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Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
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Foreword

This trilogy of IBM® Redbooks® publications positions and explains the IBM strategic AI and 
Data platform - IBM watsonx. Each book focuses on one of the three main components of the 
watsonx platform:

� IBM watsonx.ai: A next-generation enterprise studio for AI builders to train, validate, tune, 
and deploy both traditional ML and new generative AI capabilities powered by foundation 
models

� IBM watsonx.data: A fit-for-purpose data store built on an open-lakehouse architecture, 
optimized for different and governed data and AI workloads

� IBM watsonx.governance: A set of AI governance capabilities enabling trusted AI 
workflows, helping organizations implement and comply with ever-changing industry and 
government regulations.

Organizations have long recognized the value that IBM Redbooks provide in guiding them 
with best practices, frameworks, clear explanations, and use cases as part of their solution 
evaluations and implementations.

This trilogy of books was only possible due to the close collaboration involving many skilled 
and talented authors that were selected from our IBM global technical sales, development, 
Expert Labs, Client Success Management, and consulting services organizations, using their 
diverse skills, experiences, and technical knowledge across the watsonx platform.

I would like to thank the authors, contributors, reviewers, and the IBM Redbooks team for their 
dedication, time, and effort in making this publication a valuable asset that organizations can 
use as part of their journey to AI.

I also want to thank Mark Simmonds and Deepak Rangarao for taking the lead in shaping this 
request into yet another successful IBM Redbooks project.

It is my sincere hope that you enjoy this watsonx trilogy as much as the team who wrote and 
contributed to them.

Steve Astorino, IBM General Manager - Development, Data, AI and Sustainability
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Preface

IBM® watsonx™ is the IBM strategic AI and Data platform. This book focuses on 
watsonx.data, one of the three main components of the platform.

IBM watsonx.data is a fit-for-purpose data store built on an open lakehouse architecture that 
is optimized for governed data and AI workloads, supported by querying, governance, and 
open data formats to access and share data. The solution can manage workloads both on 
premises and across hybrid multi-cloud environments while leveraging internal and external 
data sets. Through workload optimization, with this solution an organization can reduce data 
warehouse costs by up to 50 percent. It enables users to access robust data through a single 
point of entry while applying multiple fit-for-purpose query engines to uncover valuable 
insights. It also provides built-in data governance tools, automation, and integration with an 
organization's existing databases and tools to simplify setup and the user experience.

This IBM Redbooks® publication provides a broad understanding of watsonx.data concepts 
and architecture, and the services that are available in the product. In addition, several 
common use cases and scenarios are included that should help you better understand the 
capabilities of this product.

This publication is for watsonx customers who seek best practices and real-world examples of 
how to best implement their solutions while optimizing the value of their existing and future 
technology, AI, data, and skills investments.

Authors

This book was produced by a team of specialists from around the world.

Deepak Rangarao is an IBM Distinguished Engineer and CTO responsible for Technical 
Sales-Cloud Paks. Currently, he leads the technical sales team to help organizations 
modernize their technology landscape with IBM Cloud® Paks. He has broad cross-industry 
experience in the data warehousing and analytics space, building analytic applications at 
large organizations and technical pre-sales with start-ups and large enterprise software 
vendors. Deepak has co-authored several books on topics, such as OLAP analytics, change 
data capture, data warehousing, and object storage and is a regular speaker at technical 
conferences. He is a certified technical specialist in Red Hat OpenShift, Apache Spark, 
Microsoft SQL Server, and web development technologies.

Daniele Comi is a Data Scientist, AI Engineer, and Software Engineer at IBM Italy, with over 
three years of experience in data analytics, machine learning (ML), and deep learning. His 
expertise spans the entire spectrum of AI, from architectural design to scientific research, with 
a focus on machine, reinforcement, and deep learning. Daniele holds a Master's degree in 
Computer Science Engineering, specializing in AI frameworks and models. At IBM, Daniele 
has been a key member of the AI and Generative AI team in Italy, where he has designed and 
implemented complex AI and generative AI architectures for a variety of industry applications. 
His technical expertise also includes Fully Homomorphic Encrypted AI, enabling secure AI 
solutions that ensure data privacy. 

Note: Other books in this series are:

� Simplify Your AI Journey: Ensuring Trustworthy AI with IBM watsonx.governance, 
SG24-8573

� Simplify Your AI Journey: Unleashing the Power of AI with IBM watsonx.ai, SG24-8574
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contributed to IBM intellectual property through the submission of patents and the authorship 
of IBM Redbooks.

Gopi Varadarajulu is a Senior Technical Staff Member & Architect in the IBM Data and AI 
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technologies such as watsonx.data, watsonxd.ai, Watson Studio, Data Virtualization, 
IBM Knowledge Catalog, Watson Machine Learning & IBM Cloud Pak for Data components. 
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operating systems.

Jun Liu serves as the architect for IBM watsonx.data, primarily focusing on the authentication 
and authorization architecture across various components of the product. His current 
emphasis is on enhancing data security and governance within the platform. Before working 
on the watsonx project, Jun Liu was the Technical Architect of Data Virtualization Console. He 
leads the Data Virtualization Console development and new feature integration team. Before 
working on the Data Virtualization project, he worked for various projects on Db2® query 
monitoring and optimization. He has been with IBM since 2005.

Karen Medhat is a Customer Success Manager Architect in the UK and the youngest 
IBM Certified Thought Leader Level 3 Technical Specialist. She is the Chair of the 
IBM Technical Consultancy Group and an IBM Academy of technology member. She holds an 
MSc degree with honors in Engineering in AI and Wireless Sensor Networks from the Faculty 
of Engineering, Cairo University, and a BSc degree with honors in Engineering from the same 
faculty. She co-creates curriculum and exams for different IBM professional certificates. She 
also created and co-created courses for IBM Skills Academy in various areas of IBM 
technologies. She serves on the review board of international conferences and journals in AI 
and wireless communication. She also is an IBM Inventor and experienced in creating 
applications architecture and leading teams of different scales to deliver customers' projects 
successfully. She frequently mentors IT professionals to help them define their career goals, 
learn new technical skills, or acquire professional certifications. She has authored 
publications on Cloud, IoT, AI, wireless networks, microservices architecture, and Blockchain.

Malcolm Singh is a Technical Product Manager in the Data and AI division within 
IBM Software, focusing on technical strategy and connectivity. Previously, he was a Solution 
Architect for IBM Technology Expert Labs in the Data and AI Platforms Team. As a Solution 
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and Global 500 companies, providing guidance and technical assistance for their Data and AI 
Platform enterprise environments. Malcolm is based at the IBM Canada Lab in Toronto and 
holds a Bachelor of Science Honours degree in Computer Science from McMaster University.

Mark Simmonds is a Program Director in IBM Data and AI. He writes extensively on AI, data 
science, and data fabric, and holds multiple author recognition awards. He previously worked 
as an IT architect leading complex infrastructure design and corporate technical architecture 
projects. He is a member of the British Computer Society, holds a Bachelor's Degree in 
Computer Science, is a published author, and a prolific public speaker.

Payal Patel works in Data & AI Technical Content Development at IBM, creating technical 
learning materials for sellers, business partners, and clients to enable them to get the most 
value out of IBM's Data & AI products and solutions. She's worked in various roles at 
IBM including marketing analytics, and as a Solutions Architect in IBM Technology Expert 
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this role, he specializes in crafting tailored solutions for clients. His expertise lies in optimizing 
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or IBM services to seamlessly align with clients' internal operations. With over 13 years of 
experience across diverse technology domains, he has witnessed firsthand the 
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Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an IBM Redbooks residency project and help write a book 
in your area of expertise, while honing your experience using leading-edge technologies. Your 
efforts will help to increase product acceptance and customer satisfaction, as you expand 
your network of technical contacts and relationships. Residencies run from two to six weeks 
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Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
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Chapter 1. Challenges and opportunities 
with data

A long-standing challenge many organizations face is ensuring their data assets are 
accessible, manageable, governed, and of high quality for use in new (artificial intelligence) AI 
applications. These applications integrate AI throughout the enterprise for smarter business 
outcomes.

Over the years, numerous paradigms and efforts have attempted to address the complexities 
of managing sprawling and disparate data silos that all fell short of their promises and 
expectations. Organizations also need to place their data and assets where it makes the most 
business sense - whether on premises, in private or public clouds, or a combination thereof - 
without detriment to their business operations for everyone's benefit.

As the volume, velocity, and variety of data continue to grow rapidly, organizations must invest 
in robust infrastructure and analytics tools to effectively manage and extract value from their 
vast data sets.

This chapter describes the challenges and opportunities with data:

� “Current challenges in the data landscape” on page 2
� “Benefits of an open lakehouse for businesses” on page 3
� “Open table formats and open data formats” on page 6
� “Storage considerations for growing data” on page 8
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1.1  Current challenges in the data landscape 

Accurate and accessible data, in all its forms (structured, unstructured, multimedia, digital, 
genetic, and organic) is the lifeblood of an organization. With the correct data, artificial 
intelligence (AI) can help an organization accelerate the achievement of smarter outcomes 
through deeper insights and understanding of its data estates, and discover innovative ways 
of solving some of the world’s most challenging business and societal problems. 

Yet many organizations continue to face the challenges of managing, governing, and 
analyzing sprawling disparate data silos spread across their multi-vendor on-premises, 
private cloud, or public cloud, and hybrid multi-cloud environments. 

Many new paradigms and advances in computing technologies have sought to revolutionize 
the ways in which organizations analyze and extract insights from data. Over time, consumers 
learn the values and limitations of these technologies. Some technologies have a short 
lifespan. Others endure and evolve over decades and remain relevant to this day, such as 
relational database management systems (RDBMSs).

1.1.1  From centralized to distributed

For many years, data storage and processing were centralized. People had to take their work 
to the computer or access it through “dumb” terminals. With the advent of more affordable 
computers, processing and data became decentralized, putting computing power in the 
hands of individuals. However, this development led to a problem of data being replicated in 
an uncontrolled manner. 

With data being created, stored, and processed across many personal devices, it became 
increasingly difficult to control the sprawl of versions of data sets and apply quality, security, 
and other controls. Individual departments in various enterprises started organizing and 
storing only the data that they needed, which resulted in many data silos that did not 
communicate with each other across an organization.

1.1.2  Data stores, data integration, and data management tools

Numerous solutions appeared for managing and integrating data to enable reporting, 
analysis, and discovery of insights as data volumes grew. They were data stores with names 
like database, online transactional processing (OLTP), online analytical processing (OLAP), 
data warehouse, MDM system, data mart, data lake, Hadoop, or data lakehouse. Many of 
these terms tend to be used interchangeably, but important differences exist. Each term 
provides certain capabilities and values to different groups of users, but none is a panacea for 
all data management challenges. However, technology follows a maturity curve or cycle, and 
these technologies eventually found their own niches as they matured.

Many forms of data stores and data servers are used across enterprises today. More 
variations of them and new paradigms will evolve because technology constantly advances. 

A data fabric (an architectural approach that simplifies data access in an organization and 
facilitates self-service data consumption) can offer enough longevity and flexibility to integrate 
an organization’s current and future data assets and enable them for AI applications. This 
subject alone warrants a book of its own.
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1.1.3  Data lakes and data warehouses

Much of an organization’s data is often distributed across many disparate silos, making it 
difficult to integrate and access. Data is represented in many different and sometimes 
complex formats as the market supports new paradigms and more diverse use cases that use 
unstructured and semi-structured data. Much time is spent transforming, cleansing, and 
integrating data. Data lakes represent a way to store massive amounts of different data by 
using cheap, commoditized hardware and storage through Hadoop, HDFS, or Hive. However, 
an organization’s enthusiasm might decrease if they find it difficult to manage and get a good 
return on their data lake investment or even rely on the data (partly due to poor-quality data). 
Poor-quality data continues to concern most organizations. Once poor-quality data is shared 
across multiple business units and decisions are made based on that data, it can be a 
difficult, costly, and lengthy process to recover from that mistake.

Data warehouses can be considered as the first iteration of tools to support analytics, which 
enabled organizations to analyze data and decide at scale. Data warehouses enabled 
organizations to look at historical data. Over time, as volumes continued to grow, it became 
challenging to store and retain all data in a data warehouse. Also, organizations might have 
only a few years’ worth of data or only a small slice of the operational data in their 
warehouses.

Organizations recognize that large volumes of unstructured data, even if they are not suitable 
for data warehouses, also contain great value because the data can be extracted. 
Unfortunately, when you try to analyze data of poor quality, the tools and analytical engines 
that you use to analyze the content in the data lakes might not be as performant as the tools 
that you use for data warehouses. Many data lakes became more like data swamps with stale 
data that is difficult to maintain and untrustworthy. The need to scale compute and storage 
presents two different sets of needs across data lakes and data warehouses. 

Data lakes and data warehouses each provide their own set of capabilities. When combined, 
scaling and governance can become key challenges because data lakes and warehouses are 
designed for different purposes. The market has evolved toward cloud-based data 
warehouses, which offer separation of computing and storage. Technologies such as Red Hat 
OpenShift, Red Hat Ceph Storage, Amazon S3, and other warehouse engines help solve the 
problem, making storage and computing inexpensive, readily available, and simpler to 
manage and scale. Compute and storage must be elastic, and able to scale on demand when 
needed so that organizations are charged only for what they use over the billable period. 

1.2  Benefits of an open lakehouse for businesses

Although data warehouses and data lakes each evolved to meet a set of specific technology 
and business needs and values, organizations often need both, so there is an increasing 
demand for convergence of both technologies. Vendors attempt to create the best of both 
data lakes and data warehouses by combining them into the newer technology of the 
lakehouse. This lakehouse architecture is designed to provide the flexibility and cost 
effectiveness of a data lake with the performance and structure of a data warehouse. The 
lakehouse enables organizations to store data from the increasing number of new sources in 
a low-cost way and use built-in data management and governance capabilities, which enable 
organizations to power both Business Intelligence (BI) and high-performance ML workloads 
efficiently and effectively.
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If implemented correctly, organizations can use their investments in data lakes and data 
warehouses by adopting and implementing a lakehouse architecture and technologies to help 
modernize their existing data lakes. Enterprises can also complement their data warehouses 
to support some of these new types of AI- and ML-driven workloads.

A lakehouse, as shown in Figure 1-1, attempts to bridge data warehouses and data lakes by 
combining the best of both into one architecture. That said, these first-generation lakehouses 
have constraints that limit their ability to address cost and complexity challenges:

� Single-query engines are set up to support limited workloads, typically just for BI and ML.

� Lakehouses are typically deployed only over the cloud, with no support for hybrid 
multi-cloud deployments.

� Lakehouses offer minimal governance and metadata capabilities to deploy across an 
entire ecosystem.

Figure 1-1   Lakehouses combine the best of data warehouses and data lakes

Data storage paradigms are cumulative. They do not disappear or are replaced by the next 
paradigm. They must coexist. As these technologies mature, organizations recognize the 
value that each paradigm provides at performing certain tasks. 

Every step of an organization’s data or AI journey is critical. AI is not magic; it requires a 
thoughtful and well-designed approach. For example, most AI failures are due to problems in 
data preparation and data organization, and not the AI models themselves. Success with AI 
models depends on achieving success first with how the data is collected, stored, organized, 
and managed.
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1.2.1  The impact of cloud

A combination of on-premises and cloud-native warehouses and custom data lakes is 
common for an enterprise architecture, as shown in Figure 1-2. Juggling costs, siloed data, 
and data governance are constant challenges. 

Figure 1-2   On-premises, cloud-native warehouses, and custom data lakes are commonly found in 
enterprise architectures

Most lakehouse solutions offer a high-performance query engine over low-cost storage with a 
metadata governance layer. Intelligent metadata layers enable users to categorize and 
classify unstructured data (such as video and voice) and semi-structured data (such as 
eXtensible Markup Language (XML), JavaScript Object Notation (JSON), and emails). In an 
ideal world, a lakehouse offers open-source technologies that reduce data duplication and 
simplify complex Extract, Transform, Load (ETL) pipelines. Some first-generation lakehouses 
have key constraints that limit their ability to address the challenges of cost and complexity. 
For example, a single-query engine that is designed for BI or ML workloads might be 
ineffective when it is used for another workload type. 

Different workloads should be optimized with the best-suited environment to keep costs at a 
minimum and performance at a maximum. Organizations need a lakehouse that delivers an 
optimal level of performance for better decision-making along with the ability to unlock more 
value from all types of data, resulting in deeper insights.

It is an evolution of the analytic data repository that supports refinement, delivery, and storage 
with an open table format. Apache Iceberg is designed to handle huge analytic data sets. It is 
used in production environments where a single table can contain tens of petabytes of data 
and the data can be read without a distributed SQL engine.
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1.3  Open table formats and open data formats

Adopting an open architecture when implementing a lakehouse helps ensure interoperability 
across today’s hybrid multicloud environments, which often incorporate multiple vendors’ 
hypervisors. 

1.3.1  Open data storage

This section describes some prominent open data storage services that are on the market at 
the time of writing.

Amazon S3
Amazon Simple Storage Service (S3) is a service that is offered by Amazon Web Services 
(AWS) and provides object storage through a web service interface. Amazon S3 uses the 
same scalable storage infrastructure that Amazon.com uses to run its e-commerce network. 
Amazon S3 can store any type of object, which enables storage for internet applications, 
backups, disaster recovery, data archives, data lakes for analytics, and hybrid cloud storage. 
AWS started Amazon S3 in the United States on March 14, 2006, and then in Europe in 
November 2007.

Azure Storage
The Azure Storage platform is Microsoft's cloud storage solution for modern data storage 
scenarios. Azure Storage offers highly available, massively scalable, durable, and secure 
storage for various data objects in the cloud. Azure Storage data objects are accessible from 
anywhere in the world over HTTP or HTTPS through a REST API. Azure Storage also offers 
client libraries for developers building applications or services with .NET, Java, Python, 
JavaScript, C++, and Go. Developers and IT professionals can use Azure PowerShell and 
Azure CLI to write scripts for data management or configuration tasks. 

IBM Cloud Object Storage
IBM Cloud Object Storage is a service that is offered by IBM for storing and accessing 
unstructured data. This service can be deployed on-premises, as part of IBM Cloud Platform 
offerings, or in hybrid form. The offering can store any type of object for data archiving and 
backup, web and mobile applications, and as scalable, persistent storage for analytics. 
Interaction with IBM Cloud Object Storage is based on Rest APIs.

Red Hat Ceph Storage
Ceph is a no-charge, open-source, and software-defined storage platform that provides 
object storage, block storage, and file storage built on a common distributed cluster 
foundation. Ceph provides distributed operation without a single point of failure and scalability 
to the exabyte level. Since Version 12 (Luminous), Ceph does not rely on any other 
conventional file system and directly manages HDDs and SSDs with its own storage back end 
BlueStore. It can expose a POSIX file system.

Ceph replicates data with fault tolerance by using commodity hardware and Ethernet IP, and it 
requires no specific hardware support. Ceph is highly available and helps ensure strong data 
durability through techniques that include replication, erasure coding, snapshots, and clones. 
By design, the system is both self-healing and self-managing, minimizing administration time 
and other costs.
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Google Cloud Storage
Google Cloud Storage is a RESTful online file storage web service for storing and accessing 
data on the Google Cloud Platform infrastructure. The service combines the performance and 
scalability of Google's cloud with advanced security and sharing capabilities. It is an 
Infrastructure as a Service (IaaS), and it is comparable to Amazon S3. Contrary to Google 
Drive and according to different service specifications, Google Cloud Storage appears to be 
more suitable for enterprises.

HDFS
Hadoop Distributed File System (HDFS) is a distributed file system that handles massive data 
sets efficiently on commodity hardware. As a core component of Apache Hadoop, HDFS 
enables the scaling of single clusters to hundreds or even thousands of nodes. It works in 
tandem with MapReduce and YARN to form the foundation of the Hadoop ecosystem.

1.3.2  Open data formats

This section describes some prominent open data formats.

Apache Iceberg
Apache Iceberg is an open-source, high-performance format for huge analytic tables. Apache 
Iceberg enables SQL tables for big data while making it possible for engines like Spark, Trino, 
Flink, Presto, Hive, Impala, StarRocks, Doris, and Pig to work with the same tables at the 
same time. Apache Iceberg is released under the Apache License. Apache Iceberg 
addresses the performance and usability challenges of using Apache Hive tables in large and 
demanding data lake environments. Vendors supporting Apache Iceberg tables in their 
products at the time of writing include Buster, CelerData, Cloudera, Dremio, IOMETE, 
Snowflake, Starburst, Tabular, and AWS.

Apache Parquet
Apache Parquet is a no-charge, open-source, and column-oriented data storage format in the 
Apache Hadoop ecosystem. It is similar to Apache Hive Record Columnar File (RCFile) and 
Apache Optimized Row Columnar (ORC), which are the other columnar-storage file formats 
in Hadoop. It is compatible with most of the data processing frameworks of Apache Hadoop. It 
provides efficient data compression and encoding schemes with enhanced performance to 
handle complex data in bulk.

Apache Avro
Apache Avro is a row-oriented, remote procedure call and data serialization framework that is 
developed within the Apache Hadoop project. It uses JSON for defining data types and 
protocols, and serializes data in a compact binary format. Its primary use is in 
Apache Hadoop, where it provides both a serialization format for persistent data, which is a 
wire format for communication between Hadoop nodes and from client programs to the 
Hadoop services. Avro uses a schema to structure the data that is being encoded. It has two 
different types of schema languages: one for human editing (Avro IDL) and another that is 
more machine readable (based on JSON).

It is similar to Thrift and Protocol Buffers, but does not require a code-generation program 
when a schema changes (unless the code-generation program is wanted for statically-typed 
languages).

Apache Spark SQL can access Avro as a data source.
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Apache ORC
Apache ORC is a no-charge, open-source, and column-oriented data storage format. It is 
similar to the other columnar-storage file formats that are available in the Hadoop ecosystem, 
such as RCFile and Apache Parquet. It is used by most of the data processing frameworks, 
such as Apache Spark, Apache Hive, Apache Flink, and Apache Hadoop.

In February 2013, the ORC file format was announced by Hortonworks in collaboration with 
Facebook. A month later, the Apache Parquet format was announced, which is developed by 
Cloudera and Twitter.

The Apache ORC format is supported by Amazon AWS Glue.

1.4  Storage considerations for growing data

As organizations continue to generate and collect vast amounts of data, the need for efficient 
and scalable storage solutions becomes more important. This section explores the storage 
considerations for growing data, with a focus on the challenges and opportunities that arise 
when working with large datasets.

1.4.1  The data growth conundrum

The rate at which data is being generated is staggering. According to a report by IDC, the 
global data sphere is expected to grow from 33 zettabytes (ZB) in 2018 to 175 ZB by 2025, 
which represents a compound annual growth rate (CAGR) of 26%.1 This growth is driven by 
many factors, which include the increasing usage of IoT devices, social media, and cloud 
computing. As data grows, so too do the challenges that are associated with storing it. 
Organizations must balance the need to store large amounts of data with the need to ensure 
that data is accessible, secure, and compliant with regulatory requirements.

1.4.2  Storage challenges

In storing growing data, organizations face several challenges:

� Scalability: As data grows, storage systems must scale to accommodate it. This act can be 
a challenge, particularly for organizations with limited resources. 

� Performance: As data volumes surge, storage systems must maintain peak performance 
to help ensure rapid and efficient data access. Cost considerations are significant, 
especially when organizations rely on traditional storage solutions for large-scale data 
storage.

� Data protection: As data grows, the risk of data loss or corruption increases. 
Organizations must ensure that they have adequate data protection measures in place. 

1  Source: The Digital Universe in 2025: Emerging Trends and the Future of Data (2018) 
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1.4.3  Storage opportunities

Although there are challenges that are associated with storing growing data, there are also 
opportunities. New storage technologies and architectures are emerging that are designed to 
handle large amounts of data:

� Object storage: Object storage is a type of storage that is designed to handle large 
amounts of unstructured data. It is highly scalable and can be more cost-effective than 
traditional storage solutions.

� Cloud storage: Cloud storage provides organizations with a flexible and scalable storage 
solution that can be easily expanded or contracted as needed.

� Flash Storage: Flash Storage is a type of storage that uses flash memory to store data. It 
is highly performant and can be used to accelerate applications that require high levels of 
I/O.

1.4.4  Best practices for storage

In storing growing data, there are several best practices that organizations should follow:

� Develop a data management strategy: Organizations should develop a data management 
strategy that accounts for their storage needs.

� Use a tiered storage architecture: Organizations should use a tiered storage architecture 
that includes a combination of hot, warm, and cold storage.

� Use data compression and deduplication: Organizations should use data compression 
and deduplication to reduce the amount of storage that is required.

In conclusion, the growth of data presents both challenges and opportunities when it comes 
to storage. Organizations must balance the need to store large amounts of data with the need 
to help ensure that data is accessible, secure, and compliant with regulatory requirements. By 
understanding the storage challenges and opportunities and by using best practices and 
technologies such as IBM watsonx.data, organizations can help ensure that they are well 
positioned to handle the growth of data.
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Chapter 2. Introduction to IBM watsonx.data

IBM watsonx.data is a powerful data lakehouse that simplifies data management and 
analysis. It combines the best of data warehouses and data lakes, allowing you to store and 
analyze any type of data. By breaking down data silos and streamlining workflows, 
watsonx.data empowers you to unlock valuable insights and drive innovation. 

This chapter explores the key features and benefits of watsonx.data and has the following 
sections:

� “Introduction to the watsonx platform and its core components” on page 12
� “IBM watsonx.data overview and architecture” on page 16
� “Benefits of using watsonx.data for businesses” on page 21
� “Data pipeline considerations for open lakehouse” on page 22
� “Data pipelines integration with watsonx.data” on page 24
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2.1  Introduction to the watsonx platform and its core 
components

The effectiveness of AI relies on high-quality data, which is essential for informed 
decision-making. Governance plays a critical role in ensuring data integrity and compliance 
with regulations. These components must operate in tandem.

AI depends on data as its life source. The data must be of the right quality and should be 
accessed securely by authorized personnel only. AI enables data analysis and management, 
and governance needs AI to continuously learn about potential threats and human behaviors, 
and to comply with regulatory standards and legislation.

Without AI, data governance, or quality control, an organization's effectiveness may suffer.

IBM watsonx was designed to bridge the gap between advanced AI capabilities and trusted 
data. This AI and data platform is designed to enable enterprises to scale and accelerate the 
impact of the most advanced AI with their trusted data. Organizations turning to AI today need 
access to a full technology stack that enables them to train, tune, and deploy AI models, 
including Foundation Models and ML capabilities, across their organization with trusted data, 
speed, and governance—all in one place and designed to run on any cloud environment.

With watsonx, users have access to the toolset, technology, infrastructure, and consulting 
expertise to build their own or fine-tune and adapt available AI models on their own data and 
deploy them at scale in a trustworthy and open environment. Competitive differentiation and 
unique business value will be able to be increasingly derived from how adaptable an AI model 
can be to an enterprise's unique data and domain knowledge.

The IBM watsonx platform consists of three unique sets of products to help address these 
needs, as shown in Figure 2-1.

Figure 2-1   Scale and accelerate the impact of AI with trusted data using IBM watsonx

As a platform, watsonx is represented in Figure 2-2 on page 13. 
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Figure 2-2   IBM watsonx conceptual architecture

2.1.1  IBM watsonx.ai

Introducing our next-generation enterprise studio for AI builders to train, validate (test), tune, 
and deploy both traditional ML and new generative AI capabilities powered by foundation 
models using an open and intuitive user interface.

The AI studio provides a range of foundation models, training and tuning tools, and a 
cost-effective infrastructure that facilitates the entire data and AI lifecycle, from data 
preparation through model development, deployment, and monitoring.

Additionally, a foundation model library that gives users easy access to IBM-curated and 
-trained foundation models. Foundation models use a large, curated set of enterprise data, 
backed by a robust filtering and cleansing process and with an auditable data lineage. These 
models are being trained not only on language, but on a variety of modalities, including code, 
time-series data, tabular data, geospatial data, and IT events data. Examples of model 
categories include (but not limited to):

� fm.code: Models built to automatically generate code for developers through a 
natural-language interface to boost developer productivity and enable the automation of 
many IT tasks

� fm.NLP: A collection of LLMs for specific or industry-specific domains that use curated 
data to help mitigate bias and more quickly make domains customizable using client data
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� fm.geospatial: Models built on climate and remote sensing data to help organizations 
understand and plan for changes in natural disaster patterns, biodiversity, land use, and 
other geophysical processes that could impact their businesses

The watsonx.ai studio builds upon Hugging Face's open-source libraries and offers 
thousands of Hugging Face open models and data sets. Users can leverage the power of 
IBM Granite LLMs, along with the latest Mistral, Llama, and other third party LLMs. This is 
part of IBM's commitment to delivering an open ecosystem approach that enables users to 
leverage the best models and architecture for their unique business needs.

2.1.2  IBM watsonx.data

This is a fit-for-purpose data store built on an open-lakehouse architecture that is optimized 
for governed data and AI workloads, supported by querying, governance, and open data 
formats to access and share data. 

The solution can manage workloads both on premises and across hybrid multi-cloud 
environments while leveraging internal and external data sets.

Through workload optimization, with this solution an organization can reduce data warehouse 
costs by up to 50 percent. This is based on comparing published 2023 list prices normalized 
for virtual private cloud hours of watsonx.data to several major cloud data warehouse 
vendors. Savings may vary depending on configurations, workloads, and vendors.

It enables users to access robust data through a single point of entry while applying multiple 
fit-for-purpose query engines to uncover valuable insights.

It also provides built-in governance tools, automation, and integration with an organization's 
existing databases and tools to simplify setup and user experience.

2.1.3  IBM watsonx.governance

This set of AI governance capabilities enables trusted AI workflows, helping organizations to:

� Operationalize governance to help mitigate the risk, time, and cost associated with manual 
processes. It also provides the documentation necessary to drive transparent and 
explainable outcomes.

� Provide the mechanisms to protect customer privacy, proactively detect model bias and 
drift, and meet the organization’s ethics standards.

� Meet existing and future compliance needs, such as the EU Digital Services Act and 
Digital Markets Act.

The IBM watsonx AI and data platform forms part of the larger IBM generative AI technology 
and expertise stack shown in Figure 2-3 on page 15. This stack offers organizations a 
complete solution no matter where they might be on their AI and data journey - from 
consulting and ecosystems to hybrid cloud AI tools and infrastructure, data services, the 
watsonx AI and data platform, SDKs and APIs, and AI assistants.
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Figure 2-3   IBM Generative AI technology and expertise

IBM AI technologies remain focused on being:

� Open - IBM AI is based on the best open technologies available.

� Trusted - IBM AI is transparent, responsible, and governed.

� Targeted - IBM AI is designed for enterprise and targeted at business domains.

� Empowering - IBM AI is for value creators, not just users.
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2.2  IBM watsonx.data overview and architecture

IBM watsonx.data is an open, hybrid, governed data store optimized for all data, analytics, 
and AI workloads, conceptualized, as shown in Figure 2-4. 

Figure 2-4   IBM watsonx.data concepts architecture

Based on our experience with numerous clients, IBM has found that organizations are often at 
one or more of these stages:

� Remaining on traditional warehouse or analytic appliances but looking for ways to get 
greater flexibility and to also perhaps tackle new workloads.

� Have adopted the traditional data lakes but are running into issues of getting sufficient 
return on their investment and having to manage those systems.

� Have adopted the cloud data warehouses but are concerned with ever-increasing billing 
costs.

All three of these groups are looking for ways to get more flexibility, adopt more workloads, 
reduce costs, and reduce complexity.

IBM watsonx.data is designed to address the needs of all three groups and the shortcomings 
of some first-generation lakehouses. It combines open, flexible, and low-cost storage of data 
lakes with the transactional qualities and performance of a data warehouse. This supports 
structured, semi-structured, and unstructured data residing in commodity storage, bringing 
together the best of data lakes and warehouses to enable best-in-class AI, BI, and ML in one 
solution without vendor lock-in. 

Modularity and flexibility are key when implementing a lakehouse. If an organization has a 
Hadoop data lake with data stored on Hadoop Distributed File System (HDFS), the metadata 
can be cataloged using Hive, and the metadata and data can be brought to the lakehouse 
(watsonx.data) so that, from day one, the most appropriate engines can be used to query the 
data. 
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New data arriving in the lakehouse needs to be integrated with existing data using the 
metadata and storage layers (Hive and HDFS) and continuously analyzed without affecting 
existing applications using the data lake. Over time, data can be moved into the data lake at 
an organization’s own pace.

Many of the watsonx.data components shown in Figure 2-5 are based on open-source 
technologies such as Presto, Iceberg, Hive, Ranger, and others. IBM watsonx.data also offers 
a wide range of integration with existing IBM and third-party products.

Figure 2-5   IBM watsonx.data high-level architecture

IBM watsonx.data can be deployed across multiple environments, including but not limited to 
IBM Cloud, Amazon Web Services (AWS) infrastructure, and on premises.

The storage layer is centered around object storage, which is highly available, highly scalable, 
and inexpensive.

A governance and metadata layer integrates existing Netezza® and Db2 services to achieve 
metadata sharing using open-data formats such as Parquet, ORC, and Avro (a serialization 
format for record data and for streaming data pipelines) and leverages the Apache Iceberg 
table format. It uses multiple engines, such as Presto and Spark, which provide fast, reliable, 
efficient processing of big data at scale.

With watsonx.data, you can access all your data across cloud and on-premises 
environments. The platform lets you connect to storage and analytics environments in 
minutes and access all your data through a single point of entry with a shared metadata layer. 
Chapter 2. Introduction to IBM watsonx.data 17



You can use multiple query engines to optimize analytics and AI workloads for price 
performance and prepare your data for AI with an integrated vector database. Get greater 
value from your data investments with an open, hybrid, governed data lakehouse that is 
optimized for all data and AI workloads, and put AI to work.

Many of the watsonx.data components shown in Figure 2-6 are based on open-source 
technologies such as Presto, Iceberg, Hive, Ranger, and others. IBM watsonx.data also offers 
a wide range of integration with existing IBM and third-party products.

Figure 2-6   Overview of watsonx.data components

IBM watsonx.data can be deployed across multiple environments, including but not limited to 
IBM Cloud, Amazon Web Services (AWS) infrastructure, and on premises.

The storage layer is centered around object storage, which is highly available, highly scalable, 
and inexpensive.

A governance and metadata layer integrates existing Netezza and Db2 services to achieve 
metadata sharing using open-data formats such as Parquet, ORC, and Avro (a serialization 
format for record data and for streaming data pipelines) and leverages the Apache Iceberg 
table format. It uses multiple engines, such as Presto and Spark, which provide fast, reliable, 
efficient processing of big data at scale. Let us take a look at each layer in more detail.

Infrastructure
From an infrastructure layer perspective (Figure 2-7 on page 19), quick start steps enable 
organizations using Software as a Service (SaaS) tools to deploy in minutes, ready to bring 
and store their data into S3 object storage. Organizations may also choose to connect to 
existing data warehouses and look at the data using virtualization or federation techniques.
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Figure 2-7   watsonx.data infrastructure layer

Storage and data formats
IBM watsonx.data is designed to leverage various storage solutions, such as Amazon S3, 
IBM Cloud, Google Cloud Storage, and HDFS. Apache Iceberg helps solve the problem of 
bringing structure to data lakes. It is a metadata file that sits with the data files so that, as 
changes are made to the data, it keeps track of those records. Think® of it as appending to 
that metadata file. It provides certain atomicity, consistency, isolation, and durability (ACID) 
transactional guarantees and the ability to roll back in time for any audit purposes. 
Organizations can view and understand the transactions that occurred and their completion 
status by looking back in time at previous states. See Figure 2-8.

Figure 2-8   watsonx.data storage and data format layers
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Governance and metadata
The governance and metadata layer, shown in Figure 2-9, can be thought of as the glue that 
holds the multi-engine capabilities together. For example, it enables all engines to access the 
same storage, leverage the same table formats, and access the same metadata stores, 
thereby enabling organizations to look at the same sets of data through a unified catalog. 
Users are able to understand exactly what the data is, where it is, and what it looks like, no 
matter which query engine they are using. When a user changes or updates data in 
watsonx.data with an engine such as Presto, the metadata and catalog will be updated so 
that when that same user looks at that catalog later through a different query engine (for 
example, the Netezza engine), that user can continue exactly where they left off in 
watsonx.data.

Figure 2-9   watsonx.data governance and metadata layer

Access-control management helps provide consistent governance across all watsonx.data 
lakehouse assets, integrating with IBM Knowledge Catalog capabilities to participate in global 
governance and providing a single source of the truth for policies and their enforcement. This 
is achieved through metadata integration and plug-ins to the engines.

There are three levels of user access controls in watsonx.data:

� User Authentication (Level 1 access control): IBM watsonx.data works with a variety of 
Identity Provider Services, such as Identity Access Management (IAM) and Lightweight 
Directory Access Protocol (LDAP). Users who access the service through UIs, APIs, SQL 
editors, and command lines will be authenticated using their user ID and password, API 
keys, or authentication tokens.

� User Access to resources (Level 2 access control): Roles can be assigned for 
watsonx.data users to access lakehouse resources. Roles at this level include Viewer, 
Editor, and Administrator. Resources include Instances, Engines, Catalogs. Storage, and 
Databases.

� User Access to data (Level 3 access control): IBM watsonx.data enables data 
administrators to define data access policies for deeper levels of governance. Access 
policies can be defined on schemas, tables, columns, and rows. 
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Users are checked for access based on defined access policies. Advanced governance 
involving the masking of data, for example, leverages Watson Knowledge Catalog 
governance.

Querying
The querying layer, as previously mentioned, enables multiple query engines to coexist within 
watsonx.data. One size does not fit all when it comes to querying all the different types of 
data that may exist in a lakehouse. This layer enables the best engines to be intelligently 
assigned to query the target data sets for cost optimization of workloads. The different query 
engines are assigned infrastructure profiles. For example, Presto can leverage different 
flavors of worker nodes (used to run containerized applications and handle networking to 
ensure that traffic between applications across the cluster and from outside of the cluster can 
be properly facilitated). 

One node might be used to better manage CPU-dense tasks that require heavy computing of 
arcane encryption. Another might be cache-optimized to cope with large data scans or work 
with large amounts of data that need to be close to the engine. By scaling out the worker 
nodes, organizations can be assured they have a sufficient cache to handle the workloads. All 
engines can be ephemeral and elastic as well as be usage-based so organizations can use 
instances of these engines to run their workloads, pause them, or delete them at will. 
Organizations are billed for only what they use and when they use it, scaling up and down to 
meet the necessary service-level agreements (SLAs). See Figure 2-10.

Figure 2-10   watsonx.data querying layer

2.3  Benefits of using watsonx.data for businesses

IBM watsonx.data is designed to help organizations:

� Access all their data and maximize workload coverage across all hybrid-cloud 
environments. Expect seamless deployment of a fully managed service across any cloud 
or on-premises environment. Access any data source, wherever it resides, through a 
single point of entry and combine it using open data formats. 
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� Integrate into existing environments with open source, open standards, and 
interoperability with IBM and third-party services. 

� Accelerate time to trusted insights. Start with built-in governance and automation; 
strengthen enterprise compliance and security with unified governance across the entire 
ecosystem. A click-and-go console helps teams ingest, access, and transform data and 
run workloads. The product provides a dashboard that makes it easier for organizations to 
save money and deliver fresh, trusted insights. 

� Reduce the cost of a data warehouse by up to 50%1 through workload optimization across 
multiple query engines and storage tiers. Optimize costly warehouse workloads with 
fit-for-purpose engines that scale up and down automatically. Reduce costs by eliminating 
duplication of data when the enterprise uses low-cost object storage; extract more value 
from the data in ineffective data lakes. 

Some of the key capabilities of watsonx.data are:

� Scaling for BI across all data with multiple high-performance query engines optimized for 
different workloads (for example: Presto, Spark, Db2, Netezza, and so forth.

� Enabling data-sharing between these different engines.

� Using shared common data storage across data lake and data warehouse functions, 
avoiding unnecessary time-consuming ETL/ELT jobs.

� Eradicating unnecessary data duplication and replication.

� Providing consistent governance, security, and user experience across hybrid 
multi-clouds.

� Leveraging an open and flexible architecture built on open source without vendor lock-in.

� The ability to be deployed across hybrid-cloud environments (on-premises, private, public 
clouds) on multiple hyperscalers.

� Offering a wide range of prebuilt integration capabilities incorporating IBM data-fabric 
capabilities.

� Providing global governance across all data in the enterprise, leveraging the IBM 
data-fabric capabilities. 

� Extensibility through APIs, value-add partner ecosystems, accelerators, and third-party 
solutions.

2.4  Data pipeline considerations for open lakehouse 

When designing a data pipeline for an open lakehouse architecture, several considerations 
must be addressed to ensure efficient, scalable, and robust data handling. The integration of 
tools like Apache Spark, ETL tools like DataStage®, and StreamSets plays a crucial role in 
shaping the pipeline's functionality. 

2.4.1  Apache Spark: The computational engine

Apache Spark serves as a distributed data processing engine, capable of handling 
large-scale data with its in-memory computation capabilities. In an open lakehouse, Spark is 
often the go-to engine for data transformation, analytics, and machine learning workloads.

1  This cost reduction was calculated by comparing published 2023 list prices normalized for virtual private cloud 
(VPC) hours of IBM watsonx.data to several major cloud data warehouse vendors. Savings may vary depending on 
configurations, workloads, and vendors.
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The following are the key considerations:

� Scalability: Spark’s distributed architecture enables horizontal scaling, handling vast 
datasets stored in the lakehouse.

� Batch and Streaming: Supports both batch and real-time data processing, crucial for a 
unified lakehouse approach.

� Interoperability: Works seamlessly with various data formats (Parquet, Delta Lake, ORC, 
and so forth) typically used in open lakehouses.

� Optimization: Employ Spark SQL and Catalyst optimizer for query performance tuning.

� Cost Efficiency: Leverage the decoupled storage and compute paradigm of lakehouses, 
optimizing resource utilization.

2.4.2  ETL tools: Managing complex workflows

IBM DataStage provides robust Extract, Transform, and Load (ETL) capabilities that are 
crucial for cleaning, transforming, and loading structured and semi-structured data into the 
lakehouse.

The following are key considerations:

� Data quality and governance: Ensures data is accurate, consistent, and compliant with 
governance policies before ingestion.

� Workflow orchestration: Simplifies complex ETL workflows and supports dependency 
management between tasks.

� Error handling: Offers robust logging and error-handling mechanisms to ensure data 
pipeline reliability.

� Integration: Interfaces well with data lakes, data warehouses, and third-party systems for 
seamless data flow.

� Reusability: Reusable jobs and transformations improve development speed and 
maintainability.

2.4.3  StreamSets: Real-time data integration and monitoring

StreamSets is a powerful platform for real-time data integration and monitoring. It facilitates 
continuous data ingestion from multiple sources into the lakehouse.

The following are the key considerations:

� Streaming pipelines: Supports real-time ingestion with minimal latency, critical for 
time-sensitive data.

� Data drift management: Automatically adapts to schema changes, reducing pipeline 
maintenance overhead.

� Observability: Provides end-to-end visibility and monitoring of data pipelines, enabling 
proactive issue resolution.

� Data enrichment: Allows data enrichment and transformation in motion, reducing load on 
downstream systems.

� Integration: Can connect with a variety of streaming sources (Kafka, IoT devices) and 
targets (Delta Lake, cloud storage).
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2.4.4  General design considerations for open lakehouse pipelines

The following are key design considerations for open lakehouse pipelines:

� Data formats: Use open, columnar formats like Parquet or Delta for storage efficiency and 
analytics performance.

� Schema evolution: Ensure support for schema changes over time without breaking the 
pipeline.

� Data governance: Implement robust governance for security, access control, and data 
lineage.

� Performance tuning: Optimize resource allocation, caching strategies, and data 
partitioning.

� Fault tolerance: Design for resilience with retry mechanisms, checkpointing (especially 
for streaming), and redundancy.

The combination of Apache Spark, ETL tools like DataStage, and StreamSets creates a 
powerful, flexible, and efficient pipeline for open lakehouse architectures. Spark handles 
intensive computation and analytics, DataStage ensures structured ETL processes, and 
StreamSets provides real-time ingestion and monitoring. Together, these tools facilitate 
seamless data flow, governance, and scalability across the pipeline.

2.5  Data pipelines integration with watsonx.data

The integration of tools like Apache Spark, IBM DataStage, and StreamSets with 
watsonx.data becomes essential for building robust, scalable, and efficient data pipelines. 
watsonx.data is designed to unify data across various formats and environments, enabling 
advanced analytics and AI workloads. Here is how these tools fit into the pipeline:

2.5.1  Apache Spark in watsonx.data

Apache Spark serves as the primary engine for distributed data processing within 
watsonx.data. Its integration is key to executing high-performance, large-scale data 
transformations and analytics.

The following are the key considerations:

� Unified analytics: Spark, within watsonx.data, processes data directly in the lakehouse, 
supporting SQL queries, ML, and graph analytics.

� Delta lake integration: Enables ACID transactions, schema enforcement, and time travel, 
ensuring reliable and consistent data for analytics.

� Batch and streaming workloads: Spark supports both batch processing (for example, 
historical data analysis) and streaming (real-time data ingestion) using Structured 
Streaming.

� Optimization: Use the watsonx.data built-in query accelerators and Spark’s Catalyst 
optimizer for efficient query execution and resource usage.

� Interoperability: Spark seamlessly integrates with various data formats supported by 
watsonx.data (for example, Parquet, Delta Lake).
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2.5.2  IBM DataStage in watsonx.data

IBM DataStage is essential for ETL operations, focusing on transforming and loading data 
into watsonx.data for downstream consumption.

The following are the key considerations:

� Data integration: DataStage ensures smooth data ingestion from on-premises, cloud, 
and third-party systems into watsonx.data.

� Data governance and quality: Provides tools for data cleansing, transformation, and 
validation before ingestion, critical for maintaining data quality in the lakehouse.

� Workload automation: Automates ETL jobs to handle large volumes of structured and 
semi-structured data efficiently.

� Orchestration and scheduling: Manages complex workflows and schedules data 
processing tasks within watsonx.data.

� Data lineage: Ensures full traceability of data transformations, aligning with governance 
policies in watsonx.data.

2.5.3  StreamSets in watsonx.data

StreamSets complements watsonx.data by enabling real-time data ingestion and continuous 
data integration from various streaming sources.

The following are the key considerations:

� Real-time ingestion: Facilitates streaming data into watsonx.data for near real-time 
analytics, critical for use cases like IoT, log analysis, and fraud detection.

� Data drift management: Automatically adapts to schema changes, reducing the need for 
manual intervention in dynamic environments.

� Observability and monitoring: Provides end-to-end visibility into data pipelines, helping 
identify bottlenecks and ensuring data reliability.

� Integration with hybrid sources: Supports seamless connectivity to Kafka, cloud 
storage, and on-premise systems, aligning with the watsonx.data hybrid cloud strategy.

� Data transformation in motion: Allows real-time enrichment and transformation of data 
before it lands in watsonx.data.

2.5.4  IBM watsonx.data benefits from this ecosystem

IBM watsonx.data integrates seamlessly with existing tools like Apache Spark, DataStage, 
and StreamSets. In this section we discuss the benefits from this ecosystem.

Data unification and accessibility
The following benefits for data unification and accessibility can be achieved:

� watsonx.data leverages open formats (for example, Parquet, Delta Lake) to store and 
process data, making it accessible to all three tools (Spark, DataStage, StreamSets). 

� It provides a single source of truth for AI and analytics workloads.

Scalability and performance
There are several scalability and performance benefits, such as:

� Apache Spark ensures scalable compute for large-scale analytics.
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� DataStage efficiently manages ETL workflows to prepare high-quality data.

� StreamSets delivers real-time data with low latency, keeping watsonx.data pipelines 
dynamic and up-to-date.

Governance and compliance
Key governance and compliance features include:

� Built-in governance features in watsonx.data, enhanced by DataStage's data quality and 
lineage capabilities, ensure compliance with regulatory requirements.

� StreamSet’s monitoring capabilities add transparency, aligning with the watsonx.data data 
governance framework.

Hybrid and open ecosystem
watsonx.data's open and hybrid design allows integration across cloud and on-premises 
environments, fully leveraging the strengths of Spark, DataStage, and StreamSets.

In a watsonx.data lakehouse architecture, the combined power of Apache Spark, 
IBM DataStage, and StreamSets ensures a robust data pipeline. Spark handles complex 
analytics and ML workloads, DataStage ensures ETL processes are efficient and governed, 
while StreamSets brings real-time capabilities. Together, they enable organizations to 
harness the full potential of watsonx.data for data-driven decision-making and AI innovation.

2.5.5  Synergy between watsonx.data and other watsonx platform components

IBM watsonx platform is designed to work cohesively, with each component strengthening the 
others. Here is how watsonx.data specifically synergizes with other components to improve 
the overall AI experience

Synergy between watsonx.data and watsonx.ai
IBM watsonx.data and watsonx.ai work together to provide a seamless pipeline for 
data-driven AI initiatives.  watsonx.data serves as a high-performance, scalable data 
lakehouse designed to store and process both structured and unstructured data. It optimizes 
data access for AI workloads by integrating tools for querying, data transformation, and 
analysis. This foundation enables watsonx.ai: a platform focused on building, deploying, and 
managing AI models, to leverage high-quality, well-prepared data for training and inferencing. 
Together, watsonx.data ensures that AI workflows powered by watsonx.ai are fueled by 
reliable and optimized data sources, reducing preprocessing bottlenecks and accelerating 
insights. By integrating these solutions, organizations can streamline the development of 
advanced AI applications with precision and efficiency, ensuring a robust end-to-end AI 
lifecycle.

Synergy between watsonx.data and watsonx.governance
The synergy between watsonx.data and watsonx.governance creates a framework of 
compliance, trust, and accountability for data management and AI deployment. watsonx.data 
provides the infrastructure for managing the vast amounts of data necessary for AI 
development.  watsonx.governance overlays this with a layer that enforces ethical AI 
principles (for example, fairness), monitors compliance, and manages risk. This combination 
helps assure data utilized in AI models adheres to organizational and regulatory standards, 
mitigating risks of bias or misuse. By connecting these tools, enterprises can scale their AI 
initiatives confidently, knowing that data and model governance are baked into their 
workflows. This integration fosters transparency and accountability, which are critical for 
building trust in AI systems.
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These synergies provide the backbone for scalable, trustworthy, and efficient AI operations, 
ensuring that businesses can innovate while maintaining compliance and reliability.
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Chapter 3.  Ingesting data into an open data 
lakehouse

The foundation of any data-driven organization is its ability to efficiently ingest data from 
diverse sources. IBM watsonx.data, which is a powerful open data lakehouse platform, 
streamlines this process by providing a scalable and secure environment for data ingestion. 
This approach simplifies data intake so that you can unlock the full potential of your data for 
advanced analytics and AI-powered insights.

This chapter covers how to ingest data into an open data lakehouse in watsonx.data and has 
the following sections:

� “Provisioning and configuring IBM watsonx.data” on page 30
� “Integrating external data sources: Federation in PrestoDB” on page 30
� “Techniques for ingesting data (structured or unstructured)” on page 35
� “Ingesting data” on page 36
� “Data pipeline considerations for open lakehouse” on page 41
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3.1  Provisioning and configuring IBM watsonx.data

To explore IBM watsonx.data on IBM Cloud, go to the cloud.ibm.com catalog and search for 
“watsonx.data”. Use the default options for a streamlined initial experience, as shown in 
Figure 3-1.

Figure 3-1   IBM watsonx.data on IBM Cloud

3.2  Integrating external data sources: Federation in PrestoDB

Several database systems are accessible both within and outside a virtual machine 
environment, such as IBM watsonx.data Presto, Db2, MySQL, and PostgreSQL. To access 
these databases externally, you need the server name, port number for the service, and the 
presto-key.jks file for connecting to Presto.

3.2.1  Connecting to IBM watsonx.data Presto

When connecting to the IBM watsonx.data Presto database, a connection certificate must be 
available on the client machine (typically your workstation) or another service like IBM Cloud 
Pak for Data. To obtain the certificate, complete the following steps:

1. To extract the certificate to your local file system, use the following command in a terminal 
window. Replace the port and region.services.cloud.techzone.com with the SSH values 
that are found in the TechZone reservation.

scp -P port 
watsonx@region.services.cloud.techzone.ibm.com:/certs/presto-key.jks 
/Users/myname/Downloads 

(You need to change this local path to your own path).
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2. Download the certificate from the Jupyter Notebook's Credentials notebook, as shown in 
Figure 3-2.

Figure 3-2   Downloading the certificate from the Jupyter Notebook's Credentials notebook

3. When connecting to the Presto engine, choose the PrestoDB driver. For local access, the 
following credentials are used:

– Hostname: localhost
– Port: 8443
– Username: ibmlhadmin
– Password: password
– Database: tpch
– SSL: True
– SSLTrustStorePath: /certs/presto-key.jks
– SSLTrustStorePassword: watsonx.data

Note: The IBM watsonx.data Presto database prioritizes secure communication. To 
achieve this goal, it relies on a client-side certificate for authentication. This certificate 
acts as a digital key that verifies your identity when connecting to the database. When 
using a Jupyter Notebook environment with IBM watsonx.data Presto, the certificate is 
available within a dedicated notebook that is named Credentials, as shown in 
Figure 3-2. This notebook contains links for downloading the necessary certificate files.
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4. In the following settings, replace the Hostname and Port placeholders with the values from 
your TechZone reservation.

Here are the database connection settings

– Hostname: region.services.cloud.techzone.ibm.com
– Port: port
– Username: ibmlhadmin
– Password: password
– Database: tpch

Set the following driver properties:

– SSL True 
– SSLTrustStorePath /mydownload/presto-key.jks 
– SSLTrustStorePassword watsonx.data 

5. The /mydownload/presto-key.jks value must be replaced with the location that you 
copied the key from in step 1 on page 30. When connecting to the Db2 engine, select the 
Db2 LUW driver. The Db2 server can be accessed on port 50000 inside the virtual 
machine by using the following credentials:

– Hostname: watsonxdata
– Port: 50000
– Username: db2inst1
– Password: db2inst1
– Database: gosales
– SSL: off

6. When accessing the database outside the virtual machine, you must change the host to 
region.services.cloud.techzone.ibm.com and the port number based on your TechZone 
reservation. All the other settings remain the same.

– Hostname: region.services.cloud.techzone.ibm.com
– Port: port
– Username: db2inst1
– Password: db2inst1
– Database: gosales
– SSL: off

3.2.2  PostgreSQL access

When connecting to the PostgreSQL engine, select the PostgreSQL driver. To connect to the 
PostgreSQL system, extract the admin password by using the cat /certs/passwords 
command when connected to the IBM watsonx.data system.

You can also retrieve the credentials by opening the Credentials notebook in the Jupyter 
Notebook service. When accessing the PostgreSQL database in the system, use the 
following settings.

� Hostname: ibm-lh-postgres

� Port: 5432

� Username: admin

� Password: The value that was extracted with the cat /certs/passwords command in the 
previous step

� Database: gosalesdw
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3.2.3  PostgreSQL external access

The following credentials are used for remote access.

� Hostname: region.services.cloud.techzone.com

� Port: port

� Username: admin

� Password: The value that was extracted that was extracted with the cat /certs/passwords 
command in the previous step

� Database name: gosalesdw

3.2.4  MySQL access

When connecting to the MySQL engine, select the MySQL driver by running the following 
command:

export POSTGRES_PASSWORD=$(docker exec ibm-lh-postgres printenv | grep 
POSTGRES_PASSWORD | sed 's/.*=//')
echo "Postgres Userid   : admin"
echo "Postgres Password : " $POSTGRES_PASSWORD
echo $POSTGRES_PASSWORD > /tmp/postgres.pw

3.2.5  MySQL internal access

When accessing the MySQL database in the system, use the following settings:

� Hostname: watsonxdata
� Port: 3306
� Username: root
� Password: password
� Database: gosalesdw
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Set allowPublicKeyRetrieval to True for the connection to work with dBeaver, as shown in 
Figure 3-3.

Figure 3-3   MySQL internal access

3.2.6  MySQL external access

The following credentials are used for remote access.

� Hostname: region.services.cloud.techzone.com
� Port: port
� Username: root
� Password: password
� Database name: gosalesdw

Set allowPublicKeyRetrieval to True for the connection to work with dBeaver, as shown in 
Figure 3-3.

After adding a database, wait a few moments before attempting access. The Presto server 
requires a brief startup period. To verify its readiness, run the check_presto command in a 
terminal window. Wait until it confirms that the service is ready.

When adding database engines to your IBM watsonx.data system, ensure that each has a 
unique display name. Although you might initially use the same name as the original 
database (for example, gosales for both Db2 and PostgreSQL), this approach can lead to 
conflicts later. For example, if you add the PostgreSQL database to the system, the display 
name cannot be the same. 

It might take a few minutes for the database contents to appear. Refresh the browser window 
if no changes are visible after this time.

Tip: You might want to differentiate databases with the same name by prefixing them with 
the database type. For example, db2_gosales for Db2 and pg_gosales for PostgreSQL.
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3.3  Techniques for ingesting data (structured or unstructured)

Data ingestion, the process of bringing your data into IBM watsonx.data, is simple and secure 
for the following reasons:

� Visual interface: The Ingest data tab in the Data manager page offers an interface for 
loading data into IBM watsonx.data.

� Flexible data sources: Choose between ingesting local files or remote data sources to 
create tables by using the Create table from file option.

� Automatic schema inference: You do not need to predefine the table schema because 
IBM watsonx.data intelligently discovers the structure of your data (schema) during the 
first query execution.

� Consistent data format: Help ensure that your data files are in the same format type with a 
consistent structure (schema) for a smooth ingestion process.

IBM watsonx.data auto-discovers the schema based on the source file being ingested:

� Presto is used as the engine for running your SQL-based queries. Presto is an 
open-source SQL query engine that can work with data in several different data sources. 
You can also use it to load and ingest huge amounts of data in IBM watsonx.data.

� Apache Iceberg is a robust table format that is designed for managing large, evolving data 
sets. Unlike traditional formats like Parquet or CSV, Iceberg offers advanced features such 
as data snapshots, schema evolution, and data compaction. These capabilities make it a 
powerful tool for maintaining and optimizing your data lakehouse. Also, Iceberg introduces 
ACID transactions to the data lakehouse, a previously unavailable feature that you can use 
to perform atomic updates and deletions on tables, which helps ensure data consistency 
and integrity.

� Hive Meta Store serves as a central repository for storing meta-data about Apache Hive 
tables. This meta-data includes the table schema, data locations, and other crucial 
information that is necessary for managing and querying data within the Hive ecosystem. 

For seamless data management, IBM watsonx.data uses the Hive Metastore as its 
back-end system, which enables the platform to maintain, manage, and catalog the 
meta-data that is associated with tables, like Hive itself. This integration helps ensure 
efficient data discovery and simplifies querying within IBM watsonx.data.

� Apache Spark is a powerful open-source, distributed processing system that is designed 
to handle big data workloads efficiently. Spark's efficient data processing capabilities 
make it a powerful tool for executing critical Iceberg table operations like updates, deletes, 
and merges, ensuring data integrity and consistency in data warehouses. Spark offers 
even more value beyond this specific use case:

– Data processing: Spark excels at data processing tasks like filtering and transforming 
raw data. Its procedural code capabilities enable efficient manipulation compared to 
pure SQL. You can process data with Spark and then store it in an S3-compatible 
object storage for later querying with Presto.

– Advanced analytics: Data in IBM watsonx.data, such as data from Db2 or other 
ingested sources, might be better suited for analysis by using Spark's procedural code 
rather than SQL. Spark's capabilities can unlock deeper insights.

– Flexible data ingestion: Spark provides a wide range of options for data ingestion, 
which include streaming data, data frames, Resilient Distributed Datasets (RDDs), and 
support for various data formats. This versatility simplifies integrating data from diverse 
sources.
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Each component in the IBM watsonx.data stack provides unique capabilities. In 
IBM watsonx.data, these different components work together in tandem to provide the best 
data management capability for your analytics workloads.

Here are some of the key requirements of the Ingestion tool:

� The target table must be an Iceberg format table.

� IBM Storage Ceph, IBM Cloud Object Storage, AWS S3, and MinIO object storage are 
supported.

� Parquet, CSV, JSON, ORC, and AVRO file formats are supported as source data files.

� The maximum limit for the cumulative size of files must be within 500 MB for local 
ingestion.

� Parquet files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� JSON files with complex nested objects and arrays are not previewed in the UI.

� Complex JSON files are ingested as arrays, which might hinder optimal data visualization 
and analysis.

� JSON files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� Keys within JSON files must be enclosed in quotation marks for proper parsing and 
interpretation.

� AVRO files exceeding 2 MB cannot be previewed, but they are ingested successfully.

� ORC files exceeding 2 MB cannot be previewed, but they are ingested successfully.

3.4  Ingesting data

To ingest data into IBM watsonx.data, you can use the intuitive user interface or the 
command-line interface (CLI) that is provided by the ibm-lh tool. With the user interface, you 
can easily upload data files, define schemas, and transform data as needed. Alternatively, the 
ibm-lh tool offers granular control over the ingestion process so that you can automate data 
pipelines and integrate with existing workflows. By suing these methods, you can seamlessly 
bring your data into IBM watsonx.data, where it can be transformed, analyzed, and used to 
drive valuable insights.

3.4.1  Loading or ingesting data through the CLI

IBM watsonx.data uses the ibm-lh tool for managing ingestion jobs. To initiate an ingestion 
job, install ibm-lh-client locally. This client provides the CL for interacting with the ibm-lh 
tool and triggering ingestion processes. For more information and instructions about installing 
the ibm-lh-client package and using the ibm-lh tool for ingestion, see Installing 
ibm-lh-client and Setting up the ibm-lh command-line utility.

The ibm-lh tool supports the following features:

� Auto-discovery of schema based on the source file or target table.

� Advanced table configuration options for the CSV files:

– Delimiter
– Header
– File encoding
– Line delimiter
– Escape characters
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� Ingestion of single, multiple files, or a single folder (no subfolders) of S3 and local Parquet 
files.

� Ingestion of single, multiple files, or a single folder (no subfolders) of S3 and local CSV 
files.

3.4.2  Configuring an S3 IBM Cloud Object Storage bucket

IBM watsonx.data uses an object storage bucket to store data and its associated metadata. 
During setup, you can choose between two options:

� Automatic Bucket Creation: IBM watsonx.data creates a bucket for you.

� Pre-Existing Bucket: You can specify a bucket that you already created.

Figure 3-4 illustrates using a pre-existing bucket that is named lh-xxx.

Figure 3-4   Configuring a S3 or an IBM Cloud Object Storage bucket
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3.4.3  Choosing the catalog

For this scenario, select Apache Iceberg, as shown in Figure 3-5.

Figure 3-5   Choosing the catalog

3.4.4  Choosing the query engine

In this scenario, choose Presto as the query engine, and use its default options, as shown in 
Figure 3-6 on page 39.
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Figure 3-6   Choosing the query engine

3.4.5  Data ingestion through Spark and Query by using Presto

For simplicity, assume that both buckets are within the same IBM Cloud Object Storage 
instance. However, these buckets can be in different IBM Cloud Object Storage instances or 
even on Amazon EMR S3 storage.

� lh-xxx: The bucket that you mapped while setting up the catalog-bucket in 3.4.2, 
“Configuring an S3 IBM Cloud Object Storage bucket” on page 37.

� lh-xxx-data: The bucket that contains the data sets to read from and create tables into 
the lakehouse.

To upload the test data to the designated bucket, see Getting started with Spark use case. 

Creating a database or schema in IBM watsonx.data
By using Spark, establish a new schema within the previously configured catalog. Then, 
create multiple tables within this schema and load them with the necessary data.

Data ingestion by using INSERT: Creating a simple table and inserting 
data 
Note the clause that uses iceberg. Iceberg is the table format that is specified, as shown in 
Figure 3-7.

Figure 3-7   Iceberg is the table format that is specified
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Data ingestion of the Parquet data: Creating a Parquet format table that 
is managed by the Iceberg table format
In this example, you use the Iceberg table format and Parquet as the data format.

Read data from the designated test bucket and write it back to the lakehouse bucket 
(lh-xxx-data in this example). 

Data ingestion of the CSV data: Creating a CSV format table that is 
managed by the Iceberg table format
Read a CSV file from the test bucket and create an Iceberg table by using the Create Table As 
(CTAS) statement, as shown in Figure 3-8. 

Figure 3-8   Creating a Parquet format table that is managed by the Iceberg table format

Querying the data from Presto
This view that is shown in Figure 3-9 presents all the tables that you created by using the 
Spark application within the associated catalog. These tables can now be queried through the 
IBM watsonx.data Query interface.

Figure 3-9   Querying the data from Presto
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3.4.6  Querying from the IBM watsonx.data Query Workspace

You can query tables from a stand-alone Presto CLI by running the following command:

./presto\
 --server <https://<watsonx.data_MetastoreHost:port> \
 --catalog iceberg_data \
 --schema default \
 --user ibmlhapikey_<your-username> \ 
 --password

Figure 3-10 shows the output of this query.

Figure 3-10   Output of this query

3.4.7  Querying from the Presto CLI

Once the data ingestion process is complete, you can confirm success by verifying the 
presence of both data files and their corresponding metadata files within the 
IBM watsonx.data catalog's associated bucket.

3.5  Data pipeline considerations for open lakehouse

IBM StreamSets infuses intelligent apps with the power of streaming data, and data that is 
streamed intelligently.

StreamSets provides real-time data ingestion at scale so that you can deploy reliable, smart 
streaming data pipelines across hybrid cloud environments at scale. StreamSets pipelines 
stream structured, semi-structured, and unstructured data from any source. StreamSets also 
automatically detects changes in data structures and schemas and sends alerts about them, 
so you can seamlessly adapt to changing business requirements with zero downtime.

These intelligent data pipelines also adapt to unexpected data structural shifts with 
drag-and-drop, pre-built processors to automatically identify and adapt to data drift. The net 
effect is to substantially enhance your real-time decision-making and reduce the risks that are 
associated with data flow across your organization.
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SingleStore with IBM® is a high-performance database that is designed to deliver 
millisecond-level insights on massive data sets. Its unique architecture and features make it 
an ideal foundation for intelligent applications:

� Unified data platform: The SingleStore Universal Storage engine seamlessly combines 
row-store and column-store technologies to enable efficient execution of both online 
transactional processing (OLTP) and online analytical processing (OLAP) workloads on a 
single platform. This approach eliminates the need for separate databases and complex 
ETL processes, which streamlines operations and reduces costs.

� Real-time data ingestion: SingleStore Pipelines offer high-speed data ingestion from 
various sources, including Kafka, S3, and HDFS. Combined with the core database 
engine, this approach helps ensure rapid query response times, even for complex queries 
against large data sets.

� Scalability and flexibility: SingleStore horizontal scalability and separation of storage and 
compute enable cost-effective performance optimization. Workspaces provide isolated 
compute environments for different workloads, helping to ensure optimal resource 
allocation and low-latency access to shared data. Also, SingleStore supports a wide range 
of data models, including relational, vector search, full-text search, time-series, geospatial, 
JSON, and BSON.

By using SingleStore powerful capabilities, organizations can unlock the full potential of their 
data, drive innovation, and gain a competitive edge.

3.5.1  IBM watsonx.data: Simplifying data for AI

IBM watsonx.data streamlines data management for AI applications in the following ways:

� Unifying data: Consolidating data from various sources into a single, unified view

� Optimizing performance: Enhancing data performance and reducing costs

� Enabling real-time insights: Integrating with tools like StreamSets and SingleStore for 
real-time data processing and analysis

� Powering AI: Preparing data for AI models and supporting deep learning

By simplifying data management and enabling real-time insights, IBM watsonx.data 
empowers organizations to harness the full potential of AI, as shown in Figure 3-11.

Figure 3-11   A real-time intelligent platform
42 Simplify Your AI Journey:  Hybrid, Open Data Lakehouse with IBM watsonx.data



3.5.2  DataStage ingestion of data into IBM watsonx.data

This section explores how to use IBM DataStage to seamlessly ingest data into 
IBM watsonx.data by highlighting the benefits of using the DataStage powerful capabilities for 
large-scale data transfers and streamlined access within your IBM watsonx.data environment.

Wide connectivity support
DataStage offers seamless data access from various sources, which include on-premises 
databases, cloud storage, SaaS applications, and more. Users can utilize over 60 native 
connectors or establish custom connections for enhanced flexibility.

Data can be loaded into a cloud storage bucket for initial staging. At the time of writing, data 
transfer to IBM watsonx.data requires a notebook script. However, a future-optimized 
connector will enable direct, native integration for efficient data loading.

Superior performance with parallel processing
DataStage uses parallel processing to ingest data faster. It can automatically or manually 
partition and repartition data flows for optimal performance. This approach efficiently 
distributes workload across resources by scaling to handle varying data volumes. By 
speeding up ingestion, DataStage reduces time to insight for faster analytics and 
decision-making.

Reducing costs while maximizing accessibility and throughput
Combining DataStage with IBM watsonx.data helps users cut data warehouse expenses. 
Cloud data warehouses can be expensive for storage and compute, especially with growing 
data and complex workloads. DataStage ingests data efficiently into IBM watsonx.data, and 
then uses the appropriate query engines as based on user needs. This approach centralizes 
data and optimizes workloads across engines and storage tiers, which minimizes data 
warehouse costs without sacrificing performance

Automatic detection of new files
DataStage automatically detects new data in your sources and seamlessly loads it into 
IBM watsonx.data. This approach eliminates manual effort and streamlines data processing, 
which enables faster access to insights.

3.5.3  DataStage and management of data within IBM watsonx.data

Once data is in IBM watsonx.data, DataStage can manage operational workloads or create 
new data pipelines.

Graphically design data pipelines
With DataStage, you can build ETL/ELT pipelines directly within IBM watsonx.data, which 
saves on egress costs. You can use more than 60 connectors and pre-built transformations in 
a drag-and-drop interface for 9x faster development compared to coding. You can switch 
between ETL and ELT modes seamlessly without rebuilding pipelines. You can use 
Apache Spark or Presto within IBM watsonx.data for diverse tasks like BI, reporting, or data 
science. 
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By combining DataStage and IBM watsonx.data, you gain the following benefits:

� Faster pipeline development: Build pipelines within IBM watsonx.data with minimal egress 
costs.

� Simplified workflow: Use a drag-and-drop interface for efficient pipeline creation.

� Flexibility: Switch between ETL and ELT modes.

� Powerful query engines: Use Spark or Presto for diverse data analysis needs.

Auto-responding to source schema changes
DataStage simplifies data pipeline management by automatically detecting and adapting to 
changes in source data schemas. This approach eliminates the need for manual adjustments, 
which saves time and effort. With automated schema evolution, users can deploy pipelines 
faster and focus on higher-value tasks.

Autoscaling to burst compute
DataStage is built to handle varying data volumes, making it ideal for businesses with 
seasonal or unpredictable data loads. By dynamically scaling resources, DataStage helps 
ensure smooth operations during peak periods, such as holiday seasons for retail companies. 
This proactive approach enables organizations to efficiently manage data and extract 
insights, regardless of the data volume.
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Chapter 4. Protecting data

This chapter delves into the core aspects of protecting data within IBM watsonx.data. It 
begins with an overview of users and groups as they relate to the lakehouse architecture, and 
examining how these classifications create a foundation for managing access. Next, this 
chapter explores defining roles and responsibilities, where you assign the appropriate 
permissions to various job functions, such as data scientists, analysts, and this chapter 
describes establishing access control lists (ACLs), which are a critical mechanism for 
enforcing security policies at a granular level. ACLs specify which users and groups have the 
right to access particular resources, which protect data assets from unauthorized access and 
modifications.

This chapter provides a comprehensive guide to securing data in an open lakehouse 
environment, which enables organizations to harness their data’s potential with confidence 
while adhering to the highest standards of data protection and compliance.

This chapter has the following sections: 

� “Users and groups in an open lakehouse” on page 46
� “Defining roles and responsibilities” on page 50
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4.1  Users and groups in an open lakehouse

In IBM watsonx.data, managing users and groups effectively is fundamental to establishing a 
secure and collaborative open lakehouse environment. As data becomes increasingly 
accessible to diverse teams within organizations, defining user roles and organizing them into 
groups becomes essential for efficient access control and compliance. In IBM watsonx.data, 
users represent individual team members, such as data scientists, engineers, and analysts, 
each with specific roles and permissions that are tailored to their responsibilities. Grouping 
these users based on their functional roles enables administrators to streamline permissions 
management, which helps ensure that data is accessible only to those users who require it 
while maintaining security standards.

IBM watsonx.data facilitates this organization by enabling administrators to assign 
permissions and privileges to both users and groups. This approach simplifies the process of 
managing data access in large teams, and enables the enforcement of consistent security 
practices across the organization. By using user and group structures, IBM watsonx.data 
empowers organizations to protect their data assets, foster collaboration, and ensure 
compliance within the open lakehouse framework.

4.1.1  Overview of user and group management in open lakehouses

User and group management in a lakehouse environment involves defining roles, policies, 
and permissions that dictate who can access data and under what conditions. Effective user 
and group management allows organizations to accomplish the following goals:

� Control data access: Ensure that users access only the data that they are permitted to 
see.

� Simplify permission assignments: Use groups and roles to efficiently assign permissions 
to multiple users.

� Maintain auditability: Track and monitor data access for regulatory and compliance 
requirements.

� Enable scalability: Implement access controls that support large and diverse teams 
without manual overhead.

With lakehouses, where data might be semi-structured or unstructured and stored across 
distributed systems, maintaining this level of control and visibility requires advanced 
strategies, which include the use of attribute-based access control (ABAC), dynamic groups, 
and multi-layered access controls.

4.1.2  Business use cases for user and group management

This section delves into compelling business use cases for user and group management in 
IBM watsonx.data, and showcases how it can empower organizations to achieve data 
security, streamline access control, and foster efficient collaboration within their data analysis 
and AI workflows.

Attribute-based access control
ABAC is an advanced access control model that considers attributes that are associated with 
users, groups, and resources. Rather than assigning static permissions, ABAC enables 
dynamic, context-driven access based on attributes like department, project, geographic 
region, or time of day. ABAC is useful in lakehouse environments, where access requirements 
are complex and might vary significantly across the organization.
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Business use case: Regulated financial services
A financial services company managing a large lakehouse for customer and transaction data 
must comply with regulatory requirements. Certain data sets are sensitive and need restricted 
access. For example, customer financial records are accessible only to users who work in 
specific regions and departments (for example, North American finance employees) and who 
have completed the required training.

Using ABAC, the company defines attributes such as Department, Region, and Training 
Status and creates policies that enforce these attributes. Access to sensitive data is granted 
only if all conditions are met, which provides flexibility in assigning access without creating an 
excessive number of roles.

Dynamic group membership
Dynamic group membership enables the automatic assignment of users to groups based on 
specific attributes or conditions. Unlike static groups, where users are manually added or 
removed, dynamic groups are updated in real time, which helps ensure that access rights 
reflect the status of each user.

Business use case: Dynamic grouping for departmental access
A large retail company that uses a lakehouse for operational analytics has different 
departments that require varied access to the data. For example, marketing needs access to 
customer analytics, and logistics requires supply chain data. Because employees move 
between departments or take on new roles, their access rights must change dynamically.

By implementing dynamic groups based on attributes such as Department, Job Title, and 
Location, the retail company can automatically update group memberships and permissions. 
When an employee changes departments, their group memberships and their access to data 
are updated without manual intervention.

Hierarchical access models and group inheritance
Hierarchical access models use a parent-child structure to organize users and groups. This 
approach is useful in lakehouses where there are nested levels of data sensitivity or user 
roles, and it enables administrators to apply access controls to a top-level group that cascade 
to subgroups.

Business use case: Multinational corporation with regional data access
A multinational corporation managing customer data in a lakehouse requires regional access 
control for different legal jurisdictions. Although regional teams need access to data relevant 
to their area, global executives require access across all regions.

By using a hierarchical model, the corporation sets up a parent group for global data access 
and creates regional child groups under it. Permissions that are assigned to the global group 
are inherited by regional teams, but regional policies restrict their access to specific regional 
data. This hierarchical structure helps ensure consistent access while supporting compliance 
with local regulations.
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4.1.3  Implementing user and group management in open lakehouses

This section describes strategies for implementing effective access controls in open 
lakehouses to help ensure data security, collaboration, and governance.

Best practices for defining user attributes
When setting up ABAC and dynamic groups in a lakehouse, carefully selected attributes are 
essential for reliable and scalable access control. Here are some recommended attributes:

� Role or Job Title: Specifies the user’s role within the organization.
� Department or Business Unit: Controls access by organizational divisions.
� Project ID: Links users to specific project-based access requirements.
� Location: Segments access by region or jurisdiction.

Using standardized attribute names and values across systems helps ensure consistency 
and enables cross-functional access control.

Building policies for ABAC
For effective ABAC implementation, establish clear policies that reflect your organization’s 
requirements. Policies should have the following characteristics:

� Atomic: Ensure that each policy addresses one specific condition (for example, 
Department == “Finance”).

� Composable: Combine multiple policies to create complex access rules.

� Auditable: Make policies easy to review and update as requirements change.

Managing group membership and hierarchical structures
Dynamic and hierarchical group structures reduce administrative complexity and help enable 
the lakehouse to scale as new users join, projects evolve, or regulations change. Automated 
tools for creating and maintaining these groups help ensure that group memberships reflect 
real-time user statuses and requirements.

Challenges and considerations
While user and group management offers many benefits, it also poses challenges in complex 
environments. Consider the following items:

� Data sensitivity and compliance: Implement strict policies for sensitive data to comply with 
industry regulations (for example, GDPR and HIPAA).

� Scalability: Ensure that attribute-based policies are scalable and can handle high volumes 
of users and attributes.

� Policy management: Regularly audit and refine policies to maintain security as the 
organization evolves.
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4.1.4  Overview of user and group capabilities in IBM watsonx.data

IBM watsonx.data offers extensive user and group management capabilities to enable 
administrators to control access based on roles, groups, and permissions that are tailored to 
different stages in the data pipeline. Here are some of the key features:

� Role-based access control (RBAC): Enables administrators to assign roles based on job 
functions to help ensure that users can access only the data and tools that they need.

� Granular permissions: Offers fine-grained control over specific actions, such as data 
ingestion, transformation, querying, and model deployment.

� Attribute-based access control (ABAC): Enables flexible, context-based access policies 
that can dynamically adjust permissions.

� Group management: Supports dynamic and hierarchical groups to simplify the 
management of users with similar permissions and streamline access control at scale.

IBM watsonx.data user and group management capabilities are designed to handle the 
diverse needs of data lakehouse environments by supporting both technical and 
business-focused roles.

4.1.5  Implementing group-based access in IBM watsonx.data

This section describes the benefits of managing access by user groups, which include 
improved data security, streamlined collaboration, and simplified administration. This 
approach helps ensure that your team members have the appropriate level of access to use 
IBM watsonx.data effectively.

Configuring roles and groups
IBM watsonx.data enables administrators to configure roles that can be assigned to specific 
groups. These roles encapsulate the permissions that are needed for each function, which 
streamlines access management across different user categories. When configuring roles, 
perform the following actions:

� Define role requirements: Outline the specific permissions that are needed for each group 
to ensure that the permissions align with user responsibilities.

� Assign users to groups: Place users in pre-configured groups that match their roles and 
responsibilities for quick onboarding and access updates.

� Monitor group memberships: Regularly review group memberships to ensure that users 
retain only the necessary permissions based on their current roles.

Integrating attribute-based access control
In environments where roles and permissions must change dynamically, IBM watsonx.data 
supports ABAC to accommodate context-specific access requirements. Attributes such as job 
title, department, or project ID can be used to accomplish the following tasks:

� Dynamically update access: Adjust permissions automatically when a user’s status or role 
changes.

� Enhance security: Limit access to sensitive data by defining attributes that are required for 
specific data sets.

� Streamline administration: Reduce manual role assignments, especially for temporary or 
project-based access needs.
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Audit and compliance
For regulatory and internal compliance, IBM watsonx.data provides audit capabilities that 
enable administrators to track access patterns and permissions changes. Here are some key 
features:

� Access logging: Log all access events for auditing purposes.

� Regular audits: Schedule audits to review and adjust group permissions as needed.

� Policy-based alerts: Set up alerts for unauthorized access attempts to help ensure that 
administrators are informed of potential security issues.

In Figure 4-1, you can create access groups, or give access to a trusted profile, user, or 
service ID access to any of the target and specific permissions as depicted.

Figure 4-1   Implementing group-based policies and permissions

4.2  Defining roles and responsibilities

In a robust data lakehouse environment, defining roles and responsibilities is crucial for 
managing access to data and helping ensure security, compliance, and efficient workflows. 
This section presents the architectural design of Role-Level Access Control (RLAC) within 
IBM watsonx.data. It outlines the primary role types - platform roles, instance roles, and 
resource-level roles - and explains how they can be effectively mapped and managed. 
Furthermore, it discusses the integration of Single Sign-On (SSO) with these roles to facilitate 
seamless user access across the platform.

By establishing clear roles and responsibilities, organizations can grant users precise access 
to the tools and data that they need, which minimizes risk and optimizes operational 
efficiency.

4.2.1  The architectural design for RLAC

RLAC in IBM watsonx.data is designed to manage access at different levels within the 
platform so that administrators can define specific roles and assign them to users or groups. 
This architecture is built to handle complex access needs by combining platform roles for 
administrative access, instance roles for managing individual data environments, and 
resource-level roles for data-specific permissions.

The architectural framework of RLAC in IBM watsonx.data typically includes the following 
components:

� Platform layer: At the top level, platform roles are defined for administrative users who 
need oversight and control over the entire IBM watsonx environment. 
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� These roles include permissions for configuring the system, managing user accounts, and 
handling high-level tasks that impact the whole platform.

� Instance layer: The instance layer includes roles that are specific to individual data 
instances or projects within the lakehouse. Instance roles enable granular control of 
access to particular environments without impacting the broader platform.

� Resource layer: At the finest level, resource-level roles control access to specific data 
sets, tables, or resources within an instance. These roles are essential for managing 
access to sensitive data or defining permissions for specific data sets within the 
lakehouse.

By using these three layers in tandem, IBM watsonx.data enables organizations to implement 
a structured, scalable access control model that meets both security and operational needs. 
This layered approach to role management simplifies access assignments, minimizes 
administrative overhead, and enhances data governance.

4.2.2  Platform roles and instance roles in IBM watsonx.data

IBM watsonx.data provides two primary role types: platform roles and instance roles. They 
govern access at different scopes within the lakehouse environment.

Platform roles
Platform roles in IBM watsonx.data grant permissions that apply across the entire platform. 
These roles provide high-level administrative control over users, configurations, and settings. 
Platform roles are typically assigned to IT administrators or platform owners who are 
responsible for managing IBM watsonx.data.

Here are the platform roles:

� Administrator role: Grants comprehensive administrative access so that users can 
configure and manage resources across the platform. Common use cases include 
managing users and defining security policies.

� Editor role: Provides permissions to modify resources but not manage user roles or 
platform-wide configurations.

� Viewer role: Enables read-only access, which is useful for monitoring and auditing 
activities.

� Operator role: Focused on operational management, such as managing jobs and 
workflows.

These roles are typically managed through IBM Cloud Identity and Access Management 
(IAM) tools, which streamline role assignment and enforce compliance requirements across 
the platform

Instance roles
Instance roles operate at the scope of a specific IBM watsonx.data deployment or resource, 
which provide more granular control over data and compute resources.

Here are the instance roles:

� Metastore Admin: Full access to metadata repositories and configuration, which is critical 
for administrators managing catalogs in services like Db2 or Netezza.

� Metastore Viewer: Read-only access to metadata, which is ideal for users who need 
insights without modification capabilities.
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� Data Access role: Designed primarily for service-to-service integrations, such as enabling 
data profiling and analytics workflows.

Instance roles help ensure that users interact only with the specific resources that are 
necessary for their tasks, which enhance data security and operational efficiency.

Table 4-1 shows the instance roles privileges.

Table 4-1   Instance roles privileges

4.2.3  Resource-level roles and permissions

Resource-level roles in IBM watsonx.data provide the most granular control over access so 
that administrators can define permissions on individual data sets, tables, and resources. 
These roles are essential for protecting sensitive data within the lakehouse and helping 
ensure that users access only data that is relevant to their role.

Key resource-level roles
Resource-level roles control access to individual data resources within an instance. They are 
crucial for enforcing data privacy and helping ensure that sensitive data is accessible only to 
authorized users. Here are the key resource-level roles:

� Resource Owner: Has full control over a specific resource, such as a table or data set. The 
resource owner can define who has access to the resource, assign permissions, and 
manage the lifecycle of the data.

� Resource Editor: Can modify data within the resource, which makes it suitable for users 
who need to update data sets, transform data, or manage content. Data engineers and 
data developers often take on this role for specific data sets.

� Resource Viewer: Provides read-only access to data within the resource. This role is ideal 
for analysts, data scientists, or business users who need access to data for reporting or 
analysis without modifying it.

Permissions for resource-level roles
Resource-level roles are assigned with specific permissions that govern what actions users 
can take on data resources. Here are the key permissions for resource-level roles:

Create Presto (Java) Admin User

Restart the internal HMS X  

Unregister any storage X

Unregister any DB 
connection

X

Activate cataloged buckets 
(restart HMS)

X

Register and unregister 
own storage

X X

Register and unregister 
own DB connection

X X

Access the metastore x

Read access to HMS API X
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� Read Permission: Enables users to view data within the resource.

� Write Permission: Enables users to update data, make modifications, and manage data 
transformations.

� Execute Permission: Grants the ability to run jobs or workflows that are associated with 
the resource. This permission is commonly used in ETL processes or data 
transformations.

� Manage Permissions: Enables users to set permissions for other users. This permission is 
suitable for resource owners or administrators.

By combining resource-level roles with platform and instance roles, IBM watsonx.data 
enables administrators to create a highly flexible access control model, which helps ensure 
that users have the appropriate level of access based on their responsibilities while 
safeguarding sensitive data from unauthorized access.

4.2.4  Best practices for resource-level role management

To maximize the effectiveness of resource-level roles, consider the following best practices:

� Adopt the Principle of Least Privilege: Grant users only the minimum level of access that 
they need to perform their roles. This approach minimizes the risk of unauthorized data 
access and helps maintain data security.

� Use Dynamic Groups for Resource Assignment: Where possible, assign resource roles 
that are based on dynamic groups or attributes (for example, department or role), allowing 
permissions to adjust automatically as users' responsibilities change.

� Regularly Audit Access Permissions: Periodically review resource-level permissions to 
ensure that access levels are appropriate and in compliance with security policies.

� Monitor Sensitive Data Access: For highly sensitive resources, configure alerts to monitor 
access patterns and identify potential security risks. This best practice is especially 
relevant in regulated industries where data access must be auditable.

4.3  Establishing ACLs 

In IBM watsonx.data, access control lists (ACLs) are used to manage and restrict access to 
the data in object store and in federated databases, which helps ensure that only authorized 
users or services can interact with the data. ACLs are critical for maintaining security and 
compliance in a data environment by specifying who can read, write, or modify data, and by 
controlling administrative tasks.

The typical types of ACLs for data access in IBM watsonx.data include role-based ACL and 
policy-based ACL.

4.3.1  Role-based ACL

Roles define sets of permissions that can be assigned to users and user groups. This 
approach simplifies the management of permissions by grouping common access 
requirements under a role. Here are some examples of these roles:

� Catalog Admin: Full access to create, modify, and delete data (schemas and tables) in a 
particular catalog, and grant or revoke permissions for other users and groups.

� Storage Writer: Read/write access on the bucket in a particular object store.
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� Milvus Viewer: Read-only access on the collections and partitions in a particular Milvus 
service. 

For more information about permissions on predefined roles, see the Managing roles and 
privileges. 

4.3.2  Policy-based ACL

Policies define a set of rules that can be applied to user and group access. The rules enable 
more granular access control and automation of access management. Usually, a policy 
contains the following items:

� Subject: The data objects that the access is being requested for.

� Rules: Define the behavior of the access control. It contains the following items:

– Type: Usually allow or deny. Some advanced types such as data masking and row-level 
filtering are supported by external policy engines.

– Principal: The entity (user or group) that is requesting access.

– Action: The operation that is requested (select, insert, delete, and others).

In Figure 4-2, the policy contains a single rule to grant “select” and “insert” permissions on the 
table store_returns under the schema tpcds_10gb in the catalog sample_data to the user 
liuljun@ibm.com.

Figure 4-2   Create an access control policy: Add a rule

IBM watsonx.data supports access control policies for several types of resources. The data 
objects and the corresponding rules are different. Table 4-2 describes them in detail.

Table 4-2   Access control policies

Resource Data object Action

Catalog Schema/Table/Column Select, Insert, Update, 
Alter, and others
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For more information about how to manage the access control policies, see Managing data 
policy rules.

Storage Folder/File or regular expression for the S3 
path (s3://<bucket-name>/<object-key>)

Read, Write, or Delete

Milvus service Database/Collection/Partition ListDatabase, 
ListCollection, 
ListPartition, Search, and 
others

Resource Data object Action
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4.3.3  Best practices to manage ACLs

To manage role-based ACLs and policy-based ACLs effectively in IBM watsonx.data and 
avoid overlaps, it is a best practice to establish a clear strategy that uses each method for its 
strengths. Here are some best practices.

Defining roles first
Roles should define broad access categories based on a user or group's function within the 
organization. Once these roles are established, policy-based ACLs can be used to fine-tune 
access for specific use cases or granular control.

Consider a typical example: Managing access to AWS S3 storage. An organization might 
define three user groups:

� Admins: Manage the storage lifecycle.
� Analysts: Require read-only access to files.
� Data Engineers: Need write access to upload and update files.

To implement these groups, assign roles to them:

Storage Admin: Granted to the Admin group.
Storage Reader: Granted to the Analyst group.
Storage Writer: Granted to the Data Engineer group.

If a specific analyst, such as Tom, needs temporary write access to a file, a policy-based ACL 
can be created to grant him that permission for a specific period. This approach allows for 
flexibility without compromising overall security. Importantly, Tom retains his usual read-only 
access to other files in the storage.

Using role hierarchies for simplified management 
IBM watsonx.data uses RBAC with role hierarchies. This approach simplifies permission 
management by enabling higher-level roles to inherit permissions from lower-level roles, 
which reduce redundancy. Here is the role hierarchy:

� Storage Reader: The lowest level, which grants read-only access.

� Storage Writer: Inherits Storage Reader permissions and adds write access.

� Storage Admin: Inherits Storage Writer permissions and gains full control, which includes 
unregistering storage, updating properties, and managing access.

Platform-level roles also inherit from resource-level roles. For example, a platform admin 
inherits “view” and “remove” permissions for all resources, so they can manage the entire 
platform.

Avoiding redundant policies for common access
To streamline access management and reduce complexity, avoid creating multiple 
overlapping policies for common access needs. Redundant policies can lead to unintended 
consequences, such as conflicting permissions or difficulties in auditing and troubleshooting.

For example, consider a scenario where three policies are created:

� Policy A: Grants read access to the entire “example-bucket.
� Policy B: Grants read access to the “example-bucket/reports/*” folder.
� Policy C: Grants read access to the “example-bucket/finance/*” folder.

In this case, Policies B and C overlap with Policy A, which creates unnecessary complexity.
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Best practice: Consolidating policies
To simplify management, consolidate overlapping policies into a single, unified policy. For 
example, you could create a policy, Policy D, that grants read access to both the 
example-bucket/reports/ and example-bucket/finance/ folders. This streamlined approach 
reduces the risk of errors, improves security, and makes it easier to manage access 
permissions.

4.3.4  Summary

IBM watsonx.data empowers secure and organized data access through Access Control Lists 
(ACLs). ACLs manage permissions for object stores and federated databases by using two 
primary methods:

� Role-based ACLs: Assign broad permissions through predefined roles like Catalog Admin, 
Storage Writer, and Milvus Viewer. This method simplifies access control.

� Policy-based ACLs: Offer granular control by defining specific rules for subjects (users or 
groups), actions (read, write, and so forth), and principals (who have permissions).

Best practices for managing ACLs include the following ones:

� Defining roles before applying policies.
� Using role hierarchies to streamline permission management.
� Avoiding redundant or overlapping policies to minimize complexity and conflicts.
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Chapter 5. Querying and manipulating data 
and leveraging persona-specific 
engines

A data lakehouse is a unified data platform that seamlessly integrates the strengths of data 
warehouses and data lakes. As a high-performance SQL query engine, Presto enables rapid, 
interactive analytics on large-scale datasets. Its versatile capabilities extend to diverse use 
cases, such as real-time ad-hoc queries and complex ETL processes involving terabytes of 
data.

This chapter has the following sections:

� “Using PrestoDB or Prestissimo engine for adhoc queries” on page 60
� “Leveraging Apache Spark engine for data engineering” on page 67
� “Execute important queries using the power of traditional RDBMS with shared open 

lakehouse formats” on page 81
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5.1  Using PrestoDB or Prestissimo engine for adhoc queries 

Presto is a distributed SQL query engine designed to efficiently process massive datasets 
across diverse data sources. It empowers users to perform interactive, ad-hoc analytics on 
data residing in various systems, including Hive, AWS S3, Hadoop, Cassandra, relational 
databases, NoSQL databases, and proprietary data stores. By unifying access to data from 
multiple sources, Presto enables organizations to conduct comprehensive analytics across 
their entire data landscape. 

Presto's distributed SQL engine architecture leverages SQL, the industry-standard language 
for data manipulation. This ensures broad accessibility and compatibility with existing SQL 
skills and tools. By adhering to the ANSI SQL standard, Presto supports a wide range of SQL 
commands, including SELECT, UPDATE, DELETE, INSERT, and WHERE, enabling 
seamless integration with diverse data sources and BI tools.

Presto’s SQL foundation ensures broad accessibility and rapid adoption. Its SQL compatibility 
with other databases allows for seamless migration of existing SQL queries and BI tools, 
requiring minimal to no modifications. 

Presto's adaptable, flexible, and extensible architecture enables seamless integration with a 
wide range of data sources. Its plugin mechanism allows you to connect to diverse data 
systems, from traditional databases to modern data lakes and warehouses. A single Presto 
query can effortlessly combine data from multiple sources, empowering organizations to 
conduct comprehensive analytics across their entire data ecosystem. The vibrant Presto 
community provides a rich ecosystem of connectors, further expanding the platform's 
capabilities.

You can see the high-level architecture diagram in Figure 5-1.

Figure 5-1   Presto high-level architecture diagram
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5.1.1  Presto technical concepts

Your Presto cluster sits between your BI tools (such as Superset, Tableau and Looker) and 
your data sources. Presto queries across many different data sources and provides that data 
back to your BI tool for your organization.

A full Presto installation includes a coordinator and multiple workers. Queries are submitted 
from a client such as the Presto CLI to the coordinator. The coordinator parses, analyzes and 
plans the query execution, and then distributes the processing to the workers.

Figure 5-2 shows the Presto cluster coordinator structure.

Figure 5-2   Presto cluster coordinator structure 

Server types
There are three types of Presto servers: resource manager, coordinators, and workers. The 
following section explains the difference between them.

Resource manager
The Presto resource manager is the server that aggregates data from all coordinators and 
workers and constructs a global view of the cluster. A Presto installation with a disaggregated 
coordinator needs a resource manager. Clusters support multiple resource managers, each 
acting as a primary.

Coordinators and workers communicate with resource managers using a thrift API.

Coordinator
The Presto coordinator is the server that is responsible for parsing statements, planning 
queries, and managing Presto worker nodes. It is the "brain" of a Presto installation and is 
also the node to which a client connects to submit statements for execution. Every Presto 
installation must have a Presto coordinator alongside one or more Presto workers. For 
development or testing purposes, a single instance of Presto can be configured to perform 
both roles.
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The coordinator keeps track of the activity on each worker and coordinates the execution of a 
query. The coordinator creates a logical model of a query involving a series of stages which is 
then translated into a series of connected tasks running on a cluster of Presto workers.

Coordinators communicate with workers and clients using a REST API.

Worker
After ensuring that an appropriate number of resources are available, the coordinator 
delegates these tasks to the worker nodes. Worker nodes process their tasks in parallel, 
using the relevant connector to access the underlying data source.

The connector used can vary across workers, depending on how the query was optimized 
and what data sources need to be accessed. As the worker nodes process their tasks, the 
coordinator continually monitors them using heartbeat signals. Once workers are done, the 
result of the tasks is sent back to the coordinator.

The coordinator can then assign workers new tasks from any remaining query stages. Once 
all stages are complete, the coordinator compiles the results from each stage into the final 
form required by the original query.

Pipelining the query stages across the network in this way ensures that any unnecessary I/O 
overhead is avoided. Additionally, all processing occurs in-memory, and intermediate data at 
the task level is stored in a buffer cache.

All of these features ensure that Presto remains extremely performant, even at petabyte 
sizes.

5.1.2  Data sources

There are four types of Presto data sources that you need in your deployment (Figure 5-3).

Figure 5-3   Presto cluster between BI tools and different types of data sources 
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Connector 
A connector adapts Presto to a data source such as Hive or a relational database. You can 
think of a connector the same way you think of a driver for a database. It is an implementation 
of Presto's SPI which allows Presto to interact with a resource using a standard API.

Presto contains several built-in connectors: a connector for JMX, a System connector which 
provides access to built-in system tables, a Hive connector, and a TPCH connector designed 
to serve TPC-H benchmark data. Many third-party developers have contributed connectors 
so that Presto can access data in a variety of data sources.

Every catalog is associated with a specific connector. If you examine a catalog configuration 
file, you will see that each contains a mandatory property connector.name which is used by 
the catalog manager to create a connector for a given catalog. It is possible to have more than 
one catalog use the same connector to access two different instances of a similar database. 
For example, if you have two Hive clusters, you can configure two catalogs in a single Presto 
cluster that both use the Hive connector, allowing you to query data from both Hive clusters 
(even within the same SQL query).

Catalog
A Presto catalog includes schemas and refers to a data source using a connector. For 
example, you can configure a JMX catalog to provide access to JMX information via the JMX 
connector. When you run a SQL statement in Presto, you are running it against one or more 
catalogs. Other examples of catalogs include the Hive catalog to connect to a Hive data 
source.

When addressing a table in Presto, the fully-qualified table name is always rooted in a 
catalog. For example, a fully-qualified table name of hive.test_data.test would refer to the test 
table in the test_data schema in the hive catalog.

Catalogs are defined in properties files stored in the Presto configuration directory.

Schema
Schemas are a way to organize tables. Together, a catalog and schema define a set of tables 
that can be queried. When accessing Hive or a relational database such as MySQL with 
Presto, a schema translates to the same concept in the target database. Other types of 
connectors may choose to organize tables into schemas in a way that makes sense for the 
underlying data source.

Table
A table is a set of unordered rows which are organized into named columns with types. This is 
the same as in any relational database. The mapping from source data to tables is defined by 
the connector.

Figure 5-4 on page 64 shows a Presto cluster between coordinator and workers data 
structure.
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Figure 5-4   Presto cluster between coordinator and workers data structure 

5.1.3  Executing a query

If your query joins together many large tables, it may need multiple stages to execute, 
aggregating tables together. After each execution stage, there may be intermediate data sets. 
Unlike distributed query engines such as Hive that were designed to persist intermediate 
results to disk, Presto saves time by executing queries in the memory of the worker machines. 
It performs operations on intermediate datasets there, instead of persisting them to disk.

With Presto, data can reside in many different places and Presto performs the executions in 
memory across your workers, moving data between workers as needed. This process avoids 
the need to write and read from disk between stages; the result: faster query execution time. 

The key pieces of the query execution model are as follows: 

Statement
Presto executes ANSI-compatible SQL statements. When the Presto documentation refers to 
a statement, it is referring to statements as defined in the ANSI SQL standard which consist 
of clauses, expressions, and predicates.

Some readers might be curious why this section lists separate concepts for statements and 
queries. This is necessary because, in Presto, statements simply refer to the textual 
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representation of a SQL statement. When a statement is executed, Presto creates a query 
along with a query plan that is then distributed across a series of Presto workers.

Query
When Presto parses a statement, it converts it into a query and creates a distributed query 
plan which is then realized as a series of interconnected stages running on Presto workers. 
When you retrieve information about a query in Presto, you receive a snapshot of every 
component that is involved in producing a result set in response to a statement.

The difference between a statement and a query is simple. A statement can be thought of as 
the SQL text that is passed to Presto, while a query refers to the configuration and 
components instantiated to execute that statement. A query encompasses stages, tasks, 
splits, connectors, and other components and data sources working in concert to produce a 
result.

Stage
When Presto executes a query, it does so by breaking up the execution into a hierarchy of 
stages. For example, if Presto needs to aggregate data from one billion rows stored in Hive, it 
does so by creating a root stage to aggregate the output of several other stages, all of which 
are designed to implement different sections of a distributed query plan.

The hierarchy of stages that comprises a query resembles a tree. Every query has a root 
stage which is responsible for aggregating the output from other stages. Stages are what the 
coordinator uses to model a distributed query plan, but stages themselves do not run on 
Presto workers.

Task
As mentioned in “Stage” on page 65, stages model a particular section of a distributed query 
plan, but stages themselves do not execute on Presto workers. To understand how a stage is 
executed, you'll need to understand that a stage is implemented as a series of tasks 
distributed over a network of Presto workers.

Tasks are the work horse in the Presto architecture. A distributed query plan is deconstructed 
into a series of stages which are then translated to tasks which then act upon or process 
splits. A Presto task has inputs and outputs, and just as a stage can be executed in parallel by 
a series of tasks, a task is executing in parallel with a series of drivers.

Split
Tasks operate on splits which are sections of a larger data set. Stages at the lowest level of a 
distributed query plan retrieve data via splits from connectors, and intermediate stages at a 
higher level of a distributed query plan retrieve data from other stages.

When Presto is scheduling a query, the coordinator will query a connector for a list of all splits 
that are available for a table. The coordinator keeps track of which machines are running 
which tasks and what splits are being processed by which tasks.

Driver
Tasks contain one or more parallel drivers. Drivers act upon data and combine operators to 
produce output that is then aggregated by a task and delivered to another task in another 
stage. A driver is a sequence of operator instances. You can think of a driver as a physical set 
of operators in memory. It is the lowest level of parallelism in the Presto architecture. A driver 
has one input and one output.
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Operator
An operator consumes, transforms, and produces data. For example, a table scan fetches 
data from a connector and produces data that can be consumed by other operators, and a 
filter operator consumes data and produces a subset by applying a predicate over the input 
data.

Exchange
Exchanges transfer data between Presto nodes for different stages of a query. Tasks write 
data into an output buffer and consume data from other tasks using an exchange client.

5.1.4  Prestissimo (C++ version of Presto)

Presto C++, sometimes referred to by the development name Prestissimo, is a drop-in 
replacement for Presto workers written in C++ and based on the Velox library. It implements 
the same RESTful endpoints as Java workers using the Proxygen C++ HTTP framework. 
Because communication with the Java coordinator and across workers is only done using the 
REST endpoints, Presto C++ does not use JNI and does not require a JVM on worker nodes.

Presto aims to be the top performing system for data lakes. To achieve this goal, the Presto 
community is moving the Presto evaluation engine from the native Java-based 
implementation to a new implementation written in C++ using Velox.

By moving the evaluation engine to a library, the intent is to enable the Presto community to 
focus on more features and better integration with table formats and other data warehousing 
systems.

Supported use cases
The following are supported use cases:

� Only specific connectors are supported in the Presto C++ evaluation engine.

� Hive connector for reads and writes, including CTAS, are supported.

� Iceberg tables are supported only for reads.

� Iceberg connector supports both V1 and V2 tables, including tables with deleted files.

� TPCH connector, with tpch.naming=standard catalog property.

Prestissimo general limitations
The C++ evaluation engine has a number of limitations:

� Not all built-in functions are implemented in C++. Attempting to use unimplemented 
functions results in a query failure.

� Not all built-in types are implemented in C++. Attempting to use unimplemented types will 
result in a query failure.

� All basic and structured types in Data Types are supported, except for CHAR, TIME, and 
TIME WITH TIMEZONE. These are subsumed by VARCHAR, TIMESTAMP and 
TIMESTAMPWITH TIMEZONE.

� Presto C++ only supports unlimited length VARCHAR, and does not honor the length n in 
varchar[n].

� The following types are not supported: IPADDRESS, IPPREFIX, UUID, 
KHYPERLOGLOG, P4HYPERLOGLOG, QDIGEST, TDIGEST, GEOMETRY, BINGTILE.
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� Certain parts of the plugin SPI are not used by the C++ evaluation engine. In particular, 
C++ workers will not load any plugin in the plugins directory, and certain plugin types are 
either partially or completely unsupported.

� PageSourceProvider, RecordSetProvider, and PageSinkProvider do not work in the C++ 
evaluation engine.

� User-supplied functions, types, parametric types and block encodings are not supported.

� The event listener plugin does not work at the split level.

� User-defined functions do not work in the same way.

� Memory management works differently in the C++ evaluation engine. In particular:

� The OOM killer is not supported.

� The reserved pool is not supported.

� In general, queries may use more memory than they are allowed to through memory 
arbitration.

� In C++ based Presto, reduce_agg is not permitted to return null in either the 
inputFunctionor the combineFunction. In Presto (Java), this is permitted but undefined 
behavior.

5.2  Leveraging Apache Spark engine for data engineering 

You can use watsonx.data to seamlessly integrate with Spark engine to achieve the following 
use cases: 

� Ingesting large volumes of data into watsonx.data tables. 

� Table maintenance operations to enhance performance.

� Complex analytics workloads that are difficult to represent as queries.

5.2.1  Creating and customizing internal Spark engine inside watsonx.data

Now let us delve deeper into Native Spark. We will explore the following steps:

1. You first create a native spark engine inside your watsonx.data instance as shown in 
Figure 5-5 on page 68. Click Add Engine.

Note: For practical guidance on how to use Presto refer to 3.2, “Integrating external data 
sources: Federation in PrestoDB” on page 30 and 8.3.1, “Gathering the required 
information in IBM watsonx.data” on page 119.
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Figure 5-5   Add new native Spark engine to watsonx.data

2. Select the Type as Spark. Give it a name.

3. Select the default Spark runtime version. Currently watsonx.data supports two versions - 
Spark 3.3 and Spark 3.4.

4. Associate a System bucket. This bucket is the "instance home" bucket, where application 
logs, spark-events and other associated information are stored.

5. Choose a Node type. You can choose a node type (Small, Medium or Large). See 
Figure 5-6 on page 69.
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Figure 5-6   Internal Spark engine details

6. Choose the number of nodes. This is the number of nodes that you want reserved (up to 
20 nodes) for your Spark engine. See Figure 5-7.

Figure 5-7   Number of node configurations

7. The billing for watsonx.data is based on fixed base charge plus the number of RUs 
(Resource Units) consumed. To understand how the billing is done for the Spark engine, 
refer to the About tab at https://cloud.ibm.com/watsonxdata.

8. Next, you can then choose to associate one or more existing catalogs with the engine. In 
Figure 5-8 on page 70 we paired two catalogs with a single Spark engine. This 
demonstrates that a Spark engine, like a Presto engine or Milvus service, can be paused 
when inactive. Resume can take up to 10 minutes.
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Figure 5-8   Spark engine Start and Stop

9. In the next step, we will associate a bucket with a catalog. We will use an IBM Cloud 
Object Storage bucket as an example. If you do not already have one, you can create one 
at this link. We will be using a newly created bucket named "my-bucket." See Figure 5-9 
on page 71.
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Figure 5-9   Create an IBM Object Storage instance

10.Next, you need to test the connection. For IBM Cloud Object storage, choose a direct 
endpoint. In the example shown in Figure 5-10 on page 72, we use a public endpoint.
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Figure 5-10   Add the credentials

11.Next, you add the storage. See Figure 5-11 on page 73.
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Figure 5-11   Add the storage

12.Add the associated catalog. This is what was associated with the Native Spark engine in 
the first section of this chapter. See Figure 5-12 on page 74.
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Figure 5-12   Manage associations

5.2.2  Explore the tabs in the Spark engine

We will explore the following tabs in the Spark engine:

Details tab
The Details tab may seem complex, but it is pre-configured with many settings to simplify 
setup. You will still need to specify a few essential configurations for the metastore, which we'll 
discuss later. 

Access Control tab
You can invite your team members to the IBM Cloud account and grant admin or user access 
to the instance (See Figure 5-13 on page 75). To see what privileges you want to grant them, 
refer to this link. 
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Figure 5-13   Access control at Spark engine

Applications tab
This section will initially appear empty as no applications have yet been submitted. See 
Figure 5-14.

Figure 5-14   Applications tab

Upon submission of applications, additional details such as status, runtime, and timestamps 
will be displayed. See Figure 5-15 on page 76.
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Figure 5-15   Application status tab

Figure 5-16   Spark History Server

You can monitor and analyze running applications using the Spark UI, which offers a similar 
interface to Spark History. Click on an application ID in the Applications tab to access 
detailed information about that specific application.

5.2.3  Submitting the application to Native Spark engine

Here we demonstrate how to submit applications using the REST API. 

Spark application details
This scenario demonstrates a basic application that creates a database, establishes an 
Iceberg table, populates it with data, and then retrieves data from the same table. 
Example 5-1 shows the REST API usage for this scenario.

Example 5-1   REST API usage on Notebook

from pyspark.sql import SparkSession
def init_spark():
  spark = 
SparkSession.builder.appName("demo-iceberg-test").enableHiveSupport().getOrCreate(
)
  sc = spark.sparkContext

Tip: To locate a particular application within Spark History, utilize its distinctive 
Spark-generated application ID, as indicated in Figure 5-16.
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  return spark,sc
def main():
  spark,sc = init_spark()
  spark.sql("create database if not exists mm_may_catalog.mayday_db1 LOCATION 
's3a://my-bucket/'")
  spark.sql("show databases from my_catalog").show()
  spark.sql("create table if not exists my_catalog.db1.testTable1(id INTEGER, name 
VARCHAR(10), age INTEGER, salary DECIMAL(10, 2)) using iceberg").show()
  spark.sql("insert into my_catalog.db1.testTable1 values(4,'John 
black',23,3400.00),(5,'Peter black',30,5500.00),(6,'George Black',35,6500.00)")
  spark.sql("select * from my_catalog.db1.testTable1").show()
if __name__ == '__main__':
  main()

1. First, upload Spark application to a bucket. See Figure 5-17.

Figure 5-17   Upload Spark application to a bucket

2. To submit applications you need a token. To generate the token, you can use the IBM 
Cloud IAM CLI or use the REST API as shown in Figure 5-18.

Figure 5-18   Generate an IAM token

3. Example 5-2 shows the REST API to submit application.

Example 5-2   REST API to submit application

instance_id=spark788
crn=crn:v1:bluemix:public:lakehouse:us-south:a/3422342342e:3232-nsd-a83s-abcd-sdf7
sadf::
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curl -v  -X POST 
https://us-south.lakehouse.cloud.ibm.com/lakehouse/api/v2/spark_engines/$instance_
id/applications -H "AuthInstanceID: $crn"  --header "Authorization: Bearer $token" 
-H "content-type: application/json"  -d @submit.json

4. In the curl (Example 5-2 on page 77), the submit.json application payload is shown in 
Figure 5-19.

Figure 5-19   Application payload

Figure 5-20   Generate value for specific acccount

Tip:The value for spark.hadoop.wxd.cas.apiKey should be in the format Basic base64.

For example, we generated the value as shown in Figure 5-20 on page 78. Replace 
myemailid@ibm.com with your id. And replace the password with your own 
apikeyibmlhapikey_ibmcloudid:apikey).

Tip:The user submitting the application needs to have MetastoreAccess permission for 
Spark applications that need to use metastore. Use IAM policies to add the access as 
shown in Figure 5-21.
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Figure 5-21   Access policy edit

5. Once you submit the application, you get an id and an initial state. You can switch to 
Applications tab of the Spark engine or use another API to track the state of the 
application. 

You also need this Application ID to debug and search for the logs, as we will show later.

{"id":"8ac12670-8fef-4c67-b2ea-b7bd0d5529f2","state":"accepted"}

6. You can confirm that you can iceberg "style" of data and metadata folders got created.
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Figure 5-22   Iceberg data in Object Storage

7. For any Spark application, you may need to examine logs, including those from your 
application code (for example, show(), print()), as well as the Spark executor and driver 
logs. For more information, see Debug the Spark application.

Figure 5-23   Application logs

Tip: You can type the following in the filter box of the home instance bucket of your Spark 
engine spark/spark788/logs/8ac12670, which is of the format 
spark/<engineID>/logs/<first-few-characters-instance-crn>. See Figure 5-23.
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5.3  Execute important queries using the power of traditional 
RDBMS with shared open lakehouse formats 

As organizations increasingly embrace the flexibility and scalability of lakehouse architectures 
- fusing the schema-on-read philosophy of data lakes with the performance characteristics of 
data warehouses - one challenge often emerges: how to preserve the established benefits of 
traditional relational systems. Longstanding RDBMS platforms have earned their place in 
enterprise environments by providing unparalleled transactional consistency, robust 
optimization, and universally understood access methods via SQL. Rather than discarding 
these hard-won strengths, watsonx.data intelligently integrates them into the evolving data 
ecosystem, ensuring that modern data architectures gain the reliability, performance, and 
user-friendliness traditionally associated with relational databases.

This integration is not about forcing a strict schema on all data sources, nor about replicating 
legacy infrastructure within a new paradigm. Instead, watsonx.data applies the core principles 
and best practices honed over decades of RDBMS evolution and extends them to open, 
columnar file formats, distributed storage environments, and hybrid cloud infrastructures. The 
result is a solution that provides end-to-end trustworthiness from ingestion to query execution 
without sacrificing openness or scalability.

5.3.1  ACID guarantees transactional reliability

In data-intensive enterprises, the importance of data correctness cannot be overstated. 
Transactional reliability underpins critical operations, from processing financial trades to 
updating inventory counts and handling personal health information. A single corrupted 
record or partial update can ripple through downstream analytics, misinform decision-makers, 
violate compliance standards, or damage the organization's reputation.

Relational databases have long offered robust transactional support by adhering to ACID 
principles, as defined below:

� Atomicity: Each transaction is treated as an indivisible unit; it either completes fully or not 
at all.

� Consistency: All data written adheres to predefined rules, maintaining referential integrity 
and validity.

� Isolation: Transactions run concurrently without interfering with each other's intermediate 
states.

� Durability: Completed transactions are permanently recorded, ensuring that committed 
changes persist even after system failures.

These properties created a trustworthy environment for mission-critical systems and provided 
a bedrock of reliability that organizations came to rely on.

IBM watsonx.data carries these transactional semantics into environments where data may 
reside in a combination of object stores, on-premises file systems, or distributed cloud 
storage-often using open file formats like Parquet, ORC, or Delta Lake. Implementing ACID in 
such a heterogeneous ecosystem involves careful orchestration of metadata operations, 
versioning, and concurrency control across large, possibly partitioned datasets.

The platform ensures that data transformations, such as batch ingestion, schema evolutions, 
incremental updates, or data masking, happen in an all-or-nothing manner, just as they would 
in a traditional RDBMS. Thus, watsonx.data preserves the consistency and trustworthiness of 
data, even as it spans multiple file-based storage layers. Organizations gain the confidence 
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that their analytics and reporting pipelines are grounded in a stable and reliable foundation, 
reducing the risk of erroneous insights and regulatory non-compliance.

5.3.2  Advanced query optimization

Optimizing queries is as much an art as it is a science in the database world. Traditional 
RDBMS platforms have refined their optimization engines over decades, employing a deep 
understanding of data distribution, indexing structures, join algorithms, and CPU and memory 
utilization patterns. These optimizations allow complex analytical workloads-like intricate joins 
between large tables, multi-level aggregations, and subqueries to execute within practical 
time frames.

RDBMS query optimizers rely on comprehensive metadata and statistics about the 
underlying data. They analyze the sizes of tables, distribution of values, existing indexes, and 
cost models to determine the most efficient execution plan. Whether scanning a massive fact 
table, leveraging a sorted index, or pushing filters down closer to the data, these systems 
have become adept at minimizing resource consumption and delivering interactive response 
times for queries that would otherwise be unwieldy.

Migrating these capabilities into a lakehouse context requires extending the optimization logic 
beyond traditional row-store tables and B-trees. IBM watsonx.data works with columnar 
formats like Parquet, ORC, and Delta, which store data in a way that naturally supports 
predicate push-down, column pruning, and partition elimination. The system leverages 
metadata embedded within these formats, including min/max statistics per column and file 
partitions, to minimize I/O overhead and reduce the query's data footprint.

Additionally, watsonx.data's optimizer is designed to understand the cost of operations in 
distributed environments, where network traffic and storage access patterns matter as much 
as CPU usage. By dynamically evaluating which subsets of data are relevant and which 
operations can be parallelized or pruned, the engine can execute complex queries against 
immense datasets with surprising speed. This empowers analysts to explore data 
interactively, iterate on hypotheses, and refine models without suffering from long turnaround 
times or hefty data movement costs.

5.3.3  Standard SQL support

Despite the proliferation of new programming languages, frameworks, and query paradigms, 
SQL endures as the default language of choice for analytics. Its declarative syntax, 
standardized grammar, and broad support across numerous tools and platforms make it 
accessible to a vast audience-business analysts, data scientists, developers, and even 
managers with technical acumen. SQL's universality and expressiveness have kept it at the 
center of data querying and manipulation.

In classical relational settings, SQL acts as a powerful yet relatively simple interface that 
abstracts away the complexity of underlying data structures. Users do not need to write 
intricate, low-level code to retrieve data or perform computations; they simply specify what 
they want, and the system figures out how to deliver it efficiently. This abstraction layer fuels 
productivity, reduces the learning curve, and fosters a self-service culture where more people 
can interact directly with organizational data.

The challenge in modern lakehouse environments is that data is no longer confined to 
well-defined relational schemas. Instead, it may exist as nested JSON fields, denormalized 
tables, or raw files sprinkled across various storage layers. IBM watsonx.data bridges this gap 
by allowing users to treat these open-format files as if they were relational tables. A virtualized 
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metadata layer provides logical schemas for these files, allowing familiar SQL constructs like 
SELECT, JOIN, GROUP BY, and WINDOW functions to operate seamlessly across them.

By providing a uniform SQL layer over both structured warehouse data and semi-structured 
lakehouse data, watsonx.data drastically simplifies the analytical workflow. Teams do not 
need to master new query languages or develop custom parsers to access and manipulate 
data in Parquet or ORC files. Instead, they can rely on their existing SQL knowledge, reusing 
queries, tools, and dashboards that were originally designed for relational systems. This not 
only boosts productivity but also broadens the user base that can leverage the data 
ecosystem, encouraging data-driven insights to permeate the entire organization.

5.3.4  Embracing lakehouse architecture and open formats

As enterprises strive to unify their data strategies, the lakehouse architecture has emerged as 
a key paradigm that combines the strengths of traditional data warehouses-such as 
structured schemas, performance optimizations, and reliability-with the flexibility, scalability, 
and cost efficiencies characteristic of data lakes. This hybrid approach addresses 
longstanding tensions in the data landscape, allowing organizations to benefit from the 
openness and extensibility of data lakes without sacrificing the governance, consistent 
performance, and analytical sophistication of a warehouse.

In practice, embracing the lakehouse model means handling data in a way that is 
format-agnostic, interoperable across multiple platforms, and conducive to evolving analytical 
requirements. IBM watsonx.data operationalizes these principles by providing a platform that 
not only leverages open, widely adopted storage formats and metadata frameworks but also 
integrates governance and performance enhancements. The result is a single, cohesive data 
environment that adapts to changing workloads, heterogeneous data types, and evolving 
regulatory landscapes-all while maintaining the transactional guarantees and robust analytics 
capabilities that enterprises have come to rely on.

Open-source storage formats
A pivotal aspect of the lakehouse paradigm is the use of open, standardized storage formats. 
Gone are the days when organizations were locked into proprietary schemas or tied to a 
single vendor's file formats. Instead, open columnar formats like Parquet, ORC, and open 
table formats such as Delta Lake have become industry-standard choices for storing large 
analytical datasets. IBM watsonx.data's embrace of these formats unlocks a range of 
benefits, including:

� Efficient compression and encoding: High-performance columnar formats like Parquet and 
ORC are designed to store data by columns rather than by rows. This structure allows for 
more effective compression, especially if columns exhibit low cardinality or repetitive 
patterns. Consequently, organizations can drastically reduce storage costs while 
simultaneously lowering I/O overhead. In cloud environments, this translates directly to 
cost efficiencies, as less data is read and transferred over the network.

� Schema evolution: Rigid, pre-defined schemas can stifle innovation and complicate data 
integration. Open formats support schema-on-read and schema evolution, enabling 
organizations to gradually adjust table structures as new attributes emerge, old attributes 
become obsolete, or analytical needs evolve. This flexibility reduces the need for costly 
and time-consuming migrations or reingestion processes.

� Predicate push-down and data pruning: Intelligent push-down of filters and pruning of 
unnecessary data segments allow query engines to skip irrelevant files and columns. By 
filtering data at the source, systems can minimize the amount of data scanned and 
returned during queries, delivering faster results and more efficient use of compute 
resources.
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By natively supporting these open formats, watsonx.data ensures that enterprises are not 
dependent on vendor-specific platforms or confined to a single ecosystem. This 
vendor-neutral stance not only future-proofs data investments but also enables businesses to 
mix and match best-in-class tools-ranging from data science notebooks and BI dashboards to 
machine learning frameworks and data cataloging services without introducing compatibility 
roadblocks. Over time, organizations can seamlessly adopt emerging technologies, move 
workloads between clouds, and integrate with evolving data stacks while retaining the storage 
foundation that open formats provide.

Metadata management and governance
As data environments grow in scale and complexity, a critical challenge emerges - ensuring 
that analysts, engineers, and data stewards can find, understand, trust, and appropriately 
secure the data they need. Without robust metadata management and governance 
frameworks, even the most flexible lakehouse can become difficult to navigate, resulting in 
data swamps where valuable insights are submerged beneath an ocean of unstructured files.

IBM watsonx.data addresses these challenges by providing a comprehensive metadata layer 
that elevates raw files into discoverable, well-defined, and governable entities. Key 
capabilities include:

� Centralized data catalogs and discovery: Analysts can search and browse data catalogs 
to quickly locate relevant datasets. Metadata attributes, including schema definitions, data 
lineage, data quality scores, business glossary terms, and data owners, help users identify 
the most suitable data for their analyses. This fosters a culture of self-service analytics, 
where teams can find what they need without constantly relying on IT gatekeepers.

� Consistent schema definitions and versioning: By imposing logical schemas atop raw files, 
watsonx.data ensures that all users refer to the same, consistent representation of data. 
Centralized schema repositories maintain historical versions, enabling analysts to time 
travel to older schemas if needed. This reduces confusion, accelerates onboarding for 
new team members, and supports stable reporting over long periods.

� Data lineage and provenance tracking: Complex analytical pipelines often involve multiple 
transformations, joins, and enrichments. Without lineage tracking, it can be nearly 
impossible to reconstruct how a particular metric was derived or to assess the impact of a 
schema change on downstream analytics. IBM watsonx.data's metadata layer captures 
lineage information, providing transparency and auditability. This not only aids 
troubleshooting and regression analysis but also strengthens compliance efforts by 
documenting data transformations and validating data sources.

� Security, compliance, and access controls: Regulatory mandates like GDPR, HIPAA, or 
CCPA often require stringent controls over who can see which data and under what 
conditions. IBM watsonx.data integrates with enterprise security frameworks, enabling 
role-based access control, encryption at rest and in transit, and data masking. Sensitive 
information-like personal identifiers-can be masked or tokenized to protect privacy. These 
governance measures ensure that analytics remain safe, compliant, and trustworthy, while 
still allowing analysts to work effectively with the data.

Performance enhancements for analytical queries
A central tenet of the lakehouse philosophy is delivering data warehouse-like performance on 
top of flexible, open storage. This balance demands more than just fast hardware: it requires 
a deep integration between query engines, metadata systems, and the underlying file formats 
to deliver sub-second or interactive query speeds over massive, ever-growing datasets.

IBM watsonx.data fully embraces the performance-oriented features available in lakehouse 
architectures, including:
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� Partitioning and clustering: By logically grouping related data-such as by date, region, 
product category, or other attributes-organizations can localize queries to specific 
partitions, reducing the volume of data scanned. Clustering similar data together further 
improves efficiency by enhancing data locality and compression ratios.

� Z-ordering and data skipping: Advanced file layout techniques like Z-ordering rearrange 
data to maximize locality across multiple dimensions. This technique can dramatically 
reduce the search space for queries filtering on multiple columns. Additionally, file-level 
statistics and indexes enable skipping entire files that do not match query predicates, 
further trimming query execution times.

� Indexing and summary statistics: Just like traditional databases, lakehouse systems can 
maintain indexing structures and summary statistics on column distributions. These help 
the query optimizer quickly identify which segments of data are most relevant, leading to 
more efficient scans and joins. Instead of sifting through all data, watsonx.data can 
pinpoint only the necessary subsets, delivering near-interactive query responses.

� Caching and adaptive execution: Frequently accessed data can be cached in memory or 
on faster storage tiers to accelerate subsequent queries. Adaptive execution strategies 
allow watsonx.data to modify query plans on the fly, reacting to real-time performance 
metrics and data distribution patterns. The system can split large tasks, redistribute 
workload, or change join strategies mid-query to achieve optimal performance.

By leveraging these performance enhancements, watsonx.data ensures that analytics on 
even colossal datasets remain responsive and cost-effective. Analysts gain the ability to 
iterate rapidly over complex queries, data scientists can train machine learning models at 
scale, and business users enjoy timely insights without waiting hours for batch processing 
jobs to complete
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Chapter 6. Establishing data governance

IBM watsonx.data offers a comprehensive data governance solution. This powerful platform 
empowers organizations to ensure data security, compliance, and usability. 

In this chapter we discuss the following:

� “Governing your data: The role of catalog, metadata, and policies” on page 88
� “Best practices for implementing an effective data governance framework” on page 88
� “Integration with IBM Knowledge Catalog (IKC)” on page 90
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6.1  Governing your data: The role of catalog, metadata, and 
policies

The concepts of catalog, metadata, and policies are integral to data governance and 
management within the watsonx platform. 

� Catalog: In watsonx, the catalog acts as a centralized hub for managing and organizing 
data assets. It provides a unified view of all available data, regardless of its source or 
location. This allows users to easily discover, understand, and access the data they need 
for their AI and analytics projects. The catalog not only lists data assets but also provides 
tools for collaboration and knowledge sharing, enabling teams to work together more 
effectively.   

� Metadata: Metadata plays a crucial role in providing context and meaning to the data 
within the watsonx catalog. It includes information such as data lineage, data quality 
metrics, business terms, and technical definitions. It is important to implement active 
metadata management, which involves automatically capturing and updating metadata to 
ensure its accuracy and completeness. This enables users to understand the 
characteristics of the data, its origin, and how it can be used, fostering trust and 
confidence in data-driven insights. 

IBM watsonx.data has a central storage for information about its data, called the Metadata 
Service. This lets different tools work together seamlessly because they all understand the 
data the same way.

� Policies: Policies in watsonx define the rules and guidelines for how data can be accessed 
and used. They help ensure data privacy, security, and compliance with regulatory 
requirements. It is important to implement granular policy controls, which allow 
organizations to define policies at various levels, from individual data assets to entire 
catalogs. This enables organizations to enforce data governance policies consistently and 
effectively across their data landscape.

Together, the catalog, metadata, and policies in watsonx provide a comprehensive framework 
for governing and managing data assets. They enable organizations to unlock the full 
potential of their data while ensuring trust, transparency, and compliance. 

6.2  Best practices for implementing an effective data 
governance framework 

In this section we discuss some best practices for implementing an effective data governance 
framework in watsonx.data.

6.2.1  Cataloging 

The following are best practices for cataloging:

� Start with a clear data inventory: Identify all your data sources and assets, including 
structured, unstructured, and semi-structured data. This comprehensive view will help 
prioritize governance efforts.

� Leverage IBM Knowledge Catalog (IKC) integration: IBM watsonx.data integrates 
seamlessly with IKC, enabling a centralized catalog across your entire data ecosystem. 
This promotes consistency and simplifies data discovery. 6.3, “Integration with IBM 
Knowledge Catalog (IKC)” on page 90 discusses this integration in depth.
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� Standardize data organization: Implement a consistent naming convention and 
classification system for data assets within the catalog. This improves searchability and 
understanding for all users. 

� Utilize business glossaries: Define clear and concise business terms within the catalog to 
ensure everyone interprets data attributes the same way.

6.2.2  Metadata management

The following are best practices for metadata management:

� Adopt a metadata governance strategy: Define clear ownership and responsibilities for 
capturing, validating, and maintaining metadata. This ensures its accuracy and 
consistency.

� Automate metadata capture: Utilize watsonx.data's automated metadata extraction 
capabilities to minimize manual efforts and reduce errors.

� Enrich metadata with business context: Go beyond technical data definitions. Include 
lineage information, quality metrics, and usage guidelines to provide a richer 
understanding of the data.

� Integrate metadata with AI workflows: Use high-quality metadata to improve the accuracy 
and effectiveness of your AI models and analytics initiatives.

6.2.3  Policy management

The following are best practices for policy management:

� Align policies with business objectives: Develop data governance policies that support 
your organization's goals and regulatory requirements.

� Implement role-based access control (RBAC): Define clear access levels and permissions 
for users based on their roles and responsibilities. This ensures data security and 
minimizes the risk of unauthorized access.

� Leverage data usage tracking: Utilize IBM watsonx.data's data lineage and usage tracking 
features to monitor how data is being accessed and used. This helps identify potential 
compliance issues and promotes responsible data practices.

� Promote data governance awareness: Educate and train users on your data governance 
policies and procedures. This fosters a culture of data responsibility within your 
organization.

6.2.4  General best practices

It is important to start small and scale gradually. You can begin by implementing data 
governance on a pilot project and gradually expand it across your organization. This allows for 
adjustments and refinements based on user feedback.

Involve key stakeholders from different departments in the data governance process. Their 
input helps ensure that the framework meets the needs of all users.

Regularly assess the effectiveness of your data governance framework and make 
adjustments as needed. This ensures it remains aligned with your evolving data landscape 
and business needs.
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6.3  Integration with IBM Knowledge Catalog (IKC)

The integration between IBM watsonx.data and IBM Knowledge Catalog enables 
comprehensive data governance through several aspects such as Data linage, Semantic 
enrichment, and Data Privacy protection, etc. In this chapter, we focus on how IKC's data 
protection rules play a critical role in ensuring data privacy as part of the broader data 
governance framework. 

6.3.1  Architecture and core components of the integration

IBM Knowledge Catalog servers as an enterprise data governance solution, managing the 
metadata for data sources across the enterprise. IBM watsonx.data acts as one of the data 
sources to support deep policy enforcement - dynamically enforce data protection whenever 
user access data. Figure 6-1 shows the architecture of the IBM Knowledge Catalog 
integration.

Figure 6-1   Architecture of the integration

In the architecture diagram above, there are several key components involved in the 
integration. 

� Access Management Endpoints: This component is used to facilitate IKC access to the 
metadata and data of watsonx.data and allow the service token of IKC to bypass the 
built-in access controls, enabling profiling of raw data and identifying the correct data 
classes for columns.

� Query Audit and Governance: This component is a Presto engine plugin. When users 
attempt to access data from watsonx.data, it triggers corresponding data governance 
requests to IKC and protect the sensitive data using data masking or row level filtering 
based on the predefined data protection rules in IKC.

� Policy Enforcement Point: This component is used to evaluate the IKC data protection 
rules using IKC SDKs and cache the policy evaluation results for repeating access.
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6.3.2  Implementation of the integration

Before data governance can be fully implemented, several preparatory steps must be 
completed in the IBM Knowledge Catalog. Typically, a role called Data Steward, is 
responsible on overseeing data governance, importing assets and defining policies/rules to 
ensure privacy protection. 

The Data Steward will need to create a project first, establish a connection to watsonx.data, 
import data assets, and run metadata enrichment jobs to define business terms, ensuring a 
common understanding of data assets across the organization. Data Stewards will also need 
to run data profiling to categorize data assets and associate each column of data to different 
data classes. 

The data protection policies and rules can be defined on top of business terms and data 
classes to protect sensitive data, ensuring compliance with regulatory requirements and 
organizational policies. Figure 6-2 on page 92 illustrates the general process of this practice.
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Figure 6-2   The general process to prepare for integration in IKC

Once these preparations are complete, data protection policies and rules are automatically 
applied when users query data in IBM watsonx.data. For example, if a column contains 
personally identifiable information (PII) such as Social Security Numbers (SSNs), 
watsonx.data will automatically transform the data using masking techniques like redaction or 
obfuscation, complying with data protection rules. This ensures data privacy is maintained 
during data access.

6.3.3  Summary and references

In summary, the integration of IBM Knowledge Catalog with IBM watsonx.data facilitates the 
organization and understanding of data, implements privacy data protection such as data 
redaction, obfuscation, etc. This integration ensures that sensitive data is protected while 
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making data accessible for AI and data-driven initiatives. It provides a strong foundation for 
enhanced security, compliance, and data governance practices.

For more information, visit IBM watsonx.data documentation. 
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Chapter 7. Establishing a data catalog

This chapter describes the steps to establish a data catalog with IBM watsonx.data so that 
you can do achieve the following goals:

� Unify data sources: Consolidate data from across your organization, regardless of format 
or location.

� Navigate with ease: Discover relevant data sets quickly by using intuitive search and 
metadata management.

� Boost data governance: Help ensure data quality and security by using robust access 
controls and lineage tracking.

This chapter has the following sections:

� “Introduction” on page 96

� “Data discovery: Automating data classification and tagging for better organization” on 
page 96

� “Data profiling” on page 97

� “Data cataloging: Building a comprehensive data catalog for findability” on page 97

� “Using advanced search functions to find specific data assets” on page 98

� “Case study: Improving data discoverability for faster decision-making in the retail sector” 
on page 98
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7.1  Introduction

A data catalog is foundational to any data-driven organization. It acts as a centralized and 
structured repository for documenting, managing, and categorizing data assets across the 
enterprise. It is not a passive storage system, but a dynamic resource that facilitates access, 
discovery, and governance of data. In IBM watsonx.data, the catalog is designed to handle 
vast amounts of data, and it is a critical component of the organization’s data governance 
strategy. It provides tools for managing metadata to help ensure compliance, enable efficient 
collaboration, and maintain data security. This catalog is crucial in mitigating data silos and 
helping ensure that stakeholders, whether technical or business-oriented, have the right tools 
to access and make sense of the data.

The core function of the IBM watsonx.data catalog is the management and enrichment of 
metadata, which includes detailed information about the origins, transformations, and lineage 
of each data asset. This metadata captures technical details, such as data types and formats, 
and the broader context of how the data was collected, processed, and altered. By using this 
metadata, users can understand how data flows through the organization, which provides 
transparency about its lifecycle. Whether the data originates from internal business 
operations or external sources, IBM watsonx.data helps ensure that every data set is 
thoroughly documented, which enables the tracing of its lineage to identify potential issues 
such as data integrity or trustworthiness.

Moreover, the catalog is equipped with robust data governance and security features. It 
supports role-based access control (RBAC), which enables the organization to enforce 
permissions that restrict access to sensitive information. For example, personal identifiable 
information (PII) can be masked or anonymized to meet compliance standards, which help 
ensure that privacy regulations are respected. Furthermore, IBM watsonx.data promotes 
collaboration by enabling users to tag data sets with business-context annotations so that 
others can understand the data sets' relevance in specific use cases. This capability 
enhances data sharing across departments, which helps stakeholders interpret data more 
efficiently and makes the catalog more valuable as a comprehensive and centralized 
resource.

7.2  Data discovery: Automating data classification and tagging 
for better organization

In IBM watsonx.data, automated data discovery represents a significant innovation that 
transforms raw, unorganized data sets into structured, valuable assets. Using sophisticated 
machine learning models, IBM watsonx.data automatically analyzes data based on its 
attributes and content, and applies classifications and tags that mirror the expertise of human 
data stewards. This approach eliminates the need for manual tagging, which speeds up the 
data preparation process and helps ensure that data is always organized and accessible.

The process of data classification within IBM watsonx.data involves advanced entity 
recognition models, which are tailored to identify relevant entities like dates, locations, or 
product IDs in text-based data sets. The system also uses natural language processing 
(NLP) models to categorize textual data based on its content. For example, NLP can classify 
customer feedback as “positive” or “negative” or identify and label entities within a news 
article. This flexible, multi-model approach makes IBM watsonx.data suitable for a diverse 
range of data sets, whether structured (for example, relational databases) or unstructured (for 
example, text documents or multimedia content).
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Once these classifications are identified, IBM watsonx.data enables users to define 
customized tagging rules based on business-specific needs. These rules can consider 
various data set properties, such as column names, statistical distributions, or data value 
ranges. The tagging system dynamically applies these rules to incoming data sets, which 
help ensure that newly ingested data is automatically categorized and tagged according to 
predefined guidelines. This level of automation increases efficiency and reduces the manual 
effort that is required to keep the data catalog up to date.

7.3  Data profiling

Data profiling is a key activity that assesses the quality, consistency, and readiness of data 
sets for analytics. In IBM watsonx.data, profiling is deeply integrated into the data governance 
process, which enables organizations to monitor and ensure the integrity of their data 
throughout its lifecycle. Profiling involves the examination of data to determine its quality 
attributes, such as data types, value distributions, null value percentages, and the presence of 
outliers. This step is essential for identifying data that might not meet organizational 
standards or that might distort analysis if used without remediation.

The IBM watsonx.data profiling engine uses advanced statistical methods and machine 
learning algorithms to rapidly scan large data sets, detect anomalies, and highlight potential 
data quality issues. For example, the system can flag missing or inconsistent data, or it can 
identify unexpected patterns that might signify erroneous data entry. In addition to traditional 
profiling, IBM watsonx.data supports more complex evaluations, such as data relationship 
analysis and schema validation, which assess how data entities are connected and whether 
the data schema aligns with expected standards.

Once profiling is complete, IBM watsonx.data integrates the findings into a data quality 
framework that automatically generates alerts when data sets fall below predefined quality 
thresholds. These alerts enable data stewards to address issues before they compromise 
downstream analytics. Also, customizable workflows enable organizations to tailor profiling 
strategies to meet their unique governance needs, which provide a flexible solution for diverse 
data environments.

7.4  Data cataloging: Building a comprehensive data catalog for 
findability

The creation of a comprehensive data catalog in IBM watsonx.data is a multi-step process 
that involves careful planning, taxonomy development, and strategic organization of data sets. 
The catalog’s architecture is designed to help ensure that data is discoverable and 
actionable. A key aspect is creating a clear taxonomy that aligns with organizational goals 
and the way that data is used across the business. This taxonomy defines the logical 
categories in which data sets are organized, which creates a hierarchical structure that 
enables users to quickly find and explore related data sets.

To ensure that the catalog is dynamic and adaptable, IBM watsonx.data provides tools to 
define metadata standards that specify which attributes should be associated with each data 
set, such as schema definitions, data sensitivity, update frequency, and ownership. Also, 
IBM watsonx.data supports the automation of catalog updates through scripts and APIs, 
which reduce manual overhead and helps ensure that the catalog remains consistent as data 
assets evolve. With this level of automation, organizations can keep their catalogs up to date 
without the need for constant human intervention.
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IBM watsonx.data also offers advanced indexing capabilities, which optimize the catalog for 
fast and efficient search queries. By indexing the metadata, tags, synonyms, and 
multi-language support, IBM watsonx.data enhances search performance so that users can 
search by using various metadata attributes. This flexibility in indexing and search capabilities 
helps ensure that users can quickly find the data sets that they need, regardless of language, 
data type, or data set complexity.

7.5  Using advanced search functions to find specific data 
assets

IBM watsonx.data provides a suite of advanced search functions that significantly enhance 
the discoverability of data assets within a large catalog. Unlike basic search engines that rely 
on simple keyword matching, the IBM watsonx.data search engine incorporates advanced 
Boolean operators, filters, and facets to help users create highly specific queries by 
combining multiple search parameters to narrow down results with precision. With Boolean 
operators, users can include or exclude data sets based on criteria such as tags, metadata 
fields, or data set attributes.

Moreover, IBM watsonx.data supports fuzzy search, which accommodates minor 
discrepancies in search terms, such as spelling errors or slight variations in metadata entries. 
This approach helps ensure that even imperfect search terms yield relevant results, which 
reduce the likelihood of missing critical data sets due to human error.

For organizations with complex and highly specific search needs, IBM watsonx.data offers a 
rich set of APIs that can be integrated with external systems. With these APIs, you can build 
custom search interfaces, or you can automate routine search queries, which facilitate 
seamless workflows and enable data teams to access the data that they need without manual 
intervention.

7.6  Case study: Improving data discoverability for faster 
decision-making in the retail sector

Retail organizations operate in a highly dynamic and competitive environment, where timely 
and data-driven decisions are critical for success. These businesses deal with diverse data 
assets, which range from transactional sales data and customer feedback to supply chain 
metrics and promotional campaign analytics. The challenge is in managing vast and varied 
datasets and helping ensure that they are accessible, interpretable, and actionable for 
decision-makers across the organization.

IBM watsonx.data offers a solution by providing a centralized data catalog that organizes, 
classifies, and tags these data sets, making them easily discoverable. By automating much of 
the data preparation process, it helps retail organizations streamline workflows, enhance 
collaboration, and enable faster and more informed decision-making.

7.6.1  Use case: Unified data access across retail functions

Retailers frequently require insights that span multiple functional areas. For example, an 
organization might need to combine sales figures with supply chain data to pinpoint inventory 
restocking issues. At the same time, marketing teams might want to gauge the effectiveness 
of recent promotions on customer purchases.
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With IBM watsonx.data, data sets from various domains are integrated into a single, 
comprehensive catalog, which helps ensure access and understanding of data regardless of 
its source. Metadata enrichment, automated tagging, and lineage tracking all contribute to 
this function.

IBM watsonx.data tackles a key challenge in retail data management: the manual 
classification and organization of data sets. It automates this process by using machine 
learning and NLP to identify patterns, classify content, and apply relevant business tags.

For example, transactional data sets can be automatically tagged with attributes like “Region: 
North America”, “Quarter: Q3”, and “Product Category: Electronics”. This automation reduces 
the burden on data stewards while helping ensure that data sets remain consistently 
organized. As a result, analysts can quickly locate data sets that meet their criteria, even in 
expansive catalogs.

IBM watsonx.data advanced search capabilities enable retailers to perform scenario-based 
analyses. Imagine a scenario where a retail executive wants to evaluate the effectiveness of a 
summer promotion. By using IBM watsonx.data, the executive can search for data sets that 
are related to summer sales, customer feedback during the promotional period, and inventory 
levels before and after the campaign.

By combining these data sets, the executive can identify trends, such as which products 
performed well during the promotion, whether customer satisfaction improved, and how 
effectively inventory was managed. These insights inform strategic decisions for future 
campaigns, such as product selection, pricing strategies, and marketing approaches.

Retail data is often diverse, encompassing structured formats (for example, relational 
databases with sales records), semi-structured formats (for example, JSON logs from 
e-commerce platforms), and unstructured formats (for example, customer reviews or social 
media posts). IBM watsonx.data is designed to handle this heterogeneity. For example, it can 
catalog structured sales data alongside unstructured customer feed-back. By indexing these 
data sets by using enriched metadata, IBM watsonx.data helps ensure that users can find 
and use both types of data in their analyses. Furthermore, it supports integrations with 
external tools, such as sentiment analysis platforms, which enable richer interpretations of 
unstructured data.

Retail organizations also face stringent compliance requirements, particularly regarding the 
handling of sensitive customer information. IBM watsonx.data provides robust security 
features, which include RBAC and data masking to ensure compliance with regulations such 
as GDPR and CCPA.

For example, personally identifiable information (PII), such as customer names and 
addresses, can be masked in search results while still allowing users to analyze non-sensitive 
attributes like purchase history or customer demographics. This capability helps ensure that 
analysts can work with data sets without risking privacy breaches or regulatory violations.

Although retail environments present unique challenges due to the diversity and scale of their 
data, IBM watsonx.data provides the necessary tools to address these complexities. By 
automating cataloging, enabling cross-functional data integration, and supporting advanced 
search functions, it transforms raw data into a strategic asset, which helps ensure that retail 
organizations are well equipped to make timely, data-driven decisions in a fast-paced and 
competitive market.
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Chapter 8. Marketing campaign analysis 
use case

This chapter dives into an example of a marketing campaign analysis at a financial services 
organization. In this use case, we use IBM watsonx.data and IBM watsonx.ai to ingest and 
store data, connect to and access data, visualize and explore data, and build machine 
learning (ML) models. 

This chapter guides you through the following tasks: data ingestion, data connection and 
access, data exploration and visualization, and machine learning model development. 

This chapter has the following sections: 

� “Use case introduction” on page 102
� “Data ingestion” on page 102
� “Connecting to and accessing data” on page 119
� “Visualizing and exploring data” on page 129
� “Building and developing machine learning models” on page 141
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8.1  Use case introduction

This chapter explores how a leading financial services company uses IBM watsonx.data and 
IBM watsonx.ai to unlock the power of marketing data. 

This use case follows a marketing team at a financial services company. The team is looking 
to better understand the performance of their direct marketing campaigns for the bank's bank 
term deposit product (certificate of deposit). 

A senior vice-president at the financial services company pulled together various individuals 
to help with this initiative: a data engineer, a data analyst, a data scientist, and various 
individuals from the business. 

For this analysis, the team wants to use their environment. The organization is running 
IBM watsonx.ai and IBM watsonx.data on-premises on Red Hat OpenShift. 

By analyzing the bank term deposit direct marketing campaign, the team aims to achieve the 
following goals:

� Assess the performance of direct marketing campaigns for bank term deposits and find 
ways to optimize their current marketing campaigns. 

� Deepen their understanding of customer behavior and better understand the demographic 
of people they are reaching out to.

� Develop ways to predict whether a client will subscribe to a bank term deposit, and 
understand whether there are key factors that influence this decision.

In this use case, we use a basic data set to make the examples simple to follow and 
understand. This simplified bank marketing data set was retrieved from the UC Irvine 
Machine Learning Repository. To see the full data set, see Bank Marketing.

8.2  Data ingestion 

Before data analysts and data scientists can analyze the marketing campaign data, the data 
engineer must make it available and accessible for analysis. The direct marketing campaign 
data for the bank term deposit is in an IBM Cloud Object Storage bucket in IBM Cloud. In this 
section, the data engineer identifies the location of the marketing campaign data and 
configures the necessary access with needed permissions, configures the storage and 
catalog in IBM watsonx.data, connects to the query engines in IBM watsonx.data, creates a 
schema in the catalog, and ingests data from the Cloud Object Storage bucket. 

8.2.1  Locating the marketing campaign data

The data engineer talks with the application team that generated the marketing campaign 
data and finds that the data that is needed for analysis is stored in an IBM Cloud Object 
Storage bucket on IBM Cloud. To find that data, the data engineer completes the following 
steps:

1. The data engineer navigates to the IBM Cloud Object Storage bucket by selecting IBM 
Cloud → Resource List → Storage → Cloud Object Storage, as shown in Figure 8-1 
on page 103.
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Figure 8-1   Cloud Object Storage

2. Then, the data engineer searches for the bucket that contains the marketing campaign 
performance data and selects the marketing-campaign-analysis bucket, as shown in 
Figure 8-2.

Figure 8-2   Searching for the bucket

3. The data engineer checks whether the service credentials for marketing-user-1 are 
present by selecting Service credentials → marketing-user-1. If not, the data engineer 
must assign the Manager role to the service credential and that the HMAC credentials are 
included so that the necessary information for the credentials is available to connect to in 
IBM watsonx.data. The data engineer notes the access key and secret because they know 
that this information will be needed later when configuring the IBM Cloud Object Storage 
storage in IBM watsonx.data. Figure 8-3 shows the service credentials.

Figure 8-3   Service credentials 
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Once the service credentials are confirmed, the data engineer selects the Buckets tab 
and clicks the marketing-campaign-analysis IBM Cloud Object Storage bucket, as shown 
n Figure 8-4.

Figure 8-4   The marketing-campaign-analysis IBM Cloud Object Storage bucket

4. Within that bucket, the data engineer selects the Objects tab and confirms that the file 
that contains the marketing campaign data is present, as shown in Figure 8-5.

Figure 8-5   The marketing-campaign-data.csv file

5. The data engineer adds permissions to the IBM Cloud Object Storage bucket for the 
service credential marketing-user-1. On the Permissions tab, they select Access 
policies → Service ID → Create access policy to create an access policy for the 
marketing-user-1 Service ID, with the Manager role assigned. This action is important 
because insufficient access can result in issues later when creating tables and schemas in 
IBM watsonx.data. Figure 8-6 on page 105 shows the Bucket access policies window.
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Figure 8-6   Creating an access policy

6. On the Configuration tab, the data engineer collects the following information that will be 
needed later to establish a connection to the IBM Cloud Object Storage in IBM 
watsonx.data: 

� Bucket name: marketing-campaign-analysis 
� Location (that is, Region): United States - Dallas (us-south) 
� Public endpoint: s3.us-south.cloud-object-storage.appdomain.cloud

Figure 8-7 shows the endpoints of the bucket.

Figure 8-7   Bucket details: Endpoints

Note: An access key and secret are also required when establishing the connection in 
IBM watsonx.data. The data engineer noted this information in step 3 on page 103.
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8.2.2  Setting up the internal spark engine 

Before ingesting data into IBM watsonx.data from the IBM Cloud Object Storage bucket, the 
data engineer configures the native Spark engine on IBM watsonx.data. To do so, the data 
engineer completes the following steps:

1. The data engineer logs in to IBM watsonx.data and navigates to the Infrastructure 
manager window and selects Add component to add the Spark engine, as shown in 
Figure 8-8.

Figure 8-8   Add component

2. Under Engines, the data engineer clicks IBM Spark, and then clicks Next, as shown in 
Figure 8-9.

Figure 8-9   Add component: IBM Spark 
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3. Before creating the IBM Spark engine instance, the data engineer adds the engine details, 
which includes information to create a volume for the engine and catalogs to associate to 
the engine by selecting General Information → Engine Configuration → Associate 
catalogs → Create, as shown in Figure 8-10.

Figure 8-10   Add component: IBM Spark 
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The new Spark engine takes a few minutes to provision. Once provisioned, the data engineer 
can view and access this engine from the Infrastructure manager page, as shown in 
Figure 8-11.

Figure 8-11   Infrastructure manager view with IBM Spark engine spark-01 added

8.2.3  Configure storage and catalog in IBM watsonx.data

After configuring the native Spark engine and reviewing the Infrastructure manager page, the 
data engineer finds that they need to configure the IBM Cloud Object Storage bucket and 
create a catalog in IBM watsonx.data for the marketing campaign data. To do so, they 
complete the following steps:

1. From the Infrastructure manager window, the data engineer selects Add component to 
add the IBM Cloud Object Storage instance, as shown in Figure 8-12.

Figure 8-12   Infrastructure Manager: Add component

2. Under the Storage section, the data engineer clicks IBM Cloud Object Storage, and then 
clicks Next to continue to the configuration details, as shown in Figure 8-13 on page 109.
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Figure 8-13   IBM Cloud Object Storage 

3. Using the details that were saved from the IBM Cloud Object Storage instance, as 
highlighted in 8.2, “Data ingestion” on page 102, the data engineer completes the Storage 
configuration details, which include Bucket name, Region, Endpoint, Access key, and 
Secret key, as shown in Figure 8-14.

Figure 8-14   Storage configuration
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4. Then, they create a catalog and associate it to the IBM Cloud Object Storage component, 
and then click Create, as shown in Figure 8-15.

Figure 8-15   Associated catalog - Create

The new storage component and the new catalog take a few minutes to provision. Once 
provisioned, the data engineer can see them in the Infrastructure manager view, as shown in 
Figure 8-16 on page 111.
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Figure 8-16   Infrastructure manager with new storage component and catalog created

8.2.4  Connecting query engines to catalog and storage in IBM watsonx.data 

After the IBM Cloud Object Storage instance is configured in IBM watsonx.data and the new 
catalog is created, the data engineer connects these objects to the query engines in 
IBM watsonx.data by using the Infrastructure manager. 
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To do so, they complete the following steps:

1. The data engineer hovers their cursor over the newly created catalog catalog01 and clicks 
Manage associations, as shown in Figure 8-17.

Figure 8-17   Infrastructure manager: Manage associations

2. The data engineer selects the two engines that are available in their IBM watsonx.data 
instance, presto-01 and spark-01, and clicks Save and restart 2 engines, as shown in 
Figure 8-18 on page 113.
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Figure 8-18   Manage associations: Save and restart 2 engines 

It takes a few minutes for the engines to restart with the new changes and associations. Once 
the process is complete, the data engineer can see the associations in the Infrastructure 
manager, as shown in Figure 8-19.

Figure 8-19   Infrastructure manager
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8.2.5  Creating a schema in the catalog 

The data engineer is ready to create a schema in the catalog that was created in 8.2.3, 
“Configure storage and catalog in IBM watsonx.data” on page 108. This new schema is used 
to ingest the marketing campaign data from the IBM Cloud Object Storage bucket. To do this 
task, they complete the following steps:

1. On the Data manager page, the data engineer selects Create → Create schema, as 
shown in Figure 8-20.

Figure 8-20   Create schema 

2. The data engineer defines the Catalog, Name, and Path, as shown in Figure 8-21 on 
page 115.
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Figure 8-21   Create schema

8.2.6  Ingesting data from an IBM Cloud Object Storage bucket 

The data engineer proceeds to ingest the marketing campaign data from the IBM Cloud 
Object Storage bucket. To do so, they complete the following steps:

1. From the Data manager page, they click Ingest data to begin, as shown in Figure 8-22.

Figure 8-22   Ingest data
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2. To ingest data, the data engineer has three options to select from: Local System, 
Storages, and Databases. Because the data engineer already configured the IBM Cloud 
Object Storage bucket as a storage component by using the Infrastructure manager in 
IBM watsonx.data, they click Storages, as shown in Figure 8-23.

Figure 8-23   Ingest data - Storages

3. The data engineer selects the source file and defines the target table before clicking 
Done, as shown in Figure 8-24 on page 117. The source file is selected from the 
storage-01 component that was defined in 8.2.3, “Configure storage and catalog in IBM 
watsonx.data” on page 108. The target table points to the catalog catalog_01, which was 
created in 8.2.3, “Configure storage and catalog in IBM watsonx.data” on page 108, and 
the schema marketing_campaign_data, which was created in 8.2.5, “Creating a schema in 
the catalog” on page 114. The data engineer adds a new name for the table and then 
clicks Done. 
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Figure 8-24   Source files: Target table 

The ingestion job typically requires a few minutes to finalize its execution. The data engineer 
can see the status of the job on the Ingestion history tab within the Data manager page, as 
shown in Figure 8-25.

Figure 8-25   Ingestion history
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8.2.7  Verifying the data in the schema 

Once the data ingestion job completes, the data engineer verifies that the data is in the 
correct table and schema. To do so, they complete the following steps:

1. From the Data manager window, they select the catalog, schema, and table that are 
defined in the ingestion job (select catalog_01 → marketing_campaign_data → 
bank_term_deposit → Columns), as shown in Figure 8-26. The Columns tab on the 
right shows the columns in the table, including the data type. 

Figure 8-26   Verifying the data in the schema: Columns

2. To view a sample of the data load, the data engineer clicks the Data sample tab, as shown 
in Figure 8-27 on page 119. 
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Figure 8-27   Verifying the data in the schema: Data sample

8.3  Connecting to and accessing data

After the direct marketing campaign data is ingested into IBM watsonx.data, the data 
engineer must make the data source available in IBM watsonx.ai so that the team can 
connect to and access this data for analysis. In this section, the data engineer accesses the 
IBM watsonx.ai project that the team is using for this initiative and creates a data connection 
to the IBM watsonx.data instance. With this connection, the team members on the project can 
access the necessary data for analysis.

8.3.1  Gathering the required information in IBM watsonx.data 

Before the data engineer can create a data connection in the IBM watsonx.ai project, they 
must collect the required information from the IBM watsonx.data instance. The data engineer 
knows that there are several pieces of information that are needed to establish the connection 
in IBM watsonx.ai, so they choose to collect the information before creating the data 
connection.

There are two key locations in IBM watsonx.data:

� Infrastructure manager for the Presto engine connection details
� The Configuration window for the overall connection details
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Presto engine-specific connection details
The data engineer gathers the necessary connection information for the Presto engine on 
IBM watsonx.data by completing the following steps:

1. They navigate to the Infrastructure manager, and click presto-01, the Presto engine, as 
shown in Figure 8-28.

Figure 8-28   Infrastructure manager: presto-01

2. They note the Internal host that is specified in the Details tab. The internal host for this 
Presto engine is as follows:

ibm-lh-lakehouse-presto-01-presto-svc.cpd.svc.cluster.local:8443

8443 represents the port. The data engineer also notes the engine ID, which in this case is 
presto-01. This information is used later in IBM watsonx.ai when setting up the connection 
to the Presto engine on IBM watsonx.data. Figure 8-29 shows the Details tab.

Figure 8-29   Details tab
120 Simplify Your AI Journey:  Hybrid, Open Data Lakehouse with IBM watsonx.data



Overall IBM watsonx.data connection details 
The data engineer proceeds to collect additional information that is needed to connect to 
IBM watsonx.data by using the Configurations page. They complete the following steps:

1. On the Configurations page, they click Connection information, as shown in Figure 8-30.

Figure 8-30   Connection information

2. From this page, the data engineer notes the values in the following fields:

– Host IP address
– Port
– Instance ID
– SSL Certificate 

This information will be needed later when establishing the connection to IBM watsonx.data 
from the IBM watsonx.ai project. 
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Figure 8-31 shows the connection details.

Figure 8-31   Connection information: Connection details

8.3.2  Creating a data connection in the IBM watsonx.ai project

The data engineer accesses the IBM watsonx.ai project and creates a data connection to the 
Presto engine in IBM watsonx.data by completing the following steps:

1. From the IBM watsonx.ai home page, the data engineer selects Projects → All projects, 
as shown in Figure 8-32.

Figure 8-32   All projects

2. From the list of projects, they click the Bank Term Deposit Marketing Campaign Analysis 
project, as shown in Figure 8-33 on page 123.
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Figure 8-33   Projects - Bank Term Deposit Marketing Campaign Analysis

3. To create a data connection, the data engineer navigates to the Assets tab in the project 
and clicks New asset, as shown in Figure 8-34.

Figure 8-34   New asset 

4. Under Prepare data, they click Connect to a data source, as shown in Figure 8-35.

Figure 8-35   Connecting to a data source
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5. The data engineer wants to establish a connection to the Presto engine on 
IBM watsonx.data. They search for the IBM watsonx.data Presto connector, and click 
Next, as shown in Figure 8-36.

Figure 8-36   IBM watsonx.data Presto 

6. The data engineer enters the configuration details, starting with the Connection overview 
window, as shown in Figure 8-37. Within the Connection overview window, they define the 
connection name and add a description. 

Figure 8-37   Connection overview
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Under Connection details, they update the following fields, as shown in Figure 8-38. 

– Deployment type: IBM watsonx.data on Red Hat OpenShift. 

– Hostname or IP address: This value is retrieved from the Connection information 
window in IBM watsonx.data.

– Port: This value is retrieved from the Connection information window in 
IBM watsonx.data

– Instance ID: This value is retrieved from the Connection information window in 
IBM watsonx.data.

Figure 8-38   Connection details 
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7. Under Credentials, the data engineer updates the following fields, as shown in 
Figure 8-39.

– Credential setting: Personal
– Authentication method: Username and password 
– Username: cpadmin
– Password: password associated with username

Figure 8-39   Credentials

Note: The username and password values vary depending on the user's login 
credentials
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8. Under Certificate, the data engineer ensures that SSL is enabled, and then inputs the SSL 
certificate that is provided in their IBM watsonx.data instance, as shown in Figure 8-40.

Figure 8-40   Certificates
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9. The data engineer adds the connection details that are specific to the Presto engine on 
IBM watsonx.data, as shown in Figure 41:

– Engine's hostname or IP address:

ibm-lh-lakehouse-presto-01-presto-svc.cpd.svc.cluster.local

– Engine ID: presto-01

– Engine's port: 8443

Figure 8-41   Engine connection details

10.The data engineer tests the connection. Because the test was successful, they click 
Create to create the IBM watsonx.data Presto connection in the project, as shown in 
Figure 8-42 on page 129.
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Figure 8-42   Test connection: Create

11.After the connection is created, the data engineer views the connection in the Assets tab 
of the project by selecting Projects → Bank Term Deposit Marketing Campaign 
Analysis → Assets → watsonx.data connection, as shown in Figure 8-43.

Figure 8-43   IBM watsonx.data connection

8.4  Visualizing and exploring data 

After the data connection to IBM watsonx.data is established in the IBM watsonx.ai project, 
the data analyst can use the connection. In this section, the data analyst uses the data 
connection that was created by the data engineer in the IBM watsonx.ai project to modify the 
data set and generate a data visualization by using the Data Refinery feature.

8.4.1  Creating a Data Refinery flow

In this section, the data analyst creates a Data Refinery flow to filter the data set and create a 
data visualization to visualize the number of bank term deposits by profession. 
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Creating a Data Refinery flow in an IBM watsonx.ai project 
The data analyst starts by creating a Data Refinery asset by completing the following steps:

1. From the Assets tab in the Bank Term Deposit Marketing Campaign Analysis project, they 
click New Asset, as shown in Figure 8-44.

Figure 8-44   New asset 

2. Under Prepare data, the data analyst clicks Prepare and visualize data with Data 
Refinery, as shown in Figure 8-45.

Figure 8-45   Prepare and visualize data with Data Refinery

3. They select data for the Data Refinery flow by clicking Select from project, as shown in 
Figure 8-46.

Figure 8-46   Select from project 
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4. The data that is needed for this analysis comes from the IBM watsonx.data connection 
that was established by the data engineer earlier. To find the data source that is needed for 
this analysis, the data analyst selects Connection → watsonx.data connection, as 
shown in Figure 8-47. 

Figure 8-47   Categories: Connections 

5. The data analyst selects the corresponding catalog, schema, and table (watsonx.data 
connection → catalog01 → marketing_campaign_data → bank_term_deposit), as 
shown in Figure 8-48.

Figure 8-48   Selecting the corresponding catalog, schema, and table
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6. Before selecting Create, the data analyst enters a name for the Data Refinery flow, as 
shown in Figure 8-49.

Figure 8-49   Define the details: Create

Filtering data with Data Refinery 
Before generating any visualizations, the data analyst filters the data to reflect the period that 
is needed for the analysis. As shown in Figure 8-50, the data analyst adds a filter where the 
month is equal to “jul” (for July), which filters the data to show only interactions from the 
direct marketing campaign in the month of July.

Figure 8-50   Selecting only interactions where the month field equals “jul”
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Creating and formatting a data visualization
Now, the data analyst creates and formats a data visualization by completing the following 
steps:

1. After the data is ready for analysis, the data analyst clicks the Visualizations tab, and 
then clicks the Bar chart type, as shown in Figure 8-51. 

Figure 8-51   Visualizations - Bar
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2. As shown in Figure 8-52 and Figure 8-53 on page 135, the data analyst uses the fields on 
the left to generate a chart that shows the number of bank term deposit subscriptions by 
profession. Here, the data analyst can modify the categories that appear in the visual, the 
chart and axis titles, and the type of bar chart (for example, horizontal, vertical, stacked, 
clustered, and others).

Figure 8-52   Bar chart configuration window
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Figure 8-53   Bar chart configuration window (continued)

Additional data visualization formatting
The data analyst wants to further format this visualization, specifically the color scheme. The 
business user requesting this visualization might share the results with others within the 
organization or in presentations, so the data analyst wants to help ensure that the 
visualization adheres to the company's color and formatting standards. They data analyst 
completes the following steps:

1. To modify the color scheme for the data visualization, the data analyst clicks Actions 
selects Global visualization preferences, as shown in Figure 8-54.

Figure 8-54   Global visualization preferences
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2. Next, click the Theme tab. Then click Launch theme builder, as shown in Figure 8-55.

Figure 8-55   Launching the theme builder

3. To create a theme, the data analyst clicks Copy as a new theme, as shown in 
Figure 8-56.

Figure 8-56   Copying as a new theme

4. Use the fields in the left pane to format the new theme, including the theme name, color 
sequence, background color, legend and axis formatting, and other attributes. 
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Figure 8-57 shows the specifications for the new theme that was generated by the data 
analyst, which is named ABC_Banking_Institution_Theme.

Figure 8-57   Theme builder settings

5. After the theme is created, the data analyst clicks Apply theme to chart, as shown in 
Figure 8-58. 

Figure 8-58   Applying the theme to a chart
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Figure 8-59 shows the new theme that is applied to the bar chart. The data analyst can use 
the new theme in future data visualizations too.

Figure 8-59   Data visualization with new theme applied

Exporting and sharing the data visualization
Now, the data analyst exports and shares the data visualization by completing the following 
steps:

1. The data analyst selects Actions → Save Visualization to project, as shown in 
Figure 8-60 on page 139. Now, users with access to the project can view and access this 
specific data visualization.
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Figure 8-60   Save visualization to project

2. To save the data visualization to the project, the data analyst adds a name, description, 
and chart name, and then clicks Apply, as shown in Figure 8-61.

Figure 8-61   Save visualization in project: Apply
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3. The data analyst can also download the chart image locally by selecting Actions → 
Download chart image, as shown in Figure 8-62. This option is helpful when sharing with 
users who do not have access to the project, and for cases when the data visualization 
must be embedded into other mediums, such as a presentation.

Figure 8-62   Download chart image menu

4. Figure 8-63 shows the data visualization asset on the Assets tab of the project. 

Figure 8-63   All assets: Bank Term Deposit Subscriptions by Profession

The data analyst selects this asset to view the data visualization from the perspective of 
the user to confirm that the data visualization appears as expected. Figure 8-64 on 
page 141 shows this view when the data visualization asset is opened.
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Figure 8-64   All assets: Bank Term Deposit Subscriptions by Profession - Chart

8.5  Building and developing machine learning models 

The data connection in the IBM watsonx.ai project can also be used by data scientists. In this 
section, the data scientist on this initiative uses the IBM watsonx.data data connection in 
IBM watsonx.ai to build and develop prototype models to predict whether someone will 
purchase a bank term deposit. 

8.5.1  Creating an AutoAI experiment 

To build and evaluate multiple machine learning models, the data scientist chooses to use 
AutoAI within IBM watsonx.ai. AutoAI is a graphical tool that you can use to develop, display, 
and rank various model candidate pipelines by using a data set. To accomplish this task, 
complete the following steps:

1. To create an AutoAI experiment, the data scientist clicks New asset in the Assets tab of 
the Bank Term Deposit Marketing Campaign Analysis project in IBM watsonx.ai, as shown 
in Figure 8-65.

Figure 8-65   New asset
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2. The data scientist clicks Work with models, and then clicks Build machine learning 
models automatically with AutoAI, as shown in Figure 8-66.

Figure 8-66   Build machine learning models automatically with AutoAI

3. The data scientist enters a name and description for the AutoAI experiment, as shown in 
Figure 8-67.

Figure 8-67   Build machine learning models automatically: Create
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4. The data scientist adds data to the AutoAI experiment by clicking Select data from project, 
as shown in Figure 8-68.

Figure 8-68   Marketing Campaign Model Development: Selecting data from a project

5. The data scientist selects the bank_term_deposit table from the 
marketing_campaign_data schema, as shown in Figure 8-69.

Figure 8-69   Selecting an asset 
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6. Once the data source is selected for the experiment, the data scientist configures the 
AutoAI experiment by setting “Create a time series analysis?” to No, and identifying y as 
the column to predict. They click Experiment settings to modify additional configuration 
settings for the experiment, as shown in Figure 8-70.

Figure 8-70   Configure details: Experiment settings

7. The data scientist selects six algorithms for this experiment by selecting Prediction → 
General → Algorithm, as shown in Figure 8-71.

Figure 8-71   Algorithm
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8. Click the Fairness tab, and enable fairness evaluation. Enabling fairness evaluation helps 
ensures that results are not biased. The data scientist clicks Save settings to apply the 
changes, as shown in Figure 8-72.

Figure 8-72   Enable fairness evaluation: Save settings 

9. The data scientist clicks Run experiment to begin the model development, as shown in 
Figure 8-73.

Figure 8-73   Run experiment
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10.The AutoAI experiment takes a few minutes to complete. Once complete, the data scientist 
reviews the models generated by using the pipeline leaderboard, as shown in Figure 8-74 
on page 146.

Figure 8-74   Experiment summary: Pipeline leaderboard 

11.The data scientist views additional model details of the highest ranked model, which is 
Pipeline 2, as shown in Figure 8-75.

Figure 8-75   Pipeline 2: Confusion matrix

12.There is an option to save the model as either a model or notebook, but the data scientist 
chooses to gather the results and share with the broader team before adjusting or 
deploying the model. 
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Chapter 9. Adopting Milvus for RAG using 
IBM watsonx

By combining the generative power of large language models (LLMs) with the precision of 
information retrieval, Retrieval-Augmented (RAG) systems can deliver more accurate, 
relevant, and contextually rich outputs. This integration becomes even more powerful when 
leveraging robust vector databases like Milvus alongside comprehensive AI platforms such as 
IBM watsonx. This approach allows developers to build sophisticated RAG pipelines that 
efficiently manage and query massive datasets, enriching the capabilities of watsonx and 
unlocking new possibilities for intelligent applications.

This chapter discusses how to adopt Milvus for RAG using IBM watsonx and has the following 
sections:

� “Introduction” on page 148
� “Key steps in the RAG workflow” on page 148
� “Technical integration of IBM watsonx and Milvus” on page 150
� “Summary” on page 154
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9.1  Introduction

Retrieval-Augmented Generation (RAG) is a technique that enhances the performance of 
large language models (LLMs) by integrating them with a retrieval system. This approach 
helps improve the accuracy and relevance of the generated content by grounding it in external 
knowledge sources, such as documents, databases, or other types of structured and 
unstructured data.

RAG enables enterprises to transform resources such as policy manuals, training documents, 
or logs into a structured knowledge base that enhances LLMs. This approach benefits 
applications in customer support, on-site assistance, employee training, and developer 
productivity. By using RAG, companies reduce the risk of LLMs leaking sensitive data or 
producing inaccurate or misleading information. Additionally, RAG helps lower the 
computational and financial costs of running LLM-based systems in enterprise environments.

A key component in RAG systems is the use of a vector database, which stores data in the 
form of high-dimensional vectors. These databases are optimized for similarity search and 
allow LLMs to quickly find relevant information based on vector representations.

By combining vector databases with LLMs, RAG systems enable businesses to enhance the 
search and retrieval capabilities of their knowledge systems, driving more relevant and 
accurate results in various applications. This architecture, supported by platforms like IBM's 
watsonx, provides a powerful solution for managing large volumes of data and delivering 
high-quality AI outputs tailored to enterprise needs.

9.2  Key steps in the RAG workflow
The following are the key steps in the RAG workflow.

9.2.1  Step 1: Document ingestion

Document ingestion is the first step in the RAG workflow. It contains several aspects such as 
identifying sources, determining document types, setting ingestion frequency, configuring 
access permissions, gathering metadata, etc. Usually, the users may have company records, 
knowledge base or CRM systems in their internal databases and file systems. They may have 
existing tools to pull data from websites, blogs or online articles or through APIs in the existing 
services. 

IBM watsonx.data provides a Spark engine which is a valuable tool in the document ingestion 
phase, especially for large volumes of documents. Spark supports a variety of data sources, 
including HDFS, S3, JDBC, and NoSQL databases, making it easy to collect documents from 
multiple origins. For instance, if you are collecting news articles from various online sources, 
you could setup a Spark job to:

� Use web scraping techniques to gather articles.

� Preprocess and clean the text using Spark DataFrame operations.

� Store the cleaned articles along with their metadata in the object store for further 
processing.

For more information, see Ingesting data by using Spark through the web console. 
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9.2.2  Step 2: Document chunking

Document chunking is essential in RAG. Large documents can contain information on 
multiple topics or subtopics. By breaking documents into smaller chunks, each representing a 
coherent piece of information, retrieval models can more accurately match relevant 
information to a query, reducing the chance of irrelevant sections appearing in search results. 

Chunking can be done in various ways depending on the type of document, content structure, 
and retrieval system requirements. The fixed-length chunking usually splits the document into 
chunks based on a fixed number of tokens, words or characters. To mitigate information loss 
at chunk boundaries, you can employ a sliding window technique. This involves creating 
overlapping segments by moving a fixed-size window across the text. In certain scenarios, 
like legal documents or scientific articles, where context across sentences is crucial, the 
sliding window technique can be employed.

In other use cases such as well-structured documents like books or formal reports, you can 
leverage NLP sentence splitters or paragraph identifiers to chunk them based on semantics. 
IBM Natural Language Understanding services are very helpful for semantic chunking by 
providing text processing tools like sentence segmentation, paragraph splitting and entity 
recognition. For more information, see Natural Language Processing. 

9.2.3  Step 3: Embedding generation

Embedding in RAG refers to the process of converting text (like a sentence, paragraph or 
document chunk) into a high-dimensional numerical vector that captures the semantic 
meaning of the text. These vectors, or “embeddings” are essential for efficient information 
retrieval and are a foundational component in RAG.

Embeddings transform textual data into a format that captures its meaning in a way that 
computers can understand and compare. Similar pieces of text (based on meaning, not just 
words) have embeddings that are closer together in vector space. For example, sentences 
like “The cat is sleeping on the mat” and “A cat is napping on a rug” would be represented by 
embeddings that are close to each other in that high-dimensional space.

When a user query is issued, it’s also transformed into an embedding. The retrieval system 
then finds the stored document embeddings that are closest to the query embedding in vector 
space, using similarity measures like cosine similarity, etc. Embeddings are typically 
generated by pre-trained models like BERT, or IBM embedding models in watsonx.ai. For 
more information, see Supported encoder foundation models in watsonx.ai.

9.2.4  Step 4: Vector storage and searching with Milvus

In RAG, vector storage and searching are crucial for handling embeddings efficiently. Milvus, 
an open-source vector database designed for AI applications, is highly suited for this purpose 
due to its performance, scalability, and efficient handling of high-dimensional vector data. 
Milvus is optimized for large-scale vector storage and retrieval, making it ideal for RAG 
scenarios where embeddings from extensive document corpora need to be managed and 
queried. Milvus supports distributed storage like AWS S3, IBM Cloud Object Storage, MinIO 
to store vector data, ensuring it can manage both large-scale storage and parallel processing. 
As data volume grows, additional compute nodes can be added to maintain performance. 
Embeddings used in RAG models are often high-dimensional, with hundreds to thousands of 
dimensions. Milvus supports these high-dimensional vectors, leveraging Approximate 
Nearest Neighbor (ANN) search algorithms to perform fast and accurate searches without the 
computational burden that exact searches on high-dimensional vectors would require.
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In addition to vector similarity search, Milvus also supports hybrid search, combining vector 
similarity with traditional filtering based on scalar fields. These fields can include structured 
attributes such as tags, timestamps, and categories. This combination is particularly useful 
when both similarity to a query and specific contextual filters are required to narrow down 
results efficiently. For more information, see Working with Milvus. 

9.3  Technical integration of IBM watsonx and Milvus
IBM watsonx.data has recently launched an integrated vector database, based on the open 
source Milvus, in the data lakehouse. Now, IBM watsonx customers can unify, curate and 
prepare vectorized embeddings for their generative artificial intelligence (gen AI) applications 
at scale across their trusted, governed data. The vector DB initially supported is based on 
open source vector DB Milvus. This supports up to 100 million vectors of 384 dimensions.

9.3.1  Architecture overview

IBM watsonx offers an interface for experimenting with various foundation models through 
engineered prompts. By incorporating watsonx.data Milvus as the vector database, you can 
enhance model accuracy and relevance by adding grounding documents as a knowledge 
base. These grounding documents, supported in formats like DOCX, PDF, PPTX, and TXT, 
are first converted into text embeddings by using pre-trained embedding models. Then, these 
embeddings are indexed by using Milvus vector database for efficient searching during 
prompt processing, ensuring more reliable and up-to-date responses.

Figure 9-1 on page 151 shows the architecture of watsonx RAG.
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Figure 9-1   Architecture of watsonx RAG

9.3.2  Code examples

Example 9-1 demonstrates how to ingest documents using Spark from the IBM 
documentation website, followed by converting the PDF files to text for embeddings.

Example 9-1   Code example - 1 

from pyspark.sql import SparkSession
import os
spark = SparkSession.builder \
    .appName("Download watsonx.data PDF documentation") \
    .getOrCreate()
def download_pdf(url, local_path):
    response = requests.get(url)
    if response.status_code == 200:
        with open(local_path, 'wb') as file:
            file.write(response.content)
        print(f"PDF downloaded successfully to {local_path}")
    else:
        print(f"Failed to download PDF. Status code: {response.status_code}")
pdf_url = 
"https://www.ibm.com/support/pages/system/files/inline-files/IBM%20watsonx.data%20
version%202.0.3.pdf"  
local_file_path = "wxd_doc_pdf.pdf"  
download_pdf(pdf_url, local_file_path)
spark.stop()
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asset_li=wslib.assets.list_assets("data_asset")
wslib.download_file("wxd_doc_pdf")
doc = fitz.open("wxd_doc_pdf")
pdf_text = ""
for page in doc:
    pdf_text += page.get_text()

Example 9-2 demonstrates how to chunk a document by paragraph.

Example 9-2   Code example - 2

def chunk_by_paragraphs(text):
    paragraphs = text.split("\n\n") # Assuming paragraphs are separated by two 
newlines
    return [p.strip() for p in paragraphs if p.strip()]
chunks = chunk_by_paragraphs(pdf_text)

Example 9-3 demonstrates how to generate embeddings using IBM watsonx.data Milvus 
connection.

Example 9-3   Code example - 3

connections.connect(alias="default", 
                    host=url, 
                    port=port, 
                    user=apiuser, 
                    password=apikey, 
                    secure=True)
collection_description = 'wxd docs pdf'
collection_name = 'wxd_documentation'
# Create collection - define fields + schema
fields = [
    FieldSchema(name="document_id", dtype=DataType.INT64), # Document Id
    FieldSchema(name="chunk_id",  dtype=DataType.INT64), # Chunk Id
    FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384), 
]
# Create a schema
schema = CollectionSchema(fields, collection_description)
# Create a collection
collection = Collection(collection_name, schema)
# Create index
index_params = {
        'metric_type':'L2',
        'index_type':"IVF_FLAT",
        'params':{"nlist":2048}
}
collection.create_index(field_name="vector", index_params=index_params)
for i in range(len(article_titles)):
    # Create vector embeddings + data
    model = SentenceTransformer('sentence-transformers/all-minilm-l12-v2') # 384 
dim
    passage_embeddings = model.encode(article_chunks[i])
    basic_collection = Collection(collection_name) 
    data = [
        article_chunks[i],
        article_titles[i],
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        passage_embeddings
    ]
               
    out = basic_collection.insert(data)
    basic_collection.flush()  # Ensures data persistence

Example 9-4 demonstrates how to perform a similarity search with Milvus.

Example 9-4   Code example - 4

def query_milvus(query, num_results):
    
    # Vectorize query
    model = SentenceTransformer('sentence-transformers/all-minilm-l12-v2') # 384 
dim
    query_embeddings = model.encode([query])
    # Search
    search_params = {
        "metric_type": "L2", 
        "params": {"nprobe": 5}
    }
    results = basic_collection.search(
        data=query_embeddings, 
        anns_field="vector", 
        param=search_params,
        limit=num_results,
        expr=None, 
        output_fields=['article_text'],
    )
    return results

For more information, see Getting started with watsonx.data Spark use cases.

9.3.3  Benefits of using IBM watsonx for RAG

IBM watsonx for RAG has the following benefits:

Scalability
IBM watsonx.data adopts the architecture of separation of computation and storage. It can 
handle large-scale datasets with Milvus’s distributed vector database for fast querying. The 
Milvus service can be added in watsonx.data with multiple sizings based on user’s need. The 
Starter size can support 1 million vectors and the Large size can support 100 million vectors. 
If a user requires more vectors, they can work with IBM to customize their watsonx.data 
instance to support them.

Security
IBM watsonx.data provides enterprise-grade fine-grained access control to protect the data. 
Chapter 4 describes the general guidance on access controls. Milvus is one of the services in 
watsonx.data and inherit the security consideration in the platform level as well as the fine 
grained access control particularly on Milvus data objects such as databases, collections, 
partitions. 
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High-quality embeddings
IBM watsonx.ai provides quite a few embedding models including IBM own modes such as 
IBM Slate-30m embedding model and IBM Slate-125m embedding model, and some 
embedding models from third-party such as all-MiniLM-L6-v2 from open source NLP and 
computer vision community provided by Hugging Face. 

Enhanced retrieval efficiency
IBM watsonx.data Milvus provides various search algorithms such as Sparse vector search, 
Multi-vector and Hybrid search, and Grouping search to improve the retrieval efficiency as 
well as the accuracy.

9.4  Summary

In this use case, we introduce RAG and outline the key steps involved in the RAG workflow, 
including document ingestion, chunking, embedding generation, vector storage and 
searching. We also demonstrate how to implement RAG using IBM watsonx, with a practical 
example. IBM watsonx is an integrated platform for AI and data applications that ensures high 
scalability and performance, enhanced security and governance, and continuous 
development with cutting-edge technology.
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Chapter 10. Data and AI modernization 
strategy in banking use case

By leveraging data-driven insights, banks can enhance customer experience, optimize 
operations, and gain a competitive edge. This chapter discusses an architecture for 
modernized data management pattern in banking. 

This chapter has the following sections:

� “Introduction” on page 156
� “Data lakehouses: Empowering data-driven decisions in banking” on page 156
� “Data modernization pattern in banking” on page 157
� “Modernized data management pattern in banking on analytic use cases” on page 157
� “Conclusion” on page 158
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10.1  Introduction

The recent surge in generative AI, powered by large language models and agentic 
frameworks, has significantly increased the demand for training on massive datasets. 
Enterprises across industries are modernizing client interactions with human-like AI 
interfaces to gain a competitive edge. Effective data management is crucial to fuel this 
transformation.

Enterprise banks aim to revolutionize online and mobile banking through advanced analytics 
and real-time insights. Key strategies include:

� Personalized banking: Tailoring services like micropayments, cross-selling, and 
upselling to individual customer needs.

� Instant transactions: Enabling swift and efficient fund transfers.

� Risk mitigation: Implementing robust early warning systems and fraud detection 
measures.

By leveraging data-driven insights, banks can enhance customer experience, optimize 
operations, and gain a competitive edge.

To effectively execute real-time use cases, data attributes such as authenticity, lineage, 
governance, PII protection, aggregation, and open formats are essential. By ensuring data 
quality and security, banks can build trust with both existing and potential customers, 
ultimately enhancing their service offerings.

10.2  Data lakehouses: Empowering data-driven decisions in 
banking

Banks have traditionally relied on data warehouses for business intelligence workloads. While 
fraud detection on edge devices often involves real-time streaming data, large-scale data 
analysis (petabytes and exabytes) typically relies on data warehouses and data lakes, which 
can present challenges in terms of cost and performance.

The banking sector, traditionally cautious about cloud-based solutions, is increasingly 
embracing data lakehouses. These platforms, built on open data formats and lineage 
standards, offer improved control and flexibility in data management:

� Data warehouse(s) - Mature, mostly proprietary solutions optimized for high-performance 
aggregation and stringent service-level agreements (SLAs).

� Data lake(s) - Distributed storage systems, often Hadoop-based, suitable for large-scale 
batch workloads but with limitations.

� Data lakehouse(s) - A convergence of data warehouses and data lakes, leveraging open 
data processing engines and table formats for efficient analytical and batch workloads.

� Data lineage - A combination of open and proprietary standards to track data origins and 
transformations.

� Data governance - AI-powered semantic extraction and search to enhance data 
understanding and control.
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10.3  Data modernization pattern in banking

Decades of heavy investment in optimization have led to stringent SLAs imposed by public 
sector governing bodies on banking use cases. While traditional warehouses effectively met 
these SLAs in the past, the increasing scale of data in certain use cases has challenged their 
cost-effectiveness and ability to maintain SLAs for downtime, recovery, and response times.

10.3.1  Current pattern in banking on analytic use cases

Data management typically involves three key layers:

� Data ingestion services: Both streaming and batch processing are used to ingest data.

� Data stores: Data is stored in various formats, including data lakes and data warehouses.

� Lineage and governance: While less emphasized due to a lack of well-integrated 
services, lineage and governance are crucial for data quality and compliance.

Figure 10-1 shows current pattern in banking on analytic use cases.

Figure 10-1   Current pattern in banking on analytic use cases

10.4  Modernized data management pattern in banking on 
analytic use cases

While the architecture flow has standardized over the years, some of the key differentiates 
are:
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� Data lakehouse for scale at its core.

� Preserving existing investments to iteratively evolve then lift and shift into data lakehouse 
based architecture.

� Platform approach of well-integrated services across data and AI with governance and 
lineage across.

� AI powered semantic enrichment.

� Intelligent and simple AI assisted embedded services.

Figure 10-2 shows modernized data management pattern in banking on analytic use cases.

Figure 10-2   Modernized data management pattern in banking on analytic use cases

List of banking use cases powered by the pattern shown in Figure 10-2 are as follows:

� Use case 1: Real-time business analytics
� Use case 2: Early warning system and fraud detection
� Use case 3: Anti-money laundering

10.5  Conclusion

When modernizing banking applications, it is crucial to safeguard existing investments while 
evolving beyond a lift-and-shift approach. Leverage watsonx, powered by open engines and 
data formats, AI-driven data services for enrichment and governance across the entire stack.
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

� Simplify Your AI Journey: Ensuring Trustworthy AI with IBM watsonx.governance, 
SG24-8573

� Simplify Your AI Journey: Unleashing the Power of AI with IBM watsonx.ai, SG24-8574

� Unlocking Data Insights and AI: IBM Storage Ceph as a Data Lakehouse Platform for IBM 
watsonx.data and Beyond, SG24-8563

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� watsonx.data IBM Documentation

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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