
Redbooks

Front cover

Using Ansible for
Automation in IBM Power
Environments

The IBM Redbooks Team

IBM Redbooks

Using Ansible for Automation in IBM Power
Environments

November 2024

SG24-8551-00

© Copyright International Business Machines Corporation 2024. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2024)

This edition applies to the following product versions:
Ansible Core 2.14
Ansible 2.10.8
Ansible extension 2.6.92 and 2.7.98
Red Hat Ansible Automation Platform 2.4-1.2 (ppc64le)
AIX 7.2 TL5 and AIX 7.3 TL1
IBM i 7.3 TR13, IBM i 7.4 TR7, and IBM i 7.5
IBM i Modernization Engine for Lifecycle Integration (Merlin) 1.0
Red Hat Enterprise Linux Server (RHEL) 7.9 (ppc64 - Big Endian)
Red Hat Enterprise Linux Server 8.4 (ppc64le)
Red Hat Enterprise Linux Server 9.2 (ppc64le)
SUSE Linux Enterprise Server 15 SP 5 (ppc64le)
Ubuntu 20.04.6 (ppc64le)
Ubuntu 22.04.3 (ppc64le)
VisualStudio Code 1.83.0
IBM PowerVM Virtual I/O Server (VIOS) 3.1.3 and Virtual I/O Server 3.1.4
IBM PowerVM Virtual I/O Server 4.1.0.10
IBM Hardware Management Console (HMC) 8.8.7, 9.1, or later
VisualStudio Code 1.83.0

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xiii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiv

Chapter 1. Introducing Ansible and IBM Power . 1
1.1 Why automation . 2

1.1.1 Orchestration versus automation . 3
1.2 Automation tools and techniques . 4

1.2.1 Common IT automation tools . 5
1.3 Understanding Ansible: A powerful automation tool . 5

1.3.1 Ansible architecture . 6
1.3.2 Options for implementing Ansible . 7
1.3.3 Ansible Automation Platform. 10
1.3.4 Event-driven automation . 15
1.3.5 Infrastructure as Code: integration of Ansible and Terraform 17
1.3.6 Provisioning . 19
1.3.7 Patch management . 20
1.3.8 Security and compliance. 20
1.3.9 Configuration management. 22
1.3.10 Business continuity . 23
1.3.11 Application development . 23

1.4 Introducing IBM Power . 24
1.4.1 IBM Power high availability . 25
1.4.2 IBM Power security . 25
1.4.3 IBM Power, operational efficiency, and sustainability . 26
1.4.4 Streamlining AI operations with advanced on-chip technologies 26
1.4.5 POWER processors and architecture . 26
1.4.6 PowerVM and virtualization. 28
1.4.7 Supported operating systems . 29
1.4.8 Key benefits of IBM Power compared to x86 servers . 29

1.5 Ansible for Power . 30
1.5.1 IBM Power Collections on Ansible Galaxy . 30
1.5.2 IBM Power Collections on Red Hat Automation Hub . 31
1.5.3 Ansible for Linux on Power . 31
1.5.4 Ansible for AIX . 40
1.5.5 Ansible for IBM i . 44
1.5.6 Ansible for IBM Power Hardware Management Console 52
1.5.7 Ansible for Power Virtual I/O server . 53
1.5.8 Ansible for IBM Power Systems Virtual Server . 54
1.5.9 Ansible for applications . 56

Chapter 2. Ansible architecture and design . 61
2.1 Ansible architecture and components . 62

2.1.1 Controller and client functions. 63
© Copyright IBM Corp. 2024. iii

2.2 Understanding the Ansible declarative language . 64
2.2.1 YAML structure . 64
2.2.2 Jinja2. 67

2.3 Understanding an Ansible inventory . 68
2.3.1 Overview of an Ansible inventory . 68
2.3.2 Overview of dynamic inventory . 70

2.4 Ansible tasks, playbooks, and modules . 79
2.4.1 Creating Ansible playbooks . 79

2.5 Ansible roles and collections. 86
2.5.1 Understanding roles in Ansible . 86
2.5.2 Creating and structuring Ansible roles . 87
2.5.3 Sharing and reusing roles in multiple playbooks. 89
2.5.4 Role dependencies and role-based variables . 90
2.5.5 Using collections . 91

2.6 Best practices for playbook and role design . 92
2.6.1 Writing modular and reusable playbooks . 93
2.6.2 Using Ansible Galaxy for role management . 94

2.7 Creating versions and documenting playbooks and roles. 96
2.7.1 Creating versions of playbooks and roles . 96
2.7.2 Common scenarios when using Git with Ansible . 96

2.8 Testing and validating playbooks and roles . 100
2.8.1 Testing playbooks and roles . 100
2.8.2 Validating playbooks and roles . 101

Chapter 3. Getting started with Ansible . 103
3.1 Designing your Ansible environment. 104

3.1.1 Starting simple: Ansible Core and Ansible Community. 104
3.1.2 Scaling up: Ansible Automation Platform . 105
3.1.3 Enterprise-ready environment. 118
3.1.4 Developing an “automation first” attitude . 120

3.2 Choosing the Ansible Controller node. 121
3.3 Installing your Ansible control node . 121

3.3.1 Linux as an Ansible Controller . 122
3.3.2 AIX as an Ansible Controller . 134
3.3.3 IBM i as an Ansible Controller. 143

3.4 Preparing your systems to be Ansible clients . 149
3.4.1 Linux as an Ansible managed client . 149
3.4.2 AIX as an Ansible managed client . 150
3.4.3 IBM i as an Ansible managed client . 151
3.4.4 Virtual I/O Server as an Ansible managed client. 160
3.4.5 Red Hat OpenShift as an Ansible managed client . 169
3.4.6 IBM Power Hardware Management Console as an Ansible managed client . . . 180

Chapter 4. Automated application deployment on IBM Power servers 191
4.1 Deploying and managing applications by using Ansible on Power servers 192
4.2 Automated application deployment on Power servers . 192

4.2.1 Ansible content for IBM Power . 192
4.2.2 IBM AIX, IBM i, and Linux on Power collections for Ansible 192

4.3 Deploying a simple Node.js application . 193
4.4 Orchestrating multitier application deployments . 194

4.4.1 Orchestration in the world of Kubernetes . 194
4.5 Continuous integration and continuous deployment pipelines with Ansible 194

4.5.1 CI/CD when using Ansible for IBM i . 195
iv Using Ansible for Automation in IBM Power Environments

4.6 Oracle DB automation on Power. 196
4.6.1 Why businesses opt for AIX to host their databases. 197
4.6.2 Automating the deployment of a single-node Oracle database with Ansible . . . 197
4.6.3 Automating the deployment of Oracle RAC with Ansible 201
4.6.4 Automating Oracle DBA operations . 214

4.7 SAP automation . 222
4.7.1 Red Hat Enterprise Linux System Roles for SAP . 225
4.7.2 Using the SAP LinuxLab automation . 228

Chapter 5. Infrastructure as Code by using Ansible . 239
5.1 IBM Power Virtualization Center . 240

5.1.1 Advantages of PowerVC. 240
5.1.2 Using the OpenStack Cloud modules . 240
5.1.3 Using the URI modules to interact with PowerVC API services 255

5.2 IBM Power Systems Virtual Server . 265
5.2.1 Using the IBM Cloud collection for Power Systems Virtual Server 265
5.2.2 Using the URI module for Power Systems Virtual Server 267

Chapter 6. Day 2 management operations . 279
6.1 Introducing Day 2 operations . 280

6.1.1 Storage . 280
6.1.2 Security and compliance. 281
6.1.3 Patches or upgrades. 281
6.1.4 Configuration and tuning. 282

6.2 Day 2 operations in Linux servers. 282
6.2.1 Installing system roles for Ansible automation . 282
6.2.2 Storage . 283
6.2.3 Security and compliance. 288
6.2.4 Patches and upgrades . 293
6.2.5 Configuration tuning . 297

6.3 Day 2 operations in AIX environments . 299
6.3.1 Storage . 299
6.3.2 Security . 311
6.3.3 Fixes . 317
6.3.4 Configuration tuning . 321

6.4 Day 2 operations in IBM i environments . 323
6.4.1 Storage . 323
6.4.2 Security and compliance. 325
6.4.3 Patch management . 327
6.4.4 Configuration tuning . 328

Chapter 7. Future trends and directions . 331
7.1 Ansible and IBM Power Roadmap . 332

7.1.1 Working closely with the IBM Power collections and their contents 332
7.2 Roadmap for Ansible automation in the Power ecosystem. 333

7.2.1 Ansible Automation Platform on IBM Power . 334
7.2.2 Visual Studio Code . 334
7.2.3 IBM watsonx Code Assistant for Red Hat Ansible Lightspeed 342

Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 349
Introduction . 350

What is IBM i Merlin . 350
The role of IBM i Merlin in the IBM i market . 351
IBM i Merlin: Problem-solving capabilities. 352
 Contents v

Benefits of IBM i Merlin for IBM i modernization . 352
Decades of collaboration: IBM and ARCAD . 353
Components of IBM i Merlin . 353
Comprehensive overview of IBM i Merlin content . 355

Ansible integration for IBM i lifecycle management through IBM i Merlin 358
The business demands for DevOps on IBM i . 362
IBM i Merlin for IBM i developers . 375
IBM i Merlin requirements . 386

Abbreviations and acronyms . 389

Related publications . 391
IBM Redbooks . 391
Help from IBM . 391
vi Using Ansible for Automation in IBM Power Environments

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2024. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at https://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX®
Db2®
DS8000®
IBM®
IBM Cloud®
IBM Cloud Pak®
IBM Consulting™
IBM FlashSystem®
IBM Instana™
IBM Security®

IBM Sterling®
IBM Z®
Instana®
Integrated Language Environment®
Micro-Partitioning®
Passport Advantage®
POWER®
Power8®
Power9®
PowerHA®

PowerVM®
QRadar®
Rational®
Redbooks®
Redbooks (logo) ®
SoftLayer®
Sterling™
SystemMirror®
Turbonomic®
WebSphere®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Intel, Intel Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.

ITIL is a Registered Trade Mark of AXELOS Limited.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Red Hat, Ansible, OpenShift, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/legal/copytrade.shtml

Preface

This IBM Redbooks® publication helps you install, tailor, and configure an automation
environment by using Red Hat Ansible in an IBM Power server environment. Ansible is a
versatile IT automation platform that you use to deploy and maintain your applications and
systems. With Ansible, you can automate almost anything: code deployment, network
configuration, server infrastructure deployment, security and patch management, and cloud
management. Ansible is implemented in a human-readable language (YAML) and uses
Secure Shell (SSH) to connect to the managed systems, with no agents to install on remote
systems.

This IBM Redbooks publication shows you how to integrate Ansible to manage all aspects of
your IBM Power infrastructure, including server hardware, the Hardware Management Console
(HMC), IBM PowerVM®, IBM PowerVC, IBM AIX®, IBM i, and Linux on Power. We provide
guidance about where to run your Ansible automation controller nodes, demonstrate how
Ansible can be installed on any operating system (OS) that is supported on IBM Power, and
show you how to set up your IBM Power infrastructure components to be managed by using
Ansible.

This publication is intended for use by anyone who is interested in automaton by using Ansible,
whether they are getting started or they are experts on Ansible and want to understand how to
integrate IBM Power into their existing environment.

Authors

This book was produced by a team of specialists from around the world with IBM Redbooks.

Tim Simon is an IBM Redbooks Project Leader who is based in Tulsa, Oklahoma, US. He
has over 40 years of experience with IBM®, primarily in a technical sales role working with
customers to help them create IBM solutions to solve their business problems. He holds a BS
degree in Math from Towson University in Maryland. He has worked with many IBM products
and has extensive experience creating customer solutions by using IBM Power, IBM Storage,
and IBM Z® throughout his career.

Jose Martin Abeleira is a Senior Systems and Storage Administrator at DGI (a Uruguay
Taxes Collection Agency). He is a Gold Redbooks Author, Certified Consulting IT Specialist,
and IBM Certified Systems Expert Enterprise Technical Support for IBM AIX and Linux in
Montevideo, Uruguay. He has worked with IBM for 8 years and has 18 years of AIX
experience. He holds an Information Systems degree from Universidad Ort Uruguay. His
areas of expertise include IBM Power, AIX, UNIX, Linux, Live Partition Mobility (LPM),
IBM PowerHA® SystemMirror®, storage area network (SAN), and storage systems from IBM
and other vendors. He teaches Systems Administration for the Systems Engineer career path
at the Universidad Catolica del Uruguay, and Infrastructure Administration in the Computer
Technologist career path that was created by the joint venture between Universidad del la
Republica Uruguay, Universidad del Trabajo del Uruguay, and Universidad Tecnologica.
© Copyright IBM Corp. 2024. ix

Shahid Ali is a Cloud Solution Lead for the MEA Region. At the time of writing, he is based in
Riyadh, Saudi Arabia, and leading hybrid multi-cloud solutions in the MEA region. He is an
experienced Enterprise Architect who joined IBM 5 years ago as an Enterprise Architect. He has
28 years of experience as an architect and consultant. Before joining IBM, he provided
consultancy services for some of the largest projects in Saudi Arabia for the Ministries of Interior,
Education, and Labor, and related organizations. These projects produced nationwide solutions
for fingerprinting, country-wide secure networks, smart ID cards, e-services portals, enterprise
resource planning systems, and massive, open online courses platforms. He has several IBM and
industry certifications, and is also a member of the IBM Academy of Technology.

Vijaybabu Anaimuthu is a Technical Consultant at IBM Systems Experts Labs who is based in
India. He holds a bachelor degree in Electrical and Electronics Engineering from Anna University,
Chennai. He has over 15 years of experience working with customers designing and deploying
solutions on IBM Power servers and AIX. He focuses on IT Infrastructure Enterprise Solutions,
technical enablement and implementations relative to IBM Power servers, Enterprise Pools,
performance, and automation. His areas of expertise include capacity planning, migration
planning, system performance, and automation.

Sambasiva Andaluri (Sam) is an experienced developer turned Solution Architect Leader with
over 30 years of experience. For the past decade, he has been a pre-sales and post-sales solution
architect for trading systems at Fidessa, a pre-sales solution architect at AWS, and an Site
Reliability Engineering onboarding independent software vendors (ISVs) for Google marketplace.

Marcelo Avalos Del Carpio is a Cloud Architect at Kyndryl Consulting who is based in Uruguay
with over 9 years of experience in IT. A former IBM leader, he specialized in deploying IBM
technical solutions for key accounts across South America and North America. He holds an
Electronic Systems Engineering degree from Escuela Militar de Ingeniería, Bolivia, and a master
degree in Project Management from GSPM UCI, Costa Rica. He is certified by The Open Group,
and specializes in IT infrastructure, cloud platforms, and DevOps, drawing from frameworks such
as PMI, ITIL, and TOGAF.

Thomas Baumann is Senior Systems Engineer and Managing Director of ACP IT Consulting
GmbH (formerly tiri GmbH) who is based in Hamburg, Germany, which is an IBM Business
Partner and a Red Hat Premier Partner. He has over 30 years of experience in computer
technology, and is also a trainer for IBM Software, Ansible Automation, Linux and cloud, and
Security and Threat Management.

Ivaylo Bozhinov is an IBM Power subject matter expert (SME) who is based at IBM Bulgaria. His
main area of expertise is solving complex hardware and software issues on IBM Power products,
IBM AIX, Virtual I/O Server (VIOS), HMC, IBM i, PowerVM, and Linux on Power servers. He has
been with IBM since 2015, and provides reactive break-patch, proactive, preventive, and cognitive
support.

Carlo Castillo is a Client Services Manager for IBM Power for Right Computer Systems, an
IBM Business Partner and Red Hat partner who is based in the Philippines. He has over 32 years
of experience in pre-sales and post-sales support; designing full IBM infrastructure solutions;
creating pre-sales configurations; performing IBM Power installation, implementation, and
integration services; providing post-sales services and technical support for customers; and
conducting presentations at customer engagements and corporate events. He was the first IBM
certified AIX Technical Support engineer in the Philippines in 1999. As training coordinator during
his Right Computer Systems tenure as an IBM Authorized Training Provider from 2007 to 2014, he
also administered the IBM Power curriculum, and conducted IBM training classes about AIX,
PureSystems, PowerVM, and IBM i. He holds a degree in Computer Data Processing
Management from the Polytechnic University of the Philippines.
x Using Ansible for Automation in IBM Power Environments

Rafael Cezario is a Senior Solutions Engineer at Blue Trust, an IBM Business Partner who is
based in Brazil. Previously, he was an employee of IBM, where he worked as a pre-sales
technical resource on IBM Power servers. He has 19 years of IT experience, and has worked on
various infrastructure projects, including design, implementation, demonstration, installation,
and integration of solutions. He has worked with various software on the IBM Power platform,
such as PowerVM implementations that include Shared Ethernet Adapter and virtual network
interface card, PowerVC, PowerSC, Red Hat OpenShift, Ansible, and Network Installation
Manager (NIM) server. During his career at IBM, he served as a consultant for large clients
regarding IBM Power and AIX, performed pre-sales and post-sales activities, and performed
presentations and demonstrations for clients. He has worked in several areas of infrastructure
during his career and became certified in several of these technologies, such as Cisco CCNA,
Nutanix NCA, and IBM AIX. He holds a degree in Electrical Engineering with a specialization in
Telecommunications from the Instituto de Ensino Superior de Brasília (IESB).

Stuart Cunliffe is a solution engineer within IBM Technology Expert Labs who is based in the
UK. He specializes in IBM Power servers. He has worked for IBM since graduating from
Leeds Metropolitan University in 1995, and has held roles in IBM Demonstration Group,
Global Technologies Services (GTS) System Outsourcing, eBusiness hosting, and
IBM Technical Support. A key area of his expertise is helping customers design and deliver
automation across their IBM Power environment with solutions that involve tools such as
Red Hat Ansible, HashiCorp Terraform, and IBM PowerVC.

Nilabja Haldar is an experienced Cloud Architect and Site Reliability Engineer and a certified
AWS, Google Cloud Platform, Azure, IBM Cloud®, Red Hat OpenShift solution architect. He
has 15 years of experience in various IT domains, such as public and hybrid multicloud,
technical consulting, solution design, implementation, transformation and migration, and data
center consolidation for worldwide organizations. He works in IBM Consulting™ as an
Infrastructure and Cloud architect, DevOps, and Site Reliability Engineering. He has a BTech
degree in Computer Science. His technical skills cover hybrid cloud, Google Cloud Platform,
Azure, IBM Cloud, Kubernetes, Red Hat OpenShift, DevOps, security, observability,
integration, and open-source software.

Munshi Hafizul Haque is a Senior Platform Consultant at Red Hat who is based in Kuala
Lumpur, Malaysia. Munshi is an experienced technologist in engineering, design, and the
architecture of PaaS and cloud infrastructures. At the time of writing, he is part of the Red Hat
Consulting Services team, where he helps organizations adopt automation, container
technology, and DevOps practices. He worked for IBM as a senior consultant with
IBM Systems Lab Services in Petaling Jaya, Malaysia. He is a specialist in IBM Power and
associated enterprise edition technology.

Subha Hari is a Senior Delivery Consultant from IBM Technology Expert Labs (Sustainability
Software) who is based in Bangalore, India. She has over 19 years of experience, primarily in
Performance Testing of the IBM Sterling™® Order Management suite of applications,
Production Performance Health Checks, sizing, and high availability and disaster recovery
(HADR) activities. She holds a Masters degree (Master of Computer Applications) from
Bharathidasan University, Trichy, India. Subha has led various initiatives on automation that
used Ansible, Python, and shell scripting. Her areas of expertise include pre-sales,
performance testing/benchmarking, and upgrading and modernizing the IBM Sterling suite of
products.

Andrey Klyachkin is a solution architect at eNFence, an IBM Business Partner who is based
in Germany. He has more than 25 years experience in UNIX systems, designing and
supporting AIX and Linux systems for different customers worldwide. He is a co-author of
many IBM AIX and IBM Power certification courses, and is an IBM Champion and IBM AIX
Community Advocate. He is also a Red Hat Certified Engineer and Red Hat Certified
Instructor.
 Preface xi

Osman Omer is a senior IT Managing Consultant who is based in Qatar. He has worked for
IBM for 20 years. He worked as a software engineer for 8 years in Rochester, Minnesota
before joining Lab Services. He has worked for IBM Systems management, cloud solutions,
and automation services. His first project was porting IBM i to be managed by HMC, and then
worked on IBM i OS enablement for system management, tools, Systems Director, VMControl,
and PowerVC. As a Lab Services consultant, he helps IBM customers with the products that
he used to develop. After moving to Qatar, he became a member of the MEA team that is
responsible for cloud and automation services delivery in the region. He acts as the EMEA
Power Services Delivery Practice Leader in addition to his consulting and leadership
responsibilities. Osman holds a master degree in Computer Science from South Dakota State
University.

Rosana Ramos is a Security Architect at the IBM Systems BISO Organization. She holds a
bachelor degree in Computer Engineering from Universidad de Guadalajara México and a
master degree in Computer Science from Universidad Autonoma de Guadalajara. She has more
than 10 years of experience in Linux and UNIX system administration, with a specialty in
implementing security best practices and system hardening. She is certified as a Certified
Information Systems Security Professional (CISSP), Certified Ethical Hacker (CEH), Certified in
Risk and Information Systems Control (CRISC), and a Master Certified Technical Specialist by
the Open Group.

Prashant Sharma is an IBM Power Brand Technical Specialist who is based in Singapore. He
holds a degree in Information Technology from University of Teesside, England. He has over
12 years of experience in IT Infrastructure Enterprise Solutioning; pre-sales, client, and partner
consultation; and technical enablement and implementations relative to IBM Power servers, IBM i,
and IBM Storage.

Stephen Tremain has been with IBM for 17 years, and works as a Software Engineer at
IBM Security® - Australia Development Lab on the Gold Coast in Queensland, Australia.
Before joining IBM, Stephen worked as a UNIX System Administrator at an investment bank
for 10 years, and also worked in the education and research sectors. Stephen graduated from
the University of New England in Australia with a BS and a Graduate Diploma in Agricultural
Sciences.

Prerna Upmanyu is a Software Performance Analyst in the Cognitive Systems Power
Servers performance team in India. She holds an M.Tech degree in Software Systems from
BITS Pilani. Prerna has over 15 years of experience working with customers designing and
deploying solutions on IBM Power servers. She focuses on automation and data lakes-based
design and deployments. Prerna’s areas of expertise include system performance,
availability, and automation.

Sundaragopal Venkatraman (Sundar) is a Red Hat Industry Specialist. He has diversified
skills in hybrid cloud automation, application migration, and modernization of Red Hat and IBM
portfolios. Sundar has over 23 years of experience working closely with customers to
overcome business challenges by using technologies. He has been recognized as a Platinum
Author for IBM Redbooks publications. He holds multiple patents, and is an Invention Plateau
holder. He has delivered key notes at worldwide conferences on technology transformation
and modernization. He is a co-chair for the IT specialist board in the Asia-Pacific region.

Thanks to the following people for their contributions to this project:

Sukanta Basak, Senior Manager - Solution Architecture Partner Ecosystem
Red Hat India, Bengaluru

Jitendra Singh, Specialist Solution Architect Automation and SAP
Red Hat India, Bengaluru
xii Using Ansible for Automation in IBM Power Environments

Anant Dhar, Senior Ecosystem Solution Architect
Red Hat India, Bengaluru

Dr Manoj Kumar Jain, Automation Specialist Solution Architect
IBM India

Kanan Ganjoo, Customer Success Manager Architect - Observability
IBM India, Bangalore

Bhargavaram Akula, WW ISV Engineering
IBM India, Hyderabad

Shiva Laveti, Systems Engineer - ISV Engineering Infrastructure
IBM India, Bangalore,

Benoit Marolleau, Senior Solution Architect - IBM Client Engineering EMEA
IBM France, Montpellier

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

https://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on LinkedIn:

https://www.linkedin.com/groups/2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/subscribe

� Stay current on recent Redbooks publications with RSS Feeds:

https://www.redbooks.ibm.com/rss.html
xiv Using Ansible for Automation in IBM Power Environments

https://www.linkedin.com/groups/2130806
https://www.redbooks.ibm.com/subscribe
https://www.redbooks.ibm.com/rss.html

Chapter 1. Introducing Ansible and IBM
Power

This chapter describes the need for automation in complex IT environments and some of the
technologies and tools that are available to bring the benefits of automation to your business.
We describe Ansible, and why it is considered the most versatile automation solution.

We also describe IBM Power, which is the IBM powerful and robust midrange server platform.
We provide an overview of IBM Power and show how your IBM Power servers can be
automated by using the same Ansible tools that you might be using for other servers, storage
devices, and networking components in your environment.

We also explore how Ansible automation can reshape the IT management landscape by
providing an end-to-end automation platform to configure systems, deploy software, and
orchestrate workflows on IBM Power. We delve into provisioning, patch management,
security, configuration, business continuity, disaster recovery (DR), and application to
showcase how Ansible and IBM Power harness the combined potential of cutting-edge
technology and a highly configurable automation platform.

The following topics are described in this chapter:

� Why automation
� Automation tools and techniques
� Understanding Ansible: A powerful automation tool
� Introducing IBM Power
� Ansible for Power

1

© Copyright IBM Corp. 2024. 1

1.1 Why automation

The dictionary defines automation as “the technique of making an apparatus, a process, or a
system operate automatically.” We define automation as “the creation and application of
technology or programs to replace repeatable tasks with minimal human intervention.”

Automation in everyday life has been a staple for many years, for example:

� Automatic dishwashers do our dishes and automatic washers and dryers clean our
clothes.

� Robotic machines do repetitive tasks in manufacturing.

� Machines automatically “call home” when an error is detected.

� Features in your automobile automatically check and report on safety issues and can even
enable the car to drive itself.

Automation is designed to do simple, repetitive tasks that consume time and energy in
everyday life. However, automation has become a necessity in information technology
because the number of components that must be managed is increasing exponentially.

Here are some benefits of automation:

� Perform processes that are difficult to be done manually.

IT automation tools help you perform different tasks that are difficult to perform manually. For
example, provisioning and deploying environments manually is a laborious process that
requires highly skilled personnel with hands-on knowledge. Using automation to apply
Infrastructure as Code (IaC) enables your IT team to provide self-service capabilities to
developers. It delivers preapproved resources and configurations quickly, on demand, and
without manual intervention.

� Create solutions that work consistently across different technologies or cloud platforms.

IT team tasks are complex in hybrid and multicloud environments. Every cloud provider has
their own tools and methods, which rarely work well with each other and makes life difficult
for IT teams because they must manage each cloud separately and in a different manner.
You can create automation assets by codifying resources across all clouds. You can have a
single application programming interface (API) for an operation regardless of the cloud
platform, which helps IT teams operate more efficiently and effectively.

� Keep pace with increasing infrastructure needs.

Infrastructure needs grow rapidly, so IT teams strive hard to manage new requirements,
especially if the staffing levels are low. IT automation tools help the IT team handle this
situation by eliminating or streamlining a vast array of manual tasks and processes.

� Integrate and deploy applications quickly with zero downtime.

For modernization, fast and reliable application development is crucial. The continuous
integration and continuous deployment (CI/CD) approach helps organizations deliver
applications more swiftly and with minimal errors. By adopting a CI/CD pipeline that applies
automation throughout the application lifecycle, including integration, testing, delivery, and
deployment, the teams can produce stable applications more quickly and with zero
downtime.

� Produce trusted, secured, and compliant applications.

When there is an automated CI/CD pipeline with security gates, you can be assured that
trusted software is produced for deployment. This automation helps streamline daily
operations and integrate security and compliance into the processes from the beginning.
2 Using Ansible for Automation in IBM Power Environments

� Construct remediation processes.

When there is a security breach, they should be detected and contained as quickly as
possible. If there are multiple systems and platforms, then it is a complicated task to apply
fixes manually, and they can be error-prone too. Every second matters during a security
breach, and automation helps a security team apply remediation to affected systems
across all environments more quickly with fewer chances for errors.

� Get more time to focus on competitive and novel initiatives.

Most IT tasks can be automated to some extent. Automating even a few of them can help
reduce the amount of time that IT teams spend on manual processes. The more
automation that is used, the more time the teams must work on futuristic and innovative
projects.

� Eliminate human errors.

Manual routine tasks can be error-prone. With automation, they can be eliminated and you
can expect predictable and consistent results.

� Get to know the operational complexities and costs.

Although automation helps to streamline and manage complex tasks, it can also provide
operational analytics, which can help you understand and reduce the costs that are
involved.

� Transforms organizations.

When automation becomes second nature to an organization, the teams can save time
and money, and have more time to work on strategic initiatives. It increases productivity
and decreases costs due to human errors. It increases employee satisfaction because
manual and repetitive tasks are boring and laborious. Happier employees, less
error-prone processes, and cost and time savings makes a successful organization.

1.1.1 Orchestration versus automation

Automation generally applies to doing a single process, task, or a few related tasks. For
example, checking whether some systems need updates or whether updates were
performed.

Orchestration refers to managing multiple automated tasks to create a dynamic workflow. For
example, checking whether if your systems need updates; if the update is needed, perform
the update on each system; and if a restart is needed, perform the restart or inform the user
that a restart is needed or is scheduled for later.

The two concepts are closely related, and at times the line between the two concepts can be
blurry. The biggest differentiator is that orchestration takes a set of automated tasks and
groups them; checks for values before and after a task completes; checks the results for each
task (was it successful or not); adds intelligence to the workflow; and adapts the steps based
on results from each step.

You can consider automation as a subset of orchestration where you cannot orchestrate
manual, non-automated tasks, but multiple automation tasks strung together are not
orchestration unless they include programmatic control over the process based on the results
of each task.

Automation and orchestration are not meant to replace the role of the system administrator,
but aim to help them create more reliable automated tasks and provide time to focus on
innovation, problem solving, or studying new technologies instead of day-to-day manual
tasks.
Chapter 1. Introducing Ansible and IBM Power 3

Figure 1-1 illustrates the differences between automation and orchestration.

Figure 1-1 Automation versus orchestration

1.2 Automation tools and techniques

Automation of IT processes has been a focus for many years now, and many tools and
techniques have been developed that companies are using. Then, the COVID-19 pandemic
arrived in 2020, which accelerated the pace of automation because many companies were
forced to start using automation to address the problems that were caused by the crisis.
4 Using Ansible for Automation in IBM Power Environments

1.2.1 Common IT automation tools

There are many tools that are available for automation in the IT environment. Here is a list of
some of the more widely used tools:

� Chef (now Progress Chef) is a configuration management tool that is written in Ruby and
Erlang. It uses a pure-Ruby, domain-specific language (DSL) for writing system
configuration “recipes”. Chef is used to streamline the task of configuring and maintaining
a company's servers and can integrate with cloud-based platforms such as Amazon EC2,
Google Cloud Platform, Oracle Cloud, OpenStack, IBM Cloud, Microsoft Azure, and
Rackspace to automatically provision and configure new machines.

� Puppet is an automated administrative engine for your Linux, UNIX, and Windows
systems that performs administrative tasks (such as adding users, installing packages,
and updating server configurations) based on a centralized specification. You can manage
and automate infrastructure and complex workflows with reusable blocks of self-healing
IaC, and quickly deploy infrastructure to support your evolving business needs at will (and
at scale) with model-driven and task-based configuration management.

� HashiCorp Terraform is an IaC tool that you can use to define both cloud and on-premises
resources in human-readable configuration files that you can version, reuse, and share.
You can use a consistent workflow to provision and manage your infrastructure throughout
its lifecycle. Terraform can manage low-level components like compute, storage, and
networking resources, and high-level components like DNS entries and Software as a
Service (SaaS) features.

In August of 2023, HashiCorp announced that future versions of Terraform will be covered
by the business source license (BSL) compared to current versions being open-source
under the Mozilla Public License (MPL) 2.0 license. Therefore, the Linux Foundation
announced the formation of OpenTofu, an open source alternative to Terraform for code
provisioning.

� Ansible is an open-source, cross-platform tool for resource provisioning automation that
DevOps professionals use for continuous deployment (CD) of software code by leveraging
an “IaC” approach. The Ansible automation platform has evolved to deliver sophisticated
automation solutions for operators, administrators, and IT decision-makers across various
technical disciplines. It is an enterprise automation solution with flourishing open-source
software. It operates on several UNIX like platforms, and can manage systems like UNIX
and Microsoft architectures. It comes with descriptive language for describing system
settings.

Because of the broad acceptance of the Ansible platform, its open-source design, and its
wide support for many devices and platforms, it is becoming a dominant tool in the market.
However, it is also common to use other automation tools with Ansible to do more complex
automation. For example, many companies use Ansible with Terraform to provide automatic
provisioning of their infrastructure.

1.3 Understanding Ansible: A powerful automation tool

Ansible is a versatile, open-source automation platform that can help streamline IT
operations. It offers a comprehensive set of features for configuring systems, deploying
software, and orchestrating complex workflows. Ansible core strengths are its simplicity and
focus on security and reliability.
Chapter 1. Introducing Ansible and IBM Power 5

1.3.1 Ansible architecture

As shown in Figure 1-2, the Ansible architecture consists of an Ansible Controller and one or
more Ansible client hosts. The controller runs automation tasks and houses Ansible
collections, which contain modules, plug-ins, and roles defining the actions Ansible can
perform on client nodes.

Figure 1-2 Simplified Ansible architecture

Playbooks: The heart of Ansible Automation
Ansible playbooks are YAML files that define sequences of tasks to run on remote hosts.
These tasks can range from installing packages to configuring services or copying files.
Playbooks enable IT teams to automate infrastructure provisioning, configuration
management, application deployment, and more.

Why choose Ansible
Ansible offers numerous benefits for IT professionals seeking to improve efficiency, scalability,
and consistency in their infrastructure. Here are some key advantages:

� Versatility: Ansible supports a wide range of devices and can scale to accommodate
growing environments and automation needs.

� Agentless architecture: Ansible manages devices by using Secure Shell (SSH), which
eliminates the need for agents on target systems.

� Flexibility: Ansible can be used for simple CLI tasks and complex workflows that are
defined in playbooks.

� Extensive module library: Ansible provides a rich collection of modules for managing
various systems, cloud infrastructures, and OpenStack.

� Declarative approach: With the Ansible declarative syntax, you can define the state of a
system, and Ansible takes the necessary steps to achieve it.

� Ease of learning: The Ansible YAML syntax and minimal learning curve make it accessible
to IT professionals at all levels.

Ansible is a powerful automation tool that can help organizations improve efficiency,
scalability, and reliability in their IT infrastructure. By leveraging Ansible playbooks, IT teams
can streamline routine tasks, automate complex workflows, and help ensure consistent
configurations across their environments.
6 Using Ansible for Automation in IBM Power Environments

1.3.2 Options for implementing Ansible

As you decide to implement Ansible for IT management, it is essential to select the correct
product and support level to meet your organization's needs. This section describes some of
the options that are available to you.

Ansible Community
The community versions of Ansible primarily include the following ones:

� Ansible Core

Ansible Core is a fundamental part of Ansible. It provides the core automation engine. It is
an open-source tool that includes the basic functions for configuration management,
application deployment, and task automation. Ansible Core includes modules, plug-ins,
and the CLI that is needed to run playbooks and manage configurations.

� AWX

AWX is the upstream, open-source project that serves as the community version of
Red Hat Ansible Tower. AWX provides a web-based UI, Representational State Transfer
(REST) API, and task engine for managing Ansible automation at scale. AWX offers
role-based access control (RBAC), job scheduling, graphical inventory management, and
more. It helps users manage and scale automation efforts.

� Ansible Collections

Ansible Collections are pre-packaged modules, roles, and plug-ins that are created and
shared by the community. With Collections, users can extend Ansible functions with more
content that is often maintained by the community or specific organizations. Collections
can be downloaded from Ansible Galaxy, a community hub for sharing and discovering
Ansible content.

� Ansible Galaxy

Ansible Galaxy is a repository for sharing and discovering Ansible roles and collections. It
is a community-driven platform where users can find reusable Ansible content to simplify
automation tasks. It provides a searchable repository of roles and collections that are
created by the Ansible community, which can be integrated into your automation
workflows.

These community versions are suitable for individual users, small teams, and development
environments but lack the formal support and advanced features that are provided by
Red Hat Ansible Automation Platform.

Ansible Automation Platform
Ansible Automation Platform is a subscription-based enterprise solution that combines over
20 community projects into a fully supported automation platform. Ansible Automation
Platform provides curated, certified, and validated Ansible Collections and roles from partners
like IBM, Juniper, Cisco, and public cloud providers.

Note: Although AWX is available at no charge, it does not come with enterprise-level
support or guarantees.
Chapter 1. Introducing Ansible and IBM Power 7

Here are the key considerations for choosing Ansible Automation Platform:

� Support level: Ansible Automation Platform offers enterprise-grade support, which includes
SLAs for security, compatibility, and upgrades. Community options might have limited
support.

� Features: Ansible Automation Platform includes features beyond Ansible Core, such as a
web interface and integration with other tools.

� Cost: Ansible Automation Platform is a subscription-based product, but community options
are available at no charge.

� Scale and complexity: For large organizations with complex automation needs, Ansible
Automation Platform might be the better choice due to its enterprise-grade features and
support.

By carefully evaluating these factors, you can select the Ansible offering that best aligns with
your organization's goals, budget, and support requirements.

Table 1-1 compares these offerings.

Table 1-1 Comparing Ansible offerings

Which method you use to procure Ansible is determined by your business requirements. If
your automation environment is small and not business critical, it is acceptable to use the
community-supported versions. However, if you are supporting business-critical
environments, consider the benefits of a supported enterprise product. Consider an
enterprise solution if you have the following requirements:

� Require enhanced security.

� Are embarking on an IT transformation initiative.

� Are ready to expand automation to include more people, teams, and use cases.

� Need flexibility to adapt to changing business requirements-with proven, innovative
solutions.

� Want to prioritize automation objectives over managing automation infrastructure.

Which Ansible option is right for my organization
Community Ansible is suitable for individuals and small teams seeking automation for
personal workloads or home lab environments. For collaborative automation efforts, AWX or
Ansible Automation Platform offer more robust options.

Although AWX is a no-charge, open-source project, it lacks enterprise-grade support, such as
SLAs for security, compatibility, and upgrade migrations. This lack of support can lead to
hidden costs that are associated with security breaches and time-consuming fixes. However,
AWX can be valuable for small-scale labs, developers contributing to the upstream code, or
as a sandbox for learning Ansible Automation Platform before migrating to an enterprise
solution.

Technology Community/Upstream Supported/Downstream

Ansible Core X

Community Ansible X

AWX X

Ansible Automation Platform X
8 Using Ansible for Automation in IBM Power Environments

For organizations aiming to scale automation at an enterprise level, Ansible Automation
Platform is a more comprehensive choice. It offers developer tools, flexible deployment
options, and SLAs for compatibility, upgrades, and security. Ansible Automation Platform also
provides transparent and efficient scaling of automation investments.

Table 1-2 outlines the key capabilities of each option to help you determine whether
Community Ansible, AWX, or Ansible Automation Platform best aligns with your
organization's needs.

Table 1-2 Community Ansible and AWX compared to Ansible Automation Platform

Capability Community Ansible and AWX Ansible Automation Platform

Security Not available Trusted chain-of-custody for certified and private
content.

Certified content and
partner ecosystem

Not available 140+ certified content collections across 60+ partners.
Benefit from prebuilt, fully supported, and certified
automation content from Red Hat and partners.

Lifecycle support Not available At least 18 months of enterprise support per release.
Critical bugpatch and security vulnerability back porting
for all components.

Legal protections No protections Intellectual property protections through the Open
Source Assurance Agreement.

Analytics Not available Automation analytics and Red Hat Insights for Ansible
Automation Platform offer in-depth analytics and
reporting for planning and tracking performance and
adoption.

Upgrades and
migrations

Not supported Supported migration to major releases and upgrades to
minor releases.

Training and consulting Not available Expert resources to help you build and run a successful
automation practice that is backed by robust training
offerings and support. Hands-on migration assistance
from AWX to the Ansible Automation Platform is also
available.

Cloud deployment
options

Not available Managed and self-managed applications are available
to deploy on your cloud of choice, which includes
Microsoft Azure, AWS, and Google Cloud. Counts
toward committed expense agreements. Supported by
Red Hat with integrated billing. View deployment
options and pricing information.

Event-Driven Ansible Separate upstream project that
requires manual integration into
your environment.

Event-Driven Ansible is an integrated and tested
product component of the Ansible Automation Platform
that reduces manual tasks, delivers more efficient IT
operations, and frees your teams to focus on
innovation.

Private Automation Hub Separate upstream project that
requires manual integration into
your environment.

Private Automation Hub is an integrated and tested
product component of Ansible Automation Platform.

IBM watsonx Code
Assistant for Red Hat
Ansible Lightspeed

A generative artificial intelligence
(AI) service for task creation that
is available to all Ansible users.

A full commercial version of Ansible Lightspeed.
IBM watsonx Code Assistant for Red Hat Ansible
Lightspeed is available for Ansible Automation Platform
subscribers.
Chapter 1. Introducing Ansible and IBM Power 9

When considering automation to address resource constraints, organizations must evaluate
their readiness to manage disparate tools and their interest in contributing to open-source
development models.

Ansible Automation Platform offers a distinct advantage with Event-Driven Ansible. This
feature automates tasks by connecting events to corresponding actions through rules. By
defining rulebooks, you enable Event-Driven Ansible to automatically recognize events, match
them to appropriate actions, and run them. This approach frees your teams to focus on
high-value work.

Ansible Automation Platform is a trusted enterprise solution with a proven track record. It is
used by over 3,000 global customers across various industries to create, manage, and scale
IT automation. As a comprehensive, integrated solution, it combines open-source innovation
with enterprise-hardened features to boost productivity and accelerate project completion.

1.3.3 Ansible Automation Platform

Ansible Automation Platform is a robust, end-to-end automation platform that helps you
streamline IT operations. Built on open-source innovation and hardened for enterprise
environments, Ansible Automation Platform offers a comprehensive set of tools for
configuring systems, deploying software, and orchestrating advanced workflows. It empowers
organizations to create, manage, and scale automation across their entire enterprise.

End-to-end automation
Ansible Automation Platform is a strategic automation solution that is used by every Fortune
500 company in the airline, government, and military sectors to create, manage, and scale
automation strategies.1

Creating and sharing
Developers can write consistent code in an execution environment without constraints or
operational overhead by using the following features:

� Event-Driven Ansible can automate IT actions with user-defined, rule-based constructs
and create end-to-end automated scenarios for use cases across the IT landscape.

� Ansible content collections contain Red Hat Ansible Certified Content and Ansible
validated content that is reusable code to automate faster.

� Ansible content tools help developers create consistent code, streamlining the building
and deployment of execution environments to speed development cycles and realize value
quicker.

� Automation execution environments are container images that are used to run Ansible
Playbooks and roles.

Managing and measuring
Operations teams can automate from development through production by using the following
tools:

� Ansible Automation Hubs, where you can find, download, and share supported collections.
Private Automation Hub is a curated library of automation content for internal teams to
share.

� An automation controller is a centralized management tool to manage inventory, launch
and schedule workflows, track changes, and integrate reporting with a centralized UI.

1 Source: https://www.redhat.com/en/topics/automation/why-choose-red-hat-for-automation
10 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/topics/automation/why-choose-red-hat-for-automation

� The Ansible Automation Platform trusted supply chain offers enhanced security and
compliance. For more information, see What’s new in Ansible Automation Platform 2.3.

� Automation analytics and Red Hat Insights for Ansible Automation Platform provide rich
reporting and advanced analytics to optimize your automation, proactively identify
potential issues, mitigate vulnerabilities, and improve resolution times.

Scaling up and out
As more people start to use automation tools, IT architects can design and expand
automation tactics across multiple environments and geographies by using an automation
mesh, which can scale automation of large inventories across diverse network topologies,
platforms, and regions. Flexible design options help you deliver automation across physical
and virtual data centers, hybrid cloud environments, and edge locations, localizing
automation execution to improve network performance. An automation mesh helps your
organization operate at a global scale.

Ansible Automation Platform is a single automation platform for multiple use cases:

� Hybrid cloud: Automate cloud-native environments and manage infrastructure and
services across public, private, and hybrid clouds with certified integrations.

� Edge: Standardize configuration and deployment across your entire IT landscape (from
data center to cloud to edge environments) with a single, consistent automation platform.

� Networks: Manage entire network and IT processes across physical networks,
software-defined networks, and cloud-based networks to edge locations.

� Security: Orchestrate security systems by using a curated collection of modules, roles,
research from IDC, and playbooks to investigate and respond to threats.

� Infrastructure: Consistently deploy, manage, and scale infrastructure workloads where it
makes the most sense in your physical data center, private or public cloud, or at the
network edge.

� Provisioning: Streamline the process of PXE starting and kickstarting bare-metal servers
or VMs, and creating virtual or cloud instances from templates.

� Configuration management: Centralize configuration file management and deployment
with a low learning curve for administrators, developers, and IT managers.

For more information, see Red Hat Ansible Automation Platform: A beginner’s guide.
Chapter 1. Introducing Ansible and IBM Power 11

https://developers.redhat.com/blog/2022/11/29/whats-new-ansible-automation-platform-23
https://www.redhat.com/en/resources/ansible-automation-platform-beginners-guide-ebook
https://www.redhat.com/en/resources/business-value-red-hat-ansible-automation-analyst-paper
https://www.redhat.com/en/resources/business-value-red-hat-ansible-automation-analyst-paper

Ansible Automation Platform core components and architecture
Figure 1-3 shows the Ansible Automation Platform components and architecture.

Figure 1-3 Ansible Automation Platform core components2

Automation controller
The automation controller is a distributed system where different software components can
be colocated or deployed across multiple compute nodes. Automation controller is the control
plane for automation, and includes a UI, browse-able API, RBAC, job scheduling, integrated
notifications, graphical inventory management, CI/CD integrations, and workflow visualizer
functions. Manage inventory, launch and schedule workflows, track changes, and integrate
into reporting, all from a centralized UI and RESTful API.

In the installer, node types of control, hybrid, execution, and hop are provided as abstractions
to help the user design the topology that is appropriate for their use case.

Automation hub
With the automation hub, you discover and use new certified automation content from Red
Hat Ansible and Certified Business Partners. On the Ansible Automation Hub, you can
discover and manage Ansible Collections, which are supported automation content that is
developed by Red Hat and its partners for use cases such as cloud automation, network
automation, and security automation.

Private Automation Hub provides both disconnected and on-premises solutions for
synchronizing collections and execution environment images from a Red Hat cloud
automation hub. You can also use other sources such as Ansible Galaxy or other container
registries to provide content to your Private Automation Hub. Private automation hubs can
integrate into your enterprise directory and your CI/CD pipelines.

Figure 1-4 on page 13 shows the development cycle for an automated execution
environment.

2 Source: https://www.ansible.com/blog/peeling-back-the-layers-and-understanding-automation-mesh
12 Using Ansible for Automation in IBM Power Environments

https://www.ansible.com/blog/peeling-back-the-layers-and-understanding-automation-mesh

Figure 1-4 Development cycle of an automation execution environment3

Execution environment
An automation execution environment is a container image that is used to run Ansible
playbooks and roles. Automation execution environments provide a defined, consistent, and
portable way to build and distribute your automation environment between development and
production. With execution environments, Ansible Automation Platform administrators can
provide and manage the automation environments that meet the needs of different teams,
such as networking and cloud teams. These environments also enable automation teams to
define, build, and update their automation environments themselves. Execution environments
provide a common language to communicate automation dependency between automation
developers, architects, and platform administrators.

Figure 1-5 details the automation execution environment.

Figure 1-5 Anatomy of automation execution environment4

Ansible Core (Ansible Engine)
Ansible Engine is an implementation in which the strategy has slightly changed. Instead of
shipping a “kitchen sink” package that is repackaged from the upstream Ansible Project,
going forward, Ansible Automation Platform ships the ansible-core package as a
stand-alone Red Hat Package Manager and within execution environments.

3 Source: https://cloudnroll.com/2023/05/22/understanding-and-creating-ansible-execution-environments/
4 Source: https://www.openvirtualization.pro/whats-new-in-red-hat-ansible-automation-platform-2/
Chapter 1. Introducing Ansible and IBM Power 13

https://cloudnroll.com/2023/05/22/understanding-and-creating-ansible-execution-environments/
https://www.openvirtualization.pro/whats-new-in-red-hat-ansible-automation-platform-2/

Automation mesh
An automation mesh is an overlay network that is intended to ease the distribution of work
across a large and dispersed collection of workers through nodes that establish peer-to-peer
connections with each other by using existing networks. An automation mesh uses unique
node types to create both the control and execution plane, as shown in Figure 1-6.

Figure 1-6 Sample automation mesh networking

Control plane
The control plane consists of hybrid and control nodes:

� Hybrid nodes: The default node type for control plane nodes. They are responsible for
automation controller runtime functions like project updates, management jobs, and
ansible-runner task operations. Hybrid nodes are also used for automation execution.

� Control nodes: The control nodes run project and inventory updates and system jobs, but
not regular jobs. Execution capabilities are disabled on these nodes.

Execution plane
The execution plane consists of execution nodes that run automation on behalf of the control
plane and have no control functions, and consist of hop and execution nodes.

� Execution nodes: Run jobs under ansible-runner with Podman isolation. This node type
is similar to isolated nodes. It is the default node type for execution plane nodes.

� Hop nodes: Similar to a jump host, hop nodes route traffic to other execution nodes. Hop
nodes cannot run automation.

� Peer relationship: Defines the node-to-node connections between controller and execution
nodes.

For more information, see Ansible Automation Platform.
14 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/automation.html

1.3.4 Event-driven automation

Event-driven automation (EDA) is the process of responding automatically to changing
conditions in an IT environment to help resolve issues faster and reduce routine and repetitive
tasks.5

EDA helps connect data, analytics, and service requests to automated actions so that
activities, such as responding to an outage or adjusting some aspect of an IT system, can
take place in a single, rapid motion. Automating in an “if-this-then-that” fashion helps IT teams
manage how and when to target specific actions.

Figure 1-7 shows a typical EDA environment.

Figure 1-7 Typical event-driven environment 6

What is an IT event
An event refers to any detectable occurrence that has significance for the management of an
IT infrastructure or the delivery of an IT service. Events are often identified by third-party
monitoring tools, and typically indicate significant occurrences or changes of state in
applications, hardware, software, cloud instances, or other technologies.

What does it mean to be event-driven
In an IT environment, being event-driven means connecting data and service requests to
automated actions so that manual steps that are typically taken by IT teams can happen in a
single automated workflow. With EDA, systems can initiate a predefined automated response
when an event occurs.

For example, a system outage can trigger an event that automatically runs a specific action,
such as logging a trouble ticket, gathering facts that are needed for troubleshooting, or
performing a restart. Because these actions are predefined and automated, they can be
performed more quickly than if the required steps were done manually.

5 Source: https://www.redhat.com/en/topics/automation/what-is-event-driven-automation
6 Source: https://www.redhat.com/en/blog/achieving-speed-and-accuracy-through-event-driven-automation
Chapter 1. Introducing Ansible and IBM Power 15

https://www.redhat.com/en/topics/automation/what-is-event-driven-automation
https://www.redhat.com/en/blog/achieving-speed-and-accuracy-through-event-driven-automation

What does event-driven automation offer IT teams
As organizations strive to use automation more strategically across hybrid cloud
environments and edge locations, they often start by automating IT actions that are central to
management and service delivery. Although automation can increase the speed and agility of
these processes and minimize human error, some events still require manual troubleshooting
and information gathering, which can delay resolution and disrupt everyday operations.

EDA can help teams move from a reactive to a proactive approach to IT management and
streamline IT actions with full end-to-end automation. Solutions with event-handling
capabilities extend the usage of automation across domains, processes, and geographies,
which advances automation maturity by helping ensure operational consistency, resilience,
and efficiency.

EDA can help IT teams to achieve the following goals:

� Select ideal tasks to automate, and then IT domain experts, such as a network engineer,
flexibly apply automation to key needs.

� Build existing operational knowledge into automated decision-making and actions.

� Complete repetitive tasks efficiently and deliver services more quickly.

� Reduce low-level tasks and use valuable resources for other priorities.

� Address problems rapidly before they become urgent issues.

� Automate repetitive tasks for networking, edge, infrastructure, DevOps, security, and
cloud.

Event-driven automation use cases
Getting started with EDA begins with identifying repetitive, mundane tasks that IT teams
complete manually and frequently. Some common use cases include the following ones:

� Automated remediation: EDA can connect the analytics or tickets that flag an issue to the
automated steps that will resolve it. Teams can automate the resolution of tickets, the
remediation of issues that are based on known system-behavior patterns, or the response
to monitored events, such as an alert that a system needs more capacity.

� Ticket enrichment: EDA can contact relevant systems, gather data, and update
corresponding tickets with the rich detail that is needed for a thorough effective root cause
analysis (RCA) process.

� Automated platform scaling: Application workloads and platforms rely on automated
provisioning to help ensure business continuity and reduce the potential impact on
customers. Rather than waiting for manual provisioning, IT teams can combine capacity
and performance metrics with EDA to automatically provision containers, cloud
infrastructure, virtual machines (VMs), and other technologies.

� Risk mitigation: With EDA, security responses can be started when a risk is identified. For
example, if a risk is identified on a firewall, an event-driven solution can immediately close
down the firewall and create a service ticket, which reduces the opportunity for exposure
to a security breach.
16 Using Ansible for Automation in IBM Power Environments

� Automated tuning and capacity management: Ongoing tuning and capacity management
are necessary for many IT functions, such as managing web applications and monitoring
storage pools. For some teams, tuning occurs thousands or tens of thousands of times per
month, making it time-consuming when done manually. EDA can respond to these types of
events based on predetermined rules to address things like low storage capacity and
trigger automatic adjustments.

� Scaling automation: As with tuning, it can be burdensome to manually scale applications'
storage, processing, and network bandwidth to meet user demand. For example, an EDA
solution can monitor buffer pools, automatically adjusting sizes as limits are reached.

For more information, see What is event-driven automation.

1.3.5 Infrastructure as Code: integration of Ansible and Terraform

In the modern landscape of cloud computing and DevOps practices, IaC has emerged as a
pivotal concept. Two of the most prominent tools in this realm are Ansible and Terraform.
Although both tools contribute to automating infrastructure management, they do so with
distinct philosophies and purposes. This section describes the differences and overlaps in
features between Ansible and Terraform and sheds light on when and how to best leverage
each tool.

Ansible
Ansible is known for its focus on orchestration and configuration management. It excels at
automating tasks that involve the setup, configuration, and management of systems,
applications, and networks. Ansible uses a declarative approach, where you define the state
of your systems, and Ansible brings them to that state. Ansible playbooks, which are written in
YAML, encapsulate these declarative configurations and automation workflows.

Configuration management
Ansible shines in helping ensure consistency across various systems. Its idempotent nature
helps ensure that tasks run only if necessary, which reduces the risk of unintended changes.

Ad hoc commands
With Ansible, you can perform quick and flexible running of ad hoc commands across multiple
servers. This feature is useful for tasks that require immediate attention or investigation.

Overlap with Terraform
Although Ansible can manage provisioning tasks, it is not designed as a full-fledged
infrastructure provisioning tool like Terraform. However, Ansible and Terraform can
complement each other by enabling Ansible to handle complex configuration tasks after
Terraform provisions the infrastructure.

Terraform
Terraform is designed for provisioning and managing infrastructures. It employs a declarative
language to define the infrastructure's state, which creates a clear separation between the
“what” and the “how.” Terraform configuration files, which are written in HashiCorp
Configuration Language (HCL), describe the infrastructure resources, their dependencies,
and relationships.

Infrastructure provisioning
The strength of Terraform is its ability to create and manage infrastructure resources across
various cloud providers and on-premises environments. It excels at managing the lifecycle of
resources, from creation to updates and destruction.
Chapter 1. Introducing Ansible and IBM Power 17

https://www.redhat.com/en/topics/automation/what-is-event-driven-automation

State management
Terraform maintains a state file that records the state of the infrastructure. This state file
enables Terraform to determine what changes are necessary to reach another state and
helps prevent accidental changes.

Overlap with Ansible
Although Terraform can provision infrastructure, it is not designed for handling configuration
management tasks like Ansible. However, Terraform and Ansible can work together by
leveraging Ansible capabilities to configure the provisioned infrastructure.

Complementary roles
Ansible and Terraform are not mutually exclusive; in fact, they often work best when used in
tandem. Terraform excels at setting up the infrastructure, which helps ensure that resources
are created and managed accurately, and Ansible configures and maintains the systems
running on that infrastructure. This synergistic approach maximizes the strengths of both
tools while minimizing their respective weaknesses. Red Hat has created two certified
collections to help you to better integrate the two tools:

� The Terraform Collection for Ansible Automation Platform automates the management and
provisioning of IaC by using the Terraform CLI tool within Ansible playbooks and Execution
Environment run times.

� With the Ansible provider for Terraform, you can integrate your Terraform workflows into
your Ansible workflows by collecting the build results to populate an Ansible inventory for
further automation with Ansible.

Ansible and Terraform offer distinct yet complementary features in the world of IaC. Ansible
excels at orchestration and configuration management, and Terraform focuses on
provisioning and managing infrastructure. By understanding their differences and overlaps,
DevOps practitioners can harness the power of both tools to create a robust, automated, and
efficient infrastructure management.

IBM Cloud provisioning
Running your infrastructure in the cloud also benefits from IaC because you can automate
provisioning and management. IBM Cloud provides a service for infrastructure provisioning of
environments in the IBM Cloud by using both Terraform and Ansible.

IBM Cloud Schematics
IBM Cloud Schematics is a managed service that offers both Terraform and Ansible in a
unique way where you can provision infrastructure by using Terraform and trigger Ansible
configuration management in the same deployment. Most IBM Cloud resources across
IBM Cloud Classic, IBM Virtual Private Cloud, and IBM Power Systems Virtual Server can be
provisioned by using Terraform and Ansible.
18 Using Ansible for Automation in IBM Power Environments

https://github.com/ansible-collections/cloud.terraform
https://github.com/ansible/terraform-provider-ansible

1.3.6 Provisioning

Automated infrastructure provisioning is the first step in automating the operational lifecycle of
your applications. From traditional servers to the latest serverless or function-as-a-service
environments, Ansible Automation Platform can provision cloud platforms, virtualized hosts
and hypervisors, applications, network devices, and bare-metal servers. It can connect these
deployed nodes to storage, add them to a load balancer, patch them for security, or perform
any number of other operational tasks that are run by separate teams.

Ansible Automation Platform is a platform in your process pipeline for deploying infrastructure
and connecting it, which simplifies the deployment and day-to-day management of your
infrastructure. Consider the following components of your infrastructure that can be
provisioned by Ansible:

� Bare metal: Underneath virtualization and cloud platforms is bare metal, and you still need
to provision it depending on the situation. Ansible Automation Platform integrates with
many data center management tools to both start and enact the provisioning steps that
are required.

� Virtualized: From hypervisors to virtual storage and virtual networks, you can use Ansible
Automation Platform to simplify the experience of cross-platform management. The large
selection of available integrations gives you flexibility and the choice to manage your
diverse environment.

� Networks: With Ansible network automation capabilities, users can configure, validate,
and help ensure continuous compliance for physical network devices. Ansible Automation
Platform can provision across multi-vendor environments, often replacing manual
processes.

� Storage: Ansible Automation Platform can provision and manage storage in your
infrastructure. Whether it is software-defined storage, cloud-based storage, or hardware
storage appliances, you can find a module to benefit from the Ansible language.

� Public cloud: Ansible Automation Platform is packaged with hundreds of modules that
support services on the largest public cloud platforms. Compute, storage, and networking
modules enable playbooks to directly provision these services. Ansible can even act as an
orchestrator of other provisioning tools.

� Private cloud: One way to deploy, configure, and orchestrate OpenStack private cloud is
by using Ansible Automation Platform. You can use it to provision the underlying
infrastructure, install services and applications, add computer hosts, and more.

Centralizing your automation
Automation controllers help you scale IT automation, manage complex deployments, and
speed productivity. Centralize and control your IT infrastructure with a visual dashboard,
RBAC, job scheduling, integrated notifications, and graphical inventory management. You can
use the automation controller REST API and CLI to embed the controller into existing tools
and processes.
Chapter 1. Introducing Ansible and IBM Power 19

Figure 1-8 shows actions that can be improved by automation.

Figure 1-8 Automation does not stop with provisioning

By provisioning with Ansible Automation Platform, you can seamlessly migrate into
configuration management, orchestration, and application deployment by using the same
simple, human-readable automation language. For more information about provisioning with
Ansible, see Provisioning with Red Hat Ansible Automation Platform.

1.3.7 Patch management

One of the most critical activities with a direct relation to business continuity is the application
of patches on your systems. If a critical patch is required to cover any potential breach, it is
necessary to apply it as soon as possible while helping ensure that none of your systems go
offline for too long a time, that is, affects your running services. There is a need for a reliable
way of running an effective patch management strategy.

Ever wonder how you can apply patches on your systems, restart, and continue working with
minimal downtime? Ansible can also function as a simple management tool to simplify patch
management. Complicated administration tasks that take hours to complete can be managed
with Ansible.

Although configuration management deals with maintaining the integrity and consistency of
your system’s components, patch management concentrates on updating and applying
patches to these components. Through the usage of packaging modules and playbooks,
Ansible effectively minimizes the amount of time that is required to patch your systems.
Whenever you receive alerts for Common Vulnerabilities and Exposure (CVE) notifications or
Information Assurance Vulnerability Alerts (IAVA), Ansible enables you to act swiftly in
response to any potential dangers to your infrastructure.

1.3.8 Security and compliance

Security and compliance management is the ongoing process of monitoring and assessing
systems to help ensure that they comply with industry and security standards, and corporate
and regulatory policies and requirements.

Security and compliance management is important because noncompliance can result in
fines, security breaches, loss of certification, or other damage to your business. Staying on
top of compliance changes and updates prevents disruption of your business processes and
saves money.
20 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/technologies/management/ansible/provisioning

To successfully monitor and manage compliance for your business's infrastructure, you must
achieve the following goals:

� Assess: Identify systems that are non-compliant, vulnerable, or unpatched.
� Organize: Prioritize remediation actions by effort, impact, and issue severity.
� Remediate: Quickly patch and reconfigure systems that require action.
� Report: Validate that changes were applied and report change results.

Security and compliance management challenges
Here are a few things that can make security and compliance management difficult:

� Changing security and compliance landscapes

Security threats and compliance changes evolve quickly, which require a rapid response to
new threats and evolving regulations.

� Distributed environments across multiple platforms

As infrastructures become more distributed across onsite and cloud platforms, it becomes
more difficult to get a complete view of your environment and any risks and vulnerabilities
that might be present.

� Large environments and teams

Large, complex infrastructures and teams can complicate coordination across your
environment and organization. In fact, system complexity can increase the cost of a data
breach.

Security and compliance best practices and recommended tools
The best way to meet each of these challenges is with a multifaceted approach that monitors
all environments, identifies any regulatory inconsistencies, addresses those inconsistencies
and bring them up to date and into compliance, and keep a record of these updates.

These best practices can help you stay abreast of any regulatory changes and keep your
systems compliant:

1. Regular system scans: Daily monitoring can help you identify compliance issues and
security vulnerabilities before they impact business operations or result in fees or delays.

2. Deploy automation: As the size of your infrastructure grows and changes, it becomes
more challenging to manage manually. Using automation can streamline common tasks,
improve consistency, and help ensure regular monitoring and reporting, which frees you to
focus on other aspects of your business.

3. Consistent patching and patch testing: Keeping systems up to date can boost security,
reliability, performance, and compliance. patches should be applied once a month to keep
pace with important issues, and patching can be automated. patches for critical bugs and
defects should be applied as soon as possible. Test patched systems for acceptance
before placing them back into production.

4. Connect your tools: Distributed environments often contain different management tools for
each platform. Integrate these tools through APIs so that you can use your preferred
interfaces to perform tasks in other tools. Using a smaller number of interfaces streamlines
operations and improves visibility into the security and compliance status of all systems in
your environment.
Chapter 1. Introducing Ansible and IBM Power 21

Here are some of the security and compliance tools that can help:

� Proactive scanning: Automated scanning can help ensure that systems are monitored
regularly and alert you to issues without expending too much staff time and effort.

� Actionable insight: Information that is tailored to your environment can help you quickly
identify which compliance issues and security vulnerabilities are present, which systems
are affected, and what potential impacts that you can expect.

� Customizable results: Define a business context to reduce false positives, manage
business risk, and provide a more realistic view of your security and compliance status are
ideal goals.

� Prescriptive, prioritized remediation: Prescriptive remediation instructions eliminate the
need to research actions yourself, which save time and reduce the risk of mistakes.
Prioritization of actions that is based on potential impact and systems that are affected
help you make the most of limited patching windows.

� Intuitive reporting: Generating clear, intuitive reports about which systems are patched,
which need to patch, and which are non-compliant with security and regulatory policies
increases auditability and helps you gain a better understanding of the status of your
environment.

Compliance and automation with IBM and Red Hat
An automation strategy goes a long way to building capacity for checking systems for
compliance without increasing time or cost. Manual compliance practices are more
time-consuming, prone to human error, and harder to repeat or verify.

Selecting the correct automation technologies for your needs is key for rapid implementation
across the data center and network software systems in hybrid environments.

Red Hat
Red Hat has an end-to-end software stack for automation and management that includes the
following products:

� Red Hat Enterprise Linux (RHEL)
� Red Hat Ansible Automation
� Red Hat Satellite
� Red Hat Insights

IBM
IBM provides the following automation technologies:

� IBM QRadar®
� IBM PowerSC
� IBM Instana™®
� IBM Turbonomic®

1.3.9 Configuration management

In today’s IT environment, there are a growing number of servers and containers running to
meet your business requirements. As the number of these instances increases, the amount of
time spent managing and validating the configuration of those instances is also increasing.
Ansible simplifies and automates configuration management, for example, by changing
system parameters and devices. You can maintain a consistent setup across your enterprise,
even in large environments with many systems.
22 Using Ansible for Automation in IBM Power Environments

An important aspect of configuration management is that when you run a playbook that you
get the results that you expect, that is, the resultant configuration matches what is defined in
the playbook. Ansible handles this task by helping ensure that playbooks are idempotent,
which means that a Playbook runs again with the results being the same each time. This
approach helps ensure that when you run a playbook to change a configuration parameter
that the resulting configuration matches what is defined in the playbook.

1.3.10 Business continuity

Business continuity is an important aspect to keeping your infrastructure running to meet the
demands of your users. Business continuity can be thought of a combination of technologies
that provide a highly available (HA) environment, but it also involves the planning of your
infrastructure to continue running in a disaster at the location of your primary data center, for
example, a power outage, a fire, or a natural disaster that results in a flood or other damage.
Helping ensure that your infrastructure is set up correctly to handle any hardware or software
failures and site-wide outages that occur can be complex.

Ansible is a valuable tool for enhancing business continuity and disaster recovery (BCDR)
efforts by automating various tasks and processes that are related to system recovery, data
backup, and infrastructure provisioning. Using Ansible, new servers and instances can be
created, either in the same site for HA or in another site for DR, which helps ensure that the
infrastructure is ready when it is needed. In the event of increased demand during a disaster,
Ansible helps to scale resources dynamically to handle the load and maintain business
operations.

1.3.11 Application development

Modern business relies on applications, which are essential for your business and provide a
competitive advantage. Fast and reliable application development is critical for success in a
digital world.

CI/CD approaches can help you rapidly build, test, and deliver high-quality applications.
CI/CD applies automation throughout the application lifecycle (from the integration and testing
phases to delivery and deployment) to quickly produce tested and verified applications. It
incorporates two different but related functions:

� Continuous integration (CI) helps developers rapidly verify functions and merge their code
changes back to a shared branch more frequently. Merged code changes are validated by
automatically building the application and running different levels of automated testing
(typically unit and integration tests) to help ensure that the changes work. If testing
discovers a conflict between new and existing code, CI makes it faster to patch those
bugs.

� Continuous deployment (CD) automates the process of releasing an application to
production. There are few manual gates in the development pipeline stage before
production, so CD relies heavily on well-designed test automation. As a result, a
developer’s change to a cloud application could go live within minutes of writing it if it
passes all automated tests. CD makes it much faster to continuously receive and
incorporate user feedback. Together, CI and CD practices enable release changes to
applications in smaller pieces, which make application deployment more reliable.
Chapter 1. Introducing Ansible and IBM Power 23

You can apply CI/CD to many components and assets within your organization, which
includes applications, platforms, infrastructure, networking, and automation code. Automation
is at the core of CI/CD pipelines. By definition, CI/CD pipelines require automation. Although it
is possible to manually run each step in your development workflow, automation maximizes
the value of your CI/CD pipeline. It helps ensure consistency across development, test, and
production environments and processes so that you can build more reliable pipelines.

Ansible automates the major stages of CI/CD pipelines and therefore becomes the activating
tool of DevOps methodologies. The automation technology that you choose can affect the
effectiveness of your pipeline. Ideal automation technologies include these key features and
capabilities:

� Ansible offers a simple solution for deploying applications. It provides the power to deploy
multitier applications reliably and consistently, all from one common framework. You can
configure key services and push application files from a single common system.

� Rather than writing custom code to automate your systems, your team writes simple task
descriptions that even the newest team member can understand, which saves upfront
costs and leads to a faster reaction to change over time.

With Ansible, you can write playbooks that describe the needed state of your systems, and
then it does the hard work of getting your systems to that state. Playbooks make your
installations, upgrades, and day-to-day management repeatable and reliable.

1.4 Introducing IBM Power

IBM Power is a family of midrange systems that can be used for mission-critical workloads by
using hybrid multicloud technologies. IBM Power servers are high-performance, secure, and
reliable servers built on the IBM POWER® processor architecture.

Figure 1-9 shows one of the newest systems (the IBM Power E1080) in the IBM Power
product portfolio.

Figure 1-9 View of a Power E1080 node

IBM Power is built to be scalable and powerful while also providing flexible virtualization and
management features. IBM Power supports many open-source tools, including Ansible.
24 Using Ansible for Automation in IBM Power Environments

Many of the most mission-critical enterprise workloads are run on IBM Power. The core of the
global IT infrastructure, encompassing the financial, retail, government, health care, and
every other sector in between, is composed of IBM Power servers, which are renowned for
their industry-leading security, reliability, and performance attributes. For enterprise
applications, including databases, application and web servers, ERP, and AI, many clients
use IBM Power.

Enterprise IT delivery is changing as a result of digital transformation, and cloud computing is
playing a key role. In consuming infrastructure, you need options and flexibility, and IBM
Power is prepared for the cloud. Whether you use Kubernetes and Red Hat OpenShift to
modernize enterprise applications; create a private cloud environment within your data center
with adaptable pay-as-you-go services; use IBM Cloud to start applications as needed; or
create a seamless hybrid management experience across your multicloud landscape,
IBM Power delivers whatever hybrid multicloud approach that you choose.

The modern data center consists of a combination of on-premises and off-premises
platforms, such as IBM Power, IBM Z, and x86. The applications range from monolithic to
cloud-native, which are inherently some combination of bare metal, VMs, and containers. An
effective hybrid cloud management solution must account for all these factors. IBM and
Red Hat are positioned to accommodate the applications that you run today and the
modernized applications of tomorrow.

1.4.1 IBM Power high availability

IBM Power delivers 99.999% availability with 25% less downtime than comparable offerings
due to built-in recovery and self-healing functions for redundant components.7 Organizations
are also able to switch from an earlier Power server to the current generation while
applications continue to run, which provides HA and minimal downtime when migrating.

1.4.2 IBM Power security

For the fourth straight year, IBM Power was rated as one of the most secure systems in 2022,
with only 2.7 minutes or less of unplanned outages due to security issues.

� IBM Power is 2x more secure than comparable HPE Superdome servers.
� IBM Power is 6x compared to Cisco UCS servers.
� IBM Power is 16x compared to Dell PowerEdge servers.
� IBM Power is 20x compared to Oracle x86 servers.
� IBM Power is more than 60x compared to unbranded, white box servers.

Security breaches were also detected immediately or within the first 10 minutes in 95% of the
IBM Power servers that were surveyed, which results in better chances that a business
suffers little to no downtime or is susceptible to damaged, compromised, or stolen data.8

7 Source: https://itic-corp.com/itic-2023-reliability-survey-ibm-z-results/
8 Source:
https://itic-corp.com/ibm-z-ibm-power-systems-lenovo-thinksystem-servers-most-secure-toughest-to-cra
ck/
Chapter 1. Introducing Ansible and IBM Power 25

https://itic-corp.com/itic-2023-reliability-survey-ibm-z-results/
https://itic-corp.com/ibm-z-ibm-power-systems-lenovo-thinksystem-servers-most-secure-toughest-to-crack/

1.4.3 IBM Power, operational efficiency, and sustainability

A recent user case study illustrated how IBM Power enabled a customer to increase user
application performance by 20%, and they met their sustainability goals.9 Moving to
IBM Power and IBM FlashSystem® storage meant that the customer was able to leverage
their SAP S/4HANA operations and meet their climate objectives.

1.4.4 Streamlining AI operations with advanced on-chip technologies

IBM Power servers deliver 5X faster AI inferencing per socket for high precision math over the
previous generation.10 This feat is accomplished through multiple Matrix Math Accelerator
(MMA) units in each POWER processor core. MMAs allow IBM Power servers to forgo
external accelerators, such as GPUs and related device management, when running machine
learning and inferencing workloads.

At the time of writing, IBM Power servers range from scale-out servers that start with 4 cores
and 32 GB of memory on the IBM Power S1014 to enterprise systems with up to 240 cores
and 64 TB of memory on the IBM Power E1080.

1.4.5 POWER processors and architecture

The POWER processor is a family of 64-bit superscalar, simultaneous multithreading, and
multi-core microprocessors that are designed and sold by IBM. POWER processors are used
for IBM Power servers, the Hardware Management Console (HMC), and in IBM storage
solutions, such as the IBM DS8900F and the IBM Converged Archive Solution.

As an architecture, Power based processors have been used in various applications, such as
network routers, workstations, game consoles, and even on the Curiosity and Perseverance
rovers on Mars.

As AI infrastructure challenges increase due to more AI models being deployed in production,
IBM Power addresses these challenges with in-core AI inferencing and machine learning
through its built-in MMA. You gain the capability of “AI at the point data”, where you can
perform AI inferencing without needing to ingest your data from an external source. This
approach provides AI operations with a significant performance boost.

The Power based processor also provides security within the system itself through
Transparent Memory Encryption, where data is encrypted by cryptography engines that are in
the processor core, where memory is located. The processor gains four times the speed than
average encryption.

Power also features reliability, availability, and serviceability (RAS) capabilities, such as
advanced recovery, diagnostics, and Open Memory Interface (OMI) attached advanced
memory DIMMs that deliver 2X better reliability and availability than industry-standard
DIMMs.

The latest version of POWER processors is the Power10, built on a 7-nm design that is 50%
faster than its predecessor and 33% more energy efficient.

9 Source: https://www.ibm.com/case-studies/mondi-group-systems-hardware-sap-s4-hana
10 Source: https://www.ibm.com/it-infrastructure/resources/power-performance/e1080/

Note: For more information about the full line of IBM Power server models, see IBM Power.
26 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/power
https://www.ibm.com/case-studies/mondi-group-systems-hardware-sap-s4-hana
https://www.ibm.com/it-infrastructure/resources/power-performance/e1080/

Power10 chip benefits are the result of important evolutions of many of the components that
were in previous IBM POWER chips. Several of these important Power10 processor
improvements are listed in Table 1-3.

Table 1-3 Power10 processor chip technology

Figure 1-10 shows the Power10 processor die with several functional units that are labeled.
Sixteen SMT8 processor cores are shown, but the dual-chip module (DCM) with two Power10
processors provide 12-, 18-, or 24-core for Power E1050 server configurations.

Figure 1-10 The Power10 processor chip (die photo courtesy of Samsung Foundry)

Technology Power10 processor chip

Processors die size 602 mm2

Fabrication technology � CMOS 7-nm lithography
� 18 layers of metal

Maximum processor cores per chip 15

Maximum execution threads per core / chip 8 / 120

Maximum L2 cache core 2 MB

Maximum On-chip L3 cache per core / chip 8 MB / 120 MB

Number of transistors 18 billion

Processor compatibility modes Support for Power Instruction Set Architecture
(ISA) of IBM Power8® and IBM Power9®
Chapter 1. Introducing Ansible and IBM Power 27

1.4.6 PowerVM and virtualization

IBM PowerVM is a virtualization environment feature that is available on IBM Power that
support VMs by enabling the creation of micro-partitions (also known as logical partitions
(LPARs)). With PowerVM, you can consolidate VMs that run multiple workloads onto fewer
systems, which result in reduced costs, increased efficiency, better return on investment,
faster deployment, workload security, and better server utilization. PowerVM enables a Power
server to have up to 1000 VMs on a single server running a mix of various operating systems
(OSs) and environments simultaneously.

PowerVM also provides other IBM Power advanced features:

� IBM Micro-Partitioning®

Enables a partition or VM to initially occupy as small as 0.05 processing units, or
one-twentieth of a single processor core, and allows adjustments as small as a 100th
(0.001) of a processor core. This approach provides tremendous flexibility in adjusting
your resources according to the exact needs of your workload.

� Shared Processor Pools

Enables effective overall utilization of system resources by automatically applying only the
required amount of processor resource that is needed by each partition. The hypervisor
can automatically and continually adjust the amount of processing capacity that is
allocated to each partition or VM based on system demand. You can set a shared
processor partition so that if a VM requires more processing capacity than its assigned
number of processing units, the VM can use unused processing units from the shared
processor pool.

� Virtual I/O Server (VIOS)

VIOS shares storage and network resources across several VMs simultaneously, which
helps avoid excessive costs by configuring the precise amount of hardware resources that
is needed by the system.

� Live Partition Mobility (LPM)

LPM moves running VMs across different physical systems without disrupting the OS and
applications running within them.

� Share Storage Pool (SSP)

SSP provides distributed storage resources to VIOSs in a cluster.

� Dynamic LPAR (DLPAR) operations

Dynamically allocate more resources, such as available cores and memory to a VM
without stopping the application.

� Performance and Capacity Monitoring

Supports the gathering of important statistics to provide an administrator with information
regarding physical resource distribution among VMs and continuous monitoring of
resource utilization levels, which helps to help ensure that the resources are evenly
distributed and optimally used.

� Remote Restart

Provides quick recovery in your environment by restarting a VM on a different physical
server when an error causes an outage.

Note: For more information and a comprehensive description of PowerVM and its
capabilities, see Introduction to IBM PowerVM, SG24-8535.
28 Using Ansible for Automation in IBM Power Environments

1.4.7 Supported operating systems

At the time of writing, Power10 processor-based systems are supported by the OS versions
that are shown in Table 1-4.

Table 1-4 Power10 operating system support

1.4.8 Key benefits of IBM Power compared to x86 servers

Often, the misapprehension surrounding standardization on x86 is that it is the platform with
lower acquisition costs. However, these costs are often at the expense of performance,
scalability, reliability, and manageability. The return on investment and total cost of ownership
of x86 servers also do not match IBM Power servers. IBM delivers the better overall platform
compared to x86 due to the following benefits of IBM Power:

� The world record SAP SD-two tier benchmark results with 8 sockets (120 cores), which
beats the best 16 socket (448 cores) result from the x86 platform.11

� Power delivers a per-core performance that is 2.5X faster than Intel Xeon Platinum, which
is a world record 8-socket single server result on the SPEC CPU 2017 benchmark.12

� When running containerized applications and databases on an IBM Power E1080
compared to running the same workloads on an x86 server, IBM Power delivers a 48%
lower 3-year TCO, 4.3X more throughput per core, and 4.1X better price-performance. You
can run the same number of workloads with fewer servers with four times less the
footprint, four times fewer software licenses, and four times the energy savings.13

Operating system Supported versions

AIX 7.3 TL0 or later
7.2 TL4 or later
(with any I/O configuration)
7.1 TL5 or later
(through VIOS only)

IBM i 7.3 TR12 or later
(Various levels of 7.3, 7.4, and
7.5 are supported.)

PowerVM VIOS 4.1.0.10 or later
3.1.4.10 or later
3.1.3.21 or later
3.1.2.40 or later

Red Hat OpenShift Container Platform 4.9 or later

RHEL 9.0 or later
8.4 or later

SUSE Linux Enterprise Server 15.3 or later

Ubuntu 22.04 or later

Note: Software maps detailing which OS versions are supported on which specific
IBM Power server models (including previous generations of IBM Power) can be found in
these IBM Support pages.

11 Source: https://www.sap.com/about/benchmark.html
12 Source: https://www.spec.org/cpu2017/results/
13 Source: https://www.ibm.com/it-infrastructure/resources/power-performance/e1080/#5
Chapter 1. Introducing Ansible and IBM Power 29

https://www.ibm.com/support/pages/node/6020068
https://www.sap.com/about/benchmark.html
https://www.spec.org/cpu2017/results/
https://www.ibm.com/it-infrastructure/resources/power-performance/e1080/#5

� For the 14th straight year, IBM Power delivers the top reliability results, which are better
than any Intel x86 platform, and only exceeded by IBM Z. IBM Power also reported fewer
data breaches (one) in the same period compared to x86 platforms.14

� As shown by the list of supported OSs in Table 1-4 on page 29, IBM Power can run many
AIX, IBM i, or Linux workloads simultaneously, which provides flexibility in virtualization
that is unmatched by any x86 offering.

Both Power and x86 architectures are established, mature foundations for modern workloads.
But Power stands out for its efficiency, deeply integrated virtualization, highly dependable
availability and reliability, and its unparalleled capability of supporting enterprise-class
workloads that do not require the massive infrastructure that you would need to do the same
with x86 hardware.

1.5 Ansible for Power

This section describes Ansible clients across both on-premises IBM Power environments and
IBM Cloud Power Systems Virtual Server. Ansible can manage many clients running on IBM
Power, including AIX, IBM i, Linux, HMC, VIOS, and Red Hat OpenShift Container Platform.
Section 3.4, “Preparing your systems to be Ansible clients” on page 149 describes how to set
up your VMs as Ansible clients. In addition to the generic modules and collections that
Ansible provides, IBM has developed many collections specifically for IBM Power servers.
These collections can be found among Ansible Galaxy for community-supported content, or
Red Hat Automation Hub for certified content.

1.5.1 IBM Power Collections on Ansible Galaxy

Ansible Galaxy is a source for community-based Ansible content, which holds reusable
collections from thousands of contributors, including IBM. These collections include modules,
plug-ins, playbooks, and roles that anyone can download and use.

Table 1-5 shows the IBM Power collections that were developed by IBM.

Table 1-5 Links to IBM Power collections

14 Source: https://itic-corp.com/itic-2022-global-server-reliability-results/

Collection URL

Power AIX https://galaxy.ansible.com/ui/repo/published/ibm/power_aix/

Power IBM i https://galaxy.ansible.com/ui/repo/published/ibm/power_ibmi/

Power HMC https://galaxy.ansible.com/ui/repo/published/ibm/power_hmc/

Power VIOS https://galaxy.ansible.com/ui/repo/published/ibm/power_vios/

PowerVC Ansible support for PowerVC is provided by using the Ansible
Collection for OpenStack.
30 Using Ansible for Automation in IBM Power Environments

https://galaxy.ansible.com/ui/repo/published/ibm/power_aix/
https://galaxy.ansible.com/ui/repo/published/ibm/power_ibmi/
https://galaxy.ansible.com/ui/repo/published/ibm/power_hmc/
https://galaxy.ansible.com/ui/repo/published/ibm/power_vios/
https://itic-corp.com/itic-2022-global-server-reliability-results/

1.5.2 IBM Power Collections on Red Hat Automation Hub

These same collections can also be downloaded from Red Hat Automation Hub. The Ansible
Automation Hub features Red Hat Ansible Certified Content, which is prebuilt, fully supported,
and certified automation content from Red Hat and 60+ partners, which include Cisco,
Microsoft, CyberArk, Dynatrace, and ServiceNow. It also includes validated content, such as
prebuilt playbooks and roles that you can use, customize, and learn from.

Figure 1-11 shows the Red Hat Automation Hub interface showing these collections.

Figure 1-11 Collection on the Red Hat Automation Hub

The following sections describe the benefit of using Ansible across these different
environments, and provide more information about the specific collection contents.

1.5.3 Ansible for Linux on Power

This section describes the following topics:

� Introduction
� SUSE Linux Enterprise Server
� Getting started with Linux management
� Login options
� A simple Ansible playbook
� Updating packages
� Cross-platform playbook considerations

Introduction
A major benefit of Linux is that it is open source. The software is unencumbered by licensing
fees and its source code is freely available. Many Linux distributions are available for almost
every computing platform.
Chapter 1. Introducing Ansible and IBM Power 31

https://console.redhat.com/ansible/automation-hub

Here are the supported Linux distributions on IBM Power servers:

� RHEL
� SUSE Linux Enterprise Server
� Ubuntu (support is available from Canonical)
� Red Hat OpenShift Container Platform

Red Hat Enterprise Linux
RHEL is the most-deployed commercial Linux distribution in the public cloud.15 RHEL is an
open-source OS that provides a foundation to scale existing applications and deploy
emerging technologies across the following environments:

� Bare metal
� Virtual
� Container
� Cloud

SUSE Linux Enterprise Server
SUSE Linux Enterprise Server is an enterprise Linux distribution that is enabled for the cloud,
which also has a strong presence on the IBM Power platform.

Ubuntu
IBM and Canonical collaborated to make the Ubuntu distribution on IBM Power. The
availability of Ubuntu strengthens the Linux OS choices that are available on IBM Power
technology. Support for Ubuntu is available directly from Canonical.

Red Hat OpenShift Container Platform
Red Hat OpenShift Container Platform is a consistent hybrid cloud foundation for building and
scaling containerized applications. Red Hat OpenShift is trusted by thousands of customers
in every industry to deliver business-critical applications, whether they are migrating existing
workloads to the cloud or building new experiences for customers. It is also backed by one of
the leading Kubernetes contributors, Red Hat.

Red Hat OpenShift Container Platform runs on Red Hat CoreOS, which represents the next
generation of single-purpose container OS technology by providing the quality standards of
RHEL with automated, remote upgrade features. Red Hat CoreOS is the only supported OS
for Red Hat OpenShift Container Platform control plane (master) nodes. Although Red Hat
CoreOS is the default OS for all cluster machines, you can create compute (worker) nodes
that use RHEL as their OS.

Ansible supports the Red Hat OpenShift Container Platform as either a control node or a
client node.

Getting started with Linux management
Managing Linux on IBM Power with Ansible does not require optional Ansible modules or
collections. It is served by the existing ansible-core modules that are included with all
Ansible installations (ansible.builtin.*) and common community modules
(ansible.community.*), some of which are shown in Table 1-6 on page 33.

15 Management Insight Technologies. “The State of Linux in the Public Cloud for Enterprises,” February 2018.
32 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/resources/state-of-linux-public-cloud-solutions-ebook

Table 1-6 Ansible modules commonly used with Linux targets

Ansible accesses Linux hosts in the inventory through SSH from the Ansible Controller node,
with authentication through either password, or public and private key pairs. To learn how to
choose a controller node and install Ansible, see Chapter 3, “Getting started with Ansible” on
page 103.

Ansible module name Fully qualified collection
name

Description

apt ansible.builtin.apt Manages apt packages for
Ubuntu and Debian
distributions.

blockinfile ansible.builtin.blockinfile This module inserts, updates,
or removes a block of multi-line
text that is surrounded by
customizable marker lines.

command ansible.builtincommand. Runs commands on targets.

copy ansible.builtin.copy Copies files to remote locations.

debug ansible.builtin.debug Prints statements during
execution.

dnf ansible.builtin.dnf Manages packages with the dnf
package manager for Python 3.

fetch ansible.builtin.fetch Fetches files from remote
nodes.

file ansible.builtin.file Manages files and file
properties.

lineinfile ansible.builtin.lineinfile Manages lines in text files.

template ansible.builtin.template Templates a file out to a target
host by using jinja2.

user ansible.builtin.user Manages user accounts.

yum ansible.builtin.yum Manages packages with the
Yellowdog Updater, Modified
(YUM) package manager.
Python 2 only.

zypper ansible.general.zypper Manages packages on SUSE.

Note: Table 1-6 on page 33 represents a small selection of Ansible modules that are
available. For more information and a comprehensive list of Ansible modules and
collections, see this document.
Chapter 1. Introducing Ansible and IBM Power 33

https://docs.ansible.com/ansible/latest/collections/

No special modules or collections are required to access a Linux host. For example, to
access a Linux host that named sles15sp5 from a controller node by using a username and
password, use the example that is shown in Example 1-1.

Example 1-1 Accessing a Linux host by using a password

$ ansible -m ping sles15sp5 --ask-pass --user ansible
SSH password:
sles15sp5 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3.6"
 },
 "changed": false,
 "ping": "pong"

To set up password-less authentication by using SSH public and private keys, use the
ssh-copy-id command, as shown in Example 1-2, to copy a preexisting public key to a Linux
host.

Example 1-2 Configuring a password-less login by using the ssh-copy-id command

$ ssh-copy-id ansible@sles15sp5
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new keys to filter out
any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 keys remain to be installed -- if you are prompted
now it is to install the new keys
(ansible@sles15sp5) Password:

Number of keys added: 1

Now, try logging in to the machine with: "ssh 'ansible@sles15sp5'"
and check to make sure that only the keys you wanted were added.

$ ssh ansible@sles15sp5
Last login: Mon Aug 7 16:36:31 2023 from 192.168.115.249
ansible@sles15sp5:~>

Once password-less logins to your Linux hosts are configured, access through Ansible
becomes simpler, as shown in Example 1-3.

Example 1-3 Using a passwordless login

$ ansible -m ping sles15sp5 --user ansible
sles15sp5 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3.6"
 },
 "changed": false,
 "ping": "pong"
}

Your Ansible command can be further simplified by specifying <ansible_user> in either the
inventory or a ansible.cfg file.
34 Using Ansible for Automation in IBM Power Environments

Login options
Many actions in Ansible require superuser or root access. There are several options to
acquire authorization for those operations.

Using the root user ID
Direct access to a Linux host as the root user is possible, and can be permitted or denied by
the PermitRootLogin setting in /etc/ssh/sshd_config on the target host.

Here are the valid options for PermitRootLogin:

� yes
� no
� prohibit-password
� without-password
� forced-commands-only

A value of yes permits root logins by using a password, and a setting of no denies access. The
settings prohibit-password and without-password permit root logins, but only by an SSH
key-pair, and not a password. The option forced-commands-only permits password-less login
by root, but only to run predefined commands.

Your organization’s security policy may not permit direct logins as the root user through SSH.
If so, log in as a regular user and then use the sudo or su command to perform tasks that
requires superuser access. (This process is called privilege escalation.)

Using sudo
To use sudo, the user issuing the sudo command must be listed in the /etc/sudoers file on the
target host. The OS groups sudo or wheel are commonly used for this type of authorization.
An example of a /etc/sudoers file enabling the members of the sudo group to run any
command as root is shown in Example 1-4.

Example 1-4 Sample of /etc/sudoers file enabling root access for members of the sudo group

Allow members of group sudo to run any command
%sudo ALL=(ALL:ALL) ALL

Using su
The su command is another way to gain superuser privileges. In this case, the user provides
the root password to obtain a privilege escalation rather than their own password. The usage
of sudo over su is preferred due to the greater granularity of control by using sudo.

Privilege escalation
To use privilege escalation in Ansible, use the become keyword. You can use the become
keyword in a playbook, an ansible.cfg file, or on the CLI.

Note: Privilege escalation by using become is not limited to the root user. You can specify
another user with become with the become_user option. For example, you might use
become_user: apache to perform tasks as the web server owner.
Chapter 1. Introducing Ansible and IBM Power 35

A simple Ansible playbook
A common task in Ansible is to install an OS package, for example, a tool like tcpdump.

RHEL, SUSE Linux Enterprise Server, and Ubuntu all use their own separate package
management systems, and have separate Ansible modules to install packages:

� RHEL: ansible.builtin.yum
� SUSE Linux Enterprise Server: community.general.zypper
� Ubuntu: ansible.builtin.apt

However, there is also a generic package management module that is named
ansible.builtin.package that can be used to make your playbook more portable across
Linux distributions.

Here is a simple example playbook that performs the following tasks:

� Run the playbook on the hosts in the power-linux inventory group.
� Log in to the Linux hosts as the user ansible.
� Use sudo to become the root user.
� Install the tcpdump package by using the generic ansible.builtin.package module.
� The package module helps ensure that the package that is installed if not already present

by using the in state keyword with the value of present.

The playbook is shown in Example 1-5.

Example 1-5 Simple playbook install_pkg.yaml

- hosts: power-linux
 remote_user: ansible
 become: true

 tasks:
 - name: install tcpdump package
 ansible.builtin.package:
 name: tcpdump
 state: present

The inventory file contains the host definitions that are shown in Example 1-6.

Example 1-6 Inventory example for the example playbook

[power-linux]
rhel7ppc64
rhel8ppc64
rhel9ppc64
sles15ppc64
ubuntu20ppc64
ubuntu22ppc64

To run the playbook, run the command that is shown in Example 1-7.

Example 1-7 Running the ansible-playbook command

ansible-playbook --ask-pass --ask-become-pass --inventory inventory
install_pkg.yaml
36 Using Ansible for Automation in IBM Power Environments

The output of the ansible-playbook command is shown in Example 1-8.

Example 1-8 Output from running the playbook

$ ansible-playbook --ask-pass --ask-become-pass --inventory inventory install-pkg.yaml
SSH password:
BECOME password[defaults to SSH password]:

PLAY [power-linux]
**

TASK [Gathering Facts]
**

ok: [rhel7ppc64]
ok: [ubuntu22ppc64]
ok: [rhel8ppc64]
ok: [rhel9ppc64]
ok: [ubuntu20ppc64]
ok: [sles15ppc64]

TASK [install package]
**

ok: [ubuntu20ppc64]
changed: [ubuntu22ppc64]
ok: [rhel7ppc64]
ok: [rhel9ppc64]
changed: [rhel8ppc64]
changed: [sles15ppc64]

PLAY RECAP
**

rhel7ppc64 : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
rhel8ppc64 : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
rhel9ppc64 : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
sles15ppc64 : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
ubuntu20ppc64 : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
ubuntu22ppc64 : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
ubuntu20ppc64 : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
ubuntu20ppc64 : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

The output from the command in Example 1-8 shows that only the target hosts rhel8ppc64,
sles15ppc64, and ubuntu22ppc64 have a status value of changed, and therefore were the only
hosts that required the tcpdump package to be installed.
Chapter 1. Introducing Ansible and IBM Power 37

You can further simplify the command by putting options in an ansible.cfg file rather than
specifying them each time that you run a playbook.

An example ansible.cfg file that you can use when running a playbook as a non-root user,
and prompting for the user and sudo password is shown in Example 1-9.

Example 1-9 Sample ansible.cfg file for playbook that uses become for privilege escalation

[defaults]
inventory = inventory
remote_user = ansible
ask_pass = true

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = true

An example ansible.cfg file that you can use when running a playbook to use SSH keys to
log in to target hosts directly as root is shown in Example 1-10.

Example 1-10 Sample ansible.cfg file for password-less logins as the root user

[defaults]
inventory = inventory
remote_user = root
ask_pass = false

Updating packages
A common use for Ansible playbooks is to help ensure compliance by keeping packages
updated with the latest security patches.

Generic package module
The generic ansible.builtin.package module that is used in the example playbook that is
shown in Example 1-5 on page 36 can also be used to update all packages, as shown in
Example 1-11.

Example 1-11 Using a generic package module to update all packages to the latest level

- name: Update all packages to the latest available
 ansible.builtin.package:
 name: '*'
 state: latest

This generic package module is suitable for simple playbooks, but sometimes you need more
fine-grained control of the package updates. The next section introduces the
ansible.builtin.dnf module, which provides more capabilities.

Using the dnf module on Red Hat Enterprise Linux
There is an ansible.builtin.yum module, but it is written for Python 2. For newer
deployments, you should use ansible.builtin.dnf instead. The dnf module allows more
control of the installation, upgrade, and removal of packages than the generic package
module.
38 Using Ansible for Automation in IBM Power Environments

For example, you want to upgrade a list of packages, but only if they are already installed. The
task code to do this task looks like Example 1-12.

Example 1-12 Upgrading a list of packages but not installing them if they are not present

- name: Update required packages
 dnf:
 name:
 - firefox
 - curl
 - python3
 update_only: yes
 state: latest

Full documentation for the dnf module can be found in the dnf collection description.

Using the zypper module on SUSE Linux Enterprise Server
If you are running SUSE Linux Enterprise Server, there is a zypper module that is similar to
the dnf module for RHEL. The zypper module for SUSE Linux Enterprise Server is part of the
community.general collection, and must be installed before use. Use the ansible-galaxy
command to install the collection, as shown in Example 1-13.

Example 1-13 Installing the community.general collection by using ansible-galaxy

ansible-galaxy collection install community.general

After the zypper module is installed, its options are similar to the dnf module. For more
information about the zypper module, see Ansible Community Documentation.

Using the apt module on Ubuntu
The apt module options are similar to the dnf module. One unique option for the apt module is
cache_valid_time, which prevents the updating of repository caches until the age of the
cache exceeds the value of cache_valid_time.

The full documentation for the apt module can be found at Ansible Community
Documentation.

Cross-platform playbook considerations
If you want to write a playbook that runs on Linux hosts with different architectures, some
packages are not present across all platforms.

For example, the Ubuntu packages intel-microcode and amd64-microcode are not present on
ppc64 platforms. If you wanted to explicitly update these packages to the latest version in
your playbook, use the tasks in Example 1-14 to update the packages on x86_64 platforms,
which do not generate an error on ppc64 platforms.

Example 1-14 Only update packages if they are found in ‘ansible_facts’

- name: Update intel-microcode if present (that is, not on ppc64)
 package:
 name: intel-microcode
 state: latest
 when: "'intel-microcode' in ansible_facts.packages"

 - name: Update amd64-microcode if present (that is, not on ppc64)
 package:
Chapter 1. Introducing Ansible and IBM Power 39

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/dnf_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/zypper_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html

 name: amd64-microcode
 state: latest
 when: "'amd64-microcode' in ansible_facts.packages"

Conversely, packages from the Linux on IBM Power repository are not present on other
architectures. For more information, see IBM Linux on Power Tools.

1.5.4 Ansible for AIX

Here are the supported AIX versions on IBM Power:

� AIX 7.1
� AIX 7.2
� AIX 7.3

Ansible accesses AIX hosts in the inventory through SSH, with authentication through either
a password, or public and private key pairs.

All nodes must be enabled to run open-source packages and have Python 3 installed.
Beginning with AIX 7.3, Python 3 is automatically preinstalled with the OS. On the controlling
node, also Ansible 2.9 or later must be installed.

All packages can be downloaded from AIX Toolbox for Linux Applications. As a best practice,
use the DNF package.

This script downloads rpm.rte, dnf_bundle.tar, and rpm.rte-4.13.0.x, which are
prerequisites for . The dnf_bundle.tar file contains and its dependent packages. This script
checks whether any packages from dnf_bundle are already installed, and then installs the
packages.

No special modules or collections are required to access an AIX host. For example, to access
an AIX host that is named aix7.3 by using a username and password, it is as simple as shown
in Example 1-15.

Example 1-15 Accessing an AIX host by using a password

$ ansible -m ping aix7.3 --ask-pass --user ansible
SSH password:
aix7.3 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Alternatively, to set up password-less authentication by using SSH public and private keys,
use the ssh-copy-id command, as shown in Example 1-2 on page 34 to copy a preexisting
public key to a AIX host.

Once the key exchange is done, you can include the private key in your node controller
inventory file and run the command directly without using a password, as shown in
Example 1-16.

Example 1-16 Running the command without a password

$ ansible aix -b -m shell -a “bootinfo -s hdisk0”
aix7.3 | CHANGED => | rc=0 >>
51200
40 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/support/pages/service-and-productivity-tools
https://www.ibm.com/support/pages/aix-toolbox-linux-applications-downloads-alpha
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_aixtoolbox.sh

Ansible community for IBM AIX
There are several options for obtaining Ansible content for IBM AIX:

� Galaxy

The Ansible Galaxy URL Ansible Content for IBM Power Systems - AIX provides a
collection of content that is used to manage and deploy AIX on Power servers.

� GitHub repository

This GitHub repository provides modules that can be used to manage configurations and
deployments of AIX on Power servers. The collection content helps to include workloads
on Power platforms as part of an enterprise automation strategy through the Ansible
ecosystem.

� Documentation

The dedicated documentation portal offers detailed insights into the usage, configuration,
and best practices of Ansible for AIX. This resource guides users through the process of
integrating Ansible into their AIX workflows.

� Automation Hub

The Automation Hub offers Red Hat Ansible Certified Content for IBM Power that helps
you manage workloads on the Power platform as part of your wider enterprise automation
strategy through the Ansible Automation Platform ecosystem. The collection is named
ibm.power_aix.

IBM Power AIX collection
The IBM Power AIX collection provides modules that can be used to manage configurations
and deployments of AIX on Power servers. The collection content helps to include workloads
on Power platforms as part of an enterprise automation strategy through the Ansible
ecosystem.

AIX specific Ansible modules
There are many AIX specific modules that are found at Ansible Content for IBM Power - AIX
on the Ansible site, some of which are shown in Table 1-7. These modules offer functions that
are targeted for AIX environments.

Table 1-7 Specific Ansible modules for AIX

Module Minimum Ansible version Description

_nim_upgradeios 2.9 Use a Network Installation Manager (NIM)
to update a single or a pair of VIOSs.

aixpert 2.9 System security settings management.

alt_disk 2.9 Alternative rootvg disk management.

backup 2.9 Data or system volume group backup
management.

bootlist 2.9 Alters the list of boot devices that are
available to the system.

bosboot 2.9 Creates a boot image.

chsec 2.9 Modifies AIX stanza files.

devices 2.9 Devices management.

emgr 2.9 System interim fixes management.
Chapter 1. Introducing Ansible and IBM Power 41

https://galaxy.ansible.com/ui/repo/published/ibm/power_aix/
https://github.com/IBM/ansible-power-aix
https://ibm.github.io/ansible-power-aix/
https://access.redhat.com/support/articles/ansible-automation-platform-certified-content
https://cloud.redhat.com/ansible/automation-hub/repo/published/ibm/power_aix
https://ibm.github.io/ansible-power-aix/

filesystem 2.9 Local and NFS file systems management.

flrtvc 2.9 Generates an FLRTVC report, and
downloads and installs security and
HIPER fixes.

geninstall 2.9 Generic installer for various packaging
formats.

group 2.9 Manages presence, attributes, and
members of AIX groups.

inittab 2.9 Manages inittab entries on AIX.

installp 2.9 Installs and updates software.

internal.nim_select_t
arget_disk

2.9 Verifies or autoselects a disk that is used
for an alternative disk migration role.

lpar_facts 2.9 Reports LPAR-related information as facts.

lpp_facts 2.9 Returns installed software products or
fixes as facts.

lvg 2.9 Configures AIX logical volume manager
(LVM) volume groups.

lvm_facts 2.9 Reports LVM information as facts.

lvol 2.9 Configures AIX LVM logical volumes.

mkfilt 2.9 Activates or deactivates the filter rules.

mktcpip 2.9 Sets the required values for starting
TCP/IP on a host.

mktun 2.9 Creates, activates, deactivates, and
removes tunnels.

mount 2.9 Mounts or unmounts a file system or
device on AIX.

mpio 2.9 Returns information about MultiPath I/O
capable devices.

nim 2.9 Performs NIM operations, such as server
setup, installing packages, and updating
SPs or TLs.

nim_backup 2.9 Uses NIM to manage the backup of LPAR
or VIOS clients.

nim_flrtvc 2.9 Uses NIM to generate an FLRTVC report,
and downloads and installs security and
HIPER fixes.

nim_resource 2.9 Shows, defines, or deletes NIM resource
objects.

nim_suma q Uses NIM to download fixes, SPs, or TLs
from the IBM Patch Central website.

nim_updateios 2.9 Uses NIM to update a single or a pair of
VIOSs.

Module Minimum Ansible version Description
42 Using Ansible for Automation in IBM Power Environments

Specific Ansible roles for AIX
Table 1-8 shows the Ansible roles that run specific tasks to configure an AIX host. These
tasks include activities such as configuring TCP/IP services on the AIX host or migrating to a
higher AIX level by using an alternative disk.

Table 1-8 Specific Ansible roles for AIX

nim_vios_alt_disk 2.9 Uses NIM to create or clean up an
alternative rootvg disk of VIOS clients.

nim_vios_hc 2.9 Checks whether a pair of VIOSs can be
updated.

nim_viosupgrade 2.9 Uses NIM to upgrade VIOSs with the
viosupgrade tool from a NIM master.

reboot 2.9 Restarts AIX machines.

smtctl 2.9 Enables and disables Simultaneous
MultiThreading Mode.

suma 2.9 Downloads or installs fixes, SPs, or TLs
from the IBM Patch Central website.

tunables 2.9 Modifies, resets, or shows tunables for
various components on AIX.

tunfile_mgmt 2.9 Saves, restores, validate, or modifies the
tunables configuration file for various
components on AIX.

user 2.9 Creates users or changes or removes
attributes of users on AIX.

Ansible role Minimum Ansible
version

Description

bootptab 2.9 Ansible role for modifying the bootptab file
on AIX.

inetd 2.9 Ansible role for enabling or disabling InetD
services on AIX.

nim_alt_disk_migration 2.9 Ansible role for migrating an alternative
disk to a higher AIX level.

power_aix_bootstrap 2.9 Ansible role for bootstrapping IBM Power
AIX servers with DNF package managers.

power_aix_vioshc 2.9 Ansible role for installing vioshc on a NIM
master.

Module Minimum Ansible version Description
Chapter 1. Introducing Ansible and IBM Power 43

Ansible extensions for AIX
There is also an available extension for AIX that covers a restart function, which is shown in
Table 1-9.

Table 1-9 Ansible plug-in for AIX

1.5.5 Ansible for IBM i

Ansible for IBM i bridges existing gaps by providing a versatile solution that aligns with
modern requirements. It equips businesses with tools to efficiently automate tasks and
manage cloud workload migration. As organizations seek to extract optimum value from their
IBM i environments, Ansible offers a practical approach, fostering innovation and adaptability
in a dynamic digital landscape.

Why Ansible for IBM i
IBM i has been actively engaged in open-source initiatives since 2008, establishing its
presence in domains such as Internet of Things (IoT) and AI. This trajectory is propelled by
several influential factors. Open source acts as a channel for IBM i to explore domains such
as IoT and AI, with demand surging as a new generation of engineers joins companies that
partake in the IBM i ecosystem. These adept developers are positioned to redefine business
applications for the IBM i platform.

The acquisition of Red Hat by IBM sparked an interest in Ansible as a tool for automating
IBM i processes and tasks. As the adoption of Ansible gains momentum, organizations are
seeking IT professionals with expertise in both open-source practices and Ansible
capabilities. This intersection creates opportunities for the evolution of the IBM i platform,
unlocking avenues for innovation and adaptability.

Ansible for IBM i release history
Ansible for IBM i is on a journey of continuous enhancement and evolution, aligning its
capabilities with the ever-evolving landscape of IT requirements and challenges. This
roadmap outlines the progressive features and functions that were introduced in different
phases, showcasing how Ansible is becoming a part of the IBM i ecosystem.

June 2020
In this initial phase, Ansible for IBM i set its foundation by focusing on core operational
aspects:

� Program Temporary Patch (PTF) and Licensed Program Product (LPP) management:
Ansible managed PTFs and LPPs efficiently through automation.

� Open-source package management: The roadmap introduced support for managing
open-source packages, which streamlined installation and updates.

� Object management: Automation was extended to manage objects on the IBM i platform,
which promoted a more streamlined and consistent approach.

� Portable Application Solutions Environment (PASE) support: Ansible embraced the PASE,
which enabled more versatile scripting and automation.

� Work management runtime: Ansible started facilitating work management runtime
operations, which enhanced control over system resources.

Ansible plug-in Minimum Ansible version Description

reboot 2.9 Restarts your LPAR.
44 Using Ansible for Automation in IBM Power Environments

� Device management: Automation was expanded to include device management, which
helped ensure smoother handling of hardware resources.

� Independent auxiliary storage pool (IASP) support: The introduction of support for IASPs
contributed to enhanced data storage capabilities.

September 2020
Building on the foundational elements, Ansible for IBM i continued to evolve with a focus on
broader capabilities:

� Advanced patch management: Ansible extended its patch management capabilities,
which enabled more advanced and targeted fixes.

� Basic network configuration: Automation now covered basic network configuration tasks,
which helped ensure that network settings were managed effectively.

� Work management: Work management capabilities were further refined, which enhanced
resource allocation and workload management.

� Security management: Ansible incorporated security management features, which
contributed to robust security practices across the platform.

� Message handling: Automation was introduced to handle message handling tasks, which
helped ensure timely and efficient communication.

2021
As Ansible for IBM i matured, it began addressing more strategic aspects:

� Solution and product configuration: The focus shifted toward solution and product
configuration, which helped enable more comprehensive setups and customization.

� SQL services bundles: Ansible introduced bundles for SQL services, which streamlined
database-related operations.

� System health bundles: The roadmap incorporated system health bundles, which
contributed to proactive system monitoring and maintenance.

2022
As the landscape continued to evolve, Ansible for IBM i looked ahead:

� Manage in hybrid cloud: Ansible aimed to offer seamless management capabilities in
hybrid cloud environments, which helped ensure consistency across on-premises and
cloud deployments.

� Application management in the cloud: The focus expanded to include application
management in cloud environments, which helped enable efficient deployment and
maintenance.

� Enhance existing functions: Ansible continued to enhance its existing functions, which
refined automation processes and expanded its capabilities.

Upcoming releases
Although specific details about upcoming releases are not provided, it is indicated that more
use cases and functions will be integrated to further enrich Ansible offerings for IBM i users.

Ansible community for IBM i
The Ansible community for IBM i is a vibrant and active ecosystem that provides a wealth of
resources to enhance automation and management capabilities for IBM i. This
community-driven effort encompasses a diverse range of modules, roles, and documentation
to facilitate integration of Ansible with IBM i environments.
Chapter 1. Introducing Ansible and IBM Power 45

Here is some of the Ansible content for IBM i:

� 50+ modules available: The Ansible community for IBM i offers a rich repository of over
50 modules, each designed to address specific tasks and functions.

� 10+ reusable roles: Roles, which are reusable playbooks, play a pivotal role in the Ansible
ecosystem. The IBM i community has contributed over 10 roles that encapsulate best
practices and standard procedures for commonly performed tasks.

� Rich resources: The Ansible content for IBM i is supported by a comprehensive set of
resources, which helps ensure that users have access to information and guidance for
effective implementation:

– Galaxy: The Ansible Galaxy URL serves as a centralized repository for IBM i specific
content. Here, users can discover, explore, and access many f modules and roles that
are tailored for the IBM i platform.

– GitHub Repository: The GitHub repository hosts a collection of open-source examples,
which showcase practical applications of Ansible automation in IBM i environments.

– Documentation: The dedicated documentation portal offers detailed insights into the
usage, configuration, and best practices of Ansible for IBM i. This resource guides
users through the process of integrating Ansible into their IBM i workflows.

– Automation Hub: The Automation Hub that is provided by Red Hat serves as a platform
for discovering and sharing Ansible automation content. It offers expertise for users to
explore, deploy, and manage Ansible content that is specific to IBM i.

Red Hat Ansible automation on IBM i
Red Hat Ansible Automation on IBM i represents a powerful synergy between two industry
leaders that helps organizations to efficiently manage IBM i workloads within the broader
scope of enterprise automation. Red Hat Ansible, a renowned automation platform, offers
certified content for IBM Power by providing a robust solution for orchestrating and
automating tasks on the IBM i platform. This certified content, which is available through a
subscription model, aligns IBM i workloads with the Ansible Automation Platform ecosystem.

Certified integration between Ansible and IBM Power consists of the following components:

� Unified automation strategy: The integration of Red Hat Ansible with IBM Power offers a
certified pathway for holistic automation across a diverse infrastructure landscape. This
integration encompasses multiple platforms, including AIX, IBM i, and Linux on Power,
which helps enable enterprises to unify their automation strategies under the Ansible
Automation Platform.

� Certified content repository: The Ansible Automation Platform provides a certified
repository of content that is tailored for IBM Power. This repository equips organizations
with ready-to-use automation playbooks, modules, and roles that efficiently manage and
orchestrate IBM i workloads.

� Solution benefits:

– Consistency: The certified integration helps ensure uniform automation practices
across heterogeneous environments. With Red Hat Ansible Automation, organizations
can establish consistent automation workflows that span IBM Power, AIX, and Linux on
Power.

– Transparency: The unified approach that is offered by Red Hat Ansible fosters
transparency in automation operations. Organizations gain a comprehensive view of
their IBM i workloads alongside other systems, which promotes a clearer
understanding of automation tasks and results.
46 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ibmi-oss-examples
https://galaxy.ansible.com/ui/repo/published/ibm/power_ibmi/
https://ibm.github.io/ansible-for-i/index.html
https://access.redhat.com/support/articles/ansible-automation-platform-certified-content

– Skills enhancement: By embracing Red Hat Ansible Automation for IBM i, IT teams can
enhance their skill sets and proficiency in modern automation practices. The platform
offers a standardized and adaptable automation framework that empowers teams to
efficiently manage complex workloads.

IBM i specific Ansible modules
Within Ansible 2.9 and later, a dedicated set of modules that is tailored specifically for IBM i
systems is available, as shown in Table 1-10. Although these modules constitute a smaller
subset compared to the complete range that is present in Ansible, they offer targeted
functions to cater to the unique requirements of IBM i environments.

Table 1-10 Specific Ansible modules for IBM i

Note: The integration of Red Hat Ansible Automation with IBM Power reflects a
commitment to the automation processes, which improves operational agility and helps
enable enterprises to confidently manage their IBM i workloads. This collaboration
provides a powerful tool set for organizations that seek to navigate the complexities of
enterprise automation with consistency, transparency, and advanced skills development.
For more information, see the following resources:

� Red Hat Ansible Automation Platform Ecosystem
� Ansible Automation Platform Certified and Validated Content

Module Minimum Ansible version Description

ibmi_at 2.9 Schedules a batch job on a
remote IBM i node.

ibmi_cl_command 2.9 Runs a CLI command.

ibmi_copy 2.9 Copies a save file from a local
ode to a remote IBM i node.

ibmi_display_subsystem 2.9 Displays all active subsystems
or active jobs in a subsystem.

ibmi_end_subsystem 2.9 Ends a subsystem.

ibmi_start_subsystem 2.9 Starts a subsystem.

ibmi_lib_restore 2.9 Restores one library on a
remote IBM i node.

ibmi_lib_save 2.9 Saves one library on a remote
IBM i node.

ibmi_reboot 2.9 Restarts the IBM i machine.

ibmi_sql_execute 2.9 Runs an SQL non-DQL (Data
Query Language) statement.

ibmi_sql_query 2.9 Runs an SQL DQL (Data Query
Language) statement.

ibmi_patch 2.9 Loads from a save file, and
applies, removes, or queries
PTFs.

ibmi_patch_imgclg 2.9 Installs fixes from a virtual
image.

ibmi_object_find 2.9 Finds a specific IBM i object.
Chapter 1. Introducing Ansible and IBM Power 47

https://access.redhat.com/support/articles/ansible-automation-platform-certified-content
https://catalog.redhat.com/platform/red-hat-ansible?sc_cid=7015Y000003t7aWQAQ

Shared core modules with IBM i support
These modules are named “common modules”, and they are compatible with many OSs.
These modules are harnessed by IBM i too. Core modules extend their support to IBM i
through PASE.

Table 1-11 shows the shared core modules with IBM i compatibility.

Table 1-11 Shared core common modules that are supported on IBM i

ibmi_submit_job 2.9 Submits an IBM i job.

ibmi_iasp 2.9 Controls an IASP on a target
IBM i node.

ibmi_tcp_interface 2.9 Manages the IBM i TCP
interface. You can add, remove,
start, end, or query a TCP
interface.

ibmi_tcp_server_service 2.9 Manages a TCP server on a
remote IBM i node.

Common modules Minimum Ansible version Description

assemble 2.9 Assembles content from
different sources into a single
file or variable.

authorize_key 2.9 Adds or removes SSH
authorized keys for specified
users.

blockinfile 2.9 Inserts or updates a block of
text that is surrounded by
customizable markers.

command 2.9 Runs shell commands on target
hosts.

copy 2.9 Copies files to remote locations.

fetch 2.9 Fetches files from remote
locations.

file 2.9 Manages files and file
properties on remote hosts.

find 2.9 Searches for files in a directory
hierarchy.

git 2.9 Manages Git repositories on
remote hosts.

lineinfile 2.9 Helps ensures that a particular
line is in a file, or replaces an
existing line.

pause 2.9 Pauses a playbook for a
specified amount of time.

Module Minimum Ansible version Description
48 Using Ansible for Automation in IBM Power Environments

Specific Ansible roles for IBM i
Ansible Role encompasses a collection of tasks that is designed to configure an IBM i host for
various common tasks. These tasks include activities such as applying PTFs and other
configuration procedures on the IBM i platform. Roles are articulated by using YAML files
within a structured directory layout. This layout typically comprises sections such as defaults,
vars, tasks, files, templates, and more.

Table 1-12 shows a selection of Ansible roles that are tailored for IBM i.

Table 1-12 Specific Ansible roles for IBM i

ping 2.9 A basic connectivity test to
target hosts.

pip 2.9 Manages Python packages by
using pip.

script 2.9 Runs a local script on the
remote hosts.

setup 2.9 Gathers system information
from target hosts.

shell 2.9 Runs shell commands on target
hosts.

stats 2.9 Gathers facts about remote
hosts.

synchronize 2.9 Synchronizes files and
directories to remote hosts.

wait_for_connection 2.9 Waits for a host to become
reachable.

Ansible role Minimum Ansible version Description

apply_all_loaded_ptfs 2.9 Applies all loaded PTFs on
IBM i hosts.

apply_ptf 2.9 Applies specific PTFs on IBM i
hosts.

change_server_state_via_pow
ervc

2.9 Changes the server state by
using PowerVC on IBM i hosts.

configure_passwordless_ssh_
login

2.9 Configures a passwordless
SSH login on IBM i hosts.

deploy_vm_via_powervc 2.9 Deploys IBM i VMs in PowerVC.

display_network_info_via_po
wervc

2.9 Displays network information
through PowerVC on IBM i
hosts.

display_vm_info_via_powervc 2.9 Displays VM information
through PowerVC on IBM i
hosts.

Common modules Minimum Ansible version Description
Chapter 1. Introducing Ansible and IBM Power 49

Ansible extensions for IBM i
Ansible extensions for IBM i are composed of code components that complement the core
functions of Ansible, which enrich its capabilities. These extensions, which often are referred
to as plug-ins, serve as dynamic tools to enhance flexibility and expand the feature set of
Ansible.

Table 1-13 shows a selection of Ansible plug-ins that are designed for IBM i. These plug-ins
cover various functions, such as copying files, interacting with IBM Db2® on IBM i, utility
functions, fetching data, and restarting operations.

Table 1-13 Ansible plug-ins for IBM i

Ansible playbooks for IBM i
An Ansible playbook for IBM i serves as a structured set of automation tasks to run with
minimal to no human intervention. These playbooks, which are crafted in YAML format,
consist of mappings and sequences, and they incorporate Ansible modules to run specific
actions. A prime feature of Ansible playbooks is their ability to automate intricate workflows on
the IBM i platform.

download_individual_ptfs 2.9 Downloads individual PTFs on
IBM i.

present_ip_interface 2.9 Presents an IP interface
configuration on IBM i hosts.

Note: To explore more Ansible roles that are tailored for IBM i, see this comprehensive
collection. This repository hosts many roles to facilitate IBM i specific tasks, and provides a
valuable resource for enhancing your automation capabilities on the platform.

Note: Finding these plug-ins is straightforward. For more information, see the following
resources:

� Ansible Galaxy: IBM Power i Plug-ins
� GitHub repository: Ansible IBM i Plug-ins

Ansible plug-in Minimum Ansible version Description

ibmi_copy 2.9 Copies files and directories on
the IBM i system.

ibmi_db2i_tools 2.9 Provides tools for managing
Db2 on IBM i.

ibmi_ibmi_module 2.9 Offers various IBM i specific
modules for Ansible tasks.

ibmi_ibmi_util 2.9 Includes utility functions for
IBM i tasks.

ibmi_fetch 2.9 Fetches files and URLs on the
IBM i system.

ibmi_reboot 2.9 Initiates system restarts on the
IBM i platform.

Ansible role Minimum Ansible version Description
50 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ansible-for-i/tree/devel/roles
https://github.com/IBM/ansible-for-i/tree/devel/roles
https://galaxy.ansible.com/ui/repo/published/ibm/power_ibmi/
https://github.com/IBM/ansible-for-i

Table 1-14 illustrates a selection of Ansible playbooks that are tailored for IBM i.

Table 1-14 Ansible playbooks for IBM i

Ansible inventory on IBM i
An Ansible inventory serves as a configuration file that defines individual hosts and groups of
hosts within your environment. You can manage multiple systems within your infrastructure
simultaneously. For example, you can create inventory groups that reflect different parts of
your infrastructure to target specific hosts or sets of hosts.

In the context of IBM i, your inventory file can define various groups such as “IBM Power
Virtualization Center” and “IBM i systems”, which provides a clear structure for managing and
orchestrating tasks across different systems. Each group is associated with specific
attributes, which include connection details and authentication credentials.

Example 1-17 shows an inventory setup where you have two groups: “powervc_servers” and
“IBM i”. The “powervc_servers” group includes details about the Power Virtualization Center
servers, which specify the SSH host, username, password, and Python interpreter. The “IBM
i” group outlines the connection information for your IBM i system.

Example 1-17 Sample Ansible inventory configuration for IBM i and PowerVC

[powervc_servers]
powervc ansible_ssh_host=your_powervc_ip ansible_ssh_user=your_user
ansible_ssh_pass=your_password
ansible_python_interpreter="python3"

[ibmi]
source ansible_ssh_host=your_source_ibmi_ip
ansible_ssh_user=your_user ansible_ssh_pass=your_password

Ansible playbooks Minimum Ansible version Description

enable-ansible-for-i.yml 2.9 Configures prerequisites on
IBM i endpoints for using
Ansible for IBM i collections.

enable_offline_ibmi.yml 2.9 Enables Ansible automation for
IBM i endpoints without
requiring internet access.

ibmi-sql-sample.yml 2.9 Demonstrates the usage of
Ansible for IBM i to run SQL
statements on IBM i systems.

ibmi-sysval-sample.yml 2.9 Illustrates Ansible for IBM i to
query system values on IBM i
platforms.

ssh-addkey.yml 2.9 Facilitates the addition of SSH
keys on IBM i systems, helping
enable secure communication
for Ansible operations.

Note: To explore practical examples, see GitHub.
Chapter 1. Introducing Ansible and IBM Power 51

https://github.com/IBM/ansible-for-i/tree/devel/playbooks

By using this approach, you can efficiently manage and automate tasks across a diverse set
of systems within your infrastructure. This approach helps ensure that Ansible can interact
with the specified hosts for configuration management and orchestration.

1.5.6 Ansible for IBM Power Hardware Management Console

The IBM Power HMC is rapidly evolving, with major advances being made across Power
servers. Automation is of paramount importance to save time and increase efficiency. The
power-hmc collection is part of IBM continuous efforts to adapt HMC to the ever-evolving
automation trends in the IT infrastructure administration landscape.

Power HMC Ansible content helps administrators include Power HMC as part of their
automation strategies through the Ansible ecosystem. By using Power HMC, Ansible content
in IT automation helps maintain a consistent and convenient management interface for
multiple Power HMCs and Power servers.

Power HMC Ansible content modules can be leveraged to do Power HMC patch
management, LPAR management, Power server management, password policy
configurations and HMC-based Power server dynamic inventory building.

HMC specific Ansible modules
Table 1-15 provides a summary of the modules that are supported at the time of writing.

Table 1-15 Specific Ansible modules for the IBM Power Hardware Management Console

Module Minimum
Ansible version

Description

hmc_command 2.9 Use this module to run HMC commands.

hmc_pwdpolicy 2.9 The password policy module manages the Power
HMC password policy.

hmc_update_upgrade 2.9 Use the HMC patch management module to update
or upgrade the HMC.

hmc_user 2.9 Manage the users on the HMC.

power_system 2.9 Use the Power management module to power cycle
the system, modify configurations, and modify
resources.

powervm_dlpar 2.9 Use this module to dynamically configure the
Processor, Memory, and Storage
settings.

powervm_inventory 2.9 A dynamic inventory plug-in that dynamically builds
the inventory of Power servers and partitions that
are connected to the HMC.

powervm_lpar_instance 2.9 The LPAR management module helps with the
creation, deletion, activation, and shutdown of
LPARs.

powervm_lpar_migration 2.9 Use the LPAR migration module to validate and
migrate LPARs.

vios 2.9 The Virtual IO Server module helps to create and
install VIOS.
52 Using Ansible for Automation in IBM Power Environments

Ansible extensions for the HMC
There are also extensions that are available for the HMC, as shown in Table 1-16.

Table 1-16 Ansible plug-ns for the HMC

The ansible-power-hmc collection requires that you are running HMC 10, HMC 9.1 or later, or
HMC 8.8.7.0 or later. It supports Ansible 2.9 or later and requires Python 3.

For more information about the collection, see Ansible Collection for Power HMC.

1.5.7 Ansible for Power Virtual I/O server

IBM PowerVM VIOS is a special IBM AIX based appliance for IBM Power that helps virtualize
storage and network adapters for VMs that run on the managed system. The VIOS should be
installed in pairs to provide a HA enterprise system. In addition, you might have business
requirements for the separation of applications that requires more VIOS pairs for security.
Therefore, have at least two VIOS partitions for each physical server that you manage.

This approach is perfect for Ansible management because you must help ensure that all your
VIOS LPARs are maintained and updated as required as new updates come out. Also, if you
are building a new bare metal environment, it is helpful to help ensure that the VIOS image
that is used in the new server is the level that you want. Starting with VIOS 4.1, VIOS is
already enabled for Ansible, which makes your Ansible setup simpler.

The power-vios collection provides the functions that you need to manage your VIOS
environment, such as install a VIOS, manage the security parameters on your VIOS, back up
and restore VIOS images, and upgrade the VIOS code.

VIOS specific Ansible modules
Table 1-17 provides a summary of modules that are supported at the time of writing.

Table 1-17 Specific Ansible modules for VIOS

Ansible plug-in Minimum Ansible
version

Description

hmc_resource 2.9 Removes try from the
list_all_managed_system_details method.

hmc_exceptions 2.9 Changes the custom exception name.

hmc_rest_client 2.9 Adds unit tests and document correction.

hmc_cli_client 2.9 Patches the password special character issue.

hmc_command_stack 2.9 Implements a patch for show ldap details in the
configure ldap action.

powervm_inventory 2.9 HMC-based inventory source for Power servers.

Module Minimum Ansible
version

Description

mapping_facts 2.9 Returns the mapping between physical, logical, and
virtual devices as facts.

updateios 2.9 Updates the VIOS to the latest maintenance level.

viosbr 2.9 Backs up and restores the configuration of the
VIOS.
Chapter 1. Introducing Ansible and IBM Power 53

https://community.ibm.com/community/user/power/blogs/navinakumar-kandakur/2022/07/27/ansible-collection-for-power-hmc

Ansible extensions for the VIOS
There is also an extension that is available for the VIOS, as shown in Table 1-18.

Table 1-18 Ansible plug-ins for the VIOS

1.5.8 Ansible for IBM Power Systems Virtual Server

IBM Power Systems Virtual Server on IBM Cloud offers a rapid and efficient means to create
and deploy VMs across various OSs, including AIX, IBM i, and Linux that is tailored for Power.
This solution stands out for its robust security measures and the ability to scale compute
capacity as needed.

Enterprise Infrastructure as a Service offering
This service uses Power resources that are distributed globally, which helps ensure
low-latency connectivity to IBM Cloud infrastructure. It features dedicated components, which
include a distinct network and direct attached storage, which enhances reliability and
performance.

Collaborative Cloud offering
At its core, this offering represents an Infrastructure as a Service (IaaS) approach, which
reflects the evolving IT landscape where cloud capabilities are essential for resource
consumption. IBM recognizes that its extensive client base relies on AIX and IBM i, which this
solution a vital addition.

Architectural overview
Within the IBM Cloud environment, the IBM Power Systems Virtual Server is as a distinct
entity. Picture it as a specialized colocation (COLO) site within an IBM SoftLayer® or cloud
data center. Here, you find a segregated enclosure that houses all the Power equipment. An
advantage of IBM Power Systems Virtual Servers is the consistency of their architecture with
on-premises Power servers. If you are configuring Power servers on-premises today, it is a
similar process to set up an IBM Power Systems Virtual Server. To illustrate the architecture,
see Figure 1-12 on page 55.

backupios 2.9 Creates an installable image of the root volume
group.

viosupgrade 2.9 Upgrades the VIOS.

alt_root_vg 2.9 Creates and cleans up an alternative rootvg disk on
a VIOS.

viosecure 2.9 Configures security hardening rules and a firewall.

Ansible plug-in Minimum Ansible
version

Description

viosupgrade 2.9 Updates viosupgrade.py.

Module Minimum Ansible
version

Description
54 Using Ansible for Automation in IBM Power Environments

Figure 1-12 Architecture of the service

For example, redundant VIOSs and NPIV-attached storage, as seen in on-premises setups,
are mirrored in Power Systems Virtual Server environments. Redundant storage area
network (SAN) fabric, HMC, and PowerVC configurations are all consistent between
on-premises and cloud deployments.

Infrastructure as a Service
Moving Power resources to a cloud data center is not a simple relocation, which is why you
need a COLO site. The COLO site serves as the foundation for IaaS. In this context, IaaS
encompasses everything beneath the VM layer, which includes the PowerVM hypervisor,
firmware, VIOS, HMC, PowerVC, network switches, and SAN switches, all of which are part of
the IaaS.

So, how do you manage this environment if you cannot directly access PowerVC or the SAN
switches? You interface with a service layer that implements the open service broker
framework. This framework is a standard across various cloud portals, such as Google Cloud
Platform and Azure. Essentially, it is a means of managing services in the cloud.

This service layer offers multiple interfaces, including a CLI and a REST API. Although the
interface might change, you retain the same core capabilities that you are accustomed to
on-premises. For example, if you have scripts that interact with the HMC today, you must
adapt them to the IBM Cloud CLI. However, the functions that you rely on remain available.

Ansible integration with IBM Power Systems Virtual Server
Within the Power Systems Virtual Server architecture, PowerVC plays a central role. It
enables integration with various DevOps tools like Terraform, Ansible, and Puppet, and offers
an API for enhanced automation capabilities.

With Ansible, you can provision AIX and IBM i instances within IBM Power Systems Virtual
Server.

IBM Power Systems Virtual Server in IBM Cloud
In this example, we demonstrate the creation of a Power Systems Virtual Server running AIX
or IBM i. This server is configured to allow incoming SSH connections through a publicly
accessible IP address, which is authenticated by using the provided SSH key.
Chapter 1. Introducing Ansible and IBM Power 55

Power Systems Virtual Server resources
The following infrastructure resources are established by using Ansible modules:

� SSH Key (ibm_pi_key)
� Network (ibm_pi_network)
� Virtual Server Instance (VSI) (ibm_pi_instance)

Configuration parameters
Users may set the following parameters:

� pi_name: The name that is assigned to the VSI.
� sys_type: The type of system on which to create the VM (for example, s922, e880, or any).
� pi_image: The name of the VM image (users can retrieve available images).
� proc_type: The type of processor mode in which the VM runs (shared or dedicated).
� processors: The number of vCPUs to assign to the VM (as visible within the guest OS).
� memory: The amount of memory (in GB) to assign to the VM.
� pi_cloud_instance_id: The cloud_instance_id for this account.
� ssh_public_key: The value of the SSH public key that is authorized for SSH access.

Running the playbook
Before proceeding, help ensure that you set your API Key and Region by completing the
following steps:

1. Obtain an IBM Cloud API key.

2. Export your API key to the IC_API_KEY environment variable by running the following
command:

export IC_API_KEY=<YOUR_API_KEY_HERE>

3. Export your IBM Cloud region to the IC_REGION environment variable by running the
following command:

export IC_REGION=<REGION_NAME_HERE>

4. Export your IBM Cloud zone to the IC_ZONE environment variable by running the following
command:

export IC_ZONE=<ZONE_NAME_HERE>

With the environment variables configured, create all the resources and test the public SSH
connections to the VM, and then run the create playbook.

1.5.9 Ansible for applications

Ansible can simplify the installation and operation of your infrastructure components,
including creating LPARs running AIX, IBM i, or Linux on Power, However, Ansible can also
provide a reduction in the time and effort that is required to manage many complex
application environments.

Note: Although modules also support the ibmcloud_api_key parameter, use environment
variables when encrypting your API key value.

Note: Modules also support the region parameter.

Note: This environment variable is used for multi-zone supported power instances.
56 Using Ansible for Automation in IBM Power Environments

Using Ansible for automation in these application environments can reduce the amount of
time that your support staff spends on basic tasks like installing or modifying your application
environment. You can have a build a consistent and secure environment for your application
instances while allowing your support staff to concentrate on tasks that are more important
and that can drive new business opportunities for your company. There are many application
environments that can be managed by Ansible. We describe how Ansible can make your
team more productive when managing two of the most common applications that run on
IBM Power servers.

Ansible for Oracle
Oracle Database has been a leading enterprise database management system for over
3 decades. Despite the emergence of new technologies and competitors, Oracle Database
remains a popular choice for many organizations.

Oracle Database manages and processes large amounts of data quickly and efficiently. As a
result, Oracle Database is widely used across different industries, from finance to healthcare,
and is trusted by organizations of all sizes to store and manage critical business data. Oracle
Database established itself as a reliable and versatile database management system that can
meet the complex data needs of modern enterprises. Its performance capabilities, scalability,
security features, and integration with cloud technologies make it a top choice for
organizations.

One of the most common platforms for running Oracle databases and application is on IBM
Power running the AIX OS. With automation becoming the norm in IT operations, installation
and administration of Oracle Database on AIX is not an exception. There are Ansible
collections for installation operations both on a single-node machine and on Oracle Real
Application Cluster (RAC) in addition to a collection for automating database administrator
(DBA) operations.

Advantages of using Ansible for Oracle
The Ansible collections for Oracle on AIX provide the following benefits:

� Automated database installation

Even when creating a single instance database, setting up Oracle Database on AIX
involves multiple manual processes, including defining the LPAR, installing AIX, configuring
the file system (either JFS2 or Automatic Storage Management (ASM)), configuring the
network connections, and setting up system configuration values that are appropriate for
running your database environment.

Setting up an Oracle RAC on AIX involves setting up an AIX environment on the hosts that
meet RAC’s specific requirements from kernel tunables, network attributes, shared disk
attributes, passwordless to user equivalent SSH connections and other items. The manual
process to accomplish these tasks is tedious and error-prone. During the Grid and
Database installation, the GUI frequently prompts for input, which occupies the user for a
long time.

You can save time with infrastructure automation. The whole installation can take 2 days for
seasoned users. With the help of the Ansible Oracle RAC ASM collection, it takes about
5 hours to complete a 4-node RAC installation. It is automated and can consistently
re-create an Oracle RAC for other projects. The value of this collection helps your
organization to improve productivity for installation tasks.
Chapter 1. Introducing Ansible and IBM Power 57

� Automated database management

After your databases are installed and operational, there are many tasks that must be done
to manage the environments. As the number of database instances grows, the amount of
time that is required for day-to-day operations also grows. The Ansible Oracle DBA package
can automate the day-to-day tasks that are managed by your DBAs to increase their
productivity and focus on more business-critical issues.

With the ODBA collection, you can add or drop databases, manage users, manage space
(ASM and ASM Cluster File System (ACFS) functions), manage patches, and otherwise
manage your Oracle environment. In addition, the ODBA collection can automate Oracle
upgrades.

Ansible for SAP
Ansible is an open-source automation tool that is used to simplify the management and
deployment of IT infrastructures. It is especially useful in managing complex systems like
SAP. In today's digital world, if an organization relies on SAP HANA and SAP S/4HANA for its
business-critical operations, downtime can result in revenue loss, performance and service
degradation, increased security exposure, and poor user experiences. Your ROI is affected
and your SAP teams are distracted from more strategic, high-priority projects.

Figure 1-13 illustrates the breadth of function that can be provided by Ansible for automating
your SAP landscape.

Figure 1-13 Components that can be automated by using Ansible16

Ansible Automation Platform eliminates these common obstacles with an intuitive interface
and trusted content that is custom built for SAP migrations. Ansible can also be integrated
with SAP to streamline operations, improve efficiency, and reduce manual tasks. With Ansible
Automation Platform, manual tasks that used to take days can be done in hours or even
minutes. By consolidating on a single, unified platform, your teams can more easily share
automation content and workflows, and scale as your organization evolves and uncovers new
automation use cases.

16 Source: https://www.adventone.com/sap-hana-at-the-speed-of-ansible/
58 Using Ansible for Automation in IBM Power Environments

https://www.adventone.com/sap-hana-at-the-speed-of-ansible/

SAP stands for Systems, Applications, and Products in Data Processing. It is a software suite
that covers various business processes, such as finance, logistics, human resources, and
more. SAP is used by organizations of all sizes and industries to manage their operations
effectively.

SAP installations can be complex and require skilled administrators to manage and maintain
them, which usually involves performing various tasks such as system configuration,
installation of patches, managing user accounts, monitoring system performance, and more.

Advantages of using Ansible for SAP
The following list counts some of the advantages of using Ansible to manage your SAP
environment:

� Rapid deployment and configuration

Deploying and configuring SAP systems, such as SAP HANA and S/4HANA, can be
complex and time-consuming. Ansible simplifies this process by automating the
deployment of SAP software, along with the necessary configurations. With Ansible
playbooks, you can define the system settings, network configurations, and more, which
helps ensure consistency across all your SAP systems. Furthermore, Ansible has
reusability, so you can replicate configurations across different environments.

� Continuous software delivery

Ansible streamlines the software deployment process, which helps enable CD of updates,
patches, and enhancements. With Ansible playbooks, you can automate the entire
software installation, patching, and upgrade processes. Ansible can perform tasks in
parallel to save time by running these operations on multiple systems simultaneously. This
approach helps ensure that your SAP systems are up to date with minimal disruption and
maximum efficiency.

� Intelligent monitoring and maintenance

Monitoring your SAP landscape is crucial for identifying potential issues and preventing
system downtime. Ansible integrates seamlessly with monitoring tools, so you can
automate monitoring processes and trigger alerts or actions based on predefined
thresholds. By proactively monitoring performance metrics, system errors, and other vital
indicators, you can help ensure the availability and reliability of your SAP environment.

� Enhanced high availability and disaster recovery (HADR)

Ensuring that capabilities for SAP systems is paramount for minimizing business
interruptions. With Ansible, you can automate the configuration and management of
HADR environments. Whether Ansible is are setting up system replication between
primary and secondary nodes or automating failover and failback processes, it streamlines
these tasks and reduces the risk of human errors.

� Scalability and flexibility

With Ansible, you can scale your SAP infrastructure to handle growing business demands
efficiently. With Ansible playbooks, you can define rules and conditions for scaling up or
down system resources, such as adding or removing compute nodes or adjusting memory
allocations. This flexibility optimizes resource utilization and accommodates changing
workloads effortlessly.
Chapter 1. Introducing Ansible and IBM Power 59

Managing SAP systems can be complex and time-consuming, but with the power of Ansible,
organizations can revolutionize their SAP operations. By automating tasks such as system
configuration, software deployment, monitoring, and scaling, Ansible simplifies SAP
management, enhances efficiency, and drives agility in your SAP landscape. With the Ansible
Automation Platform, you can streamline your SAP operations, reduce manual effort, help
ensure consistency, and improve the overall productivity and reliability of your SAP
environment.
60 Using Ansible for Automation in IBM Power Environments

Chapter 2. Ansible architecture and design

Understanding how to set up Ansible to manage automation in your environment is important
to the ultimate success of your automation journey. Set up the Ansible environment to support
your staff and meet your business needs.

This chapter describes the different components of Ansible and presents some hints and tips
for you to consider as you build your Ansible environment.

The following topics are described in this chapter:

� Ansible architecture and components
� Understanding the Ansible declarative language
� Understanding an Ansible inventory
� Ansible tasks, playbooks, and modules
� Ansible roles and collections
� Best practices for playbook and role design
� Creating versions and documenting playbooks and roles
� Testing and validating playbooks and roles

2

© Copyright IBM Corp. 2024. 61

2.1 Ansible architecture and components

In early releases, Ansible was installed as a package that included core components and
plug-ins that you used to control automation on different platforms. This approach was too
complex to maintain, which introduced more difficulties and delays in updating the Ansible
package. Now, Ansible is released in multiple packages that can be installed independently.

Figure 2-1 shows some of the Ansible components.

Figure 2-1 List of Ansible automation components

One option for building your environment is to use the automation base package Ansible Core
(previously called Ansible Engine or Ansible base) and use Ansible Automation Controller as
the CLI.

Alternatively, the automation environment can be built with Red Hat Ansible Automation
Platform together with Ansible Core. Automation Platform has a GUI and also extends Ansible
functions with more management capabilities. For more information, see 1.3.3, “Ansible
Automation Platform” on page 10.

Consider several things before deciding how to set up your automation environment. These
considerations help you to choose the right Ansible products as you define and build the
proper architecture that meets your business requirements.

� Computing resource availability and cost

Understand the number of systems that will be managed and the required availability of
your Ansible management infrastructure. This item determines the number of Ansible
systems that are required to manage your environment, including the required resources
(CPU, memory, and disk).

� Administrative environment

Do you need a CLI or a GUI?

� Security and compliance

Understand your security and compliance requirements for user authentication and
access control. Do you need to separate automation into multiple management domains
to comply with security and compliance guidelines?

� High availability (HA) and scalability

Do you need HA in your automaton? If you are monitoring and managing critical business
functions, the answer is probably yes. Design and build the automation so that it scales to
manage more environments or handles growth in the number of machines and tasks
running.
62 Using Ansible for Automation in IBM Power Environments

� Integration and compatibilities

Do you need to integrate with other solutions and services? Is your solution compatible
with the hosts and systems that are targeted for automation?

� Complexity of Day 2 operations

Understand how complex it is to manage the automation environment and operational
activities. Especially consider automation resources like the following ones:

– Credentials to access target systems.

– Skilled resources to develop and manage playbooks.

– Take time to define inventories, hosts, and hosts groups to simplify the automation
environment.

– Resources to manage playbook execution and access control.

When you have considered all of these factors, plan and design the automation environment
based on your requirements in these areas. For more information about designing your
Ansible environment, including reference architectures, see 3.1, “Designing your Ansible
environment” on page 104.

2.1.1 Controller and client functions

From an administrative view, there are two primary functions of all the systems in the
automation environment. A system is either a controller, or a system is a client, that is, a
system that is managed.

Controller functions
A controller is the machine or set of machines that run the Ansible tools (ansible-playbook,
Ansible, ansible-vault, and others) and automation tasks. Depending on your solution, the
controller uses the Ansible CLI or a GUI. Using a GUI often simplifies the management of
your client inventory, job templates, and workflow templates, and simplifies how you start
jobs, schedule workflows, and track and report changes. For more information about the
requirements for an Ansible Controller, see 3.2, “Choosing the Ansible Controller node” on
page 121.

Client functions
A client is a machine or set of machines that Ansible manages. They are also referred to as
'hosts' or managed nodes, and are servers, network appliances, or other managed devices.
Ansible does not need to be installed on the managed nodes because the Ansible control
nodes are used to run the automation tasks. For more information about the prerequisites for
a managed node, see 3.4, “Preparing your systems to be Ansible clients” on page 149.

Controller to client connectivity
The Ansible Controller is responsible for automating task execution on the managed nodes or
target devices (servers, network appliances, or any computer), Ansible works by connecting
the controller to the managed nodes and pushing out small programs that are called Ansible
modules to them. These programs are written to define the needed state of the client and
then prompt the client to make the required changes to help ensure that it meets the needed
state.
Chapter 2. Ansible architecture and design 63

The communication between Ansible Controllers to managed nodes or the target devices can
be different depending on the target devices. Here are some examples:

� Linux and UNIX hosts use Secure Shell (SSH) by default.

� Windows hosts use WinRM over HTTP/HTTPS by default.

� Network devices use CLI or XML over SSH.

� Appliance or web-based services use a Representational State Transfer (REST)
application programming interface (API) over HTTP/HTTPS.

2.2 Understanding the Ansible declarative language

Ansible playbooks, which are used to define automation tasks, are written in YAML. YAML is
used to describe the tasks, expected configuration, and data structures in a human-readable
format. YAML is a recursive acronym for YAML Ain't Markup Language.

This section explores how Ansible uses YAML to define automation playbooks. We provide
some simple examples to help you get started with effective building automation tasks.

2.2.1 YAML structure

YAML creates a human-readable format. YAML files consist of key-value pairs, lists, and
nested structures. Indentation is important in YAML because indentation is used to define the
hierarchy of commands and lists.

When you create a YAML file, consider these basic rules:

� YAML is case-sensitive.

� The files should have .yaml or .yml as the extension.

� Indentation is critical to define the hierarchy of the YAML code:

– Do not use tabs for indentation. Use spaces.

– As a best practice, use two spaces per indent. Many editors can be set to provide
spacing when editing YAML files.

� Playbooks start with --- to denote the beginning of a document and end with ... to
denote the end of a document.

� There are important key sequences to define Ansible code:

– Comments are denoted by a space that is followed by a hashtag (#). Any text that
follows the space hashtag is ignored.

– A colon followed by a space (or newline) ": “ is an indicator for a mapping.

– To have any of these items in a string and not be interpreted by Ansible, use single
quotation marks or double quotation marks around the full value string.

� Extra lines are ignored and can be used to improve the readability of the playbook.
64 Using Ansible for Automation in IBM Power Environments

For Ansible, nearly every YAML file starts with a list. Each item in the list is a list of key-value
pairs, commonly called a “hash” or a “dictionary”. So, you must know how to write lists and
dictionaries in YAML:

� All members of a list are lines that begin at the same indentation level and start with a "- "
(a dash and a space), as shown in Example 2-1.

Example 2-1 YAML list definition

A list of tasty fruits
- Apple
- Orange
- Strawberry
- Mango
...

� A dictionary is represented in a simple <key: > value form (a space must follow the colon),
as shown in Example 2-2.

Example 2-2 YAML dictionary definition

An employee record
martin:
 name: Martin D'vloper
 job: Developer
 skill: Elite
...

In the playbook in Example 2-3, the lines name and hosts are simple key-value pairs. The line
tasks is a list. A list can contain other objects that are defined with key-value pairs that are
organized in a hierarchy.

Example 2-3 Example playbook

- name: Simple Ansible Playbook
 hosts: web_servers
 tasks:
 - name: Ensure that Apache is installed
 apt:
 name: apache2
 state: present

 - name: Start Apache service
 service:
 name: apache2
 state: started
...
Chapter 2. Ansible architecture and design 65

Variables
You can define variables in Ansible to make your playbooks more dynamic and reusable.
Variables can be defined at different levels, including playbook, group, and host variables. In
Example 2-4, the vars section defines a playbook-level variable <http_port>.

The template module is used to copy a configuration template (`apache.conf.j2`) to the
destination and notify the `Restart Apache` handler. You might notice j2 in the code example,
which refers to the Jinja templating language that is common in Python development. For
more information about Jinja templating, see 2.2.2, “Jinja2” on page 67.

Example 2-4 Playbook with variables

- name: Ansible Playbook with Variables
 hosts: web_servers
 vars:
 http_port: 80
 tasks:
 - name: Ensure that Apache is installed
 apt:
 name: apache2
 state: present

 - name: Configure Apache
 template:
 src: apache.conf.j2
 dest: /etc/apache2/apache2.conf
 notify: Restart Apache

 - name: Start Apache service
 service:
 name: apache2
 state: started
 handlers:
 - name: Restart Apache
 service:
 name: apache2
 state: restarted

Conditionals and loops
Ansible supports conditionals and loops to make your playbooks more flexible. Example 2-5
shows a simple example.

In this playbook, <http_ports> is a variable that is a list of ports. The loop keyword is used to
iterate over the list and generate configuration files for each port.

Example 2-5 Playbook with a variable and loop

- name: Ansible Playbook with Conditionals and Loops
 hosts: web_servers
 vars:
 http_ports:
 - 80
 - 8080
 tasks:
66 Using Ansible for Automation in IBM Power Environments

 - name: Ensure that Apache is installed
 apt:
 name: apache2
 state: present

 - name: Configure Apache
 template:
 src: apache.conf.j2
 dest: "/etc/apache2/apache{{ item }}.conf"
 loop: "{{ http_ports }}"
 notify: Restart Apache

 - name: Start Apache service
 service:
 name: apache2
 state: started
 handlers:
 - name: Restart Apache
 service:
 name: apache2
 state: restarted

2.2.2 Jinja2

Jinja is a template engine for Python. It was developed by Armin Ronacher, the creator of the
Flask web framework, and was first released in 2008. Jinja2 is used for generating dynamic
content, such as HTML, XML, JSON, YAML, and other text-based formats by incorporating
data from various sources into predefined templates.

Jinja2 was created as a successor to the original Jinja template engine. The original Jinja was
inspired by the Django template system, but is more flexible and extensible. However, it had
some limitations, and Jinja2 was developed to address these shortcomings and provide a
more powerful, feature-rich, and robust templating engine.

Jinja2 quickly gained popularity within the Python community due to its simplicity, readability,
and performance. It became the default template engine for Flask, a popular web framework,
which contributed to its widespread adoption.

Jinja2 offers several features and benefits that make it a valuable tool in various contexts:

Template Inheritance Jinja2 supports template inheritance. You can create a base
template with common structure and blocks. Child templates can
extend the base template and override specific blocks, promoting
code reuse and maintainability.

Variables You can easily insert variables into templates by using double curly
braces {{ ... }}, which enables dynamic content generation by
substituting placeholders with actual data from variables.

Control Structures Jinja2 provides control structures like if and for, and macros, which
you use to create conditional logic, loops, and reusable template
fragments.
Chapter 2. Ansible architecture and design 67

Filters With filters, you can modify variables before displaying them in
templates. Filters can format dates, convert strings to uppercase,
sort lists, and perform various other operations on data.

Extensibility Jinja2 can be extended with custom filters, tests, and extensions,
making it highly adaptable to specific requirements and use cases.

Jinja templating with YAML makes Ansible a powerful automation platform that enhances
customization, readability, and re-usability of templates.

For more information, see Template Designer Documentation.

2.3 Understanding an Ansible inventory

Ansible is a powerful open-source automation tool that simplifies the management of complex
IT systems. Users can define and deploy automation tasks through simple, human-readable
YAML scripts. One crucial aspect of working with Ansible is understanding the concept of an
inventory.

If you want to manage your servers and applications with Ansible, you must define a list of
them. This list of targets is called an inventory in Ansible. It can be a simple static inventory
that is similar to a list of ingredients that you want to buy in a shop, or it can be a more
complex static inventory with groups and more variables.

The inventory can also be a dynamic inventory where you get the list from a third-party
provider like IBM Cloud, IBM PowerVC, or IBM Power Hardware Management Console
(HMC).

2.3.1 Overview of an Ansible inventory

In simple terms, an inventory is a file or group of files that lists all the remote hosts
(machines) that Ansible manages. It serves as a source of truth for Ansible, and can identify
target systems and run specific tasks on them. The inventory file can be formatted as plain
text, INI, or YAML, and it is named `inventory` or `hosts`.

Inventory components
Beyond identifying remote hosts, an inventory can be more than a list of servers. It can also
include information about groups, variables, and more. Here are some of those key
components:

Hosts Represent the individual machines or servers that you want to manage with
Ansible. Each host typically has a unique name or IP address that is
associated with it.

Groups Organizing hosts into groups makes it simpler to manage and perform
operations on specific sets of machines. For example, you can have groups
like webservers, database-servers, or even staging and production groups.

Variables With an inventory, you can define variables at both the host and group level.
Use these variables to customize and parameterize your playbooks. It helps
make your automation scripts more flexible and reusable.
68 Using Ansible for Automation in IBM Power Environments

https://jinja.palletsprojects.com/en/3.1.x/templates/

Creating an Ansible inventory
The following list defines the tools and definitions that are used to define an inventory file:

Configuration file Ansible requires an ansible.cfg file to specify the default inventory
location. By default, it searches for an `inventory` file in the current
directory. You can customize this location according to your project
structure and needs.

Inventory file The inventory file itself is the heart of your inventory. It can be on your
Ansible control node or be fetched dynamically from external sources
like cloud providers, external databases, or even scripts.

Inventory structure It is important to understand and adhere to the inventory structure.
Whether you choose the INI, YAML, or plain text format, organizing
hosts and groups correctly improves the readability and maintainability
of your inventory.

Using an Ansible inventory
There are several advantages of using an inventory in your Ansible environment:

� Defining the infrastructure

The inventory file provides a high-level view of your infrastructure by listing all the servers
and their associated attributes.

� Targeting specific hosts or groups

By using the host and group information, you can run Ansible tasks on subsets of
machines rather than applying them system-wide, which achieves more granular control
over your automation.

� Modifying host variables

By using inventory files, you can define host-specific variables such as IP addresses,
credentials, or package versions. These variables can be accessed within playbooks and
used to customize behavior based on specific hosts.

Ansible inventory plays a crucial role in managing and automating your IT infrastructure. It
helps Ansible identify the target systems, organize them into groups, define variables, and run
tasks. The inventory file empowers you to automate tasks based on your specific needs by
providing a clear and structured overview of your environment. Whether you are a system
administrator, a DevOps engineer, or curious about automation, mastering the Ansible
inventory is an essential skill to have in your toolkit.

Defining inventory hosts and groups
Your inventory defines the managed nodes that you automate. Groups help you run
automation tasks on multiple hosts concurrently. When your inventory is defined, you can use
patterns to select the hosts or groups that you want Ansible to run against.

The simplest inventory is a single file with a list of hosts and groups. The default location for
this file is /etc/ansible/hosts, but you can specify a different inventory file at the CLI by
using the -i <path> option, or in the configuration file by using inventory.
Chapter 2. Ansible architecture and design 69

Ansible inventory plug-ins support a range of formats and sources to make your inventory
flexible and customizable. As your inventory expands, you might need more than a single file
to organize your hosts and groups. Here are three options beyond the /etc/ansible/hosts
file:

� You can create a directory with multiple inventory files. as described in “Organizing
inventory in a directory” on page 70. They can use different formats (YAML, ini, and so on).

� You can pull inventory dynamically. For example, you can use a dynamic inventory plug-in
to list resources in one or more cloud providers. For more information, see 2.3.2,
“Overview of dynamic inventory” on page 70.

� You can use multiple sources for inventory, including both dynamic inventory and static
files.

Organizing inventory in a directory
You can consolidate multiple inventory sources in a single directory. The simplest version is a
directory with multiple files instead of a single inventory file. A single file is too difficult to
maintain when it gets too long. If you have multiple teams and multiple automation projects,
having one inventory file per team or project lets everyone find the hosts and groups that
matter to them.

You can also combine multiple inventory source types in an inventory directory, which can be
useful for combining static and dynamic hosts and managing them as one inventory. The
inventory directory that is shown in Example 2-6 combines an inventory plug-in source, a
dynamic inventory script, and a file with static hosts.

Example 2-6 Inventory directory with mixed sources

inventory/
 openstack.yml # configure inventory plug-in to get hosts from OpenStack
cloud
 dynamic-inventory.py # add extra hosts with dynamic inventory script
 on-prem # add static hosts and groups
 parent-groups # add static hosts and groups

You can target this inventory directory as follows:

ansible-playbook example.yml -i inventory

You can also configure the inventory directory in your ansible.cfg file.

2.3.2 Overview of dynamic inventory

If you know in advance which servers that you want to manage by using Ansible, you can use
a static inventory. However, sometimes the infrastructure is so dynamic that you cannot know
the names of servers, or you might know the names but it is more efficient to get them from
some other source. For example, you might want to perform some operations on Virtual I/O
Servers (VIOSs) on a specific managed system, or run some playbooks on all logical
partitions (LPARs) that PowerVC manages. This use case is the one for dynamic inventories.

A dynamic inventory defines the list of servers to manage by using a special inventory plug-in.
You can find the list of plug-ins that are available to you by using the ansible-doc command,
as shown in Example 2-7 on page 71.
70 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/plugins/inventory.html#inventory-plugins

Example 2-7 List of plug-ins that are provided by the ansible-doc command

ansible-doc -t inventory -l
ansible.builtin.advanced_host_list Parses a 'host list' with ranges
ansible.builtin.auto Loads and runs an inventory plug-in specified
in a YAML config
ansible.builtin.constructed Uses Jinja2 to construct vars and groups based
on existing inventory
ansible.builtin.generator Uses Jinja2 to construct hosts and groups from
patterns
ansible.builtin.host_list Parses a 'host list' string
ansible.builtin.ini Uses an Ansible INI file as an inventory source
ansible.builtin.script Runs an inventory script that returns JSON
ansible.builtin.toml Uses a specific TOML file as an inventory
source
ansible.builtin.yaml Uses a specific YAML file as an inventory
source
ibm.power_hmc.powervm_inventory HMC-based inventory source for Power Servers
openstack.cloud.openstack OpenStack inventory source

Several inventory plug-ins are delivered with Ansible. They start with ansible.builtin. In this
particular case, there are two more plug-ins that are provided by installed collections:

� ibm.power_hmc.powervm_inventory, which is provided by the ibm.power_hmc collection
� openstack.cloud.openstack, which is provided by the openstack.cloud collection.

As with static inventories, you can use the ansible-inventory command to test and show
your inventory. In dynamic inventories, test your configuration before you run your playbook,
as shown in Example 2-8.

Example 2-8 Inventory test by using t he ansible-inventory command

ansible-inventory -i hmc1.power_hmc.yml --list
{
 "_meta": {
 "hostvars": {
 "aixlpar1": {
 "ansible_host": "10.17.19.42"
 },
 "aixlpar2": {
 "ansible_host": "10.17.19.100"
 },

"vio1": {
 "ansible_host": "10.17.19.113"
 },
 "vio2": {
 "ansible_host": "10.17.19.114"
 },

"linux": {
 "ansible_host": "10.17.19.13"
 }
 }
 },
 "all": {
 "children": [
 "ungrouped",
 "P10-9080-HEX"
Chapter 2. Ansible architecture and design 71

]
 },
 "P10-9080-HEX": {
 "hosts": [
 "aixlpar1",
 "aixlpar2",
 "vio1",
 "vio2",
 "linux"

]
 }
}

From the output in Example 2-8 on page 71, you see that the dynamic inventory that was
defined by using the hmc1.power_hmc.yml file found several AIX, Linux, and VIOS LPARs.

If you look in the configuration file, you find information about how to connect to the HMC and
filters that determine which systems and LPARs that you see in the output, as shown in
Example 2-9.

Example 2-9 Contents of hmc1.power_hmc.yml

cat hmc1.power_hmc.yml
plug-in: ibm.power_hmc.powervm_inventory
hmc_hosts:
 - hmc: hmc1
 user: hscroot
 password: abcd1234
system_filters:
 SystemName: 'P10-9080-HEX'
filters:
 PartitionState: 'running'

Example 2-10 shows a common situation where you want to get a list of LPARs directly from
an HMC. By using powervm_inventory from the ibm.power_hmc collection, you can
dynamically define variables and assign servers to groups.

Example 2-10 Defining variables dynamically by using powervm_inventory

cat hmc1.power_hmc.yml
plug-in: ibm.power_hmc.powervm_inventory
strict: False
hmc_hosts:
 - hmc: hmc1
 user: hscroot
 password: abcd1234
system_filters:
 SystemName: 'P10-9080-HEX'
filters:
 PartitionState: 'running'
compose:
 ansible_host: PartitionName
 ansible_python_interpreter: "'/opt/freeware/bin/python3' if 'AIX' in
OperatingSystemVersion or 'VIOS' in OperatingSystemVersion else
'/QOpenSys/pkgs/bin/python3' if 'IBM i' in OperatingSystemVersion else
'/usr/bin/python3'"
72 Using Ansible for Automation in IBM Power Environments

 ansible_user: "'root' if 'AIX' in OperatingSystemVersion or 'Linux' in
OperatingSystemVersion else 'ansible' if 'VIOS' in OperatingSystemVersion else
'qsecofr'"
groups:
 AIX: "'AIX' in OperatingSystemVersion"
 Linux: "'Linux' in OperatingSystemVersion"
 IBM i: "'IBM i' in OperatingSystemVersion"
 VIOS: "'VIOS' in OperatingSystemVersion"

In this example, we define groups of hosts according to their operating systems (OSs). All
VIOSs are assigned to the group VIOS. All IBM i LPARs are assigned to the group ‘IBM i’. All
Linux LPARs are assigned to the group Linux. All AIX LPARs are assigned to the group AIX.

We dynamically define variables for our hosts. We want to connect to AIX and Linux LPARs as
user root and to IBM i LPARs as user qsecofr. We set the variable <ansible_user> depending
on the LPAR’s OS. We change the path to the Python interpreter based on the LPAR’s OS.

If you use IBM PowerVC to manage your LPARs, you can use the openstack.cloud.openstack
inventory plug-in to get the list of the LPARs in PowerVC. Use the inventory plug-in to set
variables from /opt/ibm/powervc/powervcrc and then create an inventory file with one line in
it, as shown in Example 2-11.

Example 2-11 Using the openstack.cloud.openstack plug-in

cat openstack.yml
plug-in: openstack.cloud.openstack
source /opt/ibm/powervc/powervcrc
ansible-inventory -i openstack.yml --list

If you do not want to set environment variables, you can create a file that is named
clouds.yaml in the same directory with authentication parameters, as shown in Example 2-12.
The file is used by the OpenStack inventory plug-in automatically.

Example 2-12 Using clouds.yaml

cat clouds.yaml
clouds:
 powervc:
 identity_api_version: "3"
 region_name: RegionOne
 verify: false
 auth:
 auth_url: https://powervc:5000/v3
 project_name: "ibm-default"
 username: root
 password: ibmaix
 project_domain_name: Default
 user_domain_name: Default

You can get more information about the inventory plug-ins by using the ansible-doc
command:

ansible-doc -t inventory ibm.power_hmc.powervm_inventory
ansible-doc -t inventory openstack.cloud.openstack

It is also possible to extend the current playbook with newly provisioned hosts by using a
dynamic inventory.
Chapter 2. Ansible architecture and design 73

Example 2-13 shows a playbook that consists of two plays, where one play targets the
localhost and the second play targets the dynamic group "powervms".

Example 2-13 Playbook targeting the localhost and dynamic group

- hosts: localhost
 tasks:
 - name: create dynamic in memory inventory
 add_host:
 name: "{{ item.ip }}"
 groups: powervms
 ansible_connection: local
 loop:
 - ip: 1.2.3.4
 name: vm01
 - ip: 2.4.5.6
 name: vm02
 - ip: 3.4.5.6
 name: vm03
- hosts: powervms
 tasks:
 - name: wait for reachability
 wait_for_connection:
 delay: 5
 timeout: 240
 - name: gather_facts
 setup:
 gather_subset: min
 - debug:
 msg: "{{ ansible_hostname }} {{ansible_default_ipv4.address}}"

For documentation reasons, we set ansible_connection: local. (You may omit the line in
production.) The output from Example 2-13 is shown in Example 2-14.

Example 2-14 Playbook output

WARNING]: the provided hosts list is empty, only localhost is available. The
implicit localhost does not match 'all'

PLAY [localhost]
**

TASK [create dynamic in memory inventory]
**
Saturday 30 September 2023 14:02:08 +0200 (0:00:00.030) 0:00:00.030 ****
Saturday 30 September 2023 14:02:08 +0200 (0:00:00.030) 0:00:00.030 ****
changed: [localhost] => (item={'ip': '1.2.3.4', 'name': 'vm01'}) => {"add_host":
{"groups": ["powervms"], "host_name": "1.2.3.4", "host_vars":
{"ansible_connection": "local"}}, "ansible_loop_var": "item", "changed": true,
"item": {"ip": "1.2.3.4", "name": "vm01"}}
changed: [localhost] => (item={'ip': '2.4.5.6', 'name': 'vm02'}) => {"add_host":
{"groups": ["powervms"], "host_name": "2.4.5.6", "host_vars":
{"ansible_connection": "local"}}, "ansible_loop_var": "item", "changed": true,
"item": {"ip": "2.4.5.6", "name": "vm02"}}
74 Using Ansible for Automation in IBM Power Environments

changed: [localhost] => (item={'ip': '3.4.5.6', 'name': 'vm03'}) => {"add_host":
{"groups": ["powervms"], "host_name": "3.4.5.6", "host_vars":
{"ansible_connection": "local"}}, "ansible_loop_var": "item", "changed": true,
"item": {"ip": "3.4.5.6", "name": "vm03"}}

PLAY [powervms]
**

TASK [wait for reachability]
**
Saturday 30 September 2023 14:02:08 +0200 (0:00:00.085) 0:00:00.116 ****
Saturday 30 September 2023 14:02:08 +0200 (0:00:00.085) 0:00:00.116 ****
[WARNING]: Reset is not implemented for this connection
[WARNING]: Reset is not implemented for this connection
[WARNING]: Reset is not implemented for this connection
ok: [3.4.5.6] => {"changed": false, "elapsed": 5}
ok: [1.2.3.4] => {"changed": false, "elapsed": 5}
ok: [2.4.5.6] => {"changed": false, "elapsed": 5}

TASK [gather_facts]
**

Saturday 30 September 2023 14:02:13 +0200 (0:00:05.427) 0:00:05.544 ****
Saturday 30 September 2023 14:02:13 +0200 (0:00:05.427) 0:00:05.543 ****
ok: [2.4.5.6]
ok: [3.4.5.6]
ok: [1.2.3.4]

TASK [debug]
**

Saturday 30 September 2023 14:02:14 +0200 (0:00:00.805) 0:00:06.349 ****
Saturday 30 September 2023 14:02:14 +0200 (0:00:00.805) 0:00:06.348 ****
ok: [1.2.3.4] => {
 "msg": "vm9810 192.168.98.10"
}
ok: [2.4.5.6] => {
 "msg": "vm9810 192.168.98.10"
}
ok: [3.4.5.6] => {
 "msg": "vm9810 192.168.98.10"
}

PLAY RECAP
**

1.2.3.4 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
2.4.5.6 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
3.4.5.6 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
Chapter 2. Ansible architecture and design 75

localhost : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

If you want to change a local inventory file instead of using an in-memory inventory, use the
lineinfile or template module to populate the inventory file. To make Ansible use the most
current file, there is a meta directive that rereads and reloads the inventory.

Example 2-15 shows a playbook that uses these two actions.

Example 2-15 Creating a dynamic inventory file

- hosts: localhost

 tasks:
 - name: create dynamic inventory
 local_action:
 module: lineinfile
 path: inventories/powervms.ini
 regexp: ^{{ item.name }}
 insertafter: "[powervms]"
 line: "{{ item.name }} ansible_host={{ item.ip }}
ansible_connection=local"
 loop:
 - ip: 1.2.3.4
 name: vm01
 - ip: 2.4.5.6
 name: vm02
 - ip: 3.4.5.6
 name: vm03

 - meta: refresh_inventory

- hosts: powervms

 tasks:
 - name: wait for reachability
 wait_for_connection:
 delay: 5
 timeout: 240

 - name: gather_facts
 setup:
 gather_subset: min

 - debug:
 msg: "{{ ansible_hostname }} {{ansible_default_ipv4.address}}"
76 Using Ansible for Automation in IBM Power Environments

Example 2-16 shows the output from the playbook in Example 2-15 on page 76.

Example 2-16 Output of 'ansible-playbook -i playbooks/inventories/powervms.ini

playbooks/dynamic2.yml -v --diff''
Script started, file is /tmp/a
Using /ansible/ALL/ansible/ansible.cfg as a config file
[WARNING]: * Failed to parse
/ansible/ALL/ansible/playbooks/inventories/powervms.ini with ini plug-in:
/ansible/ALL/ansible/playbooks/inventories/powervms.ini:2: Expected key=value host
variable assignment, got:
1.2.3.4
[WARNING]: Unable to parse /ansible/ALL/ansible/playbooks/inventories/powervms.ini
as an inventory source
[WARNING]: No inventory was parsed, only implicit localhost is available
[WARNING]: The provided hosts list is empty, only localhost is available. The
implicit localhost does not match 'all'

PLAY [localhost]
**

TASK [create dynamic inventory]
**
Saturday 30 September 2023 14:14:36 +0200 (0:00:00.041) 0:00:00.041 ****
Saturday 30 September 2023 14:14:36 +0200 (0:00:00.040) 0:00:00.040 ****
--- before: inventories/powervms.ini (content)
+++ after: inventories/powervms.ini (content)
@@ -1,4 +1,4 @@
 [powervms]
-vm01 1.2.3.4 ansible_connection=local
+vm01 ansible_host=1.2.3.4 ansible_connection=local
 vm02 2.4.5.6 ansible_connection=local
 vm03 3.4.5.6 ansible_connection=local

changed: [localhost] => (item={'ip': '1.2.3.4', 'name': 'vm01'}) =>
{"ansible_loop_var": "item", "backup": "", "changed": true, "item": {"ip":
"1.2.3.4", "name": "vm01"}, "msg": "line replaced"}
--- before: inventories/powervms.ini (content)
+++ after: inventories/powervms.ini (content)
@@ -1,4 +1,4 @@
 [powervms]
 vm01 ansible_host=1.2.3.4 ansible_connection=local
-vm02 2.4.5.6 ansible_connection=local
+vm02 ansible_host=2.4.5.6 ansible_connection=local
 vm03 3.4.5.6 ansible_connection=local

changed: [localhost] => (item={'ip': '2.4.5.6', 'name': 'vm02'}) =>
{"ansible_loop_var": "item", "backup": "", "changed": true, "item": {"ip":
"2.4.5.6", "name": "vm02"}, "msg": "line replaced"}
--- before: inventories/powervms.ini (content)
+++ after: inventories/powervms.ini (content)
@@ -1,4 +1,4 @@
 [powervms]
 vm01 ansible_host=1.2.3.4 ansible_connection=local
 vm02 ansible_host=2.4.5.6 ansible_connection=local
Chapter 2. Ansible architecture and design 77

-vm03 3.4.5.6 ansible_connection=local
+vm03 ansible_host=3.4.5.6 ansible_connection=local

changed: [localhost] => (item={'ip': '3.4.5.6', 'name': 'vm03'}) =>
{"ansible_loop_var": "item", "backup": "", "changed": true, "item": {"ip":
"3.4.5.6", "name": "vm03"}, "msg": "line replaced"}

TASK [meta]
**

Saturday 30 September 2023 14:14:36 +0200 (0:00:00.709) 0:00:00.750 ****
Saturday 30 September 2023 14:14:36 +0200 (0:00:00.709) 0:00:00.750 ****

PLAY [powervms]
**

TASK [Gathering Facts]
**

Saturday 30 September 2023 14:14:36 +0200 (0:00:00.041) 0:00:00.792 ****
Saturday 30 September 2023 14:14:36 +0200 (0:00:00.041) 0:00:00.791 ****
ok: [vm03]
ok: [vm02]
ok: [vm01]

TASK [wait for reachability]
**
Saturday 30 September 2023 14:14:38 +0200 (0:00:01.386) 0:00:02.179 ****
Saturday 30 September 2023 14:14:38 +0200 (0:00:01.386) 0:00:02.178 ****
[WARNING]: Reset is not implemented for this connection
[WARNING]: Reset is not implemented for this connection
[WARNING]: Reset is not implemented for this connection
ok: [vm02] => {"changed": false, "elapsed": 5}
ok: [vm03] => {"changed": false, "elapsed": 5}
ok: [vm01] => {"changed": false, "elapsed": 5}

TASK [gather_facts]
**

Saturday 30 September 2023 14:14:43 +0200 (0:00:05.398) 0:00:07.577 ****
Saturday 30 September 2023 14:14:43 +0200 (0:00:05.398) 0:00:07.576 ****
ok: [vm03]
ok: [vm02]
ok: [vm01]

TASK [debug]
**

Saturday 30 September 2023 14:14:44 +0200 (0:00:00.541) 0:00:08.118 ****
Saturday 30 September 2023 14:14:44 +0200 (0:00:00.541) 0:00:08.117 ****
ok: [vm01] => {
 "msg": "vm9810 192.168.98.10"
}
ok: [vm02] => {
78 Using Ansible for Automation in IBM Power Environments

 "msg": "vm9810 192.168.98.10"
}
ok: [vm03] => {
 "msg": "vm9810 192.168.98.10"
}

PLAY RECAP
**

localhost : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
vm01 : ok=4 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
vm02 : ok=4 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
vm03 : ok=4 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

2.4 Ansible tasks, playbooks, and modules

In Ansible, a playbook consists of one or more plays in an ordered list. Each play runs part of
the overall goal of the playbook by running one or more tasks. A task is the smallest unit of
work that is automated by using the playbook.

Each task uses Ansible modules to achieve expected outcomes. A module is a reusable,
stand-alone script that Ansible runs, either locally or remotely. Modules interact with the local
machine, an API, or a remote system to perform specific tasks like changing a database
password or starting a cloud instance.

2.4.1 Creating Ansible playbooks

Ansible uses the YAML syntax, and playbooks are expressed in YAML format with a minimum
of syntax. If you are not familiar with YAML, see 2.2, “Understanding the Ansible declarative
language” on page 64. For more information, see YAML Syntax.

Consider installing an add-on for your text editor to help you write clean YAML syntax in your
playbooks. If your preferred editor is vi (or vim), then you may add these lines to ~/.vimrc to
use TAB by making the TAB character appear as 2 blank spaces:

autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab
autocmd FileType yml setlocal ts=2 sts=2 sw=2 expandtab

For more information about setting up vim, see Setup Your vim editor for Ansible Playbook.
Chapter 2. Ansible architecture and design 79

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html#yaml-syntax
https://www.techbeatly.com/setup-your-vim-editor-for-ansible-playbook/

Anatomy of an Ansible playbook
A playbook is a text file that is written in YAML format, and is normally saved with the
extension .yml or .yaml.

A playbook is what drives Ansible automation. The following concepts are important to
understand when building playbooks for your environment:

Playbook A text file that contains a list of one or more plays to run in a specific
order, from top to bottom, to achieve an overall goal.

Play An ordered list of tasks that maps to managed nodes in an inventory. It
is the top-level specification for a group of tasks. Defined in the play
are the hosts that it runs on (the inventory) and control behaviors, such
as fact-gathering or privilege level. Multiple plays can exist within a
single Ansible playbook and may run on different hosts.

Task The application of a module to perform a specific unit of work. A play
combines a sequence of tasks that are applied, in order, to one or
more hosts that are selected from your inventory.

Module Parametrized components or programs with internal logic,
representing a single step to be done on the target machine. The
modules “do” things in Ansible.

Plug-ins Pieces of code that augment Ansible core functions. They are often
provided by a manufacturer for their specific devices. Ansible uses a
plug-in architecture to enable a rich, flexible, and expandable feature
set.

The playbook uses indentation with space characters to indicate the structure of its data.
YAML does not place strict requirements on how many spaces are used for the indentation,
but there are two basic rules:

� Data elements at the same level in the hierarchy (such as items in the same list) must
have the same indentation.

� Items that are children of another item must be indented more than their parents.

You can also add blank lines for readability.

Start of a playbook
A playbook starts with a line consisting of three dashes (---) as a starting document marker
and may end with three dots (...) as an end-of-document marker (the ... is optional and in
practice is often omitted).

Between these markers, the playbook contains a list of plays. Each item in a YAML list starts
with a single dash followed by a space. Example 2-17 shows an example playbook that is
designed to capture the oslevel from the system.

Example 2-17 Sample playbook capturing the oslevel

- name: GET oslevel AIX
 hosts: all

 tasks:

Note: Only the space character can be used for indentation. TAB characters are not
allowed.
80 Using Ansible for Automation in IBM Power Environments

 - name: Gather LPP Facts
 shell: "oslevel -s"
 register: output_oslevel

 - name: Print the oslevel
 debug:
 msg: "{{ ansible_hostname }} has the AIX oslevel of {{
output_oslevel.stdout }}"

Order in plays
The order in plays is always the following one:

1. pre_tasks:

2. roles:

3. tasks:

4. handlers:

You may change the order by using include_roles, import_roles, include_tasks, or
import_tasks. You can also use the directive tasks_from: while including tasks.

The main differences between import and include are the following ones:

� All import* statements are preprocessed at the time that playbooks are parsed.

� All include* statements are processed as they are encountered during the run of the
playbook.

So, import is static, and include is dynamic.

A best practice is to use import when you deal with logical “units”. For example, separate long
list of tasks into subtask files in a main.yml file. The include keyword is used to make
decisions based on dynamically gathered facts, as shown here:

- include_tasks: taskrun_{{ ansible_os_family | lower }}.yml

For more information about using import or include, see “Including and importing other
playbooks” on page 83.

Verifying playbooks
You might want to verify your playbooks to detect syntax errors and other problems before you
run them. The ansible-playbook command offers several options for verification, including
--check, --diff, --list-hosts, --list-tasks, and --syntax-check. To check the playbook
for syntax errors by using --syntax-check, use the command that is shown in Example 2-18.

Example 2-18 Verifying a playbook

$ ansible-playbook --syntax-check aix_oslevel.yml
playbook: aix_oslevel.yml

Ansible tasks
Ansible tasks form the core building blocks of automation that you can use to specify the state
of your infrastructure and applications in a declarative manner.
Chapter 2. Ansible architecture and design 81

Figure 2-2 shows how tasks relate to the rest of the tools within the Ansible ecosystem.

Figure 2-2 Task flow chart

Tasks are fundamental building blocks in Ansible, and there is a plethora of plug-ins that are
available. Each plug-in is further divided into modules and grouped as collections. The plug-ins
are in different categories, and Ansible categorizes the plug-ins based on what they do. For
example, the become plug-in enables you to become a superuser or run the function as a
specific user.

The plug-in ecosystem is vast and includes Ansible built-in plug-ins, community plug-ins from
contributors, and vendor plug-ins from companies such as Cisco, IBM, and AWS.
This Ansible document provides a list of plug-ins and their modules.

Writing tasks
Each task in Ansible consists of three components that are defined in YAML format.

The task starts with a name (in free-form text) to describe what is being done. It is a best
practice to provide a good description that matches the task.

Then, you call a plug-in, which has the format <namespace.plug-in.module>, which is followed
by its arguments or parameters.

Example 2-19 shows get_url, which is a built-in plug-in that is in the Ansible namespace. It is
an example playbook for IBM AIX that downloads and configures the Yellowdog Updater,
Modified (YUM) package manager, and then installs MariaDB.

For Ansible built-in plug-ins, you may omit the namespace (ansible) and plug-in (builtin).
The get_url also shows the parameters that you need to pass, such as url, dest, mode, and
validate_certs.

Example 2-19 The get_url plug-in

- name: Install MariaDB open source relational database
 hosts: ansible-vms
 tasks:
82 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/collections/all_plugins.html#all-modules-and-plugins

 - name: Download 'yum.sh' script
 get_url:
 url:
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/yum.sh
 dest: /tmp/yum.sh
 mode: 0755
 validate_certs: False

 - name: Run the 'yum.sh' script
 shell: /tmp/yum.sh

 - name: Install MariaDB package
 yum:
 name: mariadb-server
 state: latest

Including and importing other playbooks
Ansible tasks can include or import other tasks that were prebuilt. The difference between
import and include is subtle, but critical to understand. The import_tasks are preprocessed
when Ansible processes the playbook for running. The include_tasks are processed when the
playbook runs.

Example 2-20 shows an excerpt from a playbook that shows the usage of both import_tasks
and include_tasks.

Example 2-20 Playbook with the import and include tasks

- name: Create a file system when disks_configuration variables is a dictionary
 import_tasks: disks-dict2list.yml
 when: disks_configuration | type_debug == "dict"

- name: Create a file system when disks_configuration variables is a list
 include_tasks: file-system-creation-core.yml
 with_items:
 - "{{ disks_configuration }}"
 loop_control:
 loop_var: file_system
 when: disks_configuration | type_debug == "list"

It is a best practice to include tasks that apply to a specific target OS or target hardware. To
get better readability of playbooks, you may use the pattern that is shown in Example 2-21.

Example 2-21 Using variables to target specific target attributes

name: get information of underlying play_hosts
 setup:
 gather_subset: min
 tags: vars
- name: gather os specific variables
 include_vars: "{{ item }}"

with_first_found:
 - "{{ ansible_distribution }}-{{ ansible_distribution_major_version}}.yml"
 - "{{ ansible_distribution }}.yml"
 tags: vars
Chapter 2. Ansible architecture and design 83

Variables
Ansible uses variables to manage differences between systems. With Ansible, you can run
tasks and playbooks on multiple different systems with a single command. To represent the
variations among those different systems, you can create variables with standard YAML syntax,
including lists and dictionaries. You can define these variables in your playbooks, in your
inventory, in re-usable files or roles, or at the CLI. You can also create variables during a
playbook run time by registering the return value or values of a task as a new variable.

Defining variables in playbooks
The simplest way to define variables is to put a vars section in your playbook with the names
and values of your variables, as shown in Example 2-22.

Example 2-22 Defining variables

vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost
 firewall_pkg: firewalld
 firewall_svc: firewalld
 web_pkg: httpd
 web_svc: httpd

Not all strings are valid Ansible variable names. A variable name can include only letters, numbers,
and underscores. Python keywords or playbook keywords are not valid variable names. A variable
name cannot begin with a number.

Variable names can begin with an underscore. In many programming languages, variables that
begin with an underscore are private, which is not true in Ansible. Variables that begin with an
underscore are treated the same as any other variable. Do not rely on this convention for privacy or
security.

Figure 2-3 gives examples of valid and invalid variable names.

Figure 2-3 Valid and invalid Ansible variable names

Defining variables in separate files
With Ansible, you can put variables into one or more files, which are then referenced in the
playbook by using a section that is called vars_files. For example, you might want to take the
preceding example and put the variables in a file that is named nginx.yml instead of putting them
in the playbook. To do so, replace the vars section with a vars_files that looks like what is shown
in Example 2-23 on page 85.
84 Using Ansible for Automation in IBM Power Environments

Example 2-23 Defining variables in separate files

vars_files:
 - vars_nginx.yml

The vars_nginx.yml file looks like Example 2-22 on page 84.

Referencing variables
After you define a variable, use Jinja2 syntax to reference it. Jinja2 variables use double curly
braces. For example, the expression My amp goes to {{ max_amp_value }} demonstrates the
most basic form of variable substitution. You can use Jinja2 syntax in playbooks, as shown in
Example 2-24.

Example 2-24 Referencing variables

ansible.builtin.template:
 src: foo.cfg.j2
 dest: '{{ remote_install_path }}/foo.cfg'

When you want to display a debug message with a variable, use a double quotation mark string
with the variable name embedded in double braces, as shown in Example 2-25.

Example 2-25 Referencing variables

- name: Display the variable
 debug:
 msg: "The file used was {{ conf_file }}"

Variables can be concatenated between the double braces by using the tilde operator ~, as
shown in Example 2-26.

Example 2-26 Concatenating variables

- name: Concatenate variables
 debug:
 msg: "Hello! Your URL is https://{{ server_name ~'.'~ domain_name }}/"

Registering variables
You can create variables from the output of an Ansible task with the task keyword register. You
can use registered variables in any later tasks in your play. Each Ansible module returns results
in JSON format. To use these results, create a registered variable by using the register clause
when starting a module, as shown in Example 2-27.

Example 2-27 Registering variables

- name: Get disk information
 ansible.builtin.shell: |
 fdisk -l
 lsblk
 df -h
 register: os_disk

- debug:
 var: os_disk
Chapter 2. Ansible architecture and design 85

Example 2-28 shows how to capture the output of the whoami command to a variable that is
named <logon>.

Example 2-28 Capturing the whoami output

- name: Capture output of whoami command
command: whoami
register: logon

For more information about the usage of variables. see playbooks_variables.

Execution control
When you run Ansible tasks, the results are easily identified as successful or unsuccessful
because by default they return green, yellow, or red:

Green A task ran as expected, and no change was made.

Yellow A task ran as expected and made a change.

Red A task failed to run successfully.

Figure 2-4 Ansible colors

2.5 Ansible roles and collections

Ansible roles are basically playbooks that are placed into a known file structure. Moving to
roles from a playbook makes sharing, reading, and updating your Ansible workflow simpler.
Users can write their own roles, and they are often provided with roles that are part of
collections.

2.5.1 Understanding roles in Ansible

Ansible roles are a way to organize your playbooks into reusable units that can be shared
across different projects or teams. A role is essentially a collection of tasks and other files that
are related to a specific task or function within your infrastructure. For example, you can
create a role to install and configure IBM WebSphere® Application Server on a remote
server, and then use that role in different playbooks that deploy different web applications.

To create a role, follow a standard directory structure with eight main directories: tasks,
handlers, vars, defaults, meta, library, module_utils, and lookup_plugins. Each directory
contains a main.yml file that holds the relevant content for that directory. For example, the
tasks/main.yml file contains the main list of tasks that the role runs, and the vars/main.yml
file contains the variables that are associated with the role. You can also use other files and
directories within each directory as needed.
86 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html

To use a role in a playbook, you can either include it at the play level by using the roles
keyword, or import it at the task level by using the import_role or include_role modules. You
can also pass parameters to the role by using the vars keyword or the args keyword. Also,
you can specify role dependencies in the meta/main.yml file, which means that Ansible
automatically runs those roles before the current role.

Ansible roles are a powerful feature that can help in your configuration management and
automate your deployments. You can also use Ansible Galaxy to find and share roles that
other users create. For more information, see Ansible Roles.

2.5.2 Creating and structuring Ansible roles

This par describes the process of creating and structuring Ansible roles by using two distinct
resources: the official Ansible documentation and insights from Red Hat.

� From the Ansible Documentation

Creating Ansible roles involves a structured approach that aligns with best practices. The
official Ansible documentation offers a comprehensive guide to creating roles that are
intuitive, organized, and simple to maintain. This resource provides a in-depth look into the
directory structure that forms the backbone of a well-structured role. To explore this
approach, see Official Ansible Role Directory Structure.

� The Red Hat perspective

Red Hat, a pioneer in the field of open-source technology, provides its own insights into
developing Ansible roles. Their approach offers a practical and hands-on perspective that
complements the official documentation. By adhering to the Red Hat methodology, you
can gain a clearer understanding about how to develop Ansible roles effectively. For more
information about a step-by-step guide on creating roles the Red Hat way, see Developing
Ansible Roles the Red Hat way.

Crafting a role for IBM i virtual machine deletion
In this segment, we follow guidance to create a specialized Ansible role that is focused on
deleting IBM i virtual machines (VMs). The process aligns with industry best practices, which
helps ensure efficient, modular, and documented automation. By adhering to these principles,
you become equipped to build a robust and effective Ansible role that is tailored for IBM i VM
deletion.

Complete the following steps:

1. Creating an Ansible role begins with establishing a structured directory, which helps
ensure clarity, ease of maintenance, and efficient collaboration. To initiate the process, run
the following command (tailor the directory path to your environment):

ansible-galaxy init ~/itsoxx/itsoroles/delete_vm_via_powervc

That command sets the foundation for your role's directory structure, which adheres to
best practices.

2. Inside the role's directory, there are key files like defaults/main.yml, meta/main.yml, and
tasks/main.yml. These files define the role's configuration and behavior. By editing these
files, you align your role with the needed functions. A core aspect of this step is refining the
defaults values, role variables, and any specific instructions that are associated with your
role.
Chapter 2. Ansible architecture and design 87

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html#role-directory-structure

3. In the defaults/main.yml file, define default values for the role's variables, which enhance
flexibility and customization. Example 2-29 displays a snippet showcasing how variables
are defined.

Example 2-29 Defining default variables for role flexibility

Defaults value for deleting an IBM i VM
project: ibm-default
project_domain: Default
user_domain: Default
verify_cert: false
deploy_timeout: 300
availability_zone_name: 'Default Group'
...

4. The core tasks of your role are defined in the tasks/main.yml file, where the automation
happens. Example 2-30 is an excerpt that shows the deletion of an IBM i VM by using the
PowerVC module.

Example 2-30 Performing core role tasks

Delete IBM i VM information from OpenStack
- name: Delete an IBM i VM
 os_server:
 auth:
 auth_url: https://{{ ansible_ssh_host }}:5000/v3
 username: '{{ ansible_ssh_user }}'
 password: '{{ ansible_ssh_pass }}'
 project_name: '{{ project }}'
 project_domain_name: '{{ project_domain }}'
 user_domain_name: '{{ user_domain }}'
 name: '{{ vm_name }}'
 verify: '{{ verify_cert }}'
 state: '{{vm_state}}'
 timeout: '{{ deploy_timeout }}'
 register: server_info
...

5. The meta/main.yml file is your role's calling card. It provides crucial metadata for users
who can interact with your role. Example 2-31 is a snippet that showcases the role's
author, description, company, supported platforms, and more.

Example 2-31 Role metadata and description

galaxy_info:
 author: Marcelo Avalos Del Carpio
 description: Ansible role to delete an IBM i VM through PowerVC
 company: IBM
 license: Apache-2.0
 min_ansible_version: 2.9
 platforms:
 - name: IBM i
 versions:
 - 7.2
 - 7.3
88 Using Ansible for Automation in IBM Power Environments

 - 7.4
 galaxy_tags:
 - powervc
 - ibmi

6. A documented role is a valuable asset. The README.md file provides clear instructions
about how to use your role, its variables, and associated tasks. Example 2-32 is a snippet
that demonstrates the structure and content of a comprehensive readme file.

Example 2-32 Comprehensive readme file structure

delete_vm_via_powervc
=========
The Ansible role to delete an IBM i VM through PowerVC.

Role Variables

Variable	Type	Description
`vm_name`	str	Required. Name of the deployed vm.
`vm_state`	str	Action to perform (present/absent)

Example Playbooks

```
---
- name: Delete a vm
  hosts: powervc
  tasks:
    - include_role:
        name: delete_vm_via_powervc
      vars:
        vm_name: 'itso0x'
        vm_state: 'absent'
...

```
License

Apache-2.0

2.5.3 Sharing and reusing roles in multiple playbooks

One of the benefits of using Ansible is that you can create reusable artifacts that can be used
in different scenarios and contexts. Roles are one of the ways to achieve this goal. A role is a
collection of related tasks, variables, defaults, handlers, and other Ansible components that
can be applied to a group of hosts or a specific playbook.

Note: When publishing the created role, it is important to adhere to the formatting
guidelines for the README.md file. Using triple backticks is crucial to help ensure proper
readability on GitHub. For more information, see GitHub Code Blocks, which documents
creating and highlighting code blocks.
Chapter 2. Ansible architecture and design 89

https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks

Roles organize your automation work into smaller, more manageable units that can be shared
and reused. You can use roles to abstract common functions, such as installing a web server
or updating a database, and then use them in multiple playbooks or even multiple times within
one playbook.

To use roles in your playbooks, follow a defined directory structure that Ansible recognizes.
Each role must have at least one of the following directories:

tasks: The main list of tasks that the role runs.

handlers: Handlers, which may be used within or outside this role.

library: Modules, which may be used within this role.

files: Files that the role deploys.

templates: Templates that the role deploys.

vars: Other variables for the role.

defaults: Default variables for the role. These variables have the lowest priority of any
variables that are available, and can be overridden by any other variable,
including inventory variables.

meta: Metadata for the role, including role dependencies.

Each directory must contain a main.yml file (or main.yaml or main) that contains the relevant
content for that directory. You can also use other YAML files in some directories to organize
your tasks or variables better.

2.5.4 Role dependencies and role-based variables

Role dependencies and role-based variables are important concepts in Ansible. This section
explains what they are, how they work, and why they are useful.

Role dependencies
Role dependencies automatically pull in other roles when you use a role, which helps ensure
that the target computer is in a predictable condition before running your tasks. For example,
you can have a common role that installs some packages and updates the system, and you
want to run it before any other role.

To define role dependencies, create a meta/main.yml file inside your role directory with a
dependencies block. Example 2-33 on page 91 shows an example of dependencies.

Note: For more information about sharing and reusing roles across multiple playbooks,
see the following resources:

� Ansible Playbook Reuse Guide:

� Sharing and Reusing Roles in Ansible

� Playbook Reuse with Ansible Roles
90 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://runebook.dev/en/docs/ansible/user_guide/playbooks_reuse_roles
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse.html

Example 2-33 Role dependencies and conditional configuration in YAML

dependencies:
 - role: common
 - role: sshd
 enable_sshd: false
 when: environment == 'production'

Before running the current role, Ansible first runs the common role and then the sshd role, but
only if the environment variable is set to 'production'. You can also pass variables to the
dependent roles by using the same syntax.

Role dependencies run before the roles that depend on them, and they run once per playbook
run. If two roles state the same one as their dependency, it is run only the first time.

For example, if you have three roles, role1, role2, and role3, and both role1 and role2 depend
on role3, the run order is role3, role1, and role2.

You can override this behavior by setting allow_duplicates: true in the meta/main.yml file of
the dependent roles, which makes Ansible run the role every time it is listed as a dependency.
For example, if you set allow_duplicates: true for role3, the run order can be role3, role1,
role3, and role2.

Role dependencies are a feature of Ansible that can help you reuse your roles and simplify
your playbooks. However, use them with caution and avoid creating circular dependencies or
complex dependency chains that can make your roles hard to maintain and debug.

2.5.5 Using collections

Collections are a way to package and distribute Ansible content, such as playbooks, roles,
modules, and plug-ins. Collections can help you organize your Ansible projects and share
them with other users or teams.

What are collections
A collection is a directory of files that follows a specific structure and contains a
MANIFEST.json file that defines its metadata. A collection can include any type of Ansible
content, such as the following examples:

Playbooks YAML files that define tasks to run on hosts.

Roles Reusable units of Ansible content that can include tasks, variables,
templates, files, and handlers.

Modules Python files that run tasks on hosts and return information to Ansible.

Plug-ins Python files that extend Ansible functions, such as lookup, filter,
inventory, callback, and strategy plug-ins.

A collection can also have dependencies on other collections, which are specified in a
meta/requirements.yml file. With this file, you can reuse existing content from other sources
and avoid duplication.

Note: For more information about role dependencies, see the Ansible Community
Documentation or the tutorial.
Chapter 2. Ansible architecture and design 91

https://books.stuartherbert.com/putting-ansible-to-work/adding-dependencies-to-roles.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html

How to use collections
There are several ways to use collections in Ansible, depending on your needs and
preferences. Here are some of the common methods:

� Installing collections from a distribution server: You can use the ansible-galaxy
command to install collections from a server like Ansible Galaxy or a Pulp 3 Galaxy server.
You can also use a requirements file to install multiple collections at once.

� Installing collections from source files: You can use the ansible-galaxy command to
install collections from local source files, such as a Git repository or a .tar file.

� Using collections in a playbook: You can reference collection content by its fully qualified
collection name (FQCN), which consists of the namespace, the collection name, and the
content name. For example, my_namespace.my_collection.my_module. You can also use
the collections keyword in your playbook or role to simplify the module names and avoid
typing the FQCN every time.

� Using collections in roles: You can use the collections keyword in your role's
meta/main.yml file to define which collections your role should search for unqualified
module and action names.

What are the benefits of collections
Collections offer several advantages for Ansible users and developers:

Modularity With collections, you can group related content and separate it from
other content to manage, maintain, and update your Ansible projects.

Re-usability With collections, you can reuse existing content from other sources.
You can also share your own collections with others through
distribution servers or source control.

Compatibility With collections, you can avoid conflicts between different versions of
Ansible content. You can specify the minimum Ansible version and the
required collections for your collection to work properly.

Customization With collections, you can customize your Ansible environment by
adding new modules and plug-ins that suit your needs. You can also
override existing content by using a higher precedence collection.

2.6 Best practices for playbook and role design

When designing playbooks and roles, follow some best practices to help ensure the quality,
readability, and maintainability of your code. Here are some suggestions:

� Use consistent naming conventions for your files, variables, tasks, and handlers. For
more information, see the Ansible documentation style guide.

� Use tags to group related tasks and allow for selective execution of your playbooks. For
example, you can use tags to run only the tasks that are related to installing packages or
configuring services.

Note: For more information, see the following resources:

� Ansible User Guide on Using Collections
� Ansible Galaxy Guide on Creating Collections
� Ansible Community General Collection on GitHub
92 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://galaxy.ansible.com/docs/contributing/creating_collections.html
https://github.com/ansible-collections/community.general
https://docs.ansible.com/ansible/latest/dev_guide/style_guide/index.html

� Use variables to store values that can change depending on the environment, such as
hostnames, ports, and passwords. Avoid hardcoding these values in your tasks. Use the
ansible-vault command to encrypt sensitive variables if needed.

� Use roles to organize your tasks into reusable units of functions. Roles can also include
files, templates, variables, defaults, handlers, and meta information. Use the
ansible-galaxy command to create and manage roles.

� Use include and import statements to modularize your playbooks and roles. Include
statements allow for dynamic inclusion of tasks or roles based on conditions or variables.
Import statements allow for static inclusion of files or roles at parse time.

� Use conditionals, loops, filters, and plug-ins to add logic and flexibility to your tasks. For
example, you can use conditionals to check the state of a system before performing an
action, loops to iterate over a list of items, filters to manipulate data, and plug-ins to extend
the functions of Ansible.

� Use facts and registered variables to capture information from the hosts and use it in your
tasks. Facts are variables that are automatically gathered by Ansible when running a
playbook. Registered variables are variables that are created by registering the output of a
task.

� Use error handling techniques to deal with failures and unexpected situations. For
example, you can use the ignore_errors, failed_when, changed_when, and rescue or
always keywords to control the behavior of your tasks when an error occurs.

2.6.1 Writing modular and reusable playbooks

One of the benefits of using Ansible is that you can use it to write playbooks that are modular
and reusable. Therefore, you can avoid repeating the same tasks or variables in different
playbooks, and instead use existing modules, roles, or include statements to reuse code. As
a result, your playbooks are more maintainable, scalable, and reliable.

Here are some of the ways to write modular and reusable playbooks:

Use modules Modules are reusable pieces of code that perform specific tasks,
such as installing packages, creating files, or managing services.
Ansible has hundreds of built-in modules that you can use in your
playbooks, or you can write your own custom modules. Modules
can take parameters to customize their behavior, and return
information that you can use in other tasks or templates.

Use roles Roles are collections of tasks, variables, files, templates, and
handlers that are organized by a specific function or purpose.
With roles, you can group related tasks and reuse them in
multiple playbooks. Roles also support dependencies, which
means that you can specify other roles that need to be run before
or after a role.

Use include statements With include statements, you can dynamically load tasks,
variables, handlers, or roles from another file or directory.
Therefore, you can split your playbooks into smaller and more
manageable files, and avoid duplication of code. You can also use
conditional statements or loops to control when and how many
times an include statement runs.
Chapter 2. Ansible architecture and design 93

2.6.2 Using Ansible Galaxy for role management

Ansible Galaxy serves as a shared repository for Ansible roles and collections by offering
prepackaged units of work that can be shared and reused within the Ansible community. This
section describes the process of using Ansible Galaxy to discover, install, and employ roles
and collections for your automation endeavors. Also, this section describes your own roles
and collections and uploading them to the Galaxy platform.

Discovering and installing roles and collections from Galaxy
To discover roles and collections on Galaxy, use the ansible-galaxy search command with
filters, such as author, tag, platform, or keyword. For example, to locate roles pertaining to
Linux by the author "itso,", run the following command:

ansible-galaxy search linux --author itso --role

Example 2-34 displays a list of matching roles.

Example 2-34 Matching roles in the Ansible Galaxy search results

Found 2 roles matching your search:
 Name Description
 ---- -----------
 itso.linux_common Common tasks for Linux on Power.
 itso.linux_application Application deployment on Linux.

To see more role details, run the following command:

ansible-galaxy info itso.linux_common

To install a role from Galaxy, run the following command:

ansible-galaxy install itso.linux_common

Applying roles and collections in playbooks
To employ a role in a playbook, adding it to the roles section is sufficient, as shown in
Example 2-35.

Example 2-35 Implementing the itso.linux_common role in an Ansible playbook

- hosts: all
 roles:
 - itso.linux_common

Note: For more information, see the following resources:

� Ansible Documentation
� Ansible Best Practices
� Ansible Modules
94 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/latest/collections/index_module.html

Variables can be passed by using the vars or vars_files keywords, as shown in
Example 2-36.

Example 2-36 Applying the itso.linux_common'role with custom variables in an Ansible playbook

- hosts: all
 roles:
 - role: itso.linux_common
 vars:
 var_name: value

Using collections in playbooks requires specifying the full namespace, as shown in
Example 2-37.

Example 2-37 Using the community.general module in an Ansible playbook task

- hosts: all
 tasks:
 - name: Task that uses community.general module
 community.general.module_name:
 param1: value
 param2: value

Uploading roles and collections to Galaxy
Creating a role begins with running ansible-galaxy init command:

ansible-galaxy init myrole

To create a collection, run the ansible-galaxy collection init command:

ansible-galaxy collection init mynamespace.mycollection

Editing files such as readme file and metadata is essential. Uploading requires an account
on the Galaxy website and an API key. The building and uploading tasks use the commands
that are shown in Example 2-38.

Example 2-38 Building and publishing an Ansible role to Ansible Galaxy

$ ansible-galaxy role build myrole
$ ansible-galaxy role publish myrole-1.0.0.tar.gz --api-key <API_KEY>

Note: Ansible Galaxy stands as a valuable asset for harnessing the potential of Ansible
automation through its extensive collection of roles and collections. Empowered by the
ansible-galaxy CLI tool, users can explore, install, and contribute to these automation
components, which foster collaboration and efficiency. For more in-depth insights, see the
following resources:

� Ansible Galaxy's guide on creating roles
� Ansible Galaxy's user guide
Chapter 2. Ansible architecture and design 95

https://galaxy.ansible.com/docs/contributing/creating_role.html
https://docs.ansible.com/ansible/latest/galaxy/user_guide.html

2.7 Creating versions and documenting playbooks and roles

One of the best practices for Ansible is to use roles to organize and reuse your automation
content. Roles are self-contained units of Ansible automation that can be shared and used by
multiple playbooks. Roles can also include custom modules, which are small programs that
perform actions on remote hosts or on their behalf.

This section describes how to create versions of and document your playbooks and roles so
that you can maintain them and collaborate with others effectively.

2.7.1 Creating versions of playbooks and roles

Creating versions of software plays a crucial role in software development projects, including
Ansible. It serves as a vital mechanism for monitoring code changes, maintaining historical
records, and establishing distinct versions or branches for various project needs. Creating
versions in Ansible is important for effective collaboration and project management.

To create versions of your playbooks and roles, use a version control system (VCS) such as
Git, which is a widely used tool for managing code repositories. With Git, you can create
snapshots (commits) of your code at any point in time, and you can switch between different
versions or branches of your code (checkout).

Using Git, you can push your code to a remote repository, such as GitHub or Bitbucket, where
you can store it safely and share it with others. You can also pull code from a remote
repository to update your local copy with the latest changes.

To effectively use Git with Ansible, follow these steps:

1. Initialize a Git repository in your project directory that houses playbooks and roles.

2. Incorporate a .gitignore file to exclude irrelevant files from having versions, such as
temporary files or sensitive data.

3. Add and commit your playbooks and roles to the repository, and use descriptive messages
for clarity about changes.

4. Create branches for distinct features or environments, such as development, testing, or
production.

5. Merge branches when you are ready to integrate changes into the primary branch, which
is often labeled master.

6. Push your code to a remote repository to help ensure access and collaboration from
anywhere.

7. Pull code from the remote repository to sync your local copy with the latest updates.

2.7.2 Common scenarios when using Git with Ansible

How you start using Git depends on whether you create a source code repository from
scratch, contribute to an existing repository, or create a fork or branch of an existing
repository to create an alternative repository.
96 Using Ansible for Automation in IBM Power Environments

Creating a Git repository from scratch
If you have a collection of Ansible playbooks and associated files that you want to start
managing by using Git version control, create a repository by running the git init command.
This command creates a local Git repository, which you can then push (run push) to a remote
repository to enable collaboration and access to remotely stored copies of your code. Sample
commands for creating a repository with git init are shown in Example 2-39. It is a best
practice that each repository has a README.md file that describes the repository.

Example 2-39 Creating a local repository by running git init

% ls
ansible.cfg inventory update-hosts.yaml
% echo "# My first repo" > README.md
% git init
Initialized empty Git repository in /<pathname>/.git/
% git add README.md ansible.cfg inventory update-hosts.yaml
% git commit -m "first commit"
[main (root-commit) b7bb240] first commit
 4 files changed, 289 insertions(+)
 create mode 100644 README.md
 create mode 100644 ansible.cfg
 create mode 100644 inventory
 create mode 100644 update-hosts.yaml
% git branch -M main

To push the local repository to GitHub, first create a repository at GitHub. Your repository can
be either private or public. The commands in Example 2-40 show how you push your local
repository to a remote GitHub that you created and named my-first-ansible-repo as the
GitHub user username.

Example 2-40 Pushing a local repository to a remote location

% git remote add origin https://github.com/username/my-first-ansible-repo.git
% git push -u origin main
Username for 'https://github.com': username
Password for 'https://username@github.com':
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 10 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 1.55 KiB | 1.55 MiB/s, done.
Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/username/my-first-ansible-repo.git
 * [new branch] main -> main
branch 'main' set up to track 'origin/main'.

The password for the git push command should be a user token that you created at GitHub.

Now that you have your code stored in both local and remote Git repositories, any changes to
existing files or newly created files can be added to the repositories with the git status, git
add, git commit, and git push commands.
Chapter 2. Ansible architecture and design 97

https://github.com/new
https://github.com/settings/tokens

A sample session is shown in Example 2-41, where a new playbook that is named
install-pkg.yaml and the updated playbook update-hosts.yaml are committed to the
repository and pushed to the previously created remote repository.

Example 2-41 Commit changes to a remote repository

% git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)

modified: update-hosts.yaml

Untracked files:
 (use "git add <file>..." to include in what will be committed)

install-pkg.yaml

no changes added to commit (use "git add" and/or "git commit -a")

% git add update-hosts.yaml install-pkg.yaml
% git commit -m "my second commit"
[main 50ce021] my second commit
 2 files changed, 1 insertion(+), 1 deletion(-)
 create mode 100644 install-pkg.yaml
% git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.
 (use "git push" to publish your local commits)

nothing to commit, working tree clean
% git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 10 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 345 bytes | 345.00 KiB/s, done.
Total 4 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/username/my-first-ansible-repo.git
 b7bb240..50ce021 main -> main

Contributing to an existing GitHub repository
You might be part of a team that has a Git repository where multiple team members contribute
code to the repository. If so, you start by first cloning the repository to your local machine.
Example 2-42 shows how you clone a repository that is called ‘my-team-repo’ to your local
machine.

Example 2-42 Cloning a remote repository with git clone

$ git clone https://github.com/username/my-team-repo.git
Cloning into 'my-team-repo'...
remote: Enumerating objects: 10, done.
remote: Counting objects: 100% (10/10), done.
remote: Compressing objects: 100% (6/6), done.
98 Using Ansible for Automation in IBM Power Environments

remote: Total 10 (delta 2), reused 10 (delta 2), pack-reused 0
Receiving objects: 100% (10/10), done.
Resolving deltas: 100% (2/2), done.
$ cd my-team-repo/
$ ls
ansible.cfg install-pkg.yaml inventory README.md update-hosts.yaml

Modifications and additions to the local copy of the repository can be committed to the remote
repository by using the methods that are shown in Example 2-41 on page 98. It is a best
practice to regularly run git pull, as shown in Example 2-43, on your local repository to pull
other contributors’ changes.

Example 2-43 Using git pull to keep a repository up to date

$ git pull
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), 269 bytes | 134.00 KiB/s, done.
From https://github.com/username/my-team-repo
 50ce021..1d4978e main -> origin/main
Updating 50ce021..1d4978e
Fast-forward
 inventory | 1 +
 1 file changed, 1 insertion(+)

Creating a fork or branch of an existing repository
Forking a repository creates a copy of that repository under your account so that you can
modify code from the original repository without affecting it. For example, you might want to
fork your own version of a repository like ansible-power-aix to experiment with code
changes that are specific to your environment.

You can use branches of a repository to support different versions of an application or create
features.

Branches can later be merged with the original repository, if appropriate, by running git
merge, which is usually initiated by a pull request that is submitted to the original repository
administrator. The pull request informs the repository administrator that there are committed
changes to a branch that you want to merge with the original repository. The administrator
might merge the committed changes of the branch to the original repository.

Documenting playbooks and roles
Documentation is a pivotal means of describing code purpose, functions, and usage
instructions. This practice holds significance across software development, and Ansible is no
exception.

To adeptly document your Ansible playbooks and roles, comments and metadata files serve
as vital tools. Comments, although they are ignored by Ansible, provide human-readable
context. Metadata files, which are structured as YAML files, house key-value pairs that
elucidate code characteristics.

Note: For comprehensive guidance about using Git with Ansible, see Ansible Best
Practices - Content Organization.
Chapter 2. Ansible architecture and design 99

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html#content-organization
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html#content-organization

For effective documentation by using comments and metadata files, consider the following
actions:

� Use comments within playbooks and roles to explain tasks, handlers, variables, or
templates, in addition to assumptions and dependencies.

� Employ metadata files in roles to provide information, such as role name, description,
author, license, platforms, dependencies, tags, variables, examples, and more.

� Use the ansible-doc command to generate documentation from metadata files in HTML
or plain text format.

� Use the ansible-galaxy command to upload roles to Ansible Galaxy, which is a public
repository of roles that anyone can download.

2.8 Testing and validating playbooks and roles

Testing and validating playbooks and roles is an important part of Ansible automation. These
tasks help ensure that your playbooks and roles work as expected and avoid errors or failures
when deploying them to your target hosts. This section covers some basic guidelines for
writing, testing, and validating your playbooks and roles by using Ansible tools and best
practices.

2.8.1 Testing playbooks and roles

Testing your playbooks and roles is essential to help ensure that they work as intended and
do not cause any unexpected or unwanted effects on your target hosts. There are several
ways to test your playbooks and roles by using Ansible tools:

� Check mode
� Modules
� Linting
� Integration testing

Check mode
You can use the --check flag when running a playbook or a role to see what changes can be
made without applying them. This tool can help you spot any errors or inconsistencies in your
code before running it. Check mode does not run scripts or commands, so you must disable it
for some tasks by using check_mode: false.

Modules
You can use certain modules that are useful for testing, such as assert, fail, debug, uri,
shell, or command. These modules can help you verify the state or output of your target hosts,
check for certain conditions or values, display messages or variables, or run arbitrary
commands or scripts.

Note: For more information and detailed guidance, see the following resources:

� Ansible Best Practices - Task and Handler Organization for a Role
� Ansible Developing Modules - Documenting Modules
� Ansible Galaxy - Creating a Role
100 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html#task-and-handler-organization-for-a-role
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_documenting.html
https://galaxy.ansible.com/docs/contributing/creating_role.html

Linting
You can use ansible-lint to check your playbooks and roles for syntax errors, formatting
issues, best practices violations, or potential bugs. Ansible-lint can also be integrated with
other tools such as editors, IDEs, continuous integration and continuous deployment (CI/CD)
pipelines, or pre-commit hooks.

Integration testing
You can use integration testing to test your playbooks and roles against different
configurations or environments. For example, you can use Vagrant, Docker or cloud VMs to
create isolated test hosts with different OSs or versions. You can also use inventory files or
variables to define different parameters for your test hosts, such as package versions or
service states.

2.8.2 Validating playbooks and roles

Validating your playbooks and roles is the final step before deploying them to your production
hosts. It helps ensure that your playbooks and roles perform the wanted actions and produce
the expected results on your target hosts. There are several ways to validate your playbooks
and roles by using Ansible tools:

� Dry run
� Idempotence
� Verbose
� Notifications
� Reports

Dry run
You can use the --diff flag when running a playbook or a role in check mode to see the
differences between the current state and the wanted state of your target hosts. This tool can
help you verify that the changes are correct and complete before applying them.

Idempotence
You can run your playbook or role multiple times on the same target host to check that it is
idempotent, which means that it cannot make any changes on subsequent runs unless the
state of the host changed externally. Idempotence helps ensure that your playbook or role is
consistent and reliable.

Verbose
With the verbose option, you can see more details about what Ansible is doing when it runs
your playbooks and roles. You can use different levels of verbosity, from -v to -vvvv to
increase the amount of information that is displayed. The verbose option can help you debug
your Ansible code, identify errors, and check the results of your tasks.

Notifications
You can use handlers to trigger notifications when certain tasks make changes on your target
hosts. For example, you can use handlers to restart a service, reload a configuration file, or
send an email alert. Handlers can help you validate that your changes have taken effect on
your target hosts.
Chapter 2. Ansible architecture and design 101

Reports
You can use callbacks or plug-ins to generate reports on the running of your playbooks or
roles. For example, you can use callbacks to display statistics, summaries, logs, or graphs of
your playbook or role runs. You can also use plug-ins to send reports to external systems or
services, such as Slack, email, or webhooks. Reports can help you validate that your
playbooks or roles ran successfully and without errors.

Note: For more information and detailed insights about testing and validating playbooks
and roles, see the following sources:

� Five Questions for Testing Ansible Playbooks and Roles
� Ansible Testing Strategies
� Introduction to Ansible Playbooks
102 Using Ansible for Automation in IBM Power Environments

https://www.ansible.com/blog/five-questions-testing-ansible-playbooks-roles
https://www.ansible.com/blog/five-questions-testing-ansible-playbooks-roles
https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html

Chapter 3. Getting started with Ansible

So far, you have learned about the advantages of using automation and specifically have
seen that Ansible can be an excellent choice for automation because it is a single solution
that helps automate many environments, which include networks, cloud resources, and
servers. This chapter shows how to get started on your automation journey with Ansible in
your IBM Power environments.

This chapter describes the different architectures that you might want to consider when
designing your Ansible automation environment, depending on your business requirements. It
also provides guidance about choosing the right server (or it might be more than one server)
for the Ansible Controller, and then shows how to install Ansible Controller in your IBM Power
environment and configure your different IBM Power based logical partitions (LPARs) as
Ansible clients.

The following topics are described in this chapter:

� Designing your Ansible environment
� Choosing the Ansible Controller node
� Installing your Ansible control node
� Preparing your systems to be Ansible clients

3

© Copyright IBM Corp. 2024. 103

3.1 Designing your Ansible environment

There are several stages of Ansible adoption. Depending on your Ansible experience, your
environment size, and your automation expectations, you might want to start small at the
beginning and then grow through different stages as you expand your automation platform.
However, you might also choose to go directly to designing and developing a fully scalable
Ansible environment that you use to support hundreds of developers and users. This section
helps you understand the different architectures that you can choose for your Ansible
environment based on your business requirements.

3.1.1 Starting simple: Ansible Core and Ansible Community

If you have never worked with Ansible or are starting your automation journey with IBM Power
and Ansible, do it as simply as possible. Do not over complicate things, and keep it simple.
The most important outcome on this stage is to get your first tasks automated and provide a
positive experience for your users.

In this simple case, the architecture for your Ansible installation might look like Figure 3-1.

Figure 3-1 Using Ansible Core or Ansible Community to manage your IBM Power environment

Your first step is to choose the right server for your Ansible Controller node. The Ansible
Controller node is a server where you install Ansible and develop your playbooks. There are
only two requirements for this controller node server:

1. You can install Ansible on it.
2. The server has Secure Shell (SSH) access to the IBM Power servers and other devices

that you want to manage.

Satisfying the first requirement is simple because Ansible can be installed on any supported
operating system (OS) that runs on IBM Power. For more information about choosing an OS
for Ansible Controller node, see 3.2, “Choosing the Ansible Controller node” on page 121.
104 Using Ansible for Automation in IBM Power Environments

Ansible primarily works by using SSH connections to the managed devices, although there
are some exceptions. For example, in an IBM Power environment, for both IBM PowerVC and
the IBM Power Hardware Management Console (HMC), Ansible works by using the
Representational State Transfer (REST) application programming interfaces (APIs) that are
provided by those products.

If you plan to automate your Linux, AIX, or IBM i LPARs, you need SSH access to them.
Ansible supports the usage of SSH gateways (jump servers or bastion hosts) for access to
devices with extra security requirements.

Managing your automation playbooks
Before you automate your first task, you must make one more decision: Where will you save
your work? If you are the only playbook developer, your home directory is the perfect place. If
you have two or more people who work with playbooks, create a directory that can be
accessed by all the developers.

Consider using a source control system like Git to track the history of changes in the
playbook. Although it is not necessary, it is always a best practice and makes development
transparent and traceable.

After you choose your Ansible Controller node and decide where to save your future work,
install Ansible by following the instructions in 3.3, “Installing your Ansible control node” on
page 121.

Get started
After you install Ansible on your controller node, automate your first task. Consider the
following factors when you choose this first task:

� Choose a simple task that you do regularly.
� Keep it simple. Avoid perfectionism.
� Automate step by step. Do not try to develop the whole playbook at once.
� Measure the outcome. How much time did you save?
� Speak to your colleagues about your success. Spread the word about Ansible.

3.1.2 Scaling up: Ansible Automation Platform

When you are starting out and designing the environment for one or two teams, you might
need to use only one of the components of Ansible Automation Platform, that is, the Ansible
Automation Controller (formerly known as Ansible Tower). Ansible Automation Controller can
be installed on IBM Power or on any x86 server.

If you have experience with base Ansible Core and have several team members, you might
want to use Ansible Automation Platform, especially if you have several administrators who
develop playbooks and many users who run only the playbooks.

Tip: In this simple architecture, use either Ansible Core or Ansible Community for your
Ansible Controller. Both of these products are supported by the Ansible community and not
supported by any vendor. Consider whether you need a better and more reliable support
option. As you move into more production environments, consider using a
vendor-supported product such as Ansible Automation Platform, which supports Ansible.
For more information about Ansible Automation Platform, see 3.1.2, “Scaling up: Ansible
Automation Platform” on page 105.
Chapter 3. Getting started with Ansible 105

Ansible Automation Platform provides role-based access control (RBAC) for your Ansible
environment to define the rights of your automation users, that is, which playbooks they can
run and what parameters they may use in those playbooks. It also defines the rights of
automation developers by defining which projects they are working on.

The GUI of Ansible Automation Platform removes the complexity of running single commands
and remembering the appropriate parameters to use in an Ansible playbook.

Another feature of Ansible Automation Platform is support for execution environments.
Execution environments are container images that make it possible to incorporate
system-level dependencies and collection-based content. Each execution environment can
have a customized image to run jobs, and each of them contain only what you need when
running the job. Using the execution environments, you can predefine Ansible environments
for automation users so that they no longer have problems managing the different parameters
that are presented by multiple versions of modules, roles, and collections. You effectively
define the “single source of truth” for your automation.

Ansible Automation Platform is fully supported by Red Hat. If you are designing an
automation platform for an enterprise, support for Ansible is one of the most important
considerations, and you must clarify your requirements before starting. Ansible Core and
Ansible Community are open-source projects that come with only community support through
the projects code repositories on GitHub. What might be the impact if your enterprise
automation solution has an issue and you depend on the community members, many of
whom do not understand IBM Power to find a solution to your problems? Therefore, it makes
sense to have a support contract with Red Hat for any enterprise automation environment.

At the time of writing, Red Hat supports Ansible Automation Platform on IBM Power running
Red Hat Enterprise Linux (RHEL) as a “technology preview”. Red Hat cannot guarantee the
stability of all features on IBM Power, but attempts to resolve any issues that customers
experience. For more information about technology preview support, see this Red Hat
document.

At the time of writing, Red Hat has not stated when Ansible Automation Platform on
IBM Power will be fully supported, but you can expect it soon. When running Ansible
Automation Platform on RHEL, you can manage systems that run any Linux distribution, AIX,
or IBM i as supported use cases, but Ansible Automation Platform can be installed only on
RHEL.

Ansible Automation Controller requirements
To run Ansible Automation Controller, you need RHEL 8.6 or later and at least 16 GB of
memory. The memory requirement for the automation controller depends on the maximum
number of hosts that the system is expected to configure in parallel. This number is managed
by the forks configuration parameter in the job template or system configuration. You must
increase memory as you expand the number of forks to support more systems. Red Hat
recommends 1 GB of memory per 10 forks, and 2 GB for the automation controller services. If
you set the forks parameter to 400, then the automation controller requires 42 GB of memory.

You need at least 40 GB of available space in /var on your server to proceed with the
installation. You might need even more if you have many playbooks and different execution
environments. To get a suitable performance for your installation, the storage should be
capable of a minimum of 1500 IOPS.
106 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview

When using Automation Controller, you can store all your playbooks locally on the server
where the Automation Controller is installed by creating one or more subdirectories under
/var/lib/awx/projects/ and copying your playbooks there. This task is simple if you have
one automation developer, but as you add more automation developers all working on
different projects, you might need several different directories, and you must manage file
permissions for all users and projects. A flat file system containing files does not have any
source control mechanism that is built in, so as a best practice, use GitHub, GitLab, or similar
software to store your playbooks source code centrally and enable collaboration between
automation developers.

Figure 3-2 shows the usage of Ansible Automation Controller managing an IBM Power
infrastructure.

Figure 3-2 Using Ansible Automation Controller to manage an IBM Power infrastructure

As you can see in Figure 3-2, the architecture is almost the same as the one that uses
Ansible Core. However, it supports more developers and users of your automation projects,
and it provides Red Hat support.

Reference architectures
This section provides some sample Ansible architectures with different combinations of
Ansible automation components to meet different availability requirements for your
department or business. These Ansible automation components can be deployed on a single
system in some environments or might require more than one system as you build out your
Ansible Automation Controller or Platform.
Chapter 3. Getting started with Ansible 107

Reference architecture 1: Ansible Automation Controller
This architecture requires minimum computing resources to build an Ansible Automation
Controller environment. The architecture is shown in Figure 3-3.

Figure 3-3 Reference architecture 1: Ansible Automation Controller

This architecture is defined by the following items:

� Deploy Ansible core in a single system.
� Number of nodes that are required: One Ansible automation controller node.
� Automation: Any.
� Use cases: Testing and development environment.

CLI-driven, audit logs, and access controls depend on third-party software integration, no
high availability (HA), and complicated Day 2 operation. No additional subscription or license
is required. Nearly any UNIX like machine with Python 3.9 or later is supported as the
installation target, which includes RHEL, IBM AIX, Debian, Ubuntu, macOS, BSDs, and
Windows under a Windows Subsystem for Linux (WSL) distribution.

This architecture is a good choice for a small starter system for test and development or for a
small environment with non-critical automation requirements. Support is community-based.
108 Using Ansible for Automation in IBM Power Environments

Reference architecture 2: Automation Platform - All-in-one without Automation
Hub

This architecture requires minimum computing resources to build an Ansible Automation
Platform environment. The architecture is shown in Figure 3-4.

Figure 3-4 Reference architecture 2: All-in-one without Automation Hub

This architecture is defined by the following items:

� Deploy Ansible Automation Platform in a single system.
� Number of nodes that are required: One all-in-one automation controller node.
� Automation: Any.
� Use cases: Testing and development environment.

Provides a GUI, audit logs, and an access control built-in feature. Also provides a Day 2
operation automation platform. Subscriptions or licenses are required. This version does not
provide HA and does not use Automation Hub to manage execution images or Ansible
Content Collections management. The supported deployment environment is limited to RHEL
OSs on x86 or Power servers.

This architecture is a good choice for a small starter system for test and development, or for a
small environment with non-critical automation requirements that also provides a base for
expansion as you grow. Support is provided by Red Hat.
Chapter 3. Getting started with Ansible 109

Reference architecture 3: All-in-one with Automation Hub
This architecture builds on “Reference architecture 2: Automation Platform - All-in-one without
Automation Hub” on page 109 by adding the Automation Hub, as shown in Figure 3-5.

Figure 3-5 Reference architecture 3: All-in-one with Automation Hub

This architecture is defined by the following items:

� Deploy Ansible Automation Platform in a single system and Automation Hub.
� Number of nodes that are required:

– One all-in-one automation controller node
– One all-in-one Automation Hub node

� Automation: Any.
� Use cases: Testing and development environment.

This architecture is an enhancement of “Reference architecture 2: Automation Platform -
All-in-one without Automation Hub” on page 109 by adding an All-In-One Automation Hub.
The Automation Hub manages your Ansible playbooks and collections, which can help you
automate new projects faster and more reliably. There is still no HA, and service redundancy
is not considered.

This architecture is a good choice for a small starter system for test and development or for a
small production environment with non-critical automation requirements. This architecture
has the basics of a larger, scaled-up solution to support growth in your environment. Support
is provided by Red Hat.
110 Using Ansible for Automation in IBM Power Environments

Reference architecture 4: External database server without high availability
This architecture uses an external database provider as the database system, as shown in
Figure 3-6.

Figure 3-6 Reference architecture 4: External database server without high availability

This architecture is defined by the following items:

� Deploy Ansible Automation Platform in a single system and Automation Hub. Use an
external database provider as the database system.

� Number of nodes that are required:

– One automation controller node
– One Automation Hub node
– One shared database node

� Automation: Any.

� Use cases: Testing and development environment.

This architecture is an enhancement of “Reference architecture 3: All-in-one with Automation
Hub” on page 110 by adding a separate external databases system and separate system
access control. There is no HA or service redundancy.

This architecture is a good choice for a medium to large system for test and development or
for a medium-sized environment with non-critical automation requirements. Support is
provided by Red Hat. This environment scales well in terms of the number of systems that are
managed and the number of projects that are managed, but it does not provide any way to
recover the automation platform if the controller nodes fail.
Chapter 3. Getting started with Ansible 111

Reference architecture 5: External database server with high availability except
for the database server

This architecture builds on “Reference architecture 4: External database server without high
availability” on page 111 by adding HA for the Ansible Controller portions, as shown in
Figure 3-7.

Figure 3-7 Reference architecture 5: External database server with high availability except for the
database server

This architecture is defined by the following items:

� Deploy Ansible Automation Platform and Automation Hub in multiple systems. Use an
external database provider as the database system without HA.

� Number of nodes that are required:

– Three automation controller nodes
– Two Automation Hub nodes
– One shared database node

� Automation: Any.

� Use cases: Production environment.

This architecture is an enhancement of “Reference architecture 4: External database server
without high availability” on page 111 by adding HA except for database server HA. The
database server can recover from backup if needed, but the RPO and RTO will be higher.

This architecture is aimed at medium to large environments that have critical requirements for
their automation environment because there are redundant nodes for the automation
controller and Automation Hub functions.
112 Using Ansible for Automation in IBM Power Environments

Reference architecture 6: External database server with full high availability
This architecture adds HA to “Reference architecture 5: External database server with high
availability except for the database server” on page 112, as shown in Figure 3-8.

Figure 3-8 Reference architecture 6: External database server with full high availability

This architecture is defined by the following items:

� Deploy Ansible Automation Platform and Automation Hub in multiple systems. Use an
external database provider as the database system with HA.

� Number of nodes that are required:

– Three automation controller nodes
– Two Automation Hub nodes
– Two shared database nodes

� Automation: Any.

� Use cases: Production environment.

This architecture is an enhancement of “Reference architecture 5: External database server
with high availability except for the database server” on page 112 by adding HA for all
components. The database server can recover from backup if needed. Reduces the RPO and
RTO. Automation Platform is considered the important service, but enabling access between
automation controller nodes and managed nodes within the same data center with different
network zones or segmentation might be complicated.

This architecture is a great option for a highly available and highly scalable automation
environment within a single site. It lacks only the ability for quick recovery to a second site in a
site failure.
Chapter 3. Getting started with Ansible 113

Reference architecture 7: External database server with full high availability
and a separate execution node

This architecture adds separate execution zones to “Reference architecture 6: External
database server with full high availability” on page 113, as shown in Figure 3-9.

Figure 3-9 Reference architecture 7: External database server with full high availability and a separate
execution node

This architecture is defined by the following items:

� Deploy Ansible Automation Platform and Automation Hub in multiple systems. Use an
external database provider as the database system with HA. Deploy separate execution
environments in different network zones.

� Number of nodes that are required:

– Three automation controller nodes
– Two execution nodes
– Two Automation Hub nodes
– Two shared database nodes

� Automation: Any.

� Use cases: Production environment.

This architecture is an enhancement of “Reference architecture 6: External database server
with full high availability” on page 113 by adding separate execution environments in different
network zones. This architecture minimizes firewall rules changes to enable access between
automation controller nodes and managed nodes within the same data center with different
network zones or segmentation. Site resilience is still missing.

This architecture provides a fully scalable and highly available automation solution and
includes more separation of automation activities for security. It includes redundant
components, but still does not address disaster recovery (DR).
114 Using Ansible for Automation in IBM Power Environments

Reference architecture 8: External database server with full high availability
and disaster recovery - independent operation

This architecture adds a DR environment. Automation can be managed from either the
primary location or the DR location, as shown in Figure 3-10.

Figure 3-10 Reference architecture 8: External database server with full high availability and disaster
recovery - independent operation

This architecture is defined by the following items:

� Deploy Ansible Automation Platform and Automation Hub in multiple systems. Use an
external database provider as the database system with HA. Deploy separate execution
environments in different network zones.

� Number of nodes that are required:

– Three automation controller nodes per site
– Two execution nodes per site
– Two Automation Hub nodes per site
– Two shared database nodes in the production site
– One shared database node in the DR site

� Automation: Any.

� Use cases:

– Production environment
– DR environment

This architecture is an enhancement of “Reference architecture 7: External database server
with full high availability and a separate execution node” on page 114 by adding a separate
DR environment. At least one automation platform from either site can perform the
automation operation on all managed nodes across the site. The automation operation on all
the managed nodes across the site is not impacted if one of the automation platforms is
down. Significant firewall rules changes might be required to enable access among
automation controller nodes and managed nodes across the sites. This architecture is a fully
scalable and redundant solution with DR.
Chapter 3. Getting started with Ansible 115

Reference architecture 9: External database server with full high availability
and disaster recovery - joint operation

This architecture adds a joint operation to “Reference architecture 8: External database
server with full high availability and disaster recovery - independent operation” on page 115,
as shown in Figure 3-11.

Figure 3-11 Reference architecture 9: External database server with full high availability and disaster
recovery - joint operation

This architecture is defined by the following items:

� Deploy Ansible Automation Platform and Automation Hub in multiple systems. Use an
external database provider as the database system with HA. Deploy separate execution
environments in different network zones.

� Number of nodes that are required:

– Three automation controller nodes per site
– Two execution nodes per site
– Two Automation Hub nodes per site
– Two shared database nodes in the production site
– One shared database node in the DR site

� Automation: Any.

� Use cases:

– Production environment
– DR environment

This architecture is an enhancement of “Reference architecture 8: External database server
with full high availability and disaster recovery - independent operation” on page 115 by
adding a separate DR environment. One Automation Platform from either site can perform the
automation operation on all managed nodes across the site through the execution node in the
respective site. The automation operation on all managed nodes across the site is not
impacted if one of the automation platforms is partially down, except for the execution nodes.
116 Using Ansible for Automation in IBM Power Environments

There are minimal firewall rules changes to enable access among automation controller
nodes and managed nodes across the site. Firewall rules changes are required only for the
access between automation controller nodes and execution nodes across the site only. Other
required access is maintained within the site only.

Table 3-1 helps differentiate the implementation considerations between “Reference
architecture 8: External database server with full high availability and disaster recovery -
independent operation” on page 115 and “Reference architecture 9: External database server
with full high availability and disaster recovery - joint operation” on page 116.

Table 3-1 Differentiation between reference architecture 8 and reference architecture 9

Conclusion
These reference architectures provide guidance about how to design your automation
environment and create your supported architecture by choosing the components that meet
your requirements best. However, there are further things to consider for when adding and
integrating additional solution components.

Characteristic Reference architecture 8 Reference architecture 9

Operation dependency Independent and tolerant of any
full site failures.

Partially independent and
tolerant of any partial site
failures. The execution nodes
must be accessible for
automation activities to work
across the sites.

Execution node The control plane (nodes) is
connected to execution nodes
on the same site only.

The control plane (nodes) is
connected to all execution
nodes on both sites.

Firewall rules changes In a large automation
environment, many firewall
rules must be changed.

In a large automation
environment, a minimum
number of firewall rules must be
changed.

Network bandwidth utilization In a large automation
environment, the network
bandwidth utilization is
comparatively high across the
sites.

In a large automation
environment, the network
bandwidth utilization is
minimized across the sites.

Network latency Not suitable for high network
latency across the sites.
The network latency between
the sites must be negligible so
that the execution nodes with
automation execution
environments and the target
host or endpoints can be placed
in two different locations to
enable automation for edge use
cases.

Suitable for high network
latency across the sites.
Because the execution plane
(nodes) runs only user-space
jobs, they may be
geographically separated, with
high latency, from the control
plane (nodes). The execution
nodes with automation
execution environments are
placed in different locations that
are closer to the target host or
endpoints to reduce latency
and enable automation for edge
use cases.
Chapter 3. Getting started with Ansible 117

Consider the following points as you design your environment:

� Database nodes

Database HA clusters can be configured by using an RHEL native HA cluster solution that
is called Pacemaker, or you can use the PostgreSQL HA solutions that known as the
Primary-Standby and Primary-Primary architectures.

� Automation controller nodes

At least two nodes can be considered for automation controller nodes HA.

� Automation Hub nodes

Automation Hub is optional, and alternative solutions can be used. You can use one
Automation Hub in the DR site if there are any resource limitations.

� Third-party services integration

Integrate and configure third-party services as needed, for example:

– Source code management (SCM): Manage project and playbooks through an SCM
system, such as Git, Subversion, and Mercuria.

– Notification methods: Use email, Grafana, Slack, or similar tools.

– Authentication: Use LDAP, SAML, or token-based authentication.

– Logging: Consider using logging aggregation services for monitoring and data analysis
of your systems, such as Splunk, Loggly, Sumologic, or Elasticstack (formerly ELK
stack).

3.1.3 Enterprise-ready environment

A real enterprise consists of more than of one team. It has many DevOps teams and
environments. It also has many different non-functional requirements for automation, such as
the requirement for centrally managed authentication through Active Directory or
requirements for delivering security-related logs to the organization’s Security Information
Event Monitoring (SIEM) system. Many of these requirements are already integrated in
Ansible Automation Platform and can be implemented by using those features. However,
some of them require third-party software.

In an enterprise environment, all source code must be saved in a source control repository to
track changes to the code and see who did what. The repository also enables you to separate
projects and teams. The same concepts apply to automation source code, that is, your
playbooks and roles. Your Windows administration team has nothing to do with AIX or IBM i
automation. AIX operations usually do not interfere with Microsoft SQL Server or Sharepoint
resources that are managed by other teams.

Some common control management tools that are used in enterprises are GitHub Enterprise
and Gitlab Enterprise. They are based on the open source Git project, which you can use on
your Linux, AIX, or IBM i server.

After a change to a source code is committed, the new code must be tested. If someone
made a small mistake in the automation code, it can cause problems across your whole
application deployment or infrastructure. Testing can be as simple as doing a syntax check or
can involve more complex integration testing where the whole infrastructure is built and the
application is deployed into a special testing environment. Source control management tools
like GitHub Enterprise and Gitlab Enterprise have their own set of continuous integration (CI)
tools, but you may also use the open-source tool Jenkins to build your integration pipeline.
118 Using Ansible for Automation in IBM Power Environments

Check that the source repository does not contain any passwords, tokens, or other secrets.
Your secrets must be stored in Ansible Automation Platform or in another vault tool like
Hashicorp Vault, but not in the source code. Modern SCM tools like GitHub and Gitlab can
integrate with all common security tools to automate source code scanning.

When the whole testing process completes, you can deploy the code into your production
infrastructure. This task may be done automatically by using continuous deployment (CD).
When you use Ansible Automation Platform, you receive a new version of a project after
synchronizing it. You might want to automate Ansible Automation Platform as you automate
your other applications.

In an enterprise environment, you want your automation to be predictable, which is possible if
your code is tested before it goes to production.Ensure that the code that you rely on is stable,
which includes every role, every module, and every collection. To meet this goal, use the
curated Red Hat Automation Hub instead of Ansible Galaxy as the source of your collections.
Another option is to use Private Automation Hub, which is provided by Ansible Automation
Platform. With Private Automation Hub, you can upload (or synchronize) only the content that
you need for your automation code, which enables you or your IT security team to validate
and approve the components that are used in your organization.

In the simplest form of deployment, you can use one Ansible Controller to manage all nodes.
In an enterprise-grade deployment, you install Ansible Automation Controllers according to
your infrastructure requirements. You may have separate controllers for each stage
(development, test, and production) or you may install them based on your network
configuration (separate controllers for an office network, “normal” servers, high priority
servers, or DMZ servers). These extra controllers make your architecture more complex, but it
is simpler to control which projects access which resources.

Another component of Ansible Automation Platform that is designed for enterprise
environments is event-driven automation (EDA). Consider the following questions:

� What happens in the environment if someone provisions a server without using your
automation?

� What happens if a new user must be created on several servers?

� What happens if a file system on a server needs more space?

These scenarios are all use cases for EDA.

With EDA, you develop playbooks for each use case (configure a server, create a user on a
server, or expand a file system) and then connect your external systems like PowerVC
(provisioning), ticketing system (new user creation), or monitoring (file system) to EDA. Within
EDA, you define the policies and rules and EDA runs the appropriate playbooks when a
defined event happens so that you can build a fully automated enterprise. For more
information about use cases for EDA, see 1.3.4, “Event-driven automation” on page 15.

One more aspect of a complex automation architecture is organizational in nature. Because
you have multiple components to manage (several Ansible Automation Controllers, a Private
Automation Hub, EDA and others), the job of managing the environment cannot be a side job.
In this case, your organization needs a separate automation team that automates EDA, and
manages Ansible Automation Platform. This architectural pattern applies only to enterprises
with a large infrastructure and many applications.
Chapter 3. Getting started with Ansible 119

Figure 3-12 provides an example of this complex environment. Your environment might be
even more complex, and you might need to spend time defining and building your automation
architecture.

Figure 3-12 Sample Ansible Automation Platform implementation

3.1.4 Developing an “automation first” attitude

How you start with Ansible depends on your team, your budget, and your timeline. You could
start with the simplest form of deployment and later grow into a full-pledged Ansible
Automation Platform installation as you integrate automation across your enterprise
(including third-party applications). However, if you are ready to design an automation
architecture for your whole enterprise, you can start with Ansible Automation Platform.

Automation and automation practices evolve. Your environment is live, so be prepared to
enhance it every time that you require a new feature or a new integration, and be prepared to
eliminate unnecessary or unused features.

The most important step in the automation plan is to create an “automation first” environment.
Take your time and think: Can I automate this function by using Ansible? The obvious answer
is often yes. Then, automate the task and let the job be done by Ansible. When you get to this
point, you no longer need root or QSECOFR privileges on your systems. All that you need is
that your systems are connected to your automation platform and can run Ansible playbooks
there.
120 Using Ansible for Automation in IBM Power Environments

3.2 Choosing the Ansible Controller node

Ansible can be installed on nearly any system. To choose the best location and system to run
your Ansible control node requires that you understand your environment and your
automation requirements.

Before choosing the right controller node for Ansible, you must answer a simple question:
Which systems do you plan to manage with Ansible? Consider the following cases:

� If you want to manage only your IBM i database, use your IBM i server as the Ansible
Controller.

� If you want to manage your AIX environment, install Ansible on your Network Installation
Manager (NIM) server. NIM is the central point of AIX infrastructure and has access to all
AIX servers. Often, NIM already uses OpenSSH connections between the NIM server and
the NIM clients.

� If you have SAP HANA on IBM Power, or other Linux applications on IBM Power, use an
existing Linux on Power LPAR to install Ansible. This choice has one significant
advantage: Ansible is developed under Linux. At the time of writing, you can install Ansible
Core 2.15 on Linux on Power, but Ansible Core 2.14 is the latest version that is available
on AIX. Although most modules and collections support Ansible 2.9 or later, if you have
something specific that requires a newer Ansible version, your only choice is Linux.

� You may use Linux on x86 for the Ansible Controller node.

The Ansible Controller node must have SSH access to all systems that you want to manage.
Help ensure that the connection can be made through firewalls and security zones.

You might want to have your Ansible Controller node as close to the managed servers as
possible. If you place your Ansible Controller node in the DMZ with other servers, it simplifies
the connection between the Ansible Controller and the target hosts, but it might also be
difficult to upload your playbooks and roles to it. It might be simpler to install Ansible on a
server outside of the DMZ and use some jump host for playbook execution.

3.3 Installing your Ansible control node

This section describes how to install the Ansible code on your IBM Power controller node.
Ansible is an excellent tool for configuration management, automated deployment, and
orchestration. There are two components to consider when using Ansible

� The control node that runs the playbooks and manages the automation.
� The managed node or client, which is the automated device (often called the target

machine or device).

Ansible is agentless, which means that it can communicate with machines or devices without
requiring that an application or service is installed on that managed node. It is one of the main
differences between Ansible and other similar applications like Puppet, Chef, CFEngine, and
Salt.

The Ansible Controller is often called Ansible Engine (old name) or Ansible Core (new name).
Ansible Core provides a CLI to manage your Ansible automation environment. For some
administrators, the CLI-based approach is intimidating and they are looking for a GUI instead.
For GUI-based management, you can choose to use the Ansible Automation Platform, which
provides a GUI interface for Ansible Core and more management capabilities.
Chapter 3. Getting started with Ansible 121

Ansible Core is available and supported on all OSs that are supported by IBM Power: AIX,
IBM i, and Linux on Power. Ansible Automation Platform is also available for IBM Power
environments, but it is supported only by Linux on Power. At the time of writing, Linux on
Power support for Ansible Automation Platform is in technology preview.

3.3.1 Linux as an Ansible Controller

This section describes the following topics:

� Installing Ansible on RHEL
� Verifying the installation of Ansible on RHEL
� Additional preparation and configuration for Ansible on RHEL
� Ansible Automation Platform installation on RHEL
� Ansible Automation Controller installation on RHEL

Installing Ansible on RHEL
Ansible Engine and Ansible Core cannot be installed simultaneously on an RHEL 8 system.
The installer (Red Hat Package Manager) is in two different rpm repositories. Ansible Core is
included in RHEL 8.6 and later and RHEL 9 OS under the AppStream repository, and can be
installed by running the rpm or dnf (newer version of yum) command, For more information,
see Using Ansible in RHEL 8.6 and later.

To install Ansible on RHEL, complete the following steps:

1. Verify the system identity, name, organization name, and organization ID that you received
when you registered for a subscription, as shown in Example 3-1.

Example 3-1 Verifying the subscription-manager details

subscription-manager identity
system identity: 8e73cf0a-4651-4b0d-95c1-b0b73a886785
name: app24allinone.example.com
org name: 11009103
org ID: 11009103

2. Verify the status of the products and attached subscriptions for the system, as shown in
Example 3-2.

Example 3-2 Verifying the subscription-manager status

subscription-manager status
+---+
 System Status Details
+---+
Overall Status: Disabled
Content Access Mode is set to Simple Content Access. This host has access to
content, regardless of subscription status.
System Purpose Status: Disabled

3. Verify that the Red Hat Package Manager repository is configured and enabled by using
the command that is shown in Example 3-3 on page 123.
122 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/articles/6393361

Example 3-3 Verifying the Red Hat Package Manager repository configuration

yum repolist
Updating Subscription Management repositories.
repo id repo name
rhel-8-for-ppc64le-appstream-rpms Red Hat Enterprise Linux 8
for ppc64le - AppStream (RPMs)
rhel-8-for-ppc64le-baseos-rpms Red Hat Enterprise Linux 8
for ppc64le - BaseOS (RPMs)

4. Install the ansible-core rpm in the system by running the following command:

dnf install ansible-core python3-virtualenv vim

Verifying the installation of Ansible on RHEL
Once the Ansible Core rpm installation completes in the system, it has the configuration file
and binary files that are commonly used, as shown in Table 3-2.

Table 3-2 List of files that are associated with the ansible-core rpm

Note: Help ensure that your system is connected to the correct rpm repository. If the
system directly connects with the internet, then help ensure that the subscription is
configured and enable the correct repository. For more information about using
subscription manager, see How to register and subscribe an RHEL system to the Red Hat
Customer Portal using Red Hat Subscription-Manager.

Important and executable files Description

/etc/ansible/ansible.cfg The default configuration file that comes with Red Hat Package
Manager packages. It has all the required settings, the location of
the module search path, module, executable files, and inventory
file.

/etc/ansible/hosts A sample inventory for the managed node or target host where
automation tasks run.

/usr/bin/ansible-config This command shows the effective Ansible configuration details
and the file location. Which configuration file is used depends on
the file location. Here is the order of importance of the files:
� /etc/ansible/ansible.cfg: The default configuration file,

which is used if it is present.
� ~/.ansible.cfg: The user configuration file, which overrides

the default configuration file.
� ./ansible.cfg : A local configuration file that is in the current

working directory. The file is assumed to be project-specific
and overrides the other files.

� ANSIBLE_CONFIG: Specifies the override location for the
Ansible config file.

For example, the following command creates a sample
configuration for you:
ansible-config init --disabled -t all > ansible.cfg

/usr/bin/ansible This command defines and runs a single task 'playbook' against
a set of hosts. For example, run a shell module to run a
command:
ansible all -i hosts -m shell -a "hostname"

/usr/bin/ansible-console This command dynamically runs Ansible modules or arbitrary
commands to the hosts. Here is an example:
ansible-console -i hosts --limit all -u root
Chapter 3. Getting started with Ansible 123

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273

To continue with the verification and configuration, complete the following steps:

1. Generate the configuration file by running the following command:

ansible-config init --disabled -t all > ansible.cfg

2. Display the effective configuration and its configuration file location, in terms of the current
working location or directory, as shown in Example 3-4.

Example 3-4 Displaying the effective configuration

ansible-config --version
ansible-config [core 2.14.2]
 config file = /root/ansible.cfg
 configured module search path = ['/root/.ansible/plug-ins/modules',
'/usr/share/ansible/plug-ins/modules']
 ansible python module location = /usr/lib/python3.11/site-packages/ansible
 ansible collection location =
/root/.ansible/collections:/usr/share/ansible/collections
 executable location = /usr/bin/ansible-config
 python version = 3.11.2 (main, Jun 6 2023, 07:39:01) [GCC 8.5.0 20210514
(Red Hat 8.5.0-18)] (/usr/bin/python3.11)
 Jinja version = 3.1.2
 libyaml = True

3. Verify the inventory file name and location, as shown in Example 3-5.

Example 3-5 Verifying the inventory file location

grep -vE "^#|^;" /root/ansible.cfg|grep -v ^$
[defaults]
inventory=./hosts
[privilege_escalation]
[persistent_connection]
[connection]
[colors]
[selinux]
[diff]
[galaxy]
[inventory]
[netconf_connection]
[paramiko_connection]
[jinja2]
[tags]

/usr/bin/ansible-doc This command shows information about specific modules that
are installed in Ansible libraries. For example, to check the copy
module documentation, run the following command:
ansible-doc copy

/usr/bin/ansible-playbook This command runs Ansible playbooks to run the defined tasks
on the targeted hosts. For example, to run a sample playbook,
run the following command:
ansible-playbook myplaybook.yml

/usr/bin/ansible-vault This command can be used as an encryption/decryption utility for
Ansible that can encrypt any structured data file that is used by
Ansible.

Important and executable files Description
124 Using Ansible for Automation in IBM Power Environments

[runas_become_plug-in]
[su_become_plug-in]
[sudo_become_plug-in]
[callback_tree]
[ssh_connection]
[winrm]
[inventory_plug-ins]
[inventory_plug-in_script]
[inventory_plug-in_yaml]
[url_lookup]
[powershell]
[vars_host_group_vars]

4. Verify the inventory file configuration, as shown in Example 3-6.

Example 3-6 Verifying the inventory configuration

cat /etc/ansible/hosts
192.168.121.203

5. Run an ad hoc command to verify the function, as shown in Example 3-7.

Example 3-7 Testing the Ansible function with an ad hoc command

ansible all -i hosts -m shell -a "hostname" -u root -k
SSH password:
192.168.121.203 | CHANGED | rc=0 >>
localhost.localdomain

Additional preparation and configuration for Ansible on RHEL
A best practice is to create a separate user to manage automation activities, generate ssh
keys for managed nodes access, create a virtual environment for specific Python versions,
and set environment variables for a better working environment. To do so, complete the
following steps:

1. Create a user who is called ansible by using the following command:

useradd -m -c “Ansible Controller User” ansible

2. Install any additional Python libraries or modules depending on your requirements by
using the following command:

dnf install python3-pyOpenSSL python3-winrm python3-netaddr python3-psutil
python3-setuptools

Note: If any specific Python libraries or modules are not available or not shipped with
RHEL OS in rpm format, they can be installed by using pip (the Python packages
manager). You can create a virtual environment like a virtual machine (VM) or Linux chroot
that has an isolated structure of lightweight directories that are separated from the OS
Python directories to use different versions of Python modules, files, or configurations.
Chapter 3. Getting started with Ansible 125

3. Create a ~/.vimrc file to customize the vim editor configuration to use the 2 space
indentation for yaml file editing, as shown in Example 3-8.

Example 3-8 Modifying the vim editor configuration

cat << 'EOF' >> ~/.vimrc
autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab
autocmd FileType yml setlocal ts=2 sts=2 sw=2 expandtab
EOF

4. Generate and copy the SSH key from the Ansible Automation Controller node to managed
nodes by using the following commands:

ssh-keygen
ssh-copy-id root@192.168.121.203

Ansible Automation Platform installation on RHEL
The Ansible Automation Platform can be installed and configured in IBM Power servers by
completing the following steps:

1. Download the Ansible Automation Platform installer from the Red Hat product download
site. From the Red Hat product download site, select the product that is named “Red Hat
Ansible Automation Platform”, as shown in Figure 3-13.

Figure 3-13 Selecting the version and architecture for the Ansible Automation Platform package
download

The download list is available once you select the Ansible Automation Platform version
and the architecture from the product software download page.

The software download page is shown in Figure 3-14.

Figure 3-14 List of Ansible Automation Platform package bundles that can be downloaded
126 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/downloads
https://access.redhat.com/downloads

Download the bundle package. Here is an example file name:

ansible-automation-platform-setup-bundle-2.4-1.2-ppc64le.tar.gz

2. Copy that tar file to the system and extract the files, as shown in Example 3-9.

Example 3-9 Copying and extracting the file

tar xvzf ansible-automation-platform-setup-bundle-2.4-1.2-ppc64le.tar.gz
ls -l
:::::::::::::Some Output Removed:::::::::::::
drwxrwxrwx. 5 root root 4096 Jul 23 10:58
ansible-automation-platform-setup-bundle-2.4-1.2-ppc64le
-rw-r--r--. 1 root root 2068376768 Jul 23 00:06
ansible-automation-platform-setup-bundle-2.4-1.2-ppc64le.tar.gz
:::::::::::::Some Output Removed:::::::::::::

3. Go to the extracted directory and configure the inventory file by using a vim editor for the
all-in-one installation scenario. This process is shown in Example 3-10.

Example 3-10 Configuring the inventory file

cd ansible-automation-platform-setup-bundle-2.4-1.2-ppc64le/
ls -l
:::::::::::::Some Output Removed:::::::::::::

-rw-rw-rw-. 1 root root 530 Jun 26 19:55 README.md
drwxrwxrwx. 5 root root 4096 Jun 26 19:43 bundle
drwxrwxrwx. 3 root root 4096 Jun 26 19:38 collections
drwxrwxrwx. 2 root root 4096 Jun 26 19:38 group_vars
-rw-rw-rw-. 1 root root 8653 Jul 23 10:30 inventory
-rwxrwxrwx. 1 root root 14780 Jun 26 19:38 setup.sh

vim inventory
grep -v ^# inventory |grep -v ^$
[automationcontroller]
bs-rbk-lnx-1.power-iaas.cloud.ibm.com node_type=hybrid
[automationcontroller:vars]
peers=execution_nodes
[execution_nodes]
[automationhub]
[automationedacontroller]
[database]
[sso]
[all:vars]
admin_password='Redhat123'
pg_host=''
pg_port=5432
pg_database='awx'
pg_username='awx'
pg_password='Redhat123'
pg_sslmode='prefer' # set to 'verify-full' for client-side enforced SSL
registry_url='registry.redhat.io'
registry_username=''
registry_password='''
receptor_listener_port=27199
automationedacontroller_admin_password=''
automationedacontroller_pg_host=''
Chapter 3. Getting started with Ansible 127

automationedacontroller_pg_port=5432
automationedacontroller_pg_database='automationedacontroller'
automationedacontroller_pg_username='automationedacontroller'
automationedacontroller_pg_password=''
sso_keystore_password=''
sso_console_admin_password=''

Figure 3-15 Error that is caused by ee_29_enabled = true

4. Run the Ansible Automation Platform setup script to start the installation, as shown in
Figure 3-16.

Figure 3-16 Screen capture from the installation script

Note: The legacy execution environment (ee_29_enabled=true) is not supported for Power
servers. If ee_29_enabled = true is enabled, then you receive the errors that are shown in
Figure 3-15.

Note: The default minimum RAM size is 8 GiB. This value can be modified for a
non-production or a testing environment by changing the default configuration file at the
following location:

collections/ansible_collections/ansible/automation_platform_installer/roles/pre
flight/defaults/main.yml

To adjust the minimum RAM size, modify the required_ram entry before continuing the
installation. For example:

required_ram: 4000
128 Using Ansible for Automation in IBM Power Environments

5. Once installation successfully completes, log in to the Ansible Automation Platform UI, as
shown in Figure 3-17.

Figure 3-17 Ansible Automation Platform login page

6. When you log in the first time, you must configure the subscription manager and activate
your subscription. In a disconnected or restricted environment (that is, no internet access
from the system), you must first create a manifest file, allocate the Red Hat software
subscriptions with Ansible Automation Platform to the manifest, and then export the
manifest to enable you to download the manifest file that you created.

Uploading the manifest is shown in Figure 3-18.

Figure 3-18 Ansible Automation Platform subscription activated by using a manifest file

For more information about creating and using a Red Hat Satellite manifest, see How to
create and use a Red Hat Satellite manifest.
Chapter 3. Getting started with Ansible 129

https://www.redhat.com/en/blog/how-create-and-use-red-hat-satellite-manifest
https://www.redhat.com/en/blog/how-create-and-use-red-hat-satellite-manifest

If the system is directly connected to the internet, you can use a Red Hat software
subscription username and password for the activation, as shown in Figure 3-19.

Figure 3-19 Ansible Automation Platform subscription activation by using a username and password

7. Once you log in, select the appropriate subscription from the list. An example is shown in
Figure 3-20. Click the Next on the User and Automation Analytics window, and then click
the Submit on the End User License Agreements window.

Figure 3-20 Selecting a subscription for installation

Ansible Automation Platform is ready for further integration and configuration for you to start
automating your environment, as shown in Figure 3-21 on page 131.
130 Using Ansible for Automation in IBM Power Environments

Figure 3-21 Ansible Automation Platform dashboard window

Further configuration steps
Now that Ansible Automation Platform is installed, it can be used to configure the required
integrations and required resources for your automation projects by using a web console.

Here are some of the resources that can be created in the Ansible Automation Platform:

� Templates (See Job Templates and Workflow Job Templates.)
� Credentials
� Projects
� Inventories
� Hosts
� Organizations
� Users
� Teams

Also, you can configure and integrate third-party services that you require. Here are some
example services:

� Enhanced and simplified role-based access control (RBAC) and auditing: Configure
RBAC. You can use an automation controller to grant permissions to perform a specific
task (such as to view, create, or modify a file) to different teams or explicit users through
RBAC.

� Backup and restore: The ability to back up and restore your system is integrated into the
Ansible Automation Platform setup playbook. You can configure cron jobs and use a
setup.sh script for backup and restore.

� Integrated notifications: Configure stackable notifications for job templates, projects, or
entire organizations, and configure different notifications for job start, job success, job
failure, and job approval (for workflow nodes). Notifications can be integrated with email,
Grafana, Slack, or other tools.

� Authentication enhancements: The automation controller supports LDAP, SAML, and
token-based authentication. Configure a feasible authentication method.
Chapter 3. Getting started with Ansible 131

https://docs.ansible.com/automation-controller/latest/html/userguide/job_templates.html#ug-jobtemplates
https://docs.ansible.com/automation-controller/4.2.1/html/quickstart/create_job.html
https://docs.ansible.com/automation-controller/latest/html/userguide/workflow_templates.html#ug-wf-templates

� Workflow enhancements: To better model your complex provisioning, deployment, and
orchestration workflows, the automation controller expanded workflows in many ways:

– Inventory overrides for workflows
– Convergence nodes for workflows
– Workflow nesting
– Workflow pause and approval

� Secret management system: With a secret management system, external credentials are
stored and supplied for use in the automation controller.

� Manage playbooks by using source control: Manage playbooks and playbook directories
by either placing them manually under the project or placing the playbooks into a
supported SCM system, including Git, Subversion, and Mercurial. Configuration and
integration with SCM.

For more information post-configuration, see the Automation Controller User Guide v4.4.

Ansible Automation Controller installation on RHEL
The heart of automation is the Ansible Automation Controller, which is a system that runs the
Ansible commands and playbooks in a deterministic way to automate your environment.

System preparation on RHEL 8
Create a user (for example, ansible) that owns the environment and installs the necessary
packages on the OS. Also, avoid installing pip packages outside a Python virtualenv so that
the OS managed Python modules that are installed for other uses are not interfered with
based on the Python requirements of your Ansible installation.

Also, modify your VIM configuration to replace “Tab” with an indent that uses “2 white spaces”.

Run the commands that are shown in Example 3-11 as root.

Example 3-11 Installing Ansible

useradd -m -c "Ansible Controller venv User" ansible
dnf install ansible-core python3-virtualenv vim

cat << 'EOF' > /etc/pip.conf
[install]
require-virtualenv = true

[uninstall]
require-virtualenv = true
EOF

Create the virtual environment
To create the virtual environment, complete the following steps:

1. Create the virtual environment by running the following command:

virtualenv --python='/usr/bin/python3.9' ~/venv

2. Upgrade pip, and other necessary Python libraries, and install the requirements for the
most used Ansible collections, as shown in Example 3-12 on page 133.
132 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/automation-controller/latest/html/userguide/index.html

Example 3-12 Installing the Python libraries

python3.11 -m venv ~/venv
source ~/venv/bin/activate
export PYTHONPATH=$(ls -1d ~/venv/lib/python*/site-packages)
pip install -U pip setuptools psutil
pip install jmespath netaddr pywinrm pypsrp pyopenssl

ansible-galaxy collection install community.general ansible.windows ansible.posix
ansible.utils

3. Create a default ansible.cfg file for this environment, configure the default hosts.ini file,
and populate it with at least the Ansible Controller itself (localhost)), as shown in
Example 3-13.

Example 3-13 Creating the ansible.cfg file

ansible-config init --disabled -t all > ~/ansible.cfg
perl -pi -e "s|^\;?(inventory=).*|\1~/hosts.ini|g" ~/ansible.cfg

cat << 'EOF' >> ~/hosts.ini
localhost ansible_connection=local
EOF

4. To make it convenient to get into the virtualenv while logging in as user ansible, add the
source and export lines to the .bashrc (or .profile) of the user.

5. Adjust vimrc to make VIM recognize the yaml/yml indentation, as shown in Example 3-14.

Example 3-14 Adjusting VIM for yaml notation

cat << 'EOF' >> ~/.vimrc
autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab
autocmd FileType yml setlocal ts=2 sts=2 sw=2 expandtab
EOF

6. Adjust .bashrc to reflect the environment that is shown in Example 3-15.

Example 3-15 Adjusting .bashrc for Python

~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User-specific environment
if ! [["$PATH" =~ "$HOME/.local/bin:$HOME/bin:"]]
then
 PATH="$HOME/.local/bin:$HOME/bin:$PATH"
fi
export PATH

export HISTSIZE=100000 # big big history
export HISTFILESIZE=100000 # big big history

Uncomment the following line if you don't like systemctl's auto-paging feature:
Chapter 3. Getting started with Ansible 133

export SYSTEMD_PAGER=

User specific aliases and functions
alias view="vim -R"

source ~/ansible-venv/bin/activate
export PYTHONPATH=$(ls -1d ~/ansible-venv/lib/python*/site-packages)

Your virtual environment is now ready to use.

3.3.2 AIX as an Ansible Controller

There are multiple implementations of Ansible that can be used, depending on your
requirements and your environment. Ansible Core is the supported implementation for AIX
because Ansible Automation Platform is not supported on AIX. To get the full benefit of
Ansible Automation Platform running on your IBM Power server, choose an LPAR running
RHEL as your controller.

If you installed open-source tools on AIX, installing Ansible will be familiar and look similar to
an installation on a Linux on Power LPAR. However, if you have limited experience with
open-source deployments on AIX, you must learn the open-source installation methodology.

Ansible on AIX is delivered as a part of IBM AIX Toolbox for Open Source Software. All
software that is delivered through IBM AIX Toolbox for open-source applications is packaged
by using the Red Hat Package Manager format, which is the same format that is used in
Linux. Because the format is not the AIX native BFF package format, the installation
procedure is different.

It is a best practice to use dnf to install any open-source tools in your AIX environment. The
dnf command is in a package manager for Red Hat Package Manager packages. It is an
updated version of the yum command, which you might see in a Linux environment. Although
you can install Red Hat Package Manager files without a package manager, using dnf has
two significant advantages: It can automatically resolve dependencies and then install them
from package repositories. Without the dnf package manager, you are forced to manually
determine any package dependences and then install them. You can find a useful and
detailed guide about installing dnf at DNF is now available on AIX Toolbox.

In our testing scenarios, we ran the installations on both AIX 7.2 and AIX 7.3. The process
applies to both versions.

Installing on a system with internet connectivity
If your AIX server has a direct internet connection, running the dnf_aixtoolbox.sh script
should install dnf on your machine. To download the script and run it, use the
/dnf_install.sh -y command. It runs for a while and sets up dnf if everything is successful.

Example 3-16 shows the steps to install the package.

Example 3-16 Installing DNF on AIX

/usr/opt/perl5/bin/lwp-download
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_aixtoolbo
x.sh
chmod +x dnf_aixtoolbox.sh
./dnf_aixtoolbox.sh -y
134 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/support/pages/node/882892
https://community.ibm.com/community/user/power/blogs/sangamesh-mallayya1/2021/05/28/dnf-is-now-available-on-aix-toolbox?_gl=1*9o7rdz*_ga*NjMwMzQ3MzU1LjE2NTQxODY0MTM.*_ga_FYECC

The script downloads the newest rpm.rte package and a bundle of Red Hat Package
Manager packages to install. There are many packages in the bundle, but the most important
in this case are Python 3.9 and DNF itself.

Installing on a system without internet connectivity
If you do not have an internet connection, then some extra steps are required to install dnf. To
successfully install the dnf package, complete the following steps:

1. Verify that you have your proxy set up correctly and export the variables, as shown in
Example 3-17.

Example 3-17 Setting up the proxy variables

export http_proxy=http://user:password@IP:PORT/
export https_proxy=http://user:password@IP:PORT/
Your proxy setup should look something like
export http_proxy=http://atilio:b0ls1llud0@192.168.0.45:8080/

2. The command to run the script is /dnf_install.sh -y. The script requires FTP access to
IBM. If you cannot support FTP, comment out lines 179 - 254 in the script and download
the packages manually from one of the following repositories:

https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle
_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle
_aix_73.tar

3. Check your OpenSSL version. It must be at least Version 1.1. In our example, we used
openssl-1.1.2.2200.tar.Z, which we downloaded from the following website:

https://www.ibm.com/resources/mrs/assets/DirectDownload?source=aixbp&lang=en_US

4. If the installation stalls, the rpm.rte installation might be failing. Open the .tar file, extract
rpm.rte, and update it by using smit or installp from the CLI.

Alternative installation steps for systems without internet connectivity
If you do not have internet access on your IBM AIX server and do not want to complete the
steps in “Installing on a system without internet connectivity”, download the latest bundle
manually to any server and then transfer it to your AIX server.

You can find the latest bundles here. Complete the following steps:

1. There are two bundles: one for AIX 7.1 and 7.2, and another one for AIX 7.3. Choose the
correct bundle for your version of IBM AIX.

2. After downloading the bundle, extract it to a temporary directory.

3. In the temporary directory, you find the script dnf_install.sh. Run ./dnf_install.sh -y.
It sets up the dnf module.

Note: You need an IBMid to download this file.
Chapter 3. Getting started with Ansible 135

https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_71_72.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_73.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_73.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_73.tar
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_bundle_aix_73.tar
https://www.ibm.com/resources/mrs/assets/DirectDownload?source=aixbp&lang=en_US
https://www.ibm.com/resources/mrs/assets/DirectDownload?source=aixbp&lang=en_US
https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/

Steps to take after the installation of dnf
After you install dnf, complete the following steps:

1. Update the packages by running dnf -y update.

2. In the default configuration, dnf tries to download package information from IBM. If you
work in an air-gapped environment without direct access to the internet, complete the
following steps:

a. Create local repositories by mirroring IBM repositories.

b. After creating local mirrors, reconfigure dnf by manually editing
/opt/freeware/etc/dnf/dnf.conf.

Ansible installation on AIX
With dnf installed and setup, proceed to the installation of Ansible and the ansible-core
packages.

If you search for Ansible in the repositories, you find three references to it, as shown in
Example 3-18.

Example 3-18 Searching for Ansible in the AIX repositories

dnf search ansible
===================== Name & Summary Matched: ansible ============================
ansible.noarch : Curated set of Ansible collections included in addition to
ansible-core
===================== Name Exactly Matched: ansible ==============================
ansible.ppc : SSH-based configuration management, deployment, and task execution
system
===================== Name Matched: ansible ======================================
ansible-core.noarch : A radically simple IT automation system

The package that you want to install is called ansible.noarch. The package
ansible-core.noarch is the base package of Ansible, which provides Ansible Core 2.14.2 at
the time of writing.

The package ansible.noarch provides extra collections that you usually need to work with
Ansible. If you install the package ansible.noarch, it automatically installs the package
ansible-core.noarch.

Example 3-19 shows the command to install Ansible and the resulting output.

Example 3-19 Installing Ansible on IBM AIX

#dnf -y install ansible.noarch
Dependencies resolved.
==
 Package Architecture Version
Repository Size
==
Installing:
 ansible noarch 7.2.0-1
AIX_Toolbox_noarch 47 M
Installing dependencies:

Important: Do not install ansible.ppc because it is an earlier version of Ansible.
136 Using Ansible for Automation in IBM Power Environments

 ansible-core noarch 2.14.2-1
AIX_Toolbox_noarch 3.5 M
 python3.9-packaging noarch 19.2-2
AIX_Toolbox_noarch 58 k
 python3.9-pyparsing noarch 2.4.4-2
AIX_Toolbox_noarch 196 k
 python3.9-resolvelib noarch 0.5.4-1
AIX_Toolbox_noarch 30 k

Transaction Summary
==
Install 5 Packages

Postinstallation configuration suggestions
Consider the following configuration suggestions for your Ansible environment:

1. All Red Hat Package Manager packages from AIX Toolbox applications are installed in
/opt/freeware. Usually, this directory is not added to the PATH variable in
/etc/environment or to the user’s profile. To run the Ansible commands, specify the full
path to the command, as shown in the following commands:

/opt/freeware/bin/ansible-playbook or /opt/freeware/bin/ansible-galaxy.

For your convenience, it is a best practice to add /opt/freeware/bin into the PATH variable
in your profile, as shown in Example 3-20. After you change your profile, re-login to enable
the changes.

Example 3-20 Adding /opt/freeware/bin to the PATH variable

echo 'export PATH=$PATH:/opt/freeware/bin' >>~/.profile

2. The global configuration of Ansible can be found in /opt/freeware/etc/ansible. By
default, this global configuration is used, but you can set up Ansible to use local
project-specific configuration files.

The same situation applies to Ansible collections. You can install them globally into
/usr/share/ansible/collections, locally for your user, or for one project.

3. Make sure that the correct locale files are installed. Ansible requires the UTF - 8 locale.
The command to validate your installed locale files is shown in Example 3-21.

Example 3-21 Validating the locale files that are installed

lslpp -l | grep -i bos.loc
bos.loc.com.utf 7.2.0.0 COMMITTED Common Locale Support - UTF-8
bos.loc.utf.EN_US 7.2.0.0 COMMITTED Base System Locale UTF Code
This is a sample for AIX 7.2 the important thing is the package version might
change.

Note: As a best practice, create configuration files and install collections on a project basis.

Note: Not having the correct locale file causes Ansible commands to fail with the following
error:

/opt/freeware/bin/ansible
ERROR: Ansible requires the locale encoding to be UTF-8; Detected ISO8859-1.
Chapter 3. Getting started with Ansible 137

4. You need to set your user environment as shown in Example 3-22.

Example 3-22 User environment setup for using Ansible

vi .profile
".profile" 8 lines, 309 characters
export PATH=$PATH:/opt/freeware/bin
export TERM=aixterm
LC_MESSAGES=%l.%c
export LC_MESSAGES
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%l.%c/%N:/usr/lib/nls/msg/%L/%N.
cat:/usr/lib/nls/msg/%l.%c/%N.cat:/usr/lib/nls/msg/%l.%c/%N:/usr/lib/nls/msg/%l.
%c/%N.cat
export NLSPATH
LANG=EN_US
export LANG

Running a validation command
When you are done with all the steps in “Postinstallation configuration suggestions” on
page 137, you can run an Ansible command to validate that the installation of Ansible
completed successfully. You can run the command that is shown in Example 3-23 to validate
the installation and display the version of Ansible that is installed.

Example 3-23 The # ansible --version command

ansible --version
ansible [core 2.14.2]
 config file = /etc/ansible/ansible.cfg
 configured module search path = ['/.ansible/plug-ins/modules',
'/usr/share/ansible/plug-ins/modules']
 ansible python module location =
/opt/freeware/lib/python3.9/site-packages/ansible
 ansible collection location =
/.ansible/collections:/usr/share/ansible/collections
 executable location = /opt/freeware/bin/ansible
 python version = 3.9.16 (main, Jun 28 2023, 12:45:03) [GCC 8.3.0]
(/opt/freeware/bin/python3.9)
 Jinja version = 3.0.3
 libyaml = True

As you can see from the example, Ansible Core 2.14.2 was installed and the Python version
is Python3 3.9.16.

Files that are installed during the Ansible installation on AIX
When the Ansible Core rpm installation completes in the system, the system has the
configuration file and binary files. The commonly used files are shown in Table 3-3 on
page 139.
138 Using Ansible for Automation in IBM Power Environments

Table 3-3 List of files that associated with ansible-core rpm

Important files and executable files Description

/etc/ansible/ansible.cfg The default configuration file that comes with Red Hat
Package Manager packages. It has all the required
settings, the location of the module search path, and the
module, executable files, and inventory files. The
configuration file has precedence based on its location
(linked to /opt/freeware/etc/ansible/ansible.cfg).

/etc/ansible/hosts A sample inventory for the managed node or target host
where automation tasks run (linked to
/opt/freeware/etc/ansible/hosts).

/opt/freeware/bin/ansible-config Use this command to view the effective Ansible
configuration details and the file location. The configuration
file has precedence based on its location:
� /etc/ansible/ansible.cfg: The default configuration

file. It is used if it is present.
� ~/.ansible.cfg: The user configuration file. It

overrides the default configuration file.
� ./ansible.cfg: A local configuration file that is in the

current working directory. It is assumed to be
project-specific and overrides all other files.

� ANSIBLE_CONFIG: This file specifies the override location
for the ansible-config file.

For example, the following command can create a sample
configuration for you:
ansible-config init --disabled -t all >
ansible.cfg

/opt/freeware/bin/ansible Use this command to define and run a single task playbook
against a set of hosts. For example, run the shell module to
run a command:
ansible all -i hosts -m shell -a "hostname"

/opt/freeware/bin/ansible-console Use this command to dynamically run Ansible modules or
arbitrary commands to the hosts. For example:
ansible-console -i hosts --limit all -u root

/opt/freeware/bin/ansible-doc Use this command to display information about specific
modules that are installed in Ansible libraries. For example,
to check the copy module documentation, run the following
command:
ansible-doc copy

/opt/freeware/bin/ansible-playbook Use this command to run Ansible playbooks, which run the
defined tasks on the targeted hosts. For example, to run a
sample playbook, run the following command:
ansible-playbook myplaybook.yml

/opt/freeware/bin/ansible-vault Use this command as an encryption/decryption utility for
Ansible that can encrypt any structured data file that is used
by Ansible.
Chapter 3. Getting started with Ansible 139

Next steps
Now that Ansible is installed, set up a configuration for your environment by completing the
following steps:

1. Generate the configuration file by running the following command:

ansible-config init --disabled -t all > ansible.cfg

2. Display the effective configuration and the configuration file location in terms of the current
working location or directory, as shown in Example 3-24.

Example 3-24 Displaying the effective configuration

ansible --version
ansible [core 2.14.2]
 config file = /ansible.cfg
 configured module search path = ['/.ansible/plug-ins/modules',
'/usr/share/ansible/plug-ins/modules']
 ansible python module location =
/opt/freeware/lib/python3.9/site-packages/ansible
 ansible collection location =
/.ansible/collections:/usr/share/ansible/collections
 executable location = /opt/freeware/bin/ansible
 python version = 3.9.16 (main, Jun 28 2023, 12:45:03) [GCC 8.3.0]
(/opt/freeware/bin/python3.9)
 Jinja version = 3.0.3
 libyaml = True

3. Verify the inventory file name and location, as shown in Example 3-25.

Example 3-25 Verifying the inventory file location

grep -vE "^#|^;" /etc/ansible/ansible.cfg|grep -v ^$
[defaults]
[privilege_escalation]
[persistent_connection]
[connection]
[colors]
[selinux]
[diff]
[galaxy]
[inventory]
[netconf_connection]
[paramiko_connection]
[jinja2]
[tags]
[runas_become_plug-in]
[su_become_plug-in]
[sudo_become_plug-in]
[callback_tree]
[ssh_connection]
[winrm]
[inventory_plug-ins]
[inventory_plug-in_script]
[inventory_plug-in_yaml]
[url_lookup]
[powershell]
[vars_host_group_vars]
140 Using Ansible for Automation in IBM Power Environments

4. Verify the inventory file configuration, as shown in Example 3-26.

Example 3-26 Verifying the inventory configuration

atilio-ansiblerh73:/>cat /etc/ansible/hosts
This is the default ansible 'hosts' file.
#
It should live in /etc/ansible/hosts
#
- Comments begin with the '#' character
- Blank lines are ignored
- Groups of hosts are delimited by [header] elements
- You can enter hostnames or IP addresses
- A hostname/ip can be a member of multiple groups
[linux]
ansible-AAP-redbook
hugo-rhel8-ansible
vasco-rhel8-ansible
revelez-rhel9-ansible
[aix]
vitorio-ansibleaix72
atilio-ansibleaix73

5. Run an ad hoc command to verify the function, as shown in Example 3-27.

Example 3-27 Testing the Ansible function with an ad hoc command (sshpass must be installed with
dnf)

atilio-ansiblerh73:/>ansible all -i hosts -m shell -a "hostname" -u root -k
SSH password:
hugo-rhel8-ansible | CHANGED | rc=0 >>
hugo-rhel8-ansible

Additional preparation and configuration of Ansible on AIX
To manage automation activities, create a separate user to do the following activities:

� Generate SSH keys for managed nodes access.
� Create a virtual environment for specific Python versions.
� Set environment variables for a better working environment.

To set up the user (in our example, ansible), complete the following steps:

1. Create the user by running the following command:

vitorio-ansibleaix72:/>mkuser -a "gecos=Ansible Controller User" ansible

2. Install any additional Python libraries or modules depending on your requirements by
running the following command:

dnf install python3-pip

Note: If any specific Python libraries or modules are not available or not included with the
AIX OS in rpm format, they can be installed by using pip (the Python packages manager).
You can create a virtual environment, like a VM or Linux chroot, that has an isolated
structure of lightweight directories that is separated from the OS Python directories so that
you can use different versions of Python modules, files, or configurations.
Chapter 3. Getting started with Ansible 141

3. Create a ~/.vimrc file to customize the vim editor configuration to use the 2 space
indentation for YAML file editing, as shown in Example 3-28.

Example 3-28 Modifying the vim editor configuration

cat << 'EOF' >> ~/.vimrc
autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab
autocmd FileType yml setlocal ts=2 sts=2 sw=2 expandtab
EOF

4. Generate and copy the ssh key from the Ansible Automation Controller node to the
managed nodes by using the following commands:

ssh-keygen
ssh-copy-id root@192.168.xxx.xxx

Your AIX based Ansible Controller is ready for use for automation tasks.

Installing the IBM Power AIX Collection
You learned about the IBM Power AIX collection in “IBM Power AIX collection” on page 41.
The AIX collection contains many modules and roles to help you manage your IBM AIX
LPARs. The collection can be installed on your Ansible Controller node by using the
ansible-galaxy command, as shown in Example 3-29.

Example 3-29 Installing ibm.power_aix collection

$ ansible-galaxy collection install ibm.power_aix
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Downloading https://galaxy.ansible.com/download/ibm-power_aix-1.6.4.tar.gz to
/home/ansible/.ansible/tmp/ansible-local-13042144f894hz11/tmpvmhd3sw5/ibm-power_ai
x-1.6.4-x64201pn
Installing 'ibm.power_aix:1.6.4' to
'/home/ansible/.ansible/collections/ansible_collections/ibm/power_aix'
ibm.power_aix:1.6.4 was installed successfully

If you do not have direct access, you can download the collection on another server and then
copy it to your Ansible Controller node, as shown in Example 3-30.

Example 3-30 Installing ibm.power_aix collection from a local file

$ ls
ibm-power_aix-1.6.4.tar.gz
$ ansible-galaxy collection install ibm-power_aix-1.6.4.tar.gz
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Installing 'ibm.power_aix:1.6.4' to
'/home/ansible/.ansible/collections/ansible_collections/ibm/power_aix'
ibm.power_aix:1.6.4 was installed successfully

The collection documentation has a demonstration inventory file that you can view. However,
for our test environment, our inventory file looks like what is shown in Example 3-31 on
page 143.
142 Using Ansible for Automation in IBM Power Environments

Example 3-31 Our inventory file for our test environment

all: # keys must be unique, that is, only one 'hosts' per group
 hosts:
 vars:
 children: # key order does not matter, indentation does
 aix:
 children:
 nimserver:
 hosts:

narancio-nim-master:
 ansible_host: narancio-nim-master
 vars:
 vm_targets: vitorio-ansibleaix72

nimclient:
 hosts:
 vitorio-ansibleaix72:
 ansible_host: vitorio-ansibleaix72

 atilio-ansibleaix73:
 ansible_host: atilio-ansibleaix73

vars:
 res_group: basic_res_grp
 hosts:
 cascarilla-ansibleaix73:
 ansible_host: cascarilla-ansibleaix73
 vios:
 hosts:
 gpc-s924-vios1:
 ansible_host: gpc-s924-vios1
 vars:
 res_group: vios_res_grp

Using a NIM server as your Ansible Controller
The Ansible Power AIX collection has many modules. As you look through the list of modules
that are shown in Table 1-7 on page 41, you might notice that there are several that require a
NIM server, which reinforces the best practice to run your Ansible Controller node for your AIX
LPARs on your NIM server. When you run the NIM-based modules on your NIM server, then
the Ansible Controller may run commands on the NIM clients, and already have the required
contents to support upgrades or installations for your AIX Ansible Clients.

3.3.3 IBM i as an Ansible Controller

Ansible, a powerful automation tool, is enhanced on the IBM i platform through the integration
of key components, each serving a crucial role in enabling automation processes.

Portable Application Solutions Environment
Portable Application Solutions Environment (PASE), when integrated within IBM i, offers a
runtime environment that facilitates the running of chosen applications. This environment
includes industry-standard and de facto standard shells, which establish a robust scripting
platform. Functioning as an AIX release, PASE can be customized for communication with
System Licensed Internal Code (SLIC) by using memory from SLIC, which is also used by the
IBM Integrated Language Environment® (ILE). PASE and ILE work together on IBM i.
However, Ansible requires a Python installation and operation from PASE, and playbooks
require integration of Python commands.
Chapter 3. Getting started with Ansible 143

Red Hat Package Manager
Red Hat Package Manager hosts compiled binary files, with IBM crafting versions for the IBM
i platform. Stored within Integrated File System (IFS) on IBM i, Red Hat Package Manager
files adhere to the format <name>-<version>-<release>.<os>.<architecture>.rpm. A sample
Red Hat Package Manager file name is Ansible-2.9.9-1.ibmi72.noarch.rpm.

Red Hat Package Manager files for IBM i are accessible at IBM i software.

Yellowdog Updater, Modified
Yellowdog Updater, Modified (YUM), which is a no-charge, open-source utility, aids package
management through CLI interactions. YUM enables the installation or updating of Red Hat
Package Manager packaged software and handles dependencies within the Red Hat
Package Manager package. IBM i uses YUM to install, update, upgrade, and remove
packages.

Install YUM before initiating Ansible. This installation can be performed with or without an
internet connection. To install YUM without an Internet connection, a one-time bootstrap
process is used. For more information, see YUM installation.

After YUM is installed, go to the directory where it is, run cd /Qopensys/pkgs/bin/, and then
run yum -h.

SSHpass and ssh-keygen
The SSHpass package, non-interactive, acts as an Ansible Controller on IBM i. It simulates
an interactive user entering the required SSH connection password. Use the following
command to install SSHpass:

yum install sshpass

Also, ssh-keygen is a vital component of SSH. It generates a secure connection between the
Ansible Controller and IBM i endpoint systems by employing a pair of keys: public and private.
To generate these keys, run the following command:

ssh-keygen -t rsa

Ansible Controller installation on IBM i
Installing the Ansible Controller on the IBM i platform involves setting up the Red Hat Package
Manager environment. Help ensure that Red Hat Package Manager is configured by following
the steps that are outlined in the IBM i Open Source documentation.

Note: Packages can be managed through SSH terminal commands or IBM Access Client
Solution.

Note: By establishing these components and their integration, Ansible on IBM i gains a
powerful foundation that is ready for versatile automation and management tasks.
144 Using Ansible for Automation in IBM Power Environments

https://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo/noarch/.
https://bitbucket.org/ibmi/opensource/src/972b0065901784cb5327d25714fe19caa271a502/docs/yum/#markdown-header-installation
https://ibmi-oss-docs.readthedocs.io/en/latest/README.html

There are three methods for installing Ansible Controller:

� Installation without internet access: If your IBM i server lacks direct internet access, you
can manually download the Red Hat Package Manager package from the IBM repository.
To facilitate this task, employ a proxy server on a local intranet. Configure YUM to use the
proxy by editing the yum.conf file in /QOpenSys/etc/yum/yum.conf. Add the proxy settings
as shown in Example 3-32.

Example 3-32 Configuring a proxy for YUM

[main]
proxy=http://proxy.mycompany.example.com:1234
proxy_username=user_name
proxy_password=passw0rd

You can create a local repository by using reposync and createrepo, which generate a
complete copy of the remote repository. For more information about this process, see
Create a local repository mirror.

� Internet access from an IBM i server: If your IBM i server has internet access, help ensure
that Python 3.6+ is installed. Log in to an SSH terminal and run yum install ansible, and
then run ansible -version. The first command installs Ansible, and the second command
verifies the installation by checking its version.

� Installation by using IBM i Access Client Solutions (ACS): Ansible can be conveniently
installed through ACS. For step-by-step instructions, see Installation using IBM i Access
Client Solutions (ACS). This approach offers a method to set up Ansible on your IBM i
platform.

Configuring Ansible for IBM i
The configuration of Ansible is a crucial step to help ensure its effective function. Here is a
step-by-step guide about how to configure Ansible on your IBM i platform:

1. Locate the configuration file: The Ansible configuration file, typically named ansible.cfg,
is usually in the /etc/ansible directory. However, you can also create this file in a different
path or directory if needed.

2. Parameter flexibility: The ansible.cfg file encompasses a wide range of parameters that
can be used. Activating all parameters is not mandatory, and you can configure them as
required for your specific setup.

3. Creating the configuration file: To create the Ansible configuration file, run the following
command:

vi /etc/ansible/ansible.cfg

In this file, you can specify various configurations to tailor Ansible's behavior to your
needs. One of the commonly customized sections is [defaults].

Example 3-33 shows how to configure the ansible.cfg file for IBM i.

Example 3-33 Parameters for the Ansible configuration file for IBM i

[defaults]
inventory =
~/.ansible/collections/ansible_collections/ibm/power_ibmi/playbooks/hosts_ibmi.ini
library =
~/.ansible/collections/ansible_collections/ibm/power_ibmi/plug-ins/action
Chapter 3. Getting started with Ansible 145

https://ibm.github.io/ansible-for-i-sap/install_and_config.html
https://ibm.github.io/ansible-for-i-sap/install_and_config.html
https://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo/noarch/
https://ibmi-oss-docs.readthedocs.io/en/latest/yum/README.html#create-a-local-repository-mirror

Postinstallation configuration steps on IBM i
After the installation of Ansible, further configuration is necessary to effectively use Ansible
collections, modules, and automation capabilities on IBM i. Ansible collections represent the
modern standard for distributing and maintaining automation components, encompassing
modules, action plug-ins, roles, and sample playbooks.

The following procedure guides you through the process of configuring Ansible Galaxy, which
is a repository for Ansible on IBM i that contains content from the broader Ansible community:

1. Install the IBM i collection from Ansible Galaxy, which is the designated package manager
for Ansible. Example 3-34 displays the command.

Example 3-34 Command to install Ansible Galaxy collections

ansible-galaxy collection install ibm.power_ibmi
Process install dependency map
Starting collection install process
Installing 'ibm.power_ibmi:1.5.0' to
'/HOME/QSECOFR/.ansible/collections/ansible_collections/ibm/power_ibmi'

2. Check the installation path of the collections in the IFS by using the cd command:

cd /home/qsecofr/.ansible/collections/ansible_collections/ibm/power_ibmi

3. Display the content of the power_ibmi directory by using the ls -l command, as shown in
Example 3-35.

Example 3-35 Displaying the content of the power_ibmi directory

ls -l
total 220
-rw-r--r-- 1 qsecofr 0 90760 Jul 20 23:33 FILES.json
-rw-r--r-- 1 qsecofr 0 1241 Jul 20 23:33 MANIFEST.json
-rw-r--r-- 1 qsecofr 0 1284 Jul 20 23:33 README.md
-rw-r--r-- 1 qsecofr 0 186 Jul 20 23:33 bindep.txt
drwxr-sr-x 3 qsecofr 0 8192 Jul 20 23:33 changelogs
drwxr-sr-x 4 qsecofr 0 8192 Jul 20 23:33 docs
drwxr-sr-x 2 qsecofr 0 8192 Jul 20 23:33 meta
drwxr-sr-x 5 qsecofr 0 28672 Jul 21 12:20 playbooks
drwxr-sr-x 5 qsecofr 0 8192 Jul 20 23:33 plug-ins
drwxr-sr-x 24 qsecofr 0 28672 Jul 20 23:33 roles
drwxr-sr-x 9 qsecofr 0 12288 Jul 20 23:33 usecases

4. Go to the user's home directory by running the following command:

cd /home/qsecofr

Note: Part of the Ansible configuration process involves setting up the ansible.cfg file.
Although the default location for this file is typically /etc/ansible on various platforms,
including Ansible Controller on IBM i, you must create one if it does not exist.

For a comprehensive list of parameters that can be included in an Ansible configuration
file, see this GitHub repository. This reference provides a deeper understanding of the
various options that are available for configuring Ansible to suit your requirements.

Note: Installing collections with ansible-galaxy is supported only in Ansible 2.9+.
146 Using Ansible for Automation in IBM Power Environments

https://github.com/ansible/ansible-examples

5. Create a .ssh directory in the user's home directory by running the following command:

mkdir -p /home/qsecofr/.ssh

6. Verify the creation of the directory, as shown in Example 3-36.

Example 3-36 Displaying the ssh directory

ls -la
total 56
drwxr-sr-x 5 qsecofr 0 8192 Sep 29 23:15 .
drwxrwsrwx 5 qsys 0 8192 Sep 20 2020 ..
drwx--S--- 3 qsecofr 0 8192 Sep 20 22:35 .ansible
drwxrwsrwx 3 qsecofr 0 8192 Oct 20 2019 .java
-rw-r--r-- 1 qsecofr 0 42 Oct 20 2019 .profile
drwxr-sr-x 2 qsecofr 0 8192 Sep 17 23:15 .ssh
-rw------- 1 qsecofr 0 16 Oct 20 2019 .vi_history

7. Generate an SSH key pair for the Ansible Controller on IBM i and its managed hosts.
Enter the following command, pressing Enter three times without providing a passphrase
or changing the default location of the key. The results are shown in Example 3-37.

Example 3-37 Generating the RSA key pair

ssh-keygen -t rsa -C "10.10.10.10"
Generating public/private rsa key pair.
Enter the file in which to save the key (/HOME/QSECOFR/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter the same passphrase again:
Your identification has been saved in /HOME/QSECOFR/.ssh/id_rsa.
Your public key has been saved in /HOME/QSECOFR/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:V5VzRDMfVjLMFa7Wh8+V8q6e5IdQbFPys5HYc/tegIA 10.10.10.10
The key's randomart image is:
+---[RSA 3072]----+
| o+@B|
| . oB+*|
| E . o *+o|
| o BoOo|
| S . +++oX|
| . .. o*o|
| =|
| o.o.o|
| .=oo.|
+----[SHA256]-----+

8. Confirm the generated content by running the ls -la command, as shown in
Example 3-38.

Example 3-38 Displaying the public and private RSA key pair

ls -la
total 52
drwxr-sr-x 2 qsecofr 0 12288 Sep 22 20:47 .
drwxr-sr-x 7 qsecofr 0 24576 Sep 22 17:31 ..
-rw------- 1 qsecofr 0 2602 Sep 22 20:47 id_rsa
-rw-r--r-- 1 qsecofr 0 565 Sep 22 20:47 id_rsa.pub
Chapter 3. Getting started with Ansible 147

9. Before copying the SSH key to the managed hosts, install sshpass, which is a tool that
facilitates password authentication in both interactive and non-interactive modes. Use the
command in Example 3-39 to install sshpass.

Example 3-39 Installing sshpass by using the yum command

yum install sshpass
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package sshpass.ppc64 0:1.06-1 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version
Repository Size
==
Installing:
 sshpass ppc64 1.06-1
ibm 30 k

Transaction Summary
==
Install 1 Package

Total download size: 30 k
Installed size: 77 k
Is this ok [y/N]: Y
Downloading Packages:
sshpass-1.06-1.ibmi7.2.ppc64.rpm
| 30 kB 00:00:00
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : sshpass-1.06-1.ppc64
1/1

Installed:
 sshpass.ppc64 0:1.06-1

Complete!

IBM i hardware requirements for Ansible Controller
The hardware resources that are required for Ansible Controller on IBM i depend on several
factors, such as the number of agents that are served, frequency of operator check-ins,
managed resources per agent, and the complexity of manifests and modules in use.

For an IBM i server with Ansible Controller installed, Table 3-4 on page 149 outlines best
practice hardware specifications based on the number of managed nodes.
148 Using Ansible for Automation in IBM Power Environments

Table 3-4 Hardware requirements for Ansible Controller on IBM i

3.4 Preparing your systems to be Ansible clients

In general, there is minimal setup that is required to run the Ansible client on a device or
server because Ansible does not require that an agent is installed on the client, and it uses
SSH to connect the management node to the client node.

However, there are some basic setup considerations for each of the LPARs that are Ansible
clients. The obvious one is to help ensure that SSH is installed and available. All supported
OSs that run on IBM Power support SSH, but there are some considerations for helping
ensure that it is installed correctly, which can vary by OS. Also, Ansible requires that Python is
installed, and again this process differs depending on the OS that is used in your client.

The next sections describe the best practices to prepare your Ansible client based on the OS
that is used.

3.4.1 Linux as an Ansible managed client

For a Linux node to work as an Ansible Client natively, you must install python3 and
python3-pip, and setup some parameters on the ssh configuration.

The following tasks help avoid delays that are caused by DNS resolution, or SSH timeouts:

1. In /etc/ssh/sshd_config, make the following changes:

Uncomment GSSAPIAuthentication no
Uncomment GSSAPICleanupCredentials yes
Uncomment UseDNS No

2. Add your ansible-core node to the /etc/hosts file if no DNS is setup.

3. Verify your python3 installation, as shown in Example 3-40.

Example 3-40 Verifying your Python installation

[root@hugo-rhel8-ansible ~]# dnf list python3*
Updating Subscription Management repositories.
Installed Packages
python3-asn1crypto.noarch 0.24.0-3.el8 @anaconda
python3-cffi.ppc64le 1.11.5-5.el8 @anaconda
python3-configobj.noarch 5.0.6-11.el8 @anaconda
python3-cryptography.ppc64le 2.3-3.el8 @anaconda

4. Create a user for connection or set up ssh keys if you want to use passwordless access.

Managed nodes CPU (cores) Memory (GB) Disk (GB) IBM i release

Dozens 0.25 2 80 7.3, 7.4, and 7.5

1000+ 0.5 8 80 7.3, 7.4, and 7.5

Note: These hardware requirements help ensure optimal performance and efficient
management of Ansible tasks and operations on your IBM i server.
Chapter 3. Getting started with Ansible 149

3.4.2 AIX as an Ansible managed client

This section describes tips and hints to use AIX as an Ansible managed client by using SSH
or the AIX Collection from Ansible Galaxy.

To avoid delays that can be caused by DNS resolution or SSH timeouts, complete the
following steps:

1. Modify /etc/ssh/sshd_config by changing the following lines:

Uncomment GSSAPIAuthentication no
UncommentGSSAPICleanupCredentials yes
Uncomment UseDNS No

2. Add your ansible-core node to the /etc/hosts file if no DNS is setup, and check
/etc/netsvc.conf.

3. Create a user for connection (we used ansible) or set up SSH keys if you want to use
passwordless access.

4. Verify your python3 installation.

Python installation considerations
Python is a primary prerequisite for your AIX Ansible client nodes. The method that you use to
install Python depends on the version of AIX that you use.

First, verify whether python3 is installed by using the dnf command, as shown in
Example 3-41.

Example 3-41 Verifying that python3 is installed

atilio-ansibleaix73:/>dnf list python3*
Last metadata expiration check: 1 day, 3:34:59 ago on September 10, 2023 at
10:17:18 AM -03.
Installed Packages
python3.ppc 3.9.16-0 @System
python3-dnf.noarch 4.2.17-64_6 @System
python3-gpg.ppc 1.13.1-64_3 @System
python3-hawkey.ppc 0.39.1-64_5 @System
python3-libcomps.ppc 0.1.15-64_1 @System
python3-libdnf.ppc 0.39.1-64_5 @System
python3-librepo.ppc 1.11.0-64_2 @System
python3-pip.noarch 22.2.2-1 @AIX_Toolbox_noarch
python3.9.ppc 3.9.16-0 @System

Starting with AIX 7.3, Python is a standard part of the AIX distribution. You can check whether
your specific AIX installation has Python that is installed by running the lslpp command that
is shown in Example 3-42 on page 151.

Important: From a security prospective, you should not use root for Ansible. As a best
practice, create a separate user for Ansible. If you must escalate your privileges, you can
use su with a password, sudo, or AIX native RBAC to achieve escalation. Sudo is available
as a package from the AIX Toolbox for Open Source Software.
150 Using Ansible for Automation in IBM Power Environments

Example 3-42 Checking the Python installation on AIX 7.3

lslpp -L python3.9.base
 File set Level State Type Description (Uninstaller)
 --
 python3.9.base 3.9.12.0 C F Python 3.9 64-bit binary
 distribution

On AIX versions earlier than 7.3, it is a best practice to use Python from the AIX Toolbox for
Open Source Software. We described the process of DNF installation in 3.3.2, “AIX as an
Ansible Controller” on page 134. Python is installed together with DNF.

Depending on how you installed Python, the main Python binary can be either
/opt/freeware/bin/python3 or /usr/bin/python3. For the sake of simplicity and
standardization, choose one standard path to access python3 across your whole
environment. If you use /usr/bin/python3, you do not need to make any other changes in
your Ansible playbooks, but you if you choose another location, then your future playbooks or
inventories must define the variable <ansible_python_interpreter> with the full path to
python3 for your clients.

Wherever you install Python, be sure that you update your PATH settings. It is also a best
practice that you create links to Python in /usr/bin/, as shown in Example 3-43.

Example 3-43 Creating a link to Python in /usr/bin/

atilio-ansibleaix73:/>ln -s /usr/bin/python3 /usr/bin/python
ln: /usr/bin/python exists. Specify -f to remove.
atilio-ansibleaix73:/>ls -lrt /usr/bin/python
lrwxrwxrwx 1 root system 16 Sep 11 09:05AM /usr/bin/python ->
/usr/bin/python3
atilio-ansibleaix73:/>ls -lrt /usr/bin/python3
lrwxrwxrwx 1 root system 30 Sep 01 09:06AM /usr/bin/python3 ->
/usr/opt/python3/bin/python3.9

3.4.3 IBM i as an Ansible managed client

This section explores the convergence of IBM i with the Ansible ecosystem as a managed
client. This integration empowers efficient system management and configuration by using
Ansible's automation capabilities. You learn how IBM i becomes part of the Ansible managed
environment, which enhances operational efficiency and configuration control.
Chapter 3. Getting started with Ansible 151

Enabling managed nodes on IBM i
The systems that can be managed by the Ansible Controller are known as IBM i endpoints or
managed nodes. To prepare each endpoint system for management, the following
requirements must be met:

1. Required License Program Products (LPPs):

a. IBM Portable Utilities for i (5733-SC1 option base)
b. OpenSSH, OpenSSL, and zlib functions (5733-SC1 option 1)
c. IBM HTTP Server for i (5770-DG1 option base)

2. To check the open-source packages and help ensure that Python 3.6+ is available, run the
following commands:

yum search python | grep 3
python --version

3. To automatically start SSH after an initial program load (IPL), run the following command:

system "chgtcpsvr svrspcval(*sshd) autostart(*yes)"

4. Make sure that the home directory exists for the user that is defined as the Ansible user.
To create a home directory on the IBM i LPAR to store the user's SSH-related objects, run
the following command:

mkdir -p /home/<user>/.ssh,

The <user> variable must be changed to your user ID.

5. Transfer the generated public key (id_rsa.pub) that is shown in Example 3-38 on
page 147 from the Ansible Controller on IBM i to the managed nodes or endpoints.
Example 3-44 illustrates the process.

Example 3-44 Transferring the public key from the control node to the managed node

ssh-copy-id qsecofr@192.168.1.100
/QOpenSys/pkgs/bin/ssh-copy-id: INFO: Source of keys to be installed:
"/HOME/QSECOFR/.ssh/id_rsa.pub"
The authenticity of host '192.168.1.100 (192.168.1.100)' can't be established.
ECDSA key fingerprint is SHA256:lno5PMGRhgupc23tpStiFRE4cPxVEmpZ/dmN1kfJ1RQ.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
/QOpenSys/pkgs/bin/ssh-copy-id: INFO: attempting to log in with the new keys to
filter out any that are already installed
/QOpenSys/pkgs/bin/ssh-copy-id: INFO: 1 key remains to be installed -- if you are
prompted now it is to install the new keys
qsecofr@192.168.1.100's password: “type the password”
sh: test: argument expected

Note: To determine whether these LPPs are already installed, you can use the following
SQL queries from a 5250 terminal:

STRSQL
select * from QSYS2.SOFTWARE_PRODUCT_INFO where product_id = '5733SC1';
select * from QSYS2.SOFTWARE_PRODUCT_INFO where product_id = '5770DG1';

If they are not installed, you can download them from Entitle Systems Support. For
download and installation instructions, see IBM Support.

Note: If these packages are not installed, install them by running the following command:

yum install python3 python3-itoolkit python3-ibm_db
152 Using Ansible for Automation in IBM Power Environments

http://www-304.ibm.com/servers/eserver/ess/index.wss
https://www.ibm.com/support/pages/node/6578651

Number of key(s) added: 1

Now, try logging in to the machine with: "ssh 'qsecofr@192.168.1.100'"
and check to make sure that only the keys you wanted were added.

6. Help ensure that the authorized SSH key is successfully transferred to the managed node.
To confirm, perform a passwordless login to the managed host, as shown in
Example 3-45.

Example 3-45 Passwordless login to the managed host

qsecofr@CONTROLLER:~# ssh qsecofr@192.168.1.100

GNU bash, version 4.4.23(1)-release (powerpc-ibm-os400)
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

This shell has been enhanced by .dotfiles version 1.3.0

qsecofr@MANAGED:~#

Using the IBM i Ansible collection
“Enabling managed nodes on IBM i” on page 152 provided information about how to enable
an IBM i server as a managed node or client in your Ansible management environment. This
section describes some extra steps to take and provides best practices to make the
management of your IBM i clients more effective.

Building an Ansible Inventory
Creating an accurate inventory is fundamental for Ansible's effective management of different
managed nodes or endpoints. To build a well-structured Ansible inventory, follow these
guidelines:

� Managed nodes: Ansible Controller interacts with various managed nodes or endpoints,
each serving a specific purpose in your infrastructure.

� Default inventory location: The default inventory file is named hosts, and its location is
typically /etc/ansible/hosts.

� Custom inventory path: You have the flexibility to specify an alternative inventory file path
by using the -i <path> option while running commands.

� Multiple inventory files: Ansible supports using multiple inventory files simultaneously,
which offers adaptability for complex environments.

� Creating an inventory file: To create your own inventory file, run the following command:

vi /etc/ansible/hosts
Chapter 3. Getting started with Ansible 153

Example 3-46 shows the content of an inventory file

Example 3-46 Inventory file for IBM i demonstration

[local]
localhost ansible_connection=local
[ibmi]
192.168.1.100 ansible_ssh_user=avalosm ansible_ssh_pass=abc123
[ibmi:vars]
ansible_python_interpreter="/QOpensys/pkgs/bin/python3"

� IBM i Collections inventory: The Ansible Galaxy IBM i collections offer a preexisting
inventory file at the following location:

~/.ansible/collections/ansible_collections/ibm/power_ibmi/playbooks/

� Check Inventory configuration: To verify your current inventory configuration, use the
following command:

ansible-inventory --list -y

Ansible ad hoc commands
Ansible ad hoc commands provide an approach to running essential operations on the IBM i
server. Operating from the Ansible Controller, these commands enable specific tasks to run
efficiently. Each command focuses on a single operation for quick task execution. If multiple
tasks are required, use a sequence of commands. For added flexibility, specify alternative
inventory file locations by using the -i [inventory] option.

The Ansible Controller or control node itself can be incorporated as a managed host within
the inventory file. This function enhances the efficiency of running routine tasks.

Note: This inventory can be edited to fit your needs. You can the hosts_ibmi_ini file in this
directory for this purpose.

Tip: Building a comprehensive inventory helps ensure that Ansible can effectively manage
the specified nodes and endpoints. This foundation is essential for orchestrating
automation and configuration tasks across your infrastructure.

Best practice: For demonstration and general understanding in this chapter, we used the
QSECOFR user profile. However, it is a best practice to NOT use the QSECOFR user
profile with SSH on IBM i. This best practice applies to both the Ansible Controller and the
managed nodes or endpoints. Create a user profile with comparable authority levels.

For this new user profile, create a HOME directory on the IBM i system. Also, configure
appropriate permissions for the user's profile HOME directory by running the chmod 755
command. Modify the ownership of the HOME directory to match the SSH user. Integrate the
HOME directory into the user profile.

In alignment with Ansible's prerequisites for generating and copying public keys, it is crucial
to establish a dedicated directory within the user's HOME directory that is named ssh.
Configure permissions for this SSH directory by using the chmod 700 command to help
ensure the appropriate level of security.
154 Using Ansible for Automation in IBM Power Environments

The following examples demonstrate the practical applications of Ansible ad hoc commands:

� To verify the readiness of all inventory hosts for management by the Ansible Controller, run
the command that is shown in Example 3-47.

Example 3-47 Verifying host availability with an Ansible ad hoc command

ansible all -m ping

� To vary an IBM i device, run the command that is shown in Example 3-48.

Example 3-48 Varying IBM i devices by using an Ansible ad hoc command

ansible ibmi -m ibm_power_ibmi.ibmi_device_vary -a 'device_list=OPT02,status=*ON
joblog=false'

Ad hoc commands and playbooks for IBM i
Ad hoc commands are useful for straightforward tasks, such as variably activating or
deactivating resources on IBM i, and testing the reachability of managed hosts. In this
process, the Ansible Controller dispatches a Python script to the managed nodes. The script
reports back the success or failure of the operation. Ad hoc commands trigger only one
module and its corresponding set of arguments at a time.

Playbooks are ideal for more intricate configurations or orchestration scenarios, often
involving a series of tasks that collectively run a larger action by using modules. In the context
of IBM i modules, common core modules such as find are supported. Playbooks are well
suited for various DevOps practices. Some typical scenarios where playbooks excel include
IBM i configuration management, orchestrating IBM i deployments, and managing tasks after
deployments take place.

Crafting effective YAML playbooks for IBM i
Using Ansible playbooks introduces a powerful approach to orchestrate a multitude of tasks
across multiple IBM i systems. These playbooks enable execution of various actions, such as
helping ensure consistent configurations, performing common tasks, running deployments,
and more. Expressed in YAML syntax, playbooks provide a structured framework for
orchestrating tasks, enhancing efficiency, and promoting system consistency.

Here are some functions of playbooks:

� Incorporate comments: To enhance readability and comprehension, you can integrate
comments that use “#” symbol that is integrated into your YAML playbook. These
comments provide contextual insights and explanations for the included tasks or
configurations.

� Playbook initialization: YAML playbooks commence with the declaration of three hyphens
(---) that initiate the definition of the playbook's structure and content, which creates a
clear demarcation for later actions.

� Specifying host inventory: The playbook designates the host inventory that is engaged in
the orchestrated tasks. This specification helps ensure that the defined tasks are
accurately targeted toward the intended systems.

� Gathering facts: For efficient playbook execution, disable unnecessary fact gathering from
managed nodes. In Ansible 2.8 and later, the directive “gather_facts: no” is employed to
curtail fact collection.

� Harnessing IBM i collections: IBM i playbooks benefit from dedicated collections that
encapsulate tailored modules and functions. By including the relevant collection (for
example, “ibm.power_ibmi”) in the playbook, administrators can seamlessly access
specific IBM i capabilities.
Chapter 3. Getting started with Ansible 155

� Defining tasks: The heart of the playbook lies within the “tasks” section, where the
orchestrated operations are defined. Each task encompasses the following items:

– A descriptive name (“name”) that describes the purpose of the task.
– The module that performs the action.
– Corresponding arguments that tailor the task's behavior.

� Multiplexing tasks: The playbook accommodates the definition of multiple tasks to enable
the execution of a series of actions in a coherent sequence. This versatility empowers
administrators to create comprehensive automation scenarios.

� Concluding the playbook: Conclude the playbook by using three dots (“...”), which signify
the end of the defined content. This conclusion is optional, but contributes to maintaining a
playbook.

Example 3-49 provides a comprehensive playbook sample for IBM i that showcases various
YAML syntax features.

Example 3-49 Sample playbook for IBM i

Sample Playbook for IBM i

hosts: ibmi
gather_facts: no
collections:
 - ibm.power_ibmi
tasks:
 - name: Display a system value
 ibmi_sysval:
 sysvalue:
 - {'name': 'qccsid'}
 register: dspsysval_ccsid_result

 - name: Display the returned parameters
 debug:
 msg: "{{ chksysval_qmaxsign_result }}"
...

Note: By following these guidelines and crafting YAML playbooks, administrators unlock
Ansible's full potential for IBM i. This approach optimizes automation efficacy, which helps
ensure consistency and reliability across IBM i systems. For more information about YAML
syntax, see the comprehensive YAML documentation at the YAML site.
156 Using Ansible for Automation in IBM Power Environments

http://www.yaml.org/

Idempotency and its significance on IBM i
Idempotency serves as a characteristic that amplifies the value of running Ansible playbooks
on IBM i environments. Understanding its implications can enhance the predictability and
stability of your operations:

� Reliable execution with consistent results: Idempotency is a remarkable attribute of
Ansible playbooks that enables them to run multiple times without altering or disrupting
existing configurations. This unique quality helps ensure that when a playbook is run
repeatedly, it consistently produces the same outcomes, which contribute to the reliability
and predictability of your automation processes.

� Intrinsic to modules: The concept of idempotence is intrinsic to Ansible modules, and
forms a fundamental pillar of their design philosophy. Ansible modules aim to achieve
consistent results regardless of how many times they are started, which reinforces the
reliability of your automation tasks.

� Idempotency on IBM i: Ansible modules on IBM i are inherently idempotent by default.
This foundational quality helps ensure that the operations that are performed by these
modules adhere to the principles of idempotency, which simplifies management and
minimizes the risk of unintended alterations.

Here is a practical example. Consider the IBM i module “cmd” that is sourced from the official
repository (ibmi_cl_command.rst), from which you call the following program:

CALL QZLSMAINT PARM('40' '1' '0x100'

In this case, the configuration flags are cumulative, where repeated executions can add 0x100
to the value. This situation can potentially disrupt the NetServer configuration. There is no
inherent safeguard to prevent administrators from unintentionally affecting the NetServer
configuration through repeated calls to QZLSMAINT.

Using the power_ibmi modules
When you work within the IBM i environment, You can use a comprehensive set of Ansible
modules to streamline administrative and deployment tasks. These modules serve as
fundamental building blocks to enable interaction with IBM i servers. With a diverse array of
modules that are available, each module is meticulously crafted to perform specific tasks,
which effectively cover a wide spectrum of administrative and deployment needs.

To harness the power of these modules, you must understand their parameters and data
types. Each module is accompanied by its own set of parameters, each tailored to cater to
distinct functions. These parameters dictate the behavior and configuration of the module
during execution. Whether you are creating, modifying, or managing resources on the IBM i,
mastering the usage of these resources and modules, referring to the official documentation
is crucial. This documentation, accessible at IBM i modules, provides in-depth insights into
each module's capabilities, parameter details, and usage examples. By exploring the
documentation, IBM i administrators and developers can unlock the full potential of Ansible's
power_ibmi modules, making way for smoother, more efficient administration and deployment
processes.

Note: You can help ensure consistent and dependable automation outcomes by grasping
the principle of idempotency and its implementation within Ansible modules on IBM i. This
awareness permits administrators to use automation confidently while safeguarding
against unintended consequences, which helps ensure the stability and integrity of your
systems.
Chapter 3. Getting started with Ansible 157

https://github.com/IBM/ansible-for-i/blob/devel/docs/source/modules/ibmi_cl_command.rst
https://ibm.github.io/ansible-for-i/modules.html

Running precise CLI commands by using the ibmi_cl_command
The ibmi_cl_command module plays a crucial role in the Ansible toolkit for IBM i servers by
providing administrators and operators with a direct method to run CLI commands. This
module's core function is centered on the cmd parameter, which serves as the conduit for
passing a specific CLI command for execution.

However, the ibmi_cl_command module has specific boundaries. Unlike a conventional 5250
emulator, this module does not facilitate interaction with menus or commands in the same
way. Instead, its primary purpose is to efficiently run CLI commands in a controlled and
automated manner.

A significant feature of this module is its adaptability regarding user context. The module can
be configured to run either as the user that establishes the SSH connection, usually an
administrator, or as a designated user that uses the “become_user” and
“become_user_password” parameters. This adaptability helps ensure that tasks run within the
correct user context, which accommodates various operational scenarios.

By mastering the ibmi_cl_command module, administrators and operators can harness a
powerful tool to manage and automate tasks within the IBM i environment. An exploration of
the module's practical applications and real-world instances can provide valuable insights into
effectively using its capabilities. Example 3-50 shows a sample of the module.

Example 3-50 Sample of the ibmi_cl_command module

- hosts: ibmi
 gather_facts: false
 collections:
 - ibm.power_ibmi
 tasks:
 - name: Display the user profile
 ibmi_cl_command:
 cmd: dspusrprf usrprf (AVALOSM)
 output: "*PRINT"
 register: dspusrprf_result

 - name: Print the user profile stdout lines
 debug:
 msg: "{{ dspusrprf_result.stdout_lines }}"

Discovering IBM i objects with precision by using object_find
The object_find module emerges as a valuable asset within the Ansible array of tools for
IBM i systems by offering an approach to discovering specific IBM i objects based on
user-defined criteria. This module operates as a versatile search mechanism that can find
objects by employing various criteria that can be combined by using logical “AND” operators.

A stand-out feature of the object_find module is its ability to conduct searches by using a
comprehensive range of parameters. These parameters permit attributes such as object age,
size, name, type, and library, among others. This versatility grants administrators and
operators the means to precisely pinpoint objects within the IBM i environment, which caters
to a multitude of scenarios and requirements.

Behind the scenes, the object_find module relies on the integration of the
IBM i QSYS2.OBJECT_STATISTICS and QSYS2.SYS_SCHEMAS views. This integration forms the
backbone of the module's efficiency so that it can swiftly retrieve pertinent information and
present it in a coherent and actionable manner.
158 Using Ansible for Automation in IBM Power Environments

By using the object_find module, administrators and operators can swiftly navigate and
extract valuable insights from their IBM i servers. The module's ability to run nuanced
searches enhances the management and automation of tasks, which provide a versatile
solution to address diverse operational needs.

Example 3-51 shows an example of the module that is described on this section.

Example 3-51 Sample of object_find module

- hosts: ibmi
 gather_facts: false
 collections:
 - ibm.power_ibmi
 tasks:
 - name: Find all journals and journal receivers in library AVALOSM
 ibm.power_ibmi.ibmi_object_find:
 object_name: '*ALL'
 object_type_list: '*JRN *JRNRCV'
 lib_name: 'AVALOSM'
 age: '1w'
 age_stamp: 'ctime'
 register: journals

 - name: Print the user profile stdout lines
 debug:
 msg: "{{ journals }}"

Extracting insights with SQL precision by using ibmi_sql_query
The ibmi_sql_query module stands as a potent tool within the Ansible toolkit that permits
administrators and operators to harness the power of SQL to retrieve valuable information
from Db2 for IBM i. Operating as a bridge to the extensive wealth of system information that is
held within Db2, this module streamlines the process of querying data, which makes it an
indispensable asset for effective system management.

One of the core strengths of the ibmi_sql_query module is its seamless execution of SQL
queries. By interfacing with Db2 for i, users can tap into a treasure trove of insights that are
housed within tables, views, and various SQL services. These insights span crucial aspects
of system functioning, offering a comprehensive view of system health, resource allocation,
and performance metrics.

Furthermore, the ibmi_sql_query module extends its functions with the expected_row_count
parameter. With this added feature, administrators can fine-tune their querying tasks that
enables them to define expectations for query results. If the result set does not meet the
defined expectations, the module can be configured to trigger a task failure, which provides
an automated quality assurance (QA) mechanism.

By integrating the capabilities of SQL querying into Ansible workflows, the ibmi_sql_query
module bolsters the toolkit for IBM i administrators and operators. This module's ability to
explore into the inner workings of Db2 for i enhances the precision of system monitoring,
diagnostics, and optimization. As a result, Ansible users can navigate the intricacies of their
IBM i environments with greater efficiency and depth of insight.
Chapter 3. Getting started with Ansible 159

Example 3-52 displays a sample that uses the SQL query module.

Example 3-52 Sample for SQL query

- hosts: ibmi
 gather_facts: false
 collections:
 - ibm.power_ibmi
 tasks:
 - name: check if the user exists
 ibm.power_ibmi.ibmi_sql_query:
 sql: "SELECT * FROM QSYS2.USER_INFO_BASIC WHERE AUTHORIZATION_NAME =
'AVALOSM'"
 register: user_query_result

 - name: display the result from the query
 debug:
 msg: "{{ user_query_result }}"

 - name: assert the user doesn't exist
 assert:
 that: (user_query_result.row | length) == 0

3.4.4 Virtual I/O Server as an Ansible managed client

Businesses are turning to PowerVM virtualization to consolidate multiple workloads onto
fewer systems to increase server usage and reduce cost. PowerVM provides a secure and
scalable virtualization environment for AIX, Linux, and IBM i applications that are built on the
advanced reliability, availability, and serviceability (RAS) features and the leading
performance of the IBM Power platform.

The Virtual I/O Server (VIOS) is part of the PowerVM hardware feature. The VIOS is software
that is in an LPAR that runs in your IBM Power server that provides virtualization functions for
the other LPARs that run in that server. The VIOS provides virtual SCSI target, virtual Fibre
Channel, Shared Ethernet Adapter, and PowerVM Active Memory Sharing capabilities to
client LPARs within the system. The VIOS also provides the Suspend/Resume feature to AIX,
IBM i, and Linux client LPARs within the system. You can use the VIOS to perform the
following functions:

� Sharing of physical resources between LPARs on the system

� Creating LPARs without requiring extra physical I/O resources

� Creating more LPARs than there are I/O slots or physical devices that are available, with
the ability for LPARs to use dedicated I/O, virtual I/O, or both

� Maximizing the usage of physical resources on the system

� Helping to reduce the storage area network (SAN) infrastructure

The VIOS is configured and managed through a CLI. All aspects of VIOS administration can
be accomplished through the CLI, including the following items:

� Device management (physical, virtual, and logical volume manager (LVM))
� Network configuration
� Software installation and update
� Security
� User management
� Maintenance tasks
160 Using Ansible for Automation in IBM Power Environments

Setting up your VIOS for Ansible client
The default user for connecting to a VIOS LPAR is padmin, which has access to the ioscli
shell. In our example, we chose to create a unique user for our Ansible management
environment, user ansible, as shown in Example 3-53.

Example 3-53 Creating the ansible user ID in the VIOS

Last unsuccessful login: Wed Nov 10 12:23:52 CST 2021 on ssh from s1tsmnim
Last login: Wed May 24 07:42:54 CDT 2023 on /dev/pts/1 from 192.168.184.201
The most recent software update has modified the current system rules.
These modifications have not been deployed on the system. To view the
modifications and deploy, run the 'rulescfgset' command.
$ oem_setup_env
mkuser roles=PAdmin,CacheAdm,FSAdmin,pkgadm \
 default_roles=PAdmin,CacheAdm,FSAdmin,pkgadm ansible>
id ansible
uid=205(ansible) gid=1(staff)
pwdadm -c ansible

Starting with VIOS 4.1.0.10, Python is included in the VIOS image. If you use VIOS earlier
versions, you must set up Python.

Example 3-54 shows that a simple Ansible command is unsuccessful because Python is not
natively installed on the VIOS before Version 4.1.0.10.

Example 3-54 Ansible command failure due to Ansible not being set up

[root@ansible-AAP-redbook playbooks]# cat facts.yml

- hosts: all
 remote_user: ansible

 tasks:
 - name: print facts
 debug:
 var: ansible_facts
[root@ansible-AAP-redbook playbooks]# ansible-playbook -i vios_inventory.yml
facts.yml --ask-pass
SSH password:

PLAY [all] ***

TASK [Gathering Facts] ***
fatal: [vio]: FAILED! => {"ansible_facts": {}, "changed": false, "failed_modules":
{"ansible.legacy.setup": {"failed": true, "module_stderr": "Shared connection to
bergessiovios1 closed.\r\n", "module_stdout": "/bin/sh: /usr/bin/python: not
found.\r\n", "msg": "MODULE FAILURE\nSee stdout/stderr for the exact error", "rc":
127}}, "msg": "The following modules failed to run: ansible.legacy.setup\n"}

PLAY RECAP ***
vio : ok=0 changed=0 unreachable=0 failed=1
skipped=0 rescued=0 ignored=0

[root@ansible-AAP-redbook playbooks]
Chapter 3. Getting started with Ansible 161

You can use either of the following approaches:

� Install dnf from the AIX Toolbox.
� Install dnf by using the power of Ansible to run the installation

In this example, we opted to use option 2, so we created the playbook dnf-vios.yml to do the
installation, as shown in Example 3-55.

Example 3-55 Setting up su for ansible user, and vios-dnf.yml

$ oem_setup_env
passwd root
Changing the password for "root"
root's New password:
Enter the new password again:
pwdadm -c root
chuser su=true root

cat -n dnf-vios.yml

- hosts: all
 remote_user: ansible
 gather_facts: no
 become: true
 become_method: su

 tasks:
 - name: download dnf_aixtoolbox.sh
 get_url:
 url:https:
//public.dhe.ibm.con/aix/freeSoftware/aixtoolbox/ezinstall/ppc/dnf_aixtoolbox.sh
 dest: /tmp/dnf_aixtoolbox.sh
 mode: 0755
 delegate_to: localhost
 - name: copy dnf_aixtoolbox.sh to vios
 raw: "scp -p /tmp/dnf_aixtoolbox.sh {{ ansible_user }}@{{ inventory_hostname
}}:/tmp/dnf_aixtoolbox.sh
 delegate_to: localhost
 - name: execute dnf_aixtoolbox.sh on vios
 raw: "chmod 755 /tmp/dnf_aixtoolbox.sh ; /tmp/dnf_aixtoolbox.sh -y"

ansible-playbook -K -i viol, dnf-vios.yml
BECOME password:

PLAY [all]
**

TASK [download dnf_aixtoolbox.sh]

ok: [viol — localhost]

TASK [copy dnf_aixtoolbox.sh to vios]

162 Using Ansible for Automation in IBM Power Environments

changed: [viol — localhost]

TASK [update virtual RPM packages]
**

changed: [vio1]

TASK [execute dnf_aixtoolbox.sh on
vios]***

changed: [vio1]

PLAY RECAP
**

vio1 :oks4 changed=3 unreachable=@ failed=0 skipped=0 rescued=0
ignored=0

Now, we have dnf installed in our VIOS.

If you plan to have an HA environment, then there will be multiple VIOS in your environment
because it is a best practice at least two VIOSs per-server frame, which acts as an
active/active failover solution. If you have more requirements for the separation of
environments for security, there might be more VIOSs on your server, and there almost
certainly will be multiple servers in your environment.

You need to be sure that you can access all the VIOS LPARs. You can manually create the
user on each VIOS, or use Ansible to create the users. In this example, we use Ansible to
create a shell script for this purpose, as shown in Example 3-56.

Example 3-56 Script to create users on VIOSs

#!/usr/bin/expect -f

if { $argc != 3 } {
send_error "Usage : $argv@ ssh-connection ssh-password user-password\n"
exit 1

}

log_user 1

set timeout 60

set sshconn [lindex $argv 0]
set sshpw [lindex $argv 1]
set newpw [Llindex $argv 2]

spawn ssh $sshconn
expect "password: "
send "$sshpw\r"

expect "§ "
Chapter 3. Getting started with Ansible 163

send "oem_setup_env\r"

expect "# "

send "mkuser roles=PAdmin,CacheAdm,FSAdmin,pkgadm,SysBoot,isso
default_roles=PAdmin,CacheAdm,FSAdmin,pkgadm,SysBoot,isso ansible\r"
expect "# "

send "chuser su=true root\r"

expect "# "

send "echo 'ansible:$newpw' | chpasswd -c\r"
expect "# "

send "echo 'root:$newpw' | chpasswd -c\r"
expect "# "

send "exit\r"
send "exit\r"

Example 3-56 on page 163 is used as part of our playbook to run user creation on every
VIOS.

We have the script, so now we build an inventory to run that playbook, as shown in
Example 3-57.

Example 3-57 Inventory build for the Ansible user creation playbook

#cat viosinventory
[vios]
vios1
vios2
vios3
vios4
[all:vars]
ansible_connnection=ssh
ansible_user=padmin
ansible_password=padminpassword

The playbook that we used to create the ansible user on each VIOS is shown in
Example 3-58.

Example 3-58 Playbook create-vios-user.yml

#cat create-vios-user.yml

- name: create remote user

 raw: "{{ download_dir }}/user.e {{ ansible_user }}@{{ inventory_hostname }} {{
ansible_password }} {{ new_password }}"

delegate_to: localhost

- name: copy ssh public key
 raw: "SSHPASS={{ new_password }} sshpass -e ssh-copy-id ansible@{{

inventory_hostname }}"
164 Using Ansible for Automation in IBM Power Environments

 delegate_to: localhost

#ansible-playbook -i vios-inventory create-vios-user.yml

Now that we have our users and inventory, we can install Python on all the partitions by using
with a similar script than the one we used for creating the users. This script is shown in
Example 3-59.

Example 3-59 Installing the python3 and pip3 script

#!/usr/bin/expect -f

if { $argc != 3 } {
send_error "Usage : $argv@ ssh-connection ssh-password user-password\n"
exit 1

}

log_user 1

set timeout 60

set sshconn [lindex $argv 0]
set sshpw [lindex $argv 1]

spawn ssh $sshconn
expect "password: "
send "$sshpw\r"

expect "§ "

send "oem_setup_env\r"

expect "# "

send "dnf install python3 pip3 -y \r"
expect "# "

Now, that our VIOS clients are ready for use, we walk through a set of use cases for the VIOS
collection:

� VIOS upgrade
� VIOS backup
� VIOS mapping
� VIOS hardening
Chapter 3. Getting started with Ansible 165

Validate that the collection is installed and ready. Example 3-60 validates the versions of the
collections that are installed.

Example 3-60 Validating the ibm.power collections

root@ansible-AAP-redbook ~]# ansible-galaxy collection list
[WARNING]: Collection at '/root/.ansible/collections/ansible_collections/ibm/aix'
does not have a
MANIFEST.json file, nor has it galaxy.yml: cannot detect version.

/root/.ansible/collections/ansible_collections
Collection Version
----------------- -------
community.general 6.6.0
ibm.aix *
ibm.power_aix 1.6.4
ibm.power_hmc 1.8.0
ibm.power_vios 1.2.3
[root@ansible-AAP-redbook ~]#

VIOS upgrade
With our collections installed and ready, we start using them to write some powerful Ansible
scripts for our servers. Example 3-61 shows a playbook that is used to update the VIOS
software.

Example 3-61 The vios-update.yml playbook

#cat vios-update.yml

- hosts: all
 remote_user: ansible
 gather_facts: no
 collections:
 - ibm.power_aix
 - ibm.power_vios

 roles:

 - name: Bootstrap VIOS
 role: bootstrap_vios
 become: true
 become_method: su

 - name: Update VIOS (1st part)
 role: update_vios
 when: "'v1' in inventory_hostname"

 - name: Update VIOS (2nd part)
 role: update_vios
 when: "'v2' in inventory_hostname"

The roles are the most important part of this playbook. Example 3-62 on page 167 shows
details about the update_vios role.
166 Using Ansible for Automation in IBM Power Environments

Example 3-62 Displaying the role update_vios

#cat roles/update_vios/tasks/main.yml
 - name: commit all uncommitted updates
 ibm.power_vios.updateios:
 action: commit
 - name: mount remote repository with updates
 ibm.power_aix.mount:
 state: mount
 node: "{{ repo_node }}"
 mount_dir: "{{ repo_dir }}"
 mount_over_dir: "{{ local_dir }}"
 - name: update VIOS
 ibm.power_vios.updateios:
 action: update
 device: "{{ local_dir }}"
 accept_licenses: yes

However, the vios-update playbook that is shown in Example 3-61 on page 166 is not
complete because it should address two more issues:

� Commit can fail with RC = 19 or 20, which means “Already committed”.
� After the update, restart your VIOS.

You can manually run the updateios playbook on the CLI and ignore some return codes, as
shown in Example 3-63.

Example 3-63 Code to commit and ignore return codes 19 and 20

- name: commit all uncommitted updates
 shell:
 cmd: fusr/ios/cli/ioscli updateios -commit
 register: result
 failed_when: (result.rc not in [0, 19, 20])

Backing up VIOS
Now, look at some playbooks to back up your VIOS. These playbooks run viosbr, which is an
mksysb for VIOSs. This Ansible playbook that is shown in Example 3-64 runs viosbr and
directs the output to an NFS share location.

Example 3-64 Playbook to run viosbr

#cat viosbr-playbook.yml

- name: backup vios
 hosts: all
 gather_facts: false
 remote_user: ansible
 vars:
 ansible_python_interpreter: /opt/freeware/bin/python3

 tasks:
 - name: get current date
 ansible.builtin.shell: "date +%Y%m%d"
 register: ourdate
 delegate_to: localhost
Chapter 3. Getting started with Ansible 167

 - name: create viosbr backup
 ibm.power_vios.vioshr:
 action: backup
 file: "/home/ansible/vioshr.{{ ourdate.stdout }}"

 - name: mount NFS share for backups
 ibm.power_aix.mount:
 state: mount
 node: nim
 mount_dir: /backup
 mount_over_dir: /mnt

 - name: create mksysb of VIO
 ibm.power_vios.backupios:
 file: "/mnt/{{ inventory_hostname }}_mksysb.{{ ourdate.stdout }}"
 mksysb: true

 - name: unmount NFS share
 ibm.power_aix.mount:
 state: umount
 mount_over_dir: /mnt

VIOS mapping
You can use an Ansible playbook to discover facts about your VIOSs. Example 3-65 shows a
script that you can use for discovery.

Example 3-65 The vios-facts.yml script

#cat vios-facts.yml

 - name: get VIO mapping
 hosts: all
 remote_user: ansible
 gather_facts: false
 vars:
 ansible_python_interpreter: /opt/freeware/bin/python3

 tasks:
 - name: get mapping facts
 ibm.power_vios.mapping_facts:
 - name: print facts
 ansible.builtin.debug:
 var: ansible_facts

VIOS hardening
Example 3-66 is a script that sets the security level for the VIOS.

Example 3-66 The vios-security.yml script

#cat vios-security.yml

 - name: apply secure configuration
 ibm.power_vios.viosecure:
 level: low
168 Using Ansible for Automation in IBM Power Environments

3.4.5 Red Hat OpenShift as an Ansible managed client

Red Hat OpenShift on IBM Power can run in many different environments. For example, you
can use a bare metal installation on your Power server or you can use LPARs, which have are
prebuilt by using PowerVM. These two scenarios are mostly manual and they do not gain
much advantage from the usage of Ansible (although you might have used Ansible to build
the LPARs).

Ansible is more help if you are deploying your Red Hat OpenShift cluster on Power Systems
Virtual Server, on PowerVM that is managed by PowerVC, or on Power servers that are
managed by KVM. These scenarios are described in this section.

The environment is shown in Figure 3-22.

Figure 3-22 Red Hat OpenShift deploy with Ansible scenarios

Installing Red Hat OpenShift on Power Systems Virtual Server by using
Ansible
Power Systems Virtual Server features a CLI for managing and creating your servers, In this
section, we show you scripts that use Terraform and Ansible to deploy a Red Hat OpenShift
cluster on Power Systems Virtual Server by using ocp4-upi-powervs for the deployment
process.

You must have an IBM Cloud account to deploy Power Systems Virtual Server resources. To
help ensure that your Power Systems Virtual Server instance can deploy Red Hat OpenShift
clusters, make sure that your account has the proper permissions and validate that you have
created the appropriate security certificates.
Chapter 3. Getting started with Ansible 169

Detailed prerequisites
This section helps ensure that your IBM Cloud account is set up and that you can create the
Power Systems Virtual Server instance for your Red Hat OpenShift cluster. To set up your
environment, complete the following steps:

1. Validate that you have an IBM Cloud account to create your Power Systems Virtual Server
Instance (VSI). If you do not have an account, create an account at IBM Cloud.

2. Create an IBM Cloud account API key. For more information about setting up your API key,
see IBM Power Virtual Server Guide for IBM AIX and Linux, SG24-8512 or
the IBM Cloud documentation.

3. After you have an active IBM Cloud account, you can create a Power Systems Virtual
Server service. For more information, see IBM Power Virtual Server Guide for IBM AIX
and Linux, SG24-8512.

4. Next, request an Red Hat OpenShift Pull secret, which you can download from Red Hat
IDP. Place the file into the installation directory, and name it pull-secret.txt 3. You need
an RHEL subscription ID and password.

Getting ready for installation
The installation uses a simple script-based installer that deploys an Red Hat OpenShift
cluster on Power Systems Virtual Server. The script can run in multiple platforms, including
Linux (x86_64/ppc64le), Windows, and Mac OSX.

The Power Systems Virtual Server instance requires special network permissions to ensure
that inbound access is allowed for TCP ports for ssh (22) and allow outbound access for http
(80), https (443), and OC CLI (6443). These network permissions are required only when
using a cloud instance or a remote VM so that you can connect to it by using SSH and run the
installer.

To prepare for the installation, complete the following steps:

1. Create an install directory where all the configurations, logs, and data files are stored:

[root@ansible-AAP-redbook ~]# mkdir ocp-install-dir && cd ocp-install-dir

2. Download the script on your system and change the permission to run, as shown in
Example 3-67.

Example 3-67 Changing the script to enable the run time

[root@ansible-AAP-redbook ocp-install-dir]# curl -sL
https://raw.githubusercontent.com/ocp-power-automation/openshift-install-power/mai
n/openshift-install-powervs -o ./openshift-install-powervs
[root@ansible-AAP-redbook ocp-install-dir]# ls -lrt
total 64
-rw-r--r--. 1 root root 62001 Sep 29 15:24 openshift-install-powervs
[root@ansible-AAP-redbook ocp-install-dir]# chmod +x ./openshift-install-powervs
[root@ansible-AAP-redbook ocp-install-dir]#

Running the script without parameters displays the help information for the script, as
shown in Example 3-68.

Example 3-68 Help information for the script

[root@ansible-AAP-redbook ocp-install-dir]# ./openshift-install-powervs

Automation for deploying Red Hat OpenShift 4.X on Power Systems Virtual Server

Usage:
170 Using Ansible for Automation in IBM Power Environments

https://cloud.ibm.com
https://cloud.redhat.com/openshift/install/power/user-provisioned
https://cloud.redhat.com/openshift/install/power/user-provisioned
https://cloud.ibm.com/docs/account?topic=account-userapikey&interface=ui

 openshift-install-powervs [command] [<args> [<value>]]

Available commands:
 setup Install all the required packages/binary files in the current

directory
 variables Interactive way to populate the variables file
 create Create an Red Hat OpenShift cluster
 destroy Destroy an Red Hat OpenShift cluster
 output Display the cluster information. Runs terraform output [NAME]
 access-info Display the access information of installed Red Hat OpenShift
cluster
 help Display this information

Where <args>:
 -var Terraform variable to be passed to the create/destroy command
 -var-file Terraform variable file name in current directory. (By
default using var.tfvars)
 -flavor Cluster compute template to use for example: small, medium,

large
 -force-destroy Not ask for confirmation during destroy command
 -ignore-os-checks Ignore operating system-related checks
 -ignore-warnings Warning messages will not be displayed. Should be specified

first before any other args.
 -verbose Enable verbose for terraform console messages
 -all-images List all the images available during the variables prompt
 -trace Enable tracing of all ran commands
 -version, -v Display the script version

Environment Variables:
 IBMCLOUD_API_KEY IBM Cloud API key
 RELEASE_VER Red Hat OpenShift release version (Default: 4.13)
 ARTIFACTS_VERSION Tag or Branch name of ocp4-upi-powervs repository (Default:
main)
 RHEL_SUBS_PASSWORD RHEL subscription password if not provided in variables
 NO_OF_RETRY Number of retries/attempts to run repeatable actions such as
create (Default: 5)

Submit issues at:
https://github.com/ocp-power-automation/openshift-install-power/issues

[root@ansible-AAP-redbook ocp-install-dir]#

3. Set up your environment by exporting the IBM Cloud API Key and RHEL Subscription
Password, as shown in Example 3-69.

Example 3-69 Setting environment variables

$ set +o history
$ export IBMCLOUD_API_KEY='<your API key>'
$ export RHEL_SUBS_PASSWORD='<your RHEL subscription password>'
$ set -o history

4. Run the create command:

$./openshift-install-powervs create
Chapter 3. Getting started with Ansible 171

The script sets up the required tools and runs in interactive mode, which prompts for
inputs.

5. When the command in step 4 on page 171 completes, it prints the cluster access
information. Log in to bastion:

'ssh -i automation/data/id_rsa root@XXX.XXX.XXX.XXX'

To access the cluster on a local system when using 'oc', run the following command:

'export KUBECONFIG=/root/ocp-install-dir/automation/kubeconfig'

6. Access the Red Hat OpenShift web-console by navigating to the following URL:

https://console-openshift-console.apps.test-ocp6f2c.ibm.com

7. Log in to the console by running the following command:

user: "kubeadmin", and password: "MHvmI-z5nY8-CBFKF-hmCDJ"

8. To access your new cluster without defining a DNS for your Red Hat OpenShift Cluster,
add these lines to your local system 'hosts' file:

XXX.XXX.XXX.XXX.,api.test-ocp6f2c.ibm.com
console-openshift-console.apps.test-ocp6f2c.ibm.com
integrated-oauth-server-openshift-authentication.apps.test-ocp6f2c.ibm.com
oauth-openshift.apps.test-ocp6f2c.ibm.com
prometheus-k8s-openshift-monitoring.apps.test-ocp6f2c.ibm.com
grafana-openshift-monitoring.apps.test-ocp6f2c.ibm.com
bolsilludo.apps.test-ocp6f2c.ibm.com

Advanced usage
Before running the script, you can choose to override some environment variables, depending
on your requirements. By default, Red Hat OpenShift 4.12 is installed. If you want to install
4.11, then export the following variables:

$ export RELEASE_VER="4.11"
ARTIFACTS_VERSION: Tag/Branch (eg: release-4.11, v4.11, main) of ocp4-upi-powervs
repository. The default is "main".
$ export ARTIFACTS_VERSION="release-4.11"

Non-interactive mode
You can avoid interactive mode by placing the required input files into the installation
directory. The required input files are the following ones:

� SSH key files (file names id_rsa and id_rsa.pub)
� Terraform vars file (file name var.tfvars).

An example is shown in Example 3-70.

Example 3-70 Example var.tfvars file

```
ibmcloud_region = "syd"
ibmcloud_zone = "syd04"
service_instance_id = "123456abc-xzz-2223434343"
rhel_image_name = "rhel-83-12062022"
rhcos_image_name = "rhcos-412-02012023"
network_name = "ocpnet"
openshift_install_tarball = 
"https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/stable-4.12/ope
nshift-install-linux.tar.gz"
172 Using Ansible for Automation in IBM Power Environments



openshift_client_tarball = 
"https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/stable-4.12/ope
nshift-client-linux.tar.gz"
cluster_id_prepatch = "test-ocp"
cluster_domain = "xip.io"
storage_type = "nfs"
volume_size = "300"
bastion = {memory = "16", processors = "1", "count" = 1}
bootstrap = {memory = "32", processors = "0.5", "count" = 1}
master = {memory = "32", processors = "0.5", "count" = 3}
worker = {memory = "32", processors = "0.5", "count" = 2}
rhel_subscription_username = "mysubscription@email.com"
rhel_subscription_password = "mysubscriptionPassword"
```

You can also pass a custom Terraform variables file by using the option -var-file
<filename> to the script. You can also use the option -var "key=value"` to pass a single
variable. If the same variable is used more than once, then precedence is from left (low) to
right (high).

For a flowchart about how the script and process work, see Figure 3-23.

Figure 3-23 An openshift-install-powervs script interactions flowchart
Chapter 3. Getting started with Ansible 173

Deploying an Red Hat OpenShift Cluster by using PowerVC
This section provides a methodology for installing a Red Hat OpenShift cluster on your Power
infrastructure that is managed by IBM PowerVC. The process is similar to the one that is used
to install Red Hat OpenShift on Power Systems Virtual Server, as described in “Installing Red
Hat OpenShift on Power Systems Virtual Server by using Ansible” on page 169 and also uses
Terraform. Terraform 1.2.0 and later is required.

Installing Terraform and providers for a Power environment
Before you install your Red Hat OpenShift cluster using this process, first install Terraform for
your Power environment by completing the following steps:

1. Download and install the latest Terraform binary file for Linux/ppc64le from GitHub.
2. Download the required Terraform providers for Power into your TF project directory, as

shown in Example 3-71.

Example 3-71 Downloading and installing Terraform

$ cd <path_to_TF_project>
$ mkdir -p ./providers
$ curl -fsSL
https://github.com/ocppower-automation/terraform-providers-power/releases/download
/v0.11/archive.zip -o archive.zip
$ unzip -o ./archive.zip -d ./providers
$ rm -f ./archive.zip
Initialize Terraform at your TF project directory:
$ terraform init --plug-in-dir ./providers

The Ansible code for this process is provided by the ocp4-upi-powervm project, which
provides Terraform based automation code to help the deployment of Red Hat OpenShift
Container Platform 4.x on PowerVM systems that are managed by PowerVC. This project
uses the same Ansible playbook internally for Red Hat OpenShift Container Platform
deployment on PowerVM LPARs that are managed through PowerVC.

If you are not using PowerVC but instead are using stand-alone PowerVM LPAR
management, then this guide describes the process of using the Ansible playbook to set up a
helper node (bastion) to simplify the Red Hat OpenShift Container Platform deployment.

PowerVC prerequisites
As part of the installation process, create a Red Hat CoreOS image and an RHEL 8.2 (or
later) image in PowerVC. The RHEL 8.x image is installed on the bastion node and the Red
Hat CoreOS image is installed on the boostrap, master, and worker nodes.

� For Red Hat CoreOS image creation, complete the steps that are documented in this
document.

� For RHEL image creation, complete the steps that are in this document. You may either
create a new image from ISO or use a similar method to the one that is used for the Red
Hat CoreOS option.

Compute templates
Create compute templates for the bastion, bootstrap, master, and worker nodes. Here are
best practice LPAR configurations:

Bootstrap Two vCPUs, 16 GB of RAM, and 120 GB of disk.

Master Two vCPUs, 32 GB of RAM, and 120 GB of disk.

Worker Two vCPUs, 32 GB of RAM, and 120 GB of disk.
174 Using Ansible for Automation in IBM Power Environments

https://github.com/ppc64le-development/terraform-ppc64le/releases
https://ocp-power-automation.github.io/ocp4-upi-powervm/
https://github.com/redhat-cop/ocp4-helpernode/blob/devel/docs/quickstart-powervm.md
https://github.com/redhat-cop/ocp4-helpernode/blob/devel/docs/quickstart-powervm.md
https://github.com/redhat-cop/ocp4-helpernode/blob/devel/docs/quickstart-powervm.md
https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/rhcos-image-creation/
https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/rhcos-image-creation/
https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/rhcos-image-creation/

Bastion Two vCPUs, 16 GB of RAM, and 200 GB of disk.

Increase the worker and bastion node settings based on application
requirements.

PowerVM LPARs by default use SMT8, so with two vCPUs, the number of logical
CPUs as seen by the OS is 16 (two vCPUs x eight SMT).

Downloading the automation code
Use git to clone the deployment code when working off the master branch by using these
commands:

$ git clone https://github.com/ocppower-automation/ocp4-upi-powervm.git
$ cd ocp4_upi_powervm

You can find instructions in the following file (if you are in the code directory):

ocp4-upi-powervm

Setting the Terraform variables
Update the var.tfvars file based on your environment. A description of the variables is
available at this link. You can use environment variables for sensitive data that should not be
saved to disk, as shown in Example 3-72.

Example 3-72 Example of setting environment variables

$ set +o history
$ export POWERVC_USERNAME=xxxxxxxxxxxxxxx
$ export POWERVC_PASSWORD=xxxxxxxxxxxxxxx
$ export RHEL_SUBS_USERNAME=xxxxxxxxxxxxxxx
$ export RHEL_SUBS_PASSWORD=xxxxxxxxxxxxxxx
$ set -o history

Starting an installation
Run the following commands from within the directory:

$ terraform init
$ terraform apply -var-file var.tfvars

If you use environment variables for sensitive data, run the following commands instead:

$ terraform init
$ terraform apply -var-file var.tfvars -var user_name="$POWERVC_USERNAME" -var
password="$POWERVC_PASSWORD" -var rhel_subscription_username="$RHEL_SUBS_USERNAME"
-var rhel_subscription_password="$RHEL_SUBS_PASSWORD"

Wait for the installation to complete. It can take around 40 minutes to complete provisioning.

If the installation is successful, the cluster details are printed as shown in Example 3-73.

Example 3-73 Output from the Terraform installation

bastion_private_ip = 192.168.25.171
bastion_public_ip = 16.20.34.5
bastion_ssh_command = ssh -i data/id_rsa root@16.20.34.5
bootstrap_ip = 192.168.25.182
cluster_authentication_details = Cluster authentication details are available in
16.20.34.5 under ~/openstack-upi/auth
cluster_id = test-cluster-9a4f
etc_hosts_entries =
Chapter 3. Getting started with Ansible 175

https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/var.tfvars-doc/

16.20.34.5 api.test-cluster-9a4f.mydomain.com
console-openshift-console.apps.test-cluster-9a4f.mydomain.com
integrated-oauth-server-openshift-authentication.apps.test-cluster-9a4f.mydomain.c
om oauth-openshift.apps.test-cluster-9a4f.mydomain.com
prometheus-k8s-openshift-monitoring.apps.test-cluster-9a4f.mydomain.com
grafana-openshift-monitoring.apps.test-cluster-9a4f.mydomain.com
bolsilludo.apps.test-cluster-9a4f.mydomain.com

install_status = COMPLETED
master_ips = [
 "192.168.25.147",
 "192.168.25.176",
]
oc_server_url = https://test-cluster-9a4f.mydomain.com:6443
storageclass_name = nfs-storage-provisioner
web_console_url =
https://console-openshift-console.apps.test-cluster-9a4f.mydomain.com
worker_ips = [
 "192.168.25.220",
 "192.168.25.134",
]

If you are using a wildcard domain name like nip.io or xip.io, then etc_host_entries is
empty, as shown in Example 3-74.

Example 3-74 Output when using a wildcard domain name

bastion_private_ip = 192.168.25.171
bastion_public_ip = 16.20.34.5
bastion_ssh_command = ssh -i data/id_rsa root@16.20.34.5
bootstrap_ip = 192.168.25.182
cluster_authentication_details = Cluster authentication details are available in
16.20.34.5 under ~/openstack-upi/auth
cluster_id = test-cluster-9a4f
etc_hosts_entries =
install_status = COMPLETED
master_ips = [
 "192.168.25.147",
 "192.168.25.176",
]
oc_server_url = https://test-cluster-9a4f.16.20.34.5.nip.io:6443
storageclass_name = nfs-storage-provisioner
web_console_url =
https://console-openshift-console.apps.test-cluster-9a4f.16.20.34.5.nip.io
worker_ips = [
 "192.168.25.220",
 "192.168.25.134",
]

This information can be retrieved anytime by running the following command from the root
folder of the code:

$ terraform output

If there was any errors, rerun apply. For more information about potential issues and
workarounds, see known issues.
176 Using Ansible for Automation in IBM Power Environments

https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/quickstart/known_issues.md

Postinstallation
After the deployment completes successfully, you can safely delete the bootstrap node. This
step is optional but a best practice to free used resources. To delete the bootstrap node,
change the count value to 0 in the <bootstrap map> variable and re-run the apply command.

Creating an API and Ingress DNS records
If your cluster_domain is one of the online wildcard DNS domains (nip.io, xip.io, or sslip.io),
skip this section. For all other domains, you can use one of the following options:

� Add entries to your DNS server by using the following general format:

api.<cluster_id>. IN A <bastion_public_ip>
*.apps.<cluster_id>. IN A <bastion_public_ip>

You need the bastion_public_ip and cluster_id, which were printed at the end of your
successful installation, or you can retrieve those values anytime by running terraform
output from the installation directory.

� Add entries to your client system hosts file.

The general format is shown in Example 3-75. The entries for your installation are printed at
the end of your successful installation. Alternatively, you can retrieve the entries anytime by
running terraform output from the installation directory. Append these values to the host file.

Example 3-75 Entries for the hosts file

<bastion_public_ip> api.<cluster_id>
<bastion_public_ip> console-openshift-console.apps.<cluster_id>
<bastion_public_ip>
integrated-oauth-server-openshift-authentication.apps.<cluster_id>
<bastion_public_ip> oauth-openshift.apps.<cluster_id>
<bastion_public_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_id>
<bastion_public_ip> grafana-openshift-monitoring.apps.<cluster_id>
<bastion_public_ip> <app name>.apps.<cluster_id>

Cluster access
After your cluster is running, you can log in to the cluster by using the Red Hat OpenShift
login credentials in the bastion host. The location is printed at the end of a successful
installation. You can retrieve the credentials anytime by running terraform output from the
install directory. An example is shown in Example 3-76.

Example 3-76 Login credentials for the Red Hat OpenShift cluster

bastion_public_ip = 16.20.34.5
bastion_ssh_command = ssh -i data/id_rsa root@16.20.34.5
cluster_authentication_details = Cluster authentication details are available in
16.20.34.5 under ~/openstack-upi/auth

There are two files under ~/openstack-upi/auth:

� kubeconfig: Can be used for CLI access
� kubeadmin-password: The password for the kubeadmin user, which can be used for CLI

and UI access

Tip: For Linux and Mac OS, the hosts file is /etc/hosts; for Windows, it is
c:\Windows\System32\Drivers\etc\hosts.
Chapter 3. Getting started with Ansible 177

You can copy the access details to your local system or a secure password vault by running
the following command:

$ scp -r -i data/id_rsa root@158.175.161.118:~/openstack-upi/auth/*

Cleaning up
If you are finished with your cluster and want to destroy it, run the following command:

terraform destroy -var-file var.tfvars

This command helps ensure that all resources are cleaned up. Do not manually clean up your
environment unless both of the following items are true:

� You know what you are doing.
� Something went wrong with an automated deletion.

Deploying an Red Hat OpenShift cluster on a Power based KVM
environment
The ocp4-upi-kvm project provides Terraform based automation code to help the deployment
of Red Hat OpenShift Container Platform 4.x on KVM VMs by using libvirt. This project
uses the Ansible playbook (ocp4-helpernode) to set up a helper node (bastion) for Red Hat
OpenShift Container Platform deployment. The Ansible script creates a helper node for
running the installation. For more information about the helper node, see GitHub.

Automation host prerequisites
The automation must run from a system with internet access, which can be your laptop or a
VM with public internet connectivity. This automation code has been tested on the following
64-bit OSs:

� Linux (preferred)
� Mac OSX (Darwin)

The automation host installation is documented at GitHub ocp-power. The installation covers
a Terraform installation and creating installation images for Red Hat CoreOS and RHEL.

LibVirt prerequisites
KVM virtualization relies on libvirt to work, so as a prerequisite for installing Red Hat
OpenShift on KVM, complete the steps at this GitHub repository.

Downloading the automation code
Use the following git command to clone the deployment code when working off the master
branch:

git clone https://github.com/ocppower-automation/ocp4-upi-kvm.git
cd ocp4_upi_kvm

All further instructions assume that you are in the code directory ocp4-upi-kvm.

Setting the Terraform variables
Update the var.tfvars file based on your environment. A description of the variables is
available at How to use var.tfvars. You can use environment variables for sensitive data that
should not be saved to disk, as shown in Example 3-77 on page 179.

Note: Help ensure that you securely store the Red Hat OpenShift cluster access
credentials. If you want, you can delete the access details from the bastion node after
securely storing them elsewhere.
178 Using Ansible for Automation in IBM Power Environments

https://ocp-power-automation.github.io/ocp4-upi-kvm/docs/automation_host_prereqs/
ocp4-upi-kvm project
https://github.com/redhat-cop/ocp4-helpernode
https://github.com/redhat-cop/ocp-helpernode
https://ocppower-automation.github.io/ocp4-upi-kvm/docs/libvirt-host-setup/
https://ocp-power-automation.github.io/ocp4-upi-powervm/docs/var.tfvars-doc/

Example 3-77 Setting the environment variables for sensitive data

$ export RHEL_SUBS_USERNAME=xxxxxxxxxxxxxxx
$ export RHEL_SUBS_PASSWORD=xxxxxxxxxxxxxxx
$ set -o history
$ set +o history

Starting the installation
Run the following commands from within the directory.

$ terraform init
$ terraform apply -var-file var.tfvars

If you use environment variables for sensitive data, then run the following commands instead:

$ terraform init
$ terraform apply -var-file var.tfvars -var
rhel_subscription_username="$RHEL_SUBS_USERNAME" -var
rhel_subscription_password="$RHEL_SUBS_PASSWORD"

Wait for the installation to complete. It can take around 40 minutes to complete provisioning.

If the installation is successful, the cluster details are printed, as shown in Example 3-78.

Example 3-78 Cluster details

bastion_ip = 192.168.61.2
bastion_ssh_command = ssh root@192.168.61.2
bootstrap_ip = 192.168.61.3
cluster_id = test-cluster-9a4f
etc_hosts_entries =
192.168.61.2 api.test-cluster-9a4f.mydomain.com
console-openshift-console.apps.test-cluster-9a4f.mydomain.com
integrated-oauth-server-openshift-authentication.apps.test-cluster-9a4f.mydomain.c
om oauth-openshift.apps.test-cluster-9a4f.mydomain.com
prometheus-k8s-openshift-monitoring.apps.test-cluster-9a4f.mydomain.com
grafana-openshift-monitoring.apps.test-cluster-9a4f.mydomain.com
bolsilludo.apps.test-cluster-9a4f.mydomain.com

install_status = COMPLETED
master_ips = [
 "192.168.61.4",
 "192.168.61.5",
 "192.168.61.6",
]
oc_server_url = https://api.test-cluster-9a4f.mydomain.com:6443/
storageclass_name = nfs-storage-provisioner
web_console_url =
https://console-openshift-console.apps.test-cluster-9a4f.mydomain.com
worker_ips = []

These details can be retrieved anytime by running the following command from the root folder
of the code:

$ terraform output
Chapter 3. Getting started with Ansible 179

Postinstallation
After installation, complete the following tasks:

� Delete the bootstrap node. This step is optional but a best practice to free the resources
that were used. The process is described in “Cleaning up” on page 178.

� Configure the DNS, as described in “Creating an API and Ingress DNS records” on
page 177.

3.4.6 IBM Power Hardware Management Console as an Ansible managed
client

HMCs can be Ansible clients, either by using the HMC Collection that connects to the HMC by
using the HTTPS API, or by running the ansible.builtin.shell extension by using cmd/ssh.
This section describes some of the setup considerations for setting up your HMC as an
Ansible client.

Defining a user for Ansible
It is not a best practice to use hscroot to run your Ansible scripts. This section provides a
quick guide to creating a user for your Ansible script and provides the correct roles and
access capabilities.

To set up your user and roles, complete the following steps:

1. Log in to your HMC with a user that has admin rights and click Users and Security.

2. Select Users and Roles.

3. Click Manage User Profiles and Access, as shown in Figure 3-24.

Figure 3-24 Creating a user role in the HMC
180 Using Ansible for Automation in IBM Power Environments

4. Complete the required fields.

5. Select Managed Resource Roles.
6. Select Task Roles. You can choose to create roles based on your specific requirements.

7. Click User Properties to enable remote access, as shown in Figure 3-25.

Figure 3-25 Enabling remote access for a user
Chapter 3. Getting started with Ansible 181

8. Depending on your security requirements, you might need to modify the access privileges
that define what resources (frames and LPARs) can be managed by your Ansible user.
This information is defined in the user roles, and for each role you can define access to a
reduced set of frames, and on those frames, a reduced set of machines. To illustrate this
task, in Figure 3-26 we created a role that is allowed to manage only a reduced set of
frames and LPARs.

Figure 3-26 Creating a reduced role

9. If you define a role after creating the user, you can modify the user and select the new role,
as shown in Figure 3-27.

Figure 3-27 Selecting a role for a user
182 Using Ansible for Automation in IBM Power Environments

You set up a user with a set of permissions to run your Ansible scripts through SSH or through
the hmc ibm power collection.

Installing the collection
To install the collection on your Ansible Controller, complete the installation instructions at this
GitHub repository.

Along with the installation guide, here are some hints and tips that we collected during our
testing:

1. Before you run the installation, make sure that you set up python3.9 as the default for
python and pip3, as shown in Example 3-79.

Example 3-79 The Python installation directory

[root@ansible-AAP-redbook ~]# alternatives --list | grep -i python
python auto /usr/libexec/no-python
python3 manual /usr/bin/python3.9
root@ansible-AAP-redbook ~]# ls -lrt /usr/bin/python3
lrwxrwxrwx. 1 root root 25 Nov 3 2021 /usr/bin/python3 ->
/etc/alternatives/python3
[root@ansible-AAP-redbook ~]# ls -lrt /usr/bin/pip3
lrwxrwxrwx. 1 root root 22 Nov 3 2021 /usr/bin/pip3 -> /etc/alternatives/pip3
[root@ansible-AAP-redbook ~]#

2. Run ansible-galaxy.

If you are behind a proxy, you might need to run the ansible command with the
--ignore-certs option. The collection installation progress is output to the console. Note
the location of the installation so that you can review other content that is included with the
collection, such as the sample playbook. The collection installation process is shown in
Example 3-80.

Example 3-80 Installing a collection on the Ansible Controller node

[root@ansible-AAP-redbook ~]# ansible-galaxy collection install ibm.power_hmc
--ignore-certs
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Downloading https://galaxy.ansible.com/download/ibm-power_hmc-1.8.0.tar.gz to
/root/.ansible/tmp/ansible-local-8811f__xjfbx/tmpgzq9rzjl/ibm-power_hmc-1.8.0-hi_q
msj1
Installing 'ibm.power_hmc:1.8.0' to
'/root/.ansible/collections/ansible_collections/ibm/power_hmc'
ibm.power_hmc:1.8.0 was installed successfully
[root@ansible-AAP-redbook ~]#

If you want to install on a special directory, run install -p to specify the installation
directory:

[root@ansible-AAP-redbook ~]# ansible-galaxy collection install ibm.power_hmc
--ignore-certs -p /home/ansible/collections
Chapter 3. Getting started with Ansible 183

https://ibm.github.io/ansible-power-hmc/installation.html

If the installation completes successfully, you can check the installation directory. (Instead
of /root, the path includes the user directory that is tied to the user that you used to run
install).

[root@ansible-AAP-redbook ~]# pwd
/root/.ansible/collections/ansible_collections/ibm/power_hmc/

Example 3-81 shows the content of the installation directory in our example installation.

Example 3-81 Structure of the installation directory

[root@ansible-AAP-redbook power_hmc]# ls -lrt
total 88
-rw-r--r--. 1 root root 947 Aug 22 15:14 MANIFEST.json
-rw-r--r--. 1 root root 35149 Aug 22 15:14 LICENSE
-rw-r--r--. 1 root root 16874 Aug 22 15:14 FILES.json
-rw-r--r--. 1 root root 2824 Aug 22 15:14 CONTRIBUTING.md
drwxr-xr-x. 5 root root 77 Aug 22 15:14 plug-ins
-rw-r--r--. 1 root root 263 Aug 22 15:14 MAINTAINERS.md
drwxr-xr-x. 2 root root 30 Aug 22 15:14 collections
-rw-r--r--. 1 root root 3227 Aug 22 15:14 CODE_OF_CONDUCT.md
drwxr-xr-x. 4 root root 32 Aug 22 15:14 tests
drwxr-xr-x. 4 root root 53 Aug 22 15:14 docs
-rw-r--r--. 1 root root 5 Aug 22 15:14 requirements.txt
drwxr-xr-x. 2 root root 25 Aug 22 15:14 meta
-rw-r--r--. 1 root root 1352 Aug 22 15:14 README.md
drwxr-xr-x. 3 root root 59 Aug 22 15:44 context
-rw-r--r--. 1 root root 144 Aug 22 16:51 execution-environment.yml
drwxr-xr-x. 2 root root 4096 Sep 15 11:55 playbooks
[root@ansible-AAP-redbook power_hmc]#

Connecting to the HMC
The collection connects to the HMC by using the HMC API, but you can also use the Ansible
native SSH connection to run HMC commands.

Example 3-82 shows an example of using the Ansible built-in shell to run CLI commands on
the HMC.

Example 3-82 Using the Ansible built-in shell to manage HMCs

[root@ansible-AAP-redbook playbooks]# cat inventory
[hmcs]
hmc3
hmc4
hmc5

[hmcs:vars]
ansible_user=ansible
hmc_password=xxxxxx

[root@ansible-AAP-redbook playbooks]# cat hmc_lpar_limited.yml

- name: HMC List partition
 hosts: hmc3
 collections:
 - ibm.power_hmc
 connection: local
184 Using Ansible for Automation in IBM Power Environments

 vars:
 curr_hmc_auth:
 username: "{{ ansible_user }}"
 password: "{{ hmc_password }}"

 tasks:
 - name: Get information about the Frames Installed on the HMC
 ansible.builtin.shell:
 cmd: "sshpass -p {{ hmc_password }} ssh {{ ansible_user }}@{{
inventory_hostname }} lssyscfg -r sys"
 register: config

 - name: Filter Output to get just the Frame Name
 set_fact:
 filtered_output: "{{ config.stdout | regex_findall('^name=(.*?),', '\\1')
| join(',') }}"

 - name: Show Filtered Output
 debug:
 var: filtered_output

 - name: Save Filtered Output to a File for Later use
 ansible.builtin.copy:
 content: "{{ filtered_output }}"
 dest: "/var/ansible/output/newout_{{ inventory_hostname }}.txt"

 - name: List all the LPARs in the selected Frames
 ansible.builtin.shell:
 cmd: " sshpass -p {{ hmc_password }} ssh {{ ansible_user }}@{{
inventory_hostname }} lssyscfg -r lpar -m {{ item }}"
 with_items: "{{ filtered_output.split(',') }}"
 register: lpar_info

 - name: Save the Output, LPAR List for each Frame
 ansible.builtin.copy:
 content: "{{ lpar_info }}"
 dest: "/var/ansible/output/Lparout.txt"

 - name: Show LPAR Information
 debug:
 var: item.stdout_lines
 with_items: "{{ lpar_info.results }}"

[root@ansible-AAP-redbook playbooks]#

In our example playbook execution, the inventory has three HMCs, but we created only the
user with special permits in one of them (hmc3). When we ran the playbook, the others failed
because the user does not exist. The output from the execution is shown in Example 3-83.

Example 3-83 Playbook execution

[root@ansible-AAP-redbook playbooks]# ansible-playbook -i inventory
hmc_lpar_limited.yml

PLAY [HMC List partition] **
Chapter 3. Getting started with Ansible 185

TASK [Gathering Facts] ***
ok: [hmc3]
ok: [hmc5]
ok: [hmc4]

TASK [Get Information about the Frames Installed on the HMC] *******************
changed: [hmc3]
fatal: [hmc5]: FAILED! => {"changed": true, "cmd": "sshpass -p XXXXXX ssh
ansible@hmc5 lssyscfg -r sys", "delta": "0:00:01.867500", "end": "2023-09-18
15:42:07.700107", "msg": "non-zero return code", "rc": 5, "start": "2023-09-18
15:42:05.832607", "stderr": "", "stderr_lines": [], "stdout": "", "stdout_lines":
[]}
fatal: [hmc4]: FAILED! => {"changed": true, "cmd": "sshpass -p XXXXXX ssh
ansible@hmc4 lssyscfg -r sys", "delta": "0:00:01.843471", "end": "2023-09-18
15:42:07.787177", "msg": "non-zero return code", "rc": 5, "start": "2023-09-18
15:42:05.943706", "stderr": "", "stderr_lines": [], "stdout": "", "stdout_lines":
[]}

TASK [Filter Output to get just the Frame Name] *******************************
ok: [hmc3]

TASK [Show filtered Output] ***
ok: [hmc3] => {
 "filtered_output": "S924_ANTEL_XXXX,S924_DGI_XXXX,ps700Blade4XXXX"
}

TASK [Save Filtered Output to a File for Later use] ****************************
ok: [hmc3]

TASK [List all the LPARs in the selected Frames] *******************************
changed: [hmc3] => (item=S924_ANTEL_XXXX)
changed: [hmc3] => (item=S924_DGI_784F0C0)
changed: [hmc3] => (item=ps700Blade4XXXX)

TASK [Save the Output, LPAR List for each Frame] *******************************
changed: [hmc3]

TASK [List with each LPAR Detailed Information] *******************************
ok: [hmc3] => {
 "lpar_info.stdout": "VARIABLE IS NOT DEFINED!"
}

TASK [Mostrar información de LPARs] **
ok: [hmc3] => (item={'changed': True, 'stdout':
'name=ansibleRH8_1,lpar_id=27,lpar_env=aixlinux,state=Running,resource_config=1,os
_version=Unknown,logical_serial_num=XXXXX,default_profile=default_profile,curr_pro
file=default_profile,work_group_id=none,shared_proc_pool_util_auth=0,allow_perf_co
llection=0,power_ctrl_lpar_ids=none,boot_mode=norm,lpar_keylock=norm,auto_start=0,
redundant_err_path_reporting=0,rmc_state=inactive,rmc_ipaddr=,time_ref=0,lpar_avai
l_priority=127,desired_lpar_proc_compat_mode=default,curr_lpar_proc_compat_mode=PO
WER9_base,simplified_remote_restart_capable=0,sync_curr_profile=1,affinity_group_i
d=none,vtpm_enabled=0,migr_storage_vios_data_status=Data
Collected,migr_storage_vios_data_timestamp=Wed Sep 06 08:20:38 UTC
2023,powervm_mgmt_capable=0,pend_secure_boot=0,curr_secure_boot=0,keystore_kbytes=
0,virtual_serial_num=none\nname=ansibleRH8_2,lpar_id=28,lpar_env=aixlinux,state=Ru
186 Using Ansible for Automation in IBM Power Environments

nning,resource_config=1,os_version=Unknown,logical_serial_num=XXXXX,default_profil
e=default_profile,curr_profile=default_profile,work_group_id=none,sha
...
...
...
start=0,redundant_err_path_reporting=0,rmc_state=active,rmc_ipaddr=XXXXXX,lpar_ava
il_priority=191,desired_lpar_proc_compat_mode=default,curr_lpar_proc_compat_mode=P
OWER7,sync_curr_profile=0,affinity_group_id=none,migr_storage_vios_data_status=una
vailable,migr_storage_vios_data_timestamp=unavailable"
]
}
PLAY RECAP ***
hmc3 : ok=9 changed=3 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
hmc4 : ok=1 changed=0 unreachable=0 failed=1
skipped=0 rescued=0 ignored=0
hmc5 : ok=1 changed=0 unreachable=0 failed=1
skipped=0 rescued=0 ignored=0

[root@ansible-AAP-redbook playbooks]#

This playbook is an example of using the SSH connection to run CLI commands. There are
many other options that use the HMC collection that provide an extended set of features.

Using the dynamic inventory plug-in
The dynamic inventory plug-in, powervm_inventory, helps to collect the inventory of all
available VMs in the public or private cloud infrastructure that is managed by the HMC. This
approach saves the administrator from maintaining a multitude of static inventory listings. This
dynamic plug-in facilitates the consolidation of the partitions into various groups, and it can be
further fine-tuned according to its property. You can now dynamically group and manage
these partitions according to data center policy.

An example use case can be to apply specific patches only to a targeted version of AIX
partition by using the respective group that is created by this dynamic inventory management
plug-in. The playbook that is shown in Example 3-84 is an example of dynamically creating a
group definition from the LPARs being managed. The playbook dynamically creates a group
of all the running AIX partitions AIX 7.2,. This group can be used as an inventory input to
perform patching or for OS upgrades.

Example 3-84 Dynamic inventory example

plug-in: ibm.power_hmc.powervm_inventory
hmc_hosts:
 - hmc: <hmc_host_name_or_IP>
 user: <hmc_username>
 password: <hmc_password>
filters:
 PartitionState: 'running'
groups:
 AIX_72: "'7.2' in OperatingSystemVersion"
Chapter 3. Getting started with Ansible 187

Patch management of HMC
The patch management module, hmc_update_upgrade, is designed to support all the update
and upgrade requirements of HMC. The module supports centralized patch management.
The upgrade files, service packs, and security fixes can be stored in SFTP, FTP, or NFS
servers, or the HMC images can be kept on the Ansible control node and be configured as the
image source for patch management. Example 3-85 shows a playbook for patching or
upgrading the HMC.

Example 3-85 Patching or upgrading the HMC

- name: Upgrade the HMC from 910 to 950
 hosts: hmcs
 collections:
 - ibm.power_hmc
 connection: local
 vars:
 curr_hmc_auth:
 username: <hmc_username>
 password: <hmc_password>

tasks:
 - name: Update the 910 HMC with 9.1.910.6 PTF
 hmc_update_upgrade:
 hmc_host: '{{ inventory_hostname }}'
 hmc_auth: '{{ curr_hmc_auth }}'
 build_config:
 location_type: ftp
 hostname: <FTP_Server_IP>
 userid: <FTP_Server_uname>
 passwd: <FTP_Server_pwd>
 build_file:
HMC9.1.910.6/2010170040/x86_64/MH01857-9.1.910.6-2010170040-x86_64.iso
 state: updated

 - name: Upgrade the 910 HMC with 950 image
 hmc_update_upgrade:
 hmc_host: '{{ inventory_hostname }}'
 hmc_auth: '{{ curr_hmc_auth }}'
 build_config:

location_type: nfs
 hostname: <NFS_Hostname/IP>
 mount_location: <upgrade_img_mount_loc>
 build_file: /HMC9.2.950.0/2010230054/x86_64/network_install
 state: upgraded

In this snippet of a playbook, there are two tasks that are defined by using the
hmc_update_upgrade module:

� The first task uses a Program Temporary Patch (PTF) image that is stored in an FTP
server to upgrade the HMC running the 9.1.910 level.

� The second task upgrades the HMC to the 9.2.950 level by using an image that is stored in
an NFS server.

To update an HMC, the task state should be defined as updated, and to upgrade an HMC, the
task state should be defined as upgraded. Both states support NFS, FTP, SFTP, and disk
(keeping the image in controller node) HMC image repositories.
188 Using Ansible for Automation in IBM Power Environments

Additional examples can be found on this blog. More examples and samples are included in
the collection and can be found in this GitHub repository.
Chapter 3. Getting started with Ansible 189

https://ibm.github.io/ansible-power-hmc/index.html
https://community.ibm.com/community/user/power/blogs/navinakumar-kandakur/2022/07/27/ansible-collection-for-power-hmc

190 Using Ansible for Automation in IBM Power Environments

Chapter 4. Automated application
deployment on IBM Power
servers

One of the areas that can benefit the most from automation with Ansible is the area of
application deployment. This notion is true for the applications that your application
development team are building specifically for your business operations and for implementing
common application environments like Oracle and SAP.

For application development, automation can help you build a modern continuous integration
and continuous development (CI/CD) pipeline that provides a management structure around
your development cycle and helps you be more agile by integrating application changes
quickly and safely.

For application and database environments like Oracle and SAP, there are often multiple
instances of those environments that must be deployed and maintained, often doing repetitive
tasks like building virtual machines (VMs) and applying updates to your existing
environments. Automation that uses Ansible can help your IT specialists perform those
repetitive functions in an efficient, managed, and repeatable way so that you can do other
tasks that provide better value to your business.

The following topics are described in this chapter:

� Deploying and managing applications by using Ansible on Power servers
� Automated application deployment on Power servers
� Deploying a simple Node.js application
� Orchestrating multitier application deployments
� Continuous integration and continuous deployment pipelines with Ansible
� Oracle DB automation on Power
� SAP automation

4

© Copyright IBM Corp. 2024. 191

4.1 Deploying and managing applications by using Ansible on
Power servers

Ansible can be used to automate many of the facets of your application environment, both on
IBM Power and on other platforms. Ansible can help you automate your application
development environments so that you can create pipelines that help manage the
development of code, the testing of the code, and the integration of the new code into your
application environment in a safe and efficient way.

Ansible can also automate the installation and management of many middleware and
application products, such as Oracle Database, SAP NetWeaver and SAP HANA workloads,
IBM Db2 databases, and Red Hat OpenShift deployments.

4.2 Automated application deployment on Power servers

The IBM Power platform is rapidly evolving, with major advances made across IBM AIX,
IBM i, and Linux on Power. Hybrid multicloud demands consistency and agility from all these
platforms. Today's IT administrators, developers, and quality assurance (QA) professionals
want to streamline anything they can to save time and increase reliability.

4.2.1 Ansible content for IBM Power

IBM Power is a family of enterprise servers that helps transform your organization by
delivering industry-leading resilience, scalability, and accelerated performance for the most
sensitive, mission-critical workloads and next-generation artificial intelligence (AI) and edge
solutions. The Power platform also uses open-source technologies that you use to run these
workloads in a hybrid cloud environment with consistent tools, processes, and skills.

4.2.2 IBM AIX, IBM i, and Linux on Power collections for Ansible

The IBM Power AIX collection provides modules that can be used to manage configurations
and deployments of Power AIX systems. Similar functions are provided by the Power IBM i
collection and the Linux on Power collection. The content in these collections helps to
manage applications and workloads running on IBM Power platforms as part of an enterprise
automation strategy within the Ansible ecosystem. These collections are available from
Ansible Galaxy with community support or through Red Hat Ansible Automation Platform with
full support from Red Hat and IBM.

To show the power and utility of using Ansible to manage your applications in an IBM Power
environment, we provide three use cases:

� Section 4.3, “Deploying a simple Node.js application” on page 193 shows how you can
automate application deployment in an AIX environment.

� Section 4.4, “Orchestrating multitier application deployments” on page 194 points you to a
tutorial on orchestrating a two-tier application with an application tier and a database tier.

� Section 4.5, “Continuous integration and continuous deployment pipelines with Ansible” on
page 194 shows how to you can use Ansible to automate a CI/CD environment for an
application in an IBM i environment.
192 Using Ansible for Automation in IBM Power Environments

4.3 Deploying a simple Node.js application

This section shows how to install a sample Node.js application on AIX and then start that
application on the host that uses Ansible. The Ansible playbook to accomplish this task is
shown in Example 4-1.

Example 4-1 Installing the Node.js application and starting the application

- hosts: all
 gather_facts: false
 collections:
 - ibm.power_ibmi

 vars:
 checkout_dir: 'tmp_nodejs'

 tasks:
 - name: Install Node js
 command: /QOpensys/pkgs/bin/yum install nodejs10 -y
 ignore_errors: true

 - name: verify git has been installed
 stat:
 path: /QOpensys/pkgs/bin/git
 register: git_stat

 - name: Install git if it is not there
 command: /QOpensys/pkgs/bin/yum install git -y
 when: not git_stat.stat.exists

 - name: upgrade yum in case EC_POINT_copy error
 command: /QOpensys/pkgs/bin/yum upgrade -y

 - name: create symlink for git command to use git module
 command: ln -fs /QOpensys/pkgs/bin/git /usr/bin/git
 ignore_errors: true

 - name: set http.sslVerify for git
 command: 'git config --global http.sslVerify false'
 ignore_errors: true

 - name: clone repo
 git:
 repo: 'https://github.com/IBM/ibmi-oss-examples.git'
 dest: '{{ checkout_dir }}'

 - name: npm i
 shell: "(/QOpensys/pkgs/lib/nodejs10/bin/npm i --scripts-prepend-node-path)"
 args:
 warn: false
 chdir: '{{ checkout_dir }}/nodejs/mynodeapp'
 executable: /usr/bin/sh

 - name: Start the demo application
Chapter 4. Automated application deployment on IBM Power servers 193

 shell: "(nohup /QOpensys/pkgs/lib/nodejs10/bin/node index.js >/dev/null 2>&1
&)"
 args:
 warn: false
 chdir: '{{ checkout_dir }}/nodejs/mynodeapp'
 executable: /usr/bin/sh
 async: 10

The playbook validates the required infrastructure components (git and yum) to retrieve the
application and install it. Then, the playbook retrieves the application from the Git repository
and has Ansible start the application on the server.

4.4 Orchestrating multitier application deployments

In the era of microservices, containers, Kubernetes, and DevOps, deployment of complex
multitier systems in the public cloud is achieved with CI/CD pipelines. However, things
become complicated when attempting to deliver applications onto private cloud or
on-premises systems, where CI/CD is not owned by development or does not exist.

4.4.1 Orchestration in the world of Kubernetes

Deploying complex application systems is not a new problem. Over the past few decades, the
need for automated configuration and management (orchestration) of software has been
identified many times. In the operating systems (OSs) space, configuration management
tools like Chef, Puppet, Salt, and Ansible orchestrate the configuration of OS-native
applications.

From an application orchestration standpoint, many prominent players have emerged in the
Kubernetes space, such as Helm, Operator Framework, Kustomize, Automation, Broker, and
the Ansible Kubernetes module.

IBM developed a step by step tutorial that shows the deployment and orchestration of a
sample WordPress application along with its dependent MySQL database that uses Ansible.

4.5 Continuous integration and continuous deployment
pipelines with Ansible

Ansible can help you automate the CI/CD cycle for your application. The continuous
integration (CI) part of the CI/CD involves automatic version control for your application code.
As changes are made in your code, Ansible can automatically save those changes in a
repository so that you know what changes were made and when. To enable the continuous
deployment (CD) component, you must also have automation in your CI components that
provides testing and validation of new versions of your code. You initially apply the new code
in a test or QA environment before you move the code to production. Ansible can help with all
of those processes.
194 Using Ansible for Automation in IBM Power Environments

https://developer.ibm.com/tutorials/orchestrate-multi-tier-application-deployments-on-kubernetes-using-ansible-pt-3/

4.5.1 CI/CD when using Ansible for IBM i

CI/CD stands as a pivotal pillar within the software development landscape. Ansible, an
automation tool, harmonizes with these practices, aligning software development with a
unified approach. CI revolves around frequent code integration, while CD automates
deployment, helping ensure swift and reliable delivery. Ansible effectively supports these
practices, orchestrating tasks and interactions through various stages.

For IBM i users, Ansible emerges as a versatile solution for crafting CI/CD pipelines. It
interfaces with version control systems (VCSs) such as GitHub, facilitating tasks ranging from
code validation to final deployment. Ansible utility spans beyond continuous testing, merging
into the broader domain of development processes. This adaptability benefits both native
applications and open-source software deployment on the IBM i platform.

The foundation of a CI/CD pipeline through Ansible takes shape as a series of interconnected
stages. Starting with the development environment, Ansible playbooks automate tasks such
as provisioning IBM i VMs, code retrieval, build and deployment, and branching for new
development cycles. This initial phase lays the groundwork for efficient development
practices.

In the second stage, developers play a hands-on role in code modifications and unit testing. In
this phase, developers make code changes, conduct unit tests on the development IBM i
system, commit code alterations to specific branches, and create pull requests. This phase
demonstrates the collaborative essence of the development process.

As the CI/CD pipeline progresses, Ansible again takes center stage during the testing phase.
Ansible playbooks orchestrate the setup of new IBM i VMs for testing, the installation of
dependencies, cloning development branches, and the execution of comprehensive tests.
Furthermore, Ansible helps with pull request approval and automated merge processes,
helping ensure code integration. On test completion, Ansible manages environment cleanup
for ongoing efficiency.

The final phase, deployment, encapsulates the core objective of delivering refined software to
production environments. Ansible playbooks manage cloning the latest code from master
branches to build systems, direct the build process, facilitate deployment to production
systems, and maintain environment hygiene through cleanup procedures. This phase marks
the realization of the CI/CD pipeline, where developed and tested code becomes accessible
to users.
Chapter 4. Automated application deployment on IBM Power servers 195

Figure 4-1 shows a diagram describing the four stages for CI/CD by using Ansible.

Figure 4-1 Integrated CI/CD Pipeline that is orchestrated by Ansible

To see some sample code showing how to automate your CI/CD processes with Ansible, see
“Full cycle of the CI/CD process on IBM i with Ansible” on page 362.

4.6 Oracle DB automation on Power

There are three collections that are available for managing your Oracle Database with Ansible
on AIX.

The single-node collection supports both Journaled File System (JFS) based installation and
Automatic Storage Management (ASM)-based installation. The Oracle Real Application
Cluster (RAC) collection supports a multi-layered installation process. Such layers include
infrastructure provisioning with PowerVC, grid setup configuration and installation, and setup
and installation of the database binary files.

If you are not using PowerVC to help you manage your environment, you can still use the
collection to install and set up the grid and database installation. To do so, you must manually
set up the nodes per Oracle RAC requirements.

The Oracle database administrator (DBA) collection provides a set of tools to enable DBAs to
automate a wide range of their administrative activities, such as patching the database
servers, creating database instances, managing users, jobs, and table spaces, and other
operations.

Note: The role of Ansible within the CI/CD pipeline streamlines IBM i application
development. Its automation capabilities extend across development environment creation,
manual developer tasks, testing orchestration, and deployment management. By aligning
with contemporary CI/CD practices, Ansible contributes to advancing IBM i software
development with heightened speed, dependability, and agility.
196 Using Ansible for Automation in IBM Power Environments

For more information about the usage of each of these collections, see the following sections:

� 4.6.2, “Automating the deployment of a single-node Oracle database with Ansible” on
page 197.

� 4.6.3, “Automating the deployment of Oracle RAC with Ansible” on page 201.

� 4.6.4, “Automating Oracle DBA operations” on page 214

4.6.1 Why businesses opt for AIX to host their databases

Section 1.4.8, “Key benefits of IBM Power compared to x86 servers” on page 29 describes
why IBM Power is prominent in hosting applications and middleware in general. IBM Power
offers better economics, and is highly flexible so that clients can build out a platform on which
they can consolidate any number of applications and environments, including databases.

Working together to provide services for their common clients, IBM and Oracle established an
alliance that shows a shared commitment to the success of those clients. As a result of this
alliance, IBM and Oracle have over 80,000 joint clients that are provided with enhanced
hardware and software support. This solution is enabled through an in-depth certification of
Oracle database on AIX as a collective effort. The alliance provides a services practice, with a
diamond partnership, as a result of extensive technology collaboration and cooperative client
support.

For more information about IBM Power and AIX platform hosting an Oracle database, see
Oracle on IBM Power Systems, SG24-8485.

4.6.2 Automating the deployment of a single-node Oracle database with
Ansible

You can use Ansible to automate the deployment of a single-node Oracle database instance.
It can be a JFS-based installation or an ASM-based installation. The hosting AIX logical
partition (LPAR) and database storage volumes may be created beforehand as setup for this
installation or can be deployed by Ansible, as described in Chapter 5, “Infrastructure as Code
by using Ansible” on page 239.

Figure 4-2 shows a high-level overview of Oracle DB single-node deployment.

Figure 4-2 Single-node Oracle DB deployment topology1
Chapter 4. Automated application deployment on IBM Power servers 197

The Ansible power_aix_oracle galaxy collection contains artifacts (roles, vars, configuration
files, and playbooks) that are usable for the single-node Oracle database installation. Those
artifacts have several prerequisites that must be met before using the collection.

Single-node Oracle database installation prerequisites
The following prerequisites must be met before you run an Ansible playbook to automate the
installation of a single-node Oracle database server:

1. A new LPAR running AIX 7.2 or 7.3.

a. The LPAR may be created by using Ansible Infrastructure as Code (IaC) methodology
that is described in Chapter 5, “Infrastructure as Code by using Ansible” on page 239.

b. The rootvg disk should be at least 30 GB, out of which the /tmp file system should be
8 GB because it will be used for the Ansible remote location. Also, the paging space
device must be adjusted to use rootvg.

c. Two disks of the following sizes:

i. 40 GB for a file system-based installation or 75 GB for an ASM-based installation.

This disk is intended to host the database binary files for a file system-based
installation types or the grid binary files for an ASM-based installation.

ii. At least 20 GB for the creation of a test Oracle database instance postinstallation.

d. The disks in step c should be clean from any old header data.

To check the header information, use the following command:

lquerypv -h /dev/hdiskX

If you must clear the disk’s PVID, use the following command:

chdev -l hdiskX -a pv=clear

To clear the header data, use the following command:

dd if=/dev/zero of=/dev/hdiskX bs=1024k count=100

2. At the time of writing, Oracle database 19c is supported on AIX. All power_aix_oracle
collection artifacts assume this version for the installation process. This version can be
downloaded from Oracle edelivery website or Oracle Technology Network (OTN).

3. The power_aix_oracle collection uses the power_aix collection for some of the
configuration requirements, so it must be installed on the Ansible server.

Installing the power_aix_oracle collection
Use the command that is in Example 4-2 on page 199 to download and install the collection.

1 Source: https://github.com/IBM/ansible-power-aix-oracle/blob/main/docs/README_ORA_SI_Play.pdf

Note: If the LPAR has not been bootstrapped for Ansible before, it is a best practice to do
so now. To bootstrap an LPAR for Ansible, complete the following steps:

1. Help ensure that the ibm.power_aix collection is installed.

2. Copy demo_bootstrap.yml from the playbooks directory of the collection to your
workstation.

3. Run that playbook against your LPAR to bootstrap it by running the following command:

ansible-playbook demo_bootstrap.yml -l mylpar.
198 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ansible-power-aix-oracle/blob/main/docs/README_ORA_SI_Play.pdf
https://galaxy.ansible.com/ui/repo/published/ibm/power_aix_oracle
https://edelivery.oracle.com/osdc/faces/SoftwareDelivery
https://www.oracle.com/database/technologies/oracle19c-aix-193000-downloads.html
https://galaxy.ansible.com/ui/repo/published/ibm/power_aix
https://galaxy.ansible.com/ibm/power_aix

Example 4-2 Installing the ibm.power_aix_oracle collection from the Ansible Galaxy website

ansible-galaxy collection install ibm.power_aix_oracle
Process install dependency map
Starting collection install process
Installing 'ibm.power_aix_oracle:1.1.1' to
'/root/.ansible/collections/ansible_collections/ibm/power_aix_oracle'

After the collection is installed successfully, all components, such as roles, variables, and
playbooks, are saved in the directory that is specified in the last output line of Example 4-2.
You may copy that directory to a working directory to update it with your variables and other
parameters to avoid changing the installed source.

Figure 4-3 show the commands to copy the collection and the contents of the collection.

Figure 4-3 Copying the collection’s directory into a working directory and showing its contents

The roles in the collection do much work. There are three key roles that are stored in the roles
directory, as shown in Figure 4-3.

The power_aix_oracle collection roles
There are three roles that are used in the power_aix_oracle collection:

� The preconfig role

The preconfig role performs AIX configuration tasks that are needed for Oracle
installation. It checks whether the requirements are met, and if they are not, it attempts to
remedy the situation. It checks the following items:

– The main OS (rootvg) file systems meet the minimum requirements.

– The AIX file sets that are required by Oracle database, such as bos.adt.*, bos.perf.*,
rsct.*, XlC.*, and others.

– Red Hat Package Manager packages for tools that are used during the installation.

– The network configuration, such as hostname, real_hostname, corresponding IP
address, and DNS server definition.

– Validate the disks to use for the Oracle database installation, depending on whether it
is a file system-based or ASM-based installation.

– AIX tuning, such as maxuproc, a Red Hat OpenShift Container Platform device, and
paging space.

Restart to enact the modified configurations.

� The oracle_install role

This role performs Oracle binary file installation. It sets the necessary components based
on whether it is a file system or ASM installation, copies the binary files over to the AIX
LPAR, and installs them.
Chapter 4. Automated application deployment on IBM Power servers 199

The role follows this sequence:

a. Sets the execution variables, setting grid_asm_flag to true for an ASM-based
installation or to false for a file system-based installation.

b. Creates the OS-level group and user that are necessary for the Oracle database
installation (that is, the oper group and the oinstall user).

For file system-based installation, it complete the following steps:

i. Creates a volume group on the database disks.

ii. Creates and mounts the file systems at the correct sizes in the volume group.

For an ASM-based installation, it completes the following steps:

i. Creates the Oracle grid home directory.

ii. Sets the ownership and access mode correctly for the ASM disks.

iii. Sets up the grid source files and rootpre script.

iv. Generates the grid response file and uses it for the grid installation.

v. Runs the orainstallroot and root scripts.

vi. Runs the grid ConfigTools script.

c. Perform the Oracle database installation by using the following steps:

i. Sets up the oinstall user profile by pointing to the correct tmp directory and
defining the oracle SID and Oracle home directory.

ii. Copies the Oracle installation binary files over from the repository to the LPAR.

iii. Generates the Oracle installation response file and uses it to install the binary files.

� The oracle_createdb role

This role is used to create database instances in the database server. It identifies whether
the database server uses ASM storage or file system storage and runs the corresponding
routine to create the database instance. It also uses variables such as target instance SID,
password, and character set, which are defined in the variables during creation.

To create an oracle database instance on a server that uses ASM storage, complete the
following steps:

a. Help ensure that no database instance exists with the same target SID.

b. Generate the database instance creation template or script.

c. Use the template or script to create the database instance.

To create an Oracle database instance on a server that uses file system storage, complete
the following steps:

a. Help ensure that no database instance exists with the same target SID.

b. Create a volume group for the database instance by using an available volume set for
the database.

c. Create and mount a file system for the database instance on the volume group and
help ensure its ownership and access mode.

d. Generate the database instance creation template or script.

e. Use the template or script to create the database instance.
200 Using Ansible for Automation in IBM Power Environments

Installing Oracle DB 19c on AIX and creating a database instance
To install Oracle DB 19c on AIX and create a database instance, complete the following
steps:

1. Help ensure that all prerequisites that are documented in “Single-node Oracle database
installation prerequisites” on page 198 are met, including setting up the AIX LPAR,
installing the ibm.power_aix collection, and downloading the Oracle database installation
software.

2. Set up the AIX LPAR as an Ansible client by adding it to the inventory file and exchanging
the Ansible server’s Secure Shell (SSH) key with it.

3. Help ensure that the ibm.power_aix_oracle collection is installed, as shown in
Example 4-2 on page 199.

4. Optionally, copy the ibm.power_aix_oracle directory to a temp working directory, as
shown in Figure 4-3 on page 199.

5. Copy netsvc.conf and resolv.conf from the /etc directory of the AIX LPAR into the
roles/preconfig/files/ directory that is inside the
workspace/power_aix_oracle/roles/preconfig/files directory, where workspace is the
temporary working directory that you copied the collection directory to in step 4.

6. Modify the Oracle binary files location path variable <oracledbaix19c> in the file
workspace/power_aix_oracle/vars/oracle_params.yml and set the grid_asm_flag flag
value to true for an ASM-based installation or false for a file system-based installation
(the default option is file system-based). Go through all other parameters in that
oracle_params.yml variables file and modify it for your environment.

7. Run the playbook demo_play_aix_oracle.yml, which includes the variables file. The
playbook runs the three roles sequentially.

Example 4-3 shows a playbook (ansible-playbook demo_play_aix_oracle.yml) that
installs the Oracle database and creates a database instance.

Example 4-3 A playbook that installs Oracle DB and creates an instance based on the vars file

- hosts: all
 gather_facts: yes
 vars_files: vars/oracle_params.yml
 roles:
 - role: preconfig
 tags: preconfig
 - role: oracle_install
 tags: oracle_install
 - role: oracle_createdb
 tags: oracle_createdb

To check on future updates of the collection, see its documentation site.

4.6.3 Automating the deployment of Oracle RAC with Ansible

With Oracle RAC, customers can run a single Oracle Database across multiple servers to
maximize availability and enable horizontal scalability, while accessing shared storage.2 IBM
AIX is a commonly used platform for hosting Oracle RAC.

2 Source: https://www.oracle.com/qa/database/real-application-clusters/
Chapter 4. Automated application deployment on IBM Power servers 201

https://github.com/IBM/ansible-power-aix-oracle/blob/main/docs/README_ORA_SI_Play.pdf
https://www.oracle.com/qa/database/real-application-clusters/

Figure 4-4 shows a high-level overview of an Oracle RAC installation on an existing
infrastructure.

Figure 4-4 Oracle RAC deployment topology on existing infrastructure3

Figure 4-5 shows the same overview for both infrastructure provisioning and Oracle RAC
software installation automation.

Figure 4-5 Oracle RAC deployment topology with IBM PowerVC automating the infrastructure layer4

3 Source:
https://github.com/IBM/power-aix-oracle-rac-asm/blob/main/docs/README_ORACLE_RAC_PLAYBOOK_V1.3.pdf
202 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/power-aix-oracle-rac-asm/blob/main/docs/README_ORACLE_RAC_PLAYBOOK_V1.3.pdf

Oracle RAC installation, on AIX and elsewhere, offers has many complexities both at the
infrastructure layer setup and in the software installation requirements. At the infrastructure
layer, the complexities encompass setting up the AIX nodes on hosts that meet the RAC
requirements. These requirements include setting kernel tunable parameters, setting network
attributes, setting shared disks attributes, and setting up ssh password-less access among
others. It is a tedious, repetitive, and error-prone process when done manually. Similarly, the
manual process of the grid and database software installation is interactive and requires a
user’s attentive physical presence for hours.

The Ansible Oracle RAC collection (ibm.power_aix_oracle_rac_asm) that is available at
Ansible Galaxy and GitHub simplifies the installation of Oracle RAC 19c on the AIX OS
running on IBM Power servers by automating both the infrastructure setup operation and the
software installation and configuration operation. It contains playbooks and many supporting
roles and other artifacts that automate both layers.

The infrastructure layer automation that the collection provides requires IBM PowerVC. If your
environment is not equipped with PowerVC, you can prepare the infrastructure manually and
then use the collection for the Oracle RAC software installation. Otherwise, you can use the
collection to automate both layers of the process.

Setting up Ansible Server for Oracle RAC installation automation
This section covers Ansible server requirements for installing the Oracle RAC collection along
with more Ansible server configurations that are required for that collection.

Ansible server requirements for Oracle RAC collection
The Ansible server must meet the following requirements to be used for Oracle RAC
collection:

� The Ansible server must be Version 2.9 or later.

� The python3-netaddr, perl, expect, and wget Red Hat Package Managers must be
installed.

� The ibm.power_aix collection (see 1.5.4, “Ansible for AIX” on page 40) must be installed
because the Oracle RAC collection uses some of its modules in the setup process.

� The ansible.utils collection is required for the Oracle RAC collection to work. If it is not
installed, then use the ansible-galaxy collection install ansible.utils command to
install it.

� The OpenStack SDK must be installed when automating the provisioning of the
infrastructure layer.

4 Source:
https://github.com/IBM/power-aix-oracle-rac-asm/blob/main/docs/README_ORACLE_RAC_PLAYBOOK_V1.3.pdf

Troubleshooting note: There was a scenario where password-less authentication
between the nodes failed with security-like errors that pointed to a missing
python3-selinux Red Hat Package Manager on the Ansible server. Disabling SELinux in
the Ansible server resolved that issue. This approach provides a workaround until a
permanent resolution is reached.
Chapter 4. Automated application deployment on IBM Power servers 203

https://github.com/IBM/power-aix-oracle-rac-asm/blob/main/docs/README_ORACLE_RAC_PLAYBOOK_V1.3.pdf
https://galaxy.ansible.com/ui/repo/published/ibm/power_aix_oracle_rac_asm
https://github.com/IBM/power-aix-oracle-rac-asm
https://docs.openstack.org/openstacksdk/latest/install/index.html

Installing the power_aix_oracle_rac_asm collection
To download and install the collection, use the example that is provided in Example 4-4. If
your Ansible server does not have access to the internet, then download the collection’s .tar
file to your workstation, transfer it to the Ansible server, and then run the command with the
same syntax but point to the .tar file instead.

Example 4-4 Installing the power_aix_oracle_rac_asm collection

ansible-galaxy collection install ibm.power_aix_oracle_rac_asm
Process install dependency map
Starting collection install process
Installing 'ibm.power_aix_oracle_rac_asm:1.2.1' to
'/root/.ansible/collections/ansible_collections/ibm/power_aix_oracle_rac_asm’

After the collection is installed successfully, all its contents are stored in the directory that is
shown in the last line of the Example 4-4 output. Copy that directory to your workspace and
work with it. This way, the original collection’s directory remains as an unchanged reference.

Figure 4-6 shows contents of the collection’s directory after copying it to the workspace.

Figure 4-6 Copying the Oracle RAC installation collection directory to the workspace and showing its
contents

The files powervc_build_AIX_RAC_nodes.yml and install_and_configure_Oracle_RAC.yml
are the playbooks that are used for automating the infrastructure layer and the Oracle RAC
installation. The roles directory hosts the roles supporting those playbooks, and the vars
directory contains the files where the variables that are used by these playbooks and roles
are set.

Automating the infrastructure layer provisioning with PowerVC
The infrastructure layer automation involves the following activities, which are automated
through the powervc_build_AIX_RAC_nodes.yml playbook and its supportive Ansible roles that
are provided in the collection:

� An operational PowerVC 2.1.1 server or later.
� Setting up a PowerVC image that is configured with Oracle RAC specifications.
� Setting up Oracle RAC required networks.
� Setting up the ASM storage volumes.
204 Using Ansible for Automation in IBM Power Environments

Setting up the PowerVC image for Oracle RAC
The PowerVC AIX image should follow these specifications:

� It should have a rootvg disk size of at least 50 GB. The larger size is to accommodate a
16 GB paging space and 8 GB for /tmp to be used as the Ansible temp directory. This
rootvg disk is hdisk0 in each node.

� A second disk of 75 GB that is not assigned to a volume group. It is used by the installer to
create the oravg volume group, which hosts the Oracle Grid HOME directory. The disk is
hdisk1 in the nodes. The <*ofa_fs> variable in the vars/powervc_rac.yml file is set to 73G
because the disk size is 75 GB. If you capture an image with a larger sized disk, then you
may want to update the value of that variable.

� The OS that is installed on the image should be AIX 7.2 TL4 SP1 or later or AIX 7.3.

� The following file sets must be installed on the AIX version before you install the Oracle
RAC software. Although they may be installed in the nodes after they are created, the
process becomes simpler if they are installed in the source LPAR before capturing it as the
PowerVC image.

– bos.adt.base
– bos.adt.lib
– bos.adt.libm
– bos.perf.libperfstat
– bos.perf.perfstat
– bos.perf.proctools
– bos.loc.utf.EN_US
– bos.rte.security
– bos.rte.bind_cmds
– bos.compat.libs
– xlC.aix61.rte
– xlC.rte
– rsct.basic.rte
– rsct.compat.clients.rte
– xlsmp.msg.EN_US.rte
– xlfrte.aix61
– openssh.base.client
– expect.base
– perl.rte
– Java8_64.jre
– dsm

� Extract the Red Hat Package Manager and install it on the image. You can download the
latest version from here.

� Update the image section in the vars/powervc.yml file in the collection with the image,
image_aix_version, and image_password, with the latter set to the AIX root password
value.

Note: Although the hdisks in the first two bullets are deployed by PowerVC as hdisk0 and
hdisk1, the requirement is that each of them has the same hdisk number in both nodes.
However, they do not have to be hdisk0 and hdisk1 respectively.
Chapter 4. Automated application deployment on IBM Power servers 205

https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/unzip/

Setting up networks for Oracle RAC
A 2-node Oracle RAC cluster has the following network requirements:

� The two nodes require nine IP addresses: four IP addresses per node and one for the
RAC scan service. These nine IP addresses must be created across three different
networks.

� The four IP addresses per node are as follows:

– One public IP address for the node’s external access, which is sourced from the first
network.

– Two private IP addresses, which are sourced from the second and third networks for
Oracle RAC private interconnect.

– One virtual IP address per node.

� Five of these nine IP addresses are sourced from network 1 and must support a 2-way
resolution against a DNS server.

� Network one must be accessible from the Ansible server because the public IP addresses
or their hostnames are used as Ansible inventory entries.

� All three networks must be routed through the Virtual I/O Server (VIOS) and added to
PowerVC.

� All network interfaces must be consistent across the nodes. For example, if the public IP
address for node 1 is set to en0, then node2 must also use en0 for its public IP address.
Table 4-1 details the requirements for the IP addresses on a 2-node cluster.

Table 4-1 IP addresses specifications for a 2-node Oracle RAC

Note: Although the Oracle RAC collection can support up to an 8-node cluster, it has
been extensively tested for a 2-node cluster. If you intend to use the collection to
provision a cluster with more than two nodes, then all variables files must be reviewed
to update the variables’ values.

Also, this collection of documents uses a single IP address for RAC scan service, but it
is for testing purpose only. Oracle recommends that you use three IP addresses for this
service.

Note: When using PowerVC for provisioning the nodes, help ensure that both
<nodeX_net_ports> variables in the vars/powervc.yml file list the public port, private 1, and
virtual 2 ports in this sequence, which helps ensure that you use en0, en1, and en2.

Location Function Network # Type (Interface) DNS required?

Node1 Public IP Network 1 Physical (en0) Yes

Node2 Public IP Network 1 Physical (en0) Yes

Node1 First private IP Network 2 Physical (en1) No

Node2 First private IP Network 2 Physical (en1) No

Node1 Second private IP Network 3 Physical (en2) No

Node2 Second private IP Network 3 Physical (en2) No

Node1 Virtual IP Network 1 Virtual (N/A) Yes
206 Using Ansible for Automation in IBM Power Environments

� Update the network section of the vars/powervc.yml file, supplying the network names
and IP addresses in the variables, which are named according to the functions that are
defined in Table 4-1 on page 206.

� Update the vars/powervc.yml file with the following additional variables:

– DNS server and domain.

The DNS server should be capable of forward and reverse name resolution for all five
IP addresses that are labeled Yes in the last column of Table 4-1 on page 206.

– NTP server.

The name server is needed to keep the cluster operational. Alternatively, you can help
ensure that the date and time are synchronized between the two nodes.

– NFS server and its export directory, and the directory to use as an NFS mount point in
the nodes.

Oracle RAC installation binary files, including the grid, database, OPatch, and RU,
should be stored in subdirectories under that export directory in the NFS server. Check
whether a node that is deployed from the PowerVC image can successfully mount the
export directory from the NFS server.

Defining the shared storage for Oracle RAC
Oracle RAC uses ASM disks that are shared among the RAC nodes. The RAC collection
creates four ASM diskgroups by using ASM shared disks. Each diskgroup can have one or
more disks.

Disks of each disk group should have the same size, characteristics, and similar I/O speed.
Here are the four diskgroups:

� The OCRVOTE disk group stores Oracle Cluster Registry (OCR) and voting disks
information.

� The Grid Infrastructure Management Recovery (GIMR) disk group contains a multi-tenant
database (Management Database (MGMTDB)) with one pluggable database.

� The ASM Cluster File System (ACFS) disk group is used for staging the Oracle database
home binary file.

� The DATA disk group is used for staging the database files.

The Oracle RAC installer expects each disk to have the same hdisk number in all RAC nodes.

Node2 Virtual IP Network 1 Virtual (N/A) Yes

Cluster Cluster scan IP Network 1 Virtual (N/A) Yes

Note: When using the PowerVC playbook from the collection to provision the nodes, it
helps ensure that each node has the same hdisk number across all nodes. It does so by
creating them one at a time, and after creating each one, it attaches it to all nodes, and
then runs cfgmgr to help ensure that it captured the next available sequential number for
the hdisk in all nodes before moving on to the next disk.

Location Function Network # Type (Interface) DNS required?
Chapter 4. Automated application deployment on IBM Power servers 207

Table 4-2 cross matches the disk groups and their corresponding variable names, disks
count, and each disk’s size as set as default in the disks list of the vars/powervc.yml file. It
also shows the corresponding hdisk number as set in the <diskgroups> variable in the
vars/powervc_rac.yml file.

Table 4-2 Diskgroups names and corresponding variables in vars/powervc.yml

Consider the following items as you update these variables in their variables file:

� The <diskgroups> variable in the vars/powervc_rac.yml file lists the hdisk number of
these disks. Within a PowerVC nodes deployment, the image uses hdisk0 and hdisk1, as
described in “Setting up the PowerVC image for Oracle RAC” on page 205. The hdisk
number of each of these ASM disks are as shown in the ‘hdisk number’ column in
Table 4-2. If you change the count of any of the diskgroups, update the hdisk numbers in
the <diskgroups> variable in the vars/powervc_rac.yml file.

� You may change the disks’ sizes to meet your requirements. Help ensure that all disks of a
given diskgroup are the same size.

� The vol_size_GB variable in vars/powervc_rac.yml is set to 75 GB based on the ACFS
disk size of 75 GB. If you change that disk’s size in vars/powervc.yml, then update that
variable in the vars/powervc_rac.yml file too.

The collection roles that are used for infrastructure provisioning
The power_aix_oracle_rac_asm collection contains the following roles pertaining to the
infrastructure layer provisioning:

� powervc_create_network_ports

This role creates an OpenStack port to use during the node creation. A port defines the IP
address and network to use for an interface.

� powervc_create_nodes_without_rac_volumes

This role uses parameters that are set in the vars/powervc.yml file to create the cluster
nodes.

� powervc_obtain_token

This role obtains a PowerVC access token to establish a Representational State Transfer
(REST) application programming interface (API) connection from an Ansible server to a
PowerVC server. The subsequent ASM disks creation role requires REST API access,
hence the need for the token.

Diskgroup Variable name Disks
count

The hdisk
number

Disk size

OCRVOTE <“{{racName}}-ASMOCRx”> 4 2 3 4 5 10

GIMR <“{{racName}}-GIMRx”> 2 6 7 40

ACFS <“{{racName}}-ACFS-DBHome”> 1 8 75

DATA <“{{racName}}-DBDiskx”> 2 9 10 10

Note: When using a PowerVC playbook from the collection to provision the nodes, it helps
ensure that all non-rootvg disks’ headers are clear and have no PVIDs because it creates
them from the storage subsystem.

For manual setup of the nodes, use chdev -l hdiskX -a pv=clear to clear the PVID. Then,
use lquerypv -h /dev/hdiskX to check whether the header is clear, If it is not, then use dd
if=/dev/zero of=/devhdiskX bs=1024k count=100 to clear it.
208 Using Ansible for Automation in IBM Power Environments

� powervc_create_and_multiattach_asm_volumes

This role creates the ASM disks one at a time. On creating each disk, this role attaches it
to all nodes and runs cfgmgr to help ensure that the disk maintains the same hdisk
number in all nodes as required by the Oracle RAC installer.

� powervc_add_nodes_to_inventory

This role updates the inventory file with the nodes and more parameters to set it up for
Ansible management, and then prepares the environment for execution of the second
playbook, which is responsible for grid and database software installation.

Automating the Oracle RAC software installation
Oracle RAC software installation automation involves activities that are automated by the
install_and_configure_Oracle_RAC.yml playbook and its supported Ansible roles, which are
provided by the collection. Oracle database installation by using the collection assumes that
the software-installation only option is on the ACFS shared file system.

When you build the infrastructure manually, installing the grid and database software requires
that you update the vars/rac.yml file with the values of the required variables and include only
the vars/rac.yml file in the playbook. If you automate the infrastructure provisioning with
PowerVC, then you populate those variables in the vars/powervc.yml file, which are then
referenced in the vars/powervc_rac.yml file. If so, include both the vars/powervc.yml file and
the vars/powervc_rac.yml file in the playbook.

The collection roles that are used for the Oracle RAC software installation
The power_aix_oracle_rac_asm collection contains the following roles pertaining to the grid
and database software installation:

� bootstrap

This role sets up the basic environment to enable the full function of Ansible to set the
name server, binding, and password-less connections to the RAC nodes.

� preconfig

This role sets up a basic environment with time of day, configuration for accessing the
internet, and helping ensure consistent AIX versions, releases, TLs, and SsP. It also NFS
mounts and installs the AIX file sets.

� config

This role sets up AIX to meet the requirements for installing Oracle RAC software.

� install

This role creates the ASM disk groups and ACFS, prepares for installing the grid and
database, and installs GRID_HOME on a JFS2 file system and database ORACLE_HOME on the
ACFS shared file system.

Installation steps for the different options
There are two options for using the collection to install Oracle RAC on AIX:

� Option 1: Manually configure the infrastructure while automating the software installation.

� Option 2: Fully automate both operations through a single playbook run.

Option 1 is shown in Figure 4-4 on page 202. Option 2 is shown in Figure 4-5 on page 202
Chapter 4. Automated application deployment on IBM Power servers 209

Option 1 installation steps
Installation option 1 entails preparing the cluster nodes manually and then using the collection
to install the RAC software. Complete the following steps:

1. Create the Oracle RAC cluster AIX nodes manually.

2. Create the local and shared storage volumes manually per the specifications and attach
them to the nodes.

3. Help ensure that the nodes are configured with the correct networks per the specifications.

4. Help ensure that the hostnames, and virtual and scan IP addresses are added correctly to
the DNS server.

5. If no NTP server is configured for the nodes, help ensure that the clocks on the cluster
nodes are in sync.

6. NFS servers are needed for the AIX file sets installation and for staging the Oracle 19c
software.

7. Update the vars/rac.yml file to reflect the correct values for all the concerned variables.

8. Review the inventory and ansible.cfg files and help ensure that the nodes are added
correctly to the inventory file with the correct name of the nodes and the group containing
them.

9. Update the install_and_configure_Oracle_RAC.yml playbook, as shown in Example 4-5
and in the following steps:

a. Uncomment the hosts: line and set the field by specifying the inventory group name,
as described in step 8.

b. Uncomment the first variables file (named vars/rac.yml) to include its variables in this
run.

10.Run the playbook by using the following command:

ansible-playbook install_and_configure_Oracle_RAC.yml

The output is shown in Example 4-5.

Example 4-5 Contents of the install_and_configure_Oracle_RAC.yml playbook

install_and_configure_Oracle_RAC.yml
- hosts: "{{ racName }}"
 gather_facts: no
 vars_files:
- vars/rac.yml
- vars/powervc.yml
- vars/powervc_rac.yml
 roles:
 - role: bootstrap
 vars:
 download_dir: "~"
 target_dir: "/tmp/.ansible.cpdir"
 tags: bootstrap
 - role: preconfig
 tags: preconfig
 - role: config
 tags: config
 - role: install
 tags: install
210 Using Ansible for Automation in IBM Power Environments

Option 2 installation assumptions
The following assumptions apply to installation option 2.

A variable that is named <racName> is used throughout the automation process. This variable
is required as an extra parameter for playbooks of both operations. The following parameters
inherit the <racName> variable:

� Node names and hostnames append a counter to the <racName>. So, if the <racName> is
set to myorac, then the nodes are named myorac1 and myorac2.

� The nodes group on the Ansible inventory file is named after the <racName>.

� The target hosts in the software installation playbook are set to the Ansible inventory
group, which is named <racName>.

� The hostname of the cluster scan IP address appends ‘-scan’ to the <racName>.

� The hostnames of all node IP addresses are based on the nodes names, which are based
on the <racName>.

Option 2 installation steps
Installation option 2 entails using the collection to automate both preparing the infrastructure
layer (operation 1) and installing the RAC software (operation 2) in a single run. The process
imports the playbook for operation 2 as the last step of operation 1’s playbook to automate the
processes sequentially.

Complete the following steps:

1. Create DNS entries in the DNS server for the five addresses that must have DNS entries
per Table 4-1 on page 206.

2. Configure the NFS server and store the Oracle RAC software in subdirectories in its
export directory. The export directory value must be set in the vars/powervc.yml file, and
the names of the binary files and their hosting subdirectories must be set in the
vars/powervc_rac.yml file.

3. Update the vars/powervc.yml file with the values for all images, networks, and shared
storage disk variables, the DNS, NFS, and NTP servers, and the PowerVC server
credentials.

4. Update the vars/powervc_rac.yml file for the hdisk0 with the ACFS disk size, as described
in “Option 1 installation steps” on page 210. Update the grid and Oracle passwords and
any other variables that you deem necessary for your environment.

5. Copy the PowerVC certificate file from the /etc/pki/tls/certs/powervc.crt file in the
PowerVC server to the Ansible server.

6. Copy the /opt/ibm/powervc/powervcrc file from the PowerVC server to the Ansible server,
and update its OS_CACERT with the location where you copied the PowerVC certificate file.
Update OS_CACERT with the user ID and password of the PowerVC server and source it.

Troubleshooting note: If any of the nodes are rebuilt (or their ssh identity changes) after
they are added to the Ansible server ~/.ssh/known_hosts file, then entries in that file must
be clear before there is any subsequent attempt to install Oracle RAC software in these
nodes. This situation is true for installation option 1 too.

This precautionary step prevents a “WARNING: POSSIBLE DNS SPOOFING DETECTED!” error,
which causes password-less ssh connection and playbook execution on node1 failures,
and an incomplete software installation process.
Chapter 4. Automated application deployment on IBM Power servers 211

Example 4-6 shows the playbook for the infrastructure provisioning layer.

Example 4-6 Contents of the powervc_build_AIX_RAC_nodes.yml playbook

powervc_build_AIX_RAC_nodes.yml

- name: Build and configure the RAC nodes by using PowerVC
 hosts: localhost
 gather_facts: no
 vars_files:
 - vars/powervc.yml
tasks:
 - include_vars: "vars/powervc.yml"
 - fail:

 msg: "racName is required for this playbook to build a dual-node Oracle
RAC."

 when: racName is not defined

 - name: Display the input name prepatch and count of VMs to be built
 debug:

msg: "Creating nodes {{racName}}1 and {{racName}}2 for this dual-node Oracle
RAC."

 - name: define the network ports based on the networks and IP addresses to be
used.

 import_role: name=powervc_create_network_ports

 - name: Create new AIX VMs to act as Oracle RAC nodes
 import_role: name=powervc_create_nodes_without_rac_volumes

 - import_role: name=powervc_obtain_token
 - include_role: name=powervc_create_and_multiattach_asm_volumes

 with_items: "{{ disks }}"

 - name: Now, the nodes are good to go, add them to the inventory file to be
managed by Ansible

 import_role: name=powervc_add_nodes_to_inventory

Importing the playbook to be used for installing and configuring the Oracle RAC.
- import_playbook: install_and_configure_Oracle_RAC.yml

7. The last step in Example 4-6 invokes the software installation playbook that is shown in
Example 4-7.

Update the software installation playbook by uncommenting the last variables file
(vars/powervc_rac.yml) because the variables that are defined in that file are needed in
the playbook.

Example 4-7 Contents of install_and_configure_Oracle_RAC.yml

install_and_configure_Oracle_RAC.yml
PowerVC based deployments use variable files
vars/powervc.yml,vars/powervc_rac.yml
212 Using Ansible for Automation in IBM Power Environments

If the LPARs are build manually to automate oracle RAC deployment use variable
file vars/rac.yml
#- hosts: "{{ racName }}" # racName variable is defined when you use the PowerVC
automation scripts for building the AIX LPARs
#- hosts: orac # Get the group name from inventory file, which
contains the oracle cluster nodes
 gather_facts: no
 vars_files:
- vars/powervc.yml
- vars/powervc_rac.yml
- vars/rac.yml
 roles:
 - role: bootstrap
 vars:
 download_dir: "~"
 target_dir: "/tmp/.ansible.cpdir"
 tags: bootstrap
 - role: preconfig
 tags: preconfig
 - role: config
 tags: config
 - role: install
 tags: install

8. Run the operation 1 playbook (which performs both operations) by running the following
command:

ansible-playbook powervc_build_AIX_RAC_nodes.yml -e racName=myorac.

Running the playbooks separately
You may choose to run the two playbooks in two separate steps for different reasons, for example:

� A time gap is needed to prepare the DNS server and update it with the required
addresses.

� A time gap is needed to prepare the NFS server or to set it up with the required Oracle
software binary files to use in the second operation.

� You want to interrogate the nodes for all prerequisites to help ensure that the first
operation playbook satisfied them.

If so, you can run the infrastructure playbook as described in Example 4-6 on page 212, except
that you comment out the last line in that playbook (shown in Example 4-7 on page 212) to not
import the software installation playbook.

When you are ready to do the software installation, complete the following steps:

1. Uncomment the middle variables file (vars/powervc.yml) in the software installation
playbook (shown in Example 4-7 on page 212) so that both the second and third variable
files with PowerVC in their name are active.

2. Run the software installation playbook with <racName>:

ansible-playbook install_and_configure_Oracle_RAC.yml -e racName=myorac

As you continue to work with the collection, you might find it useful to see the collection
documentation for newer release updates. Furthermore, the collection’s GitHub issues page is a
good tool for resolving any issues.
Chapter 4. Automated application deployment on IBM Power servers 213

https://github.com/IBM/power-aix-oracle-rac-asm/tree/main/docs
https://github.com/IBM/power-aix-oracle-rac-asm/tree/main/docs
https://github.com/IBM/power-aix-oracle-rac-asm/issues

4.6.4 Automating Oracle DBA operations

Oracle DBA tasks are a set of support activities that are done by DBAs. These tasks are mostly
iterative and require attention, especially when there are many databases. Automating these
tasks can help DBAs save time and avoid human errors.

The ibm.power_aix_oracle_dba Ansible collection is based on an open-source project that is
called Oravirt, which automates Oracle DBA tasks. These roles and modules were evaluated
and tested to work with Oracle databases running on AIX, and they offer many playbooks.

Prerequisites
The following software must be installed on the Ansible Controller host:

� Python 3.6 or later (Python can be installed by running dnf install python3).
� Cx_oracle, which is a Python module that makes the connection to the database by using sys

privileges. For more information about Cx_oracle, see Introduction to cx_Oracle.

To install Cx_oracle online, use one of the following commands:

– As root: python -m pip install cx_Oracle --upgrade

– As a non-root user: python -m pip install cx_Oracle--upgrade --user

For an offline installation, complete the following steps:

a. Download the source distribution from Pypi and place it in a location, for example, /tmp.

b. Run the following command:

python3 -m pip install --no-build-isolation /tmp/cx_Oracle-8.3.0.tar.gz

Example 4-8 shows how to validate which version of Python was used to install the Cx_oracle
package and which must be used to run the playbooks.

Example 4-8 Determining the version of Python that was used to install the Cx_oracle package

$ pip3.9 show cx_Oracle
Name: cx-Oracle
Version: 8.3.0
Summary: Python interface to Oracle
Home-page: https://oracle.github.io/python-cx_Oracle
Author: "Anthony Tuininga",
Author-email: "anthony.tuininga@gmail.com",
License: BSD License
Location: /home/ansible/local/lib/python3.9/site-packages
Requires:
Required-by:

Example 4-8 shows that Cx-Oracle is in python3.9 site-packages. Therefore, python3.9 must
be used as the Python interpreter to run the playbooks.

Note: Oracle RAC automation collection stops with the software installation. To create
database instances and manage them, see 4.6.4, “Automating Oracle DBA operations” on
page 214.

Note: If there are multiple Python versions, the Python version that was used to install
Cx_oracle must be used for running the playbooks. To verify your Python version, see
Example 4-8.
214 Using Ansible for Automation in IBM Power Environments

https://github.com/oravirt/ansible-oracle
https://cx-oracle.readthedocs.io/en/latest/user_guide/introduction.html
https://pypi.org/project/cx-Oracle/#files

Getting started
To use the Oracle DBA operations collection, you must have Ansible 2.9 or later on Red Hat
Enterprise Linux (RHEL) 8.x or later for either Linux on Power or x86-64. You can download
the collection from the following public repositories:

� Galaxy

� GitHub

To install the collection, complete the following steps:

1. Install the collection by running the following command:

$ ansible-galaxy collection install ibm.power_aix_oracle_dba

2. Download and extract the Oracle Instant client software from Oracle. At the site, click
Other Platforms, as shown in Figure 4-7 to get the option to download the Linux on Power
client.

Figure 4-7 Oracle Instant Client Downloads initial page

3. Click Linux on Power Little Endian, as shown in Figure 4-8.

Figure 4-8 Other Oracle Instant Client Downloads

4. Install the packages libnsl and libaio by running the following commands:

dnf install libnsl -y
dnf install libaio -y

5. Prepare the inventory file with the hostnames of the VMs where the Oracle databases are
running.
Chapter 4. Automated application deployment on IBM Power servers 215

https://galaxy.ansible.com/ui/repo/published/ibm/power_aix_oracle_dba/
https://github.com/IBM/ansible-power-aix-oracle-dba
https://www.oracle.com/database/technologies/instant-client/downloads.html

Running administration tasks
This section provides detailed steps about running two different admin tasks:

� Creating a database

� Managing database users

Creating a database
The role oradb_create is used to create databases. It can be used for a Non Container
Database instance or a Container Database (CDB) in a single instance or RAC. In this
example, we create a RAC CDB that is called “devdb” with one PDB that is called “devpdb”.

To create the database, complete the following steps:

1. Establish passwordless SSH between the Ansible user and the Oracle Database user.

2. Define the required hostname in an inventory file to be used to run the playbook.

3. Update the following three files:

– {{ collection_dir }}/power_aix_oracle_dba/playbooks/vars/vault.yml: Contains
the SYS user password of ASM and the SYS password, which must be set to the new
database.

– {{ collection_dir }}/power_aix_oracle_dba/playbooks/create-db.yml: Contains
the playbook that runs the oradb_create role.

– {{ collection_dir }}/power_aix_oracle_dba/playbooks/vars/create-db-vars.yml:
Contains all the variables to create a database. Multiple databases can be created by
providing the variables as a list.

4. Update the {{ collection_dir }}/power_aix_oracle_dba/playbooks/vars/vault.yml file
with the passwords:

a. Go to the playbooks directory and update the file with the system password for asm and
dba, as shown in Example 4-9.

Example 4-9 Updating the passwords

$ cat vault.yml
default_gipass: Oracle4u
default_dbpass: Oracle4u

b. Encrypt the file by running the following command:

$ ansible-vault encrypt vault.yml

5. Update the hosts and remote_user in the directory, as shown in Example 4-10:

{{ collection_dir }}/power_aix_oracle_dba/playbooks/create-db.yml file

Example 4-10 Modifying the create-db.yml file

- name: Create a Database
 hosts: rac91 # Target LPAR hostname defined in the inventory
file.
 remote_user: oracle # Oracle Database Username
 vars_file:

- vars/create-db-vars.yml
- vars/vault.yml

 roles:
 - { role: ibm.power_aix_oracle_dba.oradb_create }
216 Using Ansible for Automation in IBM Power Environments

6. Update the following variables, as shown in Example 4-11:

{ collection_dir }}/power_aix_oracle_dba/playbooks/vars/create-db-vars.yml

Example 4-11 Variables in the create-db-vars.yml file

oracle_stage: /tmp # Location on the target AIX LPAR to stage response files.
oracle_inventory_loc: /u01/app/oraInventory
oracle_base: /u01/base
oracle_dbf_dir_asm: '+DATA1' # If storage_type=ASM this is where the database is
placed.
oracle_reco_dir_asm: '+DATA1' # If storage_type=ASM this is where the fast
recovery area is
oracle_databases: # Dictionary describing the databases to be created.
 - home: db1
 oracle_version_db: 19.3.0.0 # For a 19c database, the version should be
19.3.0.0
 oracle_home: /u01/app/19c_ansible # Oracle Home location.
 oracle_edition: EE # The edition of database-server (EE,SE,SEONE)
 oracle_db_name: devdb # Database name
 oracle_db_type: RAC # Type of database (RAC,RACONENODE,SI)
 is_container: True # (true/false) Is the database a container database.
 pdb_prepatch: devpdb # Pluggable database name.
 num_pdbs: 1 # Number of pluggable databases.
 storage_type: ASM # Database storage to be used. ASM or FS.
 service_name: db19c # Inital service to be created.
 oracle_init_params: "" # initialization parameters, comma separated
 oracle_db_mem_totalmb: 10000 # Amount of RAM to be used for SGA + pGA
 oracle_database_type: MULTIPURPOSE # MULTIPURPOSE|DATA_WAREHOUSING|OLTP
 redolog_size_in_mb: 512 # Redolog size in MB
 state: present # present | absent

7. Verify that the DB does not exist, as shown in Example 4-12.

Example 4-12 Verifying that the database does not exist

bash-5.1$ srvctl status database -d devdb
PRCD-1120 : The resource for database devdb could not be found.
PRCR-1001 : Resource ora.devdb.db does not exist
bash-5.1$

8. Run the command shown in Example 4-13 to run the playbook.

Example 4-13 Output from running the playbook

[ansible@x134vm236 playbooks]$ ansible-playbook create-db.yml -i inventory.yml
--ask-vault-pass
Vault password:
[DEPRECATION WARNING]: "include" is deprecated, use include_tasks/import_tasks
instead. This feature will be removed in version 2.16.
Deprecation warnings can be disabled by setting deprecation_warnings=False in
ansible.cfg.

PLAY [Create a Database]
**

Chapter 4. Automated application deployment on IBM Power servers 217

TASK [Gathering Facts]
**

[WARNING]: Platform aix on host rac93 is using the discovered Python interpreter
at /usr/bin/python3, but future installation of
another Python interpreter could change the meaning of that path. See
https://docs.ansible.com/ansible-
core/2.12/reference_appendices/interpreter_discovery.html for more information.
ok: [rac93]

TASK [oradb_create : set fact]
**

ok: [rac93] => (item={'home': 'db1', 'oracle_version_db': '19.3.0.0',
'oracle_home': '/u01/app/oracle/db', 'oracle_edition': 'EE', 'oracle_db_name':
'devdb', 'oracle_db_type': 'RAC', 'is_container': True, 'pdb_prepatch': 'devpdb',
'num_pdbs': 1, 'storage_type': 'ASM', 'service_name': 'devdb',
'oracle_init_params': '', 'oracle_db_mem_totalmb': 10000, 'oracle_database_type':
'MULTIPURPOSE', 'redolog_size_in_mb': 50, 'state': 'present'})

TASK [oradb_create : Create Stage directory for response file.]

ok: [rac93]

TASK [oradb_create : listener | Create responsefile for listener configuration]

skipping: [rac93] => (item={'home': 'db1', 'oracle_version_db': '19.3.0.0',
'oracle_home': '/u01/app/oracle/db', 'oracle_edition': 'EE', 'oracle_db_name':
'devdb', 'oracle_db_type': 'RAC', 'is_container': True, 'pdb_prepatch': 'devpdb',
'num_pdbs': 1, 'storage_type': 'ASM', 'service_name': 'devdb',
'oracle_init_params': '', 'oracle_db_mem_totalmb': 10000, 'oracle_database_type':
'MULTIPURPOSE', 'redolog_size_in_mb': 50, 'state': 'present'})

NOTE: Some output has been truncated.

TASK [oradb_create : Add dotprofile (2)]
**

changed: [rac93] => (item=[{'home': 'db1', 'oracle_version_db': '19.3.0.0',
'oracle_home': '/u01/app/oracle/db', 'oracle_edition': 'EE', 'oracle_db_name':
'devdb', 'oracle_db_type': 'RAC', 'is_container': True, 'pdb_prepatch': 'devpdb',
'num_pdbs': 1, 'storage_type': 'ASM', 'service_name': 'devdb',
'oracle_init_params': '', 'oracle_db_mem_totalmb': 10000, 'oracle_database_type':
'MULTIPURPOSE', 'redolog_size_in_mb': 50, 'state': 'present'}, {'changed': False,
'stdout': '', 'stderr': '', 'rc': 0, 'cmd': 'ps -ef | grep -w "ora_pmon_devdb"
|grep -v grep | sed \'s/^.*pmon_//g\'', 'start': '2023-09-06 02:09:57.933677',
'end': '2023-09-06 02:09:57.983788', 'delta': '0:00:00.050111', 'msg': '',
'invocation': {'module_args': {'_raw_params': 'ps -ef | grep -w "ora_pmon_devdb"
|grep -v grep | sed \'s/^.*pmon_//g\'', '_uses_shell': True, 'warn': False,
'stdin_add_newline': True, 'strip_empty_ends': True, 'argv': None, 'chdir': None,
'executable': None, 'creates': None, 'removes': None, 'stdin': None}},
'stdout_lines': [], 'stderr_lines': [], 'failed': False, 'item': {'home': 'db1',
'oracle_version_db': '19.3.0.0', 'oracle_home': '/u01/app/oracle/db',
'oracle_edition': 'EE', 'oracle_db_name': 'devdb', 'oracle_db_type': 'RAC',
'is_container': True, 'pdb_prepatch': 'devpdb', 'num_pdbs': 1, 'storage_type':
218 Using Ansible for Automation in IBM Power Environments

'ASM', 'service_name': 'devdb', 'oracle_init_params': '', 'oracle_db_mem_totalmb':
10000, 'oracle_database_type': 'MULTIPURPOSE', 'redolog_size_in_mb': 50, 'state':
'present'}, 'ansible_loop_var': 'item'}])

TASK [oradb_create : Check whether database is running]
**
**
changed: [rac93]

TASK [oradb_create : debug]
**

ok: [rac93] => {
 "psout.stdout_lines": [
 " grid 14483936 1 0 00:54:37 - 0:00 asm_pmon_+ASM1",
 " grid 14745992 1 0 00:54:56 - 0:00 apx_pmon_+APX1",
 " oracle 21365224 1 0 02:08:59 - 0:00 ora_pmon_devdb1"
]
}

PLAY RECAP
**

rac93 : ok=11 changed=4 unreachable=0 failed=0
skipped=3 rescued=0 ignored=0

9. Verify that the DB is created by running the commands that are shown in Example 4-14.

Example 4-14 Verifying that the database was created

bash-5.1$ srvctl status database -d devdb
Instance devdb1 is running on node rac93
Instance devdb2 is running on node rac94

Managing database users
The role “oradb_manage_users” is used to create, drop, lock, unlock, and set expiration for
database users. It uses the “oracle_users” module. The users require privileges to access
the database, which you can do by using the role “oradb_manage_grants”. It uses the
“oracle_grants” module.

In the following example, we create two database users (testuser1 and testuser2) in a
pluggable database that is called DEVPDB that runs in a CDB and grants privileges to the
users.

Complete the following steps:

1. There are two files that must be updated:

– {{ collection_dir
}}/power_aix_oracle_dba/playbooks/vars/manage-users-vars.yml: Contains the
database hostname, database port number, and the path to the Oracle client.

– {{ collection_dir }}/power_aix_oracle_dba/playbooks/vars/vault.yml: Contains
the sys password, which is used by Cx_oracle to connect to the database with sysdba
privileges.
Chapter 4. Automated application deployment on IBM Power servers 219

2. Update the common variables file
{{collection_dir}}/power_aix_oracle_dba/playbooks/vars/manage-users-vars.yml, as
shown in Example 4-15.

Example 4-15 Updating the common variables file

Create/Drop Database Users - Variables section
hostname: rac93 # AIX LPAR hostname where the database is
running.
listener_port: 1522 # Database port number.
oracle_db_home: /home/ansible/oracle_client # Oracle Instant Client path on
controller.
oracle_databases: # Database users list to be created
 - users:
 - schema: testuser1 # Username to be created.
 default_tablespace: users # Default table space to be assigned to the
user.
 service_name: devpdb # Database service name.
 schema_password: oracle3 # Password for the user.]
 grants_mode: enforce # enforce|append.
 grants:
 - connect # Provide the name of the privilege as
a list to grant to the user.
 - resource
 state: present # present|absent|locked|unlocked [present: Creates user,

absent: Drops user]
Multiple users can be created with different attributes as shown below.
 - users:
 - schema: testuser2
 default_tablespace: users
 service_name: devpdb
 schema_password: oracle4
 grants_mode: enforce
 grants:
 - connect
 state: present # present|absent|locked|unlocked [present: Creates user,

absent: drops user}

3. Update the passwords file {{ collection_dir
}}/power_aix_oracle_dba/playbooks/vars/vault.yml with the sys user password, as
shown in Example 4-16. This file must be encrypted by using ansible-vault. While
running the playbook, provide the vault password.

Example 4-16 Updating the passwords file

default_dbpass: Oracle4u # SYS password
default_gipass: Oracle4u # ASMSNMP password

4. Encrypt the passwords file by using ansible-vault, as shown in Example 4-17.

Example 4-17 Encrypting the passwords file

$ ansible-vault encrypt vars/vault.yml
New Vault password:
Confirm New Vault password:
Encryption successful
220 Using Ansible for Automation in IBM Power Environments

5. Check the usernames in the database before creating them, as shown in Example 4-18.

Example 4-18 Validating usernames in the database

SQL> sho pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 3 DEVPDB READ WRITE NO
SQL> select username from dba_users where username in ('TESTUSER1','TESTUSER2');

no rows selected

The output shows that the users do not exist.

6. Create the playbook from the {{ collection_dir }}/power_aix_oracle_dba/playbooks
directory, as shown in Example 4-19.

Example 4-19 Creating the manage-users playbook

$ cat manage-users.yml
- hosts: localhost
 connection: local
 gather_facts: false
 vars_files:

- vars/manage-user-vars.yml
 - vars/vault.yml
 roles:
 - { role: oradb_manage_users }

7. Run the playbook, as shown in Example 4-20.

Example 4-20 Running the playbook to create users

[ansible@x134vm236 playbooks]$ ansible-playbook manage-users.yml --ask-vault-pass
Vault password:

PLAY [Create DB User]
**

TASK [oradb_manage_users : Manage users (cdb/pdb)]
**
**
changed: [localhost] => (item=port: 1522 service: devpdb schema: testuser1
state:present)
changed: [localhost] => (item=port: 1522 service: devpdb schema: testuser2
state:present)
[WARNING]: Module did not set no_log for update_password

PLAY RECAP
**

localhost : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
Chapter 4. Automated application deployment on IBM Power servers 221

8. Check the usernames in the database after creating them, as shown in Example 4-21,
where we can see that testuser1 and testuser2 were created in the PDB database.

Example 4-21 Displaying the usernames in the database

SQL> sho pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 3 DEVPDB READ WRITE NO
SQL> select username from dba_users where username in ('TESTUSER1','TESTUSER2');

USERNAME

TESTUSER2
TESTUSER1

To run other playbooks, see the readme files at GitHub for each corresponding DB admin
task.

4.7 SAP automation

If your organization relies on SAP HANA and S/4HANA for its critical business operations,
downtime is not an option. However, the complexity of manually deploying and managing an
SAP environment on-premises or in the cloud is time-consuming and error-prone, which can
lead to service degradation, increased security exposure, and outages. Automation can help
by performing the following functions:

� Streamline repetitive SAP management tasks.
� Help ensure consistent configuration across systems.
� Reduce deployment timelines and unplanned downtime.

Figure 4-9 describes how automation can help you over the lifecycle of your SAP
environments.

Figure 4-9 Automation benefits in your SAP environments5
222 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ansible-power-aix-oracle-dba/tree/main/docs

The end-to-end SAP S/4HANA installation process breaks down into four major blocks:

1. Server provisioning

This block is the most variable one because it depends on the infrastructure that is used.
Server provisioning can be done by using Ansible alone or with other tools such as
Terraform. Because SAP can be installed across many infrastructure and cloud
environments, server provisioning is highly dependent on the infrastructure that is chosen
for the SAP environment.

2. Basic OS setup

SAP has spent much effort in understanding how to install the base OS for the servers
running the different SAP components. For SAP HANA, the OS is Linux, either SUSE or
RHEL, and there are specific documented settings that are defined in multiple SAP notes.
Likewise, there are documented settings for NetWeaver installations.

3. HANA installation and configuration.

4. S/4 installation and configuration.

Figure 4-10 illustrates the usage of Ansible for an SAP installation.

Figure 4-10 Ansible automation for an SAP installation6

5 Source: https://catalog.redhat.com/solutions/detail/e95cc4e4b41347639b8f5da129f588ac
6 Source:
https://community.sap.com/t5/technology-blogs-by-sap/automating-the-installation-of-sap-s-4hana-and-
sap-hana-on-ibm-power/ba-p/13462363
Chapter 4. Automated application deployment on IBM Power servers 223

https://catalog.redhat.com/solutions/detail/e95cc4e4b41347639b8f5da129f588ac
https://community.sap.com/t5/technology-blogs-by-sap/automating-the-installation-of-sap-s-4hana-and-sap-hana-on-ibm-power/ba-p/13462363

SAP and Red Hat automation options
SAP and Red Hat have worked together for more than two decades to provide new innovative
solutions for SAP users. For SAP automation with Ansible, there are two different options:

� Red Hat Enterprise Linux System Roles for SAP

Red Hat Enterprise Linux System Roles for SAP is a subset of the Red Hat Enterprise
Linux System Roles, which is a collection of Ansible roles and modules that is provided as
part of your Red Hat subscription. These system roles provide a stable and consistent
configuration interface to automate and manage system functions across multiple
releases of RHEL. These roles are run by Ansible to help administrators with server
configuration after the servers are installed. The system roles are available either from the
rhel-system-roles Red Hat Package Manager or from Red Hat Automation Hub.

The roles are based on the development of the Linux System Roles upstream project, and
for the SAP related roles, the SAP LinuxLab upstream project. These roles are supported
by Red Hat.

� SAP LinuxLab Automation for SAP

The SAP LinuxLab open-source initiative provides simpler creation and management of
SAP environments by using code and tools that are created by SAP Technology Partners.
All capabilities that are available through the SAP LinuxLab open-source initiative are
available for SAP Customers and SAP Service Partners. The projects within this initiative
help SAP technical administrators and infrastructure administrators run their SAP systems
by providing the following features:

– Automation of SAP Landscapes infrastructure, OS preparation, and SAP software
installation with homogeneous architectures

– Automation of common operational tasks

– Sizing tools and architectural guidance for SAP Landscapes

– Other technical deliverables and tools

These projects are open source and community-supported and might have more
up-to-date content compared to the Red Hat Enterprise Linux System Roles for SAP
because it takes some time to integrate content from this GitHub project into the
supported Red Hat product.

SAP LinuxLab has many projects and tools, but we focus in this publication on those
projects that help automate tasks in the SAP environment, including installation or Day 0
operations, and Day 1 and Day 2 operations. The list of SAP LinuxLab projects that are
relevant to automation is provided in Table 4-3.

Table 4-3 SAP LinuxLab projects

Project repository Project description

community.sap_install Collection of Ansible Roles for various SAP software
installations.

community.sap_operations Collection of Ansible Roles for various operational tasks
with SAP Systems.

community.sap_launchpad Collection of Ansible Roles and Ansible Modules for
various tasks by using SAP Launchpad APIs.

community.sles-for-sap Collection of Ansible roles for SUSE Linux Enterprise
Server for SAP.

terraform.templates_for_sap Terraform Templates for deployment of various SAP
solution scenarios for every cloud and hypervisor.
224 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/articles/4488731
https://cloud.redhat.com/ansible/automation-hub/repo/published/redhat/rhel_system_roles
https://sap-linuxlab.github.io/00_about/
https://github.com/sap-linuxlab/community.sap_install
https://github.com/sap-linuxlab/community.sap_operations
https://github.com/sap-linuxlab/community.sap_launchpad
https://github.com/sap-linuxlab/community.sap
https://github.com/sap-linuxlab/terraform.templates_for_sap

Both of these options are described more completely in the following sections.

4.7.1 Red Hat Enterprise Linux System Roles for SAP

The Red Hat System Roles for SAP was introduced in RHEL 7. It is provided as part of the
RHEL for SAP Solutions subscription, and can be used by Ansible to manage RHEL systems.
With system roles, you can do the following tasks:

� Provision and configure infrastructure and network components, OS, and applications
according to SAP HANA and SAP S/4HANA requirements.

� Manage configurations for RHEL, SAP, and any other system that integrates with your
SAP deployment.

� Standardize infrastructure provisioning and configuration processes across your
environment.

� Automate error-prone manual tasks to improve accuracy and reliability.

� Patch and perform other security-related operations.

The RHEL subscription supports RHEL System Roles. Here are the roles that are provided
by the System Roles for SAP:

� sap_general_preconfigure (was named sap-preconfigure in earlier versions)

� sap_netweaver_preconfigure (was named sap-netweaver-preconfigure previously)

� sap_hana_preconfigure (was named sap-hana-preconfigure previously)

The RHEL System Roles for SAP, like the RHEL System Roles, are installed and run from a
central node or control node. The control node connects to one or more managed nodes and
performs installation and configuration steps on them. As a best practice, use the latest major
release of RHEL on the control node (RHEL 8) and use the latest version of the roles either
from the rhel-system-roles-sap Red Hat Package Manager or from Red Hat Automation
Hub. The RHEL System Roles for SAP and Ansible packages do not need to be installed on
the systems that are managed.

Table 4-4 shows the supported combinations of managed systems and control nodes for the
current version of the Linux System Roles for SAP.

Table 4-4 Supported configurations for System Roles for SAP

terraform.modules_for_sap Terraform Modules for each cloud and hypervisor and
dynamic Ansible Playbooks for SAP installations.
Subcomponent of the Terraform Templates for SAP.

demo.sap_install Demonstration usage of the community.sap_install
collection in Ansible Automation Platform or AWX.

Project repository Project description

Control node Managed node Support status

RHEL 8.4 or later RHEL 8.0 or later Fully supported

RHEL 8.4 or later RHEL 7.6 or later Fully supported

RHEL 8.4 or later RHEL 7.5 or earlier Not supported

RHEL 8.3 or earlier RHEL (any release) Not supported
Chapter 4. Automated application deployment on IBM Power servers 225

https://github.com/sap-linuxlab/terraform.modules_for_sap
https://github.com/sap-linuxlab/demo.sap_install

System Roles for SAP support multiple hardware architectures for the managed nodes,
including x86_64 for Intel compatible nodes, ppc64le for IBM Power nodes, and s390x for
IBM Z servers.

Configuring SAP systems
The System Roles for SAP roles are designed to set up your SAP systems based on specific
SAP documents. Table 4-5 defines what each of the roles are designed to do.

Table 4-5 Role descriptions and use cases

To prepare a managed node for running SAP HANA, run both the sap_general_preconfigure
role and the sap_hana_preconfigure role. Likewise, to prepare a node to run SAP NetWeaver,
run the sap_general_preconfigure role and the sap_netweaver_preconfigure role.

Table 4-6 shows the SAP Notes that are implemented by each of the system roles.

Table 4-6 Actions that are performed and SAP Notes that are implemented

Note: For control nodes running RHEL 7.8, RHEL 7.9, or RHEL 8.1, you can use the
previous versions of rhel-system-roles-sap, which are in technology preview support
status. For more information, see Red Hat Enterprise Linux System Roles for SAP.

For control nodes running RHEL 8.2 or RHEL 8.3, you can use Version 2 of
rhel-system-roles-sap, which is fully supported. For more information, see Red Hat
Enterprise Linux System Roles for SAP v2.

Important: The System Roles for SAP are used right after the initial installation of a
managed node. Do not run these roles against an SAP or other production system. The
role enforces a certain configuration on the managed node, which might not be intended.
Starting with Version 3, the roles support an Assert parameter for validating existing
systems. For more information, see “Assert parameter” on page 227.

Before applying the roles on a managed node, verify that the RHEL release on the
managed node is supported by the SAP software version that you are planning to install.

System role Purpose Use cases

sap_general_preconfigure Install the software and perform all
configuration steps that are required for the
installation of SAP NetWeaver or SAP
HANA.

SAP NetWeaver and
SAP HANA

sap_netweaver_preconfigure Install additional software and perform
additional configuration steps that are
required for SAP NetWeaver.

SAP NetWeaver

sap_hana_preconfigure Install additional software and perform
additional configuration steps that are
required for SAP HANA.

SAP HANA

System role SAP Note for RHEL 7 SAP Note for RHEL 8

sap_general_preconfigure SAP Note 2002167.
SAP Note 1391070.
SAP Note 0941735 (TMPFS only).

SAP Note 2772999.

sap_netweaver_preconfigure SAP Note 2526952 (tuned profiles only). SAP Note 2526952 (tuned profiles only).
226 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/sites/default/files/attachments/rhel_system_roles_for_sapv1.pdf
https://access.redhat.com/sites/default/files/attachments/rhel_system_roles_for_sapv2_0.pdf
https://access.redhat.com/sites/default/files/attachments/rhel_system_roles_for_sapv2_0.pdf

Assert parameter
Starting with Version 3 of the package, rhel-system-roles-sap supports running the roles in
assert mode. In assert mode, managed nodes are not modified, but instead they report the
compliance of a node with the applicable SAP notes.

When running playbooks that use the assert mode on previous versions of the roles, the
assert parameters are ignored, which can modify the managed node instead of checking
them. Help ensure that Version 3 of the package is used. In addition, check that the playbooks
you are using are calling the roles from the correct location, which is
/usr/share/ansible/roles by default.

Preparing a system for a SAP HANA installation
To prepare a system that is named hana-p11 for SAP HANA installation, you can follow these
steps:

1. Verify that there is no production software running on the managed node. Generally, the
RHEL system roles for SAP are run right after RHEL installation, so there is no production
software.

2. Validate that you can connect to the managed node by using SSH without a password:

ssh hana-p11 uname -a

sap_hana_preconfigure Install required packages per documents
SAP HANA 2.0 running on RHEL 7.x and
SAP HANA SPS 12 running on RHEL 7.x,
which are attached to SAP Note 2009879.

Install the required packages for SAP
HANA as mentioned in SAP Note
2772999.

ppc64le only:
Install additional required packages per
IBM Power Systems service and
productivity tools.

ppc64le only:
Install additional required packages per
IBM Power Systems service and
productivity tools.

Perform configuration steps per
documents SAP HANA 2.0 running on
RHEL 7.x and SAP HANA SPS 12 running
on RHEL 7.x, which are attached to SAP
Note 2009879.

ppc64le only: SAP Note 2055470. ppc64le only: SAP Note 2055470.

SAP Note 2292690. SAP Note 2777782.

SAP Note 2382421. SAP Note 2382421.

System role SAP Note for RHEL 7 SAP Note for RHEL 8
Chapter 4. Automated application deployment on IBM Power servers 227

https://www14.software.ibm.com/support/customercare/sas/f/lopdiags/home.html
https://www14.software.ibm.com/support/customercare/sas/f/lopdiags/home.html
https://www14.software.ibm.com/support/customercare/sas/f/lopdiags/home.html
https://www14.software.ibm.com/support/customercare/sas/f/lopdiags/home.html

3. Create a yml file that is named sap-hana.yml that contains the content that is shown in
Example 4-22.

Example 4-22 Contents of sap-hana.yml

- hosts: all
- vars:
 sap_preconfigure_reboot_ok: yes
 sap_hana_preconfigure_enable_sap_hana_repos: yes
 sap_hana_preconfigure_set_minor_release: yes
 sap_hana_preconfigure_modify_grub_cmdline_linux: yes
 sap_hana_preconfigure_reboot_ok: yes
 roles:
 - sap_general_preconfigure
 - sap_hana_preconfigure

4. Run the following command:

ansible-playbook -l hana-p11 sap-hana.yml

4.7.2 Using the SAP LinuxLab automation

There are multiple collections in the SAP LinuxLab open-source initiative. These collections
can be combined to automate the full lifecycle of your SAP landscapes.

Most of the initial configuration and provisioning activity (Day 0 activities) is done with the
Terraform modules and templates, which support many infrastructures, both on-premises and
in the cloud. These options include support for on-premises Power servers and IBM Power
Systems Virtual Server cloud instances.

community.sap_install Ansible collection
The Day 1 automated SAP installation activity is provided by the community.sap_install
collection. This Ansible Collection runs various SAP Software installations and configuration
tasks for running SAP software on Linux OSs. It includes handlers for SAP HANA Database
Lifecycle Manager (HDBLCM) and SAP Software Provisioning Manager (SWPM), which
enables programmatic deployment of any SAP solution scenarios. You can combine this
collection with other Ansible Collections to provide end-to-end automation, from downloading
SAP software installation media to the full configuration of SAP NetWeaver application
servers and full high availability (HA) support by using built-in SAP HANA system replication
technologies.

This Ansible Collection runs various SAP Software installations for different SAP solution
scenarios, such as the following ones:

� SAP HANA installations through HDBLCM:

– Install the SAP HANA database server with any SAP HANA Component (for example,
Live Cache Apps, Application Function Library, or others).

– Configure firewall rules and the hosts file for SAP HANA database server instances.

– Apply for a license to SAP HANA.

– Configure storage layouts for SAP HANA mount points (that is, /hana/data, /hana/log,
and /hana/shared).

– Install SAP Host Agent.

– Install Linux Pacemaker, and configure Pacemaker Fencing Agents and Pacemaker
Resource Agents.
228 Using Ansible for Automation in IBM Power Environments

– Install SAP HANA System Replication.

– Set high availability and disaster recovery (HADR) for SAP HANA System Replication.

� Every SAP Software installation through SAP SWPM:

– Run software install tasks by using Ansible Variable to generate SWPM Unattended
installations (use the sap_swpm Ansible Role default mode).

Optional usage of template definitions for repeated installations (use the sap_swpm
Ansible Role default templates mode).

– Run software install tasks with Ansible Variables one-to-one matched to SWPM
Unattended ini file parameters to generate bespoke SWPM Unattended installations
(use the sap_swpm Ansible Role advanced mode).

Optional usage of template definitions for repeated installations (use the sap_swpm
Ansible Role advanced templates mode).

– Run previously defined installations with an existing SWPM Unattended
inifile.params (use the sap_swpm Ansible Role inifile_reuse mode).

– Install Linux Pacemaker, and configure Pacemaker Fencing Agents and Pacemaker
Resource Agents.

– Set HADR with distributed SAP System installations (that is, SAP Replication Server
(SRS))

The following SAP Software solutions were extensively tested:

� SAP HANA

– Scale-Up

– Scale-Out

– HA

� SAP NetWeaver AS (Advanced Business Application Programming or Java) and other
add-ons (for example, SAP GRC or SAP Adobe Document Services)

� SAP S/4HANA AnyPremise (1809, 1909, 2020, 2021, or 2022):

– Sandbox (One Host) installation

– Standard (Dual Host) installation

– Distributed installation

– HA installation

– System Copy (Homogeneous with SAP HANA Backup / Recovery) installation

– Maintenance Planner installation

– System Rename

� SAP BW/4HANA

� SAP Business Suite on HANA (SAP Suite on HANA (SAP SoH), that is, SAP ECC on
HANA)

� SAP Business Suite (that is, SAP ECC with SAP AnyDB - SAP ASE, SAP MaxDB, IBM
Db2, or Oracle DB)

� SAP Solution Manager 7.2

� SAP Web Dispatcher
Chapter 4. Automated application deployment on IBM Power servers 229

The collection is designed for Linux OSs. It has not been tested or adapted for SAP
NetWeaver Application Server instances on IBM AIX or Windows Server. It supports RHEL 7
and later and SUSE Linux Enterprise Server 15 SP3 and later.

This collection provides the Ansible roles that are described in Table 4-7. There are no
custom modules.

Table 4-7 Ansible roles that are provided by the installation collection

The community.sap_operations Ansible collection
This collection is designed to help with operational activity (Day 2) in your SAP landscape.
Here are some of the use cases that can be automated with Ansible for Day 2 operations:

� SAP instance system copies.

Restriction: The collection does not support SUSE Linux Enterprise Server before version
15 SP3 because of the following reasons:

� firewalld, which was added in SUSE Linux Enterprise Server 15 SP3, is used within the
Ansible Collection.

� SELinux is used within the Ansible Collection. Full support for SELinux was provided as
of SUSE Linux Enterprise Server 15 SP3.

Name Summary

sap_anydb_install_oracle Install Oracle DB 19.x for SAP.

sap_general_preconfigure Configure general OS settings for SAP software.

sap_ha_install_hana_hsr Install SAP HANA System Replication.

sap_ha_pacemaker_cluster Install and configure Pacemaker and SAP
resources.

sap_hana_install Install SAP HANA through HDBLCM.

sap_hana_preconfigure Configure settings for SAP HANA database server.

sap_hostagent Install SAP Host Agent.

sap_hypervisor_node_preconfigure Configure a hypervisor running VMs for SAP HANA.

sap_install_media_detect Detect and extract SAP Software installation media.

sap_netweaver_preconfigure Configure settings for SAP NetWeaver application
server.

sap_storage_setup Configure storage for SAP HANA with logical
volume manager (LVM) partitions and XFS file
system.

sap_swpm Install SAP Software through SWPM.

sap_vm_preconfigure Configure settings for a guest (VM) running on
RHV/KVM for SAP HANA.

Important: In general, the “preconfigure” and “prepare” roles are prerequisites for the
corresponding installation roles. The logic was separated to support a flexible execution of
the different steps.
230 Using Ansible for Automation in IBM Power Environments

� Spin up or delete new application servers on demand (for example, for hyperscalers).

� Instance refreshes.

� Kernel parameter changes.

� SAP kernel upgrade.

� DB operations.

� DB and OS patching.

� Resource addition (CPU, memory, and disk).

� Cluster management.

� DB backup/restore.

� Stop and start SAP instances.

� Shut down sandbox or preproduction systems to cold storage and pull them out of storage
when needed.

� Smart management and proactive issue resolution for SAP servers.

� Near-zero downtime maintenance for SAP servers.

Day 2 operational automation is provided by the community.sap_operations collection. This
Ansible Collection runs various SAP Systems operational tasks, which can be used
individually during daily operations or combined for more complex automation of system
maintenance activities. Here are some of the SAP Systems operational tasks:

� OS configuration postinstallation of SAP software:

– Create an Ansible user for managing systems.
– Update the /etc/hosts file.
– Update the SSH authorized known hosts file.
– Update the fapolicy entries based on SAP System instance numbers.
– Update firewall port entries based on SAP System instance numbers.
– License registration and refresh for RHEL subscription manager.

� SAP administration tasks

– Start or stop of SAP HANA and SAP NetWeaver (in any configuration).
– Update SAP profile files.
– Run SAP Remote Function Calls (RFCs).

The collection consists of several Ansible Roles that combine several Ansible modules into a
workflow. These roles, which are shown in Table 4-8, can be used within a playbook for
specific tasks.

Table 4-8 Ansible Roles

Name Summary

os_ansible_user Creates an Ansible user ansadm with an SSH key.

os_etchosts Updates /etc/hosts.

os_knownhosts Updates the known hosts file /.ssh/known_hosts.

sap_control Starts and stops SAP systems.

sap_fapolicy Updates the service fapolicyd for generic, sap nw, or sap hana related
UIDs.

sap_firewall Updates the service firewalld for generic, sap nw, or sap hana related
ports.
Chapter 4. Automated application deployment on IBM Power servers 231

In addition to the roles, there are more Ansible modules that are provided by the collection.
These modules, which are shown in Table 4-9, can be called directly within a playbook.

Table 4-9 Ansible modules

More download automation software is provided by the community.sap_launchpad collection.

Example scenarios
This section provides some example scenarios that use the functions that are provided by the
community.sap_operations Ansible collection.

� sap_control

This Ansible Role runs basic SAP administration tasks on Linux OSs:

– Start, stop, or restart SAP HANA Database Server.
– Start, stop, or restart SAP NetWeaver Application Server.
– Multiple automatic discoveries, and start, stop, or restart SAP HANA Database Server

or SAP NetWeaver Application Server.

The specific control function is defined by using the sap_control_function parameter,
which can be any of the following items:

– restart_all_sap
– restart_all_nw
– restart_all_hana
– restart_sap_nw
– restart_sap_hana
– stop_all_sap
– start_all_sap
– stop_all_nw
– start_all_nw
– stop_all_hana
– start_all_hana

sap_profile_update Updates the default and instance profiles.

sap_rfc Runs SAP RFCs.

sap_rhsm Red Hat subscription manager registration.

Name Summary

sap_operations.sap_facts Gathers SAP facts in a host (for example,
SAP System IDs and SAP System Instance
Numbers of either SAP HANA database server or
SAP NetWeaver application server).

sap_operations.sap_monitor_hana_status Checks the status of a running SAP HANA
database server.

sap_operations.sap_monitor_nw_status Checks the status of a running SAP NetWeaver
application server.

sap_operations.sap_monitor_nw_perf Checks host performance metrics from an SAP
NetWeaver Primary Application Server (PAS)
instance.

sap_operations.sap_monitor_nw_response Checks system response time metrics from an
SAP NetWeaver PAS instance.

Name Summary
232 Using Ansible for Automation in IBM Power Environments

– stop_sap_nw
– start_sap_nw
– stop_sap_hana
– start_sap_hana

Executions specifying all automatically detect any System IDs and corresponding
Instance Numbers. To specify a specific SAP system, provide the SAP system SID as a
parameter.

To restart all SAP systems, use the following parameter:

sap_control_function: "restart_all_sap"

To stop a specific SAP HANA database, use the following parameters:

sap_control_function: "stop_sap_hana"
sap_sid: "HDB"

� sap_hana_sr_takeover

This role can be used to help ensure, control, and change SAP HANA System Replication.
The role assumes that the SAP HANA System Replication was configured by using the
community.sap_install.sap_ha_install_hana_hsr role.

The variables that are shown in Table 4-10 are mandatory for running this role unless a
default value is specified.

Table 4-10 Required variables

The playbook that is shown in Example 4-23 shows how to implement this role. The
assumption is that there are two systems (hana1 and hana2) that are set up for SAP HSR,
with SID RHE and instance 00. The playbook helps ensure that hana1 is the primary and
hana2 is the secondary. The role does nothing if hana1 is already the primary and hana2
is the secondary. The role fails if hana1 is not configured for system replication and not in
sync.

Example 4-23 Playbook to set the primary in a HANA HSR setup

- name: Helps ensure hana1 is primary
 hosts: hanas
 become: true
 tasks:
 - name: Switch to hana1

Variable name Description

sap_hana_sr_takeover_primary The server that becomes the primary server.

sap_hana_sr_takeover_secondary The server that registers as a secondary server. The
role can be run twice if more than one secondary
server is needed by looping this variable.

sap_hana_sr_takeover_sitename The name of the site that is registered as a
secondary site.

sap_hana_sr_takeover_rep_mode The HANA replication mode (defaults to sync if not
set).

sap_hana_sr_takeover_hsr_oper_mode The HANA replication operation mode (defaults to
logreplay).

sap_hana_sid The HANA SID.

sap_hana_instance_number The HANA instance number.
Chapter 4. Automated application deployment on IBM Power servers 233

 ansible.builtin.include_role:
 name: community.sap_operations.sap_hana_sr_takeover
 vars:
 sap_hana_sr_takeover_primary: hana2
 sap_hana_sr_takeover_secondary: hana1
 sap_hana_sr_takeover_sitename: DC01
 sap_hana_sid: "RHE"
 sap_hana_instance_number: "00"

More documentation and examples are available as part of the collection documentation at
GitHub. In the roles directory, in the GitHub location, there is a subdirectory for each role that
includes a readme file that provides the specifics about how that role operates and its
requirements.

The community.sap_launchpad Ansible collection
This Ansible Collection runs basic SAP.com Support operations tasks to help download SAP
software or download files from the SAP Maintenance Planner. Maintenance Planner is a
solution that is hosted by SAP that helps plan and maintain systems in an SAP landscape,
and it can be used to plan complex activities like installing a new system or updating existing
systems.

Here are some of the operations that are supported:

� Software Center Catalog:
– Search and download SAP software center catalog files.
– Search and extract SAP software center catalog information.

� Maintenance Planner: Look up and download files from an existing 'New Implementation'
MP Transaction and Stack by sing SAP the software center's download basket.

The collection provides the modules that are shown in Table 4-11.

Table 4-11 Ansible modules from community.sap_launchpad

Credentials: SAP User ID
An SAP Company Number (SCN) contains one or more Installation Numbers, which provide
licenses for specified SAP Software. When an SAP User ID is created within the SCN, the
administrator must provide SAP Download authorizations for the SAP User ID.

When an SAP User ID is enabled as part of an SAP Universal ID, then the sap_launchpad
Ansible collection must use the following items:

� The SAP User ID
� The password for login with the SAP Universal ID

Name Functions

sap_launchpad.software_center_download Search for files and downloads.

sap_launchpad.maintenance_planner_files Maintenance Planner files retrieval.

sap_launchpad.maintenance_planner_stack_xml_down
load

Maintenance Planner stack XML
download.

Note: SAP software installation media must be obtained from SAP directly, which requires
valid license agreements with SAP to access these files.
234 Using Ansible for Automation in IBM Power Environments

https://github.com/sap-linuxlab/community.sap_operations

If an SAP Universal ID is used, then check and reset the SAP User ID ‘Account Password’ in
the SAP Universal ID Account Manager to avoid any potential conflicts.

Example 4-24 provides an example playbook to download specific SAP software by using the
sap_launchpad.software_center-download module. In this playbook, the user is prompted to
enter the SAP user ID and password. The playbook may be modified to use variables to enter
these values.

Example 4-24 Sample playbook to download software from the SAP software center

- hosts: all

 collections:
 - community.sap_launchpad

 pre_tasks:
 - name: Install Python package manager pip3 to system Python
 yum:
 name: python3-pip
 state: present
 - name: Install Python dependencies for Ansible Modules to system Python
 pip:
 name:
 - urllib3
 - requests
 - beautifulsoup4
 - lxml

Prompt for Ansible Variables
 vars_prompt:
 - name: suser_id
 prompt: Enter S-User
 private: no
 - name: suser_password
 prompt: Enter Password
 private: yes

Define Ansible Variables
 vars:
 ansible_python_interpreter: python3
 softwarecenter_search_list:
 - 'SAPCAR_1324-80000936.EXE'
 - 'HCMT_057_0-80003261.SAR'

Use task block to call Ansible Module
 tasks:
 - name: Run Ansible Module to download SAP software
 community.sap_launchpad.software_center_download:
 suser_id: "{{ suser_id }}"
 suser_password: "{{ suser_password }}"
 softwarecenter_search_query: "{{ item }}"
 dest: "/tmp/"
 loop: "{{ softwarecenter_search_list }}"
 loop_control:
 label: "{{ item }} : {{ download_task.msg }}"
Chapter 4. Automated application deployment on IBM Power servers 235

 register: download_task
 retries: 1
 until: download_task is not failed

Example 4-25 shows an example playbook that downloads a list of files that are defined by
using the Maintenance Planner. The playbook prompts for your SAP user credentials and a
specific Maintenance Planner transaction name that was previously created.

Example 4-25 Playbook to download files that are defined in a Maintenance Planner transaction

- hosts: all

 collections:
 - community.sap_launchpad

pre_tasks:

Prompt for Ansible Variables
 vars_prompt:
 - name: suser_id
 prompt: Enter S-User
 private: no
 - name: suser_password
 prompt: Enter Password
 private: yes
 - name: mp_transaction_name
 prompt: Enter MP transaction name
 private: no

Define Ansible Variables
 vars:
 ansible_python_interpreter: python3

Use task block to call Ansible Module
 tasks:
 - name: Run Ansible Module 'maintenance_planner_files' to get files from MP
 community.sap_launchpad.maintenance_planner_files:
 suser_id: "{{ suser_id }}"
 suser_password: "{{ suser_password }}"
 transaction_name: "{{ mp_transaction_name }}"
 register: sap_maintenance_planner_basket_register

 # - debug:
 # msg:
 # - "{{ sap_maintenance_planner_basket_register.download_basket }}"

 - name: Run Ansible Module 'software_center_download' to download files
 community.sap_launchpad.software_center_download:
 suser_id: "{{ suser_id }}"
 suser_password: "{{ suser_password }}"
 download_link: "{{ item.DirectLink }}"
 download_filename: "{{ item.Filename }}"
 dest: "/tmp/test"
 loop: "{{ sap_maintenance_planner_basket_register.download_basket }}"
 loop_control:
236 Using Ansible for Automation in IBM Power Environments

 label: "{{ item }} : {{ download_task.msg }}"
 register: download_task
 retries: 1
 until: download_task is not failed
Chapter 4. Automated application deployment on IBM Power servers 237

238 Using Ansible for Automation in IBM Power Environments

Chapter 5. Infrastructure as Code by using
Ansible

Infrastructure as Code (IaC) is the ability to automate the management of infrastructure
resources by using code, for example, Ansible. Traditionally, an Ansible client is as a virtual
machine (VM) or a storage controller, but with IaC, the Ansible client can be a service that
manages end-to-end infrastructure resources, which include VMs, networks, storage, zoning,
and other resources. Within IBM Power environments, these services include
IBM PowerVC, IBM Cloud Power Systems Virtual Server, and IBM PowerVM, which provide
Virtual I/O Server (VIOS) management and the Hardware Management Console (HMC).

You can use IaC to deploy, destroy, resize, rebalance, and migrate workloads to different
infrastructures. This chapter introduces the concept of IaC and describes the capabilities that
Ansible provides to deliver IaC on IBM Power.

The following topics are described in this chapter:

� IBM Power Virtualization Center
� IBM Power Systems Virtual Server

5

© Copyright IBM Corp. 2024. 239

5.1 IBM Power Virtualization Center

IBM Power Virtualization Center (PowerVC) provides simplified management of IBM AIX,
IBM i, and Linux VMs running on IBM Power. It is built on OpenStack to provide private cloud
capabilities across your IBM Power environment. IBM PowerVC capabilities include creating
and destroying VMs, networks, network interfaces, storage volumes, and images. It can also
perform tasks against the VMs, such as stop, start, resize, migrate, clone, create, and restore
snapshots, and attach storage volumes.

5.1.1 Advantages of PowerVC

PowerVC offers a range of benefits that are tailored to IBM Power environments:

� Expandability: Attach volumes or more networks to VMs.

� Flexibility: Import and export existing systems and volumes between on-premises and
off-premises locations.

� Efficiency: Take snapshots of VMs and clone them for quick replication.

� Seamless migration: Migrate running VMs by using Live Partition Mobility (LPM).

� Continuity: Restart VMs remotely if there is a server failure.

� Simplified management: Streamline Power virtualization administration.

� Agility: Adapt swiftly to changing business requirements.

� Dynamic resource management: Create, resize, and adjust CPU and memory resources
for VMs.

When you deploy a new VM by using IBM PowerVC, it performs all the required tasks:

� Creates the VM profile on the HMC, including all network and storage interfaces.
� Creates the appropriate storage area network (SAN) zoning.
� Creates the VM on the storage controller.
� Creates the root and non-root storage volumes.
� Updates the VIOS to map the VM to its new volumes.
� Starts the new VM.

When you delete a VM, all the resources that were created by IBM PowerVC are removed
cleanly.

With IBM PowerVC, there are two options to choose from to work with Ansible:

� Using the OpenStack modules
� Making Representational State Transfer (REST) application programming interface (API)

calls by using the URI module

This section covers both methods.

5.1.2 Using the OpenStack Cloud modules

In this section, you learn about the following IaC options that use the OpenStack Cloud
modules and IBM PowerVC:

� Authentication
� Creating a VM
� Destroying an existing VM
� Showing resource information
240 Using Ansible for Automation in IBM Power Environments

� Stopping or starting a VM
� Creating a storage volume
� Attaching a storage volume to an existing VM

Because IBM PowerVC is built on OpenStack, you may use several of the cloud modules that
are provided by the OpenStack community. These modules are available at Ansible Galaxy.

You can download the OpenStack Cloud collection either by using ansible-galaxy from the
CLI or by using the requirements.yml file. Example 5-1 shows using ansible-galaxy to
download the collection.

Example 5-1 Downloading the OpenStack Cloud collection

ansible-galaxy collection install openstack.cloud
Process install dependency map
Starting collection install process
Installing 'openstack.cloud:2.1.0' to
'/root/.ansible/collections/ansible_collections/openstack/cloud'

Example 5-2 shows the requirements.yml file that you can use to download the collection.

Example 5-2 Example requirements.yml file to download the OpenStack Cloud collection

collections:
 - name: openstack.cloud
 source: https://galaxy.ansible.com

For Ansible to run the OpenStack Cloud modules, first install the OpenStack SDK on your
Ansible Controller, as described in the ‘readme’ section of the collection page at Ansible
Galaxy. The command that is shown in Example 5-3 installs the SDK.

Example 5-3 Downloading the OpenStack Cloud collection

$ pip3.9 install openstacksdk

You can verify that the modules were installed correctly by using the ansible-doc command.
Example 5-4 shows an example of the documentation for the OpenStack Cloud image
information module.

Example 5-4 Viewing the openstack.cloud.server_info documentation

$ ansible-doc openstack.cloud.image_info
..
REQUIREMENTS: python >= 3.6, openstacksdk >= 1.0.0
AUTHOR: OpenStack Ansible SIG
EXAMPLES:
- name: Gather previously created image named image1
 openstack.cloud.image_info:
 cloud: devstack-admin
 image: image1

- name: List all images
 openstack.cloud.image_info:
Chapter 5. Infrastructure as Code by using Ansible 241

https://galaxy.ansible.com/openstack/cloud

Table 5-1 shows some of the OpenStack Cloud modules that are relevant to
IBM PowerVC.

Table 5-1 OpenStack Cloud modules

Authenticating with IBM PowerVC
Before Ansible can use the OpenStack cloud modules, it must authenticate with the
IBM PowerVC server.

To authenticate from the CLI, create a clouds.yml file that contains the information about the
cloud environments that Ansible must connect to. In this case, the environment is an
IBM PowerVC server. The OpenStack modules look for the clouds.yaml file in the following
directories:

� current directory
� ~/.config/openstack
� /etc/openstack

The modules use the first one it finds.

The contents of an example clouds.yaml file are shown in Example 5-5 on page 243.

Modules name Function

openstack.cloud.auth Retrieves an auth token from PowerVC Cloud.

openstack.cloud.compute_flavor Manages PowerVC compute flavors.

openstack.cloud.compute_flavor_info Fetches compute flavors information from PowerVC
Cloud.

openstack.cloud.image Manages PowerVC images.

openstack.cloud.image_info Fetches image information from PowerVC Cloud.

openstack.cloud.keypair Manages PowerVC keypairs.

openstack.cloud.keypair_info Fetches keypair information from PowerVC Cloud.

openstack.cloud.project Manages PowerVC projects.

openstack.cloud.project_info Fetches project information from PowerVC Cloud.

openstack.cloud.server Creates or deletes VMs within PowerVC Cloud.

openstack.cloud.server_action Performs actions on PowerVC VMs.

openstack.cloud.server_info Fetches VM information from PowerVC Cloud.

openstack.cloud.server_volume Attaches or detaches volumes from PowerVC VMs.

openstack.cloud.volume Manages PowerVC storage volumes.

openstack.cloud.volume_info Fetches storage volume information from PowerVC
Cloud.

openstack.cloud.volume_snapshot Manages PowerVC snapshots.

openstack.cloud.volume_snapshot_ino Fetches snap host information from PowerVC Cloud.
242 Using Ansible for Automation in IBM Power Environments

Example 5-5 Example clouds.yml file

$ cat clouds.yml
powervc_cloud:
 auth:
 auth_url: https://x.x.x.x:5000/v3/
 project_name: ibm-default
 project_domain_name: Default
 user_domain_name: Default
 username: <powervc_userid>
 password: <powervc_userid_password>
 region_name: RegionOne
 cacert: "./powervc.crt

The first line is the name of your cloud. The name is for reference only, and it does not have to
match the real name. You can use the cloud name to define authentication methods to
multiple OpenStack clouds and refer to them individually within your playbooks.

The auth_url is the IP address of your IBM PowerVC server, and the remaining auth settings
are specific to your PowerVC environment, such as project, user ID, password, and others.

You must have a copy of the CA cert file from the PowerVC server that you reference in the
cacert line, which can be found on your PowerVC server (the default location is
/etc/pki/tls/certs/powervc.crt).

Confirming authentication to IBM PowerVC
Now that you have set up authentication, you can confirm that Ansible can use the OpenStack
cloud modules to retrieve information from IBM PowerVC. A simple way to do this task is tp
create a playbook to show the images that are contained on IBM PowerVC, as shown in
Example 5-6.

Example 5-6 Example playbook to list PowerVC images by using the openstack.cloud.image_info
module

$ cat PowerVC_list_images.yml

- name: List available PowerVC Images
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Retrieve list of all AIX images
 openstack.cloud.image_info:
 cloud: powervc_cloud
 register: image_results

 - name: Show name, ID, OS distribution, and status of images
 debug:
 msg: "{{ image_results | json_query('images[*].
 {name: name, id: id, os_distro: os_distro, status: status}') }}"
Chapter 5. Infrastructure as Code by using Ansible 243

In Example 5-7, you call a task by using the openstack.cloud.image_info modules to point at
the cloud powervc_cloud. This cloud name must match the entry in your clouds.yml
authentication file that you defined earlier. Then, register the results and output them in the
second task. Now, you can run the playbook to list your IBM PowerVC images, as shown in
Example 5-7.

Example 5-7 An example playbook to list PowerVC images by using the openstack.cloud.image_info
module

$ ansible-playbook PowerVC_list_images.yml
PLAY [List available PowerVC Images]
**
TASK [Retrieve list of all AIX images]
**
ok: [localhost]
TASK [Show name, ID, OS distribution, and status of images]
**
ok: [localhost] => {
 "msg": [
 {
 "id": "f62a76dd-4742-445f-aa5c-f3f447dd778e",
 "name": "RHCOS-4.12.17",
 "os_distro": "coreos",
 "status": "active"
 },

 {
 "id": "0930d057-dc7e-415f-97cd-1fe36ecdcdbd",
 "name": "RHEL v9.1",
 "os_distro": "rhel",
 "status": "active"
 },
{
 "id": "d51d8cfd-c83b-4ec6-9464-8d4215259546",
 "name": "AIX 7.3",
 "os_distro": "aix",
 "status": "active"
 },
{
 "id": "c64ff508-3a81-4679-a9e4-29acc3f96430",
 "name": "IBM i v7.3",
 "os_distro": "ibmi",
 "status": "active"
 }
]
}

PLAY RECAP
**
localhost : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Note: You might have to install the community.general collection to parse the data by using
json_query, as shown in Example 5-8.
244 Using Ansible for Automation in IBM Power Environments

Example 5-8 Downloading the Community General collection by using ansible-galaxy

$ ansible-galaxy collection install community.general
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Downloading https://galaxy.ansible.com/download/community-general-7.2.1.tar.gz to
/root/.ansible/tmp/ansible-local-3467397n4zdigf9/tmpc_m7f9qt/community-general-7.2
.1-i83jeq8b
Installing 'community.general:7.2.1' to
'/root/.ansible/collections/ansible_collections/community/general'
community.general:7.2.1 was installed successfully

Creating VMs by using the openstack.cloud.server module
You can use the openstack.cloud.server module to create an AIX, IBM i, or Linux VM, as
shown in Example 5-9.

Example 5-9 Creating a VM by using PowerVC

- name: Creating VM {{ VM_Name }} by using PowerVC
openstack.cloud.server:

cloud: "{{ PowerVC_Cloud_Name }}"
state: present
name: "{{ VM_Name }}"
image: "{{ Image_ID_ or_Name }}"
flavor: "{{ Flavor_ID_or_Name }}"
network: "{{ Network_Name }}"
key_name: "{{ SSH-Key_Name }}"

register: vm_create_information

In Example 5-9, you passed the openstack.cloud.server module a few key variables so that
it could build the VM:

<cloud> The name of the PowerVC cloud that is defined in clouds.yml.

<state> Present (if the VM does not exist, create it).

<name> The name of the new VM (in this example, aix-vm-1).

<image> The name or ID of the PowerVC image to use (obtained from
PowerVC).

<flavor> The name or IR of the PowerVC compute flavor to use (obtained from
PowerVC)

<network> The name of the PowerVC network to use (obtained from PowerVC).

<key_name> The name of the Secure Shell (SSH) key pair to inject into the new VM
(obtained from PowerVC).
Chapter 5. Infrastructure as Code by using Ansible 245

When you run this task, Ansible uses the openstack.cloud.server module to connect to the
IBM PowerVC cloud and create the VM by using the name that is provided. The results for
running the playbook are shown in Example 5-10.

Example 5-10 Output from creating a VM by using OpenStack modules on IBM PowerVC

PLAY [Connect to PowerVC/Openstack and build VM]

TASK [Creating VM aix-vm-1 by using PowerVC]

changed: [localhost]
PLAY RECAP ***
localhost : ok=3 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

You can also see the new VM being created on the IBM PowerVC UI, as shown in Figure 5-1.

Figure 5-1 PowerVC VM build by using OpenStack modules

If any of the variables that are passed are incorrect, the module fails without creating the VM.
For example, if you passed the module an incorrect image name, it fails with a message
similar to what is shown in Example 5-11.

Example 5-11 Error showing an incorrect PowerVC image name

TASK [Create a VM instance by using PowerVC]

fatal: [localhost]: FAILED! => {"changed": false, "msg": "Could not find image AIX
7.2 TL2 SP6”

Destroying a VM by using the openstack.cloud.server module
You can also use the openstack.cloud.server module to destroy an AIX, IBM i, or Linux VM,
as shown Example 5-12.

Example 5-12 Destroying an existing VM by using PowerVC

- name: “Destroying VM {{ VM_Name }} by using PowerVC”
openstack.cloud.server:

cloud: "{{ PowerVC_Cloud_Name }}"
state: absent
name: "{{ VM_Name }}"

register: vm_destroy_information

Note: In Example 5-10, you allowed PowerVC to assign an IP address from its IP pool.
246 Using Ansible for Automation in IBM Power Environments

In Example 5-12 on page 246, you passed the openstack.cloud.server module three
variables to destroy the VM:

<cloud> The name of the PowerVC cloud that is defined in clouds.yml.

<state> Absent (if the VM exists, remove it).

<name> The name of the existing VM to destroy (in this example, we use
aix-vm-1).

Because the VM is managed by IBM PowerVC, when it is destroyed, all its resources,
including the storage volumes, the SAN zones, and its IP address allocations, are also
removed by default.

When you use the openstack.cloud.server module to destroy an existing VM, you receive
the message that the status changed, as shown in Example 5-13.

Example 5-13 Message showing that an existing VM was destroyed by using PowerVC

TASK [Destroying VM aix-vm-1 by using PowerVC]
**
changed: [localhost]

TASK [Show VM destroy output]
**
ok: [localhost] => {
 "vm_destroy_information": {
 "changed": true,
 "failed": false
 }
}
PLAY RECAP **
localhost : ok=3 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

You can also see that the new VM was destroyed on the IBM PowerVC UI, as shown in
Figure 5-2.

Figure 5-2 PowerVC UI showing that the VM was destroyed by using OpenStack modules

If you try to destroy a VM that does not exist, the openstack.cloud.server modules do not
return an error because you stated that the VM should be ‘state: absent’. The output tells you
that the status did not change (false), as shown in Example 5-14.

Example 5-14 Message showing an attempt to destroy a VM that does not exist by using PowerVC

TASK [Destroying VM aix-vm-1 by using PowerVC]

ok: [localhost]

TASK [Show VM destroy output]
**
ok: [localhost] => {
Chapter 5. Infrastructure as Code by using Ansible 247

 "vm_information": {
 "changed": false,
 "failed": false
 }
}

Retrieving IBM PowerVC resource information by using the
openstack.cloud modules
You can also use the openstack.cloud module to retrieve data from your PowerVC cloud. You
can see some of the common ‘information’ modules in Table 5-1 on page 242, including
openstack.cloud.server_info, openstack.cloud.volume_info, and
openstack.cloud.image_info. Because the openstack.cloud modules retrieve their data from
the PowerVC server and not the VM, you can query the resources infrastructure.

Displaying all VM information by using PowerVC
You can use openstack.cloud.server_info to retrieve infrastructure information about a
PowerVC controlled VM. Example 5-15 shows the module collecting all the information that
PowerVC knows about a VM.

Example 5-15 Displaying all the VM information

- name: Retrieve all information about an existing VM instance by using PowerVC
openstack.cloud.server_info:

cloud: "{{ PowerVC_Cloud_Name }}"
name: "{{ VM_Name }}"

register: vm_information

- name: Show all VM information collected
var: vm_information

The output that is collected shows a large amount of information that PowerVC retrieved
about the VM, which is shown in Example 5-16.

Example 5-16 Output from openstack.cloud.server_info

Output of information retrieval about a VM by using openstack.cloud.server_info
"servers": [
 {
 "access_ipv4": "x.x.x.x",
 "access_ipv6": "",
 "addresses": {
 "VLAN_888-NET_116": [
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:5f:75:e3:yy:xx",
 "OS-EXT-IPS:type": "patched",
 "addr": "x.x.x.x",
 "version": 4
 }
]
 },
 "admin_password": null,
 "attached_volumes": [
 {
 "attachment_id": null,
 "bdm_id": null,
248 Using Ansible for Automation in IBM Power Environments

 "delete_on_termination": true,
 "device": null,
 "id": "5119dfc1-8fc2-4a70-943d-da6266d71f9b",
 "location": null,
 "name": null,
 "tag": null,
 "volume_id": null
 },
 {
 "attachment_id": null,
 "bdm_id": null,
 "delete_on_termination": false,
 "device": null,
 "id": "25d70a6e-0923-491c-bb87-47b484b11c16",
 "location": null,
 "name": null,
 "tag": null,
 "volume_id": null
 }
],
 "availability_zone": "Default Group",
 "block_device_mapping": null,
 "compute_host": "828422A_XXXXXXX",
 "config_drive": "",
 "created_at": "2023-06-28T09:09:50Z",
 "description": "aix-vm-1",
 "disk_config": "MANUAL",
 "fault": null,
 "flavor": {
 "description": null,
 "disk": 0,
 "ephemeral": 0,
 "extra_specs": {
 "powervm:availability_priority": "127",
 "powervm:dedicated_proc": "false",
 "powervm:enable_lpar_metric": "true",
 "powervm:enforce_affinity_check": "false",
 "powervm:max_mem": "4096",
 "powervm:max_proc_units": "0.5",
 "powervm:max_vcpu": "1",
 "powervm:min_mem": "2048",
 "powervm:min_proc_units": "0.1",
 "powervm:min_vcpu": "1",
 "powervm:proc_units": "0.1",
 "powervm:processor_compatibility": "default",
 "powervm:secure_boot": "0",
 "powervm:shared_proc_pool_name": "DefaultPool",
 "powervm:shared_weight": "128",
 "powervm:srr_capability": "true",
 "powervm:uncapped": "true"
 },
 "id": "xtiny",
 "is_disabled": null,
 "is_public": true,
 "location": null,
Chapter 5. Infrastructure as Code by using Ansible 249

 "name": "xtiny",
 "original_name": "xtiny",
 "ram": 4096,
 "rxtx_factor": null,
 "swap": 0,
 "vcpus": 1
 },
 "flavor_id": null,
 "has_config_drive": "",
 "host_id":
"6e82dcb4ed92b0e70c305e2ee1021f0019d3bd88e9dd910b5a81xxxx",
 "host_status": "UP",
 "hostname": "aix-vm-1",
 "hypervisor_hostname": "XXXXX",
 "id": "371aa5fe-b5c2-4660-978b-09b323a49f66",
 "image": {
 "architecture": null,
 "checksum": null,
 "container_format": null,
 "created_at": null,
 "direct_url": null,
 "disk_format": null,
 "file": null,
 "has_auto_disk_config": null,
 "hash_algo": null,
 "hash_value": null,
 "hw_cpu_cores": null,
 "hw_cpu_policy": null,
 "hw_cpu_sockets": null,
 "hw_cpu_thread_policy": null,
 "hw_cpu_threads": null,
 "hw_disk_bus": null,
 "hw_machine_type": null,
 "hw_qemu_guest_agent": null,
 "hw_rng_model": null,
 "hw_scsi_model": null,
 "hw_serial_port_count": null,
 "hw_video_model": null,
 "hw_video_ram": null,
 "hw_vif_model": null,
 "hw_watchdog_action": null,
 "hypervisor_type": null,
 "id": "71c5ddb5-f4f9-431b-917d-e0c0df581xxx",
 "instance_type_rxtx_factor": null,
 "instance_uuid": null,
 "is_hidden": null,
 "is_hw_boot_menu_enabled": null,
 "is_hw_vif_multiqueue_enabled": null,
 "is_protected": null,
 "kernel_id": null,
 "location": null,
 "locations": null,
 "metadata": null,
 "min_disk": null,
 "min_ram": null,
250 Using Ansible for Automation in IBM Power Environments

 "name": null,
 "needs_config_drive": null,
 "needs_secure_boot": null,
 "os_admin_user": null,
 "os_command_line": null,
 "os_distro": null,
 "os_require_quiesce": null,
 "os_shutdown_timeout": null,
 "os_type": null,
 "os_version": null,
 "owner": null,
 "owner_id": null,
 "properties": {
 "links": [
 {
 "href":
"https://x.x.x.x:8774/6a01a6c6f13c40f79b7ff55xxxx70a371/images/71c5ddb5-f4f9-431b-
917d-e0c0xxx",
 "rel": "bookmark"
 }
]
 },
 "ramdisk_id": null,
 "schema": null,
 "size": null,
 "status": null,
 "store": null,
 "tags": [],
 "updated_at": null,
 "url": null,
 "virtual_size": null,
 "visibility": null,
 "vm_mode": null,
 "vmware_adaptertype": null,
 "vmware_ostype": null
 },
 "image_id": null,
 "instance_name": "aix-vm-1-371aa5fe-00000b9e",
 "is_locked": false,
 "kernel_id": "",
 "key_name": "ssh-key",
 "launch_index": 0,
 "launched_at": "2023-06-28T09:13:22.000000",}
],
 "max_count": null,
 "metadata": {
 "enforce_affinity_check": "false",
 "hostname": "aix-vm-1",
 "move_pin_vm": "false",
 "original_host": "828422A_xxxxx",
 },
 "min_count": null,
 "name": "aix-vm-1",
 "networks": null,
 "power_state": 1,
Chapter 5. Infrastructure as Code by using Ansible 251

 "progress": 100,
 "project_id": "6a01a6c6f13c40f79b7ff5552170axxx",
 "ramdisk_id": "",
 "reservation_id": "r-4n2mezi3",
 "root_device_name": "/dev/sda",
 "scheduler_hints": null,
 "security_groups": null,
 "server_groups": null,
 "status": "ACTIVE",
 "tags": [],
 "task_state": null,
 "terminated_at": null,
 "trusted_image_certificates": null,
 "updated_at": "2023-08-15T13:08:46Z",
 "user_data": null,
 "user_id":
"0688b01e6439ca32d698d20789d52169126fb41fb1a4ddafcebb97d854e836c9",
 "vm_state": "active",
 "volumes": [
 {
 "attachment_id": null,
 "bdm_id": null,
 "delete_on_termination": true,
 "device": null,
 "id": "5119dfc1-8fc2-4a70-943d-da6266d71f9b",
 "location": null,
 "name": null,
 "tag": null,
 "volume_id": null
 },
 {
 "attachment_id": null,
 "bdm_id": null,
 "delete_on_termination": false,
 "device": null,
 "id": "25d70a6e-0923-491c-bb87-47b484b11c16",
 "location": null,
 "name": null,
 "tag": null,
 "volume_id": null
 }
]

Displaying only VMs that are hosted on a specific IBM Power server through
PowerVC

Using the output that is shown in Example 5-16 on page 248, select which VMs that you want
to display by filtering on items such as status, network, image, or hosted IBM Power server.
You can select which values you display in your output.

In Example 5-17 on page 253, you use the openstack.cloud.server_info module to retrieve
information about VMs on a certain IBM Power server, and display the name, status, and
memory allocation of those VMs.
252 Using Ansible for Automation in IBM Power Environments

Example 5-17 Displaying the name, status, and memory of all VMs on a specific IBM Power server

- name: Collect information of all VMs on PowerServer1 through PowerVC
 openstack.cloud.server_info:
 cloud: powervc_cloud
 filters:
 compute_host: “{{ Server_serial_number }}”
 register: vm_on_host_results

 - name: Show the name, status, and memory of VMs on PowerServer1
 debug:
 msg: "{{ vm_on_host_results | json_query('servers[*].
 {name: name, status: vm_state, memory: flavor.ram}') }}"

TASK [Show the name, status, and memory of VMs on PowerServer1]

ok: [localhost] => {
 "msg": [
 {
 "memory": 4096,
 "name": "aix-vm-1",
 "status": "active"
 },
 {
 "memory": 4096,
 "name": "ibmi-vm-1",
 "status": "active"
 }
]

Stopping or starting a PowerVC VM by using the openstack.cloud
modules
Another useful module from the OpenStack Cloud collection is the server_action module.
You can use this module to perform a stop or start action against an existing VM through
PowerVC.

Example 5-18 shows an example of using openstack.cloud.server_action.

Example 5-18 Playbook for stopping or starting a PowerVC VM

- name:
 openstack.cloud.server_action:
 cloud: powervc_cloud
 name: “{{ VM_Name }}”
 action: <stop/start>
 register: result
Chapter 5. Infrastructure as Code by using Ansible 253

Creating and attaching a storage volume by using the openstack.cloud
modules
Using the opentstack.cloud modules, you can create and attach a new volume in
IBM PowerVC. To do so, use two of the modules from the collection:

� openstack.cloud.volume to create the volume.
� openstack.cloud.server_volume to attach the volume to an existing VM.

The openstack.cloud.volume module documentation can be found at Ansible Community
Documentation.

Example 5-19 shows an example of using this module to create a 10 GB storage volume.

Example 5-19 Creating a 10 GB storage volume by using the OpenStack Cloud collection

- name: Create a {{ new_disk_size }}GB volume, called {{ new_disk_name }} using
storage template {{ storage_template }}
 openstack.cloud.volume:
 cloud: powervc_cloud
 state: present
 name: "{{ new_disk_name }}"
 size: "{{ new_disk_size }}"
 volume_type: "{{ storage_template }}"
 register: volume_create_information

After you create the new storage volume, you can attach it to an existing VM by using the
OpenStack Cloud server volume module. The documentation for that module can be found at
Ansible Community Documentation.

Example 5-20 shows an example of using this module to attach the volume to an existing VM
in PowerVC.

Example 5-20 Attaching a storage volume to an existing PowerVC VM

- name: "Attach storage volume {{ new_disk_name }} to VM {{ VM_Name }}"
 openstack.cloud.server_volume:
 cloud: powervc_cloud
 state: present
 server: "{{ VM_Name }}"
 volume: "{{ new_disk_name }}"
 register: volume_attach_information

You can combine both tasks in the same playbook to first create and then attach the new
storage to an existing VM, as shown in Example 5-21 and Figure 5-3 on page 255.

Example 5-21 Output showing creating and attaching a new storage volume through PowerVC

PLAY [Connected to PowerVC/Openstack VM, create new disk and attach to VM]
**

TASK [Create a 10 GB volume, called data_volume_1 by using storage template V7K1
Secondary Pool] ***
changed: [localhost]

Note: The size of the volume is in GB, and the volume_type refers to the PowerVC storage
template to use.
254 Using Ansible for Automation in IBM Power Environments

https://docs.ansible.com/ansible/latest/collections/openstack/cloud/server_volume_module.html#ansible-collections-openstack-cloud-server-volume-module
https://docs.ansible.com/ansible/latest/collections/openstack/cloud/volume_module.html#ansible-collections-openstack-cloud-volume-module
https://docs.ansible.com/ansible/latest/collections/openstack/cloud/volume_module.html#ansible-collections-openstack-cloud-volume-module

TASK [Attach storage volume data_volume_1 to VM aix-vm-1]
**
changed: [localhost]

PLAY RECAP

localhost : ok=2 changed=2 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

The results are shown in the PowerVC UI, as shown in Figure 5-3.

Figure 5-3 PowerVC UI showing a new volume that is attached to a VM

5.1.3 Using the URI modules to interact with PowerVC API services

Another method of automating IBM PowerVC by using Ansible is to use the REST APIs that
IBM PowerVC provides. The OpenStack software has industry-standard interfaces that are
released under the terms of the Apache License. IBM PowerVC interfaces are a subset of
OpenStack northbound APIs.

This section describes the following IaC options by using the URI module that uses PowerVC
API services:

� Authentication
� Creating a VM
� Destroying an existing VM
� Showing resource information
� Resizing an online VM

Several interfaces were added or extended to enhance the capabilities that are associated
with the IBM Power platform REST APIs.

APIs use a common set of methods that you can use to perform operations on IBM PowerVC:

POST Create operation

GET Read operation

PUT Update operation

DELETE Delete operation
Chapter 5. Infrastructure as Code by using Ansible 255

There are three types of APIs that you can use to integrate Ansible with PowerVC:

Supported OpenStack APIs These APIs are a subset of the APIs that provided by
OpenStack and can be used with PowerVC without any
modifications.

Extended OpenStack APIs These APIs are a subset of the APIs that provided by
OpenStack, but their functions are extended by PowerVC.

PowerVC APIs These APIs do not exist in OpenStack and are exclusive to
PowerVC.

PowerVC APIs are provided by several, specialized inter-operable services. Each service is
accessible on a distinct port number and provides a set of APIs that run specialized functions
that are related to that service. The services are shown in Table 5-2.

Table 5-2 PowerVC API services

The OpenStack APIs that are shown in Table 5-2 can read, create, update, and delete
IBM PowerVC resources, including VMs, networks, storage, key pairs, images, and projects.
For more information, see the OpenStack organization site.

The IBM PowerVC APIs (along with references to the OpenStack APIs) are documented at
PowerVC documentation.

Each OpenStack and IBM PowerVC API service uses a unique port. Some of the key API
ports are shown in Table 5-3.

Table 5-3 PowerVC API service ports

Project or service name Description

OpenStack projects

Telemetry (Ceilometer) Billing, benchmarking, scalability, and statistics. Used for
auditing in PowerVC.

Storage (Cinder) Storage and storage volume management.

Image (Glance) Images and image management.

Identity (Keystone) Security, identity, and authentication services.

Networking (Neutron) Networking and network management.

Compute (Nova) Host or compute. Manages the lifecycle and operations of
compute resources.

PowerVC services

Validator Validates the PowerVC environment.

Service Function Port

Keystone Identify/authentication 5000

Nova Compute 8774

Neutron Network 9696

Glance Images 9292

Cinder Storage 9000
256 Using Ansible for Automation in IBM Power Environments

https://docs.openstack.org/2023.1/api/
https://www.ibm.com/docs/en/powervc/2.1.1?topic=power-virtualization-center-apis

To access IBM PowerVC APIs through Ansible, use the uri module, which is part of
ansible-core (ansible.builtin.uri).

Authenticating with IBM PowerVC (API)
Before you perform any API actions on IBM PowerVC, obtain an authentication token. To do
so, perform an API POST to the PowerVC server with the following information:

� API URL of the PowerVC server (IP or hostname)
� Keystone authentication port (default 5000) URI
� PowerVC username and password
� Tenant/Project name
� Domain name (Only default is supported.)

Example 5-22 shows Ansible URI module authenticating with IBM PowerVC, obtaining the
information that is required, setting a fact to store the authorization token, and then displaying
the token.

Example 5-22 Obtaining the authorization token from PowerVC by using the uri module

- name: Connect to PowerVC and collect an auth token
uri:

 url: https://{{ powervc_host }}:{{ auth_port }}/v3/auth/tokens
 method: POST
 body: '{"auth":{
 "scope":{
 "project":{
 "domain":{
 "name":"Default"},
 "name":"ibm-default"}},
 "identity":{
 "password":{
 "user":{
 "domain":{
 "name":"Default"},
 "password":"{{ PowerVC_password }}",
 "name":"{{ PowerVC_ID }}"}},
 "methods":["password"]}}}'
 body_format: json
 use_proxy: no
 validate_certs: no
 status_code: 201
 register: auth

- name: Set Auth Token
set_fact:

 auth_token: "{{ auth.x_subject_token }}"

- name: Display Auth Token
debug:

 var: auth_token
Chapter 5. Infrastructure as Code by using Ansible 257

Although you would not normally display the token, we do it in this case to demonstrate that
Ansible authenticated with the PowerVC server. The output is shown in Example 5-23.

Example 5-23 Authorization token output

- TASK [Connect to PowerVC and collect auth token]

ok: [localhost]

TASK [Set Auth Token]

ok: [localhost]

TASK [Display Auth Token]

ok: [localhost] => {
 "auth_token":
"gAAAAABk26Y92U1lu0uFuXzmv7JdU1-st3SPkf_1wTTQRE2ssm8yATw6KRMU9vGHtIJHaT5ZHGkl8cHLd
zRwoLqQhLtByBhKEw96-pKBFmD0PfswTaJiTsRAmddRaqMl8Y4b4ZbmFrESaTI4pzzZH2uHIEby0KhPSm7
-Wn5A58gg2RAa0ARY3MrgeIHVVpDrmKOD3GlqwHvl-GNPFwZaqkZzKWm9XXXXXXXXXXXXXXXXXXXXXX"\

Now that you have the fact set (we called it ‘auth_token’ in Example 5-23), you can perform
API operations against your PowerVC environment by using Ansible.

Creating VMs with IBM PowerVC by using the URI module
To create a VM by using the URI module (once you have your authentication key), provide
some key values and unique IDs, which include the following ones:

� The ID of the PowerVC Project that you want to deploy the new VM in, for example,
ibm-default.

� The ID of the PowerVC Image that you want to use for the new VM.

� The ID of the PowerVC compute flavor that you want to use for the new VM.

� The ID of the PowerVC network on which to place the new VM.

There are several other optional values that you can supply, including availability zone (the
host group or the name of the server), key_name (the SSH key pair name) and network
patched IP (the specific IP address). These values are detailed in the OpenStack API
compute (nova) documentation.

Example 5-24 shows how to build a new VM by using the URI module through the IBM
PowerVC API nova service.

Example 5-24 Creating a VM on PowerVC by using the URI module and API

- name: Connect to PowerVC with token and create a new VM
uri:

 url: https://{{ powervc_host }}:{{ nova_port }}/v2.1/{{ project_id
}}/servers
 method: POST
 use_proxy: no
 validate_certs: no
 return_content: no
 body: '{
 "server": {
 "name": "{{ new_vm_name }}",
 "imageRef": "{{ image_UID }}",
258 Using Ansible for Automation in IBM Power Environments

https://docs.openstack.org/api-ref/compute/?expanded=create-server-detail
https://docs.openstack.org/api-ref/compute/?expanded=create-server-detail
https://docs.openstack.org/api-ref/compute/?expanded=create-server-detail
https://docs.openstack.org/2023.1/api/

 "flavorRef": "{{ flavor_UID }}",
 "availability_zone": "{{ host_group_name }}",
 "networks": [{
 "uuid": "{{ network_UID }}"
 }]
 }
 }'
 body_format: json
 headers:
 Accept: "application/json"
 Content-Type: "application/json"
 OpenStack-API-Version: "compute 2.46"
 User-Agent: "python-novaclient"
 X-Auth-Token: "{{ auth_token }}"
 X-OpenStack-Nova-API-Version: "2.46"
 status_code: 202

register: vm_create

Destroying VMs with IBM PowerVC by using the URI module
To destroy a VM by using API services from Power Systems Virtual Server, you must know
two things:

� The ID of the PowerVC Project where the VM is hosted, for example, ibm-default.
� The ID of the PowerVC VM that you want to destroy.

To learn how to retrieve a project ID, see “Collecting a project ID by using the project name
from PowerVC by using the URI module” on page 260.

To learn how to retrieve a Virtual Server Instance (VSI) ID, see “Collecting a VM ID by using
the VSI name from PowerVC by using the URI module” on page 261.

Example 5-25 shows how to destroy an existing VM by using the URI module through the
IBM PowerVC API nova service.

Example 5-25 Destroying an existing VM on PowerVC by using the URI module and API

- name: Connect to PowerVC with token and destroy a VM
 uri:
 url: https://{{ powervc_host }}:{{ nova_port }}/v2.1/{{ project_id }}/servers/{{
vm_id }}
 method: DELETE
 use_proxy: no
 validate_certs: no
 return_content: no
 headers:
 X-Auth-Token: "{{ auth_token }}"
 status_code: 204
 register: vm_destroy

Note: In Example 5-24 on page 258, pass the project ID, image ID, flavor ID, and network
ID.

The status code for a successful deployment is 202.

Note: When you create a VM, you pass the VM name to the API; however, for an existing
VM, use the VM’s unique ID.
Chapter 5. Infrastructure as Code by using Ansible 259

Retrieving resource information from IBM PowerVC by using the URI
module
When using APIs, you cannot always refer to names such as the project name, VM name,
network name, or others when referencing the endpoint. OpenStack and PowerVC APIs work
with unique IDs. Although there are many of these IDs from the PowerVC UI or the
OpenStack CLI, we do not expect people developing Ansible playbooks to know them or
hardcode them. Therefore, you must convert resource names into their resource IDs before
you can perform any meaningful operations on PowerVC by using APIs.

Collecting a project ID by using the project name from PowerVC by using the
URI module

Example 5-26 shows the URI module connecting to the PowerVC projects API service to
retrieve all project information by using the authorization token that was collected in
Example 5-23 on page 258. Filter that information to select only the project that you are
interested in (ibm-default in this case). Set a fact that is called project_id that contains only
the ID of the selected project and display that ID.

Example 5-26 Retrieving a PowerVC project ID by using the URI module

- name: Connect to PowerVC with auth token to collect project information
uri:

 url: https://{{ powervc_host }}:{{ auth_port }}/v3/projects
 method: GET
 use_proxy: no
 validate_certs: no
 return_content: no
 headers:
 X-Auth-Token: "{{ auth_token }}"

register: project_information

- name: Collect ID of chosen project in array format
set_fact:

 project_id_array: "{{ project_information.json | json_query(query) }}"
vars:

 query: "projects[?name=='ibm-default'].{id: id}"

- name: Collect project ID for selected project
set_fact:

 project_id: "{{ project_id_array.0['id'] }}"

- name: Show Project ID
debug:

 var: project_id

The output from Example 5-26 is shown in Example 5-27 on page 261.

Note: The status code for a successful VM destruction is 204.
260 Using Ansible for Automation in IBM Power Environments

Example 5-27 Output from using the URI module to retrieve a project ID from a project name

TASK [Collect ID of chosen project in array format]
**
ok: [localhost]

TASK [Collect project ID for selected project]

ok: [localhost]

TASK [Show Project ID]
**
ok: [localhost] => {
 "project_id": "6a01a6c6f13c40f79b7ff5552170a371"
}

Now, you can use that project ID variable in future PowerVC API Ansible playbooks, such as
creating a VM.

Collecting a VM ID by using the VSI name from PowerVC by using the URI
module

Example 5-28 shows the URI module connecting to the PowerVC nova API service to retrieve
information about all the VMs (servers) by using the authorization token that was collected in
Example 5-26 on page 260 and the project ID that was collected in Example 5-27. Filter that
information to select only the VM that you are interested in. Set a fact called vm_id that
contains only the ID of the selected VM and display that ID.

Example 5-28 Retrieving a PowerVC VM ID by using the URI module

- name: Connect to PowerVC with auth token and project ID to collect VM
information

uri:
 url: https://{{ powervc_host }}:{{ nova_port }}/v2.1/{{ project_id
}}/servers
 method: GET
 use_proxy: no
 validate_certs: no
 return_content: no
 headers:
 X-Auth-Token: "{{ auth_token }}"
 register: vm_information

- name: Collect ID of chosen VM in array format
set_fact:

 vm_id_array: "{{ vm_information.json | json_query(query) }}"
 vars:
 query: "servers[?name=='{{ vm_name }}'].{id: id}"

- name: Collect VM ID for selected VM
set_fact:

 vm_id: "{{ vm_id_array.0['id'] }}"

- name: Show VM ID
debug:

 var: vm_id
Chapter 5. Infrastructure as Code by using Ansible 261

The output from Example 5-28 on page 261 is shown in Example 5-29.

Example 5-29 Output from using the URI module to retrieve a VM ID from a VM name

TASK [Collect ID of chosen VM in array format]

ok: [localhost]

TASK [Collect VM ID for selected VM]

ok: [localhost]

TASK [Show VM ID]

ok: [localhost] => {
 "vm_id": "1b9efb52-3b8a-4927-af84-c0feef495c1f"
}

Now, you can use that VM ID variable in future PowerVC API Ansible playbooks, such as
destroying an existing VM or performing PowerVC operations against that VM.

Resizing a VM by using URI modules and PowerVC API services
A key advantage of using the PowerVC API services is that you can perform more detailed
tasks such as resizing a VM. This task can be useful if a VM is low on CPU or memory
resources and you want to increase them, or when a VM must reduce its resources, for
example, after a development test phase.

This section introduces the VM action API service that you can use to perform several
different actions against an existing VM, including online resizing. The options are
documented in the IBM PowerVC documentation.

In Example 5-30, you pass the VM action API service the new values for the required CPU
and memory.

Example 5-30 Resizing an active VM by using the URI module and PowerVC API services

- name: "Connect to PowerVC with token and resize VM {{ vm_name }} to {{
new_total_proc_units }} procesors, and {{ new_total_memory_mb }}MB"
 uri:
 url: https://{{ powervc_host }}:{{ nova_port }}/v2.1/{{ project_id
}}/servers/{{ vm_id }}/action
 method: POST
 use_proxy: no
 validate_certs: no
 return_content: no
 body: {
 "resize": {
 "flavor": {
 "vcpus": "{{ new_vcpus }}",
 "disk": "0",
 "extra_specs": {
 "powervm:proc_units": "{{ new_total_proc_units }}",

Note: In Example 5-28, we had to use the project_id in the API URL, and we passed the
VM name as variable <{{ vm_name }}>.
262 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/docs/en/powervc/2.1.1?topic=apis-supported-openstack-compute-nova

 },
 "ram": "{{ new_total_memory_mb }}"
 }
 }
 }
 body_format: json
 headers:
 Accept: "application/json"
 Content-Type: "application/json"
 OpenStack-API-Version: "compute 2.46"
 User-Agent: "python-novaclient"
 X-Auth-Token: "{{ auth_token }}"
 X-OpenStack-Nova-API-Version: "2.46"
 status_code: 202
 register: vm_resize_details

The VM that you created in “Creating VMs with IBM PowerVC by using the URI module” on
page 258 was assigned one vCPU, 0.5 entitled cores, and 4 GB of memory, as shown in
Figure 5-4.

Figure 5-4 PowerVC UI showing a VM resource before resizing by using API services

Example 5-31 shows the output from the resized playbook.

Example 5-31 Output of resizing of an online VM by using the URI module and PowerVC API services

TASK [Show current CPU and memory allocation for VM aix-vm-1]

ok: [localhost] => {
 "current_vm_spec_details": {
 "CPUs": "0.50",
 "Memory": 4096,
 "name": "aix-vm-1",
 "vCPUs": 1
 }
}

TASK [Connect to PowerVC and resize VM aix-vm-1 to 0.75 procesors, and 6144 MB]
**
ok: [localhost]

TASK [Connect to PowerVC with token and wait for VM aix-vm-1 to be in state
'VERIFY_RESIZE'] ***
FAILED - RETRYING: [localhost]: Connect to PowerVC with token and wait for VM
aix-vm-1 to be in state 'VERIFY_RESIZE' (6 retries left).
FAILED - RETRYING: [localhost]: Connect to PowerVC with token and wait for VM
aix-vm-1 to be in state 'VERIFY_RESIZE' (5 retries left).
Chapter 5. Infrastructure as Code by using Ansible 263

ok: [localhost]

TASK [Connect to PowerVC with token and confirm resize of VM aix-vm-1]
**
ok: [localhost]

TASK [Pause for 30 seconds to allow resizing to complete]

Pausing for 30 seconds
(Ctrl+C then 'C' = continue early, Ctrl+C then 'A' = abort)
ok: [localhost]

TASK [Connect to PowerVC and collect new CPU and memory information for VM
aix-vm-1 after the resize]
**
ok: [localhost]

TASK [Show new CPU and memory allocation for VM aix-vm-1]
**
ok: [localhost] => {
 "new_vm_spec_details": {
 "CPUs": "0.75",
 "Memory": 6144,
 "name": "aix-vm-1",
 "vCPUs": 1
 }
}

PLAY RECAP

localhost : ok=19 changed=0 unreachable=0 failed=0 skipped=6
rescued=0 ignored=0

The output that is shown in Example 5-31 on page 263 shows that the VM reported 0.5 CPU
entitlement and 4 GB of memory before the resize and 0.75 CPU entitlement and 6 GB of
memory after the resize.

Figure 5-5 shows the resize being performed.

Figure 5-5 PowerVC UI showing a VM resizing by using API services
264 Using Ansible for Automation in IBM Power Environments

After the resize completes, you can verify the results in the PowerVC UI, as shown in
Figure 5-6.

Figure 5-6 PowerVC UI showing VM after resizing by using API services

5.2 IBM Power Systems Virtual Server

IBM Power Systems Virtual Server is an Infrastructure as a Service (IaaS) offering that
customers can use to deploy AIX, IBM i, and Linux workloads in a public cloud environment.
The Power Systems Virtual Server data centers are spread across the globe, including
America, Canada, Brazil, UK, Germany, Japan, and Australia.

5.2.1 Using the IBM Cloud collection for Power Systems Virtual Server

IBM created a collection (ibm.cloudcollection) so that Ansible can interact with IBM Cloud.
This collection includes several Power infrastructure modules for use within IBM Power
Systems Virtual Server. The collection is available on Ansible Galaxy here.

This collection can be installed as shown in Example 5-32.

Example 5-32 Installing the ibm.cloudcollection from Ansible Galaxy

ansible-galaxy collection install ibm.cloudcollection
Process install dependency map
Starting collection install process
Installing 'ibm.cloudcollection:1.49.0' to
'/root/.ansible/collections/ansible_collections/ibm/cloudcollection'

Several key PI modules are shown in Table 5-4

Table 5-4 IBM Cloud Collection PI modules

Note: Within Power Systems Virtual Server, VMs are referred to as VSIs.

Module name Function

ibm_pi_catalog_images_info Collects information about Power Systems Virtual Server
catalog images.

ibm_pi_cloud_connection Creates, updates, or destroys an IBM Cloud connection.

ibm_pi_cloud_instance_info Collects information about a Power Systems Virtual Server
service instance.

ibm_pi_instance Creates, updates, or destroys a VSI.

ibm_pi_instance_action Performs an action against a VSI.
Chapter 5. Infrastructure as Code by using Ansible 265

https://galaxy.ansible.com/ibm/cloudcollection

In total, there are over 70 Power Systems Virtual Server specific modules in the collection.

Creating a VSI in Power Systems Virtual Server by using the IBM Cloud
Collection
This section shows how to create a VSI by using the ibm.cloudcollection.ibm.pi_instance
module. When you use the IBM Cloud collection, you pass the API key, the cloud instance and
resource IDs, and the region in each task to the modules.

Example 5-33 shows the creation of a VSI.

Example 5-33 Creating a VSI by using the IBM Cloud Collection module ibm_pi_instance

- name: Create a POWER Virtual Server Instance
 ibm.cloudcollection.ibm_pi_instance:
 state: available
 pi_cloud_instance_id: "{{ pi_cloud_instance_id }}"
 ibmcloud_api_key: "{{ ibmcloud_api_key }}"
 id: "{{ pi_instance.resource.id | default(omit) }}"
 region: "{{ region }}"
 pi_memory: "{{ memory }}"
 pi_processors: "{{ processors }}"
 pi_instance_name: "{{ vsi_name }}"
 pi_proc_type: "{{ proc_type }}"
 pi_image_id: "{{ image_dict[image_name_to_be_created] }}"
 pi_volume_ids: []
 pi_network_ids:
 - "{{ pi_network.id }}"
 pi_key_pair_name: "{{ pi_ssh_key.pi_key_name }}"
 pi_sys_type: "{{ sys_type }}"
 pi_replication_policy: none
 pi_replication_scheme: sufpatch
 pi_replicants: "1"
 pi_storage_type: "{{ disk_type }}"
 register: pi_instance_create_output

ibm_pi_instance_info Collects information about a VSI.

ibm_pi_instances_info Collects information about all VSIs.

ibm_pi_network Creates, updates, or destroys a Power Systems Virtual
Server network.

ibm_pi_volume Creates, updates, or destroys a Power Systems Virtual
Server storage volume.

ibm_pi_volume_attach Attaches a Power Systems Virtual Server storage volume to
a VSI.

Note: The IBM Cloud Power Systems Virtual Server modules generate Terraform code to
perform actions against the Power Systems Virtual Server API services. At the time of
writing, you must have Terraform 0.10.20 installed. The Terraform resources and data
sources that they call can be found at the Terraform Registry.

Module name Function
266 Using Ansible for Automation in IBM Power Environments

https://registry.terraform.io/providers/IBM-Cloud/ibm/latest/docs

Destroying a VSI in Power Systems Virtual Server by using the IBM
Cloud Collection

To destroy a VSI by using the ibm.cloudcollection.ibm.pi_instance module, define the
state of that VSI as absent, as shown in Example 5-34.

Example 5-34 Destroying a VSI by using the IBM cloud collection ibm_pi_instance module

- name: Destory a POWER Virtual Server Instance
 ibm.cloudcollection.ibm_pi_instance:
 state: absent
 pi_cloud_instance_id: "{{ pi_cloud_instance_id }}"
 ibmcloud_api_key: "{{ ibmcloud_api_key }}"
 id: "{{ pi_instance.resource.id | default(omit) }}"
 region: "{{ region }}"
 register: pi_instance_destroy_output

5.2.2 Using the URI module for Power Systems Virtual Server

You can use the Ansible URI module to make calls to API services in IBM Cloud Power
Systems Virtual Server, similar to OpenStack and PowerVC, as described in 5.1.3, “Using the
URI modules to interact with PowerVC API services” on page 255.

Like OpenStack, IBM Power Systems Virtual Server has many API services that you can use
to manage resources, such as VSIs, images, storage volumes, key pairs, networks,
snapshots, VPNs, and others. These APIs are documented in the IBM Cloud documentation.

Power Systems Virtual Server services use regional endpoints over both public and private
networks. To target the public service, replace {region} with the prepatch that represents the
geographic area where the public facing service is located in the URL that is shown in
Example 5-35. At the time of writing, these locations are us-east (Washington DC), us-south
(Dallas, Texas), eu-de (Frankfurt, Germany), lon (London, UK), tor (Toronto, Canada), syd
(Sydney, Australia), and tok (Tokyo, Japan).

Example 5-35 Public regional endpoint for IBM Power Systems Virtual Server

https://{region}.power-iaas.cloud.ibm.com

To target the private service, you need to replace {region} with the prepatch that represents the
geographic area where the private facing service is located in the URL shown in Example 5-36.
At the time of writing, these data centers are us-east (Washington DC), us-south (Dallas,
Texas), eu-de (Frankfurt, Germany), eu-gb (London, UK), ca-tor (Toronto, Canada), au-syd
(Sydney, Australia), jp-tok (Tokyo, Japan), jp-osa (Osaka, Japan), br-sao (Sao Paolo, Brazil),
and ca-mon (Montreal, Canada).

Example 5-36 Private regional endpoint for IBM Power Systems Virtual Server

https://private.{region}.power-iaas.cloud.ibm.com

Note: The state option for the ibm_pi_instance module, which helps ensure that a VSI
exists, is available.
Chapter 5. Infrastructure as Code by using Ansible 267

https://cloud.ibm.com/apidocs/power-cloud#introduction

All the IBM Cloud Power Systems Virtual Server API methods are also documented, along
with the API service URL, the required parameters, and the response body. For example, to
obtain information about all the VSIs, see Get all the pvm instances for this cloud instance.

Example 5-37 shows an example request to retrieve all VSIs within IBM Power Systems
Virtual Server.

Example 5-37 Example request to get all Power Systems Virtual Server VSI information

curl -X GET
https://{region}.power-iaas.cloud.ibm.com/pcloud/v1/cloud-instances/${CLOUD_INSTAN
CE_ID}/pvm-instances

-H 'Authorization: Bearer <>'
-H 'CRN: crn:v1...'
-H 'Content-Type: application/json'

Authenticating with Power Systems Virtual Server by using APIs
Before you can perform any action against the API services that are presented by IBM Power
Systems Virtual Server, you must first authenticate. To do this task, you need an IBM Cloud
API key, which you use to obtain a Cloud IAM access token. This IAM access token (often
referred to as an auth token) can be used to directly access the API services.

IBM Cloud API keys are associated with a user's identity and can be used to access cloud
platform and APIs, depending on the access that is assigned to the user. The API access key
is created by using the process that is described at IBM Cloud.

Example 5-38 shows how to obtain the auth token by using the URI module along with the
IBM Cloud API key.

Example 5-38 Obtaining the IAM access token (auth token) by using the URI module and IBM Cloud
API key

- name: Obtain IBM Cloud Power Systems Virtual Server authorization token by using
an IBM Cloud API key
 hosts: localhost
 gather_facts: no

 vars:
 - auth_data: "grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey="
 api_key: "xxxxxxxxxxxxxxxxxxxxxxxxxx"

 tasks:
 - name: Get an IAM access token
 uri:
 url: "https://iam.cloud.ibm.com/identity/token"
 method: POST
 force_basic_auth: true
 validate_certs: yes
 headers:
 content-type: "application/x-www-form-urlencoded"
 accept: "application/json"
 body: "{{ auth_data }}{{ api_key|trim }}"

Note: When creating an IBM Cloud API key, record the key in a safe location because you
cannot retrieve the contents after the key is created.
268 Using Ansible for Automation in IBM Power Environments

https://cloud.ibm.com/apidocs/power-cloud#pcloud-pvminstances-getall
https://cloud.ibm.com/iam/apikeys

 body_format: json
 register: iam_token_request

- name: Set auth token fact
 set_fact:
 auth_token: "{{ iam_token_request.json.access_token }}"

 - name: Show token
 debug:
 var: auth_token

Example 5-39 shows the IBM Cloud ID, and in the body of the API POST, you pass two
values:

� Authorization Data (grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey=)
� IBM API key (trimmed)

The last task in the playbook outputs the auth_token fact, which you populated. Normally, this
fact is hidden, but we included it so that we can confirm it was created correctly.

Example 5-39 Output from an IAM access token retrieval

PLAY [Obtain IBM Cloud PowerVC auth token by using API]

TASK [Get IAM access token]

ok: [localhost]

TASK [Show token]

ok: [localhost] => {
 "auth_token": "XXX”
}

This auth_token can now be used within the Ansible playbook to perform actions against the
IBM Power Systems Virtual Server API services.

Before you perform an action against the IBM Power Systems Virtual Server API services that
is associated with your IBM Power resources, you must know the Power Systems VSI ID (also
known as the Cloud Resource Name (CRN). You can obtain the CRN by using the ibmcloud
command (as shown in Example 5-40) or by using the IBM Cloud UI.

Example 5-40 Obtaining the Cloud Resource Name by using the ibmcloud command

% ibmcloud resource service-instance "Power Virtual Server-London 06" --id
Retrieving service instance Power Virtual Server-London 06 in all resource groups
under account XXX YYYYY's Account as x_yyyyy@uk.ibm.com...
crn:v1:bluemix:public:power-iaas:lon06:a/abcdefghijklmnopqrstuvwxyzabcdef:121d5ee5
-b87d-4a0e-86b8-aaff422135478::

In Example 5-40, the CRN includes the following items:

� Tenant ID, which in the example is abcdefghijklmnopqrstuvwxyzabcdef.
� Cloud Instance ID, which in the example is 121d5ee5-b87d-4a0e-86b8-aaff422135478.
Chapter 5. Infrastructure as Code by using Ansible 269

In addition to defining the CRN tenant ID and cloud instance ID, you must define the CRN
values that are shown in Example 5-41.

Example 5-41 CRN values that are required to connect to Power Systems Virtual Server London 04
API services

crn:
version: "v1"
cname: "bluemix"
ctype: "public"
service_name: "power-iaas"
location: "lon04"
tenant_id: “abcdefghijklmnopqrstuvwxyzabcdef”
cloud_instance_id: “121d5ee5-b87d-4a0e-86b8-aaff422135478”

Retrieving resource information from IBM Power Systems Virtual Server
by using the URI module
This section shows examples about how to retrieve information about resources such as
VSIs, images, and networks from IBM Power Systems Virtual Server by using URI and API
servers.

Retrieving information about all VSIs
In Example 5-42, you retrieve the names of all existing VSIs in your Power Systems Virtual
Server workspace by using the CRN values that are defined, along with the GET method and
the URL that is documented in Example 5-38 on page 268.

Example 5-42 Retrieving all VSI names in Power Systems Virtual Server by using the URI module and
APIs

- name: Collect information about all the VSIs in this cloud instance
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances"
 method: GET
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_existing_vsi_results

- name: Set VSI list of names
 set_fact:
 vsi_names: "{{ vsi_names | default([]) + [item] }}"
 with_items: "{{ pvs_existing_vsi_results | json_query(query_to_run) }}"
 vars:
 query_to_run: 'json.pvmInstances[*].serverName'

Note: In the CRN values that shown in Example 5-42, the tenant ID and cloud instance ID
are the ones that were collected in Example 5-41 on page 270. Location must be one of
the locations that are listed in the ‘ibmcloud catalog locations’ CLI output, that is, fra01,
fra02, lon04, lon06, dal10, dal12, wdc06, wdc07, mon01, tor01, osa21, sao01, sao04, syd04,
syd05, or tok04.
270 Using Ansible for Automation in IBM Power Environments

You can see the output of the VSI retrieval request in Example 5-43.

Example 5-43 Displaying the names of all Power Systems Virtual Server VSIs by using the URI module
and APIs

TASK [Collect information about all the VSIs in this cloud instance]
**
ok: [localhost]

TASK [Set VSI list of names]
**

ok: [localhost] => (item=aix-vsi-1)
ok: [localhost] => (item=ibmi-vsi-1)

Retrieving information about all images
In Example 5-44, you retrieve the names of all existing images in your Power Systems Virtual
Server catalog. The API syntax can be found at Power Cloud API.

Example 5-44 Retrieving all VSI images within the Power Systems Virtual Server environment by using
the URI module and APIs

- name: Collect information about all the images in this cloud instance
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/images"
 method: GET
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_images_results

- name: Set a list of image names
 set_fact:
 image_names: "{{ image_names | default([]) + [item] }}"
 with_items: "{{ pvs_images_results | json_query(query_to_run) }}"
 vars:
 query_to_run: 'json.images[*].name'

- name: Show all image names
 debug:
 var: image_names

Example 5-45 shows the output of the image retrieval.

Example 5-45 Showing all images within the Power Systems Virtual Server environment

TASK [Set VSI list of names]
**
ok: [localhost] => (item=7300-01-01)
ok: [localhost] => (item=IBMi-75-01-2984-2)

TASK [Show all image names]
**
Chapter 5. Infrastructure as Code by using Ansible 271

https://cloud.ibm.com/apidocs/power-cloud#pcloud-cloudinstances-images-getall

ok: [localhost] => {
 "image_names": [
 "7300-01-01",
 "IBMi-75-01-2984-2"
]
}

Retrieving information about all networks
In Example 5-46, you retrieve the names of all existing images in your Power Systems Virtual
Server environment. The API syntax is documented at Power Cloud API.

Example 5-46 Retrieving all networks within the Power Systems Virtual Server environment by using
the URI module and APIs

- name: Collect information about all the networks within the Power Systems
Virtual Server environment
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/networks"
 method: GET
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_network_results

- name: Set network of names
 set_fact:
 network_names: "{{ network_names | default([]) + [item] }}"
 with_items: "{{ pvs_network_results | json_query(query_to_run) }}"
 vars:
 query_to_run: 'json.networks[*].name'

- name: Show all network names
 debug:
 var: network_names

Example 5-47 shows the output of the network retrieval.

Example 5-47 Showing all networks within the Power Systems Virtual Server environment

TASK [Set network of names]
**
ok: [localhost] => (item=public-192_168_151_128-29-VLAN_2044)
ok: [localhost] => (item=private-subnet2)
ok: [localhost] => (item=private-subnet1)

TASK [Show all network names]
**
ok: [localhost] => {
 "network_names": [
 "public-192_168_151_128-29-VLAN_2044",
 "private-subnet2",
 "private-subnet1"
272 Using Ansible for Automation in IBM Power Environments

https://cloud.ibm.com/apidocs/power-cloud#pcloud-cloudinstances-networks-getall

]
}

Retrieving all information about a specific resource in Power Systems Virtual
Server

As with OpenStack, when using IBM Power Systems Virtual Server APIs, you cannot always
refer to names such as VSI name, image name. network name, or others when referencing
the endpoint. When you want to perform an action against a specific resource, you must refer
to the resources unique ID. Therefore, you must first retrieve that ID before you can reference
it. For example, if you want to show all the details about a specific VSI, you must provide the
ID of that VSI. To do this task, you convert the VSI name (which you know) into its ID.

In Example 5-48. you use the URI module and the Power Systems Virtual Server
pvm-instances API service to retrieve information about all the VSIs. Then, you filter that
information and collect only the ID of the VM that you are interested in {{ vsi_name }}.

Example 5-48 Retrieving the ID of a Power Systems Virtual Server VSI by using its name

- name: Collect information about all the VSIs in this cloud instance
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances"
 method: GET
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_existing_vsi_results

 - name: Collect ID of chosen VSI in array format
 set_fact:
 vsi_id_array: "{{ pvs_existing_vsi_results.json | json_query(query) }}"
 vars:
 query: "pvmInstances[?serverName=='{{ vsi_name }}'].{id: pvmInstanceID}"

 - name: Collect VSI ID for selected VM
 set_fact:
 vsi_id: "{{ vsi_id_array.0['id'] }}"

 - name: Show VSI ID
 debug:
 msg: "ID for {{ vsi_name }} is: {{ vsi_id }}"

Note: The VSI ID is called pvmInstanceID in Power Systems Virtual Server.
Chapter 5. Infrastructure as Code by using Ansible 273

Example 5-49 shows the output from the VSI ID retrieval.

Example 5-49 Showing the VSI ID

TASK [Show VSI ID]
**
ok: [localhost] => {
 "msg": "ID for ibmi-vsi-1 is: 2d8bf009-5922-40f4-9eef-d06fec7xxxxx"
}

Creating a VSI in IBM Power Systems Virtual Server by using the URI
module and API services
In this section, you create a Power Systems Virtual Server VSI by using the authorization
token, along with the image name and network name that were collected in previous sections.

The syntax to create a VSI by using a POST HTTP method is documented at Create a new
PowerVM Instance.

Example 5-24 on page 258 showed an example where the content of the URI POST was
contained within the body. In Example 5-50, you define a variable that is called {{ vsi_info
}}, which contains all the required information, such as VSI name, image, network, and
others. Then, you use that variable in the body section of the URI module.

Example 5-50 Creating a VSI within Power Systems Virtual Server by using the RI module and API
services

Variable definition
 vsi_info:
 serverName: "aix-vsi-1"
 imageID: "7300-01-01"
 processors: 1
 procType: "shared"
 memory: 4
 sysType: "s922"
 storageType: "tier3"
 networkIDs:
 - "public-192_168_xxx_xxx-VLAN_2044"

Create VSI task
 - name: Create a VSI
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances"
 method: POST
 status_code: 201
 body_format: json
 body: "{{vsi_info|to_json}}"
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_create_vsi_result
274 Using Ansible for Automation in IBM Power Environments

https://cloud.ibm.com/apidocs/power-cloud#pcloud-pvminstances-post
https://cloud.ibm.com/apidocs/power-cloud#pcloud-pvminstances-post

Figure 5-7 shows the VSI being built in the Power Systems Virtual Server UI.

Figure 5-7 Power Systems Virtual Server UI: VSI building

Destroying a VSI in IBM Power Systems Virtual Server by using the URI
module and API services
In this section, you destroy an existing Power Systems Virtual Server VSI by using the
authorization token and the VSI name. To destroy an existing VSI, pass its ID along with the
DELETE HTTP method. Because you know only the VSI name, you must obtain its ID first.

The syntax to destroy a VSI by using a DELETE HTTP method is documented at Delete a
PCloud PVM Instance.

Example 5-51 shows how to destroy a VSI in Power Systems Virtual Server by passing the
VSI name {{ vsi_name }}, which is then converted into the VSI ID that is used for the
deletion command.

Example 5-51 Destroying a Power Systems Virtual Server VSI by using the URI module and API

- name: Collect information about all the VSIs in this cloud instance
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances"
 method: GET
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: pvs_existing_vsi_results

 - name: Show all
 debug:
 var: pvs_existing_vsi_results

 - name: Collect ID of chosen VSI in array format

Note: The status code for a successful VSI creation is 201.
Chapter 5. Infrastructure as Code by using Ansible 275

https://cloud.ibm.com/apidocs/power-cloud#pcloud-pvminstances-delete
https://cloud.ibm.com/apidocs/power-cloud#pcloud-pvminstances-delete

 set_fact:
 vsi_id_array: "{{ pvs_existing_vsi_results.json | json_query(query) }}"
 vars:
 query: "pvmInstances[?serverName=='{{ vsi_name }}'].{id: pvmInstanceID}"

- name: Collect VSI ID for selected VM
 set_fact:
 vsi_id: "{{ vsi_id_array.0['id'] }}"

 - name: Show details of VSI to destroy
 debug:
 msg: "Destroying VSI name: {{ vsi_name }} ID: {{ vsi_id }}"

 - name: Destroying VSI
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances/{{ vsi_id }}"
 method: DELETE
 status_code: 200
 body_format: json
 #body: "{{ vsi_name }}"
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{
crn.service_name }}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{
crn.cloud_instance_id }}::"Content-Type: application/json
 register: pvs_destroy_vsi_result

The output from running the playbook that is shown in Example 5-51 on page 275 is shown in
Example 5-52, where the name and ID of the VSI are displayed before they are destroyed.

Example 5-52 Output of destroying a VSI in Power Systems Virtual Server by using the URI module
and API

TASK [Collect ID of chosen VSI in array format]

ok: [localhost]

TASK [Collect VSI ID for selected VM]

ok: [localhost]

TASK [Show details of VSI to destroy]

ok: [localhost] => {
 "msg": "Destroying VSI name: aix-vsi-1 ID: d53fbe08-a613-41de-9016-047xxxxx"
}

TASK [Destroying VSI]

ok: [localhost]

Figure 5-8 on page 277 shows the VSI deletion tasks that are recorded in the event logs on
the Power Systems Virtual Server UI.
276 Using Ansible for Automation in IBM Power Environments

Figure 5-8 Power Systems Virtual Server UI Event log showing VSI deletion

Resizing a VSI on Power Systems Virtual Server by using APIs
By using the API services in Power Systems Virtual Server, you can resize an active VM by
using the URI module within Ansible, which can be useful if resources become constrained on
a VSI or if you want to reduce resources to save operational costs. In “Creating a VSI in IBM
Power Systems Virtual Server by using the URI module and API services” on page 274, you
built a VSI with 0.5 cores and 4 GB of memory, as shown in Figure 5-9.

Figure 5-9 IBM Power Systems Virtual Server before API resizing

Example 5-53 shows an example of using the URI module and API services to resize that VSI
to 0.75 cores and 6 GB of memory.

Example 5-53 Resizing a Power Systems Virtual Server VSI by using a URI module and API services

- name: "Resize VSI {{ vsi_name }} to 0.75 cores and 6 GB of memory"
 uri:
 url: "https://{{ region }}.power-iaas.cloud.ibm.com/pcloud/{{ api_version
}}/cloud-instances/{{ crn.cloud_instance_id }}/pvm-instances/{{ vsi_id }}"
 method: PUT
 status_code: 202
 body_format: json
 body: '{
 "processors": 0.75,
 "memory": 6
 }'
 headers:
 Authorization: "Bearer {{ auth_token }}"
 CRN: "crn:{{ crn.version }}:{{ crn.cname }}:{{ crn.ctype }}:{{ crn.service_name
}}:{{ crn.location }}:a/{{ crn.tenant_id }}:{{ crn.cloud_instance_id }}::"
 Content-Type: application/json
 register: vsi_resize_details

During the resizing, you can see the status change on the Power Systems Virtual Server UI,
as shown in Figure 5-10.

Figure 5-10 Power Systems Virtual Server VSI resize
Chapter 5. Infrastructure as Code by using Ansible 277

The output from the playbook also shows the resize taking place, as shown in Example 5-54.

Example 5-54 Output of Power Systems Virtual Server VSI resizing by using API services

TASK [Show existing CPU and memory allocation for VSI aix-vsi-1]

ok: [localhost] => {
 "current_vsi_spec_details": {
 "CPUs": 0.5,
 "Memory": 4,
 "name": "aix-vsi-1",
 "vCPUs": 1
 }
}

TASK [Resize VSI aix-vsi-1 to 0.75 cores and 6 GB of memory]
**
ok: [localhost]

TASK [Sleep to allow resize to complete]
**
Pausing for 180 seconds
(Ctrl+C then 'C' = continue early, Ctrl+C then 'A' = abort)
ok: [localhost]

TASK [Show new CPU and memory allocation for VSI aix-vsi-1]
**
ok: [localhost] => {
 "new_vsi_spec_details": {
 "CPUs": 0.75,
 "Memory": 6,
 "name": "aix-vsi-1",
 "vCPUs": 1
 }
}
PLAY RECAP

localhost : ok=16 changed=0 unreachable=0 failed=0 skipped=2
rescued=0 ignored=0

The output from the Power Systems Virtual Server UI confirms that the resizing was
successful, as shown in Figure 5-11.

Figure 5-11 Power Systems Virtual Server UI showing VSI post resizing by using API services
278 Using Ansible for Automation in IBM Power Environments

Chapter 6. Day 2 management operations

What are “Day 2 operations”? This chapter defines what Day 2 operations are, and describes
how you can use Ansible as a tool to help you automate those operations in your IBM Power
environment, whether you are running Linux, AIX, or IBM i environments, and show you how
you can optimize managing your hardware and software after the initial installation is done.

The following topics are described in this chapter:

� Introducing Day 2 operations
� Day 2 operations in Linux servers
� Day 2 operations in AIX environments
� Day 2 operations in IBM i environments

6

© Copyright IBM Corp. 2024. 279

6.1 Introducing Day 2 operations

Day 2 operations are a group of tasks that monitor and maintain your environment after the
initial installation. To use a technology, enterprises must understand how it fits into their
broader architecture. Leaders must consider both their technical and operational architecture.
After all, all systems are made up of software, people, and processes.

There are three stages of operations: Day 0, Day 1, and Day 2.

� Day 0 is the “design” stage, where you figure out what resources are required to provide
the necessary functions for your information technology project.

� Day 1 operations describe the “deployment” stage, where you install, set up, and configure
your environment.

� Day 2 is the “maintenance” stage. Typical Day 2 operations are focused on maintaining,
monitoring, and optimizing the system. Day 2 operations continue throughout the product
lifecycle because the system behavior must be continuously analyzed and patched.

In addition to monitoring how your environment is running, Day 2 operations also include
routine tasks such as installing upgrades and updating systems.

Day 2 operations involve maintaining the products and platforms. They continuously monitor
the health of the system, validate that it is meeting business requirements, track and patch
issues that arise, and validate that all required patches and updates are applied to keep the
environment secure. Because most of the Day 2 operations are continuous and repetitive
activities, often they are tasks that should be considered for automation by using Ansible. For
more information about how Red Hat supports Day 2 operations, see this Red Hat Document.

The following sections describe using Ansible automation in your IBM Power environment
(whether you use IBM AIX, IBM i, or Linux on Power) to help you manage the following
functions within your environment:

� Storage
� Security and compliance
� Patches or upgrades
� Configuration and tuning

6.1.1 Storage

The storage tasks describe how to manage and maintain how your data is stored in your
servers. These tasks involve things like monitoring file systems to help ensure that they do not
run out of space, monitoring the performance of the storage to help ensure it is meeting
business requirements, and managing a logical volume manager (LVM) and local file systems
at the operating systems (OS) level. Using Ansible, you can automate the storage-related
tasks with playbooks that are available for your OS or create your own playbooks.

Here are some of the functions that your Ansible playbooks can do:

� Create a file system.
� Remove a file system.
� Mount a file system.
� Unmount a file system.
� Create LVM volume groups.
� Remove LVM volume groups.
� Create logical volumes.
� Remove logical volumes.
280 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/blog/how-does-red-hat-support-day-2-operations

6.1.2 Security and compliance

Each OS provides security technologies to combat vulnerabilities, protect data, and meet
regulatory compliance. Depending on your location, industry, and the entities that you engage
with, you might have different data protection regulations that you must adhere to.

Here are some examples of these regulations and standards:

� Department of Defense (DoD)

� General Data Protection Regulation (GDPR)

� Payment Card Industry Data Security Standard (PCI DSS)

� Defense Information Systems Agency (DISA) Security Technical Implementation Guide
(STIG).

� Criminal Justice Information Services (CJIS) security policy.

� Commercial cloud services (C2Ss).

� Center for Internet Security (CIS)

� Health Insurance Portability and Accountability Act (HIPAA).

� NIST 800-171.

� Operating System Protection Profile (OSPP) 4.2.

� Red Hat Corporate Profile for Certified Cloud Providers.

Organizations that you work with might require companies in their supply chain to prove
compliance by using an independent, third-party validation exercise. Ansible Automation
Platform can be an optimal solution for an organization to automate regulatory compliance,
security configuration, and remediation across systems and within containers. An
organization can use existing playbook roles that are available in a community repository or
they can develop their own playbooks and roles to meet their specific business requirements.

There are two roles that must be considered when you design your security playbooks. These
roles can run in separate playbooks or they can be combined into a single playbook.

� Scanning playbook roles: This role scans systems based on the requirements that are set
by the business. It also generates a report file that contains a list of the system updates
that are required in your systems, and proof of compliance.

� Remediation playbook roles: This role applies to the appropriate system setting and the
required changes to the systems based on business requirements or industry or
governmental requirements for each OS.

6.1.3 Patches or upgrades

To keep your system up to date, you must complete the following tasks:

� Plan and configure how and when security updates are installed.
� Apply changes that are introduced by newly updated packages or file sets.
� Track security advisories.

As security vulnerabilities are discovered, the affected software must be updated to limit any
potential security risks. Keeping your system up to date requires a patch management
solution to manage and install updates. Updates can patch issues that are discovered,
improve the performance of existing features, or add features to software. Patches and patch
management solutions for each of the supported OSs for IBM Power are described in the
OS-related sections later in this chapter.
Chapter 6. Day 2 management operations 281

6.1.4 Configuration and tuning

Configuration management is a process for maintaining computer systems, servers,
applications, network devices, and other IT components to help ensure that they operate
correctly. It is a way to help ensure that a system performs as expected, even after changes in
the environment occur over time. Configuration management can include these activities and
help teams to accomplish the following tasks:

� Classify and manage systems by groups and subgroups.
� Centrally modify base configurations.
� Roll out new settings to all applicable systems.
� Automate system identification, patches, and updates.
� Identify outdated, poorly performing, and non-compliant configurations.
� Prioritize the necessary actions.
� Access and apply prescriptive remediation.

Due to the scale and complexity of most enterprise environments, IT teams now use
automation to define and maintain their various systems. For more information, see the Red
Hat documentation at Configuration Management.

6.2 Day 2 operations in Linux servers

Managing and maintaining your Linux servers can be time-consuming and
manpower-intensive as the number of server images continues to grow. An automation
solution that includes Ansible can help you manage the growing workload and make your
system administrators more efficient. Automation simplifies the management process and
can help you eliminate human errors as your staff does many repetitive tasks to maintain your
server configuration and manage the required security fixes.

6.2.1 Installing system roles for Ansible automation

You can use a role that is defined for Red Hat Enterprise Linux (RHEL) automation
(rhel-system-roles) that is a collection of Ansible roles and modules that provide a stable
and consistent configuration interface to automate and manage RHEL across multiple
releases. The effort is based on development of the Linux System Roles upstream project.
There are also SAP related system roles that are provided by the SAP LinuxLab upstream
project. Using these roles is described in this Red Hat document and 4.7, “SAP automation”
on page 222.

For more information about the Red Hat Enterprise Linux System Roles, see RHEL System
Roles Overview.

Install the rhel-system-roles package on the Ansible Controller node by using the following
command:

yum install rhel-system-roles -y
282 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/topics/automation/what-is-configuration-management
https://linux-system-roles.github.io/
https://github.com/sap-linuxlab
https://access.redhat.com/articles/3050101
https://access.redhat.com/articles/3050101
https://access.redhat.com/articles/6857351

6.2.2 Storage

This section shows some simple tasks as examples of things that you might want to automate
in your storage environment on your Linux on IBM Power VMs.

Creating a file system by using the RHEL System Role for storage
In this section, you create an Ansible playbook that you use to create a file system in your
RHEL virtual machine (VM). To do this task, complete the following steps:

1. Create a playbook by using the RHEL System Role that is called
rhel-system-roles.storage, which is shown in Example 6-1.

Example 6-1 Creating the create_lvm_filesystem_playbook1.yaml playbook

mkdir storage

cat create_lvm_filesystem_playbook1.yaml

- hosts: all
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/mapper/360050768108201d83800000000008e08p1
 - /dev/mapper/360050768108201d83800000000008e08p2
 volumes:
 - name: mylv1
 size: 1 GiB
 fs_type: xfs
 mount_point: /opt/mount1
 roles:
 - rhel-system-roles.storage

The simple playbook that is shown in Example 6-1 does the following tasks:

– Defines a myvg volume group, which should contain the following disks:

• /dev/mapper/360050768108201d83800000000008e08p1
• /dev/mapper/360050768108201d83800000000008e08p2

– Defines a logical volume (mylv1).

– If the myvg volume group exists, the playbook adds the logical volume mylv1 to the
volume group.

Note: The blivet application programming interface (API) packages are also needed. This
API is the Python interface that you can use to create scripts to use for administration. To
install the blivet API, use the yum command. The packages are blivet-data and
python3-blivet.

For more information, see the following resources:

� How to install the blivet API
� How to use the blivet API
Chapter 6. Day 2 management operations 283

https://access.redhat.com/solutions/3776171
https://access.redhat.com/solutions/3776211

– If the myvg volume group does not exist, the playbook creates it.

– The playbook creates an xfs file system on the mylv1 logical volume and persistently
mounts the file system at /opt/mount1.

2. Check the inventory file for the list of target systems and then run the playbook that was
created in Example 6-1 on page 283. The inventory file that is used in this example is the
hosts file. The process is shown in Example 6-2.

Example 6-2 Running the create_lvm_filesystem_playbook1.yaml playbook

pwd
/root/storage

ls -la
total 52
-rw-r--r--. 1 root root 39216 Aug 27 15:30 ansible.cfg
-rw-r--r--. 1 root root 298 Aug 27 15:35 create_lvm_filesystem_playbook1.yaml
-rw-r--r--. 1 root root16 Aug 27 15:30 hosts
-rw-r--r--. 1 root root 319 Aug 27 15:54 resize_lvm_filesystem_playbook1.yaml
-rw-r--r--. 1 root root 320 Aug 27 16:14 resize_lvm_filesystem_playbook2.yaml

cat hosts
bs-rbk-lnx-1.power-iaas.cloud.ibm.com

ansible-playbook create_lvm_filesystem_playbook1.yaml
TASK [rhel-system-roles.storage : Set the list of pools for test verification]

ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Set the list of volumes for test
verification] ***
ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Remove obsolete mounts]
**
skipping: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Tell systemd to refresh its view of
/etc/fstab] **
ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Set up new/current mounts]

changed: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com] => (item={'src':
'/dev/mapper/myvg-mylv1', 'path': '/opt/mount1', 'fstype': 'xfs', 'opts':
'defaults', 'dump': 0, 'passno': 0, 'state': 'mounted'})

TASK [rhel-system-roles.storage : Tell systemd to refresh its view of
/etc/fstab] **
ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Retrieve facts for the /etc/crypttab file]

ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

284 Using Ansible for Automation in IBM Power Environments

TASK [rhel-system-roles.storage : Manage /etc/crypttab to account for changes
you just made] **
skipping: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

TASK [rhel-system-roles.storage : Update facts]

ok: [bs-rbk-lnx-1.power-iaas.cloud.ibm.com]

PLAY RECAP

**
bs-rbk-lnx-1.power-iaas.cloud.ibm.com : ok=21 changed=3 unreachable=0
failed=0 skipped=11 rescued=0 ignored=0

3. Verify the storage configuration by using the commands that are shown in Example 6-3.

Example 6-3 Verifying the storage configuration

vgs
 VG #PV #LV #SN Attr VSize VFree
 myvg 2 1 0 wz--n- 19.99g 18.99g

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
Convert
 mylv1 myvg -wi-ao---- 1.00g

grep mylv1 /etc/fstab
/dev/mapper/myvg-mylv1 /opt/mount1 xfs defaults 0 0
df -h |grep '/opt/mount1'
/dev/mapper/myvg-mylv1 1014M 40M 975M 4%
/opt/mount1

As verified in Example 6-3, the playbook created a volume group and logical volume. It
also created an xfs file system and persistently mounted it as the /opt/mount1 directory.

Resizing an existing LVM file system by using the RHEL System Role for
storage
In this section, you create an Ansible playbook that resizes an existing LVM-based file
system. The first step is to extend the existing volume group that was created in Example 6-2
on page 284.

Note: Attempt only one change at a time. Do not extend the volume group while resizing
the existing file system in a single playbook.
Chapter 6. Day 2 management operations 285

Extending the existing volume group
To extend the existing volume group, complete the following steps:

1. Add a disk in the existing volume group to provide space to extend the file system, as
shown in Example 6-4.

Example 6-4 Creating the resize_lvm_filesystem_playbook1.yaml playbook

cat resize_lvm_filesystem_playbook1.yaml

- hosts: all
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/mapper/360050768108201d83800000000008e08p1
 - /dev/mapper/360050768108201d83800000000008e08p2
 - /dev/mapper/360050768108201d83800000000008e08p2
 volumes:
 - name: mylv1
 size: 1 GiB
 fs_type: xfs
 mount_point: /opt/mount1
 roles:
 - rhel-system-roles.storage

2. Copy some files to the /opt/mount1 mount point to validate that it is available, and then run
the second playbook, as shown in Example 6-5.

Example 6-5 Running the resize_lvm_filesystem_playbook1.yaml playbook

cp /etc/fstab /opt/mount1/
cp /etc/hosts /opt/mount1/
ls -l /opt/mount1/
total 8
-rw-r--r--. 1 root root 146 Aug 27 22:17 fstab
-rw-r--r--. 1 root root 225 Aug 27 22:17 hosts

ansible-playbook resize_lvm_filesystem_playbook1.yaml

3. Verify the changed storage configuration, as shown in Example 6-6.

Example 6-6 Verifying the new storage configuration

vgs
VG #PV #LV #SN Attr VSize VFree
 myvg 3 1 0 wz--n- <29.99g <28.99g

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
Convert
 mylv1 myvg -wi-ao---- 1.00g

ls -l /opt/mount1/
total 8
-rw-r--r--. 1 root root 146 Aug 27 22:17 fstab
-rw-r--r--. 1 root root 225 Aug 27 22:17 hosts
cat /opt/mount1/hosts
286 Using Ansible for Automation in IBM Power Environments

127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
192.168.159.133 bs-rbk-lnx-1.power-iaas.cloud.ibm.combs-rbk-lnx-1

As verified in Example 6-6 on page 286, the playbook expanded the existing volume
group, but the logical volume, file system and persistent mount point remain the same and
the data in the file system is still accessible.

Resizing the existing file system
Resize the existing file system by completing the following steps:

1. Create the playbook to resize the existing file system, as shown in Example 6-7.

Example 6-7 Creating the resize_lvm_filesystem_playbook2.yaml playbook

cat resize_lvm_filesystem_playbook2.yaml

- hosts: all
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/mapper/360050768108201d83800000000008e08p1
 - /dev/mapper/360050768108201d83800000000008e08p2
 - /dev/mapper/360050768108201d83800000000008e08p2
 volumes:
 - name: mylv1
 size: 10 GiB
 fs_type: xfs
 mount_point: /opt/mount1
 roles:
 - rhel-system-roles.storage

2. Run the second playbook by running the following command:

ansible-playbook resize_lvm_filesystem_playbook1.yaml

3. Verify the storage configuration by running the commands in Example 6-8.

Example 6-8 Verifying the storage configuration

vgs
VG #PV #LV #SN Attr VSize VFree
 myvg 3 1 0 wz--n- <29.99g <28.99g

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 mylv1 myvg -wi-ao---- 10.00g

df -h |grep '/opt/mount1'
/dev/mapper/myvg-mylv1 10G 106M 9.9G 2% /opt/mount1

cat /opt/mount1/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.159.133 bs-rbk-lnx-1.power-iaas.cloud.ibm.combs-rbk-lnx-1
Chapter 6. Day 2 management operations 287

As verified in Example 6-8 on page 287, the playbook expanded the existing logical
volume along with file system and the data is still accessible

Other storage options can be used by using Ansible playbooks, such as the following tasks:

� Remove a file system.
� Unmount a file system.
� Remove LVM volume groups.
� Remove logical volumes.

For more information about how to use Ansible for these functions, see Introduction to RHEL
system roles.

In addition, the readme file for the role has more details about how to use the
rhel-system-roles.storage role. You can find it on your controller system at the following
directory:

/usr/share/ansible/roles/rhel-system-roles.storage/README.md

6.2.3 Security and compliance

There are some selective security checklists from different industry standards, such as
PCI-DSS, DoD, and CIS that are considered sample baselines for this demonstration.
Example 6-9 shows the rhel-hardening-scanning directory in the project directory that has
multiple subdirectories followed by a specific directory structure.

Example 6-9 Listing the subdirectories of the rhel-hardening-scanning project directory

tree -d rhel-hardening-scanning/
rhel-hardening-scanning/
••• roles
••• rhel8hardening
• ••• defaults
• ••• files
• • ••• pam.d
• ••• handlers
• ••• tasks
• ••• templates
••• rhel8scanning
 ••• defaults
 ••• files
 • ••• pam.d
 ••• tasks
 ••• templates

Here is a basic introduction to these subdirectories and a description of their purpose:

� The rhel-hardening-scanning subdirectory

The project directory, which has multiple subdirectories and contains the main playbooks
that are linked back to the role or other playbooks in different subdirectories. For example:

– The file rhel-hardening-scanning/playbook-rhel8hardening.yml to harden the
system according to your sample baselines.

– The file rhel-hardening-scanning/playbook-rhel8scanning.yml to scan the system
according to your sample baselines and generate a report file.
288 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/intro-to-rhel-system-roles_automating-system-administrati
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/intro-to-rhel-system-roles_automating-system-administrati

� The roles subdirectory

A defined directory structure that you can use to develop reusable automation
components by grouping and encapsulating related automation artifacts, such as
configuration files, templates, tasks, and handlers. We omitted some directories the role
does not use.

� The rhel-hardening-scanning subdirectory includes the following subdirectories:

defaults Contains the default variables for the role and defines all the
required variables.

handlers Contains a list of tasks that run only when a change is made on a
machine, and run only after all the tasks in a playbook are
completed.

files Contains all the files that the role deploys.

templates Contains all the configuration template files that the role deploys.

tasks Contains the list of tasks that the role runs. The main list of tasks is
in main.yml.

The list of files under the subdirectory of the rhel-hardening-scanning project directory is
shown in Example 6-10.

Example 6-10 Listing of files under the subdirectory of the rhel-hardening-scanning project directory

tree -f rhel-hardening-scanning/
rhel-hardening-scanning
••• rhel-hardening-scanning/ansible.cfg
••• rhel-hardening-scanning/hosts
••• rhel-hardening-scanning/playbook-rhel8hardening.yml
••• rhel-hardening-scanning/playbook-rhel8scanning.yml
••• rhel-hardening-scanning/roles
••• rhel-hardening-scanning/roles/rhel8hardening
• ••• rhel-hardening-scanning/roles/rhel8hardening/defaults
• • ••• rhel-hardening-scanning/roles/rhel8hardening/defaults/main.yml
• ••• rhel-hardening-scanning/roles/rhel8hardening/files
• • ••• rhel-hardening-scanning/roles/rhel8hardening/files/chrony.conf
• • ••• rhel-hardening-scanning/roles/rhel8hardening/files/pam.d
• • • •••
rhel-hardening-scanning/roles/rhel8hardening/files/pam.d/password-auth
• • • ••• rhel-hardening-scanning/roles/rhel8hardening/files/pam.d/su
• • • •••
rhel-hardening-scanning/roles/rhel8hardening/files/pam.d/system-auth
• • ••• rhel-hardening-scanning/roles/rhel8hardening/files/rsyslog.conf
• ••• rhel-hardening-scanning/roles/rhel8hardening/handlers
• • ••• rhel-hardening-scanning/roles/rhel8hardening/handlers/main.yml
• ••• rhel-hardening-scanning/roles/rhel8hardening/tasks
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/main.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/prerequisite.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_A.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_B.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_C.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_D.yml

Note: For more information about Ansible roles, see the Playbook Guide. For help with
developing a role, see Developing an Ansible Role.
Chapter 6. Day 2 management operations 289

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://www.redhat.com/sysadmin/developing-ansible-role

• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_E.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_F.yml
• • ••• rhel-hardening-scanning/roles/rhel8hardening/tasks/section_G.yml
• ••• rhel-hardening-scanning/roles/rhel8hardening/templates
• ••• rhel-hardening-scanning/roles/rhel8hardening/templates/login.defs.j2
••• rhel-hardening-scanning/roles/rhel8scanning
 ••• rhel-hardening-scanning/roles/rhel8scanning/defaults
 • ••• rhel-hardening-scanning/roles/rhel8scanning/defaults/main.yml
 ••• rhel-hardening-scanning/roles/rhel8scanning/files
 • ••• rhel-hardening-scanning/roles/rhel8scanning/files/pam.d
 • • •••
rhel-hardening-scanning/roles/rhel8scanning/files/pam.d/password-auth
 • • ••• rhel-hardening-scanning/roles/rhel8scanning/files/pam.d/su
 • • •••
rhel-hardening-scanning/roles/rhel8scanning/files/pam.d/system-auth
 • ••• rhel-hardening-scanning/roles/rhel8scanning/files/rsyslog.conf
 ••• rhel-hardening-scanning/roles/rhel8scanning/tasks
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/main.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/postreport.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/prerequisite.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_A-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_B-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_C-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_D-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_E-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_F-report.yml
 • ••• rhel-hardening-scanning/roles/rhel8scanning/tasks/section_G-report.yml
 ••• rhel-hardening-scanning/roles/rhel8scanning/templates
 ••• rhel-hardening-scanning/roles/rhel8scanning/templates/report.html.j2

Running rhel-hardening-scanning from Ansible Controller nodes
Target systems or managed nodes need some preparation to run the playbooks from the
Ansible Controller Node. For more information about that process, see “Getting started with
Linux management” on page 32.

Example 6-11 shows how to run one of the provided playbooks to scan a system from the
Ansible Controller node by using the Ansible CLI.

Example 6-11 Running rhel-hardening-scanning from the Ansible Controller node

cd rhel-hardening-scanning/

ls -l
total 32
-rw-r--r--. 1 root root 19971 Aug 26 12:00 ansible.cfg
-rw-r--r--. 1 root root1031 Aug 28 21:25 hosts
-rwxrwxrwx. 1 mhaque mhaque 123 Aug 26 11:43 playbook-rhel8hardening.yml
-rwxrwxrwx. 1 mhaque mhaque 125 Aug 26 11:58 playbook-rhel8scanning.yml
drwxrwxr-x. 4 mhaque mhaque 49 Aug 26 11:42 roles

cat hosts
135.90.72.133

ansible-playbook playbook-rhel8scanning.yml -u root
290 Using Ansible for Automation in IBM Power Environments

Running rhel-hardening-scanning from Ansible Automation Platform
This example uses the Ansible Automation Platform to perform scanning and hardening. The
required resources (Credentials, Inventories, Projects and Job Templates, and Workflow Job
Templates) were created in the Ansible Automation Platform.

Figure 6-1 shows the window for Job Templates and Workflow Job Templates configuration.

Figure 6-1 Job Templates and Workflow Job Templates

One benefit of the Ansible Automation Platform (beyond the GUI interface that is provided) is
the additional management functions, such as requiring approval before starting any sensitive
playbooks execution that might change system settings.

Figure 6-2 shows defining a Workflow Job Template that is configured to require approval.

Figure 6-2 Workflow Job Templates configuration with approval
Chapter 6. Day 2 management operations 291

Sample scanning report
Scanning provides a simple HTML template-based report file that is generated in the
managed nodes (target systems) or in the Ansible Controller node. Figure 6-3 shows an
example output from the upper part of the report file.

Figure 6-3 Top of the report files

Figure 6-4 shows an example of the lower part of the report file.

Figure 6-4 Bottom of the report files

The sample playbooks for security and compliance for Linux on IBM Power System are
available at GitHub.
292 Using Ansible for Automation in IBM Power Environments

https://github.com/IBMRedbooks/SG248551-Using-Ansible-for-Automation-in-IBM-Power-Environments

6.2.4 Patches and upgrades

One of the most important aspects of system security is keeping systems up to date with
patches. You might have hundreds or thousands of RHEL servers in their environments, and
tracking patches on servers can be challenging. But, if critical patches are missed on
systems, it might result in the systems being compromised, having unscheduled downtime, or
other issues.

Red Hat Insights is a software as a service (SaaS) offering that is included with your RHEL
subscription. It includes several capabilities to help with various aspects of management. The
Patch capability can help customers understand which advisories are applicable in their
environments, and can help automate the process of patching through Ansible playbooks.

For example, if a Red Hat Security Advisory were issued, you can go into the Insights Patch
dashboard to see a list of systems in your environment that are impacted. With a few clicks
from within the Patch dashboard, you can generate an Ansible Playbook that can automate
the advisory installation.

Figure 6-5 shows the GUI window that is used to create the Ansible playbook.

Figure 6-5 An example remediation playbook generation from Red Hat Insights1

If you have Red Hat Smart Management, you can use the Cloud Connector function to run
the Ansible playbook from the Insights web interface. Smart Management, Satellite, and
Cloud Connector are not required for use with Insights, and if you are in an environment
without Red Hat Satellite, you can still use Insights Patch and generate Ansible playbooks
that can be downloaded and manually run.

For more information about getting started with the Red Hat Insights patch capability and how
to download Ansible playbooks, see this Red Hat document.

1 Source:
https://docs.redhat.com/en/documentation/red_hat_insights/1-latest/html/red_hat_insights_remediation
s_guide/creating-managing-playbooks_red-hat-insights-remediation-guide
Chapter 6. Day 2 management operations 293

https://docs.redhat.com/en/documentation/red_hat_insights/1-latest/html/red_hat_insights_remediations_guide/creating-managing-playbooks_red-hat-insights-remediation-guide
https://www.redhat.com/en/blog/getting-started-red-hat-insights-patch-capability

Prerequisites
One of the following two options must be in place to pull fixes and upgrades from the Red Hat
repositories.

1. Use Red Hat Satellite with the Red Hat Insights patch capability to enable and manage a
standard operating environment for the patches or fixes repository. For more information,
see this Red Hat patch management document.

2. Alternatively, you can provide an individual RHEL subscription and connect with Red Hat
Insights.

Example Ansible playbook for RHEL OS patching
We have a Power System RHEL logical partition (LPAR) (bs-rbk-ln x-1) that is registered
with a Red Hat Subscription and connected with Red Hat Insights. Example 6-12 shows the
command to validate that the LPAR is registered with Red Hat Insights.

Example 6-12 Verifying Red Hat Insights registration of the system

[root@bs-rbk-lnx-1 ~]# insights-client --status
System is registered locally via .registered file. Registered at
2023-08-23T10:16:59.487964
Insights API confirms registration.

We downloaded an Ansible playbook from the Red Hat Insights web console (for advisory
patches), as shown in Figure 6-6.

Figure 6-6 Creating a playbook (remediations) to apply patches from Red Hat Insights

After customizing some of the variables, the playbook that is shown in Example 6-13 runs.

Example 6-13 Verifying and running the OS patch playbook

cat os-patch-playbook-check.yml

Upgrade the following packages:
- Apply RHBA-2023:4530
- Apply RHBA-2023:4880
- Apply RHSA-2023:4706
- name: update packages
 hosts: "bs-rbk-lnx-1.power-iaas.cloud.ibm.com"
 vars:
294 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/en/blog/best-practices-patch-management .
https://console.redhat.com/insights/inventory

 insights_issues: "--advisory RHBA-2023:4530 --advisory
RHBA-2023:4880 --advisory RHSA-2023:4706"
requires_reboot: "true"
 become: true
 tasks:
- name: check for update
 shell: "{{ ansible_facts['pkg_mgr'] }} check-update -q {{ insights_issues |
regex_search('(--advisory
((FEDORA-EPEL-[\\w-]+)|(RH[SBE]A-20[\\d]{2}:[\\d]{4,5}))\\s*)+') }}"
 check_mode: no
 register: check_out
 failed_when: check_out.rc != 0 and check_out.rc != 100

- when: check_out.rc == 100
 name: upgrade package
 shell: "{{ ansible_facts['pkg_mgr'] }} update -d 2 -y {{ insights_issues |
regex_search('(--advisory
((FEDORA-EPEL-[\\w-]+)|(RH[SBE]A-20[\\d]{2}:[\\d]{4,5}))\\s*)+') }}"

- when: check_out.rc == 100
 name: set reboot fact
 set_fact:
 insights_needs_reboot: "{{requires_reboot}}"

Restarts a system if any of the preceding plays sets the 'insights_needs_reboot'
variable to true.
The variable can be overridden to suppress this behavior.
- name: Reboot system (if applicable)
 hosts: "bs-rbk-lnx-1.power-iaas.cloud.ibm.com"
 become: true
 gather_facts: false
 vars:
 tasks:
- when:
 - insights_needs_reboot is defined
 - insights_needs_reboot
 block:
 - name: Reboot system
 shell: sleep 2 && shutdown -r now "Ansible triggered reboot"
 async: 1
 poll: 0
 ignore_errors: true

 - name: Wait for system to boot up
 local_action:
 module: wait_for
 host: "{{ hostvars[inventory_hostname]['ansible_host'] |
default(hostvars[inventory_hostname]['ansible_ssh_host'], true) |
default(inventory_hostname, true) }}"
 port: "{{ hostvars[inventory_hostname]['ansible_port'] |
default(hostvars[inventory_hostname]['ansible_ssh_port'], true) | default('22',
true) }}"
 delay: 15
 search_regex: OpenSSH
 timeout: 300
Chapter 6. Day 2 management operations 295

 become: false

ansible-playbook os-patch-playbook-check.yml -u root

Figure 6-7 shows the results from running the playbook.

Figure 6-7 Output of the OS patch playbook

The system was patched with selective advisory rpms and successfully restarted because
some of the rpms required a system restart.

Note: Using customized yum or dnf commands help create a customized list of rpms for
RHEL patching when an RHEL minor version upgrade is not supported by a running
application or is restricted by the application.

Here are some example yum commands:

� yum --bugpatch check-update
� yum --security check-update
� yum --advisory check-update
� yum --secseverity=Important check-update
� yum --sec-severity=Critical check-update
� yum check-update --cve CVE-2008-0947
� yum check-update --cve CVE-2008-0947
� yum check-update --bz 1305903
� yum updateinfo list
� yum updateinfo list security all
� yum updateinfo list bugpatch all
� yum info-sec

For more information, see the YUM command cheat sheet.
296 Using Ansible for Automation in IBM Power Environments

https://access.redhat.com/sites/default/files/attachments/rh_yum_cheatsheet_1214_jcs_print-1.pdf

6.2.5 Configuration tuning

You learned about the RHEL System Roles in 6.2, “Day 2 operations in Linux servers” on
page 282. These roles that can help you configure system services in your system. For
example, you can configure the following functions:

� Secure Shell (SSH) server and client
� Firewall and SELinux
� Time synchronization
� Networking
� Postpatch (mail transfer agent)
� High availability (HA) clustering
� Kernel settings

Dynamic configuration files templates
With Ansible templates, you can create files dynamically by interpolating variables or by using
logical expressions, such as conditionals and loops. It is useful to define configuration files
that adapt to different contexts without having to manage extra files.

The Ansible template engine uses the Jinja2 template language, a template language for the
Python ecosystem. With Jinja2, you can interpolate variables and expressions with regular
text by using special characters such as { and {%. By doing so, you can keep most of the
configuration file as regular text and inject logic only when necessary, making it simpler to
create, understand, and maintain template files.

Jinja2 templates are files that use variables to include static values and dynamic values. One
powerful thing about a template is that you can have a basic data file but use variables to
generate values dynamically based on the destination host. Ansible processes templates by
using Jinja2.

Example 6-14 shows how to create a file that is called index.html.j2 for an Apache web
server.

Example 6-14 Sample index.html.j2 jinja2 templates file

cat index.html.j2
Welcome to {{ ansible_hostname }}
-The ipv4 address is {{ ansible_default_ipv4['address']}}
-The current memory usage is {{ ansible_memory_mb['real']['used']}}mb out of {{
ansible_memory_mb['real']['total']}}mb
-The {{ ansible_devices | first }} block device has the following partitions:
 -{{ ansible_devices['vdb']['partitions'] | join('\n -')}}

Note: For more information, see How to create dynamic configuration files using Ansible
templates.
Chapter 6. Day 2 management operations 297

https://www.redhat.com/sysadmin/ansible-templates-configuration
https://www.redhat.com/sysadmin/ansible-templates-configuration
https://jinja.palletsprojects.com/en/3.1.x/

Example 6-15 shows how to use the template that was created in Example 6-14 on page 297
in an Ansible playbook.

Example 6-15 Using the index.html.j2 jinja2 templates file in a playbook

********************* some output removed **********************
Push index Config Template
 - name: push index.html template
 template:
 src: index.html.j2
 dest: /var/www/html/index.html
********************* some output removed **********************

Example of a firewall configuration by using RHEL System Roles
You can use Ansible to do system configuration by using the RHEL System Role.

Example 6-16 shows how to create a playbook file (~/opening-a-port.yml), which passes
incoming HTTPS traffic to the local host.

Example 6-16 Firewall to pass incoming HTTPS traffic to the local host

cat ~/opening-a-port.yml

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Allow incoming HTTPS traffic to the local host
include_role:
 name: rhel-system-roles.firewall
vars:
 firewall:
 - port: 443/tcp
 service: http
 state: enabled
 runtime: true
 permanent: true

Example of an SSHD configuration that uses RHEL System Roles
Example 6-17 shows creating a playbook file (~/config-sshd.yml) to configure the sshd
service to allow only root login (with a password) from a specific subnet.

Example 6-17 Configuring the sshd service in the local host

cat ~/config-sshd.yml

- hosts: all
 tasks:
 - name: Configure sshd to prevent root and password login except from specific
subnet
include_role:
 name: rhel-system-roles.sshd
vars:
 sshd:

Note: For more information, see How to manage Apache web servers using Jinja2
templates and filters.
298 Using Ansible for Automation in IBM Power Environments

https://www.redhat.com/sysadmin/manage-apache-jinja2-ansible
https://www.redhat.com/sysadmin/manage-apache-jinja2-ansible

 # root login and password login is enabled only from a particular subnet
 PermitRootLogin: no
 PasswordAuthentication: no
 Match:
 - Condition: "Address 192.0.2.0/24"
 PermitRootLogin: yes
 PasswordAuthentication: yes

Example of kernel parameter settings by using RHEL System Roles
This section shows how to create a playbook file (~/kernel-settings.yml) that configures
some kernel settings to provide better performance of the system. The playbook is defined in
Example 6-18.

Example 6-18 Configuring kernel settings in the local host

cat ~/kernel-settings.yml

- hosts: testingservers
 name: "Configure kernel settings"
 roles:
- rhel-system-roles.kernel_settings
 vars:
kernel_settings_sysctl:
 - name: fs.file-max
 value: 400000
 - name: kernel.threads-max
 value: 65536
kernel_settings_sysfs:
 - name: /sys/class/net/lo/mtu
 value: 65000
kernel_settings_transparent_hugepages: madvise

6.3 Day 2 operations in AIX environments

This section describes some of the most common tasks on your AIX systems that you can
automate with Ansible. This list of tasks is not complete. These tasks are examples of how
you can automate your environments. Use and definitely amend them as needed before using
them in your environment.

6.3.1 Storage

Storage management is a common task that many administrators face on a daily basis. You
can automate storage management tasks with Ansible and give your playbooks to your
operating team to win more time for important tasks.
Chapter 6. Day 2 management operations 299

Getting information about existing devices
Before you start working with storage devices, you must understand what you have on the
system and how you can access the information.

When an Ansible playbook starts, its first task is to collect some information about the running
system, that is, gathering facts. The information that Ansible collect is available through the
variable <ansible_facts>. This variable has some parts regarding storage configuration.
First, there is a list that is called ansible_facts.devices with the information about all devices
on the system, including storage devices. You can also find a list of all mounted file systems in
ansible_facts.mounts. Your volume groups are listed in ansible_facts.vgs.

One of the first problems almost every young administrator has on AIX is the absence of df
-h (human readable output of all mounted file systems). You can solve this problem by using
Ansible, which stores information about mounted file systems in ansible_facts.mounts. You
can print this information, as shown in Example 6-19.

Example 6-19 Printing information about mounted file systems in a human-readable format

- name: print information about mounted file systems in human readable format
 host: all
 gather_facts: true

 tasks:
 - name: print mounted filesystems
 ansible.builtin.debug:
 msg: "{{ item.device }} {{ item.size_total | ansible.builtin.human_readable
}} {{ item.size_available | ansible.builtin.human_readable }} {{ item.mount }}"
 loop: "{{ ansible_facts.mounts | sort(attribute='mount') }}"
 loop_control:
 label: "{{ item.device }}"

You can run Ansible on several hosts in parallel by running the distributed df -h command.

When working with storage, you should understand how you get your disks from a Virtual I/O
Server (VIOS). You can find this information in the ansible_facts.devices tree. If you find
disks of the type “Virtual SCSI Disk Drive”, you are using VSCSI. If you find disks of type
“MPIO IBM 2145 FC Disk” or similar, you are using NPIV.

Example 6-20 shows using Ansible facts to differentiate NPIV and VSCSI disks in a storage
area network (SAN) attached IBM DS8000®.

Example 6-20 Finding different types of disks on AIX

- name: find different types of disks on AIX
 hosts: all
 gather_facts: true

 tasks:
 - name: find VSCSI disks
 ansible.builtin.set_fact:
 vscsi_disks: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?value.type == 'Virtual SCSI Disk Drive'].{ name: key }"
 - name: find NPIV disks
300 Using Ansible for Automation in IBM Power Environments

 ansible.builtin.set_fact:
 npiv_disks: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?contains(value.type, 'IBM 2145')].{ name: key }"
 - name: VSCSI disks on the system
 ansible.builtin.debug:
 var: vscsi_disks
 - name: NPIV disks on the system
 ansible.builtin.debug:
 var: npiv_disks

One of the common tasks in AIX system administration is to create a volume group on a new
disk. How can you find out which disk is new? In Ansible, start cfgmgr to find new disks and
then recollect the information about devices. The difference between the two fact sets is your
new disk. Example 6-21 demonstrates this capability.

Example 6-21 Finding new disks on AIX

- name: find new disk
 hosts: all
 gather_facts: true

 tasks:
 - name: find all existing hdisks
 ansible.builtin.set_fact:
 existing_disks: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?starts_with(key, 'hdisk')].{ name: key }"
 - name: search for new disks
 ansible.builtin.command:
 cmd: cfgmgr
 changed_when: false
 - name: renew facts
 ansible.builtin.gather_facts:
 ignore_errors: true
 - name: get new list of disks
 ansible.builtin.set_fact:
 disks_after_cfgmgr: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?starts_with(key, 'hdisk')].{ name: key }"
 - name: get new disks
 ansible.builtin.set_fact:
 new_disks: "{{ disks_after_cfgmgr |
ansible.builtin.difference(existing_disks) }}"
 - name: print new disks
 ansible.builtin.debug:
 var: new_disks
Chapter 6. Day 2 management operations 301

The resulting output from running the playbook is shown in Example 6-22.

Example 6-22 Output from the playbook

ansible-playbook -i localhost, -c local find-new-disk.yml

PLAY [find new disk]
**

TASK [Gathering Facts]
**
**
[WARNING]: Platform aix on host localhost is using the discovered Python
interpreter at /opt/freeware/bin/python3.9, but future installation of
another Python interpreter could change the meaning of that path. See
https://docs.ansible.com/ansible-
core/2.14/reference_appendices/interpreter_discovery.html for more information.
ok: [localhost]

TASK [find hdisks]
**
**
ok: [localhost]

TASK [search for new disks]
**

ok: [localhost]

TASK [renew facts]
**
**
ok: [localhost]

TASK [get new list of disks]
**

ok: [localhost]

TASK [get new disks]
**
**
ok: [localhost]

TASK [print new disks]
**
**
ok: [localhost] => {
 "new_disks": [
 {
 "name": "hdisk6"
 }
]
}

302 Using Ansible for Automation in IBM Power Environments

PLAY RECAP
**
**
localhost : ok=7 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

After you find the disk, you might want to set attributes for it like reserve_policy or
hcheck_mode. To do so, use the ibm.power_aix.devices module, as shown in Example 6-23.

Example 6-23 Setting device attributes for new disks

- name: set attributes for new disks
 ibm.power_aix.devices:
 device: "{{ item.name }}"
 attributes:
 reserve_policy: "no_reserve"
 hcheck_mode: "enabled"
 loop: "{{ new_disks }}"
 loop_control:
 label: "{{ item.name }}"

Working with volume groups
After you find the disks to work with, you might want to create a volume group on it. The
module to work with volume groups is called ibm.power_aix.lvg.

Example 6-24 shows how to create the volume.

Example 6-24 Creating a volume group on AIX

- name: create volume group
 hosts: all
 gather_facts: false

 tasks:
 - name: create volume group
 ibm.power_aix.lvg:
 vg_name: datavg
 pvs: hdisk6
 vg_type: scalable
 pp_size: 256
 state: present

The created volume group is automatically activated and ready for further work, such as
creating logical volumes or file systems.
Chapter 6. Day 2 management operations 303

If you use the variable <new_disks> in Example 6-22 on page 302 instead of inputting the
name manually, you must build a string pointing to the variable, as shown in Example 6-25.

Example 6-25 Creating a volume group by using a list of disks

- name: create volume group
 ibm.power_aix.lvg:
 vg_name: datavg
 pvs: "{{ new_disks | map(attribute='name') | join(' ') }}"
 vg_type: scalable
 pp_size: 256
 state: present

A similar method can be used to delete an unneeded volume group. You need only two
attributes, the volume group’s name and state, as shown in Example 6-26.

Example 6-26 Deleting a volume group

- name: delete volume group
 ibm.power_aix.lvg:
 vg_name: datavg
 state: absent

The volume group is deleted even if it is open (varied on), but it cannot be deleted if there are
allocations (LPARs) in it. In this case, you must collect LVM-related information, unmount all
file systems that are in the volume group, remove all logical volumes, and then delete the
volume group, as shown in Example 6-27.

Example 6-27 Deleting a volume group with logical volumes in it

- name: delete volume group
 hosts: all
 gather_facts: false
 vars:
 vgname: datavg

 tasks:
 - name: gather LVM facts
 ibm.power_aix.lvm_facts:
 - name: "get logical volumes on {{ vgname }}"
 ansible.builtin.set_fact:
 lvols: "{{ ansible_facts.LVM.LVs | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?value.vg == '{{ vgname }}'].{ name: key, mount: value.mount_point }"
 - name: unmount all filesystems
 ibm.power_aix.mount:
 state: umount
 mount_over_dir: "{{ item.mount }}"
 force: true
 loop: "{{ lvols }}"
 - name: remove all logical volumes
 ibm.power_aix.lvol:
 lv: "{{ item.name }}"
 state: absent
 loop: "{{ lvols }}"
304 Using Ansible for Automation in IBM Power Environments

 - name: delete volume group
 ibm.power_aix.lvg:
 vg_name: "{{ vgname }}"
 state: absent

Another common task is when you want to expand a volume group by adding disks to it or to
shrink it by removing disks. It is the same procedure that is to create and delete a volume
group. Example 6-28 shows adding a disk.

Example 6-28 Adding a disk to a volume group

- name: add disk to volume group
 ibm.power_aix.lvg:
 vg_name: datavg
 pvs: hdisk6
 state: present

Example 6-29 shows removing a disk.

Example 6-29 Removing a disk from a volume group

- name: remove disk from volume group
 ibm.power_aix.lvg:
 vg_name: datavg
 pvs: hdisk6
 state: absent

The disk must be empty before removing it. If you need to move all logical volumes to another
disk, use the migratepv command. At the time of writing, there is not a special module or role
to free up a disk. However, you can use ansible.builtin.command, which passes any
command to run as though you are running it on the CLI, as shown in Example 6-30.

Example 6-30 Freeing up a disk by moving logical partitions to another disk

- name: move all LPs to another volume
 ansible.builtin.command:
 cmd: "migratepv hdisk6 hdisk5"

Working with logical volumes
You deleted logical volumes in “Working with volume groups” on page 303, but you did not
create any logical volumes by using Ansible. To do so, use the logic that is shown in
Example 6-31.

Example 6-31 Creating a logical volume

- name: create logical volume
 ibm.power_aix.lvol:
 vg: datavg
 lv: lv01
 lv_type: jfs2
 size: 1G
 state: present
Chapter 6. Day 2 management operations 305

Using this same logic with a logical volume name specified, but with the state specified as
absent, the logical volume is deleted, as shown in Example 6-32.

Example 6-32 Deleting a logical volume

- name: delete logical volume
 ibm.power_aix.lvol:
 lv: lv01
 state: absent

Sometimes, you must change existing logical volumes. For example, a common failure during
file system expansion occurs if the logical volume was sized too small. This failure is shown in
Example 6-33.

Example 6-33 The maximum allocation for a logical volume is too small

chfs -a size=+1G /lv01
0516-787 extendlv: Maximum allocation for logical volume lv01
 is 128.

You can change the maximum allocation or any other value by using the extra_opts attribute
for ibm.power_aix.lvol, as shown in Example 6-34.

Example 6-34 Setting the maximum allocation for a logical volume by using extra_opts

- name: set maximum allocation for logical volume
 ibm.power_aix.lvol:
 vg: datavg
 lv: lv01
 size: 1G
 extra_opts: "-x 512"
 state: present

Working with file systems
To work with file systems, you can use different modules depending on the tasks that you
want to automate. You can use ibm.power_aix.filesystem, ibm.power_aix.mount, or
ansible.builtin.mount.

To create a file system when you have an existing logical volume, specify the logical volume
name, as shown in Example 6-35.

Example 6-35 Creating a file system on an existing logical volume

- name: create filesystem
 ibm.power_aix.filesystem:
 filesystem: /lv01
 device: lv01
 fs_type: jfs2
 auto_mount: true
 permissions: rw
 attributes: agblksize=4096,logname=INLINE
 state: present

Note: In this case, you must specify the volume group name and the size of the logical
volume even if it does not change. To see which options you can use with the extra_opts
attribute, see the chlv command.
306 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/docs/en/aix/7.3?topic=c-chlv-command

If you do not have a prepared logical volume, you must specify a volume group name to use
to create the logical volume and include the size of the logical volume that will be created, as
shown in Example 6-36.

Example 6-36 Creating a file system on a new logical volume

- name: create filesystem
 ibm.power_aix.filesystem:
 filesystem: /lv02
 vg: datavg
 fs_type: jfs2
 auto_mount: true
 permissions: rw
 attributes: agblksize=4096,logname=INLINE,size=1G
 state: present

After you create a file system, mount it as shown in Example 6-37.

Example 6-37 Mounting the file system

- name: mount filesystem
 ibm.power_aix.mount:
 mount_dir: /lv01
 state: mount

If you want to change the mount point of an existing file system, there is no special module for
this task. You can unmount the file system, but you cannot change it by using the
ibm.power_aix.filesystem module. To do this task, you must unmount the file system, run
the chfs command, and then mount the file system on the new location.

Example 6-38 Changing the mount point of a file system

- name: change filesystem mount point
 hosts: all
 gather_facts: false

 tasks:
 - name: unmount filesystem
 ibm.power_aix.mount:
 state: umount
 mount_over_dir: /old_mount
 force: true
 - name: change mount point
 ansible.builtin.command:
 cmd: chfs -m /new_mount /old_mount
 - name: mount filesytem
 ibm.power_aix.mount:
 state: mount
 mount_dir: /new_mount
Chapter 6. Day 2 management operations 307

As an AIX administrator, sometimes you must change the size of a file system. One of the
most significant advantages of AIX is that you can change your file system configuration
dynamically. Example 6-39 shows how to expand an existing file system.

Example 6-39 Expanding a file system

- name: expand filesystem
 ibm.power_aix.filesystem:
 filesystem: /lv02
 state: present
 attributes: size=+1G

Example 6-40 shows how to shrink a file system.

Example 6-40 Shrinking a file system

- name: shrink filesystem
 ibm.power_aix.filesystem:
 filesystem: /lv02
 state: present
 attributes: size=-1G

At the time of writing, there is a known bug in the ibm.power_aix.filesystem module. If there
was an error during chfs execution and no parameters of the original file system were
changed, you often still get a returned status of OK instead of FAILED. One of the reasons why
chfs fails might be the maximum allocations value on the underlying logical volume, as
described in “Working with logical volumes” on page 305. In this case, first find the new value
for the maximum allocation, and then set it before changing the size of the file system, as
shown in Example 6-41.

Example 6-41 Expanding a file system and changing the underlying logical volume

- name: expand filesystem
 hosts: all
 gather_facts: false
 vars:
 fs: /lv02
 size: 10G

 tasks:
 - name: get LVM facts
 ibm.power_aix.lvm_facts:
 - name: find logical volume for the filesystem
 ansible.builtin.set_fact:
 lvol: "{{ ansible_facts.LVM.LVs | dict2items |
community.general.json_query(q) | first }}"
 vars:
 q: "[?value.mount_point == '{{ fs }}'].{ lvname: key, vgname: value.vg,
mount: value.mount_point, lps: value.LPs }"
 - name: find pp size for the logical volume
 ansible.builtin.set_fact:
 ppsize: "{{ ansible_facts.LVM.VGs | dict2items |
community.general.json_query(q) | first | human_to_bytes | int }}"
 vars:
 q: "[?key == '{{ lvol.vgname }}'].value.pp_size"
 - name: recalculate new size in bytes
308 Using Ansible for Automation in IBM Power Environments

 set_fact:
 newsize: "{{ size | human_to_bytes | int }}"
 - name: find new max lp alloc
 set_fact:
 maxlp: "{{ ((newsize | int) / (ppsize | int)) | round(0, 'ceil') | int }}"
 - name: set max lp to logical volume
 ibm.power_aix.lvol:
 vg: "{{ lvol.vgname }}"
 lv: "{{ lvol.lvname }}"
 size: "{{ lvol.lps }}"
 extra_opts: "-x {{ maxlp }}"
 state: present
 - name: expand filesystem
 ibm.power_aix.filesystem:
 filesystem: "{{ fs }}"
 state: present
 attributes: "size={{ size }}"

If you want to remove an existing file system, first unmount it, as shown in Example 6-42.

Example 6-42 Removing a file system

- name: delete filesystem
 hosts: all
 gather_facts: false

 tasks:
 - name: unmount filesystem
 ibm.power_aix.mount:
 mount_over_dir: /lv02
 state: umount
 - name: delete filesystem
 ibm.power_aix.filesystem:
 filesystem: /lv02
 state: absent

Because one of the common tasks in many environments is to add disks, create a volume
group on those disks, and then create a file system on it that uses 100% of the disk. These
tasks can be done by combining the code from the previous tasks to automate the whole
workflow, as shown in Example 6-43.

Example 6-43 Creating a file system on a disk that uses 100% of its space

- name: create new filesystem on a new disk
 hosts: all
 gather_facts: true
 vars:
 vgname: vgora1
 lvname: lvora1
 fsname: /ora1

Important: AIX automatically deletes the underlying logical volume with all data on it if you
remove a file system.
Chapter 6. Day 2 management operations 309

 tasks:
 - name: find hdisks
 ansible.builtin.set_fact:
 existing_disks: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?starts_with(key, 'hdisk')].{ name: key }"
 - name: search for new disks
 ansible.builtin.command:
 cmd: cfgmgr
 changed_when: false
 - name: renew facts
 ansible.builtin.gather_facts:
 ignore_errors: true
 - name: get new list of disks
 ansible.builtin.set_fact:
 disks_after_cfgmgr: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?starts_with(key, 'hdisk')].{ name: key }"
 - name: get new disks
 ansible.builtin.set_fact:
 new_disks: "{{ disks_after_cfgmgr |
ansible.builtin.difference(existing_disks) }}"
 - name: finish if no new disks are found
 ansible.builtin.meta: end_host
 when: new_disks | length == 0
 - name: set attributes for new disks
 ibm.power_aix.devices:
 device: "{{ item.name }}"
 attributes:
 reserve_policy: "no_reserve"
 hcheck_mode: "enabled"
 loop: "{{ new_disks }}"
 loop_control:
 label: "{{ item.name }}"
 - name: create volume group
 ibm.power_aix.lvg:
 vg_name: "{{ vgname }}"
 pvs: "{{ new_disks | map(attribute='name') | join(' ') }}"
 vg_type: scalable
 pp_size: 256
 state: present
 - name: refresh LVM facts
 ibm.power_aix.lvm_facts:
 component: vg
 - name: get size of the new volume group
 ansible.builtin.set_fact:
 vgsize: "{{ ansible_facts.LVM.VGs | dict2items |
community.general.json_query(q) | first | int }}"
 vars:
 q: "[?key == '{{ vgname }}'].value.total_pps"
 - name: create logical volume
 ibm.power_aix.lvol:
310 Using Ansible for Automation in IBM Power Environments

 vg: "{{ vgname }}"
 lv: "{{ lvname }}"
 lv_type: jfs2
 size: "{{ vgsize }}"
 state: present
 - name: create filesystem
 ibm.power_aix.filesystem:
 filesystem: "{{ fsname }}"
 device: "{{ lvname }}"
 fs_type: jfs2
 auto_mount: true
 permissions: rw
 attributes: agblksize=4096,logname=INLINE
 state: present
 - name: mount filesystem
 ibm.power_aix.mount:
 mount_dir: "{{ fsname }}"
 state: mount
 - name: set permissions on the mount point
 ansible.builtin.file:
 path: "{{ fsname }}"
 owner: root
 group: system
 mode: 0755
 state: directory

Now, you can compare how much time it takes to run all these commands manually and how
much time it takes to run an Ansible playbook. Also consider that by changing the inventory
files and variables, this playbook can be reused multiple times.

6.3.2 Security

Security is a broad topic with many nuances. It is impossible to describe the whole set of
different configuration options that can be set in AIX to make it secure, but you will about
some of them in this section. For more information about fixes, updates, and general
configuration tuning, see 6.3.3, “Fixes” on page 317 and 6.4, “Day 2 operations in IBM i
environments” on page 323.

Managing users and groups
The first line in any security defense is to create user accounts for each user, set password
rules for them, and lock and delete them if they are not needed anymore.

Start with creating users on AIX, which you can do by using the ibm.power_aix.user module,
as shown in Example 6-44.

Example 6-44 Creating a user on AIX

- name: create user
 ibm.power_aix.user:
 name: user01
 state: present
 password:
"{ssha512}06$t/IwQ/bp8ygs5J3j$09w3kfyg/Zct2R8n63t7gYDntlgi7z50CFa5wPxj.hfwEX4ALFUx
8805n8MBAM5GlEw7X4E7KG1ceNrp5XFW.."
 attributes:
Chapter 6. Day 2 management operations 311

 id: 1001
 shell: /usr/bin/bash
 home: /home/user01
 gecos: My fellow AIX admin
 pgrp: staff
 groups: staff,system,security
 fsize: -1

All possible values for the attributes section can be found in the chuser command. These
values are standard AIX attributes that you usually use with the mkuser command.

During user creation, you can set the user’s password, but it must be encrypted. It is copied
one-to-one into /etc/security/passwd. If you want the user to change the password after the
first login, add the attribute change_passwd_on_login to the task.

Unfortunately, the ibm.power_aix.user module is one of the few non-idempotent modules in
the ibm.power_aix collection, which means that you should use different states if you want to
create or to modify a user. You set the state to present, and Ansible creates a user if it does
not exist or changes the specified attributes if it exists.

As an example, we create a simple password reset task for an AIX user. We generate a new
password for the user and set the flag so that the user must change the password at the first
login. At the end, we print the new password. This process is shown in Example 6-45.

Example 6-45 Password reset

- name: password reset
 gather_facts: false
 hosts: all
 vars:
 username: user01

 tasks:
 - name: generate random password
 ansible.builtin.set_fact:
 newpw: "{{ lookup('ansible.builtin.password', '/dev/null',
chars=['ascii_lowercase', 'ascii_uppercase', 'digits', '.,-:_'], length=8) }}"
 - name: encrypt password
 ansible.builtin.shell:
 cmd: "echo \"{smd5}$(echo \"{{ newpw }}\" | openssl passwd -aixmd5
-stdin)\""
 changed_when: false
 register: newpw_enc
 - name: password reset
 ibm.power_aix.user:
 name: "{{ username }}"
 state: modify
 password: "{{ newpw_enc.stdout }}"
 change_passwd_on_login: true
 - name: show the generated password
 ansible.builtin.debug:
 msg: "The new password for {{ username }} is {{ newpw }}"

If you do not need the user anymore, you can set the state to absent and the user is deleted,
as shown in Example 6-46 on page 313.
312 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/docs/en/aix/7.3?topic=c-chuser-command

Example 6-46 Deleting a user

- name: delete user
 ibm.power_aix.user:
 name: user01
 state: absent

In a similar way, you can create and delete groups. Example 6-47 shows how to create a
group.

Example 6-47 Creating a group

- name: create group
 ibm.power_aix.group:
 name: group01
 state: present
 group_attributes: id=1000,adms=user01

Example 6-48 shows deleting a group.

Example 6-48 Deleting a group

- name: delete group
 ibm.power_aix.group:
 name: group01
 state: absent

A common task on AIX systems is to add and to remove members from different groups,
which you can implement by using Ansible and the ibm.power_aix.group module.
Example 6-49 shows adding members to a group.

Example 6-49 Adding members to an AIX group

- name: add members to group
 gather_facts: false
 hosts: all
 vars:
 newmembers:
 - john
 - johann
 - ivan

 tasks:
 - name: add members to group
 ibm.power_aix.group:
 name: security
 state: modify
 user_list_action: add
 user_list_type: members
 users_list: "{{ newmembers }}"
Chapter 6. Day 2 management operations 313

Example 6-50 shows removing a user from a group.

Example 6-50 Removing a user from a group

- name: add members to group
 gather_facts: false
 hosts: all
 vars:
 rmmembers: ivan

 tasks:
 - name: add members to group
 ibm.power_aix.group:
 name: security
 state: modify
 user_list_action: remove
 user_list_type: members
 users_list: "{{ rmmembers }}"

Managing the IP filter configuration
IP filter is an AIX tuning and configuration option that is not often used by AIX administrators,
but more security departments require server-based firewalls that are enabled. With Ansible,
it is simple to configure the IP filter on AIX.

To configure the IP filter without Ansible, you can use several smitty menus or learn the
command and parameters to set the filters by using the CLI. With Ansible, you define a
variable with your filter configuration and use one task to activate it, as shown in
Example 6-51.

Example 6-51 AIX IP filter configuration

- name: configure AIX IP filter
 hosts: all
 gather_facts: false
 vars:
 aix_filter:
 - { action: permit, direction: outbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: all, description: 'allow outbound
connections' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: icmp, interface: all, description:
'allow incoming pings' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 22,
description: 'ssh' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: all, d_opr: eq, d_port: 657,
description: 'rmc' }

Note: Note the inconsistency in the naming. The attributes user_list_action and
user_list_type are singular (user without an s at the end), but the attribute users_list is
plural (users with an s at the end).
314 Using Ansible for Automation in IBM Power Environments

 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 16191,
description: 'caa' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 6181,
description: 'caa' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 42112,
description: 'caa' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 3901,
description: 'nimsh' }
 - { action: permit, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: tcp, d_opr: eq, d_port: 3902,
description: 'nimsh' }
 - { action: deny, direction: inbound, s_addr: 0.0.0.0, s_mask: 0.0.0.0,
d_addr: 0.0.0.0, d_mask: 0.0.0.0, protocol: all, log: true, description: 'deny and
log everything else' }
 tasks:
 - name: activate ip filter
 ibm.power_aix.mkfilt:
 ipv4:
 log: yes
 default: deny
 rules: "{{ aix_filter }}"

If you add a rule, you can add it into the list and run the playbook again. If you want to disable
the IP filter, remove all filters, set default to permit, and then close the IPsec devices, as
shown in Example 6-52.

Example 6-52 Disabling the IP filter on AIX

- name: disable AIX IP filter
 hosts: all
 gather_facts: false

 tasks:
 - name: Remove all user-defined and auto-generated filter rules
 ibm.power_aix.mkfilt:
 ipv4:
 default: permit
 force: yes
 rules:
 - action: remove
 id: all
 - name: stop IPsec devices
 ibm.power_aix.devices:
 device: "{{ item }}"
 state: defined
 with_items:
 - ipsec_v4
 - ipsec_v6
Chapter 6. Day 2 management operations 315

If you want to be sure that IP filter rules are loaded in the correct order, remove all rules
before loading them again.

Managing security settings with aixpert
The aixpert tool is a versatile tool to help harden your system. With this command, you can
check security settings and apply them. Ansible helps implement it in a playbook to make it a
part of a larger process, such as server provisioning or hardening.

First, implement a highly secure configuration on AIX, as shown in Example 6-53.

Example 6-53 Applying a highly secure configuration

- name: apply high secure configuration to AIX
 ibm.power_aix.aixpert:
 mode: apply
 level: high

Understand that it is aixpert that is doing the work this time, not Ansible. If you apply the
configuration twice, Ansible runs aixpert twice. The tool does not change your configuration
the second time and it might even be faster than the first run. It is aixpert that checks and
applies security settings, not Ansible. To check whether the configuration is still intact, use
check mode, as shown in Example 6-54.

Example 6-54 Checking the AIX security configuration

- name: check applied settings
 ibm.power_aix.aixpert:
 mode: check

If the configuration changed, reapply it as shown in Example 6-55.

Example 6-55 Checking and reapplying AIX security settings if they changed

- name: check applied settings
 ibm.power_aix.aixpert:
 mode: check
 ignore_errors: true
 register: aixpert_check
- name: reapply security settings
 ibm.power_aix.aixpert:
 mode: apply
 level: medium
 when: aixpert_check.rc == 1

If you want to restore your previous settings, you can do so because aixpert saves the old
configuration, which you use to revert the changes, as shown in Example 6-56.

Example 6-56 Restoring security settings to their nonsecure variant

- name: restore security settings
 ibm.power_aix.aixpert:
 mode: undo

Important: Be careful when you change the IP filter configuration. Any mistake in the rules
can lead to lost network connectivity.
316 Using Ansible for Automation in IBM Power Environments

6.3.3 Fixes

The topic of fixes, especially emergency or interim fixes, is a point of disagreement for many
AIX administrators. Many administrators live according to the rule “if it works, don’t break it”.
Unfortunately, what many administrators misunderstand is the first part of the rule: “if it
works”.

If a security issue is found in some AIX component, then it does not work as it was designed.
You don’t “break” it, you fix it. With Ansible, it is simple to patch these security issues. If your
environment supports Live Update, fixing can be done while your systems are online and with
no downtime.

Working with interim fixes
This section presents some examples about how you can Ansible to manage interim fixes in
your AIX environment. Some of the examples require direct access to the internet to work, but
most corporate environments do not have any access to the internet or only through proxies.

If your systems do not have access to the internet, then you cannot automatically check and
install fixes, and you must provide a method of checking and acquiring the appropriate fixes
somewhere in your environment. You must have at least one server where you can download
fixes that can then be distributed to the other systems.

If you do have access to the internet but only through a proxy, configure your proxy settings.
Often, you can achieve this task by exporting the https_proxy variable in your environment,
but sometimes the task requires more complex work depending on the specifics of your
environment. Setting up proxy configurations can be automated with Ansible, but it is beyond
the scope of this books, which is why we built our examples assuming that you have access to
the internet.

Checking for AIX fixes
Check whether there are fixes that are needed in your AIX installation. You need internet
access, and you must install wget to download the fixes. The wget tool is an open-source
utility that retrieves files by using the HTTP or FTP protocols. You can download it from the
AIX Toolbox and install by using dnf. The module automatically installs the flrtvc.ksh script
from the IBM website.

Example 6-57 shows how to generate a report on which fixes are available for your system.

Example 6-57 Generating report about available security fixes for AIX

- name: generate report about available fixes for the system
 ibm.power_aix.flrtvc:
 apar: sec
 verbose: true
 check_only: true
 register: flrtvc_out
 - name: print the report
 ansible.builtin.debug:
 msg: "{{ flrtvc_out.meta['0.report'] | join('\n') }}"

Note: During our tests, we saw sometimes messages like KeyError: <message>. It seems
that the FLRT service occasionally fails and delivers answers that are not understood by
Ansible. Repeat the task, which should complete without any errors.
Chapter 6. Day 2 management operations 317

https://www.ibm.com/support/pages/aix-toolbox-open-source-software-downloads-alpha#W

If you want to see the report in a better format, export ANSIBLE_STDOUT_CALLBACK=debug or set
it in the command when you call ansible-playbook, as shown in Example 6-58.

Example 6-58 Setting debug before you run ansible-playbook

ANSIBLE_STDOUT_CALLBACK=debug ansible-playbook -i inventory fixes-report.yml

Installing fixes
To automatically install the fixes, use the same command that you used to check for fixes, but
remove check_only, as shown in Example 6-59.

Example 6-59 Installing all the required security fixes on AIX

- name: install security fixes
 ibm.power_aix.flrtvc:
 apar: sec
 verbose: true

Ansible downloads all the fixes into /var/adm/ansible. If there is not enough space in rootvg,
Ansible automatically expands the file system. You can choose a different location for the
temporary files by setting the attribute path to another directory.

Applying fixes to multiple servers
Often, you have multiple similar systems that you want to manage as a group. You installed
and tested the fixes in a non-production environment and now you want to apply those fixes to
your production servers. Our example, which is shown in Example 6-60, assumes that the
fixes that will be installed on the target production servers are downloaded and available in
/var/adm/fixes on the Ansible Controller node.

Example 6-60 Copying interim fixes from the Ansible Controller node to a remote AIX server and
installing them

- name: find, copy, and install security fixes
 hosts: all
 gather_facts: false
 vars:
 local_fixes_dir: /var/adm/fixes
 remote_fixes_dir: /var/tmp/fixes

 tasks:
 - name: find all fixes
 ansible.builtin.set_fact:
 fixes_list: "{{ fixes_list | default([]) + [(item | basename)] }}"
 with_fileglob:
 - "{{ local_fixes_dir }}/*.epkg.Z"
 - name: create temporary directory for fixes on the target
 ansible.builtin.file:
 path: "{{ remote_fixes_dir }}"
 owner: root
 group: system
 mode: 0700
 state: directory
 - name: copy fixes to the target
 ansible.builtin.copy:
 src: "{{ local_fixes_dir }}/{{ item }}"
318 Using Ansible for Automation in IBM Power Environments

 dest: "{{ remote_fixes_dir }}/{{ item }}"
 owner: root
 group: system
 mode: 0600
 loop: "{{ fixes_list }}"
 - name: install fixes
 ibm.power_aix.emgr:
 ipatch_package: "{{ remote_fixes_dir }}/{{ item }}"
 action: install
 from_epkg: true
 extend_fs: true
 force: true
 loop: "{{ fixes_list }}"
 - name: remove fixes from the target
 ansible.builtin.file:
 path: "{{ remote_fixes_dir }}/{{ item }}"
 state: absent
 loop: "{{ fixes_list }}"

Sometimes, especially before performing an AIX update, you want to remove all fixes. You
can do this task by using only two tasks in an Ansible playbook.

Example 6-61 Removing all interim fixes from AIX

- name: remove all installed interim fixes
 hosts: all
 gather_facts: false

 tasks:
 - name: find all installed fixes
 ibm.power_aix.emgr:
 action: list
 register: emgr
 - name: uninstall patch
 ibm.power_aix.emgr:
 action: remove
 ipatch_label: "{{ item.LABEL }}"
 loop: "{{ emgr.ipatch_details }}"
 loop_control:
 label: "{{ item.LABEL }}"

Installing service packs and updates from NIM lpp_source resources
An AIX environment has at least one network installation manager (NIM) server. The NIM
server is a central focal point in the infrastructure that has the newest version of AIX, and it
contains resources to manage NIM clients. The NIM administrator creates resources that can
be used by NIM clients (AIX servers) to install new or update existing software.
Chapter 6. Day 2 management operations 319

Assume that you have an AIX server with AIX 7.3 and want to update it to AIX 7.3 TL1 SP2.
The server is registered as an NIM client and has access to NIM resources. Example 6-62
shows an example of how you can update AIX by using the NIM lpp_source resource. It
checks that the AIX server is registered while the NIM client validates that it does not have the
update.

Example 6-62 Updating the AIX server by using the NIM lpp_source from the NIM server

- name: update AIX server by using NIM
 gather_facts: false
 hosts: nim
 vars:
 client: aix73
 aixver: 7300-01-02-2320
 reboot: false

 tasks:
 - name: check if client is defined
 ansible.builtin.command:
 cmd: lsnim {{ client }}
 changed_when: false
 register: registered
 ignore_errors: true
 - name: stop if the client is not registered
 meta: end_play
 when: registered.rc != 0
 - name: get client version
 ansible.builtin.command:
 cmd: /usr/lpp/bos.sysmgt/nim/methods/c_rsh {{ client }} '(LC_ALL=C
/usr/bin/oslevel -s)'
 changed_when: false
 register: oslevel
 - name: stop if the client is already updated
 meta: end_play
 when: oslevel.stdout == aixver
 - name: update client
 ansible.builtin.command:
 cmd: nim -o cust -a lpp_source={{ aixver }}-lpp_source -a fixes=update_all
-a accept_licenses=yes {{ client }}
 - name: reboot client
 ibm.power_aix.reboot:
 when: reboot

You can update AIX from the NIM client too, as shown in Example 6-63.

Example 6-63 Updating AIX by using the NIM lpp_source from the NIM client

- name: update AIX server by using NIM
 gather_facts: false
 hosts: aix73
 vars:
 aixver: 7300-01-02-2320
 reboot: false
320 Using Ansible for Automation in IBM Power Environments

 tasks:
 - name: check if NIM client is configured
 ansible.builtin.command:
 cmd: nimclient -l master
 changed_when: false
 register: registered
 ignore_errors: true
 - name: stop if the client is not registered
 meta: end_play
 when: registered.rc != 0
 - name: get client version
 ansible.builtin.command:
 cmd: oslevel -s
 changed_when: false
 register: oslevel
 - name: stop if the client is already updated
 meta: end_play
 when: oslevel.stdout == aixver
 - name: update client
 ansible.builtin.command:
 cmd: nimclient -o cust -a lpp_source={{ aixver }}-lpp_source -a
fixes=update_all -a accept_licenses=yes
 - name: reboot client
 ibm.power_aix.reboot:
 when: reboot

You can update any software that is packed in lpp_source on your NIM server.

6.3.4 Configuration tuning

There are many places in AIX that you can tune. In this section, you learn about several ways
of tuning AIX.

Most of the AIX settings are stored in stanza files. They have sections, attributes, and values.
You can change the values of attributes by using the chsec module, as shown in
Example 6-64.

Example 6-64 Changing the AIX settings in /etc/security/login.cfg and /etc/secvars.cfg

- name: set settings
 ibm.power_aix.chsec:
 path: "{{ item.file }}"
 stanza: "{{ item.section }}"
 attrs: "{{ item.attrs }}"
 loop:
 - { file: "/etc/security/login.cfg", section: "usw", attrs: {
sulogfulldate: "true", mkhomeatlogin: "true", pwd_algorithm: "ssha512" } }
 - { file: "/etc/secvars.cfg", section: "groups", attrs: {
domainlessgroups: "true" } }

Using the chsec module is not the only way to change AIX settings. You can use the standard
ansible.builtin.template and ansible.builtin.copy modules to set AIX settings in the
configuration files.
Chapter 6. Day 2 management operations 321

Security is not the only reason to automate AIX configuration. Another reason is maintaining
performance baselines. An application vendor like Oracle or SAP can define some values that
you must set up on AIX to achieve better performance. An AIX administrator usually does this
task by using tunable commands like vmo, no, or schedo, or by setting device attributes. All
these tasks are possible with Ansible.

Example 6-65 shows how you can set reserve_policy to no_reserve and queue_depth to 24
for each disk you find in the system.

Example 6-65 Setting the hdisk attributes

- name: set hdisk attributes
 hosts: all
 gather_facts: true

 tasks:
 - name: find hdisks
 ansible.builtin.set_fact:
 disks: "{{ ansible_facts.devices | dict2items |
community.general.json_query(q) }}"
 vars:
 q: "[?starts_with(key, 'hdisk')].key"
 - name: set hdisk attributes
 ibm.power_aix.devices:
 device: "{{ item }}"
 attributes:
 reserve_policy: no_reserve
 queue_depth: 24
 chtype: reset
 loop: "{{ disks }}"

Example 6-66 shows how you can set network tunables by using Ansible.

Example 6-66 Setting network tunables with Ansible

- name: set network options
 ibm.power_aix.tunables:
 action: modify
 component: no
 change_type: both
 tunable_params_with_value: "{{ no_tunables }}"
 vars:
 no_tunables: {
 tcp_recvspace: 262144,
 tcp_sendspace: 262144,
 udp_recvspace: 262144,
 udp_sendspace: 262144,
 rfc1323: 1,
 tcp_fastlo: 1,
 tcp_keepintvl: 60,
 ipforwarding: 0
 }

Similarly, you can other tunables like vmo, schedo, ioo, or nfso.
322 Using Ansible for Automation in IBM Power Environments

It is not possible is to provide detailed descriptions of all options that are available or describe
each use case. We tried to provide a little guidance and an initial impression of what can be
done on AIX by using Ansible.

Ansible has a vibrant ecosystem. Every month, you see new features in Ansible collections
and Ansible itself. If you cannot find some feature or module, send a report. Create an issue
on GitHub or a topic on the IBM community site.

6.4 Day 2 operations in IBM i environments

In this segment, you learn about IBM i management through Ansible automation. This
process encompasses a thorough investigation of essential elements, spanning storage,
security, patch management, and configuration tuning. You learn about actionable solutions
and industry best practices so that you can deftly choreograph IBM i environments for optimal
performance and accuracy.

6.4.1 Storage

This section describes the context of storage management for IBM i. It aims to explore and
demystify key storage-related tasks and configurations by harnessing the power of Ansible
automation. By using Ansible functions, you can streamline and enhance the storage
management experience for IBM i users and offer efficient solutions to common challenges.

Specifically, this section describes three integral facets of storage management:

1. Create or delete a storage volume by using os_volume: Describes using the os_volume
module to facilitate the creation and deletion of storage volumes. This module is a
versatile tool for managing storage resources with precision, It helps ensure that the
storage landscape aligns with the dynamic requirements of IBM i.

2. Attach a storage volume to os_server_volume: The os_server_volume module is used to
attach storage volumes to IBM i servers. You learn how Ansible simplifies and accelerates
the provisioning of storage resources to enhance the scalability and adaptability of IBM i
environments.

3. Configure volumes to independent auxiliary storage pool (IASP): IASPs can be used to
help configure volumes within this context. With IASPs, you can create a storage
infrastructure.

Enhancing IBM i storage management with the os_volume module
In IBM i storage management, the os_volume module enables the creation and removal of
cinder block storage volumes. Use this tool to provision resources according to your evolving
workload needs. Users can define whether to create or remove volumes to align storage
operations with operational demands.

The os_volume module interacts seamlessly with designated clouds to improve operations by
providing default authentication values. Users can specify target cloud environments to help
ensure secure communication between Ansible and the cloud.

With this module, you have granular control over volume size (gigabytes) to accommodate
precise resource allocation for IBM i. Volume naming enhances organization, and the module
supports a volume type specification to tailor resources for various workloads.
Chapter 6. Day 2 management operations 323

Incorporating the os_volume module into Ansible simplifies storage management, which
promotes efficient provisioning and configuration and exemplifies the dynamic storage
landscape that is required by IBM i environments.

Example 6-67 shows a playbook for volume creation.

Example 6-67 Sample playbook to create a volume on IBM i

name: Create New Volume
os_volume:
 state: present
 cloud: '{{ cloud_name }}'
 size: 150
 display_name: "{{ volume_name }}"
 volume_type: '70866ebf-0db5-4b12-86ed-0e838d593458'
register: volume_info
...

Attaching storage volumes to IBM i VMs by using the os_server_volume
module
The os_server_volume module assumes a crucial role to facilitate the attachment of storage
volumes to compute hosts. This module refines the process of linking volumes to IBM i VMs.

With its core function, os_server_volume presents administrators with the option to define the
state of the resource, that is, whether it can be present or absent. By accommodating named
clouds, this module permits precise targeting of cloud environments for the operation. Default
authentication values simplify setup and bolster secure communication between Ansible and
the cloud.

The module's efficacy is its capacity to associate volumes with specific IBM i VMs. By
providing the name of the target VM and the volume, administrators can quickly attach
storage resources to enable the VM to access the necessary data. This module exemplifies
the synergy between the Ansible automation capabilities and the storage demands of IBM i.

Example 6-68 presents a sample playbook to attach a volume to an IBM i VM.

Example 6-68 Sample playbook to attach a volume to an IBM i VM

name: Attach Volume to IBM i VM
os_server_volume:
 state: present
 cloud: '{{cloud_name}}'
 server: "{{ vm }}"
 volume: "{{ volume_info.id }}"
...

Note: For the effective utilization of the os_server_volume and os_volume modules, a
prerequisite is the presence of IBM PowerVC as the orchestrator for your IBM i VMs. This
integration emphasizes the significance of IBM PowerVC in bolstering the flexibility and
resilience of your IBM i infrastructure.
324 Using Ansible for Automation in IBM Power Environments

Configuring IASP volumes with Ansible for IBM i
In IBM i storage management, configuring volumes within an IASP is relevant for
environments that uses IBM PowerHA, among others. The Ansible dynamic capabilities
enhance this process by integrating storage resources into the IASP structure.

The os_iasp_volume role plays a crucial role in this configuration by efficiently orchestrating
volume integration. The playbook first checks for the IASP's existence and creates it if
needed, which shows Ansible's adaptability.

IASPs offer distinct benefits by enabling isolated disk unit management. The playbook
demonstrates Ansible integration with os_iasp_volume to effortlessly configure
non-configured disks in the IASP. This integration optimizes storage alignment to bolster
overall efficiency.

The playbook highlights Ansible excellence in configuring IASP volumes. Administrators can
expertly manage storage to help ensure a resilient landscape and meet evolving IBM i
demands.

Example 6-69 presents a sample setup of IASP volumes.

Example 6-69 Sample playbook to set up IASP volumes

- name: Initialize IBM i VM
 hosts: new_vm
 roles:
 - role: vm_iasp_configure
 vars:
 iasp_info:
 - {'iasp_name': 'demoiasp1', 'iasp_capacity': 0.5}
 - {'iasp_name': 'demoiasp2', 'iasp_capacity': 1}
...

6.4.2 Security and compliance

Security in IBM i environments is a multifaceted aspect that plays a key role in maintaining the
integrity and confidentiality of critical data and operations. At its core, the system offers five
distinct security levels that are denoted by the QSECURITY system value, which ranges
10 - 50. Administrators can use these levels to tailor security measures to their specific
needs. IBM i provides a comprehensive set of system values that administrators can use to
define system-wide security settings while also facilitating customization to meet diverse
requirements across IBM Power servers.

Digital signing emerges as a critical practice for helping ensure the authenticity and integrity
of software objects. This situation becomes especially pertinent when objects traverse the
internet or are on media that could be susceptible to unauthorized modifications. The usage
of digital signatures, which are managed through mechanisms like the Verify Object Restore
(QVFYOBJRST) system value and the Check Manager tool, aids in detecting any unauthorized
alterations.
Chapter 6. Day 2 management operations 325

Single sign-on (SSO) amplifies user convenience by granting access to multiple systems with
a single set of credentials. IBM facilitates SSO through the Network Authentication Service
(NAS) and Enterprise Identity Mapping (EIM), which both use the Kerberos protocol for user
authentication. User profiles serve as a versatile tool to enforce role-based access control
(RBAC) and personalize user experiences within the system. Group profiles extend this
concept by centralizing authority assignments for groups of users.

Resource security is implemented through the concept of authorities, which govern the ability
to access objects. The system offers finely grained authority definitions, which include
subsets such as *ALL, *CHANGE, *USE, and *EXCLUDE. This mechanism applies to files,
programs, libraries, and any object within the system.

Encryption is relevant for security, with IBM i enabling data encryption at the ASP and
Database Column levels. However, encryption operations can be carefully managed to
mitigate performance implications. Security audit journals facilitate monitoring security
effectiveness to log selected security-related events for review.

In the context of Ansible for IBM i, the integration of security measures is accommodated
through a range of purpose-built modules. These modules permit diverse requirements,
which include security and compliance checks, so that administrators can configure, verify,
and optimize security settings. Ansible for IBM i offers a robust ecosystem that administrators
can use to help ensure security compliance by referencing the CIS IBM i Benchmark
documentation and employing regularly updated security compliance playbooks. This
dynamic framework contributes to the creation of secure IBM i environments that align with
modern security paradigms.

Overview of the security management use case
The content here is designed to serve the security management use case. The playbooks
that are involved offer you readily available samples that can be used as-is or adapted to suit
your specific requirements.

At the time of writing, the focus of these playbooks centers on security compliance checks.
These playbooks are initially presented as basic examples with plans to expand their contents
based on security compliance suggestions that are outlined in the CIS IBM i Benchmark
documentation.

In this section, you see the explanation of the playbooks that are involved in this use case:

� main.yml: This playbook serves as an entry point that orchestrates the execution of all
other playbooks that are in this directory. Running this playbook runs the entire suite.

� manage_system_values.yml: This playbook verifies security-related system values against
recommendations from the CIS IBM i Benchmark documentation. This playbook offers two
separate YAML files for checking and remediating, along with three distinct modes of
operation.

– system_value_check.yml: Conducts a compliance check on system values by
comparing them with the expected values.

– system_value_remediation.yml: Provides remediation options that are based on user
input to perform remediation after a comprehensive review of the report.

Note: For more information about implementing security practices on IBM i systems by
using Ansible, see the provided use cases and security management resources that are
available at this GitHub repository. To stay up to date, regularly review this directory under
the devel branch.
326 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ansible-for-i/tree/devel/usecases/security_management

� manage_user_profiles.yml: This playbook uses the ibmi_user_compliance_check module
and the ibmi_sql_query module to assess user profile settings. It contains the following
two playbooks:

– user_profile_check.yml: Performs a compliance check on user profiles.

– user_profile_remediation.yml: Offers suggestions for remediation and performs
remediation actions that are based on user input.

� manage_network_settings.yml: This playbook verifies a single network attribute setting by
invoking the Retrieve Network Attributes (RTVNETA) command.

� manage_object_authorities.yml: This playbook validates object authorities. At the time of
writing, it offers a basic example that uses the ibmi_object_authority module.

Additional Information
For more information about how to run a playbook that is dedicated to Secure Compliance for
IBM i, see Appendix A, “Use case for security compliance on IBM Power Systems through
Red Hat Ansible” in IBM Power Systems Cloud Security Guide: Protect IT Infrastructure In All
Layers, REDP-5659. That appendix presents a detailed use case that focuses on security
compliance for IBM Power servers by using Red Hat Ansible. The section “Security and
Compliance with Red Hat Ansible for IBM i” shows the configuration process.

6.4.3 Patch management

Figure 6-8 shows an illustrative depiction of the process of IBM Patch Management that
highlights its key components and how they interact.

Figure 6-8 Advanced Patch Management workflow

The mechanism centers on IBM Patch Central, an online portal that establishes an internet
connection with multiple IBM i instances. These instances consist of two parts:

� PTF and Image Repository IFS: Where the acquired fixes are stored and automatic
detection of new Program Temporary Patch (PTF) groups is enabled.

� PTF and PTF Group Catalog: Stores information about downloaded fixes and assembles
catalogs with new media.
Chapter 6. Day 2 management operations 327

To help ensure coherence and robustness, a meticulous comparison of PTF versions against
repository content and IBM i endpoints' systems takes place. This crucial coordination is
orchestrated by the Ansible Controller, which effectively connects with each component within
the intranet framework. The Ansible Controller can install PTFs and thoroughly examine the
status of PTFs on the endpoints.

This dynamic use case, which is equipped with comprehensive functions, is available for
download and adaptation. For more information, see the GitHub repository Patch
Management.

6.4.4 Configuration tuning

In this section, you learn about a set of playbooks that revolve around IBM i services. These
playbooks, which are sourced from the GitHub repository IBM i Services, can optimize
various aspects of an IBM i environment.

Here are the playbooks. Their purposes are explained in the following sections.

� communications.yml

� message_handling.yml

� product_checking.yml

� system_health.yml

� work_management.yml

Analyzing IBM i network communications
The playbook communications.yml addresses the critical task of assessing and optimizing
network communications within the IBM i environment. By using various tasks, administrators
can use this playbook to enhance the efficiency, security, and reliability of network
connections.

The playbook commences with gathering essential facts, excluding default fact collection, by
using the gather_facts: false parameter. It uses the ibm.power_ibmi collection to run its
tasks. The <become_user_name> and <become_user_password> variables are employed for
privilege escalation.

The playbook orchestrates a series of tasks that offer in-depth insights into network
communications:

1. Review most data transfer connections: This task employs the ibmi_sql_query module to
retrieve connections that transfer substantial data (over 1 GB). The retrieved results are
registered, which provide crucial metrics about data flow. The subsequent debug task
showcases these results, which aid administrators in evaluating resource utilization and
potential bottlenecks.

2. Analyze remote IP address details for password failures: By using SQL queries, this task
identifies and counts occurrences of failed password attempts from remote IP addresses
within the past 24 hours. The gathered information is registered and presented through
the debug task. This analysis helps administrators detect potential security threats and
unauthorized access attempts.

3. Review TCP/IP routes: This task uses the ibmi_sql_query module to pinpoint TCP/IP
routes with inactive local binding interfaces. By registering and displaying the details of
these routes, administrators can identify and rectify potential network configuration issues
that might impact communication reliability.
328 Using Ansible for Automation in IBM Power Environments

https://github.com/IBM/ansible-for-i/tree/devel/usecases/ibmi_services
https://github.com/IBM/ansible-for-i/tree/devel/usecases/fix_management
https://github.com/IBM/ansible-for-i/tree/devel/usecases/fix_management

Optimizing message handling on IBM i
The playbook message_handling.yml can improve message handling within the IBM i
environment so that administrators can proactively monitor and manage message queues
and their responses. By facilitating smoother communication, the playbook helps maintain
system health and performance.

With the factual data collection disabled by using gather_facts: false, the playbook
harnesses the ibm.power_ibmi collection.

The playbook orchestrates a series of tasks for thorough message handling optimization:

1. Analyze next initial program load (IPL) status: This task employs the ibmi_sql_query
module to examine history log messages since the last IPL to predict the nature of the
next IPL. It assesses whether it will be normal or abnormal based on specific messages.
The results are registered, and an assert task helps ensure that the next IPL is predicted
to be normal, which enhances system predictability and stability.

2. Examine system operator inquiry messages with replies: This task employs SQL queries
to retrieve system operator inquiry messages and their associated replies from the
message queue QSYSOPR. The gathered information is registered, which offers
administrators insights into system operator interactions and responses, promoting
efficient communication and issue resolution.

3. Examine system operator inquiry messages without replies: By analyzing system operator
inquiry messages that have not received replies, this task enhances message handling
efficiency. SQL queries extract relevant data from the QSYSOPR message queue, and the
results are registered and presented through the debug task.

License and product monitoring for IBM i
The playbook product_checking.yml provides administrators with valuable insights into the
licensing and expiration status of products within IBM i. The playbook operates under the
premise that helping ensure the validity of licensed products is crucial for system health and
compliance.

The playbook orchestrates two key tasks:

1. Monitoring expiring licenses: This task uses the ibmi_sql_query module to retrieve
information about all licensed products and features that expire within the next 2 weeks.
This information is crucial for proactive license management and preventing disruptions
due to expired licenses. Results are registered under the <expire_within_next_2_weeks>
variable, which provides administrators with actionable insights.

2. Monitoring expiring licenses for installed products: This task employs SQL queries to
retrieve details about licensed products and features that expire within the next 2 weeks,
focusing on installed products. By considering only products that are marked as INSTALLED
= YES, administrators can prioritize active components that require license renewal.
Results are registered under the <expire_within_next_2_weeks> variable for a
comprehensive view.
Chapter 6. Day 2 management operations 329

IBM i system health analysis
The playbook system_health.yml facilitates comprehensive system health analysis within the
IBM i environment. It provides administrators with invaluable insights into system integrity and
performance.

The playbook orchestrates two central tasks that are key for maintaining system health:

1. Unofficial code inspection: The playbook uses the ibmi_sql_query module to scrutinize
the presence of any unofficial IBM i code within the QSYS library. By querying the
QSYS2.OBJECT_STATISTICS view for objects that are labeled *PGM *SRVPGM, the playbook
identifies unsigned objects in the *SYSTEM domain. This inspection promotes security and
stability. The results are registered under the <unofficial_code_check> variable.

2. Large table identification: Another task employs SQL queries to identify tables within the
QSYS2.SYSLIMITS view that exceed a CURRENT_VALUE of 10,000,000. This task highlights
tables with a significant data volume, which potentially indicates performance issues. The
results are captured in the <large_table> variable for further analysis.

IBM i work management analysis
The playbook work_management.yml focuses on IBM i work management analysis to deliver
enhanced insights into job queue efficiency and system performance.

This playbook uses a series of critical tasks that are geared toward efficient work
management:

1. Scheduled job evaluation: The playbook employs the ibmi_sql_query module to assess
job schedule entries that are no longer effective due to explicit holding or scheduling
limitations. The inspection, which is centered on the QSYS2.SCHEDULED_JOB_INFO view,
targets HELD and SAVED status entries. The results are stored under the
<job_schedule_status> variable.

2. Job queue and temporary storage analysis: The playbook capitalizes on SQL queries to
uncover jobs waiting to run within job queues (QSYS2.JOB_INFO). Furthermore, it
scrutinizes the top four consumers of temporary storage based on memory pool usage,
and isolates jobs with temporary storage exceeding 1 GB. These analyses contribute to
optimized system resource allocation.

3. Lock contention evaluation: Through SQL queries, the playbook identifies jobs that
encounter excessive lock contention. By querying the QSYS2.ACTIVE_JOB_INFO view, it
isolates jobs with combined database and non-database lock waits that surpass 2000.
Insights are essential for maintaining operations.

4. QTEMP resource utilization inspection: The playbook evaluates host server jobs that use
more than 10 MB of QTEMP storage. By using qsys2.active_job_info, jobs meeting this
criterion are identified, which enables efficient resource allocation.
330 Using Ansible for Automation in IBM Power Environments

Chapter 7. Future trends and directions

This chapter covers the future direction and plans of Ansible and IBM Power at a high level. It
also covers emerging trends in Ansible automation, and how you can maintain your Ansible
code with products like Visual Studio Code and IBM watsonx Code Assistant for Red Hat
Ansible Lightspeed.

The following topics are described in this chapter:

� Ansible and IBM Power Roadmap
� Roadmap for Ansible automation in the Power ecosystem

7

© Copyright IBM Corp. 2024. 331

7.1 Ansible and IBM Power Roadmap

In the past, modules that were specific to IBM Power were created by the community.
However, as you can see in 1.5, “Ansible for Power” on page 30, IBM has been actively
creating Ansible content for use across IBM Power servers since 2020. These collections are
available on both Ansible Galaxy and Ansible Automation Hub.

IBM continues to develop new content, and improve existing content within these collections.
Look at the IBM Power AIX collections at Galaxy (for example), and you can see the version
release cycle that is shown in Figure 7-1.

Figure 7-1 AIX collection release cycle

7.1.1 Working closely with the IBM Power collections and their contents

You can see what is included in the Ansible IBM Power collections and sample playbooks at
the IBM GitHub pages.

Viewing the content of the IBM Power collections
The content within each of the IBM Power collections can be viewed on the IBM GitHub
pages. The link to each specific GitHub repository can be accessed by using the Repo link
within Galaxy.

Table 7-1 on page 333 provides some of those links.
332 Using Ansible for Automation in IBM Power Environments

Table 7-1 GitHub content for IBM Power collections

In the GitHub repositories, you can see the code that is used to supply the collection,
including the readme file, the modules, and some sample playbooks.

Raising an issue or suggesting enhancements to the IBM Power
collection
Because the IBM Power collections are available for anyone to see and use within Ansible
Galaxy, you can request new features or suggest enhancements to the existing code. You can
also raise issues with the code for the development team to review. To do so, go to the Issues
section of the GitHub repository for the collection. You see three options: Bug report, Custom
issue template, and Feature request, as shown in Figure 7-2.

Figure 7-2 Raising a bug report or new feature request

You can also contribute to the collections by creating your own fork from the repository,
making your changes to your fork, and raising a pull request. This way, the development team
sees your proposed changes and either merges them into the collection or rejects them.

7.2 Roadmap for Ansible automation in the Power ecosystem

IBM and Red Hat continue to work on enhancements to the Ansible integrations of the
IBM Power ecosystem, which includes updates to existing collections and implementations to
provide more functions involving machine learning and artificial intelligence (AI).

Collection GitHub URL

ibm.power_aix https://github.com/IBM/ansible-power-aix

ibm.power_ibmi https://github.com/IBM/ansible-for-i

ibm.power_hmc https://github.com/IBM/ansible-power-hmc

ibm.power_vios https://github.com/IBM/ansible-power-vios
Chapter 7. Future trends and directions 333

https://github.com/IBM/ansible-power-aix
https://github.com/IBM/ansible-for-i
https://github.com/IBM/ansible-power-hmc
https://github.com/IBM/ansible-power-vios

7.2.1 Ansible Automation Platform on IBM Power

In June 2023, IBM and Red Hat announced that Ansible Automation Platform 2.4 was
available as a technology preview on IBM Power. In December 2023, Red Hat announced the
general availability of Ansible Automation Platform 2.4 on IBM Power (also announced was
support for IBM Z and IBM LinuxONE). In addition to using Ansible to automate client
endpoints on IBM Power (for example, AIX, IBM i, and VIOS), you can run Ansible Automation
Platform and all its components on IBM Power too.

For more information about what is new in Ansible Automation Platform 2.4, including the
technology preview announcement, see What's new in Ansible Automation Platform 2.4, see
Red Hat Blog.

You can run the Ansible Controller (formerly Tower) on IBM Power and all the other
components that go to make up the Ansible Automation Platform, including execution
environments, event-driven Ansible, and an automation hub.

7.2.2 Visual Studio Code

Visual Studio Code (also known as VS Code) is an open-source code editor that is available
for Windows, Mac, Linux, and a web interface. Visual Studio Code is the first GUI code editor
to have an Ansible extension that is released by Red Hat.

The Ansible extension provides smart auto completion, syntax highlighting, validation,
documentation reference, integration with ansible-lint, diagnostics, goto definition support,
and command windows to run ansible-playbook and the ansible-navigator tool for both
local and execution-environment setups.

Visual Studio Code can be downloaded from this Visual Studio Code repository.

Installing the Ansible extension
To install the Ansible extension, complete the following steps:

1. Open VS Code and click the Extensions icon in the left pane. Search for the Ansible
extension that is published by Red Hat, as shown in Figure 7-3 on page 335.
334 Using Ansible for Automation in IBM Power Environments

https://www.ansible.com/blog/whats-new-in-ansible-automation-platform-2.4
https://www.redhat.com/en/blog/red-hat-ansible-automation-platform-now-available-on-ibm?_gl=1*hnuslw*_ga*NjMwMzQ3MzU1LjE2NTQxODY0MTM.*_ga_FYECCCS21D*MTcwMzEwNDA4NC4yNzAuMC4xNzAzMTA0MDg0LjAuMC4w&_ga=2.80181591.1796529110.1703023593-630347355.1654186413
https://code.visualstudio.com/Download

Figure 7-3 Installing the Ansible extension for Visual Studio Code

2. Open the folder that contains your Ansible files by clicking the Explorer icon in the upper
left, as shown in Figure 7-4.

Figure 7-4 Opening the folder that contains your ansible files
Chapter 7. Future trends and directions 335

3. The first time that you open an Ansible file (either .yaml or .yml), there are a couple of
steps that you must do:

a. Define which Python environment that the Ansible extension should use by clicking the
Python version indicator, which is at the right of the Status Bar, as shown in Figure 7-5.

Figure 7-5 Selecting the Python environment

b. Associate the .yaml or .yml files with the Ansible file type by clicking the language
indicator, which is at the right of the Status Bar, and selecting Ansible from the
drop-down menu, as shown in Figure 7-6. The language indicator is probably set to
YAML before it is associated with the Ansible file type.

Figure 7-6 Associating YAML files with the Ansible language

The Ansible extension should now recognize YAML files as Ansible language, and offer
syntax checking, documentation links, and other contextual aids to help you write Ansible
code.

If you are working in a larger environment, you probably will not write, test, and run your
Ansible code on the same workstation where you installed Visual Studio Code. In this case,
install the Remote Secure Shell (SSH) extension.

Installing the Remote SSH extension
Install the Remote SSH extension by clicking the Extensions icon in the left navigation bar.
Search for “remote” and install the “Remote - SSH” extension that is published by Microsoft,
as shown in Figure 7-7 on page 337.

Note: If you have the ansible-lint package installed, it is automatically integrated for
syntax checking and code validation.
336 Using Ansible for Automation in IBM Power Environments

Figure 7-7 Installing the Remote-SSH extension

Once the extension is installed, open the VS Code Command Palette by pressing F1, and
search for ‘remote’, as shown in Figure 7-8. Use either “Remote-SSH: Connect to Host...” or
“Remote-SSH: Add New SSH Host” to enter the hostname and user credentials for the
remote machine that you use to test and run your Ansible code.

Figure 7-8 Connecting to a remote host with the Remote-SSH extension

Contextual aids in the Ansible extension
The Ansible extension for VS Code is designed to provide many contextual aids to writing and
testing your Ansible code. This section shows some of the features of the VS Code extension.
Chapter 7. Future trends and directions 337

Syntax highlighting
Ansible module names, module options, and keywords are recognized and displayed in
distinctive colors so that the developer can see whether the language syntax matches the
intended purpose. Default colors change depending on the color theme that is used. An
example of the Visual Studio Dark theme is shown in Figure 7-9.

Figure 7-9 Ansible code syntax highlighting

Validation
The Ansible extension provides feedback regarding syntax as you type, and any potential
problems are shown in the Problems tab of the integrated terminal, as shown in Figure 7-10.

Figure 7-10 Code validation that is shown in the Problems tab
338 Using Ansible for Automation in IBM Power Environments

Integration with ansible lint
When the ansible-lint package is installed, it is integrated into the Ansible extension.
ansible-lint runs in the background whenever a file is opened or saved. Lines of code with
errors are highlighted, and a more detailed description of the error is shown in the Problems
tab, as shown in Figure 7-11.

Figure 7-11 Code syntax warnings that are generated by ansible-lint

Smart auto-completion
As you type, the Ansible extension offers suggestions to possible options depending on the
context of the code, as shown in Figure 7-12. You can select and accept a suggestion, or
disregard all options.

Figure 7-12 Auto-completion of a module name
Chapter 7. Future trends and directions 339

Documentation reference
Hovering your cursor over a module name, module option, or keyword shows a brief
description of the item as a tool tip, as shown in Figure 7-13. You can display a full definition
by right-clicking the item and selecting Go to definition. The full definition appears in a
separate tab. Alternatively, you can select Peek from the menu to display the definition as a
dialog box.

Figure 7-13 Module documentation that is shown as a tool tip

Running a playbook in an integrated terminal
You can run a playbook from VS Code by right-clicking the playbook name in the Explorer
tab, and then run the playbook by selecting either ansible-navigator or ansible-playbook,
as shown in Figure 7-14.

Figure 7-14 Running a playbook in an integrated terminal
340 Using Ansible for Automation in IBM Power Environments

Source control with git
With git installed on your workstation or your Ansible Controller, you can manage your
source control by using git from within Visual Studio Code.

Clicking the Source Control icon on the left taskbar shows an overview of changed files that
might need to be updated in your GitHub repository. Clicking the icon shows the Source
Control view that you can use to commit changes with a message and push to your
repository, as shown in Figure 7-15.

Figure 7-15 Files staged for commit to GitHub
Chapter 7. Future trends and directions 341

Clicking the Views and More Actions menu in the upper right of the Source Control view
shows more git operations, such as clone, branch, and configure remote repository, as
shown in Figure 7-16.

Figure 7-16 Git menu

A full description of using git in Visual Studio is beyond the scope of this book, but for more
information, see the following resources:

� Using Git source control in VS Code

� What is visual inspection?

7.2.3 IBM watsonx Code Assistant for Red Hat Ansible Lightspeed

IBM watsonx Code Assistant for Red Hat Ansible Lightspeed is a joint project between IBM
and Red Hat that offers access to Ansible content recommendations through the usage of
natural language automation descriptions. This project is accessible through the integration of
an IBM AI cloud service that is operated by Red Hat and the Ansible Virtual Studio Code
plug-in, and is offered to the Ansible community to use without cost. This service uses, among
other data, roles and collections that are available through the community website
Ansible Galaxy.

IBM watsonx Code Assistant for Red Hat Ansible Lightspeed is released and available for use
for Red Hat customers. At the time of writing, IBM watsonx Code Assistant for Red Hat
Ansible Lightspeed does not write complete playbooks, but can generate syntactically correct
and contextually relevant content by using natural language requests that written in plain
English text.
342 Using Ansible for Automation in IBM Power Environments

https://code.visualstudio.com/docs/sourcecontrol/overview
https://www.ibm.com/garage/method/practices/code/visual-studio/

Getting started
To enable IBM watsonx Code Assistant for Red Hat Ansible Lightspeed, you need the Visual
Studio Ansible Extension from Red Hat, as described in 7.2.2, “Visual Studio Code” on
page 334. You also need a Red Hat login.

Once you have Visual Studio Code and the Ansible extension installed, complete the
following steps:

1. Go to the Settings window for the Ansible extension, as shown in Figure 7-17.

Figure 7-17 Enabling Lightspeed in Ansible extension settings

2. Enable the following settings:

– Select Ansible → Lightspeed.
– Select Ansible → Lightspeed → Suggestions.
– Select Ansible → Lightspeed. The URL should be

https://c.ai.ansible.redhat.com.
Chapter 7. Future trends and directions 343

3. Click the Ansible icon (the letter A) in the left taskbar to display the Ansible Lightspeed
Login window, as shown in Figure 7-18.

Figure 7-18 Connecting to the Ansible Lightspeed login

4. Click Connect in the Ansible Lightspeed Login window, and you are redirected to the
IBM watsonx Code Assistant for Red Hat Ansible Lightspeed login web page. Follow the
prompts to log in with your Red Hat credentials, as shown in Figure 7-19.

Figure 7-19 Lightspeed authentication window

5. Once authenticated, accept the Terms and Conditions to enable IBM watsonx Code
Assistant for Red Hat Ansible Lightspeed.

6. Authorize VS Code to interact with IBM watsonx Code Assistant for Red Hat Ansible
Lightspeed extension by sending prompts and receiving code suggestions, as shown in
Figure 7-20 on page 345. You should see in the left taskbar that you now are logged in to
IBM watsonx Code Assistant for Red Hat Ansible Lightspeed.
344 Using Ansible for Automation in IBM Power Environments

Figure 7-20 Authorizing Ansible to interact with Ansible Lightspeed with Watson Code Assistant

Using IBM watsonx Code Assistant for Red Hat Ansible Lightspeed
To use IBM watsonx Code Assistant for Red Hat Ansible Lightspeed to get code
recommendations for Ansible tasks, open a valid Ansible YAML file in the code editor. Check
the bottom status bar of VS Code to help ensure that the YAML file is recognized as the
Ansible language and that Lightspeed is enabled.

Enter a task name and a description of what you want the task to do. Press Enter at the end
of the line, and you should receive a code suggestion, as shown in Figure 7-21.

Figure 7-21 Code suggestion from Lightspeed

The code suggestion is shown in a gray font. Review the suggested code and either press
Tab to accept the recommendation, or press Esc or Enter to close it.
Chapter 7. Future trends and directions 345

The source of the code suggestion is shown in the Ansible: Lightspeed Training Matches
tab of the pane below the code editor window, as shown in Figure 7-22.

Figure 7-22 Source of code suggestion from Lightspeed

What happens when you reject or accept a suggestion
The actions that you take when a recommendation is provided impact the training process of
the model. If you hit the Esc key to reject a recommendation, then the telemetry process
considers that a rejection of the recommendation. Red Hat and IBM view that action as the
user determining that the recommendation was not suitable for their task intent. If you hit
Enter and accept the recommendation, then the telemetry process considers that action an
acceptance of the recommendation. Red Hat and IBM view that action as the user
determining that the recommendation was appropriate to use instead of typing an alternative
directly.

If a recommendation is accepted and then further edits are performed, then the act of
changing the recommendation to something else is considered a modification of the
recommendation. This action tells Red Hat and IBM that the recommendation required extra
action to meet the intended use. This information is used for context in training the model for
similar prompts in the future.

The telemetry data is first anonymized and then sent whenever you switch to a different file in
Visual Studio Code or create an Ansible task in the same Ansible Playbook. For more
information, see Getting a Recommendation.

Improving the recommended guidance
To improve the likelihood of a quality recommendation, follow these guidelines:

� Help ensure that your YAML is properly formatted.

� Avoid context switching within a single playbook file. Lightspeed attempts to correlate
earlier tasks to the active recommendation, and context switching might lead to incorrect
recommendations.

� If you do not get a recommendation that aligns with the intent of your task name, then
rewording your statement to provide more information about what you want might lead to
different results. Try adding or removing context to see whether you get a better response.

Some example tasks to try out in IBM watsonx Code Assistant for Red Hat Ansible
Lightspeed are shown in Example 7-1 on page 347.

Note: The pane below the code editor shows various tabs: Problems, Output, Debug
Console, and Integrated Terminal. The pain can be toggled by pressing Command-J
(Mac) or Control-J (Windows/Linux).
346 Using Ansible for Automation in IBM Power Environments

https://docs.ai.ansible.redhat.com/vscode_guide/using_vs/#getting-a-recommendation

Example 7-1 Example tasks for Ansible Lightspeed

- name: Update all packages
- name: Create a user named ‘oracle’
- name: Create a 40 Gb Logical Volume
- name: Run ‘uptime’ command on remote servers
- name: Create AIX volume group named datavg
- name: Restart chronyd daemon
- name: Add host entry to the /etc/hosts file
- name: Add the line "Defaults logfile=/var/log/sudo.log" to /etc/sudoers

For more information, see Improving the Recommended Guidance.

Matching recommendations to training data
The IBM watsonx Code Assistant for Red Hat Ansible Lightspeed machine learning model is
trained on content from Ansible Galaxy and other sources.

Because of the nature of deep learning technology and the kinds of content that is used to
train Lightspeed, it is not possible to identify specific training data inputs that contributed to
particular Lightspeed output recommendations. Nevertheless, Lightspeed includes a feature
to help users that are interested in understanding the possible origins of generated content
recommendations. When Lightspeed generates a recommendation, it attempts to find items
in the training data set that closely resemble the recommendation. In such cases, Lightspeed
displays licensing information and a source repository link for the training data matches in a
window interface in the VS Code extension.

This feature might enable users to discover open-source license terms that are associated
with related training data. This feature is implemented even though it is unlikely that either the
training data that is used in fine-tuning or the output recommendations themselves are
generally protected by copyright, or that output reproduces training data content that is
controlled by copyright licensing terms.

Red Hat does not claim any copyright or other intellectual property rights in the suggestions
that are generated by the IBM watsonx Code Assistant for Red Hat Ansible Lightspeed
service. For more information, see Matching Recommendation to Training Data.
Chapter 7. Future trends and directions 347

https://docs.ai.ansible.redhat.com/vscode_guide/using_vs/#getting-a-recommendation
https://docs.ai.ansible.redhat.com/vscode_guide/using_vs/#improving-the-recommended-guidance
https://docs.ai.ansible.redhat.com/vscode_guide/using_vs/#matching-recommendations-to-training-data

348 Using Ansible for Automation in IBM Power Environments

Appendix A. Unveiling IBM i Modernization
Engine for Lifecycle Integration

In this appendix, you learn about the IBM i Modernization Engine for Lifecycle Integration
(IBM i Merlin). This appendix provides insightful descriptions and in-depth descriptions of
IBM i Merlin. The sections offer an introduction and comprehensive overview of IBM i Merlin
key aspects, benefits, collaboration between IBM and ARCAD, components, content, and its
significance in meeting the demands of DevOps on IBM i. This appendix aims to provide a
clear understanding of IBM i Merlin and its role in modernizing the IBM i ecosystem.

The following topics are described in this appendix:

� Introduction
� What is IBM i Merlin
� IBM i Merlin: Problem-solving capabilities
� Benefits of IBM i Merlin for IBM i modernization
� Decades of collaboration: IBM and ARCAD
� Components of IBM i Merlin
� Comprehensive overview of IBM i Merlin content
� Ansible integration for IBM i lifecycle management through IBM i Merlin
� The business demands for DevOps on IBM i
� IBM i Merlin for IBM i developers
� IBM i Merlin requirements

A

© Copyright IBM Corp. 2024. 349

Introduction

In today's rapidly evolving business landscape, IBM i customers face the pressing need to
modernize their applications and stay ahead of the game. As you plan your IT environment,
we understand the top concerns that you grapple with, from “cobbling together” various tools
to “force-fitting” IBM i native file systems. Many are still reliant on outdated technologies that
lack automated change control and project builds, and grapple with monolithic, non-modular
designs and ancient source editors.

IBM i Next Gen Apps are applications that can quickly respond to business needs through
DevOps, CI/CD, and Agile methodologies. With a focus on encapsulating processes and
data, you create assets for the business by blending technology to achieve the best fit for
purpose. Moreover, you can easily incorporate new technologies, even if they are not
currently “in-house.”

To get to IBM i Next Gen, you must address various challenges:

� Converting fixed-format Report Program Generator (RPG) language to free format
� Understanding and managing high volumes of code
� Refactoring mega-programs into modules
� Helping ensure intelligent builds among spaghetti code

Exposing embedded logic as services and adopting a “service consumption” mind set and
tools are crucial. Using modern tools such as Git for common source code management can
be transformative.

IBM i offers a range of modernization technologies to bridge the gap. Modern RPG and its
integration with contemporary development tools helps address the talent gap. Connectivity
with cloud-based and containerized applications through Rest APIs facilitates communication
between systems. You can use independent software vendor (ISV) and open-source tools to
modernize source code and adopt DevOps practices.

One such tool is IBM i Modernization Engine for Lifecycle Integration (IBM i Merlin), which is
an innovative set of Red Hat OpenShift based tools to guide software developers in
modernizing IBM i applications and development processes. Running in Red Hat OpenShift
containers, IBM i Merlin provides a multi-platform DevOps implementation. The framework
simplifies the adoption of DevOps and CI/CD practices while using technologies that promote
services-based software through RESTful interface connections and enterprise message
technologies.

The IBM i Merlin platform includes IBM i virtual machine (VM) management, which provisions,
manages, and deletes IBM i VMs through PowerVC or Power Virtual Server in IBM Cloud.
One of the actions that you can run on the IBM i server is Enable Ansible environment, which
helps initiate the yum, Python, and Ansible packages.

What is IBM i Merlin

IBM i Merlin enables a fluid generational transition that preserves customer investment while
propelling the platform's evolution. The framework guides and simplifies the usage of the tools
that help implement DevOps and continuous integration (CI) and continuous delivery (CD)
(CI/CD). IBM i Merlin embraces standardization, making it accessible to the younger
generation that is familiar with these tools. The RPG converter of IBM i Merlin is a pivotal tool
that enables the modernization of core RPG code. IBM i Merlin also supports cloud
infrastructure migration for agile dev and test environments.
350 Using Ansible for Automation in IBM Power Environments

Figure A-1 shows the IBM i Modernization Engine for Lifecycle Integration GUI. This interface
works well with hybrid cloud work tools. These tools facilitate modern development and
deployment of IBM i native applications by using standardized cloud methods. The GUI
provides accessible and efficient solutions for application modernization and integration in the
dynamic IT landscape.

Figure A-1 IBM i Merlin GUI overview

The role of IBM i Merlin in the IBM i market

IBM i Merlin provides a focused modernization approach. This innovative solution guides
clients through the process of migrating to modern versions of existing technology.

IBM i Merlin strategically emphasizes adopting modern tools and processes, such as
DevOps, cloud services, and hybrid cloud solutions to migrate the IBM i ecosystem into a new
era of efficiency and adaptability. Through the integration of container-based tools, clients can
keep pace with the ever-evolving demands of the market.

IBM i Merlin takes center stage in the Red Hat OpenShift conversation, positioning IBM i
directly at the forefront of modernization discussions. Its containerized architecture opens
doors for clients to use the potential of a hybrid cloud and multi-platform DevOps
implementation to their advantage.

A crucial factor to the development of IBM i Merlin was the active involvement of IBM i
customer advisory councils to help ensure that the solution aligns with the specific needs and
aspirations of clients. Expert minds in the IBM i modernization domain stand ready to help
clients in adopting IBM i Merlin to help ensure a successful migration.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 351

IBM i Merlin: Problem-solving capabilities

This section describes the problem-solving capabilities of IBM i Merlin. Table A-1 shows the
impact that IBM i Merlin has across four areas.

Table A-1 Key aspects of IBM i Merlin: Problem-solving impact

Benefits of IBM i Merlin for IBM i modernization

Table A-2 explores the multitude of benefits that are facilitated by IBM i Merlin.

Table A-2 Benefits of IBM i Merlin for IBM i modernization

Modern / Centralized
source control and
branching

Modern RPG –
modular and free
format

Browser-centric
integrated
development
environment based
on VS Code

Application
blueprint

Use GitHub, GitLab,
Bitbucket, or Gitbucket
to enhance source
control efficiency and
facilitate efficient
branching processes
for improved
development
workflows.

Transformation of
RPG code from
patched to free format
for enhanced
modularity and
readability through
refactoring.

Explore the IBM i
Merlin browser-centric
integrated
development
environment (IDE)
with features such as
outline view,
tokenization, content
assist, code
formatting, and
language
understanding.

Use IBM i Merlin
capabilities for impact
analysis, program
understanding, data
usage analysis, and
program flow
visualization, which
helps ensure informed
decisions and
application integrity.

Benefit Description

Faster provisioning Experience the rapid provisioning and
deprovisioning of IBM i development
environments to help ensure nimbleness in your
development cadence.

Modernized IBM i applications Automate the conversion of patched-format RPG
code into the more supple free form RPG to
modernize your applications for heightened
legibility and manageability.

Reduced time to market Expedite the creation of IBM i business
applications and realize swifter deployment to
promptly address market dynamics and out pace
competitors.

Single DevOps pipeline Simplify your application development process
through a unified DevOps pipeline that efficiently
guides your code from testing to production
realms.
352 Using Ansible for Automation in IBM Power Environments

Decades of collaboration: IBM and ARCAD

In 2003, ARCAD integrated with IBM WebSphere Development Studio Client (the
predecessor of IBM Rational® Developer for i) to lay the groundwork for future endeavors. In
2007, ARCAD introduced the RPG Free Form converter, which revolutionized RPG
development on IBM i.

In 2013, ARCAD licenses became available in IBM Passport Advantage®, which completed
IBM Engineering Workflow Management integration. In 2016, ARCAD integrated with
Urbancode to enhance their DevOps capabilities for IBM i. In 2017, ARCAD Observer and
RPG converter were integrated into the e-config Channel. ARCAD is integrated with
industry-leading DevOps flagship products such as Git (GitHub, Bitbucket, and Gitlab),
IBM Engineering Workflow Management, Jenkins, and Jira.

Components of IBM i Merlin

In the domain of IBM i modernization, IBM i Merlin acts as a potent catalyst. It introduces a
collection of robust components that reshape the realm of application development. These
components are purposefully crafted to facilitate smoother workflows, foster better
collaboration, and embrace contemporary software practices. In this section, you learn about
the pivotal components of IBM i Merlin and their significance in propelling IBM i into a new era
of innovation.

The following individual components empower IBM i Merlin to excel in both problem-solving
and modernization:

� Eclipse Theia

At the heart of the IBM i Merlin development environment is Eclipse Theia, which is an
open-source iteration of Microsoft Visual Studio Code (VS Code). This dynamic platform
offers a versatile IDE for crafting and refining IBM i applications. For more information
about IDE, see “Summary of the integrated development environment” on page 354.

� Eclipse Che

A pivotal element in the IBM i Merlin infrastructure is Eclipse Che, which provides the
workplace server that is responsible for crafting, managing, and orchestrating the IDE
within a Kubernetes environment. This integration helps ensure a fluid and efficient
development process that is further enhanced by Kubernetes orchestration.

Accelerated developer onboarding Minimize the learning curve for new developers
by harnessing modern tools such as Git and
Jenkins to help ensure swifter adaptation and
heightened productivity.

Cloud-enabled Adopt a hybrid cloud approach and enable your
IBM i applications to use the potential of a
multi-platform CI/CD implementation to lead to
enhanced scalability and innovation.

Benefit Description
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 353

� ARCAD Transformer

Integral to the IBM i Merlin ecosystem, Transformer (formerly known as ARCAD
Converter) exemplifies the powerful software that facilitates the conversion and
transformation of existing code into more contemporary and efficient forms. This essential
tool simplifies the modernization process and contributes to the advancement of IBM i
applications.

� ARCAD Builder

A cornerstone of IBM i Merlin capabilities, the ARCAD build management software
(Builder) empowers developers with advanced tools for efficiently assembling and
managing application components. This software promotes consistency, reliability, and
efficient deployment practices throughout the development lifecycle.

� ARCAD Observer

Within the IBM i Merlin toolkit, the Observer part of ARCAD emerges as a noteworthy
software component. This tool provides comprehensive insights into the application
development and deployment processes, which offers valuable visibility and control over
critical aspects of the development lifecycle.

� Integration with Git

IBM i Merlin integrates with Git, a widely adopted version control system (VCS), which
enhances collaboration and code management. This integration streamlines code
repository operations and aligns IBM i Merlin capabilities with modern development
practices.

� Jenkins

A crucial component, Jenkins facilitates CI/CD pipelines, which are a central focus of
the IBM i Merlin development approach. IBM incorporated Jenkins as part of IBM i Merlin
to enhance the platform's ability to automate and optimize the application delivery
pipeline.

� Red Hat OpenShift

IBM i Merlin finds its home and operational foundation within Red Hat OpenShift, which is
a robust container platform. Red Hat OpenShift helps install, manage, and run IBM i Merlin
efficiently.

� IBM Cloud Pak® foundational services

IBM Cloud Pak foundational services constitute the cornerstone of the Cloud Pak
ecosystem by encompassing critical tools such as Certificate Manager for efficient
certificate administration to enable secure connections, and License Manager for
centralized software entitlement tracking to enhance licensing efficiency. These services
underscore a commitment to a robust and secure cloud environment.

Summary of the integrated development environment
In the context of IBM i modernization, an integral aspect lays in the robust IDE that effectively
combines offerings from both IBM and ARCAD. This cohesive environment enhances the
development process and fosters efficient modernization of applications.

Note: Customers do not need to pay extra to acquire the ARCAD functions. These
functions are integrated into the IBM i Merlin product. As a result, developers have access
to “Patched to Free” format conversion, an integrated impact analysis tool, and the
capability to use intelligent build support directly within the IDE. These valuable features
that are powered by ARCAD are fully integrated and included as essential components of
the IBM i Merlin solution.
354 Using Ansible for Automation in IBM Power Environments

Table A-3 presents a comprehensive overview of the IDE that highlights its diverse features
and capabilities that help enable developers on the journey toward innovation.

Table A-3 Comprehensive overview of the integrated development environment

Comprehensive overview of IBM i Merlin content

In Figure A-2, the IBM i Merlin enhanced interface is highlighted in the left pane. The
components of the modernization engine are within the yellow box. This interface features the
IDE and CI/CD components in a cohesive environment. Recognizing the learning curve for
IBM i customers new to Linux tools and CI/CD, the platform was designed with simplicity and
integration. It aims to preserve the IBM i approach by enabling a smooth migration to Linux
and CI/CD for IBM i users. The framework works wherever Linux does, such as on-premises,
in IBM Power servers, or other configurations. Regardless, the browser interface helps ensure
a unified experience. This interface required creating a customized GUI and an engine that
facilitates effective communication between code components.

Figure A-2 Graphical view of IBM i Merlin

IBM i integration ARCAD integration

Integrated without disruption with Code Ready
Work Spaces.

Efficient Git repository setup to enable code
migration from a previous library to Git.

VS Code plug-ins offer features such as
tokenization, color coding, outline view, content
assist, refactoring, intelligent formatting, and
more.

Intelligent build metadata population.

Robust project explorer facilitates efficient IBM i
environment and source management.

Conversion of code to fully free form to use deep
expertise in migrating source control from an
existing library to a Git-centric one.

Intelligent build with integrated compile feedback,
defined metadata, and a comprehensive job log
explorer.

ARCAD dependency-based build to address the
complexities of IBM i applications through
automated tools and processes.

Git integration for using Git-based tools, which
encompass actions such as pull, push, and
merge.

ARCAD impact analysis, which offers valuable
insights into application linkages, data usage,
and code flow visualization.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 355

Key attributes:

� A modernization platform guiding IBM i applications toward hybrid DevOps.

� Exposing IBM i native functions through RESTful interfaces and centralizing IBM i
connections management.

� Facilitating the use of tools for DevOps and services-based software implementation.

Deploying the IBM i Merlin Platform through the Red Hat OpenShift Web
Console
In terms of visibility, this process is mostly transparent to users. However, the underlying
mechanism involves fitting IBM i Merlin into the deployment and acquisition strategies and
aligning with the procurement and deployment of container-based applications from IBM. The
OperatorHub serves as the platform where you can access and download IBM i Merlin while
also facilitating the necessary purchases.

Figure A-3 shows this process and the OperatorHub under Red Hat OpenShift for IBM i
Merlin.

Figure A-3 OperatorHub integration with Red Hat OpenShift for IBM i Merlin

Overview of the IBM i platform
Once deployed, a comprehensive suite of components coalesce to form a cohesive project
and product. This suite includes user management, activity monitoring, and authorization
enforcement to deliver the expected integrated experience of an IBM i product. What sets it
apart is that it is orchestrated by a set of containers that orchestrate the IDE, CI/CD, and other
elements.

Figure A-4 on page 357 shows the extensive capabilities of the IBM i Merlin platform, which
include the IBM i Merlin tool lifecycle, authentication, certification management, user
management, monitoring, inventory management, credential management, IBM i VM
management, and IBM i software installer.

Also, the IBM i Merlin layer showcases the IBM i Merlin platform's composition, which
includes both the GUI and engine. The IBM i Merlin tools are further depicted, incorporating
the IDE, CI/CD, and other essential elements.

Also, the infrastructure is depicted, demonstrating where Red Hat OpenShift operates,
whether on-premises or in the cloud, in ppc64 or x86 environments.
356 Using Ansible for Automation in IBM Power Environments

Figure A-4 IBM i Merlin platform overview

IBM i Merlin platform: Creating RESTful services for IBM i systems
IBM i Merlin platform offers a phased approach to generate RESTful services from your
existing assets so that you can target specific components for transformation. Once these
components are prepared, they can be converted into services. IBM i Merlin understands the
intricacies of modernization, aiming to simplify your journey.

Key points:

� A GUI for REST services: The IBM i Merlin platform provides an intuitive interface for
starting RESTful service creation.

� Develop RESTful services: Create RESTful services for IBM i programs and data on IBM i
systems in the initial release.

� Native IBM i execution: RESTful services continue to run natively on IBM i.

� Wide language support: Support for RPG, COBOL, and program/service program
(PGM/SRVPGM).

� Data integration: Integrate data that is stored in Db2 for IBM i into your RESTful services.

Figure A-5 shows the creation of a Web Services server that is based on IBM i objects,
including RPG and COBOL programs, alongside SQL statements.

Figure A-5 Web Services server creation on IBM i objects
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 357

Ansible integration for IBM i lifecycle management through IBM
i Merlin

The lifecycle management of the product itself is adeptly handled, extending to deployment
options. For example, deployment can occur in IBM Power Systems Virtual Server, which
operates on IBM Cloud. Alternatively, you can deploy within your own infrastructure by using
IBM PowerVC on your server. This flexibility helps ensure accessibility, whether you are
migrating to hybrid cloud, fully embracing the cloud, or maintaining an on-premises setup.
Regardless, IBM i Merlin CI/CD and IDE capabilities remain versatile and accessible.

IBM i VM provisioning with Ansible automation has the following capabilities:

� Supports PowerVC and Power Systems Virtual Server environments.
� Supports direct VM provisioning from templates, facilitating integration with CI/CD tools.
� Enables software installation on IBM i platforms, aligning with hybrid cloud strategies.

IBM i Merlin incorporates specialized Ansible playbooks for PowerVC and Power Systems
Virtual Server environments. Although this approach is not the usual one due to often static
IBM i logical partition (LPAR) structures, administrators can enable this function.

Complete the following steps:

1. Initiate the process by crafting a PowerVC template within the inventory. Figure A-6 shows
a visual depiction of the Inventory interface, which facilitates this essential step in the
workflow.

Figure A-6 Creating a PowerVC template in the Inventory

2. Configure the PowerVC credentials, enabling IBM i Merlin to securely communicate with
the PowerVC instance. Provide the necessary authentication details to establish a
connection. Figure A-7 on page 359 shows editing the Inventory.
358 Using Ansible for Automation in IBM Power Environments

Figure A-7 Editing the Inventory to configure the PowerVC credentials

3. Use the IBM i Merlin GUI to initiate VM provisioning, which is working with a IBM i Merlin
Template. This process simplifies the creation of VMs, facilitating the deployment of IBM i
instances on PowerVC or Power Systems Virtual Server. Follow the instructions that are
shown in Figure A-8 and input the necessary details to customize your VM's configuration.

Figure A-8 Adding a Template in the IBM i Merlin GUI for VM provisioning
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 359

4. After completing the configuration, a dedicated IBM i Merlin menu becomes available
within the GUI, offering access to the VM provisioning process. This feature transforms
IBM i Merlin into a central hub that permits developers to provision PowerVC or Power
Systems Virtual Server VMs that are tailored for modernization projects. New VMs
integrate dynamically into the Inventory for use by IBM i Developer or CI/CD services. In
Figure A-9, select Provision → Deploy Virtual Machine.

Figure A-9 Navigating the Deploy Virtual Machine menu in the IBM i Merlin GUI

Within the IBM i Merlin pod, a set of Ansible playbooks and the Ansible engine facilitate
internal setup, initialization of the IBM i Merlin-IBM i environment, and Power Systems Virtual
Server or PowerVC provisioning.

IBM i Merlin 1.0 introduces an Ansible Controller that is integrated into the IBM i Merlin
engine. This controller orchestrates the following items:

� Internal playbooks for IBM i VM provisioning by using PowerVC or Power Systems Virtual
Server through OpenStack and IBM Cloud modules. These playbooks include
VM Provisioning and VM Destroy.

� A default set of six playbooks, which are referred to as '”actions” in IBM i Merlin.

Note: Similar steps apply to Power Systems Virtual Server provisioning, requiring an
IBM Cloud API Key for credentials. For more information, see Deploy IBM i server with
PowerVC Template.

Note: IBM i Merlin does not incorporate Terraform because Terraform is not used as an
automation tool for provisioning IBM i VMs within IBM i Merlin. Instead, the automation tool
is Ansible.
360 Using Ansible for Automation in IBM Power Environments

https://www.ibm.comhttps://www.ibm.com/docs/en/merlin/1.0?topic=guide-manage-i-servers#deploy-ibm-i-server-with-power-vc-template
https://www.ibm.comhttps://www.ibm.com/docs/en/merlin/1.0?topic=guide-manage-i-servers#deploy-ibm-i-server-with-power-vc-template

Administrators must perform these actions in a sequential manner to prepare the target
IBM i LPAR for efficient management by IBM i Merlin. These actions pave the way for
development with IBM i Merlin, build processes, and CI/CD practices.

a. Enabling Ansible: Installs essential packages such as yum, Python, and Ansible on the
IBM i server.

b. Validating PTF Level: Verifies the Program Temporary Patch (PTF) level by using IBM i
Merlin.

c. Installing Certificates: Facilitates secure communication by installing the necessary
certificates.

d. Enabling IBM i developer: Enables the IBM i developer environment.

e. Enabling a remote debugger: Permits administrators to enable the remote debugger
feature.

f. Enabling ARCAD environment: Installs ARCAD solutions on the target IBM i system.

These actions are shown in Figure A-10.

Figure A-10 Six actions on IBM i that are performed from IBM i Merlin by the administrator

Note: In future releases, based on the evolving product roadmap that is subject to potential
changes, more playbooks will be introduced. These forthcoming playbooks will use tasks
such as PTF management, Security and Compliance management, and more by using
Ansible to effectively manage IBM i environments. However, such extra playbooks are not
included in Version 1.0, reflecting the aim to keep IBM i Merlin supported for automation
even for those users with limited Ansible knowledge or skills.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 361

The business demands for DevOps on IBM i

The path to modernization in the ever-evolving technological landscape calls for a
comprehensive approach. Here are essential steps to revamp your development processes
and embrace the principles of DevOps:

� Encourage a natural skills transfer by fostering a mindset shift and cultivating champions
within your teams, helping ensure effective knowledge dissemination.

� Prioritize security by implementing new tools that meet critical requirements and elevate
your overall security measures.

� Address complex application architectures by using specialized tools to re-factor the
architectures, migrating toward more flexible and services-based structures, which enable
updates and modernization.

DevOps MVP architecture overview: Preceding IBM i Merlin
In the world of DevOps environments, the landscape preceding the advent of IBM i Merlin
often featured intricate setups. Many clients initiated the process of setting up DevOps
frameworks by using tools such as Jenkins, Ansible, and others. Such initiatives aligned well
with the prevalent practices in their software development and deployment across different
platforms.

However, for the IBM i ecosystem, these attempts resulted in a force-fit scenario because the
unique requirements of the IBM i platform needed to be integrated within these existing
frameworks. Figure A-11 illustrates the complexities and challenges that are faced by those
developers striving to align their processes. This diagram showcases the DevOps landscape
prevalent before IBM i Merlin, emphasizing the need for a more tailored solution.

Figure A-11 DevOps MVP Architecture and integration diagram before IBM i Merlin

Full cycle of the CI/CD process on IBM i with Ansible
This section explores an in-depth understanding of the DevOps pipeline process,
commencing with CI/CD. We illustrate this process by using various tools and solutions,
including Git, Ansible, and IBM PowerVC (OpenStack).

Figure A-12 on page 363 shows the architecture. The primary focus is on CI, although CD
requires more workflows.
362 Using Ansible for Automation in IBM Power Environments

Figure A-12 End-to-end CI/CD process diagram for IBM i with Ansible

Examine the playbooks that are central to this use case. The set of playbooks, along with an
inventory file and the Ansible configuration file, is outlined in Example A-1.

Example A-1 Set of playbooks to run full cycle of the CI/CD process on IBM i

|-- add_build_system.yml
|-- ansible.cfg
|-- build.yml
|-- cleanup.yml
|-- git_clone.yml
|-- hosts.ini
|-- main.yml
|-- post_build_actions.yml
|-- provision_vars.yml
|-- provision_vm.yml
`-- put_code.yml

The core playbook for CI/CD is main.yml. Example A-2 offers clear insight into the upcoming
run process.

Example A-2 Principal playbook for CI/CD: main.yml

- hosts: localhost
 vars:
 build_with_stmfs: true
 provision: true
 cleanup: true
 vars_prompt:
 - name: build_number
 prompt: "Enter a build number"
 private: no
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 363

 - name: git_repo_url
 prompt: "Enter a Git repo URL"
 private: no
 - name: git_branch
 prompt: "Enter a Git branch"
 private: no
 collections:
 - ibm.power_ibmi
 tasks:
 - set_fact:
 build_lib: "BUILD_{{ build_number }}"

 - set_fact:
 build_path: "/tmp/{{ build_lib }}"
 local_workspace: '~/workspace/{{ build_lib }}'

 - block:
 - name: Step 1 - clone source code from Git
 include: git_clone.yml

 - block:
 - name: include provision related vars if provision is true
 include_vars: provision_vars.yml

 - name: Step 2.1 - provision vm on demand
 include: provision_vm.yml
 when: provision

 - name: Step 2.2 - add build system to in-memory inventory
 include: add_build_system.yml

 - name: Step 3 - put source code to build machine
 include: put_code.yml

 - name: Step 4 - build your app on a build machine
 include: build.yml

 - name: Step 5 - run test and completes
 include: post_build_actions.yml
 delegate_to: "build_system"

 always:
 - name: Step 6 - cleanup on demand
 include: cleanup.yml
 when: cleanup
...
364 Using Ansible for Automation in IBM Power Environments

The steps that are outlined in main.yml call distinct YAML files:

1. Clone source code: When exploring the realm of CI/CD, the underlying objective remains
consistent. Essentially, you initiate a pipeline with an input (often your source code) and an
outcome is generated, which can be a packaged program. It is likely that the initial step in
your pipeline predominantly involves cloning.

The subsequent YAML file, which is dedicated to this task, follows a sequence:

a. If a local workspace exists on the system, it is removed.

b. A new local workspace is created at the localhost.

c. Clone a Git repository at the localhost, where the localhost functions as the IBM i
control node in this context.

The prerequisites for this action include the repository URL, the previously created local
workspace, and the designated Git branch.

The variables pertaining to this process are specified within the main.yml file The YAML
file that is dedicated to the cloning process is shown in Example A-3.

Example A-3 Playbook for cloning the source code

- name: remove if {{ local_workspace }} exists
 file:
 path: '{{ local_workspace }}'
 state: 'absent'

- name: create {{ local_workspace }}
 file:
 path: '{{ local_workspace }}'
 state: 'directory'
 mode: '0755'

- name: git clone from source repository
 git:
 repo: '{{ git_repo_url }}'
 dest: '{{ local_workspace }}'
 version: '{{ git_branch }}'
...

2. Provisioning: The provisioning phase emerges as a crucial cornerstone of the overall
process. This segment encapsulates two distinct elements, each playing a significant role
in the smooth configuration and deployment of the IBM i VM. These components can be
delineated as follows:

a. Provisioning variables: This YAML file serves as a repository for predefined variables
that are used in provisioning the IBM i VM. This process uses PowerVC related
information. Most of the variables within this context remain static, eliminating the need
for further modifications.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 365

A fresh user profile that is named “BUILDER” was created by cloud-init. The
structure of this file is shown in Example A-4.

Example A-4 Playbook repository for predefined variables for provisioning

powervc_host: "192.168.1.101"
powervc_admin: "root"
powervc_admin_password: "abc123"
project: ibm-default
project_domain: Default
user_domain: Default
vm_name: "VM-{{ build_lib }}"
verify_cert: false
image_name_or_id: "IBMi_73"
nic_list: [{ 'net-name': 'Network1' }]
flavor_name_or_id: tiny
deploy_timeout: 300
deploy_userdata: |
 {%- raw -%}#!/bin/sh
 mkdir /home/BUILDER
 system "CRTUSRPRF USRPRF(BUILDER) PASSWORD(abc123) USRCLS(*SECOFR)
ASTLVL(*SYSVAL) TEXT('Ansible CICD build') HOMEDIR('/home/BUILDER')"
 system "chgtcpsvr svrspcval(*sshd) autostart(*yes)"
 system "strtcpsvr *sshd"
 {% endraw %}
...

b. Provision virtual machine: This YAML file includes a PowerVC host into the in-memory
inventory, effectively supplanting the manual approach of editing the inventory file for
host addition. While provisioning, the os_server compute instance from OpenStack is
employed. Post-provisioning, an extra task runs to sift through the output, revealing the
IP address of the freshly provisioned IBM i VM, which is shown in Example A-5.

Example A-5 Playbook that introduces a PowerVC host into the in-memory inventory

Add PowerVC host to in-memory inventory
- name: Add PowerVC host {{ powervc_host }} to the Ansible in-memory inventory
 add_host:
 name: 'powervc'
 ansible_user: '{{ powervc_admin}}'
 ansible_ssh_pass: '{{ powervc_admin_password }}'
 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 ansible_python_interpreter: /usr/bin/python3
 ansible_ssh_host: '{{ powervc_host }}'
 no_log: true

New vm information from OpenStack
- name: Deploy a new VM
 os_server:
 auth:
 auth_url: https://{{ ansible_ssh_host }}:5000/v3
 username: '{{ ansible_ssh_user }}'
 password: '{{ ansible_ssh_pass }}'
 project_name: '{{ project }}'
 project_domain_name: '{{ project_domain }}'
366 Using Ansible for Automation in IBM Power Environments

 user_domain_name: '{{ user_domain }}'
 name: '{{ vm_name }}'
 image: '{{ image_name_or_id }}'
 flavor: '{{ flavor_name_or_id }}'
 verify: '{{ verify_cert }}'
 nics: '{{ nic_list }}'
 timeout: '{{ deploy_timeout }}'
 userdata: '{{ deploy_userdata }}'
 register: vm_info
 delegate_to: 'powervc'

- name: New IBM i VM's IP
 debug:
 msg: "{{ vm_info.server.accessIPv4 }}"
...

3. Add build system: This YAML file introduces the IBM i VM that is deployed in the
in-memory inventory. The inventory is populated with values by using set_fact. The IP
address of the IBM i VM, which is obtained from the register during deployment
(vm_info.server.accessIPv4), is a key inclusion.

Also, values from variables such as ansible_ssh_user and ansible_ssh_pass, which are
defined in the hosts.ini file, are integrated. The known_hosts module plays a role in
adding or removing the host key (Secure Shell (SSH)) for the deployed IBM i VM. This key
is essential for the control node to manage the new VM through Ansible. The term
“non-patched” refers to a new VM, which requires verification of the PGM.

Another crucial module that is named wait_for_connection is part of this process. This
module monitors the new VM's status until it successfully establishes an SSH connection.
The managed node requires Python 3 and its associated packages. These prerequisites
are installed by using the raw module. The structure of the YAML file is shown in
Example A-6.

Example A-6 Playbook that introduces the IBM i VM deployed in-memory inventory

- block:
 - name: set_fact for non-patched build environment
 set_fact:
 build_system_ip: "{{ vm_info.server.accessIPv4 }}"
 build_system_user: '{{ hostvars["non-patched"]["ansible_ssh_user"] }}'
 build_system_pass: '{{ hostvars["non-patched"]["ansible_ssh_pass"] }}'

 - name: remove existing entry for vm in case ssh header change occurs.
 known_hosts:
 name: "{{ build_system_ip }}"
 path: ~/.ssh/known_hosts
 state: absent

 - name: add vm-{{ build_lib }} to ansible in-memory inventory
 add_host:
 name: build_system
 ansible_ssh_host: '{{ build_system_ip }}'
 ansible_user: '{{ build_system_user }}'
 ansible_ssh_pass: '{{ build_system_pass }}'
 groups: build_systems
 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 ansible_python_interpreter: /QOpensys/pkgs/bin/python3
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 367

 - name: wait until vm-{{ build_lib }} is up and ssh ready
 wait_for_connection:
 sleep: 10
 timeout: 1800
 delegate_to: "build_system"

 - name: install python3 on VM-{{ build_lib }}
 raw: /QOpensys/pkgs/bin/yum install -y python3 python3-itoolkit python3-ibm_db
 delegate_to: "build_system"
 when: provision
...

4. Put code: This YAML file orchestrates a sequence of tasks that are essential for code
deployment. Initially, the ibmi_cl_command module establishes a library in the new VM.
This operation is delegated to the IBM i controller node. Next, login credentials for
authorized access to the newly created IBM i VM are placed into the .netrc file. This file is
in the home directory of the IBM i controller node.

A set of tasks occur within a block structure for path creation. The ansible.builtin.file
module is employed in this process to enable the creation of directories, which is guided
by the specified variables from main.yml. Notably, this approach encompasses
subdirectories as required, which helps ensure a comprehensive directory structure.

The next task transfers the 'C' program from the IBM i control node to the new IBM i VM.
To facilitate this transfer and eliminate interactive prompt passwords, use the sshpass
utility. Example A-7 shows the structure of the YAML file.

Example A-7 Playbook for orchestrating the tasks for code deployment

- name: Create {{ build_lib }} on {{ build_system_ip }}
 ibmi_cl_command:
 cmd: CRTLIB {{ build_lib }}
 delegate_to: "build_system"

- name: "check if ~/.netrc contains IBM i target login"
 lineinfile:
 name: ~/.netrc
 line: "machine {{build_system_ip}} login {{build_system_user}} password
{{build_system_pass}}"
 state: present
 check_mode: false

- block:
 - name: Create {{ build_path }} on remote IBM i
 ansible.builtin.file:
 path: "{{ build_path }}"
 state: "directory"
 delegate_to: "build_system"

 - name: combine transfer_command
 set_fact:
 transfer_command: "scp {{ local_workspace }}/sendMsg.c
{{build_system_user}}@{{build_system_ip}}:{{ build_path }}/sendMsg.c"

 - name: put STMFs to remote IBM i
 shell:
 cmd: 'sshpass -p "{{ build_system_pass }}" {{ transfer_command }}'
368 Using Ansible for Automation in IBM Power Environments

 when: build_with_stmfs
...

5. Build: This YAML file orchestrates the running of crucial tasks within the build process. The
ibmi_cl_command modules start the Create Bound C++ Program (CRTBNDCPP) command,
which initiates the Integrated Language Environment (ILE) C++ compiler. This operation
uses specific variables that are defined in main.yml for parameterizing the IBM i
command. The <build_lib> and <build_path> variables are among the variables that are
employed.

The source stream file (SRCSTMF) accommodates the program's source code. This code is
initially cloned from the Git repository, and then transferred to the newly created IBM i VM.
The program source file that is named sendMsg.c is involved in this process. On
compilation, an ILE C++ program object that is named SENDMSG is generated.

Example A-8 shows the structure of the YAML file to provide insight into the build process.

Example A-8 Playbook to orchestrate the running of tasks within the build process

- block:
 - name: call CL command to build application
 ibm.power_ibmi.ibmi_cl_command:
 cmd: CRTBNDCPP PGM({{ build_lib }}/SENDMSG) SRCSTMF('{{ build_path
}}/sendMsg.c')
 when: build_with_stmfs
 delegate_to: 'build_system'
...

6. Post-build actions: The focus shifts to the running of essential tasks after the build
process. The pivotal task is initiating the SENDMSG program, which is followed by the
registration of the output task. This outcome is systematically filtered to present the output
that results from the program invocation.

The when directive evaluates a predefined condition, which is denoted as true within
main.yml. This conditional assessment serves as the enabling factor for the running of the
task program, which helps ensure its activation in the appropriate scenario.

The structure and sequence of tasks pertaining to post-build actions are outlined in
Example A-9.

Example A-9 Playbook for running built programs with stream files

- name: run PGM built with STMFs
 ibm.power_ibmi.ibmi_cl_command:
 cmd: CALL {{ build_lib }}/SENDMSG
 Job log: true
 register: callpgm
 when: build_with_stmfs
- name: PGM output
 debug:
 var: callpgm.job_log[0].MESSAGE_TEXT
...
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 369

7. Cleanup: In this YAML file (shown in Example A-10), the playbook removes the local
workspace and directories from the newly created IBM i VM. Also, the playbook deletes
the IBM i VM, which tests the program. The pause module, coupled with a prompt, helps
ensure that the cleanup tasks proceed only when you press the Enter key.

Example A-10 Playbook for cleanup and virtual machine deletion

- pause:
 prompt: Confirm you want to cleanup! Press enter to continue

- name: remove "{{ local_workspace }}"
 file:
 path: '{{ local_workspace }}'
 state: 'absent'
 ignore_errors: true

- name: Destroy VM when provision
 os_server:
 auth:
 auth_url: https://{{ ansible_ssh_host }}:5000/v3
 username: '{{ ansible_ssh_user }}'
 password: '{{ ansible_ssh_pass }}'
 project_name: '{{ project }}'
 project_domain_name: '{{ project_domain }}'
 user_domain_name: '{{ user_domain }}'
 name: '{{ vm_name }}'
 state: 'absent'
 delegate_to: 'powervc'
 when: provision
...

IBM i Merlin DevOps CI/CD view
The foundation of the IBM i Merlin DevOps CI/CD view stems from a visionary concept. By
integrating ARCAD into the IBM i Merlin product, it offers a unified solution that is steered by
the IBM i Merlin UI and supported by ARCAD and IBM. This collaborative approach
harnesses the collective expertise of both entities, resulting in a cohesive and comprehensive
offering.

The focal point of the view revolves around DevOps, which drives the CI/CD pipeline. Within
this domain, a crafted suite of tools has emerged that is based on Git and Jenkins. These
tools are designed to strengthen the IBM i platform by facilitating a dynamic approach to
continuous development, which involves the automated compilation of code segments that
are extracted from RPG or COBOL applications, and then deployed to diverse IBM i
endpoints. The orchestration of these tasks is expertly managed by Jenkins. For a visual
depiction, see Figure A-13 on page 371.

Note: Before IBM i Merlin, DevOps environments often involved intricate setups that used
tools such as Jenkins and Ansible. Although they were effective for various platforms,
integrating IBM i requirements posed unique challenges. The DevOps MVP architecture
overview, which has steps such as cloning source code, provisioning, and more, highlights
the complexities that are faced in harmonizing processes. This retrospective underscores
the IBM i Merlin role in offering a more tailored and efficient IBM i DevOps solution.
370 Using Ansible for Automation in IBM Power Environments

Figure A-13 Enhancing IBM i platform with Git and Jenkins in the DevOps CI/CD pipeline

Furthermore, the collaborative partnership between ARCAD and IBM yielded a deep
understanding of the specific needs and intricacies of the IBM i platform. This knowledge has
been instrumental in fine-tuning the integration of ARCAD's solutions with IBM i Merlin,
helping ensure a harmonious alignment with IBM i requirements. The robustness of this
collaboration is exemplified by ARCAD's suite of plug-ins that interact with IBM i Merlin's
capabilities, facilitating a well-integrated and efficient development experience. The resulting
synergy between ARCAD's expertise and IBM i Merlin's capabilities empowers organizations
to achieve optimized DevOps practices and realize the full potential of their IBM i investments.

Figure A-14 shows a visual representation of this enriching collaboration.

Figure A-14 Enriching the DevOps landscape: ARCAD integration with IBM i Merlin
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 371

IBM i Merlin architecture on Red Hat OpenShift Container Platform
In the context of the IBM i Merlin architecture on the Red Hat OpenShift Container Platform,
an important addition enters the picture. This new facet is the role of an Red Hat OpenShift
environment manager. The goal is to facilitate a straightforward learning curve for those
developers who lack an existing Red Hat OpenShift administrator within their setup. The
objective is to impart essential knowledge about setting up an Red Hat OpenShift
environment and integrating IBM i Merlin into it without any hindrance. This process simplifies
the installation of IBM i Merlin within the Red Hat OpenShift environment, much like installing
software on a developer's PC. However, the distinction lies in the installation occurring on the
designated server platform, allowing team members to access it conveniently through their
web browsers.

Figure A-15 shows how a Red Hat OpenShift administrator assumes the responsibility of
overseeing all container-based applications that are operating on the Red Hat OpenShift
platform.

Figure A-15 Red Hat OpenShift administrator role in an IBM i Merlin integration

This role encompasses the following operations that are related to IBM i Merlin:

� Using the Red Hat OpenShift CLI or GUI console to gain access.

� Running the initial installation and deployment of the IBM i Merlin platform.

� Reviewing and managing objects, configurations, and settings that are specific to
IBM i Merlin.

� Conducting platform upgrades for IBM i Merlin.

� Gathering various tiers of logs for IBM service evaluation.

Note: The Red Hat OpenShift environment can be on an IBM Power server or any location
that is compatible with current Red Hat OpenShift implementations. Also, Red Hat
OpenShift can be hosted within a cloud instance, such as IBM Cloud (IBM Power Systems
Virtual Servers), or within any cloud platform that accommodates Red Hat OpenShift
environments. Clients who have workloads functioning in the cloud can extend their
operations by integrating IBM i Merlin into an Red Hat OpenShift environment within the
cloud.

IBM i Merlin is designed for Red Hat OpenShift containers, and is applicable to both
IBM Power (ppc64) and x86 architectures.
372 Using Ansible for Automation in IBM Power Environments

The IBM i Merlin platform in the IBM i Merlin architecture
IBM i Merlin administrators are tasked with helping ensure the efficient integration and
connectivity of all applications within the IBM i Merlin platform. Their responsibilities
encompass setting up the Git repositories and establishing the connections between
components. A foundational understanding of concepts such as Git and Jenkins helps direct
resources to the libraries and repositories.

In smaller environments, these responsibilities can be undertaken by a single individual who
possesses the skills to initiate Red Hat OpenShift, facilitate its installation, and configure
IBM i Merlin for operational use.

Figure A-16 shows the role and responsibilities of an IBM i Merlin administrator.

Figure A-16 Role and responsibilities of an IBM i Merlin administrator

In Figure A-16, a IBM i Merlin administrator assumes a pivotal role, wielding direct access to
the IBM i Merlin platform GUI while orchestrating a spectrum of activities that are tailored for
IBM i users. The scope of responsibilities requires crucial operations to help ensure the
platform's efficient functioning for IBM i users:

� Installing and deploying IBM i Merlin tools, which encompass components such as the
IDE, CI/CD functions, and more.

� Proficiently managing user accounts within the IBM i Merlin ecosystem.

� Helping ensure the security and confidentiality of sensitive information that is entrusted to
the platform.

� Exerting control over authorities and permissions to establish a defined hierarchy of
access.

� Diligently monitoring resource consumption and utilization to optimize the platform's
efficiency.

� Collaborating closely with Red Hat OpenShift administrators to promptly address and
resolve potential issues to nurture a synergistic partnership for the platform's overall
integrity and reliability.

Note: While some familiarity with Git and Jenkins is essential, in-depth knowledge of Linux
or Red Hat OpenShift is not a prerequisite for the role.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 373

IBM i Merlin platform and tools architecture
In the context of the IBM i Merlin platform and tools architecture, a distinct focus emerges.
The objective is to empower developers, enabling them to engage in their development tasks
by using intuitive, browser-based interfaces. This anticipated progression involves a certain
learning curve, which is vital for mastering the installation of the components that depend on
the operational flow. Beyond this initiation, the journey is characterized by the accessibility of
browser-driven functions. These functions play a pivotal role in orchestrating fundamental
CI/CD processes to enhance the efficiency of the development experience.

Figure A-17 illustrates how to enable developers by using the BM i Merlin platform and tools.

Figure A-17 Empowering developers with IBM i Merlin platform and tools

In Figure A-17, a IBM i Merlin user has direct access to the IBM i Merlin platform and tools.
This user engages with IBM i Merlin to achieve the following objectives:

� Access and use the deployed IDE, CI/CD, and other functions.
� Manage inventory, user profiles, and credentials for targeted systems.
� Oversee the lifecycle of the IBM i Merlin tools, subject to the prerequisite authority.
� Create RESTful services on designated IBM i systems.

IBM i Merlin tools for IBM i CI/CD
Drawing on ARCAD's expertise in IBM i DevOps, the approach to deployment offers versatility
to suit different scenarios. You can use your existing Jenkins server or use standard setup,
where IBM establishes a Jenkins server for you and integrates it effectively with ARCAD
components. This integration simplifies your CI/CD workflow and enhances efficiency.
Importantly, IBM i Merlin provides a GUI that is tailored for IBM i to help ensure a smooth
experience.

Figure A-18 on page 375 show a visual representation of these capabilities.
374 Using Ansible for Automation in IBM Power Environments

Figure A-18 IBM i CI/CD GUI with IBM i Merlin tools

Key features:

� Simplified Jenkins complexity: In IBM i Merlin, Jenkins is transparent, so you can
concentrate on your IBM i CI/CD processes.

� Choice of deployment: You can choose to deploy without a Jenkins server, use your own
Jenkins instance, or use the provided Jenkins server that is integrated with ARCAD
plug-ins.

� Flexible profile management: Private and public profiles offer a robust means to generate
Jenkins pipelines dynamically. These profiles can be easily shared among IBM i Merlin
users to promote collaboration and consistent practices.

IBM i Merlin for IBM i developers

In the context of code development, a natural development environment is crucial. Historically,
IBM i featured PDM on the 5250, which is ingrained in the IBM i development landscape.
However, PDM in the contemporary landscape is less normalized. The IBM Rational
Developer product remains effective for numerous users.

Figure A-19 shows a representation of PDM.

Figure A-19 Work with objects by using PDM on the 5250 interface

The primary aim is to help IBM i customers seeking to adopt Git as their source control
repository while embracing a modern, browser-based development arena. Thus, IBM crafted
a code-ready workspace by harnessing Eclipse Theia and Che along with an array of code
plug-ins. These components converge to deliver genuine code comprehension,
comprehensive formatting, and a deep understanding of languages such as RPG, COBOL,
and other native ILE types.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 375

ARCAD tools have played a pivotal role in development pursuits over the years. Features
such as RPG conversion to modern free format and immediate access to an impact analysis
tool are now essential aspects.

Figure A-20 shows the IDE, where you set up your development environment, incorporate
rich editing capabilities, and build and compile your project. Designed for contemporary
developers, the offering includes natural Git integration, intelligent build functions,
self-contained projects, code comprehension, and integrated impact analysis.

Figure A-20 Comprehensive development workflow with integrated tools

Coexisting advancements: IBM Rational Developer for i and IBM i Merlin
in IBM i development
IBM i Merlin introduces a fresh approach to code development and modernization that
coexists with IBM Rational Developer for i. Rather than replacing IBM Rational Developer for i,
IBM i Merlin provides an alternative option for developers to choose between
workstation-based development with IBM Rational Developer for i or the browser-based,
container-oriented environment of IBM i Merlin.

IBM Rational Developer for i caters to creating and updating native ILE applications on IBM i,
and IBM i Merlin uses a holistic CI/CD ecosystem that is based on Jenkins. It serves as more
than just an IDE by offering a comprehensive suite of tools and plug-ins to facilitate modern
development practices. IBM i Merlin equips developers with features such as Patched to Free
conversion, integration with Git-based source control, and real-time application impact
analysis. Also, it integrates with automated build and deployment pipelines, streamlining the
entire development lifecycle.

Note: Build on Build (BOB) is a tool that provided by ARCAD that facilitates the automated
compilation and build process for RPG and COBOL applications on the IBM i platform.
Developers can use it to initiate the build process directly from a visual board or interface to
help streamline the development workflow and enhance efficiency. The BOB tool integrates
with DevOps practices and CI processes for faster and more automated application builds.
376 Using Ansible for Automation in IBM Power Environments

A key distinction lies in the modernization capabilities of IBM i Merlin. Code that is crafted
within IBM i Merlin can still be modified by using IBM Rational Developer for i. Although the
Source Entry Utility (SEU) can also be used for further code modification, IBM i Merlin
support for the latest RPG versions emphasizes a shift toward contemporary coding
approaches, encouraging developers to permit newer paradigms for enhanced efficiency and
sustainability.

IBM i Merlin and ARCAD: Tools for enhanced development
IBM i Merlin has undergone significant enhancements that were achieved by integrating
existing products and introducing novel elements. One example of this evolution is the builder
facet, which is now enriched with a new web server and CLI. This integration includes various
archive tools that are bundled with the core IBM i Merlin product. The core of this integration
is the metadata repository, prominently featured in the lower right of Figure A-21. This
repository facilitates shared access for critical components such as Builder, Transformer
RPG, and Observer. It connects these products, enabling real-time awareness of any
changes or additions to objects.

Figure A-21 IBM i Merlin and ARCAD: Tools for enhanced development

This robust integration extends its benefits to both the IDE and the CI/CD process. Users can
initiate actions such as impact analysis directly from the IDE, and in the CI/CD pipeline
objects are automatically built along with their dependencies because of the consistently
maintained metadata repository. This automated process eliminates the necessity of
manually managing makefiles, which is a task that can become unwieldy in enterprise-level
settings. The Transformer RPG component serves as the initial step in the modernization
journey. It enables migrating code to a fully free-format RPG before engaging the broader
range of modern tools and coding capabilities that are offered by IBM i Merlin.

This intricate integration and comprehensive enhancement underscore the IBM i Merlin
pivotal role as a potent modernization engine that is focused on lifecycle integration.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 377

Developer IBM i Merlin
The Developer IBM i Merlin environment provides a range of capabilities to enhance the
development process:

� Connections: Includes features such as inventory management, credentials management,
and template setup, which enable efficient access to the resources that are needed for
development tasks.

� Tools: Developer IBM i Merlin offers a suite of tools, which includes tools that are deployed
and configured for specific tasks. The IBM i Developer tool provides seamless integration
to developers. With this tool, you can perform actions such as right-clicking to run
applications, which streamline the development workflow.

� Create a workspace: This function establishes a dedicated workspace that is tailored to a
developer’s requirements to help ensure an organized and efficient development
experience.

Figure A-22 shows the initial workspace within IBM i Developer, which is the starting point for
developers that use IBM i Merlin.

Figure A-22 Starting workspace in IBM i Developer

Development flow
Here are the key principles that define the IBM i Merlin development flow:

� Inspired by GitFlow: The development flow model is inspired by the GitFlow methodology,
which is an established branching strategy. This approach provides a structured
framework for managing code changes, releases, and collaboration among developers.

� Adaptable: The development flow is designed to be adaptable and accommodate various
project requirements and team dynamics. It can be tailored to the specific needs of the
development team.

� Master and development with no direct changes: The primary development branches,
“Master” and “Development,” cannot be directly changed. Instead, developers work on
feature branches or other specialized branches to help ensure that the main development
branches remain stable and reliable.
378 Using Ansible for Automation in IBM Power Environments

� Other branches: The development flow includes several types of branches that serve
distinct purposes:

– Feature branches are created for developing new features or functions. These
branches enable developers to work on isolated changes without affecting the main
codebase.

– Release branches are used to prepare the codebase for a new release. They are ideal
for bug fixes, last-minute adjustments, and testing before a release.

– HotPatch branches are created to address critical issues in the production
environment. They enable swift fixes without interrupting ongoing development efforts.

� Branch for ARCAD version: Each branch that is created within the development flow is
accompanied by an associated ARCAD version. This version management helps ensure
proper tracking and integration of changes to provide clear visibility into the status and
progress of development activities.

Managing IBM i source with Git and ARCAD
Effectively managing your IBM i source code is crucial for a development process. By
combining the power of Git version control and ARCAD capabilities, you can optimize your
source management workflow. The following steps outline the process of handling IBM i
source code within this collaborative environment:

1. Create an empty Git repository: Begin by creating an empty Git repository to be the
foundation for your SCM.

2. Configure your application in ARCAD: Configure your application within ARCAD by
specifying components such as Mxx_DTA, Mxx_OBJ, and Mxx_SRC. Link these components to
the Git repository for seamless integration.

Note: Git, a distributed VCS, offers several compelling advantages for SCM:

� Line-level visibility of changes: Unlike traditional change management systems, Git
provides a granular view of changes at the line level so that developers can precisely
track modifications.

� Enhanced management of concurrent development: Git's decentralized nature enables
multiple developers to work on different branches simultaneously, which facilitates
smoother collaboration and concurrent development efforts.

� Explicit merges: When two changes are merged into the same codebase, Git makes
this process explicit to help ensure that changes are intentionally combined, which
reduces the risk of accidental conflicts.

� Controlled commits: Git's commit process includes conflict checks so that developers
can review and manage potential conflicts before finalizing changes, which enhance
code quality and reduces integration challenges.

� Offline usage: Git's offline capabilities enable developers to track local changes even
when disconnected from a network. This flexibility supports productivity in various work
environments.

� Incredible traceability: Git's version control offers unparalleled traceability so that you
can track the history of changes, contributors, and decisions made throughout the
development lifecycle.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 379

3. Generate source for objects: Use the GENSCMSRC command to generate source code
specifically for objects. This process facilitates the progression of source code transition
into your infrastructure.

4. Load the Git repository with your source: Use the LODSCMREP command to populate the Git
repository with the generated source code. This step helps ensure that your code is
effectively managed within the VCS, which enhances collaboration and traceability.

IBM i Merlin preferences
Within IBM i Merlin, user preferences are designed to enhance the development experience.
These preferences are tailored to integrate with ARCAD tools to help ensure a cohesive
workflow.

1. Builder Port 5252: This preference configures the communication port for Builder to help
ensure interaction between components.

2. IBM i Developer:

– Build settings: The preferences for IBM i Developer encompass a range of build
settings, which include options that are related to BOB.

– Formatting options are available so that developers can tailor their development
environment to their coding style and preferences.

3. Customizable color scheme: IBM i Merlin can modify the color scheme. Developers can
use this customization feature to create a coding environment that is visually conducive to
their individual needs.

Git integration in IBM i Merlin
Integrating Git functions within the IBM i Merlin workspace brings enhanced efficiency and
collaboration to your development process. The integration of the git command enables
effective version control and access to various collaborative tools. The following points outline
the key steps and benefits of this integration:

1. Press the F1 key to access a comprehensive list of Git commands.

2. Initiate the process by running git clone on the CLI of the IBM i Merlin workspace, as
shown in Figure A-23.

Figure A-23 Git clone command in IBM i Merlin workspace
380 Using Ansible for Automation in IBM Power Environments

3. Provide the SSH URL of the Git repository that you intend to clone to establish the
connection between IBM i Merlin and the Git repository.

On successful completion of the clone process, your source code becomes visible and
accessible within the IBM i Merlin workspace. This integration streamlines version control
and SCM, which enhances your development workflow.

4. To create a branch, go to the “Feature/xxxx” section, where the mapping between Git and
ARCAD, which is labeled as awrkvertyp, is defined. as shown in Figure A-24.

Figure A-24 Creating a branch in IBM i Merlin: Mapping Git and ARCAD

5. Press F1 and select git create branch, as shown in Figure A-25.

Figure A-25 Creating a branch in IBM i Merlin

6. In the lower left, click master to proceed with the branch creation process, as shown in
Figure A-26.

Figure A-26 Selecting master to begin branch creation

7. After changing your local repository, use the push command to upload your committed
changes to the remote Git repository. This action synchronizes the changes that you made
on your local machine with the online repository to help ensure that other team members
can access your updates.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 381

As a result of pushing your changes, the remote Git repository is updated with the latest
changes that you committed. Other team members can access and work with the most
recent version of the codebase.

8. A webhook is a mechanism that allows real-time communication between different
systems. In the context of Git and ARCAD Builder, you can set up a webhook to notify
Builder about certain events in the remote repository. This integration is enabled by
copying the GitHub webhook from Builder's webhook processing tool, which is known as
“smee.” To use this feature, ensure that webhook processing is activated in Builder, and
use the provided webhook link (for example, https://smee.io/IzfhozWff1rfGlOt) to
establish the connection, as shown in Figure A-27.

Figure A-27 Webhook integration between Git and ARCAD Builder

9. Run the check version command to generate an automatic commit in your local
repository. By pulling from your local repository, you retrieve the latest commit message
from the remote repository. This process helps ensure that you are always working with
the most up-to-date code and information, promoting collaboration and reducing potential
conflicts.

10.To incorporate the necessary IBM i views, right-click CHE, as shown in Figure A-28.

Figure A-28 IBM i views integration in CHE
382 Using Ansible for Automation in IBM Power Environments

IBM i project explorer
IBM i project explorer offers essential features for integration and efficient development within
the IBM i environment:

� Variables: Manage and track variables that are used in your development projects to help
ensure accurate data handling and processing.

� Library lists: Configure library lists to access the necessary libraries and resources for
your projects without performing a manual setup.

� Object libraries: Access and organize object libraries efficiently to simplify the
management of your IBM i resources.

� My queries: Use built-in query functions to retrieve specific information from your IBM i
system to enhance your ability to gather relevant data for your projects.

ARCAD view
The ARCAD view is a UI that is provided by the ARCAD software suite. It offers a
consolidated and organized perspective into various aspects of the software development
lifecycle.

� Sites: Gain a comprehensive overview of your different development environments or
locations so that you can organize and navigate your projects effectively.

� Builds: Track the progress of builds to help ensure a clear understanding of the status of
your development efforts.

� Versions: Access and manage different versions of your projects. Each version is linked to
a specific branch, so you can navigate between various stages of development.

Prompting
Prompting in the context of IBM i Merlin refers to the interactive assistance that is provided to
developers during various stages of application development. It offers guidance and
suggestions as developers write code, which helps create accurate and efficient programs.
Prompting enhances the development experience by reducing errors, improving consistency,
and increasing productivity.

Changed source
A changed source in the IBM i Merlin platform is tracked through a “Modified” flag, which
indicates that alterations were made to the code. These changes are managed within the
platform's source control system.

Git compare
IBM i Merlin offers a Git compare feature that developers can use to efficiently analyze
differences between various versions of source code. This tool enhances collaboration by
providing an intuitive visual representation of changes, which helps with code review, error
identification, and maintaining code quality throughout the development lifecycle.

Git process
As part of the Git process within IBM i Merlin, developers can conveniently stage changes
and commit them locally. This approach helps ensure that modifications are organized and
tracked effectively before they are pushed to the shared repository, which contributes to a
structured and controlled development workflow.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 383

Central Git repository
In IBM i Merlin, the central Git repository serves as a central hub for collaborative
development. When developers push their changes to a specific branch in this repository, the
repository is updated with the latest modifications, which promotes efficient collaboration and
version control within the development team.

Changes that are received by Git
When changes are committed and pushed to the central Git repository, these modifications
are received by Git, which helps ensure that the latest updates are accessible to all team
members that are collaborating on the project.

ILE RPG offers extensive support
ILE RPG, with its extensive support, offers a range of features for enhanced development:

� Outline: Provides a clear overview of the code structure.
� Model creation: Simplifies the representation of the code's logic.
� Simple navigation: Streamlines moving between different sections of the code.
� Hover information: Displays contextual information when hovering over elements.
� Procedure definition information: Presents details from procedure definitions.
� Collapsible code blocks: Collapse sections of code for improved readability and focus.
� Procedure call analysis: Right-clicking procedures shows references and usages of them,

which provides a deeper understanding of their impact.

Tokenization
Tokenization in the context of IBM i Merlin refers to the process of categorizing and
highlighting different elements in your code by using appropriate colors. This visual
differentiation helps you quickly identify and distinguish between various components within
your codebase, which can lead to improved readability and understanding.

IBM i Merlin Code Formatting
IBM i Merlin Code Formatting helps ensure consistent and organized code for readability.
Customize preferences for automatic formatting alignment with your style. Right-click selected
code and choose Reformat to instantly apply the chosen rules. These rules maintain
uniformity and enhance comprehension.

IBM i Merlin Refactoring
IBM i Merlin Refactoring enhances code structure and readability without sacrificing
functions. Rename symbols intelligently, and update code and models for consistency.
Pressing Shift+Enter previews the changes before you commit them. The model
auto-updates modifications. This approach helps ensure accurate and efficient code
improvement.

Content Assist
Content Assist in IBM i Merlin provides intelligent suggestions as you code. Press Ctrl+Space
to start it. It works for both language and model, which helps enhance accuracy and speed.
The live problem view identifies and highlights issues, and you can do direct navigation and
automatic updates as you patch them.
384 Using Ansible for Automation in IBM Power Environments

SQL
SQL in IBM i Merlin brings advanced features for efficient database interaction and
management:

� Tokenization: Clearly divides SQL into meaningful elements for comprehension and
editing.

� Formatting: Helps ensure consistent and readable SQL code by automatically applying
formatting rules.

� Code collapse: Organizes SQL blocks to make it simpler to navigate and focus on relevant
sections.

� Embedded SQL: Integrate SQL statements within host languages to enhance database
interaction within the application code.

ARCAD Transformer RPG
ARCAD Transformer RPG is a powerful tool that facilitates the modernization of RPG code to
enable it to adapt to contemporary coding standards and practices. However, there are
certain aspects that the transformation process does not consider:

� Specifications that are not available in Free Form: Traditional I and O specifications are not
available in Free Form RPG.

� Not managed in F / D specs: Certain elements such as primary files (P), secondary files
(S), table files (T), or address files are not managed in Free Form RPG. Also, D-specs with
FROMFILE / TOFILE clauses are excluded.

� Unconverted operations: Certain RPG operations such as MHHZO, MHLZO, MLHZO,
MLLZO are not automatically converted during the transformation process.

Furthermore, there are specific cases where operation codes cannot be converted:

� TIME: If the result field length is equal to 14 characters.

� SCAN, CHECK, CHECKR: When the result field is an array.

� BITON, BITOFF: When factor 2 is a named constant.

� POST: When the result field (data structure name) is used.

� MOVE, MOVEL: When the factor 2/result is a varying-length field.

� MOVEA: When the field is defined as a CONST parameter.

� KLIST, KFLD: When located or used in a COPY clause.

� CALL, PARM: For CALL operations, the indicator “LR” (positions 75-76) and the CALL
Pgm(idx) syntax are not converted.

� GOTO, TAG: GOTO within a subprocedure and TAG in the “Main” program, or when GOTO
and TAG do not comply with structured programming. Also, when TAG is used by
WHENEVER GOTO (SQL).
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 385

IBM i Merlin requirements

The installation of IBM i IBM i Merlin is flexible. You can install it by using either the Red Hat
OpenShift web console or the CLI (the oc command). This versatility provides options for a
convenient installation process that is tailored to your preferred method.

Versions of the product that are compatible and officially endorsed
Table A-4 provides a comprehensive overview of the versions that are both compatible and
officially endorsed for the installation of IBM i Merlin. The following table presents a clear
snapshot of the supported versions so that you can make informed decisions that pave the
way for a successful implementation of IBM i Merlin within your IT environment.

Table A-4 Supported versions of IBM i and Red Hat OpenShift Container Platform for IBM i Merlin

Necessary Red Hat OpenShift resources
Table A-5 outlines the crucial CPU requests, CPU limits, memory requests, and memory
limits that play a pivotal role in helping ensure the optimal functioning of IBM i Merlin within
the Red Hat OpenShift environment. This adherence to resource allocation guidelines is
integral to the successful implementation of the IBM i Modernization Engine.

Table A-5 Necessary Red Hat OpenShift resources

IBM i requirements
Here are the prerequisites for the IBM i environment:

� IBM i 7.3 or later, complemented by the latest application of the HTTP PTF Group.
� IBM Rational Development Studio (5770-WDS) is an essential requirement for the

compilers, enabling the conversion of source code into object code.

Entitlement
Clients can acquire IBM i Merlin through IBM Passport Advantage. After you purchase IBM i
Merlin, authenticate by using your IBMid on Passport Advantage. A designated entitlement
key that is associated with the acquired product is activated within IBM Marketplace. This
entitlement key coupled with an active paid entitlement grants you access to the container
images that are available within the Entitled Registry.

IBM i Red Hat OpenShift Container Platform

7.3 4.8

7.4 4.9

7.5 4.10

Name CPU
request

CPU
limit

Memory
request

Memory
limit

Note

IBM i Merlin 2.5a

a. Request signifies the minimum required amount.

5b

b. Limit signifies the maximum anticipated utilization.

7Ga 15Gb None.

IBM i Developer
Tool

0.5a 2.7b 1.5Ga 3Gb The resource is per each
instance.c

c. When an administrator installs either of IBM i Developer or IBM i CI/CD Tools within an Red Hat
OpenShift project, it corresponds to one instance.

IBM i CI/CD 0.5a 1b 1Ga 2Gb The resource is per each
instance.c
386 Using Ansible for Automation in IBM Power Environments

https://www.ibm.com/software/passportadvantage/pao_customer.html

Installing IBM i Merlin in an air-gapped environment
For more information about installing IBM i Merlin in an air-gapped environment, see Install
IBM i Modernization Engine for Lifecycle Integration in AirGap environment. This resource
covers essential prerequisites, the setup of a Bastion host, configuration of the local Docker
registry, installation procedures for IBM i Merlin, and comprehensive guidance about mirroring
images and configuring the cluster. Also, you can find clear instructions for creating the
IBM i Merlin catalog source.

For more information about installation IBM i Merlin and more, see GitHub.

Price: IBM i Merlin follows a “per-developer” pricing model, aligning with its deployment
within the Red Hat OpenShift Container Platform. By using the inherent license monitoring
mechanism of Red Hat OpenShift Container Platform, IBM i Merlin employs the Virtual
Processor Core (VPC) framework. To secure your IBM i Merlin entitlement, place an order
for one VPC unit per developer, which creates an individual CodeReady workspace for
each developer. This offering is available at a rate of $4500.00 per VPC.
Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration 387

https://www.ibm.com/docs/en/merlin/1.0?topic=iimeli-install-i-modernization-engine-lifecycle-integration-in-airgap-environment
https://www.ibm.com/docs/en/merlin/1.0?topic=iimeli-install-i-modernization-engine-lifecycle-integration-in-airgap-environment
https://ibm.github.io/merlin-docs/#/./guides/openshift/merlininstall

388 Using Ansible for Automation in IBM Power Environments

ronyms
ACFS ASM Cluster File System

ACS Access Client Solutions

AI artificial intelligence

API application programming interface

ASM Automatic Storage Management

BCDR business continuity and disaster
recovery

BOB Build on Build

BSL business source license

C2S commercial cloud service

CD continuous deployment

CDB Container Database

CI continuous integration

CI/CD continuous integration and
continuous deployment

CIS Center for Internet Security

CJIS Criminal Justice Information
Services

COLO Colocation

CRN Cloud Resource Name

CVE Common Vulnerabilities and
Exposure

DBA database administrator

DCM dual-chip module

DISA Defense Information Systems
Agency

DLPAR dynamic LPAR

DoD Department of Defense

DR disaster recovery

DSL domain-specific language

EDA event-driven automation

EIM Enterprise Identity Mapping

FQCN fully qualified collection name

GDPR General Data Protection Regulation

GIMR Grid Infrastructure Management
Recovery

GTS Global Technologies Services

HA high availability

HADR high availability and disaster
recovery

HCL HashiCorp Configuration Language

Abbreviations and ac
© Copyright IBM Corp. 2024.
HDBLCM SAP HANA Database Lifecycle
Manager

HIPAA Health Insurance Portability and
Accountability Act

HMC Hardware Management Console

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IASP independent auxiliary storage pool

IAVA Information Assurance Vulnerability
Alerts

IDE integrated development
environment

IFS Integrated File System

ILE Integrated Language Environment

IoT Internet of Things

IPL initial program load

ISA Instruction Set Architecture

ISV independent software vendor

JFS Journaled File System

LPAR logical partition

LPM Live Partition Mobility

LPP Licensed Program Product

LVM logical volume manager

Merlin Modernization Engine for Lifecycle
Integration

MGMTDB Management Database

MMA Matrix Math Accelerator

MPL Mozilla Public License

MSP Managed Service Provider

NAS Network Authentication Service

NIM Network Installation Manager

OCR Oracle Cluster Registry

OMI Open Memory Interface

OS operating system

OSPP Operating System Protection
Profile

OTN Oracle Technology Network

PAS Primary Application Server

PASE Portable Application Solutions
Environment

PGM program

PTF Program Temporary Patch
 389

QA quality assurance

RAC Real Application Clusters

RAS reliability, availability, and
serviceability

RBAC role-based access control

RCA root cause analysis

REST Representational State Transfer

RFC Remote Function Call

RHEL Red Hat Enterprise Linux

RPG Report Program Generator

SaaS Software as a Service

SAN storage area network

SCM source code management

SCN SAP Company Number

SEU Source Entry Utility

SLIC System Licensed Internal Code

SME subject matter expert

SSH Secure Shell

SSO single sign-on

SSP Share Storage Pool

STIG Security Technical Implementation
Guide

SWPM Software Provisioning Manager

VCS version control system

VIOS Virtual I/O Server

VM virtual machine

VPC Virtual Processor Core

VSI Virtual Server Instance

WSL Windows Subsystem for Linux

YUM Yellowdog Updater, Modified
390 Using Ansible for Automation in IBM Power Environments

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topics in this
document. Some publications that are referenced in this list might be available in softcopy
only.

� Deploying SAP Software in Red Hat OpenShift on IBM Power Systems, REDP-5619

� IBM Power Systems Cloud Security Guide: Protect IT Infrastructure In All Layers,
REDP-5659

� Introduction to IBM PowerVM, SG24-8535

� Oracle on IBM Power Systems, SG24-8485

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, web docs, drafts, and additional materials, at the following website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2024. 391

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

392 Using Ansible for Automation in IBM Power Environments

IS
B

N
 0738461873

S
G

24-8551-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Using Ansible for Autom
ation in IBM

 Pow
er Environm

ents

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461873

SG24-8551-00

®

http://www.redbooks.ibm.com
https://www.linkedin.com/groups/2130806

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introducing Ansible and IBM Power
	1.1 Why automation
	1.1.1 Orchestration versus automation

	1.2 Automation tools and techniques
	1.2.1 Common IT automation tools

	1.3 Understanding Ansible: A powerful automation tool
	1.3.1 Ansible architecture
	1.3.2 Options for implementing Ansible
	1.3.3 Ansible Automation Platform
	1.3.4 Event-driven automation
	1.3.5 Infrastructure as Code: integration of Ansible and Terraform
	1.3.6 Provisioning
	1.3.7 Patch management
	1.3.8 Security and compliance
	1.3.9 Configuration management
	1.3.10 Business continuity
	1.3.11 Application development

	1.4 Introducing IBM Power
	1.4.1 IBM Power high availability
	1.4.2 IBM Power security
	1.4.3 IBM Power, operational efficiency, and sustainability
	1.4.4 Streamlining AI operations with advanced on-chip technologies
	1.4.5 POWER processors and architecture
	1.4.6 PowerVM and virtualization
	1.4.7 Supported operating systems
	1.4.8 Key benefits of IBM Power compared to x86 servers

	1.5 Ansible for Power
	1.5.1 IBM Power Collections on Ansible Galaxy
	1.5.2 IBM Power Collections on Red Hat Automation Hub
	1.5.3 Ansible for Linux on Power
	1.5.4 Ansible for AIX
	1.5.5 Ansible for IBM i
	1.5.6 Ansible for IBM Power Hardware Management Console
	1.5.7 Ansible for Power Virtual I/O server
	1.5.8 Ansible for IBM Power Systems Virtual Server
	1.5.9 Ansible for applications

	Chapter 2. Ansible architecture and design
	2.1 Ansible architecture and components
	2.1.1 Controller and client functions

	2.2 Understanding the Ansible declarative language
	2.2.1 YAML structure
	2.2.2 Jinja2

	2.3 Understanding an Ansible inventory
	2.3.1 Overview of an Ansible inventory
	2.3.2 Overview of dynamic inventory

	2.4 Ansible tasks, playbooks, and modules
	2.4.1 Creating Ansible playbooks

	2.5 Ansible roles and collections
	2.5.1 Understanding roles in Ansible
	2.5.2 Creating and structuring Ansible roles
	2.5.3 Sharing and reusing roles in multiple playbooks
	2.5.4 Role dependencies and role-based variables
	2.5.5 Using collections

	2.6 Best practices for playbook and role design
	2.6.1 Writing modular and reusable playbooks
	2.6.2 Using Ansible Galaxy for role management

	2.7 Creating versions and documenting playbooks and roles
	2.7.1 Creating versions of playbooks and roles
	2.7.2 Common scenarios when using Git with Ansible

	2.8 Testing and validating playbooks and roles
	2.8.1 Testing playbooks and roles
	2.8.2 Validating playbooks and roles

	Chapter 3. Getting started with Ansible
	3.1 Designing your Ansible environment
	3.1.1 Starting simple: Ansible Core and Ansible Community
	3.1.2 Scaling up: Ansible Automation Platform
	3.1.3 Enterprise-ready environment
	3.1.4 Developing an “automation first” attitude

	3.2 Choosing the Ansible Controller node
	3.3 Installing your Ansible control node
	3.3.1 Linux as an Ansible Controller
	3.3.2 AIX as an Ansible Controller
	3.3.3 IBM i as an Ansible Controller

	3.4 Preparing your systems to be Ansible clients
	3.4.1 Linux as an Ansible managed client
	3.4.2 AIX as an Ansible managed client
	3.4.3 IBM i as an Ansible managed client
	3.4.4 Virtual I/O Server as an Ansible managed client
	3.4.5 Red Hat OpenShift as an Ansible managed client
	3.4.6 IBM Power Hardware Management Console as an Ansible managed client

	Chapter 4. Automated application deployment on IBM Power servers
	4.1 Deploying and managing applications by using Ansible on Power servers
	4.2 Automated application deployment on Power servers
	4.2.1 Ansible content for IBM Power
	4.2.2 IBM AIX, IBM i, and Linux on Power collections for Ansible

	4.3 Deploying a simple Node.js application
	4.4 Orchestrating multitier application deployments
	4.4.1 Orchestration in the world of Kubernetes

	4.5 Continuous integration and continuous deployment pipelines with Ansible
	4.5.1 CI/CD when using Ansible for IBM i

	4.6 Oracle DB automation on Power
	4.6.1 Why businesses opt for AIX to host their databases
	4.6.2 Automating the deployment of a single-node Oracle database with Ansible
	4.6.3 Automating the deployment of Oracle RAC with Ansible
	4.6.4 Automating Oracle DBA operations

	4.7 SAP automation
	4.7.1 Red Hat Enterprise Linux System Roles for SAP
	4.7.2 Using the SAP LinuxLab automation

	Chapter 5. Infrastructure as Code by using Ansible
	5.1 IBM Power Virtualization Center
	5.1.1 Advantages of PowerVC
	5.1.2 Using the OpenStack Cloud modules
	5.1.3 Using the URI modules to interact with PowerVC API services

	5.2 IBM Power Systems Virtual Server
	5.2.1 Using the IBM Cloud collection for Power Systems Virtual Server
	5.2.2 Using the URI module for Power Systems Virtual Server

	Chapter 6. Day 2 management operations
	6.1 Introducing Day 2 operations
	6.1.1 Storage
	6.1.2 Security and compliance
	6.1.3 Patches or upgrades
	6.1.4 Configuration and tuning

	6.2 Day 2 operations in Linux servers
	6.2.1 Installing system roles for Ansible automation
	6.2.2 Storage
	6.2.3 Security and compliance
	6.2.4 Patches and upgrades
	6.2.5 Configuration tuning

	6.3 Day 2 operations in AIX environments
	6.3.1 Storage
	6.3.2 Security
	6.3.3 Fixes
	6.3.4 Configuration tuning

	6.4 Day 2 operations in IBM i environments
	6.4.1 Storage
	6.4.2 Security and compliance
	6.4.3 Patch management
	6.4.4 Configuration tuning

	Chapter 7. Future trends and directions
	7.1 Ansible and IBM Power Roadmap
	7.1.1 Working closely with the IBM Power collections and their contents

	7.2 Roadmap for Ansible automation in the Power ecosystem
	7.2.1 Ansible Automation Platform on IBM Power
	7.2.2 Visual Studio Code
	7.2.3 IBM watsonx Code Assistant for Red Hat Ansible Lightspeed

	Appendix A. Unveiling IBM i Modernization Engine for Lifecycle Integration
	Introduction
	What is IBM i Merlin
	The role of IBM i Merlin in the IBM i market
	IBM i Merlin: Problem-solving capabilities
	Benefits of IBM i Merlin for IBM i modernization
	Decades of collaboration: IBM and ARCAD
	Components of IBM i Merlin
	Comprehensive overview of IBM i Merlin content

	Ansible integration for IBM i lifecycle management through IBM i Merlin
	The business demands for DevOps on IBM i
	IBM i Merlin for IBM i developers
	IBM i Merlin requirements

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Help from IBM

	Back cover

