

ibm.com/redbooks Redpaper

Front cover

IBM WebSphere DataPower
SOA Appliances
Part I: Overview and Getting Started

Juan R. Rodriguez
Somesh Adiraju

Joel Gauci
Markus Grohmann

Davin Holmes
Tamika Moody

Srinivasan Muralidharan
Christian Ramirez
Adolfo Rodriguez

Understand and effectively deploy
DataPower SOA appliances

Parse and transform binary, flat
text, and XML messages

Learn how to extend your
SOA infrastructure

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM WebSphere DataPower SOA Appliances
Part I: Overview and Getting Started

April 2008

REDP-4327-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2008)

This edition applies to Version 3, Release 6, Modification 0 of IBM WebSphere DataPower Integration
Appliance.

This document created or updated on March 27, 2008.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this paper . ix
Become a published author . xi
Comments welcome. xi

Chapter 1. Introduction to DataPower SOA appliances. 1
1.1 Overview of the DataPower appliance . 2

1.1.1 Challenges in service-oriented networking . 2
1.1.2 Meeting SOA challenges with DataPower appliances . 3
1.1.3 DataPower appliance models . 4

1.2 DataPower deployment scenarios and use cases . 7
1.2.1 DataPower deployment scenarios . 7
1.2.2 DataPower use cases . 8

1.3 Configuration and usage of DataPower appliances . 13
1.4 SOA governance. 14

Chapter 2. Getting started . 17
2.1 Installing the device. 18

2.1.1 IBM Enterprise Rack (Power Systems). 18
2.1.2 Required tools and cables . 18
2.1.3 Rack mounting an IBM WebSphere DataPower XML Appliance 18

2.2 Setting up the DataPower appliance. 18
2.2.1 Connecting the DataPower appliance. 19
2.2.2 Initializing the appliance . 20

2.3 Launching the WebGUI. 23
2.4 Example: XML Firewall Service . 26

2.4.1 Creating an application domain . 27
2.4.2 Creating the XML Firewall Service in the domain . 30
2.4.3 Testing the Hello_XMLFW firewall . 37

2.5 Example: Web Service Proxy Service. 37
2.5.1 Creating a Web Service Proxy Service . 38
2.5.2 Testing the HelloWSProxy service . 42
2.5.3 Troubleshooting the configuration. 45

2.6 Summary. 49

Chapter 3. Enabling existing applications . 51
3.1 The enterprise service bus . 52

3.1.1 Definition of an enterprise service bus . 53
3.1.2 Enterprise requirements for an enterprise service bus . 55

3.2 A sample scenario and components . 56
3.3 Transformations . 58

3.3.1 WebSphere Transformation Extender basics . 58
3.3.2 Creating a type tree with Type Designer. 58
3.3.3 Mapping an input type tree to an output type tree by using Map Designer. 65

3.4 Deployment of the XML to COBOL transformations . 78
3.4.1 Creating the WebSphere MQ resources. 78

© Copyright IBM Corp. 2008. All rights reserved. iii

3.4.2 Importing transformation files developed in WebSphere Transformation Extender
Studio into the DataPower appliance . 78

3.4.3 Creating a multiprotocol gateway . 81
3.5 Running the application. 96
3.6 Adding XML schema validation. 100
3.7 Running the XML schema validation. 102
3.8 Summary. 104

Chapter 4. Securing communication channels with SSL . 105
4.1 SSL for transport level security . 106

4.1.1 Crypto profile. 106
4.1.2 SSL proxy profile. 110
4.1.3 Enabling the Probe for encrypted SSL request messages 111

4.2 Summary. 111

Chapter 5. Logging capabilities the in DataPower appliance 113
5.1 DataPower logging capabilities . 114

5.1.1 Log target, category, and level . 114
5.1.2 Configuring a system log . 116
5.1.3 Log action . 120
5.1.4 Logging from a custom template. 120

5.2 Error handling . 121
5.2.1 On-error processing action . 121
5.2.2 On-error processing rule . 121

5.3 Summary. 121

Chapter 6. XSLT programming. 123
6.1 XSL stylesheet namespace requirements. 124

6.1.1 Namespace declarations for DataPower extensions . 124
6.1.2 Namespace declarations for EXSLT extension functions 125

6.2 Using namespaces . 126
6.2.1 A DataPower extension element. 127
6.2.2 A DataPower extension function. 127
6.2.3 An EXSLT extension function . 128

6.3 Example 1: AAA policy based on custom templates . 129
6.3.1 Objectives and presentation . 129
6.3.2 DataPower configuration. 130
6.3.3 Incoming SOAP message. 131
6.3.4 XSL stylesheet details. 131

6.4 Example 2: Dynamic routing based on custom templates . 141
6.4.1 Objectives and presentation . 141
6.4.2 DataPower configuration. 142
6.4.3 Incoming SOAP message. 144
6.4.4 XSL stylesheet details. 144

6.5 Example 3: GET request transformed into a SOAP message 147
6.5.1 Objectives and presentation . 148
6.5.2 DataPower configuration. 148
6.5.3 Incoming HTTP GET request . 149
6.5.4 XSL stylesheet details. 149

6.6 Example 4: Debugging into the DataPower XSL stylesheet . 152
6.6.1 Objectives and presentation . 152
6.6.2 DataPower configuration. 152
6.6.3 Incoming SOAP message. 153
6.6.4 XSL stylesheet details. 153

iv IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.7 Example 5: Logging from custom templates . 155
6.7.1 Objectives and presentation . 155
6.7.2 DataPower configuration. 156
6.7.3 Incoming request . 158
6.7.4 XSL stylesheet details. 159

6.8 Example 6: On-error handling using custom templates . 160
6.8.1 Objectives and presentation . 161
6.8.2 DataPower configuration. 161
6.8.3 Incoming request . 162
6.8.4 XSL stylesheet details. 162

6.9 Summary. 166

Chapter 7. Web 2.0 support . 167
7.1 Overview of Web 2.0 . 168

7.1.1 Web 2.0 technologies . 168
7.1.2 Web 2.0 and DataPower appliances. 168

7.2 Example of Web 2.0 integration . 168
7.2.1 SOAP Web service . 169
7.2.2 Atom feed . 169
7.2.3 XSL transformations . 170
7.2.4 DataPower configuration. 171

7.3 Demonstration. 177
7.4 Summary. 178

Appendix A. XSL programming issues . 179
The cURL commands . 180
XML firewall configuration details. 180

Appendix B. Additional material . 183
Locating the Web material . 183
Using the Web material . 183

System requirements for downloading the Web material . 183
How to use the Web material . 184

Related publications . 185
IBM Redbooks . 185
Other publications . 185
Online resources . 186
How to get Redbooks. 186
Help from IBM . 186

 Contents v

vi IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DataPower device®
DataPower®
DB2®
developerWorks®

IBM®
IMS™
Lotus Notes®
Lotus®
Notes®

Rational®
Redbooks®
Redbooks (logo) ®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

Java, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Expression, Internet Explorer, Microsoft, SQL Server, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Preface

IBM® WebSphere® DataPower® SOA Appliances represent an important element in the
holistic approach of IBM to service-oriented architecture (SOA). IBM SOA appliances are
purpose-built, easy-to-deploy network devices that simplify, secure, and accelerate your XML
and Web services deployments while extending your SOA infrastructure. These appliances
offer an innovative, pragmatic approach to harness the power of SOA. By using them, you can
simultaneously use the value of your existing application, security, and networking
infrastructure investments.

This series of IBM Redpaper publications is written for architects and administrators who
need to understand the implemented architecture in WebSphere DataPower appliances to
successfully deploy it as a secure and efficient enterprise service bus (ESB) product. These
papers give a broad understanding of the new architecture and traditional deployment
scenarios. They cover details about the implementation to help you identify the circumstances
under which you should deploy DataPower appliances. They also provide a sample
implementation and architectural best practices for an SOA message-oriented architecture in
an existing production ESB environment.

Part 1 of the series, this part, provides a general overview of DataPower SOA appliances and
a primer to using the appliances in common scenarios. The entire IBM WebSphere
DataPower SOA Appliances series includes the following papers:

� IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting Started,
REDP-4327

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and Authorization,
REDP-4364

� IBM WebSphere DataPower SOA Appliances Part III: XML Security Guide, REDP-4365

� IBM WebSphere DataPower SOA Appliances Part IV: Management and Governance,
REDP-4366

The team that wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Raleigh Center.

Juan R. Rodriguez is a Consulting IT professional and Project Leader at the IBM ITSO
Center, Raleigh. He has an Master of Science (MS) degree in Computer Science from Iowa
State University. He writes extensively and teaches IBM classes worldwide on Web
technologies and information security. Before joining the IBM ITSO, Juan worked at the IBM
laboratory in Research Triangle Park, North Carolina, as a designer and developer of
networking products.

Somesh Adiraju is an Integration Architect with Ultramatics Inc., in Florida. He has nine
years of experience in working with Enterprise Application Integration in areas of banking,
finance, and telecommunications. His interests are in design, architecture, and developing
enterprise scale applications. He specializes in the use of WebSphere MQ, Message Broker
and IBM Tivoli® Monitoring. Somesh holds a Bachelor of Technology degree from Andhra
University, India.

© Copyright IBM Corp. 2008. All rights reserved. ix

Joel Gauci has been working for IBM Global Business Services in France since 2001, as an
Advisory IT Specialist. He mainly works in design and implementation on portal and Web
services platforms. He has worked on SOA and WebSphere DataPower projects since May
2006, for leading firms in the mobile telephony area. Joel holds a master degree in computer
science and engineering from l’Ecole d’Ingénieurs du Pas-de-Calais School (EIPC), France.

Markus Grohmann is an IT Specialist working as an IBM Business Partner in Austria. He
has five years of experience with a broad range of IBM products and their implementation in
customer environments. Markus graduated from Salzburg University of Applied Sciences and
Technologies in 2002.

Davin Holmes is a Staff Software Engineer for IBM Software Group, Tivoli. He has worked in
software development for seven years in a variety of technical areas, which include
smartcards, enterprise software integration, and Web services, with a particular focus on
information security. Davin is the team lead for the DataPower and Tivoli Security integration
effort located at the Gold Coast, Australia site of the Australia Development Laboratory (ADL).
He has degrees in electrical and computer engineering and optoelectronics from Queensland
University of Technology and Macquarie University.

Tamika Moody is a WebSphere Business Integration Message Broker/WebSphere
DataPower Consultant and IT Specialist for IBM. She has over seven years of experience in
the IT integration area. Tamika has broad experience in leading middleware engagements
ranging from electronic data interchange (EDI) and business-to-business (B2B)
implementations to design, implementation, and problem determination of DataPower and
IBM middleware solutions.

Srinivasan Muralidharan is an Advisory Engineer with 15 years of industrial experience and
nine years with IBM. He is currently working on DataPower related projects at the IBM
WebSphere Technology Institute. He is widely experienced in SOA-related technologies in all
tiers of the software development stack. He has studied SOA performance with DataPower
appliances. Srinivasan has also investigated integrating DataPower with other mid-tier and
back-end traditional components, such as WebSphere Application Server, MQ, CICS®, and
IMS™, in the SOA context of reusing existing systems and enterprise modernization.

Christian Ramirez is an IBM Software Solutions Architect working for GBM Corporation, an
IBM Alliance Company, located in San José, Costa Rica. He has ten years of experience with
IBM products and five years experience as an Integration Solution Architect. He has worked
with Lotus® Notes®, WebSphere MQ, and WebSphere BI Message Broker. In addition, he
has been part a WebSphere Pre-Sales team and has implemented several integration
projects.

Adolfo Rodriguez is a Software Architect within the IBM WebSphere Technology Institute
(WSTI). He leads a team of engineers who focus on emerging technologies in WebSphere
products and, more recently, DataPower SOA appliances. His recent contributions include
projects in the areas of Web services enablement, XML processing, SOA management, and
application-aware networking. His primary interests are networking and distributed systems,
application middleware, overlays, and J2EE™ architecture. Adolfo is also an Assistant
Adjunct Professor of Computer Science at Duke University, where he teaches networking
courses. He has written 12 books and numerous research articles. He holds four degrees
from Duke University: a Bachelor of Science in Computer Science, a Bachelor of Arts in
Mathematics, MS in Computer Science, and a Ph.D. in Computer Science (Systems).

x IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Thanks to the following people for their contributions to this project:

Robert Callaway
John Graham
Marcel Kinard
IBM Research Triangle Park, North Carolina, USA

Andy Grohman
IBM Charlotte, North Carolina, USA

Bill Hines, Senior Certified Consulting I/T Specialist, IBM Software Services for WebSphere,
for use of his article “The (XML) threat is out there...”

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 1. Introduction to DataPower SOA
appliances

The emergence and proliferation of the Extensible Markup Language (XML) and Web
services has seen an explosion in the middleware infrastructure required to support them. An
important component in this middleware architecture is in the enterprise service bus (ESB), a
collection of runtime components that provides service intermediation such as routing,
transformation/bridging, management, security, and other control functions.

While XML and SOAP enable a rich application-aware communication lingua franca, their
emergence in this space has been riddled by three key challenges. First, the size and
complexity of traditional software-based middleware product installations has increased
installation and maintenance costs of service-oriented architecture (SOA) deployments and
decreased overall solution consumability. Second, the text-based, application-centric parsing
and processing demands placed on middleware infrastructures have negatively affected
overall system performance. While most middleware solutions “scale out”, the overall effect is
increased license and operational costs as more instances of individual middleware
components must be deployed to meet service consumer demand. Third, the new genre of
application-awareness has likewise led to a new genre of security attacks and exposures that
use the architecture of middleware components.

DataPower SOA appliances address these three challenges with the creation of specialized,
purpose-built, consumable SOA appliances that redefine the boundaries of middleware. As
the “hardware ESB,” DataPower SOA appliances are an increasingly important part of the
IBM ESB family.

In this chapter, we introduce you to the DataPower appliance and present the most common
scenarios and use cases. In addition, we discuss configuration and usage of the DataPower
appliance as well as SOA governance.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Overview of the DataPower appliance

With SOAs, composite applications are created that are comprised of reusable,
loosely-coupled service components. The technical foundation of an SOA is in the support for
the XML and Web services built on top of it. By using SOAP, SOA clients can invoke services
(RPC-style) without explicit support for a wide variety of transport protocols and message
formats. By having a SOAP facade in front of an existing service, virtualization can occur
where clients invoke a virtualized version of the underlying service. It eliminates the need to
understand intricate details of the service’s implementation.

In this context, the use of XML enables data to be self-describing with explicit language
support for common operations that manipulate the data. For example, by using the XPath
language, you have a consistent way to select data items from within an XML document. In
SOA, service intermediaries can use XML and other application-layer data to route, secure,
control, transform, or otherwise process service requests and responses, decoupled from the
actual service implementation that fulfills each particular request.

1.1.1 Challenges in service-oriented networking

Although greatly appealing, the promise of loosely-coupled, virtualized services in SOA
comes at a price. Because the data-centric complexity of XML and SOA operations has
increased, traditional software-based middleware has struggled to keep up. In particular,
software-based service intermediaries have emerged as natural extensions to traditional
server-side service stack environments. Unfortunately, their success and impact have been
inhibited by three fundamental challenges of consumability, security, and performance.
DataPower SOA appliances overcome these challenges.

Consumability
Often, middleware-service stacks have an underlying software engine (generally J2EE in
origin) upon which a Web service hosting engine is built. In some sense, this group of
products has been built by joining together necessary components in an embedded fashion.

For example, a J2EE servlet engine can be extended to receive SOAP over HTTP by
providing a new Web service servlet. The Web service itself is deployed on this servlet. The
result is a system built from multiple software layers, each with its own configuration and
maintenance requirements. Taken individually, each layer’s requirements may prove tedious.
Taken together, the collective set of installation and maintenance requirements often proves
prohibitive. For example, patch upgrades that affect a layer in the stack of embedded software
must be coordinated in a single atomic action. Further complicating this problem is the focus
that the traditional software industry has. The industry tends to favor the addition of more
functions to a software product over increasing the usability of the existing function.

Security
The advent of SOA has created a common communication framework to understand and
operate on application data that has never been seen before. With self-describing XML,
intermediaries can extract portions of the data stream and affect application-aware policies.

Unfortunately, this has also enabled a new opportunity for malicious attacks. That is, as XML
regularly flows from client to enterprise through IP firewalls without much impediment, the
obvious place to attack is in the application data stream itself, the XML. While we are just
beginning to understand the repercussions of these types of attacks, they are emerging. XML
denial-of-service (XDoS) attacks seek to inject malformed or malicious XML into middleware
servers with the goal of causing the server to churn away valuable cycles and processing the

2 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

malicious XML. Enterprise-ready application servers are susceptible to many of these types
of attacks, leaving a security hole open that must be closed.

Performance
Another key challenge that has emerged with the adoption of XML is in the computational
cost of XML processing. Computing on XML in traditional software-based middleware is
orders of magnitude more costly (from the computational sense) than native data structures.
XML must be parsed into the native data structures of the local computer’s architecture.

Further, XML transformations exacerbate processing needs because they require multiple
passes through the XML structure and are highly sensitive to the transformation processing
engine. Securing XML and SOA at the application (XML) level provides barriers that can
requires as much as 60 times the processing capability as plain XML, based on typical
workloads.

Additionally, it is often prohibitive from a performance point of view to enable key
requirements such as monitoring, auditing, and security. Customers end up sacrificing those
functions to keep equipment costs from growing unwieldly.

1.1.2 Meeting SOA challenges with DataPower appliances

The IBM WebSphere DataPower SOA Appliances family contains rack-mountable network
devices that overcome many of the challenges that face SOA and XML today. At a high-level,
the IBM WebSphere DataPower SOA Appliances offer the following features:

� 1U (1.75-inch thick) rack-mountable, purpose-built network appliances

� XML/SOAP firewall, field-level XML security, data validation, XML Web services access
control, and service virtualization

� Lightweight and protocol-independent message brokering, integrated message-level
security and fine-grained access control, and the ability to bridge important transaction
networks to SOAs and ESBs

� High performance, multi-step, wire-speed message processing, including XML, XML
Stylesheet Language Transformation (XSLT), XPath, and XML Schema Definition (XSD)

� Centralized Web services policy and service-level management

� Web services (WS) standard support, such as WS-Security, Security Assertion Markup
Language (SAML) 1.0/1.1/2.0, portions of the Liberty Alliance protocol, WS-Federation,
WS-Trust, XML Key Management Specification (XKMS), Radius, XML Digital Signature,
XML-Encryption, Web Services Distributed Management (WSDM),
WS-SecureConversation, WS-Policy, WS-SecurityPolicy, WS-ReliableMessaging, SOAP,
Web Services Description Language (WSDL), Universal Description, Discovery, and
Integration (UDDI)

� Transport layer flexibility, which supports HTTP/HTTPS, MQ, Secure Sockets Layer (SSL),
File Transfer Protocol (FTP), and others

� Scalable, wire-speed, any-to-any message transformation, such as arbitrary binary, flat
text and XML messages, which include COBOL copybook, CORBA, CICS, ISO 8583,
ASN.1, EDI, and others

Chapter 1. Introduction to DataPower SOA appliances 3

DataPower appliances can meet the challenges that are present in an SOA network with the
following features:

� Consumable simplicity

An easy-to-install and easy-to-maintain network appliance that can satisfy both application
and network operational groups, supporting current and emerging standards, as well as
readily available XML Web services standards.

� Enhanced security

Key support that includes XML/SOAP firewall and threat protection, field-level XML
security, data validation, XML Web services access control, service virtualization, and SSL
acceleration.

� Acceleration

A drop-in solution that can streamline XML and Web service deployments, helping to
lower the total cost of ownership and accelerate a return on your assets, as you continue
to move to SOA. SOA appliances are purpose-built hardware devices that are capable of
offloading overtaxed servers by processing XML, Web services, and other message
formats at wire speed.

1.1.3 DataPower appliance models

In this section, we explain each of the three WebSphere DataPower appliance models.
Figure 1-1 illustrates the role of these models.

Figure 1-1 DataPower SOA Appliance models

IBM WebSphere DataPower XML Security Gateway XS40
The DataPower XML Security Gateway XS40 appliance provides a security-enforcement
point for XML and Web service transactions. It offers encryption, firewall filtering, digital
signatures, schema validation, WS-Security, XML access control, XPath, and detailed.

4 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

In addition, the XS40 model offers the following features:

� XML/SOAP firewall

The DataPower XML Security Gateway XS40 filters traffic at wire speed, based on
information from layers two through seven of the protocol stack. It filters traffic from
field-level message content and SOAP envelopes to IP address, port or host name,
payload size, and other metadata. Filters can be predefined with an easy point-and-click
XPath filtering GUI and automatically uploaded to change security policies based on the
time of day or other triggers.

� XML/SOAP data validation

With its unique ability to perform XML schema validation as well as message validation, at
wire speed, the XS40 model ensures that incoming and outgoing XML documents are
legitimate and properly structured. It protects against threats such as XDoS attacks, buffer
overflows, or vulnerabilities created by deliberately or inadvertently malformed XML
documents.

� Field-level message security

The XS40 model selectively shares information through encryption or decryption and
signing or verification of entire messages or individual XML fields. These granular and
conditional security policies can be based on nearly any variable, including content, IP
address, host name, or other user-defined filters.

� XML Web services access control

The XS40 model supports a variety of access control mechanisms, including WS-Security,
WS-Trust, X.509, SAML, SSL, Lightweight Directory Access Protocol (LDAP), RADIUS,
and simple client/URL maps. The XS40 model can control access rights by rejecting
unsigned messages and verifying signatures within SAML assertions.

� Service virtualization

XML Web services require companies to link partners to resources without leaking
information about their location or configuration. With the combined power of URL
rewriting, high-performance XSL transforms and XML/SOAP routing, the XS40 model can
transparently map a rich set of services to protected back-end resources with high
performance.

� Centralized policy management

With the wire-speed performance of the XS40 model, enterprises can centralize security
functions in a single drop-in device that can enhance security and help reduce ongoing
maintenance costs. Simple firewall functionality can be configured via a GUI and be
running in minutes. By using the power of XSLT, the XS40 model can also create
sophisticated security and routing rules. Because the XS40 model works with leading
policy managers, it is an ideal policy execution engine for securing next generation
applications. Manageable locally or remotely, the XS40 model supports Simple Network
Management Protocol (SNMP), script-based configuration, and remote logging to
integrate seamlessly with leading management software. Its emerging support for
WS-Policy and WS-SecurityPolicy further augments these capabilities.

� Web services management/service level management

The XS40 model has support for WSDM, UDDI, WSDL, Dynamic Discovery, and broad
support for service-level management (SLM) configurations. With this support, it natively
offers a robust Web services management framework for the efficient management of
distributed Web service endpoints and proxies in heterogeneous SOA environments. SLM
alerts and logging, as well as pull and enforce policies, help enable broad integration
support for third-party management systems and unified dashboards, in addition to robust
support and enforcement for governance frameworks and policies.

Chapter 1. Introduction to DataPower SOA appliances 5

IBM WebSphere DataPower Integration Appliance XI50
The DataPower Integration Appliance XI50 model provides transport-independent
transformations between binary, flat text files and XML message formats. Visual tools are
used to describe data formats, create mappings between different formats, and define
message choreography. The XI50 appliance can transform binary, flat text, and other
non-XML messages to help offer an innovative solution for security-rich XML enablement,
ESBs, and mainframe connectivity.

In addition, the XI50 model offers the following features:

� Any-to-any transformation engine

The XI50 model can parse and transform arbitrary binary, flat text, and XML messages,
including EDI, COBOL copybook, ISO 8583, CSV, ASN.1, and ebXML. Unlike approaches
based on custom programming, the patented DataGlue technology of the DataPower
appliance uses a fully declarative, metadata-based approach.

� Transport bridging

With support for a wide array of transport protocols, the XI50 is capable of bridging
request and response flows to and from protocols such as HTTP, HTTPS, MQ, SSL, IMS
Connect, FTP, and more.

� Integrated message-level security

The XI50 model includes mature message-level security and access control functionality.
Messages can be filtered, validated, encrypted, and signed, helping to provide more
secure enablement of high-value applications. Supported technologies include
WS-Security, WS-Trust, SAML, and LDAP.

� Lightweight message brokering

– Sophisticated multi-step message routing, filtering, and processing
– Multiple synchronous and asynchronous transport protocols
– Detailed logging and audit trail, including non-repudiation support

IBM WebSphere DataPower XML Accelerator XA35
The DataPower XML Accelerator XA35 model can help speed common types of XML
processing by offloading this processing from servers and networks. It can perform XML
parsing, XML schema validation, XPath routing, XSLT, XML compression, and other essential
XML processing with wire-speed XML performance. The XA35 offers the following benefits:

� Unmatched performance

The purpose-built message processing engine of the DataPower appliance can deliver
wire-speed performance for both XML-to-XML and XML-to-HTML transformations with
increased throughput and decreased latency.

� Ease of use

The self-learning XA35 model provides drop-in acceleration with virtually no changes to
the network or application software. No proprietary schemas, coding or APIs are required
to install or manage the device. In addition, it supports popular XML integrated
development environments (IDEs) to help reduce the number of hours spent in the
development and debugging of XML applications.

� Helps reduce infrastructure costs

Unlike simple content switches that only redirect business documents, the DataPower
XML Accelerator XA35 model fully parses, processes, and transforms XML with
wire-speed performance and scalability to help reduce the need for stacks of servers. The
XA35 model also supports accelerated SSL processing to help further reduce the load on
server software.

6 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

� Helps cut development costs

With the XA35 model, multiple applications can use a single, uniformed XML processing
layer for all XML processing needs. By standardizing on high-performance hardware
appliances, enterprises can deploy sophisticated applications while helping to eliminate
unnecessary hours of application debugging and tuning for marginal performance gains.

� Intelligent XML processing

In addition to wire-speed processing, DataPower appliances support XML routing, XML
pipeline processing, XML compression, XML/XSL caching, as well as other intelligent
processing capabilities to help manage XML traffic.

� Advanced management

The DataPower XML Accelerator XA35 model provides real-time visibility into critical XML
statistics such as throughput, transaction counts, errors, and other processing statistics.
Data network-level analysis is provided and includes server health information, traffic
statistics, and management and configuration data.

For full product information about IBM WebSphere DataPower SOA Appliances, refer to the
following Web page:

http://www-306.ibm.com/software/integration/datapower/index.html

1.2 DataPower deployment scenarios and use cases

DataPower SOA appliances provide a robust, secure platform for middleware integration that
can be deployed in an array of deployment scenarios to perform a variety of middleware use
cases. In this section, we highlight the most common scenarios and use cases.

1.2.1 DataPower deployment scenarios

Figure 1-2 on page 8 illustrates common scenarios for deploying DataPower SOA appliances
on the intranet, the demilitarized zone (DMZ), and a federated extranet, such as for a
business partner. Of particular importance is the capability of the DataPower appliance to
pass the most stringent requirements for enterprise DMZ deployment. The DataPower
architecture is a secure environment with absolutely no Java™ on the appliance. Network
ports are secured by default with no remote access beyond its command line interface (CLI)
over the secure SSH protocol, WebGUI over HTTPS, and XML management APIs over
HTTPS.

Chapter 1. Introduction to DataPower SOA appliances 7

http://www-306.ibm.com/software/integration/datapower/index.html

Figure 1-2 DataPower deployment scenarios

1.2.2 DataPower use cases

The DataPower appliance fulfills key roles within an SOA environment. These roles, or use
cases, are discussed in this section.

Monitoring and management
The architecture and functional features of the DataPower appliance make it an attractive
platform for centralized management and control. With the ability of the DataPower appliance
to perform deep-content introspection at wire speed enables, the device can monitor service
requests and responses without negatively affecting overall performance of their service
invocation. DataPower appliances offer a number of different mechanisms for monitoring
traffic through the device from low-level service statistics to more elaborate SLM:

� Statistics

The DataPower appliance provides real-time visibility into critical statistics such as
throughput, transaction counts, errors, message sizes, and other processing statistics.
Data network-level analysis is provided and includes server health information, traffic
statistics, and management and configuration data.

� Remote management

The devices are capable of generating SNMP events. Script-based configuration is
provided. Remote logging support integrates seamlessly with leading management
software.

� Web services management

The DataPower appliance supports WSDM, UDDI, WSDL, and Dynamic Discovery.

� Service-level management

The DataPower appliance allows the specification of quality of service (QoS) policies that
shape or throttle traffic based on service-level criteria. This enables the prioritization of
service requests in support of business goals.

8 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

� Integration with various monitoring products such as IBM Tivoli Enterprise Monitoring and
Netegrity SiteMinder

Figure 1-3 illustrates how DataPower appliances can forward service-level information to
the IBM Tivoli Composite Application Management for SOA, which in turn presents
graphical views of service performance in the SOA.

Figure 1-3 Centralized monitoring and management with the DataPower appliance

XML threat protection and security
Traditional firewalls only protect traffic at the IP level. Web services effectively tunnel through
the IP firewall layer via standard HTTP or HTTPS and expose the organization’s applications
to completely new threats. We must ensure that only valid requests for valid services from
genuine clients penetrate the enterprise boundary. That is, an XML firewall is needed.

The seriousness of these new threats should not be understated. The article “The (XML)
threat is out there...” by Bill Hines clearly defines the breadth and seriousness of different
attacks that are possible to any service exposed using XML. You can find this article on IBM
developerWorks® at the following address:

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines/
0603_col_hines.html

The article concludes with the following comments:

� To truly harden a system by using Web services, several important security steps
(recommended by Gartner and others) are required:

a. Inspect messages for well-formedness.

b. Validate schema.

c. Verify digital signatures.

d. Sign messages.

e. Implement service virtualization to mask internal resources via XML transformation
and routing.

f. Encrypt data at the field level.

� Systems hosting Web services, particularly public Internet-facing services, should
consider the case for hardened gateway devices to act as XML firewalls to protect systems
from XML threats.

Chapter 1. Introduction to DataPower SOA appliances 9

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html

DataPower appliances address these issues and more by delivering a robust XML firewall for
the enterprise. DataPower appliances introduce sophisticated checks, including the following
checks, on the incoming XML as illustrated in Figure 1-4:

� XML/SOAP firewall, filtering based on message content, headers, or other network
variables

� Incoming/outgoing data validation

� Data schema validation (XML and binary)

� XML threat protection

� Single message XDoS protection

� Multiple message XDoS protection

� Message tampering protection

� Protocol threat protection

� XML virus protection

� Dictionary attack protection

� SQL injection protection

Figure 1-4 Application-layer thread protection with the DataPower appliance

Protection from XML threats is only one way in which enterprise systems must be protected.
In addition, DataPower appliances provide a sophisticated set of security capabilities, which
includes the following selection:

� XML Web services access control

DataPower appliances support a variety of access control mechanisms, including
WS-Security, WS-Trust, X.509, SAML, SSL, LDAP, RADIUS, and simple client/URL maps.
They can control access rights by rejecting unsigned messages and verifying signatures
within SAML assertions.

� Authentication and authorization

Appliances directly support IBM Tivoli Federated Identity Manager for capabilities such as
mapping identities for downstream access and retrieve authorization in IBM Tivoli Access
Manager.

� Field level message security

DataPower appliances can selectively share information through encryption and
decryption as well as the signing and verification of entire messages or of individual XML
fields. These granular and conditional security policies can be based on nearly any
variable, including content, IP address, host name, or other user-defined filters.

10 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Functional acceleration
XML has proven to be a great force in the software industry, and all the more so with the
current focus on SOA and the related increased adoption of Web services. Clients need XML
for implementing SOA, but cannot afford to spend precious CPU cycles processing it. The
DataPower appliance pushes the XML processing into the firmware and enables enterprises
to focus applications on doing actual business logic.

The flexible, self-describing, language-independent format of XML makes decoupling partner
systems much easier. However, the heavy reliance on XML for data transfer between services
presents problems. For example, XML can result in lengthy message payloads and large
amounts of overhead for schema validation and parsing. The processing overhead of dealing
with XML can tax application servers and middleware infrastructure, drastically decreasing
performance.

The evolution of network infrastructure has seen an increasing trend toward replacing general
purpose software systems with dedicated hardware for increased performance. In this same
way, there is an evolution toward the usage of dedicated hardware for performing repetitive
XML tasks such as parsing, schema validation, and XSL translation.

Service protocols based on XML also lack any inherent built-in security mechanisms. SOAP
over HTTP passes potentially sensitive data in plain text over the network. While there have
been emerging standards, such as WS-Security, to help deal with security concerns,
implementing these standards further drains computing resources on critical servers.

The IBM line of DataPower SOA appliances helps address the performance and security
needs of enterprise-level SOA architectures by off-loading the XML processing onto
dedicated hardware. In doing so, CPU resources are freed of application servers and
middleware platforms to provide higher service throughput. The performance advantage of
DataPower appliances are often close to seventy times higher than when using general
purpose systems alone. When digital signature checking and message encryption/decryption
take place, a great deal of overhead occurs in processing messages. The XML appliance can
off-load this processing from application servers onto dedicated hardware that is capable of
performing these tasks in a fraction of the time.

Figure 1-5 shows an example of a Web service flow that is sent encrypted by using
WS-Security standards from a client through the Internet. The intermediary DataPower
appliance decrypts and authenticates the message before forwarding it in the clear over the
last mile hop to an eventual service provider. The appliance could have easily secured the
last mile encrypted under a transport-level mechanism, such as SSL, while avoiding the
expensive WS-Security processing on the service provider.

Figure 1-5 Functional acceleration with the DataPower appliance

Chapter 1. Introduction to DataPower SOA appliances 11

Application-aware routing and data aggregation
The DataPower appliance enables the classification of data requests based on service- and
application-level information. This information can be used in a number of ways:

� Routing

The hosting of a service is likely to change over time as demands for its availability and
resilience increase. Its URL, and possibly even its hosting server, may change. In a mature
SOA, there may even be more than one implementation of the service. At runtime, the
DataPower appliance is capable of choosing from these instances depending on the
dynamic network conditions and service-level information, such as with the XPath
language as shown in Figure 1-6.

Clients of the service should remain unaffected by these changes. With DataPower
appliances, a Web services proxy can be configured, decoupling the client completely
from the implementation. Adjustments and translations can be made to all relevant
metadata of the service from URL re-writing through to WS-Addressing and HTTP header
manipulation. Routing information can be supplied in a variety of different ways including
direct configuration, setting routing data as part of a transformation, and database or
registry lookups.

� Data model and namespace

Wherever possible, enterprise services should aim to expose a standardized data model.
This model may, and arguably should, be different from that of the actual implementation
of the service so that changes to the service do not affect the clients of the service.
DataPower appliances allow wire-speed translation of data models by using XSLT,
completely decoupling the client from the implementation.

� Versioning

The routing and data model and namespace capabilities can be brought together to assist
with service versioning. Clients should be insulated from version changes to a service
interface. In practice, it is difficult to notify all users of a service interface change. Rather
than maintain several versions of the implementation of the service, the DataPower
appliance can translate between old and new URLs, host names, data models, headers,
and any other relevant metadata.

� Message enrichment

Figure 1-6 further shows how the DataPower appliance can retrieve data from a database
to enable lookup-based routing. In addition, it can augment service requests as they pass
through the appliance. In this way, messages can be enriched with data dynamically.

Figure 1-6 Content routing and aggregation with the DataPower appliance

12 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Protocol and format bridging
With a DataPower appliance, services can be exposed by using different formats and
protocols than the ones in which they are implemented. Ultimately, this translation capability
encourages reuse and lowers total cost of ownership (TCO) by avoiding costly
re-implementation of existing services. More interestingly, DataPower appliances can expose
services by using several different formats and protocols at once, thus supporting a wide
range of clients:

� Protocols

Services can be exposed and called by using any combination of the typical protocols that
are used for passing SOAP and XML messages in an SOA, such as HTTP, HTTPS and
Java Message Service (JMS). Direct communication with WebSphere MQ and IMS
Connect is also supported.

� Any-to-any transformation engine

If the enterprise’s standard protocols reach beyond the commonly accepted Web service
data formats, appliances can parse and transform arbitrary binary, flat text, and XML
messages, including EDI, COBOL copybook, ISO 8583, CSV, ASN.1, and ebXML. Unlike
approaches based on custom programming, the patented DataGlue technology of the
DataPower appliance uses a fully declarative, metadata-based approach that delivers
wire-speed performance, thus lowering the heavy cost of integration bridging.

Figure 1-7 shows an example of how an existing enterprise service, such as a CICS
application, can leverage a DataPower appliance to provide its Web service facade. In this
example, the DataPower appliance is converting the SOAP format over the HTTP transport to
the COBOL copybook format over the MQ transport. The support of the DataPower appliance
for transports and protocols is orthogonal, meaning it can support any format over any
transport to any other combination. For example, the illustration in Figure 1-7 could have
easily been a COBOL/MQ facade to an existing SOAP/HTTP Web service.

Figure 1-7 Bridging with the DataPower appliance

1.3 Configuration and usage of DataPower appliances

DataPower appliances provide a powerful intermediation architecture with a heavy emphasis
on ease-of-use and consumability. Service intermediation is declaratively defined by using a
notion of a flow of basic mediation actions. An action can correspond to basic functions of
intermediary processing, such as routing, decryption, or logging. By using these building
blocks, the administrator builds these collective flows by augmenting actions as processing
steps. To this end, the DataPower appliance provides a powerful WebGUI as shown in

Chapter 1. Introduction to DataPower SOA appliances 13

Figure 1-8. It shows the palette of common mediations (actions) that can be dropped in the
message processing policy.

Figure 1-8 Award-winning WebGUI of the DataPower appliance

In addition to the WebGUI, the DataPower appliance provides a CLI that is accessible via
SSH and Telnet. Programmatic support is enabled through XML management interfaces,
such as the Service-Oriented Management API and the Appliance Management Protocol
(AMP). An Eclipse plug-in enables tooling support for configuration. Multiple appliances can
be managed together as part of a set through the use of IBM Tivoli Composite Appliance
Management System Edition for WebSphere DataPower.

1.4 SOA governance

The clear fit of the DataPower appliance for gateway-style use in the ESB pattern means that
it becomes the single entry point for service requests. This is the primary place to perform
service virtualization and impose common policies on the services of the enterprise. Those
common policies and information concerning where services are to be found can be
configured directly into the gateway. However, they are really part of the wider cataloging of
services for the enterprise. It is preferable if the gateway simply acts upon the policies set at
the enterprise level. This is one of the reasons why a service registry is needed.

With the introduction of the WebSphere Service Registry and Repository product, all of the
related products in the SOA Foundation suite are being upgraded to include mechanisms to
contact the registry at run time or interact with the registry during configuration time. This
includes integration with other key ESB products such as WebSphere Enterprise Service Bus
and WebSphere Message Broker.

14 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

The following examples of registry usage may be relevant to DataPower appliances:

� Validation

Access is given to schemas for validation of XML messages at configuration time. This is
principally relevant to the XML firewall role for DataPower appliances, but potentially also
to the ESB Gateway.

� Service virtualization

Access is made to the registry at run time in order to acquire the actual endpoint based on
a logical profile for the service. This is particularly applicable when DataPower appliances
are used in the role of an ESB Gateway.

� Policy

Access is given at run time, configuration time, or both to such policies as a WS-Policy
from the registry. This can be for either the XML firewall or for the ESB Gateway roles, with
different types of policy information being relevant to each. This is also particularly relevant
to the gateway to multiple ESBs role where layers of ESB Gateways each have a policy.

� Availability and performance

Runtime access is given to data-enable choices between implementations of services
based on their availability and performance characteristics. This is particularly relevant to
the ESB Gateway role.

� Namespace translation

Access is given to standard transformations between known namespaces, most probably
provided as XSLT files. This is particularly relevant to the ESB Gateway pattern where
routing between different versions of a service might be required to seamlessly support
old clients against new implementations of a service. This can also be relevant where
services are promoted up the gateway hierarchy and need to conform to different object or
namespace structures.

The reach of the registry is much wider than this alone. You can find more detail about
WebSphere Service Registry and Repository in the following resources:

� “IBM WebSphere Service Registry and Repository V6 maximizes the business value of
service-oriented architecture (software announcement)”

http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF

� WebSphere Service Registry and Repository Handbook, SG24-7386

http://www.redbooks.ibm.com/abstracts/sg247386.html?Open

Chapter 1. Introduction to DataPower SOA appliances 15

http://www.redbooks.ibm.com/abstracts/sg247386.html?Open
http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF

16 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 2. Getting started

In this chapter, we provide a step-by-step procedure to initialize the DataPower appliance for
use in minutes. We explain how to install and configure the appliance, log in via the WebGUI
Control Panel, and set up two simple services that are provided by the device. We introduce
the following two basic services:

� Web Service Proxy Service, which presents a Web service facade regardless of the nature
of the back-end service

� XML Firewall Service, which redirects client requests for a Web page to an HTTP server

You can use the services for verification that the initialization procedure was successful.

2

© Copyright IBM Corp. 2008. All rights reserved. 17

2.1 Installing the device

In the following steps, we summarize the installation of an IBM WebSphere DataPower XML
Appliance (XA35 XML Accelerator, XS40 XML Security Gateway, or XI50 XML Integration
Appliance) in a rack. We include additional part numbers that are needed for use with IBM
Enterprise Rack (Power Systems).

2.1.1 IBM Enterprise Rack (Power Systems)

IBM has conducted Rack Fragility Testing for the DataPower appliance in the IBM Enterprise
Rack. For clients who want to install and integrate DataPower appliances with Power Servers
in an IBM Enterprise Rack, note that the following parts are required for installation:

� PN 74F1823, Nut clip (2x)
� PN 26H7213, M5 screw (2x)

IBM is planning to update the IBM WebSphere DataPower Common Installation Guide with
these part numbers. You can download this guide from the Web at the following address:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower
&S_PKG=xi50_9003_s2&dlmethod=http

2.1.2 Required tools and cables

Installation of the IBM WebSphere DataPower XML Appliance requires the following
customer-provided tools and cables:

� Medium cross-tip (Phillips) screwdriver

The appliance chassis is assembled with security screws that prevent access beyond
customer-accessible areas.

� Cables for connection to the appliance Ethernet ports

2.1.3 Rack mounting an IBM WebSphere DataPower XML Appliance

You use mounting rails and rail extenders to mount the appliance in a rack. To mount the rack:

1. Assemble the rail extenders and the mounting rails.
2. Attach both mounting rails and rail extender assemblies to the rack.
3. Adjust the position of the rails as necessary.
4. Tighten the screws.
5. Slide the appliance on the mounting rails.
6. Use the angle brackets or screws to secure the appliance to the rack.

2.2 Setting up the DataPower appliance

You set up the DataPower appliance by using the command line interface (CLI) with physical
connectivity to the device and a serial cable from your PC. After you set up the appliance, you
can access it for most purposes by using the WebGUI.

18 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http

For the initial configuration, you must have the following requirements:

� PC running the HyperTerminal program

Ensure that the software is configured for standard 9600 8N1 (9600 baud, 8-bits per
character, no parity, 1 stop-bit) operation. You can use other terminal programs if
convenient.

� The DB-9 null-modem cable and both power supply cables shipped with the device
� USB-to-serial converter, if the terminal or PC is not equipped with a serial port
� IP address to assign to the appliance provided by your system administrator

2.2.1 Connecting the DataPower appliance

Connect both power supplies to the ac power by using the IBM cables that shipped with the
DataPower appliance. Both power supplies must be connected to ac power, or the firmware
will be in a failed state.

You connect to the appliance with the following steps. In our example, we use a PC running
HyperTerminal and a USB-to-serial converter to connect the DataPower device® to the PC.

1. Plug the DB-9 null-modem cable into the appliance.

2. Connect the USB-to-serial converter into the PC and DB-9-null cable modem into the
serial port in the front of the device.

3. Configure the management network interface (mgmt) for network connectivity. Configure
any of the three other ports as well.

4. From your PC, click Start → Programs → Accessories → Communications →
HyperTerminal to start HyperTerminal.

5. Create a connection. In the window that opens, in the Name field, type DataPowerX150.
Select any icon and click OK.

6. Locate the power switch located at the back of the device and turn it on.

7. In the HyperTerminal connection window, you see a message indicating that booting is in
progress. Wait for the login prompt.

Important: The DataPower appliance is physically secure. If the appliance has been
tampered with, or opened, the setup and configuration steps will not work, and the device
must be returned to IBM.

Management Port: Use the Management Port (mgmt) to provide Web-based access to
the device.

Chapter 2. Getting started 19

2.2.2 Initializing the appliance

To initialize the appliance:

1. After the booting is complete, press Enter to access a login prompt (Figure 2-1) if one is
not already visible.

Figure 2-1 HyperTerminal login window

2. Login with user ID of admin and a password of password. In some cases, the password
can be admin or admin1.

3. Review the licensing information, type accept to continue (Figure 2-2).

Figure 2-2 License agreement

4. When logging in as admin for the first time, change the admin password when prompted.

Remember: Make sure you remember the new password since you cannot reset it.

20 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Setting up the appliance by using CLI commands
For the remainder of the configuration steps, you use CLI commands. For more information
about CLI commands, refer to the DataPower reference documentation that is listed in “Other
publications” on page 185.

We use a small subset of the CLI commands to configure minimum connectivity and enable
the Web Management Interface. After you configure the Web Management Interface, you can
use a browser to access the appliance and perform additional interface and service
configuration as defined in the WebGUI documentation. Figure 2-3 on page 22 shows a
summary of the CLI commands that you enter in the HyperTerminal window.

1. Enter the Global configuration mode:

configure terminal

2. Access the Management Interface Configuration mode:

int mgmt0

3. Assign an IP address:

ip address IPADDRESS/23

4. Set the default gateway:

ip default gateway [Gateway IP]

5. Exit the Management Interface Configuration mode:

exit

6. Enter the Web Management Interface mode:

web-mgmt

7. View the current settings:

show

8. Enable the service for use:

admin-state enabled

9. Display the configuration for the Web Management Service:

show

10.Exit the Web Management configuration:

exit

Global configuration mode: Most of the CLI commands that are used for configuring
the device work only in the Global configuration mode.

The value 23: The value 23 is the short hand for assigning the subnet. Consult your
system administrator for the appropriate subnet assignment.

Port 9090: The Web Management Interface runs on port 9090 by default.

DataPower objects: All objects in DataPower are shipped as disabled. Therefore, you
must be enable them before use.

Chapter 2. Getting started 21

Figure 2-3 Web Management Service configuration

11.Save your configuration settings:

write mem

12.To verify that the WebGUI is available, launch your browser to connect to the appliance by
using the HTTPS protocol:

https://9.42.170.231:9090

As an alternative to this step, you can access the appliance by using SSH. This method is
often convenient to use when you must use CLI remotely. To enable SSH, type the ssh
command as shown in Figure 2-4.

Figure 2-4 Enabling SSH

22 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

The DataPower Web Login Page opens as shown in Figure 2-5. If this page does not open,
refer to the IBM WebSphere DataPower Common Installation Guide for guidance. You can
download this guide from the Web at the following address:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower
&S_PKG=xi50_9003_s2&dlmethod=http

Figure 2-5 DataPower WebGUI

2.3 Launching the WebGUI

Log in to the WebGUI to access the DataPower console as explained in the following steps:

1. On the Welcome page (Figure 2-6 on page 24), in the User field, type your user name. In
our scenario, we enter the default ID of admin.

2. Enter the Password for this account. The admin password was reset when the device was
initialized.

3. Select the default domain. The default domain is the only domain that is available when
the device is initialized.

4. Click the Login button.

Chapter 2. Getting started 23

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http

Figure 2-6 DataPower WebGUI

When you log in, a Web page is displayed that has two sections: the Control Panel and the
navigation bar on the left side of the page. The Control Panel is a graphical, Web-based tool
that is used to configure and manage the DataPower appliance. Most of the management
actions that are accessed via the CLI commands can also be performed by using the
WebGUI. (For more information about the CLI, refer to the DataPower reference
documentation that is listed in “Other publications” on page 185.) The WebGUI supports the
full range of administrative activities, including the creation and management of services. In
addition, every page of the WebGUI contains links with help messages.

24 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

As shown in Figure 2-7, the Control Panel is grouped into three main sections: Services,
Monitoring and Troubleshooting, and Files and Administration. They contain shortcuts to
some menus on the navigation bar that are accessed often.

Figure 2-7 Control Panel

The navigation bar (Figure 2-8) consists of five menus that provide the ability to perform
configuration or management tasks. We use each of the main tabs on the navigation bar in
this example. The configuration items that are created are accessible from the navigation bar
and are internally represented as objects for reuse.

Figure 2-8 Navigation bar

All objects are accessible from either the Control Panel or navigation bar. For example, you
can create an XML Firewall Service by either selecting XML Firewall on the shortcut menu of
the Control Panel or navigating to SERVICES → Edit XML Firewall on the navigation bar.

Chapter 2. Getting started 25

2.4 Example: XML Firewall Service

The scenario in this section entails our working with the DataPower appliance to create a
basic XML Firewall Service that supports an incoming HTTP request that is made by using a
Web browser. The XML Firewall Service redirects the request to a Web site and returns the
response page, if available, to the browser. In later chapters, we illustrate advanced
functionality, such as creating a multiprotocol gateway to do XML transformation and protocol
bridging.

In this scenario, we demonstrate how quickly, easily, and correctly you can configure an XML
Firewall Service. Our scenario also serves as an example to ensure that the appliance was
configured correctly. This simple XML Firewall Service provides the basis for implementing
powerful security.

You can configure the XML Firewall Service to connect client requests that are transported
over HTTP protocols to a back-end service by using the same protocol. You can create new
services by using one of the following methods:

� Shortcuts
� SERVICES menu on the navigation bar
� CLI commands

In this scenario, we demonstrate how to use the shortcuts on the Control Panel. Before we
begin to create our service, we create an application domain called HelloDP.

Basis for powerful security: As an aside, XML firewalls are implemented to provide
“site-specific” XML security practices. Although simple, this XML Firewall Service can be
used as the basis for implementing powerful security practices.

Application domain: An application domain is much like a private workspace, isolating
objects in one domain from other domains. The default domain is the only domain available
when the device is initialized, and therefore, you should not do any development in the
default domain. Instead, create more than one domain in which to build and operate
services.

In addition to ease migration, creating multiple domains makes it possible to restrict access
to key system resources and makes it easier to restore the system to its default settings.
Domains can contain any services that are provided by the device. Objects that are
created in one domain are not visible to other domains.

26 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

2.4.1 Creating an application domain

To create an application domain:

1. On the DataPower console, from the navigation bar, select ADMINISTRATION. Under
Configuration, select Application Domains (Figure 2-9). In the right pane, click the Add
button.

Figure 2-9 Create an Application Domain

Chapter 2. Getting started 27

2. On the Main tab of the Configure Application Domain page (Figure 2-10), for Name, type
the domain, which is HelloDP. For Comments, type Example ITSO Domain.

Figure 2-10 Main tab of the Configure Application Domain page

3. Click the Configuration tab (Figure 2-11). For Configuration Mode, leave it set to the
default setting of local. If we want to import an existing domain, we select import from the
list.

Figure 2-11 Configuration tab of the Configure Application Domain page

28 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

4. Click the CLI Access tab (Figure 2-12). No other users are created on this appliance. If
we want to give other users access to this domain, we add them here. By default, the
admin user has access to all domains. Click Apply to apply your changes to the
appliance.

Figure 2-12 CLI Access tab

5. Verify that the new domain HelloDP was created with a status of new (Figure 2-13).

Figure 2-13 New HelloDP domain

6. Click Save Config to save your changes to your new configuration.

7. Click Refresh to verify that the status of your domain has changed to the saved status
(Figure 2-14).

Figure 2-14 New HelloDP domain with a saved status

8. In order to create the service in the HelloDP domain, switch domains. At the top of the
page on the right side, for Domain, select HelloDP (Figure 2-15).

Figure 2-15 Switching from the default to HelloDP domain

Chapter 2. Getting started 29

9. On the Main DataPower Console page (Figure 2-16), verify that you are in the HelloDP
domain. For the Domain field, you should now see HelloDP.

Figure 2-16 Welcome to the HelloDP

2.4.2 Creating the XML Firewall Service in the domain

To create a basic XML Firewall Service in the HelloDP domain:

1. From the Control Panel, click the XML Firewall icon (Figure 2-17).

Figure 2-17 XML Firewall shortcut

2. On the Configure XML Firewall page (Figure 2-18), click the Add Wizard button.

Figure 2-18 XML Firewall Configuration Wizard

30 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

3. On the Firewall Wizard page (Figure 2-19), accept the default of Pass-Thru. By using this
option, the wizard creates an XML firewall with an empty processing policy, so that the
appliance forwards all inbound requests for the assigned port without doing any
processing. In later chapters, we explain how to create policies for advanced processing of
requests and responses. Click Next.

Figure 2-19 Creating a Pass Thru service

4. On the Create a Pass Thru XML Firewall Service page (Figure 2-20), for Firewall Name,
type Hello_XMLFW and click Next.

Figure 2-20 XML Firewall service name

Chapter 2. Getting started 31

5. On the Select Service Type page (Figure 2-21), select the firewall type.

You have two choices for the firewall type, loopback and static. In the loopback mode, the
device sends its outbound messages back to the client that sent the request. With the
static mode, the device can send outbound messages to a specified back-end server.

For Firewall Type, leave the default selection static-backend. Click Next.

Figure 2-21 Selecting the firewall type

6. On the Back End (Server) Information page (Figure 2-22), for Server Address, type
www.ibm.com and for Server Port, type 80. Click Next.

Figure 2-22 Back End (Server) Information page

32 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

7. On the Front End (Client) Information page (Figure 2-23), in the Device Port field, type
3055.

This number becomes the TCP port for all HTTP connections to this gateway. The port
number must be unique. If more than one user is defining a service on the device, there
will be a conflict. The device does not count the port as used until after you complete all of
the steps.

Click Next.

Figure 2-23 Front End (Client) Information page

Device Address: An IP address of 0.0.0.0 means the service will listen on all IP
addresses that are assigned to the device. In production, you might choose a specific
IP addressed that is assigned to one of the four network interfaces. In this example, we
accept the default of 0.0.0.0.

Chapter 2. Getting started 33

8. On the final page of the wizard (Figure 2-24), review your configuration and select
Commit.

Figure 2-24 Confirming and committing the changes

9. In the message window that opens, you see the message “You have successfully
created your XML Firewall Service.” Click Done.

10.Click Save Config to save the changes that you made to the HelloDP domain.

11.In the navigation bar, select Objects and under Services, select XML Firewall Service
(Figure 2-25).

Figure 2-25 Services object menu

34 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

12.You see the newly created XML Firewall Service with the operation state set to up
(Figure 2-26). Under Logs Probe, click the magnifying glass icon to view the system log
for this service. Review the system log and then close the window (inset in Figure 2-26).

Figure 2-26 System Log for XML Firewall Service “Hello_XMLFW”

13.Make two small configuration changes to the service. First you must change Request and
Response Types to Pass-thru, and second you must enable HTTP GET.

a. Select Hello_XMLFW to open the XML Firewall Service for editing (Figure 2-27).

Figure 2-27 Editing the XML Firewall Service

Chapter 2. Getting started 35

b. Scroll down to the Characterize client traffic type and Character Service traffic type
fields. Select Pass-thru for both fields (Figure 2-28).

Figure 2-28 Client and server traffic

c. Enable the service to accept HTTP GET. Click the HTTP Options tab (Figure 2-29).
For Disallow GET (and HEAD), select off. Click Apply to apply your changes to your
service.

Figure 2-29 HTTP Options Tab

14.Click Save Config to save the configuration changes to your HelloDP domain.

You are now ready to test your configuration.

36 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

2.4.3 Testing the Hello_XMLFW firewall

You use a Web browser to test the basic XML firewall. In Internet Explorer®, in the Address
field, type the following URL for DataPower:

http://DataPowerIP:3055

Here DataPowerIP is the IP address of the device, and 3055 is the port that you defined in the
Hello_XMLFW service. Press Enter.

The IBM home page (Figure 2-30) is displayed. The HTTP request from the browser was
intercepted by the XML Firewall Service, which redirected it to the page that was defined in
the Backend Server Address. The response from the server is returned to the client.

Figure 2-30 IBM home page redirected through the DataPower appliance

2.5 Example: Web Service Proxy Service

In this scenario, we create a simple Web Service Proxy Service that intercepts Web service
calls to a back-end service. The Web service proxy offers easy configuration by using Web
Services Description Language (WSDL), multi-step policies, and service-level monitoring to
provide a Web service facade for arbitrary back-end services.

The Web service proxy provides quick service virtualization by simply uploading WSDL into
the device. The Web Service Proxy provides a “living” virtual service that passes messages
between the client and the real service, so that the client connects to the proxy and not to the
back-end service. In doing this, the service consumer and the service provider do not need to
be tightly coupled and bound to each other. The DataPower appliance can hide the details of
accessing the service from the consumer.

Chapter 2. Getting started 37

2.5.1 Creating a Web Service Proxy Service

As we demonstrated in 2.4.1, “Creating an application domain” on page 27, you can create a
service by clicking the shortcut in the Control Panel. In this section, we begin by
demonstrating the second option for creating a service, which is to use the menus on the
navigation bar. To create a new Web service proxy:

1. From the navigation bar of the WebGUI (Figure 2-31), select SERVICES. Under Web
Service Proxy, select New Web Service Proxy.

Figure 2-31 Creating a new Web Service Proxy

38 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

2. On the Configure Web Service Proxy page (Figure 2-32), in the Web Service Proxy Name
field, type HelloWSProxy. Click Upload to upload the Primes.wsdl file that we include in the
additional materials of this paper. See Appendix B, “Additional material” on page 183, for
information about downloading the materials.

Figure 2-32 Configure Web Service Proxy page

3. Upload the Primes.wsdl file to a local directory as illustrated in Figure 2-33. Then click
Upload.

Figure 2-33 Uploading the WSDL file to the device

Primes Web service: This sample scenario requires that the Primes Web service is
installed in WebSphere Application Server.

Chapter 2. Getting started 39

4. Under PrimesService - Primes (Figure 2-34), complete these steps:

a. In the URI field, type /hello.

Figure 2-34 Adding a URI for the Web Service Proxy Service

b. For Local Endpoint Handler, click the + button.

c. From the list, select HTTP Front Side Handler (Figure 2-35).

Figure 2-35 Creating an HTTP Front Side Handler for our service

40 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

5. On the HTTP Front Side Handler page (Figure 2-36), specify the properties of the Local
Endpoint Handler:

a. In the name field, type httpHandler_getPrime.

b. In the Port Number field, enter the port number, for example 3067.

c. For an HTTP protocol handler, it is only necessary to enter a unique port number. The
new Local Endpoint Handler is selected in the Web Service Proxy. Leave the endpoints
and properties unchanged. You can adjust the remote endpoint configuration if desired.

d. To apply this WSDL to the Web Service Proxy, click Apply.

Figure 2-36 Naming the Local Endpoint Handler

6. Click Save Config to save configuration changes (Figure 2-37).

Figure 2-37 Saving your configuration changes

Chapter 2. Getting started 41

7. Review the configuration as shown in Figure 2-38.

Figure 2-38 Configuration for the Web Service Proxy Service

2.5.2 Testing the HelloWSProxy service

To test the Web Service Proxy, we use the Rational® Application Developer Web Services
Tool to invoke a Web service called getPrime. Refer to the additional materials for details
about configuring this Web service for use. For more information, see Appendix B, “Additional
material” on page 183.

1. Launch Rational Application Developer.

2. Import the Primes.wsdl file into Rational Application Developer.

3. Right-click Primes.wsdl and select Web Services → Test with Web Services Explorer.

Note: The Primes.wsdl file that was uploaded in this scenario was stored on the device.
From the navigation bar, click Administration → File Management → local. You see the
WSDL files and any miscellaneous local files. This directory typically contains files that are
used by the services.

42 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

4. In the Web Services Explorer window (Figure 2-39), only one service, called getPrime, is
defined in this WSDL. Complete the following steps:

a. For Endpoints, type the following URL to add a new endpoint to point to the new Web
Service Gateway that we created:

http://itso:3067/hello

b. In the numDigts int field, type 7 or another number.

c. Click Go to post the getPrime request

Figure 2-39 Web Services Explorer

The getPrimeResonse.xml message is returned as shown in Figure 2-40.

Figure 2-40 Response from the Web service

Chapter 2. Getting started 43

Using the curl tool
Alternatively, follow these steps if you plan to access the sample Web service:

1. Obtain the primes.xml file from the additional materials that are supplied with this paper.
For details, see Appendix B, “Additional material” on page 183.

2. Invoke the curl tool to test the sample scenario:

curl -X POST -d@primes.xml http://your datapower ipaddress:3067/hello

If the Web Service Proxy Service is installed correctly and the back-end Primes Web service
is installed correctly on the application server, the previous command should have the
following result:

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapen
v:Header/><soapenv:Body><p234:getPrimeResponse
xmlns:p234="http://com.itso"><getPrimeReturn>2997249767</getPrimeReturn></p234:get
PrimeResponse></soapenv:Body></soapenv:Envelope>

cURL: cURL is a freeware program that is used widely to send HTTP requests from the
command line. We use this program extensively in this paper. To download cURL, go to
the cURL Web site at the following address:

http://curl.haxx.se

44 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

http://curl.haxx.se

2.5.3 Troubleshooting the configuration

To troubleshoot potential problems in your configuration, use the following guidance:

1. Since this is the first time you are invoking this service on the device, enable the Probe
facility that shows the details of each request that is going through the service.

2. From the Control Panel, select Troubleshooting (Figure 2-41).

Figure 2-41 Troubleshooting icon

3. On the Troubleshooting Panel page, click the Probe tab at the top of the panel
(Figure 2-42).

Figure 2-42 Troubleshooting Panel page

Probe: Probe is an excellent device for debugging problems. However, turn off this
device in a production deployment.

Chapter 2. Getting started 45

4. On the Probe page (Figure 2-43), scroll down until you see Web Service Proxy. From the
pull-down list, select HelloWSProxy. Click Add Probe.

Figure 2-43 Selecting a service

5. You receive a status message like the one shown in Figure 2-44. Click Close.

Figure 2-44 Successfully added Probe

6. Return to Web services Testing Tool and invoke the Web service again.

7. After you receive the response, from the Control Panel, navigate to the Troubleshooting
panel.

8. For the HelloWSProxy XML Firewall Service, click the magnifying glass icon under
Probe (Figure 2-45).

Figure 2-45 Inspecting information collected by the Probe

9. The Transaction list opens for this service. Click the + sign next to the magnifying glass
icon (Figure 2-46).

Figure 2-46 Transaction list for the HelloWSProxy service

46 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

10.As shown in Figure 2-47, you now see two icons. One is for the information that was
collected on the request message sent to the DataPower appliance. The other is for the
information that was collected on the response sent back to the client.

Click the magnifying glass icon next to the request.

Figure 2-47 Request and Response Information Collected by the Probe

11.In the transaction window (Figure 2-48) that opens, review the entire request message
sent to the DataPower appliance. Then close the window.

Figure 2-48 Incoming Request Message Sent to the DataPower appliance

12.You return to the Transaction List (Figure 2-47). Click the magnifying glass icon next to
response.

Chapter 2. Getting started 47

13.In the transaction window (Figure 2-49) that opens, review the entire response message
that was sent to the client. Then close the window.

Figure 2-49 Outbound response sent to the client from the DataPower appliance

14.Click Disable Probe (Figure 2-50).

Figure 2-50 Disable Probe

15.You receive a status message indicating success. Click Close Transaction List.

16.Close the window.

17.Click the icon in the upper right corner of the WebGUI to return you to the Control Panel
(Figure 2-51).

Figure 2-51 Returning to the Control Panel

48 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

You have now completed the troubleshooting task.

2.6 Summary

In this chapter, we demonstrated how quickly and easily you can configure a DataPower
device. We also explained how to create two simple services, an XML Firewall Service and a
Web Service Proxy Service. Later in this paper, we explain how to add enhancements (such
as security), perform integration with back ends (such as MQ), and do complex processing by
using XML Stylesheet Language Transformations.

System logs: As an alternative, you can look for debugging information is the system logs.
On the navigation bar, click STATUS → System Logs. On the system logs, you only see
messages for the services that are defined in that domain. However, the default domain
can see messages for all domains.

Chapter 2. Getting started 49

50 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 3. Enabling existing applications

An important aspect of service-oriented architecture (SOA) enablement is the challenge of
integrating existing applications into the SOA environment, for example:

� Reducing the impact to back-end applications
� Using Web and Web Services protocols
� Enabling security
� Integrating with other services

These issues and others are leading to the need for an enterprise service bus (ESB) in SOA.
In this chapter, we build a core scenario for providing a Web Service facade to an existing
COBOL application. We incrementally expand this scenario in the following chapters to build
fully secure access to this sample application.

3

© Copyright IBM Corp. 2008. All rights reserved. 51

3.1 The enterprise service bus

Successful implementation of an SOA requires applications and an infrastructure that can
support the SOA principles. Applications can be enabled for SOA by creating service
interfaces to existing or new functions. The service interfaces should be accessed by using an
infrastructure that can route and transport service requests to the correct service provider. As
organizations expose more and more functions as services, it is vitally important that this
infrastructure should support the management of SOA on an enterprise scale.

The ESB is a middleware infrastructure component that supports the implementation of SOA
within an enterprise. Figure 3-1 illustrates where the ESB fits in the SOA reference
architecture.

Figure 3-1 IBM reference architecture

You can see the need for an ESB by considering how it supports the concepts of SOA
implementation, which is in the following ways:

� Decoupling the consumer’s view of a service from the actual implementation of the service
� Decoupling technical aspects of service interactions
� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation greatly
increases the flexibility of the architecture. One service provider can be substituted for
another, for example, because another provider offers the same services for lower cost or with
higher standards. This can occur without the consumer being aware of the change or without
the need to alter the architecture to support the substitution.

This decoupling is better achieved by having the consumers and providers interact via an
intermediary. Intermediaries publish services to consumers. The consumer binds to the
intermediary to access the service, with no direct coupling to the actual provider of the
service. The intermediary maps the request to the location of the real service implementation.

52 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

In an SOA, services are described as being loosely coupled. However, at implementation
time, there is no way to loosely couple a service or any other interaction between systems.

The systems must have a common understanding to conduct an interaction. To achieve the
benefits of loose coupling, consideration should be given to how to couple or decouple
various aspects of service interactions. Examples include the platform and language in which
services are implemented, the communication protocols used to invoke services, or the data
formats used to exchange input and output data between service consumers and providers.

Further decoupling can be achieved by handling the technical aspects of transactions outside
of applications. This can apply to the following aspects of interactions among others:

� How service interactions are secured

� How the integrity of business transactions and data is maintained, for example, through
reliable messaging, the use of transaction monitors, or compensation techniques

� How the invocation of alternative service providers is handled in the event that the default
provider is unavailable

These aspects imply a need for middleware to support an SOA implementation. The following
functions might be provided by the middleware among others:

� Map service requests from one protocol and address to another

� Transform data formats

� Support a variety of security and transactional models between service consumers and
service providers and recognize that consumers and providers might support or require
different models

� Aggregate or disaggregate service requests and responses

� Support communication protocols between multiple platforms with appropriate qualities of
service

� Provide messaging capabilities, such as message correlation and publish/subscribe, to
support different messaging models such as events and asynchronous request/response

This middleware support is the role of an ESB.

3.1.1 Definition of an enterprise service bus

An ESB provides an infrastructure that removes any direct connection between service
consumers and providers. Consumers connect to the bus and not the provider that
implements the service. This type of connection further decouples the consumer from the
provider. A bus implements further value-add capabilities. For example, security and delivery
assurance can be implemented centrally within the bus instead of having this buried within
applications. Integrating and managing services in the enterprise outside of the actual
implementation of the services in this way helps to increase the flexibility and manageability
of an SOA.

The primary driver for an ESB, however, is that it increases decoupling between service
consumers and providers. Protocols, such as Web services, define a standard way of
describing the interface to a service provider that allows some level of decoupling (because
the actual implementation details are hidden). However, the protocols imply a direct
connection between the consumer and provider.

Although it is relatively straight forward to build a direct link between a consumer and provider,
these links can lead to an interaction pattern that consists of building multiple point-to-point
links that perform specific interactions. With a large number of interfaces, this quickly leads to

Chapter 3. Enabling existing applications 53

the build up of complex spaghetti links with multiple security and transaction models. Routing
control is distributed throughout the infrastructure, and probably no consistent approach to
logging, monitoring, or systems management is implemented. This environment is difficult to
manage or maintain and inhibits change.

A common approach to reducing this complexity is to introduce a centralized point through
which interactions are routed, called a hub-and-spoke architecture, as shown in Figure 3-2.

Figure 3-2 Direct connection versus hub-and-spoke connection

A hub-and-spoke architecture is a common approach that is used in application integration
architectures. In a hub, the distribution rules are separated from applications. The
applications connect to the hub and not directly to any other application. With this type of
connection, a single interaction from an application can be distributed to multiple target
applications without the consumer being aware that multiple providers are involved in
servicing the request. This connection can reduce the proliferation of point-to-point
connections.

The benefit of reducing the number of connections truly emerges if the application interfaces
and connections are genuinely reusable. For example, consider an application that needs to
send data to three other applications. If it is implemented in a hub, the sending application
must define a link to the hub, and the hub must have links that are defined to the three
receiving applications, for a total of four interfaces that must be defined.

If we implement the same scenario by using multiple point-to-point links, the sending
application must define links to each of the three receiving applications, for a total of three
links. A hub offers the benefit of reduced links only if another application must also send data
to the receiving applications and can use the same links as those that are defined for the first
application. In this scenario, the new application must define a connection between itself and
the hub, which can then send the data correctly formatted to the receiving applications.

Hubs can be federated together to form what is logically a single entity that provides a single
point of control, but is actually a collection of physically distributed components. This is
commonly termed a bus. A bus provides a consistent management and administration
approach to a distributed integration infrastructure.

54 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

3.1.2 Enterprise requirements for an enterprise service bus

The use of a bus to implement an SOA has several advantages. In an SOA, by definition,
services should be reusable by a number of different consumers to achieve the benefits of
reduced connections. In addition, the ESB must offer the following support:

� High volumes of individual interactions

� More established integration styles, such as message-oriented and event-driven
integration, to extend the reach of the SOA

The ESB should allow applications to be SOA-enabled either directly or by using adapters.

� Centralization of enterprise-level qualities of service and manageability requirements into
the hub

Figure 3-3 High-level view of the ESB

SOA applications are built from services. Typically, a business service relies on many other
services in its implementation. The ESB component provides access to the services, so that it
enables the building of SOA applications.

Mediation support
The ESB is more than just a transport layer. It must provide mediation support to facilitate
service interactions. For example, it must find services that provide capabilities for which a
consumer is asking. Alternatively, it must take care of interface mismatches between
consumers and providers that are compatible in terms of their capabilities.

An ESB must support a variety of ways to get on and off the bus, such as adapter support for
existing applications or business connections that enable external partners in
business-to-business interaction scenarios. To support these different ways to get on and off
the bus, it must support service interaction with a wide variety of service endpoints. It is likely
that each endpoint will have its own integration techniques, protocols, security models, and so
on.

This level of complexity should be hidden from service consumers. Consumers need to be
offered a simpler model. In order to hide the complexity from the consumers, the ESB is

Chapter 3. Enabling existing applications 55

required to mediate between the multiple interaction models that are understood by service
providers and the simplified view that is provided to consumers.

Protocol independence
Services can be offered by a variety of sources. Without an ESB infrastructure, any service
consumer that needs to invoke a service must connect directly to a service provider by using
the protocol, transport, and interaction pattern that is used by the provider. With an ESB, the
infrastructure shields the consumer from the details of how to connect to the provider.

In an ESB, there is no direct connection between the consumer and provider. Consumers
access the ESB to invoke services, and the ESB acts as an intermediary by passing the
request to the provider by using the appropriate protocol, transport, and interaction pattern for
the provider. With this intermediary connection, the ESB can shield the consumer from the
infrastructure details of how to connect to the provider. The ESB should support several
integration mechanisms, all of which can be described as invoking services through specific
addresses and protocols. This should happen even if, in some cases, the address is the name
of a CICS transaction and the protocol is a J2EE resource adapter integrating with the CICS
Transaction Gateway. By using the ESB, the consumers are unaware of how the service is
invoked on the provider.

Because the ESB removes the direct connection between service consumers and providers,
an ESB enables the substitution of one service implementation by another with no effect to
the consumers of that service. Therefore, by using an ESB, the reach of an SOA can extend
to non-SOA-enabled service providers. It can also be used to support the migration of
non-SOA providers to using an SOA approach without impacting the consumers of the
service.

3.2 A sample scenario and components

The corporation ITSOCorp has a heterogeneous environment as shown in Figure 3-4. The
company needs to publish an existing application as a Web service application by using the
DataPower component.

Figure 3-4 Existing application scenario

56 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

As shown in Figure 3-4 on page 56, the sample scenario described in this chapter includes
the following components:

� Client device

The client device is responsible for sending a SOAP request message to the DataPower
appliance and will receive a XML response message. In this case, we use the cURL tool,
which is freely available from the cURL Web site at the following address:

http://curl.haxx.se

� SOAP request message

This is the message sent by the client to the DataPower appliance.

� DataPower appliance

This appliance is the main component in the scenario and is responsible for the following
tasks:

– Validating input against the request schema
– Transforming an incoming SOAP message to a COBOL message
– Doing a protocol transformation (HTTP to MQ) for connectivity to a back-end

application
– Transforming the response COBOL message back to SOAP
– Error handling

� COBOL request message

This request message is sent to the existing application in the COBOL CopyBook format.

� Existing system

This back-end application processes input COBOL data and returns response COBOL
data. In this sample scenario, a C program is used instead of the actual back-end
application.

� COBOL response message

This message is returned by the existing system in the COBOL CopyBook format.

� SOAP response message

This response message is sent to a client by the DataPower appliance after transforming
the COBOL response message to a SOAP message.

Software levels and tools: The following software levels and tools are used in this sample
scenario:

� DataPower Firmware v3.6.0.17 or later

� WebSphere MQ v6.0

� The cURL tool

� A C program called redbookmqserver.exe that is supplied with the additional materials
of this paper to simulate the back-end COBOL application (For details, see Appendix B,
“Additional material” on page 183.)

Chapter 3. Enabling existing applications 57

http://curl.haxx.se

3.3 Transformations

In this section, we use WebSphere Transformation Extender to generate the files that are
required by this scenario to support the request and response transformations in the
DataPower appliance.

3.3.1 WebSphere Transformation Extender basics

WebSphere Transformation Extender is a powerful, transaction-oriented, data integration
solution. It automates the transformation of high-volume, complex transactions without the
need for manual coding. It provides enterprises with a quick return on investment (ROI). This
product supports electronic data interchange (EDI), XML, SWIFT, HIPAA and other
standards-based business-to-business integration. In addition, it supports the real-time
integration of data from multiple applications, databases, messaging middleware, and
communications technologies across the enterprise.

For our purposes, we use DataPower support in the WebSphere Transformation Extender
Studio to achieve the following tasks:

� Create COBOL-XML mappings
� Test the mappings
� Generate the transformation for the DataPower appliance

The following tools come with WebSphere Transformation Extender Studio:

� Type Designer is used to create “type tree” representation of message types. In our case,
we have two XML message types and two COBOL message types. The XML message
types are specified by an XML Schema Definition (XSD), and the COBOL message types
are specified by two copy books. The Type Designer can import XSD and copy book files
to generate the type trees.

� Map Designer uses the type trees to map an input type tree to an output type tree.
Mapping is done on individual elements of the input and output tree elements. Each
mapping is specified by a rule. Most of the rules in our scenario are generated by dragging
from the input tree to the output tree. Occasionally we must modify the rule manually, for
example to affect type conversion or check for validity.

In the remainder of this section, we explain how to map a request XML message to a COBOL
message type and how to map a response COBOL message type to an XML data type.

3.3.2 Creating a type tree with Type Designer

The Type Designer tool is used to define, modify, and view type trees. A type tree describes
the syntax, structure, and semantics of data. The syntax of the data refers to its format
including tags, delimiters, terminators, and other characters that separate or identify sections

Mapping artifacts: Completed mapping artifacts are provided in the additional materials
that are associated to this paper. For details, see Appendix B, “Additional material” on
page 183.

More information: You can find information about WebSphere Transformation Extender
on the Web at the following address:

http://www-306.ibm.com/software/integration/wdatastagetx/library/index.html

58 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

http://www-306.ibm.com/software/integration/wdatastagetx/library/index.html

of data. The structure of the data refers to its composition including repeating substructures
and nested groupings. The semantics of the data refer to the meaning of the data including
rules for data values, relationships among parts of a large data object, and error detection
and recovery.

For more information about Type Designer, refer to the Type Designer document at the
following address:

ftp://ftp.software.ibm.com/software/websphere/integration/wdatastagetx/1003.pdf

To create a type tree:

1. Create a directory called FilesWTX and copy the files shown in Table 3-1 into this directory.

Table 3-1 Files used for creating the type trees

2. Open the Type Designer application. Select Start → Programs → IBM WebSphere
Transformation Extender 8.1 → Design Studio → Type Designer.

3. From the toolbar, select Tree → Import.

4. In the Import from window of the Importer Wizard (Figure 3-5), select XML Schema and
click Next.

Figure 3-5 Importer Wizard

File Function

CCOUT4K.cpy Host Response copybook

CCINP.cpy Host request copybook

DataTypes.xsd, PayloadTypes.xsd, SOAAssureService.xsd Client request and response XSD

Chapter 3. Enabling existing applications 59

ftp://ftp.software.ibm.com/software/websphere/integration/wdatastagetx/1003.pdf

5. In the next window, click the Browse button to navigate to the schema file,
SOAAssureService.xsd, in the C:\FilesWTX\ directory. Select SOAAssureService.xsd.

Click Next.

6. In the next window, National Language uses the default of Western. Click Next.

7. In the XML Schema window (Figure 3-6), for File Name, change the type-tree destination
file to C:\WTXWork\SOAAssureService.mtt and click Next.

Figure 3-6 Type tree destination file

Note: The SOAAssureService.xsd file refers to the DataType.xsd and PayloadType.xsd
files. Therefore, all three files should be in the same folder.

60 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

8. The importer builds the type tree. Click Finish (Figure 3-7).

Figure 3-7 Type tree definition

Chapter 3. Enabling existing applications 61

9. When you see the message that prompts you about opening the newly generated type
tree, click Yes. Figure 3-8 shows the new type tree.

Figure 3-8 SOAAssureService.mtt

10.Create the request COBOL type tree file. From the toolbar, select Tree → Import.

11.Click Next.

12.In the Importer Wizard window, select COBOL Copy Book and click Next.

13.In the next window, click the Browse button, navigate to the C:\FilesWTX\ directory, and
select the COBOL file CCINP.cpy. Click Next.

14.In the Importer Wizard-COBOL Copybook window, you see a check box indicating that you
can generate a type tree for a CICS type tree. Since we are not generating a tree for CICS,
do not select the check box.

Select EBCDIC from the character-set list and BIG ENDIAN from the Byte order list. Click
Next.

62 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

15.In the COBOL Copybook window (Figure 3-9), for File Name, change the type tree
destination to C:\WTXWork\CCINP.mtt. Click Next.

Figure 3-9 COBOL type tree destination file

16.Click Next. The importer builds the Type Tree.

Chapter 3. Enabling existing applications 63

17.Click Finish. As a result of the steps, the CCINP.mtt and SOAAssureService.mtt files
(shown in Figure 3-10) should be in the C:\WTXWork directory. We use these files for the
request mapping process in 3.3.3, “Mapping an input type tree to an output type tree by
using Map Designer” on page 65.

Figure 3-10 XSD and COBOL message definition

18.Create the response COBOL type tree file. From the toolbar, select Tree → Import.

19.Click Next.

20.In the Importer Wizard window that opens, select COBOL Copy Book and click Next.

21.In the next window, click the Browse button, navigate to the COBOL file in the
C:\FilesWTX directory, and select CCOUT4K.cpy. Then click Next.

22.In the Importer Wizard-COBOL Copybook window that opens, do not select the check box
for generating a type tree for a CICS type tree, because we do not generate a tree for
CICS.

From the character-set list, select EBCDIC, and from the byte order list, select BIG
ENDIAN. Click Next.

23.In the next window. Change the Type tree definition to C:\WTXWork\CCOUT4K.mtt. Click
Next.

24.Click Finish.

64 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

25.One of properties of the elements of the type tree is to specify the characters that will be
used to indicate no data. For example, the default is blanks for the string element type.
Because we are not modifying the defaults, we can make DataPower run time more
efficient by not using this property altogether. To clear this property:

a. From the type tree, select CopyBook → Field.

b. Right-click and select Properties.

c. Select Item Subclass → None → Special value. In the Value field, erase any
characters.

d. Select Item Subclass → None → Required on input. In the Value field, choose No.

e. Right-click Item Subclass → None → Special value. Then select Propagate.

As a result of these steps, you should have a CCOUT4K.mtt type tree created in the
WTXWork directory. We use the CCOUT4K.mtt and SOAAssureService.mtt files for the
response mapping process in 3.3.3, “Mapping an input type tree to an output type tree by
using Map Designer” on page 65.

26.Exit the Type Tree tool.

3.3.3 Mapping an input type tree to an output type tree by using Map Designer

In this section, we explain how to map an input type tree to an output type tree by using the
Map Designer.

Request mapping
Map Designer is a client component of the Design Studio that you use to specify rules for data
transformation from input to output type trees. Maps can be built for a specific platform and
then run on that platform to perform the transformation of the data.

Follow these steps:

1. Open the Map Designer application. Click Start → Programs → IBM WebSphere
Transformation Extender 8.1 → Design Studio → Map Designer.

2. From the Startup window (Figure 3-11), select Create a new map source file and click
OK.

Figure 3-11 Creating a new map source file

More information: You can find more information about Map Designer on the Web at the
following address:

ftp://ftp.software.ibm.com/software/websphere/integration/wsdatastagetx/
1005.pdf

Chapter 3. Enabling existing applications 65

ftp://ftp.software.ibm.com/software/websphere/integration/wsdatastagetx/1005.pdf

3. In the Save As window (Figure 3-12), select the WTXWork directory and in the File name
field, type SOABenchCreateClaim for the new mapping. Click Save.

Figure 3-12 Create SOABenchCreateClaim

4. The Design Studio application shows the new map source with the name
SOABenchCreateClaim with the From and To windows (Figure 3-13). Right-click
SOABenchCreateClaim and select New.

Figure 3-13 New map source file

5. In the Create New Map window (Figure 3-14), for New map name, type
XmlToCobolRequestMap and click OK.

Figure 3-14 New map name

6. Expand SOABenchCreateClaim → XmlToCobolRequestMap

7. Right-click Input Cards and select New.

66 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

8. In the Add Input Card window, enter the values that are shown in Table 3-2.

Table 3-2 Input card values

Figure 3-5 shows the XMLInput card.

Figure 3-15 XMLInput xard

Click OK.

9. Expand Input Card. The new input card is displayed. The Input window shows the values
for the input message.

10.Right-click Output Cards and select New.

11.In the next window, enter the values shown in Table 3-3.

Table 3-3 Output card values

Field Value Explanation

CardName XMLInput Enter any name to identify the input card.

TypeTree SOAAssureService.mtt Select the file generated by the Type
Designer for the XML type in the WTXWork
folder.

Type Doc XSD Browse for the DOC type. This is the last
option in the XSD attributes list.

Metadata SOAAssureService.xsd Select the XSD file from FilesWTX path.

FilePath Path to WTXTest_RequestSide_Inp.xml Select the XML file to test the
transformation in the WebSphere
Transformation Extender Studio. The next
section contains details about this file.

Field Value Explanation

CardName COBOLOut Enter any name to identify the output
card.

TypeTree CCINP.mtt Select the file generated by the Type
Designer for the COBOL type from the
WTXWork folder.

Chapter 3. Enabling existing applications 67

Figure 3-16 shows the CobolOUT card.

Figure 3-16 CobolOUT card

12.As shown in Figure 3-17, both message definitions are displayed for the source and target
to execute the mapping task.

Figure 3-17 From and To message ready for mapping

Type IN01 Record CopyBook Browse for the IN01 type. This is the last
option in the Copy Book attributes list.

FilePath Path to WTXTest_RequestSide_OUT.dat Enter the path and file name to test the
result of the transformation. The next
section contains details about this file.

Field Value Explanation

68 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

13.Drag each field for the mapping task. The names on the input and output types should be
sufficient to guide the mapping process. You can check the mapping at any point by
right-clicking XMLToCobolRequestMap and selecting Build (Figure 3-18), which
generates an error and warning list.

Figure 3-18 Build process

Figure 3-19 shows a sample list of errors and warnings.

Figure 3-19 Error and warning list

Chapter 3. Enabling existing applications 69

14.Many errors can by corrected by manipulating the rules. For example, for an error to
attempt to directly map a Date type to a String, you can force a type conversion by using
the DATETOTEXT function. Select the field with the error, right-click and select Insert
Function as shown in Figure 3-20.

Figure 3-20 Selecting Insert Function

In the category list, select Conversion. Then select the correct function and click Insert.
The final formula must be displayed as follows:

=DATETOTEXT(soabdata~noticeDate Comp soabdata~Claim:claim Comp createClaim
Type:createClaim Element:Global:SOAPInput)

No mapping rule: Another common error is to not have a rule specified for an output
element. To indicate a no mapping rule for an element, right-click the rule for the
element and select None.

70 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

15.After completing the mapping, right-click XmlToCobolRequestMap and select Build. In
the final mapping (Figure 3-21), verify that no errors are displayed.

Figure 3-21 Final Mapping

Request map testing
Complete the following steps:

1. Add the “tx” domain to the DataPower appliance.

2. Create a WTXWork directory. Copy the WTXWork files listed in Table 3-4 into the directory
from the additional materials. See Appendix B, “Additional material” on page 183, for more
information.

Table 3-4 WTXWork files

The ‘tx’ domain: The “tx” domain is a DataPower domain that is supplied by the
DataPower appliance for testing maps from the WebSphere Transformation Extender
Studio.

Note: You need this list of all the files for testing both request and response maps.

File Function Where used

Client_Request.xml Request data from client Final deployed scenario

WTXTest_RequestSide_Inp.xml Request side data for testing WTX
and DataPower run times

During development in the WTX Studio

Chapter 3. Enabling existing applications 71

Figure 3-22 illustrates the request flow from the WebSphere Transformation Extender
Studio to the test firewall in the “tx” domain in the DataPower appliance.

Figure 3-22 Request test with WebSphere Transformation Extender and the DataPower appliance

Figure 3-23 illustrates the response flow from the WebSphere Transformation Extender
Studio to the test firewall in the “tx” domain in the DataPower appliance. In the remainder
of this section, we take you through setting up and conducting the test.

Figure 3-23 Response test with WebSphere Transformation Extender and the DataPower appliance

3. Configure WebSphere Transformation Extender to work with the “tx” domain in the
DataPower appliance. Select Tools → Options.

4. In the Options window (Figure 3-24 on page 73), in the left pane, select DataPower Maps.
In the right pane, perform the following steps:

a. In the Host field, type the IP address of the DataPower device.

b. In the Port field, type 22222, which is the default port value of the “tx-test” firewall in the
“tx” domain.

WTXTest_RequestSide_OUT.dat File to place a transformed request During development in the WTX Studio

WTXTest_ResponseSide_Inp.dat Response side data for testing WTX
and DataPower run times

During development in the WTX Studio

WTXTest_ResponseSide_OUT.xml File to place transformed response During development in the WTX Studio

Host_Response.dat Response data from host application Final deployed scenario

converttosoap.xsl Converting transformed response
XML message to SOAP

Final deployed scenario

redbookmqserver.exe Host server program Final deployed scenario

File Function Where used

72 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

c. In Save Message section, select Request and Response to save the messages that
are sent and received from the DataPower appliance.

d. Click OK.

Figure 3-24 DataPower map settings

5. Right-click XmlToCobolRequestMap and select Settings.

6. In the Map Settings window (Figure 3-25), for MapRuntime, select WebSphere
DataPower and click OK.

Figure 3-25 Change Map Runtime

Chapter 3. Enabling existing applications 73

7. Right-click XmlToCobolRequestMap and select Build All to create the files that we need
to work with the DataPower device for deployment (CCINP.mts, SOAAssureService.mts,
and XmlToCobolRequestMap.xml). When testing from the WebSphere Transformation
Extender Studio, these files are sent as SOAP attachments to the “tx-test” firewall in the
“tx” domain.

8. Right-click XmlToCobolRequestMap and select Run (Figure 3-26).

Figure 3-26 Run process

Upon successful completion, you see the DataPower SOA Appliances window (Figure 3-27).

Figure 3-27 Run process results

74 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Response mapping
Follow these steps:

1. Create mapping for a response message. Right-click SOABenchCreateClaim and select
New.

2. In the Create New Map window, for New map name, type CobolToXmlResponseMap and
click OK.

3. Expand SOABenchCreateClaim and expand CobolToXmlResponseMap.

4. Right-click Input Cards and select New.

5. In the Add Input Card window, enter the values from Table 3-5.

Table 3-5 Input card values

Figure 3-28 illustrates the INCobolResp fields and values.

Figure 3-28 INCobolResp

Click OK.

6. Expand Input Card. The new input card is displayed, and the Input frame shows the
values for the input message.

7. Right-click Output Cards and select New.

Field Value Explanation

CardName INCobolResp Enter any name to identify the input card.

TypeTree CCOUT4K.mtt Select the file that is generated by the Type
Designer for the COBOL response type in the
WTXWork folder.

Type OUT01 Record CopyBook Browse for the OUT01 Record CopyBook type,
which is the last element in the CopyBook
attributes list.

FilePath WTXTest_ResponseSide_Inp.dat Select the file to test the transformation the file
into the WTXWork folder.

Chapter 3. Enabling existing applications 75

8. In the Output card values window, enter the values shown in Table 3-6.

Table 3-6 Output card values

Figure 3-9 shows the OutXmlResp fields and values.

Figure 3-29 OutXmlResp

Field Value Explanation

CardName OutXmlResp Enter any name to identify the output card.

TypeTree SOAAssureService.mtt Select the file generated by the Type Designer
for the XML type in the WTXWork folder.

Type Doc XSD Browse for the Doc XSD type, which is the last
option in the XSD attributes list.

Metadata SOAAssureService.xsd Select the XSD file.

FilePath WTXTest_ResponseSide_OUT.xml Specify the file where the output of the
transformation will be placed by the WebSphere
Transformation Extender Studio.

76 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Click OK. Both message definitions are displayed in the From and To windows
(Figure 3-30).

Figure 3-30 Response messages structure

9. Execute the mapping task. Follow the same steps as specified in “Request mapping” on
page 65.

10.When the mapping is done, right-click CobolToXmlResponseMap and select Build.
Verify that no errors are displayed.

Response map testing
Follow these steps:

1. Right-click CobolToXmlResponseMap and select Settings.

2. Change Map Runtime to WebSphere DataPower and click OK.

3. Right-click CobolToXmlResponseMap and select Run to create the files that we need to
work with DataPower Device in transformation process. These are the CCOUT4K.mts and
CobolToXmlResponseMap.xml files.

4. In the DataPower SOA Appliances window (Figure 3-31), verify that results are successful.

Figure 3-31 A successful process

5. Exit from Type Designer and click Yes to save any changes.

Chapter 3. Enabling existing applications 77

3.4 Deployment of the XML to COBOL transformations

At this stage, we have successfully developed the files for transformation and tested them
against the DataPower run time. In this section, we illustrate how to use these transformation
artifacts to create a multiprotocol gateway for providing the XML-to-COBOL service.
Multiprotocol gateways are used when a protocol translation is needed in addition to a data
transformation. The back-end protocol for communicating with the existing application is MQ.
In this scenario, we explain how to set up the DataPower appliance for using an MQ resource.
We assume that the actual MQ resource can be created or equivalent resources are available
in your environment.

3.4.1 Creating the WebSphere MQ resources

In this scenario, we need to access the MQ components listed in Table 3-7. If equivalent MQ
components are available in your environment, substitute their names appropriately.

Table 3-7 WebSphere MQ components

3.4.2 Importing transformation files developed in WebSphere Transformation
Extender Studio into the DataPower appliance

To import the transformation files:

1. Log in to the DataPower WebGUI.

2. Change the domain if needed and click Administration → File Management
(Figure 3-32).

Figure 3-32 File Management option

Component Type and details Name

Queue manager MQ queue manager QMDP

Queue Local TEST.REQUEST

Queue Local TEST.RESPONSE

Listener Port: 1414 QMDP_Listener

Channel SVRCONN DP.CHANNEL

78 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

3. On the File Management page (Figure 3-33), for the local folder, click Actions → Upload
Files.

Figure 3-33 Upload Files action

4. Under File to upload (Figure 3-34), click Browse. Navigate to the WTXWork folder. Select
the CCINP.mts file and click Open.

5. The tool returns to the File Management page. Click Attach.

Figure 3-34 File Management page after uploading the CCINP.mts file

Chapter 3. Enabling existing applications 79

6. Repeat steps 4 and 5 to import the CCOUT4K.mts, CobolToXmlResponseMap.xml, and
XmlToCobolRequestMap.xml files. When you are finished, click Upload. Figure 3-35
shows the uploaded files.

Figure 3-35 File Management page after uploading the additional files

7. Verify that all files loaded successfully as shown in Figure 3-36. Click Continue.

Figure 3-36 Files loaded successfully

80 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 3-37 shows the files in the local folder.

Figure 3-37 Files in the local folder

3.4.3 Creating a multiprotocol gateway

A multiprotocol gateway connects client requests that are transported over one or more
protocols to a back-end service by using the same or a different protocol.

To create a multiprotocol gateway:

1. On the Control Panel page, click Multi-Protocol Gateway (Figure 3-38).

Figure 3-38 Multi Protocol Gateway Icon

2. On the Configure Multi-Protocol Gateway page, click Add.

More information: You can learn more about the multiprotocol gateway in the DataPower
reference guide documentation that is listed in “Other publications” on page 185.

Chapter 3. Enabling existing applications 81

3. On the General page, complete the following steps:

a. In the Multi-Protocol Gateway Name field, enter EnablingLegacyApp.
b. In the field summary, enter Enabling Legacy Application Scenario.
c. In the Multi-Protocol Gateway Policy section, click the + button (Figure 3-39).

Figure 3-39 New policy button

4. In the Explorer User Prompt window (Figure 3-40), in the Processing Policy Name field,
type EnabligLegacyAppPolicy, and click OK.

Figure 3-40 New policy name

5. In the next window, click OK.

6. On the Configure Multi-Protocol Gateway Protocol page (Figure 3-41), which now shows
the policy icon, select Client to Server direction and double-click the = (Match) icon.

Figure 3-41 Configure Multi-Protocol Gateway page

7. On the Configure Match Action page, click the + button to create a new matching rule.

8. On the Configure Matching Rule page, in the Name field, type MatchAll.

9. Click the Matching Rule tab and click Add.

82 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

10.In the Adding new Matching Rule property window (Figure 3-42), for Matching Type, select
url. For URL Match, type an asterisk (*) to match any request on this multiprotocol
gateway. Click Save.

Figure 3-42 New Matching Rule parameters

11.On the Configure Matching Rule page (Figure 3-43), click Apply.

Figure 3-43 Matching rule created

12.Click Done. The new matching rule is active as shown in Figure 3-44.

Figure 3-44 Active rule

Chapter 3. Enabling existing applications 83

13.Continue with rule creation by dragging the Advanced icon to the rule configuration path
(the horizontal line). Double-click the Advanced icon (Figure 3-45).

Figure 3-45 Add Advance icon

14.Select the extract option and click Next (Figure 3-46).

Figure 3-46 Extract option

15.On Configure Extract Using XPath Action page, in the input field, select INPUT.

16.Click XPath Tool.

17.On the Select XPath Expression for something in an XML File page (Figure 3-47 on
page 85), complete the following steps:

a. Click Upload.

b. Click Browse and look for the Client_Request.xml file in WTXWork folder. Select the
file and click Open.

c. Back on Select XPath Expression for something in an XML File page, click Upload and
then click Continue.

d. Click Refresh to see the XML request message.

84 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 3-47 XML request message

e. In the Content of sample XML document section (Figure 3-48), click the CreateClaim
XML element.

Figure 3-48 Selecting Create Claim

Chapter 3. Enabling existing applications 85

The page shows the XPath Information like the example in Figure 3-49.

Figure 3-49 XPath details

f. Click Done.

g. Click Done to close the window.

18.Continue with the rule creation by dragging the Transform icon to the rule configuration
path (the horizontal line). Double-click the Transform icon.

19.On the Configure Transform Binary Action page (Figure 3-50), complete these steps:

a. For Use Document Processing Instructions, select Use XSLT specified in this action
on a non-XML message.

b. In the WTX Map file field, enter local:///XmlToCobolRequestMap.xml.

c. Click Done.

Figure 3-50 Configure Transform Binary Action details

86 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

20.Finish the request rule creation by dragging the Results icon to the rule configuration path
(the horizontal line). Double-click the Results icon.

21.On the next page, click Done.

22.On the Configure Multi-Protocol Gateway Policy page (Figure 3-51), you see the complete
rule configuration path. Click Apply.

Figure 3-51 Complete rule configuration path

23.Create the response rule configuration path. Click New and change direction to Server to
Client (Figure 3-52).

Figure 3-52 New rule configuration path

24.Double-click the Rule icon.

25.On the next page, in the Matching Rule field, select MatchAll. Then click Done.

26.Continue with rule creation by dragging the Transformation icon to the rule configuration
path (the horizontal line). Double-click the Transformation icon.

Chapter 3. Enabling existing applications 87

27.On the Configure Transform Binary Action page (Figure 3-53), complete these steps:

a. For Use Document Processing Instructions, select Use XSLT specified in this action
on a non-XML message.

b. For the WTX Map File, enter local:///CobolToXmlResponseMap.xml.

c. Click Done.

Figure 3-53 Transform Binary Action details

28.Continue with rule creation by dragging another Transformation icon to the rule
configuration path (the horizontal line). Double-click the Transformation icon.

29.On the next page, in the Use Document Processing Instructions field, select Use XSLT
specified in this action. Click Upload.

88 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

30.On the File Management page (Figure 3-54), click Browse and select the
converttosoap.xsl file. Click Upload and then click Continue.

Figure 3-54 File Management page

31.On the Configure Transform Action page (Figure 3-55), click Done.

Figure 3-55 Configure Transform Action details

Chapter 3. Enabling existing applications 89

32.Continue with the rule creation by dragging a Results icon to the rule configuration path
(the horizontal line). Double-click the Results icon.

33.On the Configure Results Action page (Figure 3-56), click Done.

Figure 3-56 Configure Results Action page

90 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

34.The response Rule Configuration Path is displayed as shown in Figure 3-57. Click Apply
and then click Close.

Figure 3-57 Rule configuration path

35.Configure the back side setting. In the Back side settings section (Figure 3-58), click the
MQ Helper button.

Figure 3-58 MQHelper button

Chapter 3. Enabling existing applications 91

36.On the MQ URL Builder page (Figure 3-59), in the Queue Manager field, click the + button
and then select MQ Queue Manager.

Figure 3-59 MQ URL Builder page

37.On the Configure MQ Queue Manager page, enter the values shown in Table 3-8 and click
Apply.

Table 3-8 Configure MQ Queue Manager values

Field Value Explanation

Name DataPowerQManager DataPower MQ manager object name

Comments DataPower Qmanager

Host Name dp_QM(1414) IP address or host name of the WebSphereMQ
server that hosts this queue manager

Queue Manager Name QMDP Name of the queue manager to connect

Channel Name DP.CHANNEL The MQ Channel

User Name wmbadmin The plaintext string that is sent to the server for
identifying the client

92 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 3-60 shows the configured MQ Queue Manager settings.

Figure 3-60 Configure MQ Queue Manager parameters

38.On the MQ URL Builder page, enter the values shown in Table 3-9 and click Build.

Table 3-9 MQ URL Builder values

Field Value

Queue Manager DataPowerQManager

RequestQueue TEST.REQUEST

ReplyQueue TEST.RESPONSE

Chapter 3. Enabling existing applications 93

Figure 3-61 shows the configured MQ URL Builder page.

Figure 3-61 MQ URL Builder page

39.In the Back side settings section, in the Backend URL field, add the value
;ParseHeaders=true. The last Backend URL value should read as follows:

dpmq://DataPowerQManager/?RequestQueue=TEST.REQUEST
;ReplyQueue=TEST.RESPONSE;ParseHeaders=true

40.In the Front side settings section (Figure 3-62), click the Create new button and select
HTTP Front Side Handler.

Figure 3-62 Create HTTP Front Side Handler

94 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

41.On the Configure HTTP Front Side Handler page (Figure 3-63), complete these steps:

a. In the Name field, enter EnableLegacyApp_HTTPFSH.
b. In the Port Number field, enter 8081.
c. Click Apply.

Figure 3-63 HTTP Front Side Handler values

42.Click Apply.

You have now created the multiprotocol gateway. If you are successful, the status is displayed
as up as illustrated in Figure 3-64.

Figure 3-64 Front side settings

Chapter 3. Enabling existing applications 95

3.5 Running the application

To run the sample application:

1. Verify that the MQ components are running.

2. Enter the WTXWork directory and run the Host Server simulation program by using the
following command:

redbookserver -i TEST.REQUEST -o TEST.RESPONSE -m QMDP -f Host_Response.dat

You receive a successful message indicating that redbookmqserver is running
(Figure 3-65).

Figure 3-65 redbookmqserver running

3. In this sample scenario, we use the cURL tool as a client to send the request. Copy the
cURL directory into the WTXWork folder, enter the cURL directory, and enter the following
command:

curl -v -D -X POST d@..\Client_Request.xml http://<ip address or host name of
your datapower device>:8081/

96 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

4. Verify the result with the WTX files. The transformation results are displayed in the
Command Prompt window as shown in Figure 3-66.

Figure 3-66 Transformation execution

Example 3-1 shows a sample of the results of using the curl command.

Example 3-1 Sample results

c:\Redbook-Material\Curl>curl -v -D -X POST -d@..\Client_Request.xml http://9.42
.170.230:8081/Test
* Could not resolve host: POST; Host not found
* Closing connection #
curl: (6) Could not resolve host: POST; Host not found
* About to connect() to 9.42.170.230 port 8081
* Trying 9.42.170.230... connected
* Connected to 9.42.170.230 (9.42.170.230) port 8081
> POST /Test HTTP/1.1
> User-Agent: curl/7.15.0 (i586-pc-mingw32msvc) libcurl/7.15.0 OpenSSL/0.9.7e zl
ib/1.2.2
> Host: 9.42.170.230:8081
> Accept: */*
> Content-Length: 3179
> Content-Type: application/x-www-form-urlencoded

Chapter 3. Enabling existing applications 97

> Expect: 100-continue
>
< HTTP/1.1 100 Continue
< X-Note: Gateway Ack
HTTP/1.1 200 OK
< X-Backside-Transport: OK OK
< Connection: Keep-Alive
< Transfer-Encoding: chunked
< MQCNO: <MQCNO><StrucId>CNO </StrucId> <Version>1</Version> <Options>0</Options
> <ConnTag>000
00
00
000000000000000000000000000</ConnTag><ConnectionId>00000000000000000000000000000
0000000000000000000</ConnectionId></MQCNO>
< MQMD: <MQMD><StrucId>MD </StrucId> <Version>1</Version> <Report>0</Report> <M
sgType>8</MsgType> <Expiry>-1</Expiry> <Feedback>0</Feedback> <Encoding>546</Enc
oding> <CodedCharSetId>819</CodedCharSetId> <Format>MQSTR </Format> <Priority>
0</Priority> <Persistence>0</Persistence> <MsgId>414d5120514d4450202020202020202
0d765714620013803</MsgId><CorrelId>414d5120514d44502020202020202020d765714620013
803</CorrelId><BackoutCount>0</BackoutCount> <ReplyToQ>
 </ReplyToQ> <ReplyToQMgr>QMDP
 </ReplyToQMgr> <UserIdentifier>wmbadmin </UserIdentifier> <Ac
countingToken>1601051500000092e03c779b0bc11e75b97554ee03000000000000000000000b</
AccountingToken><ApplIdentityData> </ApplIdentity
Data> <PutApplType>11</PutApplType> <PutApplName>Material\redbookmqserver.exe</P
utApplName> <PutDate>20070614</PutDate> <PutTime>20090998</PutTime> <ApplOriginD
ata> </ApplOriginData> <GroupId>000
000</GroupId><MsgSeqNumber>1</MsgSeqNumber> <Offset>0</Offset> <MsgFlags>0</MsgF
lags> <OriginalLength>-1</OriginalLength> </MQMD>
< X-Client-IP: 9.42.170.159
< content-type: text/xml
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:ctvf="http://www.wtx.com/xslt/extensions" xmlns:date
="http://exslt.org/dates-and-times" xmlns:soapenv="http://schemas.xmlsoap.org/so
ap/envelope/" xmlns:soabdata="http://data.soabench.ibm.com" xmlns:payload="http:
//payload.soabench.ibm.com" xmlns:tns="http://soaassureservice.soabench.ibm.com"
><soapenv:Header/><soapenv:Body><tns:createClaimResponse><tns:responseCode>Succe
ss</tns:responseCode><tns:claim><soabdata:claimId>c123456</soabdata:claimId><soa
bdata:policyId>PS100001</soabdata:policyId><soabdata:claimState>New</soabdata:cl
aimState><soabdata:lossDate>37Z</soabdata:lossDate><soabdata:noticeDate>37Z</soa
bdata:noticeDate><soabdata:claimFormImage>aW1n</soabdata:claimFormImage><soabdat
a:fundsReserved>0</soabdata:fundsReserved><soabdata:repairQuotationCost>0</soabd
ata:repairQuotationCost><soabdata:repairApprovedCost>0</soabdata:repairApprovedC
ost><soabdata:repairActualCost>0</soabdata:repairActualCost><soabdata:repairShop
><soabdata:repairShopId/><soabdata:companyName/><soabdata:agentLastName/><soabda
ta:agentFirstName/><soabdata:contact><soabdata:postalAddress><soabdata:street1/>
<soabdata:street2/><soabdata:city/><soabdata:state/><soabdata:zipCode/></soabdat
a:postalAddress><soabdata:emailAddress/><soabdata:phone/></soabdata:contact></so
abdata:repairShop><soabdata:paymentDate/><soabdata:thirdPartyProvider><soabdata:
providerId>TP12345</soabdata:providerId><soabdata:companyName>Company</soabdata:
companyName><soabdata:agentLastName>gentLast</soabdata:agentLastName><soabdata:a
gentFirstName>entFirst</soabdata:agentFirstName><soabdata:contact><soabdata:post
alAddress><soabdata:street1>h street</soabdata:street1><soabdata:street2>uite 50
9</soabdata:street2><soabdata:city>t Moline</soabdata:city><soabdata:state>IL</s
oabdata:state><soabdata:zipCode>244-1245</soabdata:zipCode></soabdata:postalAddr

98 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

ess><soabdata:emailAddress>pany.com</soabdata:emailAddress><soabdata:phone>539-3
434</soabdata:phone></soabdata:contact></soabdata:thirdPartyProvider><soabdata:t
hirdPartyPolicyId>2435-235</soabdata:thirdPartyPolicyId><soabdata:thirdParty><so
abdata:lastName>DeGuzman</soabdata:lastName><soabdata:firstName>lexander</soabda
ta:firstName><soabdata:dateOfBirth>37Z</soabdata:dateOfBirth><soabdata:gender>Ma
le</soabdata:gender><soabdata:maritalStatus>Married</soabdata:maritalStatus><soa
bdata:contact><soabdata:postalAddress><soabdata:street1>h street</soabdata:stree
t1><soabdata:street2/><soabdata:city>t Moline</soabdata:city><soabdata:state>IL<
/soabdata:state><soabdata:zipCode>244-1245</soabdata:zipCode></soabdata:postalAd
dress><soabdata:emailAddress>pany.com</soabdata:emailAddress><soabdata:phone>539
-3434</soabdata:phone></soabdata:contact></soabdata:thirdParty><soabdata:thirdPa
rtyVehicle><soabdata:vin>3890K343</soabdata:vin><soabdata:registrationMark>TQF-3
345</soabdata:registrationMark><soabdata:manufacturer>Ford</soabdata:manufacture
r><soabdata:model>plorer V</soabdata:model><soabdata:year>2002</soabdata:year><s
oabdata:estimatedValue>0.67</soabdata:estimatedValue><soabdata:estimatedValueDat
e>37Z</soabdata:estimatedValueDate></soabdata:thirdPartyVehicle><soabdata:policy
HolderBlame>0</soabdata:policyHolderBlame><soabdata:thirdPartyAcceptedBlame>1</s
oabdata:thirdPartyAcceptedBlame></tns:claim><tns:payload><payload:customerDetail
><payload:firstname/><payload:lastname/><payload:custid/><payload:accnum>0</payl
oad:accnum><payload:hasChild>0</payload:hasChild><payload:policyAmt1>0</payload:
policyAmt1><payload:policyAmt2>0</payload:policyAmt2><payload:netAmt>0</payload:
netAmt><payload:initDate/><payload:markerID>0</payload:markerID><payload:pNest><
payload:recurID/><payload:recurNum/><payload:markerID>0</payload:markerID></payl
oad:pNest><payload:policyDetail><payload:typeID/><payload:polName/><payload:comp
Amt>0</payload:compAmt><payload:markerID>0</payload:markerID></payload:policyDet
ail><payload:vehicleImage/></payload:customerDetail><payload:baseCheckSum>0</pay
load:baseCheckSum><payload:accHistCheckSum>0</payload:accHistCheckSum></tns:payl
oad></tns:createClaimResponse></soapenv:Body></soapenv:Envelope>* Connection #0
to host 9.42.170.230 left intact
* Closing connection #0

Chapter 3. Enabling existing applications 99

3.6 Adding XML schema validation

We successfully provided a Web service facade to the back-end application without modifying
the back-end application in any way. As a first step toward robust compliance to SOA, we
validate the input data against its XSD:

1. Load the files into DataPower. From the navigation bar, click ADMINISTRATION → File
Management.

2. On the File Management page (Figure 3-67), for the local folder, click Actions →
UploadFiles.

Figure 3-67 Upload Files

3. Browse for the DataTypes.xsd file. Click Attach → Upload → Continue. Repeat the
same steps for the PayloadTypes.xsd and SOAAssureService.xsd files.

4. Go to the Multi-Protocol Gateway.

5. On the Configure Multi-Protocol Gateway page (Figure 3-68), click
EnablingLegacyApplication.

Figure 3-68 Selecting EnablingLegacyApplication

100 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6. On the General page (Figure 3-69), for Multi-Protocol Gateway Policy, select
EnablingLagacyAppPolicy and click the ... button.

Figure 3-69 Edit EnablingLegacyAppPolicy

7. Drag the Validate icon to the rule configuration path (the horizontal line), and drop it as the
second icon after the Match (=) icon. Double-click the Validate icon (Figure 3-70).

Figure 3-70 Adding the Validate icon

Chapter 3. Enabling existing applications 101

8. On the Configure Validate Action page (Figure 3-71), for Schema Validation Method,
select Validate Document via Schema URL. Load the SOAAssureService.xsd file. Then
click Done.

Figure 3-71 Configure Validate Action page

9. On the Configure Multi-Protocol Gateway Policy page, click Apply and then click Close.

3.7 Running the XML schema validation

To run the validation:

1. On the Configure Multi-Protocol Gateway page (Figure 3-72), in the Request Type section,
select XML and execute the test.

Figure 3-72 Selecting the XML request type

102 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

2. Check the validation execution as shown Figure 3-73.

Figure 3-73 Validation execution

Chapter 3. Enabling existing applications 103

3. Check the validation execution in the Probe section (Figure 3-74).

Figure 3-74 Validation Execution from Probe

4. Change the Request Type to SOAP (Figure 3-75) and execute the test.

Figure 3-75 Selecting the SOAP request type

3.8 Summary

In this chapter, we illustrated the main steps to build a typical scenario with the DataPower
appliance for clients who want to XML-enable arbitrary back-end applications. In this
scenario, we went one step further and provided a Web service facade to a back-end COBOL
application.

We use this scenario as a building block in the following chapters. We add layers, such as
security and authentication, authorization, and audit (AAA), to make the scenario robust in
keeping with SOA standards.

104 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 4. Securing communication
channels with SSL

In this chapter, we explain how you secure and encrypt the communication channels between
the DataPower service and the requesting client using Secure Sockets Layer (SSL) by using
the secure HTTP protocol, HTTPS.

4

© Copyright IBM Corp. 2008. All rights reserved. 105

4.1 SSL for transport level security

In order to enable SSL, you must create the following objects in the DataPower appliance:

� Crypto profile

– Crypto Identification Credentials
– Crypto Validation Credentials
– Crypto Key
– Crypto Certificate

� SSL proxy profile

4.1.1 Crypto profile

A crypto profile identifies a collection of SSL resources that support SSL connections with
remote peer devices. To configure a crypto profile:

1. From the navigation bar, select OBJECTS → Crypto Menu → Crypto Profile.

2. On the Crypto Profile Catalog page (Figure 4-1 on page 107), which provides a list of all
current crypto profiles, specify the following values:

a. For Identification Credentials, optionally from the list, select the Identification
Credentials Set that is assigned to this crypto profile.

The Identification Credentials Set provides the public key infrastructure (PKI) certificate
or key pair that is used to authenticate the device during the SSL handshake. Retain
the default value (none) if are not assigning an Identification Credentials Set to the
crypto profile. Click the + and … buttons to create a new Identification Credentials Set
or to edit an Identification Credentials Set.

In this crypto profile, we use the name itsoIDCred.

b. For Validation credentials, optionally from the list, select the Validation Credentials List
that is assigned to this crypto profile. In our crypto profile, we used itsovalid.

c. For Ciphers, identify the symmetric key encryption algorithms that are supported by
this crypto profile. Refer to the DataPower reference documentation listed in “Other
publications” on page 185 for more information.

d. For Options, select the appropriate check box to disable support for SSL versions and
variants. By default, SSL Versions 2 and 3 are supported, along with Transaction Level
Security (TLS) Version 1.

e. For Send Client CA List, select On to enable transmission of a Client CA List during the
SSL handshake. The default is Off, which disables transmission of a Client CA List.

Reverse SSL proxy: Assignment of a Validation Credentials List is only meaningful
when the crypto profile supports a reverse (or server) SSL proxy. The assignment of
a Validation Credentials List to a reverse SSL proxy forces the proxy to require a
certificate from all requesting clients.

106 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 4-1 Configuration of the crypto profile

Crypto Identification Credentials
A Crypto Identification Credentials set consists of a Crypto Key object and a Crypto
Certificate object. An identification credentials set identifies the matched public key
cryptography public and private keys that are used by an entity for SSL authentication. An
identification credentials set may also be used in document encryption, document decryption,
and digital signature operations as shown in the following example:

1. From the navigation bar, select OBJECTS → Crypto → Crypto Identification
Credentials. The Crypto catalog (Figure 4-2) lists all current identification credentials
sets.

Figure 4-2 Crypto objects menu

Chapter 4. Securing communication channels with SSL 107

2. Click Add.

3. On the Configure Crypto Identification Credentials page (Figure 4-3), specify the following
values:

a. For Crypto Key, from the list, select the Crypto Key object that is used by this
identification credentials set. You can click the + and … buttons to create a new Crypto
Key object or to edit a Crypto Key object.

b. For Certificate, from the list, select the Crypto Certificate object that is used by this
identification credentials set. You can click the + and … buttons to create a new Crypto
Certificate object or to edit a Crypto Certificate object.

c. For Intermediate CA Certificate, if necessary, click the Delete and Add buttons, in
conjunction with a list of available Crypto Certificate objects, to establish a verifiable
trust chain that consists of one or more Certification Authority (CA) certificates.

The trust chain provides a linked path from the certificate that is contained in the
Identification Credentials Set to a CA that is trusted by a remote device, thus enabling
the device to authenticate the certificate.

Intermediate CA certificates might be necessary when the CA that is signing this
certificate is not widely-recognized. If the intermediate CA certificate is also signed by
a less recognized CA, an additional intermediate CA certificate might be required for
that CA. You can specify as many intermediate certificates as may be required.

Figure 4-3 Configure Crypto Identification Credentials page

108 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Crypto Validation Credentials
A Crypto Validation Credentials list consists of a list of Crypto Certificate objects. Validation
credentials lists are used to validate the authenticity of received certificates and digital
signatures. From the navigation bar, select OBJECTS → Crypto → Crypto Validation
Credentials. The Crypto catalog provides a list of all current validation credentials.

HTTPS Front Side Handler
After you create a crypto profile, you must create an HTTPS (SSL) Front Side Handler to
handle HTTPS protocol communications with multiprotocol gateway clients. To configure the
HTTPS Front Side Handler:

1. From the navigation bar, select OBJECTS → Protocol Handlers → HTTPS Front Side
Handler. On the HTTPS (SSL) Front Side Handler catalog, you see a list of all current
HTTPS Front Side Handlers.

2. Click Add.

3. On the HTTPS (SSL) Front Side Handler Configuration page (Figure 4-4), complete the
following steps:

a. Accept the defaults for all parameters, except for SSL Proxy, for which you must create
a new SSL proxy object.

b. For Port Number, enter the port that you want this front-side handler to run.

c. For Local IP Address, specify the address on which the service listens. The default of
0.0.0.0 indicates that the service is active on all addresses. Click Select Alias to use
an alias for this value. Local host aliases help to ease migration tasks between
machines.

d. Click Apply to write HTTPS Front Side Handler properties to the running configuration.
You return to the HTTPS (SSL) Front Side Handler Catalog (Figure 4-4 on page 109),
which now lists the newly configured front side handler.

4. Click Save Config to save the HTTPS Front Side Handler properties to the persistent
startup configuration.

Figure 4-4 Configuring the HTTPS Front Side Handler

Chapter 4. Securing communication channels with SSL 109

4.1.2 SSL proxy profile

An SSL proxy defines the level of service. To define an SSL proxy profile:

1. From the navigation bar, select OBJECTS → Crypto → SSL Proxy Profile.

2. On the Configure SSL Proxy Profile page (Figure 4-5), enter the following information:

a. For Direction, select one of the following options:

• Forward specifies a mode in which the SSL Proxy functions as an SSL client. In
client mode, SSL is used over the device-to-server connection.

• Reverse specifies a mode in which the SSL Proxy functions as an SSL server. In
server mode, SSL is used over the device-to-client connection.

• Two-way specifies a mode in which the SSL proxy functions both as an SSL client
and as an SSL server. In two-way mode, SSL is used over both the device-to-server
connection and over the device-to-client connection.

b. For Reverse (Server) Crypto Profile, from the list, select the crypto profile that defines
the SSL service level between the device (acting as an SSL server) and front-end SSL
clients. This setting is relevant when the SSL Proxy Profile operational mode is either
reverse or two-way. Select the crypto profile that defines SSL service to front-end
clients. Retain the default value (none) if the operational mode is forward. You can use
the + and … buttons to create a new crypto profile or to edit a crypto profile.

Figure 4-5 Configure SSL Proxy Profile page

110 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

c. For Server-side Session Caching, select On to enable server side caching or Off to
disable server side caching.

By default, SSL server implementations cache SSL session-specific state data, such
as the session ID, the peer certificate, compression method, and crypto specs and
secrets.

d. For Client Authentication is Optional, this property is meaningful when SSL client
authentication is enabled in the server cryptographic profile. When both properties are
enabled, SSL client authentication is optional (a setting of yes). The request does not
fail when there is no client certificate. When disabled (the default setting of no), SSL
client authentication is required by the application server.

4.1.3 Enabling the Probe for encrypted SSL request messages

SSL provides link-level security and uses the multiprotocol gateway with a specific front side
handler. An HTTPS Front Side Handler must be created as described in “HTTPS Front Side
Handler” on page 109. The client device that connects to the DataPower appliance, the cURL
program in the sample scenario described in this chapter, uses a certificate and a private key
to send the encrypted messages.

You can use the following command in this case:

curl -k -E itsodp-sscert.pem:itsopass --key itsodp-privkey.pem --cacert
itsodp-sscert.pem --data-binary
@C:\IBM\Security_Gateway_Artefacts\itso_encry_msg.xml
https://datapower.itso.ral.ibm.com:4003

4.2 Summary

In this chapter, we explained how to secure communications channels to the DataPower
device by securing the transport communication layer with SSL.

Chapter 4. Securing communication channels with SSL 111

112 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 5. Logging capabilities the in
DataPower appliance

In this chapter, we discuss the logging capabilities that are provided by the DataPower XI50
appliances. We explain the DataPower logging capabilities and error handling.

5

© Copyright IBM Corp. 2008. All rights reserved. 113

5.1 DataPower logging capabilities

In this section, we discuss the logging capabilities of the DataPower appliance.

5.1.1 Log target, category, and level

The DataPower logging capabilities are based on the following objects:

� Log target
� Log category
� Log level

Log target
A log target object captures logging messages that are posted by the different enabled
services or objects of a DataPower device. Then it forwards the messages to a specific
physical target. This target may be located inside or outside the DataPower device.

To access the DataPower log targets, select ADMINISTRATION → Manage Log Targets.

You can filter messages that are destined to a log target by using the following options:

� Event categories

These categories refer to log category objects, which we explain in the following section.

� Event subscription filters

By using these filters, only log messages that contain the configured event codes can be
written to a log target.

� Event suppression filters

Suppression filters suppress log messages that contain the configured event codes to be
written to a log target.

� Object filters

With these filters, only log messages that are generated by selected configuration objects
can be written to a log target. Object filters are based on object classes, such as
processing actions and multiprotocol gateways.

Log category
A log category object represents a type of event. Basically, a DataPower device contains
predefined categories. Each category is associated to a specific type of event such as aaa,
xslt, mq, auth, and mgmt.

To access the Log Category Configuration page, from the navigation bar, select
ADMINISTRATION → Configure Log Categories.

Cache or file: Because no hard-disk-based file system is on a DataPower device, do not
use a cache or file as log targets. Instead, log outside the DataPower device.

114 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Log level
A log target must also define a log level. Log levels are hierarchical, with the lowest level
(debug) at the bottom of the list and the highest level (emergency) at the top. The following log
levels are available:

1. Emergency
2. Alert
3. Critical
4. Error
5. Warning
6. Notice
7. Info
8. Debug

A log target is configured to capture log messages that are at or above the configured level.

Default log target and system logs
For each domain, a default log target of default-log exists.

The default system log captures messages that are at or above the default log level. To
modify the default system log level, from the Control Panel, click Troubleshooting, and select
Set Log Level. You set the level as shown in Figure 5-1.

Figure 5-1 Setting the default system log level

System logs (default and others) are displayed on the System Log page. To access this page,
select STATUS → System logs from the navigation bar.

Figure 5-2 shows an example of log entries as displayed on the System Log page.

Figure 5-2 System log entries

Chapter 5. Logging capabilities the in DataPower appliance 115

5.1.2 Configuring a system log

In this section, we discuss a system log configuration for our Multi-Protocol Gateway Service.
We add a log target with the following characteristics:

� The log target captures messages that deal with crypto treatments at the notice level.
� The log target must be available only on our multiprotocol gateway service object.
� The name of our log target is crypto_target.
� The log target uses the filestore logtemp:///crypto.log to log entries in an XML format.

You can add a DataPower log target by selecting ADMINISTRATION → Manage Log
Targets from the navigation bar. Figure 5-3 shows the Configure Log Target page.

Figure 5-3 Configure Log Target page

116 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 5-4 shows the parameters that we use to create our log target.

Figure 5-4 Log target creation for crypto treatments

Chapter 5. Logging capabilities the in DataPower appliance 117

We click the Object Filters tab to specify that the crypto_target log target only captures
messages from our multiprotocol gateway (Figure 5-5).

Figure 5-5 Object filters of the log target

Finally we click the Event Subscriptions tab to define the category and the log level that we
use. Figure 5-6 shows how we define the category and log level.

Figure 5-6 Adding a new event subscription property

Figure 5-7 shows the added event category.

Figure 5-7 Event category of the log target

118 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

While sending a request to our multiprotocol gateway, the log entries (samples) shown in
Example 5-1 are added to the logtemp:///crypto.log file. These entries concern both request
and response processing rules.

Example 5-1 Log entries in the logtemp:///crypto.log file

<log-entry serial='0' domain='SecurityProcessing'>
<date>Wed Jun 06 2007</date>
<time utc='1181168414803'>18:20:14</time>
<date-time>2007-06-06T18:20:14</date-time>
<type>crypto</type>
<class>mpgw</class>
<object>ITSO_MPGW</object>
<level num='6'>info</level>
<transaction-type>request</transaction-type>
<transaction>26240</transaction>
<client>9.42.171.105</client>
<code>0x00000000</code>
<file></file>
<message>Ephemeral key decryption succeeded</message>
</log-entry>
...
<message>Data decryption succeeded</message>
...
<message>Signature verification succeeded</message>
...
<message>Signature generation succeeded</message>
...
<message>Ephemeral key generation succeeded</message>
...
<message>Ephemeral key encryption succeeded</message>
...
<message>Data encryption succeeded</message>
...

We can see that every step that is associated with the crypto category is logged in the
logtemp:///crypto.log file. The log target can use various target types. The following list shows
the possible targets:

cache Uses system memory to log entries.

file Writes log entries on the DataPower device flash memory.

nfs Writes log entries to a file on a remote Network File System (NFS) server.

smtp Forwards log entries to e-mail addresses.

snmp Forwards log entries as Simple Network Management Protocol (SNMP) traps
issued to all configured recipients of SNMP traps.

soap Forwards log entries as SOAP messages.

syslog Forwards log entries to a remote syslog daemon, over User Datagram Protocol
(UDP).

syslog-ng Forwards log entries to a remote syslog daemon, over TCP. In this case, an
SSL connection to the syslog server can be used.

Chapter 5. Logging capabilities the in DataPower appliance 119

5.1.3 Log action

A log action may be used on processing rules. The target of this log must be located outside
the DataPower device.

The log action is accessible through an advanced action. You drag an advanced action on a
processing rule (request, response or error), double-click this action, and then select the log
operation (Figure 5-8).

Figure 5-8 Creating a log action

On the Configure Log Action page (Figure 5-9), configure the log action. In the Destination
text field, you must declare a target. For Log Type, select the desired category of the target.

For Output, define the log action as NULL. In this case, a log action failure does not generate
a SOAP fault message. A log action failure might occur, for instance, in case of a problem with
the external log target. Moreover, choosing a NULL output implies an asynchronous
treatment of the log action, which may be preferred for performance enhancements.

Figure 5-9 Configuring a log action

5.1.4 Logging from a custom template

Log messages can be sent from an Extensible Stylesheet Language (XSL) stylesheet, by
using event category and log level as attributes of the <xsl:message> element. For a detailed
example, see Chapter 6, “XSLT programming” on page 123.

120 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

5.2 Error handling

Error handling may be performed with various DataPower objects, which are the on-error
processing action and the on-error processing rule.

5.2.1 On-error processing action

An on-error processing action provides the following possibilities:

� Abort or continue the current processing
� Execute a named rule to handle the error

A processing rule might use one or more on-error actions. Each on-error action defines error
handling for preceding actions until a new on-error action is found on the same processing
rule.

5.2.2 On-error processing rule

An on-error processing rule can be defined in every processing policy. This error rule
executes each time an error occurs during request or response processing.

An on-error processing rule might also use various actions to define a specific and complex
error handling. For instance, it is possible to define a transformation action based on a custom
template to generate an error message that is related to error and sub-error codes that are
generated by the DataPower appliance.

Refer to Chapter 6, “XSLT programming” on page 123, for an example of using an XSL
stylesheet to create an error message.

5.3 Summary

Logging outside a DataPower device is definitely a best practice, since there is no file system
in a DataPower device.

On-error action: The presence of an on-error action prevents an on-error rule from
executing.

Chapter 5. Logging capabilities the in DataPower appliance 121

122 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 6. XSLT programming

In this chapter, we describe the XML Stylesheet Language Transformation (XSLT)
programming enhancements that are provided in the DataPower appliance thanks to the
following extension modules:

� Extended XSLT (EXSLT)

This module consists of a set of extension functions to common XSLT1.0 capabilities.

� DataPower extension functions and elements

This module contains a set of functionalities and elements (or tags) dedicated to
DataPower treatments.

Both EXSLT and DataPower extensions can be used in XSL stylesheets in order to achieve
specific treatments. In this chapter, we introduce these basic extension functions and
elements, and we provide practical code examples that can be easily reused. We discuss the
following topics:

� XSL stylesheet namespace requirements to use EXSLT and DataPower extension
functions and elements

� Basic examples on using both EXSLT and DataPower extension functions and elements

� Examples of custom templates implementation, based on the scenario described in
Chapter 2, “Getting started” on page 17

� Examples of custom template implementations, based on a specific scenario

� XSLT debugging and logging in the DataPower appliance

6

More information: The goal of this chapter is to describe the way in which you can use the
enhancements of the extension function and provided elements in the context of a specific
XSL stylesheet implementation on the DataPower appliance.

For details about the DataPower domain, SOAP clients, and requests that are used to
configure and test these examples, see Appendix A, “XSL programming issues” on
page 179.

© Copyright IBM Corp. 2008. All rights reserved. 123

6.1 XSL stylesheet namespace requirements

EXSLT and DataPower extension functions or elements use specific namespaces that must
be added in the <xsl:stylesheet> element of a custom template. We describe the different
possible values of these namespaces and the way in which they are declared.

6.1.1 Namespace declarations for DataPower extensions

In this section, we discuss the namespace declarations for DataPower extension functions
and elements.

Namespace in case of an extension element use
Example 6-1 shows the namespace declaration that you must use in an XSL stylesheet that
implements at least one DataPower extension element.

Example 6-1 template1.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:dp=”http://www.datapower.com/extensions”
extension-element-prefixes=”dp”
exclude-result-prefixes=”dp”>

<!-- *** HERE COMES THE XSL STYLESHEET CODE *** -->

</xsl:stylesheet>

The xsl:stylesheet element may use other complementary namespaces in addition to these
required declarations.

The extension-element-prefixe attribute is a space-separated list of namespace prefixes
that are related to extension elements. In the previous example, only dp belongs to this list.

The exclude-result-prefixes attribute is a space-separated list of namespace prefixes that
must not be included in the output content. In the previous example, only dp belongs to this
list.

Both the extension-element-prefixes and exclude-result-prefixes attributes are optional.

Namespace in case of an extension function use
The namespace used in case of DataPower extension function use is strictly the same as the
one that is used for an extension element. The only difference resides in the fact that the
extension-element-prefixe and exclude-result-prefixes attributes are useless because
we do not need to implement an element, but rather to implement a function.

Namespace prefix: The namespace prefix that we use in our example is dp. We could
have defined another value. This prefix value must be used in every reference to an
extension element.

124 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Therefore, the namespace declaration shown in Example 6-2 must be used in an XSL
stylesheet that needs reference to at least one extension function.

Example 6-2 template2.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:dp=”http://www.datapower.com/extensions”>

<!-- *** HERE COMES THE XSL STYLESHEET CODE *** -->

</xsl:stylesheet>

The <xsl:stylesheet> element may use other complementary namespaces in addition to this
required declaration.

6.1.2 Namespace declarations for EXSLT extension functions

EXSLT contains a wide range of functionality that is grouped by module. Each module uses
its own namespace. These namespaces must be added to the XSL stylesheet only if at least
one extension function of a module is used.

For DataPower XSL stylesheet implementation, Table 6-1 shows the main modules and their
related namespaces and functions.

Table 6-1 EXSLT extension functions

Namespace prefix: The namespace prefix that we use in our example is dp. Another value
could have been defined. This prefix value must be used in every reference to an extension
function.

Module Namespace Functions

Common xmlns:exsl=”http://exslt.org/common” object-type()

Date and
time

xmlns:date=”http://exslt.org/dates-and-times” add()
add-duration()
date()
date-time()
day-abbreviation()
day-in-month()
day-in-week()
day-in-year()
day-name()
day-of-week-in-month()
difference()
duration()
hour-in-day()
lap-year()
minute-in-hour()
month-abbreviation()
month-in-year()
month-name()
second-in-minute()
seconds()

Chapter 6. XSLT programming 125

For instance, Example 6-3 shows the namespace declaration to use if you must use both the
string and date modules.

Example 6-3 template3.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:str=”http://exslt.org/strings”
xmlns:date=”http://exslt.org/dates-and-times”>

<!-- *** HERE COMES THE XSL STYLESHEET CODE *** -->

</xsl:stylesheet>

For details about the extension functions, refer to the latest edition of the DataPower
Extension Functions Catalog on the Web at the following address:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower
&S_PKG=xi50_9003_s2&dlmethod=http

6.2 Using namespaces

In this section, we provide basic examples on how to use namespaces with extension
functions and elements.

date and time
(description
continued)

xmlns:date=”http://exslt.org/dates-and-times” time()
week-in-month()
week-in-year()
year()

Regular
expression

xmlns:regExp=”http://exslt.org/
regular-expressions”

match()
replace()
test()

Set xmlns:set=”http://exslt.org/sets” difference()
distinct()
has-same-node()
intersection()
leading()
trailing()

String xmlns:str=”http://exslt.org/strings” concat()
decode-uri()
encode-uri()
padding()
split()
tokenize()

Module Namespace Functions

126 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http

6.2.1 A DataPower extension element

In the first template (Example 6-4), we introduce the use of the DataPower extension element
<set-variable>, which you might implement to assign a value to a multiple-step variable.

Example 6-4 template4.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:dp=”http://www.datapower.com/extensions”
extension-element-prefixes=”dp”
exclude-result-prefixes=”dp”>

<xsl:template math=”/”>
<dp:set-variable name=”’var://context/itso/myItsoVariable’” value=”’Hello’”/>
<xsl:apply-templates select=”*”/>
</xsl:template>

<!-- *** HERE COMES THE FURTHER XSL STYLESHEET CODE *** -->

</xsl:stylesheet>

The result of this XSL stylesheet is to assign a value of Hello to the variable
var://context/itso/myItsoVariable.

6.2.2 A DataPower extension function

In this second template (Example 6-5), we introduce the use of the DataPower extension
function variable(), which you can use to retrieve the value of a specified variable. We
assume that a multi-step variable var://context/itso/myItsoVariable has previously been
set with the value Hello.

Example 6-5 template5.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:dp=”http://www.datapower.com/extensions”>

<xsl:output method=”xml” indent=”yes” encoding=”UTF-8”/>

<xsl:template match=”/”>
<result>
<xsl:value-of select=”dp:variable(’var://context/itso/myItsoVariable’)”/>
</result>
</xsl:template>

</xsl:stylesheet>

Namespace prefix: The namespace prefix dp is declared in the xsl:stylesheet element
and used while implementing the set-variable element.

Chapter 6. XSLT programming 127

Example 6-6 shows the result of this XSL stylesheet.

Example 6-6 template6.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<result>
Hello
</result>

We create a <result> output element in which we place a text value.

6.2.3 An EXSLT extension function

In this third template, we introduce the use of the EXSLT extension function date-time(),
which belongs to the date and time module. You might use this function to get the current date
and time, as a string value, with a specific format as shown in Example 6-7.

Example 6-7 template7.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:date=”http://exslt.org/dates-and-times”>

<xsl:output method=”xml” indent=”yes” encoding=”UTF-8”/>

<xsl:template match=”/”>
<result>
<xsl:value-of select=”date:date-time()”/>
</result>
</xsl:template>

</xsl:stylesheet>

Example 6-7 show the result of this XSL stylesheet.

Example 6-8 template8.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<result>
2007-06-04T13:21:06
</result>

We create a <result> output element in which we place the current date and time.

Namespace prefix: The namespace prefix dp is declared in the xsl:stylesheet element
and is used while implementing the variable() function.

Namespace prefix: The namespace prefix date is declared in the xsl:stylesheet
element and used while implementing the date-time() function.

128 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.3 Example 1: AAA policy based on custom templates

In this example, we present a full authentication, authorization, and audit (AAA) processing
policy based on custom templates. This example is based is the scenario that we described in
Chapter 2, “Getting started” on page 17. This scenario is based on the Web service proxy.

For details about the AAA capabilities of the DataPower appliance, see IBM WebSphere
DataPower SOA Appliances Part II: Authentication and Authorization, REDP-4364.

6.3.1 Objectives and presentation

The goal of this first example is to answer the following questions:

� How can an identity be extracted from an incoming request?
� How is identity data transmitted to the authentication step of a AAA policy?
� How can authentication be performed by using an XML file?
� How is data transmitted to the authorization step?
� How can authorization be performed by using an XML file?

The following XSL stylesheets are used:

� For extract identity, the itso.aaa-extract_info.xsl stylesheet is used.
� For authentication, the itso.aaa-authenticate.xsl stylesheet is used.
� For authorization, the itso.aaa-authorize.xsl stylesheet is used.

These custom templates are loaded in the local directory of the DataPower device. Neither
credential nor resource mapping is used in this example.

The XML file AAA-repository.xml is the authority that is used to check both credentials and
resources. This file contains the following information:

� Authenticated users, described in an <authenticate> element with tags:

– <user>: The user’s name who requests the service. Each user is identified by a unique
identifier (id attribute).

– <password>: The user’s password.

– <client-ip>: The user’s IP address.

� Local names of the possible requests, linked to user IDs

If a user is included in a <request> element, then this user is authorized to request the
related service.

Example 6-9 shows the AAA-repository XML file content.

Example 6-9 AAA-repository XML file

<?xml version="1.0" encoding="UTF-8"?>
<aaa-data>
<!-- Authentication data-->
<authenticate>
<user id="001">fred</user>
<password>flintstone</password>
<client-ip>9.42.171.105</client-ip>
</authenticate>
<authenticate>
<user id="002">greg</user>
<password>mccarty</password>

Chapter 6. XSLT programming 129

<client-ip>9.42.171.175</client-ip>
</authenticate>

<!-- Authorization data-->
<authorize>
<request name="getPrime">
<user id="001" start-date="100"/>
</request>
</authorize>
<authorize>
<request name="getOdd">
<user id="001" start-date="200"/>
<user id="002" start-date="100"/>
</request>
</authorize>
</aaa-data>

The possible users are fred flintstone and greg mccarty. They are authenticated if they send a
request from a client whose IP address is one of those indicated in <client-ip> tags. They
both can use the getOdd service, but only frank (id=001) is allowed to use the getPrime
service.

The start-date attribute indicates the date, in milliseconds (since January 1, 1970), from
which users are authorized to submit the appropriate request.

6.3.2 DataPower configuration

Figure 6-1 shows the request rule where a AAA action will be added.

Figure 6-1 Request rule with a AAA action

The AAA policy has the following properties:

� Identity extraction is completed by using the custom template
itso.aaa-extract_info.xsl.

� Authentication is completed by using the custom template itso.aaa-authenticate.xsl.

� Resource extraction is based on the local name of the incoming request.

� Authorization is completed by using the custom template itso.aaa-authorization.xsl.

� Audit is completed by using the default values that are proposed while creating the AAA
policy.

130 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.3.3 Incoming SOAP message

The incoming request is a SOAP message that uses WS-Security UsernameToken to define
a required user name and password, as shown in Example 6-10.

Example 6-10 getPrime_EX1.xml

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:q0="http://com.itso"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd">
<soapenv:Header>
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>fred</wsse:Username>
<wsse:Password>flintstone</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<q0:getPrime>
<numDigits>24</numDigits>
</q0:getPrime>
</soapenv:Body>
</soapenv:Envelope>

6.3.4 XSL stylesheet details

In this section, we introduce the three steps of the AAA policy that use custom templates:

1. Identity extraction
2. Authentication
3. Authorization

Identity extraction
The itso.aaa-extract_info.xsl custom template (Example 6-11 on page 132) extracts the
following values:

� X-Client-IP, from the HTTP header

� User name and password, from the incoming SOAP header

Note: The HTTP header X-Client-IP value is extracted by using the
dp:http-request-header() extension function.

Chapter 6. XSLT programming 131

Example 6-11 itso.aaa-extract_info.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso.aaa-extract_info.xsl
|*** Description: This XSL is responsible for extracting AAA information from the incoming
message
|*** Revision : 1.0 : initial version
|***
+ -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp "
 exclude-result-prefixes="dp itso">

<!-- +
 |**
 |*** Matching Template
 |*** Element: /*[local-name()='Envelope']/*[local-name()='Body']/*[1]
 |**
 + -->
<!-- Match the first element contained in the body of the soap message
 Input soap message has already been validated when this matching is processed
 -->
 <xsl:template match="/*[local-name()='Envelope']/*[local-name()='Body']/*[1]">

 <!-- Get value of the HTTP header field XClient-IP -->
 <xsl:variable name="vClientIP" select="dp:http-request-header('X-Client-IP')"/>

 <!-- Get local name of the current service request and store it in DP transaction -->
 <xsl:variable name="vRequestName" select="local-name()"/>
 <dp:set-variable name="'var://context/txn-info/requestName'" value="string($vRequestName)"/>

<!-- ***
 Here we build the output of the identity extraction.
 Next step is authentication, that is going to use these data to perform user authentication

 -->
 <user>
 <!-- Get value of Username element contained in SOAP header's WS-Security token -->
 <xsl:value-of
select="/*[local-name()='Envelope']/*[local-name()='Header']/*[local-name()='Security']/*[local-
name()='UsernameToken']/*[local-name()='Username']"/>
 </user>
 <password>
 <!-- Get value of Password element contained in SOAP header's WS-Security token -->
 <xsl:value-of
select="/*[local-name()='Envelope']/*[local-name()='Header']/*[local-name()='Security']/*[local-
name()='UsernameToken']/*[local-name()='Password']"/>
 </password>
 <clientIP>

132 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 <xsl:value-of select="$vClientIP"/>
 </clientIP>

 </xsl:template>
</xsl:stylesheet>

After the user name, password, and X-Client-IP are extracted, we build XML content, which is
used to transmit the three values to the authentication step. Figure 6-2 shows the XML
content of the output of the identity extraction.

Figure 6-2 Output of the identity extraction step

Authentication
Figure 6-3 shows the XML content of the input of the authentication step.

Figure 6-3 Input of the authentication step

In the itso.aaa-authenticate.xsl template (Example 6-12 on page 134), we see the
extracted information and verify that an entry exists in the AAA-repository XML file, for the
triplet {user,password,clientIP}. We recover the value of the id attribute of a <user> element,
in the <authenticate> section of the AAA-repository XML file, as implemented in the XSL
stylesheet.

Chapter 6. XSLT programming 133

Example 6-12 itso.aaa-authenticate.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+ |***
|*** Author: ITSO
|*** file: itso.aaa-authenticate.xsl
|*** Description: This XSL is responsible for authentication. Data used are those transmitted by
the
|*** identity extraction step. Here is an example of the incoming XML content:
|*** <identity>
|*** <entry type='custom'>
|*** <user>...</user>
|*** <password>...</password>
|*** <clientIP>...</clientIP>
|*** </entry>
|*** </identity>
|*** Revision : 1.0 : initial version
|***
+ -->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp itso">

 <!-- Import XSL stylesheet which provides debugging enhancements-->
 <xsl:import href="local:///itso-common-debug.xsl"/>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: ROOT
 |*********************
 + -->
 <xsl:template match="/">
 <xsl:apply-templates select="identity"/>
 </xsl:template>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: identity
 |*********************
 + -->
 <xsl:template match="identity">
 <xsl:apply-templates select="entry"/>
 </xsl:template>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: entry
 |*********************

134 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 + -->
 <xsl:template match="entry[@type='custom']">

 <!-- Get login value -->
 <xsl:variable name="vUser" select="user"/>

 <!-- Get password value -->
 <xsl:variable name="vPassword" select="password"/>

 <!-- Get client-IP value -->
 <xsl:variable name="vClientIP" select="clientIP"/>

 <!-- Call the 'authenticate' named template that performs the authentication step -->
 <xsl:call-template name="authenticate">
 <xsl:with-param name="aUser">
 <xsl:value-of select="$vUser"/>
 </xsl:with-param>
 <xsl:with-param name="aPassword">
 <xsl:value-of select="$vPassword"/>
 </xsl:with-param>
 <xsl:with-param name="aClientIP">
 <xsl:value-of select="$vClientIP"/>
 </xsl:with-param>
 </xsl:call-template>

 </xsl:template>

 <!--+
 |************************
 |*** Named Template
 |*** Name: authenticate
 |************************
 + -->
 <!-- Verify authentication for a specific {user,password,clientIP} triplet -->
 <xsl:template name="authenticate">
 <xsl:param name="aUser"/>
 <xsl:param name="aPassword"/>
 <xsl:param name="aClientIP"/>

 <!-- define a variable for AAA repository XML file -->
 <xsl:variable name="vAuthenticationFile" select="document('local:///AAA-repository.xml')"/>

 <!-- Here we perform authentication -->
 <xsl:choose>
 <xsl:when test="$vAuthenticationFile != ''">
 <xsl:variable name="vUserID"
select="$vAuthenticationFile/aaa-data/authenticate[string(user)=$aUser][string(password)=$aPassw
ord][contains(string(client-ip),$aClientIP)]/user/@id"/>
 <!-- ***
 If credentials match then we want to output something to let the AAA framework know that
authentication succeeded.
 If credentials do not match, we output nothing and that means 'authentication failure' to
the AAA framework.
 *** -->

Chapter 6. XSLT programming 135

 <!-- Debug value of vUserID-->
 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">userid</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$vUserID"/></xsl:with-param>
 </xsl:call-template>

 <xsl:choose>
 <xsl:when test="string($vUserID) != ''">
 <userid>
 <xsl:value-of select="$vUserID"/>
 </userid>
 </xsl:when>
 <!-- Add error handling in xsl:otherwise condition-->
 <xsl:otherwise/>
 </xsl:choose>
 </xsl:when>
 <!-- Add error handling in xsl:otherwise condition-->
 <xsl:otherwise/>
 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

If a user ID is found in the AAA-repository XML file, then the user is authenticated. In this
case, we create an XML element, <userid>...</userid>, in which we insert the value of the
current user identifier. This XML content is then transmitted to the authorization step.

Figure 6-4 shows the XML content of the output of our successful authentication step.

Figure 6-4 Output of the authentication step

This template does not manage any specific error handling. We discuss this point in 6.8,
“Example 6: On-error handling using custom templates” on page 160.

136 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Authorization
Figure 6-5 shows the XML content of the input of the authorization step.

Figure 6-5 Input of the authorization step

In the itso.aaa-authorize.xsl template, we use input data from the authentication and
resource extraction to verify if the current user is allowed to access the requested resource.
The input of the authentication step is embedded in the XML content that contains both the
mapped credentials and resource.

Moreover, we add a control based on a start date. We allow a user to request a resource from
a specific date, expressed in milliseconds. The user is not allowed to request a resource
before the request’s start date.

If authorization is approved, the output consists of an <approved> element to let the
DataPower AAA framework know that authorization step is successful. We use another
element, such as <declined>, to indicate an authorization failure, as implemented in
Example 6-13 on page 138.

Chapter 6. XSLT programming 137

Example 6-13 itso.aaa-authorize.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+ |***
|*** Author: ITSO
|*** file: itso.aaa-authorize.xsl
|*** Description: This XSL is responsible for AAA authorization. Data used are those transmitted
by the
|*** previous authentication step. Here is an example of the incoming XML content:
|*** <container>
|*** <mapped-credentials>
|*** <entry>
|*** <userid>...</userid>
|*** </entry>
|*** </mapped-credentials>
|*** </container>
|*** Revision : 1.0 : initial version
|***
+ -->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

 <!-- Import XSL stylesheet which provides debugging enhancements-->
 <xsl:import href="local:///itso-common-debug.xsl"/>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: ROOT
 |*********************
 + -->
 <xsl:template match="/">
 <xsl:apply-templates select="container"/>
 </xsl:template>

 <!--+
 |**********************
 |*** Matching Template
 |*** Element: container
 |**********************
 + -->
 <xsl:template match="container">
 <xsl:apply-templates select="mapped-credentials"/>
 </xsl:template>

 <!--+
 |*******************************
 |*** Matching Template
 |*** Element: mapped-credentials
 |*******************************
 + -->

138 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 <xsl:template match="mapped-credentials">
 <xsl:apply-templates select="entry"/>
 </xsl:template>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: entry
 |*********************
 + -->
 <xsl:template match="entry">

 <!-- Get userid value -->
 <xsl:variable name="vUserId" select="userid"/>

 <!-- Get local name of the request element, that is the extracted resource -->
 <xsl:variable name="vRequestName"
select="dp:variable('var://context/WSM/resource/extracted-resource')"/>

 <!-- Perform authorization -->
 <xsl:call-template name="authorize">
 <xsl:with-param name="aUserId">
 <xsl:value-of select="$vUserId"/>
 </xsl:with-param>
 <xsl:with-param name="aRequestName">
 <xsl:value-of select="$vRequestName"/>
 </xsl:with-param>
 <xsl:with-param name="aDate">
 <xsl:value-of select="dp:time-value()"/>
 </xsl:with-param>
 </xsl:call-template>

 </xsl:template>

 <!--+
 |*********************
 |*** Named Template
 |*** name: authorize
 |*********************
 + -->
 <xsl:template name="authorize">
 <xsl:param name="aUserId"/>
 <xsl:param name="aRequestName"/>
 <xsl:param name="aDate"/>

 <!-- Define a variable for AAA repository XML file -->
 <xsl:variable name="vAuthorizationFile" select="document('local:///AAA-repository.xml')"/>

 <!-- Debug value of aRequestName parameter -->
 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">request name</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$aRequestName"/></xsl:with-param>
 </xsl:call-template>

 <!-- Debug value of user id-->

Chapter 6. XSLT programming 139

 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">user id</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$aUserId"/></xsl:with-param>
 </xsl:call-template>

 <xsl:choose>
 <xsl:when test="$vAuthorizationFile != ''">
 <!-- *** Step1 : get the start date from authorize/userid, if it exists ! *** -->
 <xsl:variable name="vStartDate"
select="$vAuthorizationFile/aaa-data/authorize/request[@name=$aRequestName]/user[@id=string($aUs
erId)]/@start-date"/>

 <!-- Debug value of vStartDate-->
 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">start-date</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$vStartDate"/></xsl:with-param>
 </xsl:call-template>

 <xsl:choose>
 <!-- *** Step2 : verify that current date is ok (above the service start date) *** -->
 <xsl:when test="number($aDate) > number($vStartDate)">
 <!-- ***
 If everything matches then we want to output <approved/>
 to let the DataPower AAA framework know that authorization succeeded.
 *** -->
 <approved/>
 </xsl:when>
 <!-- Add specific error handling in xsl:otherwise condition -->
 <xsl:otherwise>
 <declined/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <!-- Add specific error handling in xsl:otherwise condition -->
 <xsl:otherwise>
 <declined/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Note: The value of the extracted resource (local name of the request element) is
accessible by the DataPower context variable
var://context/WSM/resource/extracted-resource.

140 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Figure 6-6 shows the XML content of the output of our successful authorization step.

Figure 6-6 Output of authorization step

This template does not manage a specific error handling. We discuss this point in the
example in 6.8, “Example 6: On-error handling using custom templates” on page 160.

6.4 Example 2: Dynamic routing based on custom templates

In this example, we show how to implement dynamic routing based on custom templates.

6.4.1 Objectives and presentation

The goal of the second example is to answer the following questions:

� How do we store and get the route information?
� How do we dynamically route an incoming request?
� What is the necessary DataPower device configuration to perform dynamic routing?

The following exclusive XSL stylesheets are used in this example:

� itso.dynamic-routing-xml.xsl is for dynamic routing based on an XML file.
� itso.dynamic-routing-db2.xsl is for dynamic routing using DB2®.

A first option, using itso.dynamic-routing-xml.xsl, is to define the route in an XML file,
routes.xml, which contains the target destination linked to the local name of the request.
Example 6-14 shows the contents of the routes.xml file.

Example 6-14 routes.xml

<?xml version="1.0" encoding="utf-8"?>
<routes>
<route request-name="getPrime"
service-url="http://itsolab1:9080/PrimesWebService/services/Primes"/>
<route request-name="getOdd"
service-url="http://itsolab1:9080/PrimesWebService/services/Odd"/>
<route request-name="getEven"
service-url="http://itsolab1:9080/PrimesWebService/services/Even"/>
</routes>

A second option, which uses itso.dynamic-routing-db2.xsl, is to use a database to link the
local name of a request with the target destination of the requested service. We then create a
DB2 database, called SAMPLE, in which we add a table ROUTE that contains two columns:
REQUEST_NAME and SERVICE_URL.

Chapter 6. XSLT programming 141

Table 6-2 shows an entry in the ROUTE table that associates a request name with a target
service URL.

Table 6-2 ROUTE table

These custom templates and routes.xml file are loaded in the local directory of the DataPower
device.

6.4.2 DataPower configuration

Figure 6-7 shows the request processing rule, on which we add dynamic routing.

Figure 6-7 Request rule with dynamic routing

The transformation action that we add on the request processing rule can implement either of
the following different XSL stylesheets:

� itso.dynamic-routing-xml.xsl
� itso.dynamic-routing-db2.xsl

It is possible to use the itso.dynamic-routing-xml.xsl stylesheet to retrieve the target
destination from an XML file. Alternatively, we can use the itso.dynamic-routing-db2.xsl
stylesheet to recover the destination from a DB2 database. We might switch from one to
another custom template without any other modification on the request rule.

The route action uses a custom global variable that determines the target destination. This
variable is set in the transformation action by using either itso.dynamic-routing-xml.xsl or
itso.dynamic-routing-db2.xsl. Its name is var://context/txn-info/dynamic-route.

REQUEST_NAME SERVICE_URL

getPrime http://itsolab1:9080/PrimesWebService/services/Primes

142 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

General configuration
To perform dynamic routing, on the Web Service Proxy configuration page (Figure 6-8), for
Type, select the dynamic-backend option.

Figure 6-8 general configuration for dynamic routing

SQL Data Source object
For the purpose of the custom template implementing a DB2 connection, we must define a
DataPower SQL Data Source object. The name of this object is ITSODS. To access the SQL
Data Source objects, select NETWORK → SQL Data Source.

Figure 6-9 shows the details of the ITSODS object, by using DB2 and the database SAMPLE,
located on the server itsolab1 (a host alias for the actual IP address).

Figure 6-9 SQL Data Source object: ITSODS

SQL Data Source objects contain all the required information that is needed to access a
remote database (DB2, Oracle®, Sybase, or Microsoft® SQL Server®).

Chapter 6. XSLT programming 143

6.4.3 Incoming SOAP message

Example 6-15 shows that the incoming request is a SOAP message.

Example 6-15 getPrime_EX2.xml

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:q0="http://com.itso"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header/>
<soapenv:Body>
<q0:getPrime>
<numDigits>24</numDigits>
</q0:getPrime>
</soapenv:Body>
</soapenv:Envelope>

6.4.4 XSL stylesheet details

In this section, we use the following XSL stylesheets to complete the recovery of the target
destination and to set the multi-step variable var://context/txn-info/dynamic-route, which
is used by the route action to perform dynamic routing:

� itso.dynamic-routing-xml.xsl (if the target destination is recovered from the routes.xml
file)

� itso.dynamic-routing-db2.xsl (if the target destination is recovered from the DB2
database)

Dynamic routing based on an XML file
Example 6-16 shows the custom XSL stylesheet that we used to dynamically get and set the
target destination of a service.

Example 6-16 itso.dynamic-routing-xml.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso.dynamic-routing-xml.xsl
|*** Description: This XSL Stylesheet performs dynamic routing. URL is recovered
|*** from an XML file and stored in a variable that is used by a DataPower route action
|*** Revision : 1.0 : initial version
|***
+ -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

144 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

<!-- +
 |**************************************
 |*** Matching Template
 |*** Element: First Element of the Body
 |**************************************
 + -->
 <xsl:template match="/*[local-name()='Envelope']/*[local-name()='Body']/*[1]">

 <!-- We get the service Url linked to our request name -->
 <xsl:variable name="vServiceUrl">
 <xsl:call-template name="getUrl">
 <xsl:with-param name="aRequestName" select="local-name()"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- Set variable 'var:///context/txn-info/dynamic-route' that is used for dynamic routing -->
 <dp:set-variable name="'var://context/txn-info/dynamic-route'" value="string($vServiceUrl)"/>

 </xsl:template>

<!-- +
 |******************
 |*** Named Template
 |*** Name: getUrl
 |******************
 + -->
 <xsl:template name="getUrl">
 <xsl:param name="aRequestName"/>

 <!-- We create a variable using the xml file that contains routing info -->
 <xsl:variable name="vFile" select="document('local:///routes.xml')"/>

 <!-- We get the URL associated to the local name of the incoming request -->
 <xsl:variable name="vServiceUrl"
select="$vFile/routes/route[@request-name=$aRequestName]/@service-url"/>

 <!-- Return the URL value as a string -->
 <xsl:value-of select="$vServiceUrl"/>

 </xsl:template>

</xsl:stylesheet>

Extension element: We use the extension element <dp:set-variable/> to set the global
variable var://context/txn-info/dynamic-route that is used by the route action for
dynamic routing.

Chapter 6. XSLT programming 145

Dynamic routing based on a database
Example 6-17 shows the custom XSL stylesheet that we used to dynamically get and set the
target destination of a service. The service URL is recovered from a DB2 database.

Example 6-17 itso.dynamic-routing-db2.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso.dynamic-routing-db2.xsl
|*** Description: This XSL Stylesheet performs dynamic routing. URL is recovered
|*** from DB2 and stored in a variable that is used by a DataPower route action
|*** Revision : 1.0 : initial version
|***
+
-->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 extension-element-prefixes="dp "
 exclude-result-prefixes="dp">

<!-- +
 |**************************************
 |*** Matching Template
 |*** Element: First Element of the Body
 |**************************************
 + -->
 <xsl:template match="/*[local-name()='Envelope']/*[local-name()='Body']/*[1]">

 <!-- We get the service Url linked to our request name -->
 <xsl:variable name="vServiceUrl">
 <xsl:call-template name="getUrl">
 <xsl:with-param name="aRequestName" select="local-name()"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- Set variable 'var:///context/txn-info/dynamic-route' that is used for dynamic routing -->
 <dp:set-variable name="'var://context/txn-info/dynamic-route'" value="string($vServiceUrl)"/>

 </xsl:template>

<!-- +
 |******************
 |*** Named Template
 |*** Name: getUrl
 |******************
 + -->
 <xsl:template name="getUrl">
 <xsl:param name="aRequestName"/>

 <xsl:variable name="vSqlQuery">
 SELECT SERVICE_URL FROM DPADMIN.ROUTE WHERE REQUEST_NAME='<xsl:value-of
select="$aRequestName"/>'

146 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 </xsl:variable>

 <!-- Perform the SQL query to recover the service URL -->
 <xsl:variable name="vDB2Return" select="dp:sql-execute('ITSODS',$vSqlQuery)"/>

 <!-- Return the URL value as a string -->
 <xsl:value-of select="$vDB2Return/sql/row/column/value"/>

 </xsl:template>

</xsl:stylesheet>

First, we recover the local name of the first body’s element of getPrime. Then we execute the
following SQL statement:

SELECT SERVICE_URL FROM DPADMIN.ROUTE WHERE REQUEST_NAME='getPrime’

Figure 6-10 shows the results of the SQL statement that are included in the XML content.

Figure 6-10 Results of the dp:sql-execute function

This content must be parsed to obtain the value of the target destination. After the value is
retrieved, you can set the multistep variable var://context/txn-info/dynamic-route.

6.5 Example 3: GET request transformed into a SOAP message

In this example, we explain how to transform an incoming HTTP GET request into an HTTP
SOAP posted message. The example is based on the loopback proxy XML firewall
ITSO_FWL_XSL.

Extension function: An SQL statement is executed by using the extension function
dp:sql-execute(SQLDataSource, SQLStatement). The first parameter identifies the SQL
Data Source object, which must be created on the DataPower device. The second
parameter is the SQL statement itself.

Chapter 6. XSLT programming 147

6.5.1 Objectives and presentation

The goal of this third example is to answer the following questions:

� How do we recover request parameters from a URL?

� How do we transform these parameters into a SOAP message?

� How do we transform an incoming HTTP GET into an HTTP POST that is required to send
a SOAP message to a Web service?

The XSL stylesheet itso.get2soap-dynamic_routing.xsl is used to perform this action. This
custom template is loaded in the local directory of the DataPower device. The
itso.get2soap-dynamic_routing.xsl XSL stylesheet is in charge of the following actions:

� Recovering request parameters from the incoming HTTP GET request

� Creating a SOAP message, based on the previous parameter values, which is used to
complete the POST request

� Retrieving the URL of the target destination of the Web service

� Posting the SOAP request to the appropriate Web service and providing the result

The destination of the Web service is dynamically recovered by using a DB2 database, as
demonstrated in 6.4, “Example 2: Dynamic routing based on custom templates” on page 141.

6.5.2 DataPower configuration

In this example, we use an XML firewall (ITSO_FWL_XSL) as a loopback proxy. On this type
of server, a response rule is useless, because request and response processing are
managed in the same request processing rule. Figure 6-11 shows the processing rule of the
loopback proxy that requires a single transformation.

Figure 6-11 Request rule for the HTTP GET to HTTP SOAP(POST) transformation

You can find more configuration details about this XML firewall in Appendix A, “XSL
programming issues” on page 179.

Both directions rule: You can use a “both directions” type rule, because requests and
responses are treated in the same rule, while using an XML firewall as a loopback proxy.

148 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.5.3 Incoming HTTP GET request

The incoming request is an HTTP GET, whose URL contains two required parameters:

� The op parameter contains the name of the operation. Only getPrime is allowed.
� The value parameter contains the number of digits for the requested prime number.

Figure 6-12 shows an example of a GET request, by using the curl command.

Figure 6-12 The curl command for the GET request

6.5.4 XSL stylesheet details

In this section, we introduce the custom template itso.get2soap-dynamic_routing.xsl that
we use to complete the HTTP GET to HTTP SOAP transformation and to perform the call to
the appropriate Web service. With this XSL stylesheet, we can perform the following actions:

� Transcode incoming parameters into a SOAP message
� Recover the destination of the Web service via a DB2 database
� Call a Web service by using the extension element <dp:url-open>, as shown in

Example 6-18

Example 6-18 itso.get2soap-dynamic_routing.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso.get2soap-dynamic_routing.xsl
|*** Description: This XSL performs GET to SOAP (POST) transformation using dp:url-open element
|*** Web-Service url is dynamically recovered from DB2 database
|*** Revision : 1.0 : initial version
|***
+
-->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp dpquery"
 exclude-result-prefixes="dp dpquery">

/get2soap: Use the pattern /get2soap in the URL in order to use the appropriate rule of
the XML firewall.

Chapter 6. XSLT programming 149

 <!-- Import XSL stylesheet which provides debugging enhancements-->
 <xsl:import href="local:///itso-common-debug.xsl"/>

 <!-- Output definition -->
 <xsl:output method="xml" indent="yes" encoding="utf-8" />

 <!-- Get both 'op' and 'value' parameters value -->
 <xsl:param name="dpquery:op" />
 <xsl:param name="dpquery:value" />

<!--+
 |*********************
 |*** Matching Template
 |*** Element: ROOT
 |*********************
 + -->
<xsl:template match="/">
 <!-- Create the output SOAP message based on parameter values -->
 <xsl:variable name="vSoapMessage">
 <xsl:call-template name="createSoapMessage">
 <xsl:with-param name="aOperation" select="$dpquery:op" />
 <xsl:with-param name="aValue" select="$dpquery:value" />
 </xsl:call-template>
 </xsl:variable>

 <!-- Debug value of vStartDate-->
 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">soap message</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$vSoapMessage"/></xsl:with-param>
 </xsl:call-template>

 <!-- We get the service Url linked to our request name -->
 <xsl:variable name="vServiceUrl">
 <xsl:call-template name="getUrl">
 <xsl:with-param name="aRequestName" select="$dpquery:op"/>
 </xsl:call-template>
 </xsl:variable>

<!-- create HTTP header to be used for the POST request-->
 <xsl:variable name="vHeaders">
 <header name="SOAPAction">
 <xsl:value-of select="''"/>
 </header>
 </xsl:variable>

 <dp:url-open http-headers="$vHeaders"
target="http://itsolab1:9080/PrimesWebService/services/Primes" response="xml">
 <xsl:copy-of select="$vSoapMessage" />
 </dp:url-open>

 </xsl:template>

 <!--+
 |***************************

150 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 |*** Named Template
 |*** Name: createSoapMessage
 |***************************
 +
 -->
 <xsl:template name="createSoapMessage">
 <xsl:param name="aOperation" />
 <xsl:param name="aValue" />

 <SOAP-ENV:Envelope>
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <xsl:element name="{concat('itso:',$aOperation)}">
 <numDigits><xsl:value-of select="$aValue" /></numDigits>
 </xsl:element>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

 </xsl:template>

<!-- +
 |******************
 |*** Named Template
 |*** Name: getUrl
 |******************
 + -->
 <xsl:template name="getUrl">
 <xsl:param name="aRequestName"/>

 <xsl:variable name="vSqlQuery">
 SELECT SERVICE_URL FROM DPADMIN.ROUTE WHERE REQUEST_NAME='<xsl:value-of
select="$aRequestName"/>'
 </xsl:variable>

 <!-- Perform the SQL query to recover the service URL -->
 <xsl:variable name="vDB2Return" select="dp:sql-execute('ITSODS',$vSqlQuery)"/>

 <!-- Return the URL value as a string -->
 <xsl:value-of select="$vDB2Return/sql/row/column/value"/>

 </xsl:template>

</xsl:stylesheet>

The SOAP message is created by using values of both op and value parameters. The
destination URL of the Web service is recovered by a DB2 database query, using the ITSODS
SQL Data Source object.

A POST request is completed by using the extension element <dp:url-open>. If content is
defined in <dp:url-open>, then an HTTP POST is performed. Otherwise it is a GET.

dpquery: We use the namespace dpquery, so that we can directly obtain the value of the
parameters op and value by using <xsl:param name="dpquery:op"/> and <xsl:param
name="dpquery:value"/>.

Chapter 6. XSLT programming 151

The SOAPAction HTTP header is added by using the http-headers attribute of the
<dp:url-open> element. As we work with a loopback proxy, the result is directly sent to the
client. Figure 6-13 shows an example of this result.

Figure 6-13 Resulting SOAP message of a GET request

6.6 Example 4: Debugging into the DataPower XSL stylesheet

In this example, we demonstrate how to debug into the DataPower custom templates. We use
the first example to present this enhancement.

6.6.1 Objectives and presentation

The goal of this fourth example is to answer the question: How do we easily debug into
DataPower custom templates?

We use the XSL stylesheet itso-common-debug.xsl in this example. This XSL stylesheet
provides a named template, called debug, which creates a DataPower debug message with
an error level that is visible in probes. For more details about the DataPower error level, see
Chapter 5, “Logging capabilities the in DataPower appliance” on page 113.

6.6.2 DataPower configuration

The default log level of the system must not be set higher than the error level, because our
named template uses the error priority.

More information: You can find more details about the <dp:url-open> extension element
in the latest edition of the DataPower Extension Functions Catalog on the Web at the
following address:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapo
wer&S_PKG=xi50_9003_s2&dlmethod=http

Custom template: This custom template is loaded in the local directory of the DataPower
device.

152 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-datapower&S_PKG=xi50_9003_s2&dlmethod=http

To see the debug messages, we must enable probes for the appropriate DataPower service.
For example, we enable probes on the Web service proxy that we used in 6.3, “Example 1:
AAA policy based on custom templates” on page 129. In addition, debug messages are also
displayed on DataPower system logs.

6.6.3 Incoming SOAP message

The incoming SOAP message and request are the same as those used in 6.3.3, “Incoming
SOAP message” on page 131.

6.6.4 XSL stylesheet details

In this section, we introduce the itso-common-debug.xsl template that we use to display
debug messages into probes or system logs. This XSL stylesheet provides a debug named
template (Example 6-19) that may be used in other XSL stylesheets.

Example 6-19 itso-common-debug.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso-common-debug.xsl
|*** Description: This XSL creates a DataPower debug message with error level, visible in probes
or system logs
|*** Import this stylesheet to use the 'debug' named template in your custom template
|*** Revision : 1.0 : initial version
|***
+ -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 extension-element-prefixes="dp "
 exclude-result-prefixes="dp">

 <!-- +
 |******************
 |*** Named Template
 |*** Name: debug
 |******************
 + -->
 <xsl:template name="debug">
 <xsl:param name="aLabel"/>
 <xsl:param name="aMessage"/>
 <xsl:message dp:priority="error">
 <xsl:if test="string($aLabel)!=''">
<xsl:value-of select="concat('*** ITSO-debug | ',$aLabel,':',$aMessage,'***')"/>
 </xsl:if>
 </xsl:message>
 </xsl:template>
</xsl:stylesheet>

Chapter 6. XSLT programming 153

The debug named template requires the following two parameters:

� aLabel, which is the label of the message
� aMessage, which is the debugging message itself

To use this named template, we must import the itso-common-debug.xsl template from the
XSL stylesheet that requires debug information. The import is performed by using the
<xsl:import> element as shown in Example 6-20.

Example 6-20 itso.aaa-authorize.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp itso">

 <!-- Import XSL stylesheet which provides debugging enhancements-->
 <xsl:import href="local:///itso-common-debug.xsl"/>

<!-- *** HERE IS THE CODE OF THE XSL STYLESHEET *** -->

</xsl:stylesheet>

After <xsl:import href="local:///itso-common-debug.xsl"/> is added to our stylesheet,
we use the debug template as shown in Example 6-21, which is an extract of the
itso.aaa-authorize.xsl stylesheet.

Example 6-21 Using the debug named template, itso.aaa-authorize.xsl

...
<!--+
 |*********************
 |*** Named Template
 |*** name: authorize
 |*********************
 + -->
 <xsl:template name="authorize">
 <xsl:param name="aUserId"/>
 <xsl:param name="aRequestName"/>
 <xsl:param name="aDate"/>

 <!-- Define a variable for AAA repository XML file -->
 <xsl:variable name="vAuthorizationFile"
select="document('local:///AAA-repository.xml')"/>

 <!-- Debug value of aRequest parameter -->

DataPower logging capabilities: We use the DataPower logging capabilities to debug
XSL stylesheets. We use the <xsl:message> element with the attribute
dp:priority="error" to set the priority level to error.

<xsl:import>: If used, the <xsl:import> element must be the first child node of
<xsl:stylesheet>.

154 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

<xsl:call-template name="debug">
<xsl:with-param name="aLabel">request name</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of
select="$aRequestName"/></xsl:with-param>
 </xsl:call-template>
...

In the named template authorize, we use the debug named template to debug the value of
the aRequestName parameter. Figure 6-14 shows the contents of the Web service proxy
probes.

Figure 6-14 Debug message in the Web service proxy probes

6.7 Example 5: Logging from custom templates

In this example, we explain how to send a log message from a DataPower XSL stylesheet.
This method requires a specific DataPower log configuration. For more details about
DataPower logging capabilities, see Chapter 5, “Logging capabilities the in DataPower
appliance” on page 113. We use the template shown in Example 6-5 on page 127.

6.7.1 Objectives and presentation

The goal of this fifth example is to answer the following questions:

� How do we send a log message from DataPower custom templates?
� What is the required DataPower log configuration?

In this example, we use the XSL stylesheet itso.get2soap-dynamic_routing_log.xsl. This
custom template is based on itso.get2soap-dynamic_routing.xsl that we explained in 6.5,
“Example 3: GET request transformed into a SOAP message” on page 147, on which we
implement a modification to send a specific log message.

The XSL stylesheet itso.get2soap-dynamic_routing_log.xsl sends a log message in the
logtemp:///logFile.log filestore inside the DataPower device. As discussed in Chapter 5,
“Logging capabilities the in DataPower appliance” on page 113, a better practice is to send
logs outside of the DataPower device.

The log message that is sent contains a value of the op request parameter. The custom
template itso.get2soap-dynamic_routing_log.xsl is loaded in the local directory of the
DataPower device.

Debug message: The debug message is displayed with the category xsltmsg and level
error as defined in the debug named template.

Chapter 6. XSLT programming 155

6.7.2 DataPower configuration

In this section, we discuss the log configuration that is required to send a log message from
the custom template itso.get2soap-dynamic_routing_log.xs into the
logtemp:///logFile.log filestore.

To complete this task, we must create the following items in the order shown:

1. A log category that is used in our custom template to activate our logging process.

2. A log target by using our category as a subscribed event. The target is the
logtemp:///logFile.log filestore.

We must also define the priority level of the log message. In this example, the error level is
used.

Log category
The name of our log category is itso_log, which we define with the Log Category parameters
(Figure 6-15). To define the log category parameters, we first click ADMINISTRATION →
Configure Log Categories.

Figure 6-15 itso_log category parameters

Figure 6-16 shows the log category that we created.

Figure 6-16 itso_log category

156 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Log target
The name of our log target is itso_log_target, which we define in the Log target parameters
(Figure 6-17). We create this log target by first selecting ADMINISTRATION → Manage Log
Targets.

Figure 6-17 Log target parameters

Chapter 6. XSLT programming 157

After we create the log target, we click the Event Subscriptions tab (Figure 6-18), and link it
with the itso_log category and the error priority level.

Figure 6-18 Event subscription

6.7.3 Incoming request

The incoming request is an HTTP GET, whose URL contains two required parameters:

� The op parameter contains the name of the operation. Only getPrime is allowed. The
value of the op parameter is logged in the logtemp:///logFile.log filestore, inside the
DataPower appliance.

� The value parameter contains the number of digits of the requested prime number.

Figure 6-19 shows an example of a GET request by using the curl command.

Figure 6-19 The curl command for logging

/log: Use the pattern /log in the URL to use the appropriate rule of the XML firewall.

158 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.7.4 XSL stylesheet details

In this section, we introduce the custom template itso.get2soap-dynamic_routing_log.xsl
to send a log message into the logtemp:///logFile.log filestore. To send a log from a
custom template, we use the <xsl:message> element with some specific attributes, as shown
in Example 6-22.

Example 6-22 itso.get2soap-dynamic_routing_log.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+ |***
|*** Author: ITSO
|*** file: itso.get2soap-dynamic_routing_log.xsl
|*** Description: This XSL performs GET to SOAP (POST) and log the name of the 'op' parameter
value
|*** Revision : 1.0 : initial version
|***
+ -->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp dpquery"
 exclude-result-prefixes="dp dpquery">

 <!-- Import XSL stylesheet which provides debugging enhancements-->
 <xsl:import href="local:///itso-common-debug.xsl"/>

 <!-- Output definition -->
 <xsl:output method="xml" indent="yes" encoding="utf-8" />

 <!-- Get both 'op' and 'value' parameters value -->
 <xsl:param name="dpquery:op" />
 <xsl:param name="dpquery:value" />

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: ROOT
 |*********************
 +
 -->
 <xsl:template match="/">

 <!-- Create the output SOAP message based on parameter values -->
 <xsl:variable name="vSoapMessage">
 <xsl:call-template name="createSoapMessage">
 <xsl:with-param name="aOperation" select="$dpquery:op" />
 <xsl:with-param name="aValue" select="$dpquery:value" />
 </xsl:call-template>
 </xsl:variable>

Chapter 6. XSLT programming 159

 <!-- Send a log message containing the name of the 'op' parameter value-->
 <!-- *** use dp:type to define the 'itso_log' category *** -->
 <!-- *** use dp:priority to define the 'error' log level *** -->
 <xsl:message dp:type="itso_log" dp:priority="error">
 <xsl:value-of select="concat('operation : ',$dpquery:op)"/>
 </xsl:message>
...
 </xsl:template>
...
</xsl:stylesheet>

Here we only mention how to send a log message, because the other part of this XSL
stylesheet is exactly the same as itso.get2soap-dynamic_routing.xsl. As described,
sending a log message is completed by using the <xsl:message> element with following
attributes:

� dp:type, which defines the category that we want to use
� dp:priority, which defines the priority level

It is possible to see the logged information in the logtemp:///logFile.log file. Example 6-23
shows an extract of this file.

Example 6-23 Extract of the logtemp:///Logfile.log file

<log-entry serial='1' domain='XSLTProgramming'>
<date>Wed Jun 13 2007</date>
<time utc='1181747208714'>11:06:48</time>
<date-time>2007-06-13T11:06:48</date-time>
<type>itso_log</type>
<class>xmlfirewall</class>
<object>ITSO_FWL_XSL</object>
<level num='3'>error</level>
<transaction-type>request</transaction-type>
<transaction>48895</transaction>
<client>9.42.171.105</client>
<code>0x80000001</code>
<file>local:///itso.get2soap-dynamic_routing_log.xsl</file>
<message>operation : getPrime</message>
</log-entry>

We can see log details in the <message> element. The following information is also displayed:

� The current date and time
� The category and priority level
� The transaction identifier
� The custom template which initiates the log

6.8 Example 6: On-error handling using custom templates

In this example, we explain how to handle errors in the DataPower custom templates. For
more details about DataPower on-error handling, see Chapter 5, “Logging capabilities the in
DataPower appliance” on page 113. We use the first example scenario described in 6.3,
“Example 1: AAA policy based on custom templates” on page 129, based on a Web service
proxy, to the present purpose for on-error handling.

160 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

6.8.1 Objectives and presentation

The goal of this sixth example is to answer the following questions:

� How do we configure an on-error processing rule on a processing policy?
� How do we use an on-error processing rule from a custom template, when an error

occurs?

We use the following XSL stylesheets in this example:

� itso.on-error_handling.xsl

This custom template creates a SOAP fault message by using the following dynamic
information:

– A fault code
– A fault string
– An error code

� itso.aaa-authenticate_error-handling.xsl

Because our example is based on 6.3, “Example 1: AAA policy based on custom
templates” on page 129, we add specific error handling on authentication step of the
ITSO_XSL_PROG AAA policy. Therefore, in this example, we use
itso.aaa-authenticate_error-handling.xsl instead of itso.aaa-authenticate.xsl in
the AAA policy.

The XSL stylesheet itso.aaa-authenticate_error-handling.xsl handles authentication
errors. If a user is not authenticated, we generate a SOAP fault message indicating the
authentication failure.

Both itso.on-error_handling.xsl and itso.aaa-authenticate_error-handling.xsl are
loaded in the local directory of the DataPower device.

6.8.2 DataPower configuration

In this section, we describe on-error processing rule creation, on the Web service proxy
HelloWSProxy.

On-error processing rule
We add a processing rule at the Web Services Description Language (WSDL) level of our
Web service proxy. The type of this rule is Error, indicating that it is an on-error processing
rule. We then add a transformation action, which uses the itso.on-error_handling.xsl
custom template, as shown in Figure 6-20.

Figure 6-20 On-error processing rule

Chapter 6. XSLT programming 161

Request processing rule
The only change we make on the request processing rule concerns the AAA action. Indeed,
the AAA policy must use the custom template itso.aaa-authenticate_error-handling.xsl,
which handles authentication server errors.

6.8.3 Incoming request

The incoming request is the same as the one that we used in 6.3.3, “Incoming SOAP
message” on page 131. If we want a SOAP fault message that indicates an authentication
failure, we provide a wrong user name or password in the WS-Security header tokens that
define the current user.

6.8.4 XSL stylesheet details

In this section, we describe the XSL stylesheets that we used to demonstrate on-error
handling.

Error handling in authentication custom template
The authentication custom template works with identity extracted information to complete
authentication. If the current user is not authenticated, we set a global variable of
var://context/itso/error-set, which contains error details regarding the fault code, fault
string, and error code.

In order to execute the on-error rule, we use the <dp:reject> extension element, as shown in
Example 6-24.

Example 6-24 itso.aaa-authenticate_error-handling.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+ |***
|*** Author: ITSO
|*** file: itso.aaa-authenticate_error-handling.xsl
|*** Description: This XSL is responsible for authentication
|*** In case of authentication failure, an error is returned, using on-error handling
|*** Revision : 1.0 : initial version
|***
+ -->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:itso="http://com.itso"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp itso">

...

 <!--+
 |************************

Multi-step global variables: Minimize the creation of multi-step global variables. In our
case, we create a single global variable that contains all error details as a node set.

162 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 |*** Named Template
 |*** Name: authenticate
 |************************
 + -->
 <!-- Verify authentication for a specific {user,password,clientIP} triplet -->
 <xsl:template name="authenticate">
 <xsl:param name="aUser"/>
 <xsl:param name="aPassword"/>
 <xsl:param name="aClientIP"/>

 <!-- define a variable for AAA repository XML file -->
 <xsl:variable name="vAuthenticationFile" select="document('local:///AAA-repository.xml')"/>

 <!-- Here we perform authentication -->
 <xsl:choose>
 <xsl:when test="$vAuthenticationFile != ''">
 <xsl:variable name="vUserID"
select="$vAuthenticationFile/aaa-data/authenticate[string(user)=$aUser][string(password)=$aPassw
ord][contains(string(client-ip),$aClientIP)]/user/@id"/>
 <!-- ***
 If credentials match then we want to output something to let the AAA framework know that
authentication succeeded.
 If credentials do not match, we output nothing and that means 'authentication failure' to
the AAA framework.
 *** -->

 <!-- Debug value of vUserID-->
 <xsl:call-template name="debug">
 <xsl:with-param name="aLabel">userid</xsl:with-param>
 <xsl:with-param name="aMessage"><xsl:value-of select="$vUserID"/></xsl:with-param>
 </xsl:call-template>

 <xsl:choose>
 <xsl:when test="string($vUserID) != ''">
 <userid>
 <xsl:value-of select="$vUserID"/>
 </userid>
 </xsl:when>
 <!-- on-error handling -->
 <xsl:otherwise>
 <xsl:variable name="errorSet">
 <error>
 <faultcode>Client error</faultcode>
 <faultstring>invalid user</faultstring>
 <errorcode>authentication failure</errorcode>
 </error>
 </xsl:variable>
 <dp:set-variable name="'var://context/itso/error-set'" value="$errorSet"/>
 <dp:reject/>
 </xsl:otherwise>
 </xsl:choose>

Chapter 6. XSLT programming 163

 </xsl:when>
 <xsl:otherwise/>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

We only mention the new authenticate named template, because the other part of this XSL
stylesheet is exactly the same as itso.aaa-authenticate.xsl that we present in 6.3.4, “XSL
stylesheet details” on page 131.

On-error XSL stylesheet
The itso.on-error_handling.xsl template is used in the error processing rule. It gets a
value of a global variable var://context/itso/error-set that is used to set error details. In
addition, it creates a SOAP fault message with this recovered value, as shown in
Example 6-25.

Example 6-25 itso.on-error_handling.xsl

<?xml version="1.0" encoding="utf-8"?>
<!--
+
|***
|*** Author: ITSO
|*** file: itso.on-error_handling.xsl
|*** Description: This XSL is responsible for creating a SOAP fault message based on value of
global |*** transaction variables:
|*** - var://context/itso/fault-code : faultcode
|*** - var://context/itso/fault-string : faultstring
|*** - var://context/itso/error-code : errorcode
|*** Created SOAP fault message is the following:
|*** <SOAP-ENV:Envelope>
|*** <SOAP-ENV:Header/>
|*** <SOAP-ENV:Body>
|*** <SOAP-ENV:Fault>
|*** <faultcode>...</faultcode>
|*** <faultstring>...</faultstring>
|*** <detail>
|*** <errorcode>...</errorcode>
|*** </detail>
|*** </SOAP-ENV:Fault>
|*** </SOAP-ENV:Body>
|*** </SOAP-ENV:Envelope>
|*** Revision : 1.0 : initial version
|***
+ -->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/ "
 xmlns:dp="http://www.datapower.com/extensions"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

<dp:reject>: Use the <dp:reject> extension element to execute the on-error processing
rule.

164 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

 <xsl:output method="xml" encoding="utf-8" indent="yes"/>

 <!--+
 |*********************
 |*** Matching Template
 |*** Element: ROOT
 |*********************
 + -->
 <xsl:template match="/">

 <!-- ***
 Get the different data used to create a SOAP fault message.
 The variable is set before calling dp:reject extended element
 *** -->
 <!-- error set contains: fault-code, fault-string and error-code -->
 <xsl:variable name="vErrorSet" select="dp:variable('var://context/itso/error-set')"/>

 <!-- Call template that creates the SOAP fault message -->
 <xsl:call-template name="createSoapFault">
 <xsl:with-param name="aFaultCode" select="$vErrorSet/error/faultcode"/>
 <xsl:with-param name="aFaultString" select="$vErrorSet/error/faultstring"/>
 <xsl:with-param name="aErrorCode" select="$vErrorSet/error/errorcode"/>
 </xsl:call-template>

 </xsl:template>

 <!--+
 |*************************
 |*** Named Template
 |*** Name: createSoapFault
 |*************************
 + -->
 <xsl:template name="createSoapFault">
 <xsl:param name="aFaultCode"/>
 <xsl:param name="aFaultString"/>
 <xsl:param name="aErrorCode"/>

 <SOAP-ENV:Envelope>
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode><xsl:value-of select="$aFaultCode"/></faultcode>
 <faultstring><xsl:value-of select="$aFaultString"/></faultstring>
 <detail>
 <errorcode><xsl:value-of select="$aErrorCode"/></errorcode>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

 </xsl:template>

</xsl:stylesheet>

Chapter 6. XSLT programming 165

In case we do not use an authenticated user, authentication failure is handled. Figure 6-21
shows the SOAP fault message.

Figure 6-21 SOAP fault message

6.9 Summary

In this chapter, we provided implementation details about custom templates that can be used
to perform specific actions. We also presented important extension functions and elements
that are provided by the DataPower and EXSLT modules.

Before using a custom template, check whether an existing DataPower object can complete
the required tasks.

166 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Chapter 7. Web 2.0 support

In this chapter, we discuss support for Web 2.0 technologies by using the DataPower
appliances. The features that are offered by Web 2.0 applications are becoming more widely
adopted by individuals and enterprises alike. In this chapter, we attempt to demonstrate how
you can use existing Web services to provide content for Web 2.0 applications. We begin this
chapter with an overview of Web 2.0 technology. Then we present an example of Web 2.0
integration and the configuration of the DataPower appliance to support this type of
integration.

7

© Copyright IBM Corp. 2008. All rights reserved. 167

7.1 Overview of Web 2.0

The phrase Web 2.0 has come to represent any Internet-based application that goes beyond
merely serving dynamic content to clients. With Web 2.0 applications or Web sites, end users
can upload content to share with other Internet users. This ability sets them apart from other
more traditional Web sites that are essentially read-only.

While the underlying technology that supports Web 2.0-enabled sites has not changed, the
way in which the Internet is used has. The Internet is no longer a one-way street where
content is delivered to the user’s browser for consumption. With Web 2.0 technology, users
can easily submit their own content for others to see or use a Web-based application as
though it were part of their own desktop.

7.1.1 Web 2.0 technologies

Examples of Web 2.0 technologies include social networking, Web logs (or blogs), wikis, and
podcasting. In this chapter, we focus on content distribution by using the Atom Syndication
Format. Atom is similar to Really Simple Syndication (RSS) and was developed to resolve
compatibility issues with the RSS format. Information that is distributed by using the Atom or
RSS format is referred to as a feed.

Atom defines an XML-based format for providing summarized informational updates for a
particular subject. The maintainer of the subject matter’s feed can add new information or
updates by modifying the Atom file for the feed. End users use feed readers or aggregators to
collect and filter the new or updated information. An example use case is a news feed where
breaking news headlines can be added to the Atom file by the feed’s maintainer. A subscriber
to the feed (via their reader) can then view the updated information when they refresh the
feed.

7.1.2 Web 2.0 and DataPower appliances

While support for Web 2.0 technology in DataPower appliances is not yet widely
acknowledged, the devices can be used to support Web 2.0-based applications. DataPower
appliances can be used to mediate Atom feeds because they are XML based.

7.2 Example of Web 2.0 integration

To demonstrate the ability of the DataPower appliance to interoperate with and support Web
2.0-based technologies, we use the DataPower appliance to provide content from a
SOAP-based Web service in the Atom Syndication Format.

168 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

7.2.1 SOAP Web service

The example SOAP Web service used in this discussion provides a list of customers.
Requests to the service define the number of customers that should be returned.
Example 7-1 shows a request to the Web service.

Example 7-1 Web service sample request

<env:Envelope xmlns:query-string="http://www.datapower.com/param/query"
xmlns:q0="http://sample10.datapower.ibm.com/crafted/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dp="http://www.datapower.com/schemas/management">
<env:Body>
<q0:CustomerListRequest>
<length>1</length></q0:CustomerListRequest>
</env:Body>
</env:Envelope>

The Web service responds with a list of customers, including their names and IDs.
Example 7-2 shows a sample response.

Example 7-2 Sample Web service response

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dp="http://www.datapower.com/schemas/management">
<soapenv:Body>
<CustomerList xmlns="http://sample10.datapower.ibm.com/crafted/">
<Customer xmlns="">
<CustomerID>0</CustomerID>
<CustomerName>customer0</CustomerName>
</Customer>
</Customer>
</CustomerList>
</soapenv:Body>
</soapenv:Envelope>

7.2.2 Atom feed

As described in 7.1.1, “Web 2.0 technologies” on page 168, Atom feeds are XML based.
Example 7-3 shows a sample Atom document.

Example 7-3 Sample Atom document

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<id>johndoe@my.test.feed.org</id>
<title>This is an example feed</title>
<link href="http://my.test.feed.org/feed/" rel="self"/>

<link href="http://my.test.feed.org/"/>
<updated>2007-10-05T18:30:02Z</updated>
<author>

Chapter 7. Web 2.0 support 169

<name>John Doe</name>
<email>johndoe@my.test.feed.org</email>
</author>
<entry>
<title>DataPower Test Atom Feed</title>
<updated>2007-10-04T18:30:02Z</updated>
<summary>This is a test of the DataPower ATOM feed.</summary>
</entry>
</feed>

The feed element describes the title, ID, and update time stamp of the feed, as well as other
metadata such as the author’s name and relevant Internet links. The entry elements define
the actual informational content of the feed. Every feed and entry element must contain a title,
ID, and timestamp element.

To represent the Web service as an Atom feed, the list of customers that is returned by the
Web service must be transformed into individual Atom entries.

7.2.3 XSL transformations

In the previous section, we briefly described the format of the Atom Syndication Format. To
display the SOAP responses from the SampleRead Web service in this format, XSL
transformations must be performed by the DataPower appliance:

� Converting the list of customers that is returned by the Web service to the Atom entry
elements

� Adding metadata that describes the feed and its entries

These operations are performed by using two XML Stylesheet Language Transformation
(XSLT) stylesheets. The first stylesheet generates a SOAP request and sends it to the
SampleRead Web service. The response from the Web service is passed to the second
stylesheet for processing. This stylesheet extracts the Customer elements of the
CustomerList element and converts them to the Atom Syndication Format entry elements. It
also inserts the required Atom metadata elements of ID, title, and time stamp for both the
entry elements and the root feed element.

170 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

7.2.4 DataPower configuration

In this section, we explain the steps to configure the DataPower appliance to enable the
SampleRead Web service as an Atom feed. We create two XML firewalls to support the
SampleRead Web service as an Atom feed. Figure 7-1 shows the architecture.

Figure 7-1 Logical architecture of the DataPower XML firewall

The first firewall, which receives the request from the feed reader, forwards the request
unchanged to a second loopback firewall. The second (loopback) firewall has a processing
policy that consists of two XSL transforms. The first of these transforms generates a SOAP
request to the SampleRead Web service to obtain the list of customers. The second
transform processes the Web service’s response and translates it into the Atom format. The
translated output then becomes the response input of the first firewall.

The first firewall’s response processing policy adds the Atom content type. The content type
header for Atom feeds should be application/atom+xml, where it is application/text+xml
for Web services.

Creating the Web service facing the XML firewall
To configure the DataPower appliance, perform the following steps. We configure the second
firewall first.

1. From the Control Panel, under Service, click XML Firewall.

2. In the Configure XML Firewall page, click Add Wizard to create a new XML firewall.

3. Click Pass Thru to configure the basic properties with the wizard. We customize the XML
firewall later.

Chapter 7. Web 2.0 support 171

4. On the Create a Pass Thru XML Firewall Service page (Figure 7-2), complete these steps:

a. For Firewall Name, type atom.

b. For Firewall Type, select loopback-proxy.

c. For Device Address, type 0.0.0.0 for the clients to connect to the XML firewall. This
means that the firewall is listening on all active interfaces.

d. For Device Port, type 3000.

e. Click Commit to save the firewall.

Figure 7-2 The atom XML Firewall Service

Figure 7-3 shows that the XML Firewall atom was successfully created.

Figure 7-3 Finishing the wizard

5. On the main XML Firewall page, click the newly created firewall.

6. For Request Type at the bottom right side of the page, select Non-XML so that the initial
request from the feed reader is not in an XML format.

7. For the atom Firewall Policy, click the ... button to customize the policy.

172 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

8. Drag a Transform action onto the processing rule diagram. Double-click the new
Transform action icon to configure this action (Figure 7-4).

Figure 7-4 Configure the XML Firewall Policy page

Chapter 7. Web 2.0 support 173

9. On the Configure Transform Action page (Figure 7-5), upload the genRequest.xsl file that
we want to use. This is the XSLT file that sends an out-of-band SOAP request to a Web
service and receives a SOAP response with the requested list of items. Click Done.

Figure 7-5 Configuring the Transform action

10.On the policy diagram, insert another Transform action after (to the right of) the existing
Transform action. Double-click the newly created Transform action (Figure 7-6).

Figure 7-6 The final rule for the atom XML firewall

174 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

11.Configure the action to use the atomResponseMapper.xsl file. This stylesheet performs
the transformation of the SOAP response from the previous step to the Atom format. Apply
the changes to this rule and close the policy editing window.

12.Click Apply and Save Config to save the changes.

Creating the client facing XML firewall
Now we create the XML firewall that receives requests from a feed reader. We use the wizard
as we did before. Name the firewall atom-mime and perform the following steps:

1. For the firewall type, select static-backend, so that we can define a front-end system and
a back-end system.

2. In the back-end configuration (Figure 7-7), enter the address and port of the XML Firewall
Service that we created before. For Server Address, type 127.0.0.1 to indicate a local
service. For Server Port, type 3000, which we defined previously. For Device Port, type
3001 for this firewall.

Figure 7-7 Back-end connection configuration

3. On the next page (Figure 7-8), click Commit to commit the configuration of this firewall.

Figure 7-8 XML Firewall ‘atom-mime’

Chapter 7. Web 2.0 support 175

4. On the Configure XML Firewall page (Figure 7-9), select the newly created atom-mime
XML firewall.

Figure 7-9 The two created XML firewalls

5. Set the Request Type and Response Type to Non XML.

6. Click the ... button beside the atom-mime Firewall Policy to customize it.

7. Create a new Rule Action and make it a Server to Client (Response Rule).

8. Drag an Advanced action to the processing rule diagram. Double-click the Advanced
action.

9. Select the setvar (Set Variable) option.

10.On the Set Variable page (Figure 7-10), for Variable Name, type
var://service/set-response-header /Content-Type. For Variable Assignment, type
application/atom+xml. Click Done.

Figure 7-10 Setting a variable

176 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

11.On the processing policy window (Figure 7-11), double-click the matching rule icon (=) to
open the configuration window for the action.

Figure 7-11 The atom-mime firewall policy

12.Click the ... button next to the atom-mime matching rule.

13.On the Rules tab (Figure 7-12), change the URL Match field to /feed*. Click Save.

Figure 7-12 Creation of a new Matching Rule

14.Apply the changes to the processing policy and close the policy editing window.

15.On the main configuration page, click the Advanced tab and set Disallow GET (and
HEAD) to ON so that we can allow GET requests for this firewall.

16.Click Apply and click Save Config to commit the changes to the atom-mime XML firewall.

7.3 Demonstration

By turning on the probe for the firewalls, we can view the data as it traverses the appliance. To
test the configuration, we direct a feed reader to the client-facing XML firewall called
atom-mime. This firewall has the port number 3001. Therefore, the feed reader should use
the following URL:

http://<datapower host name>:3001/feed

Chapter 7. Web 2.0 support 177

Requests that are sent to this firewall are sent unchanged to the atom XML firewall. By
viewing the probe for the atom firewall, we can see that the first transform action sends a
SOAP request to the Web service. The SOAP response is then translated by the second
transform into the ATOM format, as shown in Example 7-4.

Example 7-4 Translated SOAP response

<atom:feed xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:date="http://exslt.org/dates-and-times"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dp="http://www.datapower.com/schemas/management">
<atom:id>atom.sample.com</atom:id>
<atom:title>feed demo: List of Customers</atom:title>
<atom:updated>2007-11-14T22:56:58+11:00</atom:updated>
<atom:entry>
<atom:id>0</atom:id>
<atom:title>customer0</atom:title>
<atom:updated>2007-11-14T22:56:58+11:00</atom:updated>
<atom:content>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<CustomerID>0</CustomerID>
<CustomerName>customer0</CustomerName>
</Customer><
/atom:content>
</atom:entry>
</atom:feed>

The ATOM content is then returned to the atom-mime firewall, where the response processing
rule is invoked. By viewing the response probe for the atom-mime firewall, we can see that the
content-type header has been updated by the Set Variable action from application/text+xml
to application/atom+xml.

7.4 Summary

In this chapter, we demonstrated how you can use the DataPower appliances to enable
existing applications to support Web 2.0 technologies. Web 2.0 entities, such as blogs, wikis,
and social networking are becoming increasingly popular as a means for both individuals and
companies to interact with one another.

By using a simple XSL transformation, we have shown how SOAP-enabled Web services can
provide content in the Atom Syndication Format. This format is widely used to provide
syndicated news and other informational content to users. The XSL transformation performed
by the DataPower appliance converted the Web service’s SOAP-based response into the
Atom format by adding the necessary Atom metadata around the Web service response.

178 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Appendix A. XSL programming issues

In this appendix, we provide support information in regard to Chapter 6, “XSLT programming”
on page 123. We begin with information about the curl commands that we used to complete
the provided examples. Then we explain details about the XML firewall that we created in 6.5,
“Example 3: GET request transformed into a SOAP message” on page 147.

A

DataPower domain: XSLTProgramming is the DataPower domain that we used to illustrate
the examples.

© Copyright IBM Corp. 2008. All rights reserved. 179

The cURL commands

In this section, we explain the different curl commands that we used for each example in
Chapter 6, “XSLT programming” on page 123.

Example 1
We used the following curl command for example 1:

curl --data-binary @getPrime_EX1.xml http://9.42.170.230:4012/hello

Example 2
We used the following curl command for example 2:

curl --data-binary @getPrime_EX2.xml http://9.42.170.230:4012/hello

Example 3
We used the following curl command for example 3:

curl "http://9.42.170.230:4013/get2soap?op=getPrime&value=2"

Example 4
We used the following curl command for example 4:

curl --data-binary @getPrime_EX4.xml http://9.42.170.230:4012/hello

Example 5
We used the following curl command for example 5:

curl "http://9.42.170.230:4013/log?op=getPrime&value=2"

Example 6
We used the following curl command for example 6:

curl --data-binary @getPrime_EX6.xml http://9.42.170.230:4012/hello

XML firewall configuration details

In this section, we show details about XML firewall that we used in 6.5, “Example 3: GET
request transformed into a SOAP message” on page 147. Figure A-1 shows the main details
of XML firewall.

Figure A-1 XML firewall main details

180 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

General configuration
Figure A-2 and Figure A-3 show the general configuration of the XML firewall.

Figure A-2 General configuration (part 1 of 2)

Figure A-3 General configuration (part 2 of 2)

Non-XML request type: We use the Non-XML request type to handle incoming GET
requests.

Appendix A. XSL programming issues 181

Processing rules
Figure A-4 shows the two processing rules that are defined on the XML firewall. The XML
firewall contains the following two rules, which respectively match the /get2soap and /log
incoming URLs:

� xslProgramming_FW_policy_Rule_0
� xslProgramming_FW_policy_Rule_1

Figure A-4 XML firewall procesing rules

182 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Appendix B. Additional material

This paper refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material

The Web material associated with this paper is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/REDP4327

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redpaper form number, REDP4327.

Using the Web material

The additional Web material that accompanies this paper includes the following files:

File name Description
redp4327.zip Compressed code samples

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 40 MB minimum
Operating System: Microsoft Windows®
Processor: 2 GB or higher
Memory: 2 MB

B

© Copyright IBM Corp. 2008. All rights reserved. 183

ftp://www.redbooks.ibm.com/redbooks/REDP4327
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the Web
material compressed file into this folder.

184 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 186.
Note that some of the documents referenced here may be available in softcopy only.

� Enabling SOA Using WebSphere Messaging, SG24-7163

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and Authorization,
REDP-4364

� IBM WebSphere DataPower SOA Appliances Part III: XML Security Guide, REDP-4365

� IBM WebSphere DataPower SOA Appliances Part IV: Management and Governance,
REDP-4366

� Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB,
SG24-7369

� WebSphere Message Broker Basics, SG24-7137

Other publications

The following publications are also relevant as further information sources. They are either
available as part of the product or orderable for a fee. The common documentation is
available on the Web at the following address:

http://www-1.ibm.com/support/docview.wss?rs=2362&uid=swg24014405

� IBM WebSphere DataPower Example Configurations Guide

� IBM WebSphere DataPower Common Installation Guide

� IBM WebSphere DataPower Integration Appliance XI50 Reference Kit, part number
42C4212

� IBM WebSphere DataPower WebGUI User's Guide

� IBM WebSphere DataPower XML Integration Appliance XI50 CLI Reference Guide
Release 3.6.0

� IBM WebSphere DataPower XML Accelerator XA35 Reference Kit, part number 42C4210

� IBM WebSphere DataPower XML Security Gateway XS40 Reference Kit, part number
42C4211

© Copyright IBM Corp. 2008. All rights reserved. 185

http://www-1.ibm.com/support/docview.wss?rs=2362&uid=swg24014405

Online resources

These Web sites are also relevant as further information sources:

� Integrating WebSphere DataPower SOA Appliances with WebSphere MQ

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0
703_crocker.html

� Integrating WebSphere DataPower XML Security Gateway XS40 with WebSphere
Message Broker

http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0
710_crocker.html

� Integrating DataPower with WebSphere Message Broker using the Broker Explorer

http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/07
07_storey.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

186 IBM WebSphere DataPower SOA Appliances - Part I: Overview and Getting Started

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0703_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0710_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/0707_storey.html

®

REDP-4327-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

IBM WebSphere DataPower
SOA Appliances
Part I: Overview and Getting Started

Understand and
effectively deploy
DataPower SOA
appliances

Parse and transform
binary, flat text, and
XML messages

Learn how to extend
your SOA
infrastructure

IBM WebSphere DataPower SOA Appliances represent an important
element in the holistic approach of IBM to service-oriented architecture
(SOA). IBM SOA appliances are purpose-built, easy-to-deploy network
devices that simplify, secure, and accelerate XML and Web services
deployments while extending the SOA infrastructure. These appliances
offer an innovative, pragmatic approach to harness the power of SOA. By
using them, you can simultaneously use the value of existing application,
security, and networking infrastructure investments.

This series of IBM Redpaper publications is written for architects and
administrators who need to understand the implemented architecture in
WebSphere DataPower appliances to successfully deploy it as a secure
and efficient enterprise service bus (ESB) product. These papers give a
broad understanding of the new architecture and traditional deployment
scenarios. They cover details about the implementation to help identify the
circumstances under which to deploy DataPower appliances. They include
a sample implementation and architectural best practices for an SOA
message-oriented architecture in an existing production ESB environment.

This part of the series provides a general overview of DataPower SOA
appliances and a primer to using the appliances in common scenarios.
The entire series includes the following papers:

� IBM WebSphere DataPower SOA Appliances Part I: Overview and
Getting Started, REDP-4327

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and
Authorization, REDP-4364

� IBM WebSphere DataPower SOA Appliances Part III: XML Security
Guide, REDP-4365

� IBM WebSphere DataPower SOA Appliances Part IV: Management and
Governance, REDP-4366

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this paper
	Become a published author
	Comments welcome

	Chapter 1. Introduction to DataPower SOA appliances
	1.1 Overview of the DataPower appliance
	1.1.1 Challenges in service-oriented networking
	1.1.2 Meeting SOA challenges with DataPower appliances
	1.1.3 DataPower appliance models

	1.2 DataPower deployment scenarios and use cases
	1.2.1 DataPower deployment scenarios
	1.2.2 DataPower use cases

	1.3 Configuration and usage of DataPower appliances
	1.4 SOA governance

	Chapter 2. Getting started
	2.1 Installing the device
	2.1.1 IBM Enterprise Rack (Power Systems)
	2.1.2 Required tools and cables
	2.1.3 Rack mounting an IBM WebSphere DataPower XML Appliance

	2.2 Setting up the DataPower appliance
	2.2.1 Connecting the DataPower appliance
	2.2.2 Initializing the appliance

	2.3 Launching the WebGUI
	2.4 Example: XML Firewall Service
	2.4.1 Creating an application domain
	2.4.2 Creating the XML Firewall Service in the domain
	2.4.3 Testing the Hello_XMLFW firewall

	2.5 Example: Web Service Proxy Service
	2.5.1 Creating a Web Service Proxy Service
	2.5.2 Testing the HelloWSProxy service
	2.5.3 Troubleshooting the configuration

	2.6 Summary

	Chapter 3. Enabling existing applications
	3.1 The enterprise service bus
	3.1.1 Definition of an enterprise service bus
	3.1.2 Enterprise requirements for an enterprise service bus

	3.2 A sample scenario and components
	3.3 Transformations
	3.3.1 WebSphere Transformation Extender basics
	3.3.2 Creating a type tree with Type Designer
	3.3.3 Mapping an input type tree to an output type tree by using Map Designer

	3.4 Deployment of the XML to COBOL transformations
	3.4.1 Creating the WebSphere MQ resources
	3.4.2 Importing transformation files developed in WebSphere Transformation Extender Studio into the DataPower appliance
	3.4.3 Creating a multiprotocol gateway

	3.5 Running the application
	3.6 Adding XML schema validation
	3.7 Running the XML schema validation
	3.8 Summary

	Chapter 4. Securing communication channels with SSL
	4.1 SSL for transport level security
	4.1.1 Crypto profile
	4.1.2 SSL proxy profile
	4.1.3 Enabling the Probe for encrypted SSL request messages

	4.2 Summary

	Chapter 5. Logging capabilities the in DataPower appliance
	5.1 DataPower logging capabilities
	5.1.1 Log target, category, and level
	5.1.2 Configuring a system log
	5.1.3 Log action
	5.1.4 Logging from a custom template

	5.2 Error handling
	5.2.1 On-error processing action
	5.2.2 On-error processing rule

	5.3 Summary

	Chapter 6. XSLT programming
	6.1 XSL stylesheet namespace requirements
	6.1.1 Namespace declarations for DataPower extensions
	6.1.2 Namespace declarations for EXSLT extension functions

	6.2 Using namespaces
	6.2.1 A DataPower extension element
	6.2.2 A DataPower extension function
	6.2.3 An EXSLT extension function

	6.3 Example 1: AAA policy based on custom templates
	6.3.1 Objectives and presentation
	6.3.2 DataPower configuration
	6.3.3 Incoming SOAP message
	6.3.4 XSL stylesheet details

	6.4 Example 2: Dynamic routing based on custom templates
	6.4.1 Objectives and presentation
	6.4.2 DataPower configuration
	6.4.3 Incoming SOAP message
	6.4.4 XSL stylesheet details

	6.5 Example 3: GET request transformed into a SOAP message
	6.5.1 Objectives and presentation
	6.5.2 DataPower configuration
	6.5.3 Incoming HTTP GET request
	6.5.4 XSL stylesheet details

	6.6 Example 4: Debugging into the DataPower XSL stylesheet
	6.6.1 Objectives and presentation
	6.6.2 DataPower configuration
	6.6.3 Incoming SOAP message
	6.6.4 XSL stylesheet details

	6.7 Example 5: Logging from custom templates
	6.7.1 Objectives and presentation
	6.7.2 DataPower configuration
	6.7.3 Incoming request
	6.7.4 XSL stylesheet details

	6.8 Example 6: On-error handling using custom templates
	6.8.1 Objectives and presentation
	6.8.2 DataPower configuration
	6.8.3 Incoming request
	6.8.4 XSL stylesheet details

	6.9 Summary

	Chapter 7. Web 2.0 support
	7.1 Overview of Web 2.0
	7.1.1 Web 2.0 technologies
	7.1.2 Web 2.0 and DataPower appliances

	7.2 Example of Web 2.0 integration
	7.2.1 SOAP Web service
	7.2.2 Atom feed
	7.2.3 XSL transformations
	7.2.4 DataPower configuration

	7.3 Demonstration
	7.4 Summary

	Appendix A. XSL programming issues
	The cURL commands
	XML firewall configuration details

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

