
ibm.com/redbooks Redpaper

Front cover

SAP NetWeaver Java
on IBM i5/OS

Susan Powers
Kolby Hoelzle

Christoph Langer
Adriana Sanchez

Understand how SAP NetWeaver Java
is implemented on IBM i5/OS

Analyze and troubleshoot SAP
NetWeaver Java on i5/OS

Optimize the i5/OS JVM for
SAP NetWeaver

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

SAP NetWeaver Java on IBM i5/OS

November 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2006)

This edition applies to Version 5 Release 4 of IBM i5/OS (product number 5722-SS1) and SAP WebAS 7.00
based on SAP NetWeaver04®.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
The team that wrote this Redpaper . vii
Become a published author . viii
Comments welcome. viii

Chapter 1. Architecture. 1
1.1 Java technology . 2
1.2 Java 2 Platform Enterprise Edition . 2
1.3 SAP Java cluster . 3

Chapter 2. The Java Virtual Machine. 5
2.1 IBM i5/OS Classic JVM . 6
2.2 JVM Garbage collection . 7

Chapter 3. Implementation of the SAP Java Application Server in i5/OS 9
3.1 SAP jobs . 10
3.2 Integrated File System . 11
3.3 Database. 13
3.4 Database access. 13

3.4.1 Types of JDBC drivers . 14
3.4.2 Choosing a JDBC driver . 14
3.4.3 The JDBC URL . 15

Chapter 4. Configuration and tuning. 17
4.1 SAP Java Application Server configuration. 18

4.1.1 Server nodes. 18
4.1.2 Application threads per server node . 20

4.2 Minimum hardware requirements . 21
4.3 Operating system configuration recommendations. 22

4.3.1 Shared memory pools . 23
4.3.2 Performance adjuster . 24
4.3.3 Max active. 24

4.4 IBM i5/OS Classic JVM global properties . 25
4.4.1 System default properties file . 25
4.4.2 Activating the class verification cache for all JVMs. 25
4.4.3 Other global properties . 26

4.5 IBM i5/OS Classic JVM system properties . 26
4.5.1 Set and forget properties . 26
4.5.2 Tuning properties . 27
4.5.3 Modifying JVM system properties . 27

4.6 Fine tuning the IBM i5/OS Classic JVM . 28
4.6.1 Analyzing the JVM garbage collector . 28
4.6.2 Tuning the JVM garbage collector . 34

Chapter 5. Debugging Java applications . 37
5.1 Enabling debug operations . 38

© Copyright IBM Corp. 2006. All rights reserved. iii

5.1.1 Debug using the SAP NetWeaver Developer Studio . 39

Chapter 6. Problem analysis . 41
6.1 Locations for logs and traces . 42

6.1.1 Work directory . 42
6.1.2 Log directory . 42

6.2 Analyzing startup problems. 43
6.3 Troubleshooting data access problems . 44

6.3.1 JDBC traces . 44
6.3.2 Native JDBC driver traces. 46
6.3.3 Toolbox JDBC driver traces . 47

Index . 51

Related publications . 55
IBM Redbooks . 55
Online resources . 55
How to get IBM Redbooks . 55
Help from IBM . 55

iv SAP NetWeaver Java on IBM i5/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400®
DB2®
Eserver®
eServer™
ibm.com®

iSeries™
i5/OS®
IBM®
OS/400®
Redbooks™

Redbooks (logo) ™
System i™
WebSphere®
Workplace™

The following terms are trademarks of other companies:

ABAP, SAP NetWeaver, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries.

SAP NetWeaver Developer Studio, ABAP, SAP NetWeaver, and SAP are the trademarks or registered
trademarks of SAP AG in Germany and in several other countries.

SAP, SAP WebAS 7.00 based on SAP NetWeaver04®, and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and
in several other countries all over the world. All other product and service names mentioned are the
trademarks of their respective companies. Data contained in this document serve informational purposes
only. National product specifications may vary.

EJB, Java, JavaSoft, JDBC, JDK, JSP, JVM, J2EE, Sun, Sun Microsystems, and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

vi SAP NetWeaver Java on IBM i5/OS

Preface

IBM® i5/OS® and System i™ technology are proven platforms for SAP® applications. With
more than 10 years of success across more than 2500 SAP worldwide installations in small,
medium, and large enterprises, System i models are an ideal platform for SAP customers
who are looking for easy usability, high performance, reliability, and carefree operation of
their SAP applications. The unique value of System i lies in its ability to reduce information
technology (IT) complexity and to simplify SAP system landscapes.

This IBM Redpaper focuses on SAP Java™ technology. It can be used in conjunction with the
IBM Redbook Implementing SAP Applications on the IBM System i Platform with IBM i5/OS,
SG24-7166. This publication explores areas that are specific to the implementation and
integration of the SAP Web Application Server for Java on i5/OS. Included in this document is
an overview of the SAP Application Server architecture and how it is implemented on i5/OS. It
also includes a discussion on Java and the i5/OS Classic JVM™, followed by configuration
and tuning recommendations and finally how to analyze problems.

We wrote this Redpaper to assist SAP basis consultants and other information technology
(I/T) professionals in implementing a successful SAP system installation based on SAP Java
technology.

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Susan Powers is a Consulting IT Specialist at the ITSO, Rochester Center.
Prior to joining the ITSO in 1997, she was an AS/400® Technical Advocate
in the IBM Support Center with a variety of communications, performance,
and work management assignments. Her IBM career began as a Program
Support Representative and Systems Engineer in Des Moines, Iowa. She
holds a degree in mathematics, with an emphasis in education, from St.
Mary’s College of Notre Dame. She is a project manager in the System i
ITSO in Rochester, Minnesota.

Kolby Hoelzle is a Staff Software Engineer on the SAP on System i team,
which is part of the i5/OS development lab in Rochester, Minnesota. He
joined IBM in 1999 and has six years of experience with SAP on the System
i platform, including two years working at SAP development in Walldorf,
Germany as a member of the joint IBM SAP i5/OS porting team.

Christoph Langer is a member of the joint IBM/SAP porting team for SAP
applications on the System i platform and Team Lead of the group working
on porting the SAP Java solution stack. He has five years of experience in
the field of SAP applications on System i models. He holds a bachelor's
degree in Information Technology Management from the BA Stuttgart,
Germany.

© Copyright IBM Corp. 2006. All rights reserved. vii

Adriana Sanchez is a developer for WebSphere® Serviceability tools in
Rochester, Minnesota. She has two years of experience with SAP on the
System i platform in the areas of performance, three-tier, and Java. Before
joining the SAP team, Adriana worked on Linux® on Power Performance.
She holds a degree in Computer Science from Florida International
University.

Thanks to the following people for their contributions to this project:

Dan Gateno
IBM Rochester, Minnesota

Dorothea Rink
SAP, Germany

Ron Schmerbauch
IBM Rochester, Minnesota

Craig Stancl
IBM Rochester, Minnesota

Become a published author
Join us for a two-to-six week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You will have the opportunity to team with IBM technical professionals,
Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a bonus, you will
develop a network of contacts in IBM development labs and increase your productivity and
marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our publications to be as helpful as possible. Send us your comments about this
Redpaper or other IBM Redbooks™ in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

viii SAP NetWeaver Java on IBM i5/OS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

2455 South Road
Poughkeepsie, NY 12601-5400

 Preface ix

x SAP NetWeaver Java on IBM i5/OS

Chapter 1. Architecture

SAP made it clear that Java is strategic to their development. The new SAP applications are
based on the Java 2 Platform Enterprise Edition (J2EE™) model. Because of this shift from
Advanced Business Application Programming (ABAP™) based development to Java and
J2EE based development, it is important for you to understand the SAP Java Application
Server and the underlying IBM i5/OS Java technology that runs it.

SAP applications run on a technology layer that is adapted to the various operating systems
and platforms that SAP supports. Traditionally, SAP ABAP applications run on a technology
layer based on C and C++. Many of the latest SAP applications, such as Enterprise Portals
(EP) and Exchange Infrastructure (XI) are built on a technology layer based on Java. Even
though some Java-based SAP applications have the similar look and feel of some of the
traditional SAP applications, the underlying technology is vastly different. Because of this
difference in technology, the Java-based SAP administrative tasks such as configuration,
tuning, and troubleshooting differ from the C and C++-based administrative tasks. This
Redpaper highlights these differences.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Java technology

Java technology consists of the following three basic components:

� Java language
� Java packages
� Java Virtual Machine (JVM)

These three components provide the foundation for all Java applications from the simple
“Hello World” program to complex enterprise class applications.

The Java programming language is an object-oriented language with syntax largely based on
C++. However, in Java as opposed to C++, nearly everything is an object. Every Java object
is compiled into a Java executable called a Java class.

Java packages are Java classes that are packaged together for the convenience of
developers. Java packages are similar in purpose to C or C++ libraries. Packages contain
commonly-used classes and the methods or functions to access and utilize these classes. A
developer imports a Java package in order to utilize these ready-to-use classes in his or her
own program. Java packages increase efficiency by encouraging code reuse.

Perhaps the biggest difference between Java and traditional languages, such as C or C++, is
the manner in which Java is executed. Traditional programming languages are compiled into
executable programs that run directly on an operating system. Java code is compiled into a
platform-independent Java executable called a class.

A Java class is made up of Java bytecodes that are executed on a Java Virtual Machine
(JVM). The JVM runs directly on the operating system. This allows you to write and compile a
Java program on one platform and run the same Java program on a completely different
platform without making any changes. You can run Java classes on any platform as long as a
compliant JVM exists. This makes Java extremely portable and provides “write-once, run
anywhere” capability.

1.2 Java 2 Platform Enterprise Edition

Java 2 Platform Enterprise Edition (J2EE) is a standard for developing multi-tier enterprise
applications based on Java technology. J2EE simplifies development of enterprise
applications by using a set of standardized, modular components and by providing a
complete set of services to these components. This allows J2EE to automatically handle
many details of application behavior without the need for complex programming.

Following are some of the standardized components of J2EE:

� Data access using Java Database Connectivity (JDBC™)
� Security model
� Server-based applications with Java servlets
� Encapsulated business logic with Enterprise Java Beans (EJB™)
� Document generation with Java Server Pages (JSP™)

The J2EE standard includes complete specifications and compliance tests to ensure
portability across all operating systems that support the J2EE platform.

SAP developed a J2EE application server that implements the J2EE standard. SAP refers to
their J2EE application server as the Java Application Server. It is available as part of the SAP

2 SAP NetWeaver Java on IBM i5/OS

Web Application Server (WebAS). SAP WebAS can run both traditional SAP ABAP
applications and applications based on the J2EE standard, which are written in Java.

The SAP Java Application Server includes the services and tools required to deploy J2EE
applications and it includes the J2EE engine itself which is required to run J2EE applications.

1.3 SAP Java cluster

The SAP Java cluster installation consists of the following items:

� One central service instance
� One or more instances of the SAP Java Application Server
� One database

You can have a Java-only system that only supports Java and J2EE applications. Alternately,
you can have an SAP WebAS Add-In (ABAP Application Server and Java Application Server)
installation that allows you to run both ABAP and J2EE applications.

The simplest SAP Java cluster installation consists of a Java central instance, a central
services instance, and a database. A Java instance has a dispatcher that is responsible for
dispatching client requests and a server node that receives the request from the dispatcher
and executes the request. The Software Deployment Manager (SDM) is also part of a Java
instance. SDM allows you to deploy and manage software packages distributed by SAP. It can
run in integrated mode as part of the Java instance or in stand-alone mode. A Java instance
has a system ID (SID) and an instance number. Multiple Java instances can exist in an SAP
Java cluster installation. In an SAP WebAS Add-in system, the Java instance and the ABAP
instance are combined into one instance.

The central services instance is a special Java instance that contains the message service
and the enqueue service. The central services instance is responsible for providing
communication and synchronization in the Java cluster installation. The message server is
used for communication between all the elements of a Java cluster. The dispatcher, for
example, obtains the information about which processes are active from the message
service. The enqueue server is used for synchronization within the Java cluster by managing
logical locks. The central service instance is identified by the system ID (SID) of the Java
cluster installation, but like any instance, it has its own instance number. One central services
instance is required for each SAP Java cluster installation.

The Java cluster installation, like ABAP, uses the integrated DB2® UDB for i5/OS database.
The DB2 UDB for i5/OS is a full relational database system integrated in the operating
system. i5/OS performs storage management. Because it is integrated in the operating
system, the database does not compete with other applications like on other platforms.

Chapter 1. Architecture 3

Figure 1-1 shows a simple installation of the SAP Java cluster.

Figure 1-1 Simple SAP Java cluster installation

• Java Central Services = SCSxx
–Dedicated for Java

• Java Central Instance = JCxx
–Contains SDM

• Java Dialog Instance = Jxx
• Server Processes are

multithreaded

SAP Netweaver 2004s Architecture

SAP GUISAP GUIBrowser

SDM

J2EE
Engine

SAP Database Schema

JAVA
SP

JAVA
VM

JAVA
SP

JAVA
VM

JAVA
SP

JAVA
VM

JAVADispatcher

JAVA
SP

JAVA
VM

JAVA
SP

JAVA
VM

JAVA
SP

JAVA
VMCentral

Services

Message
Server

Enqueue
Server

Central
Services

Message
Server

Enqueue
Server

JDBC

4 SAP NetWeaver Java on IBM i5/OS

Chapter 2. The Java Virtual Machine

Unlike the SAP ABAP Application Server, the SAP Java Application Server does not run
directly on an operating system. Since the SAP Java Application Server is programmed in
Java itself, it runs on a Java Virtual Machine (JVM). JVM in turn runs directly on the operating
system.

Because a JVM is required for the SAP Java Application Server to function, it is important to
understand some of the characteristics of the JVM and its impact to the SAP Java Application
Server. Currently only the IBM i5/OS Classic JVM is supported by SAP for the SAP Java
Application Server on i5/OS.

2

© Copyright IBM Corp. 2006. All rights reserved. 5

2.1 IBM i5/OS Classic JVM

On i5/OS, all applications and the base operating system are based on an architecture known
as technology independent machine interface (TIMI), or more simply referred to as the
machine interface (MI). When a program runs on i5/OS, it presents the instructions to the MI
for execution. The instructions presented to the MI pass in turn through a layer of microcode
known as System Licensed Internal Code (SLIC), before they are executed by the hardware.

The i5/OS Classic JVM was first available on OS/400® V4R2. It is implemented within SLIC.
The Classic JVM is available on all i5/OS installations. Because the Classic JVM does most
of its work below the MI layer, the interpretation and execution of the Java code on i5/OS is
very fast. The implementation of the classic JVM on i5/OS provides improved scalability
compared to other Java platforms.

Because the i5/OS Classic JVM is integrated into the operating system, all Java classes must
be verified. There is overhead associated with Java class verification; however, a class
verification cache mechanism (discussed in 4.4.2, “Activating the class verification cache for
all JVMs” on page 25) significantly improves the performance of this process.

The Java Development Kits (JDKs), which provide the base Java packages, compilers, and
other commands, are located above the MI layer like any other program on i5/OS. You can
get versions of the JDK™ by installing the licensed program 5722-JV1.

Figure 2-1 shows a representation of the IBM i5/OS Classic JVM and JDK implementation.

Figure 2-1 Implementation of the IBM i5/OS Classic JVM and JDK

With the i5/OS Classic JVM, Java programs are optimized using the Just-In-Time (JIT)
compiler. A JIT compiler is a platform-specific compiler that generates machine instructions
for Java code that is used very often. These machine instructions exist only as long as the
JVM that created them runs.

User
ApplicationsCompilers Work

Mgmt
Java
JDK

Save/Restore

Database

Trusted Code
Generator Task

Mgmt

Co
St

Security

JVM

TIMI

TIMI Instructions
ADDN

CRTPG

6 SAP NetWeaver Java on IBM i5/OS

The JIT mode is much faster compared to the interpreted mode that interprets each Java
bytecode at runtime. In section 4.5, “IBM i5/OS Classic JVM system properties” on page 26
we discuss how a JVM property can be set to run in JIT mode and improve runtime
performance.

Although Java is platform independent, the JVM where Java bytecode is executed is not. In
addition, each JVM has a set of Java system properties you can set to modify the behavior of
the JVM. These system properties determine the environment on which the Java programs
run. They are similar to system values or environment variables in i5/OS. Starting a JVM sets
the system properties for that instance of the JVM.

2.2 JVM Garbage collection

Java stores all objects created by a Java application in an area of memory called the heap.
Java garbage collection is the mechanism of freeing unused objects so that the heap space is
made available for new objects. The garbage collector (GC) is responsible for determining
which objects are no longer referenced by the Java application and freeing the associated
memory in the heap.

Garbage collection in Java makes Java different from other programming languages like C
and C++ where memory allocation and deallocation is the responsibility of the developer. This
places a larger burden on the developer and introduces the risk of memory leaks, which
eventually lead to programs crashing. Even though Java garbage collection reduces the
probability of memory management problems, it does comes with the cost of more CPU
consumption.

The garbage collector is part of the JVM and runs automatically as needed. The GC runs in
cycles. In the i5/OS Classic JVM, the frequency of the GC cycles and the cycle times are
determined by a threshold specified by the initial heap size parameter (-Xms).

The i5/OS Classic JVM garbage collector has the following characteristics:

� Asynchronous: Runs in the background
� Concurrent: Runs concurrent to the other threads on the system
� Multithreaded: Has multiple threads working together to free the unused objects.

These characteristics have many advantages, including improved performance. The GC can
run simultaneously with your application without stopping the application threads and causing
long pauses. The disadvantage is that it could be more difficult to determine when the
garbage collector is not properly tuned.

For specific details on how to tune the Classic JVM garbage collector, refer to section 4.6,
“Fine tuning the IBM i5/OS Classic JVM” on page 28.

Chapter 2. The Java Virtual Machine 7

8 SAP NetWeaver Java on IBM i5/OS

Chapter 3. Implementation of the SAP Java
Application Server in i5/OS

The implementation of the SAP Java Application Server varies from platform to platform due
to differences within operating systems. This section describes what the SAP Java
Application Server looks like when installed on i5/OS.

3

© Copyright IBM Corp. 2006. All rights reserved. 9

3.1 SAP jobs

On i5/OS, each SAP instance is implemented as a subsystem with a name R3_<nn>, where
<nn> corresponds to the instance number. There are at least two instances associated with
an SAP Java Application Server: one central services instance and one or more Java
instances. The central services instance, which contains the message and enqueue services
as described in section 1.3, “SAP Java cluster” on page 3, must be running before starting the
Java instance. Therefore, the STARTSAP command must be executed first for the central
services instance, and secondly for the Java instance.

When you run the following Work with Active Jobs command: WRKACTJOB SBS(R3_<nn>),
where <nn> is the instance number of a central services instance, the display shows the SAP
jobs for the central services instance running in an i5/OS subsystem. For a central service
instance, these jobs correspond to the following SAP processes:

� ENSERVER: enqueue server
� MSGSERVER: message server
� SAPSTART: startup job

Figure 3-1 shows the i5/OS subsystem running a central services instance.

Figure 3-1 SAP jobs in the subsystem for a central services instance

For an SAP Java instance, these jobs correspond to the following SAP processes:

� DISPATCHER: Dispatcher
� JCONTROL: Control framework
� SAPSTART: Startup job
� SDM: Software deployment manager
� SERVER<n>: Server node where <n> is the number of the server node

A Java instance can have more than one server node to execute client requests. Each server
node is multi-threaded and can process requests simultaneously. The number of server
nodes in an instance and the number of threads are configurable through the SAP J2EE
Engine - Config Tool (commonly referred to as the Config Tool). Each server node is a Java
process and runs in its own JVM. Similarly, the dispatcher and SDM processes are
multithreaded and run in their own JVM.

10 SAP NetWeaver Java on IBM i5/OS

The Java Startup and Control framework starts, stops, and monitors a Java instance. The
JControl process is the job responsible for starting, stopping, and monitoring the processes of
a Java instance. Following is the process:

� The STARTSAP command first starts the SAP subsystem (instance) and submits a
background job to this subsystem that runs the SAP start program (SAPSTART).

� The SAPSTART program starts the JControl program that starts the bootstrap jobs to
synchronize the binary data of the Java database with the local file system.

� The SAPSTART program starts the SAP services and processes associated with each
instance. In an Add-In configuration, the dispatcher starts JControl.

The Internet Graphic Service (IGS) jobs are responsible for enabling the application
developer to display graphics in an Internet browser with a minimum of effort. They provide a
server architecture where data from an SAP system or another source can be used to
generate graphical or non-graphical output.

Figure 3-2 shows the jobs for the SAP Java Application Server.

Figure 3-2 SAP jobs in the Java instance subsystem

In an Add-In SAP Web AS (ABAP and Java Engine) installation, the processes associated
with the J2EE engine run as part of the ABAP instance. In this case, all of the work processes
and the dispatcher together with all the J2EE engine processes run under the same
subsystem.

3.2 Integrated File System

The file system structure for the SAP Java Application Server is very similar to that of an SAP
ABAP Application Server, with the two main SAP directory trees being /sapmnt and /usr/sap.
Like an ABAP Application Server, the Integrated File System (IFS) directories for a Java
Application Server installation contain many objects, including: executables, configuration
data, logs, and standalone tools such as SAP J2EE Engine - Visual Administrator (commonly
referred to as the Visual Administrator tool).

For a visual representation of the Integrated File System directory structure for an SAP Java
Application Server, see Figure 3-3 on page 12.

Chapter 3. Implementation of the SAP Java Application Server in i5/OS 11

Figure 3-3 Integrated File System structures for the SAP Web Application Server (ABAP and Java)

The instance type and the instance number determine the instance name. In the case of a
Java-only installation, the instance name consists of a prefix (JC or J) and the two-digit
instance number afterwards. In an Add-In SAP Web AS (ABAP and Java Engine) installation
the instance name consists of the prefix DVEBMGS and the two-digit instance number like
any ABAP system.

The following list describes the most relevant Integrated File System paths for Java:

� /usr/sap/SID/SCSxx

This is the Java central services instance directory (Java enqueue, and message server).

� /usr/sap/SID/<instance_name>/j2ee

Contains all J2EE data for that instance including administration tools for Java (Visual
Administrator, Config Tool) and log files.

� /usr/sap/SID/SYS/jdbc

Contains links to the JDBC drivers that are used for database connectivity.

� /usr/sap/SID/SYS/global/security/data

Contains the Secure Store.

� /usr/sap/sid/<instance_name>/SDM

Contains data for the Software Deployment Manager (SDM).

The following list describes the relevant Integrated File System paths that are common to
both Java and ABAP application servers:

� /usr/sap/SID/SYS/exe/run

igs

transtrans

ABAP path
(physical/
symbolic)

tmp

tmp

j2ee

jdbc

Java path
(physical/
symbolic)

Link target

IFS Structures: SAP Web AS ABAP and Java

Central Services

Central Instance

Kernel Library

data

log

sec

workSCS<nn>

j2ee

SDM

...

workDVEBMGS<nn>

cluster

os_libs

...

usr sap <sid> SYS

jdbc

exe

global

profile

j2ee

run

sapmnt <sid> profile

global

exe

jdbc

j2ee tbx

ntv db2_classes.jar

jt400.jar

<user defined> jt400.jar

QIBM db2_classes.jar...

12 SAP NetWeaver Java on IBM i5/OS

Contains native executables from the SAP kernel and links to objects remaining in the
SAP kernel library.

� /usr/sap/sid/<instance_name>/work

Contains SAP trace files for all jobs under the instance.

� /usr/sap/SID/profile

Contains SAP instance profiles consisting of characteristics of an instance.

� /usr/sap/sid/<instance_name>/igs

Contains data for the Internet Graphic Server.

For a description of the i5/OS Integrated File System and the SAP directory structure on
i5/OS, refer to section 8.2.4 “The Integrated File System” in the IBM Redbook Implementing
SAP Applications on the IBM System i Platform with IBM i5/OS, SG24-7166.

3.3 Database

An SAP WebAS systems must contain at least one database schema. If ABAP and Java are
installed then two databases are installed. The naming of the databases differ depending on
the type of WebAS installation.

Depending on the installation type, the following libraries exist on your i5/OS system:

� For SAP WebAS Java systems:

– SAP<SID>DB: Data library for Java.
– SAP<SID>JRN: Journal receiver library that is associated with library SAP<SID>DB.

� For SAP WebAS ABAP+Java systems (Add-In):

– R3<SID>DATA: Data library for ABAP.
– R3<SID>JRN: Journal receiver library that is associated with R3<SID>DATA.
– SAP<SID>DB: Data library for Java.
– SAP<SID>JRN: Journal receiver library that is associated with library SAP<SID>DB.

For more information about SAP databases refer to section 9.5 “Basic principles of SAP
databases and SAP systems” in the IBM Redbook Implementing SAP Applications on the
IBM System i Platform with IBM i5/OS, SG24-7166.

3.4 Database access

The SAP Java Application Server accesses DB2 UDB for i5/OS using Java Database
Connectivity (JDBC) drivers. JDBC is an application programming interface (API) developed
to provide a standardized method of accessing a database from a Java application. The
JDBC API was developed by Sun™ Microsystems™ subsidiary JavaSoft™ and provides the
specifications for executing structured query language (SQL) statements from Java programs
on any database that supports SQL. Since implementations of SQL standards vary from
database to database, the database vendors and other third parties usually provide optimized
JDBC drivers specific to a particular database.

Chapter 3. Implementation of the SAP Java Application Server in i5/OS 13

3.4.1 Types of JDBC drivers

The SAP Java Application Server supports two types of JDBC drivers for DB2 UDB for i5/OS
data access: type 2 and type 4 JDBC drivers. See SAP note 654800 “iSeries™: FAQ: JDBC
driver certified for SAP on iSeries” for more information about SAP-certified JDBC drivers.

Type 2 JDBC driver
A type 2 JDBC driver uses native operating system code in conjunction with Java to access
the database. The i5/OS type 2 JDBC driver is commonly called the Native JDBC driver or
simply the Native Driver. The Native Driver uses the i5/OS call level interface (CLI) to access
the database. The native JDBC driver requests are handled by QSQSRVR jobs. These jobs
are pre-start jobs and are managed by i5/OS.

The Native Driver is highly optimized for high performance Java data access. Since the
Native Driver is not pure Java and uses i5/OS native code, it can only be used if both the Java
application and the database are on the same i5/OS partition. The Native Driver is shipped
with the Developer Kit for Java, product 5722-JV1.

Type 4 JDBC driver
Type 4 JDBC drivers are pure Java drivers and as such can run on any operating system
platform running a compliant JVM. The i5/OS type 4 JDBC driver is commonly called the
Toolbox Driver because it is shipped with the Toolbox for Java, product 5722-JC1. The
Toolbox Driver connects to DB2 UDB for i5/OS using socket connections. The Toolbox Driver
requests are handled by the i5/OS host server. The host server jobs are named
QZDASOINIT or QZDASSINIT if secure socket layer (SSL) is used. These jobs are pre-start
jobs and are managed by i5/OS.

IBM provides and fully supports an open source version of the Toolbox Driver called the
JTOpen driver. It contains the latest enhancement to the Toolbox Driver and enables you to
acquire the latest version of the Toolbox Driver without waiting for the next service release or
operating system release of Toolbox for Java. Because the JTOpen and Toolbox Drivers both
have the same codebase, they are both commonly referred to as the Toolbox Driver. We
recommend that you use the latest version of JTOpen with the SAP Java Application Server.

3.4.2 Choosing a JDBC driver

Advantages and disadvantages exist for both the native driver and the Toolbox JDBC Driver.
Choosing which driver to use depends on your landscape.

The Native Driver offers performance and integration advantages over the Toolbox Driver;
however, the Native Driver is not as flexible since it can only run on i5/OS. The Native Driver
does support remote database access from i5/OS to i5/OS, but this is not supported by SAP
for SAP applications.

The Toolbox Driver is more flexible than the Native Driver since it is pure Java. It can be used
both for local database access and remote database access, including access from
non-i5/OS clients to DB2 UDB for i5/OS. This flexibility comes at the cost of performance. In
general the Toolbox Driver does not perform as well as the Native Driver.

If your landscape is 3-tier, the Toolbox Driver is your only choice regardless of the type of
application server. In a 2-tier landscape, you can use either the Toolbox or the Native Driver.

If the Native Driver is used for the SAP Java Application Server, the Toolbox Driver is still
required. Some remote tools, such as the Config Tool, require the Toolbox Driver to access

14 SAP NetWeaver Java on IBM i5/OS

DB2 UDB for i5/OS. For more information see SAP note 657117 “iSeries: JDBC configuration
of config tool”.

In a 2-tier landscape it is possible to switch JDBC drivers after installation. For more
information about changing JDBC drivers for the SAP Java Application Server see SAP note
826449 “iSeries: Changing the JDBC driver”.

3.4.3 The JDBC URL

When a Java application uses a JDBC driver to connect to a database, the application needs
to know which JDBC driver to use. Also, the JDBC driver needs to know to which database to
connect.

A Java application has the flexibility to use different JDBC drivers to connect to different
databases. In some cases, different JDBC drivers can be used to connect to the same
database. Because of this flexibility the application must know which JDBC driver to use. For
each JDBC driver used by an application, the application must know the location of the JDBC
driver class and then register the JDBC driver class with the application. This is done using
the Config Tool.

The JDBC driver knows which database to access through a set of parameters called the
JDBC URL. The JDBC URL consists of the following three distinct parts:

� JDBC driver protocol
� Datasource
� Connection properties

The JDBC driver protocol consists of two parts: the JDBC protocol and the JDBC driver
subprotocol. The protocol is always jdbc. The subprotocol depends on the driver being used:
db2iseries for the Native Driver or as400 for the Toolbox Driver.

The datasource consists of the name of the database host or the relational database name.
Since the Native Driver is only used for local database access, the value *LOCAL can be
used for the datasource.

Connection properties force the database and database components to behave a certain
way. Multiple properties can be included in a JDBC URL. Each property is separated by a
semi-colon (“;”).

Example 3-1 shows a URL for the Toolbox Driver, connecting to the datasource my_server
and with a trace activated through a connection property.

Example 3-1

jdbc:as400://my_server;trace=true;

Example 3-2 shows a URL for the Native Driver, connecting to the local database, and with a
trace activated through a connection property.

Example 3-2

jdbc:db2iseries:*LOCAL;trace=true

Chapter 3. Implementation of the SAP Java Application Server in i5/OS 15

Changing JDBC URL
To change the JDBC URL, use the following steps:

1. Open the Config Tool.
2. Select secure store.
3. Select jdbc/pool/<sid>/Url.
4. Enter URL changes in the Value field.
5. Click Add.
6. Click Save.

The Config Tool is illustrated in Figure 3-4.

Figure 3-4 Changing the JDBC URL (©SAP AG 2006. All rights reserved.)

For more information about recommended JDBC connection properties for the SAP Java
Application Server see SAP note 654800 “iSeries: FAQ: JDBC driver certified for SAP on
iSeries”.

16 SAP NetWeaver Java on IBM i5/OS

Chapter 4. Configuration and tuning

To maximize hardware resources and to provide acceptable performance for end users, you
must properly configure and tune the application stack. The application stack includes the
application(s), Java Application Server, JVM, and the operating system. Configuring and
tuning an application stack is dependent on many things, including the following:

� Type of applications
� Amount of throughput expected
� Currency of hardware
� Amount of available hardware resources
� Concurrent workloads

Because of these dependencies, configuration and tuning varies with the environment. What
might work well in one situation might not be as optimal in another. The approach taken in this
document is to first provide recommendations that provide a stable system with acceptable
performance. Second, we provide guidelines and instructions on how to fine-tune the JVM for
your particular environment. The focus of this IBM Redpaper is for platform dependent
configuration and tuning only. For general SAP application configuration and tuning see the
appropriate SAP documentation.

Most configuration and tuning options can be categorized two ways:

� Set and forget

Set and forget options are generally set once during configuration and then never touched
again. These options are not dependent on the workload of an application so changes to
the workload have no impact. Most set and forget options are optimal for a particular
application stack regardless of workload characteristics and hardware. Many of these
options are set by default.

� Workload and hardware dependent

Workload and hardware dependent options need to be adjusted occasionally if the
characteristics of a workload change significantly or if hardware characteristics change.
For example, adding 100 additional users and upgrading to a faster processor might
necessitate adjusting workload and hardware dependent options, while set and forget
options can remain untouched.

4

© Copyright IBM Corp. 2006. All rights reserved. 17

Due to the interdependencies between configuration and tuning and the impact that one step
can have on another we recommend that you follow the instructions in this section in the
order in which they appear.

4.1 SAP Java Application Server configuration

Most SAP Java Application Server configuration is platform independent. However, in certain
areas consider the operating system, JVM, and the hardware when making configuration
changes.

The following recommendations are i5/OS-specific. For other configurations consult SAP
documentation.

� Number of server nodes
� Number of application threads per node

4.1.1 Server nodes

Server nodes are similar in function to work processes in an ABAP environment; however,
they are very different in structure. Both server nodes and work processes are responsible for
performing the real work done by an SAP system. Both receive that work from a dispatcher.

Whereas a work process is a single-threaded job that can only handle one task at a time, a
server node is a Java Virtual Machine (JVM) that by its nature is multi-threaded and can
handle multiple tasks at one time. Because of the multi-threaded nature of the server node,
the number of server nodes in an instance is quite small compared to the number of work
processes in an ABAP instance doing the same amount of work.

Since additional server nodes consume resources, do not add additional server nodes if they
are not necessary. The number of server nodes required is dependent on the load or number
of concurrent users.

Due to the scalability of the i5/OS Classic JVM, a high level of throughput can be achieved
with a limited number of server nodes. Since each server node adds significant memory and
CPU overhead, reducing the number of server nodes decreases the memory footprint and
CPU utilization. A small number of server nodes also reduces the amount of configuration
and maintenance required.

Number of server nodes
We recommend that you configure the number of server nodes based on the number of
processors dedicated to or utilized by the SAP Java Application Server. For more information
about determining the number of server nodes, see SAP note 717376 “iSeries:
Recommended Settings for SAP WebAS Java”.

Adding Server Nodes
To add a server node, use the following steps:

1. Open the SAP J2EE Engine - Config Tool (commonly referred to as the Config Tool).
2. Select the instance where the server node is to be added.
3. From the menu select Server → Add Server.
4. Click Yes if prompted to add another server.
5. Click Ok.

Figure 4-1 on page 19 shows the Config Tool being used to add a server node.

18 SAP NetWeaver Java on IBM i5/OS

Figure 4-1 Adding a server node (©SAP AG 2006. All rights reserved.)

If your SAP Java Application Server is configured to use the Native JDBC driver, change the
driver location of the newly created server node. Use the following steps:

1. Open the Config Tool.
2. Expand the new server node.
3. Expand managers.
4. Select ConfigurationManager.
5. Select rdbms.driverLocation.
6. Enter the location of the Native JDBC driver jar file.
7. Click Set.
8. Click Save.

Figure 4-2 on page 20 shows the Config Tool being used to change the location of the JDBC
driver.

Chapter 4. Configuration and tuning 19

Figure 4-2 Changing the JDBC driver location of a new server node (©SAP AG 2006. All rights reserved.)

4.1.2 Application threads per server node

A server node in the SAP Java Application Server is a multi-threaded job that carries out the
real work of the SAP Java Application Server. Each thread can be thought of as a light-weight
job.

The server node application threads are responsible for completing the work submitted by the
end user. The number of application threads in a server node is configurable and determines
the amount of work an individual server node can process at one time. Since increasing the
number of threads increases resource usage and might cause resource contention (locking),
it is important to set the highest number of threads possible without a negative impact on the
system.

Number of application threads per server node
The number of application threads per server node is determined by the load on the SAP
Java Application Server. The more load or users supported by the application server, the
higher the number of application threads.

For more information about configuring the number of application threads per node see SAP
note 717376 “iSeries: Recommended Settings for SAP WebAS Java”.

20 SAP NetWeaver Java on IBM i5/OS

Changing the number of threads per node
Use the following steps to change the number of threads per node:

1. Open the Config Tool.
2. Expand the instance.
3. Expand the server node.
4. Expand managers.
5. Select ApplicationThreadManager.
6. Select InitialThreadCount.
7. Change value.
8. Click Set.
9. Click Save.
10.Repeat these steps for MaxThreadCount and for MinThreadCount.

Figure 4-3 shows the Config Tool being used to adjust the number of application threads.

Figure 4-3 Adjusting the number of application threads (©SAP AG 2006. All rights reserved.)

4.2 Minimum hardware requirements

Application configuration, such as the number of server nodes and the number of application
threads, have an impact on both memory and processor usage. Since the application
configuration is needed to determine the memory needs, the section discussing minimum
hardware requirements follows the section describing SAP Java Application Server
configuration.

Chapter 4. Configuration and tuning 21

The minimum hardware requirements are the minimum amount of hardware resources
required to meet the demand of a particular workload. This includes processors, memory,
disk storage, communication devices, and so on.

Only physical memory and processors are discussed in this document. No amount of
configuration or tuning can fully compensate for not meeting minimum hardware
requirements. All applications require a certain amount of resources in order to operate.

Consider the following items when determining the resources available to an application:

� Running an application in an environment that does not meet minimum hardware
requirements leads to an increased risk of functional and performance problems if the
application runs at all.

� Resource requirements vary from application to application and vary within the same
application depending on configuration, workload, and so on.

Physical memory
Memory requirements are dependent on many factors. Consider the following items when
determining memory needs for the SAP Java Application Server:

� Memory requirements include the memory necessary for Java (GC, JIT, JVM), the
operating system, and the application to start and function properly.

� Memory usage in the SAP J2EE environment is coupled tightly with the number of users
(throughput).

� Memory usage increases as the number of users increase.

� Additional memory beyond minimum requirements is recommended to act as a buffer.

For more information about physical memory requirements see SAP note 717376 “iSeries:
Recommended Settings for SAP WebAS Java”.

Processors
IBM OS/400 V5R2 is the minimum operating system release supported by SAP for their Java
Application Server. All processors supported by IBM for V5R2 and later releases are
sufficient to run the SAP Java Application Server. The number of processors required varies
by workload.

For more information about processor requirements see SAP note 717376 “iSeries:
Recommended Settings for SAP WebAS Java”.

4.3 Operating system configuration recommendations

There are many options for configuring i5/OS for running SAP applications. Describing all of
the configuration options for i5/OS as it pertains to SAP applications is beyond the scope of
this document, but the following options exist that are helpful and specific for SAP J2EE
workloads:

� Shared Memory Pools
� Performance Adjuster
� Max Active

22 SAP NetWeaver Java on IBM i5/OS

4.3.1 Shared memory pools

An i5/OS memory pool is a division of main or auxiliary storage. On i5/OS, all main storage
can be divided into logical allocations called memory pools. There are two types of memory
pools on i5/OS: shared memory pools and private memory pools. Multiple subsystems can
share the shared memory pools. Private memory pools only allow one subsystem. Most SAP
applications run in the *BASE memory pool by default.

The use of a garbage collector in the Java language causes Java applications to be more
sensitive to inadequate memory than other languages such as C and C++. When the garbage
collector runs, it needs to access all of the objects in the Java heap, even if the objects were
not recently used. If the Java heap is not entirely in memory, the operating system must fault
the pages back in memory during a garbage collection cycle. When there is an excessive
amount of page faulting due to a large portion of the heap not being in memory, the garbage
collector takes longer to run and the heap size continues to grow even as the application
threads continue to do their work. This has the potential to result in bad performance and out
of memory errors. Other jobs running in the same pool as the Java environment might also
cause the Java heap to be paged out of memory, which could result in poor performance. In
addition, Java applications can take memory resources away from other jobs, affecting their
performance.

Because Java applications are very memory sensitive and variations in workloads exist, we
recommend that you initially run each SAP Java Application Server in its own shared memory
pool (not *BASE), especially for a production environment. This allows you to monitor and
determine the memory usage characteristics of the workload, especially the JVM garbage
collector. See section 4.6.1, “Analyzing the JVM garbage collector” on page 28 for more
information. The amount of memory in the memory pool should initially meet the minimum
memory recommendations, but can be reduced if memory is not being utilized.

Regardless of whether the SAP Java Application Server is running the base pool or in its own
shared memory pool, the amount of memory available to the application server should always
meet the minimum requirements as recommended or determined by monitoring the workload
characteristics. This is especially important when many applications are running in the same
memory pool.

For more details on memory pools and Java, refer to the “IBM eServer™ iSeries IBM
Developer Kit for Java” publication, specifically the section “Tune Java program performance
with the IBM Developer Kit for Java” in the iSeries Information Center.

Configuring shared memory pools in an SAP environment
Use the following steps to configure shared memory pool for an SAP environment:

1. From the i5/OS command line, type the WRKSHRPOOL command to view the shared
pool settings on the system.

2. Select a pool, and set the initial size and activity level according to the SAP J2EE
minimum requirements. Refer to SAP note 717376 “iSeries: Recommended Settings for
SAP WebAS Java” for the minimum requirements.

3. Type the following command to assign the new memory pool to your SAP subsystem:

CHGSBSD SBSD(R3<sid>400/R3_<nn>) POOLS((<pool id> *SHRPOOL<n>)

4. Type the following command to direct the SAP jobs to the new memory pool:

CHGRTGE SBSD(R3<sid>400/R3_<nn>)
SEQNBR(1)
PGM(QSYS/QCMD)
CLS(R3<sid>400/R3_<nn>)

Chapter 4. Configuration and tuning 23

POOLID(<pool id>)
THDRSCAFN(*SYSVAL)
RSCAFNGRP(*NO)

5. Restart the changed subsystem.

4.3.2 Performance adjuster

The performance adjuster allows i5/OS to automatically manage the shared memory pools
without any user interaction. By default the performance adjuster is turned on and set to
adjust memory pools automatically at Initial Program Load (IPL).

We recommend that you turn off the performance adjuster by setting the i5/OS system value
QPFRADJ to 0.

It is important that the SAP Java Application Server always has the minimum required
memory available. Running with less than the recommended minimum can lead to functional
and performance problems.

The Performance Adjuster attempts to balance memory between memory pools based on
historical data. In certain situations the Performance Adjuster can allocate less memory than
is required for the SAP Java Application Server.

If the performance adjuster is set (the QPFRADJ system value is not set to 0), then the
shared pool containing SAP Java Application Server must have a minimum size set
according to the SAP system's minimum requirements.

The performance adjustment system value is QPFRADJ. When this system value is set to ‘2’
or ‘3,’ the system periodically checks the performance of all the active shared pools and
adjusts or rearranges the storage and activity levels as needed.

The settings on the WRKSHRPOOL display affect the performance adjuster algorithm.

4.3.3 Max active

The activity level of a storage pool refers to the number of active threads within that storage
pool. If the activity level is too low, a thread's context is paged out of main storage and
marked as ineligible for a short time. This affects the performance of your application.

We recommend initially setting the activity level of a storage pool for an SAP J2EE installation
to at least 500. Increase this value as necessary when threads are marked as ineligible. You
can monitor the number of threads becoming ineligible by using the WRKSYSSTS command
from the i5/OS command line, as follows:

1. From the i5/OS command line, type the WRKSYSSTS command.
2. Press F11 once to view the Wait → Inel and Active → Inel columns.

The resulting columns should have a value of 0. If the value is greater than 0, then increase
the maximum active value (max active). Any adjustments to max active take place
immediately and do not require restarting the application.

For more details see the memory pool activity level topic in the iSeries Information Center
located at the following Web address:

http://publib.boulder.ibm.com/infocenter/iseries/v5rv/index.jsp

24 SAP NetWeaver Java on IBM i5/OS

http://publib.boulder.ibm.com/infocenter/iseries/v5rv/index.jsp

Changing Max Active
Use the following steps to change the maximum active value:

1. From the i5/OS command line, type the WRKSYSSTS command.
2. Change the activity level for a specific memory pool under the Max Active column.

Figure 4-4 shows the maximum active threads and the number of threads in each thread
state using the Work with System Status (WRKSYSSTS) command.

Figure 4-4 Using WRKSYSSTS to monitor ineligible threads and to adjust max active

4.4 IBM i5/OS Classic JVM global properties

Global JVM system properties minimize configuration and maintenance by setting common
JVM system properties in one place for all JVMs. Global JVM properties are set using the
system default properties file. Any JVM system properties specified in the system default
properties file are applied to all JVMs running in a partition. However, any or all JVM
properties can be overridden by a JVM specific properties file or by command line
parameters.

4.4.1 System default properties file

The system default properties file applies a value that needs to or should be applied to all
JVMs in a partition. The system default properties file is named SystemDefault.properties and
is located at /QIBM/UserData/Java400. You can update the file with Edit File (EDTF)
command or any text editor with access to the Integrated File System.

4.4.2 Activating the class verification cache for all JVMs

Since the i5/OS Classic JVM is implemented in System Licensed Internal Code (SLIC), all
executables must be verified to see if they are safe to run. For Java this means that every
Java class must be verified. For a large Java application thousands of classes might need to
be verified. All of this verification impacts startup time. To improve startup time activate a
class verification cache.

The SAP Java Application Server is now installed with the class verification cache activated
for individual JVMs. See SAP note 717376 “iSeries: Recommended Settings for SAP WebAS
Java”. We still recommend that you activate the verification cache globally to improve the
startup time of all JVMs running in a partition.

Chapter 4. Configuration and tuning 25

The following three properties must be used together in order to activate the class verification
cache.

� os400.define.class.cache.file=/QIBM/UserData/Java400/QDefineClassCache.jar

The name of a valid Java Archive (JAR) file that is used as a cache.

� os400.define.class.cache.hours=9999

The amount of time (in hours) that a Java program object persists in the cache.

� os400.define.class.cache.maxpgms=40000

The number of Java program objects that the cache can hold.

For more information about using caches for class loading, see the Java performance
considerations on the iSeries Information Center.

4.4.3 Other global properties

Set the following global properties:

� java.awt.headless=true

Specifies whether the Abstract Windowing Toolkit (AWT) API operates in headless mode
or not. Headless mode is specified for servers that do not have a graphic subsystem, for
example graphic card, monitor, and so on.

� user.timezone=<local_timezone>

Specifies the time zone in which the JVM is running. Visit the following Web address for
valid time zone values:

http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm
.websphere.iseries.doc/info/ae/ae/adrtzval.htm

4.5 IBM i5/OS Classic JVM system properties

JVM system properties change the behavior of a JVM. Most JVM system properties are set
and forget and never need changing regardless of workload. Other properties tune the JVM
and may occasionally need adjusting. Properties used for tuning can be impacted by the
behavior of the application, workload, and other factors.

Describing all JVM system properties is beyond the scope of this Redpaper. The properties
described here are important when running and tuning the SAP Java Application Server on
i5/OS. Set each of the following properties for the individual SAP Java Application Server
JVMs. For more information about other JVM system properties refer to the IBM i5/OS
Information Center located at the following Web address:

http://publib.boulder.ibm.com/infocenter/iseries/v5rv/index.jsp

For more information about setting individual JVM properties for the SAP Java Application
Server, refer to SAP note 717376 “iSeries: Recommended Settings for SAP WebAS Java”.

4.5.1 Set and forget properties

Set the following properties only once. They never need adjusting:

� java.compiler=jitc and os400.run.mode=jitc

26 SAP NetWeaver Java on IBM i5/OS

http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5rv/index.jsp

Specifies whether code is compiled with the Just-In-Time (JIT) compiler. The property
java.compiler overrides os400.run.mode.

� os400.disable.explicity.gc

A Java program can explicitly invoke the JVM garbage collector. Invoking the garbage
collector through the Java program directly instead of allowing the JVM to manage the
garbage collector can have a negative impact on JVM performance. Disabling explicit
garbage collection allows the JVM to run more efficiently.

� class verification cache

Due to the large number of classes loaded by the server and dispatcher JVM, individually
set the class verification cache for these JVMs. For a description of the class verification
cache see section 4.4.2, “Activating the class verification cache for all JVMs” on page 25.
For more details on setting the class verification cache for individual JVMs refer to SAP
note 717376 “iSeries: Recommended Settings for SAP WebAS Java”.

4.5.2 Tuning properties

The following properties need to be adjusted occasionally. They are dependent on factors
such as the application workload, hardware resources, and configuration:

� Xmx (maximum heap size)

This parameter is the maximum size the heap is allowed to grow. The heap does not
necessarily grow to the size set with this parameter. Ideally the heap should not grow to
the maximum heap size value. Set the maximum heap size as a safety precaution in the
unlikely event of abnormal heap growth. Under normal circumstances the heap should
never grow to the size specified with maximum heap size. Setting this property depends
on hardware, workload, and other variables. For more information about setting maximum
heap size for a specific environment see SAP note 717376 “iSeries: Recommended
Settings for SAP WebAS Java”.

� Xms (initial heap size)

This parameter is the initial heap size value, which is the threshold that the garbage
collector uses to know when to initiate a garbage collection cycle. The initial heap size
does not refer to the size of the heap at any point during the life of the JVM. The initial
heap size value is used to tune the JVM. Setting this property depends on hardware,
workload, and other variables. For more information about setting initial heap size for a
specific environment see SAP note 717376 “iSeries: Recommended Settings for SAP
WebAS Java”.

4.5.3 Modifying JVM system properties

Use the following steps to modify the JVM system properties:

1. Open the SAP J2EE Engine - Config Tool.
2. Expand cluster-data.
3. Expand the instance.
4. Click on the component to be changed.
5. Modify or add the property in the pane on the right.
6. To set the bootstrap JVM properties, click the Bootstrap tab.

Figure 4-5 on page 28 shows the Config Tool being used to change the JVM properties for a
server node.

Chapter 4. Configuration and tuning 27

Figure 4-5 Changing JVM system properties for a server node (©SAP AG 2006. All rights reserved.)

4.6 Fine tuning the IBM i5/OS Classic JVM

By meeting the minimum requirements and applying the recommended settings, your SAP
Java Application Server should have acceptable performance. Due to the variables involved
and the differences between landscapes it is impossible to provide one set of
recommendations that is ideal for every situation. You might find that it is necessary to tune
the JVM in order to get the desired performance. As your business changes and your
workload characteristics change significantly you can find that your JVM needs occasional
tuning as well.

No one thing impacts the JVM performance more than the garbage collector. By properly
adjusting the garbage collector settings your JVM runs more efficiently with an optimal
balance between memory consumption and CPU utilization.

4.6.1 Analyzing the JVM garbage collector

There are many options available when it comes to analyzing the behavior of the JVM
garbage collector. Some methods such as using Performance Explorer require additional
products and tend to provide low level information.

28 SAP NetWeaver Java on IBM i5/OS

Look at the output of the garbage collector to get a quick analysis of the garbage collector.
The JVM prints garbage collector information when the verbose:gc system property is set. By
default the SAP Java Application Server has this parameter set for each server JVM. The
garbage collector output is printed to standard out, but is redirected by SAP to the work
directory and is found in files named std_<component>, where <component> is the server,
dispatcher, and so on. See section 3.2, “Integrated File System” on page 11 for the location of
the work directory.

You can view the garbage collector output using any text viewer or editor. A pattern matching
tool, such as grep, is helpful but not necessary. Grep is available on i5/OS through the PASE
terminal, which is started by running CALL QP2TERM from the command line.

For information about other garbage collector analysis options see the IBM Redbook Java
and WebSphere Performance on IBM Eserver iSeries Servers, SG24-6256.

Understanding garbage collector output
Each time the garbage collector runs (this is called a garbage collection cycle) a multi-line
entry is made in the log. Entries for each garbage collection cycle include the following data:

� Cycle number
� Collection start time
� Reason for collection
� Number of objects on the heap
� Number of objects collected
� Size of objects collected
� Number and types of references
� Cycle time
� Size of the heap
� Amount heap has grown since garbage collection cycle started
� Cycle ending time

Figure 4-6 shows a portion of the garbage collector output for a server JVM running the SAP
Java Application Server.

Figure 4-6 JVM garbage collector output

Looking at the garbage collector output gives you a good idea of how the garbage collector
and the JVM are behaving. Start by looking for obvious problems, that include the following:

� Abnormal heap growth
� Extremely long cycle times
� Garbage collector not keeping up
� Unexpected reasons for garbage collection

Chapter 4. Configuration and tuning 29

After you check for the obvious tuning problems, and correct if necessary, then analyze the
frequency and duration of garbage collection cycles.

Heap growth
After a Java system comes up and is in a steady state, the size of the Java heap should
remain within a fairly consistent range. Large deviations that are not the result of a change in
workload characteristics are an indication that the garbage collector is improperly tuned. You
can identify abnormal heap growth by looking at the current heap (KB) field. Compare
multiple cycles to identify an anomaly.

Figure 4-7 shows an example of runaway heap growth. The data in the figure is the garbage
collector output from server0 and is formatted using the following grep command from the
PASE terminal:

grep “current heap” std_server0.out

Figure 4-7 Abnormal heap growth

Possible reasons for abnormal heap growth include:

� Not enough memory available to the JVM (an increase in non-database paging can also
occur).

� Initial heap size too small, leading to the situation where the garbage collector cannot
keep up.

Garbage collection cycle time
Even though the garbage collector itself is multi-threaded, only one garbage collection cycle
can run at one time. During the time that the garbage collector is running, the Java heap
continues to grow. Extremely long cycle times allow the Java heap to grow more than it
should, which can lead to a situation where the garbage collector cannot keep up or the heap
grows too large. Large fluctuations in the length of cycle time might also indicate that the
garbage collector is not well tuned.

Figure 4-8 on page 31 shows an example of extremely long cycle times and large fluctuations
in cycle time. The data in the figure is the garbage collector output from server0. It is
formatted using the following grep command from the PASE terminal:

grep “collect (mill” std_server0.out

30 SAP NetWeaver Java on IBM i5/OS

Figure 4-8 Large fluctuations and extremely long cycle times

Possible reasons for extremely large cycle times or large fluctuations in cycle time include the
following:

� Not enough memory available to the JVM, which causes a significant portion of the Java
heap to be paged to disk. Extremely long cycle times are usually accompanied by a large
increase in heap size.

� Initial heap size too small, leading to the situation where the garbage collector cannot
keep up.

Garbage collector efficiency
Due to the asynchronous nature of the garbage collector, see section 2.2, “JVM Garbage
collection” on page 7 for a discussion on the garbage collector, the heap continues to grow
during a garbage collection cycle. This offers the advantage that a user is not interrupted
when the garbage collector is running. However, it can lead to a situation where the heap
grows faster than the garbage collector can collect.

The garbage collector needs to have enough time to complete before the next cycle begins.
Symptoms of a garbage collector that cannot keep up include garbage collection cycles that
are stacked up and reasons other than “threshold allocation reached” for the starting
collection reason.

Figure 4-9 on page 32 shows an example of stacked garbage collection cycles. The data in
the figure is the garbage collector output from server0 and is formatted using the following
grep command from the PASE terminal:

grep “starting collection” std_server0.out

Chapter 4. Configuration and tuning 31

Figure 4-9 Stacked garbage collection cycles

The main reason that the garbage collector cannot keep up is that the initial heap size is too
small. Increase the heap size until this condition no longer occurs.

Reasons for garbage collection invocation
Under normal circumstances the garbage collector is only invoked when the threshold,
indicated by the initial heap size, is reached. See section 2.2, “JVM Garbage collection” on
page 7 for more discussion on the garbage collector design. The only exception to this is
garbage cycle 1 (GC 1). The garbage collection reason for GC1 is always “external thread
attached”. For all other garbage collection cycles the reason should be “threshold allocation
reached”. Following are other reasons for garbage collection:

� Maximum allocation reached
� Stop the world collection

Figure 4-10 shows an example of what the garbage collector output looks like when the
garbage collector is invoked for different reasons. The data in the figure is the garbage
collector output from server0 and is formatted using the following grep command from the
PASE terminal:

grep “starting collection” std_server0.out

Figure 4-10 Garbage collector output showing different reasons for invocation

A reason of Maximum allocation reached indicates that the maximum heap size is set too
low. The maximum heap size should not be used to limit the size of the heap and should be

32 SAP NetWeaver Java on IBM i5/OS

set large enough that the size of Java heap does not approach this value. If the size of the
heap repeatedly reaches the maximum heap size value, then there is an increased chance
that excessive “out of memory” errors can occur. The reason for “maximum allocation
reached” is almost exclusively due to the maximum heap size being set too low. The
maximum heap size system property is discussed in more detail in section 4.5.2, “Tuning
properties” on page 27.

A reason of stop the world indicates that the garbage collection cycle is taking too long or that
the heap is reaching critical mass. A “stop the world” collection forces all Java threads to
suspend while a collection is performed. This causes the user to experience long response
times and is generally unacceptable. Reasons for “stop the world” collections include the
following:

� Garbage collector unable to keep up
� Insufficient memory available to the JVM
� Maximum heap size set too low

Frequency and duration of garbage collection cycles
The garbage collector should be tuned so that there is a balance between the duration of
garbage collection cycle and the frequency of those cycles. A garbage collection cycle has
significant overhead in the form of CPU consumption. Running the garbage collector too
frequently because of the initial heap size settings can consume CPU unnecessarily. A rule of
thumb is that the garbage collector should be idle more than half of the time a JVM is running
under a load. A quick way to determine this is to add up the lengths of all of the garbage
collection cycles that occurred during an arbitrary minute and then subtract that from 60
seconds. Doing this for a few samples gives you a pretty good idea whether your application
is spending too much time collecting garbage.

In Figure 4-11 you can see that the garbage collection cycle time ranges from between four
and five seconds. The data in the figure is the garbage collector output from server0 and is
formatted using the following grep command from the PASE terminal:

grep “collect (mill” std_server0.out

Figure 4-11 Determining garbage collection cycle time

Chapter 4. Configuration and tuning 33

In Figure 4-12 you can see that the number of garbage collection cycles per minute is roughly
two per minute. The data in the figure is the garbage collector output from server0 and is
formatted using the following grep command from the PASE terminal:

grep “collect (mill” std_server0.out

Figure 4-12 Number of garbage collection cycles per minute

Using these estimates, you can calculate that the garbage collector is running roughly
between 8 and 15 seconds out of each minute. Because this is less than 50% of the time, this
JVM is adequately tuned for this workload.

Though not as common, it is important that the garbage collector does not run too
infrequently. Under a load the garbage collector should run at least once a minute. If the
garbage collector does not run frequently enough, there is an increased chance that the heap
becomes too large. However, under a light load or no load at all the Java heap grows at a
reduced rate, and the garbage collector might not run for many minutes. This is normal
behavior.

For more advanced and detailed analysis of the garbage collector, use the IBM Performance
Tools for iSeries (5722-PT1) to measure the amount of CPU consumed by the garbage
collector relative to the other jobs on the system. If you are interested in this level of analysis
refer to the “IBM eServer iSeries IBM Developer Kit for Java”, section “Tune Java program
performance with the IBM Developer Kit for Java” in the IBM iSeries Information Center.

4.6.2 Tuning the JVM garbage collector

Before you make any attempts at tuning the JVM, it is very important that your system meets
the minimum hardware requirements. No amount of JVM tuning can fully compensate for
inadequate hardware, especially memory. We also recommend that you set all parameter
values directed and complete all other configuration. Tuning the JVM is the last step that
takes place.

Tuning the JVM is actually tuning the JVM garbage collector. For a discussion on the JVM
garbage collector, see section 2.2, “JVM Garbage collection” on page 7. Keeping in line with
the i5/OS core value of simplicity, tune the garbage collector by adjusting only one parameter,
the initial heap size (Xms). There might be occasions to adjust the maximum heap size
(Xmx); however, if it is set properly to begin with, maximum heap size does not come into play
when tuning the garbage collector.

34 SAP NetWeaver Java on IBM i5/OS

To tune the garbage collector adjust the initial heap size until you find the right balance
between the duration of a garbage collection cycle and the frequency of a garbage collection
cycle. The initial heap size determines how often the garbage collector runs. With a small
initial heap size the garbage collector runs more frequently on a smaller heap. A larger initial
heap size causes the garbage collector to run less frequently but on a larger heap, which
causes the garbage collector to run longer during a cycle. Finding a balance between
frequency and duration is the key to an optimally tuned GC.

Unfortunately there are no magic numbers when it comes to frequency and duration of the
garbage collector, which is due to the endless differences between applications and their
behavior. This makes tuning the garbage collector more of an art than a science. Following
are some guidelines that can make tuning the GC easier.

� Make sure that your system meets the minimum hardware requirements.

� Set all parameter values as directed, and make sure all other configuration is complete.

� Try to analyze data that is collected when the system is under a high load. A constant
workload is best but normally not achievable in a real world environment.

� Start with a reasonable initial heap size, and work your way up. Do not start high and then
work your way down.

� Increase initial heap size until the current garbage collector cycle can finish before the
next one needs to begin.

� Try to balance the frequency and duration of garbage collection cycles so that the garbage
collector runs less than 50% of the time.

The IBM Performance Tools for iSeries (5722-PT1) contains useful tools for analyzing and
tuning a JVM. However, in a real world environment this level of tuning is normally not
required. If you are interested in other methods of analyzing the JVM, refer to the “IBM
eServer iSeries IBM Developer Kit for Java” section “Tune Java program performance with
the IBM Developer Kit for Java” in the iSeries Information Center.

Chapter 4. Configuration and tuning 35

36 SAP NetWeaver Java on IBM i5/OS

Chapter 5. Debugging Java applications

The SAP Java Application Server offers the possibility to remotely debug deployed J2EE
applications. The preferred tool for debugging (and developing SAP J2EE applications) is the
SAP NetWeaver® Developer Studio, an Eclipse-based integrated development environment
(IDE). However, any Java IDE that supports the Java Debug Wire Protocol (JDWP) should be
able to connect to the JVM and enable remote debugging.

The installation of SAP NetWeaver Developer Studio (Windows® only) is on the SAP
NetWeaver 04 SR Java DVD (for SAP NetWeaver 04 based systems) or on the SAP
NETWEAVER 2004S SR 1 Developer Workplace™ DVD (for SAP NetWeaver 04S based
systems). Make sure that the version of Developer Studio that you use matches the version of
the SAP NetWeaver system and matches its support package level. The patches for the SAP
Developer Studio are on the SAP software marketplace.

5

© Copyright IBM Corp. 2006. All rights reserved. 37

5.1 Enabling debug operations

Use the following instructions to enable debug operations:

1. To enable debug operations, start the SAP Java Application Server in debug mode, using
the following steps:

a. Open the Config Tool.

b. Expand the instance.

c. Expand the server node.

d. In the right pane, select the debug tab.

2. Select cluster-data → instance_ID<instance ID number> → server_ID<instance ID
number>50. The instance ID number is a seemingly random number. A dialog opens,
similar to Figure 5-1.

Figure 5-1 Debug settings (©SAP AG 2006. All rights reserved.)

3. Click the Debug tab.

4. Select the check box located next to Debuggable.

5. Select the check box located next to Enabled debug mode.

6. Use the pull-down list to locate and choose a debug TCP/IP port. The default should be
acceptable in most cases. Remember the value because it connects to the Eclipse-based
SAP Netweaver Developer Studio.

38 SAP NetWeaver Java on IBM i5/OS

7. Save and restart the SAP Java Application Server.

The JVM of the server process is started with the following additional options to enable
debug:

� -Xdebug
� -Xnoagent
� -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=1024

These options are automatically set for the server JVM when the debug settings are set. You
do not need to set them manually. However, it is necessary to understand them, especially
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=1024, which is the important
option. It causes the JVM start in debug mode and to open a remote debug connection
running the Java Debug Wire Protocol (JDWP). Some options are set, including the port for
incoming debug connections, in Figure 5-2 it is 1024.

5.1.1 Debug using the SAP NetWeaver Developer Studio

Use the following steps to use the SAP NetWeaver Developer Studio to remotely debug a
Java application:

1. In SAP NetWeaver Developer Studio, start the debug session by selecting Run → Debug.
2. As shown in Figure 5-2, select “Remote Java Application”.
3. Specify your system host and debug port (as configured before).

Figure 5-2 Debug configuration (©SAP AG 2006. All rights reserved.)

4. Press Debug to start debugging. The SAP Developer Studio connects to the server VM
and displays all threads.

Chapter 5. Debugging Java applications 39

5. Perform typical debug operations, such as setting breakpoints, evaluating variables, and
so on.

40 SAP NetWeaver Java on IBM i5/OS

Chapter 6. Problem analysis

Occasionally problems can occur that prevent the SAP Java Application Server from starting
or running properly. You can usually determine the cause of these problems by analyzing log
and trace files. This section describes how to use logs and traces to determine the cause of a
problem.

6

© Copyright IBM Corp. 2006. All rights reserved. 41

6.1 Locations for logs and traces

There are two important places to find logs and traces for the SAP Java Application Server:
the work directory and the log directory. Traces of the SAP system process control layer and
kernel are in the work directory. See section 3.2, “Integrated File System” on page 11 for the
location of the work directory.

6.1.1 Work directory

Following are important files in the work directory:

� dev_jcontrol - trace file for control process JCONTROL

� dev_<processname> - trace file for control layer of a Java process

� jvm_<processname> - trace file for JVM output of a Java process

� std_<processname> - trace file for stdout output of Java processes

� <processname> can be:

– bootstrap

– bootstrap_ID<instance ID number>

– dispatcher

– server<n>, where <n> is the number of the server node

– sdm

The named files contain technical traces and error messages and are readable with a
standard text editor or by using SAP transaction AL11, if you are running a Java Add-In
System.

6.1.2 Log directory

For the Java processes, that is dispatcher and server nodes, you can find Java log files in the
directory <instance_directory>/j2ee/cluster/<process>/log, for example,
/usr/sap/J45/JC05/j2ee/cluster/dispatcher/log. A helpful log file in this directory is the
defaultTrace.<number>.trc, where <number> is a number from 0 to 10 (depending on the log
configuration). This trace file is split into smaller files, but it eventually wraps.

These logs contain text entries in a special SAP log viewer format, and are hard to read with
a simple text viewer/editor. To get a comfortable view on these log files, use the log viewer of
the visual administrator. Another way to look at the Java log entries is using the NetWeaver
Administrator in the Web Browser. The following instructions tell you how to start the log
viewer:

Use the following steps to start the log viewer:

1. Log on with visual administrator.
2. Open an arbitrarily chosen server node.
3. Click the Log Viewer Service. The log viewer opens, as shown in Figure 6-1 on page 43.

42 SAP NetWeaver Java on IBM i5/OS

Figure 6-1 Visual admin logviewer view (©SAP AG 2006. All rights reserved.)

Both the log viewer and the NetWeaver Administrator tools are only available when the SAP
Java Application Server is up and running.

To have a look at the logfiles when the Java Application Server is down, you can use the
standalone logviewer tool. It can be found in the directory /usr/sap/<SID>/<instance
ID>/j2ee/admin/logviewer-standalone. There you find a documentation about its usage,
“Logviewer_Userguide.pdf”. It is possible to configure a standalone logviewer server or to just
use the tool lv.bat for reading logs in the command line.

A user might look in the work directory when JVMs does not start or when errors occur early
in startup. The bootstrap logs are a good place to start. Also, for analyzing garbage collection,
the relevant log files are in the work directory. Sometimes both places contain helpful
information, for example, a Java log and some stdout output of the JVM.

6.2 Analyzing startup problems

Occasionally the SAP Java Application Server does not start. This can happen, for example,
after you apply patches or make configuration changes that cause the Java Application
Server to not start. In this section, we provide a common methodology of how to isolate such
issues. Performing the following steps to resolve such issues in most cases.

1. Stop the Java instance.

Chapter 6. Problem analysis 43

2. To prevent distractions by old log entries that might detract from the real cause of the
problem, we recommend that you delete or move the old log and trace files. All log and
trace files are automatically created on startup if they do not exist.

3. Try to start the SAP Java Application server. If no Java job (JCONTROL, JLAUNCH,
BOOTSTRAP, DISPATCH, SDM or SERVER<n>) comes up in the instance's subsystems
and no dev_jcontrol file is created in the work directory, check for spoolfiles of <SID>ADM,
<SID>OFR or <SID><instance number> to get an indication about the cause.

If a dev_jcontrol can be found, this is a good point for the start of the error analysis. In the
dev_jcontrol, you should be able to retrace the execution of the bootstrap processes and the
subsequent start of the Java work processes (dispatcher, servers and SDM).

If the problem occurs already during bootstrap, that is in dev_jcontrol there is no indication of
starting the Java worker processes, analyze the trace files for the bootstrap processes (as
described in 6.1, “Locations for logs and traces” on page 42).

If the Java processes start but go down during the initial phase (for example, before reaching
the state “running”, which can be checked in dev_<process>), the first step is to analyze their
log files in the work directory as described in section 6.1, “Locations for logs and traces” on
page 42.

For both kinds of problems (during bootstrap or during startup of Java server processes) the
most important thing to check, in the dev_<process> logfile, is if the JVM is created
successfully.

If the JVMs are created successfully and no issue occurs during the bootstrap processes,
check the Java log files, in particular the file defaultTrace.<n>.trc, for Java error messages
that indicate the root cause. These files are difficult to read in a standard text editor, but
section 6.1, “Locations for logs and traces” on page 42 mentions some tools to use to convert
the files into human-readable text.

6.3 Troubleshooting data access problems

Occasionally you need to collect data to analyze data access problems. Accessing the
database from a Java application involves multiple layers of software components. All of
these components must perform their respective jobs without error in order for the database
to successfully execute the request that the application makes. Problems with data access
can occur anywhere in this stack and in some cases have nothing to do with the database
itself. See SAP note 934468 “JDBC Error Analysis”.

SAP provides various tools at the application level to help in diagnosing data access
problems, including Open SQL Monitors and SQL Trace. For more information about some of
these options visit the following Web site:

https://www.sdn.sap.com/irj/sdn/developerareas/java

6.3.1 JDBC traces

A JDBC driver trace can determine what database request the application makes. Knowing
what the application is asking the database to do assists with isolating and determining the
cause of a problem. Activating a JDBC trace impacts performance and can create large
amounts of data. Activate a JDBC trace only when you want to resolve a data access
problem.

44 SAP NetWeaver Java on IBM i5/OS

https://www.sdn.sap.com/irj/sdn/developerareas/java?rid=/webcontent/uuid/f66c5494-0901-0010-fbbf-ad8eac054dc6

Depending on the JDBC driver and the type of trace, you can activate a trace in one of three
ways:

� Adding a connection property to the JDBC URL.
� Setting a JVM system property.
� Adding an environment variable.

By default, the output of most JDBC traces is printed to the standard output stream,
commonly referred to as System.out. Typically System.out corresponds to the display.
However, the host environment, application, or the user can specify another output
destination.

The SAP Java Application Server usually redirects this output to a file in the Integrated File
System. The location of this file depends on the job.

� For a server node the output of the trace is redirected to the defaultTrace.trc files, which
are located at /usr/sap/J45/JC05/j2ee/cluster/server<n>/log, where <n> is the server node
number.

� For the bootstrap jobs, the output is redirected to jvm_bootstrap<id>.out, where <id> is the
identification number of the bootstrap process. This outfile is found in the work directory.
See section 3.2, “Integrated File System” on page 11 for the location of the work directory.

Whenever trace output is printed to System.out, change the SAP Java Application Server
logging to allow this data to be logged.

To change the logging option for an instance perform the following steps:

1. Open the SAP J2EE Engine - Config Tool (commonly referred to as the Config Tool).
2. Expand cluster-data.
3. Expand the instance.
4. Click on the component to be changed.
5. In the right pane, select the Log Configuration tab.
6. Select the Locations tab.
7. Expand ROOT LOCATION.
8. Expand System.
9. Select out.
10.In the far right pane, click the pull-down menu for “Severity”, and select “Info”.
11.Click Save.

Figure 6-2 on page 46 shows the Config Tool being used to change the logging options for a
server node.

Chapter 6. Problem analysis 45

Figure 6-2 Changing the logging options for System.out (©SAP AG 2006. All rights reserved.)

For most traces, you also have the option of redirecting the output to an Integrated File
System file of your choice.

6.3.2 Native JDBC driver traces

The Native Driver supports many different levels of tracing from basic user level traces to
more detailed developer level traces. Only user level traces are covered here.

Basic user level trace
A basic user level trace, which includes SQL statement text, can be turned on by adding the
connection property “trace=true” to the JDBC URL. The output for this trace by default is
printed to System.out. Tracing begins once a new database connection is made. Along with
activating the trace, the connection property errors=full can be added to the JDBC URL. This
property allows more level of detail to be written to the trace if an error does occur.

Detailed user level traces
Trace containing more detail and different levels of detail can be activated by either setting a
JVM system property or by adding an environment variable. Tracing begins once a new
database connection is made.

To activate a detailed user level trace using a JVM system property add the following
property:

� jdbc.db2.trace=<trace level>

46 SAP NetWeaver Java on IBM i5/OS

See section 4.5.3, “Modifying JVM system properties” on page 27 for more information about
how to add JVM system properties.

Using the WRKENVVAR command from the i5/OS command line, you can add an
environment variable to activate the same trace. Tracing begins once a new database
connection is made. To activate the detailed user level trace add the following environment
variable:

� QIBM_JDBC_TRACE_LEVEL <trace level>

You can set environment variables at the job or system level using the WRKENVVAR
command. We recommend that you set the environment variable at the system level to
ensure that tracing is activated.

Table 6-1 shows the trace levels that are available.

Table 6-1 Trace levels for the Native Driver.

Specifying the location of trace data
Specify the location of the trace output by either setting a JVM system property or by adding
an environment variable. To specify the location of the trace output with JVM system
properties, add the following property:

� jdbc.db2.trace.config=<location>

To specify the location with an environment variable, add the following environment variable:

� QIBM_JDBC_TRACE_CONFIG <location>

Table 6-2 shows the values that you can specify for the location.

Table 6-2 Locations for Native Driver trace output

We recommend setting the location for the trace to an Integrated File System file for easy
retrieval.

6.3.3 Toolbox JDBC driver traces

The Toolbox Driver consists of a Java client that connects to a server job running on i5/OS
(the i5/OS Hostserver). Traces for the Toolbox Driver can consist of a client only trace, a
server trace, or both. In general, analysis starts with the client, not the server.

Trace level Description

0 Indicates tracing turned off and no data logged (default)

1 Logs errors that cause an exception

3 Logs JDBC data and flow of control through the code

4 Extended level trace logs all data

Value Description

stdout Trace data directed to standard out (System.out)

file://<name> Trace data directed to a specified Integrated File System file, where <name>
is a fully qualified file name

usrtrc Trace data directed to CPA trace output file (default)

Chapter 6. Problem analysis 47

Basic client trace
Turn on a basic client trace, which includes SQL statement text, by adding the connection
property “trace=true” to the JDBC URL. By default the output for this trace is sent to
System.out. Tracing begins once a new database connection is made. Along with activating
the trace, the connection property errors=full can be added to the JDBC URL. This
property allows more level of detail to be written to the trace if an error does occur.

Detailed client traces
Activate client side traces containing more details and different levels of detail by either
adding a connection property to the JDBC URL or by setting a JVM system property. By
default the output for these traces are sent to System.out. Tracing begins once a new
database connection is made.

To activate a client side trace by adding a JDBC connection property, add the following to the
JDBC URL:

� toolbox trace=<trace_level>

where <trace_level> is a value specifying the trace detail. See Table 6-3 for information about
trace levels. See section 3.4.3, “The JDBC URL” on page 15 for more information about
adding connection properties.

To activate the detailed user level trace using a JVM system property add the following
property:

� com.ibm.as400.access.Trace.category=<trace_level>”

where <trace_level> is a value specifying the trace detail. See Table 6-3 for information about
useful trace levels. See section 4.5.3, “Modifying JVM system properties” on page 27 for
more information about setting JVM system properties.

Table 6-3 Trace levels for the Toolbox Driver client side traces

Specifying the location of client side trace data
Specify the location of client side trace output by setting a JVM system property. To specify
the location of the trace output with JVM system properties, add the following property:

� com.ibm.as400.access.Trace.file=<location>

where <location> is a fully qualified Integrated File System file name. We recommend setting
the location for the trace to an Integrated File System file for easy retrieval.

Trace level Description

none Tracing turned off and no data logged (default)

datastream Logs the data flow between the client and the server

diagnostic Logs object state information

error Logs errors that cause an exception

information Logs the flow of control through the code

warning Logs errors that are recoverable

jdbc Logs JDBC data

all Logs all categories

48 SAP NetWeaver Java on IBM i5/OS

Server side traces
Beginning with Toolbox V5R2 or JTOpen 2.02, activate a server trace on the host system.
After the server trace is enabled, tracing starts when the client connects to the server and
ends when the connection is disconnected. You must start tracing before connecting to the
server, because the client enables server tracing only at connect time. A server side trace is
used in conjunction with client side traces. The client side trace provides essential
information, such as the job ID, for locating the server side trace on the host system. Activate
the server trace by either adding a JDBC connection property or by setting a JVM system
property. Results for the various traces are located depending on the type of trace that is
activated.

To activate a server side trace by adding a JDBC connection property, add the following to the
JDBC URL:

� server trace=<trace_level>

where <trace_level> is a value specifying the trace detail. See Table 6-4 for information about
trace levels. See section 3.4.3, “The JDBC URL” on page 15 for more information about
adding connection properties.

To activate a server side trace using a JVM system property add the following property:

� com.ibm.as400.access.ServerTrace.JDBC=<trace_level>

where <trace_level> is a value specifying the trace detail. See Table 6-4 for information about
useful trace levels.

Table 6-4 Trace levels for Toolbox Driver server side traces.

Trace level Description

0 Trace not activated (default)

1 Basic client side trace

This activates the same trace as setting the JDBC connection property trace=true.
By default trace data is written to System.out.

2 Starts the database monitor on the server job

The user SAP<sid>DB must have *CHANGE authority to library QUSRSYS in order to activate the
database monitor. To grant the necessary authority, run the following command from the i5/OS command
line:

GRTOBJAUT OBJ(QUSRSYS) OBJTYPE(*LIB) USER(SAP<sid>DB) AUT(*CHANGE)
After the Grant Object Authority command completes, the trace authority can be revoked by running the
following command:

RVKOBJAUT OBJ(QUSRSYS) OBJTYPE(*LIB) USER(SAPJ45DB) AUT(*CHANGE)
The database monitor data is then inserted into database files in library QUSRSYS. The names of the
files are QJT<job_number>, where <job_number> is the number of the Hostserver job serving the JDBC
requests.

To identify a specific Hostserver job that is serving the JDBC requests for the Java Application Server,
activate the client side basic trace. Do this by adding the JDBC connection property “trace=true” or by
setting the system property "com.ibm.as400.access.Trace.category=jdbc”. Retrieve the job identifier of
the server job by searching for the phrase “Server job identifier” in the client trace output.

Chapter 6. Problem analysis 49

See section 4.5.3, “Modifying JVM system properties” on page 27 for more information about
setting JVM system properties.

Multiple types of traces can be started concurrently by adding the trace level values together.
For example, “6” starts the database monitor and starts debug.

4 Starts debug on the server job

Activating this trace causes more detailed messages to be inserted in the joblog and allows the user to
use the debugger on the server job.
The user SAP<sid>DB must have *CHANGE authority to the command STRDBG in order to activate
debug. To grant the necessary authority, run the following command from the i5/OS command line:

GRTOBJAUT OBJ(QSYS/STRDBG) OBJTYPE(*CMD) USER(SAP<sid>DB) AUT(*CHANGE)
After Grant Object Authority command completes, the trace authority can be revoked by running the
following command:

RVKOBJAUT OBJ(QSYS/STRDBG) OBJTYPE(*CMD) USER(SAPJ45DB) AUT(*CHANGE)
To identify a specify Hostserver job that is serving the JDBC requests for the Java Application Server,
activate the client side basic trace. Do this by adding the JDBC connection property “trace=true” or by
setting the system property "com.ibm.as400.access.Trace.category=jdbc”. Retrieve the job identifier of
the server job by searching for the phrase “Server job identifier” in the client trace output.

8 Saves the job log(s) of the server job when it ends

The job logs are printed to the spool files for user QUSER when the Hostserver jobs end.

32 Saves SQL information

The SQL information is printed to the spool files for user SAP<sid>DB. The spool files containing SQL
information have PRTSQLINF for the user data. Use the following command to view the spool files:

WRKSPLF SELECT(SAPJ45DB *ALL *ALL PRTSQLINF)

Trace level Description

50 SAP NetWeaver Java on IBM i5/OS

Index

Numerics
2-tier landscape 14
3-tier landscape 14

A
ABAP 1
Abstract Windowing Toolkit API 26
active threads 24
add-in 3
Advanced Business Application Programming 1
application stack 17
application thread 18
AWT 26

B
basic client trace 48
bytecode 2

C
central services instance 3, 10
class 2, 25
class verification cache 26
Classic JVM 5
cluster 3
compiler

Just-In-Time 6
configuration

Max Active 22
memory pool 23
Performance Adjuster 22
Shared Memory Pool 22

connection properties 15

D
data access 13, 44
database 3, 13
database connection 46
database monitor 49
datasource 15
DB2 UDB for i5/OS 3
debug connections 39
debug session 39
Development Kit 6
directory

log 42
work 42

DISPATCHER 10
dispatcher 3
driver

Java Database Connectivity 13
JDBC driver protocol 15
JDBC driver trace 44

© Copyright IBM Corp. 2006. All rights reserved.
Native Driver 46
native JDBC 14
Toolbox 14
Toolbox Driver 47
type 2 and type 4 JDBC 14

E
EJB 2
enqueue server 3, 10
Enterprise Java Beans 2
environment variable 46

G
garbage collection 7
garbage collection cycle 29, 33
garbage collector 7, 23, 28, 31, 34
GC 7

H
heap 23

growth 30
initial size 27, 30–31, 34
Java 30, 33
maximum size 27, 32, 34

I
i5/OS Classic JVM 5
IBM i5/OS Classic JVM 5
IDE 37
IGS 11
initial heap size 27, 31, 34
installation

Add-In SAP Web AS (ABAP and Java Engine) 11
instance 3

central services instance 10
Java 10

Integrated File System 11, 45, 48
Internet Graphic Service 11

J
J2EE 1–2
Java

bytecode 2
class 2, 25
Enterprise Java Beans 2
garbage collection 7
garbage collector 7
heap 23
IDE 37
Java 2 Platform Enterprise Edition 2
Java Database Connectivity 2
Java Development Kit 6
 51

Java Server Pages 2
Java Virtual Machine 2, 5, 28
package 2
SAP Java cluster 3
SAP WebAS Add-In 3
servlet 2

Java 2 Platform Enterprise Edition 1–2
Java bytecode 2
Java class 2, 25
Java Database Connectivity 2
Java Database Connectivity driver 13
Java Development Kit 6
Java garbage collection 7
Java heap 23, 30, 33
Java IDE 37
Java instances 10
Java package 2
Java Server Pages 2
Java servlet 2
Java Virtual Machine 2, 5, 28
JCONTROL 10
JDBC 2
JDBC driver protocol 15
JDBC driver trace 44
JDBC trace 44
JDBC URL 15
JIT 6
job

Internet Graphic Service 11
multi-threaded 20

job log 50
JSP 2
Just-In-Time (JIT) compiler 6
JVM 2, 5, 28

tuning 34
JVM system properties 25
JVM system property 46, 48
JVM tuning 34

L
landscape

2-tier 14
3-tier 14

log directory 42
logs 41
logviewer 42

M
machine interface 6
Max Active 22
maximum heap size 27, 32, 34
memory 22
memory pool 23
message server 3, 10
MI 6
minimum hardware requirements 22, 34
minimum requirements 28
multi-threaded job 20

N
Native Driver 46
node

server 18

O
output

trace output 47

P
package 2
Performance Adjuster 22
physical memory 22
process

DISPATCHER 10
JCONTROL 10
SAPSTART 10
SDM 10

processor requirements 22
properties

JVM system 46
JVM system property 48

protocol
JDBC driver 15

R
Redbooks Web site 55

Contact us viii
remote debugging 37
requirements

hardware 22
memory 22
minimum 28
minimum hardware 34
processor 22

S
SAP Java cluster 3
SAP WebAS Add-In 3
SAPSTART 10
SDM 3, 10
server

enqueue 3, 10
message 3, 10

server node 10, 18
server trace 49
servlet 2
Shared Memory Pool 22
SID 3
SLIC 6
Software Deployment Manager 3
system default properties file 25
system ID 3
System Licensed Internal Code 6
system properties 25
system property 48

52 SAP NetWeaver Java on IBM i5/OS

T
tier

2-tier 14
3-tier 14

Toolbox Driver 14, 47
trace 41

basic client 48
JDBC 44
level 49
output 47
server 49

tuning 26

U
URL

JDBC URL 15

W
work directory 42

 Index 53

54 SAP NetWeaver Java on IBM i5/OS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this Redpaper.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks”. Note that
some of the documents referenced here may be available in softcopy only.

� Java and WebSphere Performance on IBM Eserver iSeries Servers, SG24-6256

� Implementing SAP Applications on the IBM System i Platform with IBM i5/OS, SG24-7166

Online resources
The following Web sites are also relevant as further information sources:

� Time zone values for JVM

http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm
.websphere.iseries.doc/info/ae/ae/adrtzval.htm

� SAP application level tools

https://www.sdn.sap.com/irj/sdn/developerareas/java

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and Tips, draft
publications, and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
the following Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

© Copyright IBM Corp. 2006. All rights reserved. 55

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
https://www.sdn.sap.com/irj/sdn/developerareas/java

56 SAP NetWeaver Java on IBM i5/OS

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper

SAP NetWeaver Java on
IBM i5/OS

Understand how SAP
NetWeaver Java is
implemented on IBM
i5/OS

Analyze and
troubleshoot SAP
NetWeaver Java on
i5/OS

Optimize the i5/OS
JVM for SAP
NetWeaver

IBM® i5/OS® and System i™ technology are proven
platforms for SAP applications. With more than 10 years of
success across more than 2500 SAP worldwide
installations in small, medium, and large enterprises,
System i models are an ideal platform for SAP customers
who are looking for easy usability, high performance,
reliability, and carefree operation of their SAP applications.
The unique value of System i lies in its ability to reduce
information technology (IT) complexity and to simplify SAP
system landscapes.

This IBM Redpaper focuses on SAP Java™ technology. It
can be used in conjunction with the IBM Redbook
Implementing SAP Applications on the IBM System i
Platform with IBM i5/OS, SG24-7166.

This publication explores areas that are specific to the
implementation and integration of the SAP Web Application
Server for Java on i5/OS. Included in this document is an
overview of the SAP Application Server architecture and
how it is implemented on i5/OS. It also includes a
discussion on Java and the i5/OS Classic JVM™, followed
by configuration and tuning recommendations and finally
how to analyze problems.

We wrote this Redpaper to assist SAP basis consultants
and other information technology (I/T) professionals in
implementing a successful SAP system installation based
on SAP Java technology.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this Redpaper
	Become a published author
	Comments welcome

	Chapter 1. Architecture
	1.1 Java technology
	1.2 Java 2 Platform Enterprise Edition
	1.3 SAP Java cluster

	Chapter 2. The Java Virtual Machine
	2.1 IBM i5/OS Classic JVM
	2.2 JVM Garbage collection

	Chapter 3. Implementation of the SAP Java Application Server in i5/OS
	3.1 SAP jobs
	3.2 Integrated File System
	3.3 Database
	3.4 Database access
	3.4.1 Types of JDBC drivers
	3.4.2 Choosing a JDBC driver
	3.4.3 The JDBC URL

	Chapter 4. Configuration and tuning
	4.1 SAP Java Application Server configuration
	4.1.1 Server nodes
	4.1.2 Application threads per server node

	4.2 Minimum hardware requirements
	4.3 Operating system configuration recommendations
	4.3.1 Shared memory pools
	4.3.2 Performance adjuster
	4.3.3 Max active

	4.4 IBM i5/OS Classic JVM global properties
	4.4.1 System default properties file
	4.4.2 Activating the class verification cache for all JVMs
	4.4.3 Other global properties

	4.5 IBM i5/OS Classic JVM system properties
	4.5.1 Set and forget properties
	4.5.2 Tuning properties
	4.5.3 Modifying JVM system properties

	4.6 Fine tuning the IBM i5/OS Classic JVM
	4.6.1 Analyzing the JVM garbage collector
	4.6.2 Tuning the JVM garbage collector

	Chapter 5. Debugging Java applications
	5.1 Enabling debug operations
	5.1.1 Debug using the SAP NetWeaver Developer Studio

	Chapter 6. Problem analysis
	6.1 Locations for logs and traces
	6.1.1 Work directory
	6.1.2 Log directory

	6.2 Analyzing startup problems
	6.3 Troubleshooting data access problems
	6.3.1 JDBC traces
	6.3.2 Native JDBC driver traces
	6.3.3 Toolbox JDBC driver traces

	Index
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

