

Redpaper

An Experience Using Rational
Performance Tester to Benchmark Oracle
EnterpriseOne

The Power Systems™ (i) Benchmark Center used IBM® Rational® Performance Tester
(RPT) to test Oracle®’s JD Edwards® EnterpriseOne application. This IBM Redpaper
publication provides detailed information about executing performance tests in this specific
environment. The information provided will help make testing of upgrades and deployments
in this environment a seamless effort.

Michael Meyers
Chris Beyers

Don Weber

© Copyright IBM Corp. 2008. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Introduction and overview

This paper provides an overview of how to use IBM Rational Performance Test to execute
performance tests against Oracle EnterpriseOne (JD Edwards) applications that will help
deliver successful upgrades and deployments critical to the business. Hints and tips that are
useful in any test environment are also included. Highlights of the paper include:

� Recording strategies of JD Edwards EnterpriseOne

� Enhancement of JD Edwards EnterpriseOne test scripts including naming conventions,
grouping pages, and looping strategies

� Techniques in schedule creation of a JD Edwards EnterpriseOne performance test

Audience

This paper is intended for an audience that already has a working knowledge of RPT and its
terminology. We assume this background knowledge:

� General working knowledge of RPT

� General working knowledge of your Oracle EnterpriseOne environment

� Installation of the IBM Rational Performance Tester (RPT) v7.0.1.1 or later

� An Oracle EnterpriseOne v8.1.2 environment

If you would like more information and a basic understanding of applying RPT to enterprise
application testing, refer to Using Rational Performance Tester Version 7, SG24-79311.

Project background

An IBM client has worked with the IBM Power Systems (i) benchmark center to roll out
Oracle’s JD Edwards EnterpriseOne Version 8.12. They have been users of previous
versions of JD Edwards. The decision to move to the latest architecture began January 2007
and resulted in a benchmark to test the out-of-the-box functions of Version 8.12. With the
successful completion of the early 2007 benchmark, they moved forward with deployment of
customized JD Edwards changes to support their business. With this phase nearing
completion, the client wanted to execute a second benchmark to verify that the
customizations would still support their batch and interactive performance requirements.

One of the major differences between the 2007 and 2008 benchmarks was that the client
engaged the Power Systems (i) Benchmark center to help create the interactive scripts. Our
testing tool of choice for Web-based workloads is Rational Performance Tester.

The benchmark completed successfully and all customer objectives were met. RPT
performed well during the benchmark and our center gained knowledge and experience with
the product.

Recording performance test scripts

Initiating the recording of a JD Edwards EnterpriseOne test is no different from other
recordings and can be started either using a right-click from the Performance Test project

1 http://www.redbooks.ibm.com/abstracts/sg247391.html

2 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

http://www.redbooks.ibm.com/abstracts/sg247391.html

from the toolbar, or from the File menu item. For JD Edwards EnterpriseOne recording, select
the HTTP Recording recorder option, as indicated in Figure 1, and click Next.

Figure 1 IBM Rational Performance Tester: Create New Test window

In the following window select the appropriate folder within the performance test project,
provide a test name, and click Finish to continue.

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 3

Once the recording starts, the tester will perform actions on the JD Edwards EnterpriseOne
Enterprise application opened in the browser. When the test activities are complete, closing
the browser stops the recording and the test is generated. Figure 2 shows a recorded sample
test.

Figure 2 Recorded performance test scenario

4 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Figure 3 shows that the login pages are isolated from the action of the test by a loop. By
looping on certain test pages, the pages that are of interest can be repeated to provide a
steady state of behavior. In this example, the pages of interest are executed once without a
loop and once within a loop for four iterations. This allows two transactions to be evaluated.
The first transaction models the scenario without data cached in the browser, and the second
transaction models the same scenario with data cached in the browser. This provides two
measurements of behavior for the same test scenario with different input criteria.

Figure 3 Loop usage in the test scenario

Rational Performance Tester allows accurate workload emulation using schedules. Hence,
after you finish editing the test, you create a schedule. You add user groups to the schedule,
then you add appropriate tests to each group to emulate a task. In addition, execution can be
distributed over several machines. In our scenario, we have specified to execute User Group
4 from our test agent, called TestSrv1.

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 5

When recording a test, it was found that a single page will sometimes be recorded as one
page, but other times as two. Also, sometimes two pages are recorded as one. A method was
found that seemed to improve the recording accuracy when it comes to grouping page
elements correctly under the page itself. Navigate to Window → Preferences and from the
menu select Test → Performance Test Generation. Under the Protocol tab, you will see
Generate new page if delay between requests. Make a note of this number (Figure 4).

Figure 4 Performance test generation settings

Now, while recording, watch the Kbytes recorded in RPT (Figure 5). When the value stops
incrementing, wait for the previously noted delay before continuing to navigate the application.
This method seemed to greatly improve the accuracy of the recorded page groupings.

Figure 5 Kbytes recorded

6 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

A complexity within the Oracle Application that may be related to recording issues is the fact
that the browser activity icon and status bar often indicate that a page is completely loaded
(Figure 6). Sometimes the application indicates that a user can continue working while
applications load (see Figure 7 on page 8). At other times, similar messages have very
different characteristics regarding browser activity (Figure 8 on page 8). These different page
elements, although often viewed as a single page by the user, may be viewed as multiple
pages or single pages by RPT. Often how RPT views them is simply due to the pacing at
which the user navigates the application.

Figure 6 Browser activity

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 7

Figure 7 Opening application while continuing to work

Figure 8 Opening application in a different situation

8 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Modifying and enhancing performance test scripts

At this point you should have standard test scripts created that showcase primary business
transactions. The next step is to modify these test scripts to achieve desirable yet realistic
results by focusing on some RPT performance enhancements and JDE EnterpriseOne
issues.

Helpful naming conventions for page titles

After a recording, you will see generic page names generated by RPT that usually require a
change to a more accurate description of the page. It is important is to increment your pages
with a unique naming convention so that you can easily group and sort your transactions in
the results, as seen here:

� JD Edwards EnterpriseOne - Home
� JD Edwards EnterpriseOne - Login
� FIN-PT-0001_01 - Step1
� FIN-PT-0001_02 - Step1

Removal of page element delays

RPT records the time for each page element request to be satisfied. If there are delays on the
server side that lead to delays in the page elements requests, these delays may adversely
affect the evaluation of a performance test. In Version 7.0.2, the page element delays may be
edited globally using an option at the test level under the HTTP Options tab, as shown in
Figure 9.

Figure 9 Editing page element delays

Note: Sorting by label helps with analysis.

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 9

It is important to understand why the page element delays are present, and when and why
you may choose to reduce or remove the page element delays. The slider bar allows you to
adjust the delays to determine whether there is any effect on the playback of the test scripts.

Figure 10 shows the version number highlighted in the test data. The fast path would be the
appID|version.

Figure 10 Version number

10 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Group/ungroup pages and validate accuracy

As much as we would like the page grouping to come out perfectly after recording every time,
it just does not seem to work that way. In particular, OCL silent post messages often appear
under their own page grouping. As a standard practice, we have been merging these into the
previous page, as a user action does not seem to cause these. Figure 11 shows the
non-merged pages, and Figure 12 shows the merged pages.

Figure 11 Non-merged pages

Figure 12 Merged pages

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 11

To merge the pages, press Ctrl+ left-click to select the two pages. Then right-click and select
Merge Pages (Figure 13).

Figure 13 Merging pages

When pages are merged, if the page title has been customized, it will be reset to its originally
recorded value. If you have already customized the name, make note of the name before
merging the pages.

12 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Ungrouping pages is just as easy. Highlight a page element that you would like in a new
group that is the break-point, right-click, and select Split Page Here (Figure 14.) You are then
presented with a Performance Test Editor window that describes the split that is going to take
place. Verify and select Finish.

Figure 14 Split page here

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 13

Figure 15 shows the options when splitting or merging and how you can select to group the
top part with the bottom or vice versa.

Figure 15 Split HTTP page

Timestamps

Timestamps are a unique identifier used in many applications that can be either used for the
server side or for the client side. After you record, you will need to check each page element
to see whether any timestamps have been included and handle them respectively. The
timestamps seen in the Oracle EnterpriseOne application were constructed of 13 characters
that represent the number of seconds elapsed since midnight (00:00:00), January 1, 1970,
coordinated universal time (UTC), according to the system clock.

14 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Substituting a dynamic timestamp in a single instance in the recording requires a few steps:

1. Highlight a page element in which you see a timestamp in the test details (Figure 16).

Figure 16 Page element in which there is a timestamp within the test data

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 15

2. Right-click anywhere in the test data and select Show References to display all instances
where a timestamp is used in that request (Figure 17). Notice that there may be more
timestamp elements that need to be correlated than before this action was executed. If
there is more than one timestamp, they will be all grouped together.

Figure 17 Show references to incorporate all instances of timestamps

3. Highlight the timestamp that you want to correlate with a dynamic timestamp and click the
Substitute From button. This opens up a drop-down list from which you must select
Built-in Datasources (Figure 18).

Figure 18 Substitute the timestamp with a built-in data source

16 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

4. The final step is to walk through the wizard that gets initiated by selecting Timestamp
under Generic Datasources (Figure 19). The rest of the wizard involves leaving the default
and clicking the Next button to complete the substitution. If you want to replace a
timestamp with a previously substituted timestamp, select it in the first wizard panel.

Figure 19 Timestamp wizard

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 17

Line items/multiple line items in grid data

Any time that you deal with line items or any situation in which you are inputting multiple rows
(Figure 20), you must be on the lookout for incrementing counters that are not automatically
correlated in RPT. For instance, in adding new line items, each element’s details will have
specific values that will increment with each new line item. The orange highlighted numbers
(1.0.18 and 1.1.18 in Figure 21 on page 19) are values that were incrementing from the first
line item to the second line item. The way that you recognize this is by recording two line
items and comparing their data. These orange values are the data pieces that have already
been substituted using java code.

Figure 20 New line item

18 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Figure 21 Test element data with incremental variables

The steps we took to get to this point are:

1. Write the Java™ code that simply returns incrementing numbers, as seen in Example 1,
Example 2 on page 20, and Example 3 on page 21.

2. Highlight the piece of data in the element details that you want to substitute from left to
right.

3. Right-click that highlighted section and select Substitute From → Custom Code: class
name, where class name is the Java code that you wrote for that particular data
substitution.

Example 1 Declare variable and Initialize

package test;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author unknown
 */
public class InitializeCount implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
 * Instances of this will be created using the no-arg constructor.
 */
public InitializeCount() {
}

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 19

/**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents'

in the
 * Help menu and select 'IBM Rational Performance Tester TES'.
 */
public String exec(ITestExecutionServices tes, String[] args) {

Integer i = -1;
IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);
vda.put("InnerLoopCtr", i);

return null;
}

}

Example 2 Get, increment, and save variable

package test;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author unknown
 */
public class IterationCount implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
 * Instances of this will be created using the no-arg constructor.
 */
public IterationCount() {
}

/**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents'

in the
 * Help menu and select 'IBM Rational Performance Tester TES'.
 */
public String exec(ITestExecutionServices tes, String[] args) {

IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);
Integer i = (Integer) vda.get("InnerLoopCtr");
i++;
vda.put("InnerLoopCtr", i);
String result = Integer.toString(i);

20 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

return result;

}

}

Example 3 Get, increment, no save

package test;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author unknown
 */
public class PlusOne implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
 * Instances of this will be created using the no-arg constructor.
 */
public PlusOne() {
}

/**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents'

in the
 * Help menu and select 'IBM Rational Performance Tester TES'.
 */
public String exec(ITestExecutionServices tes, String[] args) {

IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);
Integer i = (Integer) vda.get("InnerLoopCtr");
i++;
String result = Integer.toString(i);

return result;

}

}

Interdependencies of data
Understanding how the application interacts with your data is critical in making any progress
with the tests that you develop. In this Oracle Enterprise application we noticed that some
pre-populated fields differed based on the version of the specific program that we executed
(see “Program versions” on page 23). If we initiated an older program version, we would be
presented with a different flow from the one in the updated program. This produces warnings
and errors that would normally never be seen by the user. By using the same version each
time eliminate these problems in the creation of the tests.

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 21

Looping

Depending on the types of transactions that you are performing, modifications to the looping
of the script can play a big role in defining your workload and having successful runs. Keeping
in mind time outs and server response times for each of your transactions will help in creating
looping strategies. Listed below are some possible situations that you could encounter and
enhancements that you could make.

Home, login, and logout included where low-volume transactions occur
The nature of the application and business transactions that they represent may sometimes
be low volume, but still have a significant impact on server performance. Because of this
impact, it is often deemed important that these low-volume transactions still be included in the
workload.

Session timeouts are one of the first considerations. For example, if we wanted to execute two
transactions an hour, each taking 5 minutes, we would have on average 25 minutes of think
time to achieve the correct pacing. If server session timeouts occur after 10 minutes (which it
did for this case study implementation), it becomes important to log out and back in within the
test’s business transaction loop. Without logging out, the user would be presented with the
message shown in Example 4. This in turn means that there is no active session for future
transactions. In the real world, when a user is presented with this panel, he would navigate
back to the home page and then log in again. We must do the same within the test.

Example 4 Session timeout

The JD Edwards EnterpriseOne session for this application has timed out. If you
were in the middle of processing a transaction that transaction will need to be
reentered.

Verify that timeout value is high enough for very long response times
Because of the tremendous amount of back-end process that may occur for some of the
business transactions and queries, it is important that RPT can accommodate long response
times. Although production-level response times were good, while recording tests against a
test environment/partition, on occasion we had transactions that would take many minutes to
complete.

22 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

To accommodate large test response times, the timeout value was incremented (Figure 22).
This can be found by selecting the HTTP Options tab of the Test Element Details section.
The timeout value was incremented from 240000 milliseconds (4 minutes) to 1800000
milliseconds (30 minutes).

Figure 22 HTTP timeout value

Program versions

One thing to be aware of in Oracle EnterpriseOne is the application versions that you are
running and scripting. Since some Oracle EnterpriseOne applications can be customized, you
will have to verify which version is being accessed by checking the Fast Path page request
(see the circled items in Figure 23).

Figure 23 The Fast Path application number and version number all in one request

In some cases, the version does not appear, which usually means that in your recording you
went with the default version. The difference in default application versions from customized
versions is the panel flow that is presented to the user. To assure ourselves that the correct
version is being accessed and to avoid any defaults that could potentially cause problems, we

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 23

inputted the version number along with the application number. The Version number is
highlighted in the test data. The fast path would be the appID|version (Figure 24).

Figure 24 Version number

Enabling verification points (content/response)

To ensure accurate completion of the tests, a number of verification points are available to
use. They can be enabled on the entire test or on a specific page. Most commonly used are
response code verification points. They verify that status code captured during the recording
of the test did not change on the execution. Content verification points are powerful tools to
verify whether a specified string does or does not appear in response content (Figure 25).

Figure 25 Enabling verification points

24 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Page title VPs

In order for your scripts to flow properly, you will need some verification in your page titles so
that the script knows when to perform a given transaction on the expected panel. This is done
by simply clicking a test element at the highest level and selecting the check box Enable
verification point under Page Title Verification Point (Figure 26).

Figure 26 Changing page title verification point

The expected page title will default to whatever the script is that was recognized at recording
time and is usually accurate. However, in some cases you will have to customize the page
title to fit the particular transaction. If you happen to see a blank expected page title, there is a
chance that some transactions were separated and need to be merged.

Playback and debugging performance test scripts - HTTP bad request
recorded - results in long response time
In some cases, the tool will record bad response codes that occurred during recording and
will replay those bad requests, resulting in undesirable response times. Any request other
than 200, 206, 301, 302, or 304 will be an indication that it is a bad request. This will cause
your scripts to fail because it is simulating those bad requests. To avoid this, simply delete
these bad requests from the test.

Oracle provided a fix for the particular error that was being seen in the response codes, but
not until after the recording was complete. In this case, we had to manually delete these bad
requests prior to the fix.

Performance schedule creation

Once all tests have been modified accordingly, you are now ready to create and modify the
schedule to achieve your desired transaction rates by focusing on looping techniques and
think time.

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 25

Pacing test iterations

In order to achieve a realistic workload, we need to control the pacing of our tests (or scripts)
individually. Different tests (or virtual users) run at different pacing in order to achieve the
correct transactions per hour for each. In RPT, this is easily set and controlled through test
element details within the script. Select the loop within the script. Navigate to the test element
details. Check the box to control the rate of the iterations. Input the transactions per hour that
you wish to achieve. In this example, we also want to randomly vary the delay between
iterations and to delay before the first iteration. This allows for a realistic workload, with some
variability in the transaction arrival times, and still achieves the correct number of transactions
per hour (transaction arrival rate). An important note is that we set this pacing value within the
test, not within the schedule. See Figure 27.

Figure 27 Loop pacing in a script

Ramping up the workload

Often in load testing we come across the necessity to ramp-up the workload over some
period of time. This is often necessary due to the heavy load that can be generated by login,
authentication, and application startup.

Previously, we saw how to vary the individual tests to achieve our realistic peak workload.
Now we want to slow down and spread out the rate at which transactions start entering the
system. After this ramp-up period, our peak workload begins to execute.

26 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

In Figure 28, we have a schedule created with individual groups created that contain our
tests. We place a loop within the group immediately before the test itself. Although the loop
shows a warning, that is OK. We do not actually place anything within the loop. We are using
it to implement a random delay. In our example here, we want to ramp-up over a 10-minute
period. We set the number of iterations to 1. We select to control the rate of iterations. Our
iteration rate is 6 transactions per hour (10 minutes), which we randomly vary and we also
delay before the first iteration. What we just accomplished is inserting a random delay of
approximately 10 minutes before the test begins executing, in essence, allowing an extra 10
minutes for all the virtual users to get logged on and started into their transactions.

Figure 28 Inserting a loop in the schedule

Page requests and global think time changes

Page requests in your test will also include think times, which account for the amount of time
that a user waits to perform the next transaction. For debugging purposes, you would rather
have playback occur as fast as possible so that you are not spending unnecessary time
waiting. You can achieve this in two ways:

� In the test itself, you can find each think time field by clicking the page request and editing
the value, as shown in Figure 29. The disadvantage is that you have to maintain and edit
all think time instances within the test.

Figure 29 The circled field is where you edit the think time

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 27

� In the schedule, there is a quick way to override all think times that were recorded in your
test by highlighting the schedule name and clicking the Think Time tab. Here you can
select Specify a Fixed Think Time from the drop-down list (Figure 30).

Figure 30 Version number

Execution and analysis

We can view the execution of a performance schedule that applies the load on the JD
Edwards EnterpriseOne system by using a number of real-time reports. Let us look at a few
of them. The overall report (Figure 31) provides the percentage of successful page loads,
page element load, and verification points.

Figure 31 Overall performance report

28 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

The response versus time summary (Figure 32) indicates how the page response behaves
while the system is under load. The steady state behavior in the time range of 1,500 to 3,000
seconds shows page response averaging around 1.5 seconds per page and 0.1 seconds per
page element.

Figure 32 Response versus time summary performance report

The page throughput reports the page hit rate over time (see the left side of the graph in
Figure 33) and the user load (see the right side of the graph in Figure 33). In this example, the
user load is ramped up to 1,000 users and a steady state load exists from 1,500 seconds to
3,000 seconds of the elapsed time.

Figure 33 Page throughput performance report

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 29

Appendix

This appendix discusses some of the products and resources that were used. Figure 34 is a
diagram of the resources and products that we used during our tests.

Figure 34 Test environment

IBM Rational Performance Tester

Performance Tester is a multi-user load testing and performance testing tool for validating
Web application scalability. It contains these functions:

� Creates, executes, and analyzes tests to validate the reliability of complex e-business
applications

� Provides no code testing, point and click wizards, report readability, usability, and
customization

� Delivers both high-level and detailed views of tests with a rich, tree-based text editor

� Performs capacity planning tests to ensure optimal investment in hardware and IT
infrastructure

� Delivers automatic identification and support for dynamic server responses

30 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

� Enables large, multi-user tests with minimal hardware resources

� Diagnoses the root cause of performance bottlenecks by quickly identifying slow
performing lines of code and integrates with Tivoli® composite application management
solutions to identify the source of production performance problems

IBM Power Systems (i) Benchmark Center

The Power Systems (i) Benchmark Center in Rochester, Minnesota, provides world-class
benchmarking-related skills and facilities to the worldwide and Power Systems (i) community.
Our facility is staffed with Power Systems (i) experts with more than 75 years of collective
experience in performance and testing methodology. We are able to provide any System i®
configured to your exact specification so that you can stress, tune, and test your application,
measure performance, and determine workload capacity. The result of your benchmarking
experience will provide you with the information needed to make sound business and
computing decisions.

Oracle’s JD Edwards EnterpriseOne

JD Edwards EnterpriseOne is an integrated applications suite of comprehensive ERP
software that combines business value, standards-based technology, and deep industry
experience into a business solution with a low total cost of ownership (TCO).

� Only Oracle's JD Edwards EnterpriseOne offers you a choice of databases, operating
systems, and hardware so that you can build and expand your IT solution to meet your
business requirements.

� Only Oracle offers 70 JD Edwards EnterpriseOne applications modules to support a
diverse set of business operations.

For more information see:

http://www.oracle.com/applications/jdedwards-enterprise-one.html

IBM System i 570

IBM System i 570 is designed for the challenges faced by mid-sized and large enterprises
that need a powerful and highly versatile system for enterprise business processes and
applications. Based on scalable POWER6™ processor technology and featuring the highly
efficient i5/OS® operating environment, the System i 570 platform is ideally suited for the
deployment of your most critical applications. It offers exceptional business resiliency, high
security, and low operations costs, a combination that can help you focus your IT staff on
supporting new business initiatives and growth. The i570 also features advanced
virtualization technologies designed to promote high systems utilization and efficient power
usage. For more information see:

http://www-03.ibm.com/systems/i/hardware/570/index.html

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 31

http://www.oracle.com/applications/jdedwards-enterprise-one.html
http://www-03.ibm.com/systems/i/hardware/570/index.html

IBM WebSphere Application Server

IBM WebSphere® Application Server V6.1 is the foundation of the IBM WebSphere software
platform, and a key building block for a service-architecture (SOA). As the premier Java 2
Enterprise Edition (J2EE™) and Web services application platform, WebSphere Application
Server V6.1 delivers a high-performance transaction engine that can help you build, run,
integrate, and manage dynamic, on demand business applications.

As the core configuration of the WebSphere Application Server family, WebSphere
Application Server is optimized to ease administration in a scalable, single-server deployment
environment. This configuration is recommended for organizations that need to build and
deploy stand-alone, departmental applications and Web services, but do not require failure
bypass or workload-distribution options. WebSphere Application Server supports an
unparalleled range of platforms and can be deployed on servers of any size. New and
enhanced features deliver the flexible, open, resilient application infrastructure that you need
for an SOA. For more information see:

http://www-306.ibm.com/software/webservers/appserv/was/features/

32 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

http://www-306.ibm.com/software/webservers/appserv/was/features/

The team that wrote this IBM Redpaper

This paper was produced by a team of specialists from around the world working with the
International Technical Support Organization, Poughkeepsie Center.

Michael Meyers is an Advisory Software Engineer with 12 years of experience in the Power
Systems (i) Benchmark Center located in Rochester, Minnesota. He has been involved in
numerous benchmark projects with customers from around the globe. His previous
experience includes a variety of testing positions, technical support, AS/400® CISC to RISC
Migration, and software development.

Chris Beyers is a Software Engineer with two years of experience in the Power Systems (i)
Benchmark Center located in Rochester, Minnesota. He has worked with customers on
creating interactive solutions with both Rational Performance Tester and HP Loadrunner. His
areas of expertise include performance testing and workload simulation across a wide range
of client-side protocols.

Don Weber is a Senior IT Specialist with IBM Software Services - Rational, where he
supports testing automation tools. Don has 25 years of experience as an Application
Developer and Test Lead. His areas of expertise are software processes, software quality,
and security. His previous experience includes working as a CAD/CAM software engineer, a
process engineer, and an administration control expert.

Thanks to the following people for their contributions to this project:

Mike Ebbers
International Technical Support Organization, Poughkeepsie Center

David Chadwick
IBM Software Group - Rational, Raleigh, North Carolina

Dan Daley
STG Power Systems (i) Benchmark Center, Rochester, Minnesota

John Mullin
STG WW Mainframe Benchmark Center, Poughkeepsie, New York

Helen Olson-Williams
STG Power Systems (i) Benchmark Center, Rochester, Minnesota

 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne 33

34 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 35

®

Redpaper™

This document REDP-4456-00 was created or updated on November 18, 2008.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbooks@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

J2EE, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

AS/400®
i5/OS®
IBM®
Power Systems™

POWER6™
Rational®
Redbooks (logo) ®
System i®

Tivoli®
WebSphere®

Other company, product, or service names may be trademarks or service marks of others.

36 An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/legal/copytrade.shtml

	Go to the current abstract on ibm.com/redbooks
	An Experience Using Rational Performance Tester to Benchmark Oracle EnterpriseOne
	Introduction and overview
	Audience
	Project background

	Recording performance test scripts
	Modifying and enhancing performance test scripts
	Helpful naming conventions for page titles
	Removal of page element delays
	Group/ungroup pages and validate accuracy
	Timestamps
	Line items/multiple line items in grid data
	Looping
	Program versions
	Enabling verification points (content/response)
	Page title VPs

	Performance schedule creation
	Pacing test iterations
	Ramping up the workload
	Page requests and global think time changes

	Execution and analysis
	Appendix
	IBM Rational Performance Tester
	IBM Power Systems (i) Benchmark Center
	Oracle’s JD Edwards EnterpriseOne
	IBM System i 570
	IBM WebSphere Application Server
	The team that wrote this IBM Redpaper

	Notices
	Trademarks

