
Redbooks

Artificial Intelligence

Data and AI

Front cover

Simplify Your AI Journey:
Hybrid, Open Data Lakehouse
with IBM watsonx.data

Deepak Rangarao

Daniele Comi

Gopi Varadarajulu

Jun Liu

Karen Medhat

Malcolm Singh

Mark Simmonds

Payal Patel

Prabh Matharu

Saurabh Kaushik

Sreenath Devireddy

Ugur Ozker

Vasfi Gucer

IBM Redbooks

Simplify Your AI Journey: Hybrid, Open Data
Lakehouse with IBM watsonx.data

January 2025

SG24-8570-00

First Edition (January 2025)

This edition applies to IBM watsonx.data Version 2.0.x.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.
© Copyright International Business Machines Corporation 2025. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

 iii

iv Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Contents

Notices . ix
Trademarks .x

Foreword . xi
Preface. xii
Authors. xii
Now you can become a published author, too! . xiv
Comments welcome. .xv
Stay connected to IBM Redbooks .xv

Chapter 1. Challenges and opportunities with data. 1
1.1 Current challenges in the data landscape. 2

1.1.1 From centralized to distributed . 2
1.1.2 Data stores, data integration, and data management tools 2
1.1.3 Data lakes and data warehouses . 3

1.2 Benefits of an open lakehouse for businesses . 3
1.2.1 The impact of cloud. 5

1.3 Open table formats and open data formats. 6
1.3.1 Open data storage . 6
1.3.2 Open data formats . 7

1.4 Storage considerations for growing data. 8
1.4.1 The data growth conundrum . 8
1.4.2 Storage challenges . 8
1.4.3 Storage opportunities . 9
1.4.4 Best practices for storage . 9

Chapter 2. Introduction to IBM watsonx.data . 11
2.1 Introduction to the watsonx platform and its core components 12

2.1.1 IBM watsonx.ai . 13
2.1.2 IBM watsonx.data . 14
2.1.3 IBM watsonx.governance . 14

2.2 IBM watsonx.data overview and architecture . 16
2.3 Benefits of using watsonx.data for businesses . 21
2.4 Data pipeline considerations for open lakehouse . 22

2.4.1 Apache Spark: The computational engine . 22
2.4.2 ETL tools: Managing complex workflows . 23
2.4.3 StreamSets: Real-time data integration and monitoring . 23
2.4.4 General design considerations for open lakehouse pipelines. 24

2.5 Data pipelines integration with watsonx.data . 24
2.5.1 Apache Spark in watsonx.data . 24
2.5.2 IBM DataStage in watsonx.data . 25
2.5.3 StreamSets in watsonx.data . 25
2.5.4 IBM watsonx.data benefits from this ecosystem. 25
2.5.5 Synergy between watsonx.data and other watsonx platform components 26

Chapter 3. Ingesting data into an open data lakehouse . 29
3.1 Provisioning and configuring IBM watsonx.data . 30
3.2 Integrating external data sources: Federation in PrestoDB . 30

3.2.1 Connecting to IBM watsonx.data Presto . 30
© Copyright IBM Corp. 2025. v

3.2.2 PostgreSQL access . 32
3.2.3 PostgreSQL external access . 33
3.2.4 MySQL access . 33
3.2.5 MySQL internal access . 33
3.2.6 MySQL external access . 34

3.3 Techniques for ingesting data (structured or unstructured) . 35
3.4 Ingesting data . 36

3.4.1 Loading or ingesting data through the CLI . 36
3.4.2 Configuring an S3 IBM Cloud Object Storage bucket . 37
3.4.3 Choosing the catalog . 38
3.4.4 Choosing the query engine . 38
3.4.5 Data ingestion through Spark and Query by using Presto 39
3.4.6 Querying from the IBM watsonx.data Query Workspace 41
3.4.7 Querying from the Presto CLI . 41

3.5 Data pipeline considerations for open lakehouse . 41
3.5.1 IBM watsonx.data: Simplifying data for AI. 42
3.5.2 DataStage ingestion of data into IBM watsonx.data . 43
3.5.3 DataStage and management of data within IBM watsonx.data 43

Chapter 4. Protecting data . 45
4.1 Users and groups in an open lakehouse. 46

4.1.1 Overview of user and group management in open lakehouses 46
4.1.2 Business use cases for user and group management . 46
4.1.3 Implementing user and group management in open lakehouses 48
4.1.4 Overview of user and group capabilities in IBM watsonx.data 49
4.1.5 Implementing group-based access in IBM watsonx.data 49

4.2 Defining roles and responsibilities. 50
4.2.1 The architectural design for RLAC . 50
4.2.2 Platform roles and instance roles in IBM watsonx.data . 51
4.2.3 Resource-level roles and permissions . 52
4.2.4 Best practices for resource-level role management . 53

4.3 Establishing ACLs . 53
4.3.1 Role-based ACL . 53
4.3.2 Policy-based ACL . 54
4.3.3 Best practices to manage ACLs . 56
4.3.4 Summary. 57

Chapter 5. Querying and manipulating data and leveraging persona-specific engines
59

5.1 Using PrestoDB or Prestissimo engine for adhoc queries . 60
5.1.1 Presto technical concepts . 61
5.1.2 Data sources. 62
5.1.3 Executing a query . 64
5.1.4 Prestissimo (C++ version of Presto) . 66

5.2 Leveraging Apache Spark engine for data engineering . 67
5.2.1 Creating and customizing internal Spark engine inside watsonx.data 67
5.2.2 Explore the tabs in the Spark engine . 74
5.2.3 Submitting the application to Native Spark engine . 76

5.3 Execute important queries using the power of traditional RDBMS with shared open
lakehouse formats . 81

5.3.1 ACID guarantees transactional reliability . 81
5.3.2 Advanced query optimization . 82
5.3.3 Standard SQL support . 82
5.3.4 Embracing lakehouse architecture and open formats. 83
vi Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 6. Establishing data governance. 87
6.1 Governing your data: The role of catalog, metadata, and policies 88
6.2 Best practices for implementing an effective data governance framework 88

6.2.1 Cataloging. 88
6.2.2 Metadata management . 89
6.2.3 Policy management . 89
6.2.4 General best practices . 89

6.3 Integration with IBM Knowledge Catalog (IKC) . 90
6.3.1 Architecture and core components of the integration . 90
6.3.2 Implementation of the integration . 91
6.3.3 Summary and references . 92

Chapter 7. Establishing a data catalog . 95
7.1 Introduction . 96
7.2 Data discovery: Automating data classification and tagging for better organization . . . 96
7.3 Data profiling . 97
7.4 Data cataloging: Building a comprehensive data catalog for findability 97
7.5 Using advanced search functions to find specific data assets 98
7.6 Case study: Improving data discoverability for faster decision-making in the retail sector

98
7.6.1 Use case: Unified data access across retail functions . 98

Chapter 8. Marketing campaign analysis use case . 101
8.1 Use case introduction . 102
8.2 Data ingestion . 102

8.2.1 Locating the marketing campaign data . 102
8.2.2 Setting up the internal spark engine . 106
8.2.3 Configure storage and catalog in IBM watsonx.data. 108
8.2.4 Connecting query engines to catalog and storage in IBM watsonx.data 111
8.2.5 Creating a schema in the catalog . 114
8.2.6 Ingesting data from an IBM Cloud Object Storage bucket 115
8.2.7 Verifying the data in the schema. 118

8.3 Connecting to and accessing data . 119
8.3.1 Gathering the required information in IBM watsonx.data 119
8.3.2 Creating a data connection in the IBM watsonx.ai project 122

8.4 Visualizing and exploring data . 129
8.4.1 Creating a Data Refinery flow . 129

8.5 Building and developing machine learning models . 141
8.5.1 Creating an AutoAI experiment . 141

Chapter 9. Adopting Milvus for RAG using IBM watsonx . 147
9.1 Introduction . 148
9.2 Key steps in the RAG workflow. 148

9.2.1 Step 1: Document ingestion . 148
9.2.2 Step 2: Document chunking . 149
9.2.3 Step 3: Embedding generation . 149
9.2.4 Step 4: Vector storage and searching with Milvus . 149

9.3 Technical integration of IBM watsonx and Milvus . 150
9.3.1 Architecture overview . 150
9.3.2 Code examples . 151
9.3.3 Benefits of using IBM watsonx for RAG . 153

9.4 Summary. 154

Chapter 10. Data and AI modernization strategy in banking use case 155
 Contents vii

10.1 Introduction . 156
10.2 Data lakehouses: Empowering data-driven decisions in banking 156
10.3 Data modernization pattern in banking . 157

10.3.1 Current pattern in banking on analytic use cases . 157
10.4 Modernized data management pattern in banking on analytic use cases 157
10.5 Conclusion . 158

Related publications . 159
IBM Redbooks . 159
Online resources . 159
Help from IBM . 159
viii Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2025. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at https://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

DataStage®
DB2®
Db2®
IBM®

IBM Cloud®
IBM Cloud Pak®
IBM Research®
Netezza®

Redbooks®
Redbooks (logo) ®
Resilient®
Think®

The following terms are trademarks of other companies:

ITIL is a Registered Trade Mark of AXELOS Limited.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Ceph, OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the
United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.ibm.com/legal/copytrade.shtml

Foreword

This trilogy of IBM® Redbooks® publications positions and explains the IBM strategic AI and
Data platform - IBM watsonx. Each book focuses on one of the three main components of the
watsonx platform:

� IBM watsonx.ai: A next-generation enterprise studio for AI builders to train, validate, tune,
and deploy both traditional ML and new generative AI capabilities powered by foundation
models

� IBM watsonx.data: A fit-for-purpose data store built on an open-lakehouse architecture,
optimized for different and governed data and AI workloads

� IBM watsonx.governance: A set of AI governance capabilities enabling trusted AI
workflows, helping organizations implement and comply with ever-changing industry and
government regulations.

Organizations have long recognized the value that IBM Redbooks provide in guiding them
with best practices, frameworks, clear explanations, and use cases as part of their solution
evaluations and implementations.

This trilogy of books was only possible due to the close collaboration involving many skilled
and talented authors that were selected from our IBM global technical sales, development,
Expert Labs, Client Success Management, and consulting services organizations, using their
diverse skills, experiences, and technical knowledge across the watsonx platform.

I would like to thank the authors, contributors, reviewers, and the IBM Redbooks team for their
dedication, time, and effort in making this publication a valuable asset that organizations can
use as part of their journey to AI.

I also want to thank Mark Simmonds and Deepak Rangarao for taking the lead in shaping this
request into yet another successful IBM Redbooks project.

It is my sincere hope that you enjoy this watsonx trilogy as much as the team who wrote and
contributed to them.

Steve Astorino, IBM General Manager - Development, Data, AI and Sustainability
© Copyright IBM Corp. 2025. xi

https://www.ibm.com/watsonx

Preface

IBM® watsonx™ is the IBM strategic AI and Data platform. This book focuses on
watsonx.data, one of the three main components of the platform.

IBM watsonx.data is a fit-for-purpose data store built on an open lakehouse architecture that
is optimized for governed data and AI workloads, supported by querying, governance, and
open data formats to access and share data. The solution can manage workloads both on
premises and across hybrid multi-cloud environments while leveraging internal and external
data sets. Through workload optimization, with this solution an organization can reduce data
warehouse costs by up to 50 percent. It enables users to access robust data through a single
point of entry while applying multiple fit-for-purpose query engines to uncover valuable
insights. It also provides built-in data governance tools, automation, and integration with an
organization's existing databases and tools to simplify setup and the user experience.

This IBM Redbooks® publication provides a broad understanding of watsonx.data concepts
and architecture, and the services that are available in the product. In addition, several
common use cases and scenarios are included that should help you better understand the
capabilities of this product.

This publication is for watsonx customers who seek best practices and real-world examples of
how to best implement their solutions while optimizing the value of their existing and future
technology, AI, data, and skills investments.

Authors

This book was produced by a team of specialists from around the world.

Deepak Rangarao is an IBM Distinguished Engineer and CTO responsible for Technical
Sales-Cloud Paks. Currently, he leads the technical sales team to help organizations
modernize their technology landscape with IBM Cloud® Paks. He has broad cross-industry
experience in the data warehousing and analytics space, building analytic applications at
large organizations and technical pre-sales with start-ups and large enterprise software
vendors. Deepak has co-authored several books on topics, such as OLAP analytics, change
data capture, data warehousing, and object storage and is a regular speaker at technical
conferences. He is a certified technical specialist in Red Hat OpenShift, Apache Spark,
Microsoft SQL Server, and web development technologies.

Daniele Comi is a Data Scientist, AI Engineer, and Software Engineer at IBM Italy, with over
three years of experience in data analytics, machine learning (ML), and deep learning. His
expertise spans the entire spectrum of AI, from architectural design to scientific research, with
a focus on machine, reinforcement, and deep learning. Daniele holds a Master's degree in
Computer Science Engineering, specializing in AI frameworks and models. At IBM, Daniele
has been a key member of the AI and Generative AI team in Italy, where he has designed and
implemented complex AI and generative AI architectures for a variety of industry applications.
His technical expertise also includes Fully Homomorphic Encrypted AI, enabling secure AI
solutions that ensure data privacy.

Note: Other books in this series are:

� Simplify Your AI Journey: Ensuring Trustworthy AI with IBM watsonx.governance,
SG24-8573

� Simplify Your AI Journey: Unleashing the Power of AI with IBM watsonx.ai, SG24-8574
xii Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.redbooks.ibm.com/abstracts/sg248573.html
https://www.ibm.com/products/watsonx-data
https://www.redbooks.ibm.com/abstracts/sg248574.html
https://www.ibm.com/watsonx

Daniele has collaborated with IBM Research®, authoring extensive research publications on
advanced deep learning techniques, particularly encoder-decoder models. He has also
contributed to IBM intellectual property through the submission of patents and the authorship
of IBM Redbooks.

Gopi Varadarajulu is a Senior Technical Staff Member & Architect in the IBM Data and AI
portfolio. He has an insider view of design & development of various IBM Data & AI
technologies such as watsonx.data, watsonxd.ai, Watson Studio, Data Virtualization,
IBM Knowledge Catalog, Watson Machine Learning & IBM Cloud Pak for Data components.
He has held various design & engineering responsibilities for the past 20 years and has 6
patents in the areas of Privacy, Secure Data Analysis, Database management systems and
operating systems.

Jun Liu serves as the architect for IBM watsonx.data, primarily focusing on the authentication
and authorization architecture across various components of the product. His current
emphasis is on enhancing data security and governance within the platform. Before working
on the watsonx project, Jun Liu was the Technical Architect of Data Virtualization Console. He
leads the Data Virtualization Console development and new feature integration team. Before
working on the Data Virtualization project, he worked for various projects on Db2® query
monitoring and optimization. He has been with IBM since 2005.

Karen Medhat is a Customer Success Manager Architect in the UK and the youngest
IBM Certified Thought Leader Level 3 Technical Specialist. She is the Chair of the
IBM Technical Consultancy Group and an IBM Academy of technology member. She holds an
MSc degree with honors in Engineering in AI and Wireless Sensor Networks from the Faculty
of Engineering, Cairo University, and a BSc degree with honors in Engineering from the same
faculty. She co-creates curriculum and exams for different IBM professional certificates. She
also created and co-created courses for IBM Skills Academy in various areas of IBM
technologies. She serves on the review board of international conferences and journals in AI
and wireless communication. She also is an IBM Inventor and experienced in creating
applications architecture and leading teams of different scales to deliver customers' projects
successfully. She frequently mentors IT professionals to help them define their career goals,
learn new technical skills, or acquire professional certifications. She has authored
publications on Cloud, IoT, AI, wireless networks, microservices architecture, and Blockchain.

Malcolm Singh is a Technical Product Manager in the Data and AI division within
IBM Software, focusing on technical strategy and connectivity. Previously, he was a Solution
Architect for IBM Technology Expert Labs in the Data and AI Platforms Team. As a Solution
Architect in the Expert Labs, he worked with top IBM clients worldwide, including Fortune 500
and Global 500 companies, providing guidance and technical assistance for their Data and AI
Platform enterprise environments. Malcolm is based at the IBM Canada Lab in Toronto and
holds a Bachelor of Science Honours degree in Computer Science from McMaster University.

Mark Simmonds is a Program Director in IBM Data and AI. He writes extensively on AI, data
science, and data fabric, and holds multiple author recognition awards. He previously worked
as an IT architect leading complex infrastructure design and corporate technical architecture
projects. He is a member of the British Computer Society, holds a Bachelor's Degree in
Computer Science, is a published author, and a prolific public speaker.

Payal Patel works in Data & AI Technical Content Development at IBM, creating technical
learning materials for sellers, business partners, and clients to enable them to get the most
value out of IBM's Data & AI products and solutions. She's worked in various roles at
IBM including marketing analytics, and as a Solutions Architect in IBM Technology Expert
Labs, with a focus on Data & AI.
 Foreword xiii

She has worked in various technical roles across the financial services, insurance, and
technology industries. She holds a Bachelor of Science in Information Science from UNC
Chapel Hill, and a Masters in Analytics from North Carolina State University.

Prabh Matharu is a Technical Data Architect in IBM Expert Labs, with a focus on IBM Cloud
Pak for Data and Data Fabric solutions. He has delivered and worked with cross-industry
customers across the EMEA region. He has developed numerous IBM Cloud Pak for Data
professional certifications. He holds a Bachelor of Science degree in Mathematics.

Saurabh Kaushik serves as Program Director within watsonx.data Product Management.
His focus is on building a truly open Lakehouse platform that empowers customers to
leverage their data seamlessly. With over 20 years of experience in building winning products
and platforms across Data, Digital, Cloud, and AI, he brings a wealth of knowledge from both
enterprise and tech startup environments, catering to diverse industries and functions.

Sreenath Devireddy works as a backend developer on the Watsonx.data console team at
IBM. Having recently joined IBM, he quickly developed an interest in Milvus and its
transformative use cases in AI. Before joining IBM, Sreenath gained experience working with
early-stage startups in the health and conversational AI domains. He holds a Master’s degree
in Computer Science from the University of Cincinnati.

Ugur Ozker is the Senior Solution Architect for IBM watsonx services in the MEA region. In
this role, he specializes in crafting tailored solutions for clients. His expertise lies in optimizing
the integration of responsible AI, data services, and other technology products with third-party
or IBM services to seamlessly align with clients' internal operations. With over 13 years of
experience across diverse technology domains, he has witnessed firsthand the
transformative power of technological advancements. Before joining IBM, he held a key role in
the banking and finance sector, serving as a technical officer responsible for infrastructure
and architecture. His tenure at the country's largest public bank provided him with invaluable
insights into the intricacies of digital transformation.

Vasfi Gucer leads projects for the IBM Redbooks team, leveraging his 20+ years of
experience in systems management, networking, and software. A prolific writer and global
IBM instructor, his focus has shifted to storage and cloud computing in the past eight years.
Vasfi holds multiple certifications, including IBM Certified Senior IT Specialist, PMP, ITIL V2
Manager, and ITIL V3 Expert.

Thanks to the following people for their contributions to this project:

� Steve Astorino, IBM General Manager - Development, Data, AI and Sustainability
� Jamie Roszel, IBM Redbooks Content Developer, IBM RTP

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
xiv Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Foreword xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xvi Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 1. Challenges and opportunities
with data

A long-standing challenge many organizations face is ensuring their data assets are
accessible, manageable, governed, and of high quality for use in new (artificial intelligence) AI
applications. These applications integrate AI throughout the enterprise for smarter business
outcomes.

Over the years, numerous paradigms and efforts have attempted to address the complexities
of managing sprawling and disparate data silos that all fell short of their promises and
expectations. Organizations also need to place their data and assets where it makes the most
business sense - whether on premises, in private or public clouds, or a combination thereof -
without detriment to their business operations for everyone's benefit.

As the volume, velocity, and variety of data continue to grow rapidly, organizations must invest
in robust infrastructure and analytics tools to effectively manage and extract value from their
vast data sets.

This chapter describes the challenges and opportunities with data:

� “Current challenges in the data landscape” on page 2
� “Benefits of an open lakehouse for businesses” on page 3
� “Open table formats and open data formats” on page 6
� “Storage considerations for growing data” on page 8

1

© Copyright IBM Corp. 2025. 1

1.1 Current challenges in the data landscape

Accurate and accessible data, in all its forms (structured, unstructured, multimedia, digital,
genetic, and organic) is the lifeblood of an organization. With the correct data, artificial
intelligence (AI) can help an organization accelerate the achievement of smarter outcomes
through deeper insights and understanding of its data estates, and discover innovative ways
of solving some of the world’s most challenging business and societal problems.

Yet many organizations continue to face the challenges of managing, governing, and
analyzing sprawling disparate data silos spread across their multi-vendor on-premises,
private cloud, or public cloud, and hybrid multi-cloud environments.

Many new paradigms and advances in computing technologies have sought to revolutionize
the ways in which organizations analyze and extract insights from data. Over time, consumers
learn the values and limitations of these technologies. Some technologies have a short
lifespan. Others endure and evolve over decades and remain relevant to this day, such as
relational database management systems (RDBMSs).

1.1.1 From centralized to distributed

For many years, data storage and processing were centralized. People had to take their work
to the computer or access it through “dumb” terminals. With the advent of more affordable
computers, processing and data became decentralized, putting computing power in the
hands of individuals. However, this development led to a problem of data being replicated in
an uncontrolled manner.

With data being created, stored, and processed across many personal devices, it became
increasingly difficult to control the sprawl of versions of data sets and apply quality, security,
and other controls. Individual departments in various enterprises started organizing and
storing only the data that they needed, which resulted in many data silos that did not
communicate with each other across an organization.

1.1.2 Data stores, data integration, and data management tools

Numerous solutions appeared for managing and integrating data to enable reporting,
analysis, and discovery of insights as data volumes grew. They were data stores with names
like database, online transactional processing (OLTP), online analytical processing (OLAP),
data warehouse, MDM system, data mart, data lake, Hadoop, or data lakehouse. Many of
these terms tend to be used interchangeably, but important differences exist. Each term
provides certain capabilities and values to different groups of users, but none is a panacea for
all data management challenges. However, technology follows a maturity curve or cycle, and
these technologies eventually found their own niches as they matured.

Many forms of data stores and data servers are used across enterprises today. More
variations of them and new paradigms will evolve because technology constantly advances.

A data fabric (an architectural approach that simplifies data access in an organization and
facilitates self-service data consumption) can offer enough longevity and flexibility to integrate
an organization’s current and future data assets and enable them for AI applications. This
subject alone warrants a book of its own.
2 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

1.1.3 Data lakes and data warehouses

Much of an organization’s data is often distributed across many disparate silos, making it
difficult to integrate and access. Data is represented in many different and sometimes
complex formats as the market supports new paradigms and more diverse use cases that use
unstructured and semi-structured data. Much time is spent transforming, cleansing, and
integrating data. Data lakes represent a way to store massive amounts of different data by
using cheap, commoditized hardware and storage through Hadoop, HDFS, or Hive. However,
an organization’s enthusiasm might decrease if they find it difficult to manage and get a good
return on their data lake investment or even rely on the data (partly due to poor-quality data).
Poor-quality data continues to concern most organizations. Once poor-quality data is shared
across multiple business units and decisions are made based on that data, it can be a
difficult, costly, and lengthy process to recover from that mistake.

Data warehouses can be considered as the first iteration of tools to support analytics, which
enabled organizations to analyze data and decide at scale. Data warehouses enabled
organizations to look at historical data. Over time, as volumes continued to grow, it became
challenging to store and retain all data in a data warehouse. Also, organizations might have
only a few years’ worth of data or only a small slice of the operational data in their
warehouses.

Organizations recognize that large volumes of unstructured data, even if they are not suitable
for data warehouses, also contain great value because the data can be extracted.
Unfortunately, when you try to analyze data of poor quality, the tools and analytical engines
that you use to analyze the content in the data lakes might not be as performant as the tools
that you use for data warehouses. Many data lakes became more like data swamps with stale
data that is difficult to maintain and untrustworthy. The need to scale compute and storage
presents two different sets of needs across data lakes and data warehouses.

Data lakes and data warehouses each provide their own set of capabilities. When combined,
scaling and governance can become key challenges because data lakes and warehouses are
designed for different purposes. The market has evolved toward cloud-based data
warehouses, which offer separation of computing and storage. Technologies such as Red Hat
OpenShift, Red Hat Ceph Storage, Amazon S3, and other warehouse engines help solve the
problem, making storage and computing inexpensive, readily available, and simpler to
manage and scale. Compute and storage must be elastic, and able to scale on demand when
needed so that organizations are charged only for what they use over the billable period.

1.2 Benefits of an open lakehouse for businesses

Although data warehouses and data lakes each evolved to meet a set of specific technology
and business needs and values, organizations often need both, so there is an increasing
demand for convergence of both technologies. Vendors attempt to create the best of both
data lakes and data warehouses by combining them into the newer technology of the
lakehouse. This lakehouse architecture is designed to provide the flexibility and cost
effectiveness of a data lake with the performance and structure of a data warehouse. The
lakehouse enables organizations to store data from the increasing number of new sources in
a low-cost way and use built-in data management and governance capabilities, which enable
organizations to power both Business Intelligence (BI) and high-performance ML workloads
efficiently and effectively.
Chapter 1. Challenges and opportunities with data 3

If implemented correctly, organizations can use their investments in data lakes and data
warehouses by adopting and implementing a lakehouse architecture and technologies to help
modernize their existing data lakes. Enterprises can also complement their data warehouses
to support some of these new types of AI- and ML-driven workloads.

A lakehouse, as shown in Figure 1-1, attempts to bridge data warehouses and data lakes by
combining the best of both into one architecture. That said, these first-generation lakehouses
have constraints that limit their ability to address cost and complexity challenges:

� Single-query engines are set up to support limited workloads, typically just for BI and ML.

� Lakehouses are typically deployed only over the cloud, with no support for hybrid
multi-cloud deployments.

� Lakehouses offer minimal governance and metadata capabilities to deploy across an
entire ecosystem.

Figure 1-1 Lakehouses combine the best of data warehouses and data lakes

Data storage paradigms are cumulative. They do not disappear or are replaced by the next
paradigm. They must coexist. As these technologies mature, organizations recognize the
value that each paradigm provides at performing certain tasks.

Every step of an organization’s data or AI journey is critical. AI is not magic; it requires a
thoughtful and well-designed approach. For example, most AI failures are due to problems in
data preparation and data organization, and not the AI models themselves. Success with AI
models depends on achieving success first with how the data is collected, stored, organized,
and managed.
4 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

1.2.1 The impact of cloud

A combination of on-premises and cloud-native warehouses and custom data lakes is
common for an enterprise architecture, as shown in Figure 1-2. Juggling costs, siloed data,
and data governance are constant challenges.

Figure 1-2 On-premises, cloud-native warehouses, and custom data lakes are commonly found in
enterprise architectures

Most lakehouse solutions offer a high-performance query engine over low-cost storage with a
metadata governance layer. Intelligent metadata layers enable users to categorize and
classify unstructured data (such as video and voice) and semi-structured data (such as
eXtensible Markup Language (XML), JavaScript Object Notation (JSON), and emails). In an
ideal world, a lakehouse offers open-source technologies that reduce data duplication and
simplify complex Extract, Transform, Load (ETL) pipelines. Some first-generation lakehouses
have key constraints that limit their ability to address the challenges of cost and complexity.
For example, a single-query engine that is designed for BI or ML workloads might be
ineffective when it is used for another workload type.

Different workloads should be optimized with the best-suited environment to keep costs at a
minimum and performance at a maximum. Organizations need a lakehouse that delivers an
optimal level of performance for better decision-making along with the ability to unlock more
value from all types of data, resulting in deeper insights.

It is an evolution of the analytic data repository that supports refinement, delivery, and storage
with an open table format. Apache Iceberg is designed to handle huge analytic data sets. It is
used in production environments where a single table can contain tens of petabytes of data
and the data can be read without a distributed SQL engine.
Chapter 1. Challenges and opportunities with data 5

https://iceberg.apache.org

1.3 Open table formats and open data formats

Adopting an open architecture when implementing a lakehouse helps ensure interoperability
across today’s hybrid multicloud environments, which often incorporate multiple vendors’
hypervisors.

1.3.1 Open data storage

This section describes some prominent open data storage services that are on the market at
the time of writing.

Amazon S3
Amazon Simple Storage Service (S3) is a service that is offered by Amazon Web Services
(AWS) and provides object storage through a web service interface. Amazon S3 uses the
same scalable storage infrastructure that Amazon.com uses to run its e-commerce network.
Amazon S3 can store any type of object, which enables storage for internet applications,
backups, disaster recovery, data archives, data lakes for analytics, and hybrid cloud storage.
AWS started Amazon S3 in the United States on March 14, 2006, and then in Europe in
November 2007.

Azure Storage
The Azure Storage platform is Microsoft's cloud storage solution for modern data storage
scenarios. Azure Storage offers highly available, massively scalable, durable, and secure
storage for various data objects in the cloud. Azure Storage data objects are accessible from
anywhere in the world over HTTP or HTTPS through a REST API. Azure Storage also offers
client libraries for developers building applications or services with .NET, Java, Python,
JavaScript, C++, and Go. Developers and IT professionals can use Azure PowerShell and
Azure CLI to write scripts for data management or configuration tasks.

IBM Cloud Object Storage
IBM Cloud Object Storage is a service that is offered by IBM for storing and accessing
unstructured data. This service can be deployed on-premises, as part of IBM Cloud Platform
offerings, or in hybrid form. The offering can store any type of object for data archiving and
backup, web and mobile applications, and as scalable, persistent storage for analytics.
Interaction with IBM Cloud Object Storage is based on Rest APIs.

Red Hat Ceph Storage
Ceph is a no-charge, open-source, and software-defined storage platform that provides
object storage, block storage, and file storage built on a common distributed cluster
foundation. Ceph provides distributed operation without a single point of failure and scalability
to the exabyte level. Since Version 12 (Luminous), Ceph does not rely on any other
conventional file system and directly manages HDDs and SSDs with its own storage back end
BlueStore. It can expose a POSIX file system.

Ceph replicates data with fault tolerance by using commodity hardware and Ethernet IP, and it
requires no specific hardware support. Ceph is highly available and helps ensure strong data
durability through techniques that include replication, erasure coding, snapshots, and clones.
By design, the system is both self-healing and self-managing, minimizing administration time
and other costs.
6 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Google Cloud Storage
Google Cloud Storage is a RESTful online file storage web service for storing and accessing
data on the Google Cloud Platform infrastructure. The service combines the performance and
scalability of Google's cloud with advanced security and sharing capabilities. It is an
Infrastructure as a Service (IaaS), and it is comparable to Amazon S3. Contrary to Google
Drive and according to different service specifications, Google Cloud Storage appears to be
more suitable for enterprises.

HDFS
Hadoop Distributed File System (HDFS) is a distributed file system that handles massive data
sets efficiently on commodity hardware. As a core component of Apache Hadoop, HDFS
enables the scaling of single clusters to hundreds or even thousands of nodes. It works in
tandem with MapReduce and YARN to form the foundation of the Hadoop ecosystem.

1.3.2 Open data formats

This section describes some prominent open data formats.

Apache Iceberg
Apache Iceberg is an open-source, high-performance format for huge analytic tables. Apache
Iceberg enables SQL tables for big data while making it possible for engines like Spark, Trino,
Flink, Presto, Hive, Impala, StarRocks, Doris, and Pig to work with the same tables at the
same time. Apache Iceberg is released under the Apache License. Apache Iceberg
addresses the performance and usability challenges of using Apache Hive tables in large and
demanding data lake environments. Vendors supporting Apache Iceberg tables in their
products at the time of writing include Buster, CelerData, Cloudera, Dremio, IOMETE,
Snowflake, Starburst, Tabular, and AWS.

Apache Parquet
Apache Parquet is a no-charge, open-source, and column-oriented data storage format in the
Apache Hadoop ecosystem. It is similar to Apache Hive Record Columnar File (RCFile) and
Apache Optimized Row Columnar (ORC), which are the other columnar-storage file formats
in Hadoop. It is compatible with most of the data processing frameworks of Apache Hadoop. It
provides efficient data compression and encoding schemes with enhanced performance to
handle complex data in bulk.

Apache Avro
Apache Avro is a row-oriented, remote procedure call and data serialization framework that is
developed within the Apache Hadoop project. It uses JSON for defining data types and
protocols, and serializes data in a compact binary format. Its primary use is in
Apache Hadoop, where it provides both a serialization format for persistent data, which is a
wire format for communication between Hadoop nodes and from client programs to the
Hadoop services. Avro uses a schema to structure the data that is being encoded. It has two
different types of schema languages: one for human editing (Avro IDL) and another that is
more machine readable (based on JSON).

It is similar to Thrift and Protocol Buffers, but does not require a code-generation program
when a schema changes (unless the code-generation program is wanted for statically-typed
languages).

Apache Spark SQL can access Avro as a data source.
Chapter 1. Challenges and opportunities with data 7

Apache ORC
Apache ORC is a no-charge, open-source, and column-oriented data storage format. It is
similar to the other columnar-storage file formats that are available in the Hadoop ecosystem,
such as RCFile and Apache Parquet. It is used by most of the data processing frameworks,
such as Apache Spark, Apache Hive, Apache Flink, and Apache Hadoop.

In February 2013, the ORC file format was announced by Hortonworks in collaboration with
Facebook. A month later, the Apache Parquet format was announced, which is developed by
Cloudera and Twitter.

The Apache ORC format is supported by Amazon AWS Glue.

1.4 Storage considerations for growing data

As organizations continue to generate and collect vast amounts of data, the need for efficient
and scalable storage solutions becomes more important. This section explores the storage
considerations for growing data, with a focus on the challenges and opportunities that arise
when working with large datasets.

1.4.1 The data growth conundrum

The rate at which data is being generated is staggering. According to a report by IDC, the
global data sphere is expected to grow from 33 zettabytes (ZB) in 2018 to 175 ZB by 2025,
which represents a compound annual growth rate (CAGR) of 26%.1 This growth is driven by
many factors, which include the increasing usage of IoT devices, social media, and cloud
computing. As data grows, so too do the challenges that are associated with storing it.
Organizations must balance the need to store large amounts of data with the need to ensure
that data is accessible, secure, and compliant with regulatory requirements.

1.4.2 Storage challenges

In storing growing data, organizations face several challenges:

� Scalability: As data grows, storage systems must scale to accommodate it. This act can be
a challenge, particularly for organizations with limited resources.

� Performance: As data volumes surge, storage systems must maintain peak performance
to help ensure rapid and efficient data access. Cost considerations are significant,
especially when organizations rely on traditional storage solutions for large-scale data
storage.

� Data protection: As data grows, the risk of data loss or corruption increases.
Organizations must ensure that they have adequate data protection measures in place.

1 Source: The Digital Universe in 2025: Emerging Trends and the Future of Data (2018)
8 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.forbes.com/sites/tomcoughlin/2018/11/27/175-zettabytes-by-2025/

1.4.3 Storage opportunities

Although there are challenges that are associated with storing growing data, there are also
opportunities. New storage technologies and architectures are emerging that are designed to
handle large amounts of data:

� Object storage: Object storage is a type of storage that is designed to handle large
amounts of unstructured data. It is highly scalable and can be more cost-effective than
traditional storage solutions.

� Cloud storage: Cloud storage provides organizations with a flexible and scalable storage
solution that can be easily expanded or contracted as needed.

� Flash Storage: Flash Storage is a type of storage that uses flash memory to store data. It
is highly performant and can be used to accelerate applications that require high levels of
I/O.

1.4.4 Best practices for storage

In storing growing data, there are several best practices that organizations should follow:

� Develop a data management strategy: Organizations should develop a data management
strategy that accounts for their storage needs.

� Use a tiered storage architecture: Organizations should use a tiered storage architecture
that includes a combination of hot, warm, and cold storage.

� Use data compression and deduplication: Organizations should use data compression
and deduplication to reduce the amount of storage that is required.

In conclusion, the growth of data presents both challenges and opportunities when it comes
to storage. Organizations must balance the need to store large amounts of data with the need
to help ensure that data is accessible, secure, and compliant with regulatory requirements. By
understanding the storage challenges and opportunities and by using best practices and
technologies such as IBM watsonx.data, organizations can help ensure that they are well
positioned to handle the growth of data.
Chapter 1. Challenges and opportunities with data 9

10 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 2. Introduction to IBM watsonx.data

IBM watsonx.data is a powerful data lakehouse that simplifies data management and
analysis. It combines the best of data warehouses and data lakes, allowing you to store and
analyze any type of data. By breaking down data silos and streamlining workflows,
watsonx.data empowers you to unlock valuable insights and drive innovation.

This chapter explores the key features and benefits of watsonx.data and has the following
sections:

� “Introduction to the watsonx platform and its core components” on page 12
� “IBM watsonx.data overview and architecture” on page 16
� “Benefits of using watsonx.data for businesses” on page 21
� “Data pipeline considerations for open lakehouse” on page 22
� “Data pipelines integration with watsonx.data” on page 24

2

© Copyright IBM Corp. 2025. 11

2.1 Introduction to the watsonx platform and its core
components

The effectiveness of AI relies on high-quality data, which is essential for informed
decision-making. Governance plays a critical role in ensuring data integrity and compliance
with regulations. These components must operate in tandem.

AI depends on data as its life source. The data must be of the right quality and should be
accessed securely by authorized personnel only. AI enables data analysis and management,
and governance needs AI to continuously learn about potential threats and human behaviors,
and to comply with regulatory standards and legislation.

Without AI, data governance, or quality control, an organization's effectiveness may suffer.

IBM watsonx was designed to bridge the gap between advanced AI capabilities and trusted
data. This AI and data platform is designed to enable enterprises to scale and accelerate the
impact of the most advanced AI with their trusted data. Organizations turning to AI today need
access to a full technology stack that enables them to train, tune, and deploy AI models,
including Foundation Models and ML capabilities, across their organization with trusted data,
speed, and governance—all in one place and designed to run on any cloud environment.

With watsonx, users have access to the toolset, technology, infrastructure, and consulting
expertise to build their own or fine-tune and adapt available AI models on their own data and
deploy them at scale in a trustworthy and open environment. Competitive differentiation and
unique business value will be able to be increasingly derived from how adaptable an AI model
can be to an enterprise's unique data and domain knowledge.

The IBM watsonx platform consists of three unique sets of products to help address these
needs, as shown in Figure 2-1.

Figure 2-1 Scale and accelerate the impact of AI with trusted data using IBM watsonx

As a platform, watsonx is represented in Figure 2-2 on page 13.
12 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 2-2 IBM watsonx conceptual architecture

2.1.1 IBM watsonx.ai

Introducing our next-generation enterprise studio for AI builders to train, validate (test), tune,
and deploy both traditional ML and new generative AI capabilities powered by foundation
models using an open and intuitive user interface.

The AI studio provides a range of foundation models, training and tuning tools, and a
cost-effective infrastructure that facilitates the entire data and AI lifecycle, from data
preparation through model development, deployment, and monitoring.

Additionally, a foundation model library that gives users easy access to IBM-curated and
-trained foundation models. Foundation models use a large, curated set of enterprise data,
backed by a robust filtering and cleansing process and with an auditable data lineage. These
models are being trained not only on language, but on a variety of modalities, including code,
time-series data, tabular data, geospatial data, and IT events data. Examples of model
categories include (but not limited to):

� fm.code: Models built to automatically generate code for developers through a
natural-language interface to boost developer productivity and enable the automation of
many IT tasks

� fm.NLP: A collection of LLMs for specific or industry-specific domains that use curated
data to help mitigate bias and more quickly make domains customizable using client data
Chapter 2. Introduction to IBM watsonx.data 13

� fm.geospatial: Models built on climate and remote sensing data to help organizations
understand and plan for changes in natural disaster patterns, biodiversity, land use, and
other geophysical processes that could impact their businesses

The watsonx.ai studio builds upon Hugging Face's open-source libraries and offers
thousands of Hugging Face open models and data sets. Users can leverage the power of
IBM Granite LLMs, along with the latest Mistral, Llama, and other third party LLMs. This is
part of IBM's commitment to delivering an open ecosystem approach that enables users to
leverage the best models and architecture for their unique business needs.

2.1.2 IBM watsonx.data

This is a fit-for-purpose data store built on an open-lakehouse architecture that is optimized
for governed data and AI workloads, supported by querying, governance, and open data
formats to access and share data.

The solution can manage workloads both on premises and across hybrid multi-cloud
environments while leveraging internal and external data sets.

Through workload optimization, with this solution an organization can reduce data warehouse
costs by up to 50 percent. This is based on comparing published 2023 list prices normalized
for virtual private cloud hours of watsonx.data to several major cloud data warehouse
vendors. Savings may vary depending on configurations, workloads, and vendors.

It enables users to access robust data through a single point of entry while applying multiple
fit-for-purpose query engines to uncover valuable insights.

It also provides built-in governance tools, automation, and integration with an organization's
existing databases and tools to simplify setup and user experience.

2.1.3 IBM watsonx.governance

This set of AI governance capabilities enables trusted AI workflows, helping organizations to:

� Operationalize governance to help mitigate the risk, time, and cost associated with manual
processes. It also provides the documentation necessary to drive transparent and
explainable outcomes.

� Provide the mechanisms to protect customer privacy, proactively detect model bias and
drift, and meet the organization’s ethics standards.

� Meet existing and future compliance needs, such as the EU Digital Services Act and
Digital Markets Act.

The IBM watsonx AI and data platform forms part of the larger IBM generative AI technology
and expertise stack shown in Figure 2-3 on page 15. This stack offers organizations a
complete solution no matter where they might be on their AI and data journey - from
consulting and ecosystems to hybrid cloud AI tools and infrastructure, data services, the
watsonx AI and data platform, SDKs and APIs, and AI assistants.
14 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package

Figure 2-3 IBM Generative AI technology and expertise

IBM AI technologies remain focused on being:

� Open - IBM AI is based on the best open technologies available.

� Trusted - IBM AI is transparent, responsible, and governed.

� Targeted - IBM AI is designed for enterprise and targeted at business domains.

� Empowering - IBM AI is for value creators, not just users.
Chapter 2. Introduction to IBM watsonx.data 15

2.2 IBM watsonx.data overview and architecture

IBM watsonx.data is an open, hybrid, governed data store optimized for all data, analytics,
and AI workloads, conceptualized, as shown in Figure 2-4.

Figure 2-4 IBM watsonx.data concepts architecture

Based on our experience with numerous clients, IBM has found that organizations are often at
one or more of these stages:

� Remaining on traditional warehouse or analytic appliances but looking for ways to get
greater flexibility and to also perhaps tackle new workloads.

� Have adopted the traditional data lakes but are running into issues of getting sufficient
return on their investment and having to manage those systems.

� Have adopted the cloud data warehouses but are concerned with ever-increasing billing
costs.

All three of these groups are looking for ways to get more flexibility, adopt more workloads,
reduce costs, and reduce complexity.

IBM watsonx.data is designed to address the needs of all three groups and the shortcomings
of some first-generation lakehouses. It combines open, flexible, and low-cost storage of data
lakes with the transactional qualities and performance of a data warehouse. This supports
structured, semi-structured, and unstructured data residing in commodity storage, bringing
together the best of data lakes and warehouses to enable best-in-class AI, BI, and ML in one
solution without vendor lock-in.

Modularity and flexibility are key when implementing a lakehouse. If an organization has a
Hadoop data lake with data stored on Hadoop Distributed File System (HDFS), the metadata
can be cataloged using Hive, and the metadata and data can be brought to the lakehouse
(watsonx.data) so that, from day one, the most appropriate engines can be used to query the
data.
16 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

New data arriving in the lakehouse needs to be integrated with existing data using the
metadata and storage layers (Hive and HDFS) and continuously analyzed without affecting
existing applications using the data lake. Over time, data can be moved into the data lake at
an organization’s own pace.

Many of the watsonx.data components shown in Figure 2-5 are based on open-source
technologies such as Presto, Iceberg, Hive, Ranger, and others. IBM watsonx.data also offers
a wide range of integration with existing IBM and third-party products.

Figure 2-5 IBM watsonx.data high-level architecture

IBM watsonx.data can be deployed across multiple environments, including but not limited to
IBM Cloud, Amazon Web Services (AWS) infrastructure, and on premises.

The storage layer is centered around object storage, which is highly available, highly scalable,
and inexpensive.

A governance and metadata layer integrates existing Netezza® and Db2 services to achieve
metadata sharing using open-data formats such as Parquet, ORC, and Avro (a serialization
format for record data and for streaming data pipelines) and leverages the Apache Iceberg
table format. It uses multiple engines, such as Presto and Spark, which provide fast, reliable,
efficient processing of big data at scale.

With watsonx.data, you can access all your data across cloud and on-premises
environments. The platform lets you connect to storage and analytics environments in
minutes and access all your data through a single point of entry with a shared metadata layer.
Chapter 2. Introduction to IBM watsonx.data 17

You can use multiple query engines to optimize analytics and AI workloads for price
performance and prepare your data for AI with an integrated vector database. Get greater
value from your data investments with an open, hybrid, governed data lakehouse that is
optimized for all data and AI workloads, and put AI to work.

Many of the watsonx.data components shown in Figure 2-6 are based on open-source
technologies such as Presto, Iceberg, Hive, Ranger, and others. IBM watsonx.data also offers
a wide range of integration with existing IBM and third-party products.

Figure 2-6 Overview of watsonx.data components

IBM watsonx.data can be deployed across multiple environments, including but not limited to
IBM Cloud, Amazon Web Services (AWS) infrastructure, and on premises.

The storage layer is centered around object storage, which is highly available, highly scalable,
and inexpensive.

A governance and metadata layer integrates existing Netezza and Db2 services to achieve
metadata sharing using open-data formats such as Parquet, ORC, and Avro (a serialization
format for record data and for streaming data pipelines) and leverages the Apache Iceberg
table format. It uses multiple engines, such as Presto and Spark, which provide fast, reliable,
efficient processing of big data at scale. Let us take a look at each layer in more detail.

Infrastructure
From an infrastructure layer perspective (Figure 2-7 on page 19), quick start steps enable
organizations using Software as a Service (SaaS) tools to deploy in minutes, ready to bring
and store their data into S3 object storage. Organizations may also choose to connect to
existing data warehouses and look at the data using virtualization or federation techniques.
18 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 2-7 watsonx.data infrastructure layer

Storage and data formats
IBM watsonx.data is designed to leverage various storage solutions, such as Amazon S3,
IBM Cloud, Google Cloud Storage, and HDFS. Apache Iceberg helps solve the problem of
bringing structure to data lakes. It is a metadata file that sits with the data files so that, as
changes are made to the data, it keeps track of those records. Think® of it as appending to
that metadata file. It provides certain atomicity, consistency, isolation, and durability (ACID)
transactional guarantees and the ability to roll back in time for any audit purposes.
Organizations can view and understand the transactions that occurred and their completion
status by looking back in time at previous states. See Figure 2-8.

Figure 2-8 watsonx.data storage and data format layers
Chapter 2. Introduction to IBM watsonx.data 19

Governance and metadata
The governance and metadata layer, shown in Figure 2-9, can be thought of as the glue that
holds the multi-engine capabilities together. For example, it enables all engines to access the
same storage, leverage the same table formats, and access the same metadata stores,
thereby enabling organizations to look at the same sets of data through a unified catalog.
Users are able to understand exactly what the data is, where it is, and what it looks like, no
matter which query engine they are using. When a user changes or updates data in
watsonx.data with an engine such as Presto, the metadata and catalog will be updated so
that when that same user looks at that catalog later through a different query engine (for
example, the Netezza engine), that user can continue exactly where they left off in
watsonx.data.

Figure 2-9 watsonx.data governance and metadata layer

Access-control management helps provide consistent governance across all watsonx.data
lakehouse assets, integrating with IBM Knowledge Catalog capabilities to participate in global
governance and providing a single source of the truth for policies and their enforcement. This
is achieved through metadata integration and plug-ins to the engines.

There are three levels of user access controls in watsonx.data:

� User Authentication (Level 1 access control): IBM watsonx.data works with a variety of
Identity Provider Services, such as Identity Access Management (IAM) and Lightweight
Directory Access Protocol (LDAP). Users who access the service through UIs, APIs, SQL
editors, and command lines will be authenticated using their user ID and password, API
keys, or authentication tokens.

� User Access to resources (Level 2 access control): Roles can be assigned for
watsonx.data users to access lakehouse resources. Roles at this level include Viewer,
Editor, and Administrator. Resources include Instances, Engines, Catalogs. Storage, and
Databases.

� User Access to data (Level 3 access control): IBM watsonx.data enables data
administrators to define data access policies for deeper levels of governance. Access
policies can be defined on schemas, tables, columns, and rows.
20 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Users are checked for access based on defined access policies. Advanced governance
involving the masking of data, for example, leverages Watson Knowledge Catalog
governance.

Querying
The querying layer, as previously mentioned, enables multiple query engines to coexist within
watsonx.data. One size does not fit all when it comes to querying all the different types of
data that may exist in a lakehouse. This layer enables the best engines to be intelligently
assigned to query the target data sets for cost optimization of workloads. The different query
engines are assigned infrastructure profiles. For example, Presto can leverage different
flavors of worker nodes (used to run containerized applications and handle networking to
ensure that traffic between applications across the cluster and from outside of the cluster can
be properly facilitated).

One node might be used to better manage CPU-dense tasks that require heavy computing of
arcane encryption. Another might be cache-optimized to cope with large data scans or work
with large amounts of data that need to be close to the engine. By scaling out the worker
nodes, organizations can be assured they have a sufficient cache to handle the workloads. All
engines can be ephemeral and elastic as well as be usage-based so organizations can use
instances of these engines to run their workloads, pause them, or delete them at will.
Organizations are billed for only what they use and when they use it, scaling up and down to
meet the necessary service-level agreements (SLAs). See Figure 2-10.

Figure 2-10 watsonx.data querying layer

2.3 Benefits of using watsonx.data for businesses

IBM watsonx.data is designed to help organizations:

� Access all their data and maximize workload coverage across all hybrid-cloud
environments. Expect seamless deployment of a fully managed service across any cloud
or on-premises environment. Access any data source, wherever it resides, through a
single point of entry and combine it using open data formats.
Chapter 2. Introduction to IBM watsonx.data 21

� Integrate into existing environments with open source, open standards, and
interoperability with IBM and third-party services.

� Accelerate time to trusted insights. Start with built-in governance and automation;
strengthen enterprise compliance and security with unified governance across the entire
ecosystem. A click-and-go console helps teams ingest, access, and transform data and
run workloads. The product provides a dashboard that makes it easier for organizations to
save money and deliver fresh, trusted insights.

� Reduce the cost of a data warehouse by up to 50%1 through workload optimization across
multiple query engines and storage tiers. Optimize costly warehouse workloads with
fit-for-purpose engines that scale up and down automatically. Reduce costs by eliminating
duplication of data when the enterprise uses low-cost object storage; extract more value
from the data in ineffective data lakes.

Some of the key capabilities of watsonx.data are:

� Scaling for BI across all data with multiple high-performance query engines optimized for
different workloads (for example: Presto, Spark, Db2, Netezza, and so forth.

� Enabling data-sharing between these different engines.

� Using shared common data storage across data lake and data warehouse functions,
avoiding unnecessary time-consuming ETL/ELT jobs.

� Eradicating unnecessary data duplication and replication.

� Providing consistent governance, security, and user experience across hybrid
multi-clouds.

� Leveraging an open and flexible architecture built on open source without vendor lock-in.

� The ability to be deployed across hybrid-cloud environments (on-premises, private, public
clouds) on multiple hyperscalers.

� Offering a wide range of prebuilt integration capabilities incorporating IBM data-fabric
capabilities.

� Providing global governance across all data in the enterprise, leveraging the IBM
data-fabric capabilities.

� Extensibility through APIs, value-add partner ecosystems, accelerators, and third-party
solutions.

2.4 Data pipeline considerations for open lakehouse

When designing a data pipeline for an open lakehouse architecture, several considerations
must be addressed to ensure efficient, scalable, and robust data handling. The integration of
tools like Apache Spark, ETL tools like DataStage®, and StreamSets plays a crucial role in
shaping the pipeline's functionality.

2.4.1 Apache Spark: The computational engine

Apache Spark serves as a distributed data processing engine, capable of handling
large-scale data with its in-memory computation capabilities. In an open lakehouse, Spark is
often the go-to engine for data transformation, analytics, and machine learning workloads.

1 This cost reduction was calculated by comparing published 2023 list prices normalized for virtual private cloud
(VPC) hours of IBM watsonx.data to several major cloud data warehouse vendors. Savings may vary depending on
configurations, workloads, and vendors.
22 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

The following are the key considerations:

� Scalability: Spark’s distributed architecture enables horizontal scaling, handling vast
datasets stored in the lakehouse.

� Batch and Streaming: Supports both batch and real-time data processing, crucial for a
unified lakehouse approach.

� Interoperability: Works seamlessly with various data formats (Parquet, Delta Lake, ORC,
and so forth) typically used in open lakehouses.

� Optimization: Employ Spark SQL and Catalyst optimizer for query performance tuning.

� Cost Efficiency: Leverage the decoupled storage and compute paradigm of lakehouses,
optimizing resource utilization.

2.4.2 ETL tools: Managing complex workflows

IBM DataStage provides robust Extract, Transform, and Load (ETL) capabilities that are
crucial for cleaning, transforming, and loading structured and semi-structured data into the
lakehouse.

The following are key considerations:

� Data quality and governance: Ensures data is accurate, consistent, and compliant with
governance policies before ingestion.

� Workflow orchestration: Simplifies complex ETL workflows and supports dependency
management between tasks.

� Error handling: Offers robust logging and error-handling mechanisms to ensure data
pipeline reliability.

� Integration: Interfaces well with data lakes, data warehouses, and third-party systems for
seamless data flow.

� Reusability: Reusable jobs and transformations improve development speed and
maintainability.

2.4.3 StreamSets: Real-time data integration and monitoring

StreamSets is a powerful platform for real-time data integration and monitoring. It facilitates
continuous data ingestion from multiple sources into the lakehouse.

The following are the key considerations:

� Streaming pipelines: Supports real-time ingestion with minimal latency, critical for
time-sensitive data.

� Data drift management: Automatically adapts to schema changes, reducing pipeline
maintenance overhead.

� Observability: Provides end-to-end visibility and monitoring of data pipelines, enabling
proactive issue resolution.

� Data enrichment: Allows data enrichment and transformation in motion, reducing load on
downstream systems.

� Integration: Can connect with a variety of streaming sources (Kafka, IoT devices) and
targets (Delta Lake, cloud storage).
Chapter 2. Introduction to IBM watsonx.data 23

2.4.4 General design considerations for open lakehouse pipelines

The following are key design considerations for open lakehouse pipelines:

� Data formats: Use open, columnar formats like Parquet or Delta for storage efficiency and
analytics performance.

� Schema evolution: Ensure support for schema changes over time without breaking the
pipeline.

� Data governance: Implement robust governance for security, access control, and data
lineage.

� Performance tuning: Optimize resource allocation, caching strategies, and data
partitioning.

� Fault tolerance: Design for resilience with retry mechanisms, checkpointing (especially
for streaming), and redundancy.

The combination of Apache Spark, ETL tools like DataStage, and StreamSets creates a
powerful, flexible, and efficient pipeline for open lakehouse architectures. Spark handles
intensive computation and analytics, DataStage ensures structured ETL processes, and
StreamSets provides real-time ingestion and monitoring. Together, these tools facilitate
seamless data flow, governance, and scalability across the pipeline.

2.5 Data pipelines integration with watsonx.data

The integration of tools like Apache Spark, IBM DataStage, and StreamSets with
watsonx.data becomes essential for building robust, scalable, and efficient data pipelines.
watsonx.data is designed to unify data across various formats and environments, enabling
advanced analytics and AI workloads. Here is how these tools fit into the pipeline:

2.5.1 Apache Spark in watsonx.data

Apache Spark serves as the primary engine for distributed data processing within
watsonx.data. Its integration is key to executing high-performance, large-scale data
transformations and analytics.

The following are the key considerations:

� Unified analytics: Spark, within watsonx.data, processes data directly in the lakehouse,
supporting SQL queries, ML, and graph analytics.

� Delta lake integration: Enables ACID transactions, schema enforcement, and time travel,
ensuring reliable and consistent data for analytics.

� Batch and streaming workloads: Spark supports both batch processing (for example,
historical data analysis) and streaming (real-time data ingestion) using Structured
Streaming.

� Optimization: Use the watsonx.data built-in query accelerators and Spark’s Catalyst
optimizer for efficient query execution and resource usage.

� Interoperability: Spark seamlessly integrates with various data formats supported by
watsonx.data (for example, Parquet, Delta Lake).
24 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

2.5.2 IBM DataStage in watsonx.data

IBM DataStage is essential for ETL operations, focusing on transforming and loading data
into watsonx.data for downstream consumption.

The following are the key considerations:

� Data integration: DataStage ensures smooth data ingestion from on-premises, cloud,
and third-party systems into watsonx.data.

� Data governance and quality: Provides tools for data cleansing, transformation, and
validation before ingestion, critical for maintaining data quality in the lakehouse.

� Workload automation: Automates ETL jobs to handle large volumes of structured and
semi-structured data efficiently.

� Orchestration and scheduling: Manages complex workflows and schedules data
processing tasks within watsonx.data.

� Data lineage: Ensures full traceability of data transformations, aligning with governance
policies in watsonx.data.

2.5.3 StreamSets in watsonx.data

StreamSets complements watsonx.data by enabling real-time data ingestion and continuous
data integration from various streaming sources.

The following are the key considerations:

� Real-time ingestion: Facilitates streaming data into watsonx.data for near real-time
analytics, critical for use cases like IoT, log analysis, and fraud detection.

� Data drift management: Automatically adapts to schema changes, reducing the need for
manual intervention in dynamic environments.

� Observability and monitoring: Provides end-to-end visibility into data pipelines, helping
identify bottlenecks and ensuring data reliability.

� Integration with hybrid sources: Supports seamless connectivity to Kafka, cloud
storage, and on-premise systems, aligning with the watsonx.data hybrid cloud strategy.

� Data transformation in motion: Allows real-time enrichment and transformation of data
before it lands in watsonx.data.

2.5.4 IBM watsonx.data benefits from this ecosystem

IBM watsonx.data integrates seamlessly with existing tools like Apache Spark, DataStage,
and StreamSets. In this section we discuss the benefits from this ecosystem.

Data unification and accessibility
The following benefits for data unification and accessibility can be achieved:

� watsonx.data leverages open formats (for example, Parquet, Delta Lake) to store and
process data, making it accessible to all three tools (Spark, DataStage, StreamSets).

� It provides a single source of truth for AI and analytics workloads.

Scalability and performance
There are several scalability and performance benefits, such as:

� Apache Spark ensures scalable compute for large-scale analytics.
Chapter 2. Introduction to IBM watsonx.data 25

� DataStage efficiently manages ETL workflows to prepare high-quality data.

� StreamSets delivers real-time data with low latency, keeping watsonx.data pipelines
dynamic and up-to-date.

Governance and compliance
Key governance and compliance features include:

� Built-in governance features in watsonx.data, enhanced by DataStage's data quality and
lineage capabilities, ensure compliance with regulatory requirements.

� StreamSet’s monitoring capabilities add transparency, aligning with the watsonx.data data
governance framework.

Hybrid and open ecosystem
watsonx.data's open and hybrid design allows integration across cloud and on-premises
environments, fully leveraging the strengths of Spark, DataStage, and StreamSets.

In a watsonx.data lakehouse architecture, the combined power of Apache Spark,
IBM DataStage, and StreamSets ensures a robust data pipeline. Spark handles complex
analytics and ML workloads, DataStage ensures ETL processes are efficient and governed,
while StreamSets brings real-time capabilities. Together, they enable organizations to
harness the full potential of watsonx.data for data-driven decision-making and AI innovation.

2.5.5 Synergy between watsonx.data and other watsonx platform components

IBM watsonx platform is designed to work cohesively, with each component strengthening the
others. Here is how watsonx.data specifically synergizes with other components to improve
the overall AI experience

Synergy between watsonx.data and watsonx.ai
IBM watsonx.data and watsonx.ai work together to provide a seamless pipeline for
data-driven AI initiatives. watsonx.data serves as a high-performance, scalable data
lakehouse designed to store and process both structured and unstructured data. It optimizes
data access for AI workloads by integrating tools for querying, data transformation, and
analysis. This foundation enables watsonx.ai: a platform focused on building, deploying, and
managing AI models, to leverage high-quality, well-prepared data for training and inferencing.
Together, watsonx.data ensures that AI workflows powered by watsonx.ai are fueled by
reliable and optimized data sources, reducing preprocessing bottlenecks and accelerating
insights. By integrating these solutions, organizations can streamline the development of
advanced AI applications with precision and efficiency, ensuring a robust end-to-end AI
lifecycle.

Synergy between watsonx.data and watsonx.governance
The synergy between watsonx.data and watsonx.governance creates a framework of
compliance, trust, and accountability for data management and AI deployment. watsonx.data
provides the infrastructure for managing the vast amounts of data necessary for AI
development. watsonx.governance overlays this with a layer that enforces ethical AI
principles (for example, fairness), monitors compliance, and manages risk. This combination
helps assure data utilized in AI models adheres to organizational and regulatory standards,
mitigating risks of bias or misuse. By connecting these tools, enterprises can scale their AI
initiatives confidently, knowing that data and model governance are baked into their
workflows. This integration fosters transparency and accountability, which are critical for
building trust in AI systems.
26 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

These synergies provide the backbone for scalable, trustworthy, and efficient AI operations,
ensuring that businesses can innovate while maintaining compliance and reliability.
Chapter 2. Introduction to IBM watsonx.data 27

28 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 3. Ingesting data into an open data
lakehouse

The foundation of any data-driven organization is its ability to efficiently ingest data from
diverse sources. IBM watsonx.data, which is a powerful open data lakehouse platform,
streamlines this process by providing a scalable and secure environment for data ingestion.
This approach simplifies data intake so that you can unlock the full potential of your data for
advanced analytics and AI-powered insights.

This chapter covers how to ingest data into an open data lakehouse in watsonx.data and has
the following sections:

� “Provisioning and configuring IBM watsonx.data” on page 30
� “Integrating external data sources: Federation in PrestoDB” on page 30
� “Techniques for ingesting data (structured or unstructured)” on page 35
� “Ingesting data” on page 36
� “Data pipeline considerations for open lakehouse” on page 41

3

© Copyright IBM Corp. 2025. 29

3.1 Provisioning and configuring IBM watsonx.data

To explore IBM watsonx.data on IBM Cloud, go to the cloud.ibm.com catalog and search for
“watsonx.data”. Use the default options for a streamlined initial experience, as shown in
Figure 3-1.

Figure 3-1 IBM watsonx.data on IBM Cloud

3.2 Integrating external data sources: Federation in PrestoDB

Several database systems are accessible both within and outside a virtual machine
environment, such as IBM watsonx.data Presto, Db2, MySQL, and PostgreSQL. To access
these databases externally, you need the server name, port number for the service, and the
presto-key.jks file for connecting to Presto.

3.2.1 Connecting to IBM watsonx.data Presto

When connecting to the IBM watsonx.data Presto database, a connection certificate must be
available on the client machine (typically your workstation) or another service like IBM Cloud
Pak for Data. To obtain the certificate, complete the following steps:

1. To extract the certificate to your local file system, use the following command in a terminal
window. Replace the port and region.services.cloud.techzone.com with the SSH values
that are found in the TechZone reservation.

scp -P port
watsonx@region.services.cloud.techzone.ibm.com:/certs/presto-key.jks
/Users/myname/Downloads

(You need to change this local path to your own path).
30 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

2. Download the certificate from the Jupyter Notebook's Credentials notebook, as shown in
Figure 3-2.

Figure 3-2 Downloading the certificate from the Jupyter Notebook's Credentials notebook

3. When connecting to the Presto engine, choose the PrestoDB driver. For local access, the
following credentials are used:

– Hostname: localhost
– Port: 8443
– Username: ibmlhadmin
– Password: password
– Database: tpch
– SSL: True
– SSLTrustStorePath: /certs/presto-key.jks
– SSLTrustStorePassword: watsonx.data

Note: The IBM watsonx.data Presto database prioritizes secure communication. To
achieve this goal, it relies on a client-side certificate for authentication. This certificate
acts as a digital key that verifies your identity when connecting to the database. When
using a Jupyter Notebook environment with IBM watsonx.data Presto, the certificate is
available within a dedicated notebook that is named Credentials, as shown in
Figure 3-2. This notebook contains links for downloading the necessary certificate files.
Chapter 3. Ingesting data into an open data lakehouse 31

4. In the following settings, replace the Hostname and Port placeholders with the values from
your TechZone reservation.

Here are the database connection settings

– Hostname: region.services.cloud.techzone.ibm.com
– Port: port
– Username: ibmlhadmin
– Password: password
– Database: tpch

Set the following driver properties:

– SSL True
– SSLTrustStorePath /mydownload/presto-key.jks
– SSLTrustStorePassword watsonx.data

5. The /mydownload/presto-key.jks value must be replaced with the location that you
copied the key from in step 1 on page 30. When connecting to the Db2 engine, select the
Db2 LUW driver. The Db2 server can be accessed on port 50000 inside the virtual
machine by using the following credentials:

– Hostname: watsonxdata
– Port: 50000
– Username: db2inst1
– Password: db2inst1
– Database: gosales
– SSL: off

6. When accessing the database outside the virtual machine, you must change the host to
region.services.cloud.techzone.ibm.com and the port number based on your TechZone
reservation. All the other settings remain the same.

– Hostname: region.services.cloud.techzone.ibm.com
– Port: port
– Username: db2inst1
– Password: db2inst1
– Database: gosales
– SSL: off

3.2.2 PostgreSQL access

When connecting to the PostgreSQL engine, select the PostgreSQL driver. To connect to the
PostgreSQL system, extract the admin password by using the cat /certs/passwords
command when connected to the IBM watsonx.data system.

You can also retrieve the credentials by opening the Credentials notebook in the Jupyter
Notebook service. When accessing the PostgreSQL database in the system, use the
following settings.

� Hostname: ibm-lh-postgres

� Port: 5432

� Username: admin

� Password: The value that was extracted with the cat /certs/passwords command in the
previous step

� Database: gosalesdw
32 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

3.2.3 PostgreSQL external access

The following credentials are used for remote access.

� Hostname: region.services.cloud.techzone.com

� Port: port

� Username: admin

� Password: The value that was extracted that was extracted with the cat /certs/passwords
command in the previous step

� Database name: gosalesdw

3.2.4 MySQL access

When connecting to the MySQL engine, select the MySQL driver by running the following
command:

export POSTGRES_PASSWORD=$(docker exec ibm-lh-postgres printenv | grep
POSTGRES_PASSWORD | sed 's/.*=//')
echo "Postgres Userid : admin"
echo "Postgres Password : " $POSTGRES_PASSWORD
echo $POSTGRES_PASSWORD > /tmp/postgres.pw

3.2.5 MySQL internal access

When accessing the MySQL database in the system, use the following settings:

� Hostname: watsonxdata
� Port: 3306
� Username: root
� Password: password
� Database: gosalesdw
Chapter 3. Ingesting data into an open data lakehouse 33

Set allowPublicKeyRetrieval to True for the connection to work with dBeaver, as shown in
Figure 3-3.

Figure 3-3 MySQL internal access

3.2.6 MySQL external access

The following credentials are used for remote access.

� Hostname: region.services.cloud.techzone.com
� Port: port
� Username: root
� Password: password
� Database name: gosalesdw

Set allowPublicKeyRetrieval to True for the connection to work with dBeaver, as shown in
Figure 3-3.

After adding a database, wait a few moments before attempting access. The Presto server
requires a brief startup period. To verify its readiness, run the check_presto command in a
terminal window. Wait until it confirms that the service is ready.

When adding database engines to your IBM watsonx.data system, ensure that each has a
unique display name. Although you might initially use the same name as the original
database (for example, gosales for both Db2 and PostgreSQL), this approach can lead to
conflicts later. For example, if you add the PostgreSQL database to the system, the display
name cannot be the same.

It might take a few minutes for the database contents to appear. Refresh the browser window
if no changes are visible after this time.

Tip: You might want to differentiate databases with the same name by prefixing them with
the database type. For example, db2_gosales for Db2 and pg_gosales for PostgreSQL.
34 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

3.3 Techniques for ingesting data (structured or unstructured)

Data ingestion, the process of bringing your data into IBM watsonx.data, is simple and secure
for the following reasons:

� Visual interface: The Ingest data tab in the Data manager page offers an interface for
loading data into IBM watsonx.data.

� Flexible data sources: Choose between ingesting local files or remote data sources to
create tables by using the Create table from file option.

� Automatic schema inference: You do not need to predefine the table schema because
IBM watsonx.data intelligently discovers the structure of your data (schema) during the
first query execution.

� Consistent data format: Help ensure that your data files are in the same format type with a
consistent structure (schema) for a smooth ingestion process.

IBM watsonx.data auto-discovers the schema based on the source file being ingested:

� Presto is used as the engine for running your SQL-based queries. Presto is an
open-source SQL query engine that can work with data in several different data sources.
You can also use it to load and ingest huge amounts of data in IBM watsonx.data.

� Apache Iceberg is a robust table format that is designed for managing large, evolving data
sets. Unlike traditional formats like Parquet or CSV, Iceberg offers advanced features such
as data snapshots, schema evolution, and data compaction. These capabilities make it a
powerful tool for maintaining and optimizing your data lakehouse. Also, Iceberg introduces
ACID transactions to the data lakehouse, a previously unavailable feature that you can use
to perform atomic updates and deletions on tables, which helps ensure data consistency
and integrity.

� Hive Meta Store serves as a central repository for storing meta-data about Apache Hive
tables. This meta-data includes the table schema, data locations, and other crucial
information that is necessary for managing and querying data within the Hive ecosystem.

For seamless data management, IBM watsonx.data uses the Hive Metastore as its
back-end system, which enables the platform to maintain, manage, and catalog the
meta-data that is associated with tables, like Hive itself. This integration helps ensure
efficient data discovery and simplifies querying within IBM watsonx.data.

� Apache Spark is a powerful open-source, distributed processing system that is designed
to handle big data workloads efficiently. Spark's efficient data processing capabilities
make it a powerful tool for executing critical Iceberg table operations like updates, deletes,
and merges, ensuring data integrity and consistency in data warehouses. Spark offers
even more value beyond this specific use case:

– Data processing: Spark excels at data processing tasks like filtering and transforming
raw data. Its procedural code capabilities enable efficient manipulation compared to
pure SQL. You can process data with Spark and then store it in an S3-compatible
object storage for later querying with Presto.

– Advanced analytics: Data in IBM watsonx.data, such as data from Db2 or other
ingested sources, might be better suited for analysis by using Spark's procedural code
rather than SQL. Spark's capabilities can unlock deeper insights.

– Flexible data ingestion: Spark provides a wide range of options for data ingestion,
which include streaming data, data frames, Resilient Distributed Datasets (RDDs), and
support for various data formats. This versatility simplifies integrating data from diverse
sources.
Chapter 3. Ingesting data into an open data lakehouse 35

https://prestodb.io/
https://iceberg.apache.org/
https://hive.apache.org/
https://spark.apache.org/

Each component in the IBM watsonx.data stack provides unique capabilities. In
IBM watsonx.data, these different components work together in tandem to provide the best
data management capability for your analytics workloads.

Here are some of the key requirements of the Ingestion tool:

� The target table must be an Iceberg format table.

� IBM Storage Ceph, IBM Cloud Object Storage, AWS S3, and MinIO object storage are
supported.

� Parquet, CSV, JSON, ORC, and AVRO file formats are supported as source data files.

� The maximum limit for the cumulative size of files must be within 500 MB for local
ingestion.

� Parquet files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� JSON files with complex nested objects and arrays are not previewed in the UI.

� Complex JSON files are ingested as arrays, which might hinder optimal data visualization
and analysis.

� JSON files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� Keys within JSON files must be enclosed in quotation marks for proper parsing and
interpretation.

� AVRO files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� ORC files exceeding 2 MB cannot be previewed, but they are ingested successfully.

3.4 Ingesting data

To ingest data into IBM watsonx.data, you can use the intuitive user interface or the
command-line interface (CLI) that is provided by the ibm-lh tool. With the user interface, you
can easily upload data files, define schemas, and transform data as needed. Alternatively, the
ibm-lh tool offers granular control over the ingestion process so that you can automate data
pipelines and integrate with existing workflows. By suing these methods, you can seamlessly
bring your data into IBM watsonx.data, where it can be transformed, analyzed, and used to
drive valuable insights.

3.4.1 Loading or ingesting data through the CLI

IBM watsonx.data uses the ibm-lh tool for managing ingestion jobs. To initiate an ingestion
job, install ibm-lh-client locally. This client provides the CL for interacting with the ibm-lh
tool and triggering ingestion processes. For more information and instructions about installing
the ibm-lh-client package and using the ibm-lh tool for ingestion, see Installing
ibm-lh-client and Setting up the ibm-lh command-line utility.

The ibm-lh tool supports the following features:

� Auto-discovery of schema based on the source file or target table.

� Advanced table configuration options for the CSV files:

– Delimiter
– Header
– File encoding
– Line delimiter
– Escape characters
36 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.ibm.com/docs/en/watsonx/watsonxdata/2.0.x?topic=package-installing-lh-client
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.0.x?topic=package-installing-lh-client
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.0.x?topic=utilities-setting-up-lh-utility

� Ingestion of single, multiple files, or a single folder (no subfolders) of S3 and local Parquet
files.

� Ingestion of single, multiple files, or a single folder (no subfolders) of S3 and local CSV
files.

3.4.2 Configuring an S3 IBM Cloud Object Storage bucket

IBM watsonx.data uses an object storage bucket to store data and its associated metadata.
During setup, you can choose between two options:

� Automatic Bucket Creation: IBM watsonx.data creates a bucket for you.

� Pre-Existing Bucket: You can specify a bucket that you already created.

Figure 3-4 illustrates using a pre-existing bucket that is named lh-xxx.

Figure 3-4 Configuring a S3 or an IBM Cloud Object Storage bucket
Chapter 3. Ingesting data into an open data lakehouse 37

3.4.3 Choosing the catalog

For this scenario, select Apache Iceberg, as shown in Figure 3-5.

Figure 3-5 Choosing the catalog

3.4.4 Choosing the query engine

In this scenario, choose Presto as the query engine, and use its default options, as shown in
Figure 3-6 on page 39.
38 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 3-6 Choosing the query engine

3.4.5 Data ingestion through Spark and Query by using Presto

For simplicity, assume that both buckets are within the same IBM Cloud Object Storage
instance. However, these buckets can be in different IBM Cloud Object Storage instances or
even on Amazon EMR S3 storage.

� lh-xxx: The bucket that you mapped while setting up the catalog-bucket in 3.4.2,
“Configuring an S3 IBM Cloud Object Storage bucket” on page 37.

� lh-xxx-data: The bucket that contains the data sets to read from and create tables into
the lakehouse.

To upload the test data to the designated bucket, see Getting started with Spark use case.

Creating a database or schema in IBM watsonx.data
By using Spark, establish a new schema within the previously configured catalog. Then,
create multiple tables within this schema and load them with the necessary data.

Data ingestion by using INSERT: Creating a simple table and inserting
data
Note the clause that uses iceberg. Iceberg is the table format that is specified, as shown in
Figure 3-7.

Figure 3-7 Iceberg is the table format that is specified
Chapter 3. Ingesting data into an open data lakehouse 39

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-run_samp_file
https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-run_samp_file

Data ingestion of the Parquet data: Creating a Parquet format table that
is managed by the Iceberg table format
In this example, you use the Iceberg table format and Parquet as the data format.

Read data from the designated test bucket and write it back to the lakehouse bucket
(lh-xxx-data in this example).

Data ingestion of the CSV data: Creating a CSV format table that is
managed by the Iceberg table format
Read a CSV file from the test bucket and create an Iceberg table by using the Create Table As
(CTAS) statement, as shown in Figure 3-8.

Figure 3-8 Creating a Parquet format table that is managed by the Iceberg table format

Querying the data from Presto
This view that is shown in Figure 3-9 presents all the tables that you created by using the
Spark application within the associated catalog. These tables can now be queried through the
IBM watsonx.data Query interface.

Figure 3-9 Querying the data from Presto
40 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

3.4.6 Querying from the IBM watsonx.data Query Workspace

You can query tables from a stand-alone Presto CLI by running the following command:

./presto\
 --server <https://<watsonx.data_MetastoreHost:port> \
 --catalog iceberg_data \
 --schema default \
 --user ibmlhapikey_<your-username> \
 --password

Figure 3-10 shows the output of this query.

Figure 3-10 Output of this query

3.4.7 Querying from the Presto CLI

Once the data ingestion process is complete, you can confirm success by verifying the
presence of both data files and their corresponding metadata files within the
IBM watsonx.data catalog's associated bucket.

3.5 Data pipeline considerations for open lakehouse

IBM StreamSets infuses intelligent apps with the power of streaming data, and data that is
streamed intelligently.

StreamSets provides real-time data ingestion at scale so that you can deploy reliable, smart
streaming data pipelines across hybrid cloud environments at scale. StreamSets pipelines
stream structured, semi-structured, and unstructured data from any source. StreamSets also
automatically detects changes in data structures and schemas and sends alerts about them,
so you can seamlessly adapt to changing business requirements with zero downtime.

These intelligent data pipelines also adapt to unexpected data structural shifts with
drag-and-drop, pre-built processors to automatically identify and adapt to data drift. The net
effect is to substantially enhance your real-time decision-making and reduce the risks that are
associated with data flow across your organization.
Chapter 3. Ingesting data into an open data lakehouse 41

SingleStore with IBM® is a high-performance database that is designed to deliver
millisecond-level insights on massive data sets. Its unique architecture and features make it
an ideal foundation for intelligent applications:

� Unified data platform: The SingleStore Universal Storage engine seamlessly combines
row-store and column-store technologies to enable efficient execution of both online
transactional processing (OLTP) and online analytical processing (OLAP) workloads on a
single platform. This approach eliminates the need for separate databases and complex
ETL processes, which streamlines operations and reduces costs.

� Real-time data ingestion: SingleStore Pipelines offer high-speed data ingestion from
various sources, including Kafka, S3, and HDFS. Combined with the core database
engine, this approach helps ensure rapid query response times, even for complex queries
against large data sets.

� Scalability and flexibility: SingleStore horizontal scalability and separation of storage and
compute enable cost-effective performance optimization. Workspaces provide isolated
compute environments for different workloads, helping to ensure optimal resource
allocation and low-latency access to shared data. Also, SingleStore supports a wide range
of data models, including relational, vector search, full-text search, time-series, geospatial,
JSON, and BSON.

By using SingleStore powerful capabilities, organizations can unlock the full potential of their
data, drive innovation, and gain a competitive edge.

3.5.1 IBM watsonx.data: Simplifying data for AI

IBM watsonx.data streamlines data management for AI applications in the following ways:

� Unifying data: Consolidating data from various sources into a single, unified view

� Optimizing performance: Enhancing data performance and reducing costs

� Enabling real-time insights: Integrating with tools like StreamSets and SingleStore for
real-time data processing and analysis

� Powering AI: Preparing data for AI models and supporting deep learning

By simplifying data management and enabling real-time insights, IBM watsonx.data
empowers organizations to harness the full potential of AI, as shown in Figure 3-11.

Figure 3-11 A real-time intelligent platform
42 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

3.5.2 DataStage ingestion of data into IBM watsonx.data

This section explores how to use IBM DataStage to seamlessly ingest data into
IBM watsonx.data by highlighting the benefits of using the DataStage powerful capabilities for
large-scale data transfers and streamlined access within your IBM watsonx.data environment.

Wide connectivity support
DataStage offers seamless data access from various sources, which include on-premises
databases, cloud storage, SaaS applications, and more. Users can utilize over 60 native
connectors or establish custom connections for enhanced flexibility.

Data can be loaded into a cloud storage bucket for initial staging. At the time of writing, data
transfer to IBM watsonx.data requires a notebook script. However, a future-optimized
connector will enable direct, native integration for efficient data loading.

Superior performance with parallel processing
DataStage uses parallel processing to ingest data faster. It can automatically or manually
partition and repartition data flows for optimal performance. This approach efficiently
distributes workload across resources by scaling to handle varying data volumes. By
speeding up ingestion, DataStage reduces time to insight for faster analytics and
decision-making.

Reducing costs while maximizing accessibility and throughput
Combining DataStage with IBM watsonx.data helps users cut data warehouse expenses.
Cloud data warehouses can be expensive for storage and compute, especially with growing
data and complex workloads. DataStage ingests data efficiently into IBM watsonx.data, and
then uses the appropriate query engines as based on user needs. This approach centralizes
data and optimizes workloads across engines and storage tiers, which minimizes data
warehouse costs without sacrificing performance

Automatic detection of new files
DataStage automatically detects new data in your sources and seamlessly loads it into
IBM watsonx.data. This approach eliminates manual effort and streamlines data processing,
which enables faster access to insights.

3.5.3 DataStage and management of data within IBM watsonx.data

Once data is in IBM watsonx.data, DataStage can manage operational workloads or create
new data pipelines.

Graphically design data pipelines
With DataStage, you can build ETL/ELT pipelines directly within IBM watsonx.data, which
saves on egress costs. You can use more than 60 connectors and pre-built transformations in
a drag-and-drop interface for 9x faster development compared to coding. You can switch
between ETL and ELT modes seamlessly without rebuilding pipelines. You can use
Apache Spark or Presto within IBM watsonx.data for diverse tasks like BI, reporting, or data
science.
Chapter 3. Ingesting data into an open data lakehouse 43

By combining DataStage and IBM watsonx.data, you gain the following benefits:

� Faster pipeline development: Build pipelines within IBM watsonx.data with minimal egress
costs.

� Simplified workflow: Use a drag-and-drop interface for efficient pipeline creation.

� Flexibility: Switch between ETL and ELT modes.

� Powerful query engines: Use Spark or Presto for diverse data analysis needs.

Auto-responding to source schema changes
DataStage simplifies data pipeline management by automatically detecting and adapting to
changes in source data schemas. This approach eliminates the need for manual adjustments,
which saves time and effort. With automated schema evolution, users can deploy pipelines
faster and focus on higher-value tasks.

Autoscaling to burst compute
DataStage is built to handle varying data volumes, making it ideal for businesses with
seasonal or unpredictable data loads. By dynamically scaling resources, DataStage helps
ensure smooth operations during peak periods, such as holiday seasons for retail companies.
This proactive approach enables organizations to efficiently manage data and extract
insights, regardless of the data volume.
44 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 4. Protecting data

This chapter delves into the core aspects of protecting data within IBM watsonx.data. It
begins with an overview of users and groups as they relate to the lakehouse architecture, and
examining how these classifications create a foundation for managing access. Next, this
chapter explores defining roles and responsibilities, where you assign the appropriate
permissions to various job functions, such as data scientists, analysts, and this chapter
describes establishing access control lists (ACLs), which are a critical mechanism for
enforcing security policies at a granular level. ACLs specify which users and groups have the
right to access particular resources, which protect data assets from unauthorized access and
modifications.

This chapter provides a comprehensive guide to securing data in an open lakehouse
environment, which enables organizations to harness their data’s potential with confidence
while adhering to the highest standards of data protection and compliance.

This chapter has the following sections:

� “Users and groups in an open lakehouse” on page 46
� “Defining roles and responsibilities” on page 50

4

© Copyright IBM Corp. 2025. 45

4.1 Users and groups in an open lakehouse

In IBM watsonx.data, managing users and groups effectively is fundamental to establishing a
secure and collaborative open lakehouse environment. As data becomes increasingly
accessible to diverse teams within organizations, defining user roles and organizing them into
groups becomes essential for efficient access control and compliance. In IBM watsonx.data,
users represent individual team members, such as data scientists, engineers, and analysts,
each with specific roles and permissions that are tailored to their responsibilities. Grouping
these users based on their functional roles enables administrators to streamline permissions
management, which helps ensure that data is accessible only to those users who require it
while maintaining security standards.

IBM watsonx.data facilitates this organization by enabling administrators to assign
permissions and privileges to both users and groups. This approach simplifies the process of
managing data access in large teams, and enables the enforcement of consistent security
practices across the organization. By using user and group structures, IBM watsonx.data
empowers organizations to protect their data assets, foster collaboration, and ensure
compliance within the open lakehouse framework.

4.1.1 Overview of user and group management in open lakehouses

User and group management in a lakehouse environment involves defining roles, policies,
and permissions that dictate who can access data and under what conditions. Effective user
and group management allows organizations to accomplish the following goals:

� Control data access: Ensure that users access only the data that they are permitted to
see.

� Simplify permission assignments: Use groups and roles to efficiently assign permissions
to multiple users.

� Maintain auditability: Track and monitor data access for regulatory and compliance
requirements.

� Enable scalability: Implement access controls that support large and diverse teams
without manual overhead.

With lakehouses, where data might be semi-structured or unstructured and stored across
distributed systems, maintaining this level of control and visibility requires advanced
strategies, which include the use of attribute-based access control (ABAC), dynamic groups,
and multi-layered access controls.

4.1.2 Business use cases for user and group management

This section delves into compelling business use cases for user and group management in
IBM watsonx.data, and showcases how it can empower organizations to achieve data
security, streamline access control, and foster efficient collaboration within their data analysis
and AI workflows.

Attribute-based access control
ABAC is an advanced access control model that considers attributes that are associated with
users, groups, and resources. Rather than assigning static permissions, ABAC enables
dynamic, context-driven access based on attributes like department, project, geographic
region, or time of day. ABAC is useful in lakehouse environments, where access requirements
are complex and might vary significantly across the organization.
46 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Business use case: Regulated financial services
A financial services company managing a large lakehouse for customer and transaction data
must comply with regulatory requirements. Certain data sets are sensitive and need restricted
access. For example, customer financial records are accessible only to users who work in
specific regions and departments (for example, North American finance employees) and who
have completed the required training.

Using ABAC, the company defines attributes such as Department, Region, and Training
Status and creates policies that enforce these attributes. Access to sensitive data is granted
only if all conditions are met, which provides flexibility in assigning access without creating an
excessive number of roles.

Dynamic group membership
Dynamic group membership enables the automatic assignment of users to groups based on
specific attributes or conditions. Unlike static groups, where users are manually added or
removed, dynamic groups are updated in real time, which helps ensure that access rights
reflect the status of each user.

Business use case: Dynamic grouping for departmental access
A large retail company that uses a lakehouse for operational analytics has different
departments that require varied access to the data. For example, marketing needs access to
customer analytics, and logistics requires supply chain data. Because employees move
between departments or take on new roles, their access rights must change dynamically.

By implementing dynamic groups based on attributes such as Department, Job Title, and
Location, the retail company can automatically update group memberships and permissions.
When an employee changes departments, their group memberships and their access to data
are updated without manual intervention.

Hierarchical access models and group inheritance
Hierarchical access models use a parent-child structure to organize users and groups. This
approach is useful in lakehouses where there are nested levels of data sensitivity or user
roles, and it enables administrators to apply access controls to a top-level group that cascade
to subgroups.

Business use case: Multinational corporation with regional data access
A multinational corporation managing customer data in a lakehouse requires regional access
control for different legal jurisdictions. Although regional teams need access to data relevant
to their area, global executives require access across all regions.

By using a hierarchical model, the corporation sets up a parent group for global data access
and creates regional child groups under it. Permissions that are assigned to the global group
are inherited by regional teams, but regional policies restrict their access to specific regional
data. This hierarchical structure helps ensure consistent access while supporting compliance
with local regulations.
Chapter 4. Protecting data 47

4.1.3 Implementing user and group management in open lakehouses

This section describes strategies for implementing effective access controls in open
lakehouses to help ensure data security, collaboration, and governance.

Best practices for defining user attributes
When setting up ABAC and dynamic groups in a lakehouse, carefully selected attributes are
essential for reliable and scalable access control. Here are some recommended attributes:

� Role or Job Title: Specifies the user’s role within the organization.
� Department or Business Unit: Controls access by organizational divisions.
� Project ID: Links users to specific project-based access requirements.
� Location: Segments access by region or jurisdiction.

Using standardized attribute names and values across systems helps ensure consistency
and enables cross-functional access control.

Building policies for ABAC
For effective ABAC implementation, establish clear policies that reflect your organization’s
requirements. Policies should have the following characteristics:

� Atomic: Ensure that each policy addresses one specific condition (for example,
Department == “Finance”).

� Composable: Combine multiple policies to create complex access rules.

� Auditable: Make policies easy to review and update as requirements change.

Managing group membership and hierarchical structures
Dynamic and hierarchical group structures reduce administrative complexity and help enable
the lakehouse to scale as new users join, projects evolve, or regulations change. Automated
tools for creating and maintaining these groups help ensure that group memberships reflect
real-time user statuses and requirements.

Challenges and considerations
While user and group management offers many benefits, it also poses challenges in complex
environments. Consider the following items:

� Data sensitivity and compliance: Implement strict policies for sensitive data to comply with
industry regulations (for example, GDPR and HIPAA).

� Scalability: Ensure that attribute-based policies are scalable and can handle high volumes
of users and attributes.

� Policy management: Regularly audit and refine policies to maintain security as the
organization evolves.
48 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

4.1.4 Overview of user and group capabilities in IBM watsonx.data

IBM watsonx.data offers extensive user and group management capabilities to enable
administrators to control access based on roles, groups, and permissions that are tailored to
different stages in the data pipeline. Here are some of the key features:

� Role-based access control (RBAC): Enables administrators to assign roles based on job
functions to help ensure that users can access only the data and tools that they need.

� Granular permissions: Offers fine-grained control over specific actions, such as data
ingestion, transformation, querying, and model deployment.

� Attribute-based access control (ABAC): Enables flexible, context-based access policies
that can dynamically adjust permissions.

� Group management: Supports dynamic and hierarchical groups to simplify the
management of users with similar permissions and streamline access control at scale.

IBM watsonx.data user and group management capabilities are designed to handle the
diverse needs of data lakehouse environments by supporting both technical and
business-focused roles.

4.1.5 Implementing group-based access in IBM watsonx.data

This section describes the benefits of managing access by user groups, which include
improved data security, streamlined collaboration, and simplified administration. This
approach helps ensure that your team members have the appropriate level of access to use
IBM watsonx.data effectively.

Configuring roles and groups
IBM watsonx.data enables administrators to configure roles that can be assigned to specific
groups. These roles encapsulate the permissions that are needed for each function, which
streamlines access management across different user categories. When configuring roles,
perform the following actions:

� Define role requirements: Outline the specific permissions that are needed for each group
to ensure that the permissions align with user responsibilities.

� Assign users to groups: Place users in pre-configured groups that match their roles and
responsibilities for quick onboarding and access updates.

� Monitor group memberships: Regularly review group memberships to ensure that users
retain only the necessary permissions based on their current roles.

Integrating attribute-based access control
In environments where roles and permissions must change dynamically, IBM watsonx.data
supports ABAC to accommodate context-specific access requirements. Attributes such as job
title, department, or project ID can be used to accomplish the following tasks:

� Dynamically update access: Adjust permissions automatically when a user’s status or role
changes.

� Enhance security: Limit access to sensitive data by defining attributes that are required for
specific data sets.

� Streamline administration: Reduce manual role assignments, especially for temporary or
project-based access needs.
Chapter 4. Protecting data 49

Audit and compliance
For regulatory and internal compliance, IBM watsonx.data provides audit capabilities that
enable administrators to track access patterns and permissions changes. Here are some key
features:

� Access logging: Log all access events for auditing purposes.

� Regular audits: Schedule audits to review and adjust group permissions as needed.

� Policy-based alerts: Set up alerts for unauthorized access attempts to help ensure that
administrators are informed of potential security issues.

In Figure 4-1, you can create access groups, or give access to a trusted profile, user, or
service ID access to any of the target and specific permissions as depicted.

Figure 4-1 Implementing group-based policies and permissions

4.2 Defining roles and responsibilities

In a robust data lakehouse environment, defining roles and responsibilities is crucial for
managing access to data and helping ensure security, compliance, and efficient workflows.
This section presents the architectural design of Role-Level Access Control (RLAC) within
IBM watsonx.data. It outlines the primary role types - platform roles, instance roles, and
resource-level roles - and explains how they can be effectively mapped and managed.
Furthermore, it discusses the integration of Single Sign-On (SSO) with these roles to facilitate
seamless user access across the platform.

By establishing clear roles and responsibilities, organizations can grant users precise access
to the tools and data that they need, which minimizes risk and optimizes operational
efficiency.

4.2.1 The architectural design for RLAC

RLAC in IBM watsonx.data is designed to manage access at different levels within the
platform so that administrators can define specific roles and assign them to users or groups.
This architecture is built to handle complex access needs by combining platform roles for
administrative access, instance roles for managing individual data environments, and
resource-level roles for data-specific permissions.

The architectural framework of RLAC in IBM watsonx.data typically includes the following
components:

� Platform layer: At the top level, platform roles are defined for administrative users who
need oversight and control over the entire IBM watsonx environment.
50 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

� These roles include permissions for configuring the system, managing user accounts, and
handling high-level tasks that impact the whole platform.

� Instance layer: The instance layer includes roles that are specific to individual data
instances or projects within the lakehouse. Instance roles enable granular control of
access to particular environments without impacting the broader platform.

� Resource layer: At the finest level, resource-level roles control access to specific data
sets, tables, or resources within an instance. These roles are essential for managing
access to sensitive data or defining permissions for specific data sets within the
lakehouse.

By using these three layers in tandem, IBM watsonx.data enables organizations to implement
a structured, scalable access control model that meets both security and operational needs.
This layered approach to role management simplifies access assignments, minimizes
administrative overhead, and enhances data governance.

4.2.2 Platform roles and instance roles in IBM watsonx.data

IBM watsonx.data provides two primary role types: platform roles and instance roles. They
govern access at different scopes within the lakehouse environment.

Platform roles
Platform roles in IBM watsonx.data grant permissions that apply across the entire platform.
These roles provide high-level administrative control over users, configurations, and settings.
Platform roles are typically assigned to IT administrators or platform owners who are
responsible for managing IBM watsonx.data.

Here are the platform roles:

� Administrator role: Grants comprehensive administrative access so that users can
configure and manage resources across the platform. Common use cases include
managing users and defining security policies.

� Editor role: Provides permissions to modify resources but not manage user roles or
platform-wide configurations.

� Viewer role: Enables read-only access, which is useful for monitoring and auditing
activities.

� Operator role: Focused on operational management, such as managing jobs and
workflows.

These roles are typically managed through IBM Cloud Identity and Access Management
(IAM) tools, which streamline role assignment and enforce compliance requirements across
the platform

Instance roles
Instance roles operate at the scope of a specific IBM watsonx.data deployment or resource,
which provide more granular control over data and compute resources.

Here are the instance roles:

� Metastore Admin: Full access to metadata repositories and configuration, which is critical
for administrators managing catalogs in services like Db2 or Netezza.

� Metastore Viewer: Read-only access to metadata, which is ideal for users who need
insights without modification capabilities.
Chapter 4. Protecting data 51

https://www.ibm.com/topics/identity-access-management
https://www.ibm.com/topics/identity-access-management

� Data Access role: Designed primarily for service-to-service integrations, such as enabling
data profiling and analytics workflows.

Instance roles help ensure that users interact only with the specific resources that are
necessary for their tasks, which enhance data security and operational efficiency.

Table 4-1 shows the instance roles privileges.

Table 4-1 Instance roles privileges

4.2.3 Resource-level roles and permissions

Resource-level roles in IBM watsonx.data provide the most granular control over access so
that administrators can define permissions on individual data sets, tables, and resources.
These roles are essential for protecting sensitive data within the lakehouse and helping
ensure that users access only data that is relevant to their role.

Key resource-level roles
Resource-level roles control access to individual data resources within an instance. They are
crucial for enforcing data privacy and helping ensure that sensitive data is accessible only to
authorized users. Here are the key resource-level roles:

� Resource Owner: Has full control over a specific resource, such as a table or data set. The
resource owner can define who has access to the resource, assign permissions, and
manage the lifecycle of the data.

� Resource Editor: Can modify data within the resource, which makes it suitable for users
who need to update data sets, transform data, or manage content. Data engineers and
data developers often take on this role for specific data sets.

� Resource Viewer: Provides read-only access to data within the resource. This role is ideal
for analysts, data scientists, or business users who need access to data for reporting or
analysis without modifying it.

Permissions for resource-level roles
Resource-level roles are assigned with specific permissions that govern what actions users
can take on data resources. Here are the key permissions for resource-level roles:

Create Presto (Java) Admin User

Restart the internal HMS X

Unregister any storage X

Unregister any DB
connection

X

Activate cataloged buckets
(restart HMS)

X

Register and unregister
own storage

X X

Register and unregister
own DB connection

X X

Access the metastore x

Read access to HMS API X
52 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

� Read Permission: Enables users to view data within the resource.

� Write Permission: Enables users to update data, make modifications, and manage data
transformations.

� Execute Permission: Grants the ability to run jobs or workflows that are associated with
the resource. This permission is commonly used in ETL processes or data
transformations.

� Manage Permissions: Enables users to set permissions for other users. This permission is
suitable for resource owners or administrators.

By combining resource-level roles with platform and instance roles, IBM watsonx.data
enables administrators to create a highly flexible access control model, which helps ensure
that users have the appropriate level of access based on their responsibilities while
safeguarding sensitive data from unauthorized access.

4.2.4 Best practices for resource-level role management

To maximize the effectiveness of resource-level roles, consider the following best practices:

� Adopt the Principle of Least Privilege: Grant users only the minimum level of access that
they need to perform their roles. This approach minimizes the risk of unauthorized data
access and helps maintain data security.

� Use Dynamic Groups for Resource Assignment: Where possible, assign resource roles
that are based on dynamic groups or attributes (for example, department or role), allowing
permissions to adjust automatically as users' responsibilities change.

� Regularly Audit Access Permissions: Periodically review resource-level permissions to
ensure that access levels are appropriate and in compliance with security policies.

� Monitor Sensitive Data Access: For highly sensitive resources, configure alerts to monitor
access patterns and identify potential security risks. This best practice is especially
relevant in regulated industries where data access must be auditable.

4.3 Establishing ACLs

In IBM watsonx.data, access control lists (ACLs) are used to manage and restrict access to
the data in object store and in federated databases, which helps ensure that only authorized
users or services can interact with the data. ACLs are critical for maintaining security and
compliance in a data environment by specifying who can read, write, or modify data, and by
controlling administrative tasks.

The typical types of ACLs for data access in IBM watsonx.data include role-based ACL and
policy-based ACL.

4.3.1 Role-based ACL

Roles define sets of permissions that can be assigned to users and user groups. This
approach simplifies the management of permissions by grouping common access
requirements under a role. Here are some examples of these roles:

� Catalog Admin: Full access to create, modify, and delete data (schemas and tables) in a
particular catalog, and grant or revoke permissions for other users and groups.

� Storage Writer: Read/write access on the bucket in a particular object store.
Chapter 4. Protecting data 53

� Milvus Viewer: Read-only access on the collections and partitions in a particular Milvus
service.

For more information about permissions on predefined roles, see the Managing roles and
privileges.

4.3.2 Policy-based ACL

Policies define a set of rules that can be applied to user and group access. The rules enable
more granular access control and automation of access management. Usually, a policy
contains the following items:

� Subject: The data objects that the access is being requested for.

� Rules: Define the behavior of the access control. It contains the following items:

– Type: Usually allow or deny. Some advanced types such as data masking and row-level
filtering are supported by external policy engines.

– Principal: The entity (user or group) that is requesting access.

– Action: The operation that is requested (select, insert, delete, and others).

In Figure 4-2, the policy contains a single rule to grant “select” and “insert” permissions on the
table store_returns under the schema tpcds_10gb in the catalog sample_data to the user
liuljun@ibm.com.

Figure 4-2 Create an access control policy: Add a rule

IBM watsonx.data supports access control policies for several types of resources. The data
objects and the corresponding rules are different. Table 4-2 describes them in detail.

Table 4-2 Access control policies

Resource Data object Action

Catalog Schema/Table/Column Select, Insert, Update,
Alter, and others
54 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-role_priv
https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-role_priv

For more information about how to manage the access control policies, see Managing data
policy rules.

Storage Folder/File or regular expression for the S3
path (s3://<bucket-name>/<object-key>)

Read, Write, or Delete

Milvus service Database/Collection/Partition ListDatabase,
ListCollection,
ListPartition, Search, and
others

Resource Data object Action
Chapter 4. Protecting data 55

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-data_policy
https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-data_policy

4.3.3 Best practices to manage ACLs

To manage role-based ACLs and policy-based ACLs effectively in IBM watsonx.data and
avoid overlaps, it is a best practice to establish a clear strategy that uses each method for its
strengths. Here are some best practices.

Defining roles first
Roles should define broad access categories based on a user or group's function within the
organization. Once these roles are established, policy-based ACLs can be used to fine-tune
access for specific use cases or granular control.

Consider a typical example: Managing access to AWS S3 storage. An organization might
define three user groups:

� Admins: Manage the storage lifecycle.
� Analysts: Require read-only access to files.
� Data Engineers: Need write access to upload and update files.

To implement these groups, assign roles to them:

Storage Admin: Granted to the Admin group.
Storage Reader: Granted to the Analyst group.
Storage Writer: Granted to the Data Engineer group.

If a specific analyst, such as Tom, needs temporary write access to a file, a policy-based ACL
can be created to grant him that permission for a specific period. This approach allows for
flexibility without compromising overall security. Importantly, Tom retains his usual read-only
access to other files in the storage.

Using role hierarchies for simplified management
IBM watsonx.data uses RBAC with role hierarchies. This approach simplifies permission
management by enabling higher-level roles to inherit permissions from lower-level roles,
which reduce redundancy. Here is the role hierarchy:

� Storage Reader: The lowest level, which grants read-only access.

� Storage Writer: Inherits Storage Reader permissions and adds write access.

� Storage Admin: Inherits Storage Writer permissions and gains full control, which includes
unregistering storage, updating properties, and managing access.

Platform-level roles also inherit from resource-level roles. For example, a platform admin
inherits “view” and “remove” permissions for all resources, so they can manage the entire
platform.

Avoiding redundant policies for common access
To streamline access management and reduce complexity, avoid creating multiple
overlapping policies for common access needs. Redundant policies can lead to unintended
consequences, such as conflicting permissions or difficulties in auditing and troubleshooting.

For example, consider a scenario where three policies are created:

� Policy A: Grants read access to the entire “example-bucket.
� Policy B: Grants read access to the “example-bucket/reports/*” folder.
� Policy C: Grants read access to the “example-bucket/finance/*” folder.

In this case, Policies B and C overlap with Policy A, which creates unnecessary complexity.
56 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Best practice: Consolidating policies
To simplify management, consolidate overlapping policies into a single, unified policy. For
example, you could create a policy, Policy D, that grants read access to both the
example-bucket/reports/ and example-bucket/finance/ folders. This streamlined approach
reduces the risk of errors, improves security, and makes it easier to manage access
permissions.

4.3.4 Summary

IBM watsonx.data empowers secure and organized data access through Access Control Lists
(ACLs). ACLs manage permissions for object stores and federated databases by using two
primary methods:

� Role-based ACLs: Assign broad permissions through predefined roles like Catalog Admin,
Storage Writer, and Milvus Viewer. This method simplifies access control.

� Policy-based ACLs: Offer granular control by defining specific rules for subjects (users or
groups), actions (read, write, and so forth), and principals (who have permissions).

Best practices for managing ACLs include the following ones:

� Defining roles before applying policies.
� Using role hierarchies to streamline permission management.
� Avoiding redundant or overlapping policies to minimize complexity and conflicts.
Chapter 4. Protecting data 57

58 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 5. Querying and manipulating data
and leveraging persona-specific
engines

A data lakehouse is a unified data platform that seamlessly integrates the strengths of data
warehouses and data lakes. As a high-performance SQL query engine, Presto enables rapid,
interactive analytics on large-scale datasets. Its versatile capabilities extend to diverse use
cases, such as real-time ad-hoc queries and complex ETL processes involving terabytes of
data.

This chapter has the following sections:

� “Using PrestoDB or Prestissimo engine for adhoc queries” on page 60
� “Leveraging Apache Spark engine for data engineering” on page 67
� “Execute important queries using the power of traditional RDBMS with shared open

lakehouse formats” on page 81

5

© Copyright IBM Corp. 2025. 59

5.1 Using PrestoDB or Prestissimo engine for adhoc queries

Presto is a distributed SQL query engine designed to efficiently process massive datasets
across diverse data sources. It empowers users to perform interactive, ad-hoc analytics on
data residing in various systems, including Hive, AWS S3, Hadoop, Cassandra, relational
databases, NoSQL databases, and proprietary data stores. By unifying access to data from
multiple sources, Presto enables organizations to conduct comprehensive analytics across
their entire data landscape.

Presto's distributed SQL engine architecture leverages SQL, the industry-standard language
for data manipulation. This ensures broad accessibility and compatibility with existing SQL
skills and tools. By adhering to the ANSI SQL standard, Presto supports a wide range of SQL
commands, including SELECT, UPDATE, DELETE, INSERT, and WHERE, enabling
seamless integration with diverse data sources and BI tools.

Presto’s SQL foundation ensures broad accessibility and rapid adoption. Its SQL compatibility
with other databases allows for seamless migration of existing SQL queries and BI tools,
requiring minimal to no modifications.

Presto's adaptable, flexible, and extensible architecture enables seamless integration with a
wide range of data sources. Its plugin mechanism allows you to connect to diverse data
systems, from traditional databases to modern data lakes and warehouses. A single Presto
query can effortlessly combine data from multiple sources, empowering organizations to
conduct comprehensive analytics across their entire data ecosystem. The vibrant Presto
community provides a rich ecosystem of connectors, further expanding the platform's
capabilities.

You can see the high-level architecture diagram in Figure 5-1.

Figure 5-1 Presto high-level architecture diagram
60 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

5.1.1 Presto technical concepts

Your Presto cluster sits between your BI tools (such as Superset, Tableau and Looker) and
your data sources. Presto queries across many different data sources and provides that data
back to your BI tool for your organization.

A full Presto installation includes a coordinator and multiple workers. Queries are submitted
from a client such as the Presto CLI to the coordinator. The coordinator parses, analyzes and
plans the query execution, and then distributes the processing to the workers.

Figure 5-2 shows the Presto cluster coordinator structure.

Figure 5-2 Presto cluster coordinator structure

Server types
There are three types of Presto servers: resource manager, coordinators, and workers. The
following section explains the difference between them.

Resource manager
The Presto resource manager is the server that aggregates data from all coordinators and
workers and constructs a global view of the cluster. A Presto installation with a disaggregated
coordinator needs a resource manager. Clusters support multiple resource managers, each
acting as a primary.

Coordinators and workers communicate with resource managers using a thrift API.

Coordinator
The Presto coordinator is the server that is responsible for parsing statements, planning
queries, and managing Presto worker nodes. It is the "brain" of a Presto installation and is
also the node to which a client connects to submit statements for execution. Every Presto
installation must have a Presto coordinator alongside one or more Presto workers. For
development or testing purposes, a single instance of Presto can be configured to perform
both roles.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 61

The coordinator keeps track of the activity on each worker and coordinates the execution of a
query. The coordinator creates a logical model of a query involving a series of stages which is
then translated into a series of connected tasks running on a cluster of Presto workers.

Coordinators communicate with workers and clients using a REST API.

Worker
After ensuring that an appropriate number of resources are available, the coordinator
delegates these tasks to the worker nodes. Worker nodes process their tasks in parallel,
using the relevant connector to access the underlying data source.

The connector used can vary across workers, depending on how the query was optimized
and what data sources need to be accessed. As the worker nodes process their tasks, the
coordinator continually monitors them using heartbeat signals. Once workers are done, the
result of the tasks is sent back to the coordinator.

The coordinator can then assign workers new tasks from any remaining query stages. Once
all stages are complete, the coordinator compiles the results from each stage into the final
form required by the original query.

Pipelining the query stages across the network in this way ensures that any unnecessary I/O
overhead is avoided. Additionally, all processing occurs in-memory, and intermediate data at
the task level is stored in a buffer cache.

All of these features ensure that Presto remains extremely performant, even at petabyte
sizes.

5.1.2 Data sources

There are four types of Presto data sources that you need in your deployment (Figure 5-3).

Figure 5-3 Presto cluster between BI tools and different types of data sources
62 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Connector
A connector adapts Presto to a data source such as Hive or a relational database. You can
think of a connector the same way you think of a driver for a database. It is an implementation
of Presto's SPI which allows Presto to interact with a resource using a standard API.

Presto contains several built-in connectors: a connector for JMX, a System connector which
provides access to built-in system tables, a Hive connector, and a TPCH connector designed
to serve TPC-H benchmark data. Many third-party developers have contributed connectors
so that Presto can access data in a variety of data sources.

Every catalog is associated with a specific connector. If you examine a catalog configuration
file, you will see that each contains a mandatory property connector.name which is used by
the catalog manager to create a connector for a given catalog. It is possible to have more than
one catalog use the same connector to access two different instances of a similar database.
For example, if you have two Hive clusters, you can configure two catalogs in a single Presto
cluster that both use the Hive connector, allowing you to query data from both Hive clusters
(even within the same SQL query).

Catalog
A Presto catalog includes schemas and refers to a data source using a connector. For
example, you can configure a JMX catalog to provide access to JMX information via the JMX
connector. When you run a SQL statement in Presto, you are running it against one or more
catalogs. Other examples of catalogs include the Hive catalog to connect to a Hive data
source.

When addressing a table in Presto, the fully-qualified table name is always rooted in a
catalog. For example, a fully-qualified table name of hive.test_data.test would refer to the test
table in the test_data schema in the hive catalog.

Catalogs are defined in properties files stored in the Presto configuration directory.

Schema
Schemas are a way to organize tables. Together, a catalog and schema define a set of tables
that can be queried. When accessing Hive or a relational database such as MySQL with
Presto, a schema translates to the same concept in the target database. Other types of
connectors may choose to organize tables into schemas in a way that makes sense for the
underlying data source.

Table
A table is a set of unordered rows which are organized into named columns with types. This is
the same as in any relational database. The mapping from source data to tables is defined by
the connector.

Figure 5-4 on page 64 shows a Presto cluster between coordinator and workers data
structure.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 63

Figure 5-4 Presto cluster between coordinator and workers data structure

5.1.3 Executing a query

If your query joins together many large tables, it may need multiple stages to execute,
aggregating tables together. After each execution stage, there may be intermediate data sets.
Unlike distributed query engines such as Hive that were designed to persist intermediate
results to disk, Presto saves time by executing queries in the memory of the worker machines.
It performs operations on intermediate datasets there, instead of persisting them to disk.

With Presto, data can reside in many different places and Presto performs the executions in
memory across your workers, moving data between workers as needed. This process avoids
the need to write and read from disk between stages; the result: faster query execution time.

The key pieces of the query execution model are as follows:

Statement
Presto executes ANSI-compatible SQL statements. When the Presto documentation refers to
a statement, it is referring to statements as defined in the ANSI SQL standard which consist
of clauses, expressions, and predicates.

Some readers might be curious why this section lists separate concepts for statements and
queries. This is necessary because, in Presto, statements simply refer to the textual
64 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

representation of a SQL statement. When a statement is executed, Presto creates a query
along with a query plan that is then distributed across a series of Presto workers.

Query
When Presto parses a statement, it converts it into a query and creates a distributed query
plan which is then realized as a series of interconnected stages running on Presto workers.
When you retrieve information about a query in Presto, you receive a snapshot of every
component that is involved in producing a result set in response to a statement.

The difference between a statement and a query is simple. A statement can be thought of as
the SQL text that is passed to Presto, while a query refers to the configuration and
components instantiated to execute that statement. A query encompasses stages, tasks,
splits, connectors, and other components and data sources working in concert to produce a
result.

Stage
When Presto executes a query, it does so by breaking up the execution into a hierarchy of
stages. For example, if Presto needs to aggregate data from one billion rows stored in Hive, it
does so by creating a root stage to aggregate the output of several other stages, all of which
are designed to implement different sections of a distributed query plan.

The hierarchy of stages that comprises a query resembles a tree. Every query has a root
stage which is responsible for aggregating the output from other stages. Stages are what the
coordinator uses to model a distributed query plan, but stages themselves do not run on
Presto workers.

Task
As mentioned in “Stage” on page 65, stages model a particular section of a distributed query
plan, but stages themselves do not execute on Presto workers. To understand how a stage is
executed, you'll need to understand that a stage is implemented as a series of tasks
distributed over a network of Presto workers.

Tasks are the work horse in the Presto architecture. A distributed query plan is deconstructed
into a series of stages which are then translated to tasks which then act upon or process
splits. A Presto task has inputs and outputs, and just as a stage can be executed in parallel by
a series of tasks, a task is executing in parallel with a series of drivers.

Split
Tasks operate on splits which are sections of a larger data set. Stages at the lowest level of a
distributed query plan retrieve data via splits from connectors, and intermediate stages at a
higher level of a distributed query plan retrieve data from other stages.

When Presto is scheduling a query, the coordinator will query a connector for a list of all splits
that are available for a table. The coordinator keeps track of which machines are running
which tasks and what splits are being processed by which tasks.

Driver
Tasks contain one or more parallel drivers. Drivers act upon data and combine operators to
produce output that is then aggregated by a task and delivered to another task in another
stage. A driver is a sequence of operator instances. You can think of a driver as a physical set
of operators in memory. It is the lowest level of parallelism in the Presto architecture. A driver
has one input and one output.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 65

Operator
An operator consumes, transforms, and produces data. For example, a table scan fetches
data from a connector and produces data that can be consumed by other operators, and a
filter operator consumes data and produces a subset by applying a predicate over the input
data.

Exchange
Exchanges transfer data between Presto nodes for different stages of a query. Tasks write
data into an output buffer and consume data from other tasks using an exchange client.

5.1.4 Prestissimo (C++ version of Presto)

Presto C++, sometimes referred to by the development name Prestissimo, is a drop-in
replacement for Presto workers written in C++ and based on the Velox library. It implements
the same RESTful endpoints as Java workers using the Proxygen C++ HTTP framework.
Because communication with the Java coordinator and across workers is only done using the
REST endpoints, Presto C++ does not use JNI and does not require a JVM on worker nodes.

Presto aims to be the top performing system for data lakes. To achieve this goal, the Presto
community is moving the Presto evaluation engine from the native Java-based
implementation to a new implementation written in C++ using Velox.

By moving the evaluation engine to a library, the intent is to enable the Presto community to
focus on more features and better integration with table formats and other data warehousing
systems.

Supported use cases
The following are supported use cases:

� Only specific connectors are supported in the Presto C++ evaluation engine.

� Hive connector for reads and writes, including CTAS, are supported.

� Iceberg tables are supported only for reads.

� Iceberg connector supports both V1 and V2 tables, including tables with deleted files.

� TPCH connector, with tpch.naming=standard catalog property.

Prestissimo general limitations
The C++ evaluation engine has a number of limitations:

� Not all built-in functions are implemented in C++. Attempting to use unimplemented
functions results in a query failure.

� Not all built-in types are implemented in C++. Attempting to use unimplemented types will
result in a query failure.

� All basic and structured types in Data Types are supported, except for CHAR, TIME, and
TIME WITH TIMEZONE. These are subsumed by VARCHAR, TIMESTAMP and
TIMESTAMPWITH TIMEZONE.

� Presto C++ only supports unlimited length VARCHAR, and does not honor the length n in
varchar[n].

� The following types are not supported: IPADDRESS, IPPREFIX, UUID,
KHYPERLOGLOG, P4HYPERLOGLOG, QDIGEST, TDIGEST, GEOMETRY, BINGTILE.
66 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

� Certain parts of the plugin SPI are not used by the C++ evaluation engine. In particular,
C++ workers will not load any plugin in the plugins directory, and certain plugin types are
either partially or completely unsupported.

� PageSourceProvider, RecordSetProvider, and PageSinkProvider do not work in the C++
evaluation engine.

� User-supplied functions, types, parametric types and block encodings are not supported.

� The event listener plugin does not work at the split level.

� User-defined functions do not work in the same way.

� Memory management works differently in the C++ evaluation engine. In particular:

� The OOM killer is not supported.

� The reserved pool is not supported.

� In general, queries may use more memory than they are allowed to through memory
arbitration.

� In C++ based Presto, reduce_agg is not permitted to return null in either the
inputFunctionor the combineFunction. In Presto (Java), this is permitted but undefined
behavior.

5.2 Leveraging Apache Spark engine for data engineering

You can use watsonx.data to seamlessly integrate with Spark engine to achieve the following
use cases:

� Ingesting large volumes of data into watsonx.data tables.

� Table maintenance operations to enhance performance.

� Complex analytics workloads that are difficult to represent as queries.

5.2.1 Creating and customizing internal Spark engine inside watsonx.data

Now let us delve deeper into Native Spark. We will explore the following steps:

1. You first create a native spark engine inside your watsonx.data instance as shown in
Figure 5-5 on page 68. Click Add Engine.

Note: For practical guidance on how to use Presto refer to 3.2, “Integrating external data
sources: Federation in PrestoDB” on page 30 and 8.3.1, “Gathering the required
information in IBM watsonx.data” on page 119.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 67

Figure 5-5 Add new native Spark engine to watsonx.data

2. Select the Type as Spark. Give it a name.

3. Select the default Spark runtime version. Currently watsonx.data supports two versions -
Spark 3.3 and Spark 3.4.

4. Associate a System bucket. This bucket is the "instance home" bucket, where application
logs, spark-events and other associated information are stored.

5. Choose a Node type. You can choose a node type (Small, Medium or Large). See
Figure 5-6 on page 69.
68 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 5-6 Internal Spark engine details

6. Choose the number of nodes. This is the number of nodes that you want reserved (up to
20 nodes) for your Spark engine. See Figure 5-7.

Figure 5-7 Number of node configurations

7. The billing for watsonx.data is based on fixed base charge plus the number of RUs
(Resource Units) consumed. To understand how the billing is done for the Spark engine,
refer to the About tab at https://cloud.ibm.com/watsonxdata.

8. Next, you can then choose to associate one or more existing catalogs with the engine. In
Figure 5-8 on page 70 we paired two catalogs with a single Spark engine. This
demonstrates that a Spark engine, like a Presto engine or Milvus service, can be paused
when inactive. Resume can take up to 10 minutes.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 69

https://cloud.ibm.com/watsonxdata

Figure 5-8 Spark engine Start and Stop

9. In the next step, we will associate a bucket with a catalog. We will use an IBM Cloud
Object Storage bucket as an example. If you do not already have one, you can create one
at this link. We will be using a newly created bucket named "my-bucket." See Figure 5-9
on page 71.
70 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/objectstorage/create

Figure 5-9 Create an IBM Object Storage instance

10.Next, you need to test the connection. For IBM Cloud Object storage, choose a direct
endpoint. In the example shown in Figure 5-10 on page 72, we use a public endpoint.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 71

Figure 5-10 Add the credentials

11.Next, you add the storage. See Figure 5-11 on page 73.
72 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 5-11 Add the storage

12.Add the associated catalog. This is what was associated with the Native Spark engine in
the first section of this chapter. See Figure 5-12 on page 74.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 73

Figure 5-12 Manage associations

5.2.2 Explore the tabs in the Spark engine

We will explore the following tabs in the Spark engine:

Details tab
The Details tab may seem complex, but it is pre-configured with many settings to simplify
setup. You will still need to specify a few essential configurations for the metastore, which we'll
discuss later.

Access Control tab
You can invite your team members to the IBM Cloud account and grant admin or user access
to the instance (See Figure 5-13 on page 75). To see what privileges you want to grant them,
refer to this link.
74 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-manage_user_access

Figure 5-13 Access control at Spark engine

Applications tab
This section will initially appear empty as no applications have yet been submitted. See
Figure 5-14.

Figure 5-14 Applications tab

Upon submission of applications, additional details such as status, runtime, and timestamps
will be displayed. See Figure 5-15 on page 76.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 75

Figure 5-15 Application status tab

Figure 5-16 Spark History Server

You can monitor and analyze running applications using the Spark UI, which offers a similar
interface to Spark History. Click on an application ID in the Applications tab to access
detailed information about that specific application.

5.2.3 Submitting the application to Native Spark engine

Here we demonstrate how to submit applications using the REST API.

Spark application details
This scenario demonstrates a basic application that creates a database, establishes an
Iceberg table, populates it with data, and then retrieves data from the same table.
Example 5-1 shows the REST API usage for this scenario.

Example 5-1 REST API usage on Notebook

from pyspark.sql import SparkSession
def init_spark():
 spark =
SparkSession.builder.appName("demo-iceberg-test").enableHiveSupport().getOrCreate(
)
 sc = spark.sparkContext

Tip: To locate a particular application within Spark History, utilize its distinctive
Spark-generated application ID, as indicated in Figure 5-16.
76 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

 return spark,sc
def main():
 spark,sc = init_spark()
 spark.sql("create database if not exists mm_may_catalog.mayday_db1 LOCATION
's3a://my-bucket/'")
 spark.sql("show databases from my_catalog").show()
 spark.sql("create table if not exists my_catalog.db1.testTable1(id INTEGER, name
VARCHAR(10), age INTEGER, salary DECIMAL(10, 2)) using iceberg").show()
 spark.sql("insert into my_catalog.db1.testTable1 values(4,'John
black',23,3400.00),(5,'Peter black',30,5500.00),(6,'George Black',35,6500.00)")
 spark.sql("select * from my_catalog.db1.testTable1").show()
if __name__ == '__main__':
 main()

1. First, upload Spark application to a bucket. See Figure 5-17.

Figure 5-17 Upload Spark application to a bucket

2. To submit applications you need a token. To generate the token, you can use the IBM
Cloud IAM CLI or use the REST API as shown in Figure 5-18.

Figure 5-18 Generate an IAM token

3. Example 5-2 shows the REST API to submit application.

Example 5-2 REST API to submit application

instance_id=spark788
crn=crn:v1:bluemix:public:lakehouse:us-south:a/3422342342e:3232-nsd-a83s-abcd-sdf7
sadf::
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 77

https://cloud.ibm.com/docs/key-protect?topic=key-protect-retrieve-access-token
https://cloud.ibm.com/docs/key-protect?topic=key-protect-retrieve-access-token

curl -v -X POST
https://us-south.lakehouse.cloud.ibm.com/lakehouse/api/v2/spark_engines/$instance_
id/applications -H "AuthInstanceID: $crn" --header "Authorization: Bearer $token"
-H "content-type: application/json" -d @submit.json

4. In the curl (Example 5-2 on page 77), the submit.json application payload is shown in
Figure 5-19.

Figure 5-19 Application payload

Figure 5-20 Generate value for specific acccount

Tip:The value for spark.hadoop.wxd.cas.apiKey should be in the format Basic base64.

For example, we generated the value as shown in Figure 5-20 on page 78. Replace
myemailid@ibm.com with your id. And replace the password with your own
apikeyibmlhapikey_ibmcloudid:apikey).

Tip:The user submitting the application needs to have MetastoreAccess permission for
Spark applications that need to use metastore. Use IAM policies to add the access as
shown in Figure 5-21.
78 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 5-21 Access policy edit

5. Once you submit the application, you get an id and an initial state. You can switch to
Applications tab of the Spark engine or use another API to track the state of the
application.

You also need this Application ID to debug and search for the logs, as we will show later.

{"id":"8ac12670-8fef-4c67-b2ea-b7bd0d5529f2","state":"accepted"}

6. You can confirm that you can iceberg "style" of data and metadata folders got created.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 79

Figure 5-22 Iceberg data in Object Storage

7. For any Spark application, you may need to examine logs, including those from your
application code (for example, show(), print()), as well as the Spark executor and driver
logs. For more information, see Debug the Spark application.

Figure 5-23 Application logs

Tip: You can type the following in the filter box of the home instance bucket of your Spark
engine spark/spark788/logs/8ac12670, which is of the format
spark/<engineID>/logs/<first-few-characters-instance-crn>. See Figure 5-23.
80 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-log_nsp

5.3 Execute important queries using the power of traditional
RDBMS with shared open lakehouse formats

As organizations increasingly embrace the flexibility and scalability of lakehouse architectures
- fusing the schema-on-read philosophy of data lakes with the performance characteristics of
data warehouses - one challenge often emerges: how to preserve the established benefits of
traditional relational systems. Longstanding RDBMS platforms have earned their place in
enterprise environments by providing unparalleled transactional consistency, robust
optimization, and universally understood access methods via SQL. Rather than discarding
these hard-won strengths, watsonx.data intelligently integrates them into the evolving data
ecosystem, ensuring that modern data architectures gain the reliability, performance, and
user-friendliness traditionally associated with relational databases.

This integration is not about forcing a strict schema on all data sources, nor about replicating
legacy infrastructure within a new paradigm. Instead, watsonx.data applies the core principles
and best practices honed over decades of RDBMS evolution and extends them to open,
columnar file formats, distributed storage environments, and hybrid cloud infrastructures. The
result is a solution that provides end-to-end trustworthiness from ingestion to query execution
without sacrificing openness or scalability.

5.3.1 ACID guarantees transactional reliability

In data-intensive enterprises, the importance of data correctness cannot be overstated.
Transactional reliability underpins critical operations, from processing financial trades to
updating inventory counts and handling personal health information. A single corrupted
record or partial update can ripple through downstream analytics, misinform decision-makers,
violate compliance standards, or damage the organization's reputation.

Relational databases have long offered robust transactional support by adhering to ACID
principles, as defined below:

� Atomicity: Each transaction is treated as an indivisible unit; it either completes fully or not
at all.

� Consistency: All data written adheres to predefined rules, maintaining referential integrity
and validity.

� Isolation: Transactions run concurrently without interfering with each other's intermediate
states.

� Durability: Completed transactions are permanently recorded, ensuring that committed
changes persist even after system failures.

These properties created a trustworthy environment for mission-critical systems and provided
a bedrock of reliability that organizations came to rely on.

IBM watsonx.data carries these transactional semantics into environments where data may
reside in a combination of object stores, on-premises file systems, or distributed cloud
storage-often using open file formats like Parquet, ORC, or Delta Lake. Implementing ACID in
such a heterogeneous ecosystem involves careful orchestration of metadata operations,
versioning, and concurrency control across large, possibly partitioned datasets.

The platform ensures that data transformations, such as batch ingestion, schema evolutions,
incremental updates, or data masking, happen in an all-or-nothing manner, just as they would
in a traditional RDBMS. Thus, watsonx.data preserves the consistency and trustworthiness of
data, even as it spans multiple file-based storage layers. Organizations gain the confidence
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 81

that their analytics and reporting pipelines are grounded in a stable and reliable foundation,
reducing the risk of erroneous insights and regulatory non-compliance.

5.3.2 Advanced query optimization

Optimizing queries is as much an art as it is a science in the database world. Traditional
RDBMS platforms have refined their optimization engines over decades, employing a deep
understanding of data distribution, indexing structures, join algorithms, and CPU and memory
utilization patterns. These optimizations allow complex analytical workloads-like intricate joins
between large tables, multi-level aggregations, and subqueries to execute within practical
time frames.

RDBMS query optimizers rely on comprehensive metadata and statistics about the
underlying data. They analyze the sizes of tables, distribution of values, existing indexes, and
cost models to determine the most efficient execution plan. Whether scanning a massive fact
table, leveraging a sorted index, or pushing filters down closer to the data, these systems
have become adept at minimizing resource consumption and delivering interactive response
times for queries that would otherwise be unwieldy.

Migrating these capabilities into a lakehouse context requires extending the optimization logic
beyond traditional row-store tables and B-trees. IBM watsonx.data works with columnar
formats like Parquet, ORC, and Delta, which store data in a way that naturally supports
predicate push-down, column pruning, and partition elimination. The system leverages
metadata embedded within these formats, including min/max statistics per column and file
partitions, to minimize I/O overhead and reduce the query's data footprint.

Additionally, watsonx.data's optimizer is designed to understand the cost of operations in
distributed environments, where network traffic and storage access patterns matter as much
as CPU usage. By dynamically evaluating which subsets of data are relevant and which
operations can be parallelized or pruned, the engine can execute complex queries against
immense datasets with surprising speed. This empowers analysts to explore data
interactively, iterate on hypotheses, and refine models without suffering from long turnaround
times or hefty data movement costs.

5.3.3 Standard SQL support

Despite the proliferation of new programming languages, frameworks, and query paradigms,
SQL endures as the default language of choice for analytics. Its declarative syntax,
standardized grammar, and broad support across numerous tools and platforms make it
accessible to a vast audience-business analysts, data scientists, developers, and even
managers with technical acumen. SQL's universality and expressiveness have kept it at the
center of data querying and manipulation.

In classical relational settings, SQL acts as a powerful yet relatively simple interface that
abstracts away the complexity of underlying data structures. Users do not need to write
intricate, low-level code to retrieve data or perform computations; they simply specify what
they want, and the system figures out how to deliver it efficiently. This abstraction layer fuels
productivity, reduces the learning curve, and fosters a self-service culture where more people
can interact directly with organizational data.

The challenge in modern lakehouse environments is that data is no longer confined to
well-defined relational schemas. Instead, it may exist as nested JSON fields, denormalized
tables, or raw files sprinkled across various storage layers. IBM watsonx.data bridges this gap
by allowing users to treat these open-format files as if they were relational tables. A virtualized
82 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

metadata layer provides logical schemas for these files, allowing familiar SQL constructs like
SELECT, JOIN, GROUP BY, and WINDOW functions to operate seamlessly across them.

By providing a uniform SQL layer over both structured warehouse data and semi-structured
lakehouse data, watsonx.data drastically simplifies the analytical workflow. Teams do not
need to master new query languages or develop custom parsers to access and manipulate
data in Parquet or ORC files. Instead, they can rely on their existing SQL knowledge, reusing
queries, tools, and dashboards that were originally designed for relational systems. This not
only boosts productivity but also broadens the user base that can leverage the data
ecosystem, encouraging data-driven insights to permeate the entire organization.

5.3.4 Embracing lakehouse architecture and open formats

As enterprises strive to unify their data strategies, the lakehouse architecture has emerged as
a key paradigm that combines the strengths of traditional data warehouses-such as
structured schemas, performance optimizations, and reliability-with the flexibility, scalability,
and cost efficiencies characteristic of data lakes. This hybrid approach addresses
longstanding tensions in the data landscape, allowing organizations to benefit from the
openness and extensibility of data lakes without sacrificing the governance, consistent
performance, and analytical sophistication of a warehouse.

In practice, embracing the lakehouse model means handling data in a way that is
format-agnostic, interoperable across multiple platforms, and conducive to evolving analytical
requirements. IBM watsonx.data operationalizes these principles by providing a platform that
not only leverages open, widely adopted storage formats and metadata frameworks but also
integrates governance and performance enhancements. The result is a single, cohesive data
environment that adapts to changing workloads, heterogeneous data types, and evolving
regulatory landscapes-all while maintaining the transactional guarantees and robust analytics
capabilities that enterprises have come to rely on.

Open-source storage formats
A pivotal aspect of the lakehouse paradigm is the use of open, standardized storage formats.
Gone are the days when organizations were locked into proprietary schemas or tied to a
single vendor's file formats. Instead, open columnar formats like Parquet, ORC, and open
table formats such as Delta Lake have become industry-standard choices for storing large
analytical datasets. IBM watsonx.data's embrace of these formats unlocks a range of
benefits, including:

� Efficient compression and encoding: High-performance columnar formats like Parquet and
ORC are designed to store data by columns rather than by rows. This structure allows for
more effective compression, especially if columns exhibit low cardinality or repetitive
patterns. Consequently, organizations can drastically reduce storage costs while
simultaneously lowering I/O overhead. In cloud environments, this translates directly to
cost efficiencies, as less data is read and transferred over the network.

� Schema evolution: Rigid, pre-defined schemas can stifle innovation and complicate data
integration. Open formats support schema-on-read and schema evolution, enabling
organizations to gradually adjust table structures as new attributes emerge, old attributes
become obsolete, or analytical needs evolve. This flexibility reduces the need for costly
and time-consuming migrations or reingestion processes.

� Predicate push-down and data pruning: Intelligent push-down of filters and pruning of
unnecessary data segments allow query engines to skip irrelevant files and columns. By
filtering data at the source, systems can minimize the amount of data scanned and
returned during queries, delivering faster results and more efficient use of compute
resources.
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 83

By natively supporting these open formats, watsonx.data ensures that enterprises are not
dependent on vendor-specific platforms or confined to a single ecosystem. This
vendor-neutral stance not only future-proofs data investments but also enables businesses to
mix and match best-in-class tools-ranging from data science notebooks and BI dashboards to
machine learning frameworks and data cataloging services without introducing compatibility
roadblocks. Over time, organizations can seamlessly adopt emerging technologies, move
workloads between clouds, and integrate with evolving data stacks while retaining the storage
foundation that open formats provide.

Metadata management and governance
As data environments grow in scale and complexity, a critical challenge emerges - ensuring
that analysts, engineers, and data stewards can find, understand, trust, and appropriately
secure the data they need. Without robust metadata management and governance
frameworks, even the most flexible lakehouse can become difficult to navigate, resulting in
data swamps where valuable insights are submerged beneath an ocean of unstructured files.

IBM watsonx.data addresses these challenges by providing a comprehensive metadata layer
that elevates raw files into discoverable, well-defined, and governable entities. Key
capabilities include:

� Centralized data catalogs and discovery: Analysts can search and browse data catalogs
to quickly locate relevant datasets. Metadata attributes, including schema definitions, data
lineage, data quality scores, business glossary terms, and data owners, help users identify
the most suitable data for their analyses. This fosters a culture of self-service analytics,
where teams can find what they need without constantly relying on IT gatekeepers.

� Consistent schema definitions and versioning: By imposing logical schemas atop raw files,
watsonx.data ensures that all users refer to the same, consistent representation of data.
Centralized schema repositories maintain historical versions, enabling analysts to time
travel to older schemas if needed. This reduces confusion, accelerates onboarding for
new team members, and supports stable reporting over long periods.

� Data lineage and provenance tracking: Complex analytical pipelines often involve multiple
transformations, joins, and enrichments. Without lineage tracking, it can be nearly
impossible to reconstruct how a particular metric was derived or to assess the impact of a
schema change on downstream analytics. IBM watsonx.data's metadata layer captures
lineage information, providing transparency and auditability. This not only aids
troubleshooting and regression analysis but also strengthens compliance efforts by
documenting data transformations and validating data sources.

� Security, compliance, and access controls: Regulatory mandates like GDPR, HIPAA, or
CCPA often require stringent controls over who can see which data and under what
conditions. IBM watsonx.data integrates with enterprise security frameworks, enabling
role-based access control, encryption at rest and in transit, and data masking. Sensitive
information-like personal identifiers-can be masked or tokenized to protect privacy. These
governance measures ensure that analytics remain safe, compliant, and trustworthy, while
still allowing analysts to work effectively with the data.

Performance enhancements for analytical queries
A central tenet of the lakehouse philosophy is delivering data warehouse-like performance on
top of flexible, open storage. This balance demands more than just fast hardware: it requires
a deep integration between query engines, metadata systems, and the underlying file formats
to deliver sub-second or interactive query speeds over massive, ever-growing datasets.

IBM watsonx.data fully embraces the performance-oriented features available in lakehouse
architectures, including:
84 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

� Partitioning and clustering: By logically grouping related data-such as by date, region,
product category, or other attributes-organizations can localize queries to specific
partitions, reducing the volume of data scanned. Clustering similar data together further
improves efficiency by enhancing data locality and compression ratios.

� Z-ordering and data skipping: Advanced file layout techniques like Z-ordering rearrange
data to maximize locality across multiple dimensions. This technique can dramatically
reduce the search space for queries filtering on multiple columns. Additionally, file-level
statistics and indexes enable skipping entire files that do not match query predicates,
further trimming query execution times.

� Indexing and summary statistics: Just like traditional databases, lakehouse systems can
maintain indexing structures and summary statistics on column distributions. These help
the query optimizer quickly identify which segments of data are most relevant, leading to
more efficient scans and joins. Instead of sifting through all data, watsonx.data can
pinpoint only the necessary subsets, delivering near-interactive query responses.

� Caching and adaptive execution: Frequently accessed data can be cached in memory or
on faster storage tiers to accelerate subsequent queries. Adaptive execution strategies
allow watsonx.data to modify query plans on the fly, reacting to real-time performance
metrics and data distribution patterns. The system can split large tasks, redistribute
workload, or change join strategies mid-query to achieve optimal performance.

By leveraging these performance enhancements, watsonx.data ensures that analytics on
even colossal datasets remain responsive and cost-effective. Analysts gain the ability to
iterate rapidly over complex queries, data scientists can train machine learning models at
scale, and business users enjoy timely insights without waiting hours for batch processing
jobs to complete
Chapter 5. Querying and manipulating data and leveraging persona-specific engines 85

86 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 6. Establishing data governance

IBM watsonx.data offers a comprehensive data governance solution. This powerful platform
empowers organizations to ensure data security, compliance, and usability.

In this chapter we discuss the following:

� “Governing your data: The role of catalog, metadata, and policies” on page 88
� “Best practices for implementing an effective data governance framework” on page 88
� “Integration with IBM Knowledge Catalog (IKC)” on page 90

6

© Copyright IBM Corp. 2025. 87

6.1 Governing your data: The role of catalog, metadata, and
policies

The concepts of catalog, metadata, and policies are integral to data governance and
management within the watsonx platform.

� Catalog: In watsonx, the catalog acts as a centralized hub for managing and organizing
data assets. It provides a unified view of all available data, regardless of its source or
location. This allows users to easily discover, understand, and access the data they need
for their AI and analytics projects. The catalog not only lists data assets but also provides
tools for collaboration and knowledge sharing, enabling teams to work together more
effectively.

� Metadata: Metadata plays a crucial role in providing context and meaning to the data
within the watsonx catalog. It includes information such as data lineage, data quality
metrics, business terms, and technical definitions. It is important to implement active
metadata management, which involves automatically capturing and updating metadata to
ensure its accuracy and completeness. This enables users to understand the
characteristics of the data, its origin, and how it can be used, fostering trust and
confidence in data-driven insights.

IBM watsonx.data has a central storage for information about its data, called the Metadata
Service. This lets different tools work together seamlessly because they all understand the
data the same way.

� Policies: Policies in watsonx define the rules and guidelines for how data can be accessed
and used. They help ensure data privacy, security, and compliance with regulatory
requirements. It is important to implement granular policy controls, which allow
organizations to define policies at various levels, from individual data assets to entire
catalogs. This enables organizations to enforce data governance policies consistently and
effectively across their data landscape.

Together, the catalog, metadata, and policies in watsonx provide a comprehensive framework
for governing and managing data assets. They enable organizations to unlock the full
potential of their data while ensuring trust, transparency, and compliance.

6.2 Best practices for implementing an effective data
governance framework

In this section we discuss some best practices for implementing an effective data governance
framework in watsonx.data.

6.2.1 Cataloging

The following are best practices for cataloging:

� Start with a clear data inventory: Identify all your data sources and assets, including
structured, unstructured, and semi-structured data. This comprehensive view will help
prioritize governance efforts.

� Leverage IBM Knowledge Catalog (IKC) integration: IBM watsonx.data integrates
seamlessly with IKC, enabling a centralized catalog across your entire data ecosystem.
This promotes consistency and simplifies data discovery. 6.3, “Integration with IBM
Knowledge Catalog (IKC)” on page 90 discusses this integration in depth.
88 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=components-catalogs
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=components-metadata-service
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=components-metadata-service
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=access-data-policy

� Standardize data organization: Implement a consistent naming convention and
classification system for data assets within the catalog. This improves searchability and
understanding for all users.

� Utilize business glossaries: Define clear and concise business terms within the catalog to
ensure everyone interprets data attributes the same way.

6.2.2 Metadata management

The following are best practices for metadata management:

� Adopt a metadata governance strategy: Define clear ownership and responsibilities for
capturing, validating, and maintaining metadata. This ensures its accuracy and
consistency.

� Automate metadata capture: Utilize watsonx.data's automated metadata extraction
capabilities to minimize manual efforts and reduce errors.

� Enrich metadata with business context: Go beyond technical data definitions. Include
lineage information, quality metrics, and usage guidelines to provide a richer
understanding of the data.

� Integrate metadata with AI workflows: Use high-quality metadata to improve the accuracy
and effectiveness of your AI models and analytics initiatives.

6.2.3 Policy management

The following are best practices for policy management:

� Align policies with business objectives: Develop data governance policies that support
your organization's goals and regulatory requirements.

� Implement role-based access control (RBAC): Define clear access levels and permissions
for users based on their roles and responsibilities. This ensures data security and
minimizes the risk of unauthorized access.

� Leverage data usage tracking: Utilize IBM watsonx.data's data lineage and usage tracking
features to monitor how data is being accessed and used. This helps identify potential
compliance issues and promotes responsible data practices.

� Promote data governance awareness: Educate and train users on your data governance
policies and procedures. This fosters a culture of data responsibility within your
organization.

6.2.4 General best practices

It is important to start small and scale gradually. You can begin by implementing data
governance on a pilot project and gradually expand it across your organization. This allows for
adjustments and refinements based on user feedback.

Involve key stakeholders from different departments in the data governance process. Their
input helps ensure that the framework meets the needs of all users.

Regularly assess the effectiveness of your data governance framework and make
adjustments as needed. This ensures it remains aligned with your evolving data landscape
and business needs.
Chapter 6. Establishing data governance 89

6.3 Integration with IBM Knowledge Catalog (IKC)

The integration between IBM watsonx.data and IBM Knowledge Catalog enables
comprehensive data governance through several aspects such as Data linage, Semantic
enrichment, and Data Privacy protection, etc. In this chapter, we focus on how IKC's data
protection rules play a critical role in ensuring data privacy as part of the broader data
governance framework.

6.3.1 Architecture and core components of the integration

IBM Knowledge Catalog servers as an enterprise data governance solution, managing the
metadata for data sources across the enterprise. IBM watsonx.data acts as one of the data
sources to support deep policy enforcement - dynamically enforce data protection whenever
user access data. Figure 6-1 shows the architecture of the IBM Knowledge Catalog
integration.

Figure 6-1 Architecture of the integration

In the architecture diagram above, there are several key components involved in the
integration.

� Access Management Endpoints: This component is used to facilitate IKC access to the
metadata and data of watsonx.data and allow the service token of IKC to bypass the
built-in access controls, enabling profiling of raw data and identifying the correct data
classes for columns.

� Query Audit and Governance: This component is a Presto engine plugin. When users
attempt to access data from watsonx.data, it triggers corresponding data governance
requests to IKC and protect the sensitive data using data masking or row level filtering
based on the predefined data protection rules in IKC.

� Policy Enforcement Point: This component is used to evaluate the IKC data protection
rules using IKC SDKs and cache the policy evaluation results for repeating access.
90 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=integrations-integrating-knowledge-catalog

6.3.2 Implementation of the integration

Before data governance can be fully implemented, several preparatory steps must be
completed in the IBM Knowledge Catalog. Typically, a role called Data Steward, is
responsible on overseeing data governance, importing assets and defining policies/rules to
ensure privacy protection.

The Data Steward will need to create a project first, establish a connection to watsonx.data,
import data assets, and run metadata enrichment jobs to define business terms, ensuring a
common understanding of data assets across the organization. Data Stewards will also need
to run data profiling to categorize data assets and associate each column of data to different
data classes.

The data protection policies and rules can be defined on top of business terms and data
classes to protect sensitive data, ensuring compliance with regulatory requirements and
organizational policies. Figure 6-2 on page 92 illustrates the general process of this practice.
Chapter 6. Establishing data governance 91

Figure 6-2 The general process to prepare for integration in IKC

Once these preparations are complete, data protection policies and rules are automatically
applied when users query data in IBM watsonx.data. For example, if a column contains
personally identifiable information (PII) such as Social Security Numbers (SSNs),
watsonx.data will automatically transform the data using masking techniques like redaction or
obfuscation, complying with data protection rules. This ensures data privacy is maintained
during data access.

6.3.3 Summary and references

In summary, the integration of IBM Knowledge Catalog with IBM watsonx.data facilitates the
organization and understanding of data, implements privacy data protection such as data
redaction, obfuscation, etc. This integration ensures that sensitive data is protected while
92 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

making data accessible for AI and data-driven initiatives. It provides a strong foundation for
enhanced security, compliance, and data governance practices.

For more information, visit IBM watsonx.data documentation.

Chapter 6. Establishing data governance 93

https://www.ibm.com/docs/en/watsonx/watsonxdata/2.0.x?topic=integrations-integrating-knowledge-catalog

94 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 7. Establishing a data catalog

This chapter describes the steps to establish a data catalog with IBM watsonx.data so that
you can do achieve the following goals:

� Unify data sources: Consolidate data from across your organization, regardless of format
or location.

� Navigate with ease: Discover relevant data sets quickly by using intuitive search and
metadata management.

� Boost data governance: Help ensure data quality and security by using robust access
controls and lineage tracking.

This chapter has the following sections:

� “Introduction” on page 96

� “Data discovery: Automating data classification and tagging for better organization” on
page 96

� “Data profiling” on page 97

� “Data cataloging: Building a comprehensive data catalog for findability” on page 97

� “Using advanced search functions to find specific data assets” on page 98

� “Case study: Improving data discoverability for faster decision-making in the retail sector”
on page 98

7

© Copyright IBM Corp. 2025. 95

7.1 Introduction

A data catalog is foundational to any data-driven organization. It acts as a centralized and
structured repository for documenting, managing, and categorizing data assets across the
enterprise. It is not a passive storage system, but a dynamic resource that facilitates access,
discovery, and governance of data. In IBM watsonx.data, the catalog is designed to handle
vast amounts of data, and it is a critical component of the organization’s data governance
strategy. It provides tools for managing metadata to help ensure compliance, enable efficient
collaboration, and maintain data security. This catalog is crucial in mitigating data silos and
helping ensure that stakeholders, whether technical or business-oriented, have the right tools
to access and make sense of the data.

The core function of the IBM watsonx.data catalog is the management and enrichment of
metadata, which includes detailed information about the origins, transformations, and lineage
of each data asset. This metadata captures technical details, such as data types and formats,
and the broader context of how the data was collected, processed, and altered. By using this
metadata, users can understand how data flows through the organization, which provides
transparency about its lifecycle. Whether the data originates from internal business
operations or external sources, IBM watsonx.data helps ensure that every data set is
thoroughly documented, which enables the tracing of its lineage to identify potential issues
such as data integrity or trustworthiness.

Moreover, the catalog is equipped with robust data governance and security features. It
supports role-based access control (RBAC), which enables the organization to enforce
permissions that restrict access to sensitive information. For example, personal identifiable
information (PII) can be masked or anonymized to meet compliance standards, which help
ensure that privacy regulations are respected. Furthermore, IBM watsonx.data promotes
collaboration by enabling users to tag data sets with business-context annotations so that
others can understand the data sets' relevance in specific use cases. This capability
enhances data sharing across departments, which helps stakeholders interpret data more
efficiently and makes the catalog more valuable as a comprehensive and centralized
resource.

7.2 Data discovery: Automating data classification and tagging
for better organization

In IBM watsonx.data, automated data discovery represents a significant innovation that
transforms raw, unorganized data sets into structured, valuable assets. Using sophisticated
machine learning models, IBM watsonx.data automatically analyzes data based on its
attributes and content, and applies classifications and tags that mirror the expertise of human
data stewards. This approach eliminates the need for manual tagging, which speeds up the
data preparation process and helps ensure that data is always organized and accessible.

The process of data classification within IBM watsonx.data involves advanced entity
recognition models, which are tailored to identify relevant entities like dates, locations, or
product IDs in text-based data sets. The system also uses natural language processing
(NLP) models to categorize textual data based on its content. For example, NLP can classify
customer feedback as “positive” or “negative” or identify and label entities within a news
article. This flexible, multi-model approach makes IBM watsonx.data suitable for a diverse
range of data sets, whether structured (for example, relational databases) or unstructured (for
example, text documents or multimedia content).
96 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Once these classifications are identified, IBM watsonx.data enables users to define
customized tagging rules based on business-specific needs. These rules can consider
various data set properties, such as column names, statistical distributions, or data value
ranges. The tagging system dynamically applies these rules to incoming data sets, which
help ensure that newly ingested data is automatically categorized and tagged according to
predefined guidelines. This level of automation increases efficiency and reduces the manual
effort that is required to keep the data catalog up to date.

7.3 Data profiling

Data profiling is a key activity that assesses the quality, consistency, and readiness of data
sets for analytics. In IBM watsonx.data, profiling is deeply integrated into the data governance
process, which enables organizations to monitor and ensure the integrity of their data
throughout its lifecycle. Profiling involves the examination of data to determine its quality
attributes, such as data types, value distributions, null value percentages, and the presence of
outliers. This step is essential for identifying data that might not meet organizational
standards or that might distort analysis if used without remediation.

The IBM watsonx.data profiling engine uses advanced statistical methods and machine
learning algorithms to rapidly scan large data sets, detect anomalies, and highlight potential
data quality issues. For example, the system can flag missing or inconsistent data, or it can
identify unexpected patterns that might signify erroneous data entry. In addition to traditional
profiling, IBM watsonx.data supports more complex evaluations, such as data relationship
analysis and schema validation, which assess how data entities are connected and whether
the data schema aligns with expected standards.

Once profiling is complete, IBM watsonx.data integrates the findings into a data quality
framework that automatically generates alerts when data sets fall below predefined quality
thresholds. These alerts enable data stewards to address issues before they compromise
downstream analytics. Also, customizable workflows enable organizations to tailor profiling
strategies to meet their unique governance needs, which provide a flexible solution for diverse
data environments.

7.4 Data cataloging: Building a comprehensive data catalog for
findability

The creation of a comprehensive data catalog in IBM watsonx.data is a multi-step process
that involves careful planning, taxonomy development, and strategic organization of data sets.
The catalog’s architecture is designed to help ensure that data is discoverable and
actionable. A key aspect is creating a clear taxonomy that aligns with organizational goals
and the way that data is used across the business. This taxonomy defines the logical
categories in which data sets are organized, which creates a hierarchical structure that
enables users to quickly find and explore related data sets.

To ensure that the catalog is dynamic and adaptable, IBM watsonx.data provides tools to
define metadata standards that specify which attributes should be associated with each data
set, such as schema definitions, data sensitivity, update frequency, and ownership. Also,
IBM watsonx.data supports the automation of catalog updates through scripts and APIs,
which reduce manual overhead and helps ensure that the catalog remains consistent as data
assets evolve. With this level of automation, organizations can keep their catalogs up to date
without the need for constant human intervention.
Chapter 7. Establishing a data catalog 97

IBM watsonx.data also offers advanced indexing capabilities, which optimize the catalog for
fast and efficient search queries. By indexing the metadata, tags, synonyms, and
multi-language support, IBM watsonx.data enhances search performance so that users can
search by using various metadata attributes. This flexibility in indexing and search capabilities
helps ensure that users can quickly find the data sets that they need, regardless of language,
data type, or data set complexity.

7.5 Using advanced search functions to find specific data
assets

IBM watsonx.data provides a suite of advanced search functions that significantly enhance
the discoverability of data assets within a large catalog. Unlike basic search engines that rely
on simple keyword matching, the IBM watsonx.data search engine incorporates advanced
Boolean operators, filters, and facets to help users create highly specific queries by
combining multiple search parameters to narrow down results with precision. With Boolean
operators, users can include or exclude data sets based on criteria such as tags, metadata
fields, or data set attributes.

Moreover, IBM watsonx.data supports fuzzy search, which accommodates minor
discrepancies in search terms, such as spelling errors or slight variations in metadata entries.
This approach helps ensure that even imperfect search terms yield relevant results, which
reduce the likelihood of missing critical data sets due to human error.

For organizations with complex and highly specific search needs, IBM watsonx.data offers a
rich set of APIs that can be integrated with external systems. With these APIs, you can build
custom search interfaces, or you can automate routine search queries, which facilitate
seamless workflows and enable data teams to access the data that they need without manual
intervention.

7.6 Case study: Improving data discoverability for faster
decision-making in the retail sector

Retail organizations operate in a highly dynamic and competitive environment, where timely
and data-driven decisions are critical for success. These businesses deal with diverse data
assets, which range from transactional sales data and customer feedback to supply chain
metrics and promotional campaign analytics. The challenge is in managing vast and varied
datasets and helping ensure that they are accessible, interpretable, and actionable for
decision-makers across the organization.

IBM watsonx.data offers a solution by providing a centralized data catalog that organizes,
classifies, and tags these data sets, making them easily discoverable. By automating much of
the data preparation process, it helps retail organizations streamline workflows, enhance
collaboration, and enable faster and more informed decision-making.

7.6.1 Use case: Unified data access across retail functions

Retailers frequently require insights that span multiple functional areas. For example, an
organization might need to combine sales figures with supply chain data to pinpoint inventory
restocking issues. At the same time, marketing teams might want to gauge the effectiveness
of recent promotions on customer purchases.
98 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

With IBM watsonx.data, data sets from various domains are integrated into a single,
comprehensive catalog, which helps ensure access and understanding of data regardless of
its source. Metadata enrichment, automated tagging, and lineage tracking all contribute to
this function.

IBM watsonx.data tackles a key challenge in retail data management: the manual
classification and organization of data sets. It automates this process by using machine
learning and NLP to identify patterns, classify content, and apply relevant business tags.

For example, transactional data sets can be automatically tagged with attributes like “Region:
North America”, “Quarter: Q3”, and “Product Category: Electronics”. This automation reduces
the burden on data stewards while helping ensure that data sets remain consistently
organized. As a result, analysts can quickly locate data sets that meet their criteria, even in
expansive catalogs.

IBM watsonx.data advanced search capabilities enable retailers to perform scenario-based
analyses. Imagine a scenario where a retail executive wants to evaluate the effectiveness of a
summer promotion. By using IBM watsonx.data, the executive can search for data sets that
are related to summer sales, customer feedback during the promotional period, and inventory
levels before and after the campaign.

By combining these data sets, the executive can identify trends, such as which products
performed well during the promotion, whether customer satisfaction improved, and how
effectively inventory was managed. These insights inform strategic decisions for future
campaigns, such as product selection, pricing strategies, and marketing approaches.

Retail data is often diverse, encompassing structured formats (for example, relational
databases with sales records), semi-structured formats (for example, JSON logs from
e-commerce platforms), and unstructured formats (for example, customer reviews or social
media posts). IBM watsonx.data is designed to handle this heterogeneity. For example, it can
catalog structured sales data alongside unstructured customer feed-back. By indexing these
data sets by using enriched metadata, IBM watsonx.data helps ensure that users can find
and use both types of data in their analyses. Furthermore, it supports integrations with
external tools, such as sentiment analysis platforms, which enable richer interpretations of
unstructured data.

Retail organizations also face stringent compliance requirements, particularly regarding the
handling of sensitive customer information. IBM watsonx.data provides robust security
features, which include RBAC and data masking to ensure compliance with regulations such
as GDPR and CCPA.

For example, personally identifiable information (PII), such as customer names and
addresses, can be masked in search results while still allowing users to analyze non-sensitive
attributes like purchase history or customer demographics. This capability helps ensure that
analysts can work with data sets without risking privacy breaches or regulatory violations.

Although retail environments present unique challenges due to the diversity and scale of their
data, IBM watsonx.data provides the necessary tools to address these complexities. By
automating cataloging, enabling cross-functional data integration, and supporting advanced
search functions, it transforms raw data into a strategic asset, which helps ensure that retail
organizations are well equipped to make timely, data-driven decisions in a fast-paced and
competitive market.
Chapter 7. Establishing a data catalog 99

100 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 8. Marketing campaign analysis
use case

This chapter dives into an example of a marketing campaign analysis at a financial services
organization. In this use case, we use IBM watsonx.data and IBM watsonx.ai to ingest and
store data, connect to and access data, visualize and explore data, and build machine
learning (ML) models.

This chapter guides you through the following tasks: data ingestion, data connection and
access, data exploration and visualization, and machine learning model development.

This chapter has the following sections:

� “Use case introduction” on page 102
� “Data ingestion” on page 102
� “Connecting to and accessing data” on page 119
� “Visualizing and exploring data” on page 129
� “Building and developing machine learning models” on page 141

8

© Copyright IBM Corp. 2025. 101

8.1 Use case introduction

This chapter explores how a leading financial services company uses IBM watsonx.data and
IBM watsonx.ai to unlock the power of marketing data.

This use case follows a marketing team at a financial services company. The team is looking
to better understand the performance of their direct marketing campaigns for the bank's bank
term deposit product (certificate of deposit).

A senior vice-president at the financial services company pulled together various individuals
to help with this initiative: a data engineer, a data analyst, a data scientist, and various
individuals from the business.

For this analysis, the team wants to use their environment. The organization is running
IBM watsonx.ai and IBM watsonx.data on-premises on Red Hat OpenShift.

By analyzing the bank term deposit direct marketing campaign, the team aims to achieve the
following goals:

� Assess the performance of direct marketing campaigns for bank term deposits and find
ways to optimize their current marketing campaigns.

� Deepen their understanding of customer behavior and better understand the demographic
of people they are reaching out to.

� Develop ways to predict whether a client will subscribe to a bank term deposit, and
understand whether there are key factors that influence this decision.

In this use case, we use a basic data set to make the examples simple to follow and
understand. This simplified bank marketing data set was retrieved from the UC Irvine
Machine Learning Repository. To see the full data set, see Bank Marketing.

8.2 Data ingestion

Before data analysts and data scientists can analyze the marketing campaign data, the data
engineer must make it available and accessible for analysis. The direct marketing campaign
data for the bank term deposit is in an IBM Cloud Object Storage bucket in IBM Cloud. In this
section, the data engineer identifies the location of the marketing campaign data and
configures the necessary access with needed permissions, configures the storage and
catalog in IBM watsonx.data, connects to the query engines in IBM watsonx.data, creates a
schema in the catalog, and ingests data from the Cloud Object Storage bucket.

8.2.1 Locating the marketing campaign data

The data engineer talks with the application team that generated the marketing campaign
data and finds that the data that is needed for analysis is stored in an IBM Cloud Object
Storage bucket on IBM Cloud. To find that data, the data engineer completes the following
steps:

1. The data engineer navigates to the IBM Cloud Object Storage bucket by selecting IBM
Cloud → Resource List → Storage → Cloud Object Storage, as shown in Figure 8-1
on page 103.
102 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://archive.ics.uci.edu/dataset/222/bank+marketing

Figure 8-1 Cloud Object Storage

2. Then, the data engineer searches for the bucket that contains the marketing campaign
performance data and selects the marketing-campaign-analysis bucket, as shown in
Figure 8-2.

Figure 8-2 Searching for the bucket

3. The data engineer checks whether the service credentials for marketing-user-1 are
present by selecting Service credentials → marketing-user-1. If not, the data engineer
must assign the Manager role to the service credential and that the HMAC credentials are
included so that the necessary information for the credentials is available to connect to in
IBM watsonx.data. The data engineer notes the access key and secret because they know
that this information will be needed later when configuring the IBM Cloud Object Storage
storage in IBM watsonx.data. Figure 8-3 shows the service credentials.

Figure 8-3 Service credentials
Chapter 8. Marketing campaign analysis use case 103

Once the service credentials are confirmed, the data engineer selects the Buckets tab
and clicks the marketing-campaign-analysis IBM Cloud Object Storage bucket, as shown
n Figure 8-4.

Figure 8-4 The marketing-campaign-analysis IBM Cloud Object Storage bucket

4. Within that bucket, the data engineer selects the Objects tab and confirms that the file
that contains the marketing campaign data is present, as shown in Figure 8-5.

Figure 8-5 The marketing-campaign-data.csv file

5. The data engineer adds permissions to the IBM Cloud Object Storage bucket for the
service credential marketing-user-1. On the Permissions tab, they select Access
policies → Service ID → Create access policy to create an access policy for the
marketing-user-1 Service ID, with the Manager role assigned. This action is important
because insufficient access can result in issues later when creating tables and schemas in
IBM watsonx.data. Figure 8-6 on page 105 shows the Bucket access policies window.
104 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-6 Creating an access policy

6. On the Configuration tab, the data engineer collects the following information that will be
needed later to establish a connection to the IBM Cloud Object Storage in IBM
watsonx.data:

� Bucket name: marketing-campaign-analysis
� Location (that is, Region): United States - Dallas (us-south)
� Public endpoint: s3.us-south.cloud-object-storage.appdomain.cloud

Figure 8-7 shows the endpoints of the bucket.

Figure 8-7 Bucket details: Endpoints

Note: An access key and secret are also required when establishing the connection in
IBM watsonx.data. The data engineer noted this information in step 3 on page 103.
Chapter 8. Marketing campaign analysis use case 105

8.2.2 Setting up the internal spark engine

Before ingesting data into IBM watsonx.data from the IBM Cloud Object Storage bucket, the
data engineer configures the native Spark engine on IBM watsonx.data. To do so, the data
engineer completes the following steps:

1. The data engineer logs in to IBM watsonx.data and navigates to the Infrastructure
manager window and selects Add component to add the Spark engine, as shown in
Figure 8-8.

Figure 8-8 Add component

2. Under Engines, the data engineer clicks IBM Spark, and then clicks Next, as shown in
Figure 8-9.

Figure 8-9 Add component: IBM Spark
106 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

3. Before creating the IBM Spark engine instance, the data engineer adds the engine details,
which includes information to create a volume for the engine and catalogs to associate to
the engine by selecting General Information → Engine Configuration → Associate
catalogs → Create, as shown in Figure 8-10.

Figure 8-10 Add component: IBM Spark
Chapter 8. Marketing campaign analysis use case 107

The new Spark engine takes a few minutes to provision. Once provisioned, the data engineer
can view and access this engine from the Infrastructure manager page, as shown in
Figure 8-11.

Figure 8-11 Infrastructure manager view with IBM Spark engine spark-01 added

8.2.3 Configure storage and catalog in IBM watsonx.data

After configuring the native Spark engine and reviewing the Infrastructure manager page, the
data engineer finds that they need to configure the IBM Cloud Object Storage bucket and
create a catalog in IBM watsonx.data for the marketing campaign data. To do so, they
complete the following steps:

1. From the Infrastructure manager window, the data engineer selects Add component to
add the IBM Cloud Object Storage instance, as shown in Figure 8-12.

Figure 8-12 Infrastructure Manager: Add component

2. Under the Storage section, the data engineer clicks IBM Cloud Object Storage, and then
clicks Next to continue to the configuration details, as shown in Figure 8-13 on page 109.
108 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-13 IBM Cloud Object Storage

3. Using the details that were saved from the IBM Cloud Object Storage instance, as
highlighted in 8.2, “Data ingestion” on page 102, the data engineer completes the Storage
configuration details, which include Bucket name, Region, Endpoint, Access key, and
Secret key, as shown in Figure 8-14.

Figure 8-14 Storage configuration
Chapter 8. Marketing campaign analysis use case 109

4. Then, they create a catalog and associate it to the IBM Cloud Object Storage component,
and then click Create, as shown in Figure 8-15.

Figure 8-15 Associated catalog - Create

The new storage component and the new catalog take a few minutes to provision. Once
provisioned, the data engineer can see them in the Infrastructure manager view, as shown in
Figure 8-16 on page 111.
110 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-16 Infrastructure manager with new storage component and catalog created

8.2.4 Connecting query engines to catalog and storage in IBM watsonx.data

After the IBM Cloud Object Storage instance is configured in IBM watsonx.data and the new
catalog is created, the data engineer connects these objects to the query engines in
IBM watsonx.data by using the Infrastructure manager.
Chapter 8. Marketing campaign analysis use case 111

To do so, they complete the following steps:

1. The data engineer hovers their cursor over the newly created catalog catalog01 and clicks
Manage associations, as shown in Figure 8-17.

Figure 8-17 Infrastructure manager: Manage associations

2. The data engineer selects the two engines that are available in their IBM watsonx.data
instance, presto-01 and spark-01, and clicks Save and restart 2 engines, as shown in
Figure 8-18 on page 113.
112 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-18 Manage associations: Save and restart 2 engines

It takes a few minutes for the engines to restart with the new changes and associations. Once
the process is complete, the data engineer can see the associations in the Infrastructure
manager, as shown in Figure 8-19.

Figure 8-19 Infrastructure manager
Chapter 8. Marketing campaign analysis use case 113

8.2.5 Creating a schema in the catalog

The data engineer is ready to create a schema in the catalog that was created in 8.2.3,
“Configure storage and catalog in IBM watsonx.data” on page 108. This new schema is used
to ingest the marketing campaign data from the IBM Cloud Object Storage bucket. To do this
task, they complete the following steps:

1. On the Data manager page, the data engineer selects Create → Create schema, as
shown in Figure 8-20.

Figure 8-20 Create schema

2. The data engineer defines the Catalog, Name, and Path, as shown in Figure 8-21 on
page 115.
114 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-21 Create schema

8.2.6 Ingesting data from an IBM Cloud Object Storage bucket

The data engineer proceeds to ingest the marketing campaign data from the IBM Cloud
Object Storage bucket. To do so, they complete the following steps:

1. From the Data manager page, they click Ingest data to begin, as shown in Figure 8-22.

Figure 8-22 Ingest data
Chapter 8. Marketing campaign analysis use case 115

2. To ingest data, the data engineer has three options to select from: Local System,
Storages, and Databases. Because the data engineer already configured the IBM Cloud
Object Storage bucket as a storage component by using the Infrastructure manager in
IBM watsonx.data, they click Storages, as shown in Figure 8-23.

Figure 8-23 Ingest data - Storages

3. The data engineer selects the source file and defines the target table before clicking
Done, as shown in Figure 8-24 on page 117. The source file is selected from the
storage-01 component that was defined in 8.2.3, “Configure storage and catalog in IBM
watsonx.data” on page 108. The target table points to the catalog catalog_01, which was
created in 8.2.3, “Configure storage and catalog in IBM watsonx.data” on page 108, and
the schema marketing_campaign_data, which was created in 8.2.5, “Creating a schema in
the catalog” on page 114. The data engineer adds a new name for the table and then
clicks Done.
116 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-24 Source files: Target table

The ingestion job typically requires a few minutes to finalize its execution. The data engineer
can see the status of the job on the Ingestion history tab within the Data manager page, as
shown in Figure 8-25.

Figure 8-25 Ingestion history
Chapter 8. Marketing campaign analysis use case 117

8.2.7 Verifying the data in the schema

Once the data ingestion job completes, the data engineer verifies that the data is in the
correct table and schema. To do so, they complete the following steps:

1. From the Data manager window, they select the catalog, schema, and table that are
defined in the ingestion job (select catalog_01 → marketing_campaign_data →
bank_term_deposit → Columns), as shown in Figure 8-26. The Columns tab on the
right shows the columns in the table, including the data type.

Figure 8-26 Verifying the data in the schema: Columns

2. To view a sample of the data load, the data engineer clicks the Data sample tab, as shown
in Figure 8-27 on page 119.
118 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-27 Verifying the data in the schema: Data sample

8.3 Connecting to and accessing data

After the direct marketing campaign data is ingested into IBM watsonx.data, the data
engineer must make the data source available in IBM watsonx.ai so that the team can
connect to and access this data for analysis. In this section, the data engineer accesses the
IBM watsonx.ai project that the team is using for this initiative and creates a data connection
to the IBM watsonx.data instance. With this connection, the team members on the project can
access the necessary data for analysis.

8.3.1 Gathering the required information in IBM watsonx.data

Before the data engineer can create a data connection in the IBM watsonx.ai project, they
must collect the required information from the IBM watsonx.data instance. The data engineer
knows that there are several pieces of information that are needed to establish the connection
in IBM watsonx.ai, so they choose to collect the information before creating the data
connection.

There are two key locations in IBM watsonx.data:

� Infrastructure manager for the Presto engine connection details
� The Configuration window for the overall connection details
Chapter 8. Marketing campaign analysis use case 119

Presto engine-specific connection details
The data engineer gathers the necessary connection information for the Presto engine on
IBM watsonx.data by completing the following steps:

1. They navigate to the Infrastructure manager, and click presto-01, the Presto engine, as
shown in Figure 8-28.

Figure 8-28 Infrastructure manager: presto-01

2. They note the Internal host that is specified in the Details tab. The internal host for this
Presto engine is as follows:

ibm-lh-lakehouse-presto-01-presto-svc.cpd.svc.cluster.local:8443

8443 represents the port. The data engineer also notes the engine ID, which in this case is
presto-01. This information is used later in IBM watsonx.ai when setting up the connection
to the Presto engine on IBM watsonx.data. Figure 8-29 shows the Details tab.

Figure 8-29 Details tab
120 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Overall IBM watsonx.data connection details
The data engineer proceeds to collect additional information that is needed to connect to
IBM watsonx.data by using the Configurations page. They complete the following steps:

1. On the Configurations page, they click Connection information, as shown in Figure 8-30.

Figure 8-30 Connection information

2. From this page, the data engineer notes the values in the following fields:

– Host IP address
– Port
– Instance ID
– SSL Certificate

This information will be needed later when establishing the connection to IBM watsonx.data
from the IBM watsonx.ai project.
Chapter 8. Marketing campaign analysis use case 121

Figure 8-31 shows the connection details.

Figure 8-31 Connection information: Connection details

8.3.2 Creating a data connection in the IBM watsonx.ai project

The data engineer accesses the IBM watsonx.ai project and creates a data connection to the
Presto engine in IBM watsonx.data by completing the following steps:

1. From the IBM watsonx.ai home page, the data engineer selects Projects → All projects,
as shown in Figure 8-32.

Figure 8-32 All projects

2. From the list of projects, they click the Bank Term Deposit Marketing Campaign Analysis
project, as shown in Figure 8-33 on page 123.
122 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-33 Projects - Bank Term Deposit Marketing Campaign Analysis

3. To create a data connection, the data engineer navigates to the Assets tab in the project
and clicks New asset, as shown in Figure 8-34.

Figure 8-34 New asset

4. Under Prepare data, they click Connect to a data source, as shown in Figure 8-35.

Figure 8-35 Connecting to a data source
Chapter 8. Marketing campaign analysis use case 123

5. The data engineer wants to establish a connection to the Presto engine on
IBM watsonx.data. They search for the IBM watsonx.data Presto connector, and click
Next, as shown in Figure 8-36.

Figure 8-36 IBM watsonx.data Presto

6. The data engineer enters the configuration details, starting with the Connection overview
window, as shown in Figure 8-37. Within the Connection overview window, they define the
connection name and add a description.

Figure 8-37 Connection overview
124 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Under Connection details, they update the following fields, as shown in Figure 8-38.

– Deployment type: IBM watsonx.data on Red Hat OpenShift.

– Hostname or IP address: This value is retrieved from the Connection information
window in IBM watsonx.data.

– Port: This value is retrieved from the Connection information window in
IBM watsonx.data

– Instance ID: This value is retrieved from the Connection information window in
IBM watsonx.data.

Figure 8-38 Connection details
Chapter 8. Marketing campaign analysis use case 125

7. Under Credentials, the data engineer updates the following fields, as shown in
Figure 8-39.

– Credential setting: Personal
– Authentication method: Username and password
– Username: cpadmin
– Password: password associated with username

Figure 8-39 Credentials

Note: The username and password values vary depending on the user's login
credentials
126 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

8. Under Certificate, the data engineer ensures that SSL is enabled, and then inputs the SSL
certificate that is provided in their IBM watsonx.data instance, as shown in Figure 8-40.

Figure 8-40 Certificates
Chapter 8. Marketing campaign analysis use case 127

9. The data engineer adds the connection details that are specific to the Presto engine on
IBM watsonx.data, as shown in Figure 41:

– Engine's hostname or IP address:

ibm-lh-lakehouse-presto-01-presto-svc.cpd.svc.cluster.local

– Engine ID: presto-01

– Engine's port: 8443

Figure 8-41 Engine connection details

10.The data engineer tests the connection. Because the test was successful, they click
Create to create the IBM watsonx.data Presto connection in the project, as shown in
Figure 8-42 on page 129.
128 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-42 Test connection: Create

11.After the connection is created, the data engineer views the connection in the Assets tab
of the project by selecting Projects → Bank Term Deposit Marketing Campaign
Analysis → Assets → watsonx.data connection, as shown in Figure 8-43.

Figure 8-43 IBM watsonx.data connection

8.4 Visualizing and exploring data

After the data connection to IBM watsonx.data is established in the IBM watsonx.ai project,
the data analyst can use the connection. In this section, the data analyst uses the data
connection that was created by the data engineer in the IBM watsonx.ai project to modify the
data set and generate a data visualization by using the Data Refinery feature.

8.4.1 Creating a Data Refinery flow

In this section, the data analyst creates a Data Refinery flow to filter the data set and create a
data visualization to visualize the number of bank term deposits by profession.
Chapter 8. Marketing campaign analysis use case 129

Creating a Data Refinery flow in an IBM watsonx.ai project
The data analyst starts by creating a Data Refinery asset by completing the following steps:

1. From the Assets tab in the Bank Term Deposit Marketing Campaign Analysis project, they
click New Asset, as shown in Figure 8-44.

Figure 8-44 New asset

2. Under Prepare data, the data analyst clicks Prepare and visualize data with Data
Refinery, as shown in Figure 8-45.

Figure 8-45 Prepare and visualize data with Data Refinery

3. They select data for the Data Refinery flow by clicking Select from project, as shown in
Figure 8-46.

Figure 8-46 Select from project
130 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

4. The data that is needed for this analysis comes from the IBM watsonx.data connection
that was established by the data engineer earlier. To find the data source that is needed for
this analysis, the data analyst selects Connection → watsonx.data connection, as
shown in Figure 8-47.

Figure 8-47 Categories: Connections

5. The data analyst selects the corresponding catalog, schema, and table (watsonx.data
connection → catalog01 → marketing_campaign_data → bank_term_deposit), as
shown in Figure 8-48.

Figure 8-48 Selecting the corresponding catalog, schema, and table
Chapter 8. Marketing campaign analysis use case 131

6. Before selecting Create, the data analyst enters a name for the Data Refinery flow, as
shown in Figure 8-49.

Figure 8-49 Define the details: Create

Filtering data with Data Refinery
Before generating any visualizations, the data analyst filters the data to reflect the period that
is needed for the analysis. As shown in Figure 8-50, the data analyst adds a filter where the
month is equal to “jul” (for July), which filters the data to show only interactions from the
direct marketing campaign in the month of July.

Figure 8-50 Selecting only interactions where the month field equals “jul”
132 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Creating and formatting a data visualization
Now, the data analyst creates and formats a data visualization by completing the following
steps:

1. After the data is ready for analysis, the data analyst clicks the Visualizations tab, and
then clicks the Bar chart type, as shown in Figure 8-51.

Figure 8-51 Visualizations - Bar
Chapter 8. Marketing campaign analysis use case 133

2. As shown in Figure 8-52 and Figure 8-53 on page 135, the data analyst uses the fields on
the left to generate a chart that shows the number of bank term deposit subscriptions by
profession. Here, the data analyst can modify the categories that appear in the visual, the
chart and axis titles, and the type of bar chart (for example, horizontal, vertical, stacked,
clustered, and others).

Figure 8-52 Bar chart configuration window
134 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-53 Bar chart configuration window (continued)

Additional data visualization formatting
The data analyst wants to further format this visualization, specifically the color scheme. The
business user requesting this visualization might share the results with others within the
organization or in presentations, so the data analyst wants to help ensure that the
visualization adheres to the company's color and formatting standards. They data analyst
completes the following steps:

1. To modify the color scheme for the data visualization, the data analyst clicks Actions
selects Global visualization preferences, as shown in Figure 8-54.

Figure 8-54 Global visualization preferences
Chapter 8. Marketing campaign analysis use case 135

2. Next, click the Theme tab. Then click Launch theme builder, as shown in Figure 8-55.

Figure 8-55 Launching the theme builder

3. To create a theme, the data analyst clicks Copy as a new theme, as shown in
Figure 8-56.

Figure 8-56 Copying as a new theme

4. Use the fields in the left pane to format the new theme, including the theme name, color
sequence, background color, legend and axis formatting, and other attributes.
136 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-57 shows the specifications for the new theme that was generated by the data
analyst, which is named ABC_Banking_Institution_Theme.

Figure 8-57 Theme builder settings

5. After the theme is created, the data analyst clicks Apply theme to chart, as shown in
Figure 8-58.

Figure 8-58 Applying the theme to a chart
Chapter 8. Marketing campaign analysis use case 137

Figure 8-59 shows the new theme that is applied to the bar chart. The data analyst can use
the new theme in future data visualizations too.

Figure 8-59 Data visualization with new theme applied

Exporting and sharing the data visualization
Now, the data analyst exports and shares the data visualization by completing the following
steps:

1. The data analyst selects Actions → Save Visualization to project, as shown in
Figure 8-60 on page 139. Now, users with access to the project can view and access this
specific data visualization.
138 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-60 Save visualization to project

2. To save the data visualization to the project, the data analyst adds a name, description,
and chart name, and then clicks Apply, as shown in Figure 8-61.

Figure 8-61 Save visualization in project: Apply
Chapter 8. Marketing campaign analysis use case 139

3. The data analyst can also download the chart image locally by selecting Actions →
Download chart image, as shown in Figure 8-62. This option is helpful when sharing with
users who do not have access to the project, and for cases when the data visualization
must be embedded into other mediums, such as a presentation.

Figure 8-62 Download chart image menu

4. Figure 8-63 shows the data visualization asset on the Assets tab of the project.

Figure 8-63 All assets: Bank Term Deposit Subscriptions by Profession

The data analyst selects this asset to view the data visualization from the perspective of
the user to confirm that the data visualization appears as expected. Figure 8-64 on
page 141 shows this view when the data visualization asset is opened.
140 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Figure 8-64 All assets: Bank Term Deposit Subscriptions by Profession - Chart

8.5 Building and developing machine learning models

The data connection in the IBM watsonx.ai project can also be used by data scientists. In this
section, the data scientist on this initiative uses the IBM watsonx.data data connection in
IBM watsonx.ai to build and develop prototype models to predict whether someone will
purchase a bank term deposit.

8.5.1 Creating an AutoAI experiment

To build and evaluate multiple machine learning models, the data scientist chooses to use
AutoAI within IBM watsonx.ai. AutoAI is a graphical tool that you can use to develop, display,
and rank various model candidate pipelines by using a data set. To accomplish this task,
complete the following steps:

1. To create an AutoAI experiment, the data scientist clicks New asset in the Assets tab of
the Bank Term Deposit Marketing Campaign Analysis project in IBM watsonx.ai, as shown
in Figure 8-65.

Figure 8-65 New asset
Chapter 8. Marketing campaign analysis use case 141

2. The data scientist clicks Work with models, and then clicks Build machine learning
models automatically with AutoAI, as shown in Figure 8-66.

Figure 8-66 Build machine learning models automatically with AutoAI

3. The data scientist enters a name and description for the AutoAI experiment, as shown in
Figure 8-67.

Figure 8-67 Build machine learning models automatically: Create
142 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

4. The data scientist adds data to the AutoAI experiment by clicking Select data from project,
as shown in Figure 8-68.

Figure 8-68 Marketing Campaign Model Development: Selecting data from a project

5. The data scientist selects the bank_term_deposit table from the
marketing_campaign_data schema, as shown in Figure 8-69.

Figure 8-69 Selecting an asset
Chapter 8. Marketing campaign analysis use case 143

6. Once the data source is selected for the experiment, the data scientist configures the
AutoAI experiment by setting “Create a time series analysis?” to No, and identifying y as
the column to predict. They click Experiment settings to modify additional configuration
settings for the experiment, as shown in Figure 8-70.

Figure 8-70 Configure details: Experiment settings

7. The data scientist selects six algorithms for this experiment by selecting Prediction →
General → Algorithm, as shown in Figure 8-71.

Figure 8-71 Algorithm
144 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

8. Click the Fairness tab, and enable fairness evaluation. Enabling fairness evaluation helps
ensures that results are not biased. The data scientist clicks Save settings to apply the
changes, as shown in Figure 8-72.

Figure 8-72 Enable fairness evaluation: Save settings

9. The data scientist clicks Run experiment to begin the model development, as shown in
Figure 8-73.

Figure 8-73 Run experiment
Chapter 8. Marketing campaign analysis use case 145

10.The AutoAI experiment takes a few minutes to complete. Once complete, the data scientist
reviews the models generated by using the pipeline leaderboard, as shown in Figure 8-74
on page 146.

Figure 8-74 Experiment summary: Pipeline leaderboard

11.The data scientist views additional model details of the highest ranked model, which is
Pipeline 2, as shown in Figure 8-75.

Figure 8-75 Pipeline 2: Confusion matrix

12.There is an option to save the model as either a model or notebook, but the data scientist
chooses to gather the results and share with the broader team before adjusting or
deploying the model.
146 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 9. Adopting Milvus for RAG using
IBM watsonx

By combining the generative power of large language models (LLMs) with the precision of
information retrieval, Retrieval-Augmented (RAG) systems can deliver more accurate,
relevant, and contextually rich outputs. This integration becomes even more powerful when
leveraging robust vector databases like Milvus alongside comprehensive AI platforms such as
IBM watsonx. This approach allows developers to build sophisticated RAG pipelines that
efficiently manage and query massive datasets, enriching the capabilities of watsonx and
unlocking new possibilities for intelligent applications.

This chapter discusses how to adopt Milvus for RAG using IBM watsonx and has the following
sections:

� “Introduction” on page 148
� “Key steps in the RAG workflow” on page 148
� “Technical integration of IBM watsonx and Milvus” on page 150
� “Summary” on page 154

9

© Copyright IBM Corp. 2025. 147

9.1 Introduction

Retrieval-Augmented Generation (RAG) is a technique that enhances the performance of
large language models (LLMs) by integrating them with a retrieval system. This approach
helps improve the accuracy and relevance of the generated content by grounding it in external
knowledge sources, such as documents, databases, or other types of structured and
unstructured data.

RAG enables enterprises to transform resources such as policy manuals, training documents,
or logs into a structured knowledge base that enhances LLMs. This approach benefits
applications in customer support, on-site assistance, employee training, and developer
productivity. By using RAG, companies reduce the risk of LLMs leaking sensitive data or
producing inaccurate or misleading information. Additionally, RAG helps lower the
computational and financial costs of running LLM-based systems in enterprise environments.

A key component in RAG systems is the use of a vector database, which stores data in the
form of high-dimensional vectors. These databases are optimized for similarity search and
allow LLMs to quickly find relevant information based on vector representations.

By combining vector databases with LLMs, RAG systems enable businesses to enhance the
search and retrieval capabilities of their knowledge systems, driving more relevant and
accurate results in various applications. This architecture, supported by platforms like IBM's
watsonx, provides a powerful solution for managing large volumes of data and delivering
high-quality AI outputs tailored to enterprise needs.

9.2 Key steps in the RAG workflow
The following are the key steps in the RAG workflow.

9.2.1 Step 1: Document ingestion

Document ingestion is the first step in the RAG workflow. It contains several aspects such as
identifying sources, determining document types, setting ingestion frequency, configuring
access permissions, gathering metadata, etc. Usually, the users may have company records,
knowledge base or CRM systems in their internal databases and file systems. They may have
existing tools to pull data from websites, blogs or online articles or through APIs in the existing
services.

IBM watsonx.data provides a Spark engine which is a valuable tool in the document ingestion
phase, especially for large volumes of documents. Spark supports a variety of data sources,
including HDFS, S3, JDBC, and NoSQL databases, making it easy to collect documents from
multiple origins. For instance, if you are collecting news articles from various online sources,
you could setup a Spark job to:

� Use web scraping techniques to gather articles.

� Preprocess and clean the text using Spark DataFrame operations.

� Store the cleaned articles along with their metadata in the object store for further
processing.

For more information, see Ingesting data by using Spark through the web console.
148 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-ingest_spark_ui

9.2.2 Step 2: Document chunking

Document chunking is essential in RAG. Large documents can contain information on
multiple topics or subtopics. By breaking documents into smaller chunks, each representing a
coherent piece of information, retrieval models can more accurately match relevant
information to a query, reducing the chance of irrelevant sections appearing in search results.

Chunking can be done in various ways depending on the type of document, content structure,
and retrieval system requirements. The fixed-length chunking usually splits the document into
chunks based on a fixed number of tokens, words or characters. To mitigate information loss
at chunk boundaries, you can employ a sliding window technique. This involves creating
overlapping segments by moving a fixed-size window across the text. In certain scenarios,
like legal documents or scientific articles, where context across sentences is crucial, the
sliding window technique can be employed.

In other use cases such as well-structured documents like books or formal reports, you can
leverage NLP sentence splitters or paragraph identifiers to chunk them based on semantics.
IBM Natural Language Understanding services are very helpful for semantic chunking by
providing text processing tools like sentence segmentation, paragraph splitting and entity
recognition. For more information, see Natural Language Processing.

9.2.3 Step 3: Embedding generation

Embedding in RAG refers to the process of converting text (like a sentence, paragraph or
document chunk) into a high-dimensional numerical vector that captures the semantic
meaning of the text. These vectors, or “embeddings” are essential for efficient information
retrieval and are a foundational component in RAG.

Embeddings transform textual data into a format that captures its meaning in a way that
computers can understand and compare. Similar pieces of text (based on meaning, not just
words) have embeddings that are closer together in vector space. For example, sentences
like “The cat is sleeping on the mat” and “A cat is napping on a rug” would be represented by
embeddings that are close to each other in that high-dimensional space.

When a user query is issued, it’s also transformed into an embedding. The retrieval system
then finds the stored document embeddings that are closest to the query embedding in vector
space, using similarity measures like cosine similarity, etc. Embeddings are typically
generated by pre-trained models like BERT, or IBM embedding models in watsonx.ai. For
more information, see Supported encoder foundation models in watsonx.ai.

9.2.4 Step 4: Vector storage and searching with Milvus

In RAG, vector storage and searching are crucial for handling embeddings efficiently. Milvus,
an open-source vector database designed for AI applications, is highly suited for this purpose
due to its performance, scalability, and efficient handling of high-dimensional vector data.
Milvus is optimized for large-scale vector storage and retrieval, making it ideal for RAG
scenarios where embeddings from extensive document corpora need to be managed and
queried. Milvus supports distributed storage like AWS S3, IBM Cloud Object Storage, MinIO
to store vector data, ensuring it can manage both large-scale storage and parallel processing.
As data volume grows, additional compute nodes can be added to maintain performance.
Embeddings used in RAG models are often high-dimensional, with hundreds to thousands of
dimensions. Milvus supports these high-dimensional vectors, leveraging Approximate
Nearest Neighbor (ANN) search algorithms to perform fast and accurate searches without the
computational burden that exact searches on high-dimensional vectors would require.
Chapter 9. Adopting Milvus for RAG using IBM watsonx 149

https://cloud.ibm.com/docs/natural-language-understanding?topic=natural-language-understanding-about
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx&audience=wdp
https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-working_with_milvus
https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-working_with_milvus
https://github.com/IBM/watsonx-data/redbook
https://github.com/IBM/watsonx-data/redbook

In addition to vector similarity search, Milvus also supports hybrid search, combining vector
similarity with traditional filtering based on scalar fields. These fields can include structured
attributes such as tags, timestamps, and categories. This combination is particularly useful
when both similarity to a query and specific contextual filters are required to narrow down
results efficiently. For more information, see Working with Milvus.

9.3 Technical integration of IBM watsonx and Milvus
IBM watsonx.data has recently launched an integrated vector database, based on the open
source Milvus, in the data lakehouse. Now, IBM watsonx customers can unify, curate and
prepare vectorized embeddings for their generative artificial intelligence (gen AI) applications
at scale across their trusted, governed data. The vector DB initially supported is based on
open source vector DB Milvus. This supports up to 100 million vectors of 384 dimensions.

9.3.1 Architecture overview

IBM watsonx offers an interface for experimenting with various foundation models through
engineered prompts. By incorporating watsonx.data Milvus as the vector database, you can
enhance model accuracy and relevance by adding grounding documents as a knowledge
base. These grounding documents, supported in formats like DOCX, PDF, PPTX, and TXT,
are first converted into text embeddings by using pre-trained embedding models. Then, these
embeddings are indexed by using Milvus vector database for efficient searching during
prompt processing, ensuring more reliable and up-to-date responses.

Figure 9-1 on page 151 shows the architecture of watsonx RAG.
150 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

https://cloud.ibm.com/docs/watsonxdata?topic=watsonxdata-working_with_milvus

Figure 9-1 Architecture of watsonx RAG

9.3.2 Code examples

Example 9-1 demonstrates how to ingest documents using Spark from the IBM
documentation website, followed by converting the PDF files to text for embeddings.

Example 9-1 Code example - 1

from pyspark.sql import SparkSession
import os
spark = SparkSession.builder \
 .appName("Download watsonx.data PDF documentation") \
 .getOrCreate()
def download_pdf(url, local_path):
 response = requests.get(url)
 if response.status_code == 200:
 with open(local_path, 'wb') as file:
 file.write(response.content)
 print(f"PDF downloaded successfully to {local_path}")
 else:
 print(f"Failed to download PDF. Status code: {response.status_code}")
pdf_url =
"https://www.ibm.com/support/pages/system/files/inline-files/IBM%20watsonx.data%20
version%202.0.3.pdf"
local_file_path = "wxd_doc_pdf.pdf"
download_pdf(pdf_url, local_file_path)
spark.stop()
Chapter 9. Adopting Milvus for RAG using IBM watsonx 151

asset_li=wslib.assets.list_assets("data_asset")
wslib.download_file("wxd_doc_pdf")
doc = fitz.open("wxd_doc_pdf")
pdf_text = ""
for page in doc:
 pdf_text += page.get_text()

Example 9-2 demonstrates how to chunk a document by paragraph.

Example 9-2 Code example - 2

def chunk_by_paragraphs(text):
 paragraphs = text.split("\n\n") # Assuming paragraphs are separated by two
newlines
 return [p.strip() for p in paragraphs if p.strip()]
chunks = chunk_by_paragraphs(pdf_text)

Example 9-3 demonstrates how to generate embeddings using IBM watsonx.data Milvus
connection.

Example 9-3 Code example - 3

connections.connect(alias="default",
 host=url,
 port=port,
 user=apiuser,
 password=apikey,
 secure=True)
collection_description = 'wxd docs pdf'
collection_name = 'wxd_documentation'
Create collection - define fields + schema
fields = [
 FieldSchema(name="document_id", dtype=DataType.INT64), # Document Id
 FieldSchema(name="chunk_id", dtype=DataType.INT64), # Chunk Id
 FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384),
]
Create a schema
schema = CollectionSchema(fields, collection_description)
Create a collection
collection = Collection(collection_name, schema)
Create index
index_params = {
 'metric_type':'L2',
 'index_type':"IVF_FLAT",
 'params':{"nlist":2048}
}
collection.create_index(field_name="vector", index_params=index_params)
for i in range(len(article_titles)):
 # Create vector embeddings + data
 model = SentenceTransformer('sentence-transformers/all-minilm-l12-v2') # 384
dim
 passage_embeddings = model.encode(article_chunks[i])
 basic_collection = Collection(collection_name)
 data = [
 article_chunks[i],
 article_titles[i],
152 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

 passage_embeddings
]

 out = basic_collection.insert(data)
 basic_collection.flush() # Ensures data persistence

Example 9-4 demonstrates how to perform a similarity search with Milvus.

Example 9-4 Code example - 4

def query_milvus(query, num_results):

 # Vectorize query
 model = SentenceTransformer('sentence-transformers/all-minilm-l12-v2') # 384
dim
 query_embeddings = model.encode([query])
 # Search
 search_params = {
 "metric_type": "L2",
 "params": {"nprobe": 5}
 }
 results = basic_collection.search(
 data=query_embeddings,
 anns_field="vector",
 param=search_params,
 limit=num_results,
 expr=None,
 output_fields=['article_text'],
)
 return results

For more information, see Getting started with watsonx.data Spark use cases.

9.3.3 Benefits of using IBM watsonx for RAG

IBM watsonx for RAG has the following benefits:

Scalability
IBM watsonx.data adopts the architecture of separation of computation and storage. It can
handle large-scale datasets with Milvus’s distributed vector database for fast querying. The
Milvus service can be added in watsonx.data with multiple sizings based on user’s need. The
Starter size can support 1 million vectors and the Large size can support 100 million vectors.
If a user requires more vectors, they can work with IBM to customize their watsonx.data
instance to support them.

Security
IBM watsonx.data provides enterprise-grade fine-grained access control to protect the data.
Chapter 4 describes the general guidance on access controls. Milvus is one of the services in
watsonx.data and inherit the security consideration in the platform level as well as the fine
grained access control particularly on Milvus data objects such as databases, collections,
partitions.
Chapter 9. Adopting Milvus for RAG using IBM watsonx 153

https://www.ibm.com/docs/en/watsonx/w-and-w/1.1.x?topic=watsonxdata-getting-started-spark-use-cases

High-quality embeddings
IBM watsonx.ai provides quite a few embedding models including IBM own modes such as
IBM Slate-30m embedding model and IBM Slate-125m embedding model, and some
embedding models from third-party such as all-MiniLM-L6-v2 from open source NLP and
computer vision community provided by Hugging Face.

Enhanced retrieval efficiency
IBM watsonx.data Milvus provides various search algorithms such as Sparse vector search,
Multi-vector and Hybrid search, and Grouping search to improve the retrieval efficiency as
well as the accuracy.

9.4 Summary

In this use case, we introduce RAG and outline the key steps involved in the RAG workflow,
including document ingestion, chunking, embedding generation, vector storage and
searching. We also demonstrate how to implement RAG using IBM watsonx, with a practical
example. IBM watsonx is an integrated platform for AI and data applications that ensures high
scalability and performance, enhanced security and governance, and continuous
development with cutting-edge technology.
154 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Chapter 10. Data and AI modernization
strategy in banking use case

By leveraging data-driven insights, banks can enhance customer experience, optimize
operations, and gain a competitive edge. This chapter discusses an architecture for
modernized data management pattern in banking.

This chapter has the following sections:

� “Introduction” on page 156
� “Data lakehouses: Empowering data-driven decisions in banking” on page 156
� “Data modernization pattern in banking” on page 157
� “Modernized data management pattern in banking on analytic use cases” on page 157
� “Conclusion” on page 158

10
© Copyright IBM Corp. 2025. 155

10.1 Introduction

The recent surge in generative AI, powered by large language models and agentic
frameworks, has significantly increased the demand for training on massive datasets.
Enterprises across industries are modernizing client interactions with human-like AI
interfaces to gain a competitive edge. Effective data management is crucial to fuel this
transformation.

Enterprise banks aim to revolutionize online and mobile banking through advanced analytics
and real-time insights. Key strategies include:

� Personalized banking: Tailoring services like micropayments, cross-selling, and
upselling to individual customer needs.

� Instant transactions: Enabling swift and efficient fund transfers.

� Risk mitigation: Implementing robust early warning systems and fraud detection
measures.

By leveraging data-driven insights, banks can enhance customer experience, optimize
operations, and gain a competitive edge.

To effectively execute real-time use cases, data attributes such as authenticity, lineage,
governance, PII protection, aggregation, and open formats are essential. By ensuring data
quality and security, banks can build trust with both existing and potential customers,
ultimately enhancing their service offerings.

10.2 Data lakehouses: Empowering data-driven decisions in
banking

Banks have traditionally relied on data warehouses for business intelligence workloads. While
fraud detection on edge devices often involves real-time streaming data, large-scale data
analysis (petabytes and exabytes) typically relies on data warehouses and data lakes, which
can present challenges in terms of cost and performance.

The banking sector, traditionally cautious about cloud-based solutions, is increasingly
embracing data lakehouses. These platforms, built on open data formats and lineage
standards, offer improved control and flexibility in data management:

� Data warehouse(s) - Mature, mostly proprietary solutions optimized for high-performance
aggregation and stringent service-level agreements (SLAs).

� Data lake(s) - Distributed storage systems, often Hadoop-based, suitable for large-scale
batch workloads but with limitations.

� Data lakehouse(s) - A convergence of data warehouses and data lakes, leveraging open
data processing engines and table formats for efficient analytical and batch workloads.

� Data lineage - A combination of open and proprietary standards to track data origins and
transformations.

� Data governance - AI-powered semantic extraction and search to enhance data
understanding and control.
156 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

10.3 Data modernization pattern in banking

Decades of heavy investment in optimization have led to stringent SLAs imposed by public
sector governing bodies on banking use cases. While traditional warehouses effectively met
these SLAs in the past, the increasing scale of data in certain use cases has challenged their
cost-effectiveness and ability to maintain SLAs for downtime, recovery, and response times.

10.3.1 Current pattern in banking on analytic use cases

Data management typically involves three key layers:

� Data ingestion services: Both streaming and batch processing are used to ingest data.

� Data stores: Data is stored in various formats, including data lakes and data warehouses.

� Lineage and governance: While less emphasized due to a lack of well-integrated
services, lineage and governance are crucial for data quality and compliance.

Figure 10-1 shows current pattern in banking on analytic use cases.

Figure 10-1 Current pattern in banking on analytic use cases

10.4 Modernized data management pattern in banking on
analytic use cases

While the architecture flow has standardized over the years, some of the key differentiates
are:
Chapter 10. Data and AI modernization strategy in banking use case 157

� Data lakehouse for scale at its core.

� Preserving existing investments to iteratively evolve then lift and shift into data lakehouse
based architecture.

� Platform approach of well-integrated services across data and AI with governance and
lineage across.

� AI powered semantic enrichment.

� Intelligent and simple AI assisted embedded services.

Figure 10-2 shows modernized data management pattern in banking on analytic use cases.

Figure 10-2 Modernized data management pattern in banking on analytic use cases

List of banking use cases powered by the pattern shown in Figure 10-2 are as follows:

� Use case 1: Real-time business analytics
� Use case 2: Early warning system and fraud detection
� Use case 3: Anti-money laundering

10.5 Conclusion

When modernizing banking applications, it is crucial to safeguard existing investments while
evolving beyond a lift-and-shift approach. Leverage watsonx, powered by open engines and
data formats, AI-driven data services for enrichment and governance across the entire stack.
158 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Simplify Your AI Journey: Ensuring Trustworthy AI with IBM watsonx.governance,
SG24-8573

� Simplify Your AI Journey: Unleashing the Power of AI with IBM watsonx.ai, SG24-8574

� Unlocking Data Insights and AI: IBM Storage Ceph as a Data Lakehouse Platform for IBM
watsonx.data and Beyond, SG24-8563

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� watsonx.data IBM Documentation

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2025. 159

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.ibm.com/docs/en/watsonx/watsonxdata/2.1.x?topic=overview

160 Simplify Your AI Journey: Hybrid, Open Data Lakehouse with IBM watsonx.data

IS
B

N
 0738461954

S
G

24-8570-00

IS
B

N
 0738461954

S
G

24-8570-00

IS
B

N
 0738461954

S
G

24-8570-00

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Sim
plify Your AI Journey: Hybrid, Open Data Lakehouse w

ith IBM

Sim
plify Your AI Journey:

Hybrid, Open Data Lakehouse w
ith

Sim
plify Your AI Journey:

Hybrid, Open Data Lakehouse

Sim
plify Your AI Journey: Hybrid, Open Data Lakehouse w

ith IBM

IS
B

N
 0738461954

S
G

24-8570-00

IS
B

N
 0738461954

S
G

24-8570-00

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

Sim
plify Your AI Journey:

Hybrid, Open Data

Sim
plify Your AI Journey:

Hybrid, Open Data Lakehouse
w

ith IBM
 w

atsonx.data

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461954

SG24-8570-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Foreword
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Challenges and opportunities with data
	1.1 Current challenges in the data landscape
	1.1.1 From centralized to distributed
	1.1.2 Data stores, data integration, and data management tools
	1.1.3 Data lakes and data warehouses

	1.2 Benefits of an open lakehouse for businesses
	1.2.1 The impact of cloud

	1.3 Open table formats and open data formats
	1.3.1 Open data storage
	1.3.2 Open data formats

	1.4 Storage considerations for growing data
	1.4.1 The data growth conundrum
	1.4.2 Storage challenges
	1.4.3 Storage opportunities
	1.4.4 Best practices for storage

	Chapter 2. Introduction to IBM watsonx.data
	2.1 Introduction to the watsonx platform and its core components
	2.1.1 IBM watsonx.ai
	2.1.2 IBM watsonx.data
	2.1.3 IBM watsonx.governance

	2.2 IBM watsonx.data overview and architecture
	2.3 Benefits of using watsonx.data for businesses
	2.4 Data pipeline considerations for open lakehouse
	2.4.1 Apache Spark: The computational engine
	2.4.2 ETL tools: Managing complex workflows
	2.4.3 StreamSets: Real-time data integration and monitoring
	2.4.4 General design considerations for open lakehouse pipelines

	2.5 Data pipelines integration with watsonx.data
	2.5.1 Apache Spark in watsonx.data
	2.5.2 IBM DataStage in watsonx.data
	2.5.3 StreamSets in watsonx.data
	2.5.4 IBM watsonx.data benefits from this ecosystem
	2.5.5 Synergy between watsonx.data and other watsonx platform components

	Chapter 3. Ingesting data into an open data lakehouse
	3.1 Provisioning and configuring IBM watsonx.data
	3.2 Integrating external data sources: Federation in PrestoDB
	3.2.1 Connecting to IBM watsonx.data Presto
	3.2.2 PostgreSQL access
	3.2.3 PostgreSQL external access
	3.2.4 MySQL access
	3.2.5 MySQL internal access
	3.2.6 MySQL external access

	3.3 Techniques for ingesting data (structured or unstructured)
	3.4 Ingesting data
	3.4.1 Loading or ingesting data through the CLI
	3.4.2 Configuring an S3 IBM Cloud Object Storage bucket
	3.4.3 Choosing the catalog
	3.4.4 Choosing the query engine
	3.4.5 Data ingestion through Spark and Query by using Presto
	3.4.6 Querying from the IBM watsonx.data Query Workspace
	3.4.7 Querying from the Presto CLI

	3.5 Data pipeline considerations for open lakehouse
	3.5.1 IBM watsonx.data: Simplifying data for AI
	3.5.2 DataStage ingestion of data into IBM watsonx.data
	3.5.3 DataStage and management of data within IBM watsonx.data

	Chapter 4. Protecting data
	4.1 Users and groups in an open lakehouse
	4.1.1 Overview of user and group management in open lakehouses
	4.1.2 Business use cases for user and group management
	4.1.3 Implementing user and group management in open lakehouses
	4.1.4 Overview of user and group capabilities in IBM watsonx.data
	4.1.5 Implementing group-based access in IBM watsonx.data

	4.2 Defining roles and responsibilities
	4.2.1 The architectural design for RLAC
	4.2.2 Platform roles and instance roles in IBM watsonx.data
	4.2.3 Resource-level roles and permissions
	4.2.4 Best practices for resource-level role management

	4.3 Establishing ACLs
	4.3.1 Role-based ACL
	4.3.2 Policy-based ACL
	4.3.3 Best practices to manage ACLs
	4.3.4 Summary

	Chapter 5. Querying and manipulating data and leveraging persona-specific engines
	5.1 Using PrestoDB or Prestissimo engine for adhoc queries
	5.1.1 Presto technical concepts
	5.1.2 Data sources
	5.1.3 Executing a query
	5.1.4 Prestissimo (C++ version of Presto)

	5.2 Leveraging Apache Spark engine for data engineering
	5.2.1 Creating and customizing internal Spark engine inside watsonx.data
	5.2.2 Explore the tabs in the Spark engine
	5.2.3 Submitting the application to Native Spark engine

	5.3 Execute important queries using the power of traditional RDBMS with shared open lakehouse formats
	5.3.1 ACID guarantees transactional reliability
	5.3.2 Advanced query optimization
	5.3.3 Standard SQL support
	5.3.4 Embracing lakehouse architecture and open formats

	Chapter 6. Establishing data governance
	6.1 Governing your data: The role of catalog, metadata, and policies
	6.2 Best practices for implementing an effective data governance framework
	6.2.1 Cataloging
	6.2.2 Metadata management
	6.2.3 Policy management
	6.2.4 General best practices

	6.3 Integration with IBM Knowledge Catalog (IKC)
	6.3.1 Architecture and core components of the integration
	6.3.2 Implementation of the integration
	6.3.3 Summary and references

	Chapter 7. Establishing a data catalog
	7.1 Introduction
	7.2 Data discovery: Automating data classification and tagging for better organization
	7.3 Data profiling
	7.4 Data cataloging: Building a comprehensive data catalog for findability
	7.5 Using advanced search functions to find specific data assets
	7.6 Case study: Improving data discoverability for faster decision-making in the retail sector
	7.6.1 Use case: Unified data access across retail functions

	Chapter 8. Marketing campaign analysis use case
	8.1 Use case introduction
	8.2 Data ingestion
	8.2.1 Locating the marketing campaign data
	8.2.2 Setting up the internal spark engine
	8.2.3 Configure storage and catalog in IBM watsonx.data
	8.2.4 Connecting query engines to catalog and storage in IBM watsonx.data
	8.2.5 Creating a schema in the catalog
	8.2.6 Ingesting data from an IBM Cloud Object Storage bucket
	8.2.7 Verifying the data in the schema

	8.3 Connecting to and accessing data
	8.3.1 Gathering the required information in IBM watsonx.data
	8.3.2 Creating a data connection in the IBM watsonx.ai project

	8.4 Visualizing and exploring data
	8.4.1 Creating a Data Refinery flow

	8.5 Building and developing machine learning models
	8.5.1 Creating an AutoAI experiment

	Chapter 9. Adopting Milvus for RAG using IBM watsonx
	9.1 Introduction
	9.2 Key steps in the RAG workflow
	9.2.1 Step 1: Document ingestion
	9.2.2 Step 2: Document chunking
	9.2.3 Step 3: Embedding generation
	9.2.4 Step 4: Vector storage and searching with Milvus

	9.3 Technical integration of IBM watsonx and Milvus
	9.3.1 Architecture overview
	9.3.2 Code examples
	9.3.3 Benefits of using IBM watsonx for RAG

	9.4 Summary

	Chapter 10. Data and AI modernization strategy in banking use case
	10.1 Introduction
	10.2 Data lakehouses: Empowering data-driven decisions in banking
	10.3 Data modernization pattern in banking
	10.3.1 Current pattern in banking on analytic use cases

	10.4 Modernized data management pattern in banking on analytic use cases
	10.5 Conclusion

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

