this option.

Resource Scope

JDBC™ providers Application

Data sources Application

Resource adapters Application

JMS resources Application

Substitution variables Application

Class loader policies Application

Shared libraries Server

JAAS authentication aliases Cell

Virtual hosts Cell
24 WebSphere Application Server V7: Packaging Applications for Deployment

Configuring a WebSphere Enhanced EAR

The supplemental information in an Enhanced EAR is modified by using the
WebSphere Application Server Deployment editor. The information itself lives in
XML files in a folder called ibmconfig in the EAR file’s META-INF folder.

To access the Enhanced EAR deployment options right-click the
RAD75EJBWebEAR project and select Java EE, and then the Open
WebSphere Application Server Deployment option. This opens up the editor
as shown in Figure 12.

Figure 12 WebSphere Enhanced EAR editor
 WebSphere Application Server V7: Packaging Applications for Deployment 25

In the Application section in Figure 13, you can see the class loader policies and
class loader mode configured for each of the containing module. ITSO Bank runs
fine with the default policies and modes, so they do not need to be changed.

Figure 13 Configuring class loader mode and class loader policies

When creating an Enhanced EAR file, RAD-AD automatically adds a JDBC
provider for the Derby database. We will change this to use DB2 instead as that
is what we will use when deploying the application. To achieve this we need to
add the following items:

� JAAS authentication alias
� JDBC provider for DB2
� Data source for DB2 database

Just to show the use of the editor, we will also configure a new virtual host for a
domain called www.itsobank.ibm.com.

Configuring a JAAS authentication alias
To configure the JAAS authentication alias, do the following steps:

1. Expand the Authentication section.

2. Click the Add button.

3. In the dialog box that displays, enter:

– itsobank as the alias
– A user ID with access to the ITSOBANK database (db2inst1 in our case)
– The password for the user ID.
– ITSO Bank as the description
26 WebSphere Application Server V7: Packaging Applications for Deployment

4. Click OK. See Figure 14 for the results.

Figure 14 Configuring JAAS authentication alias for ITSO Bank

Configuring a DB2 JDBC provider
JDBC providers are configured in the Data Sources section, so expand this
section. Before adding the DB2 provider, first delete the pre-configured Derby
JDBC Provider (XA) provider by selecting it and clicking the Remove button.

To configure the DB2 JDBC provider, do the following steps:

1. Click the Add button next to the JDBC provider list.

2. In the dialog box:

– Select IBM DB2 as the Database type.
– Select DB2 Using IBM JCC Driver (XA) as the JDBC provider type.

See Figure 15.

Figure 15 Creating a DB2 JDBC Provider
 WebSphere Application Server V7: Packaging Applications for Deployment 27

Click Next.

3. In the next dialog box, enter a name for the JDBC provider (for administration
purposes only) and leave the other properties as the default values. See
Figure 16.

Figure 16 Creating a DB2 JDBC provider

Click Finish.
28 WebSphere Application Server V7: Packaging Applications for Deployment

4. Select the ITSO Bank DB2 JDBC Provider (XA) you just created and click
the Add button next to the Data source list, as in Figure 17.

Figure 17 Creating a DB2 data source
 WebSphere Application Server V7: Packaging Applications for Deployment 29

5. In the Create a Data Source dialog box, select DB2 Using IBM JCC Driver
(XA) as the JDBC provider type and Version 5.0 data source as the data
source type, as in Figure 18.

Figure 18 Creating a DB2 data source

Click Next.
30 WebSphere Application Server V7: Packaging Applications for Deployment

6. In the dialog box displayed enter the appropriate values for the DB2 data
source. See Figure 19.

Figure 19 Creating a DB2 data source

– Enter ITSOBankDS as the name.

– Enter jdbc/itsobank as the JNDI name.

– Enter DB2 Data Source for ITSO Bank as the description.

– Select itsobank as the Container-managed authentication alias (you
might need to scroll the window to the far right to see the pull down arrow).

– Uncheck Use this data source in container manager persistence
(CMP). The ITSO Bank application uses JPA for persistence so we do not
need to add support for CMP Entity beans for this data source.

Click Next.
 WebSphere Application Server V7: Packaging Applications for Deployment 31

7. Highlight the databaseName property in the Resource properties section.
Enter ITSOBANK in the Value field. Then highlight the driverType property
and change the value from type 4 to type 2. Type 2 means that the DB2
database is installed on the same machine as WebSphere Application
Server, or that the DB2 Client software is installed on the same machine and
configured to handle the remote connection if the database is on a remote
machine. A type 4 driver can connect directly to a remote database over
TCP/IP. See Figure 20.

Figure 20 Setting database name and driver type

Click Finish.
32 WebSphere Application Server V7: Packaging Applications for Deployment

When you are finished, your data source configuration should look like Figure 21.

Figure 21 DB2 data source configured

Adding a virtual host
To configure a virtual host, do the following steps:

1. Expand the Virtual Hosts section of the Deployment tab and click the Add
button next to the Virtual host name list.

2. In the Add Host Name Entry dialog box, enter itsobank_host and click OK.
Your new virtual host will appear in the Virtual Hosts list. See Figure 22.
 WebSphere Application Server V7: Packaging Applications for Deployment 33

Figure 22 Add a new virtual host

3. Click the Add button next to the Host aliases list.

4. In the Add Host Alias Entry dialog box, enter www.itsobank.ibm.com for the
host name and 80 for the port number. Click OK.

Repeat the procedure and add number 9080 as well. We will use this port
when we deploy the application later. If your server uses another port use that
port number instead. You can have as many host aliases as you like.

The host aliases will appear in the list (Figure 23).

Figure 23 Configuring the virtual host for ITSO Bank

5. When you are finished, press Ctrl-S to save the deployment descriptor editor.
34 WebSphere Application Server V7: Packaging Applications for Deployment

Setting the default virtual host for Web modules
Just because we have configured a new virtual host, itsobank_host, in the
Enhanced EAR file does not mean that all our Web modules automatically use it.

The default virtual host for a Web module created in the RAD or RAD-AD is
default_host, which is also the case for the ITSO Bank application.

To modify the Web modules to use the itsobank_host instead, do the following
steps:

1. Expand the RAD75EJBWeb project and double-click the RAD75EJBWeb
heading as shown in Figure 8 on page 21 to open the Web module
deployment descriptor.

2. In the lower right corner of the panel click the Open WebSphere Bindings
link.

3. Change the Virtual Host Name to itsobank_host, as shown in Figure 24.

Figure 24 Setting default virtual host for a Web module

4. Save the deployment descriptor by pressing Ctrl-S and then close it.

Examining the WebSphere Enhanced EAR file
The information about the resources configured is stored in the ibmconfig
subdirectory of the EAR file’s META-INF directory. Expanding this directory
reveals the well-known directory structure for a cell configuration, as seen in
Figure 25. You can also see the scope level where each resource is configured.
 WebSphere Application Server V7: Packaging Applications for Deployment 35

Figure 25 Enhanced EAR file contents

At deployment time, WebSphere Application Server uses this information to
automatically create the resources.

After you have added the additional configuration information to the application
you should now export the project as an EAR file. Refer to “Exporting to an EAR
file” on page 22 for information about how to do this.
36 WebSphere Application Server V7: Packaging Applications for Deployment

Packaging recommendations

Here are some basic rules to consider when packaging an enterprise application:

� EJB JAR modules and Web WAR modules comprising an application should
be packaged together in the same EAR module, and executed within the
same application server JVM process. This is to avoid remote EJB calls
(RMI/IIOP) across application server JVM processes, which is costly from a
performance perspective.

� Utility classes used by a single Web module should only be placed within its
WEB-INF/lib folder.

� Utility classes used by multiple modules within an enterprise application
should be placed at the root of the EAR file as Utility Projects, so they are
accessible both by servlets and EJBs.

� Utility classes used by multiple enterprise applications can be placed outside
the applications on a directory referenced through a shared library definition.

See Chapter 13, Understanding class loaders for more details on how
WebSphere finds and loads classes.

Business-level applications

A business-level application is a concept which aims to expand the notion of
“Application” beyond JEE. Its administration model provides the entire definition
of an application as it makes sense to the business. In contrast with an enterprise
application (EAR file) a business-level application is only a logical WebSphere
configuration artifact, similar to a server or cluster, that is stored in the
configuration repository.

Figure 26 shows the concept of business-level applications.
 WebSphere Application Server V7: Packaging Applications for Deployment 37

http://www.redbooks.ibm.com/abstracts/sg247615.html

Figure 26 Business-level application concept

Business-level applications can be used in several different ways. Often a
business application, such as an Order System, does not consist of only one
enterprise application (EAR), but rather multiple applications that must all be
running for the whole business application to work.

One way of using business-level applications is to group the separate enterprise
applications which make up the business application into one manageable unit
that can be started, stopped, updated, and so on. But a business-level
application cannot only reference JEE components, but also assets that are not
part of the JEE concept. For example, CORBA (C++) executables hosted in a
Generic Server or files on the file system that are not managed by WebSphere
but still required by the application.

A business-level application does not represent or contain application binary
files, however. Instead it is a configuration that lists one or more composition
units that represent the application binary files. A business-level application uses
the binary files to run the application business logic. Administration of binary files
is done using the normal methods for managing modules (for example, Web or
EJB modules) and is separate from administration of the application definition.

BLA1

BLA3

BLA2

DB2
Database

CICS
Transaction

Portlet
Module

EJB
Module Web

Module
JAX-WS

Web Service
Module

J2EE
Enterprise

App

WAR

JAR Axis2 PAR EAR

Composition

Configuration

Business Logic
38 WebSphere Application Server V7: Packaging Applications for Deployment

A business-level application does not introduce any new programming, runtime,
or packaging models:

� You do not need to change your application business logic. The
business-level application function does not introduce new application
programming interfaces (APIs).

� You do not need to change your application runtime settings. WebSphere
supports all of the runtime characteristics, such as security, class loading and
isolation, required by individual programming models to which business
components are written.

� You do not need to change your application packaging. There is no specific
unique packaging model that provides a business-level application definition.

The terminology for business-level applications introduces two new terms; assets
and composition units.

An asset represents one or more application binary files that are stored in an
asset repository. Typical assets include application business logic such as EAR
files, EJB modules, Web modules, Service Component Architecture (SCA)
modules, shared library files, static content, and other resource files. The asset
repository is managed by WebSphere Application Server and does not require
any 3rd party software.

You must register files as assets before you can add them to one or more
business-level applications. At the time of asset registration, you can import the
physical application files into WebSphere’s configuration repository or you can
specify an external location where the asset resides.

A composition unit represents a configured asset in a business-level application.
Configured in this context means installed, so a configured Web module means a
Web module which is installed.

WebSphere Application Server handles three types of composition units:

� Asset composition units:

Composition units created from assets by configuring each deployable unit of
the asset to run on deployment targets.

Note: Business-level applications are only supported on WebSphere
Application Server v7.0 nodes. They are not supported on any previous
versions of WebSphere Application Server.
 WebSphere Application Server V7: Packaging Applications for Deployment 39

� Shared library composition units:

Composition units created from JAR-based assets by ignoring all the
deployable objects from the asset and treating the asset JAR file as a library
of classes.

� Business-level application composition units:

Composition units created from business-level applications that are added to
existing business-level applications.

Figure 27 shows the relationship between assets, composition units, and
business-level applications.

Figure 27 Relationship between business-level application artifacts

If an asset depends on another asset, a relationship can be created between
them. For example, this would allow a Web module asset to reference classes in
a shared library.

Composition
unit

Unprocessed
files

Asset
repository

AssetAxis2 archive

JAR file

EJB JAR file

Axis2
archive

Asset

JAR file

Asset

JAR file
Shared library instance

EJB module instance

JAX-WS instance

Composition unit

Composition unit

Composition unit

Business level application
composition

Composition
unit

Business
level
application

Business
level
application

Business
level
application
40 WebSphere Application Server V7: Packaging Applications for Deployment

So, to summarize, a business-level application consists of composition units.
When you add an asset to a business-level application, a composition unit is
created for the asset. The composition unit is the configured (installed) asset.

Example: Creating a business-level application

As a basic example of how to create a business-level application, we use the
RAD75EJBWeb application (see “Example: Packaging an application” on
page 17) and combine it with the WebSphere DefaultApplication’s Web module
(which includes, for example, the SnoopServlet) which can be extracted from the
DefaultApplication’s EAR file. We create one asset for the RAD75EJBWeb
application and another for the DefaultWebApplication. We then create a
business-level application containing these two assets.

To create the two assets, do the following steps:

1. Open the WebSphere administrative console and select Applications →
Application Types. Click the Assets link.

2. Click the Import button. Check the Local file system box and click the
Browse button to locate the RAD75EJBWebEAR.ear file. Select the file and
click Open. Then click the Next button.

3. Step1: Select options for importing an asset:

Enter a brief description of the asset, if wanted. If you want to import the asset
to a specific path on your file system enter the path in the Asset binaries
destination URL field. If you leave this field blank, the file will be imported to
its default location, which is profile_root/installedAssets/asset_name/BASE/.
Click Next.

4. On the Summary page, click Finish. The asset is now imported into
WebSphere’s asset repository, but its not yet configured (so it is still just an
asset, not a composition unit).

5. Repeat the process and import the DefaultWebApplication.war file. Because
the two assets do not depend on each other and do not require any shared
library, you do not need to set up any relationships.

6. Save to master configuration when done.

When the assets have been imported into the asset repository, we can now
create a business-level application.

Tip: If specifying another name for the asset, you must make sure to keep
the asset’s file extension (such as .ear or .war), otherwise WebSphere
cannot keep track of the asset type, and fails to import the asset.
 WebSphere Application Server V7: Packaging Applications for Deployment 41

7. Select Applications → Application Types → Business-level applications.
Click the New button.

8. Enter a name, such as ITSOBank System, and click Apply.

9. On the Business-level applications page, click the Add button under the
Deployed assets section and select the Add Asset option, as shown in
Figure 28.

Figure 28 Business-level application configuration panel

10.On the next panel, select the RAD75EJBWebEAR.ear asset and click
Continue.

11.You can now configure (install) this asset with the necessary deployment
options. The installation process follows the normal steps for installing an
application to WebSphere Application Server.

For detailed step-by-step instructions on how to do this, refer to Chapter 15:
Deploying applications. Proceed through the installation panels until the
Summary page is shown, and click Finish. WebSphere now installs the
application, and it is now a composition unit, an asset that has been
configured.
42 WebSphere Application Server V7: Packaging Applications for Deployment

http://www.redbooks.ibm.com/abstracts/sg247615.html

12.Select Applications → Application Types → Business-level applications
and click the link for the ITSOBank System application.

13.Repeat steps 9 and 10 and add the DefaultWebApplication.war file to the
ITSOBank System business-level application as well.

14.Save to the master configuration when done.

The business-level application can now be started and stopped by selecting
Applications → Application Types → Business-level applications and then
clicking the corresponding links.

The individual applications, the composition units, which make up the
business-level application can be managed individually by selecting
Applications → Application Types → WebSphere enterprise applications.
and using the links to start, stop, update, and so on.

Note: At Step 1: Select installation options, WebSphere generates a
unique application name such as app1143018803114601914 for the
application. You might want to change this to something more descriptive.

Note: To delete a business-level application, you must first unmap (delete) the
composition units (configured assets) which belong to the business-level
application. To do this, select the business-level application, and check the
boxes next to the deployed assets and click the Delete button. When all
assets have been deleted from the business-level application, you can delete
the business-level application itself. The assets, however, still remain in
WebSphere’s asset repository and can be used to configure other
business-level applications.
 WebSphere Application Server V7: Packaging Applications for Deployment 43

44 WebSphere Application Server V7: Packaging Applications for Deployment

© Copyright International Business Machines Corporation 2009. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 45

®

Redpaper™

This document REDP-4582-00 was created or updated on October 13, 2009.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099, 2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
IBM®

Rational®
Redbooks®
Redbooks (logo) ®

WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S.
and other countries.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

EJB, Enterprise JavaBeans, J2EE, Java, JavaBeans, JavaScript, JDBC, JSP, JVM, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
46 WebSphere Application Server V7: Packaging Applications for Deployment

http://www.ibm.com/legal/copytrade.shtml
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	WebSphere Application Server V7: Packaging Applications for Deployment
	JEE 5 EAR files
	Development tools
	Working with deployment descriptors

	EJB 3.0 modules
	JPA persistence units
	JPA access intents

	Resource adapters
	Web modules
	WebSphere extensions to Web modules
	File serving
	Web application auto reload
	Serve servlets by class name
	Default error page
	Directory browsing
	Pre-compile JSPs
	Automatic HTTP request and response encoding

	Example: Packaging an application
	Configuring Web module extensions

	Exporting to an EAR file
	WebSphere Enhanced EAR
	Configuring a WebSphere Enhanced EAR

	Packaging recommendations
	Business-level applications
	Example: Creating a business-level application

	Notices
	Trademarks

