
Redbooks Paper

 

WebSphere Application Server V6.1:  
Technical Overview

WebSphere® Application Server is the implementation by IBM® of the Java™ 2 
Enterprise Edition (J2EE™) platform. It conforms to the J2EE 1.4 specification. 
WebSphere Application Server is available in unique packages that are designed 
to meet a wide range of customer requirements. At the heart of each package is 
a WebSphere Application Server that provides the runtime environment for 
enterprise applications. 

This discussion centers on the runtime server component of WebSphere 
Application Server.

Carla Sadtler

 

 

 

 

© Copyright IBM Corp. 2006. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/


WebSphere Application Server packaging
WebSphere Application Server comes in several packaging options. In addition 
to the application server component, each package contains an appropriate 
combination of complementary products (for example, IBM HTTP Server, 
Application Server Toolkit, and Edge components).

Distributed platforms
WebSphere Application Server V6.1 has the following packaging options for 
distributed platforms, including IBM AIX®, HP-UX, Linux®, Solaris™, and 
Microsoft® Windows®: 

� IBM WebSphere Application Server - Express V6.1, referred to as Express 
(target availability: fourth quarter 2006)

� IBM WebSphere Application Server V6.1, referred to as Base
� IBM WebSphere Application Server Network Deployment V6.1, referred to as 

Network Deployment

Packaging information for Base and Network Deployment can be found at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/rtop_overview.html

The home page for WebSphere Application Server on distributed platforms can 
be found at:

http://www-306.ibm.com/software/webservers/appserv/was/index.html

System z
For WebSphere Application Server on System z™, the following edition is 
available:

� IBM WebSphere Application Server for z/OS® V6.1, a full-function version of 
the Network Deployment product

Packaging information for WebSphere on System z can be found at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.zseries.doc/info/zseries/ae/rtop_overview.html

The home page for WebSphere Application Server for z/OS can be found at:

http://www-306.ibm.com/software/webservers/appserv/zos_os390/

 

 

 

 

2 WebSphere Application Server V6.1:  Technical Overview

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/rtop_overview.html
http://www-306.ibm.com/software/webservers/appserv/was/index.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/rtop_overview.html
http://www-306.ibm.com/software/webservers/appserv/zos_os390/


System i
WebSphere Application Server on System i™ has the following packaging 
options:

� WebSphere Application Server V6.1 for i5/OS® 
� WebSphere Application Server for Developers V6.1 for i5/OS 
� WebSphere Application Server Network Deployment V6.1 for i5/OS 
� WebSphere Application Server – Express V6.1 for i5/OS

The home page for WebSphere Application Server on System i can be found at:

http://www-03.ibm.com/servers/eserver/iseries/software/websphere/wsapps
erver/

Application support
WebSphere Application Server V6.1 can run the following types of applications:

� J2EE applications
� Portlet applications
� Session Initiation Protocol (SIP) applications

J2EE applications
The Java 2 Platform, Enterprise Edition specification is the standard for 
developing, deploying, and running enterprise applications. WebSphere 
Application Server V6.1 provides full support for the J2EE 1.4 specification. 

The J2EE programming model has four types of application components:

� Enterprise beans
� Servlets and JavaServer™ Pages™ files 
� Application clients 

The primary development tool for WebSphere Application Server J2EE 1.4 
applications is Rational® Application Developer. The Application Server Toolkit, 
shipped with WebSphere Application Server, also contains the tools needed to 
create, test, and deploy J2EE 1.4 applications and, in addition, includes full 
support for the new features of J2SE™ 5.0. Applications are packaged as 
enterprise application archives (EAR files).

For information about the J2EE specification, see http://java.sun.com. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 3

http://www-03.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://java.sun.com


Portlet applications
The Portlet container in WebSphere Application Server V6.1 provides the 
runtime environment for JSR 168 compliant portlets. 

Portlet applications are intended to be combined with other portlets to collectively 
create a single page of output. The Portlet container takes the output of one or 
more Portlets and generates a complete page that can be displayed.

The primary development tool for portlets on WebSphere Application Server 
portlet applications is the Application Server Toolkit. You can also use Rational 
Application Developer, but should review the following item in the WebSphere 
Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/cport_portlets.html

Portlets are packaged in WAR files.

Note that the portlet runtime does not provide the advanced capabilities of 
WebSphere Portal, such as portlet aggregation and page layout, personalization 
and member services, or collaboration features.

For more information about JSR 168, see:

http://jcp.org/en/jsr/detail?id=168

Session Initiation Protocol (SIP) applications
SIP applications are Java programs that use at least one Session Initiation 
Protocol servlet written to the JSR 116 specification. SIP is used to establish, 
modify, and terminate multimedia IP sessions. SIP negotiates the medium, the 
transport, and the encoding for the call. After the SIP call has been established, 
the communication takes place over the specified transport mechanism, 
independent of SIP. Examples of application types that use SIP include voice 
over IP, click-to-call, and instant messaging. 

The Application Server Toolkit provides special tools for developing SIP 
applications. SIP applications are packaged as SIP archive (SAR) files and are 
deployed to the application server using the standard WebSphere Application 
Server administrative tools. SAR files can also be bundled within a J2EE 
application archive (EAR file), similar to other J2EE components.

For more information, see:

� JSR 116 SIP Servlet API 1.0 Specification

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

 

 

 

 

4 WebSphere Application Server V6.1:  Technical Overview

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://jcp.org/en/jsr/detail?id=168
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cport_portlets.html


� RFT 3261

http://www.ietf.org/rfc/rfc3261.txt

Application server configurations
At the heart of each member of the WebSphere Application Server family is an 
application server. Each family has essentially the same architectural structure. 
Although the application server structure for Base and Express is identical, there 
are differences in licensing terms, the development tool that is provided, and 
platform support. 

With Base and Express, you are limited to stand-alone application servers. 
Network Deployment enables more advanced topologies that provide workload 
management, scalability, high availability, and central management of multiple 
application servers. 

Runtime environments are built by creating profiles. A profile can define a 
deployment manager, a stand-alone application server, or an empty node to be 
federated (added) to a cell. Each profile contains files specific to that runtime 
such as logs and configuration files. Profiles can be created during and after 
installation. After the profiles have been created, further configuration and 
administration is performed using the WebSphere administrative tools.

Stand-alone server configuration
Express, Base, and Network Deployment all support a single stand-alone server 
environment. With a stand-alone configuration, each application server acts as a 
unique entity. An application server runs one or more J2EE applications and 
provides the services that are required to run those applications. Each 
stand-alone server is created by defining an application server profile.

Multiple stand-alone application servers can exist on a machine, either through 
independent installations of the WebSphere Application Server code or through 
multiple profiles within one installation. However, WebSphere Application Server 
does not provide for central management or administration for multiple 
application servers. Stand-alone application servers do not provide workload 
management or failover capabilities.

Figure 1 on page 6 shows an architectural overview of a stand-alone application 
server.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 5

http://www.ietf.org/rfc/rfc3261.txt


Figure 1   Architectural overview for a stand-alone application server 

Distributed server configuration
With Network Deployment, you can build a distributed server configuration, 
which enables central administration, workload management, and failover. In this 
environment, you integrate one or more application servers into a cell that is 
managed by a deployment manager. The application servers can reside on the 
same machine as the deployment manager or on multiple separate machines. 
Administration and management is handled centrally from the administration 
interfaces via the deployment manager.

With a distributed server configuration, you can create multiple application 
servers to run unique sets of applications and then manage those applications 
from a central location. However, more important, you can cluster application 
servers to allow for workload management and failover capabilities. Applications 
that you install in the cluster are replicated across the application servers. When 
one server fails, another server in the cluster continues processing. Work is 

Application Server
Node

JCA services

Name Server (JNDI)

Security server

Application 
Database

Config 
repository 
(XML files)

Msg 
Queue

Msg 
Queue

manages

managed by external 
provider 

(WebSphere MQ)

JMS, MQ

Bus

Web container

Web 
browser 
client HTTP server

WebSphere 
plug-in

HTTP(s)

Scripting 
client

Admin 
UI

Java client

Client container RMI/IIOP

SOAP or 
RMI/IIOP

HTTP(s)

SIP container

Portlet container

Admin 
application

W
eb

 c
on

ta
in

er
 

In
bo

un
d 

ch
ai

n

EJB container

ap
pl

ic
at

io
n 

(E
A

R
)

Messaging 
engine

Web 
services 
engine Web Service 

Provider or 
GatewaySOAP/HTTP

UDDI 
Registry

A
dm

in
 s

er
vi

ce

SIBWS

Performance Monitoring  infrastructure (PMI)

 

 

 

 

6 WebSphere Application Server V6.1:  Technical Overview



distributed among Web and Enterprise JavaBeans™ (EJB™) containers in a 
cluster using a weighted round-robin scheme.

Figure 2 illustrates the basic components of an application server in a distributed 
server environment.

Figure 2   Distributed server environment

A distributed server configuration can be created in one of three ways:

� Create a deployment manager profile to define the deployment manager. 
Then create one or more custom node profiles to be federated as nodes into 
the cell managed by the deployment manager. The custom nodes can exist 
on the deployment manager machine or on multiple separate machines. 
Application servers can then be created using the administrative tools, for 
example the administrative console.

� Create a deployment manager profile to define the deployment manager. 
Then create one or more application server profiles and federate these 

Cell

Application 
Database

Config 
repository 

(file)

Master 
repository

(file)

Session 
Database

Application Server

JCA services

Name Server (JNDI)

Security server

Web container

SIP container

Portlet container

W
eb

 c
on

ta
in

er
 

In
bo

un
d 

ch
ai

n

EJB container ap
pl

ic
at

io
n 

(E
AR

)

Bus

Messaging 
engine

Web 
services 
engine

SOAP/HTTP

UDDI 
Registry

SIBWS

Performance Monitoring  infrastructure (PMI)
Java client

Client container RMI/IIOP

Node Admin 
Service

Node 
Agent

Scripting 
client

Admin 
UI

SOAP or 
RMI/IIOP

HTTP(s) Deployment Manager
Admin 

application
Name Server (JNDI)

Admin Service

Web 
browser 

client HTTP server

WebSphere 
plug-in

HTTP(s)

A
dm

in
 s

er
vi

ce

Web Services 
Gateway

Msg 
Queue

managed by external 
provider 

(WebSphere MQ)

Msg 
Queue

manages

JMS, MQ

Web Service 
Provider

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 7



profiles into the cell managed by the deployment manager. This process adds 
both nodes and application servers into the cell. The application server 
profiles can exist on the deployment manager machine or on multiple 
separate machines.

� Create a cell profile. This actually creates two profiles: a deployment manager 
profile and a federated application server profile. Both reside on the same 
machine.

Application servers, nodes, and cells
Regardless of the configuration, the WebSphere Application Server is organized 
based on the concept of cells, nodes, and servers. Although all of these elements 
are present in each configuration, cells and nodes do not play an important role 
until you take advantage of the features provided with Network Deployment.

Application servers
The application server is the primary runtime component in all configurations and 
is where an application actually executes. All WebSphere Application Server 
configurations can have one or more application servers. In the Express and 
Base configurations, each application server functions as a separate entity. 
There is no workload distribution or central administration among application 
servers. With Network Deployment, you can build a distributed server 
environment consisting of multiple application servers maintained from a central 
administration point. In a distributed server environment, you can cluster 
application servers for workload distribution.

Nodes, node groups, and node agents
A node is a grouping of application servers for configuration and operational 
management on one machine. Nodes are generally associated with a physical 
machine. It is possible to have multiple nodes on a single machine, but nodes 
cannot span machines. In a stand-alone application server environment, there is 
only one node. With Network Deployment, you can configure multiple nodes in a 
distributed server environment that are managed from one central administration 
server. 

In centralized management configurations, each node has a node agent that works 
with the deployment manager to manage administration processes. The node 
agent is created under the covers when you federate a stand-alone node to a cell. 

A node group is a grouping of nodes within a cell that have similar capabilities. A 
node group validates that the node is capable of performing certain functions 

 

 

 

 

8 WebSphere Application Server V6.1:  Technical Overview



before allowing those functions. For example, a cluster cannot contain both z/OS 
nodes and nodes that are not z/OS. In this case, you can define multiple node 
groups, one for the z/OS nodes and one for nodes other than z/OS. A group 
called the DefaultNodeGroup is automatically created based on the deployment 
manager platform. This node group contains the deployment manager and any 
new nodes with the same platform type. A node can be a member of more than 
one node group. 

On the z/OS platform, a node must be a member of a sysplex node group. Nodes 
in the same sysplex must be in the same sysplex node group. A node can be in 
one sysplex node group only.

Cells
A cell is a grouping of nodes into a single administrative domain. In the Base and 
Express configurations, a cell contains one node and that node contains one 
application server. 

In a distributed server configuration, a cell can consist of multiple nodes, which 
are all administered from a single point (the deployment manager). The 
configuration and application files for all nodes in the cell are centralized into a 
master configuration repository. This centralized repository is managed by the 
deployment manager and synchronized with local copies that are held on each of 
the nodes.

It is possible to have a cell comprised of nodes on mixed platforms. This is 
referred to as a heterogeneous cell.

Servers
WebSphere Application Server supplies application servers, which provide the 
functions that are required to host applications and proxy servers that distribute 
work to the application servers. It also provides the ability to define external 
servers to the administration process. 

Table 1 shows which types of servers you can define.

Table 1   WebSphere Application Server server support

Express and Base Network Deployment

Application server Yes Yes

Application server cluster No Yes

External Web server Yes Yes

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 9



Application servers
Application servers provide the runtime environment for application code. They 
provide containers and services that specialize in enabling the execution of 
specific Java application components. Each application server runs in its own 
Java Virtual Machine (JVM™). 

WebSphere Application Server V6.1 has a new JVM designed to improve 
stability and performance. It provides a Java language compiler and execution 
environment to support the Java 2 Standard Edition (J2SE) 5 specification. This 
new JVM is supported on all platforms that ship with an IBM JDK™. (J2SE 5 is 
currently not used on Solaris, HP, and i5/OS.)

Application server clusters
With Network Deployment, you can use application server clustering to enhance 
workload distribution. A cluster is a logical collection of application server 
processes that provides workload balancing and high availability.

Application servers that belong to a cluster are members of that cluster and must 
all have identical application components deployed on them. Other than the 
applications that are configured to run on them, cluster members do not have to 
share any other configuration data.

For example, one cluster member might be running on a large multi-processor 
server while another member of that same cluster might be running on a small 
mobile computer. The server configuration settings for each of these two cluster 
members is very different, except in the area of the application components that 
are assigned to them. In that area of configuration, they are identical.

The members of a cluster can be located on a single node (vertical cluster), 
across multiple nodes (horizontal cluster), or on a combination of the two. A 
cluster can span machine or LPAR boundaries and can span across operating 

External generic server No Yes

Generic server cluster No Yes

Proxy server No Yes

WebSphere MQ Server Yes Yes

WebSphere V5 Java Message 
Server servers

No Yes

Express and Base Network Deployment 

 

 

 

10 WebSphere Application Server V6.1:  Technical Overview



systems with one exception. A cluster cannot span z/OS and non-z/OS 
platforms. 

When you install, update, or delete an application, the updates are automatically 
distributed to all members in the cluster. A rollout update option enables you to 
update and restart the application servers on each node, one node at a time, 
providing continuous availability of the application.

Proxy server
A proxy server is a specific type of application server that routes HTTP requests 
to application servers that host the applications. The proxy server is the initial 
point of entry, after the firewall, for requests into the enterprise. The proxy server 
can be configured with rules to route to and load balance the clusters of 
application servers. The proxy server is also capable of securing the transport, 
using Secure Sockets Layer (SSL), and the content using various authentication 
and authorization schemes. Another important feature is its capability to protect 
the identity of the content servers from the Web clients by using response 
transformations (URL rewriting). The proxy server can also improve performance 
by caching content locally and by protecting the content servers from surges in 
traffic. 

WebSphere MQ server
A WebSphere MQ server defines the location and attributes of a z/OS 
WebSphere MQ queue manager or queue sharing group. It is designed to take 
advantage of the load balancing and availability features of WebSphere MQ on 
z/OS.

Java Message Server servers (V5)
In WebSphere Application Server V5, Java Message Server servers provide the 
default messaging support for WebSphere Application Server. For migration 
purposes, Network Deployment in V6 supports cells that contain both V5 and V6 
nodes (the deployment manager must be at V6), and by extension, Network 
Deployment supports existing Java Message Server servers in V5 application 
servers in the cell. 

External servers
You can define servers other than WebSphere application servers to the 
administrative process.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 11



Generic servers
A generic server is a server that is managed in the WebSphere administrative 
domain but is not supplied by the WebSphere Application Server product. The 
generic server can be any server or process that is necessary to support the 
application server environment, including a Java server, a C or C++ server or 
process, a CORBA server, or a Remote Method Invocation server.

You can also create a cluster of generic servers and use a proxy server to route 
requests to members of the cluster.

Web servers
Web servers can be defined to the administration process as a Web server node, 
enabling applications to be associated with one or more defined Web servers. 

Web server nodes can be managed or unmanaged. Managed nodes have a 
node agent on the Web server machine that enables the deployment manager to 
administer the Web server. You can start or stop the Web server from the 
deployment manager, generate the Web server plug-in for the node, and 
automatically push it to the Web server. You would normally have managed Web 
server nodes behind the firewall with the WebSphere Application Server 
installations.

Unmanaged Web server nodes, as the name implies, are not managed by 
WebSphere. You would normally find these outside the firewall or in the 
demilitarized zone. You must manually copy or FTP Web server plug-in 
configuration files to the Web server. However, if you define the Web server as a 
node, you can generate custom plug-in configuration files for it. In a z/OS 
environment, you must use unmanaged nodes if the Web server is a non-z/OS 
product.

Web server plug-ins
A Web server can serve requests that do not require any dynamic content (for 
example, HTML pages). However, when a request requires dynamic content, 
such as JavaServer Pages (JSP™) or servlet processing, it must be forwarded to 
WebSphere Application Server for handling.

Note: As a special case, if the unmanaged Web server is an IBM HTTP 
Server, you can administer the Web server from the WebSphere 
administrative console. Then, you can automatically push the plug-in 
configuration file to the Web server with the deployment manager using HTTP 
commands to the IBM HTTP Server administration process. This configuration 
does not require a node agent.

IBM HTTP Server is shipped with all WebSphere Application Server packages.

 

 

 

 

12 WebSphere Application Server V6.1:  Technical Overview



To forward a request, you use a Web server plug-in that is included with the 
WebSphere Application Server packages for installation on a Web server. You 
copy an Extensible Markup Language (XML) configuration file, configured on the 
WebSphere Application Server, to the Web server plug-in directory. The plug-in 
uses the configuration file to determine whether a request should be handled by 
the Web server or an application server. When WebSphere Application Server 
receives a request for an application server, it forwards the request to the 
appropriate Web container in the application server. The plug-in can use HTTP 
or HTTPs to transmit the request.

Containers
Containers provide runtime support for applications. WebSphere Application 
Server V6.1 has the following container support.

Application server containers
Each application server provides the following container support:

� Web container

The Web container processes servlets, JSPs (processed as servlets), and 
other types of server-side includes. Each application server runtime has one 
logical Web container, which can be modified but not created or removed. 

Requests are received by the Web container through the Web container 
inbound transport chain. The chain consists of a TCP inbound channel that 
provides the connection to the network, an HTTP inbound channel that 
serves HTTP 1.0 and 1.1 requests, and a Web container channel over which 
requests for servlets and JSPs are sent to the Web container for processing. 
Requests for HTML and other static content that are directed to the Web 
container are served by the Web container inbound chain. 

Although the Web container can serve static content, a more likely scenario is 
that you will use an external Web server to receive client requests and a Web 
server plug-in to forward requests for servlets to the Web container.

� EJB container

The Enterprise JavaBeans container provides all of the runtime services that 
are needed to deploy and manage enterprise beans. It is a server process 
that handles requests for both session and entity beans.

The container provides many low-level services, including threading and 
transaction support. From an administrative viewpoint, the container 
manages data storage and retrieval for the contained enterprise beans. A 
single container can host more than one EJB Java archive (JAR) file.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 13



� Portlet container

The portlet container processes JSR168 compliant portlets. The portlet 
container is an extension to the Web container.

� Session Initiation Protocol container

The SIP container processes applications that use at least one SIP servlet 
written to the JSR 116 specification. The portlet container is an extension to 
the Web container.

Application client container
The application client container is a separately installed component on the 
client’s machine. It enables the client to run applications in a J2EE 
environment that is compatible with EJB. 

Application server services
The application server also provides the following basic services to support 
application processing.These services will be discussed in the following sections.

� J2EE Connector Architecture services
� Transaction service
� Dynamic cache service
� Message listener service
� Object Request Broker service
� Administrative service (Java Management Extensions)
� Diagnostic trace service
� Debugging service
� Name service (Java Naming Directory Interface)
� Performance Monitoring Interface service
� Security service (JAAS and Java 2 security)
� Service Integration Bus service

In addition to these services, the following services are provided to support the 
Programming Model Extensions:

� Application profiling service
� Compensation service
� Internationalization service
� Object pool service
� Startup beans service
� Activity session service
� Work area partition service
� Work area service

 

 

 

 

14 WebSphere Application Server V6.1:  Technical Overview



J2EE Connector Architecture services
Connection management for access to enterprise information systems (EIS) in 
WebSphere Application Server is based on the J2EE Connector Architecture 
(JCA) specification, also sometimes referred to as J2C. The connection between 
the enterprise application and the EIS is done through the use of EIS-provided 
resource adapters, which are plugged into the application server. The 
architecture specifies the connection management, transaction management, 
and security contracts that exist between the application server and the EIS.

Within the application server, the Connection Manager pools and manages 
connections. The Connection Manager administers connections that are 
obtained through both resource adapters defined by the JCA specification and 
data sources defined by the JDBC™ 2.0 Extensions (and later) specification.

Transaction service
WebSphere applications use transactions to coordinate multiple updates to 
resources as one unit of work such that all or none of the updates are made 
permanent. Transactions are started and ended by applications or the container 
in which the applications are deployed.

WebSphere Application Server is a transaction manager that supports the 
coordination of resource managers through the XAResource interface and 
participates in distributed global transactions with transaction managers that 
support the CORBA Object Transaction Service protocol (for example, 
application servers) or the Web Service Atomic Transaction protocol. 

WebSphere Application Server also participates in transactions that are imported 
through J2EE Connector 1.5 resource adapters. You can also configure 
WebSphere applications to interact with (or to direct the WebSphere transaction 
service to interact with) databases, Java Message Service (JMS) queues, and 
JCA connectors through their local transaction support when distributed 
transaction coordination is not required.

How applications use transactions depends on the type of application 
component; for example:

� A session bean can either use container-managed transactions (where the 
bean delegates management of transactions to the container) or 
bean-managed transactions (where the bean manages transactions itself).

� Entity beans use container-managed transactions.

� Web components (servlets) use bean-managed transactions.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 15



WebSphere Application Server handles transactions with three main 
components:

� A transaction manager that supports the enlistment of recoverable 
XAResources and ensures that each such resource is driven to a consistent 
outcome, either at the end of a transaction, or after a failure and restart of the 
application server.

� A container in which the J2EE application runs. The container manages the 
enlistment of XAResources on behalf of the application when the application 
performs updates to transactional resource managers (such as databases). 
Optionally, the container can control the demarcation of transactions for 
enterprise beans that are configured for container-managed transactions.

� An API (UserTransaction) that is available to bean-managed enterprise beans 
and servlets that enables such application components to control the 
demarcation of their own transactions. 

Dynamic cache service
The dynamic cache service improves performance by caching the output of 
servlets, commands, Web services, and JSP files. The dynamic cache works 
within an application server, intercepting calls to objects that can be cached (for 
example, through a servlet’s service() method or a command’s execute() 
method). The dynamic cache either stores the object’s output to or serves the 
object’s content from the dynamic cache.

Because J2EE applications have high read-write ratios and can tolerate small 
degrees of latency in the currency of their data, the dynamic cache can create 
significant gains in server response time, throughput, and scalability.

The following caching features are available in WebSphere Application Server:

� Cache replication

Cache replication among cluster members takes place using the WebSphere 
data replication service. Data is generated one time and then copied or 
replicated to other servers in the cluster, saving execution time and 
resources.

� Cache disk offload

By default, when the number of cache entries reaches the configured limit for 
a given WebSphere server, eviction of cache entries occurs, enabling new 
entries to enter the cache service. The dynamic cache includes an alternative 
feature named disk offload, which copies the evicted cache entries to disk for 
potential future access.

 

 

 

 

16 WebSphere Application Server V6.1:  Technical Overview



� Edge Side Include caching

The Web server plug-in contains a built-in Edge Side Include (ESI) processor. 
The ESI processor caches whole pages, as well as fragments, providing a 
higher cache hit ratio. The cache that is implemented by the ESI processor is 
an in-memory cache, not a disk cache. Therefore, the cache entries are not 
saved when the Web server is restarted. 

� External caching

The dynamic cache controls caches outside of the application server, such as 
that provided by the Edge components, an IBM HTTP Server’s FRCA cache 
that is not z/OS, and a WebSphere HTTP Server plug-in ESI Fragment 
Processor that is not z/OS. When external cache groups are defined, the 
dynamic cache matches external cache entries with those groups and pushes 
out cache entries and invalidations to those groups. This external caching 
enables WebSphere to manage dynamic content beyond the application 
server. The content can then be served from the external cache instead of the 
application server, improving performance.

Message listener service
With EJB 2.1, an ActivationSpec is used to connect message-driven beans to 
destinations. However, you can deploy existing EJB 2.0 message-driven beans 
against a listener port as in WebSphere V5. For those message-driven beans, 
the message listener service provides a listener manager that controls and 
monitors one or more JMS listeners. Each listener monitors a JMS destination on 
behalf of a deployed message-driven bean.

Object Request Broker service
An Object Request Broker (ORB) manages the interaction between clients and 
servers, using Internet Inter-ORB Protocol (IIOP). The ORB service enables 
clients to make requests and receive responses from servers in a 
network-distributed environment. 

The ORB service provides a framework for clients to locate objects in the 
network and call operations on those objects as though the remote objects were 
located in the same running process as the client. The ORB service provides 
location transparency. The client calls an operation on a local object, known as a 
stub. Then the stub forwards the request to the desired remote object, where the 
operation is run, and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the 
operation and any required parameters, and for sending the request in the 
network. The server-side ORB receives the IIOP request, locates the target 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 17



object, invokes the requested operation, and returns the results to the client. The 
client-side ORB demarshals the returned results and passes the result to the 
stub, which returns the result to the client application, as though the operation 
had been run locally.

WebSphere Application Server uses an ORB to manage communication 
between client applications and server applications as well as communication 
among product components.

Administrative service
The administrative service runs within each server JVM. In Base and Express, 
the administrative service runs in the application server. In Network Deployment, 
each of the following hosts an administrative service:

� Deployment manager
� Node agent
� Application server

The administrative service provides the necessary functions to manipulate 
configuration data for the server and its components. The configuration is stored 
in a repository in the server’s file system.

The administrative service has a security control and filtering functionality that 
provides different levels of administration to certain users or groups using the 
following administrative roles:

� Administrator
� Monitor
� Configurator
� Operator

This administrative security can be enabled during installation and profile 
creation. If you choose this option, a federated security repository will be created 
containing a single file-based user registry in it.

Name service
Each application server hosts a name service that provides a Java Naming and 
Directory Interface™ (JNDI) name space. The service is used to register 
resources hosted by the application server. The JNDI implementation in 
WebSphere Application Server is built on top of a Common Object Request 
Broker Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming 
model that application developers use. CosNaming provides the server-side 

 

 

 

 

18 WebSphere Application Server V6.1:  Technical Overview



implementation and is where the name space is actually stored. JNDI essentially 
provides a client-side wrapper of the name space stored in CosNaming and 
interacts with the CosNaming server on behalf of the client.

The naming architecture is used by clients of WebSphere applications to obtain 
references to objects related to those applications. These objects are bound into 
a mostly hierarchical structure, referred to as a name space. The name space 
structure consists of a set of name bindings, each containing a name relative to a 
specific context and the object bound with that name. The name space can be 
accessed and manipulated through a name server.

WebSphere Application Server name space features include:

� The name space is distributed

For additional scalability, the name space for a cell is distributed among the 
various servers. The deployment manager, node agent, and application 
server processes all host a name server.

The default initial context for a server is its server root. System artifacts, such 
as EJB homes and resources, are bound to the server root of the server with 
which they are associated.

� Transient and persistent partitions

The name space is partitioned into transient areas and persistent areas. 
Server roots are transient. System-bound artifacts such as EJB homes and 
resources are bound under server roots. There is a cell persistent root that is 
used for cell-scoped persistent bindings and a node persistent root that is 
used to bind objects with a node scope.

� Federated name space structure

A name space is a collection of all names that are bound to a particular name 
server. A name space can contain naming context bindings to contexts located 
in other servers. If this is the case, the name space is said to be a federated 
name space, because it is a collection of name spaces from multiple servers. 
The name spaces link to cooperatively form a single logical name space.

In a federated name space, the real location of each context is transparent to 
client applications. Clients have no knowledge that multiple name servers are 
handling resolution requests for a particular requested object.

In a Network Deployment distributed server configuration, the name space for 
the cell is federated among the deployment manager, node agents, and 
application servers of the cell. Each such server hosts a name server. All 
name servers provide the same logical view of the cell name space, with the 
various server roots and persistent partitions of the name space being 
interconnected by means of the single logical name space.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 19



� Configured bindings

You can use the configuration graphical interface and script interfaces to 
configure bindings in various root contexts within the name space. These 
bindings are read-only and are bound by the system at server startup.

� Support for CORBA Interoperable Naming Service (INS) object Uniform 
Resource Locator (URL)

WebSphere Application Server contains support for CORBA object URLs 
(corbaloc and corbaname) as JNDI provider URLs and lookup names.

Figure 3 summarizes the naming architecture and its components.

Figure 3   Naming topology

Performance Monitoring Infrastructure service
WebSphere Application Server collects data on runtime and applications through 
the Performance Monitoring Infrastructure (PMI). This infrastructure is 
compatible with and extends the JSR-077 specification.

PMI uses a client-server architecture. The server collects performance data from 
various WebSphere Application Server components and stores it in memory. 

Machine A

lookupJNDI
Client

Deployment Manager

9809
namespace

Machine C

Node Agent 2

2809

Application Server 3

9810

Machine B

Node Agent 1

2809

Application Server 1

9810

Application Server 2

9811

lookuplookup

JNDI lookup

namespace

namespacenamespace

namespace

namespace

Link between name spaces

 

 

 

 

20 WebSphere Application Server V6.1:  Technical Overview



This data consists of counters such as servlet response time and data 
connection pool usage. The data can then be retrieved using a Web client, Java 
client, or Java Management Extensions (JMX™) client. WebSphere Application 
Server contains Tivoli® Performance Viewer, which is integrated in the 
WebSphere administrative console and displays and monitors performance data. 

WebSphere Application Server also collects data by timing requests as they 
travel through the product components. PMI request metrics log the time spent in 
major components, such as Web containers, EJB containers, and databases. 
These data points are recorded in logs and can be written to Application 
Response Time agents that Tivoli monitoring tools use.

Security service
Each application server JVM hosts a security service that uses the security 
settings held in the configuration repository to provide authentication and 
authorization functionality.

Web services engine
Web services are provided as a set of APIs in cooperation with the J2EE 
applications. Web services engines are provided to support Simple Object 
Access Protocol (SOAP).

Data Replication Service
The Data Replication Service (DRS) is responsible for replicating in-memory 
data among WebSphere processes. You can use DRS for:

� HTTP session persistence and failover
� Stateful session EJB persistence and failover (new in V6.0)
� Dynamic cache replication

Replication is done through the use of replication domains that consist of server 
or cluster members that have a need to share internal data. Multiple domains can 
be used, each for a specific task among a set of servers or clusters. While HTTP 
session replication and EJB state replication can (and should) share a domain, 
you need a separate domain for dynamic cache replication.

You can define a domain so that each domain member has a single replicator 
that sends data to another member of the domain, or so that each member has 
multiple replicators that send data to multiple members of the domain.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 21



WebSphere Application Server offers two topologies when setting up data 
replication among servers:

� Peer-to-peer topology

Each application server stores sessions in its own memory and retrieves 
sessions from other application servers. In other words, each application 
server acts as a client by retrieving sessions from other application servers, 
and each application server acts as a server by providing sessions to other 
application servers. This mode, working in conjunction with the workload 
manager, provides hot failover capabilities.

� Client/server topology

Application servers act as either a replication client or a server. Those that act 
as replication servers store sessions in their own memory and provide 
session information to clients. They are dedicated replication servers that just 
store sessions but do not respond to user requests. Client application servers 
send session information to the replication servers and retrieve sessions from 
the servers. They respond to user requests and store only the sessions of the 
users with whom they interact.

Virtual hosts 
A virtual host is a configuration that enables a single host machine to resemble 
multiple host machines. This configuration enables a single physical machine to 
support several independently configured and administered applications. A virtual 
host is not associated with a particular node. It is a configuration, rather than a 
live object, which is why you can create it but you cannot start or stop it.

Each virtual host has a logical name and a list of one or more Domain Name 
Server (DNS) aliases by which it is known. A DNS alias is the TCP/IP host name 
and port number that is used to request the servlet (for example, 
yourHostName:80). When a servlet request is made, the server name and port 
number that are entered into the browser are compared to a list of all known 
aliases in an effort to locate the correct virtual host and serve the servlet. If no 
match is found, an HTTP 404 error is returned to the browser.

WebSphere Application Server provides two default virtual hosts:

� default_host

This virtual host is used for accessing most applications. The default settings 
for default_host map to all requests for any alias on ports 80, 9443, and 9080. 
For example:

http://localhost:80/snoop
http://localhost:9080/snoop

 

 

 

 

22 WebSphere Application Server V6.1:  Technical Overview



� admin_host

This virtual host is configured specifically for accessing the WebSphere 
Application Server administrative console. Other applications are not 
accessible through this virtual host. The default settings for admin_host map 
to requests on ports 9060 and 9043. For example:

http://localhost:9060/admin

Session management
In many Web applications, users dynamically collect data as they move through 
the site based on a series of selections on the pages that they visit. Where the 
user goes and what the application displays might depend on what the user has 
chosen previously from the site. To maintain this data, the application stores it in 
a session.

WebSphere supports three approaches to track sessions:

� Secure Sockets Layer (SSL) session identifiers, where SSL session 
information is used to track the HTTP session ID.

� Cookies, where the application server session support generates a unique 
session ID for each user and returns this ID to the user’s browser using a 
cookie. The default name for the session management cookie is JSESSIONID. 
Using cookies is the most common method of session management.

� URL rewriting.

Session data can be kept in local memory cache, stored externally on a 
database, or kept in memory and replicated among application servers. Table 2 
shows the session support for each WebSphere Application Server 
configuration.

Table 2   WebSphere Application Server session management support

Express and Base Network Deployment

Cookies Yes Yes

URL rewriting Yes Yes

SSL session identifiers Yes Yes

In memory cache Yes Yes

Session persistence using a database Yes Yes

Memory-to-memory session 
persistence

No Yes

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 23



The Servlet 2.4 specification defines the session scope at the Web application 
level, meaning that session information can be accessed only by a single Web 
application. However, there might be a logical reason for multiple Web applications 
to share information (for example, sharing a user name). WebSphere Application 
Server provides an IBM extension to the specification that enables session 
information to be shared among Web applications within an enterprise application. 
This option is offered as an extension to the application deployment descriptor. No 
code change is necessary to enable this option. You specify this option during 
application assembling.

HTTP Session persistence
Many Web applications use the simplest form of session management, the 
in-memory local session cache. The local session cache keeps session 
information in memory, which is local to the machine and WebSphere Application 
Server where the session information was first created. Local session 
management does not share user session information with other clustered 
machines. Users obtain their session information only if they return to the 
machine and WebSphere Application Server holds their session information 
about subsequent accesses to the Web site.

Most important, local session management lacks a persistent store for the 
sessions it manages. A server failure takes down not only the WebSphere 
instances that are running on the server but also destroys any sessions that are 
managed by those instances.

By default, WebSphere Application Server places session objects in memory. 
However, the administrator has the option of enabling persistent session 
management. This option instructs WebSphere to place session objects in a 
persistent store. Using a persistent store enables an application server to recover 
the user session data on restart or another cluster member after a cluster 
member in a cluster fails or is shut down. Two options for HTTP session 
persistence are available:

� Database

Session information can be stored in a central session database for session 
persistence.

In a single-server environment, the session can be persisted when the user’s 
session data must be maintained across a server restart or when the user’s 
session data is too valuable to lose through an unexpected server failure.

In a multi-server environment, the multiple application servers hosting a 
particular application need to share this database information to maintain 
session states for the stateful components.

 

 

 

 

24 WebSphere Application Server V6.1:  Technical Overview



� Memory-to-memory using data replication services

In a Network Deployment distributed server environment, WebSphere internal 
replication enables sessions to be shared among application servers without 
using a database. Using this method, sessions are stored in the memory of 
an application server, providing the same functionality as a database for 
session persistence. 

Stateful session EJB persistence
With WebSphere Application Server V6, you now have failover capability of 
stateful session EJBs. This function uses data replication services and interacts 
with the workload manager component during a failover situation.

Web services
Web services are self-contained, modular applications that can be described, 
published, located, and invoked over a network. WebSphere Application Server 
supports SOAP-based Web service hosting and invocation.

WebSphere Application Server can act as both a Web service provider and as a 
requester. 

As a requester, WebSphere Application Server hosts applications that invoke 
Web services from other locations.

As a provider, WebSphere Application Server hosts Web services that are 
published for use by clients. When using Rational Application Developer to 
package the application for deployment, no additional configuration or software is 
needed for the Web services client to function. The SOAP servlets are 
automatically added, and a SOAP admin tool is included in a Web module. If you 
are not using Rational Application Developer or another IBM development tool 
that provides this function, you can use the endptEnabler tool found in the 
WebSphere bin directory to enable the SOAP services within the Enterprise 
Application Archive (EAR) file and to add the SOAP admin tool.

Web services support includes:

� Universal Discovery Description and Integration (UDDI)

A global platform-independent, open framework that enables businesses to 
discover each other, define their interaction, and share information in a global 
registry. 

UDDI support in WebSphere Application Server V6 includes UDDI V3 APIs, 
some UDDI V1 and V2 APIs, UDDI V3 client for Java, and UDDI4J for 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 25



compatibility with UDDI V2 registries. It also provides a UDDI V3 Registry that 
is integrated in WebSphere Application Server.

� Java API for XML-based RPC (JAX-RPC) (JSR 101)

The core programming model and bindings for developing and deploying Web 
services on the Java platform. It is a Java API for XML-based RPC, and it 
supports JavaBeans and enterprise beans as Web service providers.

� Web Services for J2EE specification (JSR 109)

This specification adds EJBs and XML deployment descriptors to JSR 101.

� WS-Security

This specification covers a standard set of SOAP extensions that can be used 
when building secure Web services to provide integrity and confidentiality. It 
is designed to be open to other security models including PKI, Kerberos, and 
SSL. WS-Security provides support for multiple security tokens, multiple 
signature formats, multiple trust domains, and multiple encryption 
technologies. It includes security token propagation, message integrity, and 
message confidentiality. 

� Java API for XML Registries (JAXR)

JAXR is an API that standardizes access to Web services registries from 
within Java. JAXR 1.0 defines access to ebXML and UDDI V2 registries. 
WebSphere Application Server provides JAXR level 0 support, meaning that 
it supports UDDI registries.

JAXR does not map precisely to UDDI. For a precise API mapping to UDDI 
V2, IBM provides UDDI4J and IBM Java Client for UDDI V3.

� Simple Object Access Protocol (SOAP)

A lightweight protocol for exchange of information in a decentralized, 
distributed environment.

� SOAP with Attachments API for Java (SAAJ)

A standard for sending XML documents over the Internet from the Java 
platform.

� WS-I Basic Security Profile

WS-I BSP promotes interoperability by providing clarifications and 
amplifications to a set of non-proprietary Web services specifications. 
WebSphere Application Server Web Services Security provides configuration 
options to ensure that the BSP recommendations and security considerations 
can be enabled to ensure interoperability. 

 

 

 

 

26 WebSphere Application Server V6.1:  Technical Overview



� WS Resource Framework

A generic framework for modelling and accessing stateful resources using 
Web services, so that the definition and implementation of a service and the 
integration and management of multiple services is made easier.

� WS Transaction support

Defines how Web services applications can work within global transactions in 
enterprise environments using the following three specifications:

– WS-Atomic Transaction (WS-AT)

A specific coordination type that defines protocols for atomic transactions.

– WS-Business Activity (WS-BA) 

A specific coordination type that defines protocols for business activities. A 
business activity is a group of general tasks that you want to link together 
so that the tasks have an agreed outcome.

– WS-Coordination (WS-Coor)

Specifies a context and a registration service with which participant Web 
services can enlist to take part in the protocols that are offered by specific 
coordination types. 

� WS-I Basic Profile

A set of non-proprietary Web services specifications that promote 
interoperability. 

� WS- Notification

Publish and subscribe messaging for Web services. 

� WS-Addressing

Enables systems to support message transmission and identification through 
networks that include firewalls or gateways in a transport-neutral manner.

� Implementing Enterprise Web Services - JSR 109 and JSR 921

Defines the programming model and run-time architecture to deploy and look 
up Web services in the J2EE environment; more specifically, in the Web, EJB, 
and Client Application containers. One of its main goals is to ensure vendors’ 
implementations interoperate. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 27



Enterprise services (JCA Web services)
Enterprise services offer access over the Internet to applications in a 
platform-neutral and language-neutral fashion. They offer access to enterprise 
information systems (EIS) and message queues and can be used in a 
client/server configuration without the Internet. Enterprise services can access 
applications and data on a variety of platforms and in a variety of formats.

An enterprise service wraps a software component in a common services 
interface. The software component is typically a Java class, EJB, or JCA 
resource adapter for an EIS. In services terminology, this software component is 
known as the implementation. Enterprise services primarily use WSDL and Web 
Services Invocation Framework (WSIF) to expose an implementation as a 
service.

IBM WebSphere UDDI Registry
WebSphere Application Server V6 provides a private UDDI registry that 
implements Version 3.0 of the UDDI specification. This registry enables the 
enterprise to run its own Web services broker within the company or to provide 

IBM value add: In addition to the requirements of the specifications, IBM has 
added the following features to its Web services support:

� Custom bindings

JAX-RPC does not support all XML schema types. Custom bindings 
enable developers to map Java to XML and XML to Java conversions. 

� Support for generic SOAP elements

In cases where you might want generic mapping, this support enables you 
to eliminate binding and use the generic SOAPElement type.

� Multi-protocol support

This features allows a stateless session EJB as the Web service provider, 
which provides enhanced performance without changes to the JAX-RPC 
client.

� Client caching

In WebSphere Application Server V5, there was support for server-side 
Web service caching for Web services providers running within the 
application server. In addition to this server-side caching, WebSphere 
Application Server V6 introduces caching for Web services clients running 
within a Version 6 application server, including the Web Services Gateway.

 

 

 

 

28 WebSphere Application Server V6.1:  Technical Overview



brokering services to the outside world. The UDDI registry installation and 
management is now integrated with WebSphere Application Server.

Publishing the Web service to a UDDI registry makes it available to anyone 
searching for it. Web services can be published to a UDDI registry using the Web 
Services Explorer provided with Rational Application Developer.

Access to the registry for inquiry and publish can be done through:

� The UDDI SOAP API.

� The UDDI EJB client interface.

� The UDDI user console. You can use this Web-based graphical user interface 
to publish and to inquire about UDDI entities. However, it provides only a 
subset of the UDDI API functions.

Security for the UDDI registry is handled using WebSphere security. To support 
the use of secure access with the IBM WebSphere UDDI Registry, you need to 
configure WebSphere to use HTTPS and SSL.

A relational database is used to store registry data.

Web Services Gateway (Network Deployment only)
The Web Services Gateway bridges the gap between Internet and intranet 
environments during Web service invocations. The gateway builds upon the 
WSDL and the WSIF for deployment and invocation.

With WebSphere Application Server V6, the Web Services Gateway is fully 
integrated into the integration service technologies, which provides the runtime. 
The administration is done directly from the WebSphere administrative console.

The primary function of the Web Services Gateway is to map an existing 
WSDL-defined Web service (target service) to a new service (gateway service) 
that is offered by the gateway to others. The gateway thus acts as a proxy. Each 
target service, whether internal or external, is available at a service integration 
bus destination. 

The role formerly played by filters in the V5 Web Services Gateway is now 
provided by through JAX-RPC handlers. The use of JAX-RPC handlers provides 
a standard approach for intercepting and filtering service messages. JAX-RPC 
handlers interact with messages as they pass into and out of the service 
integration bus. Handlers monitor messages at ports and take appropriate action, 
depending on the sender and content of each message. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 29



Exposing internal Web services to the outside world
Web services hosted internally and made available through the service 
integration bus are called inbound services. Inbound services are associated with 
a service destination. Service requests and responses are passed to the service 
through an endpoint listener and associated inbound port.

From the gateway’s point of view, the inbound service is the target service. To 
expose the target service for outside consumption, the gateway takes the WSDL 
file for the inbound service and generates a new WSDL file that can be shared 
with outside requestors. The interface described in the WSDL is exactly the 
same. However, the service endpoint is changed to the gateway, which is now 
the official endpoint for the service client. Figure 4 diagrams the configuration for 
exposing Web services through a gateway.

Figure 4   Exposing Web services through a gateway

Externally-hosted Web services
A Web service that is hosted externally and made available through the service 
integration bus is called an outbound service. To configure an externally-hosted 
service for a bus, you first associate it with a service destination. Then, you 
configure one or more port destinations, one for each type of binding (for 
example, SOAP over HTTP or SOAP over JMS) through which service requests 
and responses are passed to the external service.

From the gateway’s point of view, the outbound service is the target service. 
Mapping a gateway service to the target service allows internal service 

Gateway
Service

http://theGateWay.com/... http://myInternalServer/...

Mediation

Service integration bus

Web
Service 

Implementation

Port destination

Outbound port

service 
destination

service 
destination

Target 
serviceGateway 

service

Client

Inbound port

Endpoint 
Listener

 

 

 

 

30 WebSphere Application Server V6.1:  Technical Overview



requestors to invoke the service as though it were running on the gateway. 
Again, a new WSDL is generated by the gateway that shows the same interface 
but that names the gateway as service provider rather than the real internal 
server. All requests to the gateway service are rerouted to the actual 
implementation specified in the original WSDL.

Of course, every client could access external Web services by traditional means, 
but if you add the gateway as an additional layer in between, clients do not have 
to change anything if the service implementor changes. This scenario is very 
similar to that shown in Figure 4 on page 30, with the difference that the Web 
service implementation is located at a site on the Internet.

UDDI publication and lookup
The gateway facilitates working with UDDI registries. As you map a service for 
external consumption using the gateway, you can publish the exported WSDL in 
the UDDI registry. When the services in the gateway are modified, the UDDI 
registry is updated with the latest changes.

Service integration
Service integration technology provides the communication infrastructure for 
messaging and service-oriented applications, thus unifying this support into a 
common component. Service integration includes:

� A JMS 1.1 compliant JMS provider. This provider is referred to as the default 
messaging provider.

� The service integration bus (referred to as the bus). The service integration 
bus provides the communication infrastructure for the default messaging 
provider. The bus supports the attachment of Web services requestors and 
providers. The bus also provides the means to implement intermediary logic 
(mediations) to intelligently adapt message flow in the network.

� Support for the Web services gateway, which provides you with a single point 
of control, access and validation of Web service requests, and enables you to 
control which Web services are available to different groups of Web service 
users. 

Service integration bus
Service integration bus capabilities are fully integrated into WebSphere 
Application Server, enabling it to take advantage of WebSphere security, 
administration, performance monitoring, trace capabilities, and problem 
determination tools.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 31



Figure 5 illustrates the service integration bus and how it fits into the larger 
picture of an enterprise service bus.

Figure 5   The enterprise service bus

A service integration bus consists of:

� Bus members

Application servers or clusters that have been added to the bus. 

� Messaging engine

The application server or cluster component that manages bus resources. 
When a bus member is defined, a messaging engine is created automatically 
on the application server or cluster. The messaging engine provides a 
connection point for clients to produce or from where to consume messages.

An application server has one messaging engine per bus of which it is a 
member. A cluster has at least one messaging engine per bus and can have 
more. In this case, the cluster owns the messaging engine (or engines) and 
determines on which application server a messaging engine will run.

� Destinations

The place within the bus to which applications attach to exchange messages. 
Destinations can represent Web service endpoints, messaging point-to-point 
queues, or messaging publish/subscribe topics. Destinations are created on a 
bus and hosted on a messaging engine.

Enterprise Service Bus

Service 
integration 

bus

MQI 
Application

Human 
Tasks

JMS
Application BPEL

WebSphere 
ESB

WebSphere 
Message 
Broker

WebSphere 
MQ

DataPower XI50

WBI 
Adapter CICS Web 

Service
MQTT

SCADA

 

 

 

 

32 WebSphere Application Server V6.1:  Technical Overview



� Message store

A messaging engine uses a message store to save information that is needed 
for recovery in the event of a failure, including messages, subscription 
information, and transaction states. Each messaging engine has one and only 
one message store. This can be either a file store or a data store.

With a file store (the default), information is stored in a file system via the 
operating system. 

With a data store, information is stored in a relational database. Multiple 
messaging engines can share a database for the data store, each with its 
own set of tables and schema.

The service integration bus supports the following application attachments:

� Messaging applications

– JMS applications running in either WebSphere Application Server V5 or 
WebSphere Application Server V6 can connect to the bus using the JMS 
programming model. WebSphere Application Server V5 clients make use 
of the default V5 messaging provider and require the bus to be configured 
with an MQ client link. WebSphere Application Server V6 clients use the 
default messaging provider.

� Web services

– Requestors using the JAX-RPC API

– Providers running in WebSphere Application Server as stateless session 
beans and servlets (JSR-109)

– Requestors or providers attaching via SOAP/HTTP or SOAP/JMS

Service integration bus and messaging
With Express or Base, you typically have one stand-alone server with one 
messaging engine on one service integration bus. With Network Deployment, 
you have more flexibility to use multiple buses for high availability and scalability. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 33



Figure 6 illustrates two application servers, each with a messaging engine on a 
service integration bus.

Figure 6   Service integration bus

The following topologies are valid:

� One bus and one messaging engine (application server or cluster).

� One bus with multiple messaging engines.

� Multiple buses within a cell that may or may not be connected to each other.

� Buses connected between cells.

� One application server that is a member of multiple buses and that has one 
messaging engine per bus.

� A connection between a bus and a WebSphere MQ queue manager. When 
using this type of topology, you should consider the following points:

– A messaging engine cannot participate in a WebSphere MQ cluster.

– You can configure the messaging engine to look like another queue 
manager to WebSphere MQ.

– WebSphere applications can send messages directly to WebSphere MQ 
or though the service integration bus.

– JMS clients running in WebSphere Application Server V5, or the V5 
application client, can connect to the bus using the default V5 messaging 
provider (previously named WebSphere JMS Provider). A JMS client 
running in WebSphere Application Server V6, or the V6 application client, 
can also connect to the Version 5 JMS server using the default V5 
messaging provider.

Bus
Destination Destination

Messaging 
Engine

Application 
Server

bus member

Message 
data store

Messaging 
Engine

Application 
Server

bus member

Message 
data store

 

 

 

 

34 WebSphere Application Server V6.1:  Technical Overview



Clustering
In a distributed server environment, you can use clustering for high availability 
and scalability. You can add a cluster as a bus member and achieve:

� High availability

One messaging engine is active in the cluster. In the event that the 
messaging engine or server fails, the messaging engine on a standby server 
is activated.

� Scalability

A single messaging destination can be partitioned across multiple active 
messaging engines in the cluster. Messaging order is not preserved.

Quality of service
You can define quality of service on a destination basis to determine how 
messages are (or are not) persisted. You can also specify quality of service 
within the application.

Message driven beans
With EJB 2.1, message driven beans (MDB) in the application server that listen 
to queues and topics are linked to the appropriate destinations on the service 
integration bus using JCA connectors (ActivationSpec objects). 

Web services and the bus
Web services support on the bus is provided by the Web services enablement 
(SIBWS) component. This support is installed by the administrator after 
installation and profile creation. SIBWS enables you to:

� Define a service running locally to the bus as a destination and make it 
available as a Web service. 

� Define an external Web service to the bus and make it available internally at a 
bus destination. 

� Use the Web services gateway to map an existing local or external service to 
a new Web service that seems to be provided by the gateway.

Mediations
A mediation manipulates a message as it traverses the messaging bus 
(destination). For example, a mediation can:

� Transform the message.
� Reroute the message.
� Copy and route the message to additional destinations.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 35



� Interact with non-messaging resource managers (for example, databases).

You control a mediation using a mediation handler list. The list is a collection of 
Java programs that perform the function of a mediation that are invoked in 
sequence.

Bus security
You have the option of enabling bus security to ensure the following security 
measures on the bus. In order to enable bus security, you must have 
administrative security enabled.

� Authentication of users when connecting to a bus. Authentication is performed 
using the user registry that is specified in the WebSphere Application Server 
global security settings.

� Role-based authorization of users when connecting to a bus and when using 
the bus resources. Users and groups can be authorized to connect to the bus, 
to access specific destinations on the bus, and to access topic spaces and 
topics.

� Establishment of trust between peer messaging engines in a bus. This 
requires that an authentication alias be set on the bus configuration. When a 
messaging engine connects to another messaging engine the user ID and 
password specified by the authentication alias are sent to the peer messaging 
engine. If these credentials can be authenticated against the cells User 
Registry, and match the local messaging engines configuration, trust is 
established and the messaging engines will communicate.

� Authentication of the messaging engine to the database backing the data 
store (this is supported without first enabling bus security).

You can also secure communication transports between the client and 
messaging engine and between messaging engines. Secure transport can be 
configured regardless of the bus security setting.

Security
WebSphere Application Server provides the following support for security:

� Java 2 security
� J2EE security (role mapping)
� JAAS
� CSIv2
� Authentication using SWAM (available in Express and Base only) or 

Lightweight Third Party Authentication (LTPA)

 

 

 

 

36 WebSphere Application Server V6.1:  Technical Overview



� User registry: file-based, local OS, LDAP, custom registry, federated 
repository

Figure 7 presents a general view of the logical layered security architecture 
model of WebSphere Application Server. The flexibility of that architecture model 
lies in pluggable modules that you can configure according to the requirements 
and existing IT resources.

Figure 7   WebSphere Application Server security architecture

WebSphere Application Server security sits on top of the operating system 
security and the security features provided by other components, including the 
Java language. This architecture provides the following layers of security:

� Operating system security protects sensitive WebSphere configuration files 
and authenticates users when the operating system user registry is used for 
authentication.

� Standard Java security is provided through the JVM that WebSphere and the 
Java security classes use.

� The Java 2 Security API provides a means to enforce access control, based 
on the location of the code and who signed it. Java 2 security guards access 
to system resources such as file I/O, sockets, and properties. WebSphere 
global security settings allow you to enable or disable Java 2 security and 
provide a default set of policies. You can activate or inactivate Java 2 security 
independent from WebSphere global security.

The current principal of the thread of execution is not considered in the Java 2 
security authorization. There are instances where it is useful for the 

IBM

CSIv2

WebSphere Application Server

Pluggable User 
Registry

Pluggable 
Authentication

Pluggable 
Authorization

NT/Unix 
user 

registry

LDAP
user 

registry

Custom 
user 

registry
SWAM LTPA JAAS

Tivoli 
Access 

Manager

CSIv2

IBM

other 
vendor's 

ORB
z/OS

File

Federated

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 37



authorization to be based on the principal, rather the code base and the 
signer.

� The Java Authentication and Authorization Services (JAAS) is a standard 
Java API that allows the Java 2 security authorization to be extended to the 
code base on the principal as well as the code base and signers. The JAAS 
programming model enables the developer to design application 
authentication in a pluggable fashion, which makes the application 
independent from the underlying authentication technology. JAAS does not 
require Java 2 security to be enabled.

� The Common Secure Interoperability protocol adds additional security 
features that enable interoperable authentication, delegation and privileges in 
a CORBA environment. It supports interoperability with the EJB 2.1 
specification and can be used with SSL.

� J2EE security uses the security collaborator to enforce security policies 
based on J2EE and to support J2EE security APIs. WebSphere applications 
use security APIs to access the security mechanisms and implement security 
policies. J2EE security guards access to Web resources such as 
servlets/JSPs and EJB methods based on roles that the application developer 
defines. Users and groups are assigned to these roles during application 
deployment.

� Java Contract for Containers (JACC) support allows the use of third-party 
authorization providers for access decisions. The default JACC provider for 
WebSphere Application Server is the Tivoli Access Manager that is bundled 
with Network Deployment. The Tivoli Access Manager client functions are 
integrated in WebSphere Application Server.

� IBM Java Secure Socket Extension is the SSL implementation that 
WebSphere Application Server uses. It is a set of Java packages that enable 
secure Internet communications. It implements a Java version of SSL and 
Transport Layer Security protocols and includes functionality for data 
encryption, server authentication, message integrity, and client 
authentication. 

WebSphere Application Server security relies on and enhances all the above 
mentioned layers. It implements security policies in a unified manner for both 
Web and EJB resources. WebSphere global security options are defined at the 
cell level. However, individual servers can override a subset of the security 
configuration. When using mixed z/OS and distributed nodes, the security 
domain features are merged.

 

 

 

 

38 WebSphere Application Server V6.1:  Technical Overview



User registry
The pluggable user registry enables you to configure different databases for 
storing user IDs and passwords that are used for authentication and authorization. 
Only one single registry can be active at a time. 

These are your options for user registries:

� File-based repository

New with V6.1, this repository can be managed through the administrative 
interfaces including the administrative console. A new WebSphere 
component called virtual member manager (VMM) provides the interface to 
the file-based repository.

� Local operating system user registry

When configured, WebSphere uses the operating system’s users and groups 
for authentication.

� LDAP user registry

An LDAP user registry is often the best solution for large-scale Web 
implementations. Most LDAP servers on the market are well equipped with 
security mechanisms that you can use to securely communicate with 
WebSphere Application Server. WebSphere offers considerable flexibility in 
setting search parameters to adapt to different LDAP schemas.

� Custom user registry

A custom user registry leaves an open door for any custom implementation of 
a user registry database. You should use the UserRegistry Java interface that 
the WebSphere API provides to write a custom registry. You can use this 
interface to access virtually any relational database, flat files, and so on.

� Federated repository

The federated repository option enables you to use multiple registry types 
together to form a single logical repository. With the federated repository, you 
can add attributes to identities without affecting the underlying registry.

You can federate any of the registry types together, although configuring 
federated repository types from the administrative console is limited to LDAP 
and file-based registries. To configure a federated repository with custom or 
local operating system you must use wsadmin commands or VMM APIs. 
When it is configured, the administrative console can be used to manage 
entries in one selected registry.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 39



Authentication
Authentication is the process of establishing whether a client is valid in a 
particular context. A client can be either a user, a machine, or an application. The 
pluggable authentication module enables you to choose whether WebSphere 
authenticates the user or accepts the credentials from external authentication 
mechanisms.

An authentication mechanism in WebSphere typically collaborates closely with a 
user registry when performing authentication. The authentication mechanism is 
responsible for creating a credential, which is a WebSphere internal 
representation of a successfully authenticated client user. Not all credentials are 
created equal. The abilities of the credential are determined by the configured 
authentication mechanism.

Although WebSphere provides several authentication mechanisms, only a single 
active authentication mechanism can be configured at once. The active 
authentication mechanism is selected when configuring WebSphere global 
security.

WebSphere provides two authentication mechanisms that differ primarily in the 
distributed security features each supports:

� Simple WebSphere Authentication Mechanism is intended for simple, 
non-distributed, single application server type runtime environments. The 
single application server restriction exists because this mechanism does not 
support forwardable credentials. So, if a servlet or EJB in application server 
process 1 invokes a remote method on an EJB living in another application 
server process 2, the identity of the caller identity in process 1 is not 
transmitted to server process 2. Instead, an unauthenticated credential is 
transmitted that, depending on the security permissions configured on the 
EJB methods, might cause authorization failures.

Because the Simple WebSphere Authentication Mechanism is intended for a 
single application server process, single sign-on is not supported.

This type of authentication is suitable for simple environments, software 
development environments, or other environments that do not require a 
distributed security solution.

Simple WebSphere Authentication Mechanism relies on the session ID and is 
not as secure as Lightweight Third Party Authentication (LTPA). Thus, we 
strongly recommend using SSL with this type of authentication.

� Lightweight Third Party Authentication is intended for distributed, multiple 
application servers and machine environments. It supports forwardable 
credentials and single sign-on. LTPA can support security in a distributed 
environment through the use of cryptography, which enables it to encrypt, 

 

 

 

 

40 WebSphere Application Server V6.1:  Technical Overview



digitally sign, and securely transmit authentication-related data and later 
decrypt and verify the signature.

This type of authentication requires that the configured user registry be a 
central, shared repository such as LDAP or a Windows domain type registry.

Authorization
WebSphere Application Server standard authorization features are as follows:

� Java 2 security architecture, which uses a security policy to specify who is 
allowed to execute code in the application. Code characteristics, such as a 
code signature, signer ID, or source server, determine whether the code is 
granted access to be executed.

� JAAS, which extends the Java 2 approach with role-based access control. 
Permission to execute a code is granted based on the code characteristics 
and on the user running it. JAAS programming models enable the developer 
to design application authentication in a pluggable fashion, which makes the 
application independent from the underlying authentication technology.

For each authenticated user, a Subject class is created and a set of Principals is 
included in the subject to identify that user. Security policies are granted based 
on possessed principals.

WebSphere Application Server provides an internal authorization mechanism that 
is used by default. As an alternative, you can define external JACC providers to 
handle authorization decisions. During application installation, security policy 
information is stored in the JACC provider server using standard interfaces that 
are defined by JACC. Subsequent authorization decisions are made using this 
policy information. An exception is that the WebSphere Application Server default 
authorization engine makes all administrative security authorization decisions.

Security components
Figure 8 on page 42 shows an overview of the security components that come 
into play in WebSphere Application Security.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 41



Figure 8   WebSphere Application Security components

Security server
The security server is a component of WebSphere Application Server that runs in 
each application server process. If multiple application server instances are 
executed on a single node, then multiple security servers exist on that node.

The security server component is responsible for managing authentication and 
for collaborating with the authorization engine and the user registry.

Security collaborators
Security collaborators are application server processes that enforce security 
constraints that the deployment descriptors specify. These processes 
communicate with the security server every time authentication and authorization 
actions are required. The following security collaborators are identified:

� Web security collaborator

Resides in the Web container and provides the following services to the 
application:

– Checks authentication

– Performs authorization according to the constraint specified in the 
deployment descriptor

– Logs security tracing information

JAAS Subject

AppServer1
authenticate()

mapCredential()
Requests

Protection Domain

Permissions

Java 2 Platform

Security Token or
Density Assertion

User
Registry

AppServer2

EJB Container

validate()

CSlv2

User ID
Password/

Client
Certificate

WebServer
Security
Plugin

JAAS
Client

HTTP(S)

Security Server

SecurityManager
AccessController

CSlv2
Security Server

EJB Container

Node Agent

Security Server

Web Container

Policy

Security Collaborator

Security Collaborator

Security Collaborator

 

 

 

 

42 WebSphere Application Server V6.1:  Technical Overview



� EJB security collaborator

Resides in the EJB container and uses Common Secure Interoperability 
Version 2 (CSIv2) and Secure Authentication Service (SAS) to authenticate 
Java client requests to enterprise beans. The EJB security collaborator works 
with the security server to perform the following functions:

– Checks authorizations according to the specified security constraint

– Supports communication with local user registry

– Logs security tracing information

– Communicates external ORB using CSIv2 when a request for a remote 
bean is issued

Security flows
The following sections outline the general security flow.

Web browser communication
When a Web browser sends a request to a WebSphere application, the following 
interactions occur from a security point of view:

1. The Web user requests a Web resource that is protected by WebSphere 
Application Server.

2. The Web server receives the request and recognizes that the requested 
resource is on the application server. 

3. Using the Web server plug-in, the Web server redirects the request to the 
Web security collaborator, which performs user authentication.

4. After successful authentication, the Web request reaches the Web container. 
The Web security collaborator passes the user’s credentials and the security 
information contained in the deployment descriptor to the security server for 
authorization.

5. Upon subsequent requests, authorization checks are performed either by the 
Web collaborator or the EJB collaborator, depending on what the user is 
requesting. User credentials are extracted from the established security 
context.

Administrative tasks
Administrative tasks are issued using either the Web-based administrative 
console or the wsadmin scripting tool, and the following tasks are executed:

1. The administration client generates a request that reaches the server-side 
ORB and JMX MBeans. The JMX MBeans represent managed resources. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 43



2. The JMX MBeans contact the security server for authentication purposes. 
JMX beans have dedicated roles assigned and do not use the user registry 
for authentication and authorization. 

Java client communication
When a Java client interacts with a WebSphere application, the following occurs:

1. A Java client generates a request that reaches the server-side ORB.

2. The CSIv2 or IBM SAS interceptor performs authentication on the server side 
on behalf of the ORB, and sets the security context.

3. The server-side ORB passes the request to the EJB container.

4. After submitting a request to the access-protected EJB method, the EJB 
container passes the request to the EJB collaborator.

5. The EJB collaborator reads the deployment descriptor from the EAR file and 
reads the user credentials from the security context.

6. Credentials and security information are passed to the security server, which 
validates user access rights and passes this information back to the 
collaborator.

7. After receiving a response from the security server, the EJB collaborator 
authorizes or denies access to the user to the requested resource.

Resource providers
Resource providers define resources that running J2EE applications need. 
WebSphere Application Server provides support for the following resource 
providers:

� JDBC provider
� Mail providers (JavaMail™)
� JMS providers
� Resource environment providers
� URL providers
� Resource adapters

JDBC resources
A data source represents a real-world data source, such as a relational 
database. When a data source object has been registered with a JNDI naming 
service, an application can retrieve it from the naming service and use it to make 
a connection to the data source it represents.

 

 

 

 

44 WebSphere Application Server V6.1:  Technical Overview



Information about the data source and how to locate it, such as its name, the 
server on which it resides, its port number, and so on, is stored in the form of 
properties on the DataSource object. This technique makes an application more 
portable, because the application does not need to hard code a driver name, 
which often includes the name of a particular vendor. The technique also makes 
maintaining the code easier. If, for example, you move the data source to a 
different server, all you have to do is update the relevant property in the data 
source. You do not have to touch the code using that data source.

After a data source has been registered with an application server’s JNDI name 
space, application programmers can use it to make a connection to the data 
source it represents.

The connection is usually a pooled connection. That is, when the application 
closes the connection, the connection is returned to a connection pool, rather 
than being destroyed.

Data source classes and JDBC drivers are implemented by the data source 
vendor. By configuring a JDBC provider, you are providing information about the 
set of classes that is used to implement the data source and the database driver. 
That is, the JDBC provider holds the environment settings for the DataSource 
object.

Data sources
In WebSphere Application Server, connection pooling is provided by two parts, a 
JCA Connection Manager and a relational resource adapter, as shown in 
Figure 9 on page 46.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 45



Figure 9   Resource adapter in J2EE connector architecture

The JCA Connection Manager provides the connection pooling, local 
transaction, and security supports. The relational resource adapter provides the 
JDBC wrappers and JCA CCI implementation that allow applications using 
bean-managed persistence, JDBC calls, and container-managed persistence 
beans to access the database JDBC Driver.

Mail providers
The JavaMail APIs provide a platform and protocol-independent framework for 
building Java-based mail client applications. The JavaMail APIs require service 
providers, known in WebSphere as protocol providers, to interact with mail 
servers that run the pertaining protocols.

Version 4 data sources: WebSphere Version 4.0 provided its own JDBC 
connection manager to handle connection pooling and JDBC access. This 
support is included with WebSphere Application Server V5 and V6 to provide 
support for J2EE 1.2 applications. If an application chooses to use a Version 4 
data source, the application will have the same connection behavior as in 
WebSphere Version 4.0.

Application Server

JD
BC

 D
riv

er

C
on

ne
ct

io
ns

Resource
Adapter

Ap
pl

ic
at

io
n DB Server

Datasource

Connection
Factory

Delegate

JCA
Connection

Manager

DB Connection 
Pool

 

 

 

 

46 WebSphere Application Server V6.1:  Technical Overview



A mail provider encapsulates a collection of protocol providers. WebSphere 
Application Server has a Built-in Mail Provider that encompasses the following 
protocol providers:

� Simple Mail Transfer Protocol (SMTP)

A popular transport protocol for sending mail. JavaMail applications can 
connect to an SMTP server and send mail through it by using this SMTP 
protocol provider.

� Post Office Protocol (POP3)

The standard protocol for receiving mail.

� Internet Message Access Protocol (IMAP)

An alternative protocol to POP3 for receiving mail.

These protocol providers are installed as the default and should be sufficient for 
most applications. To use other protocols, you must install the appropriate 
service provider for those protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation 
Framework (JAF) as the underlying framework to deal with complex data types 
that are not plain text, such as Multipurpose Internet Mail Extensions (MIME), 
URL pages, and file attachments.

The JavaMail APIs, the JAF, the service providers, and the protocols are shipped 
as part of WebSphere Application Server using the following Sun™ licensed 
packages:

� mail.jar, which contains the JavaMail APIs as well as the SMTP, IMAP, and 
POP3 service providers.

� activation.jar, which contains the JAF.

JCA resource adapters
The JCA defines a standard architecture for connecting the J2EE platform to 
heterogeneous EIS (for example, ERP, mainframe transaction processing, 
database systems, and legacy applications not written in the Java programming 
language).

The JCA resource adapter is a system-level software driver supplied by EIS 
vendors or other third-party vendors. It provides the connectivity between J2EE 
components (an application server or an application client) and an EIS.

To use a resource adapter, install the resource adapter code and create 
connection factories that use the adapter.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 47



One resource adapter, the WebSphere Relational Resource Adapter, is 
predefined for handling data access to relational databases. This resource 
adapter provides data access through JDBC calls to access databases 
dynamically. It provides connection pooling, local transaction, and security 
support. The WebSphere persistence manager uses this adapter to access data 
for container-managed persistence beans.

URL providers
URL providers implement the functionality for a particular URL protocol, such as 
HTTP, by extending the java.net.URLStreamHandler and 
java.net.URLConnection classes. It enables communication between the 
application and a URL resource that is served by that particular protocol.

The initial WebSphere configuration includes Default URL Provider. This provider 
uses the URL support that the IBM JDK provides. Any URL resource with 
protocols based on the Java 2 Standard Edition 1.3.1, such as HTTP, FTP, or 
File, can use the default URL provider.

You can also plug in your own URL providers that implement other protocols that 
the JDK does not support.

JMS providers
The JMS functionality that WebSphere provides includes support for the 
following types of JMS providers:

� Default messaging provider
� WebSphere MQ provider
� Generic JMS providers
� V5 default messaging provider (for migration)

There can be more than one JMS provider per node. That is, you can configure a 
node to make use of any combination (or all) of the default messaging provider, 
WebSphere MQ JMS provider, and a generic JMS provider concurrently. In 
addition, WebSphere MQ and the default messaging provider can coexist on the 
same machine. 

The support provided by WebSphere administration tools for configuration of 
JMS providers differs depending on the provider. Table 3 on page 49 provides a 
summary of the support.

 

 

 

 

48 WebSphere Application Server V6.1:  Technical Overview



Table 3   WebSphere administration support for JMS provider configuration

Default messaging provider
WebSphere Application Server provides a default JMS messaging provider. The 
underlying messaging transport for this provider is implemented using the 
service integration bus, which provides point-to-point as well as publish and 
subscribe functions. Connection factories and JMS destinations that are defined 
to the default messaging provider correspond to destinations on the bus.

WebSphere MQ messaging provider
WebSphere Application Server supports the use of full WebSphere MQ as the 
JMS provider. The product is tightly integrated with the WebSphere installation, 
with WebSphere providing the JMS client classes and administration interface, 
while WebSphere MQ provides the queue-based messaging system.

Generic messaging providers
WebSphere Application Server supports the use of generic messaging providers, 
as long as they implement the ASF component of the JMS 1.0.2 specification. 
JMS resources for generic messaging providers are not configurable using 
WebSphere administration.

V5 default messaging provider
For backward compatibility with earlier releases, WebSphere Application Server 
also includes support for the V5 default messaging provider, which enables you 
to configure resources for use with V5 embedded messaging. You can also use 
the V5 default messaging provider with a service integration bus.

Resource environment providers
The java:comp/env environment provides a single mechanism by which both 
JNDI name space objects and local application environment objects can be 
looked up. WebSphere Application Server provides a number of local 
environment entries by default.

Configurable objects Default 
messaging 
provider 

WebSphere 
MQ JMS 
provider

Generic 
JMS 
provider

V5 default 
messaging, 
WebSphere 
JMS provider

Messaging system objects (queues/topics) Yes No No Yes

JMS administered objects (JMS 
connection factory and JMS destination)

Yes Yes No Yes

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 49



The J2EE specification also provides a mechanism for defining custom 
(non-default) environment entries using <resource-env-ref> entries that are 
defined in an application’s standard deployment descriptors. The J2EE 
specification separates the definition of the resource environment entry from the 
application by:

� Requiring the application server to provide a mechanism for defining separate 
administrative objects that encapsulate a resource environment entry. The 
administrative objects are to be accessible via JNDI in the application server’s 
local name space (java:comp/env).

� Specifying the administrative object’s JNDI lookup name and the expected 
returned object type in <resource-env-ref>.

WebSphere Application Server supports the <resource-env-ref> mechanism by 
providing administration objects for:

� Resource environment provider

Defines an administrative object that groups together the referenceable, 
resource environment entry administrative objects and any required custom 
properties.

� Referenceable

Defines the class name of the factory class that returns object instances 
implementing a Java interface.

� Resource environment entry

Defines the binding target (JNDI name), factory class, and return object type 
(via the link to the referenceable) of the resource environment entry.

Workload management
Clustering application servers that host Web containers automatically enables 
plug-in workload management for the application servers and the servlets they 
host. Routing of servlet requests occurs between the Web server plug-in and the 
clustered application servers using HTTP or HTTPS as shown in Figure 10 on 
page 51.

 

 

 

 

50 WebSphere Application Server V6.1:  Technical Overview



Figure 10   Plug-in (Web container) workload management

This routing is based on weights that are associated with the cluster members. If 
all cluster members have identical weights, the plug-in sends equal requests to 
all members of the cluster, assuming no strong affinity configurations. If the 
weights are scaled in the range from zero to 20, the plug-in routes requests to 
those cluster members with the higher weight value more often. No requests are 
sent to cluster members with a weight of zero unless no other servers are 
available. Weights can be changed dynamically during runtime by the 
administrator.

A general formula for determining routing preference would be:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

where there are n cluster members in the cluster. 

The Web server plug-in temporarily routes around unavailable cluster members.

Workload management for EJB containers can be performed by configuring the 
Web container and EJB containers on separate application servers. Multiple 
application servers with the EJB containers can be clustered, enabling the 
distribution of EJB requests between the EJB containers as shown in Figure 11 
on page 52.

App Server

Web 
Container

App Server

Web 
Container

Servlet
Requests

HTTP
Server

Plug-in

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 51



Figure 11   EJB workload management

In this configuration, EJB client requests are routed to available EJB containers 
in a round-robin fashion based on assigned server weights. The EJB clients can 
be servlets operating within a Web container, stand-alone Java programs using 
RMI/IIOP, or other EJBs.

The server-weighted round-robin routing policy ensures a distribution based on 
the set of server weights that have been assigned to the members of a cluster. 
For example, if all servers in the cluster have the same weight, the expected 
distribution for the cluster is that all servers receive the same number of 
requests. If the weights for the servers are not equal, the distribution mechanism 
sends more requests to the higher weight value servers than the lower weight 
value servers. The policy ensures the desired distribution, based on the weights 
that are assigned to the cluster members.

You can also choose to have requests sent to the node on which the client 
resides as the preferred routing. In this case, only cluster members on that node 
are chosen (using the round-robin weight method). Cluster members on remote 
nodes are chosen only if a local server is not available.

High availability
With Network Deployment V6, the high availability features are significantly 
improved. This is a quick overview of the failover capabilities:

� Web server failover

The use of multiple HTTP servers along with a load-balancing product such 
as provided with the Edge components can be used to provide Web Server 
failover.

EJB
Requests

App Server

EJB
Container

App Server

EJB
Container

App Server

Web 
Container

EJB
Requests

Java
Client

 

 

 

 

52 WebSphere Application Server V6.1:  Technical Overview



� Web container failover

The Web server plug-in in the Web server is aware of the configuration of all 
Web containers and can route around a failed Web container in a cluster. 
Sessions can be persisted to a database or in-memory using data replication 
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the 
cluster.

� Deployment manager and node agent

The need for failover in these two components has been reduced. Thus, no 
built-in failover capability is provided. The loss of the deployment manager 
only affects configuration. We recommend that you use a process nanny to 
restart the node agent if it fails.

� Critical services failover

Hot standby and peer failover for critical services (such as workload 
management routing, PMI aggregation, JMS messaging, transaction 
manager, and so on) is provided through the use of high availability domains.

A high availability domain defines a set of WebSphere processes (a core 
group) that provides high availability function to each other. Processes in the 
core group can be the deployment manager, node agents, application servers 
or cluster members.

One or more members of the core group can act as a high availability 
coordinator, managing the HA activities within the core group processes. If a 
high availability coordinator server fails, another server in the core group 
takes over the duties of that coordinator. High availability policies define how 
the failover occurs.

Workload management information is shared between core members and 
failover of critical services is done among them in a peer-to-peer fashion. 
Little configuration is necessary, and in many cases, this function works with 
the defaults that are created automatically as you create the processes.

� Transaction log hot standby

With V6, transaction logs can be maintained on Network Attached Storage. 
When a cluster member fails, another cluster member recovers the 
transaction log, thus enabling the failover 2PC transactions.

� JMS messaging failover

The messaging engine keeps messages in a remote data store. When a 
server in a cluster fails, WebSphere selects an online server to run the 
messaging engine and the workload manager routes JMS connections to that 
server.

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 53



Administration
WebSphere Application Server’s administration model is based on the JMX 
framework. JMX enables you to wrap hardware and software resources in Java 
and expose them in a distributed environment. JMX also provides a mapping 
framework for integrating existing management protocols, such as SNMP, into 
JMX’s own management structures.

Each application server has an administration service that provides the 
necessary functions to manipulate configuration data for the server and its 
components. The configuration is stored in a repository. The repository is 
actually a set of XML files that are stored in the server’s file system.

The JMX implementation in WebSphere Application Server V6.1 is based on 
JSR168 and supports JSR160. Previously in 6.0.x, the JMX implementation was 
based on MX4J. The new JMX implementation supports interoperability between 
V6.1 and back-level nodes to support mixed-version cells.

Administration tools
Table 4 shows the administration tools that WebSphere Application Server 
supports by configuration.

Table 4   WebSphere Application Server administration tool support

Administrative console
The administrative console is a Web-based interface that provides configuration 
and operation capability. The administrator connects to the application using a 
Web browser client. Users assigned to different administration roles can manage 
the application server and certain components and services using this interface.

The administrative console is a system application that is crucial to the operation 
of WebSphere and, as such, is not exposed as an enterprise application on the 
console. In stand-alone application servers, the administrative console runs in 
the application server. In the Network Deployment distributed server 
environment, the administrative console application runs on the deployment 
manager. When a node is added to a cell, the administrative console application 

Express and Base Network Deployment

Administrative console Yes Yes

Commands Yes Yes

Scripting client, wsadmin Yes Yes

Thin client Yes Yes

 

 

 

 

54 WebSphere Application Server V6.1:  Technical Overview



is deleted from the node and the configuration files are integrated into the master 
cell repository that the deployment manager maintains.

In V6.1, many aspects of configuration with the administrative console have been 
streamlined in order to reduce the number of “clicks” it takes to reach commonly 
used panels. A new command assist function has been added to allow 
administrators to view wsadmin scripting commands (in Jython) for the last 
action run in the console. Though not currently available for all commands, this 
function can assist administrators that build wsadmin scripts for commonly used 
commands. The script commands can be logged and JMX notifications sent to 
the Application Server Toolkit.

Commands
WebSphere Application Server provides a set of commands in the 
<server_install>/bin directory that allows you to perform a subset of 
administrative functions. For example, you can use the startServer command to 
start an application server.

Scripting client
The wsadmin scripting client provides extra flexibility over the Web-based 
administration application, enabling administration to use the command-line 
interface. Using the scripting client makes administration quicker and automates 
the administration of multiple application servers and nodes using scripts.

The scripting client uses the Bean Scripting Framework, which enables you to 
use a variety of scripting languages for configuration and control. WebSphere 
Application Server V6 supports two languages: Java Command Language (Jacl) 
and Jython (or jpython). Jython is the strategic direction, and new tools in 
WebSphere Application Server V6.1 and the Application Server Toolkit have 
been provided to assist in building Jython scripts. A Jacl-to-Jython migration 
assistance tool is also included.

The wsadmin scripting interface is included in all WebSphere Application Server 
configurations but is targeted toward advanced users. The use of wsadmin 
requires in-depth familiarity with application server architecture and a scripting 
language.

Thin administrative client
The thin administrative client is a lightweight runtime package that enables you to 
run the wsadmin tool or a standalone administrative Java program remotely. 

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 55



Configuration repository
The configuration repository holds copies of the individual component 
configuration documents stored in XML files. The application server’s 
administrative service takes care of the configuration and makes sure it is 
consistent during the runtime.

The configuration of unfederated nodes can be archived for export and import, 
making them portable among different WebSphere Application Server instances. 

Centralized administration
The Network Deployment package enables multiple servers and nodes to be 
administered from a central location. This centralized administration uses a 
central deployment manager that handles the administration process and 
distributes the updated configuration to the node agent for each node. The node 
agent, in turn, maintains the configuration for the servers in the node. Table 5 on 
page 57 shows the distributed administration that WebSphere Application Server 
supports by configuration.

All operating system processes that are components of the WebSphere product 
are called managed servers or managed processes. JMX support is embedded 
in all managed processes. These processes are available to receive 
administration commands and to output administration information about the 
state of the managed resources within the processes.

WebSphere provides the following managed servers and processes:

� Deployment manager

Provides a single point to access configuration information and control for a 
cell. The deployment manager aggregates and communicates with the node 
agent processes on each node in the system.

� Node agent

Aggregates and controls the WebSphere managed processes on its node. 
There is one node agent per node.

� Application server

Managed server that hosts J2EE applications.

Table 5 on page 57 shows the managed processes that are supported by each 
packaging option.

 

 

 

 

56 WebSphere Application Server V6.1:  Technical Overview



Table 5   WebSphere Application Server distributed administration support

Deployment manager
The deployment manager process provides a single, central point of 
administrative control for all elements in the cell. It hosts the Web-based 
administrative console application. Administrative tools that need to access any 
managed resource in a cell usually connect to the deployment manager as the 
central point of control. Using the deployment manager, horizontal scaling, 
vertical scaling, and distributed applications are all easy to administer and 
manage. Application servers are managed by nodes, and one or more nodes is 
managed by a cell.

In a distributed server environment, the deployment manager maintains a master 
configuration repository that contains all of the cell’s configuration data. The 
configuration repository at each node is a synchronized subset of the master 
repository. The node repositories are read-only for application server access. 
Only the deployment manager can initiate their update and push out configuration 
changes from the cell master configuration repository. It manages through 
communication with the node agent process resident on each node of the cell.

Node agent
The node agent is an administrative process and is not involved in application 
serving functions. It hosts important administrative functions such as:

� File transfer services
� Configuration synchronization
� Performance monitoring

The node agent aggregates and controls all of the managed processes on its 
node by communicating with:

� The deployment manager to coordinate configuration synchronization and to 
perform management operations on behalf of the deployment manager.

� Application servers and managed Web servers to manage (start or stop) each 
server and to update its configuration and application binaries as required.

Only one node agent is defined (and run) on each node. In a stand-alone server 
environment, there is no node agent.

Express and Base Network Deployment

Deployment manager No Yes

Node agent No Yes

Application servers Stand-alone Stand-alone or distributed 
server clustering

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 57



Developing and deploying J2EE applications
Figure 12 shows a high-level view of the stages of application development and 
deployment for J2EE applications.

Figure 12   Develop and deploy

Application design
Design tools such as Rational Software Architect can be used to model the 
application using the Unified Modeling Language. The output of the modeling 
generally consists of use-case scenarios, class diagrams, and starter code that 
is generated based on the model.

Application development
Application development is performed using Rational Application Developer, the 
Application Server Toolkit, or a comparable IDE to create the enterprise 
application. You can start by importing pre-generated code from modeling tools, 
a sample application, or an existing production application, or you can start from 
scratch.

Rational Application Developer provides many tools and aids to get you started 
quickly. It also supports team development using CVS or Rational ClearCase®, 
which enables multiple developers to share a single master source copy of the 
code. 

Rational Application Developer

Integrated Development Environment 
(IDE)

Application

workspace

WebSphere Application 
Server

Runtime Environment

Application

Application Server

Rational Tools

Application

Business/IT 
needs

WebSphere Server Test 
Environment

Application

Applicationdeploy

test & 
debug

remote 
debug

develop

configure

design

Concept

planning

 

 

 

 

58 WebSphere Application Server V6.1:  Technical Overview



During the development phase, you can perform component testing using the 
built-in WebSphere Application Server test environment. Rational Application 
Developer provides server tools that are capable of creating and managing 
servers both in the test environment and on remote server installations. The 
application is automatically packaged into an EAR file for deployment when you 
run the application on a server using Rational Application Developer.

Application packaging
J2EE applications are packaged into EAR files to be deployed to one or more 
application servers. A J2EE application contains any or all of the modules as 
shown in Table 6.

Table 6   J2EE 1.4 application modules

This packaging is done automatically in Rational Application Developer when 
you export an application for deployment. If you are using another IDE, 
WebSphere Application Server provides the Application Server Toolkit for 
packaging applications.

Enhanced EAR files
The enhanced EAR, which was introduced in WebSphere Application Server V6, 
is a regular J2EE EAR file with additional configuration information for resources 
that are usually required by J2EE applications. Although adding this extra 
configuration information at packaging time is not mandatory, it can simplify 
deployment of J2EE applications to WebSphere.

When you deploy an enhanced EAR to a WebSphere Application Server V6 
server, WebSphere can configure the resources that are specified in the 
enhanced EAR automatically. This automatic configuration reduces the number 
of steps that are required to set up the WebSphere environment to host the 
application. 

Module Filename Contents

Web module <module>.war Servlets, JSP files, and related code artifacts.

EJB module <module>.jar Enterprise beans and related code artifacts.

Application client 
module

<module>.jar Application client code.

Resource adapter 
module

<module>.rar Library implementation code that your 
application uses to connect to enterprise 
information systems (EIS).

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 59



Application deployment
Applications are installed on application servers using the administrative console 
or the wsadmin scripting interface. You can deploy an application to a single 
server or a cluster. In the case of a cluster, it is installed on each application 
server in the cluster. 

Installing an application involves:

� Binding resource references (created during packaging) to actual resources. 
For example, a data source would have to be bound to a real database. 

� Defining JNDI names for EJB home objects.

� Specifying data source entries for entity beans.

� Binding EJB references to the actual EJB JNDI names.

� Mapping Web modules to virtual hosts.

� Specifying listener ports for message-driven beans.

� Mapping application modules to application servers. 

� Mapping security roles to users or groups.

The use of an enhanced EAR file simplifies this installation process.

After a new application is deployed, the Web server plug-in configuration file has 
to be regenerated and copied to the Web server.

Application update
In previous releases, deploying an update to an application required deploying a 
complete EAR file and restarting the application. WebSphere Application Server 
V6 allows partial updates to applications and makes it possible to restart only 
parts of an application.

Updates to an application can consist of individual application files, application 
modules, zipped files that contain application artifacts, or the complete application. 
All module types can be started (but only Web modules can be stopped).

Version 6 has a rollout start option for installing applications on a cluster that will 
stop, update, and start each cluster member in turn, ensuring availability.

WebSphere Rapid Deployment
WebSphere Rapid Deployment is designed to simplify the development and 
deployment of WebSphere applications. It is a collection of Eclipse plug-ins that 
can be integrated within development tools or run in a headless mode from a 
user file system. WebSphere Rapid Deployment is currently integrated into 

 

 

 

 

60 WebSphere Application Server V6.1:  Technical Overview



Rational Application Developer and the Application Server Toolkit. Initially, there 
are features that are only supported in headless mode.

During development, annotation-based programming is used. The developer 
adds metadata tags into the application source code that are used to generate 
artifacts needed by the code, thus reducing the number of artifacts the developer 
has to create.

These applications are packaged into an enhanced EAR file that contains the 
J2EE EAR file along with deployment information, application resources, and 
properties (environment variables, JAAS authentication entries, shared libraries, 
classloader settings, and JDBC resources). During installation, this information is 
used to create the necessary resources. Moving an application from one server 
to another also moves the resources.

WebSphere Rapid Deployment automates installation of applications and 
modules onto a running application server by monitoring the workspace for 
changes and then driving the deployment process.

The flow of a J2EE application
Figure 13 shows the typical application flow for Web browser clients using either 
JDBC (from a servlet) or EJB to access application databases.

Figure 13   Application flow

WebSphere Application Server

Application Server

Embedded
HTTP Server

Web Container

Enterprise
BeanEnterprise

Bean

EJB

Enterprise
BeanEnterprise

Bean

EJBEJB

Data
Sources

Application
Database

DB2

Browser
Client

Input
Page

HTML

Input
Page

HTML

EJB Container

Connection
Pool

14

10a

10b

1

2

3
7

12

11

8b

8a

9Web Server

JSPJSPJSP

ServletServletServlet5
6

13

Plug-in 4

Enterprise
Bean

JNDI

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 61



The typical application flow is as follows:

1. A Web client requests a URL in the browser (input page).

2. The request is routed to the Web server over the Internet.

3. The Web server immediately passes the request to the Web server plug-in. 
All requests go to the Web server plug-in first.

4. The Web server plug-in examines the URL, verifies the list of host name 
aliases from which it will accept traffic based on the virtual host information, 
and chooses a server to handle the request.

5. A stream is created. A stream is a connection to the Web container. It is 
possible to maintain a connection (stream) over a number of requests. The 
Web container receives the request and, based on the URL, dispatches it to 
the proper servlet.

6. If the servlet class is not loaded, the dynamic class loader loads the servlet 
(servlet init(), then doGet() or doPost()).

7. JNDI is used for lookup of either datasources or EJBs required by the servlet.

8. Depending upon whether a datasource is specified or an EJB is requested, 
the JNDI directs the servlet:

– To the corresponding database and gets a connection from its connection 
pool in the case of a data source.

– To the corresponding EJB container, which then instantiates the EJB when 
an EJB is requested.

9. If the EJB request involves an SQL transaction, it goes back to the JNDI to 
look up the datasource.

10.The SQL statement is executed and the retrieved data is sent back either to 
the servlet or to the EJB.

11.Data beans are created and handed off to JSPs in the case of EJBs.

12.The servlet sends data to JSPs.

13.The JSP generates the HTML that is sent back through the plug-in to the Web 
server.

14.The Web server sends the output page (output HTML) to the browser.

 

 

 

 

62 WebSphere Application Server V6.1:  Technical Overview



Technology support summary
Table 7 highlights the support that each WebSphere Application Server 
packaging option provides.

Table 7   WebSphere Application Server features and technology support

Base and 
Express V6

Network 
Deployment V6

Client and server support for the Software 
Development Kit for Java Technology Edition 1.4 
(SDK 1.4.2) 

Yes Yes

J2EE 1.2, 1.3 programming support Yes Yes

J2EE 14. programming support1

� Servlet 2.4
� JSP 2.0
� EJB 2.1
� JMS 1.1
� JTA 1.0.1B 
� JavaMail 1.3
� JAF 1.0.2
� JAXP 1.2 
� JCA 1.5
� Web Services 1.1
� JAX-RPC 1.1
� SAAJ 1.2
� JAXR 1.0 
� JMX 1.2
� JACC 1.0
� JDBC 3.0, 2.1, Optional Package API (2.0)
� JNDI 1.2.1

Yes Yes

WebSphere Rapid Deployment Yes Yes

Service Data Object (SDO) Yes Yes

Messaging support
� Integrated JMS 1.1 messaging provider
� Support for WebSphere MQ and generic 

messaging providers
� Message-driven beans

Yes Yes

Web services runtime support Yes Yes

 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 63



Security support
� Java 2
� J2EE
� JACC 1.0
� JAAS 1.0
� CSIv2 and SAS authentication protocols
� LDAP or local operating system user registry
� LTPA authentication mechanism
� Kerberos, Technology Preview

Yes Yes

� Simple WebSphere Authentication Mechanism Yes stand-alone 
server 
environment 
only

Multi-node management and Edge components

Workload management and failover No Yes

Deployment manager No Yes

Central administration of multiple nodes No Yes

Load Balancer  No Yes

Caching Proxy  No Yes

Dynamic caching Yes Yes

Performance and analysis tools

Performance Monitoring Instrumentation (PMI) Yes Yes

Log Analyzer Yes Yes

Tivoli Performance Viewer (integrated into the 
administration console)

Yes Yes

Administration and tools

Administration and tools
� Web-based administration console
� Integrated IBM HTTP Server and Application 

Server Administration Console
� Administrative scripting
� Java Management Extension (JMX) 1.2
� J2EE Management (JSR-077)
� J2EE Deployment (JSR-088)
� Application Server Toolkit

Yes Yes

Base and 
Express V6

Network 
Deployment V6 

 

 

 

64 WebSphere Application Server V6.1:  Technical Overview



Web services 
� JAX-RPC v1.0 for J2EE 1.3, v1.1 for J2EE 1.4 
� JSR 109 (Web services for J2EE)
� WS-I Basic Profile 1.1.2 support
� WS-I Simple SOAP Binding Profile 1.0.3 
� WS-I Attachments Profile 1.0 
� SAAJ 1.2
� UDDI V2 and V3
� JAXR
� WS-TX (transactions)
� SOAP 1.1
� WSDL 1.1 for Web services
� WSIL 1.0 for Web services
� OASIS Web Services Security: SOAP Message 

Security 1.0 (WS-Security 2004) 
� OASIS Web Services Security: UsernameToken 

Profile 1.0 
� OASIS Web Services Security X.509 Certificate 

Token Profile 

Yes Yes

Web Services Gateway No Yes 

Private UDDI v3 Registry Yes Yes

Programming Model Extensions2

� Activity sessions
� Application Profiling
� Asynchronous Beans (now called 

WorkManager)
� Dynamic caching
� Dynamic query
� Internationalization Service
� Object Pools
� Scheduler Service (now called Timer Service)
� Startup Beans
� WorkArea Service
� Extended JTA Support
� Last Participant Support

Yes Yes

� Back-up Cluster Support No Yes

1. You can see the APIs that are required for J2EE 1.4 in the Application Programming 
Interface section of the J2EE 1.4 specifications at:

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

2. Business process choreography and business rule beans remain in WebSphere 
Business Integration Server Foundation.

Base and 
Express V6

Network 
Deployment V6 

 

 

 

  WebSphere Application Server V6.1: Technical Overview 65

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf


For more information
� Announcement

http://www-306.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=an&subt
ype=ca&appname=GPA&htmlfid=897/ENUS206-076

� System requirements for WebSphere Application Server V6.1

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007651

� WebSphere Application Server, Version 6.1 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� JSR168 Portlet Specification

http://jcp.org/aboutJava/communityprocess/final/jsr168/

 

 

 

 

66 WebSphere Application Server V6.1:  Technical Overview

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007651
http://www-306.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=an&subtype=ca&appname=GPA&htmlfid=897/ENUS206-076
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://jcp.org/aboutJava/communityprocess/final/jsr168/


© Copyright International Business Machines Corporation 2006. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, 
modify, and distribute these sample programs in any form without payment to IBM for the purposes of 
developing, using, marketing, or distributing application programs conforming to IBM's application 
programming interfaces. 

 

 

 

 

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by 
GSA ADP Schedule Contract with IBM Corp. 67



®

Redpaper

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an e-mail to:

redbook@us.ibm.com
� Mail your comments to: 

IBM Corporation, International Technical Support Organization
Dept. HYTD  Mail Station P099, 2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX®
ClearCase®
IBM®
i5/OS®

Rational®
Redbooks (logo) ™
System i™
System z™

Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaMail, JavaServer, 
JavaServer Pages, JDBC, JDK, JMX, JSP, JVM, J2EE, J2SE, Solaris, Sun, and all Java-based trademarks 
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. 

 

 

 

 

68 WebSphere Application Server V6.1:  Technical Overview

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	WebSphere Application Server V6.1: Technical Overview
	WebSphere Application Server packaging
	Distributed platforms
	System z
	System i

	Application support
	J2EE applications
	Portlet applications
	Session Initiation Protocol (SIP) applications

	Application server configurations
	Stand-alone server configuration
	Distributed server configuration

	Application servers, nodes, and cells
	Application servers
	Nodes, node groups, and node agents
	Cells

	Servers
	Application servers
	Proxy server
	WebSphere MQ server
	Java Message Server servers (V5)
	External servers

	Containers
	Application server containers
	Application client container

	Application server services
	J2EE Connector Architecture services
	Transaction service
	Dynamic cache service
	Message listener service
	Object Request Broker service
	Administrative service
	Name service
	Performance Monitoring Infrastructure service
	Security service
	Web services engine
	Data Replication Service

	Virtual hosts
	Session management
	HTTP Session persistence
	Stateful session EJB persistence

	Web services
	Enterprise services (JCA Web services)
	IBM WebSphere UDDI Registry
	Web Services Gateway (Network Deployment only)

	Service integration
	Service integration bus
	Service integration bus and messaging
	Web services and the bus
	Mediations
	Bus security

	Security
	User registry
	Authentication
	Authorization
	Security components
	Security flows

	Resource providers
	JDBC resources
	Mail providers
	JCA resource adapters
	URL providers
	JMS providers
	Resource environment providers

	Workload management
	High availability
	Administration
	Administration tools
	Configuration repository
	Centralized administration

	Developing and deploying J2EE applications
	Application packaging
	Application deployment
	The flow of a J2EE application

	Technology support summary
	For more information

	Notices
	Trademarks


