
ibm.com/redbooks Redpaper

Front cover

IBM i Program Conversion:
Getting Ready for 6.1 and Beyond

Mike Charlton
Theresa Gardiner

Paul Godtland
Debbie Landon

Mayumi Matsukawa
Ian J. Mills

Roger Southwick

Prepare an earlier release for program
conversions to IBM i 6.1 or a later release

Use the Analyze Object Conversion
(ANZOBJCVN) tool

Convert programs to run on
6.1 or a later release

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM i Program Conversion:
Getting Ready for 6.1 and Beyond

March 2010

REDP-4293-01

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (March 2010)

This edition applies to IBM i version 6.1 and later.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
The team who wrote this paper . viii
Now you can become a published author, too! .x
Comments welcome. .x
Stay connected to IBM Redbooks .x

Summary of previous versions. xiii
Summary of second edition versions . xiii

March 2010, second edition of this paper . xiii
Summary of changes made to first edition versions . xiii

April 2009 update . xiv
March 2009 update . xiv
November 2008 update . xiv
May 2008, first edition of this paper . xiv

Summary of draft versions .xv
January 2008 draft update .xv
November 2007 draft update .xv
October 2007 draft update . xvi
July 2007 draft update . xvi

Chapter 1. Overview of the program conversion process. 1

Chapter 2. Introduction to program conversion . 3
2.1 Key values of IBM i . 4
2.2 What program conversion is . 4
2.3 Why program conversion . 6

2.3.1 Integrity . 6
2.3.2 Performance improvements . 7
2.3.3 Functional improvements . 8

Chapter 3. Preparing for conversions . 9
3.1 Analyzing objects . 10

3.1.1 Terminology definitions . 10
3.1.2 Required PTFs . 11
3.1.3 Command usage notes. 12
3.1.4 Conversion time estimates . 13
3.1.5 Alternate method for estimating conversion times . 16

3.2 Collecting information . 17
3.2.1 Parameters of the ANZOBJCVN *COLLECT command. 18
3.2.2 Examples of collection commands . 21
3.2.3 Files used for data collections. 22

3.3 Creating reports . 23
3.3.1 Parameters of the ANZOBJCVN *REPORT command. 25
3.3.2 Examples of report commands . 26
3.3.3 Understanding the conversion reports . 30

3.4 Programs that will not convert . 33

© Copyright IBM Corp. 2010. All rights reserved. iii

3.5 Querying analyzed data . 36
3.6 Considerations for application developers . 37

3.6.1 Will your application convert . 37
3.6.2 Other decision criteria . 38
3.6.3 Adaptive code generation . 39
3.6.4 Fixes and testing. 39

3.7 Other object conversions . 40
3.7.1 Java programs . 40
3.7.2 Integrated file system names . 43
3.7.3 Spooled files . 43

3.8 Removing unsupported products . 44

Chapter 4. Program conversion methods . 45
4.1 Overview of program conversion . 46
4.2 Conversion using STROBJCVN . 47

4.2.1 STROBJCVN usage notes . 48
4.2.2 Parameters of the STROBJCVN command . 50
4.2.3 STROBJCVN OPTION(*CHECK) . 52
4.2.4 STROBJCVN OPTION(*CONVERT) . 55

4.3 Conversion of program objects during restore . 57
4.4 Conversion the first time a program is run or called . 59
4.5 Conversion times and how to improve them . 59

Appendix A. MRI PTFs . 61

Appendix B. File field definition tables . 65
QAIZACVN: information for analyzed libraries . 66
QAIZADIR: information for analyzed directories . 69
QAIZAOBJ: information for analyzed integrated file system objects 70
QAIZASPL: information for analyzed spooled files . 72

Appendix C. IBM software skip-ship products requiring conversion 73

Related publications . 75
Other publications . 75
Online resources . 75
How to get Redbooks. 75
Help from IBM . 76

iv IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2010. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400®
DB2®
Domino®
eServer™
i5/OS®
IBM®
Integrated Language Environment®
iSeries®
Language Environment®

Lotus Enterprise Integrator®
Lotus®
MQSeries®
OS/400®
PartnerWorld®
POWER5™
POWER6®
QuickPlace®
Quickr™

Redbooks®
Redpaper™
Redbooks (logo) ®
Sametime®
System i5®
System i®
WebSphere®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

vi IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® delivered IBM i 6.1 in March 2008. With 6.1, IBM exploits the capabilities of the
Machine Interface (MI) architecture to significantly improve programs. Programs can benefit
from better performance, a range of new operating system and processor capabilities, and
even stronger system integrity. To enable these improvements, all MI programs created for
previous releases must be converted to run on 6.1 or a later release. MI programs include
integrated language environment (ILE) and original program model (OPM) programs.

To convert a program, its creation data, which is a subset of observability, must be available.
MI programs retain creation data by default, so that most programs can be converted, going
all the way back to programs that were originally created for System/38. Even if an option was
chosen to remove creation data from external access, Licensed Internal Code (LIC) can still
access the creation data if the target releases of the program and its constituent modules are
V5R1 or later. Thus a program lacks sufficient creation data for conversion only if the program
or at least one of its modules was created for IBM OS/400® V4R5 or an earlier release and
creation data was explicitly removed.

You can run the Analyze Object Conversion (ANZOBJCVN) command on V5R4 or V5R3 to
help plan for your upgrade. The ANZOBJCVN command identifies programs that will not
convert to run on 6.1 or later releases, if any, and estimates the times that are required for the
program conversions. It also provides information about two other types of conversions:
integrated file system names and spooled files. You can access the ANZOBJCVN command
by loading and applying the appropriate PTFs that are listed in this paper.

This IBM Redpaper™ publication is intended for system administrators and field technicians
to help them understand and prepare for upgrading or migrating to 6.1 or a later release. It
explains what the program conversion is and why programs are being created or recreated on
6.1 or a later release. It then provides detailed steps for using the ANZOBJCVN tool on V5R3
or V5R4 to prepare for object conversions. Finally, it discusses the program conversion
methods for converting programs to run on 6.1 or a later release.

Note: The first edition of this paper was entitled IBM i5/OS Program Conversion: Getting
Ready for i5/OS V6R1, REDP-4293-00. The title of this second edition has been slightly
modified to IBM i Program Conversion: Getting Ready for 6.1 and Beyond, REDP-4293-01,
to reflect the new naming conventions for IBM i.

© Copyright IBM Corp. 2010. All rights reserved. vii

The team who wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Mike Charlton works at the IBM Hursley Laboratories in the U.K. as
an IBM i Platform Specialist. He is a former high school mathematics
teacher. He joined IBM in 1998 as a Software Support Specialist
working in the IBM AS/400® support center in the United Kingdom
(U.K.), where he specialized in work management, performance,
and performance analysis tools. He was promoted to Advisory level
in 2002.

Theresa Gardiner is a Staff Software Engineer in the Rochester
IBM i Support Center. She started her career with IBM in 1977 as a
Customer Engineer in Milwaukee, Wisconsin. She shifted from
hardware to software support in the late 1980s. When Theresa
moved to the Rochester Support Center, she started on the
Language and Utilities team, of which she is currently the team
leader. She worked at the Rochester Support Center during the
CISC-to-RISC conversion time frame. She is a support expert for the
S36E and S38E languages and utilities.

Paul Godtland is a Senior Software Engineer in Rochester,
Minnesota who designs and implements IBM i Licensed Internal
Code. He was the technical lead for the MI program conversion
project. Most of his 30+ years with IBM have been focused on the
System/38, AS/400, IBM eServer™ iSeries®, System i®, and IBM i
family of systems. His past roles include membership on teams that
designed and implemented the Integrated Language Environment®
(ILE), the AS/400 CISC-to-RISC conversion, and teraspace. Paul
also helped achieve the initial AS/400 C2 security rating and is
involved with ongoing system integrity improvements.

Debbie Landon is an IBM Certified Senior IT Specialist in the IBM
ITSO, Rochester Center. Debbie has been with IBM for 26 years,
working first with the S/36 and then the AS/400, which has since
evolved to the IBM i platform. Before joining the ITSO in November
of 2000, Debbie was a member of the IBM PartnerWorld® for
Developers iSeries team, supporting IBM Business Partners in the
area of Domino® for iSeries.

viii IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Mayumi Matsukawa is an IT Specialist for the IBM i Technical
Support team in Japan. She joined IBM in 1998 and has eight years
experience working with IBM i. Her areas of expertise include
Domino and related Lotus® products, LPAR, clustering, cross-site
mirroring (XSM), and DB2® for i5/OS®. Mayumi provides technical
support and education for IBM specialists, Business Partners, and
clients.

Ian J. Mills is an advisory IT Software Support Specialist in the
iSeries support center in the U.K. He joined IBM directly after
college in 1995 as a Software Support Specialist and was promoted
to Advisory level in 2001. In addition to working in support, he has
been directly engaged in more than 200 system upgrade contracts,
as well as numerous system recoveries for customers throughout
the United Kingdom and Ireland. Ian re-certified as an i5/OS
specialist in March 2007. Since July 2007, he has been an IBM
Availability Manager in the UK. Ian is a graduate of the University of
Portsmouth and has a degree in IT.

Roger Southwick is a Staff Software Engineer at IBM in Rochester,
Minnesota. He started with IBM in 1987 on Release 1 of the AS/400.
Since 1996 he has enhanced and supported the Integrated
Language Environment binder, and in 2009 he accepted technical
ownership of the ANZOBJCVN and STROBJCVN commands. He
holds BSEE and MCIS degrees from the University of Minnesota.

Thanks to the following people for their contributions to this project:

Margaret Fenlon
Kary Garvey
Ian Jarman
Rodney Johnson
Sherri McMeeking
Laurie Miller
Gerri Passe
Rita Roque
Gottfried Schimunek
Michelle Schlicht
Tom Severson
Judy Trousdell
Kevin Vette
IBM Rochester development team

Rodolfo Segoviano Rayas
IBM Guadalajara, Mexico

Al Barsa, Jr.
Barsa Consulting Group, LLC

 Preface ix

Thomas Gray
Joanna Pohl-Misczyk
Craig Schmitz
Jenifer Servais
ITSO, Rochester Center

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author - all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts

� Follow us on twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

x IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts

http://twitter.com/ibmredbooks

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

 Preface xi

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

xii IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Summary of previous versions

Here we provide a history of the various technical changes that were made to this IBM
Redpaper publication since the initial draft version was made available in July 2007. Since
then the first edition (IBM i5/OS Program Conversion: Getting Ready for i5/OS V6R1,
REDP-4293-00) was published in May 2008 and the second edition (IBM i Program
Conversion: Getting Ready for 6.1 and Beyond, REDP-4293-01) in March 2010.

Summary of second edition versions

The second edition of this paper (REDP-4293-01) was published in March 2010. In this
section we describe the series of technical changes that were made in this second published
edition of this paper.

March 2010, second edition of this paper

In addition to the progressive changes made to the first edition of this paper, this second
edition includes the following information:

� Global change of references of “V6R1” to “6.1or a later release”

� The ANZOBJCVN command now has new code PTFs that are listed in 3.1.2, “Required
PTFs” on page 11

� Updated information in “Conversion time estimates using multiple threads” on page 15

� Updated certain query examples in 3.5, “Querying analyzed data” on page 36

� Updated information in 3.6.3, “Adaptive code generation” on page 39

� Updated information in “Multi-threading” on page 48 and “Limits to monitoring progress”
on page 49. Also added a new sub-section entitled “Converting for different processors”
on page 49

� Added additional information to 4.5, “Conversion times and how to improve them” on
page 59

Summary of changes made to first edition versions

The first edition of this paper (REDP-4293-00) was published in May 2008. In this section we
describe the series of technical changes that were made in the first published edition of this
paper.

Note: Minor corrections and editorial changes are not identified.

© Copyright IBM Corp. 2010. All rights reserved. xiii

April 2009 update

This publication includes the following updates from April 2009:

� 3.1.2, “Required PTFs” on page 11

The ANZOBJCVN command has new code PTFs listed in this section. The main change
is that conversion time estimates can now take into account the consideration of using
multiple threads.

� 3.1.4, “Conversion time estimates” on page 13

This section now includes information about how to specify multiple threads for a
conversion time estimate.

March 2009 update

This publication includes the following updates from March 2009:

� 3.1.5, “Alternate method for estimating conversion times” on page 16

A new section was added that provides information about an alternate method for
estimating conversion times.

� Conversion times Note boxes on pages 16, 17, and 23

The Conversion times note boxes were updated with more detailed information about the
various factors that can affect the conversion time estimates.

November 2008 update

This publication includes the following updates from November 2008:

� 3.1.2, “Required PTFs” on page 11

Updated PTF information in the Important box

� 3.3.2, “Examples of report commands” on page 26

Updated first example

May 2008, first edition of this paper

In addition to the progressive changes made to the draft versions of this paper, this first
edition includes the following information:

� 3.1.2, “Required PTFs” on page 11

The ANZOBJCVN command now has new code PTFs that are listed in this section. The
main change is that conversion time estimates now take into account partitions that have
less than one full processor.

� 3.1.4, “Conversion time estimates” on page 13

This section now includes information about how to specify a partial processor when
providing estimates for a different system than the one on which the ANZOBJCVN
command is run.

� Chapter 4, “Program conversion methods” on page 45

This chapter now includes more discussion about the concurrent processing potential of
each of the three conversion methods. In addition, information was added about making
sure that you have installed PTF MF44237 before starting conversions of any kind on a

xiv IBM i Program Conversion: Getting Ready for 6.1 and Beyond

V6R1 system. This PTF prevents rare occurrences of a system hang during program
conversion.

Summary of draft versions

Prior to the release of this first edition, this paper was made available in draft mode with the
preview of i5/OS V6R1 in July 2007. In this section we describe the series of technical
changes that were made in previous versions of the paper. Minor corrections and editorial
changes are not identified.

January 2008 draft update

The fourth draft of this paper included the following information:

� “Preface” on page vii

Updated the preface and abstract with new introductory text.

� Chapter 1, “Overview of the program conversion process” on page 1

Created this chapter to provide a brief summary of the process to help plan and implement
program conversion. This information was in an appendix in earlier drafts of this paper.

November 2007 draft update

The third draft of this paper included the following information:

� Chapter 3, “Program conversion methods”

We added a recommendation to remove unsupported products on V6R1 before
upgrading.

This chapter includes the following changes:

– 3.2.1, “Parameters of the ANZOBJCVN *COLLECT command”

• Added information about the QSYS2 library, in that no action is required
• Enhanced the information in the Subtree parameter discussion

– 3.2.2, “Examples of collection commands”

More information was added about the *CVNPRB parameter, and the associated
window captures were updated.

– 3.4, “Programs that will not convert”

Additional information was added.

– 3.5, “Querying analyzed data”

Information was added about how queries are required to report on the ANZOBJCVN
results if the files of the command have been moved to another library.

– 3.6, “Considerations for application developers”

More information was added about adaptive code generation (ACG).

– 3.7.3, “Spooled files”

This section was updated with advice to perform spooled file housekeeping before
upgrading.

� Chapter 4, “Program conversion methods”

 Summary of previous versions xv

This chapter includes the following updates:

– 4.1, “Overview of program conversion” (new section added)

– 4.2, “Conversion using STROBJCVN” (content revised)

Information about multi-threading was added to 4.2.1, “STROBJCVN usage notes”.

– 4.3, “Conversion of program objects during restore” (content revised)

– 4.5, “Conversion times and how to improve them” (new section added)

� Appendix A, “MRI PTFs”

The Analyze Object Conversion (ANZOBJCVN) CL command is distributed as PTFs for
V5R3 and V5R4. In this draft version of the paper, we provided the PTF numbers for the
different national languages.

� Appendix B, “File field definition tables”

This appendix was changed to provide more of a quick reference guide.

� Appendix C, “IBM software skip-ship products requiring conversion”

This new appendix provides a list of skip-ship IBM program products that must be
converted when upgrading to V6R1.

October 2007 draft update

The second draft of this paper included the following information:

� Chapter 2, “Preparing for conversions”

– We added information for the new *CVNPRB parameter of the ANZOBJCVN
*REPORT command. This new report parameter provides a detailed report of program
objects that will not convert for each library specified in the previous library collection.

– We added a description of the new *ALLAVL parameter of the ANZOBJCVN *REPORT
command, which replaced the older default *ALL parameter. Specifying the *ALLAVL
parameter causes reports to be generated for each type of information that has been
collected.

� Appendix A, “MRI PTFs”

The Analyze Object Conversion (ANZOBJCVN) CL command is distributed as PTFs for
V5R3 and V5R4. This version of this paper contained only the PTF numbers for the
updated versions of the English PTFs for V5R3 (SI28425) and V5R4 (SI28415).

July 2007 draft update

The first draft of this paper included the following information:

� Chapter 1, “Introduction to program conversion”

� Chapter 2, “Preparing for conversions”

� Chapter 3, “Program conversion methods”

This chapter contains only minimum information about the conversion process and
methods.

� Appendix A, “MRI PTFs”

The Analyze Object Conversion (ANZOBJCVN) CL command is distributed as PTFs for
V5R3 and V5R4. This draft version of the paper contained only the PTF numbers for the
original versions of the English PTFs for V5R3 (SI27515) and V5R4 (SI25550).

xvi IBM i Program Conversion: Getting Ready for 6.1 and Beyond

� Appendix B, “Program conversion summary”

� Appendix C, “File field definitions”

 Summary of previous versions xvii

xviii IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Chapter 1. Overview of the program
conversion process

In this chapter, we summarize the process for you to plan and implement a program
conversion. It serves as a brief and concise guide to the steps required for the program
conversion process. The steps highlighted in this overview contain references to other
chapters in this paper for more in-depth information. We recommend that you read this entire
paper to completely understand the program conversion required for 6.1or a later release.

1

Note: Planning for program conversion starts with your V5R3 or V5R4 system, with
conversion occurring after you upgrade to 6.1 or a later release. If you plan to upgrade from
V5R3 or V5R4 directly to a release later than 6.1, you still must perform program
conversions after the upgrade. However, if you performed program conversions on 6.1, you
do not need to perform these conversions again when moving from 6.1 to a later release.

© Copyright IBM Corp. 2010. All rights reserved. 1

The following steps briefly summarize the process for you to plan and implement program
conversion.

Step 1: Apply V5R4 or V5R3 PTFs to enable the ANZOBJCVN command
In most cases, if you order the MRI PTF for your preferred national language, the requisite
code PTFs are also automatically shipped. Refer to 3.1.2, “Required PTFs” on page 11.

Step 2: Collect information about objects on your system
Run the ANZOBJCVN OPTION(*COLLECT) command. Each collection of a given type
replaces the data in the collection file or files for that type. Therefore, carefully consider the
information provided in 3.2, “Collecting information” on page 17, and particularly in 3.2.3,
“Files used for data collections” on page 22.

Step 3: Review and understand collected information
Run the ANZOBJCVN OPTION(*REPORT) command, and optionally run your own queries
over the collected data. Consider the following reports:

� Report on programs that do not convert with the *CVNPRB parameter
� Report summary information, such as estimated conversion times for each library, with the

*LIBSUM parameter

See 3.3, “Creating reports” on page 23, and particularly 3.3.3, “Understanding the conversion
reports” on page 30.

Step 4: Contact your application provider, if necessary
If you find that you have purchased an application that will not convert and you do not have
the source code to recompile it, contact the application provider to get a version of the
application that can run on 6.1 or a later release. See 3.4, “Programs that will not convert” on
page 33.

Step 5: Remove unsupported products, and then upgrade to 6.1 or later
Remove unsupported licensed program products (LPP) and other unsupported products
before migrating to 6.1 or a later release. See 3.8, “Removing unsupported products” on
page 44.

After all of the preparatory tasks for object conversion are completed, refer to Installing,
Upgrading, or Deleting i5/OS and Related Software, SC41-5120-10, at the following Web site:

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010

Step 6: Convert objects on 6.1 or later release
Choose the combination of conversion options that best suits your situation. Refer to the
following sections:

� 4.2, “Conversion using STROBJCVN” on page 47
� 4.3, “Conversion of program objects during restore” on page 57
� 4.4, “Conversion the first time a program is run or called” on page 59

2 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www-01.ibm.com/support/docview.wss?uid=pub1sc41512010
http://www.ibm.com/support/docview.wss?uid=pub1sc41512010

Chapter 2. Introduction to program
conversion

Program conversion is required for all systems that upgrade to IBM i 6.1 or a later release.
Use the information in this paper and the tools provided for i5/OS V5R3 and V5R4 to prepare
for this conversion. Preparing well before you intend to upgrade promotes a smooth transition.

2

Overview: For a brief overview about how to prepare for an upgrade, see Chapter 1,
“Overview of the program conversion process” on page 1.

© Copyright IBM Corp. 2010. All rights reserved. 3

2.1 Key values of IBM i

The IBM i operating environment integrates a trusted combination of relational database,
security, Web services, networking, and storage management capabilities. This integration
promotes a simplicity of operation that is particularly appreciated by smaller businesses.
IBM i also provides a broad and highly stable middleware foundation for efficiently deploying
business processing applications, with support for over 5,200 solutions from more than 2,500
ISVs. IBM i solutions are offered through an extensive, highly skilled worldwide network of
IBM Business Partners that is backed by the trusted services and support infrastructure of
IBM.

IBM i has a highly scalable and virus-resistant architecture with a proven reputation for
exceptional business resiliency. For large enterprises, business process resilience and the
ability to meet and exceed demanding service levels of multiple business units is a top priority.
Over many years and in many businesses, IBM i has established a reputation as one of the
top operating environments in the industry for resilient application deployment. Companies
routinely trust the IBM i operating environment to deploy their most critical business
applications.

IBM i offers a variety of expansion options to help a company maximize return on its IT
investments. Most important to nondisruptive growth is the IBM i technology independent
Machine Interface (MI). Proven over many years and technology generations, the IBM i MI
has protected applications from changing hardware devices and processor generations, even
enabling applications to be upgraded to new technology without recompilation.

2.2 What program conversion is

To take advantage of the major improvements in system design and processor capabilities,
6.1 and later releases require all applications from a release prior to 6.1 that use the MI to be
re-created before they can be run. These MI programs include Integrated Language
Environment (ILE) and Original Program Model (OPM) programs. The conversion replaces
existing program objects, but each program object retains attributes such as the name, library,
and owning user profile. This conversion is a one-time process on each object. All MI
programs with sufficient creation data can be converted, independently of the creation
release. In fact, even programs initially created for System/38 can be converted.

IBM i Portable Application Solutions Environment (PASE) and Java™ programs are not based
on MI. Therefore, they are not directly affected. However, Java programs in directories will
also undergo a simple conversion. See 3.7.1, “Java programs” on page 40, for details.

Programs have a new format beginning with 6.1. Therefore, programs that were created for
earlier releases must be converted on 6.1 or a later release before they can run. Similarly,
programs created on 6.1 or a later release must be converted before they can run on V5R4 or
an earlier release.

Software design and hardware used by the IBM i platform are now at a point where significant
improvements to vital system aspects, such as integrity, performance, and functionality, can
be provided. This is done by taking advantage of the system architecture to transform
programs. See 2.3, “Why program conversion” on page 6, for more details.

4 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Program conversion or transformation can occur in three different ways:

� During program restore or application installation if the application was generated for a
release prior to 6.1

� Explicitly scheduled

� When a program is first run

You can freely mix and match conversion methods to suit your own situation. See Chapter 4,
“Program conversion methods” on page 45, for details about the conversion methods.

To help customers prepare for program conversion, the Analyze Object Conversion
(ANZOBJCVN) command is available in the form of PTFs that can be applied to V5R3 and
V5R4 systems. (These two releases can be directly upgraded to 6.1.) By using the
ANZOBJCVN command, clients can analyze their systems to help determine whether there
are program objects that will not convert. It also provides an estimate of the time required for
program conversion.

We recommend that you use the ANZOBJCVN CL command prior to upgrading to 6.1 or a
later release. By using this tool before upgrading an existing system or before migrating to
new hardware running 6.1 or a later release, adequate planning can be completed and any
necessary proactive steps can be taken. If a program will not convert, it must be recompiled,
or a new version of the program must be acquired from your software provider.

Use the ANZOBJCVN command on all V5R3 and V5R4 i5/OS logical partitions (LPARs) that
you intend to upgrade or migrate to 6.1 or a later release. Also consider including
independent auxiliary storage pools (ASPs) in the planning stage, because objects that
require conversion might reside on them. For additional details about using the ANZOBJCVN
command, refer to Chapter 3, “Preparing for conversions” on page 9.

Object conversion also occurs during a restore to V5R3 or V5R4 systems for programs that
are created on 6.1 or later but with an earlier target release. See 3.1.2, “Required PTFs” on
page 11, for the PTFs that are required on previous releases.

Figure 2-1 shows when program conversion occurs or is required. For more information about
how IBM i 6.1 or a later release can take advantage of IBM POWER6® or later processors,
see 2.3.2, “Performance improvements” on page 7, and 3.6.3, “Adaptive code generation” on
page 39.

Figure 2-1 Program conversion chart

Programs with creation data
on pre-6.1 systems

Programs created or converted
on systems running 6.1 or later

on pre-POWER6 hardware

Programs created or converted
on systems running 6.1 or later
on POWER6 or later hardware

Optional conversion during restore, mandatory before running

Mandatory conversion during restore

No conversion required

Chapter 2. Introduction to program conversion 5

Historical perspective
This conversion is the third in the history of the MI architecture. The first conversion occurred
when moving from System/38 to OS/400 V1R1 in 1988. The second conversion occurred for
OS/400 V3R6 in 1995, when upgrading from 48-bit to 64-bit addresses and running a
different hardware instruction set. This conversion is simpler than the previous ones. For
example, most other types of objects are not changing this time. Program conversions are
also much faster now.

2.3 Why program conversion

Programs are being created or recreated starting on 6.1 because several key system aspects
can then be significantly enhanced. Enhancements to integrity, performance, and function are
included. Existing programs are converted and newly-created programs get the same
benefits.

In addition to those tangible results, program conversion is a way of flexing the technical
vitality muscles of the MI architecture. Even though the MI architecture is not new, it provides
refresh and improvement capabilities that are among the best in the industry. The
combination of refreshing all MI programs and retaining their creation data gives IBM i users
extreme flexibility for dealing with future hardware, system design, and industry-wide
changes.

2.3.1 Integrity

A system has integrity when it performs only the intended or designed functions correctly. An
immediate result of re-creating all MI programs is that any unsupported alterations (for
example, changing the hardware instruction stream with a service tool) are eradicated.
Because they are gone, they have no chance of interfering with the intended uses of your
system.

Further, the system’s unique ability to remove any potential future code corruption is
extended. Now any MI-based application that can run on your system can be refreshed at any
time. For example, if you are worried about an application that you want to purchase from a
vendor with whom you are not yet familiar, you can convert the program as you install it.

Conversion re-creates a program from its MI architecture constructs, so that system integrity
cannot be attacked. A converted program conforms to MI semantics, which only allow defined
operations on supported object types. Further, unlike many other systems, you do not have to
worry about a continual race to update your virus scanning software before someone sends a
new form of attack program. Instead of worrying about which sequences of hardware
instructions might cause problems, you can refresh a program from its higher level MI
operations, letting the system generate appropriate hardware instructions.

Of course, the MI is typically enhanced for each release, but these changes become part of
the coherent whole. Each system release brings improvements, but no requirement to update
to be safe from attacks developed since the last release shipped.

Another important integrity improvement beginning with 6.1 is that system state programs
must be part of IBM i in order to be loaded. In past releases, you could optionally allow
system state programs to be loaded, regardless of whether they were part of the operating
system. System state was designed for operating system use. Therefore, in the past,
customers could inadvertently undermine the operating system integrity. That led to situations
where programs that ran with system state, but were not designed to interoperate correctly

6 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

with the operating system, caused problems as severe as a system crash. It was as though
those other programs could withdraw money from the IBM i metaphorical bank account of
operating system resources, eventually leading to an overdraft.

2.3.2 Performance improvements

Performance improvements were a key driver for program conversion. Commonly run
operations were improved, performance pitfalls were removed, new create-time options were
added to allow extra processing focus on two aspects of performance, and future
performance improvements were enabled.

Activation (readying a program to run), procedure (function) calls, and pointer use can now all
run faster. The amount of improvement depends upon the extent to which these operations
affect each application’s overall performance.

Teraspace
Teraspace, a large contiguously addressable area local to each job, is now implemented with
direct hardware support instead of software emulation. In one severe example on a prior
release, an ISV application stressed the software emulation so much that the application’s
initial performance was degraded six times overall. When the problem was identified, the
application was re-created by using a Licensed Internal Code Option (LICOPT) that
eliminated most of the overhead. Now that teraspace has direct hardware support, this
potential performance pitfall has been eliminated, without any special create-time
considerations.

Even for programs that do not suffer from emulation overhead, there are general benefits from
direct hardware use. For example, a commonly used, memory-intensive IBM i PASE
application’s performance improved by more than 15%. This occurred even though IBM i
PASE programs are not converted, because IBM i PASE and MI programs interact using
teraspace. A general improvement in memory handling efficiency also benefits ILE users of
teraspace.

New create-time options
Two new create-time options are now offered on the Create Service Program (CRTSRVPGM)
and Create Program (CRTPGM) CL commands for programs that target 6.1 or later. Neither
option requires any source code changes. The ARGOPT parameter further optimizes all the
calls between procedures in the service program or program that was created by using that
option. Performance benefits up to 20% overall have been measured in call-intensive
applications.

Service program activation can now also be deferred by using the *DEFER qualifier on the
BNDSRVPGM parameter. Deferred service program activation occurs only when needed,
and not when the program that binds to these service programs is activated. Thus you can
choose not to pay a start-up price for functions that are only rarely used in mainline
processing.

Adaptive code generation
Adaptive code generation is another performance enhancement starting in 6.1 that is
particularly interesting to clients who purchase the newest hardware. In the past, the code
generated for programs created for a given operating system release could use only a least
common denominator of hardware features. That allowed programs to run on any hardware
supported by the release, but it meant that some new hardware features could not be
exploited for several releases.

Chapter 2. Introduction to program conversion 7

In contrast, MI programs now, by default, use the available features of the hardware on which
they are created. For example, an MI program that targets 6.1 or a later release and is
created on a system based on POWER6 processors includes hardware instructions or other
hardware features that first became available on POWER6. If these programs are moved to a
system based on an older processor, the programs are automatically converted, so that they
use only hardware features available on all supported processors.

See the System i ILE Concepts Version 6 Release 1, SC41-5606, manual for more
information about the new create-time options and adaptive code generation ability:

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

Also see 3.6.3, “Adaptive code generation” on page 39.

2.3.3 Functional improvements

Functional improvements starting with 6.1 are centered on the theme of making it easier to
develop and deploy applications. Perhaps the biggest change is that now all MI programs are
capable of using teraspace. In the past, you had to be careful to avoid passing teraspace
addresses to programs that were not teraspace capable. This constraint made it more difficult
to take advantage of teraspace in places where a large contiguously addressable area would
have been more efficient, or where use of 8-byte, untagged pointers to teraspace would have
improved the performance of a C or C++ program. Now teraspace addresses can be handled
by all MI programs, so that teraspace use is much easier.

Other functional improvements include the ability for each job to allocate about 100 times
more teraspace, with these allocations strictly local to a job. In the past under some
conditions, the smaller allocations could inadvertently be referenced between jobs. For
example, testing might not detect erroneous between-job attempts to use this inherently
job-local resource, allowing a potential application problem to escape to clients.

Another functional enhancement is the addition of thread-local static storage for MI programs.
This storage class can make thread-enabled programming simpler. RPG, C++, and C
languages all offer new syntax for accessing this storage class. RPG uses
“THREAD(*CONCURRENT)” in the H Spec to specify thread-local use for an entire program.
Alternatively, RPG individual variables can be designated to use thread local storage by
adding the 'static(*allthread)' D Spec qualifier. C and C++ offer the “__thread” qualifier on
individual variable declarations. See the System i ILE Concepts Version 6 Release 1,
SC41-5606, manual at the following Web site for more information:

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

The development of applications has also been eased by improving coverage for
Performance Explorer (PEX) and trace functions. Programs no longer must be recompiled
with special options before using these system functions.

8 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

Chapter 3. Preparing for conversions

In this chapter we discuss the process of planning for object conversions. The object types
that require conversion are programs in libraries, Java programs in the integrated file system,
the names of some files in the integrated file system, and spooled files. While conversions do
not occur until after upgrade, the planning for conversions should be completed on V5R3 or
V5R4. Conversion planning should be completed on all systems and partitions that you intend
to upgrade or migrate to 6.1 or a later release.

When preparing for conversion, use the guidance in this paper in conjunction with the
information provided in the following resources:

� Installing, Upgrading, or Deleting i5/OS and Related Software, SC41-5120-10

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010

� System i i5/OS Memo to Users Version 6 Release 1

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaq9/rzaq9.pdf

� System i Upgrade planning Web page

http://www-304.ibm.com/systems/support/i/planning/upgrade/index.html

3

Important: The processes explained in this chapter are for use prior to an upgrade from
i5/OS V5R3 or V5R4 to IBM i 6.1 or a later release. Use of the analyze process is not
mandatory, but is highly recommended.

© Copyright IBM Corp. 2010. All rights reserved. 9

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010
http://www-304.ibm.com/systems/support/i/planning/upgrade/index.html
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaq9/rzaq9.pdf

3.1 Analyzing objects

For i5/OS versions V5R3 and V5R4, PTFs are available that provide the Analyze Object
Conversion (ANZOBJCVN) command. With this tool, clients can analyze objects and
generate reports based on that analysis. The reports are then available in spooled files on the
system from which the command is run.

The ANZOBJCVN command is a tool that helps you identify potential conversion difficulties, if
any, and estimates the time required for program conversion. It also provides information
about two other types of conversions: integrated file system names and spooled files.

The following types of objects in libraries can be analyzed and reported on by the
ANZOBJCVN command:

� Programs (*PGM), specifically original program model (OPM) and Integrated Language
Environment (ILE)

� Service programs (*SRVPGM)

� Modules (*MODULE)

� SQL packages (*SQLPKG)

In most cases, the objects analyzed by the ANZOBJCVN command can be converted for use
on 6.1 or later. See Chapter 4, “Program conversion methods” on page 45, for more details
about the conversion process.

The following types of objects in directories can also be analyzed and reported on by the
ANZOBJCVN command:

� Stream files with attached Java programs that were optimized to run on the i5/OS
operating system

Only stream files in the “root” (/), QOpenSys, and user-defined file systems are analyzed.
See 3.7.1, “Java programs” on page 40, for more details.

� Names of integrated file system objects in the “root” (/) file system as well as user-defined
file systems created with option CASE(*MONO)

See 3.7.2, “Integrated file system names” on page 43, for more details.

Spooled file data is also collected by the ANZOBJCVN command to provide information that
might be useful when planning system upgrades. By default, conversion of spooled files
occurs during a system IPL or independent auxiliary storage pool (ASP) vary on operation.
For details about spooled file conversion, see 3.7.3, “Spooled files” on page 43.

3.1.1 Terminology definitions

You should be familiar with the following terminology, which is used in the reports that are
generated by the ANZOBJCVN command:

State An attribute that controls how a machine interface (MI) program is run.
It can be either a user state or system state. This state attribute
controls whether the program has any access to system domain
objects at high security levels. State also determines the type of
access (no access, read only, or read and write) that a program has to
user domain spaces. Application programs run with a user state,
where most operating system programs run with a system state.

10 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Digital signatures A validation that is used to ensure that an object has not been
modified and that it came from the expected source. Most often, digital
signatures are used as an object integrity check before the object is
restored onto a system. Digital signatures can optionally be applied to
several types of objects, including programs. They must be removed
during program conversion because the program is changed, thus
invalidating any previous digital signature.

Profiling Advanced optimization of applications that uses data-specific
information to further improve program performance. A profiled
program is reorganized according to how frequently its control-flow
paths are run when operating on data that is considered typical of the
data it will process when in production.

3.1.2 Required PTFs

The ANZOBJCVN command is distributed as PTFs for V5R3 or V5R4. For this function, you
must order an MRI PTF. By ordering the appropriate MRI PTF for your language, the requisite
code PTFs are also ordered. For example, for English (2924), order MRI PTF SI28425 for
V5R3 or MRI PTF SI28415 for V5R4. For the complete list of the MRI PTFs for V5R3 and
V5R4, refer to Appendix A, “MRI PTFs” on page 61.

Table 3-1 shows the code PTFs for the ANZOBJCVN command. Check whether you have the
latest code PTF, and if not, order the code PTF separately.

Table 3-1 Code PTFs for ANZOBJCVN command on i5/OS

Superseded PTFs: This document lists PTF numbers that were available at the time of
writing. We recommend that you check for more recent PTFs on the following PTF Cover
Letters Search Web site:

http://www-912.ibm.com/a_dir/as4ptf.nsf/$$search?openform

On the PTF Cover Letters Search Web page, perform the following steps:

1. Enter the PTF number in the Search field and click Search.

2. On the PTF Cover Letters Search results page, click the PTF number.

3. On the following PTF details page, if a more recent PTF is available, it will be listed in
the header information in the Superseded by row.

i5/OS release Code PTFs

V5R3M0 SI35094

V5R3M5 SI35094

V5R4M0 SI37535, SI37648

V5R4M5 SI37535, SI37648

Chapter 3. Preparing for conversions 11

http://www-912.ibm.com/a_dir/as4ptf.nsf/$$search?openform

Table 3-2 lists the PTFs that are required for restoring objects that were created on 6.1 or
later to an earlier i5/OS release.

Table 3-2 Required PTFs for restoring objects to an earlier i5/OS release

Table 3-3 lists additional PTFs that are required to restore Java programs that were created
on IBM i 6.1 or later to an earlier i5/OS release.

Table 3-3 Required PTFs for restoring Java programs to an earlier i5/OS release

3.1.3 Command usage notes

Consider the following notes about the usage of the ANZOBJCVN command:

� You must have all object (*ALLOBJ) special authority to run this command.

� This command, especially the *COLLECT stage, can be long running. For this reason, we
suggest that you run this command in a batch job.

� Vary on any primary or secondary independent ASPs (ASPs 33-255) referenced by this
command. Ensure that they have a status of Available before you run this command.

� Mount any user-defined file systems referenced by this command before running this
command.

� This command is intended to be run in one of two ways:

– Having only one active job with ANZOBJCVN working with libraries and directories at
the same time

– Having two active jobs running ANZOBJCVN at the same time, one job running
ANZOBJCVN only for libraries and the other running ANZOBJCVN only for directories

� If the QUSRSYS library is deleted after information is collected by using ANZOBJCVN, the
information will be lost because the files that contain the collected data reside in the
QUSRSYS library. See 3.2.3, “Files used for data collections” on page 22, for details about
the files that are used by the ANZOBJCVN command.

i5/OS release Required PTF

V5R3M0 MF41354

V5R3M5 MF41734

V5R4M0 MF40520

V5R4M5 MF42655

i5/OS release Required PTF

V5R3M0 SI27764

V5R3M5 SI27764

V5R4M0 SI27765

V5R4M5 SI27765

Attention: Ensure that the QUSRSYS library is not ahead of the QSYS library in the
library list when the ANZOBJCVN command is run. Otherwise the ANZOBJCVN
command will fail.

12 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

3.1.4 Conversion time estimates

The estimated times for the conversion of program model objects might not be close
approximations, depending on several factors. Two important factors are the hardware
capabilities that are available to the partition on which the conversion occurs and the
conversion methods that you choose to use.

By default, the estimates of conversion times are based in part on the processing capacity of
the partition on which the ANZOBJCVN command is run. The first-call conversion method
might only use a single processor at a time. Therefore, for partitions with at least one full
processor, the estimates are based on the CPW rating of a single processor. This means that
if you use a different conversion method after you upgrade (for example, the STROBJCVN
command) on a partition with more than one processor, conversion times are likely to be
shorter than the estimates. For partitions with less than one full processor, the estimate takes
into account the fraction of the processor that is currently available to the partition.

Conversion time estimates for a different system
By default, the ANZOBJCVN command bases its conversion time estimates on the system
model on which it is being run. The process to estimate the conversion times for a different
system model is to create a data area called QIZAFTCD in the QUSRSYS library. This data
area must contain the processor feature code of the target system model. You can also
supply the number of processors used, in units of .01 processors.

To create the data area, use the Create Data Area (CRTDTAARA) CL command, for example:

CRTDTAARA DTAARA(QUSRSYS/QIZAFTCD) TYPE(*CHAR) LEN(10) VALUE('7456 0050')

In this example, processor feature code 7456, with one half (.5) of one processor, is used as
the base for conversion time estimation.

To display the processor feature code of a system:

1. Type the following Display Hardware Resource (DSPHDWRSC) command and press
Enter:

DSPHDWRSC TYPE(*PRC)

Chapter 3. Preparing for conversions 13

2. On the Display Processor Resources display (Figure 3-1), type option 7 (Display resource
detail) next to the Main Card Enclosure resource and press Enter.

Figure 3-1 Displaying the processor resources

3. On the Display Resource Detail display (Figure 3-2), you see the processor feature. In this
example, the processor feature code is 7456.

Figure 3-2 Displaying the resource details

If the QIZAFTCD data area is not created or contains incorrect data, the ANZOBJCVN
command defaults to the system processor on which the command is being run for the time
conversion estimations.

If the system on which the ANZOBJCVN command is being run cannot be upgraded to 6.1,
and the data area does not exist or contains incorrect data, the default value for the processor

 Display Processor Resources

 Type options, press Enter.
 7=Display resource detail

 Opt Resource Type-model Status Text
 7 CEC01 9406-520 Operational Main Card Enclosure
 PN01 28E5 Operational System Control Panel
 MP01 5229 Operational System Processor Card
 MP02 5229 Operational System Processor Card
 PV01 7456 Operational Processor Capacity Card
 SP01 28D7 Operational Service Processor Card
 BCC01 Operational Bus Adapter
 BCC02 5229 Operational Bus Adapter
 BCC03 28E7 Operational Bus Adapter
 BCC04 28E7 Operational Bus Adapter
 BCC05 5229 Operational Bus Adapter
 MS01 30D5 Operational 2048MB Main Storage Car
 More...
 F3=Exit F5=Refresh F6=Print F12=Cancel

 Display Resource Detail

 Resource name : CEC01
 Text : Main Card Enclosure
 Type-model : 9406-520
 Serial number : 10-8A36C
 Part number :
 Processor feature code . . . : 7456
 Processor feature : 8955

 Location: U9406.520.108A36C

 Bottom
 Press Enter to continue.
F3=Exit F5=Refresh F6=Print F12=Cancel

14 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

type shown in Table 3-4 is used to estimate conversion times. One full processor is assumed
for this default value.

Table 3-4 Default feature code for the QIZAFTCD data area

Conversion time estimates using multiple threads
By default, the ANZOBJCVN command bases its estimates on single-threaded conversion
rates, which might occur if you rely on first-call conversion. If you intend to use a faster
conversion method, such as STROBJCVN, you can ask ANZOBJCVN to adjust its overall
estimates based on the number of threads that might concurrently perform conversions. To do
this, determine the current processing capacity of the system by typing the Work with System
Activity (WRKSYSACT) command on a command line and press Enter. On the Work with
System Activity display (Figure 3-3), you can see the current processing capacity of the
system.

Figure 3-3 Display the current processing capacity of the system

Processing capacity is expressed in units of .01 processors, so one full processor is 100.
Multiply the number of threads by the processing capacity. For example, using a processing
capacity of 0.50 with two threads per processor during a conversion, you multiply 2 times 50
(2 x 50 = 100). Then create a data area by using the Create Data Area (CRTDTAARA) CL
command, called QIZAFTCD:

CRTDTAARA DTAARA(QUSRSYS/QIZAFTCD) TYPE(*CHAR) LEN(10) VALUE('7456 0100')

Type Model Feature Code

520 0904 7454

Important: If the QIZAFTCD data area is created or its values are changed, any previous
collection must be redone in order to reflect the new time estimation.

 Work with System Activity
 04/20/09 16:35:06
 Automatic refresh in seconds 5
 Elapsed time : 00:00:02 Average CPU util : .0
 Number of CPUs : 2 Maximum CPU util : .1
 Overall DB CPU util . . . : .0 Minimum CPU util : .0
 Current processing capacity: 1.00
 Authorization Type . :
 Type options, press Enter.
 1=Monitor job 5=Work with job
 Total Total DB
 Job or CPU Sync Async CPU
 Opt Task User Number Thread Pty Util I/O I/O Util
 QPADEV0006 DALANDON 013031 00000023 1 .1 10 0 .0

 Bottom
 F3=Exit F10=Update list F11=View 2 F12=Cancel F19=Automatic refresh

Important: If the QIZAFTCD data area is created or its values are changed, any previous
collection must be redone in order to reflect the new time estimation.

Chapter 3. Preparing for conversions 15

For another example, using a processing capacity of 3.00 with two threads per processor, you
multiply 2 times 300 (2 x 300 = 0600). This corresponds to a total of six threads during
STROBJCVN.

A value of two threads per processor has been found to make good use of the system during
STROBJCVN. Values higher than two threads per processor might not scale linearly.

How ANZOBJCVN adjusts estimates for processors and threads
The value (processors x threads) is used during ANZOBJCVN OPTION(*COLLECT) as a
simple dividing factor for the estimated conversion time for each program. This adjustment to
the estimate is valid when considering the total conversion time of a large number of
programs. However, converting a single program at a time will not benefit from multithreading,
so conversion of a single program will have a higher conversion time (the single-threaded
time) than what is shown by ANZOBJCVN.

Because changes to data area QIZAFTCD require running the ANZOBJCVN collection again,
you might prefer to use the value 0100 for (processors x threads) when collecting data, then
use SQL queries to try various values of processors and the multithreading level. See 3.5,
“Querying analyzed data” on page 36, for examples.

3.1.5 Alternate method for estimating conversion times

As noted previously, the conversion time estimates from ANZOBJCVN are only
approximations and depend on a variety of factors. If you are concerned about the estimated
conversion times, an alternate method is available to measure estimated conversion times.
You might want to use this alternate method if the ANZOBJCVN estimates exceed the time
period that you have available for converting programs, and you plan to convert programs
either during restore or with the Start Object Conversion (STROBJCVN) command.

Another approximation of 6.1 or later conversion times can be obtained by measuring the
forced conversion of programs while restoring them on the release in use before the upgrade.
This type of conversion does not prepare the programs to run on 6.1 or later release, but it
takes a similar amount of time as the conversion for a given set of programs. Conversion can
be forced during a restore by using either of the following methods:

� Specifying the Force Object Conversion (FRCOBJCVN(*YES *ALL)) parameter on the
restore command

� Before the running the restore command, changing the Force Conversion On Restore
(QFRCCVNRST) system value to a value of 4, 5, 6, or 7, as appropriate for your situation

Conversion times: Conversion times reported with the ANZOBJCVN command are
estimates. Actual conversion times might vary from the estimate. Conversion time is
affected by various system factors, by program attributes, and by the conversion method
used. Pertinent system factors include CPU speed, priority of the job, disk arms attached,
memory available, and the number of processors. Important program attributes include
program size and whether or not the program is optimized.

By default, estimates assume the slowest conversion method, first-call conversion. Use of
the Start Object Conversion (STROBJCVN) command will likely require less conversion
time than the ANZOBJCVN estimate, especially for partitions with multiple processors that
also have many small, unoptimized programs. While conversion estimates are often fairly
accurate, some situations can give estimates that are several times longer than the actual
time needed for conversion.

16 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

When restoring from a save file, four threads are used, allowing four objects to be converted
concurrently. This conversion time will be similar to STROBJCVN using four threads.

3.2 Collecting information

The ANZOBJCVN command has two functions, to collect and to report. Initial usage of the
command is to collect information and then the report parameter can be used to generate a
spooled file listing of information that was previously collected. In this section, we explain how
to collect data from the system.

To start the collection process:

1. From an i5/OS command line, type ANZOBJCVN and press F4 to prompt the command.

2. On the Analyze Object Conversion (ANZOBJCVN) display (Figure 3-4), type *collect in
the Option field and press Enter.

Figure 3-4 Prompting the Analyze Object Conversion (ANZOBJCVN) CL command

Conversion times: Conversion times reported with the ANZOBJCVN command are
estimates. Actual conversion times might vary from the estimate. Conversion time is
affected by various system factors, by program attributes, and by the conversion method
used. Pertinent system factors include CPU speed, priority of the job, disk arms attached,
memory available, and number of processors. Important program attributes include
program size and whether or not the program is optimized.

By default, estimates assume the slowest conversion method, first-call conversion. Use of
the Start Object Conversion (STROBJCVN) command will likely require less conversion
time than the ANZOBJCVN estimate, especially for partitions with multiple processors that
also have many small, unoptimized programs. While conversion estimates are often fairly
accurate, some situations can give estimates that are several times longer than the actual
time needed for conversion.

 Analyze Object Conversion (ANZOBJCVN)

 Type choices, press Enter.

 Option *collect *COLLECT, *REPORT

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

Chapter 3. Preparing for conversions 17

3. You are presented with the options for collecting information as shown in Figure 3-5.

Figure 3-5 The ANZOBJCVN *COLLECT parameters

3.2.1 Parameters of the ANZOBJCVN *COLLECT command

In this section, we discuss the various parameters for collecting information as shown in
Figure 3-5:

� Libraries to analyze (LIB)

Collections are run against libraries on your system. Program model objects within the
libraries are the subjects for the reports. You can choose to collect information from a
specific library, in which case you specify the library name, or from a generic list of libraries
by using the usual wild card convention. Additionally, it is possible to collect data against
all libraries that are part of the *ALLUSR element of the system.

If you use the *ALLUSR parameter, all user libraries are analyzed. All libraries with names
that do not begin with the letter Q are analyzed except for the following libraries:

– #CGULIB
– #COBLIB
– #DFULIB
– #DSULIB
– #RPGLIB
– #SDALIB
– #SEULIB

Although the following Qxxx libraries are provided by IBM, they typically contain user data
that changes frequently. Therefore, these libraries are considered user libraries and are
also analyzed:

– QGPL
– QGPL38
– QMGTC
– QMGTC2
– QMPGDATA
– QMQMDATA
– QMQMPROC
– QPFRDATA
– QRCL
– QSRVAGT

 Analyze Object Conversion (ANZOBJCVN)

 Type choices, press Enter.

 Option > *COLLECT *COLLECT, *REPORT
 Libraries to analyze *ALLUSR Name, generic*, *ALLUSR...
 ASP device * Name, *, *ALLAVL...
 Check spooled files *YES *YES, *NO
 Object *NONE

 Directory subtree *ALL *ALL, *NONE
 Target release V6R1M0 VxRyMz

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

18 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

– QS36F
– QUSER38
– QUSRADSM
– QUSRBRM
– QUSRDIRCL
– QUSRDIRDB
– QUSRINFSKR
– QUSRNOTES
– QUSROND
– QUSRPOSGS
– QUSRPOSSA
– QUSRPYMSVR
– QUSRRDARS
– QUSRSYS
– QUSRVI

It is also possible to specify *NONE for this parameter. In this case, no library is analyzed.
You can specify LIB(*NONE) if you only want to analyze objects that are located in
integrated file system directories.

� ASP device (ASPDEV)

This parameter specifies the ASP device where storage is allocated for the library and
spooled files to be analyzed. If the library is in an ASP that is not part of the thread’s library
name space, this parameter must be specified to ensure that the correct library is
analyzed.

– * (asterisk)

ASPs that are currently part of the thread’s library name space are searched to find the
library. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs
2-32), and, if the thread has an ASP group, the primary and secondary ASPs in the
thread’s ASP group.

– *ALLAVL

All available ASPs are searched. This includes the system ASP (ASP 1), all defined
basic user ASPs (ASPs 2-32), and all available primary and secondary ASPs (ASPs
33-255 with a status of Available).

QSYS2* and SYSIB*: Libraries QSYS2* and SYSIB* are usually included in the
*ALLUSR list of libraries, so that their contents are included in *ALLUSR save
operations. However, because the programs in these libraries are replaced during an
upgrade, the ANZOBJCVN command does not check their contents when *ALLUSR is
specified.

IBM product libraries: You might also want to collect conversion information about
individual IBM product libraries. Libraries for IBM skip-ship products, which do not ship
a new version for 6.1, are listed in Appendix C, “IBM software skip-ship products
requiring conversion” on page 73.

Ignored for the Object parameter: This parameter does not apply for the objects that
are specified in the Object (OBJ) parameter (described later), because the independent
ASP (IASP) name is part of the path name of the object.

Chapter 3. Preparing for conversions 19

– *CURASPGRP

If the thread has an ASP group, the primary and secondary ASPs in the thread’s ASP
group are searched to find the library. The system ASP (ASP 1) and defined basic user
ASPs (ASPs 2-32) are not searched. If no ASP group is associated with the thread, an
error message is issued.

– *SYSBAS

The system ASP (ASP 1) and all defined basic user ASPs (ASPs 2-32) are searched to
find the library. No primary or secondary ASPs are searched, even if the thread has an
ASP group.

– Name

By using the Name option, you can specify the name of the primary or secondary ASP
device to be searched. The primary or secondary ASP must have been activated (by
varying on the ASP device) and have a status of Available. The system ASP (ASP 1)
and defined basic user ASPs (ASPs 2-32) are not searched.

� Check spooled files (SPLFILE)

This parameter specifies whether to estimate the time needed to convert the spooled files
on each ASP. You cannot specify LIB(*NONE) if SPLFILE(*YES) is specified. The
following two options are possible:

– *YES: Spooled files on each ASP are analyzed.
– *NO: Spooled files on each ASP are not analyzed.

For more information about spooled files, see 3.7.3, “Spooled files” on page 43.

� Object (OBJ)

This parameter specifies the path name, or a pattern to match the name, of the integrated
file system objects to be analyzed. The object path name can be either a simple name or a
name that is qualified with the name of the directory in which the object is located. A
pattern can be specified in the last part of the path name. An asterisk (*) matches any
number of characters, and a question mark (?) matches a single character. If the path
name is qualified or contains a pattern, it must be enclosed in apostrophes.

Specifying *NONE means that no integrated file system object is analyzed.

� Directory subtree (SUBTREE)

This parameter specifies whether to analyze the objects within the subtree if the object
specified by the Object (OBJ) parameter is a directory. If the parameter *ALL is used, the
objects specified by the Object (OBJ) parameter are analyzed, as appropriate. If the object
is a directory, its contents, as well as the contents of all of its subdirectories, are analyzed.

Note: The ASP device selected (ASPDEV) affects the collection of spooled file data.

Pattern matching: Pattern matching from the Object (OBJ) parameter applies only to
the first level objects. If the first level object is a directory, pattern matching does not
apply to its contents or the contents of its subdirectories.

Symbolic link: If the last component in the path name is a symbolic link, the symbolic
link object is analyzed, but the object pointed to by the symbolic link is not analyzed.

Note: This parameter only applies to objects in the integrated file system. It is only valid
when the OBJ parameter is specified.

20 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

After the command has begun processing a specific directory subtree, the objects that are
found and processed might be affected by operations that update the organization of
objects within the specified directory tree. This includes the following actions among
others:

– Adding, removing, or renaming object links
– Mounting or unmounting file systems
– Updating the effective root directory for the process calling the command
– Updating the contents of a symbolic link

In order to process the directory subtree, the system code can increase the job-scoped
maximum number of file descriptors that can be opened during processing. This is done
so that the command is not likely to fail due to a lack of descriptors. This job-scoped
maximum value is not reset when the command completes.

*NONE can be specified, in which case only the objects specified by the Object (OBJ)
parameter are analyzed. If the object is a directory, the directory is analyzed, but its
contents are not analyzed.

� Target release (TGTRLS)

This parameter specifies the release to which the data and programs will be migrated or
upgraded. This information is used to determine the specific analysis to be performed.

3.2.2 Examples of collection commands

We suggest one of two approaches to collect data. One way is to collect all types of
information at once, so that all collection files are populated, by using the ANZOBJCVN
command in Figure 3-6. This command collects information about all program objects found
in libraries in the *ALLUSR portion of the system (not including exceptions listed in 3.2.1,
“Parameters of the ANZOBJCVN *COLLECT command” on page 18), spooled files, and all
relevant objects in the integrated file system.

Figure 3-6 ANZOBJCVN collection on *ALLUSR libraries, the integrated file system, and spooled files

Alternatively, you can split the data collection process into two steps. For example, you can
collect data on program model objects in *ALLUSR libraries and on spooled files:

ANZOBJCVN OPTION(*COLLECT) LIB(*ALLUSR) SPLFILE(*YES)

 Analyze Object Conversion (ANZOBJCVN)

 Type choices, press Enter.

 Option > *COLLECT *COLLECT, *REPORT
 Libraries to analyze *ALLUSR Name, generic*, *ALLUSR...
 ASP device * Name, *, *ALLAVL...
 Check spooled files *YES *YES, *NO
 Object > /

 Directory subtree *ALL *ALL, *NONE
 Target release V6R1M0 VxRyMz

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

Chapter 3. Preparing for conversions 21

Then follow this collection by doing a directory object collection:

ANZOBJCVN OPTION(*COLLECT) LIB(*NONE) SPLFILE(*NO) OBJ('/')

After collecting the data, you can display the results by using one of the ANZOBJCVN report
options. See 3.3, “Creating reports” on page 23.

You can also collect data on individual libraries, on subsets of the integrated file system, or on
both at once. However, if you choose this approach, be sure to run the reports that you want
to review before you continue with data collection on another library or another subset of the
file system. Each collection of a given type replaces the data in the file used to store that type
of information. Alternatively, you can copy the collection files to another set of files each time
you run a type of collection, such as programs in libraries. You can then run queries on each
copied file. See 3.2.3, “Files used for data collections” on page 22, and 3.5, “Querying
analyzed data” on page 36.

The following example shows how to collect information about programs in one specific
library:

ANZOBJCVN OPTION(*COLLECT) LIB(myLib) SPLFILE(*NO)

The following example shows a collection from a subset of directories in the integrated file
system:

ANZOBJCVN OPTION(*COLLECT) LIB(*NONE) SPLFILE(*NO) OBJ('/myPart') SUBTREE(*ALL)

It is also possible to combine library and directory object collections, in this case, against only
one library and one directory:

ANZOBJCVN OPTION(*COLLECT) LIB(aLib) SPLFILE(*NO) OBJ('/aPath') SUBTREE(*NONE)

You might also want to collect conversion information about individual IBM product libraries.
Libraries for IBM skip-ship products, which do not ship a new version for 6.1, are listed in
Appendix C, “IBM software skip-ship products requiring conversion” on page 73.

3.2.3 Files used for data collections

The data collected by the ANZOBJCVN command is stored in four different files in the
QUSRSYS library:

� The QAIZACVN file in QSYS is the master template file and is not populated with data
from collections. However, QAIZACVN in QUSRSYS is the target file for the collection of
data analyzed in the libraries.

� The QAIZADIR file is the target for directory information when the Object parameter is
used.

� The QAIZAOBJ file is the target for integrated file system object information when the
Object parameter is used.

� The QAIZASPL file is the target for information for the spooled file collections.

Each of these files only contains data from the last collection of that type. Subsequent
collections will replace the data that is currently held in these files. Unless you collect at one
time all the data about a particular type, such as program model objects, you might want to
copy these files to another library to do a later analysis of your collections. Collections that are

Important: When running the previous ANZOBJCVN command on the entire integrated
file system, the diagnostic message CPDB0C8 is expected on the /dev/QASP01 folder.
This message is expected when specifying OBJ(' / ') and this path is skipped.

22 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

moved to other libraries can be queried to generate additional reports as required. For details
about creating queries, see 3.5, “Querying analyzed data” on page 36. The ANZOBJCVN
OPTION(*REPORT) command only runs against these files in the QUSRSYS library and not
against copies of these files in other libraries.

3.3 Creating reports

The ANZOBJCVN command has two functions:

� To collect
� To report

Initial usage of the command is to collect information. Then you can use the report parameter
to generate a spooled file listing of information that was previously collected. In this section,
we explain how to generate reports with the ANZOBJCVN OPTION(*REPORT) command.
When the ANZOBJCVN command is run with OPTION(*REPORT), the tool generates a
report in a spooled file called QPIZARPT, based on the data of the type last collected with the
ANZOBJCVN OPTION(*COLLECT) command.

The QPIZARPT file is shipped with a limit on the maximum number of records. If you choose
to print all available reports, which includes detailed reports, or even if you print an object
summary report and have a large file system, the report might exceed that maximum number
of records. To avoid having to answer a CPA4072 operator inquiry message, you can change
the maximum number of records before printing the report by using the following Change
Print File (CHGPRTF) command:

CHGPRTF FILE(QSYS/QPIZARPT) MAXRCDS(*NOMAX)

Attention: Ensure that the QUSRSYS library is not ahead of the QSYS library in the
library list when the ANZOBJCVN command is run. Otherwise the ANZOBJCVN command
will fail.

Conversion times: Conversion times reported with the ANZOBJCVN command are
estimates. Actual conversion times might vary from the estimate. Conversion time is
affected by various system factors, by program attributes, and by the conversion method
used. Pertinent system factors include CPU speed, priority of the job, disk arms attached,
memory available, and number of processors. Important program attributes include
program size and whether or not the program is optimized.

By default, estimates assume the slowest conversion method, first-call conversion. Use of
the Start Object Conversion (STROBJCVN) command will likely require less conversion
time than the ANZOBJCVN estimate, especially for partitions with multiple processors that
also have many small, unoptimized programs. While conversion estimates are often fairly
accurate, some situations can give estimates that are several times longer than the actual
time needed for conversion.

Chapter 3. Preparing for conversions 23

To start the report process:

1. From an i5/OS command line, type the ANZOBJCVN CL command and press F4 to prompt
the command.

2. On the Analyze Object Conversion (ANZOBJCVN) display (Figure 3-7), type *report in
the Option field and press Enter.

Figure 3-7 Prompting the Analyze Object Conversion (ANZOBJCVN) CL command

You are presented with the options for reporting information as shown in Figure 3-8.

Figure 3-8 The ANZOBJCVN *REPORT command

 Analyze Object Conversion (ANZOBJCVN)

 Type choices, press Enter.

 Option *report *COLLECT, *REPORT

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 Analyze Object Conversion (ANZOBJCVN)

 Type choices, press Enter.

 Option > *REPORT *COLLECT, *REPORT
Type of report *ALLAVL *ALLAVL, *CVNPRB, *LIBSUM...
 + for more values _______

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

Note: No other parameters are used when ANZOBJCVN OPTION(*REPORT) is specified.
If F9 is used to recall a previous ANZOBJCVN OPTION(*COLLECT) command, users
should be aware that additional parameters might appear to be in use. However, only the
parameters shown in Figure 3-8 are actually used.

24 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

3.3.1 Parameters of the ANZOBJCVN *REPORT command

The Type of report parameter as shown in Figure 3-8 on page 24 includes the following
options for generating reports:

� *ALLAVL

All summarized and detailed reports available are generated for all objects in the libraries
and directories specified in the most recent previous collection for each type. If the Check
spooled files (SPLFILE) parameter was set to *YES for a previous library collection,
spooled database members information is generated in the Library Summary report.

� *CVNPRB

A detailed report of program objects that will not convert is generated for each library
specified in the most recent library collection.

� *LIBSUM

A summary report is generated for each library specified in the most recent library
collection. If the Check spooled files (SPLFILE) parameter was set to *YES during a
previous collection, spooled database member information is also generated in this report.

� *LIBDTL

A detailed report is generated for each library specified in the most recent library
collection.

� *OBJSUM

A summary report is generated for each integrated file system directory specified in the
most recent object collection.

� *OBJDTL

A detailed report is generated for each integrated file system object that is specified in the
most recent object collection.

We recommend that you use the *CVNPRB and *LIBSUM parameters first. Those two reports
only show program model objects that require attention and summary estimates of program
and spooled file conversion times. In general, these two reports should provide all the
information that you need to prepare for an upgrade.

In contrast, the detailed reports display information about each object. Therefore, a report that
is generated by using the *LIBDTL or *OBJDTL parameter might produce very large spooled
file output. Even an *OBJSUM report can be quite large, because it displays information
about each subdirectory against which data was collected. While detailed reports provide
information, such as the conversion time required for a specific program or any file system file
names that might be affected, you might want to run queries instead of printing detailed
reports. See 3.5, “Querying analyzed data” on page 36.

Tips: Use the following tips when running the ANZOBJCVN OPTION(*REPORT)
command:

� You must complete an appropriate collection before asking for a report. Otherwise
message CPFB0DC is generated with reason code 3.

� If a collection has been done, but there is no data to report, for example if there are no
programs that will fail to convert when a *CVNPRB report is requested, then message
CPI1E10 “No printer output to display” is generated.

� You can combine parameters when generating reports by typing a plus sign (+) on the
command prompt of the Type of Report parameter.

Chapter 3. Preparing for conversions 25

3.3.2 Examples of report commands

This section provides several examples of using the ANZOBJCVN OPTION (*REPORT)
command.

Example 1
The following command shows usage of the ANZOBJCVN OPTION(*REPORT) command:

ANZOBJCVN OPTION(*REPORT) RPTTYPE(*CVNPRB *LIBSUM)

In this example the Program Conversion Problems (*CVNPRB) and Library Summary
(*LIBSUM) reports are generated. Figure 3-9 on page 27 shows the first two pages of the
Program Conversion Problems (*CVNPRB) report generated from this command and
Figure 3-10 on page 28 shows the first two pages of the Library Summary (*LIBSUM) report.

26 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Figure 3-9 ANZOBJCVN Program Conversion Problems report

 Analyze Object Conversion - Program Conversion Problems 9/26/08 13:28:17
 5722SS1 V5R4M0 060210 RCHAS10 Page 1
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0
 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *CVNPRB
 Libraries *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Analyze Object Conversion - Program Conversion Problems 9/26/08 13:28:17
 5722SS1 V5R4M0 060210 RCHAS10 Page 2
 Processor Feature Code : 7456
 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS
 -------------Counters-------------
 Total Cannot
 Library Objects Convert
 ---------- ----------------- ---------------
 MILLSI 2 1
 System Creation Digitally
 Object Type Level Data Signed Profiled State
 ---------- ------- --------- --------- --------- --------- --------
 NOCRTDATA PGM V5R4M0 NO NO NO *USER
 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS
 -------------Counters-------------
 Total Cannot
 Library Objects Convert
 ---------- ----------------- ---------------
 WILKE 37 9
 System Creation Digitally
 Object Type Level Data Signed Profiled State
 ---------- ------- --------- --------- --------- --------- --------
 BUZRPG PGM V2R3M0 NO NO NO *USER
 CBLPARM PGM V2R3M0 NO NO NO *USER
 FADEPRDFU PGM V3R6M0 NO NO NO *USER
 FAHISTDFUD PGM V3R6M0 NO NO NO *USER
 FAHISTDFUE PGM V3R6M0 NO NO NO *USER
 HELLO PGM V2R2M0 NO NO NO *USER
 LIBTIM PGM V2R2M0 NO NO NO *USER
 X42199SR PGM V3R6M0 NO NO NO *USER
 X43199SR PGM V3R6M0 NO NO NO *USER

Chapter 3. Preparing for conversions 27

Figure 3-10 ANZOBJCVN Library Summary report

 Analyze Object Conversion - Library Summary Report 9/26/08 13:28:17
 5722SS1 V5R4M0 060210 RCHAS10 Page 3
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0
 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *LIBSUM
 Libraries *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0
 Processor Feature Code . : 7456
 Date collected . : 09/26/08
 Total analyzed objects . : 6,557
 Objects that can be converted with no lost attributes : 6,545
 Objects that can be converted with some lost attributes : 1
 Total objects to convert . : 6,546
 Total estimated conversion time for library objects. : 00:39:41

 Analyze Object Conversion - Library Summary Report 9/26/08 13:28:17
 5722SS1 V5R4M0 060210 RCHAS10 Page 4
 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS
 -------------Counters------------- ------------------Symptoms------------------
 Total Need No Lost Some Lost Conversion
 Library Objects Conversion Attributes Attributes Time
 ---------- ----------------- --------------- --------------- --------------- ----------
 CASESTUDY1 2 2 2 0 00:00:00
 CASETUP 12 12 12 0 00:00:01
 CGIDEV2 2 2 2 0 00:00:07
 COMSIPM 3 3 3 0 00:00:01
 CORPSTAGE 2 2 2 0 00:00:00
 DBITSODATA 4 4 4 0 00:00:02
 DBITSODB02 2 2 2 0 00:00:01
 DBITSODB06 3 3 3 0 00:00:01
 DBITSODB07 1 1 1 0 00:00:00
 DBITSODB08 2 2 2 0 00:00:00
 DBITSODB11 4 4 4 0 00:00:02
 DBITSODB16 5 5 5 0 00:00:08
 DBITSOPGMS 6 6 6 0 00:00:00
 DB2QRY 4 4 4 0 00:00:00
 DB2XML 4 4 4 0 00:00:00
 DDSLIB 2 2 2 0 00:00:00
 DXXSAMPLES 32 32 32 0 00:00:07
 DXXTOOLS 15 15 15 0 00:00:08

28 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Example 2
Figure 3-11 shows the first two pages of an Object Summary report (*OBJSUM).

Figure 3-11 ANZOBJCVN Object Summary Report

 Analyze Object Conversion - Object Summary Report 10/31/07 15:52:45
 5722SS1 V5R4M0 060210 RCHAS61 Page 1
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0
 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *OBJSUM
 Libraries *ALLUSR
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0
 Processor Feature Code . : 7457
 Date collected . : 10/31/07
 Objects that need conversion . : 156
 Total estimated conversion time for directory objects. : 00:07:15

 Analyze Object Conversion - Object Summary Report 10/31/07 15:52:45
 5722SS1 V5R4M0 060210 RCHAS61 Page 2
 Directory : /
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00
 Directory : /QOpenSys
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00
 Directory : /QOpenSys/QIBM
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00
 Directory : /QOpenSys/QIBM/ProdData
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00

Chapter 3. Preparing for conversions 29

Example 3
It is also possible to generate reports based on a combination of directory and library objects,
by entering the following command for example:

ANZOBJCVN OPTION(*REPORT) RPTTYPE(*LIBSUM *OBJSUM)

3.3.3 Understanding the conversion reports

In this section, we guide you through the conversion reports to help you understand the
information that is presented in them. We begin by looking at the report shown in Figure 3-12
on page 31. Each report type contains two sections:

� The Collection Selection Criteria section shows the last data collected with the
ANZOBJCVN OPTION(*COLLECT) command that is available to be reported. The
Library, ASPDEV, and SPLFILE lines are related to the library collections and are updated
every time a library collection is issued. The Objects, Subtree, and Target release lines are
related to the objects collection and are updated every time an objects collection is issued.

� The Report Selection Criteria section shows the data requested for the report.

The partial report in Figure 3-12 on page 31 shows the following information:

� The date on which the report was generated

� The i5/OS version and system name

� The last data types collected (For additional information, see 3.2.3, “Files used for data
collections” on page 22.)

� The processor feature code used for estimating conversion times

You also see key information at the bottom of the report in regard to the following items:

� The number of objects analyzed
� Object conversion with and without lost attributes
� The total number of objects that will be converted
� An estimate of the time to convert the objects to the new format

In this example, conversion of the 57 eligible program objects found in library PFREXP is
estimated to take 00:00:13, which is zero hours, zero minutes, and 13 seconds. The
conversion times shown on the reports compiled with *LIBDTL list the individual program
objects with the conversion times listed in seconds only. We noticed that some rounding up
and down occurred in the reports that we generated. This was especially true where the
cumulative conversion time for all the program objects in any one library was less than one
second. In this case, the report for the library in the *LIBSUM report often showed as being
00:00:00.

Conversion times on the *LIBSUM report are reported in hours, minutes, and seconds, for
example, HH:MM:SS. Conversion times on the *LIBDTL report for the individual program
objects are reported in seconds and parts of seconds only. For example, in Figure 3-12 on
page 31 we see that program object BUPAP1CC has a conversion time of 0.124 seconds.

The total conversion time given by the *LIBSUM report is limited to 100 hours (99:59:59). If
your report shows this value, you can use SQL queries to find the actual conversion time. See
3.5, “Querying analyzed data” on page 36, for examples. You might also want to make plans
to run STROBJCVN with more processors or threads, and run the ANZOBJCVN collection
again with these values specified in data area QIZAFTCD. See “Conversion time estimates
using multiple threads” on page 15 for more information.

30 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Figure 3-12 ANZOBJCVN Library Details Report for library PFREXP

 Analyze Object Conversion - Library Details Report 9/21/07 14:35:05
 5722SS1 V5R4M0 060210 RCHAS10 Page 1
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library PFREXP
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *LIBDTL
 Libraries PFREXP
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Analyze Object Conversion - Library Details Report 9/21/07 14:35:05
 5722SS1 V5R4M0 060210 RCHAS10 Page 2

 Processor Feature Code : 7456

 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS

 -------------Counters------------- ------------------Symptoms------------------
 Total Need No Lost Some Lost Conversion
 Library Objects Conversion Attributes Attributes Time
 ---------- ----------------- --------------- --------------- --------------- ----------
 PFREXP 57 57 57 0 00:00:13

 System Creation Digitally Conversion
 Object Type Level Data Signed Profiled State Estimated
 (Sec)
 ---------- ------- --------- --------- --------- --------- -------- ----------
 BUPAP1CC PGM V3R6M0 YES NO NO *USER 0.124
 BUPAP1CCN PGM V3R6M0 YES NO NO *USER 0.124
 BUPAP1CJ PGM V3R6M0 YES NO NO *USER 0.105
 BUPAP1CJE PGM V3R6M0 YES NO NO *USER 0.115
 BUPAP1IN PGM V3R6M0 YES NO NO *USER 0.401
 BUPAP1INDQ PGM V3R6M0 YES NO NO *USER 0.716
 BUPAP1INSQ PGM V3R6M0 YES NO NO *USER 0.411
 BUPAP1ISEQ PGM V3R6M0 YES NO NO *USER 0.391
 BUPAP1ISER PGM V3R6M0 YES NO NO *USER 0.391
 BUPAP1I2 PGM V3R6M0 YES NO NO *USER 0.458
 BUPAP1RCN PGM V3R6M0 YES NO NO *USER 0.573
 BUPAP1RN PGM V4R4M0 YES NO NO *USER 0.649
 BUPCRTJRN PGM V3R6M0 YES NO NO *USER 0.124

Chapter 3. Preparing for conversions 31

Figure 3-13 on page 33 shows the information that is found later in the Library Details Report
concerning the details of some of the objects found in a library. The following information is
collected and reported on for each object:

� Object name

� Object type

� System level, which is the earliest release for which an object can be saved

� Creation data, which indicates if an object has all the required data to be converted to the
new release of the operating system

The value N/A means “not applicable,” and is shown for *SQLPKG objects and certain
*PGM and *SRVPGM objects used only for SQL purposes. Those objects do not require
program conversion, because they are not run as programs.

� Digitally signed, which indicates whether an object has a digital signature

The program conversion removes any digital signatures that were previously associated
with the object because a digital signature added before a program is converted cannot be
valid after conversion.

� Profiling, which indicates if an object will lose the benefits of profiling

If a program had profile data applied previously but its encapsulated profiling data was
removed, that program will lose its profiling benefits during program conversion.

� State, which shows the current state of a program

Programs with a current state of *SYSTEM or *INHERIT will change to *USER during
program conversion.

� Conversion estimate, which shows the estimated conversion time for the program object

Tip: For details about digital signatures, profiling, and program state, see 3.1.1,
“Terminology definitions” on page 10.

32 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Figure 3-13 Objects in library PFREXP, reported by the ANZOBJCVN Library Details report

3.4 Programs that will not convert

The recommended way to determine whether any program objects cannot be converted is to
use the *CVNPRB value on the “Type of report” parameter of the ANZOBJCVN
OPTION(*REPORT) command. A detailed report of program objects that will not convert is
generated for each library specified in the previous collection. See Figure 3-14 on page 34 for
an example of a report that is generated by using the *CVNPRB parameter. This report shows
that program object NOCRTDATA from library MILLSI will fail conversion, because the
required creation data is missing.

It is also possible to create queries to extract data from the files that are used during
collection. See 3.5, “Querying analyzed data” on page 36, for an example of a query that lists
programs that cannot be converted.

To check individual programs, you can also use the Display Program (DSPPGM) or Display
Service Program (DSPSRVPGM) commands to determine whether sufficient creation data
exists. For ILE (service) programs, any value except *NO for “All creation data” indicates that
enough creation data is available. For OPM programs, any value except *NONE for
“Observable information” indicates that enough creation data is available.

Finally, you can also review the detailed library conversion report that is created with the
*LIBDTL parameter to determine which program objects cannot be converted. This report has
a value of NO in the Creation Data column for these programs.

 System Creation Digitally Conversion
 Object Type Level Data Signed Profiled State Estimated
 (Sec)
 ---------- ------- --------- --------- --------- --------- -------- ----------
 BUPAP1CC PGM V3R6M0 YES NO NO *USER 0.124
 BUPAP1CCN PGM V3R6M0 YES NO NO *USER 0.124
 BUPAP1CJ PGM V3R6M0 YES NO NO *USER 0.105
 BUPAP1CJE PGM V3R6M0 YES NO NO *USER 0.115
 BUPAP1IN PGM V3R6M0 YES NO NO *USER 0.401
 BUPAP1INDQ PGM V3R6M0 YES NO NO *USER 0.716
 BUPAP1INSQ PGM V3R6M0 YES NO NO *USER 0.411
 BUPAP1ISEQ PGM V3R6M0 YES NO NO *USER 0.391
 BUPAP1ISER PGM V3R6M0 YES NO NO *USER 0.391
 BUPAP1I2 PGM V3R6M0 YES NO NO *USER 0.458
 BUPAP1RCN PGM V3R6M0 YES NO NO *USER 0.573
 BUPAP1RN PGM V4R4M0 YES NO NO *USER 0.649
 BUPCRTJRN PGM V3R6M0 YES NO NO *USER 0.124
 BUPINZFE PGM V4R4M0 YES NO NO *USER 0.220
 BUPMENUNE PGM V4R4M0 YES NO NO *USER 0.325
 CHAINUP_CW PGM V3R6M0 YES NO NO *USER 0.124
 CLCSTPEX PGM V4R4M0 YES NO NO *USER 0.191
 CLCSTPEXB PGM V3R6M0 YES NO NO *USER 0.153
 CLCSTPEXHI PGM V3R6M0 YES NO NO *USER 0.181
 CLRPLIBALL PGM V4R1M0 YES NO NO *USER 0.258
 CLRPLIB20 PGM V3R6M0 YES NO NO *USER 0.201
 CLRPLIB25 PGM V4R1M0 YES NO NO *USER 0.229

Chapter 3. Preparing for conversions 33

Figure 3-14 ANZOBJCVN Program Conversion Problems report

Programs without creation data: If the ANZOBJCVN command reports programs
without creation data, make sure those programs are still being used. For example, they
might no longer be in use because they are part of a previous version of an application. If a
program without creation data is still in use, then it is necessary to recompile it.
Alternatively, if a program was supplied to you without source code, you must replace it
with a newer version that contains creation data.

 Analyze Object Conversion - Program Conversion Problems 10/26/07 11:43:50
 5722SS1 V5R4M0 060210 RCHAS10 Page 1
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library *ALLUSR
 ASPDEV *
 SPLFILE *NO
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *CVNPRB
 Libraries *ALLUSR
 ASPDEV *
 SPLFILE *NO
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Analyze Object Conversion - Program Conversion Problems 10/26/07 11:43:50
 5722SS1 V5R4M0 060210 RCHAS10 Page 2
 Processor Feature Code : 7456
 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS
 -------------Counters-------------
 Total Cannot
 Library Objects Convert
 ---------- ----------------- ---------------
 MILLSI 2 1
 System Creation Digitally
 Object Type Level Data Signed Profiled State
 ---------- ------- --------- --------- --------- --------- --------
 NOCRTDATA PGM V4R5M0 NO NO NO *USER
 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS

34 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Lost attributes
The reports that you generate for your program objects might also indicate that programs will
lose attributes during conversion. See the Some Lost Attributes column in the example shown
in Figure 3-15.

The following objects are counted for lost attributes:

� Objects that will lose their digital signatures if YES is displayed under “Digitally Signed.”
This change matters when validating an object. It does not affect the object’s function.

� Objects that will lose their benefits from profiling if YES is displayed under “Profiled.” This
change affects the performance of the object.

� Objects that will drop their state from either *SYSTEM or *INHERIT state to *USER state.
This change can affect the object’s function. Applications must not use these states that
are reserved for operating system use.

For more information about these attributes, see 3.1.1, “Terminology definitions” on page 10.

Figure 3-15 ANZOBJCVN Library Details Report (*LIBDTL) showing lost attributes

 Analyze Object Conversion - Library Details Report 9/21/07 14:48:38
 5722SS1 V5R4M0 060210 RCHAS10 Page 1
 Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *LIBDTL
 Libraries MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /
 Subtree *ALL
 Target release V6R1M0

 Analyze Object Conversion - Library Details Report 9/21/07 14:48:38
 5722SS1 V5R4M0 060210 RCHAS10 Page 2

 Processor Feature Code : 7456

 Auxiliary Storage Pool (ASP) : 00001 ASP Resource Name : *SYSBAS

 -------------Counters------------- ------------------Symptoms------------------
 Total Need No Lost Some Lost Conversion
 Library Objects Conversion Attributes Attributes Time
 ---------- ----------------- --------------- --------------- --------------- ----------
 MILLSI 293 291 236 55 00:31:38

Chapter 3. Preparing for conversions 35

3.5 Querying analyzed data

The data collected by the ANZOBJCVN OPTION (*COLLECT) command is stored in one of
four files in the QUSRSYS library. (See 3.2.3, “Files used for data collections” on page 22, for
details.) It is important to know that each of these files contains only data from the last
collection of that type. That is, subsequent collections replace the data that was collected
previously in these files.

These files can be queried to generate additional reports as required. For example, enter the
STRSQL command and then type the following query to extract the program objects that do
not have creation data:

SELECT DIOBLI, DIOBNM FROM QUSRSYS/QAIZACVN WHERE DICRTD='0'

In this query, the library name (DIOBLI) and name of the object (DIOBNM) fields are selected
if the program creation data area indicator (DICRTD) field is set to zero, which indicates that
the program object does not have creation data.

For the field definitions of the files created by the ANZOBJCVN command, see Appendix B,
“File field definition tables” on page 65.

You might find the following additional queries to be useful in the analysis of your collected
data from the ANZOBJCVN OPTION (*COLLECT) command:

� Query to get file system objects that have a name with an affected character:

SELECT QIZAOBJNAM FROM QUSRSYS/QAIZAOBJ WHERE QIZANAMFLG = 1

� Query to get the file system objects that require Java program conversion:

SELECT QIZAOBJNAM FROM QUSRSYS/QAIZAOBJ WHERE QIZACVNFLG = 1

� Query to get the full path name for objects that require Java program conversion or the
objects that have a name with an affected Unicode character:

SELECT O.QIZAOBJNAM, D.QIZADIRNAM1 FROM QUSRSYS/QAIZAOBJ AS O INNER JOIN
QUSRSYS/QAIZADIR AS D ON D.QIZADIRIDX = O.QIZADIRIDX WHERE O.QIZACVNFLG = 1 OR
O.QIZANAMFLG = 1

� Query to get the ASPs of the spooled files that have conversion times of more than one
second:

SELECT SPASP,SPASPN FROM QUSRSYS/QAIZASPL WHERE SPTMCV > 1000000

� Query to get the total conversion time (in seconds; DIOCTM is in milliseconds, so divide
by 1000) for *PGM and *SRVPGM objects:

SELECT DECIMAL(SUM(DIOCTM))/1000 FROM QUSRSYS/QAIZACVN WHERE (DIOBTP = 'PGM' OR
DIOBTP = ‘SRVPGM’)

� For collections performed with data area QIZAFTCD set to 0100 (processors x threads),
query to get the adjusted conversion time (in seconds) for 2.0 processors with two threads
per processor (QIZAFTCD equivalent value of 0400) instead:

SELECT DECIMAL(SUM(DIOCTM))/1000/4 FROM QUSRSYS/QAIZACVN

36 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

3.6 Considerations for application developers

If you develop applications for others, whether those applications are sold to your customers
or deployed to others within your company, give careful consideration to program conversions.

3.6.1 Will your application convert

The first consideration is whether your programs or service programs can be converted. If
they have sufficient creation data and are not altered in unsupported ways, your programs
can be converted. In general, MI programs that target V5R1 or a later release can be
converted. The constituent modules of such programs must also target V5R1 or later.
Programs that target earlier releases can also be converted, as long as the creation data part
of their program observability is still available.

As discussed earlier, programs that have had their hardware instruction streams altered in
unsupported ways, or that have been altered to run system state, cannot be successfully
converted. Such programs must be changed to use only supported interfaces. If no supported
interface exists for your situation, you can request a new interface by sending e-mail to Rich
Diedrich at richd@us.ibm.com.

If you have programs that will not convert for some reason, then you must decide, based on
your client set, whether to recompile one or more versions of your software for your clients
who want to move to 6.1or a later release. You can best determine how to support your clients
in light of program conversion. For example, you can recompile your application, so that all of
its modules and programs have a target release of V5R1 or later. This newly built application
can then be converted on client systems to run on 6.1 or later.

Note: The previously listed queries will produce unreadable output if the CCSID of the job
is set to 65535. To correct this problem, you can change the QCCSID system value to
something other than 65535, for example 37. Otherwise you can change the queries as
follows:

� Query to get file system objects that have a name with an affected character:

SELECT CHAR(QIZAOBJNAM) FROM QUSRSYS/QAIZAOBJ WHERE QIZANAMFLG = 1

� Query to get the file system objects that require Java program conversion:

SELECT CHAR(QIZAOBJNAM) FROM QUSRSYS/QAIZAOBJ WHERE QIZACVNFLG = 1

� Query to get the full path name for objects that require Java program conversion or the
objects that have a name with an affected Unicode character:

SELECT CHAR(O.QIZAOBJNAM), CHAR(D.QIZADIRNAM1) FROM QUSRSYS/QAIZAOBJ AS O
INNER JOIN QUSRSYS/QAIZADIR AS D ON D.QIZADIRIDX = O.QIZADIRIDX WHERE
O.QIZACVNFLG = 1 OR O.QIZANAMFLG = 1

� Query to get the ASPs of the spooled files that have conversion times of more than one
second:

SELECT CHAR(SPASP,SPASPN) FROM QUSRSYS/QAIZASPL WHERE SPTMCV > 1000000

More information: See 3.4, “Programs that will not convert” on page 33, for methods to
determine which programs cannot be converted.

Chapter 3. Preparing for conversions 37

mailto:richd@us.ibm.com

Alternatively, you can choose to ship two versions of your product:

� One that targets 6.1
� One that targets an earlier release

The same source can be used for both versions, unless you take advantage of new 6.1 create
options or new language features. Your application installation code can choose the correct
version to install, based on the release at which the client is running. You might compile on
both 6.1 and on a previous release. Alternatively, you can compile your application only on
6.1, save it, and restore it to V5R4 or V5R3, where conversion will occur during the restore. If
you then also save this pre-6.1 version, you will have two versions that require no conversion,
after only compiling your application once.

3.6.2 Other decision criteria

If you have confirmed that your MI programs and service programs can be converted, is the
conversion time a factor? Again, the ANZOBJCVN command will provide a rough estimate of
the time needed to convert a program on a particular machine model. For example, consider
whether the conversion time for your programs would cause client concern during installation.
As another example, consider whether you have time-out conditions programmed that could
be inadvertently tripped if a program in your application is converted before the call to it is
carried out.

There are reasons to consider distributing a new version of your application, even if it can be
successfully converted in a reasonable amount of time. For example, if you use application
profiling and have removed the profiled data, profiling will not be applied during the
conversion process.

Another situation to think about is if you apply a digital signature to your programs and prefer
to have it available even after the programs have been loaded on a client’s system. Digital
signatures are removed during program conversion, because the object is changed. Digital
signatures are most frequently used to ensure that an object has not been modified and was
provided by the expected source, meaning the signature is used most often before programs
are loaded. However, your application might also use the digital signature for another reason.

If you decide to recompile and redistribute a new version of your application, you might also
want to take advantage of the new create options. See 2.3.2, “Performance improvements” on
page 7, for details. The new create options might significantly improve the performance of your
application. However, keep in mind that they are available only for programs that target 6.1 or
later.

If you have not taken advantage of application profiling, consider it as another way to improve
performance. While application profiling is not new, it is an under used feature that has
resulted in overall application performance improvements up to 10%. For more information,
see the “Advanced optimizations” chapter in the System i ILE Concepts Version 6 Release 1,
SC41-5606, manual at the following Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

Conversion assistance: If you need assistance with converting your application to 6.1 or
later, contact IBM ISV Enablement for IBM i. Send your name, title, company name,
PartnerWorld number, and specific questions by e-mail to iaic@us.ibm.com. You can also
use this e-mail address to inform IBM that you have a version of your application that is
ready to run on 6.1 or later.

38 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf
mailto:iaic@us.ibm.com
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

3.6.3 Adaptive code generation

Whether you decide to recompile and redistribute your application, consider adaptive code
generation (ACG). If your application uses Integrated Language Environment (ILE) programs
and is created or converted on a system with POWER6 or later technology, it might run faster
on such systems than it otherwise would. (Note: Original Program Model (OPM) programs do
not take advantage of ACG.) This depends on how extensively your application ends up using
hardware features that are found only on newer processors. However, it must then be
converted if it is loaded on a system with an older processor, even if the second system is
also running 6.1 or later. Your installation instructions should discuss the difference in load
times if that sort of conversion is significant for the programs in your application.

If your application does not improve much in performance when using specific POWER6 or
later features, then it might be best to create it so that it uses only features that are available
on all supported processors. This approach avoids conversion time if the ILE programs are
loaded on pre-POWER6 systems running 6.1 or later. You can either create the ILE programs
on a system with an older processor or opt out of ACG when creating ILE programs on a
POWER6 or later processor. The latter can be done by using either of the following methods:

� Setting the QIBM_BN_CREATE_WITH_COMMON_CODEGEN environment variable to a
value of 2 prior to creating ILE modules

� Specifying the LICOPT(‘CodeGenTarget=Common’) parameter on the CRT* or CHG*
commands that you use when building your application

For more information about controlling the use of ACG in your applications, refer to System i
ILE Concepts Version 6 Release 1, SC41-5606, available on the following Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

In contrast, you can take advantage of ACG to optimize your application when the system on
which the application was created or converted was not a 6.1 or later POWER6 or later
system. In this case, if creation data is observable, run the following command on a 6.1 or
later POWER6 or later system:

CHGPGM or CHGSRVPGM with FRCCRT(*YES)

If program creation data is unobservable, restore (from a save file, for example) after first
setting the QFRCCVNRST system value to a value of 7, or specify the FRCOBJCVN(*YES *ALL)
parameter on the RESTORE command.

3.6.4 Fixes and testing

Keep in mind that conversion can affect your processes not only for handling your application
as a whole, but also for distributing fixes or updates. Consider the ramifications listed
previously. Also note that the Update Program (UPDPGM) command does not trigger a
program conversion, because it neither activates nor calls the program that is being updated.
If you use UPDPGM for distributing fixes or updates, you might want to consider changing the
parameter used in your RESTORE command to force conversion. For more information see
4.3, “Conversion of program objects during restore” on page 57.

As a general rule, the testing methods that are used to ensure that applications are ready for
6.1 or later should be the same as for any other release.

Note: The methods listed above apply only when creating ILE programs. A POWER6 or
later system that performs conversions (for example, using RSTOBJ FRCOBJCVN(*YES
*ALL)) is free to use those hardware features in the converted ILE program.

Chapter 3. Preparing for conversions 39

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

3.7 Other object conversions

In addition to MI program model objects, the following objects will also be converted when
upgrading to 6.1 or later:

� Java programs
� Some integrated file system names
� Spooled files

3.7.1 Java programs

Java programs do not reside in libraries but in directories. All Java programs that are created
and stored in the i5/OS integrated file system must be converted. Almost all Java programs
should convert without issue. However, some Java programs associated with class files and
jar files might encounter problems if they were created for a very early target release. A
simple solution is to use the Delete Java Program (DLTJVAPGM) command on these files and
allow the Java program to be recreated automatically at run time.

To estimate conversion times, you can run the ANZOBJCVN command against the integrated
file system directories that contain Java programs. For example, we ran the following collect
and report commands:

ANZOBJCVN OPTION(*COLLECT) LIB(*NONE) SPLFILE(*NO) OBJ('/millsi')
ANZOBJCVN OPTION(*REPORT) RPTTYPE(*OBJSUM)

40 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Figure 3-16 shows the first two pages of the Object Summary report (*OBJSUM) that is
generated for the /millsi directory.

Figure 3-16 ANZOBJCVN Object Summary Report (*OBJSUM) for the /millsi directory

 Analyze Object Conversion - Object Summary Report 9/21/07 14:56:54
 5722SS1 V5R4M0 060210 RCHAS10 Page 1

Collection Selection Criteria - ANZOBJCVN OPTION(*COLLECT)
 Library MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /millsi
 Subtree *ALL
 Target release V6R1M0

Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *OBJSUM
 Libraries MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /millsi
 Subtree *ALL
 Target release V6R1M0

 Processor Feature Code . : 7456
 Date collected . : 09/21/07
 Objects that need conversion . : 33
 Total estimated conversion time for directory objects. : 00:02:29

 Analyze Object Conversion - Object Summary Report 9/21/07 14:56:54
 5722SS1 V5R4M0 060210 RCHAS10 Page 2

 Directory : /millsi
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 4 0 00:00:00
 Directory : /millsi/andrew
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00
 Directory : /millsi/freya
 ---Counter----- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 0 0 00:00:00

Chapter 3. Preparing for conversions 41

Figure 3-17 shows the first two pages of the Object Details report (*OBJDTL) of the /millsi
directory. Java programs do not rely on MI creation data for conversion, as is the case for
program objects in libraries. Also note that the conversion times for Java program objects are
likely to be sub-second in most, if not all, cases.

Figure 3-17 ANZOBJCVN Object Details Report (*OBJDTL) for the /millsi directory

 Analyze Object Conversion - Object Details Report 9/21/07 15:01:06
 5722SS1 V5R4M0 060210 RCHAS10 Page 1
 Collection Selection Criteria ANZOBJCVN OPTION(*COLLECT)
 Library MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /millsi
 Subtree *ALL
 Target release V6R1M0

 Report Selection Criteria - ANZOBJCVN OPTION(*REPORT)
 Report type *OBJDTL
 Libraries MILLSI
 ASPDEV *
 SPLFILE *YES
 Objects /millsi
 Subtree *ALL
 Target release V6R1M0

 Analyze Object Conversion - Object Details Report 9/21/07 15:01:06
 5722SS1 V5R4M0 060210 RCHAS10 Page 2

 Processor Feature Code : 7456

 Directory : /millsi
 ----Counter---- ----------Symptoms----------
 Need Unicode Conversion
 Conversion Characters Time
 --------------- --------------- ----------
 4 0 00:00:00

 Conversion Object
 Estimated
 (Sec)
 ---------- --
 0.040 Hi.class
 0.048 AJM.class
 0.009 Freya.class
 0.040 UPFoRbEer.jar

Unicode Characters
 --
 There was no data collected for this section

42 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

3.7.2 Integrated file system names

Searches for names occur any time a name is provided on an integrated file system
command or API to identify the object being operated on. Searches for names in file systems
that are not case-sensitive are affected by the Unicode characters that are defined and the
casing rules in effect for that release. When additional characters are defined, and the casing
rules are updated to support the new characters, names that contain characters affected by
the change may no longer be found.

The IBM i integrated file system stores all names in Unicode and currently supports Unicode
Standard 2.0. In 6.1 or later, an automatic conversion runs to update the integrated file
system directories in file systems that are not case-sensitive to support Unicode Standard
4.0. The file systems that are not case-sensitive included in this conversion are “root” (/) and
user-defined file systems (in any ASP) created with CASE(*MONO).

The ANZOBJCVN tool identifies names of integrated file system objects in file systems that
are not case-sensitive that are affected by the Unicode changes. When an object name is
identified as affected, it means that either that object, or another object linked in the same
parent directory, can be renamed when the automatic name conversion runs in 6.1 or later.
Therefore, multiple objects might be identified as affected when only one object is renamed.
There is no guarantee as to which affected object is the one that is renamed.

In a file system that is not case-sensitive, the system does not distinguish between uppercase
and lowercase characters during searches for names. Any change in the casing rules affects
which characters are considered the same when not distinguishing between uppercase and
lowercase. Because of this, during the automatic name conversion, names that were not
considered to be the same in Unicode Standard 2.0 might now be considered the same in
Unicode Standard 4.0. One of the objects must be renamed. It is not predictable which object
will be renamed when this occurs. Many factors can affect which object will be renamed when
this situation occurs such as the order of the links in the directory and whether one of the
objects is damaged.

What should you do for any objects that the ANZOBJCVN command identifies as being
affected by the Unicode conversion? Instead of waiting for the automatic name conversion to
occur, you might want to change the names of the affected objects prior to the installation of
6.1 or a later release. By doing so, you can handle any name changes in a more controlled
fashion. You can change the object names and run the ANZOBJCVN command again to
ensure that any possible name issues have been addressed.

3.7.3 Spooled files

By default, conversion of spooled files occurs during an IPL of the system or a vary on of an
ASP. Spooled file data is collected by the ANZOBJCVN command to provide information that
can be useful when planning system upgrades. The estimated time is the expected time for
the system to convert spooled files during the installation IPL for SRC C900 2AAA or for a
vary on step C900 29B0 of an ASP group.

Renamed objects: Even if the ANZOBJCVN command identifies no objects as being
affected by Unicode name conversion, the automatic name conversion might still rename
some objects, due to changes in the Unicode Standard or if any name changes occur on
the system before the upgrade.

Chapter 3. Preparing for conversions 43

After running a collection and then a report, you can find details of the spooled file conversion
times on the report as shown in the example in Figure 3-18.

Figure 3-18 Spooled file conversion estimate

The number of spooled files in the data collected represents all database members in the
QSPLxxxx libraries, where xxxx is blank or 0002-0032 or 0033-0255 for an ASP group.

Using the Reclaim Spool Storage (RCLSPLSTG) DAYS(*NONE) command to reduce the
number of database members in the QSPLxxxx libraries in SYSBAS is generally not
recommended. Reducing the number of available database members in the QSPLxxxx
libraries for an ASP group can cause severe spooled file creation performance problems
resulting in the inability of the system or application to reach full capacity for an undetermined
period of time. See the Reclaim Spooled File Storage Experience Report at the following Web
address:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/experience/
spoolreclaim.pdf

Delaying conversion can be accomplished by using a data area. However, be aware that a
deferred conversion of spooled files results in the existing spooled files being unavailable until
they have been converted. For more information about delaying the conversion of spooled
files refer to Installing, Upgrading, or Deleting i5/OS and Related Software, SC41-5120-10, at
the following Web address:

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010

3.8 Removing unsupported products

Conversion is not required before a program can be deleted. However, if a particular product
uses an exit program during the delete operation, and that program calls some other program
that cannot be converted, then the Delete Licensed Program (DLTLICPGM) command might
not complete successfully on 6.1 or later. This problem can be avoided by deleting the
unsupported product before upgrading. However, you might want to save the old product
before deleting it, in case you need it later for a release prior to 6.1.

Total spooled files to convert . : 697
Total estimated conversion time for spooled files : 00:00:06

Tip: Reduce the number of spooled files kept on your system prior to upgrading the
operating system. Longer conversion times occur if large numbers of spooled files are left
on output queues. Also consider removing or saving spooled files as part of regular system
maintenance, but this is especially relevant prior to performing a system upgrade.

44 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/experience/spoolreclaim.pdf

Chapter 4. Program conversion methods

In this chapter we discuss the various methods of converting programs to run on 6.1 or a later
release.

We recommend that you prepare for object conversion prior to starting the upgrade or
migration process. You might find that some program objects will not convert and will,
therefore, be unusable on 6.1 or later. See Chapter 3, “Preparing for conversions” on page 9,
for details about how to use the Analyze Object Conversion (ANZOBJCVN) command. This
command helps you to determine what actions, if any, are required prior to starting an
upgrade or migration.

The ANZOBJCVN command is not available on 6.1 or later. Users who must check which
objects require conversion on these systems should use the Start Object Conversion
(STROBJCVN) command with the *CHECK option. See 4.2.2, “Parameters of the
STROBJCVN command” on page 50, for more details.

4

Important: The conversion methods discussed in this chapter must be performed on a
system that has been upgraded or migrated from releases V5R4 or earlier to 6.1 or later.
These conversions do not need to be performed when migrating from 6.1 to a later release.

© Copyright IBM Corp. 2010. All rights reserved. 45

4.1 Overview of program conversion

At this stage we expect that you have identified any program objects that will not convert and
have made plans to recompile or acquire versions of these objects compatible with your
planned upgrade release of 6.1 or later.

During an upgrade to 6.1, many IBM-supplied program objects will be provided in a
6.1-compatible format on your installation media. For those program objects, no conversion is
required. However, for some IBM-supplied programs (for example, those that skip ship for 6.1)
conversion is required.

After a system is upgraded to 6.1 or later, program conversion can be performed. The list of
objects, if any, that require conversion consists of two parts:

� Those objects identified by the ANZOBJCVN command by the process described in
Chapter 3, “Preparing for conversions” on page 9.

This includes program objects in user libraries and Java programs attached to files in
directories.

� IBM licensed program products (LPP) that are identified as being skip ship for 6.1.

These are products for which there is not a specific 6.1 version. See Appendix C, “IBM
software skip-ship products requiring conversion” on page 73, for a list of these products
and the libraries where the products are installed.

Conversion to a 6.1-compatible format is a one-time only operation. For program model
objects that require conversion, and depending on the method of conversion selected, the
process may render applications unavailable while conversion takes place.

The following methods are available to perform program object conversion:

� Using the 6.1 STROBJCVN CL command to manually initiate conversion on program
objects within libraries

For details see 4.2, “Conversion using STROBJCVN” on page 47.

� During a restore

For details see 4.3, “Conversion of program objects during restore” on page 57.

� The first time the program is called

For details see 4.4, “Conversion the first time a program is run or called” on page 59.

Change dates and object sizes: For program model objects that are converted to a
6.1-compatible format, the change date and time is altered to the time of conversion and
the object size might change. These changes can have audit implications.

If you use the Save Changed Objects (SAVCHGOBJ) command, note that conversion
affects which objects are saved.

The size changes for program model objects are expected to be small. A single-digit
percentage increase is the most likely result over all such objects on a given system.
Further, the amount of storage consumed by program model objects is almost always a
small part of overall storage usage. Therefore, any storage increases resulting from
program conversion should be insignificant. Smaller and very old programs tend to
increase by a larger percentage, but the amount of storage they consume is still quite
small.

46 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Required PTFs
Before starting conversions of any kind on a 6.1 or later system, make sure that you have
applied the following PTFs for your specific release:

� 6.1.0

– SI36087
– SI37071
– MF48992
– MF46307
– MF46307
– MF46636
– MF47450
– MF48880

� 6.1.1

– SI36087
– SI37071
– MF49004
– MF47464
– MF48202

� 7.1.0

– SI36960
– MF48889

We also recommend checking for superseding versions of these PTFs (see the “Superseded
PTFs” Note box in 3.1.2, “Required PTFs” on page 11).

4.2 Conversion using STROBJCVN

The 6.1 STROBJCVN command is provided to manually initiate object conversion. Objects
are converted from the format used in earlier levels of the operating system to the format
required for use on IBM i 6.1.

With the STROBJCVN command, you have the option to check whether certain objects
require conversion. However, running this check option on 6.1 is not a good substitute for
running the ANZOBJCVN command on V5R3 or V5R4. It is to your advantage to plan ahead
before the upgrade, so you can replace any applications that will not convert and get an
estimate of how long conversion will take for the rest of your programs.

Recommendation for using the STROBJCVN command: For objects already on the
system, use the STROBJCVN command rather than waiting for a first call conversion.
When you initiate the conversion process before calling programs, you have the greatest
flexibility for controlling the use of machine resources. You also avoid the potential of
affecting the runtime behavior of applications that either rely on their own timing constraints
or are first called by many users concurrently. If a program requires conversion and is
called in multiple jobs at the same time, the first job will perform the conversion while the
other jobs wait.

Important: Although the STROBJCVN command exists on earlier releases of i5/OS, only
the IBM i 6.1 and later versions of the command support conversion to a 6.1-compatible
format.

Chapter 4. Program conversion methods 47

The STROBJCVN command does not convert the directories affected by new Unicode
characters and casing rules. That conversion is automatically done by the operating system.
See 3.7.2, “Integrated file system names” on page 43, for details.

The STROBJCVN command also does not convert spooled files. Conversion is automatically
done by the operating system. See 3.7.3, “Spooled files” on page 43, for details.

The STROBJCVN command can check or convert other types of objects that are not included
in an ANZOBJCVN analysis, such as files in libraries. See 3.1, “Analyzing objects” on
page 10, for a list of object types analyzed by ANZOBJCVN.

4.2.1 STROBJCVN usage notes

The following notes are about usage of the STROBJCVN command:

� You must have all object (*ALLOBJ) special authority to run this command.

� Any primary or secondary independent auxiliary storage pool (ASP; ASPs 33-255)
referenced by this command must be varied on and have a status of Available before
running this command.

� Any user-defined file systems referenced by this command must be mounted before
running this command.

� Objects located in a read-only user-defined file system are not converted.

Multi-threading
The STROBJCVN command might use multiple threads to convert programs, service
programs, and modules. Each thread converts one object at a time, and multiple threads run
concurrently. By default, the number of threads is calculated based on the number of available
processors. Currently two threads are used for each available full processor. A data area can
be used to override the default thread usage, thus specifying that either more or fewer threads
are to be used concurrently.

The following command can be used to create the data area prior to running STROBJCVN:

CRTDTAARA DTAARA(QGPL/QIZANBRTHD) TYPE(*DEC) LEN(10 0) VALUE(x) TEXT('Number of
threads for STROBJCVN')

If the data area is used, it applies to all instances of the STROBJCVN command. There is no
per-job control mechanism.

For most systems, the default value of two threads per processor is appropriate. The option to
change the number of threads is made available for users who want to tailor the behavior of
the STROBJCVN command to their system needs.

Conversion of an object occurs within one thread. Using multiple threads will be of benefit
when converting a large number of objects, not when converting a single large object.

Important: This command with option *CONVERT can be long running. For all systems,
but particularly for those with limited interactive (5250 online transaction processing
(OLTP)) capability, we recommend that you run this command in a batch job.

It is also recommended that you change the Maximum spooled files system value
(QMAXSPLF) to the maximum value before using this command on *ALLUSR. SQL
conversions need to create and delete spooled files on every object converted that
contains SQL, this can reach the 9999 count on systems with many SQL objects.

48 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

If you would like to have more dynamic control over the amount of processing capacity used
by conversion processing, you can do the following:

1. Set data area QGPL/QIZANBRTHD to specify a single thread for each STROBJCVN
command.

2. Issue separate batch jobs to run STROBJCVN for each library individually, starting with
those most important to you.

3. Control the number of active jobs within the batch subsystem to achieve the desired level
of processor activity.

Limits to monitoring progress
STROBJCVN works in three phases when processing objects in libraries:

1. Obtain a list of all objects to be processed, grouped by library.

2. Perform multi-threaded conversions for all programs in the list. No completion messages
are sent by this phase.

3. Once all program conversions are complete, do two things for each object in the list:

– Send completion messages for programs converted by phase 2.
– Convert other objects (files, SQL objects).

This permits completion messages to be grouped by library.

Because completion messages are not sent until phase 3, you cannot rely on the messages
in the job log to determine the progress of the conversion. You also cannot determine
conversion time for an object (or group of objects in a library) based on the timestamp on the
completion messages.

Converting for different processors
Beginning with 6.1, the system can use Adaptive Code Generation (ACG) when creating or
converting a program. ACG allows the program to use features that are unique to a specific
processor. When such a program is run on a processor that does not implement these
features, the system will automatically perform conversion to create a compatible program.
See 3.6.3, “Adaptive code generation” on page 39, for more information.

It is possible for your computing environment to use a variety of processor hardware. If a
program is converted on a newer processor and is then run on an older processor, automatic
conversions may occur even if both processors are running the same release of IBM i. Some
examples are:

� Programs in an Independent Auxiliary Storage Pool (IASP) are converted on a system
with a POWER6 processor. The IASP is then switched to another system with a
POWER5™ processor.

� Programs are converted on a system with a POWER6 processor. The programs are then
saved and restored onto another system with a POWER5 processor.

� Programs are converted on a system with a POWER6 processor. The system then
encounters a hardware failure and is temporarily replaced by a system using an older
POWER5 processor.

Tip: The Work with System Activity (WRKSYSACT) command, which is part of the
Performance Tools (5761-PT1) product, provides an easy way to monitor active threads.

Chapter 4. Program conversion methods 49

4.2.2 Parameters of the STROBJCVN command

When using the STROBJCVN command, you are prompted to enter either *CHECK or
*CONVERT:

� Specifying *CHECK initiates an inspection of objects in the specified library or directory to
determine whether those objects have already been converted or whether they still require
conversion. The *CHECK parameter also provides feedback on whether a program object
can be converted. For details see 4.2.3, “STROBJCVN OPTION(*CHECK)” on page 52.

� Specifying *CONVERT initiates the conversion process on all appropriate objects in the
specified library or directory. For details see 4.2.4, “STROBJCVN OPTION(*CONVERT)”
on page 55.

In addition, the STROBJCVN command includes the following parameters:

� Library (LIB)

This parameter specifies the library for which objects are to be checked or converted to
the format required for use with 6.1 or later:

– *ALLUSR

All user libraries are selected. All libraries with names that do not begin with the letter
Q are selected, except for those detailed in 3.2.1, “Parameters of the ANZOBJCVN
*COLLECT command” on page 18.

– *NONE

No library is selected. Specify LIB(*NONE) if you want to convert or check objects that
are in directories only.

– Library name

Specifies the name of the library whose objects are to be checked or converted.

� Object type (OBJTYPE)

This parameter specifies which object types in the library should be converted. If *CHECK
is specified for the Option (OPTION) parameter, the Object type parameter is ignored. If
*NONE is specified for the Library (LIB) parameter, the Object type parameter is ignored.

– *ALL

All program (*PGM) objects, service program (*SRVPGM) objects, module (*MODULE)
objects, and database file (*FILE) objects in the specified library are converted. In
addition, the stored SQL information in all *PGM, *SRVPGM, and *SQLPKG objects
that contain SQL statements, as well as *PGM and *SRVPGM objects that are used to
implement external stored procedures, are converted.

– *FILE

Only database file member objects in the specified library are converted. For a brief
description of this conversion see 4.2.4, “STROBJCVN OPTION(*CONVERT)” on
page 55.

Tip: If you want to prevent the system from spending time on these automatic conversions,
you can run the STROBJCVN command using your earliest processor hardware to ensure
that programs are compatible with all your processors.

Note: File objects only must be converted if you are upgrading from V5R3 or earlier.

50 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

– *ALLPGM

All program (*PGM) and service program (*SRVPGM) objects in the specified library
are converted.

Module (*MODULE) objects are not converted. Modules cannot be run, so they do not
need to be converted for applications to run. Modules will be converted as needed
when they are bound into a program or service program, for example, with the
CRTPGM or UPDSRVPGM commands.

– *SQL

The stored SQL information in all *PGM, *SRVPGM, and *SQLPKG objects that
contain SQL statements, as well as in *PGM and *SRVPGM objects that are used to
implement external stored procedures, are converted.

� ASP device (ASPDEV)

This parameter specifies the ASP device where storage is allocated for the library objects
to be checked or converted. If the library is in an ASP that is not part of the thread’s library
name space, this parameter must be specified to ensure that the correct library is used.

– * (asterisk)

ASPs that are currently part of the thread’s library name space are searched to find the
library. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs
2-32), and, if the thread has an ASP group, the primary and secondary ASPs in the
thread’s ASP group.

– *ALLAVL

All available ASPs are searched. This includes the system ASP (ASP 1), all defined
basic user ASPs (ASPs 2-32), and all available primary and secondary ASPs (ASPs
33-255 with a status of Available).

– *CURASPGRP

If the thread has an ASP group, the primary and secondary ASPs in the thread’s ASP
group are searched to find the library. The system ASP (ASP 1) and defined basic user
ASPs (ASPs 2-32) are not searched. If no ASP group is associated with the thread, an
error is issued.

– *SYSBAS

The system ASP (ASP 1) and all defined basic user ASPs (ASPs 2-32) are searched to
find the library. No primary or secondary ASPs are searched, even if the thread has an
ASP group.

– Name

With this option, you can specify the name of the primary or secondary ASP device to
be searched. The primary or secondary ASP must have been activated (by varying on
the ASP device) and have a status of Available. The system ASP (ASP 1) and defined
basic user ASPs (ASPs 2-32) are not searched.

Tip: *ALLPGM is recommended when upgrading from V5R4 or V5R4M5 so that
unnecessary file conversions are not performed.

Object parameter: The ASP device parameter does not apply to the objects specified
in the Object (OBJ) parameter (described later) because the independent ASP name is
part of the path name of the object.

Chapter 4. Program conversion methods 51

� Object (OBJ)

This parameter specifies the path name, or a pattern to match the name, of files with an
attached Java program to be checked or converted. The object path name can be either a
simple name or a name that is qualified with the name of the directory in which the object
is located. A pattern can be specified in the last part of the path name. An asterisk (*)
matches any number of characters, and a question mark (?) matches a single character. If
the path name is qualified or contains a pattern, it must be enclosed in apostrophes. To
check or convert appropriate objects in the root file system, you should specify a forward
slash (/).

Specifying *NONE means that no integrated file Java program is checked or converted.

� Directory subtree (SUBTREE)

This parameter determines the subtree upon which either the check or convert function
will be run.

If *ALL is used, the appropriate objects specified by the OBJ parameter are checked or
converted. If the object is a directory, its contents as well as the contents of all of its
subdirectories are checked or converted.

After the command has begun processing a specific directory subtree, the objects that are
found and processed might be affected by operations that update the organization of
objects within the specified directory tree. This includes, but is not limited to, the following
operations:

– Adding, removing, or renaming object links
– Mounting or unmounting file systems
– Updating the effective root directory for the process calling the command
– Updating the contents of a symbolic link

In order to process the directory subtree, the system code can increase the job-scoped
maximum number of file descriptors that can be opened during processing. This is done
so that the command is not likely to fail due to a lack of descriptors. This job-scoped
maximum value is not reset when the command completes.

If *NONE is used, the appropriate objects specified by the OBJ parameter are checked or
converted. If the object is a directory, it is checked or converted as appropriate, but its
contents are not checked or converted.

4.2.3 STROBJCVN OPTION(*CHECK)

If the STROBJCVN command is run with the *CHECK option, objects located by the LIB
parameter and OBJ parameter are checked to determine whether they need to be converted.
The following types of program model objects in libraries are checked by this command:

� Programs (*PGM)
� Service programs (*SRVPGM)
� Modules (*MODULE)

In the integrated file system, stream files with attached Java programs that were created to
run on i5/OS are checked by this command. Only stream files in the “root” (/), QOpenSys, and
user-defined file systems (UDFS) are included.

Integrated file system objects: This parameter applies to objects in the integrated file
system only. It is valid only when the OBJ parameter is specified.

52 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Figure 4-1 shows the STROBJCVN OPTION(*CHECK) command parameters. In this
example, the command checks all objects of type *PGM, *SRVPGM, or *MODULE that are in
*ALLUSR libraries, but not Java programs in the integrated file system. The STROBJCVN
OPTION(*CHECK) command reports on the number of objects that have already been
converted, the number of objects that still need to be converted, and those objects that
cannot be converted.

Figure 4-1 STROBJCVN OPTION(*CHECK) command

To see the results of the *CHECK process, refer to the session job log. Figure 4-2 shows the
message detail from the job log for an object that has not been converted.

Figure 4-2 Example of message in the job log after running STROBJCVN OPTION(*CHECK)

 Start Object Conversion (STROBJCVN)

 Type choices, press Enter.

 Option > *CHECK *CONVERT, *CHECK
 Library > *ALLUSR Name, generic*, *ALLUSR...
 Object type *ALL *ALL, *FILE, *ALLPGM, *SQL
 ASP device * Name, *, *ALLAVL...
 Object *NONE

 Directory subtree *ALL *ALL, *NONE

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

CPIB0EA Information 10 06/25/07 09:13:19.272366 QIZAECVN
QSYS 0975 QUIMNDRV QSYS 060F
Message : Object LIBHT451 has not been converted.
Cause : Start Object Conversion(STROBJCVN) OPTION(*CHECK) found
object LIBHT451 of type *SRVPGM in library CMC1 that has not been converted
yet to the current release of the operating system. Recovery . . . :
To convert the object to the current release of the operating system, run
STROBJCVN OPTION(*CONVERT) LIB(CMC1).

Chapter 4. Program conversion methods 53

The command should complete with message CPCB0D5, which summarizes the results of
the check. Figure 4-3 shows an example of this message.

Figure 4-3 An example of message CPCB0D5

Notice the part of the additional message information that starts with “0 objects have not
been converted yet.” That section looks like a duplicate of the library information preceding it
but without the values filled in. Instead, it refers to objects in directories, which were not
checked with this command invocation because the Object parameter was set to *NONE.

There is no output parameter to generate a spooled file for the messages issued by this
command. However, information can be obtained by generating a spooled file of the session
job log with the following Display Job Log (DSPJOBLOG) command:

DSPJOBLOG OUTPUT(*PRINT)

 Additional Message Information

 Message ID : CPCB0D5 Severity : 00
 Message type : Completion
 Date sent : 11/01/07 Time sent : 08:58:05

 Message : Checking of objects was successful.
 Cause : Start Object Conversion(STROBJCVN) OPTION(*CHECK) ended
 with the following results.
 7 objects have not been converted yet. 159 objects did not need to be
 converted. 166 objects were processed in *ALLUSR.
 0 objects have not been converted yet. 0 objects did not need to be
 converted. 0 objects were processed in *N.
 Objects did not need to be converted due to one of the following reasons:
 - Some objects were already converted.
 - Some objects do not have all the creation data.
 If *N or 0 appears for any fields, then this information does not apply.

 Bottom
 Press Enter to continue.

 F3=Exit F6=Print F9=Display message details
 F10=Display messages in job log F12=Cancel F21=Select assistance level

Tip: If you want to see messages directly on the display, enter the following command from
a Command Entry display (CALL QCMD):

STROBJCVN OPTION(*CHECK)

54 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

If you want to write your own program to determine which objects require conversion, the
conversion required field returned by the following APIs will be helpful:

� Retrieve Program Information (QCLRPGMI) API

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/q
clrpgmi.htm

� Retrieve Service Program Information (QBNRSPGM) API

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/q
bnrspgm.htm

� Retrieve Module Information (QBNRMODI) API

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/q
bnrmodi.htm

4.2.4 STROBJCVN OPTION(*CONVERT)

When the STROBJCVN command is run with the *CONVERT option, it initiates the object
conversion process. Program model objects that do not require conversion are not converted.
The following types of program model objects in libraries are converted by this command, as
needed:

� Programs (*PGM)
� Service programs (*SRVPGM)
� Modules (*MODULE)

SQL data is also converted by this command. Programs, service programs, and SQL
package (*SQLPKG) objects can contain SQL statements and data used for externally stored
procedures. Converting SQL data contained within a program object is handled separately
from converting the program itself.

In the integrated file system, stream files with attached Java programs that were created to
run on i5/OS are also converted by this command. Only stream files in the “root” (/),
QOpenSys and user-defined file system are included.

Important: STROBJCVN OPTION(*CONVERT) OBJTYPE(*ALL) also processes various
types of file objects in libraries. If these files were not converted for V5R4 (for example, if
you upgraded to 6.1 from V5R3), then these file objects also undergo a type of conversion.

STROBJCVN OPTION(*CONVERT) OBJTYPE(*ALL) must always take action that
prompts file conversion when it is necessary. Even if file conversions have already been
done, which is likely if you are upgrading from V5R4, STROBJCVN OPTION(*CONVERT)
can run a long time on libraries that have large numbers of files, even though no
conversion is being done. It is important to note that file processing time is not included in
the ANZOBJCVN time estimates.

If you are upgrading from V5R4 we recommend that you run STROBJCVN (*CONVERT)
OBJTYPE(*ALLPGM) to convert only programs and service programs.

If you are upgrading from V5R3 and have significant numbers of files in libraries, first run
STROBJCVN (*CONVERT) OBJTYPE(*ALLPGM) to convert only programs and service
programs, then run STROBJCVN (*CONVERT) OBJTYPE(*ALL) to convert files. (Once
programs are converted, they will not be converted again.)

Chapter 4. Program conversion methods 55

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/qclrpgmi.htm

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/qbnrspgm.htm

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/apis/qbnrmodi.htm

Figure 4-4 shows an example of the STROBJCVN command with the *CONVERT option. In
this case, the command initiates conversion for objects in *ALLUSR libraries, but not for Java
programs attached to files in the integrated file system. It uses OBJTYPE(*ALLPGM) as
recommended for upgrades from V5R4.

Figure 4-4 STROBJCVN OPTION(*CONVERT) used to convert program objects in *ALLUSR libraries

Java programs in the integrated file system can be converted by using the Object (OBJ)
parameter. The object path name can be either a simple name or a qualified name. A pattern
using wildcard characters can be specified in the last part of the name. Specifying the / will
address the root file system.

Figure 4-5 shows an example of the STROBJCVN command with the *CONVERT option. In
this example, the command initiates conversion for all Java programs that require conversion
that are in the root file system.

Figure 4-5 STROBJCVN OPTION(*CONVERT) to convert Java programs in the root file system

 Start Object Conversion (STROBJCVN)

 Type choices, press Enter.

 Option *CONVERT *CONVERT, *CHECK
 Library *ALLUSR Name, *ALLUSR, *NONE
 Object type *ALLPGM *ALL, *FILE, *ALLPGM, *SQL
 ASP device * Name, *, *ALLAVL...
 Object *NONE

 Directory subtree *ALL *ALL, *NONE

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

 Start Object Conversion (STROBJCVN)

 Type choices, press Enter.

 Option *CONVERT *CONVERT, *CHECK
 Library > *NONE Name, *ALLUSR, *NONE
 Object type *ALL *ALL, *FILE, *ALLPGM, *SQL
 ASP device * Name, *, *ALLAVL...
 Object > '/'

 Directory subtree *ALL *ALL, *NONE

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

56 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

STROBJCVN OPTION(*CONVERT) should complete with a CPCB0E2 message that
summarizes the activity. Figure 4-6 shows an example of this message.

Figure 4-6 Example of message CPCB0E2 that summarizes the STROBJCVN *CONVERT activity

4.3 Conversion of program objects during restore

With the system value Force conversion on restore (QFRCCVNRST), the user can specify
whether to convert the following objects during a restore:

� Program (*PGM)
� Service program (*SRVPGM)
� SQL package (*SQLPKG)
� Module (*MODULE)

The possible values for QFRCCVNRST are 0 to 7. The default value is 1. A value of 2 is
sufficient to initiate the conversion of objects requiring conversion to a 6.1-compatible format.

This system value can also prevent some objects from being restored. An object that is
specified to be converted by the system value, but cannot be converted because it does not
contain sufficient creation data, is not restored.

 Additional Message Information

 Message ID : CPCB0E2 Severity : 00
 Message type : Completion
 Date sent : 11/01/07 Time sent : 22:27:44

 Message : Conversion of objects was successful.
 Cause : Start Object Conversion(STROBJCVN) OPTION(*CONVERT) ended with the
following results.

2 objects in library QAPTL have been processed. Some objects may not have been converted
because they were converted at an earlier time. They are included in this count. 0 objects
in *N have been processed. Some objects may not have been converted because they were
converted at an earlier time. They are included in this count. If *N or hex zero appears for
any fields, then this information does not apply.

 Bottom
 Press Enter to continue.

 F3=Exit F6=Print F9=Display message details
 F10=Display messages in job log F12=Cancel F21=Select assistance level

Reminder: If you change the system value QFRCCVNRST, remember to reset it to the
value that you were previously using, after the restore activity.

Chapter 4. Program conversion methods 57

The *SYSVAL value for the Force object conversion (FRCOBJCVN) parameter on the restore
commands (RST, RSTLIB, RSTOBJ, and RSTLICPGM) uses the value of the QFRCCVNRST
system value. Figure 4-7 shows the Force object conversion parameter on the Restore
Library (RSTLIB) command.

Figure 4-7 Force object conversion parameter on the Restore Library (RSTLIB) command

By changing the system value QFRCCVNRST, the user can turn on and turn off conversion
for the entire system. However, on the restore commands, the FRCOBJCVN parameter can
override the system value in some cases, for example:

� Specifying *YES and *ALL on the FRCOBJCVN parameter overrides all settings of the
QFRCCVNRST system value.

� Specifying *YES and *RQD on the FRCOBJCVN parameter is the same as specifying a
value of 2 for this system value and can override the QFRCCVNRST system value when it
is set to 0 or 1.

Conversions during restore might occur concurrently, three or four at a time, depending on the
device that is used for the restore media. For example, restoring from a save file will perform

Restore Library (RSTLIB)

 Type choices, press Enter.

 Date when saved Date
 Time when saved Time
 Allow object differences *NONE *NONE, *ALL, *AUTL...
 + for more values
 Force object conversion:
 Convert during restore *SYSVAL *SYSVAL, *NO, *YES
 Objects to convert *RQD, *ALL
 Restore to library *SAVLIB Name, *SAVLIB
 Restore to ASP device *SAVASPDEV Name, *SAVASPDEV
 Restore to ASP number *SAVASP 1-32, *SAVASP
 Output *NONE *NONE, *PRINT, *OUTFILE
 File to receive output Name
 Library *LIBL Name, *LIBL, *CURLIB
 Output member options:
 Member to receive output . . . *FIRST Name, *FIRST
 Replace or add records *REPLACE *REPLACE, *ADD
 More...
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

Notes: The Load and Run (LODRUN) command, which is used to install certain products,
uses restore commands but does not override the QFRCCVNRST system value. Products
that require conversion and that use LODRUN for installation can be converted upon
installation by setting the system value of QFRCCVNRST to 2 or greater.

Program model objects saved from 6.1 or later with a target release of V5R4 or V5R3 are
converted out of the 6.1 format during the restore on the target system. See 3.1.2,
“Required PTFs” on page 11, for prerequisite PTFs. After these program model objects
have been restored on a V5R4 or V5R3 system, no further user action is required.

58 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

four conversions at a time. This conversion method is likely to make more effective use of
processor capabilities than the first call conversion method.

4.4 Conversion the first time a program is run or called

Program objects that have not been converted during restore or by running the STROBJCVN
command, are converted automatically when the program is first run or called. For large
programs, this process can be long running. For clients who are concerned about potential
performance issues arising from long conversion times, we recommend that you convert
program objects before production usage by using the STROBJCVN command. See 4.2,
“Conversion using STROBJCVN” on page 47, for details.

4.5 Conversion times and how to improve them

Conversion times reported with the ANZOBJCVN command are estimates. The estimate is
based on the processor feature of the system. Actual conversion times might vary from the
estimate. Various factors can affect the conversion time, including:

� Number of processors
� Disk arms attached
� Available memory
� Priority of conversion job
� Other jobs on system
� Number of concurrent conversion jobs

In most cases, it is anticipated that object conversion will take a short period of time and will
be easily accomplished. However, in some cases, conversion estimates might be longer than
you prefer. Use the following suggestions to potentially help reduce the actual conversion
time:

� The STROBJCVN command with the *CONVERT option can be long running. For all
systems, but particularly for those with limited interactive (5250 OLTP) capability, we
recommend that you run this command in a batch job.

� For partitions with more than one processor, STROBJCVN is likely to use the opportunity
for concurrent conversions most effectively. Conversion during restore is the next most
effective method, with conversion during first call likely to be the least effective for using
multiple processors.

� Consider running separate jobs for the conversion of objects in libraries and the integrated
file system. If many objects in many libraries require conversion, or if you have many file
objects in libraries, regardless of whether they require conversion, consider running more
than one job to process objects in libraries.

� Use STROBJCVN OBJTYPE(*ALLPGM) when upgrading from V5R4 to avoid processing
file objects that do not require conversion.

Important: First call conversion might be the slowest conversion method, particularly on
partitions that have more than one processor available. Actual results will vary depending
on the call order and number of jobs that concurrently call programs that have not yet been
converted. This is another reason to choose one of the other conversion methods.

Chapter 4. Program conversion methods 59

� If you are upgrading from V5R3, consider running separate jobs for libraries that contain
many files or files with many members. Files in libraries might also undergo a form of
conversion that can take a significant amount of time.

� Best performance is achieved if no other user jobs are active on the system while
conversion takes place.

� Because only a single library (aside from *ALLUSR) can be specified on the STROBJCVN
command, if objects in many libraries that are not part of *ALLUSR require conversion, it
might be useful to write a simple CL program to submit multiple batch jobs, each of which
converts a single library.

� In a logically partitioned environment, consider using dynamic logical partitioning to
temporarily increase the number of available processors and the amount of available
memory prior to starting any conversions with STROBJCVN. Use data area
QGPL/QIZANBRTHD to specify the desired number of threads for each invocation of
STROBJCVN or allow the system to use the default of two threads per full processor.

� Testing has demonstrated that Lotus Domino, and in particular objects in QDOMINOxxx
libraries, might take a long time to convert. Remove all old versions of Domino in advance
of the upgrade and consider running a separate batch job for the conversion of objects in
QDOMINOxxx libraries.

� If you have a restricted period of time in which the conversions must run, and the
estimated conversion time from ANZOBJCVN exceeds the allotted time, consider first
converting libraries that contain high-use programs by using the LIB parameter on
STROBJCVN. Then run STROBJCVN LIB(*ALLUSR) to convert the remaining objects.

If STROBJCVN does not complete before users must sign on, objects will be converted at
first use. If the job running STROBJCVN is consuming too much processor resource when
users are signed on, it can be reduced in priority to run in the background or it can be
ended.

� If you plan to convert objects and save them for distribution to pre-POWER6 systems
running at 6.1 or later, you might want to convert the objects on a pre-POWER6 system.
Converting on a POWER6 or later system allows the machine to use new hardware
features in the converted programs. Moving these programs to a pre-POWER6 system
could require another conversion. See 3.6.3, “Adaptive code generation” on page 39, for
basic information about ACG.

� If programs that were created or converted on a POWER6 or later system are restored to
a pre-POWER6 system, the STROBJCVN command can be used after the restore to
perform any necessary conversions.

60 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Appendix A. MRI PTFs

The Analyze Object Conversion (ANZOBJCVN) command is distributed as PTFs for V5R3 or
V5R4. For this function, you must order an MRI PTF. By ordering the appropriate MRI PTF for
your language, the requisite code PTFs are also ordered. However, there are some
circumstances under which you must separately order code PTFs. For additional
considerations about required PTFs see 3.1.2, “Required PTFs” on page 11.

Table A-1 contains a complete listing of all the MRI PTFs for i5/OS V5R3 and V5R4.

Table A-1 MRI PTFs for ANZOBJCVN command

A

Product load Language V5R3 V5R4

2924 English (upper/lower case) SI28425 SI28415

2902 Estonian SI28472 SI28416

2903 Lithuanian SI28473 SI28417

2904 Latvian SI28474 SI28418

2905 Vietnamese SI28475 SI28419

2906 Laotian SI28476 SI28420

2909 Belgian English SI28477 SI28421

2911 Slovenian SI28478 SI28422

2912 Croatian SI28479 SI28423

2913 Macedonian SI28480 SI28424

2914 Serbian (Cyrillic) SI28482 SI28426

2922 Portuguese SI28483 SI28427

2923 Dutch SI28484 SI28428

2925 Finnish SI28485 SI28429

2926 Danish SI28486 SI28431

© Copyright IBM Corp. 2010. All rights reserved. 61

2928 French SI28488 SI28432

2929 German SI28489 SI28433

2930 Japanese (upper/lower case) Not available SI30602

2931 Spanish SI28490 SI28435

2932 Italian SI28491 SI28436

2933 Norwegian SI28492 SI28437

2937 Swedish SI28493 SI28438

2938 English Uppercase for DBCS (KANJI) SI28494 SI28439

2939 German MNCS SI28495 SI28440

2940 French MNCS SI28496 SI28441

2942 Italian MNCS SI28497 SI28442

2950 English Uppercase SI28498 Not available

2954 Arabic SI28499 SI28443

2956 Turkish SI28500 SI28444

2957 Greek SI28501 SI28445

2958 Icelandic SI28502 SI28446

2961 Hebrew SI28503 SI28447

2962 Japanese (DBCS) SI28504 SI28448

2963 Dutch MNCS SI28505 SI28449

2966 Belgian French SI28506 SI28450

2972 Thai SI28512 SI28451

2974 Bulgarian SI28513 SI28452

2975 Czech SI28514 SI28453

2976 Hungarian SI28515 SI28454

2978 Polish SI28516 SI28455

2979 Russian SI28517 SI28456

2980 Portuguese SI28518 SI28457

2981 Canadian French MNCS SI28519 SI28458

2984 English Upper/Lower for DBCS SI31794 SI28459

2986 Korean (DBCS) SI28521 SI28460

2987 Chinese, Traditional SI28522 SI28461

2989 Chinese, Simplified SI28523 SI28462

2992 Romanian SI28524 SI28463

2994 Slovakian SI28525 SI28464

Product load Language V5R3 V5R4

62 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

2995 Albanian Si28527 SI28465

2996 Portuguese MNCS SI28528 SI28466

2998 Farsi SI28529 SI28467

Product load Language V5R3 V5R4

Appendix A. MRI PTFs 63

64 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Appendix B. File field definition tables

In this appendix, we describe the fields in the files that are generated by the Analyze Object
Conversion (ANZOBJCVN) command. You can use this field information to help define
queries to better understand the provided data.

The data collected by the ANZOBJCVN command is stored in four different files in the
QUSRSYS library:

� File QAIZACVN in QSYS is the master template file and does not get populated with data
from collections. However, QAIZACVN in QUSRSYS is the target file for the collection of
data analyzed in libraries.

� File QAIZADIR is the target for directory information when the Object parameter is used.

� File QAIZAOBJ is the target for integrated file system object information when the Object
parameter is used.

� File QAIZASPL is the target for information for spooled file collections.

B

Important: Each of these files contains only data from the last collection. Therefore,
subsequent collections will replace the data that was collected previously in these files.
You may want to copy these files to another library to do a later analysis of your collections.
Also, these files can be queried to generate additional reports as required. For details
about creating queries see 3.5, “Querying analyzed data” on page 36.

© Copyright IBM Corp. 2010. All rights reserved. 65

QAIZACVN: information for analyzed libraries

Table B-1 lists the field definitions of the QAIZACVN file in the QUSRSYS library. The
QAIZACVN file is the target file for the collection of data analyzed in libraries.

Table B-1 QAIZACVN file field definitions

Field name Description Attribute

DIOBLI Library name. Char(10)

DIOBNM Name of the object. Char(10)

DIOBTP Object type. Char(7)

DIOBAT Object attribute. Char(9)

DIOBSZ Object size in bytes. Packed (15,0)

DINOSZ Not currently used. Packed (15,0)

DIOBTX Text description. Char(50)

DISTIN Status indicator:
� 0 = Normal
� 1 = Locked
� 2 = Damage

 Char(1)

DIOBOW Object owner. Char(10)

DIOBAS Object ASP. Char(5)

DIASPN ASP resource name. Char(10)

DISTGF Storage freed:
� 0 = No
� 1 = Yes

 Char(1)

DICRTD Program creation data area indicator:
� 0 = No
� 1 = Yes
� 2 = Not applicable

 Char(1)

DICOMP Earliest release for which object can be
saved.

 Char(7)

DISFIL Source file. Char(10)

DISLIB Source library. Char(10)

DISMBR Source member. Char(10)

DISMBRE Source member existence:
� 0 = No
� 1 = Yes

 Char(1)

DIPPID Program product. Char(7)

DIREAS Reason code. Char(7)

DILCEN Change century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DILDAT Change date. The format is mmddyy. Char(6)

66 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

DILTIM Change time. Char(6)

DIUCEN Last used century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DIUDAT Last used date. The format is mmddyy. Char(6)

DIUDTC Usage data collected:
� 0 = No
� 1 = Yes

 Char(1)

DIDUSD Days used count. Packed(5,0)

DICUCR Century use count reset:
� 0 = Indicates 19xx
� 1 = Iindicates 20xx

 Char(1)

DIDUCR Date use count reset. The format is
mmddyy.

 Char(6)

DIALCH Allow change by program:
� 0 = No
� 1 = Yes

 Char(1)

DISCEN Save century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DISDAT Save date. The format is mmddyy. Char(6)

DISTIM Save time. Char(6)

DIACEN Save active century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DIADAT Save active date. The format is mmddyy. Char(6)

DIATIM Save active time. Char(6)

DIRCEN Restore century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DIRDAT Restore date. The format is mmddyy. Char(6)

DIRTIM Restore time. Char(6)

DISCMD Save command. Char(10)

DISAVF Save file. Char(10)

DISAVL Save file library. Char(10)

DIFLAB File label. Char(17)

DISDEV Save device:
� 0 = Save file
� 1 = Tape
� 2 = Diskette

 Char(1)

DISEQN Sequence number. Zoned(8,0)

Field name Description Attribute

Appendix B. File field definition tables 67

DIVOL1 Saved volume 1. The tape, diskette or
optical volumes used to save the object.
A maximum of ten volumes can be
saved.

 Char(6)

DIVOL2 Saved volume 2. Char(6)

DIVOL3 Saved volume 3. Char(6)

DIVOL4 Saved volume 4. Char(6)

DIVOL5 Saved volume 5. Char(6)

DIVOL6 Saved volume 6. Char(6)

DIVOL7 Saved volume 7. Char(6)

DIVOL8 Saved volume 8. Char(6)

DIVOL9 Saved volume 9. Char(6)

DIVL10 Saved volume 10. Char(6)

DIMORV More volumes indicator:
� 0 = No
� 1 = Yes

 Char(1)

DICCEN Creation century:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

DICDAT Creation date. The format is mmddyy. Char(6)

DICTIM Creation time. Char(6)

DICUSR Created by user. Char(10)

DICSYS System created on. Char(8)

DICPRS Compression status:
� X = Ineligible
� N = No
� F = Storage freed
� T = Temporary
� Y = Yes

 Char(1)

DIUSDA User-defined attribute. Char(10)

DIODMN Object domain. Char(2)

DIOSTA Object state:
� X'8000' = *SYSTEM
� X'0001' = *USER
� X'0000' = *INHERIT

 Char(2)

DIAUDV Object auditing value. Char(10)

DIOFSZ Offline size in bytes. Hex(8)

DIOVRF Object overflowed. Char(1)

DIFILT File type:
S = Source

 Char(1)

Field name Description Attribute

68 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

QAIZADIR: information for analyzed directories

Table B-2 lists the fields definitions of the QAIZADIR file in the QUSRSYS library. The
QAIZADIR file is the target file for the collection of data analyzed in directories.

Table B-2 QAIZADIR file field definitions

DINMEM Number of members. Binary(2)

DIOCTM Object conversion time in milliseconds.
This value depends on the values in data
area QUSRSYS/QIZAFTCD when
ANZOBJCVN OPTION(*COLLECT) was
run.

 Packed(12,0)

DIOSGN Object sign state:
� X'00' = Not signed
� X'01' = Signed

 Char(1)

DIOPRF Object profile data:
� X'00' = Profile data not available
� X'01' = Profile data available

 Char(1)

DIRESV Reserved. Char(1)

Field name Description Attribute

Field name Description Attribute

QIZADIRIDX Identifier of path name (applies only to directories). Binary(4)

QIZADIRNAM1 The parent directory path. Only used when path length
is below 1 KB.

 VARGRAPHIC(1024)

QIZADIRNAM2 The parent directory path. Only used when path length
is above 1 KB long. Can store paths up to 16 Mb long.

 DBCLOB(16M)

QIZADRCCSID The directory’s CCSID. Binary(4)

QIZADREGION The directory’s path region ID. GRAPHIC(2)

QIZADLANGID The directory’s path language ID. GRAPHIC(3)

QIZADIRLEN Length of directory’s path name in bytes. Binary(4)

QIZADIRFID The file ID of the directory. GRAPHIC(35)

QIZADFID The 4-byte file ID of the directory. Binary(4)

QIZADIRFSID The file system ID of the directory. Binary(8)

QIZADIRGID The generation ID. Binary(8)

Appendix B. File field definition tables 69

QAIZAOBJ: information for analyzed integrated file system
objects

Table B-3 lists the field definitions of the QAIZAOBJ file in the QUSRSYS library. The
QAIZAOBJ file is the target file for the collection of data analyzed in integrated file system
objects.

Table B-3 QAIZAOBJ file field definitions

Field name Description Attribute

QIZADIRIDX The parent directory index. Binary(4)

QIZAOBJNAM The name of the object. VARGRAPHIC(1024)

QIZAOBJLEN Length, in bytes, of the QIZAOBJNAM field. Binary(4)

QIZACRTTIM The time the object was created. The format is
YYMMDDHHMMSS.

 TIMESTAMP(UTC)

QIZAACCTIM The time the object’s data was last accessed. The
format is YYMMDDHHMMSS.

 TIMESTAMP(UTC)

QIZACHGTIMA The time the object’s attributes were last changed.
The format is YYMMDDHHMMSS.

 TIMESTAMP(UTC)

QIZACHGTIMD The time the object’s data was last changed. The
format is YYMMDDHHMMSS.

 TIMESTAMP(UTC)

QIZATRGREL The creation target version of this object. GRAPHIC(10)

QIZAOWN Object owner. GRAPHIC(10)

QIZAASP The ASP in which the object is stored. Binary(2)

QIZABLKSIZ The block size in bytes. Binary(4)

QIZANLNK The number of links for the object. Binary(4)

QIZAFILEID The file ID of the object. GRAPHIC(35)

QIZAFILEIDS The 4-byte file ID of the object. Binary(4)

QIZAGENID The generation ID of the object. Binary(8)

QIZAFSID The file system ID. Binary(8)

QIZADOM Domain of the object. GRAPHIC(10)

QIZASTA State of the object. GRAPHIC(10)

QIZAPRFDTA Profiling data present for object:
� 0 = Not present
� 1 = Present

 GRAPHIC(1)

QIZAOPTLVL The optimization level of the Java program. Valid
values are:
� 0 = This object is not a Java program.
� nonzero = Optimization level value of the Java

program.

 GRAPHIC(10)

QIZAUDATE Usage information, last used date. The format is
YYMMDDHHMMSS.

 TIMESTAMP(UTC)

QIZAUDCOUNT Usage information, days used count. Binary(4)

70 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

QIZAPRMLNK When an object has several names, this field is set
only for the first name found. The way to know if an
object already exists is by checking for its file system
ID, file ID, and generation ID. These are unique when
used together.
� 1 = First name found

 Binary(2)

QIZASIG Whether an object has an i5/OS digital signature. The
following values are valid:
� 0 = Object does not have an i5/OS digital

signature
� 1 = Object has an i5/OS digital signature.

 Binary(2)

QIZASYSSIG Whether the object was signed by a source that is
trusted by the system. The following values are valid:
� 0 = None of the signatures came from a source

that is trusted by the system.
� 1 = The object was signed by a source that is

trusted by the system. If the object has multiple
signatures, at least one of the signatures came
from a source that is trusted by the system.

 Binary(2)

QIZAMLTSIG Whether an object has more than one i5/OS digital
signature. The following values are valid:
� 0 = The object has only one digital signature.
� 1 = The object has more than one digital

signature. If the QIZASYSSIG field has the value
1, at least one of the signatures is from a source
trusted by the system.

 Binary(2)

QIZADIRTYP2 The format of the directory object (*DIR). The
following values are valid:
� 0 = The directory format is *TYPE1.
� 1 = The directory format is *TYPE2.

 Binary(2)

QIZAFILTYP2 The format of the stream file (*STMF). The following
values are valid:
� 0 = The stream file format is *TYPE1.
� 1 =The stream file format is *TYPE2.

 Binary(2)

QIZACASE Indicates the case sensitivity of the file system that
contains this object. The following values are valid:
� 0 = File system is not case sensitive.
� 1 = File system is case sensitive.

 Binary(2)

QIZACVNTIME Estimated Java program conversion time for an object
in milliseconds.

 Packed(12,0)

QIZANAMFLG Indicates whether the object name contains
characters affected by the new Unicode casing rules
in the target release. The following values are valid:
� 0 = Object name does not contain affected

characters.
� 1 = Object name contains affected characters.

 Binary(2)

Field name Description Attribute

Appendix B. File field definition tables 71

QAIZASPL: information for analyzed spooled files

Table B-4 lists the field definitions of the QAIZASPL file in the QUSRSYS library. The
QAIZASPL file is the target file for the collection of analyzed spooled files.

Table B-4 QAIZASPL file field definitions

QIZACVNFLG Whether the Java program object requires a
conversion. The following values are valid:
� 0 = Object does not require a conversion or is not

a Java program.
� 1 = Object is a .jar, .zip or .class file with an

attached program that requires conversion.

 Binary(2)

Field name Description Attribute

Field name Description Attribute

SPDTTM Date (YYMMDD) and time (HHMMSS). The
date and time of the collected data.

 Char(12)

SPDCEN Century digit where:
� 0 = Indicates 19xx
� 1 = Indicates 20xx

 Char(1)

SPSNAM System name Char(8)

SPVRM Version-release-modification. Specifies the
release level in VxRyMz format, where:
Vx = The version number
Ry = The release number
Mz = The modification level

 Char(6)

SPASP ASP number. Specifies the ASP number:
� 1 = The system ASP
� 2 through 32 = A basic ASP
� 33 to 255 = An independent ASP

 Packed(5,0)

SPASPN ASP device name. Specifies the name of the
ASP. A value of blanks specifies the system
ASP or a basic ASP.

 Char(10)

SPSPLN Spooled files. Specifies the number of spooled
files in the QSPLxxxx libraries that need to be
converted in the ASP.

 Packed(11,0)

SPTMCV Time to convert the spooled files. Specifies the
total time in seconds required to convert all the
spooled files in the ASP.

 Packed(11,0)

72 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

Appendix C. IBM software skip-ship products
requiring conversion

In this appendix we provide information about IBM skip-ship licensed program products
(LPPs) that do not have a new version for 6.1 and must be converted after your system has
been upgraded to 6.1. The LPPs listed in Table C-1 on page 74 are the skip-ship products
that are supported on 6.1, but do not have a new version for 6.1 and must be converted.

Program conversion for LPPs must be done on the product library. Before the product is used
for the first time, run the conversion on the library.

If you are installing one of these skip-ship products on 6.1, we recommend that you convert
the objects in the product library during the installation. You can do this by using the Force
Object Conversion (FRCOBJCVN) parameter on the RSTLICPGM command. For more
information see 4.3, “Conversion of program objects during restore” on page 57.

If the skip-ship product was installed before the upgrade, the objects in the product library are
not automatically converted as part of the upgrade process. In this case, we recommend that
you do conversion by using the STROBJCVN command. There are factors to consider when
planning for conversion of these products. For more information about object conversion, refer
to Chapter 4, “Program conversion methods” on page 45.

If you receive message CPIB0DC “Digital signature lost for object” during the
conversion process, the digital signature has been removed. Digital signatures are normally
used only before a product runs, and therefore, do not affect product function.

C

Important: We recommend that before migrating to 6.1 you remove all of the unsupported
LPPs for that release. In some cases, if you wait until upgrading to 6.1, you might not be
able to completely remove these products easily.

Tip: The Work with Licensed Program (Go LICPGM) menu will not display all program
products installed on a system. Use the Display Software Resource (DSPSFWRSC)
command to list all of the installed software resources on your system.

© Copyright IBM Corp. 2010. All rights reserved. 73

Table C-1 Skip-ship products supported on 6.1

Domino information: Domino product libraries contain many programs and service
programs, some of which are quite large. The conversion process for Domino might take a
significant amount of time. For more information specific to Domino, see the Lotus Domino
for i5/OS Support Web site at the following address:

http://www.ibm.com/servers/eserver/iseries/domino/support/

Product ID Version Product library Product name

5722BZ100 V5R1M0 QIBS IBM Business Solutions

5722IA100 V5R2M0 QIA1BASE IBM Integration Assistant for iSeries

V5R2M0 QIA1OPT13 Business Integration Connect – Express 4.2

V5R2M0 QIA1OPT16 WebSphere® Partner Gateway – Express

5722IP100 V5R3M0 QIPS IBM Infoprint Server for iSeries

5722XP100 V5R3M0 QIWR/IFS System i Access for Wireless

5723J2500 V7M0 QDOMDOC Lotus Domino Document Manger

5724H7200 V6R0M0 QMQM
QMQMSAMP

WebSphere MQSeries® for iSeries MQ, V6

5724J2300 V7R5M1 QSAMETIME Lotus Sametime® Instant Messaging

5724J2400 V7R0M0 QQPLACE Lotus QuickPlace®

5724S31 V8.0.0.2 QQPLACE Lotus Quickr™

5733FXD00 V4R5M0 QDOMFXD Domino Fax

5733ID100 V4R5M0 QAFPDNR Infoprint Designer

5733LD700 V7R0M3 QDOMINO703 Lotus Domino for iSeries V7.0.3

5733LD800 V8R0M1 QDOMINO801 Lotus Domino for iSeries V8

5733LEI V6R5M4 QDOMINO703 or
QDOMNO801

Lotus Enterprise Integrator®

5733W6000 V6R0M0 QWAS60 WebSphere Application Server for OS/400 V6

5733W6100 V6R1M0 QWAS61 WebSphere Application Server V6.1 for i5/OS

5733XT200 V1R1M0 QXMLLIB XML Toolkit for IBM System i5®

5798FAX00 V5R2M0 QFAX Facsimile Support

5799PTL0 V5R4M0 QAPTL iSeries Tools for Developers

74 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www.ibm.com/servers/eserver/iseries/domino/support/

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

Other publications

These publications are also relevant as further information sources:

� Installing, Upgrading, or Deleting i5/OS and Related Software, SC41-5120-10

http://www.ibm.com/support/docview.wss?uid=pub1sc41512010

� System i ILE Concepts Version 6 Release 1, SC41-5606

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

� Reclaim Spooled File Storage Experience Report

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/experience/spool
reclaim.pdf

Online resources

These Web sites are also relevant as further information sources:

� System i i5/OS Memo to Users Version 6 Release 1

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaq9/rzaq9.pdf

� System i Upgrade planning

http://www-304.ibm.com/systems/support/i/planning/upgrade/index.html

� Informational APAR II14306 on Analyze Object Conversion

http://www-912.ibm.com/n_dir/nas4apar.nsf/c79815e083182fec862564c00079d117/3af4
7a966c4df94586257306003c6868?OpenDocument&Highlight=2,ii14306

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

ibm.com/redbooks

© Copyright IBM Corp. 2010. All rights reserved. 75

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/docview.wss?uid=pub1sc41512010
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaq9/rzaq9.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/experience/spoolreclaim.pdf
http://www-912.ibm.com/n_dir/nas4apar.nsf/c79815e083182fec862564c00079d117/3af47a966c4df94586257306003c6868?OpenDocument&Highlight=2,ii14306
http://www-912.ibm.com/n_dir/nas4apar.nsf/c79815e083182fec862564c00079d117/3af47a966c4df94586257306003c6868?OpenDocument&Highlight=2,ii14306
http://www-304.ibm.com/systems/support/i/planning/upgrade/index.html
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books/sc415606.pdf

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

76 IBM i Program Conversion: Getting Ready for 6.1 and Beyond

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

REDP-4293-01

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

IBM i Program Conversion:
Getting Ready for 6.1 and
Beyond

Prepare an earlier
release for program
conversions to IBM i
6.1 or a later release

Use the Analyze
Object Conversion
(ANZOBJCVN) tool

Convert programs to
run on 6.1 or a later
release

IBM delivered IBM i 6.1 in March 2008. With 6.1, IBM exploits the capabilities of the

Machine Interface (MI) architecture to significantly improve programs. Programs can benefit

from better performance, a range of new operating system and processor capabilities, and

even stronger system integrity. To enable these improvements, all MI programs created for

previous releases must be converted to run on 6.1 or a later release. MI programs include

integrated language environment (ILE) and original program model (OPM) programs.

To convert a program, its creation data, which is a subset of observability, must be

available. MI programs retain creation data by default, so that most programs can be

converted, going all the way back to programs that were originally created for System/38.

Even if an option was chosen to remove creation data from external access, Licensed

Internal Code (LIC) can still access the creation data if the target releases of the program

and its constituent modules are V5R1 or later. Thus a program lacks sufficient creation data

for conversion only if the program or at least one of its modules was created for IBM

OS/400 V4R5 or an earlier release and creation data was explicitly removed.

You can run the Analyze Object Conversion (ANZOBJCVN) command on V5R4 or V5R3 to

help plan for your upgrade. The ANZOBJCVN command identifies programs that will not

convert to run on 6.1 or a later release, if any, and estimates the times that are required for

the program conversions. It also provides information about two other types of conversions:

integrated file system names and spooled files. You can access the ANZOBJCVN command

by loading and applying the appropriate PTFs that are listed in this paper.

This IBM Redpaper publication is intended for system administrators and field technicians

to help them understand and prepare for upgrading or migrating to V6R1. It explains what

the program conversion is and why programs are being created or re-created on V6R1. It

then provides detailed steps for using the ANZOBJCVN tool on V5R3 or V5R4 to prepare for

V6R1 object conversions. Finally it discusses the program conversion methods for

converting programs to run on V6R1.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this paper
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of previous versions
	Summary of second edition versions
	March 2010, second edition of this paper

	Summary of changes made to first edition versions
	April 2009 update
	March 2009 update
	November 2008 update
	May 2008, first edition of this paper

	Summary of draft versions
	January 2008 draft update
	November 2007 draft update
	October 2007 draft update
	July 2007 draft update

	Chapter 1. Overview of the program conversion process
	Chapter 2. Introduction to program conversion
	2.1 Key values of IBM i
	2.2 What program conversion is
	2.3 Why program conversion
	2.3.1 Integrity
	2.3.2 Performance improvements
	2.3.3 Functional improvements

	Chapter 3. Preparing for conversions
	3.1 Analyzing objects
	3.1.1 Terminology definitions
	3.1.2 Required PTFs
	3.1.3 Command usage notes
	3.1.4 Conversion time estimates
	3.1.5 Alternate method for estimating conversion times

	3.2 Collecting information
	3.2.1 Parameters of the ANZOBJCVN *COLLECT command
	3.2.2 Examples of collection commands
	3.2.3 Files used for data collections

	3.3 Creating reports
	3.3.1 Parameters of the ANZOBJCVN *REPORT command
	3.3.2 Examples of report commands
	3.3.3 Understanding the conversion reports

	3.4 Programs that will not convert
	3.5 Querying analyzed data
	3.6 Considerations for application developers
	3.6.1 Will your application convert
	3.6.2 Other decision criteria
	3.6.3 Adaptive code generation
	3.6.4 Fixes and testing

	3.7 Other object conversions
	3.7.1 Java programs
	3.7.2 Integrated file system names
	3.7.3 Spooled files

	3.8 Removing unsupported products

	Chapter 4. Program conversion methods
	4.1 Overview of program conversion
	4.2 Conversion using STROBJCVN
	4.2.1 STROBJCVN usage notes
	4.2.2 Parameters of the STROBJCVN command
	4.2.3 STROBJCVN OPTION(*CHECK)
	4.2.4 STROBJCVN OPTION(*CONVERT)

	4.3 Conversion of program objects during restore
	4.4 Conversion the first time a program is run or called
	4.5 Conversion times and how to improve them

	Appendix A. MRI PTFs
	Appendix B. File field definition tables
	QAIZACVN: information for analyzed libraries
	QAIZADIR: information for analyzed directories
	QAIZAOBJ: information for analyzed integrated file system objects
	QAIZASPL: information for analyzed spooled files

	Appendix C. IBM software skip-ship products requiring conversion
	Related publications
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

