

Redbooks Paper

GPFS Sequential Input/Output
Performance on IBM pSeries 690

Abstract
The purpose of this high performance I/O study is to demonstrate that the IBM®
pSeries® 690 has a very powerful I/O subsystem for handling sequential I/O workloads. The
study shows that an appropriately configured pSeries 690 system is capable of sustaining
18.5 gigabytes per second (GB/s) sequential I/O. When performing disk I/O using a modified
GPFS, the server can sustain 15.8 GB/s aggregate sequential read or 14.5 GB/s aggregate
write performance.

In this paper we discuss the capabilities of the newest IBM pSeries 690 processor and its I/O
subsystem. We provide GPFS configuration details and discuss GPFS options for attaining
the best performance. We also include details about the selection of the disk subsystem and
disk adapters. Finally, we provide guidance on selecting the proper RAID configuration, as
well as other performance and tuning tips.

Introduction
There are many applications today, in both industry and in the public sector, that read, write,
and analyze large amounts of data with high throughput. Seismic processing in the oil and
gas industry, credit analysis and prospect identification in the finance and banking industries,
and image processing and digital video rendering in the media and entertainment industries
are just a few examples.

To compete in this environment, a processing system requires both high performance
processing capability and a high capacity input/output infrastructure in order to provide fast
access to the large volumes of data required.

Designing for performance
IBM develops systems with the goal of balanced performance, because it is of little value to
have high performance processing in a system if the I/O subsystem is not capable of getting
data into the system to be processed. In the IBM pSeries 690 subsystem, the I/O architecture

Gautam Shah
James Wang

© Copyright IBM Corp. 2004. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

is designed to provide high sequential I/O bandwidth to complement the high performance
processing capabilities built into the system.

While it is possible to look at an I/O subsystem design and theoretically determine its
throughput capabilities, this does not always present an accurate picture of actual system
performance. Prior to this study, there was no empirical data showing the system-level
throughput of a large pSeries 690 fully loaded with 2 Gbps fibre channel adapters and disks.
A study of this type was needed to examine the actual performance and answer questions
such as the following:

� Are there unseen bottlenecks in the hardware or operating system? If so, where are they?

� What is the actual maximum sequential I/O file system performance achievable? Can a
single pSeries 690 system sustain more than 10 GB/s sequential read or write?

� Will the device drivers for the adapters experience contention in memory, or will lock
contention in the file systems prevent the system from scaling?

Study goals
In this benchmark, a pSeries 690 system was assembled to provide the base for evaluating
its sequential I/O capabilities. The processor we chose was the pSeries 690, which is the
latest model of the pSeries family with 1.9 GHz POWER4+® processors. We used seven
RIO2 drawers, each populated with 16 Fibre Channel adapters (IBM Feature Code 6239) to
attach the disk subsystem.

Since many customer environments today include a SAN-oriented file system with the ability
to do very large sequential I/Os at very high data rates, we included IBM 2109 SAN switches
in this pSeries 690 high performance I/O study. The 112 adapters were used to attach 56
FAStT600 disk subsystems using seven IBM 2109 Fibre Channel switches.

With this test system, a series of performance tests were executed to provide I/O workload
sizing information and to examine the following areas:

� The throughput capacity of a single RIO2 drawer, and profile its internal read and write
capabilities and limitations

� Determine how system throughput scales as additional RIO2 drawers and adapters are
added into the system, from one drawer up to the maximum of seven drawers

� The sequential throughput capacity of the system-wide striped logical volumes

� The sequential throughput capacity of single file and the aggregate file system throughput
using GPFS

� The aggregate application read-behind-write performance using GPFS

IBM pSeries 690 system architecture
IBM extends the power of its flagship IBM Eserver® pSeries® 690 by adding the
POWER4+™ 1.9 GHz processor—its fastest ever—and up to 1 TB of memory.

The 1.9GHz POWER4+ processor options enable a broad range of pSeries 690
configurations. The 8-way 1.9 GHz Multichip Module (MCM) allows 8-, 16-, 24-, and 32-way
pSeries 690 system configurations. The 8-way with 4-way active 1.9GHz Capacity Upgrade
on Demand (CUoD) processor option enables clients to install standby processing capacity
that can be activated permanently or temporarily to meet rapidly changing workload
requirements. Capacity on Demand pSeries 690 configurations require that at least eight
active processors be installed. The 128 GB memory card provides up to 1 TB of memory on
the pSeries690, doubling the capacity previously available.

2 GPFS Sequential Input/Output Performance on IBM pSeries 690

The new pSeries 690 also includes faster 633MHz features, which allow pSeries 690 systems
to take full advantage of the performance of 1.9GHz POWER4+ processors:

� 128 MB Level 3 (L3) cache

� Memory cards in increments of 4, 8, 16, 32, 64, and 128 GB

� Two-loop and four-loop Remote I/O-2 (RIO-2) adapters for attaching IBM7040-61D I/O
Expansion Drawers

pSeries 690 I/O subsystem
The pSeries 690 has a leading-edge I/O subsystem that complements the POWER4+ CEC.
Schematics for the pSeries 690, including the I/O subsystems for the POWER4++ systems,
are shown in Figure 1. The maximum I/O configuration is seven 7040-61D I/O drawers.

Figure 1 pSeries 690 I/O subsystem default cabling, maximum bandwidth per PCI slot, all drawers double loop,
7 drawers maximum

The 7040-61D I/O drawer has two I/O planar options: a high performance RIO2 to PCI-X I/O
planar (Feature Code 6571), and the RIO to PCI I/O planar used on the pSeries 690 (Feature
Code 6563). The 7040-61D I/O drawer with FC 6571, represented in Figure 2 (the RIO2
drawer benchmarked), is a 4 EIA drawer that contains support for 20 full-length PCI-X
adapters and 16 disk bays. It contains two PCI I/O planars that have ten 64-bit PCI-X slots,
and two integrated Ultra3 SCSI controllers each. All of the slots are 64-bit, and they support
both PCI-X and PCI adapters.

Each I/O planar has two RIO2 ports. One RIO2 port of each I/O planar is always connected to
a RIO2 port on an I/O book in the CEC. The other RIO2 can be connected to a RIO2 port on
an I/O book in the CEC (Figure 2), or it can be connected to the other I/O planar. Each
integrated Ultra3 SCSI adapter is internally hardwired to a 4-slot DASD back plane in the front
of the I/O drawer, so that there are four groups of four hard drives.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 3

The pSeries 690++ I/O architecture allows the bandwidth supported by the system to scale
with the number of drawers attached. The total bandwidth required by a system will vary,
depending on the application. With the RIO2 I/O planar (FC 6571), 10 high performance
adapters are supported per planar with 1300 MB/s maximum simplex bandwidth.
System-wide, the pSeries 690 has the capability to sustain 18 GB/s simplex.

For this benchmark, each of the benchmarked RIO2 drawers is connected to an IBM 2109
F32 switch and 8 FAStT600 Turbo and EXP700 pairs.

Large pages support
The POWER4+ processor and the POWER4 processor in the IBM pSeries 690 system
support two virtual page sizes: they support the traditional POWER™ architecture 4 KB page
size, and also a new 16 MB page size. AIX® support of large pages, and how it was used in
the benchmark, is discussed in “AIX support of large pages” on page 10.

Figure 2 pSeries 690 I/O subsystem, I/O planars with default dual RIO2 loop cabling

Hardware configuration and sizing
In this section we describe the hardware configuration sizing justification of the fibre channel
adapters selected, and explain why FAStT600 Turbo with RAID5 was chosen.

Hardware configuration benchmarked
The following hardware was used for this pSeries 690 I/O benchmark. The summary diagram
is shown in Figure 3.

4 GPFS Sequential Input/Output Performance on IBM pSeries 690

� One pSeries 690 (IBM model 7040-681). The machine was equipped with four 8-way
POWER4+ Turbo 1.9Ghz processors, for a total of 32 processors. Memory consisted of
eight 32 GB memory cards, for a total of 256 GB memory.

� One Hardware Maintenance Console (IBM Model 6792-LPU) was built with Release 3
Version 2.6, and HMC build level 20040113.1. The HMC was used to configure the
pSeries 690 into one LPAR.

� Seven 7040-61D I/O drawers – Feature Code 6571 with dual RIO2 loop cabling.

� 56 FAStT600 turbo controller enclosures with 14 drives (36 GB, 15 K RPM).

� 56 drive enclosures, EXP 700 with 14 drives (36 GB, 15 K RPM).

� 112 one port 2 Gbps Fibre Channel HBA (Host Bus Adapter) – Feature Code 6239.

 16 HBAs per RIO2 drawer (slots 1,2,3,5,6,7,8,9; 11,12,13,15,16,17,18,19).

� Seven IBM 2109 F32 32 port switches.

Figure 3 pSeries 690 I/O benchmark hardware configuration

Choosing the number and slot location of the Fibre Channel HBAs
Fibre Channel adapters are the bridges between the pSeries 690 hardware I/O subsystem
and disks. If the number of adapters is undersized, then the aggregate adapter bandwidth
becomes the system bottleneck. We used the following three steps to perform adapter sizing.

1. Determine the average adapter throughput.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 5

The current HBAs supported in the pSeries products are designed to operate at 2 Gbps. This
means any adapter, given unlimited system resources, can transmit and receive data at
approximately 200 MB/s.

However, when multiple HBAs within a system are all busy transferring data, other system
limitations may become the bottleneck and lower the combined throughput of the HBAs; that
is, the average 2 Gbps adapter throughput in an I/O-intensive system will be lower than the
rated 200 MB/s. For sizing purposes, we use a more conservative 150 MB/second per
adapter as our anticipated average throughput.

2. Determine the adapters required for each RIO2 drawer.

The next step was to determine the number of HBAs that should be used in each RIO2
drawer. From engineering tests and the design specifications of the RIO2 drawer, we found
that its theoretical maximum throughput was approximately 2.4 GB/s. Using our planning
number of 150 MB/second for each adapter meant that we should plan on using 16 adapters
in each RIO2 drawer.

3. Determine the RIO2 slots for adapter placement.

For a 10-slot I/O planar tied to one GX bus, we expect 1200 MB/s total. For the 2 I/O planars
per RIO2 drawer, which use two GX buses, we expect around 2.4 GB/s. After examining the
design specification, we decided to place the HBAs in the RIO2 drawer in the following ways.

– Each RIO2 drawer has two planar boards with 10 PCI slots.

– Each planar has two connections back into a RIO2 hub called link0 and link1. Each link
can support about 750 MB/s throughput as a rule of thumb for all of the devices
attached.

– Within each planar there are three PCI Host Bridges (PHB), each supporting a group of
PCI slots. Each PHB is designed to provide 450 MB/s as a rule of thumb.

– RIO2 link0 feeds only PHB1. PHB1 supports slots 1, 2, 3 and 4 in planar0, and slots
11, 12, 13, and 14 in planar1.

• Installing three Fibre Channel adapters in these slots will saturate PHB1 (assuming
150 MB/second per adapter as determined in step 1).

• For this benchmark, we placed adapters at slots 1, 2, and 3 in planar1, and at slots
11, 12, and 13 in planar 2.

– RIO2 link1 feeds both the PHB2 and PHB3 (slots 5, 6, 7, 8, 9, 10 in planar0, slots 15
through 20 in planar1, and the integrated SCSI ports).

• Installing 5 adapters in these slots will saturate the RIO link (5 adapters at 150 MB/s
or 750 MB/second).

• For this benchmark, we selected PHB2 slots 5, 6, and 7 in planar1 and slots 15, 16,
and 17 in planar2 to place adapters. For PHB3, we placed adapters at slots 8 and 9
in planar1, and at slots 18 and 19 in planar2.

Selection of FAStT600 Turbo for this sequential workload
To explore the pSeries 690’s full I/O capability, we needed to select a storage environment
that could best support the required data throughput. There are many devices available today
for storing data in the pSeries environment, and our evaluation was very straightforward for
this sequential I/O workload. After comparing the various options available, and considering
all of the specific requirements (such as capacity, availability, manageability and cost), we
determined that FAStT600 would provide the capacity and speed required at a price that
would be attractive to customers.

6 GPFS Sequential Input/Output Performance on IBM pSeries 690

Using a SAN-attached disk controller
Our primary goal in choosing a disk controller as the basis for our I/O subsystem was to
choose a system that met our throughput requirements. However, a significant secondary
goal was to create an environment that would be able to be adapted and installed across a
broad group of customer environments.

Using a SAN-attached disk controller provided many benefits. For example, many customers
are already using SAN technology and our solution could easily be integrated into those
environments. Furthermore, the use of fiber in the SAN simplifies the cabling requirements
and, by allowing extended distances between components, greatly simplifies the physical
planning required to install the equipment.

In this study, we evaluated the IBM Enterprise Storage Subsystem (ESS) Model 800 and two
members of the IBM FAStT controller family. In the following sections, we describe these
products in more detail.

ESS Model 800
The ESS Model 800 offers specific advantages in the way it handles load balancing and
failover across multiple physical fibers, which made it a good potential candidate for our
study. However, the ESS is designed as a more monolithic system, and it lacks the
modularity of the FAStT controller solutions. To support the 18 GB/s pSeries 690 bandwidth,
we would have needed thirty ESS Model 800s, with each Model 800 supporting up to 525
MB/s sequential read. Its floor space and power requirements were too large for the space
available for this study.

Comparing the FAStT Model 900 and FAStT Model 600 Turbo
The two models of the FAStT family of disk controllers that most closely met the requirements
for this benchmark were the Model 600 with the Turbo feature and the Model 900.

The Model 900, being the fastest model of the family, would initially appear to be the best
choice for our environment, because each Model 900 can support up to 775 MB/second
throughput in a sequential workload environment using four fiber connections into the SAN.
The Model 600 controller provides approximately half of that throughput, using two fiber
connections into the SAN.

The Model 900 controller drawer, however, requires disk expansion drawers to hold any disk
drives in the system—while the Model 600 Controller drawer includes space for up to 14 disk
drives in the controller drawer. This difference in design means that two Model 600 controller
subsystems can be used to provide the same level of performance as a single Model 900. In
addition, because of the integrated disks in the controller drawer, the model 600 solution
requires fewer disk drawers and less rack space. When these factors were taken into
account, the Model 600 solution was considered to be the more effective solution for this
sequential workload environment.

The benchmarked FAStT600 Turbo configuration
A FAStT600 Turbo system can provide a sustained sequential throughput of 370 MB/s when
using large I/O block sizes. In order to provide this throughput capability, a sufficient number
of disks must be installed. Each FASTt600 drawer has slots to install 14 disks, but we had
determined that 14 drives would not be enough to support the required throughput so we
added one ESP700 drive enclosure to each FAStT600 Turbo system, to provide a total of 28
disks per system. We connected eight of these FAStT600 Turbo systems to each RIO2
drawer to support our target of 2400 MB/s.

Each FAStT600 Turbo was configured with two 2 Gigabit Fibre Channel adapters. Since
these two 2 Gbps adapters are capable of sustaining 400 MB/s, they were more than

 GPFS Sequential Input/Output Performance on IBM pSeries 690 7

adequate to support the FAStT600 Turbo 370 MB/s sequential read. The benchmarked RIO2
drawer is shown in Figure 2, and the system configuration is shown in Figure 3.

Selection of RAID5
The use of RAID5 was predetermined for this I/O benchmark. However, since there are 28
disks per FAStT600 turbo and EXP 700 pair, there are quite a few possible ways to create the
RAID5 arrays. We needed to determine the number of RAID5 arrays to create and the
number of disks to be used for each RAID5 array.

In the following section, we explain our rationale for choosing a RAID5 array.

AIX 5.2 limits 128 PV per volume group
From the sizing previously discussed, we concluded that the pSeries 690 needed 112 two
Gigabit Fibre Channel adapters to drive the 56 FAStT600 turbo with EXP 700. To fully utilize
all the adapter bandwidth, at least one RAID5 array had to be assigned to each of the 2 Gbps
adapters.

Since our ultimate goal was to explore aggregate sequential read and write bandwidth with
GPFS, this restriction also required all the RAID5 arrays to be included into one volume group
(VG). However, AIX 5.2 has a 128 physical volumes (PV) limitation per VG. In order to stay
within the limitation, each of the 112 adapters needed to be configured with only one RAID5
array. In other words, only two arrays could be defined on each FAStT600 turbo controller.

RAID5 8+P with 128 KB segment size gives the best I/O performance
There are many different ways to configure the RAID5 arrays out of the 28 disks available
from each FAStT600 Turbo and EXP700 pair. But the RAID5 selection should satisfy the
following constraints:

� Only two RAID5 arrays are allowed per FAStT600 Turbo and EXP 700 pair.

� The RAID5 configuration that you select needs to best match the AIX-supported 1 MB
maximum Logical Track Group (LTG) size to achieve the best hardware parallel striping.

� The combined throughput of all RAID5 arrays needs to be able to drive the pSeries 690 18
GB/s I/O bandwidth.

To fit the 1 MB LTG size, the most logical RAID5 configuration is either the RAID5 4+P with
256 KB segment size, or the RAID5 8+P with 128 KB segment size. These two RAID5 arrays
can best fit the hardware striping when 1 MB data is evenly distributed among either the four
disks in 256 KB segments or the eight disks in 128 KB segments.

Note: Per a customer request, we also considered the RAID5 6+P with 256 KB segment size
as a possible candidate, even though it does not satisfy the best hardware parallelism under
the AIX-supported maximum 1 MB LTG. The only reason that the RAID5 6+P was suggested
was because a drawer has 14 disks, and two RAID5 6+Ps is a perfect fit for a drawer of disks.
The RAID5 6+P with 128 KB segment size was not considered because it will perform less
efficiently.

Prior to the benchmark, we did a separate I/O test on a pSeries 630 to compare the
FAStT600 Turbo read and write performance of these three candidates. The preliminary
study on p630 showed that although a single 2 Gbit Fibre Channel adapter can deliver close
to 195 MB/s performance, the actual performance of both 2 Gbit adapters operating together
under a FAStT600 Turbo and EXP pair does not linearly scale up to 390 MB/s.

8 GPFS Sequential Input/Output Performance on IBM pSeries 690

For this reason, the performance comparison was made using both controllers of the
FAStT600 turbo. The performance was measured using an application called Xdd. Xdd is
described in detail in “The Xdd I/O application” on page 12. We use an Xdd I/O application
with two threads, with each thread reading or writing four MB application I/O blocks against a
RAID5 array. The results are listed in Table 1.

Note: The MB definition under Xdd is 1,000,000 bytes.

Table 1 The RAID5 performance comparison of a FAStT600 Turbo and EXP700 pair

The analysis reveals that the read performance of all three RAID5 configurations can meet
the minimum 300 MB/s sequential read performance, which was calculated to support the
2400 MB/s RIO2 drawer performance target. However, RAID5 8+P LUNS deliver the highest
write performance (285 MB/s) for each FAStT Turbo.

According to the results shown in Table 1, if customers only need high read performance,
then both RAID5 4+P and RAID5 6+P can still be considered. However, in order to explore
the pSeries 690 full I/O capability, we chose the RAID5 8+P with a 128 KB segment size for
the I/O study.

Benchmark environment setup
In this section, we describe the environment we set up for this benchmark.

Configure the pSeries 690 as one LPAR for highest performance
For a heavy I/O workload, it is recommended that the pSeries 690 be configured in full
system LPAR mode. This is because of a difference in how AIX interacts with the hardware
I/O translation control entry (TCE) regions.

In SMP mode, AIX requires the TCE table to be continuous at the top of system memory. For
maximum hardware speed, the GX TCE base address register (TCEBAR) is implemented as
a simple mask, requiring the TCE table to be an even power of two in size and aligned to its
size. These two interact to cause much of the memory taken by the TCE table to be unused
for TCE entries.

To preserve customer investment in memory, the operating system is allowed to use the area
not used by TCEs. The GX controller will snoop the TCEBAR region on behalf of I/O bridges
below it and send invalidation operations if the TCEBAR region is altered. In a worst case
scenario, these invalidations can be sent to all GX busses in the system due to operating
system usage of memory within the TCEBAR region. This possibility, combined with
transaction ordering restrictions on the invalidation operations, can have a negative effect on
performance, manifested as higher system CPU usage.

For partitioned mode, the hypervisor maps the TCEs on behalf of the operating system and
the TCE table can be optimally placed to avoid the extra invalidation operations. A side
benefit derived from running in LPAR mode is much quicker system rebooting since only the
operating system has to be reinitialized rather than the full I/O subsystem and so forth.

FA S tT6 00 Tu rb o +
E XP 7 00 P air, 4 M B

A pplic ation I/O B loc k

2 RA ID5 4+ P ,
256 K B S egm ent
(10 disk s us ed)

2 RA ID5 6+ P ,
256 K B S egm ent
(14 dis k s us ed)

2 RA ID5 8+ P ,
128 K B S egm ent
(18 dis ks used)

Rea d, M B /s 331 347 357

W rite, M B /s 246 274 285

 GPFS Sequential Input/Output Performance on IBM pSeries 690 9

Operating system AIX 5.2 ML2
The pSeries 690 was built with AIX 5.2 ML2 64-bit kernel.

Logical track group size 1 MB
The logical track group (LTG) is a contiguous block contained within the logical volume. It
corresponds to the maximum allowed transfer size for disk I/O.

The LTG size can be set at the volume group. In the past AIX releases, only 128 KB was
allowed. To take advantage of these larger transfer sizes and realize better disk I/O
performance, starting from AIX 5L™, values of 128 KB, 256 KB, 512 KB, and 1024 KB for the
LTG size are accepted. Much larger values will be available in future releases. The maximum
allowed value is the smallest maximum transfer size supported by all disks in a volume group.
The default size of creation of a new volume group is 128 KB.

In addition, the LTG should be less than or equal to the maximum transfer size of all disks in
the volume group. To have an LTG size greater than 128 K, the disks contained in the volume
group must support I/O requests of this size from the disk's strategy routines.

The mkvg SMIT screen shows all four values in the selection dialog for the LTG. The chvg
SMIT screen shows only the values for the LTG supported by the disks. The supported sizes
are discovered using an ioctl (IOCINFO) call.

Note: Before creating the volume group by using the mkvg command, the max_transfer_size
of all hdisks needs to be set to 1 MB with the following command:

chdev -l hdiskX -a max_transfer=0x100000

An analysis that was completed prior to this benchmark showed that a larger LTG helps the
large application block sequential read and write performance.

AIX support of large pages
Large page usage is primarily intended to provide performance improvements to memory
access-intensive applications that use large amounts of virtual memory. These applications
may obtain performance improvements by using large pages. The large page performance
improvements are attributable to reduced translation lookaside buffer (TLB) misses due to the
TLB being able to map a larger virtual memory range. Large pages also improve memory
prefetching by eliminating the need to restart prefetch operations on 4 KB boundaries.

AIX support of large pages began with AIX 5.1.0.0-02. The large page architecture requires
that all virtual pages in a 256 MB segment must be the same size. AIX uses this architecture
to support a “mixed mode” process model. Some segments in a process are backed with 4
KB pages, while 16 MB pages can be used to back other segments. Applications may request
that their heap segments be backed with large pages. Applications may also request that
shared memory segments be backed with large pages. Other segments in a process are
backed with 4 KB pages.

In addition, there is further optimization for I/Os to raw LVM files when using large pages for
shared memory (assuming that the application I/O buffers are in shared memory). With APAR
IY56002 for AIX 5.2, the limitation to make the I/O buffers be in large page shared memory
has been removed so that the I/O buffers can use large page malloc/valloc buffers in the
process heap as well.

10 GPFS Sequential Input/Output Performance on IBM pSeries 690

Configuring AIX large pages
For this benchmark, we preallocated 96 GB of large pages with the vmo command and
rebooted the system as shown:

� vmo -p -o lgpg_size=16777216 # value in bytes for a 16 MB page

� vmo -p -o lgpg_regions=6144 # number of regions (in this case, 96 GB)

� bosboot -a; reboot -q

You can make an application use large pages for its heap/data area by either setting an
environment variable or by using a link option (or having the application binary-edited), as
described:

� To use an environment variable, set the env variable in the script that starts the I/O
application:

LDR_CNTRL=LARGE_PAGE_DATA=Y

A value of Y says to use large pages as much as it can—but if an allocation fails for large
pages, it will go ahead and use normal pages without an application failure. A value of M says
that it is mandatory to use large pages, and the application will fail if not enough large pages
are available.

Note: We discovered that you have to use advisory mode (a value of Y) in order to benefit
from the DIO optimization when using large pages.

Alternatively, you can use the -blpdata link option when compiling the application, or edit the
binary by using ldedit -blpdata binary_name

If using large pages for shared memory segments, the shmget() call should specify the
SHM_LGPAGE | SHM_PIN flags. Also, vmo -p -o v_pinshm=1 must be run, which indicates
to the virtual memory manager that an application can use pinned memory for shared
memory segments. The –p option makes it persist across reboots.

If using a non-root user id, then the user id must be given permission to use large pages, as
follows:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE username

The use of large pages can be monitored with the svmon command (either run svmon without
any arguments, or use svmon -P <pid>). Usage can also be monitored by using vmstat –l and
adding the other vmstat options (like the interval value).

FAStT600 benchmark settings
The following FAStT settings were used for this high performance I/O benchmark:

� RAID level: 5

� Segment Size: 128 KB

� Modification Priority: High

� Read Cache: Enabled

� Write Cache: Enabled

� Write Cache without Batteries: Enabled

� Write Cache with mirroring: Disabled

� Flush write after (in seconds): 10.00

 GPFS Sequential Input/Output Performance on IBM pSeries 690 11

� Cache read ahead multiplier: 8

� Enable background media scan: Disabled

� Media scan with redundancy check: Disabled

� Cache block size: 16 KB

� Cache flush settings: start = 50% stop = 50%

� AVT turned off

The Xdd I/O application
Xdd is a tool for measuring and characterizing disk subsystem I/O on single systems and
clusters of systems. It was designed by Thomas M. Ruwart from I/O Performance, Inc. to
provide consistent and reproducible performance of a sustained transfer rate of an I/O
subsystem. It is a free software program distributed under a GNU General Public License.
Xdd creates one thread for every device or file under test. Each I/O operation is either a read
or write operation of a fixed size known as the “request size”.

Multiple passes feature
An Xdd run consists of several “passes”. Each pass will execute some number of I/O
requests on the specified target at the given request size. In general, each pass is identical to
the previous passes in a run with respect to the request size, the number of requests to issue,
and the access pattern. Passes are run one after another with no delays between passes
unless a pass delay is specified. Multiple passes within an Xdd run are used to determine the
reproducibility of the results.

In this benchmark, three passes were used for each measurement.

The de-skew feature
Xdd also has a “de-skew” feature. During the de-skew window, all targets are active and
transferring data. The amount of data transferred by any given target during the de-skew
window is simply the total amount of data it actually transferred minus the data it transferred
during the front-end skew period, and minus the data it transferred during the back-end skew
period. The de-skewed data rate is the total amount of data transferred by all targets during
the de-skew window, divided by the de-skew window time.

In this benchmark, the de-skewed feature is used to show the highest sequential read or write
throughput.

shmget/shmat or valloc/malloc memory allocation feature
The Xdd program allows two ways to allocate memory:

� valloc/malloc

malloc is a general purpose memory allocation package. The subroutine returns a block of
memory of at least the number of bytes specified by the Size parameter.

valloc has the same effect as malloc, except that allocated memory is aligned to a multiple
of the system page size.

� shmget and shmat

shmget and shmat allow processes to explicitly map files directly into memory, to avoid
buffering and system call overhead. They are used by multiple processes/threads to share
data.

shmget allows applications to get or create a shared memory segment.

12 GPFS Sequential Input/Output Performance on IBM pSeries 690

shmat attaches a shared memory segment to the address space of a process.

In addition, Xdd is coded to use AIX shared memory as an option; it creates shared memory
segments with the SHM_LGPAGE and SHM_PIN flags.

In this benchmark, we tested both valloc/malloc and shmget/shmat. For the shmget/shmat
case, we set the v_pinshm VMM tuning parameter to 1 by using the command vmo –p –o
v_pinshm=1.

Read-behind-write feature
Xdd also has a read-behind-write feature. For the same target, Xdd can launch two threads: a
writer thread, and a reader thread. After each record is written by the writer thread, it will block
until the reader thread reads the record before it continues.

pSeries 690 RIO2 drawer internal bandwidth profiling
The profiling of the RIO2 drawer internal bandwidth not only marks the highest possible
throughput that the RIO2 can handle, but also reveals the bottlenecks. In this benchmark, we
chose RIO2 drawer 1 and measured the sequential I/O performance of the following hardware
components one at a time in the dedicated pSeries 690 environment (refer to Figure 2 for the
location of each hardware component):

� 2 Gigabit Fibre Channel adapter

� PHB1, PHB2 and PHB3 of the PCI-X to PCI-X Bridge

� link0 and link1 of the RIO2 to PCI-X Bridge

� planar 0 and planar 1

� RIO2 drawer

� Scalability of RIO2 drawers from 1 to 7

The RIO2 drawer internal bandwidth profiling can only be done if there is adequate hardware
attached to the RIO2 drawer; in other words, sizing of the number of Fibre Channel adapters
and disk subsystems must be done properly. The maximum hardware component throughput
can only be measured if the aggregate bandwidth of all the adapters and disk subsystems
(including controllers) exceeds what the hardware can sustain.

The hardware internal bandwidth can be profiled by either reading or writing two copies of the
rhdisks or raw devices (logical volumes) from all the disks under the profiled component.
Reading or writing two copies of the same rhdisks or raw devices forces a high level of FAStT
controller cache hits, which allows more data transfer. In this benchmark, we used Xdd to
read or write with 4 MB application I/O blocks. Three passes were measured for each data
point, and only the average I/O rate is reported.

For example, to profile a 2 Gbps Fibre Channel adapter bandwidth, we used Xdd to read or
write two copies of rhdisk from the associated RAID5 array. Similarly, to profile the sequential
I/O bandwidth at the PHB1 level, we used Xdd to read or write two copies of each of the three
rhdisks associated with the profiled PHB1. The same technique was used to characterize the
hardware bandwidth at the link level and the drawer level.

The RIO2 internal simplex bandwidth profiling is shown in Figure 4. If a single adapter is
measured in the system, it shows that each of the 2 Gbps Fibre Channel adapters can sustain
around 195 MB/s read or write.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 13

Figure 4 pSeries 690 RIO2 internal simplex bandwidth profile

At the PHB level, since there are three adapters under each PHB1 or PHB2, the
measurement shows it can sustain around 585 MB/s sequential read or write. Since we
placed only two adapters under PHB3, the profiling shows it can support around 390 MB/s
simplex. All PHB measurements show that each 2 Gigabit Fibre Channel adapter needs to
sustain 195 MB/s.

Although link0 is a 1 GB/s connection, it can saturate at about 820 MB/s. Since link0 only
handles PHB1, its simplex profiling agrees with the PHB1 measurements (which is around
585 MB/s). That is, the throughput of the link0 and PHB1 path is restricted by the PHB1
sustain rate. Adding the fourth adapter to PHB1 may not improve the bandwidth.

On the other hand, since link1 feeds both PHB2 and PHB3, the bottleneck is in the link1
speed. Our profiling shows it is capable of 814 MB/s. Since link1 simplex throughput has
been saturated, adding additional adapters under either PHB2 or PHB3 cannot improve the
overall bandwidth. This is why we placed only three adapters under PHB2 and two adapters
under PHB3.

At the planar level, the engineering projected speed is about 1350 MB/s simplex. The profiling
shows it is capable of 1332 MB/s.

After the detailed profiling of RIO2 drawer 1, we also measured the read and write bandwidth
of each of the seven RIO2 drawers. The profiling shows each RIO2 drawer can sustain 2650
MB/s simplex, as shown in Table 2.

7040-61D I/O drawer

GX bus @ 633 MHz
for 1.9 GHz system

1 Planar per RIO2 HUB

RIO 2

RIO2
HUB

RIO2
HUB

RIO2 to PCI-X
Bridge

Ultra3
SCSI

Ultra3
SCSI

PHB2
PCI-X to PCI-X

Bridge

PHB3
PCI-X to PCI-X

Bridge

PHB1
PCI-X to PCI-X

Bridge

RIO2 to PCI-X
Bridge

Ultra3

SCSI

Ultra3

SCSI

PHB2
PCI-X to PCI-X

Bridge

PHB3
PCI-X to PCI-X

Bridge

PHB1
PCI-X to PCI-X

Bridge

RIO 2

RIO 2

RIO 2

RIO 2 RIO 2

RIO 2

RIO 2

Link 0Link 1 Link 1Link 0

PHB 1 routed via RIO2 link 0
PHBs 2 and 3 routed via RIO2 link 1

Planar 1
FC 6571

Planar 2
FC 6571

All slots are PCI-X 64 bit 133 MHz 3.3V signaling also support PCI 3.3V signaling adapters

579 MB/s 814 MB/s

580 MB/s

1
9
4

1
9
3

1
9
4

1
9
1

1
9
5

1
9
4

1
9
4

1
9
3

1
9
4

1
9
4

1
9
4

1
9
4

1
9
7

1
9
4

1
9
4

1
9
4

1326 MB/s

MB/s

581 MB/s 583 MB/s 388 MB/s 580 MB/s 387 MB/s

579 MB/s 814 MB/s

1328 MB/s

MB/sMB/s MB/s MB/sMB/s

MB = 1,000,000 Bytes

14 GPFS Sequential Input/Output Performance on IBM pSeries 690

Table 2 RIO2 profiling at drawer level and system level

The sequential read/write profiling of the pSeries 690 with seven RIO2 drawers reveals that
the system is capable of 18512 MB/s simplex. Dividing the seven-drawer measurement
18512 MB/s by 7 gives 2645 MB/s, which is the single RIO2 drawer sustained throughput.
This shows that the RIO2 bandwidth is linearly scalable from 1 to 7 drawers.

pSeries 690 striped logical volume performance
In “pSeries 690 RIO2 drawer internal bandwidth profiling” on page 13, we profile the RIO2
internal bandwidth by reading and writing data mostly from the FAStT controller cache. Since
most data is transferred from cache memory, not much disk I/O was exercised. In this
section, we focus on the disk I/O performance by exploring AIX striped logical volume
performance.

To trigger disk I/O, the application needs to at least read or write data several times of the 112
GB FAStT600 Turbo controller cache available from the 56 FAStT600 Turbo. In this part of
the measurement, each measurement reads or writes multiple terabytes.

Each of the 112 RAID5 8+P arrays is a physical volume (PV) under AIX. There are many
ways to create volume groups and striped logical volumes. However, in order to get a
performance reference point for the “single large” GPFS study, we decided to create only one
system-wide volume group to include all RAID5 arrays, and create striped logical volumes
horizontally spread across all RAID5 arrays.

In the following section, we describe how we created the striped logical volumes.

System-wide striped logical volume
Since our main focus was to study the aggregated sequential I/O performance of a single
large GPFS with DIO, in this section we only studied the performance of “system-wide”
striped logical volumes. The aggregated sequential I/O performance of several striped logical
volumes together—although not completely matching the GPFS concurrent read or write
behavior—is the closest approximation. The intent of studying the raw striped LV
performance was to reveal the GPFS with DIO overhead over raw devices.

1851218558
All 7 RIO2 Drawers

26512656
Drawer 7, U2.9

26502656
Drawer 6, U2.5

26602649
Drawer 5, U2.1

26502657
Drawer 4, U1.13

26522656
Drawer 3, U1.1

26542656
Drawer 2, U1.5

26512655
Drawer 1, U1.9

Write Profile MB/sRead Profile MB/s
RIO2 Drawer, Location Code

 GPFS Sequential Input/Output Performance on IBM pSeries 690 15

The striping mechanism, also known as RAID0, is a technology that was developed to
achieve I/O performance gain. The basic concept of striping is that in the write phase, each
data operation is chopped into small pieces (referred to as a “striped unit” or “chunk”), and
these chunks are written to separate physical volumes in parallel. In the read phase, these
chunks are read from those separate physical volumes in parallel, and reassembled into the
actual data.

Note the following points:

� From the high availability point of the view, the striping function does not provide
redundancy, except for the mirroring and striping function.

� From the performance point of view, a slow physical volume or RAID5 array may slow
down the overall striped LV performance a great deal.

One volume group with 1 MB LTG size
Since a striped LV can only be allocated across all available physical volumes within a
volume group, we created one volume group to include all the available RAID5 arrays. The
volume group was 10.8 TB in size with a 512 MB physical partition (PP) and a 1 MB logical
track group (LTG) size. In this volume group, we created 16 striped logical volumes. Each
striped LV was 689 GB in size, and was spread across all the RAID5 arrays available.

Stripe width: all available RAID5 8+P arrays
The number of physical volumes that accommodate the striped logical volume is known as
the “stripe width”. In this benchmark, all striped LVs were allocated across all 106 RAID5
arrays available at the time of measurement.

Stripe size: 1 MB
When the application accesses the striped logical volumes, the storage area for each
physical partition is not used contiguously. These physical partitions are divided into chunks.
The chunk size may be 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB or 1024
KB. The size is determined at the creation of the striped logical volumes, and cannot be
changed after. The chunk size is also called the “stripe unit size” or the “stripe length”.

For this benchmark, since the application sequential I/O block size can be very large, we
used a 1024 KB stripe size to take advantage of the LVM striping capability.

Combining LVM striping and RAID5 striping
To achieve high degrees of parallel I/O, the application takes advantage of two layers of
striping. The first layer of striping is at the LVM level. With LVM striping, a large application
block can be parallelized into 1 MB stripes and distributed to all the physical volumes (RAID5
arrays) associated with the striped LV.

The second level of striping is at the hardware level. After each RAID5 array receives the 1
MB from LVM, it further breaks down the data into hardware stripes and distributes to disks in
parallel. In our case, since the RAID5 is configured as 8+P, the 1 MB data received from LVM
was distributed as eight 128 KB segments to the eight disks in the RAID5 array. For very
large I/O block sizes, this is the most efficient way to do parallel I/O.

Striped logical volume performance
To study the raw device performance, we created a volume group of 10.8 TB with a 512 MB
physical partition (PP) size.

As shown in Figure 5 and Figure 6, the highest single striped LV read performance is 3816
MB/s read and 3542 MB/s write with application read or write of 256 MB block size. The
highest system read performance is 15926 MB/s with 16 striped LVs concurrently read, and

16 GPFS Sequential Input/Output Performance on IBM pSeries 690

14506 MB/s with 16 striped LVs concurrently written. Xdd treats each striped LV as a target,
and it reads or writes each target concurrently with a separate thread.

Note: The MB definition under Xdd is 1,000,000 bytes.

In this part of the study, we had only 106 RAID5 arrays available for our study. If all 112
RAID5 8+P arrays can be used, the aggregated throughput shown in Figure 5 and Figure 6
should be another 5% higher.

Figure 5 Striped logical volume read performance

Figure 6 Striped logical volume write performance

The GPFS file system
The General Parallel File System (GPFS) is the IBM high performance cluster file system,
which has been available on AIX clusters since 1998 and on Linux® clusters since 2001.

Patched AIX 52B - Striped LV Read with valloc
 Pinned Large Page Shared Memory
LV Striped 1 MB over 106 RAID5 8+P

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

16 MB 32 MB 64 MB 128 MB 256 MB

Applicaton I/O Block Size

M
B/

s

1 LV + 1 Thread

2 LV + 2 Thread

4 LV + 4 Thread

8 LV + 8 Thread

16 LV + 16 Thread

Patched AIX 52B - Striped LV Write with valloc
Pinned Large Page Shared Memory
 LV Striped 1 MB over 106 RAID5 8+P

0
2000
4000
6000
8000

10000
12000
14000
16000

16 MB 32 MB 64 MB 128 MB 256 MB

Application I/O Block Size

M
B/

s

1 LV + 1 Thread

2 LV + 2 Thread

4 LV + 4 Thread

8 LV + 8 Thread

16 LV + 16 Thread

 GPFS Sequential Input/Output Performance on IBM pSeries 690 17

GPFS allows file data access from all nodes in the cluster by providing a global name space
for files. Applications can efficiently access files using standard UNIX® file system interfaces.
GPFS supports 32-bit as well as 64-bit applications. It also has been tested up to a 100 TB
file system size. The file system size can be dynamically increased or decreased by the
addition or deletion of logical disks.

GPFS provides standard POSIX application interfaces. It supports buffered I/O, synchronous
I/O (file is opened with O_SYNC or O_DSYNC flags), kernel asynchronous I/O (through the
use of the Asynchronous I/O system calls) and Direct I/O (non-buffered I/O). Direct I/O can be
done on a per file basis if the file is opened with O_DIRECT, or it can be done on a per file
system basis when the file system is mounted with the “dio” mount option.

The use of Direct I/O allows GPFS to bypass the page pool (file system cache) to perform I/O.
This saves CPU cycles because the copy from the page pool to the application buffer is
avoided. Direct I/O prevents GPFS from using pre-fetch algorithms, but the performance can
be compensated by applications issuing larger-sized I/Os, use of asynchronous I/O, and/or
use of multiple threads.

GPFS distinguishes itself from other cluster file systems by providing applications with
concurrent high speed file access in a multiple node AIX and/or Linux cluster. It provides
excellent performance, especially for large sequential record access patterns. Although
GPFS is typically targeted for a cluster with multiple nodes, it can also provide high
performance benefit for a single node.

GPFS allows AIX and Linux nodes in a heterogeneous cluster
GPFS 2.2 allows AIX and Linux nodes to coexist in the same heterogeneous cluster. GPFS
for AIX and GPFS for Linux are derived from the same source code base and differ only in
adapting to different hardware and operating system environments.

GPFS uses Shared Disk Model
GPFS assumes a shared disk model. The shared disk model can be implemented in many
forms:

� Via a hardware SAN, where all nodes in the cluster have physical access to all storage

� Via a separate software device driver called Virtual Shared Disk (VSD), that presents a
shared disk layer to a cluster of nodes, which schedules I/O to the appropriate storage
server

� Via a software layer within GPFS called Network Shared Disk (NSD), which schedules I/O
to the appropriate storage server

To enhance the GPFS performance in VSD or NSD environments, it is recommended that the
data to be transferred via high-speed interconnects from the storage server to the application
node.

The keys to high GPFS performance
The following are some of the key GPFS features that help to achieve high performance I/O:

� Striping data across multiple disks and multiple nodes.

� Efficient client-side data caching.

� Allowing administrators to configure large block size on a file system basis to meet
application characteristics.

� Using read-ahead and write-behind functions for “regular” access patterns.

18 GPFS Sequential Input/Output Performance on IBM pSeries 690

� Using byte-range locking which is based on a sophisticated token management to provide
data consistency. This enables multiple application nodes to have concurrent access to
files.

GPFS metadata
GPFS handles metadata on all nodes of the cluster. This key and unique feature
distinguishes the GPFS architecture and design from other cluster file systems, which
typically require a centralized metadata server to handle fixed regions of a file system. A
potential downside of the centralized metadata server approach is that it could become a
performance bottleneck under metadata-intensive operations. It may also be a single point of
failure if a backup server is not configured.

Highly Available GPFS
GPFS is a highly available file system. It can be configured to allow uninterrupted data access
even under the failure of compute nodes, I/O server nodes, or disk attachments. The
metadata is organized by GPFS in a fashion that lends itself to efficient parallel access and
maintenance. It can be configured with multiple copies (replication) to allow continuous
operation even if the disk path or the disk itself is inaccessible.

In addition, GPFS can be used with RAID or other hardware redundancy capabilities to
provide business continuity even under media failures. To accomplish this, the disks should
be multi-tailed-attached to multiple I/O servers. When an I/O server fails, I/O requests can be
served by a backup server that provides an alternate path to the same disk.

The loss of connectivity to disks from one node does not affect the other nodes in the
direct-attached SAN environment. GPFS uses the IBM RSCT function to continuously
monitor the health of the various file system components. When any failure is detected, the
appropriate recovery actions will be taken automatically. GPFS also provides extensive
logging and recovery capabilities, which maintain metadata consistency across the failure of
application nodes holding locks or performing services for other nodes.

Single node GPFS
Since GPFS is often targeted as a cluster file system, a question is sometimes raised about
the relevance of a single node GPFS configuration. There are two points to consider:

� GPFS is a well-proven, scalable cluster file system. For a given I/O configuration, typically
multiple nodes are required to saturate the aggregate file system performance capability.
If the aggregate performance of the I/O subsystem is the bottleneck, then GPFS can help
achieve the aggregate performance even on a single node.

� GPFS is a highly available file system. Therefore, customers who are interested in
single-node GPFS often end up deploying a multi-node GPFS cluster to ensure
availability.

The product documentation, which provides more detailed information about all aspects of
the GPFS file system, is available at the following site:

http://publib.boulder.ibm.com/clresctr/windows/public/gpfsbooks.html

GPFS sequential read or write performance considerations
In setting up a GPFS file system for our benchmark, there were several configuration and
tuning decisions to be considered. In this section, we discuss the GPFS configuration options
as well as the application design considerations that can influence performance.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 19

http://publib.boulder.ibm.com/clresctr/windows/public/gpfsbooks.html

Note: Some of the GPFS configuration options used in the benchmark are modified features
that are not available in the generally available (GA) version of GPFS.

Configuring disks for GPFS
GPFS can be configured using either VSD or AIX hdisks. Since the VSD option has been
available for a long time, it is currently the preferred choice in large clusters. This is especially
true in systems where you want to take advantage of the high performance switch.

Since a VSD is built on a logical volume, its I/O size to the disk device driver is determined by
the volume group logical track group (LTG) size. To study the LTG performance impact on
GPFS, we enhanced this modified GPFS to allow the exploitation of 1 MB LTG size with
GPFS commands. In comparison, GPFS 2.2 only allows a default track size of 128 KB.

In this benchmark, we only studied the GPFS performance of 1 MB LTG. However, it is our
belief that the performance impact of using a smaller LTG size is expected to be small
because the device driver can coalesce multiple contiguous requests into a single large
request to the disk.

Data striping choices
To achieve high sequential I/O GPFS performance under AIX, there are three methods to be
considered in configuring the available RAID5 arrays:

a. GPFS striping, where each RAID5 array constitutes a GPFS logical disk. This is the
most typical way to configure GPFS. It can take full advantage of the GPFS
pre-fetch/write-behind capability for large sequential accesses.

b. AIX Logical Volume Manager (LVM) striping, where a large striped logical volume can
be built with a subset or all of the RAID5 arrays. In this case, each logical volume
would constitute a GPFS logical disk.

c. Using a combination of GPFS striping and AIX LVM striping.

We typically prefer method a) because it enables GPFS to perform “deep” pre-fetching.
However, in a single node GPFS configuration with a large number of disks, we may
potentially derive some benefit from methods b) or c). This is because they may enable the
concurrent use of disks even when GPFS or application does not have multiple outstanding
requests.

In this benchmark, using method b) or c) requires GPFS to support a larger than 1 TB logical
disk. This is because the aggregate size of all the RAID5 arrays used to build a striped logical
volume can exceed 1 TB. While the current GPFS 2.2 can only support logical disks up to 1
TB, our modified GPFS allowed us to configure logical disks larger than 1 TB.

Note: A future GPFS release will add support for a logical GPFS disk to be larger than 1TB.

GPFS block size
Another important decision to make when configuring GPFS for large sequential I/O is the
choice of a file system block size. GPFS 2.2 supports block sizes up to 1 MB. Since we
anticipated the use of a larger GPFS block size could improve performance, we enhanced the
modified GPFS to allow block sizes up to 32 MB. Some of the GPFS performance
measurements using a 32 MB GPFS block size confirm our expectation.

Note: There is no plan to support very large block size in the GA product. This is because
there are other factors to be considered, such as the amount of memory used for GPFS
pagepool or the fragmentation impacts of sub-block allocation.

20 GPFS Sequential Input/Output Performance on IBM pSeries 690

Contiguous block allocation
Another option available when creating the GPFS file system is the ability to allocate blocks
contiguously on an individual logical disk. This was also a new function available in this
modified GPFS. In contrast, GPFS 2.2 allocates blocks randomly on each logical disk. We
used contiguous block allocation in our single node GPFS because we expect a sequential
I/O application would benefit from contiguous block placement on disk.

GPFS tunables
In addition to the configuration options, there are also GPFS tunables that can impact
performance. Some of the GPFS tunables used in this benchmark are:

� pagepool: this is the amount of space allocated for GPFS buffering.

� prefetchThreads: this indicates the number of threads that the GPFS daemon should use
for read or write operations. This parameter sets the maximum number of concurrent I/O
requests used by GPFS.

� maxMBpS: this dynamically adjusts the number of prefetchThreads used based on I/O
response time (with an intent to sustain a particular I/O rate for the client).

� maxBuddyBufferSize: this sets the maximum VSD communication message size, and
dictates the VSD I/O granularity.

Application considerations
There are also application-level considerations to keep in mind when exploiting high
performance GPFS. Some I/O-intensive applications perform large sequential I/Os using a
single thread to read or write. In many cases the simple use of a read or write system call
works well with GPFS because GPFS uses multiple threads to schedule I/O simultaneously
to multiple disks. This method involves staging data through the GPFS file system cache. In
the case of a single node GPFS with an intensive I/O workload, the aggregate CPU cycles to
stage data can potentially saturate all the CPU capability.

To improve I/O performance in cases where the CPU is a bottleneck, applications can use
direct I/O to avoid the data copy between the file system cache and application buffers. The
saved CPU cycles can be used to drive additional I/O throughput. Although the use of direct
I/O avoids the data copy overhead, it requires the application buffers to be pinned. The
pinning is required to ensure that the application buffers corresponding to the I/O request do
not get paged out.

Since pinning is an expensive operation, if the application buffer pinning can be done a priori
outside the I/O critical path, it can save CPU cycles. But this requires the file system to have a
mechanism to recognize that the application buffers have already been pinned, so it does not
have to pin the same buffers again before scheduling I/O.

GPFS 2.2 does not have the capability to recognize that the application buffers have already
been pinned. But this new feature was incorporated into the modified GPFS. Applications can
inform GPFS that its application buffers used for Direct I/O have been pinned, so GPFS does
not have to pin again. The application can pin its buffers using appropriate options on shared
memory with large pages, as described in “The Xdd I/O application” on page 12.

Note: The intent of Direct I/O is to read or write data directly into or out of the application
buffer. Although it prevents GPFS from pre-fetching, performance can be compensated by
using asynchronous I/O and/or multiple threads to ensure sufficient concurrency.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 21

GPFS sequential read/write performance measurements
In this section we describe the performance results of using some of the configuration options
described in the previous section. Our intent is to show how we progressively improve the
GPFS performance by using the tunables and some of the modified features previously
described.

“Out-of-box” performance using GPFS Striping (5 - 7 GB/s, 1 application
thread)

A GPFS file system was created with 109 VSDs over 109 RAID5 8+P arrays. Each VSD was
created on a logical volume using 1 MB LTG size, which is the largest size possible under
AIX 5.2. Further, as described in “Hardware configuration and sizing” on page 4, the segment
size of the RAID5 8+P array was set to 128 KB. This is to ensure that the RAID5 8+P array
with stripe width of 1 MB (8 disks * 128 KB segment size) matched the 1 MB LTG size. The
optimal setting avoids the RAID5 read-modify-write penalty.

The GPFS file system was created with a block size of 4 MB. The file system was configured
for contiguous block allocation on a per logical disk basis. In this stage of the performance
study, the Xdd application used only one single thread to do large sequential reads or writes
without using either Direct I/O or shared memory. With a pagepool size of 2 GB,
prefetchThreads of 400, maxMBpS of 5000, and maxBuddyBufferSize of 1MB, we were able
to measure GPFS performance in the range of 5 – 7GB/s. Note that the VSD tunable
maxBuddyBufferSize was set to 1 MB to match the logical track size. If the
maxBuddyBufferSize did not match the volume group LTG, we observed considerable CPU
overhead that reduced overall GPFS performance.

Tuning the GPFS maxMBpS (7 – 8 GB/s, 1 application thread)
In our quest to understand why GPFS performance was limited, we discovered that only
about 120 threads out of the 400 pre-fetch threads configured for the GPFS daemon were
used by the GPFS daemon. To further improve GPFS performance, we increased the
maxMBpS to 15000. This new setting is only available in this modified GPFS. In comparison,
GPFS 2.2 only allows the maxMBpS to have a maximum value of 5000.

Using the new 15000 maxMBpS setting, we were able to measure 7 – 8 GB/s sequential I/O
performance with 80% to 90% CPU utilization. The high CPU utilization suggests that the
sequential I/O performance obtained by GPFS pre-fetching may be gated by the CPU cycles
used to copy data between the application buffer and the file system cache. This finding
suggested that the application needed to use Direct I/O for more efficient sequential I/O
operations.

In this stage, we measured 7 – 8 GB/s sequential I/O performance using the Xdd I/O
application described earlier. We also obtained similar single file performance using
“gpfsperf” (a program distributed with GPFS).

We expect that with a GPFS 2.2 PTF to allow larger maxMBpS, applications doing large
sequential I/O on a similarly configured system will be able to obtain similar performance as
was achieved by the modified GPFS.

Using Direct I/O with application I/O buffer pinning (12 - 12.5 GB/s, 128
application threads)

When the Xdd application was rerun using Direct I/O, we only observed 2 GB/s sequential I/O
throughput using 16 application threads. Further investigation revealed that the lower I/O
performance occurred because:

22 GPFS Sequential Input/Output Performance on IBM pSeries 690

� GPFS “pins” the application buffers used for direct I/O.

� For a given application request, GPFS did not issue concurrent I/Os to disks. GPFS
breaks down a large application I/O request into multiple disk requests based on the
GPFS block size. For a given application I/O request, GPFS waited for each disk request
to complete before issuing the next disk request.

The pinning of application buffer by GPFS during the I/O path results in higher CPU
utilization. As mentioned previously, the application can pin buffers outside the I/O critical
path using SHM_LGPAGE and SHM_PIN flags when allocating buffers in shared memory.
We added the feature to “inform” the modified GPFS that the application buffer has been
pinned in order to avoid the GPFS pinning overhead in the I/O critical path. The resulting
measurements using 128 application threads and Direct I/O showed performance of 12 - 12.5
GB/s sequential read or write performance.

Enabling GPFS concurrency for a single large application Direct I/O request
(12 - 12.5 GB/s, 16 application threads)

To enhance sequential I/O performance, applications often issue large I/O requests to the file
system. Each large I/O request is converted by GPFS internally into multiple smaller requests
to different disks. In GPFS 2.2, these multiple requests are handled serially. To compensate
for this serial behavior within GPFS, we had to use a large number of application threads to
ensure that disks could be used concurrently.

To further enhance the GPFS performance, we updated the modified GPFS to allow multiple
GPFS internal disk requests generated from a large application I/O request to proceed in
parallel. These changes were made only to the read and write path--and not to the create
path.

With this enhancement, we were able to duplicate the 12 – 12.5 GB/s sequential I/O
performance with just 16 application thread. The GPFS block size was 4 MB and 109 hdisks
were used. This enhancement allows a single application thread to obtain much higher
sequential I/O performance using Direct I/O.

A different approach - Single Striped LV GPFS (14.5 – 15.8 GB/s, 16 application
threads)

The performance enhancement discussed in the last paragraph was based on a GPFS file
system that only used GPFS striping. In this sub-section, we describe our testing of GPFS
performance with AIX LVM striping.

For this part of the analysis, a single striped LV with 20 TB was created from 106 RAID5 8+P
arrays available at that time. A GPFS file system was then created using this 20 TB striped
LV as a single logical GPFS disk. With this configuration, we measured the best GPFS
performance of this benchmark. With 32 MB GPFS block size and 16 application threads with
each thread making 256 MB size I/O requests, we measured 15.8 GB/s sequential I/O read
performance (as shown in Figure 7 and Figure 8), and 14.5 GB/s sequential write
performance (as shown in Figure 10, Figure 11, and Figure 12).

The CPU utilization of either reads or writes was about 40% (as shown in Figure 9 and
Figure 10). The low CPU utilization is the result of Direct I/O usage and pinning of application
buffers outside the I/O critical path. As noted earlier, there is no plan to support 32 MB large
block size because of other implications.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 23

Figure 7 GPFS read performance using Direct I/O to large page pinned shared memory

Figure 8 GPFS Read performance using Direct I/O to large page pinned shared memory with
256 MB I/O size and 16 threads

Figure 9 GPFS CPU utilization and IOs/sec during reads with direct I/O to large page pinned shared
memory with 256 MB I/O size and 16 threads

GPFS 2.2 Modif ied - AIX 52B - Read Performance - shmget/shmat
1 GPFS w ith 20 TB, Pinned Large Page Shared Memory

LV Striped 1 MB over 106 RAID5 8+P

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

16 MB 32 MB 64 MB 128 MB 256 MB

Application I/O Block Size

M
B/

s
1 File + 1 Thread

4 File + 4 Thread

8 File + 8 Thread

16 File + 16 Thread

GPFS 2.2 Modified - AIX 52B - Read w ith shmget/shmat
16 Threads, 256 MB Block Size, Pinned Large Page Shared Memory

 1 GPFS, 20 TB, LV Striped 1 MB over 106 RAID5 8+P, KB=1024 bytes

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

20
:4

7

20
:4

8

20
:4

8

20
:4

8

20
:4

9

20
:4

9

20
:5

0

20
:5

0

20
:5

1

20
:5

1

20
:5

2

20
:5

2

20
:5

2

20
:5

3

20
:5

3

20
:5

4

20
:5

4

Th
ou

sa
nd

s

Time

R
ea

d
K

B
/s

GPFS 2.2 Modified, AIX 52B - Read w ith shmget/shmat
16 Threads, 256 MB Block Size, Pinned Large Page Shared Memory

1 GPFS, 20 TB, LV Striped 1 MB over 106 RAID5 8+P

0
10
20
30
40
50
60
70
80
90

100

20
:4

7

20
:4

8
20

:4
8

20
:4

8

20
:4

9

20
:4

9

20
:5

0

20
:5

0

20
:5

1

20
:5

1

20
:5

2

20
:5

2

20
:5

3

20
:5

3

20
:5

4

20
:5

4

us
r%

+s
ys

%

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

D
is

k
xf

er
s

CPU% IO/sec

24 GPFS Sequential Input/Output Performance on IBM pSeries 690

Figure 10 GPFS write performance using Direct I/O to large page pinned shared memory

Figure 11 GPFS write performance using Direct I/O to large page pinned shared memory with
256 MB I/O size and 16 threads

GPFS 2.2 Modif ied - AIX 52B - Write w ith Preallocation - shmget/shmat
1 GPFS w ith 20 TB, Pinned Large Page Shared Memory

LV Striped 1 MB over 106 RAID5 8+P

0

2000

4000

6000

8000

10000

12000

14000

16000

16 MB 32 MB 64 MB 128 MB 256 MB

Application I/O Block Size

M
B

/s
1 File + 1 Thread

4 File + 4 Thread

8 File + 8 Thread

16 File + 16 Thread

GPFS 2.3 - AIX 52B - Write w ith Preallocation - shmget/shmat
16 Files, 256 MB Block Size, Pinned Large Page Shared Memory

1 GPFS, 20 TB, LV Striped 1 MB over 106 RAID5 8+P, KB=1024 Bytes

0

2000

4000

6000
8000

10000

12000

14000

16000

20
:3

1

20
:3

2

20
:3

2

20
:3

3

20
:3

4

20
:3

4

20
:3

5

20
:3

5

20
:3

6

20
:3

6

20
:3

7

20
:3

7

20
:3

8

20
:3

8

20
:3

9

20
:3

9

20
:4

0

Th
ou

sa
nd

s

Time

W
rit

e
K

B
/s

 GPFS Sequential Input/Output Performance on IBM pSeries 690 25

Figure 12 GPFS CPU utilization and IOs/sec during writes with Direct I/O to large page pinned shared
memory with 256 MB I/O size and 16 threads

GPFS read-behind-write performance
Read-behind-write is a technique used by some high-end customers to lower latency and
improve performance. The read-behind-write technique means that once the writer starts to
write, the reader will immediately trail behind to read; the idea is to overlap the write time with
read time. This concept is beneficial on machines with slow I/O performance. For a high I/O
throughput machine such as pSeries 690, it may be worth considering first writing the entire
file out in parallel and then reading the data back in parallel.

There are many ways that read-behind-write can be implemented. In the scheme
implemented by Xdd, after the writer writes one record, it will wait for the reader to read that
record before the writer can proceed. Although this scheme keeps the writer and reader in
sync just one record apart, it takes system time to do the locking and synchronization
between writer and reader.

If one does not care about how many records that a reader lags behind the writer, then one
can implement a scheme for the writer to stream down the writes as fast as possible. The
writer can update a global variable after a certain number of records are written. The reader
can then pull the global variable to find out how many records it has to read.

Each pair of read-behind-writes has only one target or one file. Since both writer and reader
need to write to and read from the same file, Xdd will launch two threads for each pair of read
behind write. As shown in Figure 13, with 60 pairs and using 120 threads, the highest duplex
GPFS I/O throughput is 6.35 GB/s for writes and 6.35 GB/s for reads delivering an aggregate
I/O throughput of 12.7 GB/s.

GPFS 2.2 Modified - AIX 52B - Write w ith Preallocation - shmget/shmat
16 Threads, 256 MB Block Size, Pinned Large Page Shared Memory

1 GPFS 20 TB, LV Striped 1 MB over 106 RAID5 8+P

0

20

40

60

80

100

20
:3

1

20
:3

2
20

:3
3

20
:3

3

20
:3

4

20
:3

4

20
:3

5

20
:3

5

20
:3

6

20
:3

6

20
:3

7

20
:3

8

20
:3

8

20
:3

9

20
:3

9

20
:4

0

us
r%

+s
ys

%

0
2000
4000
6000
8000
10000
12000
14000
16000

D
is

k
xf

er
s

CPU% IO/sec

26 GPFS Sequential Input/Output Performance on IBM pSeries 690

Figure 13 GPFS read-behind-write performance using Direct I/O to large page pinned shared memory
with 256 MB I/O size and 60 pairs of threads

As shown in Figure 14, the performance is gated by the CPU utilization. The high CPU
utilization of the read-behind-write scenario is contributed by the locking required to
synchronize the reader and writer. In contrast, the CPU utilization was only about 40% for the
aggregated 15.8 GB/s sequential read performance and 14.5 GB/s sequential write
performance reported in the last section.

Figure 14 GPFS CPU utilization and IOs/sec during read-behind-writes with Direct I/O to large page
pinned shared memory with 256 MB I/O size and 60 pairs of threads

Conclusions
The IBM pSeries 690, using the current RIO2 drawers, more than doubles the I/O
performance of the “first generation” pSeries 690 using RIO drawers. The pSeries 690 is able
to sustain very good performance using a high performance GPFS with very reasonable CPU
overhead.

GPFS 2.2 Modif ied - AIX 52B - Read Behind Write
shmget/shmat, Pinned Large Page Shared Memory

60 Pairs, 120 Threads, 256 MB Block Size,
1 GPFS, 20 TB, LV Striped 1 MB over 106 RAID5 8+P, KB=1024 Bytes

0

2000

4000

6000

8000

10000

12000

14000

11
:5

9

11
:5

9

11
:5

9

12
:0

0

12
:0

0

12
:0

0

12
:0

0

12
:0

0

12
:0

1

12
:0

1

12
:0

1

12
:0

1

12
:0

2

12
:0

2

12
:0

2

12
:0

2

Th
ou

sa
nd

s
KB

/s
Disk Read kb/s Disk Write kb/s

GPFS 2.2 Modif ied - AIX 52B - Read Behind Write
shmget/shmat, Pinned Large Page Shared Memory

 60 Pairs, 120 Threads, 256 MB Block Size
1 GPFS, 20 TB, LV Striped 1 MB over 106 RAID5 8+P

0
10
20
30
40
50
60
70
80
90

100

11
:5

9

11
:5

9

11
:5

9

12
:0

0

12
:0

0

12
:0

0

12
:0

0

12
:0

0

12
:0

1

12
:0

1

12
:0

1

12
:0

1

12
:0

1

12
:0

2

12
:0

2

12
:0

2

12
:0

2

us
r%

+s
ys

%

0

2000

4000

6000

8000

10000

12000

14000

D
is

k
xf

er
s

CPU% IO/sec

 GPFS Sequential Input/Output Performance on IBM pSeries 690 27

The scalability to “near raw” hardware performance gives the option of using GPFS to meet
almost any high sequential I/O requirement even on a single node. The delivered “raw”
performance of the I/O subsystem matches exactly the designed theoretical maximum
throughput.

The GPFS file system on the pSeries server has proven itself in numerous HPC and other
customer applications—even using first-generation RIO drawers. GPFS performance has
been well established in large cluster environments. In this benchmark, we have shown
exceptional performance using GPFS even on a single-node IBM pSeries 690.

Allowing users to configure GPFS using either GPFS striping or AIX LVM striping provides
configuration flexibility while delivering a significant proportion of the available I/O bandwidth
of the server. Configuration and tuning suggestions to obtain high performance are discussed
in “GPFS sequential read or write performance considerations” on page 19 and “GPFS
read-behind-write performance” on page 26. The performance discussion in this paper may
also provide guidance to other GPFS environments. Furthermore, the performance of a
single IBM pSeries 690 server is comparable to the aggregate throughput observed on some
large clusters.

References
� IBM ^® pSeries® 690 Configuring for Performance, Harry Mathis, John D.

McCalpin, Jacob Thomas, May 6, 2003

� GPFS Primer for AIX Clusters, available at:

http://www-.ibm.com/servers/eserver/pseries/software/whitepapers/gpfs_primer.html

� General Parallel File System (BPFS) 1.4 for AIX - Architecture and Performance, Heger,
D. and Shah, G.

� GPFS on AIX Clusters: High Performance File System Administration Simplified,
SG24-6035-00, Abbas Farazdel, Robert Curran, Astrid Jaehde, Gordon McPheeters,
Raymond Paden, Ralph Wescott, available at:

http://www.redbooks.ibm.com

� The Complete Partitioning Guide forIBM ^® pSeries® Servers, SG24-7039-01,
Kelgo Matsubara, Nicolas Guerlin, Stefan Reimbold, Tomoyuki NiiJima, available at:

http://www.redbooks.ibm.com

� IBM Total Storage: FAStT600/900 and Storage Manager 8.4, SG24-7010-00, Bertrand
Dufrasne, Bernd Baeuml, Carlos De Nobrega, Ales Leskosek, Stephen Manthorpe,
Jonathan Wright, available at:

http://www.redbooks.ibm.com

Acknowledgements
Thanks to the following people for their contribution to this project:

� Pat Buckland – TCEM for I/O on iSeries™ and pSeries, IBM
� Alan Byrd - System Integration, IBM
� Thomas E. Engelsiepen – General Parallel File System, Almaden Research Center, IBM
� Dawn Hamilton – Design Center of e-business on demand™, IBM
� David Hepkin – AIX Kernel Development, IBM
� Randy Kreiser – Storage Architect, LSI Logic Storage Systems, Inc.
� Daniel L McNabb – General Parallel File System, Almaden Research Center, IBM

28 GPFS Sequential Input/Output Performance on IBM pSeries 690

http://www-.ibm.com/servers/eserver/pseries/software/whitepapers/gpfs_primer.html
http://www.redbooks.ibm.com
http://www.redbooks.ibm.com
http://www.redbooks.ibm.com

� Raymond L. Paden – HPC Technical Architect, IBM
� Dwayne Perrin – pSeries Federal Technical Consultant, IBM
� Sheryl Qualters – pSeries Benchmark Center, IBM
� Tom Ruwart – Consultant, I/O Performance Inc.
� Kurt Sulzbach – pSeries Benchmark Center, IBM
� Tina Tarquinio – pSeries Benchmark Center, IBM
� James C. Wyllie – General Parallel File System, Almaden Research Center, IBM

The team that wrote this Redpaper
Gautam Shah is a Senior Engineer with the Scalable I/O (GPFS) team in the Systems and
Technology group. His areas of expertise include High Performance Computing, File
Systems, Communication Protocols, Parallel & Distributed systems, Programming Models
with a focus on architecture and performance.

James Wang is a Senior Engineer with the IBM Design Center for e-business on demand in
Poughkeepsie, NY. He is an IBM Certified IT Specialist with more than 10 years of database
experience in pSeries and AIX. He is certified in UDB 8.1, UDB for clusters, Oracle9i, SAP
UNIX/Oracle, AIX, HACMP™, Business Intelligence and Grid Computing Technical Sales.
His areas of expertise include database system design, implementation, tuning and high
availability.

 GPFS Sequential Input/Output Performance on IBM pSeries 690 29

30 GPFS Sequential Input/Output Performance on IBM pSeries 690

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. 31

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
AIX®
AIX 5L™
e-business on demand™

HACMP™
IBM®
iSeries™
pSeries®
POWER™

POWER4™
POWER4+™
Redbooks (logo) ™

The following terms are trademarks of other companies:

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

®

32 GPFS Sequential Input/Output Performance on IBM pSeries 690

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	GPFS Sequential Input/Output Performance on IBM pSeries 690
	Abstract
	Introduction
	IBM pSeries 690 system architecture
	Hardware configuration and sizing
	Selection of RAID5
	Benchmark environment setup
	AIX support of large pages
	FAStT600 benchmark settings
	The Xdd I/O application
	pSeries 690 RIO2 drawer internal bandwidth profiling
	pSeries 690 striped logical volume performance
	The GPFS file system
	GPFS sequential read or write performance considerations
	GPFS sequential read/write performance measurements
	GPFS read-behind-write performance
	Conclusions
	References
	Acknowledgements
	The team that wrote this Redpaper

	Notices
	Trademarks

