
Redbooks

Artificial Intelligence

Front cover

Turning Data into Insight
with Machine Learning for
IBM z/OS

Makenzie Manna

Abid Alam

Roger Bales

Vineet Dumir

Nicholas Kunze

Jia Li

Sunil Mishra

Evan Rivera

Meng Wan

Yichong Yu

IBM Redbooks

Turning Data into Insight with Machine Learning for
IBM z/OS

August 2024

SG24-8552-00

© Copyright International Business Machines Corporation 2024. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (August 2024)

This edition applies to Machine Learning for IBM z/OS version 3.1.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. .x
Now you can become a published author, too! . xi
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Unlocking the business value of AI on IBM Z . 1
1.1 AI trust and transparency: IBM’s commitment . 2

1.1.1 Classifications of AI. 2
1.1.2 Using AI to help create a competitive advantage . 3

1.2 AI methodology overview . 4
1.3 AI in today’s enterprises: opportunities and challenges . 5
1.4 AI operational patterns: sampling versus comprehensive. 5
1.5 AI model lifecycle overview . 5
1.6 Unique value of AI applications on IBM Z: data and transaction gravity 8

1.6.1 How MLz benefits from Telum on-chip AI accelerator . 10
1.6.2 Using MLz in IBM Z application modernization . 13

Chapter 2. Building business-driven and strategic use cases with MLz 15
2.1 Planning . 16
2.2 Ideation . 17
2.3 Assessment and implementation . 18
2.4 AI applications in various fields . 18

2.4.1 Banking and finance . 19
2.4.2 Other use cases . 22

Chapter 3. The art of data engineering . 23
3.1 Nature of data . 24
3.2 Characteristics of data . 24
3.3 Data preprocessing . 26

3.3.1 Data profiling. 28
3.3.2 Data cleansing . 31
3.3.3 Data reduction. 34
3.3.4 Data transformation . 35
3.3.5 Data enrichment . 37
3.3.6 Data validation . 37

3.4 Data integration patterns. 38
3.4.1 Data exposure pattern: enable modern access to IBM Z data 39
3.4.2 Data virtualization pattern: virtualize IBM Z data. 40
3.4.3 Real-time information sharing pattern: cache IBM Z data. 43
3.4.4 Data transformation pattern: transform IBM Z data. 44
3.4.5 Data synchronization pattern: replicate IBM Z data . 46

Chapter 4. Model building for IBM Z . 49
4.1 Model training frameworks . 50

4.1.1 Model training frameworks and technologies on IBM Z . 50
© Copyright IBM Corp. 2024. iii

4.1.2 Open-source frameworks . 51
4.2 Model formats . 52
4.3 Training strategy . 52

4.3.1 Train anywhere and deploy on IBM Z . 52
4.3.2 Set up secure environment in IBM Cloud . 53
4.3.3 Model development in hybrid cloud. 55
4.3.4 AI reference architecture in hybrid cloud. 56
4.3.5 Training on-premises with IBM Z . 58

4.4 Best practices for model training. 60
4.4.1 Training strategy considerations . 60
4.4.2 Considerations for choosing a framework. 61
4.4.3 Best practices on saving models for deployment on IBM Z 61
4.4.4 Evaluating model formats . 64
4.4.5 Tuning model parameters . 64

4.5 Model building use cases . 64

Chapter 5. Model deployment and inferencing . 67
5.1 Model deployment environments and advantages of mainframe systems 68

5.1.1 Model deployment. 68
5.1.2 Drivers for mainframe deployment . 70

5.2 Features and benefits of deploying by using MLz. 74
5.2.1 Features of MLz . 75
5.2.2 Benefits of using MLz . 77

5.3 Model inferencing . 78
5.3.1 Making online predictions . 79
5.3.2 Interfaces of MLz online scoring service. 80

5.4 Sample use case for MLz model deployment . 83
5.4.1 Batch job efficiency . 84
5.4.2 The use case for batch job elapsed time prediction . 84
5.4.3 Applying batch job elapsed time model with MLz for application integration . . . 100

5.5 Best practice on model deployment and inference . 104
5.5.1 Optimizing ML model integration and deployment for business decisions 104
5.5.2 Choose the right inferencing interface for your use case 105

Chapter 6. Streamlining AI from models to applications by using machine learning
operations . 107

6.1 Understanding MLOps . 108
6.1.1 Colocation of applications and data . 108
6.1.2 Optimizing MLOps with IBM Machine Learning for z/OS 108

6.2 Model development - model training and tuning . 112
6.2.1 Data preprocessing. 112
6.2.2 Hyper parameter tuning . 113
6.2.3 Automated quality assurance testing . 113
6.2.4 Documentation and reproducibility . 114
6.2.5 Continuous improvement and feedback loop . 114

6.3 Model review and deployment . 114
6.3.1 Model review and validation . 115
6.3.2 Model versioning. 116
6.3.3 Integrating with CI/CD pipelines . 116
6.3.4 Model deployment. 118
6.3.5 Model inference and scoring. 119

6.4 Model monitoring. 120
6.4.1 Evaluating and reevaluating a model under MLz . 121
6.4.2 Monitoring deployed models . 121
iv Turning Data into Insight with Machine Learning for IBM z/OS

6.5 AI Governance and security . 128
6.6 How generative AI is evolving MLOps . 129

Related publications . 131
IBM Redbooks . 131
Online resources . 131
Help from IBM . 132
 Contents v

vi Turning Data into Insight with Machine Learning for IBM z/OS

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2024. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at https://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
Cloudant®
DataStage®
DB2®
Db2®
GDPS®
IBM®
IBM Cloud®
IBM Cloud for Financial Services®
IBM Cloud Pak®

IBM Research®
IBM Security®
IBM Telum®
IBM Watson®
IBM Z®
IBM z13®
IBM z16™
InfoSphere®
Insight®
Promontory®

RACF®
Redbooks®
Redbooks (logo) ®
The AI Ladder®
WebSphere®
z Systems®
z/OS®
z13®
z15®
z16®

Intel, Intel Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
viii Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/legal/copytrade.shtml

Preface

The exponential growth in data over the last decade, coupled with adoption of artificial
intelligence, has opened up organizations to valuable insights, opportunities for
improvements in efficiency, and increases in profits. Organizations can deliver more business
value both internally to employees and shareholders and externally to clients and consumers.
The data that fuels these insights is the foundation that these organizations must use to
innovate. Organizations must capitalize on the most advanced AI capabilities to stay ahead of
the competition, and they must do so in a secure environment that protects the data
throughout its lifecycle and data access in real-time at any time.

IBM® Z® can help provide a secure environment. Its multi-workload transactional platform
powers the core business processes of many Fortune 500 enterprises. The IBM Z platform
can provide security, availability, reliability, and scalability. With core transactions and data
originating on IBM Z, it makes sense for AI to exist and run on the same platform.

In the past, some businesses chose to move their sensitive data off IBM Z. However, some
businesses have reconsidered their decision because of the massive growth of digital data,
the punishing cost of security exposures, and the unprecedented demand for real-time
actionable intelligence from data. Instead, businesses embrace the strategy of data gravity for
AI. Transaction gravity is the force that alludes to the high number of transactions that move
through IBM Z. For organizations to get real-time business and operational insights at scale,
the AI workloads must be colocated with the transactional applications and where the data
originates.

Machine Learning for IBM z/OS® is an IBM offering that helps organizations deploy machine
learning models and infuse them with AI on IBM z/OS environments natively that are close to
their most mission-critical workloads. In the secure Z environment, your machine-learning
scoring services can coexist with your transactional applications and data. This configuration
helps to support high throughput, minimize response time, and deliver consistent service level
agreements (SLAs).

This book introduces Machine Learning for IBM z/OS version 3.1.0 (MLz) and describes its
unique value proposition in addition to the business value of AI on the IBM Z platform. It
provides guidance for you to get started with aligning your business goals and use cases for
AI. It outlines the various patterns for accessing and using IBM Z data on-premises, in the
cloud, and in hybrid environments. It discusses in detail the steps and best practices for
model building, deployment, inferencing, and post deployment monitoring.

The book includes examples of how you can use the MLz web-based user interface to train,
evaluate, and deploy a model. The book explores the value of MLz by using a batch job
elapsed time prediction example and shows how to apply the batch job elapsed time model
with MLz for application integration. The book provides insight into how MLz can be used
within machine learning operations to run AI on IBM Z. This book also examines use cases
across industries to illustrate how you can turn your data into valuable insights with MLz.
© Copyright IBM Corp. 2024. ix

Authors

This book was produced by a team of specialists from around the world.

Makenzie Manna is an IBM Redbooks® Project Leader in the US. She is an early
professional with a primary focus on IBM Z® software and solutions, and specializes in AI
solutions on the platform. She holds a MS in Computer Science Software Development from
Marist College and a BS in Mathematics from SUNY Cortland. Her areas of interest and
expertise include AI solutions, IBM Z, educational course content development, video editing
and production, video animation, patent innovation, and technical content development.

Abid Alam is a Sr. Product Manager in the AI for IBM Z team. He has over 4 years of industry
experience in product management strategy and operations. He is responsible for driving the
adoption of AI on IBM Z and works closely with clients and IBM product development and
design teams. Prior to this role, Abid has worked in the startup and consulting space with a
focus on go-to-market and client adoption strategy and driving industry partnerships.

Roger Bales is Program Director – IBM z/OS Strategy. He has over 40 years of IBM Z
mainframe systems and software experience. He is responsible for z/OS strategy and works
closely with IBM Z clients and across the IBM product management, development, and sales
teams. Previously, he led the global IBM Z Consulting Services Practice. Prior to IBM, Mr.
Bales held various technical and management positions at AT&T and served as General
Manager for a global ISV.

Vineet Dumir is an AI Solution Architect in IBM India Systems Lab. He has 14 years of
experience in the database administration, systems programming and machine learning. His
areas of expertise include artificial intelligence, machine learning, data science, data
engineering, IBM Db2® database administration and IBM Z Systems® programming.

Nicholas Kunze is a Client Engineer with the Client Engineering for Systems team. He has 7
years of experience in infrastructure and development, and 5 years of experience on IBM Z
with a focus on performance testing and benchmarking for data engineering and AI/ML.

Jia Li is a Software Engineer in IBM Silicon Valley Lab with 20 years of experience in
software design and development. She has expertise in database administration, database
application development and machine learning tools development.

Sunil Mishra is a Senior Software Engineer in the United States. He has over 25 years of
experience in the software development, design, and architecture field. He has worked at IBM
for 17 years and his areas of expertise include enterprise application development and design
for health care, government, retail, and so on.

Evan Rivera is on the AI development and product management team on IBM Z in the
IBM Silicon Valley Lab. He has 5 years of experience with development, design, architecture,
and product management within the AI and ML field. He is responsible for bringing AI
products to the market and driving client adoption of AI on IBM Z.

Meng Wan is a Senior Software Engineer in China. He has 13 years of experience in Z
system programming, software development and design for machine learning on IBM z/OS.
He has worked at IBM for 13 years and his areas of expertise include artificial intelligence,
machine learning, data science, and Z programming.

Yichong Yu is a Senior Solutions Architect in IBM Cloud® for Financial Services. She has
over 20 years of software development, system design, and research experience, and over 15
years of experience in leading software engineering teams that deliver cutting-edge systems
x Turning Data into Insight with Machine Learning for IBM z/OS

in an agile environment. She has delivered solutions for different industries, including
financial, manufacturing, food, retail, health care, telecommunication, and transportation.

Thanks to the following people for their contributions to this project:

Andrew Sica, Steve Warren, Kelly Yang, Maggie Lin, Maryela Weihrauch, Sueli Almeida, Paul
Cadarette, Greg Vance, Elpida Tzortzatos, Krishna Ratakonda
IBM USA

Sharon Yu, Deng Ke Zhao
IBM China

Daniel Martin, Khadija Souissi, Markus Wolff, Jan Hofmeier
IBM Germany

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:
 Preface xi

https://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.redbooks.ibm.com/contacts.html

https://www.linkedin.com/groups/2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/subscribe

� Stay current on recent Redbooks publications with RSS Feeds:

https://www.redbooks.ibm.com/rss.html
xii Turning Data into Insight with Machine Learning for IBM z/OS

https://www.linkedin.com/groups/2130806
https://www.redbooks.ibm.com/subscribe
https://www.redbooks.ibm.com/rss.html

Chapter 1. Unlocking the business value of
AI on IBM Z

Artificial intelligence (AI) adoption is helping companies become more efficient, increase
profits and ultimately deliver more business value to their clients. Technology is rapidly
moving from a world where AI was seen as a nice-to-have option for the business strategy to
a place now where AI is essential to business.

A recent survey of over 3,000 CEOs from companies around the world, conducted by the
IBM Institute for Business Value found that 75% believe that competitive advantage will be
driven in part by who has the most advanced AI capabilities.1

This chapter includes a discussion of the business value of AI and in particular, the immense
value achieved, and opportunities unlocked from implementing AI within your IBM Z
environment.

� 1.1, “AI trust and transparency: IBM’s commitment” on page 2
� 1.2, “AI methodology overview” on page 4
� 1.3, “AI in today’s enterprises: opportunities and challenges” on page 5
� 1.4, “AI operational patterns: sampling versus comprehensive” on page 5
� 1.5, “AI model lifecycle overview” on page 5
� 1.6, “Unique value of AI applications on IBM Z: data and transaction gravity” on page 8

1

1 https://www.ibm.com/thought-leadership/institute-business-value/c-suite-study/ceo
© Copyright IBM Corp. 2024. 1

https://www.ibm.com/thought-leadership/institute-business-value/c-suite-study/ceo

1.1 AI trust and transparency: IBM’s commitment

For decades, IBM has followed a set of core principles that have helped guide the handling of
client data and insights. These principles enable responsible development and deployment of
new, transformative technologies and innovations. Governments around the world are
increasingly regulating AI. Regulations include the EU AI Act and the United States Executive
Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence.

The IBM trust and transparency principles include:

� The purpose of AI is to augment human intelligence.

AI should make all of us better at our jobs. The benefits of the AI era should touch the
many, not just the elite few.

� Data and insights belong to their creator, IBM clients.

Data is their data, and their insights are their insights. Government data policies should be
fair, equitable, and prioritize openness.

� Technology must be transparent and explainable.

Companies must be clear about who trains their AI systems, what data was used in
training and most importantly, what went into their algorithms' recommendations.

For more information, see IBM’s Principles for Trust and Transparency.

1.1.1 Classifications of AI

AI can be classified into the following three areas:

1. Reactive machines

Reactive machines are the most basic types of AI systems. They are task-specific with no
memory-based functionality. Thus, they cannot learn from past experiences and always
react to specific inputs with predefined outputs.

The following list provides examples of reactive machines:

– IBM Deep Blue was a chess-playing expert system that famously played world chess
champion Garry Kasparov in 1996 winning two games and losing four. In 1997, after
further refinements Deep Blue won two games and played to a draw on three games.
This is a good example of AI reacting to external data to augment decision making and
performance. Deep Blue's victory is considered a milestone in the history of artificial
intelligence.

– In February 2011, IBM's Watson computer competed on Jeopardy! against the TV quiz
shows two biggest all-time champions. Watson is a computer running software that is
called Deep QA, developed by IBM Research®. Although the challenge that drove the
project was to win on Jeopardy!, the broader goal of Watson was to create a new
generation of technology that can find answers in unstructured data more effectively
than standard search technology.

Both the IBM Deep Blue and Jeopardy! experiences represent examples of advancing AI
technologies that are designed to react and augment decision-making.

2. Machine learning and Deep Learning

Machine learning (ML) is a subset of artificial intelligence that focuses on the development
of algorithms and models that allow systems to learn and improve from experience without
explicit programming. It encompasses various techniques such as supervised,
unsupervised, and reinforcement learning. Supervised learning involves training models
2 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/policy/trust-transparency-new/

on labeled data to make predictions or classifications. Unsupervised learning deals with
discovering patterns or structures within unlabeled data. Reinforcement learning revolves
around training agents to make decisions by rewarding correct responses. Machine
learning is used widely in applications across many different industries. In finance and
banking, it aids use cases like fraud detection, anti-money laundering, and algorithmic
trading. In health care, it assists in diagnostics and personalized medicine. Moreover,
recommendation systems in e-commerce and advertisement also take advantage of
machine learning.

Deep learning (DL), a subset of machine learning, uses neural networks with multiple
layers to extract hierarchical representations from data. These networks, inspired by the
human brain's structure, consist of interconnected nodes that process information. Deep
learning models, such as convolutional neural networks (CNNs) for image recognition or
recurrent neural networks (RNNs) for sequential data, have revolutionized various fields.
In computer vision, deep learning powers object detection, image classification, and facial
recognition systems. Natural language processing (NLP) relies heavily on deep learning
for tasks like machine translation, sentiment analysis, and chatbots. Additionally,
autonomous vehicles use deep learning for perception and decision-making, marking its
significant impact on modern technology.

� Generative AI and its applications

Generative AI encompasses models that create new content resembling real data, often
based on patterns and structures learned from existing datasets. This category includes
generative adversarial networks (GANs), variational autoencoders (VAEs), and
transformers. GANs, for instance, consist of two neural networks, a generator, and a
discriminator, competing to produce authentic-looking data. Applications of generative AI
are diverse. In art and media, it aids in generating realistic images, music, and text.
Furthermore, it contributes to data augmentation techniques for improving training
datasets in machine learning. In drug discovery, generative AI assists in molecule
generation and drug design by generating novel compounds with useful properties.
Additionally, it can e used to create synthetic data for training models while preserving
privacy and security in sensitive domains.

1.1.2 Using AI to help create a competitive advantage

The rate of digital transformation has accelerated and with that transformation the adoption
and use of AI has also grown. AI is becoming an economic accelerator for companies today.
Its business impact is positively affecting both top line revenue through enhanced customer
engagement and support. At the same time, AI is improving the bottom line by reducing
operational costs that are driven by increased employee and resource productivity. AI is now
impacting both the top and bottom lines for many businesses, and it is seen as an essential
initiative for future competitiveness.

The data supports this conclusion. In a recent global survey of over 6000 C-level executives,
companies reported 6.3% points of direct revenue growth attributable to AI. At the same time,
more than 85% of advanced AI adopters are reducing operating costs with AI. Out of the
85%, 47% of them were able to reach cost improvements through process efficiencies, 41%
in supply chain and production and 39% in human resource efficiency improvements.2

Chapter 2, “Building business-driven and strategic use cases with MLz” on page 15 provides
a comprehensive view of AI use cases and goes deeper into key use case development
techniques including planning, ideation, assessment, and execution.

2 IBM Institute for Business Value Study, “The Business Value of AI”, November 2020,
https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/ai-value-pandemic
Chapter 1. Unlocking the business value of AI on IBM Z 3

https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/ai-value-pandemic

1.2 AI methodology overview

As AI continues to evolve and grow, so do the capabilities and applicability of AI across many
different domains and tasks, as shown in Figure 1-1.

Figure 1-1 The evolution of AI

Although AI is now mainstream, it is important to know that the initial concepts existed in the
mid-1900s. Over the years, the evolution of AI and supporting technologies that provide the
necessary computational resources enabled enterprises to use it within the real world.

Before they used AI, enterprises used rule-based systems and still do. Rule-based systems
apply logical rules that are generated by a human to perform data handling and manipulation.
These rules have already been predefined.

With the emergence of AI, enterprises can enhance or replace rule-based systems and can
follow John McCarthy's definition of AI, which states “It is the science and engineering of
making intelligent machines, especially intelligent computer programs. It is related to the
similar task of using computers to understand human intelligence, but AI does not have to
confine itself to methods that are biologically observable.”3

AI as an overall umbrella is widespread. Machine learning and deep learning (DL) have
gained adoption within the industry. They are both considered subsets of AI although DL is
more specifically a subset of machine learning that uses neural networks for picture or pattern
recognition.

Generative AI is the latest iteration of innovation within the AI industry. Generative AI refers to
DL models that can input raw data, such as all of Wikipedia or the collected works of
Rembrandt, and generate statistically probable outputs when prompted.4

Additionally, foundation models are a part of generative AI. The foundation models are trained
on a significant amount of unlabeled data and fine-tuned for different types of use cases. The
reduced number of requirements on data handling for generative AI has driven AI into the
mainstream and is allowing for an acceleration of adoption in various industries. Although
generative AI can bring new opportunities to enterprises, it normally requires more

3 What is Artificial Intelligence? By John McCarthy - https://www-formal.stanford.edu/jmc/whatisai.pdf
4 What is artificial intelligence (AI)? - https://www.ibm.com/topics/artificial-intelligence
4 Turning Data into Insight with Machine Learning for IBM z/OS

https://www-formal.stanford.edu/jmc/whatisai.pdf
https://www.ibm.com/topics/artificial-intelligence

computational powers to train and run inference. Therefore, the existing ML and DL models
might still make the most sense to enterprises.

1.3 AI in today’s enterprises: opportunities and challenges

Opportunities to use AI to drive business results align in two broad areas, in revenue growth
and in productivity and cost savings. The common thread across many of the revenue growth
opportunities are related to how AI can enhance the value of a delivered good or service and
the expansive possibilities of new business models that were introduced with AI. The ability to
use the combination of data, existing knowledge, and prediction are key ingredients to
enhancing product and client capabilities and value. Cost savings opportunities span a
growing spectrum of areas that include supply chain and inventory management and human
resource productivity.

Resistance to AI adoption is most often based on either the cost to build, deploy, and operate
new AI capabilities or the resistance to adopt change. Resistance to change can be for
several reasons, not the least of which is the fear that AI might subsume the expertise and
value that humans currently bring to a business process or function.

1.4 AI operational patterns: sampling versus comprehensive

There are several AI deployment methods that vary based on use case characteristics and
the functional requirements of the AI. In general, the deployment methods can be broken
down in to two categories, data sampling and comprehensive data analysis.

Data sampling
Data Sampling uses a sample of data to enable the applicable AI function and result. AI
applications that act upon visual data, such as images and video, are some examples where
sampling is used.

Comprehensive data analysis
Comprehensive Data Analysis is preferred when all data is considered. AI functions that act
on all data or transactions use this method. Credit Card approval and fraud detection are
some examples where it is both desirable and necessary to operate on every transaction in
real time. Machine Learning for IBM z/OS that uses the scalability of the IBM Z compute
platform is designed to enable this comprehensive, real-time, in transaction capability. It can
enable clients to achieve 100% of their transactions with real-time AI capabilities that
sampling methods and solutions might not be able to provide.

1.5 AI model lifecycle overview

A typical AI project consists of a set of steps that build an AI model lifecycle. As outlined in
Figure 1-2 on page 6, each step in the lifecycle builds on the previous steps by using outputs
and decision interlocks from preceding steps to form the basis of successful execution in each
subsequent step.
Chapter 1. Unlocking the business value of AI on IBM Z 5

Figure 1-2 AI model lifecycle

The following sections take a more detailed look at each of the AI model lifecycle phases.

Business understanding
As use cases grow rapidly for AI, the business understanding phase becomes increasingly
important to the overall success of the AI project. In this phase of the AI model lifecycle, clear
and specific business goals are defined and approved by management. Goals should be
described in business terms and describe quantifiable outcomes. Two elements, defined at a
high level, are the What and the How.

An example of the What can be: We want to reduce high-risk credit authorizations by 5% in
the next 18 months. This specific goal helps keep the subsequent project activities aligned
with the business goal and wanted value.

When defining the How, the goal is to capture a high-level view of how the business goal is
accomplished. An example of the How, related to the sample business goal, might be:
Evaluate each request for credit, combing actual payment history and promptness, with
recent buying history and existing credit score to predict future propensity to pay in full and
within the repayment window. This How provides enough information to guide the next steps
in the AI project without getting too deeply entangled in detail prematurely.

The final critical activity in this step involves clear, comprehensive communications across the
business and technical leadership team and obtaining approvals from each function before
proceeding. A best practice is to reduce the outputs of this phase to writing so that approvals
can be confirmed in writing and so that agreed-to outputs can be documented for future
reference.

Data understanding
Identifying and understanding the data that is needed to successfully build and deploy the AI
project is critical to success and to optimizing project productivity. By using the outputs of the
Business Understanding phase, project specialists can break down the goals, which include
the What and How, and can identify what data is required to achieve the business and
technical goals. A recommended practice is to start with the expected outputs and determine
what data is needed to produce the results as stated in the project goals. It is possible that
intermediate data is required, so it might be advisable to ask the question repeatedly for each
6 Turning Data into Insight with Machine Learning for IBM z/OS

collection of data identified. When the data needed is identified, the next step is to determine
what data exists and where and that data might be produced or calculated. Creation of a data
map is useful to help understand the data that is needed and to build effective plans and
methods to acquire or build the data.

Chapter 3, “The art of data engineering” on page 23 focuses on the key elements of data
handling, including data profiling, cleansing, reduction, transformation, enrichment, and
validation, and provides insights and best practices around various data integration patterns.
Because the quality of the input data can determine the success or failure of an AI project,
then following these methods is critical within the data understanding phase.

Model building
The model building phase is where the key AI intelligence is created. It uses the intersection
of data science, programming, and business understanding skills to take advantage of the
significant power and capabilities of machine learning and AI. Most models contain one or
more algorithms that contain logic and features, which determine during inferencing how to
process and interpret data and conditions that are present to arrive at a conclusion.
Sometimes, it is useful to seek insight from key experts within the business on the targeted
topic area to help strengthen the algorithm. The final stage of model build involves designing
and testing the model to validate that it can produce the expected insights. In addition to the
basic functionality, the model must be evaluated for accuracy, consistency, and nonbiased
results.

Chapter 4, “Model building for IBM Z” on page 49 covers key aspects of AI model
development, testing, and use. Some of the following key activities of the AI model building
and deployment are covered in the chapter:

� Model frameworks to facilitate model training
� Model formatting for AI use
� Best practices for developing and running training strategies.

Model deployment
Upon completion of the model build phase, the model is ready to be deployed and run on
active and eventually production workloads. AI models must be deployed by using an AI
model format that the AI inference and processing environment supports. In the early stages
of model deployment, it is often advisable to follow standard test-to-production DevOps
techniques to see the results of the model on production-like data in the application test
environment before moving to production environments.

Chapter 5, “Model deployment and inferencing” on page 67 provides details about model
deployment and inferencing. The chapter also highlights the advantages that IBM Z provides
in creating close data adjacency. The chapter describes the benefits of using ML for IBM z/OS
for proper deployment and efficient inferencing to ensure a successful integration of AI and
ML into practical solutions.

Model monitoring
Model monitoring is a key step to maintain the health and effectiveness of the AI model.
Complete and consistently applied governance techniques and processes are essential and

Note: DevOps is an approach to lean and agile software delivery that promotes closer
collaboration between lines of business, development, and IT operations. Historically,
development and operations, and even testing, have been isolated operations. DevOps
brings them together to improve and reduce the time that is needed to address customer
feedback.
Chapter 1. Unlocking the business value of AI on IBM Z 7

required by law. During this phase, continuously measure and monitor the AI model as more,
and possibly varied, data are introduced to the model. There are generally two areas of focus
during this phase, model accuracy, including explainability, and model performance.

Chapter 6, “Streamlining AI from models to applications by using machine learning
operations” on page 107 discusses and demonstrates the power of MLz. The chapter
includes a description of the overall IBM Z infrastructure when optimizing and integrating a
modern and robust machine learning operations process. A process that is essential for
clients to run AI on IBM Z.

1.6 Unique value of AI applications on IBM Z: data and
transaction gravity

Organizations are increasingly harnessing the power of AI to gain a competitive edge. At the
heart of this transformation is the concept of the IBM AI Ladder®, illustrated in Figure 1-3.
The AI Ladder® is a systematic approach that can help organizations successfully integrate
AI into their operations and applications. In this section, explores how IBM Z and ML for
IBM z/OS platform play a pivotal role in helping organizations ascend the AI Ladder and
achieve AI-infused enterprise applications.

Figure 1-3 The AI ladder - A guiding strategy for organizations to transform their business by
connecting data and AI

The IBM AI Ladder consists of four distinct but interconnected steps:

1. Collect
2. Organize
3. Analyze
4. Infuse

Each step builds upon the previous one to create a comprehensive framework for
implementing AI successfully. With some of the most mission-critical enterprise workloads
running on IBM Z, organizations can benefit from adopting the AI Ladder approach as a
roadmap to accelerate their AI adoption on IBM Z platform and realize significant business
value.

Another important concept to understand is the idea of data gravity and transaction gravity on
IBM Z. Data gravity refers to the quantity of data originating on IBM Z and transaction gravity
refers to the number of transactions going through IBM Z. Today, more than an estimated
70% of the world's financial transactions run on IBM Z.5
8 Turning Data into Insight with Machine Learning for IBM z/OS

As businesses begin expansive AI projects, they are encountering higher expenses and risk
because of their initial decisions about where to set up their AI operations. Many companies
that position their AI model training infrastructure far from their central data storage are facing
amplified costs and heightened risk as their data collections expand and their AI models
become more intricate.

Mainframe computers play a central role in the daily operations of most of the world’s largest
corporations. To retain the core strengths and attributes of the IBM mainframe platform and
simultaneously use the extensive cloud services, security, and regulatory compliance
programs of IBM Cloud, IBM recommends a hybrid cloud approach to mainframe application
modernization. In this way, AI models can be trained within a client-chosen, security-rich
environment, for example, IBM Cloud for Financial Services® as discussed in Chapter 3, and
the model can be deployed to IBM Z. It is critical in maintaining the transaction logics and run
model inference on mainframe to meet stringent low-latency, large-scale transaction
requirements.

This ability to meet the transaction requirements is accredited to IBM Z platform's strong
legacy of being one of the most robust, securable, and scalable enterprise platforms in the
market for hosting some of the most mission-critical and core business workloads of clients.

Expanding on the AI ladder that is powered by the data and transaction
gravity of IBM Z
The Collect step of the AI Ladder is the foundational step at which lies the data - the lifeblood
of AI. Your mission-critical data originates and resides on IBM Z. Connecting different data
sources from within of IBM Z with data tools provides the rock-solid foundation needed to
start the AI journey.

After you have the data, the next step on the AI Ladder is Organize. This step helps organize
the data in an optimized way to provide a business-ready analytics foundation on IBM Z
platform.

With the data in place, you can build and scale AI with trust and transparency. You can benefit
from AI models that empower organizations to gain new insights and make better decisions
as a new stream of data is continuously generated and fed to the model.

With the AI models deployed, clients can now operate AI at the Infuse step of the AI Ladder
by infusing the models into their mission-critical applications that are running on IBM Z.
Clients can draw on predictions, automation, and optimization for real-time business insights
at scale.

Machine Learning for IBM z/OS: an enterprise machine learning solution
Machine Learning for IBM z/OS is the IBM flagship machine-learning platform that is tailored
for z/OS environments that facilitates the development, deployment, management, and
scaling of AI models within the secure and powerful z/OS environments in IBM Z. With some
of the world's most mission-critical and transactional workloads running on z/OS
environments, clients can infuse AI into those applications by colocating their AI workloads
close to those applications. By colocating AI workloads, clients can use the inherent strengths
of IBM Z and use the capabilities of advanced AI and ML algorithms for high throughput and
low latency inferencing to meet stringent client SLA requirements. This colocation approach
addresses the growing demand for processing large-scale AI tasks efficiently, making it
beneficial for enterprises with vast amounts of data and complex AL and ML models.

5 CELENT: Operationalizing Fraud Prevention on IBM z16 - Reducing Losses in Banking, Cards, and Payments,
https://www.ibm.com/downloads/cas/DOXY3Q94
Chapter 1. Unlocking the business value of AI on IBM Z 9

https://www.ibm.com/downloads/cas/DOXY3Q94

Capabilities of MLz
Real-time, in-transaction analytics gives companies the power to use their valuable historical
data. It allows them to automatically uncover valuable insights and create predictive models
that can use the vast amount of data they capture. Instead of relying on past reports,
businesses can now predict future outcomes by analyzing their data.

Machine Learning for IBM z/OS empowers data scientists to build, train, and deploy AI
models directly on IBM Z. This means that clients can infuse AI into their mission-critical
transactional applications and score every transaction in real-time on the IBM Z platform.
Through doing so, they can achieve accelerated business insights at scale. Additional
discussion about the capabilities and the breadth of the supported use cases is provided in
the other chapters.

1.6.1 How MLz benefits from Telum on-chip AI accelerator

With the introduction of IBM z16™ in 2022, IBM released AI capabilities at the heart of the
hardware. The IBM z16 came with an industry-first on-chip AI accelerator - The IBM z16
Integrated Accelerator for AI, represents a ground-breaking advancement that promises to
redefine the possibilities for AI workloads in the enterprise space. This combination of
cutting-edge hardware and software capabilities is poised to transform the way organizations
process and analyze data, enabling them to derive business insights at unprecedented scales
while meeting the rigorous demands of mission-critical workloads.

The Integrated Accelerator for AI has been designed for the sole purpose of accelerating AI
workloads. It brings a new level of performance to AI inference tasks, significantly reducing
the time required for model inference and enabling real-time decision-making capabilities. Its
architectural design optimally aligns with the demands of AI workloads, making it a perfect
companion to the IBM z16 mainframe.

This flexible on-chip Integrated Accelerator for AI works with a standard Z-core general
processor. Every general core processor in the IBM z16 system has an on-chip accelerator
built-in. This centralized on-chip AI accelerator can be shared and accessed by all eight cores
(see Figure 1-4). As a result, each core can access the full stack accelerator directly instead
of having access to only the performance of the AI inference in each core.

Figure 1-4 IBM Telum® On-chip Accelerator for AI
10 Turning Data into Insight with Machine Learning for IBM z/OS

The IBM z16 Integrated Accelerator for AI includes several functional and performance
features:

� Neural network processing assist instruction. Memory to memory CISC instruction that
operates directly on tensor data in user space and enables matrix multiplication,
convolution, pooling, and activation functions.

� Optimization on firmware level for core and AI accelerator to address translation and
access. Address translation and access check for tensor data, pre-fetching of tensor data
into L2 cache, and coordination of data staging and computing activities.

� Providing an aggregate of more than 6 TFLOPS/chip, which is more than 200 TFLOPS on
a 32-chip system.

� Matrix array. 128 processor tiles with 8-way FP-16 FMA SIMD. Optimized for matrix
multiplication and convolution operations.

� Activation array. 32 processor tiles with 8-way FP-16/FP-32 SIMD. Optimized for activation
functions and complex operations like RELU, Sigmoid, tanh, log, high-efficiency SoftMax,
LSTM, and GRU.

� Intelligent pre-fetcher and writeback. Greater than 200 GB/s of read/store bandwidth from
and to cache and multi-zone scratchpad for concurrent load execution.

� Intelligent Data Mover and Formatter. Greater than 600 GB/s bandwidth between engines
to format and prepare data as needed for compute and write-back.

With more sophisticated AI algorithms being used in the industry, deep learning models
based on deep neural network is one such subset of AI algorithms that has gained popularity
and has a much-increased capacity and learning rate. Based on industry conversations and
research, Celent estimates that AI inferencing based on deep learning models can increase
the accuracy of fraud detection by 60% over existing fraud models. This exponentially
improves throughput and response times, making it possible, for the first time, to pass virtually
all transactions through deep learning-based fraud detection models.6

The power of using inferencing to identify and prevent fraud is limited in high-volume
mainframe systems. In these situations, these models are used for less than 10% of
transactions because of issues like slow processing speeds, high costs, and inconvenience
for customers. This means that around 90% of fraud that could be prevented goes
undetected. This makes it difficult for banks to use AI to reduce their losses from fraud.

But with the powerful z16 Telum on-chip AI accelerator, organizations can run AI models
directly on the chip and in real-time, enabling 100% of transactions to be scored with high
throughput and low latency.

With Machine Learning for IBM z/OS, clients can deploy AI models (in this case, deep
learning models) by converting the model to ONNX format. ONNX is open source and vendor
neutral. After they are converted, those models can be imported to MLz, deployed, and
infused into our client's transactional applications for real-time AI inferencing. In the back end,
the models use IBM Z Deep Learning Compiler, which uses ONNX-MLIR, to compile deep
learning AI models in .onnx format into shared libraries. The shared libraries can then be
integrated into C, C++, Java, or Python applications. The compiled models take advantage of
IBM Z technologies including SIMD on IBM z13® and later and the Integrated Accelerator for
AI available on IBM z16™ without changes to the original model.

6 CELENT: Operationalizing Fraud Prevention on IBM z16 - Reducing Losses in Banking, Cards, and Payments,
https://www.ibm.com/downloads/cas/DOXY3Q94
Chapter 1. Unlocking the business value of AI on IBM Z 11

https://www.ibm.com/downloads/cas/DOXY3Q94

Some performance-proof points running transactional workloads with inference operations on
IBM z16 and Machine Learning for IBM z/OS v3.1 include the following characteristics:

� An IBM z16 system can process up to 228,000 z/OS CICS® credit card transactions per
second with 6 ms response times, each with an in-transaction fraud detection inference
operation that uses a DL model.

� On IBM z16, run a CICS credit card workload with in-transaction inference operations with
55% faster response time and 119% higher throughput by using the Integrated Accelerator
for AI for low latency inferencing.

� On IBM z16 with z/OS, colocating applications with inferencing requests helps minimize
delays caused by network latency. Colocating applications with inferencing can help
deliver a maximum of 20x faster response time and a maximum of 19x higher throughput
versus sending the same inferencing requests compared to an x86 cloud server with 60
ms average network latency.

DISCLAIMER The performance result is extrapolated from IBM internal tests running
an IBM CICS credit card transaction workload with inference operations on an IBM z16.
A z/OS V2R4 LPAR configured with 6 CPs and 256 GB of memory was used.
Inferencing was done with Machine Learning for IBM z/OS 2.4 running on
IBM WebSphere® Application Server Liberty 21.0.0.12, using a synthetic credit card
fraud detection model (https://github.com/IBM/ai-on-z-fraud-detection) and the
Integrated Accelerator for AI. Server-side batching was enabled on Machine Learning
for IBM z/OS with a size of 8 inference operations. The benchmark was executed with
48 threads performing inference operations. Results represent a fully configured
IBM z16 with 200 CPs and 40 TB storage. Results can vary.

DISCLAIMER Performance results are based on an IBM internal CICS OLTP credit
card workload with in-transaction fraud detection running on IBM z16. Measurements
were done with and without the Integrated Accelerator for AI. A z/OS V2R4 LPAR
configured with 12 CPs, 24 zIIPs, and 256 GB of memory was used. Inferencing was
done with Machine Learning for IBM z/OS 2.4 running on WebSphere Application
Server Liberty 21.0.0.12, using a synthetic credit card fraud detection model
(https://github.com/IBM/ai-on-z-fraud-detection). Server-side batching was
enabled on Machine Learning for IBM z/OS with a size of 8 inference operations.
Results can vary.

DISCLAIMER Performance results based on IBM internal tests that use a CICS OLTP
credit card workload with in-transaction fraud detection. A synthetic credit card fraud
detection model was used: https://github.com/IBM/ai-on-z-fraud-detection. On
IBM z16, inferencing was done with MLz on zCX. Tensorflow Serving was used on the
compared x86 server. A Linux on IBM Z LPAR on the same IBM z16 was used to bridge
the network connection between the measured z/OS LPAR and the x86 server.
Additional network latency was introduced with the Linux "tc-netem" command to
simulate a remote cloud environment with 60 ms average latency. Results can vary.

IBM z16 configuration Measurements were run using a z/OS (v2R4) LPAR with MLz
(OSCE) and zCX with APAR– oa61559 and APAR - OA62310 applied, 8 CPs, 16 zIIPs,
and 8 GB of memory. x86 configuration: Tensorflow Serving 2.4 ran on Ubuntu 20.04.3
LTS on 8 Skylake Intel Xeon Gold CPUs @ 2.30 GHz with Hyperthreading turned on,
1.5 TB memory, RAID5 local SSD Storage
12 Turning Data into Insight with Machine Learning for IBM z/OS

https://github.com/IBM/ai-on-z-fraud-detection
https://github.com/IBM/ai-on-z-fraud-detection
https://github.com/IBM/ai-on-z-fraud-detection

� IBM z16 with the Integrated Accelerator for AI provides 4x faster response time versus
IBM z15® when both are running equivalent OLTP workloads with batched fraud
detection.

For a full list of supported operations on the accelerator, see: Leveraging the IBM z16
Integrated Accelerator for AI.

1.6.2 Using MLz in IBM Z application modernization

The mainframe is as modern and powerful as any other platform in the market. Most of the
mission-critical applications around the world still running on mainframes, demonstrate the
strengths of the platform. However, most applications were designed at a time when AI was
not widely used. In addition to that, many applications were written in languages such as
COBOL and PL/I. Any major changes to those code bases might break and disrupt the
workload.

With applications running on IBM Z, clients are increasingly looking for opportunities to
modernize those applications in place. Infusing AI into these traditional applications can be
complex, but with MLz, clients can modernize their applications with minimal changes to their
code. This not only helps our clients extend the value of their investments but also brings
more AI workloads back to IBM Z. For more of an overview of the IBM strategy to help you
modernize applications faster, at lower cost and at less risk, by using IBM Z and public cloud
solutions together in your modernization journey, see the following IBM Redbooks Point of
View publication, Accelerate Mainframe Application Modernization with Hybrid Cloud,
REDP-5705.

IBM Z clients have the following three common ways to modernize their applications with AI
and Machine Learning for IBM z/OS:

� “REST APIs”
� “CICS Exec Link Command”
� “WOLA Interface”

REST APIs
This is a widely used method for connecting different systems and services over HTTP
requests. With MLz, machine learning models can be exposed as a service to enable IBM Z
applications to score/infer transactions, which makes this approach versatile for application
modernization.

DISCLAIMER: Performance results based on IBM internal tests running online
transaction processing (OLTP) credit card workloads with in-transaction fraud detection
(https://github.com/IBM/ai-on-z-fraud-detection). On IBM z16 A01 and z15 T01,
both systems ran z/OS 2.4, had 4 central processors, 8 IBM z Systems Integrated
Information Processors (zIIPs) with simultaneous multithreading 2, and 16 GB memory.
Inferencing was done in IBM Machine Learning for IBM z/OS Online Scoring
Community Edition v1.0.0 in a single IBM z/OS Container Extensions (zCX) container.
zCX was version V2R4 with APAR 0A59865. The application ran in CICS v5.4 on
IBM WebSphere Application Server Version v8.5 Liberty with Java 8.0.6.20 and
IBM Enterprise COBOL for z/OS 6.2.0 P190522. The database for the application was
a colocated IBM DB2® for z/OS v12. The workload driver, JMeter, was based on an
initial workload that targeted 10,000 transactions per second on z15 without fraud
detection. This same driver configuration was then used with fraud detection on both
systems where the 32 most recent transactions for that credit card were batched
client-side for fraud detection.
Chapter 1. Unlocking the business value of AI on IBM Z 13

https://ibm.github.io/ai-on-z-101/z16Accel/
https://ibm.github.io/ai-on-z-101/z16Accel/
https://github.com/IBM/ai-on-z-fraud-detection

CICS Exec Link Command
Clients with CICS COBOL applications can use the CICS exec link command to invoke MLz
services directly into the application with very minimal application changes allowing them to
score/infer transactions with very high throughput and low latency.

WOLA Interface
For IMS COBOL applications, WOLA provides a high-performance bridge between
IBM WebSphere for z/OS and COBOL, PL/I, C, and C++ applications in external address
spaces that run on the same z/OS system by using shared memory between processes and
applications. You can use this interface to use the MLz scoring capability for even higher
performance inferencing for large transaction volumes and low latency requirement SLAs.
14 Turning Data into Insight with Machine Learning for IBM z/OS

Chapter 2. Building business-driven and
strategic use cases with MLz

Before businesses can use Artificial Intelligence (AI) for additional value in their existing
pipelines and applications, they must understand why they are implementing AI.
Organizations need objective criteria for evaluating business problems and challenges and
determining what solutions are most appropriate. This chapter includes a discussion about
how to properly identify and prepare AI use cases.

� 2.1, “Planning” on page 16
� 2.2, “Ideation” on page 17
� 2.3, “Assessment and implementation” on page 18
� 2.4, “AI applications in various fields” on page 18

Approximately half of AI projects are completed for production1. Organizations can struggle to
successfully implement AI, which can be because of lack of expertise, lack of useful data, or a
lack of business value gained. This chapter describes how to avoid these issues by using
proper planning from concept to execution.

The section 1.6, “Unique value of AI applications on IBM Z: data and transaction gravity” on
page 8 includes a discussion of the AI Ladder and how its usage can aid in the
implementation of AI in organizations. However, the proper collection and usage of data is
only one facet in the preparation of implementing AI.

Organizations must scrutinize their business plans for market opportunities and existing
challenges. Based on predetermined, objective criteria, they must identify which opportunities
and challenges are suited to AI. Then, working backward as a check, undertake a data
monetization exercise to explore existing pools of data wealth where AI can help unlock
business value. This can be broken down into the following steps:

1. Planning. Includes self-assessment for organizations readiness
2. Ideation. Or brainstorming
3. Assessment. Assess ideas iteratively for viability
4. Execution. Start minimal viable products (MVPs) and assess KPIs for use cases

2

1 https://www.ibm.com/resources/the-data-differentiator/scale-ai
© Copyright IBM Corp. 2024. 15

https://www.ibm.com/resources/the-data-differentiator/scale-ai

2.1 Planning

Before the start of the ideation phase, an organization must properly identify its strengths,
maturity, and areas it needs to improve that are related to AI capabilities. IBM identified six
organization AI capabilities (Figure 2-1), with Trust at the center, that are crucial for creating
good business value and return on investment (ROI) from AI projects:

1. Vision and Strategy
2. Operating Model
3. AI Engineering and Operations
4. Data and Technology
5. Talent and Skills
6. Culture and Adoption

Figure 2-1 The six organization AI capabilities

Questions must be addressed as to the maturity for each capability for your organization to
understand not only how ready they are for AI, but also how much they can benefit in terms of
ROI.

Discussions of each of the six AI capabilities should include a series of questions:

� Vision and strategy:

– What value should AI bring to your company?
– How is AI being used to differentiate your company from its competitors?
– How are AI projects reviewed for strategic alignment?
– Do you have an enterprise-wide approach to AI and a roadmap to deliver results?
16 Turning Data into Insight with Machine Learning for IBM z/OS

� Operating model:

– Is AI embedded in your internal systems and operational processes?
– What is your process for developing MVPs to meet a specific business need?
– How are AI insights being generated and delivered to the business to create value?
– What checks and balances do you have in place to ensure you use AI ethically?

� AI engineering and operations:

– How are machine learning and data models being tested, deployed, and maintained?
– How are you tracking changes made to AI solutions?
– Do you have systems and processes to identify and solve problems as they appear?
– Can you measure and tune AI models after they are deployed?

� Data and technology:

– Do you have high-volume, high-quality, trusted data?
– Do your governance processes prioritize data security and enable trustworthy AI?
– What level of data advocacy and literacy exists across your organization?
– Do you have the information architecture in place to scale AI solutions?

� Talent and skills:

– How is your organization attracting talent with data and AI skills?
– How are you developing AI skills and expertise across your organization?
– How are teams sharing knowledge to increase everyone's comfort level with AI

applications?

� Culture and adoption:

– Is your organization change-ready?
– What level of change management support is available to bolster AI adoption?
– Do all AI projects have a named executive sponsor?
– Are KPIs baked into use case adoption?

For more information on becoming AI-ready and questions organizations can measure their
AI maturity with, see Generating ROI with AI.

2.2 Ideation

For an AI solution to provide value, it must target an existing problem. Teams of AI experts
and strategic leaders must work together to identify business-critical problems that exist
within the organization and know of existing or future data sources that might be used to
tackle this problem. Organizations must scrutinize their business plans for market
opportunities and existing challenges. They must identify which opportunities and challenges
might be suited to AI based on predetermined, objective criteria.

To change from ideas to steps, identify strategic challenges or opportunities for improvement.
Also, define these targets' requirements to use AI in this space, such as data availability, and
ensure sure that all stakeholders and parties are involved in these brainstorming steps.
Something technically viable might not be strategically relevant to the business as a whole,
and involving personnel with all levels of expertise can maximize an organization's ability to
produce higher result AI projects.
Chapter 2. Building business-driven and strategic use cases with MLz 17

https://www.ibm.com/downloads/cas/DD0RN0B2

2.3 Assessment and implementation

After completing the ideation, explore available pools of data to see how AI can create value
for your business. Consider whether you have sufficient data with which to train and inform an
AI-based solution. Determine whether the problem is strategic enough to justify an investment
in AI.

Maximizing business value can be found through a few general but important steps. The first
of which is ideation. This is the most important step as mentioned before. For an AI solution to
provide value it must target an existing problem. Find business-critical problems that exist
within the organization and locate existing or future data sources that you can use to tackle
this problem.

After you have determined the main issues in your organization during ideation, it is important
to examine these problems iteratively and assess the relative value that solving these
problems can provide. For each proposed solution identified during ideation, assess them
based on several factors (Figure 2-2):

� Ease of solution implementation
� Whether the necessary data is available
� The impact that they might have on solving business problems
� Availability of the skills that are needed to implement them

By taking an iterative approach, you can ensure that issues are not missed and ensure
prioritization around solutions that maximize business value.

Figure 2-2 Steps involved in the ideation process

Although implementation itself will depend entirely on the project, it is important to understand
the metrics you are collecting around this new deployment to ensure that your organization is
properly maximizing business value. It is also important to always triple-check your
assumptions before a costly development and deployment cycle. Go through the benefits and
costs that you determined through ideation and assessment.

2.4 AI applications in various fields

This section describes some of the more popular or useful use cases for AI on IBM Z.

According to the IBM Global AI Adoption Index2 (2022), 35% of companies reported using AI
in their business, and an additional 42% reported they are exploring AI. Approximately half of
organizations are seeing benefits from using AI to automate IT, business or network

2 https://www.ibm.com/downloads/cas/GVAGA3JP
18 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/downloads/cas/GVAGA3JP

processes, including cost savings and efficiencies (54%), improvements in IT or network
performance (53%), and better experiences for customers (48%).3

The use cases that are provided in this chapter show the benefits of implementing AI
solutions on IBM Z.

2.4.1 Banking and finance

One use case is fraud detection of varying types in financial industries. It is estimated that in
2021, there were US$385 billion in global losses due to payment, card, and banking fraud. In
Banks suffered US$328 billion in losses globally from fraud in 2021. Card and payment
transaction sectors amounted to US$57 billion in losses. This is a major challenge for
financial institutions and a major target for maximizing business value.3 Figure 2-3
exemplifies the major impact and value an AI-optimized system can have in today's financial
sector. With more than an estimated 70% of global financial transactions' value running on
IBM mainframes, minimizing this fraud becomes the focus.

Figure 2-3 Impact of AI on today’s Financial sector4

For card transactions, most of this fraudulent activity was from transactions where the card
itself was not physically present, such as online purchases. Also, estimates show that only
10% of transactions can be tested for fraud in real-time, which is testing for fraud at the time
of the transaction.4 One of the reasons this has been so frustrating for banks is that they
already can handle these problems, but latency, cost, and custom friction have prevented
them from analyzing every transaction. On IBM Z, these problems can be handled through AI
by using deep neural networks (DNNs) and IBM z16 Telum Processor and its AI Accelerator.

Card and payment processors can reap the full potential of modern inferencing technology by
running advanced models inference against all transactions. Estimates show that applying
these deep learning models to all transactions across the globe would reduce fraud losses by
approximately 2.0¢ cents for every $100 of transactions. This can result in potentially
reducing fraud losses by US$161 billion globally, with most, 87%, of these losses being
mitigated by banks and the rest by card and payment processors.

In the US, where fraud rates are higher than the global average at 9.3¢ for every $100
compared to 3.7¢ globally, fraud losses could be reduced by 5.6¢ for every $100. This is
equivalent to saving the bank US$1.33 for an average transaction of US$2,375.

3 https://www.ibm.com/watson/resources/ai-adoption
4 CELENT: Operationalizing Fraud Prevention on IBM z16 - Reducing Losses in Banking, Cards, and Payments,
https://www.ibm.com/downloads/cas/DOXY3Q94
Chapter 2. Building business-driven and strategic use cases with MLz 19

https://www.ibm.com/watson/resources/ai-adoption
https://www.ibm.com/downloads/cas/DOXY3Q94

More information on fraud in financial services and how AI on IBM Z can solve it can be found
in Solving challenges of instant payments by using AI on IBM zSystems, REDP-5698.

Payment fraud detection
Although deep learning algorithms and DNNs might be the solution for detecting fraud, they
can also cause a detection bottleneck because they tend to require more compute power
than older fraud-detection models. As financial institutions implement these models for fraud
detection, they must find ways to minimize inference time for calls to the model for fraud
detection. For instance, round-trip time for these fraud detection inference calls can take 80
milliseconds.4 This network latency is critical when handling thousands or tens of thousands
of transactions per second.

Because of these latency and throughput limitations, banks have experienced transactions
timing out while they wait for detection results. This holdup is what forces these banks to only
be able to screen 10% of their transactions in real-time.

In 2022, IBM released its IBM z16 mainframe computer with a processor with an integrated AI
accelerator that can run AI inferencing models directly. With this innovation, the throughput
and improvements of running AI models on the mainframe are sufficient to support real-time
fraud analysis of virtually all transactions in even high-volume bank, card, or payments
processing environments.

Moreover, this can be done with virtually no impact on transaction processing times. The
IBM Integrated Accelerator for AI, part of IBM’s new Telum processor, can run AI models on
the mainframe with response times that allow every transaction to be screened for fraud.5

On IBM z16 with z/OS, colocating applications with inferencing requests helps minimize
delays by network latency. Colocation can deliver a maximum of 20x faster response time and
a maximum of 19x more throughput versus sending the same inferencing requests to an x86
cloud server with an average of 60 ms network latency. This is even further improved with
inferencing that uses the AI Accelerator.

For one financial institution, their transactions' fraud screening needed to be completed in
under 10 ms with a throughput of 10,000 transactions per second. Their use case was an
IBM Customer Information Control System (CICS) application that handled credit card
transactions with a need for fraud prevention.

The issue here was that even machines in the same data center had additional latency that
made it impossible to meet performance requirements while also making AI fraud predictions
for each transaction in real-time. With Machine Learning for IBM z/OS, organizations can
easily deploy AI models not just on their IBM Z mainframes, but into the same CICS regions
where their applications reside within seconds.

By colocating the deep learning model n the same system and in the same address space by
deploying it within the same CICS region, you can reduce latency for fraud detection calls to
the timing of function calls within the same program to meet this organization's requirements
through increased throughput that is provided by the AI Accelerator.

Section 5.1.2, “Drivers for mainframe deployment” on page 70 provides greater detail about
the significant advantages driving the adoption of use cases, such as fraud detection, for
deployment on IBM Z.

5 CELENT: Operationalizing Fraud Prevention on IBM z16 - Reducing Losses in Banking, Cards, and Payments,
https://www.ibm.com/downloads/cas/DOXY3Q94
20 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/downloads/cas/DOXY3Q94

Instant payment AML screening
Anti-money laundering (AML) efforts consist of laws, regulations, and procedures that are
designed to prevent criminals from exchanging money obtained through illegal activities,
sometimes called dirty money, into legitimate income, sometimes called clean money.
Inadequate AML programs lead to over US$1 billion in avoidable fines for major banks.

In the same way that real-time transaction processing on IBM Z with MLz can prevent credit
card fraud, it can be used to prevent money laundering. By allowing immediate screening of
instant payments, risk can be reduced drastically.

A large bank needs to introduce AML screening into their instant payments operational flow.
Their current end of day AML screening is no longer sufficient because of stricter regulations.
Through the deployment of their fraud detection models by using MLz on the same IBM Z
system that is handling the payments, they can implement stronger models for improved
accuracy that met stricter regulatory requirements without impacting SLAs.

Loan approval risk and exposure
Both lenders and clients sometimes encounter onerous loan approval processing times. By
using colocation of AI that handles loan risk assessment on the same IBM Z system that
processes the application, lenders can see a reduction in latency of over a thousand times,
with a corresponding decrease in lender risk and exposure. This leads to not only less risk for
the lender, but also happier clients as the process becomes easier and quicker.

Overdraft limit default prevention
Much like AML screening or credit card fraud prevention, the problem with handling overdrafts
of accounts for banks is a matter of timing. An overdraft is a deficit in an account that is
caused by withdrawing more money than the account holds, also known as an instance of
nonsufficient funds. Many financial institutions handle overdrafts by lending the difference and
applying a charge for the service.

It can be difficult to properly determine and handle the risk for each account. One IBM client
uses AI on IBM Z to augment their existing rules-based approach with AI to enable intelligent
overdraft adjustments that reduce risk exposure in real-time.

Clearing and settlement risk and exposure
As discussed, AI can help solve the timing issue. One IBM client, a card processor, wants to
increase the accuracy of its AI in determining which trades or transactions have a high-risk
exposure before settlement.

As with other situations, the enhancement of rules-based approaches with AI that is
colocated on their IBM Z system allowed them to increase the accuracy of these predictions
drastically without any impact on their service level agreements. Unlike the others listed, this
client used the deployment of their TensorFlow AI models on IBM z/OS Container Extensions
(zCX) rather than into CICS through MLz.

For more information about zCX, see What is z/OS Container Extensions?

Insurance claims fraud detection
The insurance industry often has excessively manual processes for determining the validity of
claims. A state government realized that their process for handling claims, especially the
determination of fraud, was overly manual and intensive as they tried to scale. Each case can
require a maximum of 40 hours to validate.
Chapter 2. Building business-driven and strategic use cases with MLz 21

https://www.ibm.com/docs/en/zos/3.1.0?topic=extensions-what-is-zos-container

By deploying their models through MLz, which were pulled directly from IBM Cloud Pak® for
Data, this state government was able to process claims and detect fraud in under one minute
per case and be able to allocate their staff to high-value tasks instead, saving them both time,
money, and valuable person hours.

2.4.2 Other use cases

Businesses use AI with MLz and z/OS in other fields. Although some of the more high-profile
use cases for MLz and the z16® exist in the financial industry, many other industries, such as
health care and government agencies, also take advantage of AI.

Automated land surveying
Most of these use cases involve complex analysis of structured data. Another use is AI for
image analysis. A land registry used AI on IBM Z to analyze satellite images to determine
which buildings have been expanded, modified, or demolished for land surveys and tax
purposes. They also deployed models for embedding natural language processing (NLP) into
chat services.

By deploying their services and AI on IBM z16, this organization was able to ensure security
of data and optimization of IT and operational costs.

Climate change impact
Similarly, an environmental agency was seeking to understand the impact of climate change
on local coastal ecosystems. Their field agents were collecting images for analysis of change
over time. Rather than performing manual analysis, they used AI on the IBM z16. By
deploying an AI service set to scale, they met their goal of automated image analysis and
decreased their energy demands in the process.

System log anomaly detection
The fast pace of digitization is generating data at a rapid rate. Navigating and using this large
set of data requires a highly complex system. Complex system management requires
complex skills. The current complex system is in reactive mode so that when problems
happen, the team works to solve or fix them. Many time, a quick fix is used because of the
level of risk. AI and machine learning help organizations move from reactive mode to
proactive mode. AI and ML monitor the application performance and can detect issues before
they happen. The AI and ML model examines a large set of system logs to detect the issue
before it happens. Anomaly detection combs through a large set of data to detect the signal of
any anomaly. The Anomaly algorithm allows the application to see the issue and present it to
the application administrator to act on it (Figure 2-4).

Figure 2-4 Flow for anomaly detection based on system generated logs
22 Turning Data into Insight with Machine Learning for IBM z/OS

Chapter 3. The art of data engineering

Data is an important asset. Unleashing the power of transactional data and turning it into
valuable insights and supporting new business opportunities can bring businesses
competitive advantages. This chapter discusses the different characteristics of data, the
process of understanding the data, and the various patterns to make enterprise data on
mainframe available for various consumptions on-premises or in the cloud.

� 3.1, “Nature of data” on page 24
� 3.2, “Characteristics of data” on page 24
� 3.3, “Data preprocessing” on page 26
� 3.4, “Data integration patterns” on page 38

3

© Copyright IBM Corp. 2024. 23

3.1 Nature of data

Data is the lifeblood of every modern organization, and it is being created, stored, and
analyzed at an unprecedented rate across industries. By 2025, global data creation is
estimated to reach a staggering 180 zetabytes.1

Large volumes of various types of data can arrive at a fast pace every day. Being able to
curate the volume of data and draw insights from the data brings enterprises competitive
advantages.

Much like individuals learning from past experiences, adapting to the present, and defining
the future, the AI system can learn from historical data to improve day-to-day decision-making
along with future guidance. Data is the fuel to AI systems, and good quality data results in
more efficient and better performing AI systems.

The types of real-world raw data from different sources can vary widely and cannot be fed to
AI systems as is. Raw data can have missing entries and contain fake or even hate, abuse,
and profanity (HAP) information. Raw data can also contain proprietary or sensitive
information that is prohibited by law to use. Data must be preprocessed before sending it to
an AI model. This chapter includes a discussion of data processing steps and techniques.

3.2 Characteristics of data

Numerous types of data are being produced at exponential rates. It is critical to the success of
your AI project that you find the right dataset for your given task. Asking a series of questions
can help you identify the most suitable dataset that aligns with your objectives. Consider the
following questions:

� What is the business problem at hand, and what is the preferred outcome?

� What data is needed and what relevant data sources can be accessed?

� What is the data volume, velocity, variety, and veracity of the available data sources?

� What are the constraints and limitations of the datasets, such as security, compliance,
governance, and auditing requirements?

� How much data is required to train and evaluate the model?

� Does the project dataset require data labels or annotations?

� Does the problem benefit from a diverse dataset, or are there specific characteristics
needed?

� What preprocessing steps are needed to prepare the data for analytics and ML?

� Are the necessary resources available to assist with data collection and preparation?

Data classification is the process of separating and organizing data into different categories
based on their characteristics. Data can be classified based on the level of sensitivity or
confidentiality to your organization. Data sensitivity classification is important for risk
management and regulatory compliance. When a data sensitivity classification scheme is
defined, ensure that secure data handling policies are identified for each category. You can
define your own classification. The following list describes some common categories of data:

� Public data is available to the public. It can be distributed and not sensitive in nature.
Examples include company name and address, and product documentation.

1 https://www.ibm.com/downloads/cas/E024ZZZ4
24 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/downloads/cas/E024ZZZ4

� Private data is protected and not available to the public. Compromised private data can
pose a risk to an individual or an organization. Examples include a personal phone
number or employee ID.

� Internal data is an organization's data, and access is limited to its employees. Examples
include internal websites and server IPs.

� Confidential data is sensitive data that is only available to authorized personnel. The loss
of confidential data is harmful to an individual or an organization. Examples include social
security number and employee records.

� Restricted data is highly sensitive data to which access is strictly controlled. The loss of
restricted data can be a significant loss to an individual or an organization. Examples
include trade secrets and financial records.

Handle data with different sensitivity levels as needed. For example, Personally Identifiable
Information (PII) is private, and it can be used individually or jointly with other information to
identify a single person. Because of its sensitive nature, numerous laws worldwide regulate
how PII can be stored and processed. Regulations include the General Data Protection
Regulation (GDPR) from Europe, Health Insurance Portability and Accountability Act
(HIPAA), Gramm-Leach-Bliley Act (GLBA) and others from US, and the Personal Information
Protection and Electronic Documents Act (PIPEDA) from Canada.

Data can be any of the following forms:

� Structured data is generally in tabular form whose fields contain data of a predefined
format. Some fields might have a strict format, such as phone numbers or addresses, and
other fields can have variable-length text strings, such as names or descriptions.

� Unstructured data is a compilation of various types of data stored in their native formats,
such as documents, videos, audio files, and social media posts.

� Semi-structured data is not in tabular form but still has some organizational properties to
it, such as XML or JSON files.

Structured data is normally stored in a relational database and is typically easy to organize,
query, and analyze, but it might take more space. Unstructured data is stored in native
formats and can be hard to organize and analyze but can be take less space. Semi-structured
data can be organized and analyzed with some processing.

Data can be any of the following types:

� Numerical Data is data, which consists of numerical values. Numerical data can be of two
types:

– Discrete Data is countable numerical data, such as the number of products in inventory
and the number of students in a class.

– Continuous Data is data that you continually measure, such as the height or weight of a
person.

� Categorical data represents distinct categories and is used to label data into specific,
non-numeric data categories. Categorical data can be stored and retrieved based on the
name and labels that are assigned to categories. Categorical data can be of two types:

– Ordinal data is a type of categorical data that is categorized in a way that has natural,
or meaningful order or ranking among them. It is categorical data ranked by specific
attributes, which can include the following information:

• Level of education, such as a high school or college diploma
• Economic status, such as lower, middle, and higher income
• Customer satisfaction ratings, such as very dissatisfied, neutral, and very satisfied.
Chapter 3. The art of data engineering 25

– Nominal data is a type of categorical data that is categorized in a way that does not
imply any inherent order or ranking among them. It is used to categorize and label data
without implying quantitative relationships between the categories and might include
the following information:

• Eye color, such as blue, green, brown, hazel, gray
• Marital status, such as single, married, divorced, widowed
• Car makes and models, such as Ford, Honda, Toyota, Camry, Civic, Focus.

For data analysis tasks, it is critical to understand the data type of the field and its value range
and distribution for each field in a dataset.

Data can be stored in different data sources in various formats. For example, data can be
saved in tabular format in Relational database, such as IBM Db2, JSON format in non-SQL
database, such as IBM Cloudant®, sequential dataset, such as VSAM on mainframe,
parquet, and open table format, such as Apache Iceberg in Cloud Object Storage. Data can
reside at different locations, for example, on-premises, in the cloud, or sensor data from edge
or client locations. AI projects often need to connect or extract data from various sources.

There are also data localization laws that enforce how data can be processed in a certain
territory and data sovereignty laws about the control and storage of data. Companies who
handle data need to understand these laws and make sure that they are compliant.

Training an AI model normally requires lots of data. Depending on the model, large volumes
of annotated and labeled data might be needed, which can require lots of human
pre-processing of the datasets. A new emerging trend in generative AI is to build
general-purpose foundation models, which use self-supervised learning to create labels from
input data. Foundation models can then be further fine-tuned with less data for downstream
domain-specific tasks or use prompt engineering to guide the model to generate output for
various tasks. Foundation models might require more computational power depending on the
size of the model. Customer care assistant and code assistant are popular foundation model
use cases.

In summary, there are different characteristics that are associated with datasets. The goal is
to generate business insights and help decision making with the various datasets. Start with
the business problem and choose the right datasets to address the business problem.
Besides the characteristics of the datasets, consider laws and regulations when handling and
storing datasets.

3.3 Data preprocessing

It is essential that raw data undergoes data preprocessing before being used in a model. Data
preprocessing cleans and transforms raw data into a format that can be more easily and
effectively used by the model. The preprocessing can maximize the quality and relevance of
the data for AI and can enable the model to achieve optimal performance. At a high level, as
shown in Figure 3-1 on page 27, data preprocessing consists of the following steps:

1. Data profiling. A process for analyzing and understanding the structure, content,
relationships, and quality of existing raw datasets and enables informed decision making
for cleaning, transforming, and preparing the dataset for the AI model. This process
produces a high-yield overview of data quality issues, risks, and overall data patterns and
trends. Data profiling is a critical and foundational part of the data preparation process for
curating quality datasets for use in AI.

2. Data cleansing. Data cleansing is the process where data is explored to identify and
correct any inaccuracies, corruptions, incorrect formatting, duplicate records, missing
26 Turning Data into Insight with Machine Learning for IBM z/OS

values, or other inconsistencies in the data. The purpose of data cleansing is to ensure
that data is accurate, complete, and reliable for use in AI.

3. Data reduction. The goal of data reduction is to simplify the dataset but preserve the
integrity and quality of that data. The data reduction process employs various optimization
techniques, such as feature selection or sampling, to reduce the volume of data and help
improve computational efficiency and reduce noise.

4. Data transformation. The process of data transformation involves changing the format,
structure, or values of the data to be more suitable for a specific task to use in producing
the ML/AI models to derive insight from the provided data.

5. Data enrichment. The process of data enrichment involves enhancing raw data by adding
information and context to improve the relevance, value, and informativeness of the data
for analysis or ML tasks. Some key aspects of the data enrichment process include
integrating data from external sources that complement the existing dataset, combining
data from multiple sources for a more comprehensive dataset, and feature engineering.
Enriched data sources produce valuable data assets with improved quality and utility to
provide added context and insights for better decision-making or training of AI/ML models.

6. Data validation. Data validation is the process of verifying and validating that the
preprocessed data is accurate, consistent, complete, and fit for the intended modeling task
before it is used for analysis or model building. This process helps identify errors,
anomalies, or other issues with the data before proceeding in further analysis, a critical
element for producing accurate and trustworthy results.

Figure 3-1 Process of understanding the nature of data

Many data scientists use Python because of the extensive libraries available for the various
phases and tasks of AI. Some of the popular Python libraries that are used for data
preprocessing include NumPy, Pandas, Scikit-learn, and Matplotlib, which provide various
functions and methods to perform data preprocessing tasks.

Section 1 described a credit card fraud detection use case and illustrated how IBM z16 allows
in-transaction model inference by using the Integrated Accelerator for AI. The synthetic credit
card fraud detection model and the synthetic dataset that is used to train and test the model
can be found at the GitHub site ai-on-z-fraud-detection.

In this section, the synthetic credit card fraud detection dataset is used to demonstrate some
of the data preprocessing steps using Python libraries.

IBM also provides various tools to help with the data preprocessing tasks. The data refinery
tool, available with IBM Watson® Studio and IBM Watson Knowledge Catalog both on
premises and in the cloud, saves data preparation time by quickly transforming large amounts
of raw data into consumable, high-quality information that is ready for analytics.
Chapter 3. The art of data engineering 27

https://github.com/IBM/ai-on-z-fraud-detection

Figure 3-2 IBM data refinery features

For more information on the data refinery tool available in IBM watsonx.ai AI Studio and
IBM Watson Knowledge Catalog, see Data refinery.

3.3.1 Data profiling

Data profiling is the process of analyzing and understanding the structure, content,
relationships, and quality of existing raw datasets. The main purpose is to gain insights into
the characteristics and quality of the data by using methods to review and summarize it, and
then evaluating its condition.

Data profiling is an essential part of how an organization handles its data. It not only helps
you understand your data, but it also verifies that your data is consists of standard statistical
measures.

The following are approaches that analysts might use to profile your data2:

� Structure discovery. This approach focuses on the format of the data and ensuring that it is
consistent all throughout the database. There are several different processes that analysts
might use for this type when examining the database. One is pattern matching, which can
help you to understand format-specific information. For example, if you are collecting and
formatting phone numbers and one has a missing value, you can detect this in structure
discovery.

� Content discovery. This type is when you analyze data rows for errors or systemic issues.
This process is a closer look at the individual elements of the database and can help you
find incorrect values.

� Relationship discovery. This type entails finding out what data is in use and trying to find
the connection between each set. To do this, analysts begin with metadata analysis to
determine what the relationships are between the data and then narrow down the
connections between specific fields.

The following are methods and techniques for data profiling:

� Column profiling. This method scans tables and counts the number of times each value
shows up within each column. Column profiling can be useful in finding frequency
distribution and patterns within a column.

� Cross-column profiling. This technique is made up of two processes: key analysis and
dependency analysis. The key analysis process looks at the array of attribute values by

2 https://www.ibm.com/topics/data-profiling
28 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/products/data-refinery
https://www.ibm.com/topics/data-profiling

scouting for a possible primary key. The dependency analysis process works to identify
what relationships or patterns are embedded within the dataset.

� Cross-table profiling. This technique uses key analysis to identify stray data. The foreign
key analysis identifies orphaned records or general differences to examine the relationship
between column sets in different tables.

� Data rule validation. This method assesses datasets against established rules and
standards to verify that they are in fact following those predefined rules.

� Key Integrity. This method ensures that keys are always present in the data and identifies
orphan keys, which can be problematic.

� Cardinality. This technique checks relationships such as one-to-one and one-to-many,
between datasets.

� Pattern and frequency distribution. This technique ensures data fields are formatted
correctly.

For example, you can use Python libraries to analyze the sample dataset for credit card fraud
detection. You can load the data into a pandas DataFrame with pandas library as shown in
Figure 3-3.

Figure 3-3 Profiling example - load data

You can use Pandas DataFrame to analyze the characteristics of the data, for example,
mean, max, count, and standard deviation (Figure 3-4 on page 30).
Chapter 3. The art of data engineering 29

Figure 3-4 Profiling example – Pandas DataFrame

You can use Matplotlib or Seaborn library to visualize the data, or you can use Pandas
profiling package, as shown in Example 3-1 (ydata-profiling), to automate and generate
detailed reports, statistics, and visualizations.

Example 3-1 Using Pandas profiling package to automate and generate detailed reports, statistics, and
visualizations

import ydata_profiling as pf
sample command to generate profiling reports on screen
pf.ProfileReport(tdf)

You can also save the profiling reports to files
profile = pf.ProfileReport(tdf, title=”CCF Profiling Report”)
profile.to_file(‘my_ccf_report.html’) # Trigger the computation / alternative you
can use profile.to_json() for no file output
profile_dump(‘my_ccf_report’) # Serialize in pickle to my_report.pp

As shown in Figure 3-5 on page 31, Pandas profiling generates various reports on the
variables in the dataset and variable interactions and correlations. For the sample fraud
dataset, when you load the data as-is, the ‘Amount’ variable has the leading ‘$’ sign and is
treated as text. Variable ‘Use Chip’ has 3 distinct categories, Swipe Transaction, Chip
Transaction, and Online Transaction and has correlations with other variables. Also, some
data is missing in the dataset.
30 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 3-5 Sample output from the Pandas profiling reports

3.3.2 Data cleansing

Data cleansing is the process that identifies and corrects any inaccuracies, corruptions,
misformatting, duplicate records, missing values, and other inconsistencies in the data. The
purpose of data cleansing is to ensure data is accurate, complete, and reliable for use in AI.
Chapter 3. The art of data engineering 31

Here are some typical data cleansing tasks:

� Fix structural errors. This includes fixing inconsistent naming convention such as N/A and
Not Applicable, inconsistent capitalization such as Male, male, and MALE, typing errors,
extra spaces, and nonprinting characters in the values.

� Fix formatting issues. The format of date and time, phone number, or SSN might not be
consistent, or number and number format might need corrections.

� Handle outliers. There might be outliers in the dataset. However, some outliers might be
necessary. Validate the outlier and see whether it is a mistake or irrelevant for the analysis.

� Remove duplicates. Remove duplicate records from the dataset.

� Handle missing data. There are different ways to handle missing data. For example, you
can remove the observations with missing data or replace them with other values.

In the data profiling in the last section, the t variable ‘Errors?’ has missing values. Additional
analysis of the missing values can help determine whether more processing is needed.

Figure 3-6 Data cleansing – unique values

It seems that the column captures various error scenarios, and the missing transaction values
should be without errors. It can be left as-is, or the following statements can be used to
replace the missing values if needed.
32 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 3-7 Data cleansing – replace text values

The following are sample statements to replace numerical values with median:

median_value = mydataset[‘column_name’].quantile(0.5)
mydataset[‘column_name’] = mydataset[‘column_name’].fillna(median_value)

Pandas DataFrame also provides a method to drop duplicate records. Figure 3-8 on page 34
is an example to get unique user and card combinations.

You can preprocess the data with various Python libraries as demonstrated previously. Also,
you can use DataFrameMapping module from scikit-learn library to preprocess the data in a
more clean and robust way, which is discussed in the data transformation subsection.
Chapter 3. The art of data engineering 33

Figure 3-8 Data cleansing – drop duplicates

3.3.3 Data reduction

Data reduction reduces the size of a dataset and preserves the most important information. It
reduces the volume of data to improve computational efficiency.

The following list describes data reduction techniques:

� Dimensionality reduction. Dimensionality reduction is the process of reducing the number
of dimensions in a dataset while retaining as much information as possible.
High-dimensional data often poses more challenges and complications, including model
performance deterioration, data sparsity, and overfitting issues. Dimensionality reduction
can help to mitigate these problems by reducing the complexity of the model and
improving its performance. Different techniques can be used for dimensionality reduction:

– Feature selection is used to select a subset of the original features most relevant to the
current problem. The goal is to maintain the most important features of the dataset and
reduce the number of dimensions. Filtering and wrapping are two general techniques
for feature selection. The classes in the sklearn.feature_selection module can be
used for feature selection and dimensionality reduction. For more information on
the sklearn.feature_selection module and examples for the various techniques, see
Feature selection.

– Feature extraction is to create new features by combining or transforming the original
features. The goal is to capture the essence of the original dataset in a
lower-dimensional space by creating a set of new features. Principal component
analysis (PCA) is a popular technique for dimensionality reduction. Other methods
include linear discriminant analysis (LDA), t-distributed stochastic neighbor embedding
(t-SNE) and auto encoders. The sklearn.feature_extraction module can be used to
extract features. For more information on the sklearn.feature_extraction module
and examples for the various techniques, see Feature extraction.
34 Turning Data into Insight with Machine Learning for IBM z/OS

https://scikit-learn.org/stable/modules/feature_extraction.html
https://scikit-learn.org/stable/modules/feature_selection.html

� Data sampling. Data sampling is the technique to select a subset of the dataset instead of
using the entire dataset. There are different data sampling techniques, including simple
random sampling, systematic sampling, stratified sampling, and cluster sampling.

� Data discretization. Data discretization is the process of converting continuous data into
discrete data by partitioning the range of possible values into contiguous intervals.
Binning, histogram analysis, cluster analysis, decision tree analysis, and correlation
analysis are typical methods of data discretization.

Figure 3-9 is an example of random data sampling using pandas.DataFrame.sample.

Figure 3-9 Data reduction – random sampling

3.3.4 Data transformation

Data transformation is the process of converting the format, structure, or values of the data to
be more suitable to be analyzed to derive insights from the data and support decision-making
processes.

There are many different data transformation techniques that you can choose to apply to the
dataset at hand, and different types of data might require different types of transformation.
The following list provides some sample data transformation techniques:

� Format conversion
� Data normalization and standardization
� Feature construction and value mapping
� Data aggregation
� Data splitting
� Data integration

Data transformation can work hand-in-hand with the other data cleansing and data reduction
techniques. For example, a data transformation script might handle missing data to construct
new features.

In the sample credit card fraud-detection model, sklearn_pandas.DataFrameMapper is used to
transform the column values. In Figure 3-10 on page 36, column Amount is first applied
FunctionTransformer with the method amtEncoder. The method amtEncoder removes the first
character ‘$’, converts the type to float, ensures all values are at least 1, takes the natural
Chapter 3. The art of data engineering 35

logarithm of the values and returns the result as a DataFrame. Then, the MinMaxScaler class
is applied to each returning value and scales each value to the default range of 0–1.

Figure 3-10 Data transformation – custom mapping

In Figure 3-11, each unique value of the column ‘Error?’ is converted to a new binary column,
with 0 or 1 as the value.

Figure 3-11 Data transformation – feature construction
36 Turning Data into Insight with Machine Learning for IBM z/OS

3.3.5 Data enrichment

Data enrichment is the process of enhancing raw data by adding information and context to
improve the relevance, value, and informativeness of the data for analysis or ML tasks.

In reality, data can reside in different data sources and in different formats. For example,
transaction data can be stored in Db2 on z/OS, whereas the information about each client can
be stored on VSAM. Also, some other information might come from 3rd-party or public
sources. Integrate relevant information from multiple sources to generate a more
comprehensive dataset, which might improve the value and quality of the data and provide
added context and drive more insights. Section 3.4 describes how data from different sources
can be integrated efficiently and securely.

Data enrichment includes different ways to enrich and augment the data. Data from different
sources can be integrated together to generate a more comprehensive dataset. New data
features can be created based on the information from other sources. External information
might suggest new ways to process missing values. The previously mentioned data profiling
step might help you analyze the data from different sources and decide on the data
enrichment strategy.

IBM provides tools for data enrichment. Watson Knowledge Catalog and Watson Discovery
can help users with data enrichment tasks.

3.3.6 Data validation

Data validation is the process of verifying and validating that the preprocessed data is
accurate, consistent, complete, and fit for the intended modeling task before it is used for
analysis or model building. For AI model building, the quality of the data directly impacts the
quality and efficiency of the AI model.

Data validation can be performed in the following dimensions:

� Completeness. This represents the amount of data that is usable or complete. If there is a
high percentage of missing values, it might lead to a biased or misleading analysis if the
data is not representative of a typical data sample.

� Uniqueness. This accounts for the amount of duplicate data in a dataset. For example,
when reviewing customer data, you should expect that each customer has a unique
customer ID.

� Validity. This dimension measures how much data matches the required format for any
business rules. Formatting usually includes metadata, such as valid data types, ranges,
patterns, and more.

� Timeliness. This dimension refers to the readiness of the data within an expected time
frame. For example, customers expect to receive an order number immediately after they
have made a purchase, and that data must be generated in real-time.

� Accuracy. This dimension refers to the correctness of the data values based on the agreed
upon primary data source. Because there can be multiple sources that report on the same
metric, it is important to designate a primary data source. Other data sources can be used
to confirm the accuracy of the primary one. For example, tools can check to verify that
each data source is trending in the same direction to bolster confidence in data accuracy.

� Consistency. This dimension evaluates data records from two different datasets. As
mentioned previously, multiple sources can be identified to report on a single metric. Using
different sources to check for consistent data trends and behavior allows organizations to
trust the actionable insights from their analyses. This logic can also be applied around
Chapter 3. The art of data engineering 37

relationships between data. For example, the number of employees in a department
should not exceed the total number of employees in a company.

� Fitness for purpose. Fitness of purpose helps to ensure that the data asset meets a
business need. This dimension can be difficult to evaluate, particularly with new, emerging
datasets.

3.4 Data integration patterns

Data is an important asset. The IBM Z platform is used for conducting core business
transactions across various industries, which can lead to a large amount of an organizations’
private data. Using this transactional data by turning it into valuable insights and supporting
new business opportunities can bring businesses competitive advantages.

Many factors affect the choosing of the data integration pattern to satisfy business needs.
Companies start by identifying the business problems at hand, understanding the
requirements of the use cases, and evaluating different options.

The following questions are some examples of the factors to consider and evaluate before
you choose the data integration pattern:

� What data is needed?

– What are the data sources, are they from databases or file systems?

– What are the data schemas and data formats?

– What integration is needed among data sources?

– What are the purposes of the data processing, is it feeding applications, training AI
models, or generating data products?

� Where is the data and where does it need to go?

– Does the data need to be processed and eventually be consumed on-premises, in the
cloud, or in a hybrid configuration?

� When is the data needed?

– Are there real-time requirements?

– Is the data needed for in-transaction inference in real-time or for batch processing with
delay?

– Is near real-time also accepted?

• If yes, with how much delay: a few seconds, a few minutes, 1 hour, and so on?

– How often does the data need to be refreshed?

� How is the data made available?

– Can the data be accessed in place by using virtualization, or does a data copy need to
be maintained in cache or off-premises?

– What is the granularity and volume? Is it transaction level or large volume data dump?

� Why does data need special handling?

– Is there PII data?

– Are there regulations to meet?

– Can the data leave the premises or a certain region?

– Are there other requirements for latency, performance, security, compliance, auditing,
and so on?
38 Turning Data into Insight with Machine Learning for IBM z/OS

Companies can evaluate different options and adopt the right data integration pattern, or a
combination of patterns based on the business requirements.

3.4.1 Data exposure pattern: enable modern access to IBM Z data

Mainframes process 12.6 billion transactions per day, 29 billion ATM transactions annually,
and are used for USD 7.7 trillion annual credit card payments.3 Mainframes usually handle
mission-critical business operations and require the highest level of security. This
mission-critical System of Record (SOR) data is stored on mainframe and is hard to access.
Traditionally, companies have tried to copy data from various sources into central data stores
for various business cases such as operational business transactions and analytics.
Establishing and maintaining data replication pipelines is expensive, time consuming, and it
creates data quality and data latency challenges for consuming applications. Accessing data
in place can accelerate transformation and improve its opportunity for success.

Providing modern support for accessing IBM Z data through SQL-based query and through
REST APIs might help enterprises to make better usage of the data, whether to support
applications on-premises or to support new cloud-native applications. This modern data
access simplifies new application development without disrupting data management and
recovery processes on IBM Z to maintain data consistency.

IBM Z supports modern access to real-time transactional data in IBM Db2, IMS, and other
data sources. Db2 and IMS can be accessed through SQL and REST API by using IBM z/OS
Connect EE. Other data sources can be accessed through SQL or REST API by using
IBM Data Virtualization Manager for z/OS along with z/OS Connect EE. Data Virtualization
Manager for z/OS extends SQL access to data sources other than relational databases as
shown in Figure 3-12.

Figure 3-12 Enable modern access to IBM Z data

With Java Database Connectivity (JDBC) support, new cloud applications that consume
information from core Db2 and IMS systems can use SQL to detect the underlying data
format and contexts from systems of record, which is often required.

You can access data that is stored in Db2 from anywhere by using SQL. Db2 for z/OS also
supports native RESTful services to expose SQL and stored procedures as REST APIs when
combined with z/OS Connect EE. You can start Db2 native RESTful services from z/OS
Connect EE by using the z/OS Connect EE REST Client Service Provider.

3 The modern mainframe: A banking platform from the future - https://www.ibm.com/downloads/cas/8MGOLOB7
Chapter 3. The art of data engineering 39

https://www.ibm.com/downloads/cas/8MGOLOB7

With z/OS Connect EE, you can consume IBM Z data that is stored in Db2, IMS, or data
sources through REST API. Applications anywhere can use data that is stored on z/OS. It is a
common interface for cloud-native applications as shown in Figure 3-13.

Figure 3-13 Components to support modern access to IBM Z data

Accessing IBM Z data in-place provides several critical business benefits:

� Reduces the risk of data integrity
� Reduces the cost that is involved in data movement
� Increases data quality
� Preserves the existing data management and recovery processes
� Allows cloud applications to access the data at its underlying format and context
� Supports all popular access methods, such as SQL and REST APIs
� Benefits from higher performance by accessing data that is on IBM Z
� Avoids the introduction of security intrusion points related to moving the data outside the

platform

By using enable modern access to IBM Z data pattern, you can deliver modern applications
because it facilitates and simplifies access to relational and non-relational IBM Z transactional
data and combines that data with off-platform data. The pattern allows access and updates to
live IBM Z data through traditional APIs such as SQL and, when combined with IBM z/OS
Connect EE, to modern RESTful APIs. It also reduces the cost and delay of moving data to
non-IBM Z platforms.

3.4.2 Data virtualization pattern: virtualize IBM Z data

Data is an integral element of digital transformation for enterprises. New services need
simplified access to IBM Z data for business operations that require read and updates
through APIs. Frequently, IBM Z data also needs to be combined with other data sources.

However, as organizations seek to use their data, they encounter challenges that result from
diverse data sources, types, structures, environments, and platforms. Those challenges apply
equally to data that is stored on IBM Z, which contains most operational data in large
organizations. A common concern is that data on IBM Z is difficult to access and transform.

One approach is to move all data into a single data store, such as an operational data store
(ODS) or a data lake, which can create more challenges. The complexity of data copy
processes results in data latency, poor data quality, increased cost, risks, and security
challenges.
40 Turning Data into Insight with Machine Learning for IBM z/OS

Data virtualization is a data integration method that brings together disparate data sources to
create virtualized, integrated views of the data without the need to copy and replicate data.
Data virtualization also provides a data services layer that abstracts the underlying physical
implementation of the individual data sources. Data virtualization helps meet compliance
requirements because there are fewer copies of data, and data is fresh and accurate from
source.

The foundation for using IBM Z data through data virtualization across data sources is the
implementation of the Enable modern access to IBM Z data pattern. That pattern supports
access to real-time transactional data in IBM Db2, IMS, and other data sources. You can
access Db2 and IMS through SQL, Java Database Connectivity (JDBC), and REST API by
using IBM z/OS Connect EE. Data Virtualization Manager for IBM z/OS can provide SQL
access to all IBM Z data sources. By using REST API, you can add z/OS Connect EE. For
more information, see Enable modern access to IBM Z data pattern.

The primary adopted use case for Data Virtualization Manager for IBM z/OS is the mapping
of traditional IBM Z data sources, such as VSAM, IMS, or Adabas, into relational views for
access through SQL or API. In contrast, the main use case for data virtualization in
IBM Cloud Pak for Data (CP4D) is to gain a single view of disparate data without data
movement and to manage data with less complexity and risk of error. For more information,
see IBM Data Virtualization.

The foundation for accessing data across disparate data sources is the IBM Watson
Knowledge Catalog in IBM Cloud Pak for Data. It is more feasible and less costly to maintain
metadata across different data sources instead of constantly moving terabytes of changing
data. Watson Knowledge Catalog is a data catalog tool that powers the intelligent,
self-service discovery of data structures, models, and more. You can access, curate,
categorize, and share data, knowledge assets, and their relationships wherever they are,
backed by active metadata and policy management. The cloud-based enterprise metadata
repository also activates information for AI, ML, and DL. As shown in Figure 3-14 on page 42,
in Watson Knowledge Catalog, you can discover, govern, and catalog the metadata of IBM Z
data that is stored in Data Virtualization Manager for IBM z/OS and Db2 for IBM z/OS, and
disparate other data sources.

IBM data virtualization is designed as a peer-to-peer computational mesh, which offers a
significant advantage over a traditional federation architecture. By using innovations in
advanced parallel processing and optimization, the data virtualization engine can rapidly
deliver query results from many data sources. Collaborative, highly-paralleled compute
models provide superior query performance compared to federation a maximum of 430%
faster against 100 TB datasets.4 IBM data virtualization has unmatched scaling of complex
queries with joins and aggregates across dozens of live systems. IBM Z data can be
accessed through SQL.

Data virtualization can simplify the development of consuming applications, including infusing
AI into business applications. It also allows those applications to access current and accurate
data at its source.

4 Simplify data access and reduce operational costs while advancing your business insights -
https://www.ibm.com/downloads/cas/M76BGEXW
Chapter 3. The art of data engineering 41

https://www.ibm.com/products/watson-query
https://www.ibm.com/cloud/architecture/architectures/z-enable-modern-access-pattern
https://www.ibm.com/downloads/cas/M76BGEXW

Figure 3-14 Virtualize IBM Z Data

Accessing IBM Z data in place provides several critical business benefits:

� Reduces the risk of impacted data integrity.
� Reduces the cost that is involved in data movement
� Increases data quality.
� Preserves the existing data management and recovery processes.
� Allows cloud applications to access the data at its underlying format and context.

Data virtualization in IBM Cloud Pak for Data is the foundation for rapid ML model
development and deployment, infusing AI into business applications.

With a centralized view of data, including IBM Z data, within Watson Knowledge Catalog, you
can build, test, and train ML models on the platform of your choice. You can then deploy AI
models to Machine Learning for IBM z/OS to address more complex information needs within
business services that run on z/OS as shown in Figure 3-15.

Figure 3-15 AI model building with data virtualization
42 Turning Data into Insight with Machine Learning for IBM z/OS

By using virtualize IBM Z data pattern, you can access data across IBM Z and other data
sources, including joining data, without the need to copy and replicate that data. Deliver more
current and accurate data with in-place data access to consuming applications, including
analytics.

For more information, see: Virtualize IBM Z data pattern.

3.4.3 Real-time information sharing pattern: cache IBM Z data

The surge of new digital applications is driving growth in data access. Those new applications
typically run read-only queries of up-to-date data but are not necessarily associated with
generating revenue for the organization. Examples of such applications include mobile
banking, retail online browsing, and insurance open enrollment. The characteristics of those
applications can make them difficult to plan for and size:

� High, unpredictable volume
� Massive, sharp spikes in activity
� Updates are possible, but are not propagated back to the source (read-only)
� Expensive to maintain
� Complex to implement
� Often compromised data currency
� Prone to instability

Historically, to address those challenges, organizations used several methods to extract data
for use on other platforms. It did not matter whether the applications were analytic or simple
query-type access, the typical approach was to take the data off platform. Organizations used
that approach because website developers who were accessing the data were sometimes
unfamiliar with the mainframe and because of concerns that too much read-only activity might
conflict with operational applications.

Traditional incremental copy and ETL approaches are unpredictable and can be associated
with data latency. By using general-purpose incremental copy and ETL technologies, you can
limit efficiency and performance improvement opportunities. Data extraction and incremental
copy from IBM Db2 for z/OS can use considerable resources, increase software-related
costs, and compete for the same resources that are used for operational processing.

Because these applications are often used by end users, the data must be up to date and
only moments behind a transactional system. This requirement drives the need for more
complex application logic that ensures data currency. In addition to the processes that are
used to refresh the read-only data store, some organizations use customized code to ensure
this consistency. Doing so adds more complexity, instability, and cost to many environments.

Caching support on IBM Z improves application response time by storing copies of data that
is on IBM Z. IBM Z offers several products that implement variations of this pattern. The
IBM Db2 Analytics Accelerator, IBM Z Digital Integration Hub, IBM Db2 for z/OS Data Gate,
IBM Z Table Accelerator, and IBM Data Virtualization for z/OS with Cache Option include an
implementation of the cache. Some of the products include a synchronization component to
maintain the cache.

There are two main differentiators of the cache:

1. Pull versus push maintenance of the cache

In push maintenance, the cache is always kept in-sync with the source regardless of
actual use. Pull maintenance involves a lazy update and invalidation of the cached values
based on access.
Chapter 3. The art of data engineering 43

https://www.ibm.com/cloud/architecture/architectures/z-virtualize-ibm-z-data-pattern

2. Cache data structure

The data structures of the cache are optimized for the consumption pattern, such as
columnar or in memory. The cache itself might also contain derived or precomputed
results.

Optimizing application performance by accessing cached IBM Z data can provide several
critical business benefits:

� Achieves service level agreements (SLAs)

� Improves performance in scenarios where data is read repetitively and at high frequencies

� Provides a good compromise between cost and complexity

� Improves efficiency by avoiding accessing the database or other data sources every time
for the same request

� Integrated, lightweight data synchronization

� Excellent performance and resiliency

� Less latency and better data currency

Although caching is commonly used to improve application latency, a highly available and
resilient cache can also help applications scale. By using cache IBM Z data pattern, you can
offload responsibilities from the application's main logic to the caching layer and release
compute resources to process more incoming work. Read-intensive applications can greatly
benefit from implementing a caching approach as shown in Figure 3-16.

Figure 3-16 Cache IBM Z data

For more information, see Cache IBM Z data pattern.

3.4.4 Data transformation pattern: transform IBM Z data

The transformation of SOR data by software processes to create a wholly new dataset is a
specialization of a broader copy-and-access use case. That use case also includes extract,
transform, and load (ETL) processes, software replication processes, and virtualization and
federation processes. All those broader processes include some transformation capabilities,
and it is common to require light transformations during otherwise routine copy-and-access
use cases.

This pattern involves heavy set-based transformations that create a dataset that is composed
by external feeds, derived transformations, and source SOR datasets, such as aggregation or
consolidation, and summation. Currency requirements dictate the use of either real-time
mechanisms, such as virtualization, near-real-time mechanisms, such as software replication,
or periodic batch mechanisms, such as ETL or extract, load, and transform (ELT).

You might need a combination of mechanisms if set-based transformations, which are
typically the province of ETL products, are required in addition to real-time or near-real-time
currency. Although this pattern applies to SOR data on any platform, its use with SOR data on
IBM z/OS is relevant and valuable because many large enterprises use z/OS as an SOR.
44 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/cloud/architecture/architectures/z-cache-ibm-z-data-pattern

In the simplified depiction presented in Figure 3-17, the transformation processes are
indicated by the Data Adapter box. In practice, these transformations can span both
processes and time.

Figure 3-17 Transform IBM Z data

On z/OS, it is typical to have solutions that maintain logically related data across different
stacks, such as IBM Db2, IMS, VSAM, or sequential files. For example, transaction data can
be stored in Db2, whereas the information about each client can be stored on VSAM. The
ability to view this data through federated queries or from an aggregated copy has value. Add
the ability to extend the aggregation to derive data by using summations and transformations
and to add sources through distributed databases and external feeds. The value of the
original z/OS SOR data grows without disrupting the original workloads.Other than data
creation, you can use this pattern to create schemas over data. One common use case is to
convert normalized data models from the SOR to a de-normalized data model. A
de-normalized data model might be one that is used in data warehouse solutions and
dimensional data marts that are optimized for statistical and analytical processing. Another
common use case is to create user-oriented schemas from what might be a product
orientation at the SOR. This use case enables consumption by people who are less familiar
with the internal view of the technology or products that underpin the data.

IBM has industry-leading product capabilities in the data transformation space. One such
product is IBM DataStage®, which is available in on-premises, on IBM Cloud Pak for Data,
and in cloud implementations.

Creating datasets with extra attributes that are derived from production datasets allows for
extendibility with minimal disruptions. It also reduces the need to maintain the same data in
multiple stores without synchronization.

� No changes are required to the original SOR datasets. All these methods apply
transformations downstream from the original data.

� These methods all provide remote access to SOR data in addition to the transformation of
that SOR data.

� Downstream datasets can be created or modified without impacting the source SOR data
that they are derived from.

� New applications can be created outside of the context of the original SOR data.

� The impact to core SORs from downstream workload requirements is mitigated.

By using transform IBM Z data pattern, you can incrementally build new modernized SOR
data stores by tapping into IBM Z data traffic through a data adapter to transform to the
modernized data format. For more information about the transform IBM Z data pattern, see
Transform IBM Z data pattern.
Chapter 3. The art of data engineering 45

https://www.ibm.com/cloud/architecture/architectures/z-transform-data-pattern

3.4.5 Data synchronization pattern: replicate IBM Z data

The replication of SOR data by software processes to create an alternative, typically remote,
copy of that data is a specialization of a broader copy use case. That use case includes
extract, transform, and load (ETL) processes, unload and load utilities, and hardware (disk)
replication. Unlike other methods, the specialization that software replication provides is
two-fold. Software replication adds both near real-time replication with recovery point
objectives (RPOs) near zero and continuous availability with recovery time objectives (RTOs)
near zero. Although this pattern is applicable to SOR data on any platform, its use with SOR
data on IBM z/OS is especially relevant and valuable because many large enterprises use
z/OS as an SOR.

Many business drivers exist for replicating SOR data in real time. It is important to note that
replication is often deployed as a component of a larger solution. Most customers have
internally defined infrastructure support, and a subset of deployed packaged solutions. These
use cases are common:

� The need for mission-critical, workload-level continuous availability at a distance to
support both planned and unplanned outages.

� The need for a real-time data warehouse to provide accelerated inquiry processing, off
loading the SOR.

� The need for advanced analytics processing on real-time data by using various modern
analytics platforms such as Hadoop and Apache Spark.

� The need to support various application modernization use cases both in the cloud and
on-premises.

� The need to support distributed query use cases such as CQRS, off loading inquiry from
the SOR.

� The need to support the aggregation of data from multiple sources into an operational
data store (ODS) or a data lake.

� The need to support the offload of the SOR from directly supporting multiple consumers,
evolving consumers, or both by replicating into a data lake.

You can implement these drivers by using either homogeneous replication (like models) or
heterogeneous replication (unlike models). The diagram in Figure 3-18 on page 47 is a
simplified depiction of a replication setup from a source DBMS to either a target DBMS, a
publish/subscribe such as Kafka, or a file system.

Continuous availability is usually a homogeneous replication use case. When the SOR is
IBM Db2 for z/OS, IMS, or VSAM, the target system is Db2 for z/OS, IMS, or VSAM.
Optionally, you use IBM Z GDPS® Continuous Availability, which augments replication with a
centralized control plane, intelligent routing, automation, and monitoring. You can also
develop these higher-level constructs over replication by using alternative, often home-grown,
methods.
46 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 3-18 Replicate IBM Z data

The other business drivers are heterogeneous in nature. You can usually deploy the target
systems and DBMS or file systems for those drivers in Linux on IBM Z, z/OS Container
Extensions, or on IBM Z as an alternative to running a few components on distributed
systems. Running everything on IBM Z provides better high availability characteristics,
reliability, security, and management. Performance is also better, as fewer availability zones
and network devices need to be traversed.

IBM has a family of replication products that are referred to as IBM InfoSphere® Data
Replication and IBM Data Replication. This family includes multiple technologies, including
QRep, CDC, and Classic products.

For more information, see InfoSphere Data Replication 11.4.0.

The use of software replication to create one or more copies of SOR data provides several
key advantages:

� Software replication is a near real-time synchronization method. Average latency for online
processes, which is sometimes referred to as transactional, is usually measured in low
seconds or sub seconds. The average latencies for batch processes are also low but are
higher than online processes. Batch latencies are usually measured in minutes. Those
latencies meet many companies' SLAs for RPO. Other techniques are either periodic pulls
of all data, such as once a day, or replication to auxiliary storage devices that must be
varied online for use.

� Software replication captures changes to source data as they occur and replicates those
changes to target agents that replay those changes directly through the DBMS or file
system stack. This process enables the RPO to become the RTO, which means that you
can achieve RTOs of low seconds to sub seconds from any change.

� Software replication can run at any granularity and is usually focused on the sets of data
for an application or a workload. You can implement custom configurations and processing
at the workload level. In contrast, other solutions such as disk replication are usually
site-level in nature and constrained by the proper usage at the disk volume level.

� Software replication processes data at transaction boundaries and can maintain target
copies to be transactionally consistent with the source. This advantage is not possible with
alternatives such as ETL or disk replication.

� Costs are optimized by off loading queries and analytics processing to the target systems.
This behavior reduces the strain on the SOR but still achieves CPU-intensive goals.
Chapter 3. The art of data engineering 47

https://www.ibm.com/docs/en/idr/11.4.0

� You can handle large volumes in terms of throughput of processing and still maintain low
latency.

� The impact of spiky and unpredictable workloads to core SORs is mitigated.

When you implement software replication from SOR data, consider a few factors. First,
real-time replication requires supplemental logging. Replicating products read the change
records from DBMS recovery logs. As their name implies, recovery logs are designed for use
by DBMS recovery processes and contain content that is sometimes tailored for those
purposes. Replication, unlike recovery, requires additional attributes and transactional
semantics. These include commits, rollbacks, operations that are identified by their
transaction ID, before images for updates, open and close events, and load utility events.

Augmenting recovery logs to add those attributes increases the volume of the changed data
to the logs, which often affects log switch procedures, and the impact to the source
application response time. You can mitigate some of the impact to the source application
response time by using good buffering and offloading designs. Also, log retention periods are
often increased for replication use cases to allow for earlier restarts. Adding supplemental
logging might require more capacity and can affect log switch times.

Real-time replication can be CPU intensive. The reading of logs, merging of change records,
transactional buffering, refreshes (select *), transmission, and parallel replay all affect the
CPU. Software replication is often compared unfavorably to disk replication because disk
replication is often done at the control unit and done off-platform. Adding replication might
require more capacity to achieve the best performance as measured by latency.

Real-time replication provides a tight synchronization between source and target data.
Effectively, the target copy is an extension of the source copy and must be considered for any
source-side change management, batch processing, and utility processing such as reorgs.
You might want to treat the copies that replication maintains as being loosely coupled.
However, in most use cases, many data-centric source procedures must be extended to
consider the effect on the copy.

By using replicate IBM Z data pattern, you can replicate data in real time by capturing change
log activity to drive changes in the target. Enable newer applications to access a broader
range of data stores and access methods through replication. For more information, see:

Replicate IBM Z data pattern.
48 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/cloud/architecture/architectures/z-replicate-data-pattern

Chapter 4. Model building for IBM Z

Model building is a critical step within the AI lifecycle. The decisions that you make for model
training can impact the model's performance when it is put into production. The previously
discussed art of data engineering integrates closely with model training. The model is only as
good as the quality of the data that is used to train it.

� 4.1, “Model training frameworks” on page 50
� 4.2, “Model formats” on page 52
� 4.3, “Training strategy” on page 52
� 4.4, “Best practices for model training” on page 60
� 4.5, “Model building use cases” on page 64

4

© Copyright IBM Corp. 2024. 49

4.1 Model training frameworks

When building an AI model, it is helpful to use a training framework. A training framework
provides the tools necessary to build, train, and validate models in an efficient way. These
efficiencies give you the ability to build models in an agile fashion.

4.1.1 Model training frameworks and technologies on IBM Z

Various common model training frameworks are available today. There are many open source
frameworks and IBM provided solutions that can reduce the complexity for a developer or
data scientist when navigating through the full AI lifecycle.

The IBM provided solutions that reduce complexity and enable the full AI lifecycle include the
following IBM products:

� Machine Learning for IBM z/OS

Machine Learning for IBM z/OS (MLz) provides the Jupyter Notebook functionality to train
models directly within its user interface and has the service capability to run, manage, and
automate the model training process on z/OS Spark. Here you can build out custom
training pipelines that interface with your data and save them directly within your
environment.

For more information, see Developing a model in the integrated Notebook Editor and
Submitting application to Spark for model training.

� IBM Cloud Pak for Data

IBM Cloud Pak for Data (CP4D) is a modular set of integrated software components for
data analysis, organization, and management. As part of the feature set of CP4D, it
includes the ability to train AI models. You can use Watson Studio and Machine Learning
to harness the ability to build custom training pipelines with tools like Jupyter Notebook
within CP4D. In addition, the AutoAI feature is an excellent tool to rapidly train and tune a
wide range of potential models. CP4D, including the AutoAI functionality, is available as a
software license, as a service, and on-premises with IBM Z.

IBM Cloud Pak for Data on IBM Z includes the benefit of the hardware acceleration. It uses
the IBM Z Integrated Accelerator for AI for Snap ML and TensorFlow models.

� Python AI Toolkit for IBM z/OS

The majority of common AI, machine learning, and analytics interfaces are open source,
and package security requires currency. Python AI Toolkit for IBM z/OS consists of
up-to-date validated and secure open source packages optimized for z/OS that is
delivered through a secure channel in a self-service method. Python AI Toolkit for
IBM z/OS provides several different training frameworks and technologies. Some available
packages include scikit-learn, XGBoost, Jupyter Notebook, numpy, pandas, matplotlib,
and many more.

For more information, see Python AI Toolkit for IBM z/OS 1.1.0.

� IBM z/OS Platform for Apache Spark

Apache Spark is an open source, distributed processing system used for big data
workloads. Spark is a part of the Apache suite, which is one of the largest open source
foundations. Spark provides the ability to support ML workloads by automating data
processing for real-time and batch use cases.

For more information, see IBM Z Platform for Apache Spark 1.1.
50 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=wmlz-developing-models-in-notebook-editor
https://www.ibm.com/docs/en/announcements/python-ai-toolkit-zos-110?region=US
https://www.ibm.com/docs/en/announcements/z-platform-apache-spark?region=US
https://www.ibm.com/docs/en/wml-for-zos/core/3.1.0?topic=apis-submitting-application-spark-model-training

� SnapML

Some classical ML model types, such as gradient boosting machine, random forest, and
extra trees, can take advantage of the IBM Z Integrated Accelerator for AI by using the
Snap ML format. Snap ML is an ML framework that is developed by IBM Research Zurich
to accelerate the training and inferencing of traditional ML models by efficiently using
computing resources through parallelism while maintaining high model accuracy. For more
information, see Snap ML.

Snap ML was designed to deal with the challenges that enterprises face when training or
retraining models on vast quantities of data, such as long training times and massive
resource usage. Also, Snap ML is seamless for data scientists to use if they are used to
creating models in the scikit-learn library, which can be installed by using a simple pip
command. After an intermediate conversion to a PMML format, some scikit-learn models
can be converted to the Snap ML format to reduce inferencing latency, even when running
on the CPU.

4.1.2 Open-source frameworks

The following open source frameworks are also available:

� TensorFlow

TensorFlow, originated by the Google Brain team, is one of the most popular model
training frameworks that is used by data scientist. TensorFlow is an open source
framework that supports deep learning.

When you run TensorFlow on IBM Z, it also takes advantage of the IBM Z Integrated
Accelerator for AI transparently. You can find the TensorFlow container available in the
IBM Z and LinuxONE Container Registry (ICR) to use accelerated inferencing.

When training is complete, TensorFlow models can be converted into ONNX format, which
is compiled with the IBM Z Deep Learning Complier (DLC), and deployed with MLz. MLz
eases the user experience by compiling the deep learning model in the background.

� Scikit-learn

Scikit-learn is another commonly used model training framework. scikit-learn is an open
source framework that supports machine learning, as opposed to deep learning. More
specifically, scikit-learn provides functionality for several different classification, regression,
clustering, dimensionality reduction, model selection, and preprocessing techniques. It
uses and is built on other widely known open source Python packages such as NumPy,
SciPy, and matplotlib.

Scikit-learn can be used to train on or off IBM Z. When training on z/OS, you can acquire
this framework through the Python AI Toolkit for IBM z/OS as a stand-alone kit, or as part
of the MLz training platform.

After the machine learning model is built, it can be converted to PMML format, then
depending on the model type, it can use the SnapML runtime and take advantage of the
IBM Z Integrated Accelerator for AI.

� PyTorch

PyTorch is a machine learning library that was originally developed by Meta. It is an open
source framework that supports deep learning development for use cases like natural
language processing and image processing.

You can use the IBM Z and LinuxONE Container Registry (ICR) to pull the latest container
with PyTorch support. For more information, see Container Images for IBM Z and
LinuxONE.
Chapter 4. Model building for IBM Z 51

https://ibm.github.io/ibm-z-oss-hub/main/main.html
https://ibm.github.io/ibm-z-oss-hub/main/main.html
https://snapml.readthedocs.io/en/latest/

� Jupyter Notebooks

Jupyter Notebooks are a foundational tool when running various software languages such
as Python, Scala, Java, and R. It is open source software that provides a web-based
application with which you can create and share documents that contain live code,
equations, visualizations, and narrative text.”

By using Jupyter Notebook, you can run the various open source training frameworks
previously discussed. Also, it integrates directly into MLz for model training. There are
several options when using Jupyter Notebooks on IBM Z. The stand-alone Python
package can be acquired from the Python AI Toolkit for IBM z/OS and a container with
Jupyter can be found on ICR.

4.2 Model formats

After training is complete and the model was built successfully, it must be converted to a
usable format that can be used for deployment. You can use model file formats to perform
inferencing with a developed model.

The following list describes some of the model formats in the industry:

� MLz model

Training within MLz provides the ability to save the MLz model directly to the MLz
repository. When exporting the MLz model, you can use several different libraries. MLz
supports a diverse list of models such as Spark, scikit-learn, XGBoost, PMML, ARIMA,
Seasonal ARIMA, ONNX, Watson Core Time Series.

For more information, see Importing a model from a file.

� ONNX

Open Neural Network Exchange, or ONNX, is an open format that is built to represent
machine learning and deep learning models. It provides a common file format that allows
developers and data scientists to train models by using different frameworks, then convert
the model into the ONNX format.

� PMML

Predictive Model Markup Language, or PMML, is another standard and open model
format. It is XML-based and similar to ONNX, provides a way to represent models that
were trained by using different frameworks.

4.3 Training strategy

Having a sound training strategy is important because there's a wide range of available
architectures that can be implemented, whether it is on-premises, public cloud, private cloud,
or some variation of each. Although AI projects can be solved in many ways, there are some
solutions that are more optimal based on the use case.

4.3.1 Train anywhere and deploy on IBM Z

Businesses across the globe are increasingly relying on cloud computing to modernize their
current operations. Most of these businesses across the industries such a Banking,
Insurance, Health care, and Retail, Government, run their core transactional and batch
workloads on IBM Z as they provide services like security, reliability, and availability. To retain
52 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=wmlz-importing-models-from-file

the core strengths and attributes of the IBM Z platform and to take advantage of the extensive
cloud services, security and regulatory compliance programs of IBM Cloud, most scenarios
require a hybrid cloud approach.

Cloud offers flexibility and scalability, enables effective collaboration, and supports a flexible
pay-as-you-go pricing model. Across the globe, companies increasingly rely on cloud
computing to operate their business. Data scientists can access the various tools and training
platforms, use DevOps pipelines, and access rich sets of data and applications available in
the cloud to develop, train, and test the AI models.

Companies must have intelligence that is built into the transaction processing logic to handle
instant payments, increasingly stricter regulations that require real-time Anti-Money
Laundering (AML), the dramatic increase in online transactions, and the increased amount of
fraud. Implementing real-time AI in enterprise workloads without impacting service-level
agreements (SLAs) is now more critical than ever. Even for clearing and settlement use cases
that are processed in batch workloads, the volume of transactions is ever increasing and the
time windows are shrinking as the industry is moving to same day settlements. Throughput
and latency are critical for both real-time and batch processing.

Developments such as the IBM Telum processor chip with the IBM Z Integrated Accelerator
for AI are positioning IBM as an important platform provider for inference workloads.
Colocating the data preprocessing logic and model inference with core transaction processing
logic on IBM Z allows clients to integrate real-time inference into core business transactions
and score all transactions in real-time without impacting the mission-critical SLAs.

As illustrated in Figure 4-1, an enterprise can start with organizing data from different
applications and sources, and then build and train a model on any public cloud or
on-premises infrastructure by using a preferred model framework. The model can be
deployed on IBM Z to take advantage of the innovative hardware optimizations to infuse AI
into every transaction.

Figure 4-1 Train anywhere, deploy on IBM Z

4.3.2 Set up secure environment in IBM Cloud

Although cloud provides many benefits, security is the main concern when using cloud
computing services. According to Cost of a Data Breach Report 20231, the average cost of a
data breach reached an all-time high in 2023 of USD 4.45 million. This represents a 2.3%
increase from the 2022 cost of USD 4.35 million. A long-term view shows that the average
cost has increased 15.3% from USD 3.86 million in the 2020 report. The cost of a data breach
might be as high as USD 5.90 million for the financial industry in 2024. Therefore, defining a
secure environment in the cloud is critical.

Financial institutions must comply with cybersecurity standards, laws, and regulations to
maintain a strong security posture and to prevent data breaches. The global regulatory
standards and compliance landscape (Figure 4-2 on page 54) is complex and continuously
evolving. There are a variety of security regulations and international, federal, and regional
laws. Financial institutions typically must comply with more than one set of requirements, and

1 https://www.ibm.com/security/data-breach?_ga=2.268429834.560404878.1653059563-954325317.1653059563
Chapter 4. Model building for IBM Z 53

https://www.ibm.com/security/data-breach?_ga=2.268429834.560404878.1653059563-954325317.1653059563

it can be difficult when implementing relevant IT standards, regulations, and local laws.
Financial institutions also need to constantly adjust their security controls and processes
because of frequent changes in the cybersecurity landscape. It is time consuming and
challenging to meet the compliance requirements.

Figure 4-2 Major global regulatory bodies

There are many different factors to consider when designing a secure environment in the
cloud, including network security, identity and access control, application security, and data
security. It requires deep knowledge in each area to design the infrastructure and make sure
that there are no security holes in the design. When it is implemented and deployed, the
environment must be continuously monitored to ensure that they maintain a strong security
posture.

IBM Cloud is designed for regulatory workloads, and it works with an ecosystem of regulated
clients and ISVs to continuously improve the compliance posture. IBM Cloud has many
features to support Hybrid Cloud deployments. IBM Cloud is positioned to support enterprise
workloads, which include regulated workloads, with its support for heterogeneous compute
architectures like x86, Z, and Power. IBM Cloud also benefits immensely from IBM Z
platform-centric enterprise cloud services that are offered in its catalog.

As shown in Figure 4-3 on page 55, IBM Cloud for Financial Services is part of IBM Cloud. It
includes IBM Cloud services and independent software vendor applications that comply with
the IBM Cloud Framework for Financial Services. IBM Cloud Framework for Financial
Services is designed to build trust and enable a public cloud ecosystem of ISVs and
IBM Cloud services with the features for security, compliance, and resiliency that financial
institutions require. The Framework uses services in IBM Cloud to create a secure and
compliant environment. These services include IBM Hyper Protect Crypto Services (HPCS),
IBM DevOps toolchain, and IBM Security® and Compliance Center (SCC)). The Framework
includes reference architectures and best practices. The Security and Compliance Center has
a set of profiles with predefined controls and policies that run, monitor, and audit the services.
The policies and controls are determined by the IBM Cloud Regulatory Council. The
IBM Cloud Regulatory Council includes members who are from risk and compliance of
leading financial industry companies and IBM Promontory® Financial Group, an
IBM subsidiary, to ensure that it is current with new and updated regulations. The ISVs and
IBM Cloud services are validated by the controls that are defined by the regulatory council
members. When they are validated, they become Financial Services validated.

The IBM Cloud Framework for Financial Services defines reference architectures, which can
be deployed by using the infrastructure-as-code DevOps toolchain and used as a basis for
meeting the security and regulatory requirements. Sensitive workloads, such as AI model
54 Turning Data into Insight with Machine Learning for IBM z/OS

training jobs can then be deployed into the environment. The IBM Cloud Framework for
Financial Services includes the following defined reference architectures:

� VPC reference architecture for IBM Cloud for Financial Services

� Satellite reference architecture for IBM Cloud for Financial Services

� IBM Cloud for VMware Regulated Workloads architecture

Figure 4-3 IBM Cloud for Financial Services

For more information, see IBM Cloud for Financial Services.

4.3.3 Model development in hybrid cloud

Data is needed for the development of an AI model. Depending on the business problem,
data from various sources must be organized and made available for data scientists to
access. Section 3.4, “Data integration patterns” on page 38 discusses various data
integration patterns that enterprises can choose based on the requirements of the use cases.

Data scientists can develop, train, and test the AI models using their preferred framework
anywhere, which includes IBM Z or in private or public clouds. However, as mentioned
previously, because data can be sensitive and models are valuable assets of the enterprise,
the training environment must be secure and compliant.

Figure 4-4 Deep learning model development and deployment process

Depending on the business problem, data scientists can build ML models or DL models to
solve the problem. Figure 4-4 shows the typical DL model development and deployment
process. The figure shows that the choice of model development environment can be
Chapter 4. Model building for IBM Z 55

https://www.ibm.com/cloud/financial-services
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-vpc-architecture-about
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-satellite-architecture-about
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-vmware-overview

independent of the model deployment environment. Data scientists can choose to build and
train the AI model in any popular framework on any platform if it meets the security and
compliance requirements. When the model is trained and tested, data scientists can convert it
to a format that is easier for framework interoperability, such as Open Neural Network
Exchange (ONNX) format. An ONNX model can then be managed in a secure model
repository, and securely transferred to IBM Z for testing and deployment, which is managed
by the DevOps pipeline over Direct Link connecting IBM Z with IBM Cloud. The ONNX model
can be imported into MLz and compiled by Z Deep Learning Compiler (zDLC). Alternatively,
the ONNx model can be compiled manually within a container image of the zDLC to take
advantage of the Integrated Accelerator for AI on IBM Z.

ONNX is not the only format that can be deployed on IBM Z. Figure 4-5 shows several
supported AI frameworks and libraries that can be used to import many developed models
into various runtime environments on IBM Z. Figure 4-5 also shows how the use of the
hardware can benefit the model during inferencing. Many model types from several
frameworks can be imported into the IBM Z platform seamlessly into their native runtime
environment, which typically refers to an Anaconda, Python, or Spark environment in Linux on
IBM Z or zCX.

Figure 4-5 Model optimizations on IBM Z

4.3.4 AI reference architecture in hybrid cloud

Enterprise data is highly sensitive and must be protected, and AI workloads must also be
deployed in a cloud environment that meets regulatory compliance, security, and resiliency
requirements. As discussed in the previous section, IBM Cloud for Financial Services is
designed to help clients mitigate risk and accelerate cloud adoption for even their most
sensitive workloads.

AI model building is an iterative process. It typically starts with understanding the business
problem, and iterates through understanding and preparation of data, training and testing the
models, model deployment, model inference, and model monitoring.

The IBM Cloud Framework for Financial Services provides three reference architectures that
can be used as a basis for meeting the security and regulatory requirements that are defined
in the framework. Figure 4-6 on page 57 shows a sample AI reference architecture in VPC for
a hybrid cloud environment.
56 Turning Data into Insight with Machine Learning for IBM z/OS

For a more information, see Reference architecture overview.

Figure 4-6 Sample AI reference architecture in VPC for a hybrid cloud environment

The following steps outline how to set up an AI reference architecture in VPC for a hybrid
cloud environment across IBM Cloud and on-premises:

1. Set up the infrastructure by creating a DevOps toolchain for “Deploy infrastructure as
Code for the IBM Cloud for Financial Services”, which provides a secure environment for
model training jobs. For more information, see the reference architecture for IBM Cloud for
Financial Services.

2. Make the enterprise data that is on-premises accessible in the cloud. See the data
integration patterns discussed in “Data integration patterns” on page 38.

3. Understand, prepare, and manage the governance of the data with tools in Cloud Pak for
Data, for example, organizing and managing data with Watson Knowledge Catalog.
Chapter 4. Model building for IBM Z 57

https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-reference-architecture-overview

4. Training jobs can be run in the workload VPC. Various tools in IBM Cloud Pak for Data can
be used. Watson Studio can be used as the model development environment. Different
machine learning platforms and tools can be used to train the model, such as TensorFlow,
PyTorch, and SnapML. The model can be tested in Machine Learning. For conversational
AI, tools such as Watson Assistant, Speech-to-Text, and Text-to-Speech can be used.

5. IBM DevOps Toolchains can be used to manage the model source codes and tested
models.

6. Linux on IBM Z mainframe or IBM Wazi as a Service can be used to test the AI models
and AI applications before pushing them to the on-premises mainframe.

7. Tested AI models are deployed on Machine Learning for IBM z/OS.

8. AI model inference is started to gain insights from the data.

9. AI models are continuously monitored by IBM Watson OpenScale. IBM Watson
OpenScale is an enterprise-grade environment for AI applications that provides enterprise
visibility into how your AI is built and used and delivers return on investment information.
Its open platform enables businesses to operate and automate AI at scale with evident,
explainable outcomes that are free from harmful bias and drift.

4.3.5 Training on-premises with IBM Z

A significant amount of enterprise data is stored directly on IBM Z. Because of this sensitivity
of the data, it might necessary to keep data on-premises during training.

Figure 4-7 MLz architecture
58 Turning Data into Insight with Machine Learning for IBM z/OS

Training with MLz
As previously discussed, popular model training frameworks allow the flexibility to run within
various environments. On IBM z/OS, you can build models using MLz UI by using the Jupyter
Notebook interface. MLz provides an enterprise-ready platform that can ease the deployment
of the model when training is complete.

The diagram that is shown in Figure 4-7 on page 58 describes the architecture of MLz with an
example showing how to use a custom ML solution on z/OS to train a model and import it into
MLz.

Training with Python AI Toolkit for IBM z/OS
Additionally, on IBM z/OS you can use the Python AI Toolkit for IBM z/OS, which provides
some of the most popular Python packages for model training, which allows for a customized
development solution. Some available packages include scikit-learn, XGBoost, Jupyter
Notebook, NumPy, pandas, and matplotlib.

All the latest packages included within the Python AI Toolkit for IBM z/OS can be found on the
product page. For more detailed guidance see the IBM Redbooks Solution Guide, Securely
Leverage Open-Source Software with Python AI Toolkit for IBM z/OS, REDP-5709.

Figure 4-8 Journey to Open Data Analytics on IBM Z

Figure 4-8 shows how to use Jupyter within the AI development space to build models with
Python AI Toolkit for IBM z/OS. For a more complete environment for AI and open data
analytics applications, you use IBM z/OS Platform for Apache Spark and IBM Data
Virtualization Manager for z/OS.

IBM Z Platform for Apache Spark allows multiple, disconnected data sources to be virtually
integrated within a single application. Apache Spark is the enterprise engine for processing
unified data and scaling integrations with business applications.2

IBM Data Virtualization Manager for z/OS provides virtual, integrated views of data residing
on IBM Z. It enables users and applications read/write access to IBM Z data in place, without
having to move, replicate, or transform the data.2

2 https://www.ibm.com/support/z-content-solutions/journey-to-open-data-analytics/
Chapter 4. Model building for IBM Z 59

https://www.ibm.com/support/z-content-solutions/journey-to-open-data-analytics/

Training with containers on Linux on IBM Z
You can run model training frameworks on IBM zCX or Linux on IBM Z environments to use
containers from the IBM Z and LinuxONE Container Registry. These training frameworks can
also run within x86 environments, such as Windows, Mac, and Linux.

Available containers include TensorFlow, PyTorch, and many more. For a complete list of the
latest containers, see Container Images for IBM Z and LinuxONE.

Figure 4-9 IBM Z and LinuxONE Container Repository

Figure 4-9 shows the high-level architecture of a development environment that uses ICR. To
perform model training within a Linux on Z, z/OS, or zCX environment you can pull the docker
files directly from ICR.

4.4 Best practices for model training

Each decision that you make when performing model building is directly dependent on the
problem that is being solved. Although each problem is different, there is a set of best
practices that can be applied.

4.4.1 Training strategy considerations

When building your training strategy, there are several variables to consider. It is key to
identify where your data currently resides. The ability to access the data is critical to building a
model.

Factors that affect training times
Model training can be a resource-intensive process. The size of the dataset you are planning
to use for training and other variables directly affects the time it takes to train your model. The
quality of the data is always more important than the quantity. The model type and its
corresponding hyper parameters can also affect training times. Also, the underlying hardware
infrastructure and resources available determine the speed at which training can be
completed.
60 Turning Data into Insight with Machine Learning for IBM z/OS

https://ibm.github.io/ibm-z-oss-hub/main/main.html

Model update frequency
Every use case is different, and some use cases require the need to frequently train the
model with updated data. For example, if you need your model to make decisions based on
data that is generated every hour or day, then you must build a new model and deploy it
rapidly. The training pipeline considerations might look different than a use case that only
needs historical data from the previous year. A subsequent section includes a discussion of
how MLOps is tightly integrated with the model training process.

4.4.2 Considerations for choosing a framework

When you choose a framework to train your AI models, it is important to understand that no
single framework provides all the answers. However, general techniques can be applied when
experimenting.

Deep learning versus machine learning
Different model types have several strengths and weaknesses depending on the use case
that you are trying to solve. It is important to consider the strengths of each model to find the
best fit and maximize the performance.

It is important to understand whether the use case leans more toward traditional machine
learning or deep learning. If the use case is image processing or natural language processing
related, it is likely you need a deep learning model. For deep learning, you can use
TensorFlow and PyTorch.

If the use case is more like traditional machine learning models, you can use frameworks
such as scikit-learn, Snap ML, and XGBoost.

Open source versus enterprise platform
As previously mentioned earlier in this chapter, there are several different training frameworks
that are available. You can use stand-alone open source frameworks, such as TensorFlow,
scikit-learn, and others to build a customized training infrastructure. There are many options
and the flexibility of MLz supports this. The advantage of using MLz is that it provides an
end-to-end enterprise platform that allows for seamless integration when moving toward
deployment.

Cloud versus on-premises
Whether you choose to train on-premises or in the cloud, there are many frameworks and
technologies available. In fact, most of the same technologies are available native on IBM Z
that are available on IBM Cloud and other cloud providers. If you choose to train natively on
z/OS, MLz is the full end-to-end enterprise platform of choice. If you want to develop your own
model training infrastructure, you can use the wide range of open source Python packages
available in the Python AI Toolkit for IBM z/OS.

4.4.3 Best practices on saving models for deployment on IBM Z

After training is complete, save the model so that it can be used for deployment. When
training with MLz, you can save your model directly within your environment. As previously
mentioned, you can reference how to save the model using the integrated Notebook Editor in
MLz. You can use the MLz UI to import a previously exported MLz model, as shown in
Figure 4-10 on page 62.
Chapter 4. Model building for IBM Z 61

Figure 4-10 Import MLz model to MLz

By using the model utility provided by MLz, you can save Python models, such as scikit-learn
and XGBoost, that were trained on any platform. You can save the model into a format that
can be imported into MLz for scoring on IBM z/OS. No matter where you decide to train your
models, you can deploy them on IBM Z by converting them to ONNX or PMML formats.

For more information, see Importing a model from file.

Example 4-1 shows how to convert a trained TensorFlow model to ONNX. This conversion
requires running Python and uses the tf2onnx tool to perform the conversion of the deep
learning model.

Example 4-1

Run python command with tf2onnx to convert deep learning model to ONNX, and save
it to the local file system
!python -m tf2onnx.convert --saved-model $work_dir”fraud_cnn_model” --opset 10
--output $work_dir”model.onnx”

After you convert the model to ONNX, you can import it using the MLz UI (Figure 4-11 on
page 63).

Converting a trained scikit-learn model to PMML requires a Python environment to run the
sklearn2pmml library. The sklearn2pmml package performs the conversion with the given
machine learning pipeline. The following line of code can be used to convert a trained
scikit-learn model to PMML:

sklearn2pmml(pipeline, 'random_forest.pmml', with_repr=True)
62 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=wmlz-importing-models-from-file

After you convert the model to PMML, you can import it using the MLz UI, as shown in
Figure 4-12.

Figure 4-11 Import ONNX model to MLz

Figure 4-12 Import PMML model to MLz

Example of saving CP4D model
If you trained your model using CP4D, you can also import it into MLz using the UI, as shown
in Figure 4-13 on page 64. Unlike the other model formats, CP4D is not imported from file.
Instead, you provide various details that are specific to the CP4D instance and model, such
as hostname, port, username, password, deployment space, mode, and model name.
Chapter 4. Model building for IBM Z 63

Figure 4-13 Import CP4D model to MLz

4.4.4 Evaluating model formats

As previous mentioned, MLz supports various model types.

By using ONNX allows you can train your models off platform and then bring them to IBM Z by
deploying with MLz. ONNX does not include preprocessing support. Depending on the use
case, additional work might be necessary at inference time to account for the unprocessed
data that is being presented. ONNX is a standard format, so this is an advantage because it is
widely supported.

By using PMML, you can train your models off platform. One advantage of the PMML format
is that you can embed the preprocessing directly within the generated PMML pipeline. By
doing this, it handles the preprocessing at inference time without any additional code needed
to handle incoming unprocessed data.

4.4.5 Tuning model parameters

In order to improve the performance of the model, training requires hyper parameter tuning.
This tuning is an experimental process. Each of the training frameworks discussed support to
efficiently perform model tuning. As the number of hyper parameter variations increases, the
computation and time that is needed to build the model increases.

4.5 Model building use cases

After the credit card transaction dataset has been cleaned, you can perform model training.
You can use several different model frameworks and formats. Two use cases are presented in
this section.
64 Turning Data into Insight with Machine Learning for IBM z/OS

Use case 1: Training a TensorFlow model and saving to ONNX format
The following steps are provided as an example workflow to build a fraud detection model by
using TensorFlow:

1. Build a sequential neural network model with a couple of layers as outlined in
Example 4-2.

Example 4-2 Sequential neural network model with a couple of layers

Build a Sequential model
model = Sequential()

Add a 1D convolution layer
model.add(Conv1D(32, 2, activation='relu', input_shape = X_train[0].shape))
model.add(BatchNormalization())
model.add(MaxPool1D(2))
model.add(Dropout(0.2))

model.add(Conv1D(64, 2, activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool1D(2))
model.add(Dropout(0.5))

Convert 2D data to vector
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))

Define output data shape and activation as sigmoid
model.add(Dense(1, activation='sigmoid'))

2. Compile the TensorFlow model with Adam optimizer:

Compile the model with Adam optimizer
model.compile(optimizer=Adam(learning_rate=0.0001), loss =
'binary_crossentropy', metrics=['accuracy'])

3. Train the TensorFlow model:

Fit the model
model.fit(X_train, y_train, epochs=epochs, validation_data=(X_test, y_test)

4. Save the model:

Save model to local file system
model.save(work_dir + “model”)

5. Convert the model to ONNX:

Run python command with tf2onnx to convert deep learning model to ONNX, and
save it to the local file system
!python -m tf2onnx.convert --saved-model $work_dir”fraud_cnn_model” --opset 10
--output $work_dir”model.onnx”
Chapter 4. Model building for IBM Z 65

Use case 2: Training a scikit-learn model and saving to PMML
In this example, use scikit-learn to build a fraud detection model by following these steps:

1. Split the training and testing data:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=1)

2. Define the preprocessing pipeline steps:

feature_transformers = [
('num', Pipeline(steps=[('normalizer', StandardScaler())]), num_feats),
('cat', Pipeline(steps=[('normalizer', OrdinalEncoder())]), cat_feats)

]
preprocessor = ColumnTransformer(transformers=feature_transformers)

3. Build a pipeline with random forest model:

pipeline = PMMLPipeline([
(“preprocessor”, preprocessor),
(“classifier”, RandomForestClassifier())

])

4. Train model pipeline:

pipeline.fit(X=X_train, y=y_train)

5. Convert model pipeline to PMML:

Sklearn2pmml(pipeline, 'random_forest.pmml', with_repr=True)
66 Turning Data into Insight with Machine Learning for IBM z/OS

Chapter 5. Model deployment and
inferencing

Model deployment and inferencing are crucial steps in the machine learning and artificial
intelligence pipeline.

Model deployment involves taking a trained machine learning or deep learning model and
making it accessible for real-world applications. It is the process of deploying the model to a
production environment where it can serve predictions or make decisions based on new,
incoming data.

Inferencing is the act of using the deployed model to make predictions or perform tasks on
unseen data. It is the stage where the model applies its learned knowledge to make real-time
decisions, such as image recognition, natural language processing, or anomaly detection,
providing valuable insights and automation in various industries and applications.

Proper deployment and efficient inferencing are critical for the successful integration of AI and
machine learning into practical solutions.

� 5.1, “Model deployment environments and advantages of mainframe systems” on page 68
� 5.2, “Features and benefits of deploying by using MLz” on page 74
� 5.3, “Model inferencing” on page 78
� 5.4, “Sample use case for MLz model deployment” on page 83
� 5.5, “Best practice on model deployment and inference” on page 104

5

© Copyright IBM Corp. 2024. 67

5.1 Model deployment environments and advantages of
mainframe systems

In today's data-driven world, machine learning models and algorithms are at the heart of
decision-making processes. Deploying these models effectively is essential for businesses
and organizations to take advantage of their predictive power. Model deployment can take
place in various environments. Mainframe systems, often associated with legacy technology,
continue to play a pivotal role in modern computing environments because of several key
advantages. Recognizing the enduring advantages of mainframe systems is essential for
making informed decisions in the evolving landscape of technology and data management.

5.1.1 Model deployment

When you work with artificial intelligence (AI) and machine learning, deploying models
effectively is a crucial step toward turning insights into tangible results. The choice of model
deployment environment plays a pivotal role in determining the success of these endeavors.
Although various options exist, one environment that offers advantages is the mainframe
system.

With AI, building powerful machine learning models is just the beginning. The goal is to
deploy these models effectively and ensure that they perform optimally in real-world
scenarios. Model deployment environments play a crucial role in this process and provide the
necessary infrastructure and resources to unleash the potential of AI.

Key factors when considering model deployment environments
The right deployment environment provides the infrastructure, scalability, flexibility, real-time
responsiveness, data security, and collaboration capabilities that are necessary for successful
model deployment.

By carefully considering and selecting the appropriate deployment environment,
organizations can unlock the full potential of their AI initiatives and deliver accurate
predictions, efficient decision-making, and transformative outcomes. As AI continues to
reshape industries, understanding and prioritizing the importance of model deployment
environments are key factors in driving AI-driven success.

Organizations must carefully consider the critical aspect of the deployment environment for AI
implementation. The selection of a deployment environment is based on several factors.

Infrastructure and resources
Model deployment environments provide the necessary infrastructure and resources to
support the execution of machine learning models. These environments encompass a range
of options, which include on-premises infrastructure and cloud-based solutions. The chosen
environment should align with the specific needs of the organization, considering factors such
as scalability, performance, data storage, and computational power. The right infrastructure
ensures that models can handle large datasets, process complex computations efficiently,
and deliver accurate results in a timely manner.

Scalability and flexibility
Successful AI implementation requires the ability to scale models as the business grows and
demands change. Model deployment environments that offer scalability and flexibility enable
organizations to adapt to evolving needs. Whether it is an increase in data volume, a growing
user base, or expanding use cases, the deployment environment should accommodate these
changes seamlessly. Scalable environments allow for the deployment of larger models, which
68 Turning Data into Insight with Machine Learning for IBM z/OS

can handle greater computational demands and cater to increased workloads without
compromising performance.

Real-time responsiveness
Certain applications require real-time responsiveness, where decisions must be made and
actions taken instantaneously. Model deployment environments that support low-latency and
high-throughput inference enable real-time decision-making. For time-critical scenarios, such
as fraud detection, autonomous vehicles, or financial transactions, the deployment
environment must provide the necessary computational power to process data swiftly and
deliver timely predictions or actions.

Data security and compliance
Data security and compliance are paramount in AI implementations, especially when
handling sensitive information. Ensure that model deployment environments provide robust
security measures to protect data throughout the deployment process. This includes secure
data storage, encryption mechanisms, access controls, and compliance with relevant
regulations. Choosing a deployment environment that prioritizes data security ensures that
confidential information remains protected, which mitigates the risk of data breaches and
maintains compliance with privacy regulations.

AI model deployment on-premises and cloud-based
To unleash the power of AI, organizations must carefully consider the deployment options
available. Two prominent options are on-premises and cloud-based deployments. Each
approach comes with its own set of advantages and considerations. The choice between the
two depends on the specific needs and goals of the organization.

The decision between on-premises and cloud-based deployments depends on factors such
as data privacy requirements, existing infrastructure, budget constraints, and the
organization's overall AI strategy. Some organizations might opt for a hybrid approach, by
using both on-premises and cloud resources to strike a balance between control, security,
and scalability.

Successful AI deployment requires a thoughtful evaluation of the available deployment
options, understanding the specific needs of the organization, and aligning the chosen
approach with the organization's long-term AI goals and strategies.

Consideration for on-premises deployment
On-premises deployment refers to hosting AI models within an organization's own
infrastructure, typically within their data centers. For the advantages and considerations of
this deployment option:

� Infrastructure costs. On-premises deployment requires initial investments in infrastructure,
including hardware, networking, and maintenance. Organizations must carefully consider
these costs before opting for this deployment option.

� Scalability challenges. Scaling on-premises infrastructure can be complex and
time-consuming. Organizations must anticipate future growth and ensure that their
infrastructure can handle increasing workloads and data volumes.

� Enhanced data control. On-premises deployment offers organizations complete control
over their data. This can be crucial for industries with stringent data privacy and
compliance requirements because it allows organizations to maintain sensitive data within
their secure infrastructure.

� Lower latency and increased performance. By hosting AI models on-premises,
organizations can reduce latency and achieve faster response times. This is particularly
Chapter 5. Model deployment and inferencing 69

important for real-time applications that require immediate decision-making or low-latency
predictions.

Consideration for cloud-based deployment
Cloud-based deployment refers to providing scalability, cost efficiency, and accessibility.
Organizations should carefully weigh the advantages and considerations of each option,
considering their specific requirements, data sensitivity, performance needs, and cost
constraints.

� Data security and compliance. Organizations must carefully evaluate the security
measures provided by cloud service providers and ensure that they meet their specific
data security and compliance requirements. This includes considerations such as data
encryption, access controls, and regulatory compliance.

� Latency and network dependency. Cloud-based deployments rely on network connectivity,
which can introduce latency. For certain real-time applications with stringent latency
requirements, on-premises deployment might be more suitable.

Carefully weigh the advantages and considerations of each option by considering specific
requirements, data sensitivity, performance needs, and cost constraints. By selecting the
optimal deployment option, organizations can effectively deploy AI models and unlock the
transformative potential of AI in their respective industries.

5.1.2 Drivers for mainframe deployment

Mainframe deployment provides significant advantages, including scalability, performance,
reliability, security, and integration capabilities. Organizations can take advantage of these
benefits to achieve optimal performance, ensure high availability, maintain data security and
compliance, seamlessly integrate with existing infrastructure, and achieve cost efficiencies.

Mainframes continue to be a strategic choice for organizations looking to harness the power
of these robust systems and drive successful and resilient applications in transaction-oriented
and data-intensive environments.

Mainframes are integrated with existing enterprise infrastructure, which includes legacy
systems, databases, and applications. Deploying applications on mainframes ensures
compatibility and seamless integration with the existing configuration. This integration
simplifies data access, allows organizations to use their existing technology investments, and
reduces complexities that are associated with deploying applications in disparate
environments. By using the integration capabilities of mainframes, organizations can
modernize their legacy systems and enhance operational efficiency. The deployment of
machine learning models on mainframe systems has several advantages.

Large-scale and low-latency in-transaction inference
One of the key reasons for deploying machine learning models on mainframe systems is the
ability to achieve large-scale, low-latency in-transaction inference. Mainframe systems
equipped with specialized AI accelerators, such as those found in the Telum processor,
provide a significant advantage in handling high-volume transaction processing.

These AI accelerators are purpose-built to run AI computations efficiently, enabling
organizations to perform large-scale inferencing within the transactional context. This
capability is valuable in scenarios where real-time decision-making and immediate responses
are critical, such as financial transactions, fraud detection, or dynamic pricing.
70 Turning Data into Insight with Machine Learning for IBM z/OS

By harnessing the computing power and AI accelerators of mainframes, organizations can
ensure that their models deliver fast, accurate, and real-time insights, allowing them to
respond to rapidly changing conditions and make informed decisions in the moment.

Real-time decision-making and immediate response advantages
Deploying machine learning models on mainframes provides organizations with a competitive
edge in real-time decision-making. Mainframes offer the computational power and low-latency
capabilities necessary for real-time data processing and analysis. This advantage is
especially crucial in time-sensitive applications, where immediate responses can make a
significant impact on business outcomes.

For example, in the banking sector, real-time fraud detection is critical to prevent financial
losses. By deploying fraud detection models on mainframes, organizations can analyze
transaction data in real-time, identify suspicious patterns, and take immediate action to
mitigate potential fraud.

Similarly, in the health care domain, real-time analysis of patient data can enable prompt
diagnosis and treatment decisions. The immediate response capabilities of mainframes
empower organizations to make accurate, data-driven decisions and respond swiftly to
emerging situations, enhancing operational efficiency and customer satisfaction.

Advantages of AI accelerator on Telum processor for efficient inference
The z/OS AI Accelerator on the Telum processor is a powerful hardware accelerator that is
designed for AI workloads on IBM z/OS mainframe systems. The Telum processor
incorporates advanced technologies and optimizations to deliver exceptional performance for
AI inference and training tasks.

The z/OS AI Accelerator on the Telum processor provides specialized hardware acceleration
for deep learning workloads on the IBM z/OS mainframe platform. It incorporates
optimizations that are designed to enhance the performance and efficiency of deep learning
tasks.

By using the capabilities of the z/OS AI Accelerator, organizations can train and deploy deep
learning models on their mainframe systems. This includes tasks such as training large-scale
neural networks, optimizing model performance, and conducting inference for real-time
predictions. The accelerator's high performance and scalability enable organizations to
handle complex deep learning workloads efficiently within the mainframe environment.

Use cases for ML on IBM z/OS
There are numerous use cases for machine learning on z/OS, showcasing the platform's
versatility and its potential to revolutionize various industries.

With its robust and secure infrastructure, z/OS empowers organizations to unlock the
potential of AI and gain a competitive edge in today's data-driven world. As AI technology
continues to advance, you can expect even more innovative and transformative applications
of machine learning on z/OS across various industries:

� Real-time fraud detection

Machine learning on z/OS can play a vital role in detecting and preventing fraudulent
activities in various domains, including financial services, insurance, and retail. By
analyzing transactional data, customer behaviors, and historical patterns, machine
learning models can identify anomalies and detect potential fraud. The z/OS AI
Accelerator enhances the performance and real-time processing capabilities of these
models, enabling organizations to mitigate risks and protect against fraudulent activities
more effectively.
Chapter 5. Model deployment and inferencing 71

� Anomaly detection

Financial transactions often involve complex patterns and vast volumes of data. By
deploying machine learning models on z/OS, organizations can analyze historical
transaction data and identify anomalies that might indicate potential risks. By using the
z/OS AI Accelerator, financial institutions can efficiently process large datasets and
identify unusual patterns or behaviors, which enable them to proactively mitigate risks and
safeguard against fraudulent activities or compliance breaches.

� Predictive maintenance

In industries like manufacturing and transportation, machine learning models on z/OS can
monitor equipment health and performance, predicting maintenance needs and preventing
costly breakdowns. This proactive approach can optimize maintenance schedules and
extend the lifespan of critical assets.

Using data gravity
The data gravity of z/OS is a significant advantage for organizations deploying applications,
including machine learning models, within the mainframe environment. It reduces data
movement, enhances data access and performance, simplifies integration with existing
infrastructure, strengthens data security and compliance, and promotes effective data
governance. By z/OS data gravity, organizations can harness the full potential of their
transactional data and derive valuable insights within a trusted and centralized configuration.

Using existing mainframe data hubs for AI model deployment
Using existing mainframe data hubs for AI model deployment is a strategic approach that
harnesses the power of machine learning within the mainframe environment. The mainframe
is a cornerstone of enterprise computing, serving as a robust and reliable platform for critical
business applications. With the advent of AI and machine learning, organizations are seeking
ways to take advantage of their mainframe data and infrastructure to derive valuable insights
and make data-driven decisions.

The following list describes the key features for using existing mainframe data hubs:

� Data integration and data governance and compliance

Mainframe data hubs are typically integrated with various applications, databases, and
traditional systems. By using these existing integrations, organizations can seamlessly
access and integrate data into AI workflows without the need for extensive data
transformations or migrations.

Mainframe systems are also known for their robust data governance and compliance
capabilities. By deploying AI models within the mainframe environment, organizations can
use existing data governance frameworks, access controls, and auditing mechanisms.
This ensures that AI models adhere to regulatory requirements and privacy standards.
The trusted data governance practices within mainframe data hubs provide organizations
with the confidence that their AI deployments are compliant, secure, and aligned with
existing governance policies.

� Data proximity and reduced latency and cost consideration

Mainframe data hubs contain vast amounts of critical transactional data that is essential
for training and deploying AI models. By using existing mainframe data hubs,
organizations can minimize data movement and take advantage of data proximity. This
reduces latency in accessing and processing data, enabling faster model training and
inference. Using existing mainframe data hubs for AI model deployment can offer cost
efficiencies.

Because the data already resides within the mainframe environment, organizations can
avoid the costs that are associated with data transfers and storage in separate
72 Turning Data into Insight with Machine Learning for IBM z/OS

environments. Using the existing mainframe infrastructure and investments reduces the
need for additional hardware and infrastructure expenses, which can result in cost savings
and eliminates the need for extensive data transfers.

Eliminating the need for extensive data transfers
By deploying AI models within the mainframe environment, organizations can eliminate the
need for extensive data transfers between different systems or platforms. Data transfers can
be a resource-intensive and time-consuming process, especially when dealing with large
volumes of data. Moving data between systems not only incurs additional costs but also
introduces potential security risks and data integrity issues.

By using existing mainframe data hubs for AI model deployment, organizations can keep their
critical data securely within the mainframe and use it directly for AI model training and
inference. This approach significantly reduces the latencies that are associated with data
movement because the AI models can directly access the relevant data that is stored within
the mainframe.

The following list describes the key features for eliminating the extensive data transfers:

� Eliminate the requirement for extensive data transfer

By using existing mainframe data hubs for AI model deployment, organizations can
eliminate the requirement for extensive data transfers between different environments.
Because the data is already stored within the mainframe environment, there is no need to
move large volumes of data to other platforms or cloud environments for model training or
inference. This eliminates the complexities and potential delays that are associated with
data transfers and ensures that the AI models can access the required data without
latency or integrity issues.

� Use the data where it resides

Instead of duplicating or transferring data to separate environments, organizations can
use the data where it resides, which is directly within the mainframe data hubs. This data
proximity allows AI models to efficiently access and process the transactional data within
the mainframe environment. By avoiding the need for extensive data transfers,
organizations save time, reduce network bandwidth requirements, and minimize the risk of
data duplication or inconsistency.

� Maintain data security and compliance

Also, eliminating extensive data transfers helps maintain data security and compliance. By
keeping the data within the trusted mainframe environment, organizations can use the
existing security measures, access controls, and data governance frameworks already in
place. This ensures that sensitive data remains protected and that AI model deployments
adhere to regulatory requirements and privacy standards.

Overall, by eliminating the need for extensive data transfers, organizations can streamline the
AI model deployment process, reduce complexities, enhance data integrity, and use the
efficiency and security of the mainframe data hubs. This approach allows for faster and more
reliable AI deployments and enables organizations to derive insights and make informed
decisions without the delays and challenges that are associated with moving data across
different environments.

Ensuring data integrity, security, and compliance
Ensuring data integrity, security, and compliance is of paramount importance in any AI
deployment, especially when working with sensitive and critical data within the mainframe
environment. The mainframe is known for its robust security features, and taking advantage
of these capabilities is essential to maintain the confidentiality, integrity, and availability of
data.
Chapter 5. Model deployment and inferencing 73

By deploying AI models within the mainframe, organizations can take advantage of the
mainframe's built-in security mechanisms, such as access controls, encryption, and audit
trails. These security measures help protect data from unauthorized access, modification, or
disclosure and ensures that only authorized users have the necessary permissions to interact
with the data and AI models.

Data integrity
Mainframe systems have a long-standing reputation for maintaining data integrity. The
mainframe data hubs store critical transactional data, which is essential for AI model training
and inference. The data is protected through various mechanisms such as data redundancy,
checksums, and error detection and correction codes. By deploying AI models within the
mainframe environment, organizations can use these built-in data integrity measures,
ensuring that the data used for training and inference remains accurate and consistent.

Data security
Mainframes are known for their robust security features. Organizations can rely on the
existing security infrastructure of the mainframe data hubs to safeguard sensitive data used in
AI model deployments. This includes features such as access controls, encryption, and
secure authentication mechanisms. By using these security measures, organizations can
ensure that only authorized personnel have access to the AI models and the underlying data,
which can reduce the risk of data breaches and unauthorized usage.

Compliance
The mainframe environment is designed to comply with various regulatory standards and
industry-specific compliance requirements. The use of existing mainframe data hubs for AI
model deployment ensures that organizations can adhere to regulatory guidelines such as
data privacy regulations, financial compliance standards, and industry-specific compliance
frameworks. The mainframe's built-in auditing capabilities and governance frameworks
further support compliance efforts, providing organizations with the necessary tools to
monitor and track AI model usage and ensure adherence to compliance regulations.

5.2 Features and benefits of deploying by using MLz

IBM Machine Learning for z/OS (MLz) is an enterprise machine learning solution that is
designed to run on IBM Z. It offers the flexibility of being deployed as a stand-alone solution or
seamlessly integrated into your enterprise AI capabilities as a scalable platform.

MLz comes equipped with a web user interface (UI), a variety of APIs, and a comprehensive
web administration dashboard. These features provide a robust suite of tools for streamlined
model development, deployment, user management, and system administration. This helps
to simplify the machine learning operations for various key roles, including system
administrators, machine learning administrators, data scientists, and application developers.

For instance, system administrators can manage and monitor the services through the
administration dashboard to ensure their smooth operation. Machine learning administrators
can deploy machine learning models as services to applications like CICS, Java, and others
on the Z platform. Therefore, application developers can use these services in their own
applications to make real-time predictions.

By using MLz, organizations can enhance their machine learning capabilities and harness the
power of IBM Z for efficient and effective AI-driven solutions.
74 Turning Data into Insight with Machine Learning for IBM z/OS

5.2.1 Features of MLz

MLz offers a user interface, which can make it easier for both beginners and experts to use.
MLz has advanced analytics capabilities, providing valuable insights to support data-driven
decision making. It is a solution for streamlined development and seamless deployment. With
MLz, you have a comprehensive framework at your fingertips, ready to accelerate your
development and deployment initiatives.

MLz User interface
A key advantage of the MLz UI is its ability to help minimize the machine learning curve for
new users. Clear instructions, visual cues, and context-sensitive help can make it easier for
users to familiarize themselves with the application's functionality. The UIs can reduce the
need for extensive training and can help users to start using the application efficiently from
the outset. This not only saves time and resources but also increases user adoption rates.

The MLz user interface on z/OS can empower users to efficiently develop, deploy, and
manage machine learning models. It can simplify complex processes, offer monitoring and
administration functionalities, and provide an intuitive platform for users to use the power of
IBM Machine Learning on the IBM Z platform.

Model development
The MLz UI goes beyond monitoring and managing batch processing applications. It also
provides a comprehensive set of tools and functionalities for model development, which
enables users to harness the power of machine learning. Within the MLz UI, users have
access to a range of features that facilitate the entire model development lifecycle.

One of the key capabilities offered by the MLz UI is the ability to manage machine learning
models. Users can select from a variety of algorithms and techniques that best suit their
specific use cases then import the models into MLz. The MLz UI also supports the integration
of custom transformers. These custom transformers enable users to incorporate their own
data preprocessing or feature engineering logic into the model pipeline. This flexibility can
empower users to tailor the model to specific requirements and domain expertise to enhance
the model's performance and adaptability.

Also, the MLz UI provides essential model evaluation tools, so users can assess the
performance of their trained models. Users can analyze key metrics such as accuracy,
precision, recall, and F1-score to gauge the model's effectiveness. This evaluation process is
crucial for selecting the most appropriate model for a specific use case and ensuring that it
meets the specified performance standards.

As an integrated platform, the MLz UI bridges the gap between model development and
deployment. After the models are trained and optimized, users can deploy them as services
within z/OS applications using the MLz scoring engine. This seamless integration enables
organizations to use the power of machine learning in real-time applications, driving
innovation and efficiency across the enterprise.

Model deployment
The MLz UI not only empowers users to build and train machine learning models but also
offers seamless integration capabilities by enabling the deployment of these models as
services. By using the UI, the deployment process can be easier and more efficient, allowing
users to take advantage of the power of machine learning in their existing z/OS applications.

When users deployment models, they can choose from a variety of deployment targets, which
cater to their specific needs and application requirements. Whether it is CICS, Java, or other
Chapter 5. Model deployment and inferencing 75

z/OS applications, MLz accommodates diverse deployment environments, making it a
versatile solution for organizations with varying infrastructures.

The deployment process involves packaging the trained machine learning models into a
format that seamlessly integrates with the target application. MLz streamlines this process,
saving time and effort while ensuring compatibility and reliability. The model deployment is
designed to be plug-and-play so that users can quickly activate the model as a service within
their applications.

After it is deployed, the machine learning model is readily accessible and can provide
real-time predictive capabilities to the target applications. This means that z/OS applications
can harness the insights and intelligence that are derived from the machine learning models
without requiring complex data transfers or manual interactions. The integration can enhance
the efficiency and effectiveness of existing business processes.

By enabling real-time predictions within z/OS applications, organizations can make
data-driven decisions instantaneously. For example, a financial institution can deploy a credit
risk assessment model within their core banking system, which facilitates real-time evaluation
of loan applications. Similarly, an e-commerce platform can integrate a recommendation
system to deliver personalized product suggestions to customers as they browse through
their online store.

The ability to deploy machine learning models as services within z/OS applications opens up
new possibilities for automation, optimization, and enhanced customer experiences. It allows
organizations to maximize the value of their machine learning investments, driving innovation
and gaining a competitive edge in the rapidly evolving technological landscape.

Scalability and performance
MLz harnesses the power of the IBM Z mainframe architecture to deliver scalability and
performance for machine learning workloads. The mainframe's inherent design principles of
reliability, availability, and security are integrated into the MLz platform. The scalability of
IBM Z ensures that organizations can more easily handle increasing workloads and
large-scale deployments.

MLz seamlessly integrates with a wide range of existing tools, libraries, and frameworks,
allowing organizations to use their existing investments. It supports popular machine learning
frameworks such as scikit-learn, XGBoost, PMML, Open Neural Network Exchange (ONNX),
and Apache Spark, enabling data scientists to use familiar tools for model development and
training. This integration simplifies the transition to MLz and accelerates time-to-value for
machine learning projects.

MLz uses the z16 Telum Accelerator from IBM Z to accelerate deep learning ONNX model
inference. The improvement is achieved by combining the advanced model conversion tools
of the IBM Deep Learning Compiler (DLC) with the on-chip AI accelerator of the IBM Telum
processor on z16.

MLz can simplify the deployment of machine learning models at scale. It provides a scalable
platform for deploying models as services to support real-time predictions and inference. The
mainframe's robust processing capabilities allow organizations to handle high volumes of
requests, ensuring smooth and uninterrupted model deployments. MLz integrates with
existing enterprise systems, enabling organizations to infuse machine learning capabilities
into their critical business processes.
76 Turning Data into Insight with Machine Learning for IBM z/OS

5.2.2 Benefits of using MLz

MLz empowers organizations to harness the full potential of machine learning in a scalable,
secure, and efficient manner. By using the power of IBM Z mainframe architecture, MLz
provides enhanced scalability, seamless integration, comprehensive model versioning and
management, advanced security, streamlined deployment and monitoring, and cost-effective
resource optimization. Embracing MLz enables organizations to accelerate innovation, make
data-driven decisions, and drive business success in the era of machine learning and artificial
intelligence.

MLz also offers a comprehensive set of features and capabilities that are designed to
empower organizations in their machine learning endeavors. By using the power of IBM Z
mainframe architecture, MLz provides a range of benefits that enable organizations to
accelerate model development, improve operational efficiency, and drive business success.

Simplified deployment process
MLz simplifies the process of deploying machine learning models into production
environments. It provides a scalable platform for deploying models as services, allowing
real-time predictions and inference. With MLz, organizations can integrate machine learning
capabilities into their existing applications and systems. The platform also offers monitoring
and performance tracking features, enabling organizations to monitor model performance,
detect anomalies, and make necessary adjustments for continuous improvement.

MLz offers a web-based UI that simplifies the management and monitoring of deployed
models. The interface allows users to deploy, monitor, and control their models. From
managing model versions to tracking performance metrics, the UI provides a centralized
platform for efficient model deployment management.

MLz supports continuous integration and delivery practices, enabling organizations to
automate the deployment process. By integrating MLz with CI/CD pipelines, organizations
can automate model packaging, testing, and deployment, ensuring a streamlined and
efficient deployment process. MLz provides comprehensive REST APIs for model and
deployment management, which can be integrated into a modern CI/CD pipeline. CI/CD
integration with MLz reduces manual efforts, improves consistency, and accelerates
time-to-market for machine learning applications.

The MLz model management lifecycle is a comprehensive and well-structured process that
enables organizations to effectively develop, deploy, monitor, and update machine learning
models on z/OS. This lifecycle ensures that models are continuously optimized and used to
their fullest potential, driving business value and staying ahead of the competition.

Overall, the MLz model management lifecycle ensures that machine learning models are
developed, deployed, and monitored efficiently, empowering organizations to harness the
power of AI on the z/OS platform effectively. By following this structured approach,
businesses can drive innovation, optimize processes, and make data-driven decisions,
leading to improved operational efficiency and competitive advantage.

Secure and trusted environment
To establish a secure and trusted environment for MLz, assuming that it is a specific
application or system, consider the following guidelines:

� Authentication and authorization

MLz implements a robust authentication mechanism to ensure that only authorized users
can access the MLz application. Users are required to create an IBM RACF® key ring for
user authentication in WML for z/OS and then configure a key ring keystore
Chapter 5. Model deployment and inferencing 77

(JCERACFKS) to use the key ring for authentication. The protection is not limited to only
the traditional password, but it also supports the user certification-based request to MLz
authentication API.

Create RACF access control rules to govern access to MLz resources. Specify who can
access which resources and what actions they can perform. This includes defining rules
for read, write, execute, or administrative access based on resource classes and user
profiles.

� Secure communication

Protect the communication channels used by MLz with Transport Layer Security (TLS) or
Secure Sockets Layer (SSL) encryption protocols. This ensures that data transmitted
between users and the application remains confidential and secure. Besides this, you can
further strengthen the security of your network connections by using the Application
Transparent Transport Layer Security (AT-TLS) capability on z/OS. With the AT-TLS
support, your MLz services can communicate securely with your client applications by
using the z/OS policy-based TLS/SSL protection. You can also enable TLS client
authentication for z/OS Spark by using AT-TLS.

Integration with mainframe z16 Accelerator
The z16 Accelerator is a powerful hardware feature available on IBM z/OS systems. It offers
specialized processing capabilities, such as enhanced vector instructions and advanced
cryptographic functions. By using the z16 Accelerator, MLz can benefit from improved
performance and accelerated computations for the ONNX model of deep learning.

To use the AI accelerator, you can select a scoring server that runs on z16 and a version of a
model that is imported with zDNN available on your system. The z16 Accelerator provides
hardware acceleration and optimized processing capabilities, which can significantly enhance
the performance of machine learning workloads, including those based on ONNX models.

The integration of MLz with the z16 Accelerator enables the efficient execution of ONNX
models, allowing organizations to use the power of their mainframe infrastructure for
high-performance machine learning applications. The integration uses the Telum chip in the
z16 to further enhance the performance of scoring services. Realize true AI at scale by
scoring every transaction with low single-digit millisecond response times.

5.3 Model inferencing

Machine learning inferencing, also referred to as scoring, is the phase in the machine
learning life cycle where a trained model is used to make predictions or classifications on
new, unseen data. This stage represents the practical application of the knowledge and
patterns that the model has learned during its training process. When new data is presented
to the model, it employs the insights it gained from the training data to provide meaningful and
informed outputs. This process involves feeding the input data through the model's
algorithms, which then produce predictions, classifications, or scores based on the
relationships it identified. Machine learning inferencing plays a pivotal role in enabling
automated decision-making, real-time recommendations, and the extraction of valuable
insights from raw data. It is the culmination of the model's training efforts, transforming it from
a learning algorithm into a practical tool that can contribute to a wide array of applications,
from fraud detection and image recognition to natural language processing and autonomous
driving.

The idea of real-time, in-transaction analytics brings a significant change in how companies
use their old records. It starts a new way of making decisions by using data. With this
78 Turning Data into Insight with Machine Learning for IBM z/OS

approach, businesses can find new ideas, make prediction about the future, and choose what
to do quickly. It is different from just looking back at old reports. Instead of focusing on the
past, they look at data as it happens. This helps them predict what might happen later on.
This helps in many industries. It means they can give customers advice, prevent problems
and frauds, sell more things, gather customers insights, manage products better, and even
change how they compete with other companies. MLz can help businesses achieve those
goals. It can help clients to use real-time information to make smart predictions and gain
business right away.

5.3.1 Making online predictions

The significance of machine learning scoring features becomes most evident when AI models
are applied to predict future outcomes, particularly in the realm of real-time business insights.
Industries such as payment fraud detection, loan approval, and client onboarding greatly
benefit from this application. By implementing machine learning scoring, enterprises have the
capacity to evaluate the significance of transactions and allocate scores directly within the
platform where these transactions take place. This approach has significant benefits for
IBM Z customers. It not only ensures a heightened level of security but also results in
improved overall performance. Moreover, the incorporation of machine learning scoring
allows companies to make the most of their IBM Z existing infrastructure, optimizing
resources, and enhancing operational efficiency. In essence, the usage of machine learning
scoring features within AI models is pivotal for driving accurate predictions and informed
decision-making in various critical domains, ultimately contributing to a more secure, efficient,
and insightful business environment.

MLz outlines a typical machine learning life cycle within the context of machine learning. The
process includes various stages, beginning with data preparation and ingestion. Data,
whether sourced from historical databases like IBM Db2 for z/OS or imported from open
source realms, is readied for analysis. Subsequently, the model undergoes training to
enhance its capabilities. Upon completion, the model enters the deployment and scoring
phase, where users can choose from a range of interfaces that are provided by MLz. These
interfaces cater to diverse application types, including options like WebSphere Application
Server, CICS, IMS, or an IBM Z batch job, which facilitate the processing of business logic.
The chart also emphasizes several key advantages that are offered by MLz, such as
accelerating AI model development by enabling training anywhere while ensuring scoring on
z/OS. Also, it offers AI model lifecycle management, allowing for seamless integration and
maintenance on IBM Z. The ability that MLz has to infuse real-time AI model inferencing into
z/OS applications can help customers in delivering dynamic insights for their enterprise
applications.

The flexibility of MLz is demonstrated by its capability to facilitate training anywhere and then
deploy for inferencing within the MLz framework. This seamless integration accommodates
models trained both on z/OS and off z/OS platforms. By using the MLz integrated Jupyter
Notebook, training can be conducted using data sourced directly from z/OS. This platform
further supports various model development tools such as IBM CP4D. Notably, MLz
accommodates an array of model types, including SparkML models, Python-based models
like scikit-learn, XGBoost, and Arima, PMML models, and even deep learning models in
ONNX format. It empowers users to harness a diverse range of model types to fulfill their
inferencing needs.

The adoption of ONNX as an open standard signifies its pivotal role in facilitating seamless
framework interoperability. This standard offers a remarkable advantage, allowing for the
conversion of models from frameworks like TensorFlow, Caffe, and Keras to ONNX format
through the framework's provided APIs. A noteworthy feature of MLz lies in its capability to
readily import deep learning models in the ONNX format, rendering them suitable for
Chapter 5. Model deployment and inferencing 79

deployment to accomplish real-time inferencing tasks. To compile an ONNX model for
deployment and inference, MLz uses IBM zDLC. It is important to note that this compilation
process requires either zCX or Linux on Z.

When the ONNX model is prepared, its scoring runs natively on the z/OS platform within the
Liberty server environment. Because it is Java based, it qualifies for IBM Z Integrated
Information Processor (zIIP) which is cost effective for customers. In addition, ONNX scoring
gains a substantial performance boost, especially benefiting from the on-chip AI accelerator
featured in the z16 architecture. Furthermore, ONNX model inferencing accommodates
micro-batching scoring, catering to transactions with higher throughput. This approach
ensures that the platform can effectively manage high volumes of transactions, reflecting its
responsiveness to diverse business demands. Overall, the integration of ONNX within the
MLz framework showcases a meticulously designed and robust architecture, facilitating
model deployment, inferencing, and optimization on the z/OS platform. Refer to Figure 5-1 for
a detailed overview of the ONNX model inferencing.

Figure 5-1 ONNX model inferencing

The MLz scoring server offers inferencing interfaces for z/OS developers, including REST,
Java, CICS, and WOLA. It allows scoring within ongoing transactions, maintaining z/OS
performance and resiliency standards. Impressively, it achieves quick scores in single-digit
milliseconds, enabling rapid decision-making and seamless integration into operations. See
5.5, “Best practice on model deployment and inference” on page 104 for more tips on
choosing the right inferencing interfaces for your use case.

5.3.2 Interfaces of MLz online scoring service

Illustrated in Figure 5-2 on page 81 are two distinct types of interfaces offered by the MLz
online scoring service. One common interface type is RESTful, extending support to a variety
of model types, including SparkML, PMML, ONNX, and Python models. This interface uses
JWT token authentication for security. When an application interacts with this interface, it uses
a deployment ID and URL to locate the intended model for inferencing. Input data, such as
the record to be scored, are submitted in JSON. The scoring output is also presented in
JSON format. The actual scoring process takes place within the MLz scoring server (Liberty
Server), where predictive models compute the result. For applications using Python models,
the MLz Python scoring server (Gunicorn Server) is employed instead, tailoring the approach
to the specific requirements of Python-based models.
80 Turning Data into Insight with Machine Learning for IBM z/OS

An alternative inferencing interface option is the Java interface. It supports SparkML, PMML,
and ONNX models. This interface was implemented with the intention of facilitating
integration with rule-based engines like IBM Operational Decision Manager (ODM).
Particularly advantageous for scenarios involving transaction processing on the
Liberty/WebSphere Application Server server, this interface enables the MLz scoring service
to run on the same Liberty/Websphere Application Server server. This proximity empowers
applications to directly invoke the MLz scoring service through a Java native API, eliminating
the need for RESTful API interactions. This approach not only fosters a closer integration
between components but also enhances performance, ensuring a more efficient and
streamlined scoring process.

Figure 5-2 WOLA scoring interface

WebSphere Optimized Local Adapters (WOLA) is a feature within IBM WebSphere
Application Server for z/OS Liberty. It plays a crucial role in managing communication
between the Liberty for z/OS server and external address spaces, like CICS, Batch, or IMS,
residing within the same logical partition. By configuring the scoring service with enabled
WOLA functionality, you can seamlessly conduct online scoring operations for SparkML,
PMML, and ONNX models. This can be achieved by using the native WOLA APIs in your
COBOL programs, which can run in CICS, IMS, or even in batch jobs.

The WOLA scoring interface (Figure 5-3 on page 82) is specifically designed for IBM Z native
applications. A top advantage of this interface is its capability for memory-to-memory data
exchange between COBOL applications-operating within batch Jobs, IMS, or CICS-and the
MLz scoring server. Unlike traditional network-layer exchanges, this method enhances
efficiency and security. Using the native callable interfaces that are provided by WOLA APIs
minimizes the impact on existing COBOL applications and the work of IBM Z application
programmers. This streamlined approach aligns with the system's architecture, ensuring a
smooth and secure exchange of information while optimizing performance and maintaining
compatibility with established processes.

Figure 5-4 on page 82 shows an example of scoring by using the WOLA interface with a
COBOL application. It uses BBOA1INV, which is a native callable inference that is provided by
WOLA APIs. Input parameters consist of rqst-area-addr and service-name. The
rqst-area-addr parameter serves as a pointer to the data destined for transmission to the
scoring server. It includes details such as the model deployment ID, Java helper class name
for model input and output, and the actual model input record. Another input parameter is the
service-name with a value of
java:global/scoring-wola/WOLAHandler!com.ibm.ml.scoring.online.service.WOLAHandler
in the example.
Chapter 5. Model deployment and inferencing 81

Figure 5-3 Example of using WOLA interface

Figure 5-4 Example of using native CICS interface

Upon calling the MLz WOLA scoring service, an output parameter named resp-area-addr
comes into play. This parameter acts as a pointer to the data area responsible for carrying the
scoring output, which shows the probability predication for the model. Through this COBOL
example, the process of scoring using WOLA APIs becomes clearer, demonstrating the input
82 Turning Data into Insight with Machine Learning for IBM z/OS

and output parameters and interaction with the MLz scoring service. Native IBM Z application
developers do not need to deal with JSON or HTTP requests associated with RESTful APIs.

Through the CICS interface, you can initiate online scoring for SparkML, PMML, and ONNX
models (see Figure 5-5). In the context of a CICS region, a Liberty server operates under the
name ALNSCORE. When you want to perform online scoring involving SparkML, PMML, and
ONNX models within your CICS COBOL application, the CICS LINK command can be used.
By using this command, you can efficiently start the ALNSCORE interface, facilitating
seamless online scoring operations. This setup brings a more simplified programming
approach for CICS COBOL applications and can make it easier to integrate model
inferencing. Additionally, this approach yields enhanced performance in comparison to using
the RESTful interface.

Figure 5-5 CICS region

5.4 Sample use case for MLz model deployment

MLz is designed to support a wide range of use cases and scenarios, providing flexibility and
versatility for various needs. With its robust capabilities, MLz can satisfy diverse user
requirements, enabling organizations to address multiple use cases effectively. Whether it is
developing and deploying machine learning models, performing advanced analytics, or using
AI technologies, MLz offers the necessary tools and features to support a broad spectrum of
Chapter 5. Model deployment and inferencing 83

user scenarios. Its adaptability and comprehensive functionality make it a valuable solution
for a variety of use cases, empowering users to take advantage of the power of machine
learning and AI in their specific domains.

A specific use case involves the prediction of z/OS-specified batch monitor of job-elapsed
time.

5.4.1 Batch job efficiency

A single host typically runs between 10,000 to 60,000 jobs per day, operating 24 hours a day.
These different batch jobs might have interdependencies, and even a slight oversight can
lead to repetitive work and reduced efficiency. Therefore, efficient batch processing is vital to
meet the high productivity demands of enterprises.

For businesses in the financial industry such as banks, tasks like salary payments, mortgage
repayments, interest accruals, and other operations are usually processed in nightly batch
jobs after regular business hours. Ensuring that these nightly batch jobs are completed within
specified time windows is critical for the normal operation and continuity of banking
transactions and services during the day.

There is no effective scientific method for monitoring and predicting the progress of batch
processing jobs. Customers can perform post-analysis, re-run failed jobs, and estimate the
duration of a batch job based on experience.

This use case describes the practical implementation of MLz in predicting the elapsed time of
a batch job on the z/OS platform. The use case includes a description of the integration of
MLz into the mainframe environment, which includes its capabilities in optimizing and
enhancing performance for batch job processing on z/OS.

5.4.2 The use case for batch job elapsed time prediction

Batch job elapsed time prediction is a valuable case that allows you to estimate the time it
takes for a batch job to complete its execution. This predictive capability is based on historical
data, job complexity, and various other factors. By providing insights into job duration, it
enables better planning, resource allocation, and decision-making within your workflow or
system. With batch job elapsed time prediction, you can optimize your operations and
enhance overall efficiency.

Business questions and personas
Business questions and personas are essential components of a successful use case. They
provide the foundation for building meaningful and impactful solutions that address real
business needs. By keeping these aspects in mind, organizations can develop data-driven
strategies and make informed decisions that drive growth and success.

Business questions for batch monitor
In today's fast-paced business environment, time is of the essence. For z/OS organizations
relying on batch applications for critical data processing, estimating the time required for
these applications to complete their tasks is essential for efficient planning and
decision-making. The use case involves advanced analytics and predictive modeling
techniques to help address two crucial business questions:

1. How long will it take for my z/OS batch applications to complete today?

Batch applications play a vital role in processing large volumes of data in a scheduled
manner. Accurate estimation of the time required for these applications to finish their tasks
84 Turning Data into Insight with Machine Learning for IBM z/OS

allows organizations to manage resources effectively, optimize workflows, and meet
operational deadlines. By using predictive modeling and the power of data, businesses
can gain insights into the expected run times of their batch applications, enabling them to
make informed decisions and allocate resources based on the modeling.

In a mainframe system, approximately 10,000 to 60,000 jobs run continuously 24 hours a
day. These jobs are interconnected, and any oversight can lead to redundant work and
decreased efficiency. Therefore, efficient batch processing is crucial for maintaining high
productivity in an enterprise. For businesses in industries like banking and finance, tasks
such as salary payments, mortgage repayments, interest calculations, and other
operations are typically handled by overnight batch processing after the close of business
hours. Ensuring that the overnight batch jobs are completed within the designated time
window is of utmost importance for the smooth functioning and operation of daily
transactions and business activities in banks.

IBM z/OS organizations that invest in developing accurate completion time prediction
models for their batch applications can gain a competitive advantage in today's fast-paced
business landscape. By optimizing workflow efficiency and resource allocation,
businesses can achieve enhanced operational performance, improve customer
satisfaction, and drive overall success.

2. How long will it take for z/OS batch application to complete after a specific job finishes?

In complex data processing environments, multiple batch applications are often
interconnected, with certain jobs acting as prerequisites for subsequent tasks. Knowing
the estimated completion times of these subsequent applications is essential for
maintaining smooth operations and meeting critical business requirements. Accurate
estimation enables organizations to manage dependencies, schedule jobs effectively, and
optimize resource allocation, ultimately minimizing downtime and maximizing workflow
efficiency.

Estimating batch application completion times after a specific job involves using historical
data, considering dependencies, and using predictive modeling techniques.

Figure 5-6 Batch application with sample jobs running example

Based on the outlined workflow in Figure 5-6, the z/OS batch application consists of three key
milestone jobs. These milestone jobs serve as significant stages within the overall batch
processing flow. Additionally, considering the available data, you can estimate the total
execution time for the batch application. See Example 5-1 for a batch execution of 11 minutes
elapsed time.

Example 5-1 Elapsed Time Batch Execution Time

Elapsed Time with Batch Execution Time=
max(End Time)-min(Start Time)=1:11-1:00=11min
Chapter 5. Model deployment and inferencing 85

After assigning start and end times to each individual job, each job within the batch
application runs for a specific duration. Through continuous monitoring of the z/OS batch
application's progress, you can predict the expected end time for each job, including job1,
job2, and job3. If the predicted end time for job2 deviates from the expected time frame, it
might indicate potential issues specific to job2. Detecting such deviations allows system
administrators to receive immediate alerts, enabling them to promptly investigate and address
any underlying problems, without waiting for subsequent jobs to complete. The objective
extends beyond knowing the overall completion time for batch applications today. The
objective is also to determine the anticipated completion time for batch applications after the
conclusion of a specific job.

Personas for batch job elapsed time prediction
Considering the prediction of z/OS batch execution end times, some key factors can play
significant roles in the process. These factors can be likened to Personas representing
different responsibilities or influences on the accuracy of the prediction. Each persona
represents a distinct role that contributes to the batch execution end prediction.

� IT operations personnel

With the assistance of AI solutions, IT operations personnel can effortlessly monitor the
health status of batch processing jobs and accurately predict their completion time. This
AI-powered solution streamlines the monitoring and management of batch processing
applications, ensuring efficient usage of CPU resources while adhering to specified batch
processing time windows.

The capability to monitor and manage the execution status of batch processing
applications using AI brings numerous benefits to IT operations personnel. By
continuously monitoring the execution process, the solution can quickly identify any
anomalies or deviations from expected behavior. This real-time insight allows personnel to
promptly detect and address issues that may arise during batch processing execution,
leading to improved efficiency and reduced downtime.

Moreover, the AI-powered solution provides valuable insights into the overall health and
performance of batch processing jobs. It can analyze various metrics, including resource
consumption, execution times, and historical patterns, to identify potential areas for
optimization. With this information, IT operations personnel can make informed decisions
to enhance the efficiency of batch processing operations.

� System administrator

By using the performance data from existing batch processing jobs, a z/OS system
administrator has the opportunity to gain valuable insights. Through thorough analysis and
careful evaluation, the administrator can identify areas for improvement within the
architecture management. This strategic optimization aims to enhance the overall
efficiency and effectiveness of the system.

By examining the performance metrics and analyzing the behavior of the batch processing
jobs, you can identify patterns, bottlenecks, and areas of potential optimization. These
insights enable you to make informed decisions and implement changes to the
architecture that align with the specific needs and goals of the organization.

With the help of advanced analytics and AI-driven techniques, a system administrator
cannot only identify areas of improvement but also provide recommendations for
architectural enhancements. These recommendations consider factors such as resource
usage, job dependencies, and system constraints. By incorporating these suggestions, he
can optimize the architecture management process and unlock the full potential of the
system. This proactive approach to architecture management allows a system
administrator to address any performance issues or inefficiencies promptly. By
strategically optimizing the architecture based on analysis results and recommendations,
86 Turning Data into Insight with Machine Learning for IBM z/OS

the system administrator can ensure that the batch processing jobs run smoothly, meet
deadlines, and maximize resource utilization.

Ultimately, this data-driven and strategic approach empowers administrators and
architects to make informed decisions, drive continuous improvement, and enhance the
overall performance and efficiency of the batch processing system.

� Architect

The z/OS architect has similar expectations to use the performance of existing batch
processing jobs in order to optimize architecture management based on analysis results
and recommendations. However, in addition to the analysis, the architect requires a
comprehensive visual reporting tool that provides a detailed overview of the daily batch
processing executions for various applications.

This visual report should present a clear representation of the trends observed in the daily
execution of batch processing jobs. It should include key metrics such as execution times,
resource consumption, job dependencies, and other relevant factors. By visualizing this
information, the architect can gain valuable insights into the performance patterns and
identify areas for improvement.

With the aid of the visual report, the architect can easily identify any anomalies,
bottlenecks, or inefficiencies in the batch processing workflows. The report's visual
representation allows for a quick and intuitive understanding of the overall performance
trends and the impact of specific applications on the system.

By having access to this comprehensive data and visual insights, the architect can make
informed decisions and examine optimizations to enhance the architecture management
process. This might involve adjusting resource allocations, optimizing job scheduling, or
refining dependencies between applications. The visual report serves as a powerful tool to
support these strategic adjustments and optimizations.

Batch job elapsed time modeling building
By using the dynamic prediction of batch processing run times, you can anticipate the
duration of each job accurately. This capability empowers enterprises to plan their workflows
more effectively, allocate resources optimally, and streamline the overall data processing
pipeline. As a result, potential bottlenecks and resource constraints can be proactively
addressed, minimizing idle time and maximizing resource usage.

To develop a model that effectively communicates with z/OS batch data of System
Management Facility 30 (SMF30) records, consider how this model can take advantage of the
inherent nature and features of z/OS. Building a successful model that interacts seamlessly
with z/OS batch data requires a thorough understanding of the characteristics and data
structures of z/OS. Specifically, consider the way z/OS manages and processes batch data,
as well as the specific information captured in the SMF30 records.

Define the prediction target
Predicting batch completion time before the batch begins is a crucial step in efficient batch
processing. By using historical data, analyzing job dependencies, and considering resource
availability, you can estimate the expected time that it will take for the batch to finish.

During this predictive phase, you can identify potential bottlenecks or areas of concern that
might affect the performance of the batch job. By using this early insight, you can proactively
allocate resources and optimize job scheduling, ensuring smooth execution and meeting strict
time constraints.

Additionally, predicting batch completion time in advance enables better planning and
coordination across the organization. It facilitates effective resource allocation, ensuring that
sufficient CPU power, memory, and storage are available for the smooth execution of the
Chapter 5. Model deployment and inferencing 87

batch job. The accuracy of this prediction depends on the quality and relevance of historical
data used for analysis. Continuous improvement of the prediction model through regular
updates with fresh data enhances the precision of the estimates.

By being proactive in predicting batch completion time before it begins, you can maximize
resource usage improve workflow efficiency, and boost overall productivity in the enterprise.

Another crucial step in efficient batch processing is to dynamically update the prediction
during batch execution. Traditional batch processing systems often rely on static predictions
that are made before the batch starts. However, scenarios can be dynamic, with
unpredictable factors that can impact the execution time of individual jobs. For example,
varying data volumes, system loads, or external events can affect the actual completion time
of jobs within the batch.

To address the limitations of static predictions, modern batch processing systems are
increasingly adopting dynamic prediction mechanisms. The key idea behind dynamic updates
is to continuously monitor the progress of batch jobs during execution and adjust the
predictions in real-time based on observed data:

� Real-time monitoring. Dynamic updates require real-time monitoring of job progress and
resource utilization. This can be achieved by using sophisticated monitoring tools and data
analytics platforms that track key performance metrics, such as run time, resource
consumption, and job dependencies.

� Data-driven insights. The data that is collected during the batch job provides valuable
insights into the actual performance of batch jobs. By analyzing this data, it becomes
possible to identify patterns, trends, and potential bottlenecks that were not accounted for
in the initial static prediction.

� Adaptive algorithms. Dynamic updates rely on adaptive algorithms that continuously learn
from the incoming data. These algorithms can adjust their predictions based on new
information, ensuring that the most accurate estimates are provided throughout the batch
execution.

Hypothesis for model building
The hypotheses for model building are crucial when predicting batch application elapsed time.
A hypothesis is a testable statement or assumption about the relationship between variables.
It helps guide the model-building process and ensures that the model is developed with a
clear objective in mind.

Some business-related information and metrics can affect the duration of batch processing
jobs, such as daily transaction volume and the number of accounts. Batch processing plays a
pivotal role in efficiently managing and processing large volumes of data in enterprises.
However, the duration of batch processing jobs is not solely dependent on the technical
aspects of the system. Instead, various business-related information and metrics can
significantly influence the execution time of these jobs.

In batch processing, the performance and execution times of jobs are not isolated from the
core business operations. Several business-related metrics directly impact how efficiently
batch jobs run. Two critical factors that significantly affect the duration of batch processing
jobs are:

� Daily transaction volume

The daily transaction volume is a key business metric that can have a substantial effect on
batch processing job duration. As transaction volume increases, the amount of data to be
processed by batch jobs also rises. This can lead to longer execution times as the system
needs to handle a larger data load.
88 Turning Data into Insight with Machine Learning for IBM z/OS

Moreover, varying transaction volumes on different days of the week or during peak hours
can create fluctuations in batch processing job times. Understanding these patterns and
trends in transaction volumes is essential for optimizing the scheduling and resource
allocation for batch jobs.

� Number of accounts

The number of accounts in an enterprise's database can directly influence the execution
time of batch processing jobs. The more accounts that need processing, the longer the
jobs take to complete. This is particularly relevant for industries like banking and finance,
where large customer bases result in a higher number of accounts to process.

In conclusion, when developing a predictive model for batch jobs, prioritizing these jobs
based on their business significance becomes crucial for ensuring timely execution.
High-priority jobs, such as critical financial transactions, must be given precedence to
safeguard essential business operations from delays. Understanding the impact of each
batch job on business outcomes allows for strategic prioritization, resulting in optimized
resource allocation and improved overall system performance.

The successful implementation of a predictive model for running a batch job requires a careful
assessment of the business impact of each job. By categorizing jobs based on their
importance to core business operations, IT operations personnel can effectively manage
when to run batch jobs and can allocate resources as needed.

Another place to form a hypothesis for model building is when the batch jobs runs. The
runtime of preceding jobs can influence the running of subsequent jobs, leading to potential
bottlenecks and delays. This section includes a discussion of the impact of job dependencies
on job runtime and examines strategies to optimize performance and enhance overall system
efficiency.

Batch processing involves running a series of tasks in a predefined sequence, where the
output of one job becomes the input for the next. These interrelated jobs form a complex web
of dependencies, and their execution order can have a profound effect on the overall
efficiency of the process.

Job dependencies can be broadly categorized into two types:

1. Sequential dependencies. These dependencies occur when the execution of a job
depends on the successful completion of the preceding job. The subsequent job can only
commence after the preceding job finishes and produces the necessary data or results.

2. Parallel dependencies. In this scenario, multiple jobs can run concurrently, and each job is
independent of the other. However, a subsequent job might depend on the collective
output of the parallel jobs.

When considering job dependencies, the runtime of preceding jobs becomes a critical factor
in the overall duration of the batch runtime. If a preceding job takes longer than anticipated, it
can lead to delays in the subsequent jobs, causing a cascading effect on the entire batch
processing workflow.

Moreover, poor job sequencing can result in resource contention, where multiple jobs
compete for limited resources simultaneously. This can lead to increased wait times and
suboptimal resource usage.

Job dependencies in batch processing create a sequence of tasks where the output of one
job becomes the input for the next. The order in which jobs are run can significantly impact
the overall elapsed time of the batch processing workflow. Therefore, the predictive model
must account for these dependencies to accurately estimate the time that each job takes to
complete.
Chapter 5. Model deployment and inferencing 89

Data engineering for batch job
As a z/OS-specific batch job elapsed time modeling process, the collection and use of
historical training data are critical factors that require careful attention. Understanding the
relevant data factors is essential for building an effective predictive model. The following key
data elements play a pivotal role in this process:

� Business data

Business data refers to the information and records generated and collected by an
organization during its operations and activities. The meaning and significance of
business data lies in its ability to support decision making, improve operational efficiency,
and gain a competitive edge.

Include the following key considerations for business data when analyzing and modeling
batch job elapsed time:

– Daily online transaction volume

It refers to the total number of transactions conducted within a specific online system or
platform over the course of a single day. These transactions typically involve activities
such as purchases, payments, transfers, or any other interactions made by users
through the online platform.

The number of daily online transactions can have a significant impact on the batch job
elapsed time. Batch jobs often have dependencies, where the output of one job
becomes the input for another. If the transaction volume is high, and the preceding jobs
take longer to process the data, it can lead to delays in the subsequent jobs. This can
cause a cascading effect, further elongating the elapsed time of the batch job workflow.
The timing of the daily online transaction volume can also influence batch job elapsed
time. For example, a spike in transaction volume during peak hours might lead to
heavier batch processing, potentially causing job delays.

– Number of accounts

Each account typically has associated data, such as customer details, transaction
history, and preferences. With a larger number of accounts, the volume of data to be
processed by the batch jobs increases proportionally. This larger dataset can lead to
longer elapsed times for batch jobs as they process a larger volume of information.

As the number of accounts grows, the demand for system resources, such as CPU,
memory, and storage, also increases. The batch jobs might experience resource
contention as they compete for these limited resources, potentially leading to longer
processing times.

The number of accounts can also influence the feasibility of parallel processing. If the
system can effectively distribute the processing workload across multiple nodes or
servers, it can mitigate the impact of many accounts on individual batch job elapsed
times.

– Calendar-related information

Calendar-related constraints might determine the windows during which batch jobs can
run. Limited batch windows might result in job delays, longer wait times, and overall
elongated elapsed times if jobs cannot be run immediately due to scheduling
constraints.

Calendar-related information can also impact the availability of personnel responsible
for managing and overseeing batch job processing. Job scheduling, monitoring, and
troubleshooting might need to align with personnel availability, influencing overall job
run times.

Calendar-related information plays a crucial role in determining the elapsed time of
z/OS batch jobs. By carefully considering business hours, time zones, holidays,
90 Turning Data into Insight with Machine Learning for IBM z/OS

end-of-month processing, seasonal workloads, and other calendar-related factors,
enterprises can enhance batch processing efficiency, ensure timely completion of
critical tasks, and align their data processing activities with business requirements.

� Batch feature data

Batch feature data refers to the specific data elements or attributes that are relevant and
used for the analysis, modeling, and prediction of batch processing jobs. These features
play a critical role in building machine learning models to understand the behavior and
performance of batch applications.

When dealing with batch feature data, consider several important aspects:

– Job list (names of all jobs belonging to the batch)

The job list provides essential information about the order in which jobs are scheduled
to run. Batch jobs might have dependencies, where the output of one job serves as
input to another. Understanding the job list enables the predictive model to account for
job dependencies and accurately predict the elapsed time of each job and the overall
batch workflow.

The job list can also indicate the availability of batch windows during which jobs can be
run. These time constraints might influence the scheduling and resource allocation
decisions, impacting the elapsed time prediction.

– Start job and end job of the batch

The “Start job and end job of the batch” have a significant impact on the z/OS batch job
elapsed time prediction. These two key points help determine the boundaries of when
the batch job runs, providing essential information for accurate time prediction.

The “Start job” marks the beginning of the batch job workflow, and the “End job”
indicates its completion. By knowing these points, the predictive model can focus solely
on the relevant time range for making predictions. By considering only the jobs
between the start and end points, the model can efficiently analyze the required data
and optimize predictions for the specific batch execution.

Knowing the start and end jobs helps in understanding the batch window constraints
within which the jobs must be completed. This information influences job scheduling
decisions, ensuring that jobs are run within the specified time frame and potentially
minimizing delays.

The order in which jobs run in the batch job workflow is essential for the prediction. The
start job and end job provide context for job sequencing, enabling the model to
understand the dependencies and relationships among jobs. Accurate job sequencing
contributes to precise elapsed time predictions.

In a z/OS batch job, several performance metrics can be collected and analyzed to gain
insights into its performance. The following list provides some of the performance metrics that
you can retrieve:

� Elapsed time
� CPU time
� I/O numbers
� Start and end time
� One year of historical data to be used for analysis and modeling
� SMF30 performance data captured on z/OS, subtype=5
Chapter 5. Model deployment and inferencing 91

Significance of SMF30 records in batch job elapsed time prediction modeling
System Management Facility 30 (SMF30) records are critical components of z/OS that
capture essential performance data related to batch job accounting and monitoring. These
records provide valuable insights into the execution of batch jobs, offering a wealth of
information, including job identification details, resource usage metrics, job start and end
times, elapsed time, job step information, and execution statistics. For batch job elapsed time
prediction modeling, the inclusion of SMF30 records is crucial for several reasons.

SMF30 records also offer a comprehensive set of performance metrics that are related to
batch job execution. These metrics encompass CPU time, I/O operations, memory usage,
and other crucial indicators that directly impact the elapsed time of batch jobs. By integrating
these metrics into the modeling process, the predictive model gains a holistic view of job
performance.

By using SMF30 records, the prediction model becomes data-driven, relying on actual
performance metrics rather than assumptions or generalizations. Data-driven
decision-making empowers organizations to make informed choices, optimize resource
usage, and enhance the efficiency of batch job processing.

An example of an SMF30 record data is shown in Example 5-2. In the example, the SMF30
data is already loaded and processed into the format for analysis. The time range covered in
the analysis spans from November 1, 2019, to October 30, 2020. Within this period, the job
list range includes jobs with identifiers from APP001 to APP050 for each day. This ensures a
comprehensive overview of batch job performance and enables a detailed examination of job
run time patterns and trends throughout the specified time frame.

Example 5-2 Elapsed time batch execution time

smf30_file_path=r'data/Sample_SMF.csv'
job_list_file_path=r'data/all_joblist.csv'

APP_NAME = “AP”
start_jobs = ['APP001']
cutoff_jobs = ['APP050']

Normalized data for SMF30 metrics
Figure 5-7 on page 93 shows a chart of the daily sums for JOB_DURATION_SECS,
CPU_TOTAL_SECONDS, JOB_CPU_SECONDS, ELAPSED_TIME_SECONDS, and
JOB_IO_COUNT during the specified period between November 1, 2019, and October 30,
2020. Among these metrics, ELAPSED_TIME_SECONDS holds particular significance for
the modeling efforts. This metric indicates the duration of batch job execution for each day
throughout the specified time frame.

By paying close attention to ELAPSED_TIME_SECONDS, you can gain crucial insights into
how long the batch jobs run daily during the observed phase. This information helps to build
predictive models and optimize batch job performance. However, there are other related
metrics that can also provide insights into the batch job's performance, such as CPU time and
I/O count.
92 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 5-7 Normalized SMF30 data for batch application

Figure 5-8 shows a detailed chart that lists the elapsed time from various aspects, namely
ELAPSED_TIME_SECONDS_EXT, ELAPSED_TIME_SECONDS_INT, and
ELAPSED_TIME_SECONDS_SUM. These metrics provide comprehensive insights into
different aspects of the batch job execution time, enabling a deeper understanding of its
performance.

Figure 5-8 Normalized SMF30 Elapsed time for batch application

Figure 5-9 on page 94 can help gain a better understanding of the following metrics:
ELAPSED_TIME_EXT, ELAPSED_TIME_INT, and ELAPSED_TIME_SUM.
Chapter 5. Model deployment and inferencing 93

Figure 5-9 Batch application with sample jobs elapsed time

You can use the formulas in Example 5-3 to calculate the three key, previously mentioned
metrics.

Example 5-3 Elapsed time metrics

ELAPSED_TIME_EXT: 11 minutes. ## the model prediction target.
Elapsed Time with External Application Waiting Time=
 max(End Time)-min(Start Time)=1:11-1:00=11 minutes.

ELAPSED_TIME_INT: 4 minutes.
Elapsed Time within Internal Application=
 sum(continuous elapsed time)=(1:03-1:00)+(1:11-1:10)
 =3+1=4 minutes.

ELAPSED_TIME_SUM: 6 minutes
Elapsed Time of all individual jobs=
 sum(every job's elapsed time)=2+3+1=6 minutes.

Figure 5-10 on page 95 includes several red peaks, indicating instances where the batch
transaction's elapsed time significantly exceeds the expected time for internal application
execution. These red peaks are essential indicators of potential performance issues or
inefficiencies within the batch processing, warranting further investigation and optimization.

For monthly elapsed times, if there are concerns about potential performance issues for a
particular month, you can refer to the monthly elapsed time for batch job report, shown in
Figure 5-10 on page 95, to investigate the elapsed time. This report provides valuable
insights into the time range of batch job execution, in the example, for September 2020.

Compare the times ELAPSED_MINUTES_EXT and ELAPSED_MINUTES_INT. If there is a
substantial gap between these metrics, it indicates a significant difference between the
externally observed elapsed time and the internally expected elapsed time. Such
discrepancies might be indicative of performance anomalies that warrant further investigation
and optimization.

Additionally, Figure 5-11 on page 95 provides a comprehensive overview of all batch jobs that
are run on a specific day. The figure displays the duration time for each job within the day,
represented by progress bars that indicate the job run time. This visual representation allows
for a quick and efficient review of job performance throughout the day, enabling easy
identification of any jobs with longer execution times or potential inefficiencies. By using this
graphical representation, users can gain valuable insights into job runtime patterns, optimize
resource allocation, and streamline batch processing to enhance overall efficiency. This
graphical approach simplifies the interpretation of complex data, making it easier to make
informed decisions, streamline job processing, and optimize system performance.
94 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 5-10 Monthly elapsed time for September 2020

Figure 5-11 Elapsed time for 2020-09-15

Build predictive models in a stepwise manner
Before examining model building, it is crucial to understand the two key concepts: Influential
jobs and Milestone jobs.

Influential Jobs refer to specific batch jobs that have a significant impact on the target variable
in the predictive model. These jobs play a pivotal role in determining the outcome of the
Chapter 5. Model deployment and inferencing 95

model's predictions. By identifying influential jobs, you can focus on the most critical factors
that contribute to the performance of the batch processing system. Analyzing correlations
between these influential jobs and the target variable helps gain valuable insights into their
importance and influence on overall batch job performance.

An influential job includes the following characteristics:

� These elements must be consistently present in each daily batch application.

� Influential jobs are strongly correlated with batch run time statistically and they
demonstrate a strong correlation with the target variable.

� Influential jobs can be identified by the correlations between predictors and target.

� Incorporates jobs deemed important from a business logic perspective based on expert
experience.

Conduct correlation analysis between each job and the target variable, for example, batch
execution time). Calculate the correlation coefficient to measure the strength of the
relationship between each job and the target. For this discussion, assume that the data
scientist has conducted a thorough analysis about all jobs from the dataset, marking the jobs
that have been identified as influential from their experience.

Milestone jobs refer to a sequence of Influential jobs in the batch application path. It
represents critical checkpoints or key events within the batch processing system. These jobs
mark significant progress or completion of essential steps when you run a batch job. When
you understand the timing and performance of milestone jobs, you can track the progress of
batch job processing and evaluate their individual impact on elapsed time. By using this
information, you can optimize batch job scheduling and resource allocation, leading to
enhanced system efficiency. In Figure 5-12, the milestone jobs are a sequence of influential
jobs in a batch application.

Figure 5-12 Milestone jobs - a sequence of influential jobs

In this solution, a critical task for model building is to identify the correct milestone jobs.
Influential jobs within these milestones play a pivotal role as significant checkpoints when you
run the batch application. These influential jobs tend to adhere to a specific order of
execution. Identifying the appropriate milestone jobs is crucial as they provide essential
reference points for monitoring the progress and dependencies within the batch application.
By understanding the sequential order of influential jobs within these milestones, data
engineering and model building can optimize the flow of batch job execution, ensuring
efficient resource allocation and streamline performance.

Constructing the influential jobs chain and identifying the milestone jobs
PrefixSpan is a projection-based algorithm. PrefixSpan works by recursively searching for
frequent sequential patterns, extending prefix patterns in a depth-first manner. It uses a
depth-first search strategy to efficiently explore the search space of potential sequential
96 Turning Data into Insight with Machine Learning for IBM z/OS

patterns. The algorithm uses a projection technique to avoid redundant computations, making
it highly scalable for large datasets.

Spark PrefixSpan is an implementation of the PrefixSpan algorithm that is specifically
designed to use the distributed computing capabilities of Apache Spark. By using the Spark
PrefixSpan algorithm, you can streamline the process of identifying influential jobs and
milestone jobs to optimize job scheduling, resource allocation, and overall system efficiency.

The following list describes the handling for influential jobs sequence with PrefixSpan:

1. Split the entire time frame into several time windows.

This step involves dividing the dataset representing the batch application run time into
smaller intervals, or time windows. These time windows help organize the data and
facilitate the analysis of influential jobs within specific periods.

2. Process the data from the last time window.

Process the data from the last time window and then proceed to the previous window. The
latter window should encompass more critical z/OS batch transactions. From the last
window to the previous window the data is likely to include batch transactions that hold
greater significance or importance.

3. Manually define several key time points in the last window.

After handling the last time window, iterate the same processing with the previous time
window. Use this iterative approach to analyze the influential job sequence and milestone
jobs for each time window in a stepwise manner, effectively capturing the dynamic
behavior of the z/OS batch application over time. See Figure 5-13 for an example of key
jobs' sequence of influential jobs in a time window.

Figure 5-13 PrefixSpan for influential jobs sequence

4. Compute the score for each job at every key time by using PrefixSpan.

With the PrefixSpan algorithm, calculate a score that corresponds to the time gap between
the job's completion time and the key time. This score provides valuable information about
how each job aligns with a key time, indicating whether it was completed before or after
the critical moment. The score computing method is represented by the formula that is
provided in Example 5-4.

Example 5-4 PrefixSpan algorithm to calculate individual score for each job

Score = log(execution_time)*
 abs(completion_time - key_time)/time window
Chapter 5. Model deployment and inferencing 97

5. Compute the average score for each job at every key time.

After obtaining individual scores for each job with respect to the key times using the
previously mentioned formula, compute the average score for each job across all key
times.

To calculate the average score for a specific job, add the scores of that job at each key
time and then divide the sum by the total number of key times. Use this process to derive
an overall measure of the job's temporal alignment with the critical events throughout the
batch application's execution.

6. Select the job with the minimum score across all jobs.

From the computed average scores for each job, identify the job that has the minimum
score.

This job represents the most critical contributor to the timely completion of the batch
application's execution because it consistently aligns well with the key time.

7. Add all key jobs in the previous time window as dependencies.

When the job with the minimum score is identified, consider all the key jobs present in the
previous time window. These key jobs serve as essential reference points for tracking
progress and dependencies within the batch application. The key jobs are also called
influential jobs.

Establish a meaningful chain of influential jobs with their respective dependencies, which
represents a significant sequence of batch job execution. In other words, milestone jobs
are identified now. Identification of milestone jobs is a crucial step toward achieving better
batch processing outcomes and meeting business objectives more efficiently.

Model building in a stepwise manner
A stepwise manner in machine learning offers numerous benefits, including improved model
performance, resource efficiency, interpretability, and flexibility. By breaking down the
model-building process into manageable steps, it helps ensure a more effective and
streamlined development process, leading to accurate and reliable machine learning models.
IBM z/OS batch applications can be highly complex, involving numerous interconnected jobs
with dependencies. By using a stepwise approach, you can break down this complexity into
smaller, more manageable tasks, making it easier to understand, develop, and optimize the
application.

Figure 5-14 on page 99, shows multiple milestone phases, each representing a distinct
segment of the z/OS batch application's execution. Within each milestone phase is a set of
influential jobs that can significantly impact the overall performance of the batch application.
To capture these effects accurately, train a separate predictive model for each milestone
phase.
98 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 5-14 Milestones for a batch application

By training individual models for each milestone phase, you can obtain a more granular
understanding of the influential jobs' execution patterns within that specific time frame. These
models reflect the dynamic nature of the influential jobs and their impact on the batch
application's elapsed time during each milestone phase.

This stepwise approach ensures that the predictive models are tailored to capture the unique
characteristics and dependencies of influential jobs within each milestone phase. You can
optimize the models for specific time frames, which can lead to more accurate predictions and
better performance throughout the batch application's execution.

Additionally, the milestone modeling process can be seamlessly integrated with users' job
logs and daily z/OS batch transaction data. As shown in Figure 5-15 on page 100, you can
use the job log data to train predictive models for each milestone. These models are designed
to capture the elapsed time patterns of influential jobs within the milestone phases.

After training milestone models, you can use the real-time job log data to score the elapsed
time for the ongoing batch application execution. By using milestone models to predict
elapsed time, you can obtain accurate and up-to-date estimations of job completion times
during the execution process. Integrating the job log data and z/OS batch transaction data
with the milestone modeling enhances the precision and reliability of the predictive models.
Job logs provide detailed information about job execution, errors, and resource usage, so you
can fine-tune the models based on actual performance data.

By scoring elapsed time in real-time with the milestone models, you can monitor the progress
of the batch application and identify any deviations from expected job completion times. You
can take prompt actions in case of delays or issues, ensuring that the batch application
remains on track and meets its performance goals.
Chapter 5. Model deployment and inferencing 99

Figure 5-15 Batch jobs elapsed time prediction process

5.4.3 Applying batch job elapsed time model with MLz for application
integration

After successfully training and saving predictive models, the next step is to deploy and
implement them in real-world scenarios.

With the help of MLz model deployment and scoring capabilities, you can integrate the
predictive models into existing z/OS batch application workflows. With this integration you can
use the predictive insights from the models in real-time, enhancing the efficiency and
performance of the batch processing.

As the z/OS batch application evolves, the milestone models undergo iterative updates and
versioning, which are conveniently managed within the MLz model metadata repository. By
using the versioning feature, you can keep track of different iterations and improvements
made to the models over time. It ensures that you have access to previous versions of the
models for comparison and reference, as needed.

When the milestone models are ready for real-time log prediction, they can be deployed or
scored using the MLz scoring engine. By using this integration, you can use the models'
predictive capabilities during the actual execution of z/OS batch applications. By scoring the
real-time logs with these milestone models, you continuously receive updated predictions of
100 Turning Data into Insight with Machine Learning for IBM z/OS

influential job elapsed times. You can use data-driven insights to make adaptive decisions and
optimize the batch processing performance.

Batch job model with MLz model management
Figure 5-16 describes the generation of several milestone models, each capturing a specific
phase of z/OS batch application execution. These milestone models play a critical role in
predicting the elapsed time of influential jobs within their respective phases. To ensure
seamless application integration, these models must be persisted for future prediction.

By saving the trained models into the MLz metadata repository, you gain several advantages.
One key advantage is model versioning. The versioning feature ensures that you can always
access previous versions of the model, if needed. It provides a complete history of model
development and maintains a record of how the model has evolved over different stages of
refinement.

Figure 5-16 Batch jobs elapsed time use case integration with MLz

Furthermore, saving the models in the MLz metadata repository facilitates easier reloading
and access for scoring purposes. The MLz scoring engine can seamlessly retrieve the stored
models, making it convenient to perform real-time scoring for new batch application
executions. This capability allows you to make use of the latest model insights for accurate
and up-to-date predictions, contributing to the overall efficiency and effectiveness of the z/OS
batch applications.

After you have completed the model training, you can use the MLz interface to specify the
model and the training data and target. Upon doing so, you can find the model listed in the
MLz model repository. Example 5-5 outlines the process of saving a model using the MLz
model management API.

Example 5-5 Batch model with MLz model management API example

def save_model(self, model, model_name, train_x, train_y):
 ml_client = MLRepositoryClient(self.core_service_url)
 ml_client.authorize_with_token(self.access_token)
 props1 = MetaProps({
 MetaNames.AUTHOR_NAME:self.MLz_info.user_name,
 MetaNames.AUTHOR_EMAIL: "batchprediction@cn.ibm.com"})
Chapter 5. Model deployment and inferencing 101

 input_artifact = MLRepositoryArtifact(model, name=model_name,
 meta_props=props1,
 training_data=train_x.head(),
 training_target=train_y)
 saved_artifact = ml_client.models.save(artifact=input_artifact)
 dict_meta = saved_artifact.meta.get()
 model_version_url = dict_meta['modelVersionUrl']
 print("model_version_url = " + model_version_url)

Batch job model prediction with MLz scoring service
The process of batch job model prediction with the MLz scoring engine involves using the
predictive models that are developed for batch job elapsed time.

You can use the batch job model prediction to harness the power of predictive analytics in
real-time. By deploying and scoring the predictive models during z/OS batch application run
time, you can gain valuable insights for adaptive decision-making and performance
optimization.

In Figure 5-17 on page 103, multiple scoring requests are sent based on each milestone, so
you can dynamically review the predicted elapsed response time of specific milestone jobs.
This real-time prediction and review process plays a crucial role in enhancing the efficiency
and performance of the z/OS batch applications.

As the z/OS batch application progresses through different milestone phases, the milestone
models are used to continuously predict the elapsed time of influential jobs within each
phase. These predictions are generated dynamically as the batch application runs, providing
valuable insights into the expected performance of critical jobs.

You can send scoring requests to the MLz scoring engine to access the latest predictive
capabilities and obtain real-time updates on the elapsed response time for each milestone
job. By comparing these predictions with the actual performance during run time, you can
identify any discrepancies or potential performance issues in real-time.

Example 5-6 is a pseudocode sample that demonstrates the MLz scoring process for batch
job elapsed time prediction. When integrating MLz into your user application, you can
conveniently package the scoring endpoint request. The primary objective is to invoke the
MLz scoring engine, which is responsible for the inference process. This seamless integration
allows your application to use the power of MLz and obtain real-time predictions from the
deployed machine learning models. By making scoring requests to the MLz scoring engine,
your application can quickly process data and receive valuable insights, enabling you to make
informed decisions based on the model's predictions.

Example 5-6 Batch model with MLz model scoring API example

test_data =
joblog_df[(joblog_df[batch_config.batch_date_col].isin(['2020-10-26','2020-10-27']
))]

score_url =
'https://MLz_scoring_ip:MLz_scoring_port/iml/v2/scoring/online/model_deployment_id
'
MLzClient = MLz_Scoring_Client(scoring_endpoint=score_url)
res = MLzClient.scoring(t_w_df)
102 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 5-17 shows the batch job prediction results for a specific time point, which is around
20:17. The progress bar in the first line indicates a green status, suggesting that the predictive
finish time for the entire batch application is expected to fall within the normal time range
based on the current milestone job APE01A05 point.

Although the real APE01A41 job is marked as red and appears to exceed the normal expected
endpoint, the overall batch application does not seem to be significantly impacted. The green
status of the progress bar indicates that the batch execution is progressing smoothly and is
expected to complete within the preferred time-frame.

You can use the predictive capabilities of the milestone models to anticipate the expected
elapsed times for influential jobs at different time points within the batch execution. By
comparing the real-time performance of specific jobs, such as APE01A41 in this case, with the
predictions, you can identify any deviations or potential performance issues.

Figure 5-17 Batch job elapsed time prediction for normal case

In Figure 5-18 on page 104, the batch job prediction results for a specific time point is
approximately 21:33. The progress bar in the first line is marked with a red status. The
progress bar indicates that the predictive finish time for the entire batch application is likely to
be outside the normal time range based on the current milestone job APP0260 point.

The red status of the progress bar indicates that the batch execution might not meet the
desired completion time. The milestone models have predicted a longer elapsed time for
influential jobs within the current phase, which suggests potential performance issues
impacting the overall batch application.

The real APE01A41 job is also marked with a red status, further confirming that this specific job
is experiencing a performance bottleneck or delay that is affecting the overall batch
processing. The deviation from the predicted elapsed time for APE01A41 indicates that there
might be a need to investigate and address the root cause of this performance issue promptly.
Chapter 5. Model deployment and inferencing 103

Figure 5-18 Batch job elapsed time prediction for error case

In conclusion, you can use the real-time review of batch job predictions that are provided by
the milestone models for valuable insights into the performance of individual jobs and the
overall batch application. By promptly identifying and addressing potential issues, you can
take proactive measures to optimize the batch processing efficiency and meet critical
business deadlines.

The MLz Repository Service and Scoring Service are invaluable components for seamlessly
integrating a batch prediction solution into your z/OS environment. These services enable you
to efficiently manage and use predictive models, ensuring optimal performance and timely
completion of critical batch jobs. By using the MLz Repository Service and Scoring Service,
you can fully integrate predictive analytics into your z/OS batch processing environment.
These services enable you to deploy, manage, and score predictive models effectively,
providing valuable insights into batch job elapsed times and empowering you to optimize the
performance of critical batch applications.

5.5 Best practice on model deployment and inference

In today's dynamic world of machine learning and artificial intelligence, the deployment and
inference phase of your models is where theory meets the real world. It is a critical juncture
that can significantly impact the performance, scalability, and reliability of your applications.

5.5.1 Optimizing ML model integration and deployment for business decisions

When integrating and deploying machine learning models, a significant challenge lies in
bridging the gap between the model training environment and the production setting,
104 Turning Data into Insight with Machine Learning for IBM z/OS

particularly when AI is employed to optimize business decisions. Model selection is crucial,
aiming for a well-rounded compromise between accuracy and inference speed. Various
machine learning and deep learning frameworks like TensorFlow, PyTorch, and scikit-learn
are accessible for model development, and production environments encompass diverse
programming languages and platforms.

Traditional sectors such as banking and health care rely on distinct programming languages
and systems, which makes rebuilding the entire infrastructure impractical. Instead, a
recommended approach involves converting framework-specific models into exchangeable
formats to ensure interoperability across training and production contexts.

Predictive Model Markup Language (PMML) and Open Neural Network Exchange (ONNX)
are two widely adopted formats. PMML, an XML-based format, supports diverse machine
learning frameworks like scikit-learn and SAS. ONNX, a versatile standard format, excels at
representing deep learning models and enables model portability across various frameworks
and platforms.

Popular deep learning frameworks, including TensorFlow and PyTorch, support direct
exporting of models to ONNX format, facilitating seamless deployment and decoupling model
development from deployment. Enhancing model inference speed involves techniques like
model quantization, pruning, and compression to reduce model size. ONNX further
streamlines inferencing in a unified environment, empowering data scientists to use their
skills in both model development and deployment processes.

Nevertheless, the accuracy of a model does not hinge solely on the number of iterations
during the training process. Equally crucial is the caliber and volume of the data employed for
model training. Poor training data can result in the misinterpretation of trends, biases, an
inability to identify novel patterns, inexplicable model outputs, and more. The training dataset
must exhibit sufficient volume while also being meticulously refined, accurate, consistent, and
imbued with meaningful information.

5.5.2 Choose the right inferencing interface for your use case

The MLz scoring server offers a range of programming interfaces designed for developers
working on the z/OS platform. These interfaces include options like REST, Java, CICS, and
WOLA. When selecting the most suitable inferencing interface for your specific needs,
consider certain factors. The decision should be based on your main priorities and concerns.
For instance, if you value quick response times and high throughputs, opting for the CICS or
WOLA transactional inferencing interface would be beneficial.

Additionally, your choice depends on the nature of your application. If your application is built
by using Python or Java, the REST APIs are a convenient option. However, if your application
is developed by using an IBM Z native language, such as COBOL, using REST APIs might
not be the best fit. Instead, choosing a CICS or WOLA interface is a better option.

Security requirements also play a role in your decision-making. If your IBM Z system has
specific security needs, using REST APIs might introduce network-related risks that you need
to be cautious about.

Making the right choice among these inferencing interfaces involves a careful evaluation of
your priorities, application type, performance requirements, and security concerns, ensuring
that you select an interface that aligns seamlessly with your overall objectives and technical
landscape.
Chapter 5. Model deployment and inferencing 105

106 Turning Data into Insight with Machine Learning for IBM z/OS

Chapter 6. Streamlining AI from models to
applications by using machine
learning operations

This chapter describes the art and science of seamlessly moving from machine learning
models to real-world applications. Machine learning operations (MLOps) is the catalyst that
combines data science, engineering, and deployment. By using MLOps, efficiency, scalability,
and ethical considerations converge to not only enhance the capabilities of your models but to
redefine how AI makes a tangible impact on the world. This chapter is your guide to
navigating the intricate path from models to applications, where MLOps is the compass that
can guide you toward operational excellence in the realm of artificial intelligence.

� 6.1, “Understanding MLOps” on page 108
� 6.2, “Model development - model training and tuning” on page 112
� 6.3, “Model review and deployment” on page 114
� 6.4, “Model monitoring” on page 120
� 6.5, “AI Governance and security” on page 128
� 6.6, “How generative AI is evolving MLOps” on page 129

6

© Copyright IBM Corp. 2024. 107

6.1 Understanding MLOps

Machine learning operations (MLOps) represent streamlined and automated machine
learning, data engineering, and DevOps practices throughout the entire lifecycle of machine
learning (ML) models.

6.1.1 Colocation of applications and data

One of the key value propositions of AI on IBM Z is having your data and core applications
colocated. Previous sections described how the software development process evolved to
keep up with the increasing changes in hardware and compute capacity, starting with
waterfall and agile-DevOps.

Machine learning is not a stand-alone piece of code or block that can exist independently. It
requires training data, an ongoing flow of new data, an application with which the ML model is
colocated and is inferencing. With new data, training and inferencing continue to evolve and
change. These changes affect the quality and accuracy of the model. ML teams actively
monitor the model for indicators that confirm model degradation. Those models must be
updated, possibly with new training. The updated models also require a deployment of the
new version of the model.

In a workflow where the development process is agile, the process can break easily without a
robust and scalable way to integrate the changes in the model with the rest of the
components. By using development operations or DevOps, IT teams can apply a systematic,
recorded, and repeatable process to streamline and continuously monitor the integration and
deployment of their application changes with the overall infrastructure. At an enterprise level,
without a robust and scalable process, significant business and technical challenges affect
the relevant teams and the organization as a whole.

MLOps combines machine learning with software development and overall DevOps to deliver
machine learning models into production at scale. With MLOps, it is imperative to bring the
different domains and personas together such as the line of business (Business analysts),
data (data engineers, data science), and DevOps (ML Engineer, Application Developer,
System programmers, Infrastructure engineers).

6.1.2 Optimizing MLOps with IBM Machine Learning for z/OS

IBM Z allows building a modern, scalable infrastructure designed for transactional workloads.
IBM Machine Learning for z/OS (MLz) enables deploying AI near transactional workloads and
their originating data for quicker business insights through faster implementation of AI
models.

You can integrate a modern and robust MLOps process with MLz and the overall IBM Z
infrastructure. MLOps is a key requirement for clients to implement AI on IBM Z. Figure 6-1 on
page 109 illustrates an end-to-end MLOps pipeline with IBM Machine Learning on IBM Z.
108 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 6-1 End-to-end MLOps pipeline for Machine Learning for IBM z/OS

MLz supports the MLOps process through RESTful interfaces with the comprehensive set of
APIs provided to support ML implementation and the end-to-end process. The end-to-end
process starts with data pre-processing, model training, model management, and model
deployment and includes model scoring and continuous model monitoring.

MLz v3.1 includes a further optimization of the APIs with API Refine, user role and privilege
control, and updates to API documentation and examples. For clients, this means that if they
use MLz APIs, they can integrate MLz into their existing Continuous Integration and
Continuous Delivery (CI/CD) pipelines. The details of the MLz, CI/CD pipeline integration
process are described in this chapter.

Usually, the machine learning lifecycle architecture consists of the following three stages:

1. Development stage
2. Pre-production stage
3. Production stage

The lifecycle stages include receiving code updates, training, deploying, and monitoring
models.

Development stage
As illustrated in Figure 6-2 on page 110, an orchestrated development pipeline typically
includes the following steps:

1. Data connection and validation
2. Data preparation
3. Model training and evaluation
4. Model deployment
5. Model validation (optional)
Chapter 6. Streamlining AI from models to applications by using machine learning operations 109

Figure 6-2 Sample development pipeline pulled from IBM Cloud Pak for Data

The output scripts tend to be Python scripts in Jupyter Notebooks. They are version controlled
by using Git and serve as one of the components in the pre-production pipeline.

Pre-production stage
When there is a change committed to the Jupyter Notebooks and a pull request is made,
Jenkins starts the integration tests. As the integration tests pass, administrators merge the
changes and Jenkins triggers the pre-production pipeline (see Figure 6-3 on page 111) that
generally includes the following steps:

1. Data extraction and data validation
2. Data preparation
3. Model training and model evaluation
4. Model deployment (pre-production space)
5. Model monitoring and model validation
110 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 6-3 Sample pre-production pipeline pulled from IBM Cloud Pak for Data

Production stage
An orchestrated production pipeline, as illustrated in Figure 6-4 on page 112, typically
contains the following steps:

1. Deployment checks
2. Model deployment (production space)
3. Model monitoring
4. Model retraining
Chapter 6. Streamlining AI from models to applications by using machine learning operations 111

Figure 6-4 Sample production pipeline pulled from IBM Cloud Pak for Data

Notice that most of the steps throughout the three stages of development, pre-production,
and production are the same, despite falling under three distinct pipelines. The steps are
further discussed in the following sections.

6.2 Model development - model training and tuning

Model training and tuning constitute the foundational phase of the machine learning lifecycle,
where data and algorithms combine to create predictive models that can make informed
decisions on new, unseen data. This phase involves a series of iterative steps that
encompass data preprocessing, algorithm selection, training, validation, and fine-tuning. A
high-level flow of this phase is depicted in Figure 6-5 on page 113.

6.2.1 Data preprocessing

Data preprocessing is the process of data mining where data is treated as raw products.
Various processes need to be applied to raw data to convert it to a more refined data. These
various processes include data cleansing, transforming, and data conversion, to name a few.
Chapter 3, “The art of data engineering” on page 23 discusses data preprocessing in detail,
what those steps are, and how they come together.
112 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 6-5 Flow for model training and tuning

6.2.2 Hyper parameter tuning

The model training process used multiple datasets for the model. Each dataset and model
needs a different set of hyper parameters to find the correct parameter to be used by the
model. Numerous iterations of model tests are done with a variety of parameters. Every
parameter needs to run through the model end-to-end. This entire process is called hyper
parameter tuning and runs simultaneously with the model. This hyper parameter tuning
process is a combination of manual and automated process.

Hyper parameters are the combination of external parameters, an external variable for the
model. An example of a hyper parameter is the number of nodes and layers in the neural
network and decision branches.

Hyper parameter selection is an important and essential process and is critical for model
performance. Hyper parameter selection is a trial-and-error process because each model is
different, and only one set of rules can be applied at a time, so multiple attempts are required.

6.2.3 Automated quality assurance testing

Model training and tuning repetitive process. The model must be tuned frequently, and
retraining is in case source data changes. The model might be seeing data that the model has
not seen before. New data might improve the model, so the model must be retrained and
tuned repeatedly. It is quite a repetitive process, but most steps can be automated.
Automation can produce reliable results without introducing human error.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 113

The automated test process is part of MLOps, where data and model output are monitored
and based on the model output. Automated retraining and tuning processes can be triggered
based on the model's accuracy. When the model is retrained and tuned, the automated
testing process can be streamlined, and the entire model is validated with reality and without
any human intervention.

6.2.4 Documentation and reproducibility

The trustworthy ML model has four major pillars: Explainability, Regulation, Integrity, and
Reproducibility. Reproducibility is very important for the AL/ML model. Reproducibility is the
process of producing ML model output by following the same workflow and giving the same
output. Every run should produce a similar result every time. Reproducibility also has some
challenges, such as changes in the dataset, no proper logging, changes in hyper parameters,
and changes in the model environment. Document the entire model workflow with evidence
for explainability. Ensure that the model output explains how it reached the model output.

6.2.5 Continuous improvement and feedback loop

After the model is deployed to the production environment, it must be monitored continuously.
Various factors, such as changes in input data, runtime environment changes, and stale data,
can impact model output. Model feedback should trigger the model retraining and tuning
process.

The next section talks in detail about MLOps under the model review and deployment section.
ML ops can monitor the model regularly with feedback methods. MLOps can monitor the
model output and ensure that it produces reliable output.

6.3 Model review and deployment

The step of model assessment and deployment emerges as the pivot that bridges the gap
between model development and the tangible impact of MLOps as illustrated in Figure 6-6 on
page 115. This critical stage marks the transition of complex algorithms from conceptual
wonders to practical realities, ensuring that they not only perform well, but also seamlessly
align with organizational goals.

The model review and deployment steps are a synchronization of examination and validation.
It involves an in-depth review of the model's architecture, code integrity, and generalization
abilities. This comprehensive review ensures that the model's findings are not limited to the
laboratory and can be applied in relevant, real-world applications.

This section outlines approaches for deploying accurate, ethical, and safe models that align
with business needs during the MLOps journey. It emphasizes the importance of automation
for deployment consistency and describes a range of deployment strategies from
microservices to containers and the factors that influence their selection.
114 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 6-6 Model development lifecycle

6.3.1 Model review and validation

In the journey from model development to real-world application, the phase of model review
and validation plays a crucial role in ensuring that the models not only work but also work
well. You can think of this phase as the thorough inspection before launching a rocket ship.
The inspection is focused on thoroughly checking every part of the aircraft to make sure that it
is ready.

To adequately prepare a model from development to real-world application, the model review
and validation phase iterates through the following processes:

� Code review and validation. The model's code is comparable to the blueprint of a complex
structure. During code review, teams collaborate to carefully examine the code for any
mistakes or problems. It is like going through a checklist to ensure that everything is in the
right place. This step helps detect errors early and can help verify that the model's
foundations are solid.

� Unit testing. Unit testing involves running small tests on different parts of the model's code
to ensure that they work as expected. If any piece does not work as expected, it is fixed
before it becomes a part of the whole. This ensures that each component functions
properly.

� Model validation. Validating a model is like performing a trial run. The model is tested on
new data to determine whether it can make accurate predictions. This process ensures
that the model can handle new situations and is not just memorizing the previous inputs.
Validating also helps identify if there is any bias or unfairness in the model's decisions,
ensuring it treats everything fairly.

� Addressing bias. Models can sometimes unintentionally make unfair decisions based on
historical data. Addressing bias means actively working to make sure the model's
predictions are fair. This is a vital step in ensuring that the model does not perpetuate or
amplify existing inequalities.

In summary, the model review and validation phase act as the quality control checkpoint,
helping to guarantee that the model is robust, unbiased, and ready for deployment. A critical
step to ensuring the model's performance aligns with real-world expectations and ethical
standards before it enters the operational stage.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 115

6.3.2 Model versioning

Model versioning is a critical practice within the realm of MLOps that involves tracking
different iterations, or versions, of a machine learning model. Software developers use
version control systems to manage code changes. Model versioning allows data scientists
and MLOps engineers to systematically track and manage changes that are made to a
model's architecture, code, and configuration over time.

The following terms and their descriptions are provided from the context of model versioning:

Tracking progress

Each model version represents a snapshot of the model's state at a specific point in time.
This helps teams track the evolution of the model from initial development to refined
iterations by capturing improvements, bug fixes, and enhancements.

Reproducibility

Model versioning ensures that a specific model version can be accurately reproduced
whenever needed. This is crucial for maintaining consistency in research, development,
and production environments.

Experimentation

Data scientists often experiment with various algorithms, hyper parameters, and data
pre-processing techniques. Model versioning allows them to keep a record of these
experiments and the corresponding model performance.

Collaboration

In collaborative environments, model versioning enables team members to collaborate
more effectively. Team members can easily share, review, and work on different versions
of the model, enhancing productivity and knowledge sharing.

Comparative analysis

With multiple model versions available, teams can perform comparative analysis to
understand how changes impact performance. This aids in making informed decisions
about which version to deploy.

Deployment and rollback

When deploying models into production, having well-managed versions simplifies the
deployment process. If a new version presents unexpected issues, rolling back to a
previous version is straightforward.

You can use the model management APIs to manage the models that are stored in MLz. You
can use the following API to get the metadata of all the versions of a model:

GET /v3/ml_assets/models/{model_id}/versions

For more information, see Model management APIs.

To implement effective model versioning, teams can use version control tools, such as Git,
and combined it with specific practices tailored to machine learning. This might involve
tagging model versions, documenting changes in a version control system, and integrating
versioning within the MLOps pipeline.

6.3.3 Integrating with CI/CD pipelines

Much like DevOps, CI/CD is a set of practices and steps (Figure 6-7 on page 117) that
software and application development teams use to deliver code changes with speed and
reliability by using automation.
116 Turning Data into Insight with Machine Learning for IBM z/OS

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=specification-model-management-apis

In machine learning, these stages are different than in software development. A model
depends not only on the code but also on the data and the hyper parameters. Additionally,
deploying a model to production is more complex than deploying software to production. For a
rapid and reliable update of pipelines in production, you need a robust automated CI/CD
system. With automated CI/CD pipelines, data scientists can rapidly explore new ideas
around feature engineering, model architecture, and hyper parameters.

Figure 6-7 Stages of a CI/CD pipeline

Continuous Integration (CI)
Continuous integration is a software development process where developers integrate the
new code more frequently throughout the development cycle. Automated testing is done
against each iteration of the build to identify integration issues earlier, when they are often
easier to fix, which also helps avoid problems at the final merge for the release. Overall,
continuous integration helps streamline the build process, resulting in higher-quality software
and more predictable delivery schedules.

Continuous integration within the realm of machine learning implies that whenever code or
data is updated, the machine learning pipeline is restarted. This process is orchestrated in a
manner where versioning and reproducibility are maintained, allowing seamless codebase
sharing across various projects and teams. Each pipeline rerun might encompass activities
like training, testing, or generating updated reports to simplify the task of comparing against
other versions in production.

The following instances illustrate the CI workflow:

� Running and versioning training and assessment for each repository commit

� Running and contrasting experimental runs for every Pull Request toward a specific
branch

� Initiating new runs at regular intervals

Continuous Deployment (CD)
Continuous deployment stands as an automated approach for rolling out new releases into
production or other environments like staging. This approach facilitates swift and ongoing
changes, enabling prompt user feedback and accommodating new data for model retraining
or novel models.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 117

The following instances exemplify the CD workflow:

� Ensuring that the infrastructure environment meets requirements before deployment
� Validating model outcomes by using established inputs
� Conducting load tests and evaluating model latency

CI/CD tools and configuration
When you select CI/CD tools, focus on how to optimize and automate the software
development process. An effective CI/CD pipeline uses open source tools for integration,
testing, and deployment. Correct configuration of your CI/CD process also impacts the
success of the software development pipeline.

A common open source CI/CD tool is Jenkins. Jenkins is an automated CI server that is
written in Java and used for automating CI/CD steps and reporting. Other open source tools
for integration include Travis CI and CircleCI.

Integrated development environments (IDE), such as GitHub or AWS CodeCommit, help
developers create, maintain, and track software packages. Platforms like GitLab seek to
provide the IDE within a comprehensive platform that includes other tools.

When operating in a cloud environment, teams use containers like Docker for packaging and
shipping applications, and they use Kubernetes for orchestration. Although Kubernetes is not
strictly for the CI/CD pipeline, it is used in many CI/CD workflows.

CI/CD pipeline phases
From source code to production, the following phases make up the development lifecycle and
workflow of the CI/CD pipeline:

� Build. This phase is part of the continuous integration process and involves the creation
and compiling of code. Teams build off source code collaboratively and integrate new code
while quickly determining any issues or conflicts.

� Test. At this stage, teams test the code. Automated tests happen in both continuous
delivery and deployment. These tests might include integration tests, unit tests, and
regression tests.

� Deliver. An approved codebase is sent to a production environment. This stage is
automated in continuous deployment and is only automated in continuous delivery after
developer approval.

� Deploy. The final product with any changes moves into production. In continuous delivery,
products or code are sent to repositories and then moved into production or deployment
by human approval. In continuous deployment, this step is automated.

6.3.4 Model deployment

Deploying a machine learning model into a production environment requires careful
consideration of various factors, including scalability, resource usage, response time, and
ease of maintenance. Different deployment strategies offer unique approaches to making
your model accessible and operational. Some common deployment strategies are batch
processing and online deployment.

Batch processing
Sometimes, it is more efficient to perform model inference on a batch of data rather than
real-time processing. Batch processing involves scheduling model inference on a batch of
data at specific intervals. This strategy is suitable for scenarios where low latency is not a
priority, such as generating reports or analyzing historical data. Examples include insurance
118 Turning Data into Insight with Machine Learning for IBM z/OS

premium and claims analytics, sales and inventory analysis, log analysis and anomaly
detection, and credit scoring and loan approval.

An example of batch processing is discussed in 5.3.2, “Interfaces of MLz online scoring
service” on page 80.

Online deployment
An online deployment strategy, also known as real-time deployment, involves making
machine learning models available for inference and predictions in real-time as new data
arrives. This strategy is useful for applications where quick and immediate responses are
required based on incoming data. Examples include fraud-detection, chatbots,
recommendation systems, image recognition in video streams, and IoT applications.

You can use the following API to create online deployment for a model:

POST /v3/published_models/${modelId}/deployments

You can also use following API to get the detailed information of a deployment:

GET /v3/published_models/${modelId}/deployments/${deploymentId}

For more information, see Deployment APIs.

When you choose a deployment strategy, consider factors such as the nature of your
application, expected traffic patterns, resource requirements, and deployment complexity.
Each strategy has its advantages and challenges, so selecting the one that aligns best with
your project goals and constraints is crucial. Additionally, the availability of tools and platforms
that support your chosen strategy can simplify the deployment process and enhance its
scalability and reliability.

6.3.5 Model inference and scoring

Model inferencing and scoring represent the bridge between machine learning models and
tangible, real-world impact. In the dynamic landscape of MLOps, this phase demands
meticulous attention to responsiveness, interpretability, scalability, and security. By
seamlessly integrating these considerations, organizations can harness the full potential of
their models, making AI-driven decisions that are not only accurate but also ethical, secure,
and aligned with business objectives.

After you create an online deployment for a model, you can access its predictions by sending
requests to its scoring endpoint.

For more information, see Scoring APIs.

To automate the inferencing process, you can use the sample Python functions, provided in
Example 6-1, to interact with MLz through REST APIs.

Example 6-1 Using Python functions to automate the inferencing process

Get MLz user token
def gen_wmlz_user_token(user_name, password):
 gentoken_url = '{}:{}/auth/generateToken'.format(
 wmlz_service_host, wmlz_service_port)
 gentoken_request_header = {
 'Content-Type': 'application/json'
 }
 gentoken_request_data = json.dumps({'username': user_name, 'password':
password})
Chapter 6. Streamlining AI from models to applications by using machine learning operations 119

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=specification-deployment-apis
https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=specification-scoring-apis

 gentoken_response = session.post(gentoken_url, gentoken_request_data,
headers=gentoken_request_header, verify=False)
 gentoken_response_dict = json.loads(gentoken_response.content)
 return gentoken_response_dict['token']

Retrieve model ID and model version ID of the uploaded model
def get_model_info(model_name):

 get_model_info_url = '{}:{}/v3/ml_assets/models?modelName={}'.format(
 wmlz_service_host, wmlz_service_port, model_name)
 get_request_header = {
 'Authorization': service_token
 }
 get_model_info_response = session.get(get_model_info_url,
headers=get_request_header, verify=False)
 print("get model info result:" + str(get_model_info_response.content))
 get_model_info_response_dict = json.loads(get_model_info_response.content)
 model_id =
get_model_info_response_dict.get('resources')[0].get('metadata').get('guid')
 model_version_id =
get_model_info_response_dict.get('resources')[0].get('entity').get('model_version'
).get('guid')
 return model_id, model_version_id

Perform online scoring
def do_score(scoring_url, scoring_input):

 score_request_header = {"Authorization": service_token, "Content-Type":
"application/json"}
 score_response = session.post(scoring_url, headers=score_request_header,
data=scoring_input, verify=False)
 score_response_dict = json.loads(score_response.content)
 return score_response_dict

6.4 Model monitoring

Model monitoring is a crucial phase within the machine learning operations (MLOps)
framework that focuses on the ongoing observation, analysis, and management of deployed
models in real-world environments. As models move from controlled development settings to
dynamic production configurations, monitoring helps guard against performance degradation,
concept drift, anomalies, and other operational challenges:

� Model performance. The capability to assess a model's performance through a set of
metrics and recording its decisions or outcomes can offer valuable directional insights.
These insights can be contrasted with historical data, aiding in comparisons among
different models to determine the most effective one.

� Data and security. Modern models rely on intricate feature pipelines and automated
workflows, which involve dynamic data that is subjected to diverse transformations. Given
the complexity, data inconsistencies and errors can unintentionally erode model
performance over time. Additionally, models can be vulnerable to attacks through data
injection and other means.

� Explainability. The opaque nature of models poses challenges in understanding and
debugging, particularly within a production setting. The ability to understand a model's
120 Turning Data into Insight with Machine Learning for IBM z/OS

decision is crucial not only for enhancement but also for accountability, especially in
sectors like finance.

� Addressing bias. As machine learning models glean relationships from training data, they
can inadvertently magnify existing biases or introduce new ones. Detecting and mitigating
bias during the development phase is intricate yet imperative.

� Monitoring for drift. The statistical characteristics of the target variable, which the model
seeks to predict, can evolve unexpectedly over time. This phenomenon, which is known as
concept drift, leads to decreasing prediction accuracy as time progresses and poses
challenges that require monitoring and mitigation.

6.4.1 Evaluating and reevaluating a model under MLz

As your data changes over time, the quality of the predictions from a particular model might
degrade. With the WML for z/OS, you can evaluate a SparkML or PMML model and schedule
it for periodic reevaluations to ensure its accuracy. Evaluating models by using MLz consists
of following steps:

1. Create evaluation
2. Deploy models
3. Schedule evaluation

Figure 6-8 is an example of a successful evaluation, where the Area under curve (AUC) was
more than 0.75. Because the AUC is greater than random chance, the model is considered to
be accurate.

Figure 6-8 Evaluating a model by using MLz

For more information, see Evaluating and reevaluating a model.

6.4.2 Monitoring deployed models

IBM Watson OpenScale offers a high-caliber setting that is designed for AI applications. It is
possible to set up MLz to collaborate seamlessly with the Watson OpenScale service within
an IBM Cloud Pak for Data environment. You can use it to understand how your AI models
make decisions, detect and mitigate bias and drift, increase the quality and accuracy of your
predictions, explain transactions, and perform what-if analysis. The capabilities of Watson
OpenScale can be used to validate MLz models employed in real-time scoring by using the
REST API.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 121

https://www.ibm.com/docs/en/wml-for-zos/enterprise/3.1.0?topic=wmlz-evaluating-reevaluating-models

Using IBM Watson OpenScale to monitor your deployed AI models
When the model is ready, then the data scientist pushes the model to the production
environment, which is also known as the business line environment. Then, the data scientist
can use Watson OpenScale to check whether the z/OS AI model is experiencing model drift
or not. The people in the business, such as a loan officer or a loan customer, can use Watson
OpenScale to understand the reason for the model results.

Perform the following steps to get a z/OS machine-learning model-scoring endpoint from
MLz:

1. Log in to Machine Learning for IBM z/OS.

2. Click the Deployments tab.

Figure 6-9 MLz model Deployments list

3. Get the scoring endpoint.

Figure 6-10 Deployed model in MLz

Perform the following steps to create a production machine learning provider in Watson
OpenScale on the IBM Cloud Pak for Data platform:

1. In the Watson OpenScale System setup page, click Add machine learning provider.
Bind Machine Learning for IBM z/OS as the machine learning provider, populating the
Connection details tag with the following information:
122 Turning Data into Insight with Machine Learning for IBM z/OS

– Service provider: Custom Environment
– Authentication type: Basic
– Username: <MLz username>
– Password: <MLz user password>
– Environment type: Production

2. Click the Save button.

Figure 6-11 Connection details in Watson OpenScale

3. On the IBM Watson OpenScale Insight® dashboard, create a subscription base for the
machine learning service provider that you created, then bind the Watson OpenScale
subscription to the MLz deployment:

a. From the Machine learning provider menu, select the correct Machine learning
Provider and environment from step 2.1.

b. In the Endpoint field, add the MLz scoring endpoint from step 1.3.

c. Enter the Deployment Name.

d. Click Configure.

Note: The endpoint should use the MLz UI port number. For example, if the scoring
endpoint in the deployment is
https://*.*.*.*:15110/iml/v2/scoring/online/23aa23e7-03f4-420e-ad8c-d020cbe6
be81 and base URL is https://*.*.*.*:15101/, then the endpoint for the Watson
OpenScale provider is
https://*.*.*.*:15101/iml/v2/scoring/online/23aa23e7-03f4-420e-ad8c-d020cbe6
be81.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 123

Figure 6-12 Watson OpenScale model deployment details

4. Configure the Watson OpenScale monitors - Fairness, Quality, Drift, and Explain.

5. Get the OpenScale Datamart ID and Subscription ID from the Endpoints page.

Figure 6-13 Model information details in Watson OpenScale

Use the following steps to enable and configure Watson OpenScale on MLz

1. Enable Watson OpenScale in the MLz deployment:

a. Right-click the Action icon under IBM Machine for z/OS deployment.

b. Select Configure for OpenScale.
124 Turning Data into Insight with Machine Learning for IBM z/OS

2. Configure Watson OpenScale with the following details:

a. Select Enable

b. Instance: <CP4D UI URL>
c. User: <OpenScale user>
d. Password: <OpenScale user password>
e. DataMartID: <OpenScale Datamart ID> (from Step 2)

f. Target ID: <Subscription ID> (from Step 2)

3. Then click OK.

Figure 6-14 Configuration settings in Watson OpenScale

4. Evaluate the MLz model for Fairness, Quality, Drift, and Explain with Watson OpenScale.

After Watson OpenScale has been configured and enabled, you can load the Insights
Dashboard, which contains tiles for any models being monitored (Figure 6-15 on
page 126).
Chapter 6. Streamlining AI from models to applications by using machine learning operations 125

Figure 6-15 Watson OpenScale Insights Dashboard

You can then evaluate the models on the various set monitors, such as fairness, quality, and
drift (see Figure 6-16).

Figure 6-16 Evaluation monitors with Watson OpenScale

To understand your model’s evaluation results better, you can dive deeper into each
evaluation monitor (see Figure 6-17 on page 127).
126 Turning Data into Insight with Machine Learning for IBM z/OS

Figure 6-17 Watson OpenScale Evaluation monitor - Fairness

You can also explain the predictions of the model, where in you can see the relative weights of
the most important features for the prediction (see Figure 6-18).

Figure 6-18 Watson OpenScale Explainability feature

Model monitoring requires the integration of various tools, technologies, and processes into
the deployment pipeline. Automated monitoring systems, when they are combined with
human oversight, ensure that models continue to deliver accurate, fair, and reliable
predictions even as real-world conditions evolve.

In summary, model monitoring ensures that deployed models remain effective and aligned
with operational requirements. It bridges the gap between model development and ongoing
production, transforming models from static artifacts into dynamic, adaptable, and valuable
assets within the MLOps ecosystem.
Chapter 6. Streamlining AI from models to applications by using machine learning operations 127

6.5 AI Governance and security

AI Governance and security are paramount considerations when machine learning models
are deployed into production environments. As organizations increasingly rely on AI for critical
decision-making, it becomes imperative to ensure ethical, legal, and secure practices are in
place throughout the model's lifecycle. AI Governance and security are important in an
MLOps lifecycle for the following reasons:

� Ethical AI Governance. Ethical AI Governance helps guard against the unintentional
perpetuation of biases or discriminatory behaviors within AI models. It involves:

– Bias Detection and Mitigation

Mechanisms to detect and rectify biases in training data, ensuring that models make
fair and equitable predictions.

– Fairness Assessments

Continuous assessments to gauge model fairness, preventing decisions that favor one
group at the expense of others.

– Transparency and Explainability

Employing techniques like model agnostic algorithms to provide transparent and
interpretable explanations for model predictions, fostering trust and accountability.

– Regulatory Compliance

The regulations that involve AI are evolving rapidly. AI Governance practices involve:

• Data Privacy Compliance

Implementing stringent data protection measures to comply with regulations like
GDPR or HIPAA.

• Model Behavior Compliance

Ensuring that deployed models adhere to legal requirements, such as those
governing financial decisions or health care treatments.

� Data Security.

Data security is a linchpin in AI Governance and security within MLOps:

– Encryption and Access Controls.

Employing robust encryption techniques and access controls to safeguard sensitive
data that is used in model training and inferencing.

– Secure Data Storage

Implementing secure storage protocols to protect data from unauthorized access or
breaches.

� Incident Response and Accountability.

Preparing for AI-related incidents is integral:

– Incident Response Plans.

Developing clear plans and protocols to address model failures, security breaches, or
ethical lapses.

– Audit Trails.

– Maintaining detailed audit trails that record model development, validation, and
deployment processes for accountability and compliance purposes.

– Access Control and Authentication
128 Turning Data into Insight with Machine Learning for IBM z/OS

– Strict access controls and authentication mechanisms ensure that only authorized
personnel can interact with deployed models, preventing unauthorized usage or
tampering.

– Monitoring and Anomaly Detection

Automating continuous monitoring of deployed models to detect anomalies, security
breaches, or performance degradation, enabling proactive responses.

– Documentation and Compliance Audits

Comprehensive documentation of AI Governance and security practices aids in
compliance audits and regulatory checks, ensuring that all processes are aligned with
legal requirements.

Figure 6-19 AI Governance on IBM Z for Trustworthy AI

AI Governance and security are not only static considerations. They are dynamic and integral
components of the MLOps journey. By integrating ethical practices, robust security measures,
and regulatory compliance into every stage of MLOps, organizations can harness the power
of AI and maintain trust, transparency, and the highest standards of security and ethics.

6.6 How generative AI is evolving MLOps

The release of OpenAI’s ChatGPT and IBM's watsonx sparked interests in AI capabilities
across industries and disciplines and produce a variety of data types and can further develop
the MLOps process. This technology, which is known as generative AI, can write software
code, create images, produce a variety of data types, and further develop the MLOps
process.

Generative AI is a type of deep-learning model that takes raw data, processes it, and “learns”
to generate probable outputs. In other words, the AI model uses a simplified representation of
the training data to create a new work that is similar, but not identical, to the original data. For
example, by analyzing the language that is used by Shakespeare, a user can prompt a
Chapter 6. Streamlining AI from models to applications by using machine learning operations 129

generative AI model to create a Shakespeare-like sonnet on a specified topic to create an
entirely new work.

Generative AI relies on foundation models to create a scalable process. As AI has evolved,
data scientists have acknowledged that building AI models can take data, energy, and time.
Building AI models includes compiling, labeling, and processing datasets that the models use
to “learn” and includes energy to process the data and iteratively train the models. Foundation
models try to solve this problem. A foundation model takes a massive quantity of data and by
using self-supervised learning and transfer learning can take that data to create models for a
wide range of tasks.

This advancement in AI means that datasets are not task-specific. The model can apply
information that is used in one situation and apply it to another. Engineers use foundation
models to create the training models for MLOps processes faster. They take the foundation
model and fine-tune it using their own data, instead of taking their data and building a new
model.

When you use MLOps, it is not just about the models. It is about the impact that those models
have on the world. It is about streamlining the path from data to decisions, from algorithms to
applications, and from insights to impact. Welcome to the world of MLOps, where the future is
defined by the intelligent application of data-driven insights.
130 Turning Data into Insight with Machine Learning for IBM z/OS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Accelerate Mainframe Application Modernization with Hybrid Cloud, REDP-5705

� Securely Leverage Open-Source Software with Python AI Toolkit for IBM z/OS,
REDP-5709

� Solving challenges of instant payments by using AI on IBM zSystems, REDP-5698

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� CELENT: Operationalizing Fraud Prevention on IBM z16 - Reducing Losses in Banking,
Cards, and Payments

https://www.ibm.com/downloads/cas/DOXY3Q94

� IBM Cloud Pak for Data Product Page

https://www.ibm.com/products/cloud-pak-for-data

� IBM Data Virtualization Manager for z/OS Product Page

https://www.ibm.com/products/data-virtualization-manager-for-zos

� IBM DataStage Product Page

https://www.ibm.com/products/datastage

� IBM Institute for Business Value's guide Generating ROI with AI - Six capabilities that drive
world-class results:

https://www.ibm.com/downloads/cas/DD0RN0B2

� IBM Watson Knowledge Catalog

https://www.ibm.com/cloud/watson-knowledge-catalog

� IBM z/OS Connect EE Product Page

https://www.ibm.com/products/zos-connect-enterprise-edition

� IBM z/OS v3.1 documentation - What is z/OS Container Extensions?

https://www.ibm.com/docs/en/zos/3.1.0?topic=extensions-what-is-zos-container
© Copyright IBM Corp. 2024. 131

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.ibm.com/products/datastage
https://www.ibm.com/products/data-virtualization-manager-for-zos
https://www.ibm.com/downloads/cas/DOXY3Q94
https://www.ibm.com/cloud/watson-knowledge-catalog
https://www.ibm.com/docs/en/zos/3.1.0?topic=extensions-what-is-zos-container
https://www.ibm.com/downloads/cas/DD0RN0B2
https://www.ibm.com/products/zos-connect-enterprise-edition
https://www.ibm.com/products/cloud-pak-for-data

� What is data refinery?

https://www.ibm.com/products/data-refinery

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
132 Turning Data into Insight with Machine Learning for IBM z/OS

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.ibm.com/products/data-refinery

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Turning Data into Insight w
ith M

achine Learning for IBM
 z/OS

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461504

SG24-8552-00

®

http://www.redbooks.ibm.com
https://www.linkedin.com/groups/2130806

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Unlocking the business value of AI on IBM Z
	1.1 AI trust and transparency: IBM’s commitment
	1.1.1 Classifications of AI
	1.1.2 Using AI to help create a competitive advantage

	1.2 AI methodology overview
	1.3 AI in today’s enterprises: opportunities and challenges
	1.4 AI operational patterns: sampling versus comprehensive
	1.5 AI model lifecycle overview
	1.6 Unique value of AI applications on IBM Z: data and transaction gravity
	1.6.1 How MLz benefits from Telum on-chip AI accelerator
	1.6.2 Using MLz in IBM Z application modernization

	Chapter 2. Building business-driven and strategic use cases with MLz
	2.1 Planning
	2.2 Ideation
	2.3 Assessment and implementation
	2.4 AI applications in various fields
	2.4.1 Banking and finance
	2.4.2 Other use cases

	Chapter 3. The art of data engineering
	3.1 Nature of data
	3.2 Characteristics of data
	3.3 Data preprocessing
	3.3.1 Data profiling
	3.3.2 Data cleansing
	3.3.3 Data reduction
	3.3.4 Data transformation
	3.3.5 Data enrichment
	3.3.6 Data validation

	3.4 Data integration patterns
	3.4.1 Data exposure pattern: enable modern access to IBM Z data
	3.4.2 Data virtualization pattern: virtualize IBM Z data
	3.4.3 Real-time information sharing pattern: cache IBM Z data
	3.4.4 Data transformation pattern: transform IBM Z data
	3.4.5 Data synchronization pattern: replicate IBM Z data

	Chapter 4. Model building for IBM Z
	4.1 Model training frameworks
	4.1.1 Model training frameworks and technologies on IBM Z
	4.1.2 Open-source frameworks

	4.2 Model formats
	4.3 Training strategy
	4.3.1 Train anywhere and deploy on IBM Z
	4.3.2 Set up secure environment in IBM Cloud
	4.3.3 Model development in hybrid cloud
	4.3.4 AI reference architecture in hybrid cloud
	4.3.5 Training on-premises with IBM Z

	4.4 Best practices for model training
	4.4.1 Training strategy considerations
	4.4.2 Considerations for choosing a framework
	4.4.3 Best practices on saving models for deployment on IBM Z
	4.4.4 Evaluating model formats
	4.4.5 Tuning model parameters

	4.5 Model building use cases

	Chapter 5. Model deployment and inferencing
	5.1 Model deployment environments and advantages of mainframe systems
	5.1.1 Model deployment
	5.1.2 Drivers for mainframe deployment

	5.2 Features and benefits of deploying by using MLz
	5.2.1 Features of MLz
	5.2.2 Benefits of using MLz

	5.3 Model inferencing
	5.3.1 Making online predictions
	5.3.2 Interfaces of MLz online scoring service

	5.4 Sample use case for MLz model deployment
	5.4.1 Batch job efficiency
	5.4.2 The use case for batch job elapsed time prediction
	5.4.3 Applying batch job elapsed time model with MLz for application integration

	5.5 Best practice on model deployment and inference
	5.5.1 Optimizing ML model integration and deployment for business decisions
	5.5.2 Choose the right inferencing interface for your use case

	Chapter 6. Streamlining AI from models to applications by using machine learning operations
	6.1 Understanding MLOps
	6.1.1 Colocation of applications and data
	6.1.2 Optimizing MLOps with IBM Machine Learning for z/OS

	6.2 Model development - model training and tuning
	6.2.1 Data preprocessing
	6.2.2 Hyper parameter tuning
	6.2.3 Automated quality assurance testing
	6.2.4 Documentation and reproducibility
	6.2.5 Continuous improvement and feedback loop

	6.3 Model review and deployment
	6.3.1 Model review and validation
	6.3.2 Model versioning
	6.3.3 Integrating with CI/CD pipelines
	6.3.4 Model deployment
	6.3.5 Model inference and scoring

	6.4 Model monitoring
	6.4.1 Evaluating and reevaluating a model under MLz
	6.4.2 Monitoring deployed models

	6.5 AI Governance and security
	6.6 How generative AI is evolving MLOps

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

