
Redbooks

Front cover

Crypto Express for Cloud
Workloads

Lydia Parziale

Marco Egli

Harald Freudenberger

Savitri Hunasheekatti

Sandor Irmes

IBM Redbooks

Crypto Express for Cloud Workloads

September 2024

SG24-8547-00

© Copyright International Business Machines Corporation 2024. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2024)

This edition applies to the Crypto Express 8S (CEX8S) coprocessor, IBM z16, IBM LinuxOne 4(GA1.5).

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . viii
Comments welcome. viii
Stay connected to IBM Redbooks . ix

Chapter 1. Introduction. 1
1.1 Cryptographic components . 2

1.1.1 CPACF . 2
1.1.2 Crypto Express cards . 2
1.1.3 Trusted Key Entry workstation . 3

1.2 Cryptographic terms . 4
1.2.1 Clear key versus secure key versus protected key. 4

1.3 Cryptographic concepts . 6

Chapter 2. Overview of our environment . 11
2.1 Lab environment . 12
2.2 Crypto Express configuration . 13

2.2.1 Card configuration. 14
2.2.2 LPAR configuration . 18
2.2.3 Dynamic Partition Manager. 20

2.3 Master key setup. 24
2.3.1 Trusted Key Entry . 24
2.3.2 Checking the master key setup. 24
2.3.3 Master key setup with TKE . 28
2.3.4 Control domains . 29

Chapter 3. Configure LINUX guests to use CEX adapters . 31
3.1 Configuring a KVM host to provide CEX functionality . 32

3.1.1 Setting up the KVM host machine to use CEX functions 32
3.1.2 What you should know about VFIO . 32
3.1.3 Checking kernel modules . 35
3.1.4 Configuring VFIO AP queues . 37
3.1.5 Configuring the mediated device - KVM guest level . 44
3.1.6 Managing VFIO AP mediated devices with libvirt . 47

3.2 Configuring z/VM guests to use CEX adapters. 53
3.2.1 Setting up the z/VM host machine to use CEX functions 53
3.2.2 Assigning crypto resources on z/VM systems. 55
3.2.3 IBM Z operational keys: Clear, protected, or secure. 59

3.3 Setup and configure Linux guests to use crypto resources . 60
3.3.1 Dynamic assignment of crypto resources to z/VM guests 60
3.3.2 Crypto resource assignment to z/VM guests for dedicated use 62
3.3.3 Removing dedicated crypto resources from z/VM guests. 64
3.3.4 Persistence across z/VM host or guest reboots . 66

Chapter 4. Using a CEX resource within a containerized environment 81
© Copyright IBM Corp. 2024. iii

4.1 CEX resource deployment in a Docker environment . 82
4.1.1 Installation and simple usage examples for Podman . 82
4.1.2 Simple deployment of CEX resources . 84
4.1.3 A more sophisticated CEX deployment. 86

4.2 CEX deployment configuration in Kubernetes and
Red Hat OpenShift Container Platform . 89

4.2.1 Kubernetes on a Red Hat OpenShift cluster . 90
4.2.2 CEX resources in Kubernetes orchestrated containers . 91

Chapter 5. Guest and workload considerations for using an HSM in the cloud 107
5.1 Determining the right HSM . 108
5.2 openCryptoki . 110

5.2.1 Slots and tokens . 110
5.2.2 Installation of openCryptoki. 111
5.2.3 Configuration of openCryptoki . 111
5.2.4 Managing tokens. 113
5.2.5 Generating and listing keys. 114
5.2.6 Token specifications . 115

5.3 dm-crypt . 116
5.3.1 Installation and configuration overview . 117

5.4 Crypto Express support for Secure Execution . 117
5.4.1 Terms and concepts related to secure execution with CEX support. 118
5.4.2 Secret preparation for SE guests with CEX support . 119
5.4.3 KVM host setup for SE guests with CEX support . 120
5.4.4 KVM guest setup for SE guests with CEX support . 120
5.4.5 Security Details . 124
5.4.6 Redundancy . 124
5.4.7 Protecting AP association secrets. 124
5.4.8 Important considerations for the secure use of Crypto Express adapters in EP11

mode. 126

Related publications . 129
IBM Redbooks . 129
Other publications . 129
Online resources . 129
Help from IBM . 129
iv Crypto Express for Cloud Workloads

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2024. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at https://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX®
IBM®
IBM Z®
IBM z16™

PIN®
POWER®
Redbooks®
Redbooks (logo) ®

z/OS®
z/VM®
z16™

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Red Hat, OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United
States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
vi Crypto Express for Cloud Workloads

https://www.ibm.com/legal/copytrade.shtml

Preface

Highly sensitive workloads on Linux on IBM® Z and LinuxONE can use the premium
protection of Crypto Express 8S (CEX8s) adapters in CCA or EP11 mode. Workloads can
use CEX8S adapters as directly attached Hardware Security Modules (HSMs) at various
levels of virtualization: in an LPAR, an IBM z/VM® or KVM guest, or in a Kubernetes container
on Red Hat OpenShift.

The CEX8S hardware security module offers both classical and quantum-safe cryptographic
technology to help address use cases that require information confidentiality, integrity and
non-repudiation.

With IBM z16™ and LinuxONE 4 (GA 1.5) it is possible to securely attach a domain of a
CEX8S adapter to a secure execution guest, allowing a tenant to run sensitive workloads with
HSM access in a cloud environment, even if the tenant does not trust all levels of the cloud
administration.

This IBM Redbooks® publication also explains how to connect a Trusted Key Entry system to
IBM Z® or LinuxONE hardware to configure Crypto Express adapters. In particular, we
address running a secure execution guest that uses a Crypto Express adapter.

Additionally, this publication will provide a high level end-to-end overview of how to set up
cryptographic resources on all required levels, including hardware, hypervisor, cluster, and
operating system or container such that it can run a crypto workload in the cloud and is
intended for IT Architects, IT Specialists and system administrators

Authors

This book was produced by a team of specialists from around the world working at
IBM Redbooks, Poughkeepsie Center.

Lydia Parziale is a Project Leader for the IBM Redbooks team in Poughkeepsie, New York,
with domestic and international experience in technology management including software
development, project leadership, and strategic planning. Her areas of expertise include
business development and database management technologies. Lydia is a PMI certified PMP
and an IBM Certified IT Specialist with an MBA in Technology Management and has been
employed by IBM for over 30 years in various technology areas.

Marco Egli is a Mainframe Engineer at Swiss Re, based in Switzerland. He has worked for
more than 15 years in the mainframe area and has been responsible for software and
hardware installations as well as the overall architecture of the mainframe environment. His
focus has shifted over the past years from exploiting new technologies (such as zCX, Open
Data Analytics and others) towards security and cryptography, in general, and especially on
IBM Z.

Harald Freudenberger is a Diplom-Informatiker (computer scientist) in Germany. He has
about 30 years of experience in different IT areas. He has been working at IBM since 2000
and has implemented network applications and worked as a developer for within the Linux
kernel with embedded controllers. The last 8 years he has been working in the Linux on
IBM Z Crypto Team and is responsible for the Crypto Card device driver and other
crypto-related applications within the Linux kernel.
© Copyright IBM Corp. 2024. vii

In 2021, he began to write a first implementation of the CEX-Device-Plug-in for Kubernetes,
which makes crypto resources available to containers running in the cloud on the IBM Z
platform.

Savitri Hunasheekatti is a Software Architect for IBM Hyper Protect at IBM India Systems
Development Lab, Bangalore. She received her Bachelor of Engineering degree at BEC
Engineering College, Bagalkote. She has over 20 years of experience in software
development and joined IBM in 2003. In her recent roles, she has worked on various
development projects across IBM POWER® and IBM Z. She has worked on projects related
to AIX on POWER kernel development and LinuxOne BareMetal on IBM Z. She is a Plateau
holder. She spends time submitting ideas, participating in hackathons, and reading about the
latest technologies.

Irmes Sandor is a senior IT architect in Hungary who provides Linux on IBM Z and
IBM LinuxONE consulting services at EMEA IBM Z Lab Services. He has more than 30 years
of experience in IBM POWER and mainframe server technology, and several years of
experience in Linux on IBM Z and open source. His fields of specialization encompass hybrid
cloud options, infrastructure, and platform services, along with networking and Linux-related
capabilities. Sandor is an IBM-certified IT Architect and has worked for IBM for over 16 years
in various technology areas.

Thanks to the following people for their contributions to this project:

Robert Haimowitz
IBM Redbooks, Poughkeepsie Center

Reinhard Bündgen, Eric Rossman, Marc van der Meer
IBM

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
viii Crypto Express for Cloud Workloads

https://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

https://www.linkedin.com/groups/2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/subscribe

� Stay current on recent Redbooks publications with RSS Feeds:

https://www.redbooks.ibm.com/rss.html
 Preface ix

https://www.redbooks.ibm.com/contacts.html
https://www.linkedin.com/groups/2130806
https://www.redbooks.ibm.com/subscribe
https://www.redbooks.ibm.com/rss.html

x Crypto Express for Cloud Workloads

Chapter 1. Introduction

This chapter provides a brief introduction into the cryptographic components used in this
book. Terminology that we use are explained, as well as the base concepts of cryptographic
configuration.

This chapter introduces:

� “Cryptographic components” on page 2
� “Cryptographic terms” on page 4
� “Cryptographic concepts” on page 6

1

© Copyright IBM Corp. 2024. 1

1.1 Cryptographic components

The IBM Z platform offers cryptographic engines that provide high-speed cryptographic
operations. In this section, we discuss some of those components that make up the
cryptographic engines.

1.1.1 CPACF

CP Assist for Cryptographic Functions (CPACF) is a set of instructions that is available on
every processor unit that accelerates encryption. CPACF is designed to facilitate the privacy
of cryptographic key material when used for data encryption through a key wrapping
implementation. It ensures that key material is not visible to applications or operating systems
during encryption operations.

1.1.2 Crypto Express cards

All details within this section are focused on Crypto Express 8S (CEX8S) features.

The CEX8S is built from the 4770 Hardware Security Module (HSM) that provides a
Quantum-Safe Root of Trust, and APIs that are used to modernize existing applications as
well as build new ones, leveraging quantum safe cryptographic algorithms. The CEX8S has
three configurable modes:

� Accelerator
� Common Cryptographic Architecture (CCA)
� EP11

EP11 mode enhancements include quantum-safe algorithms in hybrid cryptography for
secure channel negotiations between the CEX8S and the CPACF and Trust Key Entry (TKE).

Modes of operation
In this section, we outline three modes of operation in CEX8S that are designed to combine
secrecy and authentication.

Accelerator (CEX8A)
The accelerator (CEX8A) provides acceleration of public key and private key cryptographic
operations that are used with Secure Socket Layer and Transport Layer Security (SSL/TLS)
processing.

Common Cryptographic Architecture Coprocessor
The Common Cryptographic Architecture (CCA) Coprocessor (CEX8C) provides clear key
and secure key operations such as RSA, ECC, DES, 3DES, AES, hashes, MACs, financial
services like PIN verification, key storage, and random numbers.

Public Key Cryptography Standards #11 Coprocessor
The Public Key Cryptography Standards (PKCS) #11 (EP11) Coprocessor (CEX8P)
implements an industry-standardized set of services that adheres to the PKCS #11
specification 2.20 and more recent amendments. This mode introduced the PKCS #11 secure
key function. In Enterprise PKCS #11 (EP11), keys can be generated and securely wrapped
under the EP11 Master Key. A TKE workstation is always required to support the
administration of the CEX8S when it is configured in EP11 mode.
2 Crypto Express for Cloud Workloads

IBM Hyper Protect Virtual Servers employ an EP11 over gRPC (GREP11) container that
enables API calls to cryptographic functions on the HSM from other applications or
microservices.

Special features for CEX8S
CEX8S has a number of new functions and features which we discuss in this section.

Orderable Features
The CEX8S (2 HSMs) feature contains two PCIe adapters that can each be configured as a
coprocessor supporting secure key transactions or as an accelerator for Secure Sockets
Layer (SSL) operations.

The CEX8S (1 HSM) feature contains one PCIe adapter that can be configured as a
coprocessor supporting secure key transactions or as an accelerator for Secure Sockets
Layer (SSL) operations.

Extended support for Quantum Algorithms
While CEX7S already supports a base set of quantum algorithms (Round 2), CEX8S picks up
the results from further NIST certification to support the following enhancements:

� Embedded support for CRYSTALS-Dilithium Round 3 and CRYSTALS-Kyber Round 2
quantum-safe algorithms

� Embedded support for CRYSTALS-Kyber Round 2 quantum-safe algorithms:

� Different strength levels

� CCA

� EP11

Those algorithms are available in both coprocessor modes (CCA and EP11).

To exploit these enhanced quantum algorithms within the Linux operating system1 with
openCryptoki, you need at least openCryptoki version 3.20 together with the EP11 host
support program 4.0 (for coprocessor in EP11 mode) or CCA library version 8.0 (for
coprocessor in CCA mode).

1.1.3 Trusted Key Entry workstation

The TKE workstation is an optional feature that offers key management functions. The TKE
provides a secure, remote, and flexible method of providing Master Key Part Entry and to
remotely manage PCIe cryptographic coprocessors. The cryptographic functions on the TKE
are run by one PCIe cryptographic coprocessor. The TKE workstation communicates with the
IBM Z or LinuxONE system through a TCP/IP connection. TKE securely manages multiple
cryptographic modules that run in CCA or EP11 and use compliant-level hardware-based key
management techniques from a single point of control.

Connection to the TKE requires an active component on the receiving side, either a TKE
daemon under Linux or the CSFTTCP task in IBM z/OS®.

With the installation of the CCA support program library (csulcca2) the daemon will
automatically be installed and started same applies for EP1 where the program library is
ep11-host3.

1 CEX8S Linux on IBM Z
2 Initial system set-up tips
3 Installing the host part of the EP11 library
Chapter 1. Introduction 3

CEX8S Linux on IBM Z
https://www.ibm.com/docs/en/linux-on-systems?topic=information-initial-system-set-up-tips
https://www.ibm.com/docs/en/linux-on-systems?topic=stack-installing-host-part-ep11-library

1.2 Cryptographic terms

The following are some of the cryptographic terms used in this IBM Redbooks publication.

CIPHER key A type of data-encrypting key. CIPHER keys can be limited to more
specific uses than DATA keys, preventing their use outside of data set
encryption. CIPHER keys require CEX6S or higher and ICSF FMID
HCR77C1 or higher. The key must allow encryption and decryption,
any cipher mode, and export to CPACF protected key format.

Key-encrypting key A key that encrypts or wraps other keys.

Master key A special key-encrypting key (KEK) that is in a tamper-responding,
Crypto Express adapter only and sits at the top level of a KEK
hierarchy which is only available in an HSM. In EP11 mode, wrapping
key is often used as a synonym for master key.

CPACF wrapping

key A special key-encrypting key that is generated at logical partition
(LPAR) activation and is in the Hardware System Area (HSA), which is
inaccessible to applications and the operating system. Each Guest
(LPAR, KVM guests, [...]) gets its own wrapping key.

Secure key A data-encrypting key that is encrypted by a master key or
key-encrypting key and never appears in clear text that is outside of a
secure environment, such as a tamper-responding HSM, or IBM Z
firmware. Secure keys can be stored in an ICSF key data set or
returned to the ICSF caller (only in IBM z/OS).

Clear key A data-encrypting key that is not encrypted by any other key. The key
material is in clear text. Clear keys can be stored in an ICSF key data
set or returned to the ICSF caller at key creation (only in z/OS). Most
open source libraries only deal with clear keys like the popular library
openSSL.

Protected key A data-encrypting key that is encrypted by the CPACF wrapping key
and used within the Z platform (HSA). Although protected keys are
cached in ICSF, they are not persistently stored in an ICSF key data
set. Protected keys can be returned to authorized ICSF callers (only in
z/OS). Protected keys are only usable in the context of the HSA area
specifically used by the CPACF wrapping key. This makes the key
ephemeral and unusable to other guests.

Operational key A key that is not a master key, such as a data-encrypting key, which
can be clear, secure, or protected.

Hardware Security

Module IBM Crypto Express adapters are tamper-responding Hardware
Security Modules (HSMs) that support cryptographic operations
managing, processing and storing cryptographic keys within a FIPS
140-2 Level 3 validated environment.

1.2.1 Clear key versus secure key versus protected key

A clear key has not been encrypted under another key and has no additional protection within
the cryptographic environment. For clear keys, the security of the keys is provided by
operational procedures. Crypto operations may be performed in CPACF or on a Crypto
Express adapter.
4 Crypto Express for Cloud Workloads

A secure key is protected by another key that is called a master key. IBM secure key hardware
(the Crypto Express adapter) provides a tamper-sensing and tamper-responding environment
that, when attacked, zeroizes the hardware and prevents the key values from being
compromised. The secure key hardware requires that a master key is loaded. That master
key is stored inside the secure hardware and used to protect operational keys.

The clear value of a secure key is generated inside the hardware (through a random number
generator function), and encrypted under the master key. When a secure key must leave the
secure hardware boundary (to be stored in a data set), that key is encrypted under the master
key.

So, the encrypted value is stored, and not the clear value of the key. Some time later, when
data must be recovered (decrypted), the secure key value is loaded back into the secure
hardware. It is then decrypted from under the master key. The original key value is then used,
inside the secure hardware, to decrypt the data.

The following are the secure key functions:

� FIPS compliance

The United States government has introduced a set of standards that define cryptographic
algorithms and procedures to be used by government agencies and companies that work
for the US government. These standards are part of FIPS and include, for example, AES
and DES encryption algorithms.

The Crypto Express adapters for IBM Z are designed and certified to work in a
standard-compliant mode, freeing application programmers from dealing with the
intricacies of these standards. In secure key mode, you do not have to configure the
adapter specifically for FIPS compliance.

� RSA public and private key processing

Running in clear key mode, the Crypto Express adapter supports RSA encryption and
decryption with key lengths of up to 2048 bits. In secure mode, this function is extended to
key lengths of up to 4096 bits.

� DES and triple DES

DES and triple DES are common shared key encryption algorithms that are used in many
applications. Examples include smart cards, SSL communication, and disk encryption.
The Crypto Express adapters in coprocessor mode provide an implementation of these
algorithms, just as CPACF does. The difference lays in the asynchronous processing that
is performed with the Crypto Express adapter.

Although using CPACF blocks your physical unit (PU) from any other work until the
cryptographic operation is completed, Crypto Express works asynchronously. Requests
are queued and pushed to the adapter where they are processed while the PU is free to
run other code. Depending on your setup, the z90crypt driver then either polls the adapter
for completed requests or is notified by the adapter itself, and the processed data is
handed back to your application.

� MAC processing

In cryptography, a distinction exists between message confidentiality, which is provided by
encryption, and message integrity, which can be provided either by signing the message
or adding a message authentication code (MAC) to it.

Signatures use asymmetric keys to provide an advanced level of integrity and
non-repudiability (ensuring the sender cannot deny sending a message), but MACs use
symmetric keys and provide only basic integrity verification.
Chapter 1. Introduction 5

In secure key mode, the Crypto Express adapter provides MAC functions, which enable
you to offload both MAC creation and MAC verification to the coprocessor. The IBM CCA
RPM package contains sample source code in /opt/IBM/4764/samples/mac.c for
computing a MAC by using the Crypto Express adapter.

From the perspective of the actual cryptographic operation, no difference exists between clear
key and secure key operations. A piece of original plaintext, encrypted by using the same
algorithm and the same key, can produce the same ciphertext whether the key was clear or
secure.

The difference between clear key and secure key is simply in the management of the keys.
With clear key, the key is protected only by file system permissions. A sufficiently privileged
user can locate where the key is stored and read it. A secure key is encrypted by using a
different key (the master key) and is never visible in the clear outside the secure cryptographic
hardware.

IBM Z hardware adds support for protected keys. Protected keys blend the security of the
Crypto Express hardware and the performance characteristics of the CPACF. An
enhancement to CPACF facilitates the continued privacy of cryptographic key material when
used for data encryption. CPACF, by using key wrapping, ensures that key material is not
visible to applications or operating systems during encryption operations. Keys that are
protected under the DES or AES master key are stored in a VSAM data set that is called the
cryptographic key data set (CKDS). Only protected keys that are created from secure keys
should be used when using pervasive encryption.

Integrated Cryptographic Service Facility (ICSF) can reencipher the secure key to decrypt it
from under the original master key and reencrypt it under the new master key, all within the
secure hardware and before it is stored back into a new CKDS, which is now associated with
the new master key value.

IBM hardware that supports secure key operation provides protection for secure keys by
employing tamper-sensitive storage that zeros the memory of the device if it is attacked. This
protects the keys even when they are being used inside the hardware. The hardware can
even support the changing of the master key by decrypting the secure key and re-encrypting
it by using the new master key within the secure cryptographic hardware.

1.3 Cryptographic concepts

An LPAR, regardless if running z/OS, KVM or z/VM, has a 1:n connection to a Hardware
Security Module (HSM) of a Crypto Express card. This connection is known as a domain.
Assigning more than one domain to an LPAR makes sense when there are plans to run
special loads that are able to exploit multiple domains (for example, kvm host, multi-tenant
opencryptoki applications, docker).

Crypto Cards are subdivided into independent (virtual) crypto units, or domains. A CEX8S
provides up to 85 domains (0-84).

� A maximum of 30 CEX8S (2 HSMs) can be installed. Resulting in effectively available
HSMs of 2x30x85=5100

� A maximum of 16 CEX8S (1 HSM) can be installed. Resulting in effectively available
HSMs of 16x85=1360.

Each domain of a crypto card is an independent HSM with its own set of Master Keys, defined
roles, and control point settings.
6 Crypto Express for Cloud Workloads

Crypto cards are attached to an extra adjunct processor (AP) bus. With AP instructions,
requests can be queued into an IBM Z firmware queue. Each millicode queue corresponds to
one crypto unit and is called an APQN. The system can access each APQN, as shown in
Figure 1-1.

Figure 1-1 Cards and Domains

An example of an LPAR that may be used to run a KVM or z/VM host is shown in Figure 1-2
on page 8. Four cards and four domains are assigned.
Chapter 1. Introduction 7

Figure 1-2 Card and Domain - sample

An example design point could be to have pairs of APQNs available for KVM guests:

guest 1: APQN (0,2) and (2,2)

guest 2: APQN (4,2) and (6,2)

guest 3: APQN (0,3) and (2,3)

The assignment of a crypto domain to an LPAR is defined in the Load Profile in the Crypto
tab. An LPAR can either be assigned as “Control” or “Control and Usage”. Besides that there
are two states of a card - “Candidate” and “Candidate and Online”. Changing the state of a
crypto card can be done inside the operating system.

Changes of card or domain assignments requires edition the LPAR activation profile and
requires a deactivation/activation of the LPAR to reflect the change.

The combination of usage domains and cards forms an APQN set and must be unique. There
must not be an overlap of APQN sets. The Service Element (SE) checks if there is another
LPAR with an overlapping APQN set and will refuse the activation in case of conflicting
assignments.

Understanding the following key terms is crucial:

Control Only administrative commands can be sent to the card like setting
master keys. Operational usage of the card to data de- and encryption
is not possible.
This option does allow a single LPAR to manage all crypto cards in the
same CEC.

Control and Usage Administrative commands can be sent to the card and the card is
operationally usable for data decryption and encryption.

Candidate The set of cryptographic coprocessors that the logical partition may
access.
8 Crypto Express for Cloud Workloads

Candidate and
Online The set of cryptographic coprocessors that will be brought online when

the logical partition is activated.

A detailed description of how to setup and configure crypto cards can be found in 2.2, “Crypto
Express configuration” on page 13.
Chapter 1. Introduction 9

10 Crypto Express for Cloud Workloads

Chapter 2. Overview of our environment

In this chapter, we describe the following:

� 2.1, “Lab environment” on page 12
� 2.2, “Crypto Express configuration” on page 13
� 2.3, “Master key setup” on page 24

2

© Copyright IBM Corp. 2024. 11

2.1 Lab environment

The lab environment used in this book consists of four Kernel-based Virtual Machines
(KVMs), one IBM z/VM logical partition (LPAR) and four Crypto Express 8S (CEX8S) cards
(with dual hardware security modules (HSMs)) hosted on an IBM Z16 A01 machine.
Figure 2-1 provides a high-level abstraction of the environment. Color coding is used to
emphasize the relationship between the guests and the card tied to the domains.

Figure 2-1 Architectural overview

The HSMs on the CEX8S cards each have a CCA processor configured and two cards. One
HSM is configured as an accelerator, whereas the other two are configured for EP11.

Figure 2-2 outlines the matrix of card assignment.

Figure 2-2 Card assignment - matrix
12 Crypto Express for Cloud Workloads

Table 2-1 shows a mapping for the names used at different places in the subsequent
chapters.

Table 2-1 System names mapping

Figure 2-3 displays the configuration of the cards as retrieved by the Cryptographic
Configuration Task on the HMC.

Figure 2-3 Cryptographic Configuration - HMC

2.2 Crypto Express configuration

In this section, we describe the steps to achieve our lab environment’s configuration.

The steps outlined for the configuration of a Crypto Express card assumes that the Hardware
Management Console HMC/SE is up and running and the authenticated user has the
appropriate role assigned to perform the required activities.

Note: Depending on where the crypto card domain is shown, it will be either in
hexadecimal or decimal only. Hardware Management Console (HMC)/Support Element
(SE) shows the values in decimal and, as an example, lszcrypt in hexadecimal.

Short System LPAR-Name

KVM1 rdbkkvm1 PAVO45

KVM2 rdbkkvm2 PAVO46

KVM3 rdbkkvm3 PAVO47

KVM4 rdbkkvm4 PAVO48

z/VM1 rdbkcryp VELA28
Chapter 2. Overview of our environment 13

2.2.1 Card configuration

When logged in to the HMC, select the System where the Configuration should be done, as
shown in Figure 2-4. Select the Cryptographic Configuration, as highlighted.

Figure 2-4 HMC entry screen with Cryptographic Configuration

This opens a new tab listing all available crypto cards, as shown in Figure 2-5. This tab lists
the currently configured cards with the associated type of operation, as listed in the column
named Type.

Figure 2-5 Cryptographic Configuration - Overview

If the type of a card is to be changed, click on Crypto Type Configuration..., as shown in
Figure 2-6 on page 15.
14 Crypto Express for Cloud Workloads

Figure 2-6 Cryptographic Configuration - Crypto Type Configuration

Once this activity is complete, a Crypto Type Configuration - PAVO tab appears. To change
the type from a CEX8S EP11 Coprocessor to a CCA Coprocessor, select the card by clicking
the checkbox in column Select. Next, choose the type and then click Apply at the bottom, as
shown in Figure 2-7. A new window appears that asks for confirmation of the activity and
provides notification that the card will be zeroized.

Figure 2-7 Cryptographic Configuration - Crypto Type Change

Caution: The cryptographic keys will be zeroized and the usage domains will operate in
the default compliance mode when the cryptos are configured to an online state and the
activity is confirmed.
Chapter 2. Overview of our environment 15

If the activity is successful, the overview will be updated to reflect the change type, as initially
shown in Figure 2-5 on page 14. For this book’s activity, the action was not executed as the
cards were already in the desired state, hence no update is required.

Further details of a card can be displayed by checking the checkbox in column Select and
then clicking View Details.... The following figures show the three different types of cards.
Figure 2-8 shows an Accelerator.

Figure 2-8 Cryptographic Configuration - Accelerator details

Figure 2-9 shows a CCA Coprocessor.

Figure 2-9 Cryptographic Configuration - CCA details
16 Crypto Express for Cloud Workloads

Figure 2-10 shows an EP11 Coprocessor.

Figure 2-10 Cryptographic Configuration - EP11 details

All three card types (Accelerator, CCA and EP11) support the domain management option.
When a card is selected and Domain Management... is clicked, a window, shown in
Figure 2-11, appears. Select the domains that will be zeroized on the card (Domain 43 in our
example) and confirm by clicking Zeroize at the bottom.

Figure 2-11 Cryptographic Configuration - Domain Management
Chapter 2. Overview of our environment 17

2.2.2 LPAR configuration

2.2.1, “Card configuration” on page 14 outlined how the cards can be configured and
introduced crypto domain assignments. The assignment of the domain is configured in the
Load-Profile of the LPAR.

When logged into the HMC, select the system where the configuration should be done, as
shown in Figure 2-12. Select the Customize/Delete Activation Profiles task as highlighted,
from the Operational Customization task group.

Figure 2-12 LPAR Configuration - Activation Profiles

Once this activity is complete, a new tab, Customize/Delete Activating Profiles: PAVO
appears. Select an LPAR Profile (RDBKKVM1 in our example) and click on Customize
profile to work with the profile, as shown in Figure 2-13 on page 19.
18 Crypto Express for Cloud Workloads

Figure 2-13 LPAR configuration - Customize profile

After clicking‚ customize the profile in the General section of the profile, as shown in
Figure 2-14.

Figure 2-14 LPAR configuration - Customizes Profiles General

To work with the Crypto settings, select Crypto in the navigation tree on the left-hand side, as
shown in Figure 2-15 on page 20.
Chapter 2. Overview of our environment 19

Figure 2-15 LPAR configuration - Customizes Profiles Crypto

When navigating to the Crypto category, PAVO45 or RDBKKVM1 has the Index 10 assigned,
which is in decimal format and would show as an “A” in hex-encoded outputs such as
lszcrypt. The Candidate and Online checkmarks show that the LPAR in question has all
eight cards available for use.

2.2.3 Dynamic Partition Manager

The IBM Dynamic Partition Manager (DPM) is another operating mode for IBM Z machines.
The following section outlines how to perform the same updates as described in 2.2.1, “Card
configuration” on page 14 within DPM mode. For more information, see Dynamic Partition
Manager (DPM).

As shown in Figure 2-16 on page 21, the system mode shows up as Dynamic Partition
Manger.

Important: To reflect changed Activation Profiles, the LPAR must be deactivated/activated.

Note: The preceding figures illustrate a different system than the one depicted in the
previous chapter due to the unavailability of a DPM during the writing of this book.
Consequently, the screenshots serve merely as visual aids for reference and illustrative
purposes only.
20 Crypto Express for Cloud Workloads

https://www.ibm.com/docs/en/systems-hardware/zsystems/Z13S-N10?topic=cm-dynamic-partition-manager-dpm
https://www.ibm.com/docs/en/systems-hardware/zsystems/Z13S-N10?topic=cm-dynamic-partition-manager-dpm

Figure 2-16 System Details

When working with partition details in DPM mode, all details are shown in different sections,
as seen in Figure 2-17 on page 22.
Chapter 2. Overview of our environment 21

Figure 2-17 Partition Details - General

Figure 2-18 on page 23 shows the available cards in Crypto Adapters, which are two CCA
coprocessors. The following section shows the Available Domains and the associated usage
of the domain, either Usage or Control & Usage. In DPM mode, both modes are combined
within one column and are differentiated by the icon shown, which is different than non-DPM
mode.
22 Crypto Express for Cloud Workloads

Figure 2-18 Partition Details - Cryptos

As an enhancement in DPM mode, the utilization and usage domain allocation is shown. This
reflects the amount of domains configured for the card, which is limited to 85 domains.
Clicking on + in Crypto Adapters will trigger a pop-up. Figure 2-19 illustrates the contents of
this pop-up, demonstrating how to incorporate extra adapters. In this sample, an additional
CEX8C and CEX8P card can be configured.

Figure 2-19 Partition Details - Crypto Adapters
Chapter 2. Overview of our environment 23

To configure additional domains or change a current operating mode, click on either the C or
U icon in the Adapter Domain section. Clicking either or will trigger a pop-up, as shown in
Figure 2-20. That pop-up enables you to designate extra or alternative domains with the
option to conceal utilization domains from different segments, thus forestalling conceivable
replication of assignments right now.

Figure 2-20 Partition Details - Crypto Domains

2.3 Master key setup

There are various ways to load master keys to CEX8S cards. This section offers guidance
about master key setup and handling.

2.3.1 Trusted Key Entry

Dedicated examples of how to generate and activate master keys through Trusted Key Entry
(TKE) are not part of this IBM Redbooks publication. Further information on setting up and
configuring a TKE to load master keys can be found at z/OS Trusted Key Entry Workstation
and in the IBM MediaCenter.

2.3.2 Checking the master key setup

There is one important term related to master keys: Master Key Verification Pattern (MKVP).
A Master Key Verification Pattern is a verification pattern that is generated for each master
key stored in the master-key registers (new, current, and old). Key verification patterns
confirm that the key sent by one party is the same key received by another. The MKVP is
usually a raw byte sequence shown as a hexadecimal string of 16 to 64 characters. There are
several ways to check the master key setup on crypto resources.
24 Crypto Express for Cloud Workloads

https://www.ibm.com/support/z-content-solutions/trusted-key-entry/
https://mediacenter.ibm.com/media/Host+Crypto+Module+Migration+Video+1+-+Overview+of+the+IBM+TKE+Host+Module+Migration+Feature/1_xd0juqn1/22694332
https://www.ibm.com/support/z-content-solutions/trusted-key-entry/

CCA crypto adapters
With the CCA host library installed, access the command-line interface through the ivp.e tool.
Known as the Installation Verification Program (IVP), this utility serves as the goto option for
gathering details regarding the cryptographic resources accessible on the system through the
CCA library.
Figure 2-21 shows a snippet from an ivp.e terminal output. For all four master keys used by
CCA, the old, current, and new register state is shown. Configured master keys (MKs) should
show the state Valid for all Cur MK REG fields.

HSMs in CCA mode know four different master keys used for different purposes:

� AES Master Key
� SYM - DES Master Key
� ASYM - old RSA Master Key
� APKA - ECC, new RSA, and QSA Master Key

Unfortunately, ivp.e does not show the MKVPs of each of the current master keys. There is
the CCA tool panel.exe for this job, which can handle the following arguments:

panel.exe --adapter=<adapter> --mk-query --mktype=[ASYM|SYM|AES|APKA]
--mkregister=[NEW|CURRENT|OLD]

An example command and output is shown in Figure 2-21.

Figure 2-21 Example ivp.e output
Chapter 2. Overview of our environment 25

Figure 2-22 shows an example query for the MKVP for the AES and the APKA current master
key verification patterns.

Figure 2-22 Example panel.exe MK query and sysfs output

The TKE can be used to display the MKVPs of the CCA master keys as well. On the Crypto
Module dialog, select the Domains tab. Next, select the domain you want to query. Finally,
the Keys tab at the bottom and the state and hash patterns (MKVPs) of all the MKs are
shown. Figure 2-23 shows an example of the displayed Keys tab with MK information. This
dialog view is capable of changing the MK values as well, but that is beyond the scope of this
section.

Figure 2-23 Example TKE dialog showing CCA MK information

There is also a way to query some MK information from the Linux command line. For each
adapter and domain the following sysfs entry can supply some MK information:

/sys/devices/ap/card<aa>/<aa>.<dddd>/mkvps
26 Crypto Express for Cloud Workloads

EP11 crypto adapters
The EP11 library comes with a command-line tool, ep11info that can retrieve basic
information from crypto adapters in EP11 mode. EP11 uses one master key, often referred to
as the Wrapping Key (WK) as it is used to wrap the user’s working keys by encrypting them
with the WK.

The following is the command to query the MKVP of the master key:

ep11info -m <adapter> --dominfo

The -m option specifies the crypto adapter which is in EP11 considers a module. Figure 2-24
shows an example of the command and its results after querying for domain information for
the crypto adapters 5 and 7. The output column, named wrapping key, displays the MKVP as
a 32 byte hexadecimal string.

Figure 2-24 Example ep11info query and sysfs output

With a working connection to a TKE workstation, the TKE’s Crypto Module dialog can be
used to display the verification hash value of the MK. Select the Domains tab at the top of the
dialog. Next, select the domain number on the right border and finally, click on the Domain
Keys tab. The center of the dialog shows the state of the current and new MK and the
leftmost 16 bytes of the MKVP. Figure 2-25 shows an example of this TKE dialog.

Figure 2-25 Example TKE dialog showing EP11 MK information

There is also a way to query some MK information from an EP11 crypto resource on the Linux
command line. For each adapter and domain the following sysfs entry can supply some MK
information as well:

/sys/devices/ap/card<aa>/<aa>.<dddd>/mkvps
Chapter 2. Overview of our environment 27

This command supplies the state and MKVP of the current and new EP11 master key.

2.3.3 Master key setup with TKE

Setup of the master keys involves interaction between some partners and usually must
comply with some company rules for security. There is an administrator of the target system
involved and usually at least two different individuals acting on the TKE (this is known as the
Four Eyes Principle).

The most comprehensive documentation for TKE handling is the IBM publication
Cryptographic Services ICSF Trusted Key Entry Workstation User's Guide, SC14-7511-10.

To define your TKE host and the control domains for an LPAR, see “Setting a master key on
the Crypto Express EP11 coprocessor” on page 19 of Linux on Z and LinuxONE Exploiting
Enterprise PKCS #11 using openCryptoki 3.15, SC34-2713.

Additionally, see Using the Linux on Z EP11 enablement.

There is a step-by-step tutorial for setting up the Master Key on an EP11 Coprocessor HSM
included at Setting a master key on the Crypto Express EP11 coprocessor.

The designers and developers of the Trusted Key Entry workstation have prepared a series of
videos guiding you through all kinds of activities. For more information, see z/OS Other
resources.

To use the TKE workstation for master key setup, there needs to be an interconnection
established between TKE and the Linux instance. The EP11 library comes with a systemd
service, EP11TKEd, which listens to incoming network connections from the TKE. However,
by default this service is disabled. The Linux administrator can start it by using the following
command:

systemctl start EP11TKEd

and enabling it permanently with the following command:

systemctl enable EP11TKEd

The CCA library offers the systemd service named CSUTKEcat, which is also disabled by
default and needs to be started in a similar way.

Both of these services are listening on dedicated TCP ports, as shown in Table 2-2.

Table 2-2 TKE daemon default ports

By default, both TKE daemons EP11TKEd and CSUTKEcat enforce a TLS connection if
OpenSSL is installed in 1.1 or higher. For a TLS connection to be established between TKE
and daemon the TKE needs to import the daemon’s certificate. This certificate and the
respective private key are generated during package installation. For the exact location of
these files and the procedure on how to import into the TKE follow the references provided
below.

Service Default TCP port

CSUTKEcat 50003

EP11TKEd 50004

EP11TKEd with TLS enabled 50104
28 Crypto Express for Cloud Workloads

https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc147511/$file/csfb600_tke_10_0.pdf
https://public.dhe.ibm.com/software/dw/linux390/docu/l3bxce02.pdf
https://public.dhe.ibm.com/software/dw/linux390/docu/l3bxce02.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=opencryptoki-version-315
https://www.ibm.com/docs/en/linux-on-systems?topic=stack-setting-master-key-crypto-express-ep11-coprocessor
https://www.ibm.com/docs/en/zos/2.3.0?topic=tke-other-resources
https://www.ibm.com/docs/en/zos/2.3.0?topic=tke-other-resources
https://www.ibm.com/docs/en/linux-on-systems?topic=opencryptoki-version-315

If there is a firewall service running on the Linux system, it may block incoming connections. A
Linux administrator needs to exclude these ports from the firewall barrier. For example, the
CCA TKE daemon firewall pass is enabled with:

firewall-cmd --zone=public --add-port=50003/tcp --permanent firewall-cmd --reload

More information about the EP11 TKE daemon can be found on the installed system in
/usr/share/doc/ep11/README_TKED.txt.

The installation instructions for the CCA library are available in Secure Key Solution with the
Common Cryptographic Architecture Application Programmer's Guide Version 8.0,
SC33-8294-11. It includes a section about the TKE daemon and how to use TLS for the
network connections.

2.3.4 Control domains

When editing an LPAR profile at the Crypto tab the Domains table allows you to add
domains in two flavors:

� Control

A control domain is restricted to only permit administrative commands, real crypto load
using the HSMs accessible via this domain is not allowed. This means that one can for
example set the master key(s) but not generate and use a working key for encryption or
decryption load.

During activation of the LPAR profile, control only domains are not checked for unique
assignment to only one active LPAR. It may happen and is supported to have more than
one active LPAR sharing a control domain on the same system.

� Control and usage

A control and usage domain allows you to run administrative commands and real crypto
load on the HSMs accessible using this domain. It represents a full-fledged crypto
resource with no restrictions.

During activation of the LPAR profile, the intersection of assigned usage domains and
assigned crypto cards is calculated. There must not be any other active LPAR having
usage access to any of the HSMs in this set. If there is any overlap, the activation of the
LPAR profile will fail.

The assignment of control only domains opens up the possibility to maintain master key
settings for crypto resources used by other LPARs. The TKE software and the TKE daemons
are prepared for this setup and support this indirect way of maintenance.
Chapter 2. Overview of our environment 29

30 Crypto Express for Cloud Workloads

Chapter 3. Configure LINUX guests to use
CEX adapters

This chapter helps you to take advantage of the encryption capabilities of IBM Z or
IBM LinuxONE servers in KVM environments, especially the encryption features associated
with CEX adapters, and how to define encryption functions on the host machine. It then
provides help for setting up encryption on guest servers.

The chapter describes and discusses the following topics:

� Set up and configure a KVM host.

� Configure KVM guests to use CEX functionality:

– Using default Linux commands, scripts

– An alternative way that uses the libivirt commands1

3

1 The examples, diagrams, descriptions and commands used in this chapter can be found at Linux on IBM Systems.
© Copyright IBM Corp. 2024. 31

https://www.ibm.com/docs/en/linux-on-systems

3.1 Configuring a KVM host to provide CEX functionality

Once the KVM environment is installed and the necessary settings for using virtualization
have been made, the server is ready to install guest servers on it. These servers will of course
only be able to use the tools that the host machine offers them.

In order to make the various encryption (CEX) tools and their functions available to the guest
servers, after the basic KVM configuration has been done, additional configuration steps
need to be done on the host server.

The following subsections describe these steps, which extend KVM's virtualization
capabilities towards encryption.

3.1.1 Setting up the KVM host machine to use CEX functions

In Chapter 2, “Overview of our environment” on page 11, we have shown how to configure
CEX devices and the crypto domains on the HMC/DPM consoles of IBM Z/LinuxONE servers
for each LPAR. On those interfaces, we not only had to make the device available but also
specify which domains would be available in the LPAR to which we were attaching the CEX
adapter(s).

In a KVM environment, each guest server must have its own dedicated crypto domain. On
KVM, it is NOT possible to configure domains in a shared way.

Therefore, when performing the HMC/DPM configuration, care must be taken to configure as
many crypto domains for the KVM partition as you want to use on the guest servers later.

In addition to these settings, in KVM environments we will need to use the Virtual Function I/O
(VFIO) framework and the VFIO mediated device framework to pass host devices and their
attributes to KVM guests.

For general information about VFIO and VFIO mediated devices, see
Documentation/vfio.txt and Documentation/vfio-mediated-device.txt in the Linux kernel
source. You can also find this information by searching for “vfio” at The Linux Kernel.

3.1.2 What you should know about VFIO

Depending on the device type, Linux handles devices with specific device drivers. Figure 3-1
on page 33 shows the devices associated with their “native” device drivers (the PCI function
with the PCI device driver, the DASD with the DASD device driver, and the crypto adapter with
the zcrypt device driver).
32 Crypto Express for Cloud Workloads

https://www.kernel.org/doc/html/latest/search.html
https://www.kernel.org/doc/html/latest/search.html

Figure 3-1 Device drivers on Linux

For Linux virtual servers running on the KVM post, QEMU provides virtual VFIO gateway
devices that preserve the attributes of the host device.

Therefore, Linux on KVM accesses a pass-through device with the same device driver as the
host would use to access the corresponding host resource. For example, Linux in LPAR mode
uses the DASD device driver to access DASD disks. Correspondingly, Linux on KVM will use
the zcrypt device driver to access the VFIO pass-through crypto resource.

Figure 3-2 shows virtual PCI functions as associated with a PCI device driver, a virtual DASD
with the DASD device driver, and a virtual crypto adapter with the zcrypt device driver.

Figure 3-2 Device drivers for VFIO pass-through devices

To avoid contention, the KVM host must relinquish direct control of the host resource
supporting the VFIO pass-through device.
Chapter 3. Configure LINUX guests to use CEX adapters 33

For these host resources, the VFIO framework (Figure 3-3) replaces the KVM host's default
device drivers with device-specific VFIO device drivers.

These replacement device drivers reserve host resources for guest use and provide access
to these resources on behalf of the guest.

Red Hat Enterprise Linux 9.2 as a KVM host on IBM Z supports the following types of
pass-through devices:

� PCIe

� CCW (DASD)

� Cryptographic adapter resources (AP queues)

Figure 3-3 VFIO virtualization

The KVM host must define the resources that support the VFIO pass-through device and
associate these resources with the appropriate VFIO device driver.
34 Crypto Express for Cloud Workloads

The required configuration steps depend on the type of device. You must create specific VFIO
mediated devices for the cryptographic adapter resources to pass through.

The KVM hypervisor will then use the VFIO brokered devices as the source of the passing
devices.

3.1.3 Checking kernel modules

The first thing to do is to find out if the kernel functions required to use crypto are loaded into
the kernel (for example, if the cryptographic device driver is loaded).

This can be queried by using the lsmod command and filtering for the string “ap”, as shown in
Example 3-1.

Example 3-1 Check the kernel

[root@rdbkkvm4 ~]# lsmod | grep ap
macvtap 16384 13
macvlan 28672 1 macvtap
tap 28672 28 macvtap,vhost_net
tape_34xx 24576 0
tape 61440 1 tape_34xx
tape_class 16384 1 tape

As you can see, by default, the modules that support (allow the use of) VFIO and mediated
device functionality are NOT loaded into the kernel. We have to load them.

This could be done dynamically with the modprobe command (Example 3-2). The command
will load all the kernel modules (which were compiled separately) that are required to support
the VFIO functionality.

Example 3-2 Load modules and check the kernel modules again

[root@rdbkkvm4 ~]# modprobe vfio_ap

[root@rdbkkvm4 ~]# lsmod | grep ap
vfio_ap 28672 0
macvtap 16384 13
macvlan 28672 1 macvtap
tap 28672 28 macvtap,vhost_net
tape_34xx 24576 0
tape 61440 1 tape_34xx
tape_class 16384 1 tape
mdev 28672 2 vfio_ccw,vfio_ap
vfio 49152 4 vfio_ccw,vfio_iommu_type1,mdev,vfio_ap
kvm 471040 21 vfio_ap

If you want to make the configuration “reboot-proof”, create the file shown in Example 3-3 in
the directory, /etc/modules-load.d/.

Example 3-3 Create a crypto.conf

root@rdbkkvm4 ~]# vi /etc/modules-load.d/crypto.conf
Make sure the vfio_ap device driver is loaded.
It's usually compiled as a separate module,
so it's likely to be loaded separately.
Chapter 3. Configure LINUX guests to use CEX adapters 35

The command loads vfio_ap and any additional modules that may be needed.
vfio_ap

Next, we check how much and what type of crypto functionality is available to us. You can do
this by using the lscrypt command, shown in Example 3-4.

Example 3-4 Check crypto availability on KVM level

[root@rdbkkvm4 ~]# lszcrypt
CARD.DOM TYPE MODE STATUS REQUESTS
--
00 CEX8C CCA-Coproc online 3939
00.000d CEX8C CCA-Coproc online 3939
00.0011 CEX8C CCA-Coproc online 0
01 CEX8A Accelerator online 0
01.000d CEX8A Accelerator online 0
01.0011 CEX8A Accelerator online 0
02 CEX8C CCA-Coproc online 2208
02.000d CEX8C CCA-Coproc online 2208
02.0011 CEX8C CCA-Coproc online 0
03 CEX8A Accelerator online 0
03.000d CEX8A Accelerator online 0
03.0011 CEX8A Accelerator online 0
04 CEX8C CCA-Coproc online 2208
04.000d CEX8C CCA-Coproc online 2208
04.0011 CEX8C CCA-Coproc online 0
05 CEX8P EP11-Coproc online 193
05.000d CEX8P EP11-Coproc online 193
05.0011 CEX8P EP11-Coproc online 0
06 CEX8C CCA-Coproc online 2208
06.000d CEX8C CCA-Coproc online 2208
06.0011 CEX8C CCA-Coproc online 0
07 CEX8P EP11-Coproc online 243
07.000d CEX8P EP11-Coproc online 243
07.0011 CEX8P EP11-Coproc online 0

If we add the -V (Verbose) option to the previous command we will get much more information
(shown in Example 3-5).

Example 3-5 Check crypto availability on KVM level - Verbose

root@rdbkkvm4 ~]# lszcrypt -V
CARD.DOM TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER

-
00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4card
00.000d CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4queue
00.0011 CEX8C CCA-Coproc online 0 0 14 08 S--D--NF- cex4queue
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
01.000d CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4queue
01.0011 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4queue
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
02.000d CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4queue
02.0011 CEX8C CCA-Coproc online 0 0 14 08 S--D--NF- cex4queue
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
03.000d CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4queue
36 Crypto Express for Cloud Workloads

03.0011 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4queue
04 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
04.000d CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4queue
04.0011 CEX8C CCA-Coproc online 0 0 14 08 S--D--NF- cex4queue
05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4card
05.000d CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4queue
05.0011 CEX8P EP11-Coproc online 0 0 14 08 -----XNF- cex4queue
06 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
06.000d CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4queue
06.0011 CEX8C CCA-Coproc online 0 0 14 08 S--D--NF- cex4queue
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4card
07.000d CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4queue
07.0011 CEX8P EP11-Coproc online 0 0 14 08 -----XNF- cex4queue

You can see that the administrator has connected eight CEX adapters to this KVM LPAR.

In this configuration each adapter will be able to use domains 13 and 17 (hex represented as
000d and 11 respectively).

3.1.4 Configuring VFIO AP queues

Having checked the adapters and domains assigned to the KVM host server, and verified that
VFIO and mediated device are supported by the kernel, we can move on to the next
configuration task.

Before we get to the specific commands and instructions, let's briefly look at what's going on
behind the scenes.

The resources of a cryptographic adapter are called AP queues. AP queues are in fact
nothing more than the crypto domains designated for use on each CEX adapter.

Therefore, each AP queue is always defined by a pair of adapter and domains, as shown in
Table 3-1 on page 38. AP queues correspond to a cell in the table.

In our case, we assigned eight adapters to the KVM, and made domains 13 and 17 (hex
representation:000d, 0011) available on each of them.

Table 3-1 on page 38 is often called the matrix of AP queues. The term matrix is widely used
for representations of tables of AP queues, for example, in sysfs attributes. The gray table
cells shown in Table 3-1 on page 38 indicate the implicitly assigned AP queues, which are
00.000d, 01.000d, ... 08.000d,... and 00.0011,.. 08.0011.

Important: These crypto domains, although having the same domain ID, are different, as
each one belongs to a different CEX adapter.
Chapter 3. Configure LINUX guests to use CEX adapters 37

Table 3-1 Matrix of AP queues

You work with matrices of AP queues at different levels:

� LPAR level

This is actually the level of AP queues available to the KVM host machine.

For Linux servers running in LPAR mode, these are the AP queues that are defined by the
LPAR AP configuration. On a running server, this matrix can be changed by dynamically
modifying the LPAR interface and domain configurations.

� Host level

The AP queues that are controlled by the zcrypt device driver of the host machine, so that
they can be accessed by applications running on the host machine.

By default, all queues accessible to the host are controlled by the host's zcrypt device
driver.

This default can be modified (dynamically) with the kernel parameters ap.apmask= and
ap.aqmask=. (In the background, the available adapters can be modified with the chzdev
command.)

This status is presented by the Example 3-5 on page 36.

When the vfio_ap device driver is loaded, it takes control of AP queues that are not
controlled by the host zcrypt device driver.

These AP queues can then be forwarded to KVM clients via AP-mediated devices.

� Mediated device level

AP Queues assigned to a VFIO AP mediated device.

The KVM endpoint makes AP queues available to servers by attaching a VFIO
AP-mediated device to the KVM endpoint.

Brokered devices must not contain queues that are assigned to zcrypt device drivers on
the host machine at the host machine level.

For each line to be usable at the brokered device level, it must first be “unlocked” and then
mapped to the device. You can dynamically change the adapter and domain assignment
through a mediated device's sysfs attributes, see Table 3-2.

Table 3-2 Mediated device sysfs attributes

Attribute Explanation

assign_adapter Write an adapter ID to this attribute to assign the adapter to the mediated
device. Specify the adapter ID in decimal or hexadecimal notation. For
hexadecimal notation, use the prefix “0x”.
Example:
echo 0x0a > assign_adapter
38 Crypto Express for Cloud Workloads

Figure 3-4 on page 40 is a schematic illustration of the three matrix layers as a succession of
filters, where grey cells indicate assigned AP queues. An AP queue can be passed on to a
KVM guest only if it is suitably assigned at each level.

assign_control_domain Write a domain ID to this attribute to assign the domain as a control
domain to the mediated device. Assign a control domain for each usage
domain that you assign to the mediated device, so that you can manage
your domains from the guest that uses the mediated device. Specify the
domain ID in decimal or hexadecimal notation. For hexadecimal
notation, use the prefix "0x".
Example:
#echo 0x001b > assign_control_domain

assign_domain Write a domain ID to this attribute to assign a usage domain to the
mediated device. Specify the domain ID in decimal or hexadecimal
notation. For hexadecimal notation, use the prefix "0x".
Example:
#echo 0x001b > assign_domain

control_domains Read this attribute to list the assigned control domains.
Example:
#cat control_domains 001b

guest_matrix Read this attribute to list the subset of assigned AP queues that are
eligible for KVM guests.

matrix Read this attribute to list the assigned AP queues that result from the
adapter and domain assignments.
Example:
#cat matrix 0a.001b

mdev_type Symbolic link that points to the vfio_ap-passthrough directory.

remove Write 1 to this attribute to remove the mediated device.
Example:
#echo 1 > remove

subsystem Symbolic link that points to the matrix bus

unassign_adapter Write an adapter ID to this attribute to remove the adapter from the
mediated device. Specify the adapter ID in decimal or hexadecimal
notation. For hexadecimal notation, use the prefix "0x".
Example:
#echo 0x0a > unassign_adapter

unassign_control_domain Write a domain ID to this attribute to remove the domain from the control
domains of the mediated device. Specify the domain ID in decimal or
hexadecimal notation. For hexadecimal notation, use the prefix "0x".
Example:
#echo 0x001b > unassign_control_domain

unassign_domain Write a domain ID to this attribute to remove the domain from the usage
domains of the mediated device. Specify the domain ID in decimal or
hexadecimal notation. For hexadecimal notation, use the prefix "0x".
Example:
#echo 0x001b > unassign_domain

Attribute Explanation
Chapter 3. Configure LINUX guests to use CEX adapters 39

Figure 3-4 Matrices as a succession of filters

Hotplug and hot unplug
On a running KVM guest, attaching a mediated device results in hotplug events for all those
AP queues of the mediated device that are controlled by the vfio_ap device driver on the host,
which implies that both their adapter and domain is configured for the LPAR.

With a mediated device attached to a KVM guest, hotplug or hot unplug events for queues
can be triggered at the LPAR or mediated device configuration level:

� Dynamic changes to the AP configuration for the LPAR on the SE or HMC
� Dynamic changes of the mediated device

Detaching a mediated device results in hot unplug events for all AP queues of the mediated
device that are used by the KVM guest.

Persistence across host reboots
You can set up your cryptographic resources such that, after a host reboot, your mediated
devices are ready to be attached to KVM guests, without further configuration steps. This
setup requires a persistent assignment of AP queues to the vfio_ap device driver and
persistent mediated devices with their assignment of AP queues.

Use the chzdev command to persistently assign AP queues to the vfio_ap device driver. Use
the nodedev-define command to make a mediated device and its assignment of AP queues
persistent.

Follow this procedure to make settings permanent, and reboot-proof:

1. Ensure that a VFIO device driver controls the resource on the host server.

2. The VFIO device driver reserves the passing device for the KVM guest and accesses the
corresponding host resource on behalf of the guest.

3. Release the resource from the control of the default device driver - zcrypt - and then
assign the resource to the appropriate VFIO device driver.

4. For KVM configuration, as discussed above, “take” crypto resources from KVM (free them
up) and then pass them on to the guest servers via VFIO pass-through.

As it stands, no domains are available for guest servers. This is verified by using the
command shown in Example 3-6 on page 41.
40 Crypto Express for Cloud Workloads

Example 3-6 Verify vfio

[root@rdbkkvm4 ~]# lszcrypt -V | grep vfio
[root@rdbkkvm4 ~]#

The output is empty. All resources are managed by zcrypt. Further preparations are needed
to identify the assets.

Each of the individual devices is clearly identified by their UUID. In this scenario, define these
UUIDs. There are two ways to do this. We can use the Linux built-in UUID generator, as
shown in Example 3-7, where each device must have a dedicated UUID associated with it.

Example 3-7 Generate UUID

[root@rdbkkvm4 ~]# uuidgen
4ecc88db-541e-4d24-a9d2-8c31e02ad86f

Alternatively, we can create a “talking” UUID. For example, for domains 13 and 17 (hex: 000d
and 0011) we can manually “assign” the following two UUIDs, as shown in Example 3-8.

Example 3-8 Generated UUID-s

000d000d-000d-000d-000d-000d000d000d
00110011-0011-0011-0011-001100110011

The AP queues are then assigned to the corresponding cells in the matrix, making them
available to KVM guest servers.

In the Example 3-9, we use the CEX adapters 05 and 07. The corresponding assignments
can be done by issuing commands one after the other, but you can also combine these
commands into a similar bash script. Create and edit this script using the following command:

[root@rdbkkvm4 ~]#vi crypto-assign.sh

The content of our script is shown in Example 3-9.

Example 3-9 Create crypto-assign.sh

#!/bin/bash

1 - Free all adapters by specifying the following command:
echo 0x0 > /sys/bus/ap/apmask

2 - Free all domains by specifying the following command:
echo 0x0 > /sys/bus/ap/aqmask

Domains as 13, 17 are decimal and the same 0x000d and 0x0011 are in Hex
var01="0x000d 0x0011"
var02="000d000d-000d-000d-000d-000d000d000d 00110011-0011-0011-0011-001100110011"
nbDom=`echo -n $var01 | wc -w`

for i in `seq ${nbDom}`
do
 Domain=`echo ${var01} | cut -d' ' -f${i}`
 uuid=`echo ${var02} | cut -d' ' -f${i}`

 #Create the device by writing the UUID to /sys/devices/vfio_ap/matrix with
Domain xx
Chapter 3. Configure LINUX guests to use CEX adapters 41

 echo ${uuid} >
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create

 echo 0x05 > /sys/devices/vfio_ap/matrix/${uuid}/assign_adapter
 echo 0x07 > /sys/devices/vfio_ap/matrix/${uuid}/assign_adapter

 echo ${Domain} > /sys/devices/vfio_ap/matrix/${uuid}/assign_domain
 echo ${Domain} > /sys/devices/vfio_ap/matrix/${uuid}/assign_control_domain

 cat /sys/devices/vfio_ap/matrix/${uuid}/matrix

 echo " Domain - " ${Domain} " - " ${uuid}
 sleep 1
done

Run the script. The result is the output of the cat command in the script, as shown in
Example 3-10.

Example 3-10 Output of crypto-assign.sh script

[root@rdbkkvm4 ~]# chmod +x crypto-assign.sh
[root@rdbkkvm4 ~]# ./crypto-assign.sh
05.000d
07.000d
 Domain - 0x000d - 000d000d-000d-000d-000d-000d000d000d
05.0011
07.0011
 Domain - 0x0011 - 00110011-0011-0011-0011-001100110011

Check the crypto by using the lszcrypt -V command again, as shown in Example 3-11.

Example 3-11 Check the crypto

[root@rdbkkvm4 ~]# lszcrypt -V
CARD.DOM TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER

-
00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4card
00.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
00.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
01.000d CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
01.0011 CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
02.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
02.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
03.000d CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
03.0011 CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
04 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
04.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
04.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4card

Note: In the script, control of all the adapters has been “taken” away from the zcrypt device
driver and "handed over" to the VFIO. After running the script, the domains on adapters 5
and 7 have been assigned
42 Crypto Express for Cloud Workloads

05.000d CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap
05.0011 CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap
06 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
06.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
06.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4card
07.000d CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap
07.0011 CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap

You can also see how the matrix appears in the file system (Example 3-12).

Example 3-12 Checking the matrix

[root@rdbkkvm4 ~]# cd /sys/devices/vfio_ap/matrix/

[root@rdbkkvm4 matrix]# ls -al
total 0
drwxr-xr-x. 5 root root 0 Oct 3 06:35 .
drwxr-xr-x. 3 root root 0 Oct 3 06:35 ..
drwxr-xr-x. 2 root root 0 Oct 3 09:15 000d000d-000d-000d-000d-000d000d000d
drwxr-xr-x. 2 root root 0 Oct 3 09:15 00110011-0011-0011-0011-001100110011
lrwxrwxrwx. 1 root root 0 Oct 4 08:53 driver -> ../../../bus/matrix/drivers/vfio_ap
drwxr-xr-x. 3 root root 0 Oct 3 06:35 mdev_supported_types
lrwxrwxrwx. 1 root root 0 Oct 3 06:35 subsystem -> ../../../bus/matrix
-rw-r--r--. 1 root root 4096 Oct 4 08:53 uevent

[root@rdbkkvm4 matrix]# cd 000d000d-000d-000d-000d-000d000d000d/

[root@rdbkkvm4 000d000d-000d-000d-000d-000d000d000d]# ls -al
total 0
drwxr-xr-x. 2 root root 0 Oct 3 09:15 .
drwxr-xr-x. 5 root root 0 Oct 3 06:35 ..
--w-------. 1 root root 4096 Oct 4 05:27 assign_adapter
--w-------. 1 root root 4096 Oct 4 05:27 assign_control_domain
--w-------. 1 root root 4096 Oct 4 05:27 assign_domain
-r--r--r--. 1 root root 4096 Oct 4 08:53 control_domains
lrwxrwxrwx. 1 root root 0 Oct 4 08:53 driver ->
../../../../bus/mdev/drivers/vfio_ap_mdev
lrwxrwxrwx. 1 root root 0 Oct 3 09:15 iommu_group -> ../../../../kernel/iommu_groups/9
-r--r--r--. 1 root root 4096 Oct 3 09:15 matrix
lrwxrwxrwx. 1 root root 0 Oct 3 09:15 mdev_type ->
../mdev_supported_types/vfio_ap-passthrough
--w-------. 1 root root 4096 Oct 4 08:53 remove
lrwxrwxrwx. 1 root root 0 Oct 3 09:15 subsystem -> ../../../../bus/mdev
-rw-r--r--. 1 root root 4096 Oct 4 08:53 uevent
--w-------. 1 root root 4096 Oct 4 08:53 unassign_adapter
--w-------. 1 root root 4096 Oct 4 08:53 unassign_control_domain
--w-------. 1 root root 4096 Oct 4 08:53 unassign_domain

[root@rdbkkvm4 000d000d-000d-000d-000d-000d000d000d]# cd
../00110011-0011-0011-0011-001100110011/
[root@rdbkkvm4 00110011-0011-0011-0011-001100110011]#
[root@rdbkkvm4 00110011-0011-0011-0011-001100110011]# cat matrix
05.0011
07.0011
[root@rdbkkvm4 00110011-0011-0011-0011-001100110011]# cd
../000d000d-000d-000d-000d-000d000d000d/
[root@rdbkkvm4 000d000d-000d-000d-000d-000d000d000d]# cat matrix
05.000d
Chapter 3. Configure LINUX guests to use CEX adapters 43

07.000d

Make the mappings described in Example 3-12 on page 43 permanent and available even
after a KVM server restart with a service script. This service runs the bash script created in
Example 3-12 on page 43 when the KVM server is started, and thus perform the necessary
mappings. The following command opens up the crypto assign.services file for editing:

[root@rdbkkvm4 ~]# vi /etc/systemd/system/crypto-assign.service

Make the changes shown in Example 3-13.

Example 3-13 crypto-assign.service

[Unit]
Description=initialize crypto
After=network.target
StartLimitIntervalSec=0

[Service]
Type=simple
User=root
ExecStart=/bin/bash /root/crypto-assign.sh

[Install]
WantedBy=multi-user.target

Example 3-14 shows the command you need to run to enable crypto-assign.service (and
start).

Example 3-14 Enable and start the service

[root@rdbkkvm4 ~]# systemctl enable --now crypto-assign.service
Created symlink /etc/systemd/system/multi-user.target.wants/crypto-assign.service
? /etc/systemd/system/crypto-assign.service.

3.1.5 Configuring the mediated device - KVM guest level

The last step is to add the mediated device to the KVM guest configuration. There are two
ways to do this:

� If the server is not running, you can modify the file describing the guest server with the
virsh edit <VIRTUAL-SERVER> command.

� Attaching a device: Dynamically hotplug attach and detach devices on the running guest
server with the following commands:

virsh attach-device <VIRTUAL-SERVER> <device-configuration-XML-filename>
<scope>

Dynamic device attachment/detachment on KVM guest servers is done as follows:

Attaching a device
You can hotplug devices to a running virtual server, add devices to the persistent virtual
server configuration, or both.
44 Crypto Express for Cloud Workloads

Before you begin
Ensure that the new device is not already assigned to the virtual server.

To list the devices that are assigned to a virtual server, you can:

� Display the current libvirt-internal configuration.

� Use the virsh domblklist command to display a list of currently assigned block devices
or the virsh domiflist command to display a list of currently assigned interface devices.

� You need a device configuration-XML file for the device.

Attaching a device
Attach the device by using the following virsh attach-device command, for example:

virsh attach-device <VS> <device-configuration-XML-filename> <scope>

� <device-configuration-XML-filename> is the name of the device configuration-XML file.

� <VS> Is the name of the virtual server as defined in the domain configuration-XML file.

� <scope> Specifies the scope of the command:

– --live

Hotplugs the device to a running virtual server. This configuration change does not
persist across stopping and starting the virtual server.

– --config

Adds the device to the persistent virtual server configuration. The device becomes
available when the virtual server is next started. This configuration change persists
across stopping and starting the virtual server.

– --persistent

Adds the device to the persistent virtual server configuration and hotplugs it if the
virtual server is running. This configuration change persists across stopping and
starting the virtual server. This option is equivalent to specifying both --live and
--config.

Detaching a device
You can unplug devices from a running virtual server, remove devices from the persistent
virtual server configuration, or both.

Before you begin
You need a device configuration-XML file to detach a device from a virtual server. If the device
has previously been attached to the virtual server, use the device configuration-XML file that
was used to attach the device.

Procedure
Detach the device by using the following virsh detach-device command, for example:

virsh detach-device <VS> <device-configuration-XML-filename> <scope>

� <device-configuration-XML-filename> Is the name of the device configuration-XML file.

� <VS> Is the name of the virtual server as defined in the domain configuration-XML file.

� <scope> Specifies the scope of the command:

– --live

Unplugs the device from a running virtual server. This configuration change does not
persist across stopping and starting the virtual server.
Chapter 3. Configure LINUX guests to use CEX adapters 45

– --config

Removes the device from the persistent virtual server configuration. The device
becomes unavailable when the virtual server is next started. This configuration change
persists across stopping and starting the virtual server.

– --persistent

Removes the device from the persistent virtual server configuration and unplugs it if the
virtual server is running. This configuration change persists across stopping and
starting the virtual server. This option is equivalent to specifying both --live and
--config.

Recall the output from the crypto-assign-sh script, as shown in Example 3-10 on page 42:

05.000d
07.000d
 Domain - 0x000d - 000d000d-000d-000d-000d-000d-000d000d000d
05.0011
07.0011
 Domain - 0x0011 - 00110011-0011-0011-0011-001100110011

The 000d and 0011 crypto domains are assigned to the AP queue on the 05 and 07 CEX
adapters. We should create the mediated device with the proper parameters (Example 3-15)
by editing the correct file, in this case, by using the following command:

[root@rdbkkvm4 ~]# vi med-dev-000d.xml

Example 3-15 Mediated device XML

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
 <source>
 <address uuid='000d000d-000d-000d-000d-000d000d000d'/>
 </source>
</hostdev>

In our environment, we run the KVM guest servers shown in Example 3-16:

Example 3-16 Our KVM guest servers

root@rdbkkvm4 ~]# virsh list
 Id Name State

 12 aw1 running
 13 aw2 running
 14 aw3 running
 15 bastion running
 18 dnsdhcp running
 19 iw1 running
 20 iw2 running
 21 iw3 running
 23 cp2 running
 25 cp1 running

Of these, we will choose the one named bastion, which runs Red Hat Enterprise Linux 9.2.
Example 3-17 on page 47 shows our command to attach the device along with the output
response indicating the device was attached successfully.
46 Crypto Express for Cloud Workloads

Example 3-17 Attach the device

[root@rdbkkvm4 ~]# virsh attach-device bastion med-dev-000d.xml --live
Device attached successfully

Now we can log into the KVM guest server and check if the proper mapping has been done
and the crypto domain is available. We verify that it is available by using the commands
shown in Example 3-18:

Example 3-18 Check the mappings

[admin1@bastion ~]$ cd /sys/devices/ap/

[admin1@bastion ap]$ ls -l
total 0
drwxr-xr-x. 4 root root 0 Oct 4 07:16 card05
drwxr-xr-x. 4 root root 0 Oct 4 07:16 card07
........................
[admin1@bastion ap]$ cd card05
[admin1@bastion card05]$ ls -lad */
drwxr-xr-x. 3 root root 0 Oct 4 07:16 05.000d/
drwxr-xr-x. 2 root root 0 Oct 4 07:16 driver/
drwxr-xr-x. 2 root root 0 Oct 4 07:20 power/
drwxr-xr-x. 4 root root 0 Sep 23 13:37 subsystem/

[admin1@bastion card05]$ cd ../card07
[admin1@bastion card07]$ ls -lad */
drwxr-xr-x. 3 root root 0 Oct 4 07:16 07.000d/
drwxr-xr-x. 2 root root 0 Oct 4 07:16 driver/
drwxr-xr-x. 2 root root 0 Oct 4 07:21 power/
drwxr-xr-x. 4 root root 0 Sep 23 13:37 subsystem/

The directory entries in Example 3-18 show that the mapping was successful, and that the
domain 000d (decimal: 13) can be used on both CEX cards 5 and 7.

3.1.6 Managing VFIO AP mediated devices with libvirt

The libvirt commands can be used to manage the life cycle of the mediated devices for the
VFIO pass-through of cryptographic resources.

We list all the CEX resources by using the command shown in Example 3-19, along with its
output:

Example 3-19 View CEX resources

[root@rdbkkvm4 ~]# lszcrypt -V
CARD.DOM TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
--
00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4card

Important: Cryptographic adapter resources are managed as AP queues.

To make an AP queue suitable for VFIO traversal, it must be under the control of the
vfio_ap device driver. For example, AP queues must be made suitable for use by KVM
guests (freed from the control of the zcrypt device driver).
Chapter 3. Configure LINUX guests to use CEX adapters 47

00.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
00.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
01.000d CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
01.0011 CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
02.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
02.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
03.000d CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
03.0011 CEX8A Accelerator unassigned - - 14 08 -MC-A-NF- vfio_ap
04 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
04.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
04.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4card
05.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
05.0011 CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap
06 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
06.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
06.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4card
07.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
07.0011 CEX8P EP11-Coproc assigned - - 14 08 -----XNF- vfio_ap

The AP queues with driver vfio_ap are eligible for a mediated device. In the sample output,
these AP queues are from the 00-07 adapters, and on each adapter the 000d and 0011
domains which are shown like 00.000d, 00.0011.... 07.000d, 07.0011 in the card.domain
column. These AP queues correspond to a matrix of adapters 00-07 with domains 000d and
0011.

Available cryptographic resources can also be listed by using libvirt commands. List all the
available CEX cards and domain (queues) resources, shown in Example 3-20:

Example 3-20 List devices

[root@rdbkkvm4 ~]# virsh nodedev-list --cap ap_card
ap_card00
ap_card01
ap_card02
ap_card03
ap_card04
ap_card05
ap_card06
ap_card07

[root@rdbkkvm4 ~]# virsh nodedev-list --cap ap_queue
ap_00_000d
ap_00_0011
ap_01_000d
ap_01_0011
ap_02_000d
ap_02_0011
ap_03_000d
ap_03_0011
ap_04_000d
ap_04_0011
ap_05_000d
ap_05_0011
48 Crypto Express for Cloud Workloads

ap_06_000d
ap_06_0011
ap_07_000d
ap_07_0011

Use the virsh nodedev-dumpxml command to check and confirm that the AP queues are
controlled by the vfio_ap device driver, as shown in Example 3-21:

Example 3-21 Checking the domain 0011 (dec: 17) on card 01, and 03

[root@rdbkkvm4 ~]# virsh nodedev-dumpxml ap_01_0011
<device>
 <name>ap_01_0011</name>
 <path>/sys/devices/ap/card01/01.0011</path>
 <parent>ap_card01</parent>
 <driver>
 <name>vfio_ap</name>
 </driver>
 <capability type='ap_queue'>
 <ap-adapter>0x01</ap-adapter>
 <ap-domain>0x0011</ap-domain>
 </capability>
</device>

[root@rdbkkvm4 ~]# virsh nodedev-dumpxml ap_03_0011
<device>
 <name>ap_03_0011</name>
 <path>/sys/devices/ap/card03/03.0011</path>
 <parent>ap_card03</parent>
 <driver>
 <name>vfio_ap</name>
 </driver>
 <capability type='ap_queue'>
 <ap-adapter>0x03</ap-adapter>
 <ap-domain>0x0011</ap-domain>
 </capability>
</device>

Use the following example to create a file for the node-device XML description file of the
mediated device.

As a child element of the capabilities element, you can add attribute elements to the adapters
and domains to configure which domain of which adapter (as a subset of the available AP
queue matrix) you want to use. The values are the identifiers of the adapters and domains in
hexadecimal form and prefixed with 0x. For example, for the matrix of range 0011 on adapter
01 and 03, add three attribute elements, one for each adapter and one for the range.

As an additional child element of the capabilities element, add a unique userid (UUID)
element specifying the UUID to be used for the mediated device.

Use the uuidgen command to obtain a UUID. Or, you can combine the output of uuidgen with
a “talking part” (for example, an entry referring to the two adapters and the domain).

For example, the specification shown in Example 3-22 on page 50 will configure a stable
UUID of 825b3872-0001-0003-0011-28a403f8b357 for the intermediary device.
Chapter 3. Configure LINUX guests to use CEX adapters 49

Example 3-22 vi 01-03-0011.xml

<device>
 <parent>ap_matrix</parent>
 <capability type="mdev">
 <type id="vfio_ap-passthrough"/>
 <attr name="assign_adapter" value="0x01"/>
 <attr name="assign_adapter" value="0x03"/>
 <attr name="assign_domain" value="0x0011"/>
 <uuid>825b3872-0001-0003-0011-28a403f8b357</uuid>
 </capability>
</device>

After creating the definition, we create the mediated device by issuing the virsh
nodedev-define command.

Example 3-23 assumes that the node-device XML file from Example 3-22 is located at
~/01-03-001.xml.

Example 3-23 Create the mediated device

[root@rdbkkvm4 ~]# virsh nodedev 01-03-0011.xml
Node device mdev_825b3872-0001-0003-0011-28a403f8b357_matrix defined from
~/01-03-001.xml

The tree view of the virsh nodedev-list command (shown in Example 3-24) shows that the
mediated device corresponds to a matrix of AP queues. If the device is not yet activated, you
need the --all option to include inactive devices in the command output.

Example 3-24 Check the devices in tree view

[root@rdbkkvm4 ~]# virsh nodedev-list --tree --all
computer
 |
 +- ap_card00
 | |
 | +- ap_00_000d
 | +- ap_00_0011
 |
 +- ap_card01
 | |
 | +- ap_01_000d
 | +- ap_01_0011
 |
 +- ap_card02
 | |
 | +- ap_02_000d
 | +- ap_02_0011
 |
 +- ap_card03
 | |
 | +- ap_03_000d
 | +- ap_03_0011
 ...
 +- ap_matrix
 | |
 | +- mdev_000d000d_000d_000d_000d_000d000d000d_matrix
50 Crypto Express for Cloud Workloads

 | +- mdev_00110011_0011_0011_0011_001100110011_matrix
 | +- mdev_825b3872_0001_0003_0011_28a403f8b357_matrix
.....

Use the virsh nodedev-dumpxml command to display the properties of the mediated device
in node-device XML format, as shown in Example 3-25:

Example 3-25 Display properties in XML format

[root@rdbkkvm4 ~]# virsh nodedev-dumpxml
mdev_825b3872_0001_0003_0011_28a403f8b357_matrix
<device>
 <name>mdev_825b3872_0001_0003_0011_28a403f8b357_matrix</name>
 <path>/sys/devices/vfio_ap/matrix/825b3872-0001-0003-0011-28a403f8b357</path>
 <parent>ap_matrix</parent>
 <driver>
 <name>vfio_ap_mdev</name>
 </driver>
 <capability type='mdev'>
 <type id='vfio_ap-passthrough'/>
 <uuid>825b3872-0001-0003-0011-28a403f8b357</uuid>
 <parent_addr>matrix</parent_addr>
 <iommuGroup number='11'/>
 <attr name='assign_adapter' value='0x01'/>
 <attr name='assign_adapter' value='0x03'/>
 <attr name='assign_domain' value='0x0011'/>
 </capability>
</device>

The path element contains the sysfs path of the mediated device. Read the matrix attribute to
display the matrix of AP queues, as shown in Example 3-26.

Example 3-26 Reading the matrix attribute

[root@rdbkkvm4 ~]# cat
/sys/devices/vfio_ap/matrix/825b3872-0001-0003-0011-28a403f8b357/matrix
01.0011
03.0011

For persistent mediated devices, you should activate the mediated device by issuing a virsh
nodedev-start command, as shown in Example 3-27:

Example 3-27 Start the device

virsh nodedev-start mdev_825b3872-0001-0003-0011-28a403f8b357_matrix
Device mdev_825b3872-0001-0003-0011-28a403f8b357_matrix started

Note: Linux on IBM Z accesses cryptographic adapters through the zcrypt device driver
and a generic device node. The cryptographic resources available through the device node
depend on the configuration of the real or virtual hardware.

In the case of a KVM guest, a subset of the host's cryptographic resources may be
assigned to a VFIO-mediated device, which is then transferred to the guest.
VFIO-mediated devices are identified by a UUID.
Chapter 3. Configure LINUX guests to use CEX adapters 51

On the guest, the cryptographic adapter resources are accessed through the general device
node as usual. These resources do not require a guest device.

The remaining task is to configure the device as a VFIO mediated device that uses the
hostdev element. You would do that by editing the med-dev-01-03-0011.xml file, as shown in
Example 3-28:

Example 3-28 vi med-dev-01-03-0011.xml

<hostdev mode='subsystem' type='mdev' model='vfio-ap'>
 <source>
 <address uuid='825b3872-0001-0003-0011-28a403f8b357'/>
 </source>
</hostdev>

Finally, attach the device to a guest by following our example command shown in
Example 3-29:

Example 3-29 Attach the device

[root@rdbkkvm4 ~]# virsh attach-device bastion med-dev-01-03-0011.xml --live
Device attached successfully
52 Crypto Express for Cloud Workloads

3.2 Configuring z/VM guests to use
CEX adapters

This section helps you to take advantage of the hardware cryptography support of IBM Z or
IBM LinuxONE servers in z/VM environments, especially the security features associated with
IBM Z Crypto-Express (CEX) adapters through in-kernel cryptography APIs and, for Linux on
IBM Z, the libica cryptographic functions library. Using these features provides these benefits:

� File system encryption
� Configure z/VM guests to use CEX functionality
� Communication encryption (to applications such as IBM HTTP Server)

The way that z/VM provides this support is by granting access to the cryptographic resource,
sometimes called the Adjunct Processor (AP) queue, domains to the z/VM guests. From a
system implementation perspective, an AP of a CEX8S feature is one of its internal
cryptography engines (cryptography coprocessor units). AP designates to the processor,
while the adapter number (AP ID) specifies the number associated with it.

This chapter focuses on how to define encryption functions on the z/VM host machine and
then provides help for setting up encryption on z/VM guest servers.

The chapter describes and discusses the following topics:

� Setting up and configuring CEX on a z/VM host
� Configuring z/VM guests to use CEX functionality

3.2.1 Setting up the z/VM host machine to use CEX functions

Once the z/VM environment has been installed and the necessary settings for using
virtualization have been made, the server is ready to install z/VM guest servers on it. z/VM
guest servers are able to use the tools that the z/VM host machine offers them.

To make the various encryption (CEX) tools and their functions available to the guest servers,
after the basic z/VM configuration has been done, additional configuration steps need to be
done on the z/VM host server.
© Copyright IBM Corp. 2024. 53

In Chapter 2, “Overview of our environment” on page 11, we have shown how to configure
CEX devices and the crypto domains on the HMC/DPM consoles of IBM Z/LinuxONE servers
for each LPAR. On those interfaces, we not only had to make the device available but also
specify which domains would be available in the LPAR to which we were attaching the CEX
adapter(s).

Crypto Express adapters configuration on HMC

Crypto Express adapters can be configured for each LPAR in one of the following operational
modes via the HMC:

� Accelerator (clear key only).

� Common Cryptographic Architecture (coprocessor) (Clear key and secure key functions).

� Enterprise Public-Key Cryptographic Standards (PKCS) #11 Coprocessor/EP11 - Secure
key functions through a PKCS#11 API only. An IBM Crypto Express adapter, which is
configured with the Enterprise PKCS #11 (EP11) firmware, is called a Crypto Express
EP11 coprocessor (in our case, referred to as CEX8P).

Figure 3-5 shows the Crypto Express adapter configuration for a z/VM LPAR.

Figure 3-5 Crypto Adapter configuration for z/VM LPAR

In Figure 3-5, four CEX adapters are assigned to this z/VM LPAR by HMC:

� Adapters #000 and #003 are Crypto Express8 configured in CCA coprocessor mode
� Adapters #001 is Crypto Express8 configured in an accelerator mode
� Adapter #002 is Crypto Express8 configured in EP11 coprocessor mode

One Domain or Crypto Resource is a single logical piece of a Crypto Express adapter at a
particular domain index.

Each Crypto Express adapter (AP) has 85 domains. One or more domains from crypto
adapters are assigned to a z/VM LPAR. The z/VM host detects only those adapters and
domains assigned to the z/VM LPAR as a virtual device represented by a crypto ID and a
domain index (for example, ID 0 domain 1). Example 3-30 on page 55 shows the crypto
adapters and domains assigned to a z/VM LPAR on a z/VM host, from the query crypto
domain users command issued from CMS.
54 Crypto Express for Cloud Workloads

Example 3-30 Query Crypto Express adapter and domain configuring on z/VM host

query crypto domain users
22:23:07 AP 000 CEX8C Domain 020 operational online shared
22:23:07 AP 000 CEX8C Domain 021 operational online free
22:23:07 AP 001 CEX8P Domain 020 operational online free
22:23:07 AP 001 CEX8P Domain 021 operational online free
22:23:07 AP 002 CEX8C Domain 020 operational online shared
22:23:07 AP 002 CEX8C Domain 021 operational online free
22:23:07 AP 003 CEX8P Domain 020 operational online free
22:23:07 AP 003 CEX8P Domain 021 operational online free
22:23:07
22:23:07 There are no shared-crypto users.
Ready; T=0.01/0.01 22:23:07

In Example 3-30, these adapters (AP) #000 and #002 are configured as using CCA
cryptographic coprocessor (CEX8C) mode and adapters #001 and #003 are configured as a
PKCS #11 cryptographic coprocessor (CEX8P) mode

Domains 20 and 21 from Adapters #000, #001, #003 and #004 are assigned to this z/VM
LPAR. These adapters and domains are available to the z/VM host.

Domains assigned to a z/VM LPAR are available to the z/VM host.

3.2.2 Assigning crypto resources on z/VM systems

In a z/VM environment, Crypto Express adapters attached to your z/VM LPAR are virtualized
for the benefit of z/VM guests. It is expected that the LPAR running z/VM has access to
multiple AP queues. Each crypto resource that is available to a z/VM host is assigned to a
z/VM guest (also known as a virtual machine) in one of the following categories:

1. Shared queue support (APVIRTual operand on the CRYPTO directory control statement)

– Shared queue support allows you to assign multiple z/VM guests to a single pool of
hypervisor-managed crypto resources.

Note: In all examples, commands will be shown in bold text and the output of the
commands are specified in plain text.

Note: Adapter and domain pairs are shown in decimal notation.

For more information, see Cryptographic domains.

Note: In a z/VM environment,

� z/VM Guest virtual machines (VMs) can use Crypto resources on an adapter that is
configured in accelerator or CCA coprocessor mode as dedicated or shared crypto
resources.

� z/VM virtual machines can use Crypto resources on an adapter that is configured in
EP11 coprocessor mode as only dedicated crypto resources.

� z/VM Guest uses Crypto libraries to use assigned Crypto resource. Crypto libraries will
vary from OS to OS. Some may require a specific configuration to make use of certain
features. Consult pertinent local documentation
 55

https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-crypto-domains
https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-crypto-domains

This grants access to clear-key encryption, random number generation and digital
signature operations in the Crypto Express adapters without the need to dedicate an
entire AP queue to a z/VM guest.

– Only crypto resources that are configured as an accelerator or CCA coprocessor can
be included in the shared pool.

– Crypto resources configured as an EP11 coprocessor cannot be added to the shared
pool.

– All crypto resources in the shared pool must be the same type and mode. For example,
if the first resource that is assigned to the shared pool is a CEX8 in accelerator mode,
then all additional resources that are assigned to the shared pool must also be a CEX8
configured in accelerator mode.

– Virtual machines that have access to the shared pool of crypto resources are referred
to as “APVIRT crypto” virtual machines.

2. Dedicated queue support (APDEDicated operand on the CRYPTO directory control
statement)

– This resource is assigned to only one z/VM guest (virtual machine) for its exclusive
use.

– Dedicated cryptographic resources are required if a guest workload requires secure
key operations (such as the use of dm-crypt in Linux for file system encryption) or if
cryptographic requirements or key materials are not allowed to be shared with other
guests.

– Crypto resources that are configured as an accelerator, CCA coprocessor, or EP11
coprocessor can be dedicated to a virtual machine.

– Virtual machines that have dedicated crypto resources that are assigned are referred
to as “APDED crypto” virtual machines.

3. FREE - This resource is not designated for any particular use. It is available to be
assigned to the shared pool or to a virtual machine for its dedicated use.

Figure 3-6 shows the crypto resource assignment to z/VM guests.

Figure 3-6 Crypto Resource assignment to z/VM Guests

In Figure 3-6, dedicated crypto resources are assigned to z/VM guests with RHEL and
Ubuntu by using the APDED operand. Shared Crypto resources are assigned to a z/VM guest
with SUSE and Ubuntu by using the APVIRT operand.
56 Crypto Express for Cloud Workloads

The control program (CP) of the z/VM host identifies the assignment of a crypto resource with
the values shown in bold in Example 3-31.

Example 3-31 Check Crypto Express adapter and domain assignment at z/VM host level

query crypto domain users
22:23:07 AP 000 CEX8C Domain 020 operational online shared
22:23:07 AP 000 CEX8C Domain 021 operational online free
22:23:07 AP 001 CEX8P Domain 020 operational online free
22:23:07 AP 001 CEX8P Domain 021 operational online free
22:23:07 AP 002 CEX8C Domain 020 operational online shared
22:23:07 AP 002 CEX8C Domain 021 operational online free
22:23:07 AP 003 CEX8P Domain 020 operational online free
22:23:07 AP 003 CEX8P Domain 021 operational online free
22:23:07
22:23:07 There are no shared-crypto users.
Ready; T=0.01/0.01 22:23:07

Crypto resources labeled as free are not in use.

The output of the query crypto command is explained in Table 3-3.

Table 3-3 Crypto query output contains the following fields

Note: In a z/VM environment, the following are some key considerations to assigning the
crypto domains to z/VM guests:

� z/VM guests should not try to dedicate the same domains (first to IPL wins, all others
complain).

� z/VM guests with a dedicated crypto resource may not be relocated.

� z/VM guest virtual machines can have access to the shared pool (APVIRT), or it can
have dedicated resources (APDED), but not both.

� z/VM shared crypto resources are limited to clear-key (Accelerator) mode only.

Attribute Explanation

appnum The apnum field indicates the three-digit crypto adapter number in
decimal.
Example:
AP 001 CEX8P Domain 020 operational online free
The appnum is 001

aptype The aptype field indicates the crypto adapter type and mode. For
dedicated resources, the value indicates the type and mode of the
physical resource. For shared resources, the value indicates the
maximal common subset of crypto express adapter capabilities that is
available in the shared pools of all systems in the user's relocation
domain that have the same mode. Shared crypto resources must be
configured in accelerator or CCA-coprocessor mode.
Example:
AP 001 CEX8P Domain 020 operational online free
The aptype is CECX8P -> Crypto Express8 is configured in EP11
coprocessor mode.
 57

domnum domnum is the three-digit domain number in decimal. If the resource is
shared, then 001 is assigned to the virtual domain number. If the
resource is dedicated, then the actual hardware domain number of the
resource is assigned.
Example:
AP 001 CEX8P Domain 020 operational online free
domnum is 020

device_status device_status can be any of the following:
operational

indicates that the crypto resource is installed and operational.
checkstop

indicates that the crypto resource is in a checkstop condition and is
unavailable.

deconfigured
indicates that the adapter is deconfigured and unavailable. This
could result from VARY OFF CRYPTO when the environment in
which CP is running supports AP reconfiguration, or from an
operation performed on the hardware maintenance console (HMC).

busy
indicates that the adapter is temporarily busy initializing or doing
error recovery.

resetting
indicates that the resource is being reset.

revoked
indicates the resource was detected by CP, but has since been
unassigned from the configuration. If the resource is added back into
the configuration, the updated status will be reported. Otherwise,
when CP no longer detects this resource in the configuration, it will
not be reported in Q CRYPTO output.

unsupported
indicates the crypto resource status is unsupported by CP

Example:
AP 001 CEX8P Domain 020 operational online free
device_status is operational

config_status CP's logical view of the resource state, as controlled by VARY CRYPTO.
Can be any of the following:
online

indicates that the crypto resource is online and available for use.
offline

indicates that the crypto resource is offline.
Example:
AP 001 CEX8P Domain 020 operational online free
contig_status is online

Attribute Explanation
58 Crypto Express for Cloud Workloads

3.2.3 IBM Z operational keys: Clear, protected, or secure

In 1.2, “Cryptographic terms” on page 4, we define the terms clear key, protected key and
secure key.

IBM cryptographic hardware supports three types of keys: clear key, secure key and
protected key. This section focuses on how the hardware provides additional protection for
secure keys. Understanding the difference between the three will help in designing the right
cryptographic solutions and in determining the hardware requirements for the cryptographic
work.

Figure 3-8 on page 62 shows the IBM Z operational key types, where they are located and
how they are protected.

Figure 3-7 IBM Z operational key types

device_assignment device_assignment is can be any of the following:
free, dedication planned

indicates that the crypto resource is not in use, however, it has been
specified on a CRYPTO APDED statement in the online user
directory.

attached to userid
indicates that the crypto resource is dedicated to a logged on virtual
machine.

free
indicates that the crypto resource is not in use.

shared
indicates that the crypto resource is attached to the system for
shared use.

Example:
AP 001 CEX8P Domain 020 operational online free
device assignment is free

Attribute Explanation
 59

1.2.1, “Clear key versus secure key versus protected key” on page 4 outlines the differences
between these keys.

3.3 Setup and configure Linux guests to use crypto resources

In this section, we describe how crypto resources can be assigned to z/VM guests in one of
the following ways:

� Dynamic assignment (hotplug) or removal (hot unplug) of crypto resources to a z/VM
guest.

� Persistence assignment or removal (persistence across z/VM host or guest reboots) of
crypto resources to z/VM guests.

In our lab environment, BASTION and BASTION2 are z/VM guests on Linux operating systems.

3.3.1 Dynamic assignment of crypto resources to z/VM guests

Dynamic crypto support enables changes to the z/VM crypto environment without requiring
an IPL of z/VM or its guests (for example, a Linux guest on IBM Z). Dynamic crypto
assignment to a z/VM guest persists until the next z/VM guest start or z/VM host restart.

Dynamic crypto resource assignment provides the following benefits:

� Less disruptive addition or removal of Crypto Express hardware to or from a z/VM system
and its guests.

� Less disruptive maintenance and repair of Crypto Express hardware attached and in use
by a z/VM system.

� Re-assignment and allocation of crypto resources without requiring a system IPL or user
log off or log on.

� Greater flexibility to change crypto resources between shared and dedicated use.

� The following are reliability, availability and serviceability (RAS) benefits for shared-use
crypto resources:

– Better detection of Crypto Express Adapter errors with “silent” retrying of shared pool
requests to alternate resources.

– Ability to recover failed Crypto Express adapters.

– Improved internal diagnostics for IBM service.

– Improved logoff and live guest relocation latency for users of shared crypto.

The following are a list of z/VM dynamic crypto commands that are executed at the z/VM host
level:

� Bring a Crypto Express Adapter online

Example 3-32 shows how to make new Crypto Express adapter available to the z/VM
host.

Example 3-32 Configure Crypto Express adapter #003 online

VARY ON CRYPTO AP 003
Crypto AP 003 varied online.

� Take a Crypto Express adapter offline (device associations remain in place)
60 Crypto Express for Cloud Workloads

Example 3-33 shows how to deconfigure an assigned Crypto Express adapter.

Example 3-33 Deconfigure Crypto Express adapter #002 offline

VARY OFF CRYPTO AP 002
Crypto AP 002 varied offline.

The adapter will be listed as offline, and will not be available for use.

Use VARY ON to bring the adapter back online to an active configuration.

� Assign crypto resource(s) to z/VM guest (or APVIRT)

Example 3-34 shows how to assign a crypto resource to the z/VM guest, BASTION
(Dedicated mode).

Example 3-34 Assign crypto resource to z/VM guest bastion (Dedicated mode)

ATTACH CRYPTO AP 2 to BASTION

This does not change your z/VM User Directory. A static configuration does not update
automatically.

� Assign/reassign shared crypto resource access to a z/VM guest.

Example 3-35 shows how to assign new crypto resources for sharing.

Example 3-35 Assign new crypto resource in shared mode

VARY ON CRYPTO 3
ATTACH CRYPTO AP 3 DOMAIN 30 31 to SYSTEM

� Remove crypto resources from the z/VM Guest

Example 3-36 provides the command to configure new crypto adapter, #003, and assign
domain 30 and 31 of adapter #003 in shared mode.

Example 3-36 Remove shared crypto resources from a shared pool

DETACH CRYPTO AP 3 DOMAIN 30 31 from SYSTEM FORCE
Crypto AP 003 Domain 30 031 detached from SYSTEM

� Query crypto domain users.

When the USERS operand is specified after the DOMAIN operand, the users enabled for
CRYPTO APVIRTUAL are listed.

Example 3-37 shows available crypto resources on a z/VM host.

Example 3-37 Query crypto resources on z/VM host

QUERY CRYPTO DOMAIN USERS
22:23:07 AP 000 CEX8C Domain 020 operational online shared
22:23:07 AP 000 CEX8C Domain 021 operational online free
22:23:07 AP 001 CEX8P Domain 020 operational online free
22:23:07 AP 001 CEX8P Domain 021 operational online free
22:23:07 AP 002 CEX8C Domain 020 operational online shared
22:23:07 AP 002 CEX8C Domain 021 operational online free
22:23:07 AP 003 CEX8P Domain 020 operational online free
22:23:07 AP 003 CEX8P Domain 021 operational online free
22:23:07
22:23:07 There are no shared-crypto users.
Ready; T=0.01/0.01 22:23:07
 61

3.3.2 Crypto resource assignment to z/VM guests for dedicated use

Crypto resources can be assigned to z/VM guests in exclusive mode. Crypto resources that
are configured as an Accelerator, CCA coprocessor, or EP11 coprocessor can be dedicated
to a virtual machine.

Virtual machines that have dedicated crypto resources that are assigned are referred to as
“APDED crypto” virtual machines.

Figure 3-8 shows our lab environment’s crypto resource assignment to z/VM guests for
dedicated use.

Figure 3-8 Crypto Resource assignment to z/VM guests in dedicated mode

Example 3-38 shows the dynamic assignment of Crypto domain 21 from adapters #0 and #3
to “BASTION” guest VM for dedicated use. The command shown in this example is issued
from the z/VM host.

Example 3-38 Crypto domain assignment

ATTACH CRYPTO AP 0 3 DOMAIN 21 to BASTION
08:56:21 Crypto AP 000 Domain 021 attached to BASTION.
08:56:21 Crypto AP 003 Domain 021 attached to BASTION.
Ready; T=0.01/0.01 08:56:21

Note:

� Attachments persist even when a device is taken offline.

� Resource assignment (dedicated/shared) does not change when an adapter is varied
on/off.
62 Crypto Express for Cloud Workloads

Example 3-39 shows the assignment of crypto domain 21 from adapter #1 (001) to
“BASTION2” guest for dedicated use. The command shown in this example is issued from the
z/VM LPAR.

Example 3-39 Crypto domain assignment

ATTACH CRYPTO AP 001 DOMAIN 21 to BASTION2
08:58:37 Crypto AP 001 Domain 021 attached to BASTION2.
Ready; T=0.01/0.01 08:58:37

Example 3-40 shows the crypto resources assigned to z/VM guests. The command shown in
this example was issued from the z/VM host.

Example 3-40 Check the crypto domains assigned to BASTION and BASTION2

QUERY CRYPTO DOMAIN USERS
08:59:06 AP 000 CEX8C Domain 020 operational online shared
08:59:06 AP 000 CEX8C Domain 021 operational online attached to BASTION
08:59:06 AP 001 CEX8P Domain 020 operational online free
08:59:06 AP 001 CEX8P Domain 021 operational online attached to BASTION2
08:59:06 AP 002 CEX8C Domain 020 operational online shared
08:59:06 AP 002 CEX8C Domain 021 operational online free
08:59:06 AP 003 CEX8P Domain 020 operational online free
08:59:06 AP 003 CEX8P Domain 021 operational online attached to BASTION
08:59:06
08:59:06 There are no shared-crypto users.
Ready; T=0.01/0.01
08:59:08

The following commands query the crypto assignment on z/VM guests. Note that adapter and
domain pairs are shown in hexadecimal notation.

Example 3-41 shows the crypto assignment to the z/VM guest, BASTION. For this example,
you would SSH to BASTION and run the lszcrypt command.

Example 3-41 Check the crypto assignment on z/VM guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# uname -a
Linux bastion 5.14.0-162.6.1.el9_1.s390x #1 SMP Fri Sep 30 09:42:53 EDT 2022 s390x s390x s390x
GNU/Linux
[root@bastion ~]# lszcrypt
CARD.DOM TYPE MODE. STATUS. REQUESTS
--
00 CEX8C CCA-Coproc online 1
00.0015 CEX8C CCA-Coproc online 1
03 CEX8P EP11-Coproc online 0
00.0015 CEX8P EP11-Coproc online 0
[root@bastion ~]#

Example 3-42 on page 64 shows the crypto assignment to z/VM guest, BASTION2. For this
example, you would SSH to BASTION2 and run the lszcrypt command.
 63

Example 3-42 Check the crypto assignment on z/VM guest BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# uname -a
Linux bastion2 5.14.0-162.6.1.el9_1.s390x #1 SMP Fri Sep 30 09:42:53 EDT 2022 s390x
s390x s390x GNU/Linux
[root@bastion2 ~]# lszcrypt
CARD.DOM TYPE MODE. STATUS. REQUESTS
--
01 CEX8P EP11-Coproc online 0
01.0015 CEX8P EP11-Coproc online 0

3.3.3 Removing dedicated crypto resources from z/VM guests

Crypto resource assigned to z/VM guests in exclusive mode can also be removed (detached)
from z/VM guests. Figure 3-9 shows the detachment of crypto resources from z/VM guests.

Figure 3-9 Detachment of crypto resources from z/VM guests

Example 3-43 shows the detachment of crypto domain 21 from adapters 00 and 03 from
z/VM guest, BASTION.

Example 3-43 Detach crypto domain 21 from BASTION z/VM guest

DETACH CRYPTO AP 00 03 from BASTION
13:34:06 Crypto AP 000 Domain 021 detached from BASTION
13:34:06 Crypto AP 003 Domain 021 detached from BASTION
64 Crypto Express for Cloud Workloads

Ready; T=0.01/0.01 13:34:06

Example 3-44 shows the detachment of crypto domain 21 from adapter 01 of z/VM guest,
BASTION2.

Example 3-44 Detach Crypto domain 21 from bastion2 z/VM Guest

DETACH CRYPTO AP 01 from BASTION2
13:35:33 Crypto AP 001 Domain 021 detached from BASTION2
Ready; T=0.01/0.01 13:35:33

Example 3-45 shows the command to query the crypto resources after detached from z/VM
guests.

Example 3-45 Query the crypto resources after detached from z/VM guest

QUERY CRYPTO DOMAIN USERS
13:35:56 AP 000 CEX8C Domain 020 operational online shared
13:35:56 AP 000 CEX8C Domain 021 operational online free
13:35:56 AP 001 CEX8P Domain 020 operational online free
13:35:56 AP 001 CEX8P Domain 021 operational online free
13:35:56 AP 002 CEX8C Domain 020 operational online shared
13:35:56 AP 002 CEX8C Domain 021 operational online free
13:35:56 AP 003 CEX8P Domain 020 operational online free
13:35:56 AP 003 CEX8P Domain 021 operational online free
13:35:56
13:35:56 There are no shared-crypto users.
Ready; T=0.01/0.01 13:35:56

Example 3-46 shows the command to query the crypto resources on z/VM guest BASTION
after crypto resource detachment.

Example 3-46 Check the crypto resources on z/VM guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion ~]#

Example 3-47 shows the command to query the crypto resources on z/VM guest BASTION2
after crypto resource detachment.

Example 3-47 Check the crypto resources on z/VM guest BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion2 ~]#
 65

3.3.4 Persistence across z/VM host or guest reboots

You can set up your cryptographic resources such that, after a z/VM host or guest reboot,
your crypto resources are ready to be attached to z/VM guests without further configuration
steps. This set up requires the CRYPTO APVIRTUAL statement to enable access to shared
crypto resources or the CRYPTO APDEDICATED command to enable access to dedicated crypto
resources statement entry in the z/VM guest’s user directory.

With this statement in the user directory, the virtual machine is given access to the shared or
dedicated crypto resources at login. Run the dirmaint (dirm) command to add or remove
crypto entries to the user directory of z/VM guests.

dirmaint requires the z/VM host or guest to be rebooted or logged off for the assignment or
removal of crypto resources to take effect. See Chapter 5 of z/VM CP Planning and
Administration, SC24-6271 for more information on the use of the CRYPTO statement.

The CRYPTO user directory statement grants a z/VM userid access to crypto resources
associated with the Crypto Express adapters. The format for this command is shown in
Example 3-48:

Example 3-48 CRYPTO user directory statement

CRYPto-+-DOMAIN---+---domains-+-APDEDicated-+-AP
 |________________________APVIRTual

z/VM guests with shared-queue support

For a Linux guest requiring access to clear key cryptography operations, shared access to AP
queues is the preferred method for implementation. In this case, the CRYPTO statement in the
user directory entry for the guest needs to indicate the desire for access to virtual queues. No
domain or AP queue need be specified. The Linux guest receives one virtualized card and
one random virtual queue on a randomly chosen virtual AP. The AP number and domain are
selected by z/VM and are not identical to those of the z/VM LPAR.

For this support, z/VM uses all available AP queues, which are not dedicated to other guests,
and these are shared between all guests that use the shared support. If multiple AP types are
available for z/VM, then z/VM chooses the best AP type for acceleration of the Linux guest.
When a type is selected, z/VM routes all cryptography requests from the guest to however
many queues or cards of that type are available. The statement in the directory looks similar
to CRYPTO APVIRT.

The AP queue number and the domain number, which z/VM provides to these two guests, are
virtual numbers and do not correspond to the “real” domains and APs, which z/VM uses to
run the cryptography requests of these guests.

Example: Assigning shared crypto resources to z/VM guests BASTION
and BASTION2

Figure 3-10 on page 67 shows the shared crypto resources assignment to z/VM Guests
BASTION and BASTION2

Note: You can now specify a CRYPTO APVIRT statement in your system configuration file
which allows the system administrator to designate particular AP domains that are
attached to the LPAR as “Reserved for APVIRT”.
66 Crypto Express for Cloud Workloads

https://www.vm.ibm.com/library/730pdfs/73627102.pdf

Figure 3-10 Shared crypto resource assignment to z/VM guests BASTION and BASTION2

Example 3-49 illustrates the command used to assign shared crypto domains to the
BASTION z/VM guest. Issue this command on the z/VM host.

Example 3-49 Crypto domain assignment to BASTION z/VM guest

DIRM FOR BASTION CRYPTO APVIRT
DVHXMT1191I YOUR CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZVMA via DIRMSAT4.
Ready; T=0.01/0.01 05:02:05
DVHREQ2288I Your CRYPTO request for BASTION at *
DVHREQ2288I has been accepted.
DVHBIV3450I The source for directory entry
DVHBIV3450I BASTION has been updated.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3424I The next ONLINE will take place
DVHBIV3424I immediately.
DVHDRC3451I The next ONLINE will take place
 67

DVHDRC3451I the delta object directory.
DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DMVCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DMVCTL request has been relayed
DVHRLA3891I for processing.
DVHBIV3428I changes made to directory entry BASTION
DVHBIV3428I have been placed online.
DVHREQ2289I your CRYPTO request for BASTION at *
DVHREQ2289I has completed; with RC=0

Example 3-50 shows the directory entry with shared cryptography queues.

Example 3-50 Directory entry with shared cryptography queues

USER BASTION xxxxxx 256M 1G G
INCLUDE IBMDFLT
IPL CMS
MACH XA
NICDEF C200 TYPE QDIO LAN SYSTEM VSWITCH1
CRYPTO APVIRT

Example 3-51 illustrates the command used to assign shared crypto domains to the
BASTION2 z/VM guest. Issue this command on the z/VM host:

Example 3-51 Crypto domain assignment to BASTION2 z/VM guest

DIRM FOR BASTION2 CRYPTO APVIRT
DVHXMT1191I YOUR CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZVMA via DIRMSAT4.
Ready; T=0.01/0.01 06:35:12
DVHREQ2288I Your CRYPTO request for BASTION2 at *
DVHREQ2288I has been accepted.
DVHBIV3450I The source for directory entry
DVHBIV3450I BASTION2 has been updated.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3203W Unable to notify
DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
DVHBIV3203W recipient of directory update.
DVHBIV3203W Recipient is unreachable.
DVHBIV3424I The next ONLINE will take place
DVHBIV3424I immediately.
DVHDRC3451I The next ONLINE will take place
DVHDRC3451I the delta object directory.
68 Crypto Express for Cloud Workloads

DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DSATCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DMVCTL request has been relayed
DVHRLA3891I for processing.
DVHRLA3891I Your DMVCTL request has been relayed
DVHRLA3891I for processing.
DVHBIV3428I changes made to directory entry BASTION2
DVHBIV3428I have been placed online.
DVHREQ2289I your CRYPTO request for BASTION2 at *
DVHREQ2289I has completed; with RC=0

Example 3-52 shows the directory entry with shared cryptography queues.

Example 3-52 Directory entry with shared cryptography queues

USER BASTION2 xxxxxx 256M 1G G
INCLUDE IBMDFLT
IPL CMS
MACH XA
NICDEF C200 TYPE QDIO LAN SYSTEM VSWITCH1
CRYPTO APVIRT

Example 3-53 shows the command used to display the crypto resources after the assignment
(attachment) of the shared resource to z/VM guests. Issue this command on the z/VM host.

Example 3-53 Query the crypto resources after shared crypto attachment to z/VM guests

QUERY CRYPTO DOMAIN USERS
06:47:44 AP 000 CEX8C Domain 020 operational online shared
06:47:44 AP 000 CEX8C Domain 021 operational online free
06:47:44 AP 001 CEX8P Domain 020 operational online free
06:47:44 AP 001 CEX8P Domain 021 operational online free
06:47:44 AP 002 CEX8C Domain 020 operational online shared
06:47:44 AP 002 CEX8C Domain 021 operational online free
06:47:44 AP 003 CEX8P Domain 020 operational online free
06:47:44AP 003 CEX8P Domain 021 operational online free
06:47:44
06:47:44 Shared-Crypto Users:
06:47:44 BASTION2 BASTION
Ready; T=0.01/0.01 06:47:44

Example 3-54 shows the command to display the crypto assignment on the z/VM guest
BASTION. You would SSH to BASTION to check the crypto assignment.

Example 3-54 Check the crypto assignment on z/VM guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# uname -a
 69

Linux bastion 5.14.0-162.6.1.el9_1.s390x #1 SMP Fri Sep 30 09:42:53 EDT 2022 s390x
s390x s390x GNU/Linux
[root@bastion ~]# lszcrypt
CARD.DOM TYPE MODE. STATUS. REQUESTS
--
01 CEX8C CCA-Coproc online 1
01.001 CEX8C CCA-Coproc online 1

Example 3-54 on page 69 shows the command to display the crypto assignment on the z/VM
guest BASTION2. SSH to BASTION2 to run this command.

Example 3-55 Check the crypto assignment on z/VM guest BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# uname -a
Linux bastion2 5.14.0-162.6.1.el9_1.s390x #1 SMP Fri Sep 30 09:42:53 EDT 2022
s390x s390x s390x GNU/Linux
[root@bastion2 ~]# lszcrypt
CARD.DOM TYPE MODE. STATUS. REQUESTS
--
01 CEX8C CCA-Coproc online 1
01.001 CEX8C CCA-Coproc online 1

Example: Removing the shared crypto resources from z/VM guests

Figure 3-11 shows the detachment of a shared crypto resource from z/VM guests BASTION
and BASTION2.

Figure 3-11 Detachment of shared crypto resources from z/VM guests
70 Crypto Express for Cloud Workloads

Example 3-56 shows the detachment of shared crypto resources from z/VM guest BASTION.
Issue this command on the z/VM host:

Example 3-56 Detach shared crypto resources of z/VM guest

DIRM FOR BASTION CRYPTO DELETE
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 19:45:17
 DVHREQ2288I Your CRYPTO request for BASTION at *
 DVHREQ2288I has been accepted.
 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION at *
 DVHREQ2289I has completed; with RC=0

Example 3-57 shows the detachment of shared crypto resources from z/VM Guest
BASTION2. Issue the command shown in this example of the z/VM host:

Example 3-57 Detach shared crypto resources from z/VM guest BASTION2

DIRM FOR BASTION2 CRYPTO DELETE
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 11:35:47
 DVHREQ2288I Your CRYPTO request for BASTION2 at *
 DVHREQ2288I has been accepted.
 71

 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION2 has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION2
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION2 at *
 DVHREQ2289I has completed; with RC=0

Check Crypto resources from z/VM HOST after detaching the shared resource
To check the crypto resources from the z/VM host after detaching the shared resource, issue
the command shown in Example 3-58 on the z/VM host.

Example 3-58 Query shared Crypto resources

QUERY CRYPTO DOMAIN USERS
14:35:56 AP 000 CEX8C Domain 020 operational online shared
14:35:56 AP 000 CEX8C Domain 021 operational online free
14:35:56 AP 001 CEX8P Domain 020 operational online free
14:35:56 AP 001 CEX8P Domain 021 operational online free
14:35:56 AP 002 CEX8C Domain 020 operational online shared
14:35:56 AP 002 CEX8C Domain 021 operational online free
14:35:56 AP 003 CEX8P Domain 020 operational online free
14:35:56 AP 003 CEX8P Domain 021 operational online free
14:35:56
14:35:56 There are no shared-crypto users.
Ready; T=0.01/0.01 14:35:56
72 Crypto Express for Cloud Workloads

Query shared crypto resources on z/VM guest BASTION
Use the command shown in Example 3-59 to show any shared crypto resources on z/VM
guest BASTION. SSH to bastion to check the crypto assignments.

Example 3-59 Query shared crypto resources on z/VM guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion ~]#

Use the command shown in Example 3-60 to show any shared crypto resources on z/VM
guest BASTION2. SSH to bastion to check the crypto assignments.

Example 3-60 Query shared crypto resources from z/VM guest BASTION2(

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion2 ~]#

Example: Assigning crypto domains to z/VM guests for dedicated use

Figure 3-12 shows crypto domain assignments to z/VM guests for dedicated use.

Figure 3-12 Crypto domain assignment to z/VM guests for dedicated use
 73

For a Linux guest that needs access to dedicated queues, the CRYPTO statement in the
USER entry for the guest must contain which domain and which AP number is used, which
means one or more AP queues are identified and reserved for this guest. There is no
virtualization for these dedicated queues, no sharing is done, and the queues are not
available for other guests. With dedicated queues, secure key and clear key operations can
be performed by the Linux guest. The statement in the user directory looks like: CRYPTO
DOMAIN x APDED y where DOMAIN x would be one or more domains that are defined for the
z/VM LPAR and APDED y can be one or more APs (CEX8S cards) that are defined for the
z/VM LPAR.

The combination of AP and domain numbers should be unique across all cryptography users
in the directory. Although you can use directory processing to specify the same AP and
DOMAIN combination for multiple users, these users should not be logged on simultaneously.
If they are, more than one user might have concurrent access to the same AP queue.
Directory processing does not enforce this restriction because duplicate definitions can be
useful for backup configurations.

You would use the following two statements to define AP 1 and 3 to the domains 20 and 21:

CRYPTO DOMAIN 20 APDED 1
CRYPTO DOMAIN 21 APDED 3

You can have multiple CRYPTO statements within one single user statement. To combine
them into one command, you would use the following:

CRYPTO DOMAIN 20 21 APDED 1 3

The directory entry for the guests in this example is shown in Example 3-61.

Example 3-61 Sample directory entries for dedicated-queues for cryptography access

USER BASTION xxxxxxxx 64M 96M ABCDEFG
INCLUDE IBMDFLT
CRYPTO DOMAIN 20 APDED 01
CRYPTO DOMAIN 21 APDED 03
IPL CMS PARM FILEPOOL VMSYS AUTOCR
OPTION LNKNOPA QUICKDSP
MDISK 0191 3390 71 10 ZVMUSR MR

Example 3-62 shows the assignment of crypto domains from adapter #1 and #3 to BASTION
guest. Issue this command on the z/VM host:

Example 3-62 Assign crypto domains from adapter #1 and #3 to the BASTION guest

DIRM FOR BASTION CRYPTO DOMAIN 20 21 APDED 1 3
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 14:44:50
DVHREQ2288I Your CRYPTO request for BASTION at *
 DVHREQ2288I has been accepted.
 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.

DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
74 Crypto Express for Cloud Workloads

 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION2 at *
 DVHREQ2289I has completed; with RC=0

Assignment of Crypto domain 21 from adapters #0 and #2 to BASTION2 guest VM for
dedicated use

Example 3-63 shows a crypto domain assignment for dedicated use from adapters #0 and
#02 to BASTION2. Issue this command on the z/VM host:

Example 3-63 Assign crypto domains from adapter #2 and #4 to BASTION2 guest

DIRM FOR BASTION2 CRYPTO DOMAIN 21 APDED 0 2
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 14:50:56
 DVHREQ2288I Your CRYPTO request for BASTION2 at *
 DVHREQ2288I has been accepted.
 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION2 has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 75

 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION2
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION2 at *
 DVHREQ2289I has completed; with RC=0

Example 3-64 shows the command to query the crypto domains assigned to z/VM guests.
Issue this command on the z/VM host:

Example 3-64 Query the crypto domains assigned to z/VM guests

Query CRYPTO DOMAIN USERS
14:53:00 AP 000 CEX8C Domain 020 operational online shared
14:53:00 AP 000 CEX8C Domain 021 operational online attached to BASTION2
14:53:00 AP 001 CEX8P Domain 020 operational online attached to BASTION
14:53:00 AP 001 CEX8P Domain 021 operational online attached to BASTION
14:53:00 AP 002 CEX8C Domain 020 operational online shared
14:53:00 AP 002 CEX8C Domain 021 operational online attached to BASTION2
14:53:00 AP 003 CEX8P Domain 020 operational online attached to BASTION
14:53:00 AP 003 CEX8P Domain 021 operational online attached to BASTION
14:53:00
14:53:00 There are no shared-crypto users.
Ready; T=0.01/0.01 14:53:00

Example 3-65 shows the crypto domains assigned to z/VM guest, BASTION. SSH to
BASTION and execute the command from there:

Example 3-65 Query crypto domains assigned to z/VM guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# lszcrypt
CARD.DOM TYPE MODE STATUS REQUESTS
--
01 CEX8P EP11-Coproc online 0
01.0014 CEX8P EP11-Coproc online 0
01.0015 CEX8P EP11-Coproc online 0
03 CEX8P EP11-Coproc online 0
03.0014 CEX8P EP11-Coproc online 0
03.0015 CEX8P EP11-Coproc online 0
[root@bastion ~]#

Example 3-66 on page 77 shows the crypto domains assigned to z/VM guest, BASTION2.
SSH to BASTION2 and execute the query from there.
76 Crypto Express for Cloud Workloads

Example 3-66 Query crypto domain assigned to z/VM guest BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# lszcrypt
CARD.DOM TYPE MODE STATUS REQUESTS
--
00 CEX8C CCA-Coproc online 1
00.0015 CEX8C CCA-Coproc online 1
02 CEX8C CCA-Coproc online 0
02.0015 CEX8C CCA-Coproc online 0
[root@bastion2 ~]#

To remove a crypto domain assigned from BASTION, execute the command shown in
Example 3-67 from the z/VM host:

Example 3-67 Remove crypto domain assignment from z/VM guest BASTION

DIRM FOR BASTION CRYPTO DELETE
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 11:33:17
 DVHREQ2288I Your CRYPTO request for BASTION at *
 DVHREQ2288I has been accepted.
 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION at *
 77

 DVHREQ2289I has completed; with RC=0

To remove a crypto domain assigned from BASTION2, execute the command shown in
Example 3-68 from the z/VM host.

Example 3-68 Remove crypto domains assigned to z/VM guest BASTION2

DIRM FOR BASTION2 CRYPTO DELETE
DVHXMT1191I Your CRYPTO request has been sent for processing to DIRMAINT
DVHXMT1191I at RDBKZXVMA via DIRMSAT4.
 Ready; T=0.01/0.01 11:33:17
 DVHREQ2288I Your CRYPTO request for BASTION2 at *
 DVHREQ2288I has been accepted.
 DVHBIV3450I The source for directory entry
 DVHBIV3450I BASTION2 has been updated.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3203W Unable to notify
 DVHBIV3203W ASYNCHRONOUS_UPDATE_NOTIFICATION_EXIT
 DVHBIV3203W recipient of directory update.
 DVHBIV3203W Recipient is unreachable.
 DVHBIV3424I The next ONLINE will take place
 DVHBIV3424I immediately.
 DVHDRC3451I The next ONLINE will take place
 DVHDRC3451I the delta object directory.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DSATCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHRLA3891I Your DMVCTL request has been relayed
 DVHRLA3891I for processing.
 DVHBIV3428I changes made to directory entry BASTION2
 DVHBIV3428I have been placed online.
 DVHREQ2289I your CRYPTO request for BASTION2 at *
 DVHREQ2289I has completed; with RC=0

Example 3-69 show Crypto resources assigned to z/VM guests after detachment. Execute
the command shown in Example 3-69 from the z/VM host.

Example 3-69 Query the crypto domain assigned to z/VM guests

QUERY CRYPTO DOMAIN USERS
11:37:28 AP 000 CEX8C Domain 020 operational online shared
11:37:28 AP 000 CEX8C Domain 021 operational online free
78 Crypto Express for Cloud Workloads

11:37:28 AP 001 CEX8P Domain 020 operational online free
11:37:28 AP 001 CEX8P Domain 021 operational online free
11:37:28 AP 002 CEX8C Domain 020 operational online shared
11:37:28 AP 002 CEX8C Domain 021 operational online free
11:37:28 AP 003 CEX8P Domain 020 operational online free
11:37:28 AP 003 CEX8P Domain 021 operational online free
11:37:28
11:37:28 There are no shared-crypto users.
Ready; T=0.01/0.01 11:37:28

To validate that the crypto assignments have been removed from the z/VM guests on
BASTION, run the command shown in Example 3-70. SSH to BASTION and execute the
command from there.

Example 3-70 Query crypto assignment from z/VM Guest BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion ~]#

To validate that the crypto assignments have been removed from the z/VM guests on
BASTION2, run the command shown in Example 3-71. SSH to BASTION2 and execute the
command from there.

Example 3-71 Query crypto assignment from z/VM guest BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# lszcrypt
lszcrypt: No crypto card devices found.
[root@bastion2
~]#

After detaching the crypto resources for z/VM guests from the z/VM host, the crypto
resources are no longer seen on the z/VM guests.
 79

80 Crypto Express for Cloud Workloads

Chapter 4. Using a CEX resource within a
containerized environment

This chapter discusses the use of a CEX resource within a containerized environment:

� “CEX resource deployment in a Docker environment” on page 82
� “CEX deployment configuration in Kubernetes and Red Hat OpenShift Container

Platform” on page 89

4

© Copyright IBM Corp. 2024. 81

4.1 CEX resource deployment in a Docker environment

A full-fledged virtualization environment like KVM or z/VM is not always needed or necessary.
A real virtualization environment provides perfect guest separation but is sometimes too
clumsy and requires much more effort to manage.

The Linux kernel offers some base functionality such as name spaces and control groups for
lightweight process encapsulation. Docker and the more recent Podman packages exploit
these base functions and provide a simple way to use containerized applications.

This section gives an overview of how to set up applications which require CEX resources
with the Docker and Podman container runtimes.

4.1.1 Installation and simple usage examples for Podman

On a Linux command line a user with root privileges can install the Podman package as
usual with the dnf package manager:

dnf install -y podman

Podman is a container orchestration tool which is mostly compatible with docker. For
convenience and compatibility there exists a package podman-docker that tries to fully
emulate the docker CLI.

All container administration tools distinguish between an image and the container instance.
An image is simple the base or the template from which containers instances are created. A
container (short for container instance) may be altered and may have a state like running or
stopped. Podman knows commands to manipulate images (podman image ...) and
containers (podman container ...) but for historical reasons, the command line does not
obey strictly to this distinction.

Here is a condensed walkthrough of important podman commands:

� podman pull <image_name>

Pulls an image from a remote repository into the local image repository. Popular
repositories are docker.io or quay.io.

� podman images

List all local images with tag and image id.

� podman run <image>

Starts a new container from a given image. Each image has a default entrypoint that is
executed after the container runtime has been established. This application is executed
and with termination of the application the container is also torn down.

The application “inside of the container” is facing only a subset of what the system would
offer to a non-containerized application. Other applications are not visible and because of
namespacing all system calls show only limited resources. Even user ids and access
rights like root permissions are only a fake.

The run subcommand is the major Podman command and thus knows a whole bunch of
options to customize the runtime environment the container will show to the application.

The most often used option with the Podman run command may be to run the container in
background with the --detach option. It is also possible to give an explicit command with
parameters to be executed after instantiation of the image and thus overwrite the default
entrypoint. The Podman example session at Figure 4-1 on page 83 shows an invocation
82 Crypto Express for Cloud Workloads

https://www.docker.com/
https://quay.io/

with an endless loop to keep the bash application running in the container busy until killed
from “outside”. Outside here means on system level, whereas inside refers to the
perception shown by the containerized application.

Figure 4-1 A sample Podman session

� podman exec -it <container> <application>

Execute the <application> inside the running <container>. For example, podman exec
-it mybash /bin/sh executes a simple shell inside the running mybash container from
Figure 4-1 and thus makes it possible to investigate the container runtime (see Figure 4-2
on page 84).

� podman cp <[container:]src_path> <[container:]dst_path>

The cp subcommand is used to copy files from the local system into the container and vice
versa. It is useful during development for example when starting with a bash image and
building and deploying the application during development into the running container.
Together with the exec subcommand a simple way to develop containerized applications.

� podman stop <container>

Stops a running container by sending a SIGTERM signal to the running application. If the
graceful stop does not work, the application gets killed with a SIGKILL signal after a
time-out of 10 seconds.

� podman ps and podman ps --all

The ps subcommand lists all currently running containers. Together with the --all option
not anymore running containers (like stopped containers) are also displayed.
Chapter 4. Using a CEX resource within a containerized environment 83

Figure 4-2 Executing a shell to glimpse into the container

� podman container rm <container>

Deletes a stopped container instance eventually freeing the resources (disc space)
associated with this instance.

� podman rmi <image>

Deletes an image from the local image repository freeing the resources (disk space)
associated with this image.

These commands are only a subset, scratching the surface about what is possible with
Docker or Podman container orchestration. Images may be altered and persistently stored,
and there can be local networks defined to have containers communicate with each other and
much more. For more information, see Getting Started with Podman.

4.1.2 Simple deployment of CEX resources

The screenshot in Figure 4-3 on page 85 shows the pull and instantiation of an Red Hat
Universal Base Image (UBI), the package installation of s390 tools the lszcrypt listing within
the container instance, and more commands.

A first glimpse to this output leads to the impression that all the crypto resources of the
system are as well available within the container. If someone would run a crypto load which
tries to access a Crypto Express card the application would fail however. The reason is also
shown in the terminal output: The device node /dev/z90crypt that is the communication
channel between the application and the crypto resources is not available.
84 Crypto Express for Cloud Workloads

https://podman.io/docs

Note also that lszcrypt seems to work fine. The API for most of the user space administrative
tools is the sysfs pseudo file system provided by the Linux kernel. For example lszcrypt
gathers its information there and chzcrypt manipulates the crypto resources via writing into
some files within the sysfs hierarchy. Also by default the user id of the user running in the
container is shown as the root user, this is a fake: The sysfs within the container is read-only
and refuses any write attempts and the root user inside the container is mapped to an
ordinary user with limited capacities outside the container.

Figure 4-3 UBI container with crypto resources

For the missing /dev/z90crypt, there is a way to forward this into the container. Make it
available at container start with the --device /dev/z90crypt option:

podman run <image> --device /dev/z90crypt [...]

and consider to forward /dev/hwrng (hardware random generator), /dev/trng (true random
generator) and /dev/prandom (pseudo random generator) as well. For example:

podman run <image> --device /dev/z90crypt --device /dev/hwrng --device
/dev/trng --device /dev/prandom [...]

With the mentioned shadowing of the z90crypt device into the container environment, all
crypto load gains access to the whole bunch of crypto resources available on the system.
There is no restriction in the crypto load or any limitation with the accessibility like limiting to
only accelerator cards possible. However, all attempts to manipulate the AP bus which is the
maintainer and book keeper of the crypto resources will fail due to the read-only sysfs replica.
For example, some commands try to temporarily change the online state of crypto cards or
queues which will fail in containerized environment.
Chapter 4. Using a CEX resource within a containerized environment 85

A simple forward of the zcrypt device for containerized applications does not attain additional
security. There is no way to restrict or filter either the crypto load or the crypto resources.
However, running an application within container environment may be suitable for other
nonspecific CEX reasons.

4.1.3 A more sophisticated CEX deployment

Since Linux Kernel 4.20 and s390-tools 2.7 there is a feature integrated which allows to
create and customize additional zcrypt device driver nodes. The CEX Device Plug-in for
Kubernetes exploits this extension, but it can be used with Docker or Podman containerization
as well.

The idea of the additional zcrypt device driver node is to create an alternate device node from
the generic /dev/z90crypt device and customize which resources can be accessed through
this. This new device node is then used as a replacement for the z90crypt device inside the
container. The following paragraphs lead through this process step by step.

Checking for availability and creation of an alternate zcrypt device node

For additional zcrypt device node support check that either directory /sys/class/zcrypt
exists or simple by running zcryptctl list. However all recent Linux distributions have this
feature available and enabled since several years now.

Create your own z90crypt device node with the command:

zcryptctl create <my_zcrypt_node>

There should be a new device node <my_zcrypt_node> in the devices directory /dev. The
screenshot in Figure 4-4 on page 87 shows an example with listing the available alternate
zcrypt devices with zcryptctl list immediately after creation. The created device needs
customization.
86 Crypto Express for Cloud Workloads

Figure 4-4 A sample zcryptctl session

Customizing the alternate device node

The newly created alternate device node needs to get customized before usage. By default
this device does not allow any ioctl command addressing any adapter or domain. So, at least
one crypto card should be enabled:

zcryptctl addap <my_zcrypt_node> <adapter>

and one domain should be enabled:

zcryptctl adddom <my_zcrypt_node> <domain>

Additionally, the ioctl commands permitted on this device need to be adjusted. Table 4-1
shows the available ioctl commands, their meaning, and a mnemonic that can be used with
zcryptctl. The ioctl commands can and sometimes need to be combined. For example,
enable ICARSAMODEXPO and ICARSACRT for an Accelerator APQN:

zcryptctl addioctl <nodename> ICARSAMODEXPO
zcryptctl addioclt <nodename> ICARSACRT

A CCA APQN usually just needs to have the ZSECSENDCPRB ioctl command enabled, whereas
an APQN in EP11 mode should have only ZSENDEP11CPRB active.

Table 4-1 zcryptctl ioctl command numbers, mnemonics and meaning

ioctl command number mnemonic remark

0-255 ALL Enables or disables the whole
range of possible ioctl
commands
Chapter 4. Using a CEX resource within a containerized environment 87

It is not a high risk to simple enable all ioctls with the ALL mnemonic as the zcrypt device
driver will anyway refuse to call ioctls commands that do not fit to the card mode. For
example, the invocation of ioctl ZSENDEP11CPRB will be abandoned when an Accelerator or
CCA APQN is addressed.

As an additional step the file permissions of the created device node /dev/<my_zcrypt_node>
should get some attention. The permissions need to fit to the executing user capabilities
inside the container. As already stated in the previous section, the executing root user within
the container is only a fake. The mapping here depends on the container runtime and can get
adjusted with the container start, so best practice is to change the node permissions to 0666
to enable read-write access for everybody. With some more knowledge about the container
runtime used this can be fine tuned with individual file permissions if desired.

The terminal output in Figure 4-4 on page 87 shows a session snippet from the creation of an
alternate zcrypt device node up to all customization steps.

Running a container with an alternate zcrypt device node

When the customization of the alternate zcrypt device node is complete, the container can be
started:

podman run <image> --device /dev/<my_zcrypt_node>:/dev/z90crypt [...]

The command-line option --device <source_device>:<target_device> tells Podman to
shadow the system device <source_device> into the container as <target_device>. So in the
end the /dev/z90crypt inside the container is in fact the alternate zcrypt device created in the
previous steps.

5 ICARSAMODEXPO Enables or disables sending of
clear key RSA ME requests

6 ICARSACRT Enables or disables sending of
clear key RSA CRT requests

129 ZSECSENDCPRB Enables or disables sending of
secure key CCA requests

4 ZSENDEP11CPRB Enables or disables sending of
secure key EP11 requests

95 ZCRYPT_DEVICE_STA
TUS

Legacy ioctl command - only
necessary for ancient CCA
library versions

88 ZCRYPT_STATUS_MAS
K

Legacy ioctl command - only
necessary for ancient CCA
library or libica library versions

89 ZCRYPT_QDEPTH_MA
SK

Legacy ioctl - not used any
more

90 ZCRYPT_PERDEV_RE
QCNT

Legacy ioctl - not used any
more

<any number in range
0...255>

- Enables or disables exactly this
ioctl command

ioctl command number mnemonic remark
88 Crypto Express for Cloud Workloads

The sysfs pseudo file system appearing inside the container lacks still some adaptations. The
issues already mentioned in 4.1.2, “Simple deployment of CEX resources” on page 84 still
apply. The sysfs shows all cards and domains visible on the system and lszcrypt lists them
without any respect to the limited accessibility inside the container.

Some applications or libraries may also need further guidance to avoid confusion between
what is visible in sysfs and what is accessible via /dev/z90crypt.

� CCA library

The CCA library uses the first CCA adapter of the highest generation and always
addresses the chosen default domain (displayed with lszcrypt -b). This can be changed
via environment variables:

export CSU_DEFAULT_ADAPTER=CRPxx
export CSU_DEFAULT_DOMAIN=dd

The CCA library counts only CCA adapters, starting with 1, so CRP01 means to use the
first CCA adapter. For more details see the Common Cryptographic Architecture
Application Programmer’s Guide.

� EP11 library

The programming API of the EP11 library requires to provide a target parameter. So, the
library itself knows no default adapter or domain but requires the application to provide
target addressing parameters.

� OpenCryptoki

The CCA token is based on the CCA library and thus obeys to the statement above. For
the EP11 token one can provide a configuration file ep11tok.conf that lists adapter and
domain pairs to use. For more details, see openCryptoki overview.

Cleaning up after container termination

When an alternate zcrypt device node is not used any more, it should be destroyed. The
Linux kernel needs to hold some structures and thus memory for each alternate zcrypt device
node and thus limits the maximum number of these devices to 256:

zcryptctl destroy <my_zcrypt_node>

The alternate device node is marked for deletion and destroyed with the last application
releasing the use of the device node.

4.2 CEX deployment configuration in Kubernetes and
Red Hat OpenShift Container Platform

In Kubernetes (K8s) and Red Hat OpenShift Container Platform environments, the
functionalities of IBM Crypto Express cards are not available by default. Essentially, this
means that without configuring specific settings and intermediate solutions, containerized
applications (PODs) cannot access the resources of CEX adapters on IBM Z & LinuxONE
systems.

In this section, we present an extension for Kubernetes and Red Hat OpenShift Container
Platform that allows any container running in a POD to access a Crypto Express adapter
domain. In this context, a “domain” represents a “virtualized crypto resource”. The purpose of
this section is to demonstrate how to set up the basic infrastructure and configure which
cryptographic resource belongs to which workload, and how the application within the
container can access the cryptographic resource.
Chapter 4. Using a CEX resource within a containerized environment 89

https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide
https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide
https://www.ibm.com/docs/en/linux-on-systems?topic=stack-opencryptoki-overview

To achieve all this, a new component is required on the compute nodes, called the IBM Crypto
Express Card Kubernetes device plug-in.

This component is available as a certified and supported container image in the Red Hat
image catalog, and there is also a community version available.

In our lab environment, we worked with the community version of the CEX device plug-in,
which can be found at Kubernetes device plug-in for IBM CryptoExpress (CEX) cards, but the
described steps are applicable to the certified and supported image from the Red Hat registry
as well.

The specifics discussed in this section are demonstrated in our lab environment on a
Kubernetes-based Red Hat OpenShift cluster.

4.2.1 Kubernetes on a Red Hat OpenShift cluster

Chapter 1, “Introduction” on page 1 provided a brief introduction into the cryptographic
components, terms and concepts, including CEX8S features. Now we will apply those terms
and concepts in this section as we discuss Kubernetes (K8s) on a Red Hat OpenShift cluster
and how to configure and set up CEX8S resources in Kubernetes orchestrated containers. A
Linux on IBM Z and IBM LinuxONE crypto stack is shown in Figure 4-5.

Figure 4-5 The Crypto stack

A Kubernetes Red Hat OpenShift cluster is a framework for deploying workloads as
containers and accomplishes the following:

� High availability
� Flexible deployment
� Based on K8s technology

Workloads are organized onto what are called nodes, where the nodes can be (based on its
role):

� Control planes or master nodes, serving as management nodes
� Compute nodes or worker nodes, responsible for running actual workloads
90 Crypto Express for Cloud Workloads

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

Pods are running on these nodes, where a pod is defined as a set of containers implementing
the workload.

IBM Z and LinuxONE crypto hardware support in cluster environments

The use of CPACF (by kernel crypto, OpenSSL, IBM Java 8 JCE, Go) is transparent in:

� Control plane
� Compute node components
� Containers running in compute nodes

Requirements to use CEX adapters for Kubernetes clusters

The following are requirements to enable the use of CEX adapters for Kubernetes clusters.

� Crypto Express cards must be connected to the IBM Z or LinuxONE server hosting the
compute nodes.
– The mode of operation (Accelerator, CCA, EP11) for each crypto module (adapter)

must be configured on the Support Element.
� An LPAR running either KVM or z/VM hypervisor

– Assign an adapter set and a domain set on the HMC to this LPAR. This defines all
APQNs available to the guest servers on this LPAR.

� Each guest machine running a compute node (KVM or z/VM)
– Must be assigned an adapter and domain list. For z/VM guests the assignment exists

in the user directory. For KVM guests, we create an mdev device with adapters and
domains assigned. This defines the APQNs that are “dedicated” to each compute
node.

4.2.2 CEX resources in Kubernetes orchestrated containers

In this section, we discuss setting up, configuring and using CEX resources in Kubernetes
orchestrated containers.

Virtualization layer, guest level

First, we should check what resources are available at the LPAR level. The rest of the steps
will be presented in a KVM virtualization environment, the procedure is similar for z/VM guest
machines, the difference is how to attach the APQN to the guest machine, which is shown in
3.2, “Configuring z/VM guests to use CEX adapters” on page 53.

The KVM configuration is done as discussed in 3.1, “Configuring a KVM host to provide CEX
functionality” on page 32. Only the relevant changes will be pointed out in this section.
Example 4-1 shows the command to check the CEX adapters with its results.

Example 4-1 Checking the CEX adapters

[root@rdbkkvm4 ~]# lszcrypt -V
CARD.DOM TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER

-
00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4card
00.000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
00.0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
01.000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
01.0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
Chapter 4. Using a CEX resource within a containerized environment 91

02.000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
02.0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
03.000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
03.0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
04 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
04.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
04.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4card
05.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
05.0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
06 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
06.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
06.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4card
07.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
07.0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap

In our lab environment, there are several worker nodes in our Red Hat OpenShift cluster, but
for simplicity we will use only worker-1 for setup and testing.

We create a new mdev device and allocate the resources shown in example 4-2 to the aw1
node.

Example 4-2 mdev definition and starting

[root@rdbkkvm4 ~]# vi 00-02-01-03-05-07-0011.xml

<device>
 <parent>ap_matrix</parent>
 <capability type="mdev">
 <type id="vfio_ap-passthrough"/>
 <attr name="assign_adapter" value="0x00"/>
 <attr name="assign_adapter" value="0x02"/>
 <attr name="assign_adapter" value="0x01"/>
 <attr name="assign_adapter" value="0x03"/>
 <attr name="assign_adapter" value="0x05"/>
 <attr name="assign_adapter" value="0x07"/>
 <attr name="assign_domain" value="0x00d"/>
 <attr name="assign_domain" value="0x0011"/>
 <uuid>00020103-0507-000d-0011-28a403f8b357</uuid>
 </capability>
</device>
[root@rdbkkvm4 ~]# virsh nodedev-define 00-02-01-03-05-07-0011.xml
Node device 'mdev_00020103_0507_000d_0011_28a403f8b357_matrix' defined from
'00-02-01-03-05-07-0011.xml'
[root@rdbkkvm4 ~]# virsh nodedev-start mdev_00020103_0507_000d_0011_28a403f8b357_matrix
Device mdev_00020103_0507_000d_0011_28a403f8b357_matrix started

Attach it to a aw1 worker node by using the following command:

[root@rdbkkvm4 ~]# virsh attach-device aw1 med-dev-all.xml
Device attached successfully

Example 4-3 shows the command to check the resources at the KVM level. Note the status in
this example shows all assigned resources are in use.

Example 4-3 Checking online resources

[root@rdbkkvm4 ~]# lszcrypt -V
92 Crypto Express for Cloud Workloads

CARD.DOM TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER

-
00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF- cex4card
00.000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
00.0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
01.000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
01.0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
02.000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
02.0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF- cex4card
03.000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
03.0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
04 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
04.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
04.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF- cex4card
05.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
05.0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
06 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF- cex4card
06.000d CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
06.0011 CEX8C CCA-Coproc unassigned - - 14 08 S--D--NF- vfio_ap
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF- cex4card
07.000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
07.0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap

We can use a secure shell (SSH) to connect to the aw1 node and check the resources that are
visible at the OS level, as shown in Example 4-4. This example shows that there are six
adapters online, with 00.000d and 00.0011 domains.

Example 4-4 Check the resources that are visible at the OS level

[root@bastion ~]# ssh core@aw1
[core@aw1 ~]$ cd /sys/devices/ap/
[core@aw1 ap]$ ls -l
total 0
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card00
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card01
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card02
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card03
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card05
drwxr-xr-x. 4 root root 0 Nov 15 14:34 card07
-rw-r--r--. 1 root root 4096 Oct 25 10:38 uevent

[core@aw1 ap]$ for i in {0,1,2,3,5,7}; do ls -l ./card0$i/|grep '0.\.'; done
drwxr-xr-x. 2 root root 0 Nov 15 14:34 00.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 00.0011
drwxr-xr-x. 2 root root 0 Nov 15 14:34 01.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 01.0011
drwxr-xr-x. 2 root root 0 Nov 15 14:34 02.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 02.0011
drwxr-xr-x. 2 root root 0 Nov 15 14:34 03.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 03.0011
drwxr-xr-x. 2 root root 0 Nov 15 14:34 05.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 05.0011
drwxr-xr-x. 2 root root 0 Nov 15 14:34 07.000d
drwxr-xr-x. 2 root root 0 Nov 15 14:34 07.0011
Chapter 4. Using a CEX resource within a containerized environment 93

Example 4-5 shows these resources sorted by type. Six adapters are online, each with
00.000d and 00.0011 domains.

Example 4-5 Resources sorted by “type”

CARD DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
01 CEX8A Accelerator online 0 0 14 08 -MC-A-NF-
cex4card
01 000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
01 0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
03 CEX8A Accelerator online 0 0 14 08 -MC-A-NF-
cex4card
03 000d CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap
03 0011 CEX8A Accelerator in use - - 14 08 -MC-A-NF- vfio_ap

00 CEX8C CCA-Coproc online 3939 0 14 08 S--D--NF-
cex4card
00 000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
00 0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
02 CEX8C CCA-Coproc online 2208 0 14 08 S--D--NF-
cex4card
02 000d CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap
02 0011 CEX8C CCA-Coproc in use - - 14 08 S--D--NF- vfio_ap

05 CEX8P EP11-Coproc online 193 0 14 08 -----XNF-
cex4card
05 000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
05 0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
07 CEX8P EP11-Coproc online 243 0 14 08 -----XNF-
cex4card
07 000d CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap
07 0011 CEX8P EP11-Coproc in use - - 14 08 -----XNF- vfio_ap

As shown in these examples, we see three distinct types of resources visible at the operating
system level on the aw1 node. By definition, we have the 000d and 0011 domains (equivalent
to 13 and 17 in decimal) available on two cards each.

CEX device plug-in

Now that we are satisfied that the desired resources are available, we can move on to
configuring the CEX plug-in. In this section, we present the steps required to configure the
CEX device plug-in, accompanied by additional summaries.

Note: To clarify:

Cards 01 and 03:

� Domains: 000d(13) and 0011(17)
� Distinct types of resource: CEX8A (accelerator)

Cards 00 and 02:

� Domains: 000d(13) and 0011(17)
� Distinct types of resource: CEX8C (CCA coprocessor)

Cards 05 and 07:

� Domains: 000d(13) and 0011(17)
� Distinct types of resource: CEX8P (EP11 coprocessor)
94 Crypto Express for Cloud Workloads

The Kubernetes CEX device plug-in environment enables IBM Crypto Express cards to be
accessible on Kubernetes nodes for use by containers. The CEX device plug-in categorizes
available CEX resources into CEX configuration sets.

A CEX resource is a single domain within a CEX adapter. CEX resources are identified by
their host and their APQN (the pair of an adapter ID and a domain ID).

� They can have additional attributes like adapter mode (accelerator, CCA, EP11) or CEX
generation (CEX5S, CEX6S, CEX7S, CEX8S) or machine ID.

From a container perspective, APQNs within the CEX configuration set must be equivalent,
meaning any APQN can be used for any cryptographic task. Equivalent CEX resources can
be configured to belong to a crypto configuration set.

In Kubernetes, CEX configuration sets need to be defined in a clusterwide ConfigMap. This
definition could be managed by a cluster administrator.

In our example:

� Each container can be assigned a single resource from a specific crypto config set.

Example 4-6 provides our sample ConfigMap.

Example 4-6 Sample ConfigMap of resources

[root@bastion configmap]# cat cex_resources.json
{
 "cryptoconfigsets":
 [
 {
 "setname": "Accelerator_for_Lancelot",
 "project": "knights",
 "cexmode": "accel",
 "overcommit": 3,
 "apqns":
 [
 {
 "adapter": 1,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 3,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 1,
 "domain": 11,
 "machineid": ""
 },

Note:

� A pod comprising multiple containers can use multiple CEX resources — one for each
of its containers.

� A crypto resource can be assigned to n ≥ 1 containers if the APQN overcommit limit n is
configured in the deployment.
Chapter 4. Using a CEX resource within a containerized environment 95

 {
 "adapter": 3,
 "domain": 11,
 "machineid": ""
 }
]
 },
 {
 "setname": "EP11_for_Galahad",
 "project": "knights",
 "cexmode": "ep11",
 "apqns":
 [
 {
 "adapter": 5,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 7,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 5,
 "domain": 11,
 "machineid": ""
 },
 {
 "adapter": 7,
 "domain": 11,
 "machineid": ""
 }
]
 },
 {
 "setname": "CCA-Coproc_for_Bedivere",
 "project": "knights",
 "cexmode": "cca",
 "overcommit": 5,
 "apqns":
 [
 {
 "adapter": 0,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 2,
 "domain": 13,
 "machineid": ""
 },
 {
 "adapter": 0,
 "domain": 11,
96 Crypto Express for Cloud Workloads

 "machineid": ""
 },
 {
 "adapter": 2,
 "domain": 11,
 "machineid": ""
 }
]
 }
]
}

The ConfigMap defines a list of configuration sets. Each of the three types of APQNs requires
a separate set to be created in order to be used. Each configuration set is created with the
entries shown in Table 4-2.

Table 4-2 Basic parameters

Variable Required/Optional Explanation

setname required Can be any string value, but must be
unique within all the configuration sets.
This is the identifier used by the container
to request one of the CEX crypto
resources from within the set.

project required Can be any string value or namespace of
the configuration set. Only containers
with matching namespaces can access
CEX crypto resources of the
configuration set. For version 1, this is not
fully implemented as there are limits on
the existing API preventing this.

cexmode optional Specifies the CEX mode. If specified, one
of the following choices is required: EP11,
CCA, or ACCEL. Adds an extra
verification step every time the APQNs on
each node are screened by the CEX
device plug-in. All APQNs of the
configuration set must match the
specified CEX mode.

mincexgen optional Specifies the minimum CEX card
generation for the configuration set, for
example, mincexgen: “cex6”
Chapter 4. Using a CEX resource within a containerized environment 97

APQN parameters
A list of equivalent APQN entries is shown in Table 4-3. The exact meaning of equivalent
depends on the crypto workload to be run with the crypto configuration set. However, it forms
a set of APQNs where anyone is sufficient to fulfill the needs of the requesting crypto
workload container.

Table 4-3 APQN parameters

A cluster-wide CEX ConfigMap can be installed using a properly filled yaml file. The
command to do this is shown in Example 4-7.

Example 4-7 Deploy ConfigMap

oc create -f <my_cex_resources.yaml>

Until now, we have defined resource assignments. However, this is not the end of the tasks
because we still need to install the CEX-plugin as well.

overcommit optional Specifies the overcommit limit for
resources in this ConfigSet.

If the parameter is omitted, it defaults to
the value specified through the
environment variable
APQN_OVERCOMMIT_LIMIT.

If the environment variable is not
specified, the default value for
overcommit is 1 (no overcommit).

Note:

An APQN must not be member of more than one crypto configuration set.

It is valid to provide an empty list. It is also valid to provide APQNs, which might currently
not exist but might come into existence sometime in future when new crypto cards are
plugged.

Variable Required/Opti
onal

Explanation

adapter required The CEX card number. Can be in the range of 0-255.
Typically referred to as adapter number

domain required The domain on the adapter. Can be in the range of 0-255.
decimal value of the domain.

machineid optional This is only required when the compute nodes are
physically located on different hardware instances and
the APQN pairs (adapter, domain) are not unique. It
should be created based on the /proc/sysinfo
<manufacturer>-<machinetype>-<sequencecode>

Variable Required/Optional Explanation
98 Crypto Express for Cloud Workloads

Obtaining the CEX device plug-in
We used the community version of the plugin. The source files of the CEX device plug-in can
be found at Kubernetes device plug-in for IBM CryptoExpress (CEX) cards.

Installing the CEX device plug-in
The CEX device plug-in must be run with administrative privileges on each compute node.

Kubernetes on Red Hat Openshift uses a DaemonSet for this kind of cluster-wide services. A
DaemonSet ensures that all (or some) Nodes run a copy of a Pod. In the Git repository, you
can see a sample daemonset.yaml file that provides all the necessary settings and options to
run the CEX tool plug-in as a Kubernetes on Red Hat Openshift DaemonSet.

Fortunately, the git repository also contains an “automated” solution at the k8s-cex-dev-plugin
GitHub repository.

This website shows you how to use a customized deployment to fully install the CEX device
plug-in into a running cluster.

This folder provides various sub-folders for different deployments based on “kustomize
overlays”. To install the IBM CEX device plug-in, first customize the ConfigMap in the
tconfigmap/cex_resources.json file, then use the customized ConfigMap and run the
following command:

$ oc create -k rhocp-create

After successful deployment, check that all worker nodes are running the CEX device plug-in
pod by using the command shown in Example 4-8.

Example 4-8 Checking the CEX device plugin pods

[root@bastion ~]# oc get pods -o wide
NAME READY STATUS RESTARTS AGE NODE
cex-plugin-daemonset-4w4hg 1/1 Running 0 13d iw2
cex-plugin-daemonset-d49ld 1/1 Running 0 13d iw1
cex-plugin-daemonset-qhdlb 1/1 Running 0 13d aw3
cex-plugin-daemonset-scdss 1/1 Running 0 13d aw1
cex-plugin-daemonset-wwdxz 1/1 Running 0 13d iw3
cex-prometheus-exporter-79cfd9f78d-vcpgt 1/1 Running 0 13d aw1

Figure 4-6 on page 100 shows our visualization of this deployment, anticipating that the pods
to be launched are using CEX resources.
Chapter 4. Using a CEX resource within a containerized environment 99

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin/tree/main/deployments
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin/tree/main/deployments

Figure 4-6 Kubernetes components for CEX support

The instances of the CEX device plug-in performs the following tasks on all compute nodes:

� Verify the availability of existing crypto resources on the nodes.

� Handle requests for CEX resources from containers.

� Claim the resource.

� Ensure that containers are scheduled to the correct compute node with the requested
CEX crypto resources.

The CEX device plug-in performs the following tasks on each compute node:

� Filter the available CEX resources on the compute node and submit this information to the
Kubernetes infrastructure service.

� Reserve and release a CEX resource at the request of the Kubernetes infrastructure
based on the needs of a pod.

The application container would only need to determine that it needs a CEX resource from a
given CEX configuration set by using the Kubernetes resource constraint declaration. The
cluster and CEX device plug-in handle the details, requiring a CEX resource, and scheduling
the pod to the appropriate compute node.

Test the CEX device plug-in functionality
Next, we demonstrate how to test whether what we envisioned works. For this purpose, in the
lab environment, we created a simple RHEL image based on a RHEL ubi-9 base image. The
Docker file for the RHEL image is shown in Example 4-9.

Example 4-9 Sample Docker file

[root@bastion cex-plugin]# cat Dockerfile-ubi
FROM registry.access.redhat.com/ubi9/ubi
USER root
100 Crypto Express for Cloud Workloads

ENV BUILD_DEPS='cryptsetup kmod perl libica openssl openssl-libs openssl-pkcs11
openssl-ibmca time s390utils opencryptoki'

Update image/install pkgs
RUN dnf update
RUN dnf install $BUILD_DEPS -y && rm -rf /var/cache/yum

RUN set -x \
&& mv /etc/pki/tls/openssl.cnf /etc/pki/tls/openssl.cnf.orig

RUN set -x \
&& echo "openssl_conf = openssl_def" >> /etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "[openssl_def]" >> /etc/pki/tls/openssl.cnf \
&& echo "providers = provider_sect" >> /etc/pki/tls/openssl.cnf \
&& echo "alg_section = evp_properties" >> /etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "[provider_sect]" >> /etc/pki/tls/openssl.cnf \
&& echo "default = default_sect" >> /etc/pki/tls/openssl.cnf \
&& echo "ibmca_provider = ibmca_sect" >> /etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "[default_sect]" >> /etc/pki/tls/openssl.cnf \
&& echo "activate = 1" >> /etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "[ibmca_sect]" >> /etc/pki/tls/openssl.cnf \
&& echo "identity = ibmca" >> /etc/pki/tls/openssl.cnf \
&& echo "module = ibmca-provider.so" >> /etc/pki/tls/openssl.cnf \
&& echo "activate = 1" >> /etc/pki/tls/openssl.cnf \
&& echo "fips = no" >> /etc/pki/tls/openssl.cnf \
&& echo "#debug = yes" >> /etc/pki/tls/openssl.cnf \
&& echo "algorithms = RSA,EC,DH" >> /etc/pki/tls/openssl.cnf \
&& echo "# Algorithm EC omitted for systems starting with IBM z15" >>
/etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "#fallback-properties = provider=default" >> /etc/pki/tls/openssl.cnf \
&& echo "" >> /etc/pki/tls/openssl.cnf \
&& echo "[evp_properties]" >> /etc/pki/tls/openssl.cnf \
&& echo "default_properties = ?provider=ibmca" >> /etc/pki/tls/openssl.cnf

ADD openssl-test /opt/

CMD ["/bin/bash", "-c", "sleep infinity"]

Example 4-9 on page 100 simply creates a RHEL image, installs some useful packages (for
the tests), and configures the openssl to use the ibmca provider.

How can your containerized application take advantage of CEX resources?
Container deployment can request a CEX resource from a crypto config set with a resource
definition, an example of which is shown in Example 4-10.

Example 4-10 Resource definition

...
spec:
 containers:
 - image ...
 ...
 resources:
 limits:
Chapter 4. Using a CEX resource within a containerized environment 101

 cex.s390.ibm.com/Accelerator_for_Lancelot : 1
...

where:

Now we can deploy this image. Ensure that you have provided the definitions shown in
Example 4-11.

Example 4-11 Sample deployment configurations

[root@bastion cex-plugin]# cat ubi-acc.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: ubi-acc
 namespace: knights
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ubi-acc
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: ubi-acc
 spec:
 containers:
 - image: '<HERE is the repository and the IMAGE>'
 imagePullPolicy: Always
 name: <PODNAME>
 command: ["/bin/sh", "-c", "while true; do echo do-nothing-loop; sleep 30; done"]
 resources:
 limits:
 cex.s390.ibm.com/Accelerator_for_Lancelot: 1

[root@bastion cex-plugin]# cat ubi-cca.yaml
apiVersion: apps/v1
kind: Deployment
metadata:

cex.s390.ibm.com Resource type CEX resource

Accelerator_for_Lancelot Name of crypto config set

: 1 Must be 1 and only one CEX resource per
container allowed

Note:

� At container start a compute node will be determined that has a free CEX resource
from the specified crypto config set and the container will be assigned one of the CEX
resources from the crypto config set.

� The CEX resource is chosen according to the config map valid at container start time.
� Later changes to the crypto config map do not affect running containers with CEX

resources.
� When a container stops, its CEX resource is released.
102 Crypto Express for Cloud Workloads

 name: ubi-cca
 namespace: knights
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ubi-cca
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: ubi-cca
 spec:
 containers:
 - image: '<HERE is the repository and the IMAGE>'
 imagePullPolicy: Always
 name: <PODNAME>
 command: ["/bin/sh", "-c", "while true; do echo do-nothing-loop; sleep 30; done"]
 resources:
 limits:
 cex.s390.ibm.com/CCA-Coproc_for_Bedivere: 1

[root@bastion cex-plugin]# cat ubi-e11.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: ubi-ep11
 namespace: knights
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ubi-ep11
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: ubi-ep11
 spec:
 containers:
 - image: '<HERE is the repository and the IMAGE>'
 imagePullPolicy: Always
 name: <PODNAME>
 command: ["/bin/sh", "-c", "while true; do echo do-nothing-loop; sleep 30; done"]
 resources:
 limits:
 cex.s390.ibm.com/EP11_for_Galahad: 1

There are several ways to verify a successful deployment. First, you can check the pod
description to see if the desired resource is available by using the oc describe pod
command, as shown in Example 4-12 and Example 4-13 on page 104.

Example 4-12 Part of oc describe pod output of the pod where we requested EP11

Limits:
 cex.s390.ibm.com/EP11_for_Galahad: 1
 Requests:
Chapter 4. Using a CEX resource within a containerized environment 103

 cex.s390.ibm.com/EP11_for_Galahad: 1

Example 4-13 Part of oc describe pod output of the pod where we requested accelerator

Limits:
 cex.s390.ibm.com/Accelerator_for_Lancelot: 1
 Requests:
 cex.s390.ibm.com/Accelerator_for_Lancelot: 1

We can check the node where we deployed the resources by using the oc describe node
aw1 command, as shown in Example 4-14.

Example 4-14 Partial output of the oc describe node aw1 command

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 244m (6%) 0 (0%)
 memory 1228Mi (8%) 0 (0%)
 ephemeral-storage 0 (0%) 0 (0%)
 hugepages-1Mi 0 (0%) 0 (0%)
 cex.s390.ibm.com/Accel_for_Bedivere 0 0
 cex.s390.ibm.com/Accelerator_for_Lancelot 1 1
 cex.s390.ibm.com/CCA-Coproc_for_Bedivere 0 0
 cex.s390.ibm.com/CCA_for_Lancelot 0 0
 cex.s390.ibm.com/EP11_for_Galahad 1 1
Events: <none>

Since our test pods provide a bash prompt when we log in (for example, in the Red Hat
Openshift GUI, the pod's response to Terminal), there are several ways to check for
functionality.

First, we can check what kind of crypto resource is available by using the lscrypt command,
as shown in Figure 4-7 and Figure 4-8 on page 105. Remember we are working within the
pod now.

Figure 4-7 Checking resources
104 Crypto Express for Cloud Workloads

Figure 4-8 Checking resource

Another test would be if we use the configured OpenSSL, and we are checking the speed
there. Before and after running the test we can check a status by using the command shown
in Example 4-15 (focus in example is on the relevant portion only).

Example 4-15 Testing openssl-rsa command

sh-5.1$ icastats
 function | hardware | software
----------------+------------------------------+-----------------------------
 | ENC CRYPT DEC | ENC CRYPT DEC
----------------+------------------------------+-----------------------------
 SHA-1 | 0 | 0
 SHA-224 | 0 | 0
...
 X25519 Keygen | 0 | 0
 X25519 Derive | 0 | 0
 X448 Keygen | 0 | 0
 X448 Derive | 0 | 0
 RSA-ME | 0 | 0
 RSA-CRT | 0 | 0
 DES ECB | 0 0 | 0 0
 DES CBC | 0 0 | 0 0
...
 AES GCM | 0 0 | 0 0

sh-5.1$ openssl speed rsa4096
Doing 4096 bits private rsa's for 10s: 2626 4096 bits private RSA's in 0.36s
Doing 4096 bits public rsa's for 10s: 58739 4096 bits public RSA's in 0.04s
version: 3.0.7

 sign verify sign/s verify/s
rsa 4096 bits 0.000137s 0.000001s 7294.4 1468475.0

sh-5.1$ icastats
 function | hardware | software
----------------+------------------------------+-----------------------------
Chapter 4. Using a CEX resource within a containerized environment 105

 | ENC CRYPT DEC | ENC CRYPT DEC
----------------+------------------------------+-----------------------------
 SHA-1 | 0 | 0
 SHA-224 | 0 | 0
...
 X448 Keygen | 0 | 0
 X448 Derive | 0 | 0
 RSA-ME | 58823 | 0
 RSA-CRT | 2627 | 0
 ...
 AES GCM | 0 0 | 0 0

The openssl-rsa test has driven the CEX resource within the pod.

We also compared non-accelerated and accelerated openssl-rsa speeds inside pods. The
results were convincing for us and proved that using CEX resources within a pod works. The
results from our lab environment are shown in Example 4-16.

Example 4-16 Test result comparing non-accelerated and accelerated openssl-rsa speeds

 sign verify sign/s verify/s
Accelerated rsa 2048 bits 0,00004 0,00000 24022,60 1322975,00
Non-accele. rsa 2048 bits 0,00238 0,00006 419,60 18001,70
Multiplicator 57 56 57 73

Accelerated rsa 4096 bits 0,00013 0,00000 7517,60 130100,00
Non-accele. rsa 4096 bits 0,01528 0,00019 65,40 5226,10
Multiplicator 115 191 115 216

There are other use cases more useful than the ones presented here. Our goal is to
demonstrate the configuration and the solution, and to test the success of the operation.
106 Crypto Express for Cloud Workloads

Chapter 5. Guest and workload
considerations for using an HSM
in the cloud

In this chapter, we discuss:

� “Determining the right HSM” on page 108

� “openCryptoki” on page 110

� “dm-crypt” on page 116

� “Crypto Express support for Secure Execution” on page 117

5

© Copyright IBM Corp. 2024. 107

5.1 Determining the right HSM

In 2.2, “Crypto Express configuration” on page 13, we showed how to configure CEX devices
and the crypto domains on the HMC/DPM consoles for each LPAR on an IBM Z or LinuxONE
server. On those consoles, we not only had to make the device available but also specify
which domains would be available in the LPAR to which we were attaching the CEX adapters.
A z/VM or KVM host will only detect those adapters and domains assigned to the z/VM or
KVM LPARs. They appear to the hypervisor and can be used by virtual machines. This
section shows how z/VM “sees” crypto resources as virtual devices represented by a crypto
ID and a domain index. Additionally, we show how a user can determine if the guest uses the
right HSM and domains.

Example 5-1 provides the query that will show the crypto domains assigned to a z/VM host
(LPAR). In this example, the guests that were using the adapters were not running. Adapters
#000 and #002 are configured as CCA cryptographic coprocessor (CEX8C) mode and
adapters #001 and #003 are configured as a PKCS #11 cryptographic coprocessor or
EP11(CEX8P) mode.

Example 5-1 Domains and adapters assigned to the z/VM LPAR

query crypto domain users
22:23:07 AP 000 CEX8C Domain 020 operational online shared
22:23:07 AP 000 CEX8C Domain 021 operational online free
22:23:07 AP 001 CEX8P Domain 020 operational online free
22:23:07 AP 001 CEX8P Domain 021 operational online free
22:23:07 AP 002 CEX8C Domain 020 operational online shared
22:23:07 AP 002 CEX8C Domain 021 operational online free
22:23:07 AP 003 CEX8P Domain 020 operational online free
22:23:07 AP 003 CEX8P Domain 021 operational online free
22:23:07
22:23:07 There are no shared crypto users.
Ready; T=0.01/0.01 22:23:07

Domains 20 and 21 from adapters (HSM) 000, 001, 002 and 003 are assigned to the z/VM
LPAR and are available to z/VM guests.

Example 5-2 shows the command used to display the crypto domains assigned to z/VM
guests, BASTION and BASTION2. In this example, the guests that were using the adapters
were running. This command is issued on the z/VM host.

Example 5-2 Domain and adapters assigned to z/VM guests BASTION and BASTION2

query crypto domain users
14:53:00 AP 000 CEX8C Domain 020 operational online shared
14:53:00 AP 000 CEX8C Domain 021 operational online attached to BASTION2
14:53:00 AP 001 CEX8P Domain 020 operational online attached to BASTION
14:53:00 AP 001 CEX8P Domain 021 operational online attached to BASTION
14:53:00 AP 002 CEX8C Domain 020 operational online shared
14:53:00 AP 002 CEX8C Domain 021 operational online attached to BASTION2
14:53:00 AP 003 CEX8P Domain 020 operational online attached to BASTION
14:53:00 AP 003 CEX8P Domain 021 operational online attached to BASTION
14:53:00
14:53:00 There are no shared crypto users.
108 Crypto Express for Cloud Workloads

Domains 20 and 21 from adapters (HSM) 001 and 003 have been assigned to the z/VM
guest, BASTION. Domain 21 from adapters (HSM) 000 and 002 have been assigned to the
z/VM guest, BASTION2.

To verify whether the guest, BASTION, is using the correct HSM and domains, issue the
command shown in Example 5-3. This command is issued via SSH to the BASTION guest
and lists all devices grouped by cryptographic device. Card and domain IDs are in
hexadecimal.

Example 5-3 Query the crypto status from z/VM guest, BASTION

[root@bastion ~]# hostname
bastion
[root@bastion ~]# lszcrypt
CARD.DOM TYPE MODE STATUS REQUESTS
--
01 CEX8P EP11-Coproc online 0
01.0014 CEX8P EP11-Coproc online 0
01.0015 CEX8P EP11-Coproc online 0
03 CEX8P EP11-Coproc online 0
03.0014 CEX8P EP11-Coproc online 0
03.0015 CEX8P EP11-Coproc online 0
[root@bastion ~]#

Domains 20 (Hex 14) and 21 (Hex 15) from adapters 001 and 003 are available to z/VM
Guest BASTION, and that matches the output shown in Example 5-2 on page 108.

From Example 5-2 on page 108, domain 21 from HSM 000 and 002 are assigned to the
BASTION2 guest.

To verify whether the guest, BASTION2, use the correct HSM and domains, use the
command shown in Example 5-4. This command is issued using SSH to the BASTION2
guest and lists all devices grouped by cryptographic device. Card and domain IDs are
hexadecimal values.

Example 5-4 Query the crypto status from z/VM guest, BASTION2

[root@bastion2 ~]# hostname
bastion2
[root@bastion2 ~]# lszcrypt
CARD.DOM TYPE MODE STATUS REQUESTS
--
00 CEX8C CCA-Coproc online 1
00.0015 CEX8C CCA-Coproc online 1
02 CEX8C CCA-Coproc online 0
02.0015 CEX8C CCA-Coproc online 0
[root@bastion2 ~]#

From Example 5-4, domain 21 (Hex 15) from adapters 000 and 002 are available to z/VM
guest, BASTION2, and that matches the output shown in Example 5-2 on page 108.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 109

5.2 openCryptoki

openCryptoki is an open-source implementation of Cryptoki (cryptographic token interface).
openCryptoki provides a standard programming interface between applications and all kinds
of portable cryptographic devices (such as a Crypto Express adapter) that hold cryptographic
information and perform cryptographic functions. For more information, see Linux on IBM Z
and IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS #11,
SC34-7730.

5.2.1 Slots and tokens

openCryptoki consists of an implementation of the PKCS #11 API, a slot manager, an API for
slot token dynamic link libraries (STDLLs), and a set of STDLLs (or tokens).

A slot is similar to a smart card reader. In the same way a smart card is inserted into a smart
card reader, a PKCS #11 token is inserted into a PKCS #11 slot, where the slot is identified
by its ID.

A token is a library code that knows how to interface with the cryptographic hardware.

The slot manager provides the number of configured tokens to applications and it interacts
with the tokens that are used by the applications. For each device with which a token should
be associated, this token must be defined in a slot in the openCryptoki configuration file,
/etc/opencryptoki/opencryptoki.conf. This allows for proper sharing of state information
between applications to help ensure conformance with the PKCS #11 specification. The
openCryptoki library loads the tokens that provide hardware or software-specific support for
cryptographic functions.

openCryptoki allows for the management of multiple tokens that can be used in parallel by
one or more processes or applications. openCryptoki supports different token types for
software tokens and for various forms of hardware support, for example, IBM Crypto Express
adapters. These multiple tokens can have the same or different types. For example, the EP11
token type is an STDLL introduced with openCryptoki version 3.1.

For more information on openCryptoki token types, see chapters 13-19 in Linux on IBM Z and
IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS #11, SC34-7730.

Figure 5-1 on page 111 shows the process flow within the Linux on IBM Z and IBM LinuxONE
crypto stack.

An application sends an encryption request to the crypto adapter. Through various interfaces,
the request is propagated from the application layer down to the target crypto adapter. The
request passes through the following layers:

� The standard openCryptoki interfaces

� The relevant IBM Z crypto libraries

� The operating system kernel

The zcrypt device driver finally sends the request to the appropriate cryptographic
coprocessor. The resulting request output is sent back to the application in reverse, through
the layer interfaces.

For more information, see Linux on IBM Z and IBM LinuxONE openCryptoki - An Open
Source Implementation of PKCS #11, SC34-7730.
110 Crypto Express for Cloud Workloads

https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf

Figure 5-1 Linux on IBM Z crypto infrastructure

For more information on the openCryptoki architecture, see Common features of
openCryptoki.

5.2.2 Installation of openCryptoki

To install, follow the instructions provided in “Chapter 4. Installing openCryptoki” in Linux on
IBM Z and IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS #11,
SC34-7730.

5.2.3 Configuration of openCryptoki

You can configure openCryptoki (the set of tokens including their respective token types) by
using the opencryptoki.conf file. You can define and exploit multiple tokens of any token
type, each with a different token name. For multiple EP11 tokens, you can configure them by
using a token-specific configuration file for each token instance. For the most current default
opencryptoki.conf file, see the opencryptoki GitHub repository.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 111

https://www.ibm.com/docs/en/linux-on-systems?topic=322-opencryptoki-features
https://www.ibm.com/docs/en/linux-on-systems?topic=322-opencryptoki-features
https://github.com/opencryptoki/opencryptoki/blob/master/usr/sbin/pkcsslotd/opencryptoki.conf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf

A sample token-specific configuration file is shown in Example 5-5. For the complete file, see
Adjusting the openCryptoki configuration file.

Example 5-5 Sample token-specific opencryptoki.conf file

version opencryptoki-3.22
The following defaults are defined:
hwversion = "0.0"
firmwareversion = "0.0"
description = Linux
manufacturer = IBM
#
The slot definitions below may be overridden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = "2.32"
firmwareversion = "1.0"
}
See man(5) opencryptoki.conf for further information.
#
disable-event-support # not part of the default config file. Enabled by default.
statistics (on,implicit,internal) # not part of the default config file. enable or
disable the collection of statistics about mechanism usage
slot 0
{
stdll = libpkcs11_tpm.so
tokversion = 3.12
}
slot 1
{
stdll = libpkcs11_ica.so
tokversion = 3.12
}
slot 2
{
stdll = libpkcs11_cca.so
confname = ccatok.conf
tokversion = 3.12
}
slot 3
{
stdll = libpkcs11_sw.so
tokversion = 3.12
}
slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
tokversion = 3.12
}

112 Crypto Express for Cloud Workloads

https://www.ibm.com/docs/en/linux-on-systems?topic=opencryptoki-configuration-file

Each token uses a unique token directory. This token directory receives the token-individual
information (like for example, key objects, user PIN, SO PIN, or hashes). Thus, the
information for a certain token is separated from all other tokens. For example, for most Linux
distributions, the CCA token directory is /var/lib/opencryptoki/ccatok. The CCA token is
called ccatok, if there is only one instance of a CCA token, and no explicit name is defined in
the openCryptoki configuration file.

For more information on the openCryptoki configuration file, see “Chapter 5. Adjusting the
openCryptoki configuration file” in Linux on IBM Z and IBM LinuxONE openCryptoki - An
Open Source Implementation of PKCS #11, SC34-7730.

5.2.4 Managing tokens

Linux on IBM Z and IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS
#11, SC34-7730 and pkcsconf man page discuss the pkcsconf utility. This utility is a
command-line program (/sbin/pkcsconf) that can be used to configure and administer
tokens that are supported within the system.

Options available in this command include the ability to do the following:

� Display slot information (Example 5-6).

Example 5-6 Display slot information:

pkcsconf -s

Slot #1 Info
 Description: ICA Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0
 Firmware Version: 2.11
...
...
Slot #4 Info
 Description: EP11 Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0

 Firmware Version: 2.10

� Show which slot is available (Example 5-7).

Example 5-7 Display available slot

pkcsconf -tis
PKCS#11 Info
 Version 2.20
 Manufacturer: IBM
 Flags: 0x0
 Library Description: Meta PKCS11 LIBRARY
 Library Version 3.10
Token #3 Info:
 Label: IBM OS PKCS#11 1
 Manufacturer: IBM Corp.
 Model: IBM SoftTok
 Serial Number: 123
Chapter 5. Guest and workload considerations for using an HSM in the cloud 113

https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://linux.die.net/man/1/pkcsconf
https://linux.die.net/man/1/pkcsconf

 Flags: 0x880045
(RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|SO_PIN_TO_BE_CHANGED)
 Sessions: 0/18446744073709551614
 R/W Sessions: 18446744073709551615/18446744073709551614
 PIN Length: 4-8
 Public Memory: 0xFFFFFFFFFFFFFFFF/0xFFFFFFFFFFFFFFFF
 Private Memory: 0xFFFFFFFFFFFFFFFF/0xFFFFFFFFFFFFFFFF
 Hardware Version: 1.0
 Firmware Version: 1.0
 Time: 12:35:01
Slot #3 Info
 Description: Linux
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT) 1
 Hardware Version: 0.0
 Firmware Version: 0.0

� Display token information (Example 5-8).

Example 5-8 Display token information

pkcsconf -t
...
...
Token #4 Info:
 Label: ep11tok
 Manufacturer: IBM
 Model: EP11
 Serial Number: 93AABC5H53107366
 Flags: 0x880045
(RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|SO_PIN_TO_BE_CHANG
ED)
 Sessions: 0/[effectively infinite]
 R/W Sessions: [information unavailable]/[effectively infinite]
 PIN Length: 4-8
 Public Memory: [information unavailable]/[information unavailable]
 Private Memory: [information unavailable]/[information unavailable]
 Hardware Version: 7.24
 Firmware Version: 3.1
 Time: 2021031912021700

� Initialize a token (Example 5-9).

Example 5-9 Initialize a token

$ pkcsconf -I -c <slot> /* Initialize the Token and set up a Token Label */
$ pkcsconf -P -c <slot> /* change the SO PIN (recommended) */
$ pkcsconf -u -c <slot> /* Initialize the User PIN (SO PIN required) */
$ pkcsconf -p -c <slot> /* change the User PIN (optional) */

5.2.5 Generating and listing keys

Linux on IBM Z and IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS
#11, SC34-7730 and Managing token keys - p11sak utility discuss the p11sak utility.
114 Crypto Express for Cloud Workloads

https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l322oc02.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=tools-p11sak

This utility can be used to manage token keys and certificates in an openCryptoki token
repository with their PKCS #11 attributes.

Subcommands of this utility allow you to do the following:

� Generate keys in the openCryptoki repository.

� List the keys in the repository.

The tool supports the listing of:

– symmetric keys (AES, 3DES, DES) with PKCS #11 attributes

– asymmetric keys (RSA, EC) with PKCS #11 attributes

– public, private and secure keys

– all keys of any type

� Remove the keys from the repository.

� Set attributes of keys.

� Copy the keys in the repository.

� Import and export keys from and to a binary file or a PEM file (PEM is a container file
format often used to store cryptographic keys).

� List certificates in the repository.

� Remove certificates from the repository.

� Set or update attributes of certificates.

� Copy certificates in the repository.

� Import and export certificates from and to a binary file or a PEM file.

� Extract public keys from certificates.

5.2.6 Token specifications

Linux on IBM Z and IBM LinuxONE openCryptoki - An Open Source Implementation of PKCS
#11, SC34-7730 and Token specifications discuss token specifications. Token specifications
refer to the characteristics and configurations of the crypto tokens supported by the
openCryptoki framework.

Token specifications include details such as the following:

� Information about the cryptographic algorithms supported by the token, such as
encryption algorithms (AES, DES), hash functions (SHA-1, SHA-256), and digital
signature algorithms (RSA, ECDSA).

� Specifications regarding the storage of cryptographic keys, including the maximum
number of keys supported, key lengths, and key types (symmetric, asymmetric).

� Details about security measures provided by the token, such as PIN policies (length,
complexity, retry limits), authentication mechanisms, tamper resistance, and compliance
with industry standards (FIPS 140-2, for example).

� Information about supported functionalities and operations, such as key generation, key
import/export, encryption, decryption, signing, and verification.

� Specifications related to token management operations, including initialization,
re-initialization, backup, and restore procedures.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 115

https://www.ibm.com/docs/en/linux-on-systems?topic=322-token-specifications

These specifications assist developers and administrators in ensuring compatibility, security
and effective utilization of cryptographic tokens through the standardized interface provided
by PKCS#11.

5.3 dm-crypt

In Linux, the most popular method for end-to-end data at-rest encryption is full volume
encryption using the dm-crypt kernel component.

dm-crypt is a transparent disk encryption system that allows you to encrypt entire block
devices. It operates as part of the device mapper (hence the “dm” in dm-crypt), which is a
kernel framework for mapping physical block devices into higher-level virtual block devices.
This encryption layer intercepts data going to and from a block device, encrypting it before it is
written to the disk and decrypting it as it's read back.

Key features of dm-crypt include:

� Full Disk Encryption: It enables you to encrypt entire disks or partitions, protecting the data
stored on them.

� Transparent Encryption: Once set up, encryption and decryption are done automatically
and transparently to the user and applications. Users don’t need to manage encryption
and decryption processes directly.

� Pluggable Encryption Algorithms: It supports various encryption algorithms such as AES
(Advanced Encryption Standard), Twofish, Serpent, and others, which allows users to
choose the encryption algorithm that suits their security and performance needs.

� Passphrase and Keyfile Support: dm-crypt allows the use of passphrases or keyfiles to
unlock encrypted devices.

� Integration with LUKS: Often, dm-crypt is used in conjunction with LUKS (Linux Unified
Key Setup), which provides a standard format for disk encryption, managing encryption
keys, and storing metadata about the encrypted volumes.

Encrypting disks by using dm-crypt can provide a significant level of security, especially for
systems that handle sensitive data. It helps protect data at-rest, preventing unauthorized
access to the information if the device is lost or stolen.Users can set up dm-crypt during the
installation of Linux or manually configure it post-installation to encrypt disks or partitions,
adding an extra layer of security to their system.

Figure 5-2 on page 117 provides an overview of dm-crypt and end-to-end data encryption. To
encrypt volumes, use dm-crypt with the protected-key cipher, paes. The encryption keys are
protected by a Crypto Express adapter. Protected volume encryption requires that the Linux
kernel include support for the protected AES cipher (paes_s390) that automatically includes
the pkey module.
116 Crypto Express for Cloud Workloads

Figure 5-2 End-to-end data encryption

For a discussion of protected and secure volume encryption, see Protected and secure
volume encryption.

For additional guidance on installation and configuration, see Encrypting volumes by using
dm-crypt.

5.3.1 Installation and configuration overview

To configure the disk partitions and optionally set up an encrypted partition or logical volume
to encrypt all sensitive data, use the following steps.

5.4 Crypto Express support for Secure Execution

This chapter describes the setup procedure required to run a crypto load within Secure
Execution (SE) guests with Crypto Express (CEX) support. Secure Execution is an
implementation of Confidential Computing. Crypto Express supports means to make the
Crypto resources often also named HSMs (Hardware Security Modules) available within SE
guests. This chapter comprises the additional steps to prepare the SE guest and the
arrangements required at runtime of the SE guest to securely access these crypto resources.

CEX support for Secure Execution combines two already existing concepts:
Chapter 5. Guest and workload considerations for using an HSM in the cloud 117

https://www.ibm.com/docs/en/linux-on-systems?topic=2020-protected-secure-volume-encryption
https://www.ibm.com/docs/en/linux-on-systems?topic=2020-protected-secure-volume-encryption
https://www.ibm.com/docs/en/cloud-private/3.2.x?topic=installation-encrypting-volumes-by-using-dm-crypt
https://www.ibm.com/docs/en/cloud-private/3.2.x?topic=installation-encrypting-volumes-by-using-dm-crypt

� Secure Execution support for KVM guests:

Secure Execution is a feature to run secured KVM guests in a cloud environment
protected from access from the cloud infrastructure provider. More details can be found at
the IBM online documentation IBM Secure Execution for Linux, and Introducing IBM
Secure Execution for Linux, SC34-7721.

� AP pass-through support for KVM guests:

VFIO pass-through for AP devices or short AP pass-through is an KVM feature to provide
crypto resources available on the KVM host to KVM guests. Each guest defines a
mediated device which comprises the crypto resources to claim from the host and forward
to the guest. More details can be found at the IBM online documentation, Setting up
cryptographic adapter resources for VFIO, and in the IBM publication KVM Virtual Server
Management, SC34-2752-08.

CEX support for secure execution (SE) is a new feature available with z16 with GA 1.5 in
combination with CEX8S only.

Before using CEX support for Secure Execution make sure you have read and understood the
security requirements stated in 5.4.8, “Important considerations for the secure use of Crypto
Express adapters in EP11 mode” on page 126.

5.4.1 Terms and concepts related to secure execution with CEX support

The following are commonly used terms and concepts related to secure execution.

� Ultravisor

The Ultravisor (UV) is some part of the IBM Z firmware which handles most of the low level
parts for Secure Execution and AP pass-through. The KVM host and the KVM SE guests
interact with the UV through a firmware API. The UV is considered trustworthy whereas
the KVM host running the hypervisor is not. The states of crypto resources related to SE
guests with AP pass-through and the crypto operations on these resources are
supervised by the UV to make sure that a) only the permitted guest may access the
resource and b) only allowed operations (based on the state) are executed. So the UV
does the book keeping of each SE guest and its associated crypto resources (APQNs)
and holds space for up to 12 AP Association Secrets per SE guest.

� AP Association Secret

An AP association secret or short secret in the context of SE with AP pass-through is a 32
byte random value. It is used by the UV to derive unique authentication data to create an
EP11 session for each EP11 crypto resource (APQN). An AP Association Secret should
be prepared on a trusted machine only and encrypted with the public key (certificate) of
the target host. The encrypted secret can be transferred to the SE guest without any
security risks. The SE guest will push the encrypted secrets to use through UV API into
the UV on the target host maybe during startup. The UV can decrypt the secret with the
help of the private host key available in the HSA memory. So the secret value is not
exposed to the hypervisor or even the SE guest but in clear only visible to the creating
party (a trusted machine) and the consuming UV (within a trusted firmware environment).

� Master Key, Wrapping Key, MKVP

The Master Key, with EP11 often named as Wrapping Key, is used inside an HSM to
encrypt (wrap) and decrypt (unwrap) the key value of a secure key. For more details see
1.2, “Cryptographic terms” on page 4. A secure key usually comprises not only the
encrypted key value but also key attributes. An EP11 secure key for example holds 16
bytes Master Key Verification Pattern (MKVP). This is a cryptographic hash value over the
Master Key used to encrypt the secure key.
118 Crypto Express for Cloud Workloads

https://www.ibm.com/docs/en/linux-on-z?topic=concepts-secure-execution
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=setup-crypto
https://www.ibm.com/docs/en/linux-on-systems?topic=setup-crypto
https://www.ibm.com/docs/en/linuxonibm/pdf/l22bva08.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l22bva08.pdf

By examining this MKVP value within the secure key it is determinable which HSM can
work with the secure key. The MKVP is retrievable from the HSM, for example Linux
exposes this value in sysfs at /sys/devices/ap/card<xx>/<xx>.<yyyy>/mkvps.

� EP11 Session, Session-bound Key

An EP11 HSM allows to tighten the usage of EP11 secure keys by restricting the key to an
EP11 session. To open up an EP11 session one needs to create or open a session by
login in with credential information given. All secure keys generated within a session are
then constrained to this session and called session-bound keys. An EP11 session is not a
one-time session but may be closed and reopened at a later time. So a session-bound
working key may be reused with a session reopened with same login credentials on the
same APQN or another APQN with matching MK setup.

5.4.2 Secret preparation for SE guests with CEX support

To run crypto load on an EP11 APQN within an SE guest, one needs to provide an AP
association secret. This secret is used during the association step, which is described in more
detail in “EP11 coprocessor APQN” on page 122.

On a trusted machine (this may be a trusted Linux system on s390 with the s390-tools
installed or a local PC with the x86 version of the s390-tools) AP association secrets should
be generated for each EP11 crypto resource intended to be used within the SE guest.

To create a new AP association secret use the pvsecret application:

pvsecret create --output <encryted_secret_filename> --hdr
<SE_guest_image_header_file> --host-key-document <public_host_key> --no-verify
association "<secret_name>"

This generates a new random secret value, encrypts the value with the public host key of the
target host <public_host_key> and stores it into the given file <encrypted_secret_filename>.

The required <SE_guest_image_header_file> can be extracted from the Secure Execution
image with:

pvextract-hdr -o <SE_guest_image_header_file> <SE_guest_image>

Figure 5-3 on page 120 shows a real-world example of the invocation. The sample shows all
the steps from the SE guest image creation up to the creation of one secret named
“SECRET1”. The sample also shows that the pvsecret command additionally creates an
association secret info file <secret_name>.yaml which shows additional information like the
secret id. The secret id is a simple sha-256 hash of the <secret_name> but may be used to
uniquely identify this association secret.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 119

Figure 5-3 Sample pvsecret create invocation

The Ultravisor uses the secret value to derive login credentials to open up an EP11 session
on the APQN associated with this secret. So the secret is one pillar of the security concept for
CEX support for Secure Execution.

The created file is encrypted with the public host key and only the Ultravisor on the target host
can decrypt and access the secret value. The file needs to be available within the SE guest
image to prepare the APQN for crypto load. It may be packaged with the SE guest image or
located on a file system mounted during SE guest startup.

The pvsecret and pvextract-hdr command-line tools are part of the s390-tools package as
of version 2.29. All recent Linux distributors build and offer the s390-tools package also for
x86 with limited content which includes these applications.

5.4.3 KVM host setup for SE guests with CEX support

KVM SE host support with AP pass-through is available as of Linux kernel version 6.61, and
qemu version 8.22. IBM is working with its Linux Distribution partners to include these
features into the future distribution releases.

There is no special setup needed for the KVM host to run SE guests with AP pass-through
other than the KVM host requirements for SE guests without crypto support. A KVM guest
with Secure Execution support and mediated device setup to forward the crypto resources
into the guest is set up following the combination of both instruction papers mentioned in the
introducing paragraph of this chapter.

Note that SE guests with AP pass-through support require a machine level of at least z16 with
firmware level.

CEX support for SE guests is restricted to CEX8S (and newer) crypto express cards.

5.4.4 KVM guest setup for SE guests with CEX support

KVM SE guest support with AP pass-through is available as of Linux kernel version 6.61, for
the command-line tools s390-tools version 2.29 is required. IBM is working with its Linux
Distribution partners to include these features into the future distribution releases.

1 check with uname -a on the command line
2 check with qemu-system-s390x --version on the command line
120 Crypto Express for Cloud Workloads

Before the crypto resources can be used within an SE guest, a short preparation procedure
needs to be followed. The procedure varies based on the mode of the HSM and is described
in the following paragraphs.

Accelerator APQN
An APQN in Accelerator mode needs to be bound to the SE guest by the UV before any
crypto load can be addressed to this crypto resource. Figure 5-4 shows the two states of an
Accelerator APQN.

Figure 5-4 Accelerator APQN SE states

Within the SE guest lszcrypt -V shows an additional column SESTAT that displays the SE
state of the APQNs. Figure 5-5 shows an example of this enhanced lszcrypt output:

Figure 5-5 lszcrypt verbose output with SESTAT column

An unbound Accelerator APQN is treated as insecure, the Linux crypto device driver will
refuse to address this APQN for any crypto requests. To bind the APQN <aa.dddd> to this SE
guest use the chzcrypt command-line application:

chzcrypt --se-bind <aa.dddd>

After successful binding an Accelerator APQN, it is usable for any (clear key) crypto load.
lszcrypt should also show the new state of the APQN as usable:

Figure 5-6 lszcrypt showing usable Accelerator APQN

To remove the binding issue, use a command like:

chzcrypt --se-unbind <aa.dddd>
Chapter 5. Guest and workload considerations for using an HSM in the cloud 121

However, during termination of an SE guest all bound crypto resources are reset and the
binding is removed.

With the bind step the SE guest claims the crypto resource for exclusive use. Use here means
to run crypto load: send crypto requests to and receive replies from the HSM. A bound APQN
cannot get used by any other SE guest or even the KVM hypervisor. The hypervisor however
must still be able to maintain the KVM guests and their assigned resources. So at any time
the hypervisor is able to reset the crypto resource to retrieve it for whatever reason. The SE
guest will immediately recognize this as all further requests (and pending replies) are
rejected.

EP11 coprocessor APQN
An APQN in EP11 mode needs two steps to become ready for crypto usage. Figure 5-7
shows the state diagram.

Figure 5-7 EP11 Coprocessor APQN SE states

The bind step is similar to an APQN in Accelerator mode. The SE guest claims the crypto
resource <aa.dddd> for exclusive use with the chzrypt command:

chzcrypt --se-bind <aa.dddd>

With a successful bind the SE guest has occupied the crypto resource. The APQN can be
used to query any information from the HSM for example the MKVP of the Master Key.
Administrative crypto commands like setting up a new Master Key and all crypto load not
involving any key material is allowed, for example fetching Random Data from the HSM.

Crypto commands containing any secure key material like creation of a secure key, use of a
secure key to en- or decrypt data and so on will be rejected. The UV is supervising all the
crypto load and will filter out and refuse such requests and replies.

For a full usage the APQN needs to be associated with an AP association secret. The secret
is used by the UV to open an EP11 session to this HSM with the secret value used to derive
the EP11 session login authentication data.

Before the association can be done, the AP association secret(s) need to be loaded into the
Ultravisor. The command-line tool pvsecret already known from section 5.4.2, “Secret
preparation for SE guests with CEX support” on page 119 does the job:

pvsecret add <encrypted-secret-file>

With pvsecret list the list of secrets known to the UV can be displayed, see the example in
Figure 5-8 on page 123. pvsecret list shows the secret index - 0 in this example - and the
secret id. The secret index is simple the sequence number starting with 0 where the UV
stored the secret’s data, and needs to be remembered for the following step. And of course
the secret id listed here should match to the secret id at the time of creation as it was listed in
5.4.2, “Secret preparation for SE guests with CEX support” on page 119.
122 Crypto Express for Cloud Workloads

Figure 5-8 binding and association of an EP11 APQN

When the AP association secret(s) have been injected into the UV for this SE guest, each
EP11 crypto resource needs to get associated with exactly one secret:

chzcrypt --se-associate <secret index> <aa.dddd>

Under the hood the UV will establish an EP11 session on this HSM. It will use the secret
value from the secret with the given index to derive the EP11 login credentials. This
procedure may take some time (some milliseconds up to some seconds) and chzcrypt will
wait up to 30 seconds for completion. Figure 5-8 shows the lszcrypt output after a
successful association with the SESTATE of the APQN updated to usable.

After successful association all the key material related to this APQN is implicitly
session-bound. For example a new generated secure key is wrapped by the Master Key at
this HSM and session bound to an EP11 session with login credentials derived from the
associated secret value. To reuse such a secure key one needs to a) instantiate an SE guest
with b) access to an HSM with same Master Key setting and c) associate the APQN for this
HSM with the same secret value.

Note that the UV has limited space for handling CEX support for SE guests. The UV on z16 is
able to track the bind and association state of up to 12 APQNs per SE guest.

CCA coprocessor APQN
APQNs in CCA Coprocessor mode are currently not supported within KVM SE guests with
AP pass-through. Note that the KVM hypervisor does not prevent one to include such APQNs
to be forwarded into KVM SE guests. However, the Linux device driver detects this and as a
result lszcrypt marks such an APQN as illicit:

Figure 5-9 illicit state
Chapter 5. Guest and workload considerations for using an HSM in the cloud 123

5.4.5 Security Details

Securing the access and usage of the crypto resources is based on two pillars:

� HSM access with the correct Master Key setup

All secure keys are wrapped by the MK of the HSM used. This denotes the “something you
have” part of a two-factor authentication - access to the right resource. Any HSM with the
correct (equivalent) MK setup will be sufficient.

� AP association secrets

All secure keys used with SE guests with AP pass-through support are session
session-bound keys where the session login credentials are derived from the secret value.
This can be seen as the “something you know” part of a two-factor authentication, to know
some secret.

Fraud use of secure key material requires to fulfill both criteria besides the necessity to catch
keys and maybe useful data.

The Secure Execution environment in combination with the Ultravisor firmware ensures the
cloud runtime environment is not able to access any memory within the SE guest. However,
the hypervisor is still able - and needs this for its job: to maintain the resources of the KVM
guests. So the hypervisor can run denial of service attacks, for example reset and thus
re-claim APQNs assigned to the SE guest. However, the UV firmware guarantees to handle
these situations gracefully without the possibility to leak any information like leftover requests
within the crypto resources.

5.4.6 Redundancy

In the server realm there is often a requirement for High Availability (HA) for the provided
services. For example, an application using the pkcs#11 library OpenCryptoki (see the
Opencryptoki repository on GitHub) may set up two APQNs to gain reliability.

However, using more than one APQN within SE environment requires some considerations:

� The physical crypto express card plugged into the machine is logically divided into
domains. Each domain represents an individual HSM with its own Master Key setup.

So protection against broken hardware means providing another APQN on another crypto
card.

� When using multiple APQNs for fallback reasons the Master Key setup needs to be the
same. Moreover, each HSM is customizable with additional options (often referred to as
Access Control Points). These settings may disagree between two HSMs resulting in
strange and unexpected behavior during runtime.

An application should at least check the MKVP of each APQN before use.

� All usable secure keys within an SE guest with AP pass-through support are
session-bound. The session is built up and torn down by the UV based on credentials
derived from the secret value associated with the APQN. So a setup of redundant APQNs
must be associated with the same secret value.

5.4.7 Protecting AP association secrets

As list item “AP Association Secret” on page 118 shows, the generated secrets file is
encrypted with the public host key and only the private host key living in the UV on the target
machine is able to decrypt it.
124 Crypto Express for Cloud Workloads

https://github.com/opencryptoki/opencryptoki

However, the secret can be stolen, for example during transfer to the SE guest. With access
to the hypervisor, it may then be used to associate the same APQN with another hand-crafted
SE guest.

The solution here is to make sure a generated AP association secret is only usable with the
related SE guest image. This is done by introducing yet another key, the customer
communication key (CCK). The CCK key is a symmetric AES 256-bit key generated by the
customer, similar to the following:

dd if=/dev/random of=<cck_filename> bs=1 count=32

This key is then included in the encrypted SE guest image during the image build process.
Additionally the SE guest image enables an option to accept only secrets encrypted with the
CCK key, similar to the following:

genprotimg [...] --comm-key=<cck_filename> --enable-cck-extension-secret

And with the creation of an AP association secret, the option --cck tells pvsecret to use the
customer communication key to additionally encrypt the created secret by using the following
command:

pvsecret create [...] --cck <cck_filename> association [...]

Figure 5-10 shows a session on our trusted host which runs all the steps from CCK key
creation to the generation of an CCK key protected secret.

Figure 5-10 Generate and use a CCK to protect a secret

On the receiving side - the SE guest - there is no difference in handling such a protected AP
association secret. The running SE guest knows the CCK key as it was injected into the
image and CCK secret checking is enabled. So this time the pvsecret command tries to add
a secret into the UV and the CCK checking is enforced. With a matching secret, the pvsecret
add command behaves as before. However, the attempt to use a not CCK protected secret
would result in failure of the pvsecret add command.

The terminal session on the SE guest in Figure 5-11 on page 126 shows a bind and associate
example with the generated CCK protected secret.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 125

Figure 5-11 Using a secret protected by a CCK

5.4.8 Important considerations for the secure use of Crypto Express adapters
in EP11 mode

In this section, we outline some very important requirements and restrictions for the secure
use of Crypto Express adapters in EP11 mode.

Requirement 1
You must trust the TKE domain admins of all EP11 APQNs that you associate with your SE
guest.

In particular, you must trust the TKE domain administrators to tell the SE guest administrators
the following:

� Adapters (SNs) and domains that are configured for you (possibly communicating the
certificates installed in the domains).

� HSM master (wrapping) keys that are installed in the adapter domains by communicating
their wrapping key verification patterns.

� Whenever a master key is changed.

� Whenever an adapter domain is zeroized.

Further, you must trust that the TKE domain administrators to never configure EP11 HSM
master keys used to (over time) protect the same operational key to two different domains of
the same adapter. In particular, a TKE domain administrators must never configure the same
EP11 HSM master key to two different domains of the same adapter.

Requirement 2
Your TKE adapter administrators should be trustworthy.

Trustworthy TKE adapter admins must inform your SE guest admin whenever an adapter
used by your SE guest is zeroized. If your TKE adapter admins are trustworthy then
associating only APQNs whose domain admins are trustworthy is secure.
126 Crypto Express for Cloud Workloads

If your TKE adapter admin is not trustworthy you must check for every secure key generated
in the secure guest whether its HSM master key verification pattern is the one communicated
by the trusted TKE domain admin. The openCryptoki EP11 token can be configured to only
generate secure keys with an expected wrapping key verification pattern, and zkey allows you
to inspect the master key verification patterns of keys in the zkey repository.

Restriction
Never use the same association secret with two APQNs of the same adapter. This restriction
is to enforce by current IBM and LinuxONE firmware to avoid unexpected side effects of
resetting an EP11 AP queue.
Chapter 5. Guest and workload considerations for using an HSM in the cloud 127

128 Crypto Express for Cloud Workloads

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Securing Your Critical Workloads with IBM Hyper Protect Services, SG24-8469

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Cryptographic domains

� The Virtualization Cookbook for IBM Z Volume 1: IBM z/VM 7.2, SG24-8147-02

� How to Virtualize IBM zSystems Hardware Cryptography with z/VM

Online resources

These websites are also relevant as further information sources:

� Cryptographic domains

https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-crypto-domains/

� Getting started with Podman

https://podman.io/docs

� Common features of openCryptoki

https://www.ibm.com/docs/en/linux-on-systems?topic=322-opencryptoki-features

� Protected and secure volume encryption

https://www.ibm.com/docs/en/linux-on-systems?topic=2020-protected-secure-volume
-encryption

Help from IBM

IBM Support and downloads
© Copyright IBM Corp. 2024. 129

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-crypto-domains
https://podman.io/docs
https://www.ibm.com/docs/en/linux-on-systems?topic=322-opencryptoki-features
https://www.ibm.com/docs/en/linux-on-systems?topic=2020-protected-secure-volume-encryption
https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-adapter-virtualization-1
https://www.redbooks.ibm.com/abstracts/sg248147.html
http://www.vmworkshop.org/2022/present/gszcrypt.pdf
http://www.vmworkshop.org/2022/present/gszcrypt.pdf
https://www.ibm.com/docs/en/linux-on-systems?topic=wysk-adapter-virtualization-1

ibm.com/support

IBM Global Services

ibm.com/services
130 Crypto Express for Cloud Workloads

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

IS
B

N
 0738461660

S
G

24-8547-00

IS
B

N
 0738461660

S
G

24-8547-00

IS
B

N
 0738461660

S
G

24-8547-00

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Crypto Express for Cloud W
orkloads

Crypto Express for Cloud
W

orkloads

Crypto Express for Cloud
W

orkloads

Crypto Express for Cloud W
orkloads

IS
B

N
 0738461660

S
G

24-8547-00

IS
B

N
 0738461660

S
G

24-8547-00

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

Crypto Express for Cloud
W

orkloads

Crypto Express for Cloud
W

orkloads

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461660

SG24-8547-00

®

http://www.redbooks.ibm.com
https://www.linkedin.com/groups/2130806

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Cryptographic components
	1.1.1 CPACF
	1.1.2 Crypto Express cards
	1.1.3 Trusted Key Entry workstation

	1.2 Cryptographic terms
	1.2.1 Clear key versus secure key versus protected key

	1.3 Cryptographic concepts

	Chapter 2. Overview of our environment
	2.1 Lab environment
	2.2 Crypto Express configuration
	2.2.1 Card configuration
	2.2.2 LPAR configuration
	2.2.3 Dynamic Partition Manager

	2.3 Master key setup
	2.3.1 Trusted Key Entry
	2.3.2 Checking the master key setup
	2.3.3 Master key setup with TKE
	2.3.4 Control domains

	Chapter 3. Configure LINUX guests to use CEX adapters
	3.1 Configuring a KVM host to provide CEX functionality
	3.1.1 Setting up the KVM host machine to use CEX functions
	3.1.2 What you should know about VFIO
	3.1.3 Checking kernel modules
	3.1.4 Configuring VFIO AP queues
	3.1.5 Configuring the mediated device - KVM guest level
	3.1.6 Managing VFIO AP mediated devices with libvirt

	3.2 Configuring z/VM guests to use CEX adapters
	3.2.1 Setting up the z/VM host machine to use CEX functions
	3.2.2 Assigning crypto resources on z/VM systems
	3.2.3 IBM Z operational keys: Clear, protected, or secure

	3.3 Setup and configure Linux guests to use crypto resources
	3.3.1 Dynamic assignment of crypto resources to z/VM guests
	3.3.2 Crypto resource assignment to z/VM guests for dedicated use
	3.3.3 Removing dedicated crypto resources from z/VM guests
	3.3.4 Persistence across z/VM host or guest reboots

	Chapter 4. Using a CEX resource within a containerized environment
	4.1 CEX resource deployment in a Docker environment
	4.1.1 Installation and simple usage examples for Podman
	4.1.2 Simple deployment of CEX resources
	4.1.3 A more sophisticated CEX deployment

	4.2 CEX deployment configuration in Kubernetes and Red Hat OpenShift Container Platform
	4.2.1 Kubernetes on a Red Hat OpenShift cluster
	4.2.2 CEX resources in Kubernetes orchestrated containers

	Chapter 5. Guest and workload considerations for using an HSM in the cloud
	5.1 Determining the right HSM
	5.2 openCryptoki
	5.2.1 Slots and tokens
	5.2.2 Installation of openCryptoki
	5.2.3 Configuration of openCryptoki
	5.2.4 Managing tokens
	5.2.5 Generating and listing keys
	5.2.6 Token specifications

	5.3 dm-crypt
	5.3.1 Installation and configuration overview

	5.4 Crypto Express support for Secure Execution
	5.4.1 Terms and concepts related to secure execution with CEX support
	5.4.2 Secret preparation for SE guests with CEX support
	5.4.3 KVM host setup for SE guests with CEX support
	5.4.4 KVM guest setup for SE guests with CEX support
	5.4.5 Security Details
	5.4.6 Redundancy
	5.4.7 Protecting AP association secrets
	5.4.8 Important considerations for the secure use of Crypto Express adapters in EP11 mode

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

