
Redbooks

Front cover

IBM Data Virtualization 
Manager for z/OS

Doug Dailey

Guillaume Arnould

Marie-Therese Bouedo

Willem de Gelder

Francesco Borrello

Dave Trotter

Nasser Ebrahim

Jonathan Sloan

John Casey

Bill Powers

Shawn Sullivan

Robin Ramadil-Kannan

Rajesh Sambandhan

Mahesh Sugavanam

Coreen Wilson

Jeff Lutzow





IBM Redbooks

IBM Data Virtualization Manager for z/OS

October 2021

SG24-8514-00



© Copyright International Business Machines Corporation 2021. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2021)

This edition applies to IBM Data Virtualization Manager for z/OS Version 1.1.0.

Note: Before using this information and the product it supports, read the information in “Notices” on 
page ix.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Protecting your investment by using IBM Z technology  . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  Why DVM for z/OS in modernization?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3  Why is today different? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4  What does the market offer today? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5  What can you do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6  Resolving the data latency gap through data virtualization. . . . . . . . . . . . . . . . . . . . . . . 6
1.7  DVM for z/OS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8  IBM Cloud Pak for Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9  Unlock enterprise data for virtually any application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10  Why and when should you consider DVM for z/OS  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2.  Architecture and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1  Reference architecture for DVM for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2  Technical components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3  SQL engine and query optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1  Query processing by SQL engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2  WHERE predicate PUSHDOWN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3  Join processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4  Referential integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5  Virtual Parallel Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6  Flatten arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4  Metadata repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1  DVM catalog tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5  Parallel processing through MapReduce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6  z/OS resident optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7  zIIP eligibility and data compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8  DVM Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9  Integrated DRDA Facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9.1  Peer-to-peer configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9.2  Db2 Information Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10  DVM endpoint connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10.1  Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10.2  DVM Parser and Data Mapping Facility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10.3  DS-Client API interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10.4  z/OS Connect Enterprise Edition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10.5  Java Database Connectivity Gateway  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10.6  Connection and port security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
© Copyright IBM Corp. 2021. iii



Chapter 3.  Installation and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1  Installation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2  Creating the DVM server data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3  Setting up the security application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4  Configuring the Workload Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5  Authorizing the program LOAD library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6  Creating a backup of the product libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7  Configuring support for the DBCS system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8  Customizing the DVM server for access to databases . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8.1  Customizing the relational database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8.2  IMS database customization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8.3  Adabas customization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8.4  Configuring the started task JCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8.5  Configuring the Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9  Verifying the installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4.  Connecting to z/OS data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2  Getting started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3  Direct access to z/OS databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1  ADABAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4  Db2 for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1  Db2 for z/OS access options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5  IBM ESA/IMS database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1  IMS database control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2  IMS Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.3  IMS Open Database Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.4  Configuring IMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.5  Creating virtual tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.6  Enabling IMS Direct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6  Accessing mainframe files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.1  VSAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.2  System and operations logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.3  Delimited file data sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.4  System Management Facility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.5  Db2 unload data sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 5.  Connecting to non-Z data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1  Standard access to data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.2  Distributed Relational Database Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2  Accessing non-z/OS data sources by using the JDBC Gateway server . . . . . . . . . . . . 81
5.2.1  Setting up the JDBC Gateway server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2  Installing the JDBC Gateway server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3  Running JDBC Gateway server by using UNIX System Services  . . . . . . . . . . . . 83
5.2.4  Managing JDBC Gateway server software upgrades . . . . . . . . . . . . . . . . . . . . . . 85
5.2.5  Starting the JDBC Gateway server that uses administrative UI . . . . . . . . . . . . . . 86
5.2.6  Configuring data sources that use the JDBC Gateway server UI . . . . . . . . . . . . . 87
5.2.7  Configuring the DVM server to access the JDBC Gateway server . . . . . . . . . . . . 88
5.2.8  Setting user credentials for the JDBC Gateway server. . . . . . . . . . . . . . . . . . . . . 90
5.2.9  Establishing secure access using AVZDRATH. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.10  User access that uses rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.11  Using rules to ensure global user authorization . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.12  Connecting to a JGATE Data Source in DVM Studio . . . . . . . . . . . . . . . . . . . . . 94
iv IBM Data Virtualization Manager for z/OS



5.2.13  Secure access that uses AVZDRATH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 6.  Access methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1  Interface methods for client access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2  Standard access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1  JDBC/ODBC (including security or Kerberos). . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2  ODBC (including security or Kerberos) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.3  Java application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3  DS Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1  CICS and other TXN or workload balancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2  Using Data Virtualization Manager in a COBOL program. . . . . . . . . . . . . . . . . . 110

6.4  REST and SOAP Web service interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.1  IBM z/OS Connect Enterprise Edition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.2  Configuring the DVM server for use with z/OS Connect . . . . . . . . . . . . . . . . . . . 111
6.4.3  Installing the DVM Service Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.4  Creating zCEE RESTful APIs for access to the DVM server  . . . . . . . . . . . . . . . 115
6.4.5  Db2 Query Management Facility API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5  Integrated Data Facility for mainframe applications  . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.1  DVM server subsystem in the Db2 communications database. . . . . . . . . . . . . . 122
6.5.2  Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.3  Choosing Db2 UDTF or IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6  Db2 for z/OS UDTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7  Db2 federation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.8  IBM Cloud Pak for Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8.1  Cloud Pak for Data interface and adding a DVM connection . . . . . . . . . . . . . . . 128
6.8.2  Previewing data from your newly connected DVM server. . . . . . . . . . . . . . . . . . 130

Chapter 7.  Managing and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1  Accessing the ISPF interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1  DVM server ISPF panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2  Creating virtual tables in the ISPF interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.3  ISPF interface and IBM Parallel Sysplex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2  DVM Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.1  Navigator wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.2  DVM Studio perspectives and views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.3  Common tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.4  More menu options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.5  Using DVM Studio to virtualize IMS data segments . . . . . . . . . . . . . . . . . . . . . . 151

7.3  Batch interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.1  Creating a virtual table with the batch interface  . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.2  Migrate virtual tables with the batch interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.3  Querying virtual tables with the batch interface  . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4  API interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.1  API interface purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.2  Calling the API interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.3  API functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.4  API interface and DVM Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5  Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Chapter 8.  Performance tuning and query optimization . . . . . . . . . . . . . . . . . . . . . . . 167
8.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.2  Combined GP and zIIP consumption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3  Parallel I/O and MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.4  Virtual Parallel Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
 Contents v



8.4.1  Using VPD groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.2  Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.3  Considerations and limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.5  Workload management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.5.1  Configuring WLM for the DVM server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5.2  Working with multiple DVM servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.5.3  Load balancing with CICS regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5.4  Db2-Direct and IMS-Direct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5.5  Java Database Connectivity performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.6  ODBC performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.7  Integrated Data Facility and DS Client API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.8  Query optimization and performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.8.1  SQL best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.8.2  Performance testing with Apache JMeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.8.3  Performance testing by using the Command Line Tester . . . . . . . . . . . . . . . . . . 192

Chapter 9.  Capacity planning and deployment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.1  Capacity planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2  Monitoring workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.2.1  Monitoring capacity with SMF records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.2.2  Monitoring performance by using SMF Record 249 Subtype 06  . . . . . . . . . . . . 200
9.2.3  Monitoring by using DVM ISPF panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.3  Capacity planning for future growth  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.3.1  Customer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.3.2  General recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.4  Scaling for growth with the DVM server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.4.1  Memory consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.4.2  zIIP processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.4.3  Use of MapReduce for parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.4.4  Performance differences by access method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.5  Workload balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.6  User concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.7  Best practices for deploying the DVM server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.7.1  Data sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.7.2  Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.8  Developing queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.8.1  Creating virtual tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.8.2  Combining data from different data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.8.3  Creating a query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.8.4  Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.8.5  Embedding your query in an application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.9  Administering the DVM server in production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.9.1  Limiting access to the DVM server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.9.2  High availability configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Chapter 10.  Best practices for project success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.1  Defining successful projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.2  Defining the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.3  POC checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

10.3.1  Timelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.2  Setting scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.3  Focus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.4  Success criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
vi IBM Data Virtualization Manager for z/OS



10.3.5  Best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.3.6  Roles and responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.3.7  Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.3.8  Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.3.9  Architectural topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.3.10  Defining use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.3.11  Best practices for defining success criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.3.12  Concluding the POC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.3.13  Finalizing deliverables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix A.  Project survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Business drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Virtualization topology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Distance between the DVM servers and data sources . . . . . . . . . . . . . . . . . . . . . . . . . 227
Primary use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Physical storage or memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Hardware configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
z/OS environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Access to data sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Client connections to DVM for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Data sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Application workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Appendix B.  Java API sample code snippet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Available metadata in the DVM server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Appendix C.  Troubleshooting and diagnosing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Initially characterizing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Must Gather information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

DVM for z/OS version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
High Module date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
PTF Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
DVM server environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Capturing trace browse from the DVM server ISPF panel . . . . . . . . . . . . . . . . . . . . . . . . . 241
Capturing a copy of the Trace Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Displaying and viewing server traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Capturing and printing server trace output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Using DVM Studio to display and view a server trace  . . . . . . . . . . . . . . . . . . . . . . . . . 245
Using DVM Studio to diagnose SQL results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Consolidating server trace over multiple DVM servers . . . . . . . . . . . . . . . . . . . . . . . . . 246

Search Techdocs for answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
 Contents vii



viii IBM Data Virtualization Manager for z/OS



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2021. ix



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

CICS®
Cognos®
Db2®
DB2®
IBM®
IBM Cloud®
IBM Cloud Pak®
IBM Watson®
IBM Z®

IBM z Systems®
IBM z13®
IMS/ESA®
Informix®
Netezza®
Parallel Sysplex®
RACF®
Rational®
Redbooks®

Redbooks (logo) ®
SPSS®
WebSphere®
z Systems®
z/OS®
z13®
z15™
zEnterprise®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive 
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United 
States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others. 
x IBM Data Virtualization Manager for z/OS

http://www.ibm.com/legal/copytrade.shtml


Preface

This IBM® Redbooks® publication presents an overview of the IBM Data Virtualization 
Manager for IBM z/OS® offering and the role it plays in accessing traditional non-relational 
data on IBM Z.

If there is anything true about the IT industry, it is change and data. Data Virtualization 
Manager for z/OS is built with both of these absolute truths in mind. With Data Virtualization 
Manager for z/OS, an organization can extend its infrastructure and data investments to 
support new ways of accessing and presenting data within modern applications. Modernizing 
access to those highly valuable traditional non-relational data sources is its reason for 
existence.

The book begins with general concepts, the value of virtualization to an organization, and the 
benefits of virtualizing data assets that originate on IBM Z®. It compares the benefits and 
implications of accessing data where it originates to the effect of moving that data to another 
platform for data access. Modernization is often at the center of any Data Virtualization 
project and Data Virtualization Manager for z/OS can play a key role in these efforts.

Next, the book describes the architecture of the Data Virtualization Manager for z/OS server 
and provides technical details of the data asset virtualization process so that technical users 
can better prepare for deployment of this new technology. The book provides a description of 
the server's most important components and functions so that a user can better understand 
how to take advantage of the extensive capabilities.

Beyond the fundamental description of the server components, the book documents how to 
install and configure the server, how to connect it to various data sources (such as VSAM and 
IMS), the different access methods for different types of data sources, and how to manage, 
monitor, and tune. A chapter about capacity planning and deployment also is included, along 
with best practices for project success. Lastly, some helpful appendixes are available, 
including one about troubleshooting and diagnostics.

Although this book does not include all the documentation that is relevant to Data 
Virtualization Manager for z/OS, we believe it to be a good roadmap to get you on your way to 
a successful virtualization project.

The introductory chapters of this publication are intended for a broad technical audience, 
including IT system architects, technical IT managers, operations managers, system 
programmers, application developers, and other technical roles. The subsequent chapters 
provide more technical details about the virtualization of specific types of data sets on IBM Z 
and might be more suitable to technicians who are implementing virtualization on those 
specific data assets.
© Copyright IBM Corp. 2021. xi



Authors

This book was produced by a team of specialists from around the world, including specialists 
from both IBM and Rocket Software, Inc.

Doug Dailey is an IBM Product Manager with over 10 years of experience in building 
software and solutions for customers. Doug started working in technical support for IBM 
Informix® Software (now an IBM company) and transitioned to a Technical Account Manager 
role and soon thereafter a CSM Manager for IBM’s Accelerated Value Program. His passion is 
helping customers win. For over 10 years, Doug was a product manager at Informix Software, 
IBM Netezza® and Pure Data for Analytics, and IBM Db2 Replication for Continuous 
Availability. His specialization is data federation and Data Virtualization technologies and 
currently is the Product Manager for IBM Data Virtualization Manager for z/OS.

Guillaume Arnould joined IBM in 1996 and started in IBM z System Manufacturing Test 
Engineering before spending 2 years in Poughkeepsie, NY. In 2001, he joined the IBM Client 
Center in Montpellier to work as a Performance Expert on Db2 for z/OS client benchmarks. 
After 10 years as the Technical Team Lead in the Smarter Banking Showcase and engaging 
with customers. Guillaume is now an Advanced Technical Sales Expert and leads the Data & 
AI on IBM Z Solutions team. He is working on IBM Db2 Analytics Accelerator, Watson 
Machine Learning on Z, Db2 for z/OS, IBM Db2 Data Gate, and IBM Data Virtualization 
Manager for z/OS.

Marie-Therese Bouedo started in Information Technology programming PL2, COBOL, ASM, 
and other mainframe languages. She then worked as a system programmer for 18 years and 
as a database specialist for Db2z, Oracle, Information, and other database management 
systems. Marie then split the next 14 years working for IBM GTS as an infrastructure architect 
and in Technical Sales for IBM Z software with specialization in CICS®, z/OS Connect, and 
IBM Data Virtualization Manager for z/OS.

Willem de Gelder started as a COBOL/Db2® programmer in 1990. Since then, he has 
worked in several roles in development, operations, and consultancy. Always with Data & AI 
software on IBM® Mainframe. Currently, Willem works as a zHybrid Cloud pre-sales technical 
seller for IBM in Latin America.

Francesco Borrello Francesco Borrello is a z Data & AI Technical Sales Specialist in IBM 
Technology, Italy. He joined IBM in 2011 and obtained a master’s degree in Centralized 
System for Cloud Computing. His main mission is to help customers in driving new business 
opportunities b y adopting traditional Hybrid Data Management and Analytics and innovative 
ML/AI solutions on IBM Z®. His areas of specialty are in Db2 for z/OS, Db2 Tools, Db2 
Analytics Accelerator, Data Replication, and Data Virtualization Manager for z/OS. He also 
was a presenter at several international conferences and technical user groups.

Dave Trotter began working as a developer and systems programmer in his early career for 
Db2 for IBM iSeries. Currently, he works as a technical specialist and technical seller for IBM 
System Z software solutions. Dave’s area of specialty is guiding customers on analytics 
strategies and the use of the Db2 Analytics Accelerator for z/OS and Data Virtualization 
Manager for z/OS in their enterprise.

Nasser Ebrahim is a Solution Architect with IBM Systems Lab, focusing on data and AI 
solutions on IBM Z. In his role, Nasser helps Global System Integrators and clients to build 
solutions on data and AI technologies. He has 22 years of experience with IBM Z 
technologies, which includes application programming, system programming, Java run times, 
analytics, and machine learning. He was Java Current Release Technical Leader with IBM 
Software Lab before taking his current role as a solution architect.
xii IBM Data Virtualization Manager for z/OS



Jonathan Sloan is a portfolio product marketing manager who focuses on IBM Data & AI 
products for the IBM Z mainframe platform. He excels in helping others understand how to 
apply advanced analytic and machine learning technology to business problems. Jonathan 
has experience in several industries with a focus on health care, insurance, financial services, 
and consumer packaged goods. He is passionate about helping organizations drive greater 
insight and value from enterprise data. He excels in working directly with customers and 
providing leadership within team environments.

John Casey is a Principal Solutions Advisor for Rocket Software. Inc., where he supports 
customers that use IBM’s Db2 tools and IBM Data Virtualization Manager on z/OS on System 
Z. Before joining Rocket Software. Inc, John spent 20 years at IBM as a Field Technical 
Specialist on z/OS and Db2 related products.

Bill Powers has been working with IBM Information Management solutions since 1985. As an 
IBM customer for 36 years, Bill worked in application development, database administration, 
quality assurance, and system programming. His experience has spanned a range of 
industries, including health care, insurance, manufacturing, transportation, software, and 
public utilities. He has been working with Db2 for the last 29 years in the areas of database 
design and administration, performance and tuning, backup and recovery, installation, and 
migration. Bill works for Rocket Software, Inc., as a Senior Solutions Advisor.

Shawn Sullivan began working as a trainer and eventual product expert in Db2 QMF and 
Db2 Tools in 1998. He has been a QMF specialist for 23 years for cross-platform mainframe 
and distributed systems. Recently, he joined the Data Virtualization Manager for the z/OS 
team and the IBM Multi-factor Authentication team.

Robin Ramadil-Kannan started as an application programmer in z/OS and worked on 
Db2-relational, IMS-hierarchical, and IDMS-network databases for several Fortune 500 
customers. He has since specialized in application re-writes, using Service Oriented 
Architecture and ETL space. Robin currently focuses on Data Virtualization technology for the 
mainframe.

Mahesh Sugavanam is a Senior Software Engineer for Rocket Software, Inc. Over the 
previous 22 years, Mahesh specialized in information management products for IBM system 
Z, Linux, UNIX, and Windows. He specialized in mainframe modernization and workload 
optimization and is extensively knowledgeable about Db2z over system, administration, data 
replication, and performance categories. Mahesh graduated 1st in class with a Master’s 
degree in Computer Applications from Bharathidasan University in India.

Rajesh Sambandhan is a software engineer at Rocket Software, Inc., and has been in the 
Information Technology industry for more than 20 years. He primarily worked on the Java 
stack, databases, and ODBC/JDBC driver development. His area of focus has been Java 
technologies, test-driven development, application architecture and security, Web stack, and 
data science. He is currently leading the development of client components for IBM Data 
Virtualization Manager for z/OS.

Coreen Wilson spent nearly 10 years becoming a subject matter expert on the top 
cybersecurity frameworks during an era of vast security breaches, malware, and ransomware 
promoting the importance of cyber security to the C-suite. For the past two years, Coreen has 
been leading product marketing for IBM Z Systems at Rocket Software, Inc., championing 
open mainframe transformation through innovative technology, such as OSS/Zowe, ML/AI, 
and Data Virtualization.

Jeff Lutzow is a Senior Customer Service Engineer at Rocket Software, Inc. and has been in 
the Information Technology industry working on z/OS systems for more than 30 years. He has 
worked in application development, database administration, and product management in the 
Insurance and Health Care industries. He has worked in support of IBM Data Virtualization 
 Preface xiii



Manager for z/OS since the product's inception. He is currently leading the services initiative 
for IBM Data Virtualization Manager for z/OS.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an IBM Redbooks® residency project and help write a 
book in your area of expertise, while honing your experience using leading-edge 
technologies. Your efforts will help to increase product acceptance and customer satisfaction, 
as you expand your network of technical contacts and relationships. Residencies run from 
two to six weeks in length, and you can participate either in person or as a remote resident 
working from your home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM Data Virtualization Manager for z/OS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


Chapter 1. Introduction

This chapter introduces key concepts and value propositions for data virtualization for 
mainframe data sets. The chapter espouses the benefits of the use of IBM Data Virtualization 
Manager for z/OS (DVM for z/OS or just DVM) over various topologies, details key 
differentiators around cost savings and performance, along how this technology drives the 
what, how, and why conversation.

This chapter includes the following topics:

� 1.1, “Protecting your investment by using IBM Z technology” on page 2
� 1.2, “Why DVM for z/OS in modernization?” on page 2
� 1.3, “Why is today different?” on page 4
� 1.4, “What does the market offer today?” on page 5
� 1.5, “What can you do?” on page 5
� 1.6, “Resolving the data latency gap through data virtualization” on page 6
� 1.7, “DVM for z/OS” on page 6
� 1.8, “IBM Cloud Pak for Data” on page 6
� 1.9, “Unlock enterprise data for virtually any application” on page 7
� 1.10, “Why and when should you consider DVM for z/OS” on page 8

1

© Copyright IBM Corp. 2021. 1



1.1  Protecting your investment by using IBM Z technology

With all the hype around new technology, cloud platforms, and merging development 
approaches, you might be wondering how IBM Z and the transactional data that is on it fit into 
this changing landscape.

IBM recognizes the importance of strengthening the partnership between IT and the 
business. The optimal position for today’s IT organization is to be a full-fledged partner with 
lines of business to drive revenue and deliver on an organization’s strategy. Therefore, IT 
organizations must change and transform along with their systems.

Many organizations say they want to modernize and transform, but the transformation is not 
only an end goal, it is a journey. To transform requires agility, which is a continuous process. 
You need technology that can continuously adapt to new business requirements and IT 
methods.

IBM Z has proven to be adaptable throughout its history and continues to introduce 
capabilities that adapt, respond, and lead, as new needs arise. New capabilities that are 
delivered on IBM Z integrate with IBM Cloud Pak for Data, IBM’s strategic platform for Data 
and AI. 

IBM Cloud Pak for Data is a fully integrated data and AI platform that modernizes how 
businesses collect, organize, and analyze data and infuse AI throughout their organizations. 
Integration between IBM Z and IBM Cloud Pak for Data readily takes advantage of your IBM Z 
data and resources.

Your IBM Z infrastructure investment holds significant value and can help your organization 
deliver continued business differentiation. Some might say that IBM Z and hybrid cloud is an 
unconventional combination. However, to paraphrase John Maynard Keynes to succeed, 
sometimes it is necessary to do so unconventionally rather than be like everyone else and 
perform conventionally. IBM Z understands this and offers the differentiated organization a 
differentiated platform. 

This book discusses how IBM Z technology can complement and extend your existing and 
future hybrid cloud environment.

1.2  Why DVM for z/OS in modernization?

DVM for z/OS was released at the end of 2017. Since then, the market for data virtualization 
technology increased significantly. Several trends contribute to the recognition that data 
virtualization is a must-have component for many enterprise organizations.

The growth in corporate transactional data and sources, Hadoop, IoT data, the acceptance of 
cloud as an enterprise data store, and the availability and utility of public cloud services 
providing unique data are just some of the reasons that contribute to the continuing 
exponential expansion of data volume and type. With data being generated and stored 
everywhere, it is impossible to centralize it all and maintain its accuracy. Therefore, it is 
imperative that data must be accessed where it is stored or originates.

Within your enterprise infrastructures, you likely developed several to many large data 
repositories across several different vendor technologies. Each data repository features its 
own unique capabilities and value. 
2 IBM Data Virtualization Manager for z/OS



Each data repository vendor likely tells you the same thing: that is, that you should move 
(copy) all of your data to their platform. However, from a cost, efficiency, regulatory, security, 
and practical perspective, this advice does not make sense. Every copy of data has its own 
cost, latency, and risk. Copying all your data to wherever it might be needed is expensive, 
untimely, and presents potential regulatory, governance, and security risk issues.

Several years ago, the term data gravity was offered as an analogy to the concept of gravity 
in physics. Data gravity implies that data has mass, which attracts other objects as physical 
objects do. The more data there is, the greater the mass, the more likely it is to attract other 
objects, such as applications, services, and other data. 

Although the cloud often uses a great deal of mind share, most essential corporate data is still 
generated behind the firewall. That data is typically transactional data, corporate treasure; 
therefore, data gravity applies to the typical organization’s enterprise transactional servers. 
This is where the mainframe enters this expansive data story.

The mainframe is core to any organization’s enterprise infrastructure. Although we think that 
the mainframe services only the largest organizations, many smaller organizations benefit 
from its security, resiliency, low per-transaction cost, virtualization, high performance, and 
unique value. For many of these organizations, the mainframe is their primary transactional 
platform. 

According to IBM studies, 70 - 80% of all data originates behind the firewall and much of that 
originates on IBM Z. For many organizations, their transactional systems stayed largely 
unaltered for decades. 

Upgrades focused on the latest versions of software to stay up to date in line with support 
requirements, fine-tuning of applications, and small changes to applications to keep up with 
the times. Government agencies, banks, insurance companies, and financial services 
organizations stayed with what served them well. Why change if something works? Today, 
organizations are under pressure to better serve their customers and bring new value to their 
constituents.

It is on the mainframe where unique data sources, transactional applications, data gravity, 
and modernization combine to offer an incredible opportunity for DVM for z/OS. DVM for z/OS 
offers organizations the potential to modernize the way they develop applications, simplify 
access to traditional non-relational IBM Z data sources, provide access to an extensive 
number of data sources (more than 35), and move from the 20th to the 21st century.

Wholesale application rewrites are generally not feasible, nor do they always bring significant 
differentiation from established technology. When an organization invests in differentiated 
business processes that are built on differentiated applications, it is to its advantage to 
continue to use those applications and the data that is stored in them. DVM for z/OS facilitates 
modernization efforts, which allows an organization to simplify access, reduce cost, and 
modernize interfaces.

This book focuses on the technology and capabilities that are offered by DVM for z/OS that 
make modernization easier. This book is somewhere between a getting started guide and a 
road map to get you where you want to go. You learn much about what DVM for z/OS can do 
for you and how you can do it. 
Chapter 1. Introduction 3



Data from established applications became the lifeblood of new analytics, cloud, and mobile 
applications. Access to real-time transactional IBM Z data is quickly becoming a 
differentiating factor in support of these new applications:

� Analytics

According to market-leading analysts, insight-driven organizations are growing faster than 
their competitors, better-retaining customers and delivering significantly better returns on 
their investments. Insight-driven organizations use analytics to embed insight within 
business processes and software.

� Cloud

Cloud approaches to development, maybe more than the cloud service providers, are 
offering new techniques for application development, such as containerization and 
microservices. Organizations that use these new techniques are finding they offer better 
flexibility as compared to traditional monolithic, waterfall approaches to development. 
Cloud development techniques that lead to greater agility are an underlying foundation of 
disruption that the industry labeled digital transformation.

� Mobile

Although mobile has been around for some time, it is finally living up to its promise through 
the combination of analytics and cloud. Analytics are allowing organizations to drive 
greater value from their customer’s mobile use. Cloud is allowing organizations limitless 
capacity to process data and use digital, momentary opportunities and provide those 
opportunities through their customer’s mobile devices. Mobile devices largely became the 
de-facto interface with which customers interact with providers. A significant percentage of 
IBM Z workloads is driven by mobile applications, such as online banking and online 
purchases.

� Modernization and digital transformation

Analytics, cloud, and mobile are combining to completely rewrite industries and the rules 
of customer engagement. Digital transformation is offering unprecedented opportunities 
for organizations to improve customer relationships, acquire new customers, and grow 
wallet share. Organizations are innovating with new ways to take advantage of their 
enterprise data assets and engage with customers.

1.3  Why is today different?

Many organizations’ IT architectures and the transaction systems, insight, and 
decision-making processes they support were designed decades ago. Traditional 
architectural approaches that depend solely on data movement can impede the ability to 
rapidly adapt to changing business cycles and adopt new development methods.

To deliver modern applications, organizations must:

� Facilitate and simplify access to relational and non-relational IBM Z transactional data

� Access and update live IBM Z data by way of modern APIs, such as SQL and RESTful 
(when combined with z/OS Connect)

� Reduce the cost and delay of moving data to non-IBM Z platforms

Data, its use, and the insights it provides feature a shelf-life. Some decisions require the most 
current data and real-time insight (at the point of interaction or transaction), which improves 
decision making in areas, such as fraud detection, up-sell and cross-sell efforts, and 
supporting real-time opportunities, such as digital moments.
4 IBM Data Virtualization Manager for z/OS



New architectural patterns must consider a multi-speed approach to data delivery, the use of 
data, and a model that supports structured and semi-structured data across multiple 
disparate platforms. As your organization modernizes and takes advantage of new application 
development techniques, consider minimizing data movement as part of the modernization 
process. This minimization allows you to make the best use of your data as it exists in your 
operational systems.

Completely separating the systems of record from modern systems of engagement can result 
in customer defections, increased risk, and lost opportunity for improved operational 
productivity. We all have been frustrated by customer-facing applications that we know do not 
reflect an organization’s current inventory or the status of a reservation. 

Digital opportunities are momentary. They must be based on the exact real inventory status to 
make offers to customers. This approach is different than traditional approaches that use 
extensive data movement. Doing nothing (that is, merely maintaining these existing 
approaches) opens the door for the competition to disrupt your business and attract your 
customers. 

New business with increased data volumes leads to higher resource usage and exacerbates 
an already challenging issue. Throwing hardware at the problem just pushes the problem off 
to another day. A change in approach is needed.

1.4  What does the market offer today?

The IT market is offering more alternatives than ever before for organizations to become more 
data-driven. It is important to take advantage of these innovations but not discard your 
investments or replicate architectural patterns that can inhibit the data and insight that 
organizations need to modernize. Although going to the cloud has a great deal to offer, doing 
so also might lock organizations into a situation that is not dissimilar from the status quo 
approach. Also, the cloud can further exacerbate the time that it takes to access data, and 
work in opposition to closing the data latency gap that is required to deliver business-critical 
functions.

1.5  What can you do?

Your organization can address the challenges of your current architecture to better use data, 
close the data latency gap, and embed data and insight into business processes where 
suitable. 

You can access data at its source; therefore, critical data-driven decisions can be made 
before an interaction or transaction completes and your customer abandons their interaction 
with your organization. Your architectural strategy can ensure access to data across platforms 
and multiple clouds, whether the data is structured or unstructured.
Chapter 1. Introduction 5



1.6  Resolving the data latency gap through data virtualization

Data virtualization is emerging as an exciting, cost-effective, substitute for and augmentation 
to traditional data collection (incremental copy, data movement, and ETL). With data 
virtualization, you can access data where it originates to reduce the time and resources that 
are used to combine data from multiple systems. Less time and resources can translate into 
savings. The use of data virtualization technology can support greater flexibility and agility, 
which is core to digital transformation.

1.7  DVM for z/OS

DVM for z/OS provides virtual, integrated views of data that is on IBM Z. It also enables users 
and applications to read/write access to IBM Z data in place, without moving, replicating, or 
transforming data. It also performs these tasks with minimal extra processing costs. By 
unlocking IBM Z data using popular, industry-standard APIs, DVM for z/OS can save you time 
and money.

Developers can readily combine IBM Z data with other enterprise data sources to gain 
real-time insight, accelerate deployment of traditional mainframe and new web and mobile 
applications, modernize the enterprise, and take advantage of today’s API economy.

DVM for z/OS also supports data access and movement. As with many technologies, the best 
approach depends upon the specific needs. DVM for z/OS can be considered part of a larger 
holistic approach to data delivery.

1.8  IBM Cloud Pak for Data

IBM Cloud Pak for Data is a fully integrated data and AI platform that modernizes how 
businesses collect, organize, and analyze data and infuse AI throughout their organizations. 
Built on Red Hat OpenShift Container Platform, IBM Cloud® Pak for Data integrates 
market-leading IBM Watson® AI technology with IBM Hybrid Data Management Platform, 
data ops, and governance and business analytics technologies. Together, these capabilities 
provide the information architecture for AI that meets your ever-changing enterprise needs.

Deployable in just hours and easily extendable with a growing array of IBM and third-party 
microservices, IBM Cloud Pak® for Data runs across any cloud, which enables organizations 
to more easily integrate their analytics and applications to speed innovation. 

IBM Cloud Pak for Data lowers your total cost of ownership, accelerates innovation that is 
based on open-source technologies, and fully supports multi-cloud environments, such as 
Amazon Web Services (AWS), Azure, Google Cloud, IBM Cloud, and private clouds.

When the data on which you are building your machine learning models originates in 
relational IBM Z data sources (Db2 for z/OS) and traditional non-relational IBM Z data 
sources (such as IMS, IBM MQ, and VSAM), IBM Cloud Pak for Data provides integrated 
connectivity through DVM for z/OS. This connectivity significantly simplifies the development 
of analytics applications that are driven from IBM Z data, which allows developers and data 
scientists to readily access complex data structures by way of SQL.
6 IBM Data Virtualization Manager for z/OS



IBM Cloud Pak for Data provides a data virtualization service with integration to DVM for 
z/OS. This service provides the following functions:

� Facilitates connectivity and access to data sources that are configured by DVM for z/OS

� Supports business rules and policies that can be applied at the exposure point within 
Cloud Pak for Data for downstream traditional and modern mainframe applications

� Provides lineage for downstream applications that access, transform, and deliver data

� Administers and provisions data virtualization for non-IBM Z data sources

1.9  Unlock enterprise data for virtually any application

Hybrid cloud applications incorporate on-premises and on-cloud services and use all data 
across the enterprise. Modern applications are interconnected, interact through APIs, and 
enable customers and enterprises to digitally run processes quickly. These applications need 
agile read/write access to IBM Z data, both relational and non-relational, in an online 
environment. 

Applications that use traditional, scheduled batch programs to update transactional data can 
be refactored into modern applications that can access and update IBM Z data by using 
modern APIs that are supported by DVM for z/OS. Because DVM for z/OS runs almost 
exclusively on readily available IBM Z Integrated Information Processors (zIIP), it does not 
use general processor capacity. It also might significantly reduce mainframe costs that are 
associated with ETL.

DVM for z/OS can virtualize established data sources, such as virtual storage access method 
(VSAM), adaptable database system (ADABAS), IBM IMS/ESA® Database Manager, IBM 
Db2 for z/OS, and IBM System Management Facility (SMF). Its ability to federate these 
sources with virtually any other data brings the power of IBM Z essentially to any application, 
mobile, analytic, or cloud. It does so with minimal extra processing costs and without the need 
for IBM Z skills or more coding. 

Reducing complexity for accessing data applications implies less time to implement new 
engagement applications while also accessing real-time data. This means fewer unique skill 
sets are required to access complex established data structures. Complex application 
programming can now be done with simple SQL and NoSQL access. Updating or building 
modern applications by using IBM Z data can produce elastic, interconnected, and more 
secure applications to deliver a competitive advantage.

DVM for z/OS is optimized for the hardware it runs on and takes advantage of the new 
instruction sets available with each new IBM Z hardware platform. As IBM Z offers new 
hardware capabilities, DVM for z/OS inherits those advantages.
Chapter 1. Introduction 7



1.10  Why and when should you consider DVM for z/OS

Any organization with data on IBM Z, whatever the data type, can benefit from DVM for z/OS. 
DVM for z/OS allows you to:

� Combine and integrate non-relational and relational data, integrate IBM Z and non-IBM Z 
data, and incorporate unstructured data with structured data. 

� Provide SQL access to non-relational data. 

� Modernize mainframe applications and enhance non-mainframe applications with 
mainframe data. 

Your alternatives are limited only by your imagination.

When your valuable data originates on IBM Z and moving it off platform exposes you to cost, 
latency, or risk, the use of the processing on IBM Z can be your best alternative. IBM DVM for 
z/OS helps you access your data where it originates.
8 IBM Data Virtualization Manager for z/OS



Chapter 2. Architecture and implementation

IBM Data Virtualization Manager for z/OS (DVM for z/OS) is the only z-resident data 
virtualization technology that takes full advantage of the IBM Z platform for secure, scalable 
access to accurate, on-time data at a moment’s notice. An enterprise chooses to incorporate 
this technology in their data processing methodology for the following reasons:

� Real-time query: Provides real-time access to in-place data

� Optimization: Speeds up high-volume data retrieval and uses zIIP optimization

� Modernization: Provides a data service layer for your API economy, such as REST, to 
access native data on IBM Z without application changes

DVM for z/OS is different from other so-called virtualization or replication tools because 
specialized training or expert database skills are not needed. You can work with data 
structures that use virtual tables and virtual views that are familiar to you, and provide users 
and applications read/write access to IBM z/OS and enterprise data sources in real time.

DVM for z/OS enables organizations to access their mainframe data through virtual, 
integrated views without the need to move, replicate, or transform it, which saves time and 
expense. 

This chapter describes the fundamental architecture of the IBM Data Virtualization Manager 
for z/OS (DVM for z/OS or just DVM) technology and includes the following topics:

� 2.1, “Reference architecture for DVM for z/OS” on page 10
� 2.2, “Technical components” on page 10
� 2.3, “SQL engine and query optimization” on page 12
� 2.4, “Metadata repository” on page 14
� 2.5, “Parallel processing through MapReduce” on page 16
� 2.6, “z/OS resident optimization” on page 17
� 2.7, “zIIP eligibility and data compression” on page 18
� 2.8, “DVM Studio” on page 19
� 2.9, “Integrated DRDA Facility” on page 21
� 2.10, “DVM endpoint connections” on page 23
� 2.11, “Summary” on page 28

2

© Copyright IBM Corp. 2021. 9



2.1  Reference architecture for DVM for z/OS

DVM for z/OS offers organizations the potential to modernize the way they develop 
applications and simplify access to an extensive number of traditional non-relational IBM Z 
data sources. It incorporates various interface approaches for accessing data that uses IBM Z 
Integrated Information processors (zIIP) to redirects up to 99% of workloads. The amount of 
zIIP offload activity varies with different types of workloads, depending on the data source, 
access method, and effective SQL operations in use. 

The DVM server supports IBM-supported hardware ranging from z196 to the latest IBM 
models, running IBM z/OS v1.13 or later.

The technology supports traditional database applications, such as Db2 for z/OS, IMS, IDMS, 
and ADABAS. Also, typical mainframe file systems, such as sequential files, ZFS, VSAM files, 
log-stream, and SMF also can be accessed. 

DVM reduces overall mainframe processing usage and costs by redirecting processing that is 
otherwise meant for GPPs to zIIPs. DVM provides comprehensive, consumable data that can 
be readily accessible by any application or business intelligence tools to address consumer 
demand and stay ahead of the competition.

DVM for z/OS includes the following key features:

� Provides a layer of abstraction that shields developers from unique data implementation

� Virtualizes IBM Z and non-IBM Z data sources in place in real time

� Supports modern APIs, such as JDBC, ODBC, SOAP, and REST (requires z/OS Connect 
Enterprise Edition)

� Supports MapReduce for faster data access

� Offloads up to 99% of General Processing to lower-cost zIIP specialty engines

� Supports Db2 and IMS Direct for efficient large data retrievals

� Supports data encryption

2.2  Technical components

As with CICS, Db2, and IMS, DVM for z/OS runs as a started task that stays running to 
service client requests. As a resident, it acts as a modern data that uses modern APIs. It also 
provides virtual, integrated views of data that is on IBM Z. 

Users and applications have read/write access to IBM Z data in place, without moving or 
replicate the data. It performs these tasks at high speed, without more processing costs. By 
unlocking IBM Z data that uses popular, industry-standard APIs, you save time and money.

Developers can readily combine IBM Z data with other enterprise data sources to gain 
real-time insight, and accelerate deployment of traditional mainframe, and modern mobile 
applications. 
10 IBM Data Virtualization Manager for z/OS



Figure 2-1 provides a logical view of the DVM architecture. Data consumers and providers 
that interact with DVM are listed on the left side of the figure. Although not an exhaustive 
representation of all the types of applications, tools, or repositories that need access to data 
in a relational format, Figure 2-1 shows the demand for data across all areas of an enterprise.

Figure 2-1   DBM for z/OS architecture

These data consumers connect to the DVM server through APIs that use JDBC, ODBC, 
DRDA drivers over available network ports. However, the more common web or mobile 
interface applications connect by using IBM z/OS Connect Enterprise Edition (zCEE) that use 
RESTful APIs. 

The right side of Figure 2-1 represents common z/OS and non-z/OS data sources, both 
structured and semi-structured. After data sets are virtualized, the DVM server supports the 
joining of supported data sources as referenced in the IBM documentation for DVM for z/OS. 
Chapter 2. Architecture and implementation 11

https://www.ibm.com/docs/en/dvm/1.1.0?topic=overview-supported-data-sources
https://www.ibm.com/docs/en/dvm/1.1.0?topic=overview-supported-data-sources


2.3  SQL engine and query optimization

The DVM server, as shown in Figure 2-1 on page 11, enables applications to access 
virtualized enterprise data in real time by using ANSI 92 / 99 SQL statements.

2.3.1  Query processing by SQL engine

DVM enables the user to define any content as a data source to create a virtual table to map 
to what is stored within the metadata of the DVM server. When a user runs a database call, 
the SQL engine reads the mapping and builds a table structure in memory. 

As a virtual table or virtual view is materialized, the SQL engine analyzes the best access 
path to fetch data by using proprietary parallelism algorithms that are built into the product. 
The SQL engine then applies filters and functions against retrieved data for the SQL 
statement issued.

When a query is received by the SQL engine, the SQL statement is parsed as part of 
PREPARE processing. During the parsing operation, individual subtables that are referenced 
in the query are identified and associated virtual table definitions are consulted. 

For data sources with indexes, the SQL is examined to see whether index key fields are used 
in the predicate. The use of key fields can reduce the amount of data that is fetched and can 
be used to optimize joining data with other virtual tables. If MapReduce is used, retrieval of 
each data is apportioned out to separate threads, and when possible, WHERE predicates are 
pushed down to MapReduce threads to limit the total amount of data that is fetched.

2.3.2  WHERE predicate PUSHDOWN

Predicate PUSHDOWN is a common federation technique that uses filtering at a data source. 
Specific parts of SQL queries (the filtering predicates) can be “pushed” to where the data 
lives. 

Predicate PUSHDOWN is an optimization technique that can drastically reduce query and 
processing time by filtering data earlier within data access. Depending on the processing 
framework, predicate PUSHDOWNs can optimize your query by performing tasks (such as 
filtering data before it is transferred over the network) as part of pre-load into memory, or by 
skipping the READ of entire files or chunks of files.

The DVM server requires statistics from the underlying data source to effectively perform 
predicate PUSHDOWN.

2.3.3  Join processing

When processing joins between two tables, the DVM SQL engine uses previous executions to 
identify the smaller table and then loads the smaller one into memory, which matches the 
entries from the larger table. Approaching join operations in this manner helps to optimize the 
use of memory and speeds processing. 
12 IBM Data Virtualization Manager for z/OS



2.3.4  Referential integrity

Referential integrity (RI) is outside the scope of the DVMServer. Non-relational data sources, 
such as VSAM, do not have a built-in RI layer. RI can be accomplished within the application 
by validating records before they are written or updated. 

For deletes, the application must address data integrity and references by making sure other 
identified records exist. Otherwise, databases can support referential integrity between 
tables. 

Db2 for z/OS is designed to manage its own referential integrity by using DDL statements to 
define primary and foreign keys and rules. When these tables are virtualized, the DVM server 
sends DML statements to the Db2 subsystem for processing when the Db2 Direct-access 
method is not used. Db2 referential integrity rules are maintained for Inserts, Updates, and 
Deletes.

2.3.5  Virtual Parallel Data

Virtual Parallel Data (VPD) is a scalability feature that is built into the DVM runtime. VPD 
simulates a data cache for the DVM server to access any file or database once so that 
applications can share or use the file or database simultaneously across highly concurrent 
client tasks. 

Figure 2-2 shows the I/O relationship between the DVM SQL engine and cached data. VPD is 
well suited for data sets that are frequently accessed, but are not dynamically changing 
throughout the day. 

Figure 2-2   DVM VPD

VPD also allows multiple requests to run with asymmetrical parallelism, separately tuning the 
number of I/O threads and the number of client or SQL engine threads. When I/O is limited to 
a single task, VPD allows parallelism in SQL as listed in Table 2-1 on page 14.
Chapter 2. Architecture and implementation 13



Table 2-1   Asymmetrical parallelism

These results demonstrate how a VPD data cache can greatly improve execution time for 
SQL over increasing concurrent usage. Instantiating the VPD enables a readily accessible 
cache of data and avoids subsequent and concurrent access requests to disk. This reduces 
the I/O processing for the system, improves latency, and speeds up the query performance. 
VPD cache can be refreshed daily or as scheduled.

The first query against the VPD (see Example 2-1) creates the group and I/O immediately 
populates the cache. An initial I/O is performed once and buffered in one or more large, 64-bit 
memory objects. If multiple groups comprise a VPD, they all share the buffered results. Each 
VPD request can specify its own degree of parallelism by using the MapReduceClient (MRC) 
and MapReduceClientCount (MRCC) configuration parameters with the JDBC driver.

Example 2-1   Query against the VPD

SQL:           SELECT * FROM ED_ALL_COLS_PS_CMPSTRP6
Data set:   RSTEZST.HLO.DBHLOEXM.UNLOAD.CMPSTRIP.SYSREC
Rows:        14,000,000Bytes: 1,484,000,000

2.3.6  Flatten arrays

It is common to encounter arrays within a data record (for example, OCCURS clause in 
COBOL copybook). The DVM server provides options for how arrays can be processed. 
Arrays can be flattened into a fixed-length row or normalized into a main or subtable 
virtualization table pair.

VSAM data sets can include multiple occurrences of a value. For example, a single record 
within a VSAM file that describes billing information can contain the last years’ worth of 
payments. A relational structure is represented as two tables within a normalized design or a 
single table with multiple records that represent a single occurrence of each record for one 
occurrence within the VSAM file. 

2.4  Metadata repository

The DVM server maintains a metadata repository, which is a collection of information that 
describes the data that can be accessed by the DVM server. The DVM server uses all that 
information to connect to the data source, convert SQL calls into the original data sources 
access method, and return results to the application.

To access data, you must first virtualize the data as a table by defining a virtual table as a 
container for all the attributes associated with the data source. For example, when an SQL 
statement is issued against a VSAM record. 

Test environment Number of SQL threads I/O threads Elapsed time

MR=N 1 1 25.234

MR=Y 1 6 24.488

VPD with MRCC 6 1 10.821

MRCC 6 6 8.954
14 IBM Data Virtualization Manager for z/OS



The DVM server retrieves the fields from the metadata repository that represent the data set. 
The server then converts the SQL into native VSAM I/O calls and returns the data to the 
requester. This approach allows data to stay in place and enables the structured, 
unstructured mainframe databases and files to be represented in a relational format. The 
DVM server establishes an implicit table schema to file formatting.

The DVM server processes data in real time, which avoids creating copies of data and 
supports transactions that write back to the original data sources, whether online or offline, 
on-premises, or in the cloud. Data is not cached, nor does DVM require a specific API 
schema; therefore, organizations have flexibility regarding API naming conventions.

2.4.1  DVM catalog tables

All metadata is stored within the DVM server. Metadata is also known as DVM catalog tables. 
Applications that use DVM’s SQL engine through JDBC or ODBC can use SQL to view this 
data. You can also transfer (or access) DVM metadata from COBOL, PL/I, MFS maps, and 
stored procedures into a library or lifecycle management system for optimized use, as shown 
in Figure 2-3.

Figure 2-3   DVM catalog tables

The following metadata objects are stored as members in the map data set:

� Virtual tables (VSAM, IMS, Db2, Adabas, IDMS, sequential, and so on)

� Virtual views

� Application artifacts (IMS DBD, IMS PSB, COBOL copybooks, PL/I structure, and 
assembler DSECTs)

� Stored Procedures

� Remote target systems

� Virtual source Libraries

� Web services

The metadata repository is stored as members within IBM Z Partitioned data sets (PDSs). 
Metadata maps are loaded from data set members and cached in memory each time the 
DVM data server is started. 
Chapter 2. Architecture and implementation 15



Maps for virtual tables are automatically added to auto-generated system catalog tables, 
which can be queried through standard SQL. DVM server metadata is stored in catalog 
tables, which are built and loaded when the address spaces are started and when a map 
refresh operation is performed. These maps are stored as PDS members in the servers map 
data set. When data maps are created by using DVM Studio or through a batch import utility, 
each new data map is imported into its respective mapped data set and refreshed in the 
online catalog cache. 

The following DVM catalog tables can be queried and are valuable for understanding the 
relationships between entities, which are useful in joining tables:

� SQLENG.TABLES
� SQLENG.COLUMNS
� SQLENG.COLUMPRIVS
� SQLENG.PRIMARYKEYS
� SQLENG.PROCEDURES
� SQLENG.STATISTICS
� SQLENG.TABLEPRIVS
� SQLENG.FOREIGNKEYS
� SQLENG.SPECIALCOLS
� SQLENG.TABLES

2.5  Parallel processing through MapReduce

The DVM server optimizes performance through a multi-threaded z/OS-based runtime engine 
that uses parallel I/O and MapReduce. With parallel I/O, threads are running in parallel to 
simultaneously fetch data from the data source and return the result to the client, as shown in 
Figure 2-4. Each interaction that is initiated by a distributed data consumer or application runs 
under the control of a separate z/OS thread.

Figure 2-4   Parallel IO and MapReduce with DVM
16 IBM Data Virtualization Manager for z/OS



MapReduce significantly reduces the query elapsed time by splitting queries into multiple 
threads, which run in parallel and aggregate the data into a single result set. DVM reduces the 
cost and complexity of data movement through data integration with Hadoop, EDW, Cloud, 
and other distributed sources through SQL calls to join large disparate data sources for 
simplified access.

The DVM server uses PREDICATE PUSHDOWN and index keys where possible. When joins 
are used, DVM pushes down the appropriate filters that apply separately to each of the 
disparate data sources that are involved in the join.

2.6  z/OS resident optimization

DVM is a resident of z/OS. Because it was written in IBM Enterprise Metal C for z/OS, it can 
be complied to optimize the latest version of the IBM Z hardware on which it runs. 

With each new generation of IBM Z hardware, DVM uses instruction-level performance 
improvements automatically. Upon starting a DVM task, DVM loads the optimized modules for 
the generation of the IBM Z processor in service. DVM is purposely designed to reduce 
Supervisor Calls (SVCs) and provides up to 99% zIIP-eligibility. 

Although not Java-based, the DVM server runs almost entirely in Enclave SRB mode, where 
resources that are used to process workloads can be accounted to the transaction, rather 
than to the address space in which the transaction runs.

DVM can provide performance benefits in reading large data sets by circumventing Db2 and 
IMS Subsystems. DVM also can access and read the underlying VSAM data sets that are 
used by IMS and Db2 for z/OS. This ability reduces the total cost of ownership for the solution 
and improves performance for bulk-load operations. As a Z-resident software solution, the 
DVM server provides the following significant optimizations:

� Dynamic parallelism against large z/OS data sets: logical partitioning of Flat, VSAM IMS, 
Db2 Log Streams, Adabas, IDMS, and so on.

� Use of:

– Pageable Large Frames for DAT reduction

– Single Instruction Multiple Data SIMD

– Optimized AIOCB TCP/IP APIs

– Shared Memory Objects for inter-process communication, which significantly reduces 
data movement

� High-Speed Tracing facility that is built on Data In Virtual (DIV) services.

� An ACEE cache that is tied into ENF 71, which avoids accessing the RACF database and 
easily keeps the cache in sync.

� Unique use of zEDC for improvements in network I/O compression.

� Pre-built infrastructure for DVM to CICS interfaces, which eliminating five out of the six API 
calls that are required to use EXCI.

� Automatically “compiled” DVM REXX to run REXX as zIIP-eligible and in cross-memory 
mode. However, HLLs provide a minimum opportunity for zIIP eligibility. DVM REXX is 
representative of this poor zIIP eligibility.
Chapter 2. Architecture and implementation 17



2.7  zIIP eligibility and data compression

The IBM Z Systems-Integrated Information Processor (zIIP), as shown in Figure 2-5, is a 
dedicated specialty processor that operates asynchronously with the General Purpose 
Processor (GPP) on a mainframe system for specific workloads. zIIP processors also help to 
manage containers and hybrid Cloud interfaces, and facilitate system recovery, assist with 
several types of analytics, and system monitoring.

Figure 2-5   System Z Integrated Information Processor

zIIP specialty engines deliver higher performance and lower cost than general purpose 
processors (GPPs), which are not typically fully used. ZIIPs can handle specialized 
workloads, such as large data queries over Db2, Java, and Linux, to redirect processing from 
GPPs.

The DVM server automatically detects the presence of zIIP engines and transitions qualifying 
workloads from the GPP to a zIIP engine. The result is reduced mainframe processing usage 
and cost.

Also, the DVM server takes full advantage of IBM’s zEnterprise® Data Compression (zEDC) 
in z/OS 2.1, along with the Integrated Accelerator for zEnterprise Data Compression. In 
recent models of IBM Z hardware, data compression is performed by the integrated 
compression co-processor, which allows sharing large amounts of compressed data with the 
DVM server. This ability reduces data transfer latency, improves CPU usage, and saves disk 
space.
18 IBM Data Virtualization Manager for z/OS



2.8  DVM Studio

DVM Studio is an Eclipse-based user interface that is included with the DVM server. DVM 
Studio can be installed as a stand-alone or add-in component to an eclipse framework. It 
allows experienced and novice mainframe developers and administrators to readily define 
virtual tables from non-relational data. It also allows developers to generate code snippets in 
a broad range of APIs and interfaces. 

Figure 2-6 shows the client connection between DVM Studio and the DVM server.

Figure 2-6   Eclipse-based DVM Studio

DVM Studio is distributed with a Java Database Connectivity (JDBC) JVM 1.4 or higher. DVM 
Studio can connect to the DVM server and use the JDBC driver to connect to the server or by 
using an HTTP call. 

DVM Studio also offers an application development environment that simplifies application 
development through an automated code generation utility and supports modern 
programming languages. It provides views, wizards, and editors with which you can build, 
develop, and transform mainframe applications into web services and components.

System programmers and DBAs typically collaborate to identify data sets on the mainframe 
and create schema-related artifacts that describe underlying data as a first step to the use of 
the Studio. After the artifacts are available and suitably describe the associated descriptors 
for data types, column descriptions, and so on, they can be easily mapped and provisioned 
for use by DVM Studio.

After underlying data sets, such as databases, VSAM files, system files, and tapes, are 
discoverable through DVM Studio, DBAs, and developers can define virtual tables and views 
for more productive use. Developers can use DVM Studio as a complementary IDE-like 
framework to their primary source control environments by creating and publishing a web 
service or generating development code by using SQL. 

DVM Studio features a built-in code generator capability that is perfect for creating code 
snippets in your favorite programming language. The code generator produces code snippets 
in Python, R Studio, Spark, Scala, Java, Jupyter Notebooks, and more. 
Chapter 2. Architecture and implementation 19



Figure 2-7 shows the workflow for a DBA or Developer in DVM Studio.

Figure 2-7   Publishing a web service by using DVM Studio

You can generate and publish web services directly from DVM Studio, or automatically 
generate Db2 user-defined table functions (UDTFs) as part of a Virtual Data Facility. This 
technique uses the Db2 for z/OS subsystem as an information hub and redirects applications 
through Db2 for access to other mainframe and non-mainframe data sources. 

IBM’s Db2 distributed databases offer a built-in data federation engine that uses nicknames or 
remote tables in a similar manner. Figure 2-8 shows the Virtual Table wizard and SQL editor.

Figure 2-8   DVM Studio Virtual Table wizard and SQL editor
20 IBM Data Virtualization Manager for z/OS



DVM Studio is used to define virtual objects, such as virtual source libraries, virtual tables, 
virtual collections, and virtual views on the host DVM server. Administrators can easily create 
virtual tables and views and apply predicates.

Consider the following points:

� Virtual source libraries exist on the mainframe and point to the information (metadata) that 
is required to virtualize the source data.

� Virtual tables provide a physical mapping to the data that you want to access from the data 
source. After the virtual table is defined, use it to generate and run SQL. The resulting 
SQL is used to read and extract the mapped data from the mainframe.

� Virtual views can be defined across one or more virtual tables, from which you can 
generate SQL queries. A virtual view contains the columns from more than one database 
object within or across homogeneous and heterogeneous data sources.

2.9  Integrated DRDA Facility

The Integrated DRDA Facility (IDF) enables the DVM server to become a DRDA Application 
Server (AS). The DVM server can be connected to another DVM server by using peer-to-peer 
communication and also a Db2 subsystem as an AS. This capability enables a Db2 
subsystem to access virtual tables and views by using three-part table names.

The new IDF feature allows a DVM server to participate as an endpoint in this kind of 
multi-homed configuration. Whenever SQL is run in Db2 and a three-part table name 
designates an IDF endpoint, the SQL is sent to the DVM server for execution. Results are 
returned to Db2z as though it were a local table.

2.9.1  Peer-to-peer configuration

IDF connects a DVM server to another DVM server to offer seamless access throughout your 
data ecosystem. IDF enables access to a peer DVM server and a shared view of locally 
virtualized data objects, such as virtual tables and views.

IDF allows data sources to be accessed by local clients running on a specific z/OS LPAR or 
by participating in a sysplex environment on a different z/OS LPAR or sysplex.

Imagine your organization has a data center in North America and another in Australia, each 
running IMS, and each having its own inventory databases. To reconcile their inventory 
systems, it requires a manual process. 

In another scenario, a data source exists on LPAR PRD2, but it is not on a shared disk or 
available for access on all your LPARS. Most of the users and applications are running on 
LPAR PRD1 and include requirements to access the data because they want to join with Db2, 
which is running on PRD1. Users on PRD1 or PRD2 can now retrieve data from Db2 and join 
it with virtualized data on PRD2 by using IDF.
Chapter 2. Architecture and implementation 21



By installing DVM on each LPAR and connecting to each server as shown in Figure 2-9, each 
data center can view each other’s virtualized data by right-clicking any of those tables. 

Figure 2-9   DVM Studio

DVM adds it to the metadata on their server. IDF peer-to-peer makes it appear as though all 
of the data is local and available no matter where it is stored. Instead, you can run SQL to 
perform join operations, rather than copying the data and writing Cobol or PL/I programs to do 
the reconciliation.

2.9.2  Db2 Information Hub 

You can also use DVM and IDF as a Db2 data hub by connecting Db2 to the DVM server by 
using a Db2 DRDA connection, where Db2 becomes the application requester (AR) and the 
DVM server becomes the application server (AS)

After the Db2 subsystems are configured for a DRDA connection, DVM supports a 
full-featured implementation in which your Db2 applications have transactional access to all 
participating data sources. IDF uses a three-part naming convention to map to the remote 
data objects, whereby it identifies data based on location.

Within the same application, you can simultaneously update many different data sources 
without needing to direct applications individually to each host.
22 IBM Data Virtualization Manager for z/OS



2.10  DVM endpoint connections

DVM provides a highly flexible connection framework that offers various client access 
methods to the DVM server, as shown in Figure 2-10.

Figure 2-10   DVM and endpoint technical view

2.10.1  Drivers

Any C, C++, or Java application can access mainframe data with the DVM SQL engine and its 
ODBC and JDBC drivers. The communication between the driver and the DVM server is a 
proprietary communication buffer protocol (CMBU) or communication buffer.

Two ports are dedicated to handling these requests with two different levels of security. The 
orange connector depicts an SSL-enabled connection method to a port that is configured with 
a TLS encryption protocol; the blue connector depicts a non-SSL connection method to an 
unencrypted port, as shown in Figure 2-11 on page 24. IBM recommends the use of secure 
ports. These ODBC and JDBC drivers also are included in the IBM Cloud Pack for Data as 
part of the built-in connector framework that is used to define connections with remote data 
sources.
Chapter 2. Architecture and implementation 23



Figure 2-11   DVM communication buffer protocol

The ODBC driver can be used to connect many C and C++ applications to the DVM server. 
Many programming languages are available for use with the ODBC protocol, such as Python. 
Java applications can use the JDBC driver to connect to the DVM server. Also, specific 
languages, such as Python, can make use of our code to connect and run a request.

2.10.2  DVM Parser and Data Mapping Facility

The DVM Parser is primarily used to parse source data structure components that are used to 
define data access. Such components can be a copybook in a COBOL or PL/I programs that 
define a record layout or the source code that defines a DBD and PSB that is used for IMS 
structures. The Data Mapping Facility is the component of DVM that is responsible for 
creating a virtual table and virtual views, and defining the metadata (XML document) that is 
used for mapping access to the physical data.

The parser is a component of the DVM server and can be started through Job Control 
Language (JCL) batch jobs. A version of the parser also is distributed with DVM Studio 
installation (mainly targeting Windows, but potentially UNIX, Linux, and Mac platforms). 

DVM Studio distributed version of the Parser typically is used to generate an internal XML 
representation of the source document. It then uses this information through its various 
wizards to ultimately generate the DVM metadata for the scenario in question (that is, the 
Cobol copybook layout is transformed into DVM metadata format).

Virtual Table Map

DRDA AR 
(JGATE)

DRDA SSL

DRDA Non-SSL

RDBMS 
DRDA-supported
(must be pre-enabled)

Db2 LUW

Oracle 
(DRDA)

SQL Server

Data Mapping 
Facility (DMF) 
Parser

*zIIP-eligible

DRDA AR

SQL Engine

DVM Server

Informix

Browser

Postgres
Oracle
Hive

SQL Server
MySQL

. . .

RDBMS 
Non-DRDA 

https

JDBC Gateway Server
(DRDA AS)

DB 
1

DB 
2

DB 
n

Driver 1

Driver 2

Driver n

JDBC Gateway 
Administrator 

Console
(Currently HTTP)

J
D
B
C

24 IBM Data Virtualization Manager for z/OS



DVM Studio uses a combination of the DMF and the parser to build the definition of virtual 
tables and views that are used by DVM, as shown in Figure 2-12.

Figure 2-12   DVM parser

The parser is used to read the Source metadata and transform it into the DVM metadata 
format. Some of the source metadata types that the DVM server can accept are listed in 
Table 2-2.

Table 2-2   Artifacts that is required to create virtual tables by data source

2.10.3  DS-Client API interface

The DS-Client API interface provides an alternative method to connect applications to the 
DVM server, in the case where customers are not running Db2 and require an application 
interface to DVM for z/OS.

The DS-Client API supports the ability to connect COBOL, PL/1, and Natural applications to 
DVM’s virtualized data. The DS-Client requires modifications to the application and 
connection configuration for the AVZCLIEN subroutine. 

Data source Access method Source metadata Physical file

Sequential VSAM COBOL copybook PDS data set

IBM DB2® for z/OS Pass-thru
Direct
UDTF

IBM DB DBCTL 
ODBA 
Direct

DBD, PSB

ADABAS ADABAS FDT

SMF HTML
DSECT

Sequential

Syslog DSECT Sequential

Slog stream DSECDT Sequential
Chapter 2. Architecture and implementation 25



A parameter list must be added to your application and used with subroutine calls to gain 
access and read/write data in this manner:

� OPEN
� SEND
� RECV
� CLOSE

OPEN creates a session with the DVM server and obtains shared memory that is used to 
send the SQL result sets to the application program. The SEND subroutine call is issued 
following an OPEN subroutine call to send the SQL request to the server. A RECV subroutine 
call is issued to retrieve the SQL results from the shared memory object created during the 
OPEN subroutine call. After the data is retrieved, a CLOSE subroutine call can be issued, 
which ends the session with the DVM server and releases resources.

2.10.4  z/OS Connect Enterprise Edition

z/OS Connect EE empowers a wide community of developers with a simple and intuitive way 
to use data and services on IBM Z through RESTful APIs. The DVM implementation can 
combine with IBM z/OS Connect EE for an easy-to-use interface in developing REST 
interfaces that access mainframe data sources, non-mainframe sources, such as 
SQL/NoSQL stores, and big data technologies, such as Spark and Hadoop. REST interfaces 
can be developed to combine multiple data sources. Developers do not see the underlying 
complexities of the data structures and their locations.

The z/OS Connect server has a DVM IBM WebSphere® Optimized Local Adapter (WOLA) 
service provider, which is an API that allows DVM to communicate, as shown in Figure 2-13.

Figure 2-13   z/OS Connect Enterprise Edition and DVM WebSphere Optimized Local Adapter

Any virtualized data on the mainframe can be accessed through REST calls or through a web 
browser with the z/OS Connect Enterprise Edition server. The z/OS Connect server is 
deployed on the mainframe, separate from DVM, and listens to HTTP or HTTPS calls from the 
browser, or any HTTP clients.

2.10.5  Java Database Connectivity Gateway

DVM also includes the JDBC Gateway server (JGate), which is used to connect to distributed 
databases. It is installed separately on Linux, UNIX, Windows, or UNIX System Services 
systems. To access non-standard or non-DRDA-enabled data sources, the JGate server is 
needed, as shown in Figure 2-11 on page 24.
26 IBM Data Virtualization Manager for z/OS



Specific relational database management systems (RDBMS) vendors require a specific 
licensing component that provides a DRDA-compliant data source. The DVM server connects 
to the JDBC Gateway server that uses a DRDA server. For example, Oracle connects by way 
of an Oracle JDBC driver. After the connection is established, data can be virtualized by using 
DVM Studio.

2.10.6  Connection and port security

When it comes to deployment, system administrators and system programmers can configure 
connections and port security. DVM supports Secure Sockets Layer (SSL) and is 
transparently supported by the Application Transparent Transport Layer Security (AT-TLS), an 
IBM TCP/IP facility. The DVM server recognizes and enables SSL connections and sessions 
automatically. Any port that includes a secure connection sends data in an encrypted format. 
DVM maintains the security and access credentials of the calling user that is based on the 
enterprise security manager in use (IBM RACF®, ACF2, and Top Secret).

SSL can be used to secure ODBC, JDBC, and HTTP network communications between the 
DVM server and DVM Studio. For HTTP, web services can be defined to support SSL by using 
the default setting of TLS 1.2.

For role-based authorization, users can access the DVM server by using AES, DVM 
domain-based, Microsoft Transaction Server, and Kerberos. The default authentication has a 
proprietary encryption mechanism when the login request is sent to the Host.

AES uses the Diffie-Hellman key exchange, and domain-based access verifies that the user 
is authenticated by a domain-based system. Windows platforms require that the user first logs 
on to an NT domain. 

For the UNIX platforms, the local machine must be a member of a NIS domain. The password 
database that is used to authenticate the user must be NIS-mapped. Table 2-3 lists client 
endpoint characteristics and configuration information.

Table 2-3   DVM endpoint security configuration parameters

Endpoint Connection 
method

Server configuration parameter Secured login Security 
PARM(INOO)

DVM 
JDBC/ODBC 
driver

Non-SSL

SSL 
enabled

OEPORTNUMBER (non-encrypted)

OESSLPORTNUMBER, SSL, 
SSLAUTODETECT, SSLCLIENTAUTH
SSLCLIENTNOCERT, SSLUSERID

Yes
(SAFUID/PWD)

DVM Eclipse 
Studio

HTTP

HTTPS

WSOEPORT (non-encrypted)

WSOESSLPORT, SSL, 
SSLAUTODETECDT, SSLCLIENTAUTH, 
SSLCLIENTNOCERT, SSLUSERID

Yes
(SAF UID/PWD)

JGate server 
(DVM as client)

Non-SSL

SSL 
enabled

DEFINE DATABASE PORT (<port 
number>) (non-encrypted)

DEFINE DATABASE PORT (<port 
number> SSL) (encrypted)

Yes DRDA, 
SECMEC 1

1 Security mechanism (SECMEC) is a technical tool that is used to implement a security service, such as access control 
lists, cryptography, and digital signatures.
Chapter 2. Architecture and implementation 27



2.11  Summary

Because of its unique architecture, DVM supports real-time data virtualization technology that 
enables seamless access to mainframe relational and non-relational data for use with data 
analytics, big data, mobile, and web solutions.

DVM for z/OS is the only technology in the market that can be used by any client application 
program, loading process, or mainframe program with the possibility to read, update, or 
delete any data structure depending on the underlying data source.

All underlying data structures are abstracted from the user through the common usage 
patterns:

� Create virtual and integrated views of data to access mainframe data without having to 
move, replicate, or transform your source data.

� Enable access, update, and join functions on your mainframe data with other enterprise 
data with modern APIs in real time.

� Mask your mainframe data implementations from application developers to safely expose 
mainframe assets as APIs into mobile and cloud applications. Also, developers can use 
ANSI SQL functions to retrieve any data in mainframe and LUW environments.

DRDA 
(DVM as client)

Non-SSL DEFINE DATABASE TYPE 
(MEMBER/GROUP/ZOSDRDA/ORACLE/
MSSQL/QMFDRDA) PORT (<port 
number>) (non-encrypted)

Yes DRDA, 
SECMEC1

DRDA
(DVM as client)

SSL 
enabled

PORT (<port number> SSL) (encrypted) Yes DRDA, 
SECMEC1

Integrated 
DRDA Facility 
(ODF)

Non-SSL

SSL 
enabled

IDF

IDFPORT (non-encrypted)

Yes
(SAF UID/PWD)

SECMEC1

zCEE WOLA 
DVM

Service Provider

Non-SSL

SSL 
enabled

HTTP Port inserver.xml

HTTPS Port in server.xml

Yes 
(UID/PWD)

Liberty 
Server.xml 
httpPort

JDBC Gateway

DRDA Listener

Non-SSL

SSL 
enabled

Default configuration

JVM configuration for 
jsse2.overrideDefaultTLS
JVM configuration for 
jsse2.overrideDefaultProtocol

Yes DRDA, 
SECMEC1

JDBC Gateway 
Administrator 
Console

Non-SSL

SSL 
enabled

Port in jgate.properties

HTTPS port in jgate.properties

Yes
(UID/PWD)

Creds stored in 
an 
application-man
aged file with 
encryption

Endpoint Connection 
method

Server configuration parameter Secured login Security 
PARM(INOO)

1 Security mechanism (SECMEC) is a technical tool that is used to implement a security service, such as access control 
lists, cryptography, and digital signatures.
28 IBM Data Virtualization Manager for z/OS



Chapter 3. Installation and configuration

IBM Data Virtualization Manager for z/OS (DVM for z/OS or DVM) is installed by using 
standard SMP/E methods that are common to other z/OS software product installations. 

This chapter includes the following topics:

� 3.1, “Installation overview” on page 30
� 3.2, “Creating the DVM server data sets” on page 31
� 3.3, “Setting up the security application” on page 33
� 3.4, “Configuring the Workload Manager” on page 34
� 3.5, “Authorizing the program LOAD library” on page 34
� 3.6, “Creating a backup of the product libraries” on page 35
� 3.7, “Configuring support for the DBCS system” on page 36
� 3.8, “Customizing the DVM server for access to databases” on page 36
� 3.9, “Verifying the installation” on page 43

3

© Copyright IBM Corp. 2021. 29



3.1  Installation overview

SMP/E is the basic tool for installing and maintaining software on z/OS systems and 
subsystems. It controls these changes at the element level by selecting the suitable levels of 
elements to be installed from many potential changes. 

Complete the following steps to install DVM for z/OS:

1. Create the server data sets through the hlq.SAVZCNTL members AVZDFDIV, 
AVZGNMP1, and AVZEXSW1.

2. Set up the security application to use with the server by using one of the following 
hlq.SAVZCNTL members:

– AVZRAVDB
– AVZA2VDB
– AVZTSVD

3. Configure Workload Manager (WLM) for optimum performance of the server.

4. Authorize the product LOAD library by using the Program Facility (APF).

5. Create a copy of the product libraries.

6. Configure the server to support DBCS to enable online use of databases.

7. Customize the server to access your data sources in hlq.SAVZEXEC(AVZSIN00).

8. Configure the started task JCL that is in hlq.SAVZCNTL(AVZ1PROC) before you can start 
the server.

9. Configure the Command List (CLIST) that starts ISPF panels by using 
hlq.SAVZEXEC(AVZ).

10.Verify the installation by creating a virtual table and accessing its underlying VSAM file.
30 IBM Data Virtualization Manager for z/OS



3.2  Creating the DVM server data sets

The first step is to create DVM server data sets that are required for data processing. One 
data set is called a global variable file that retains parameters for the DVM server run-time 
execution. A server trace file can be used to record messages about server operations during 
processing.

Within the batch job that is called AVZDFDIV, you can change the product high-level qualifier 
and choose a four character server subsystem name that is unique for this server. The 
second and third character must be VZ, and the first and fourth characters can be anything 
that you decide. The example that is shown in Figure 3-1 is named AVZS. 

Figure 3-1   Job AVZDFDIV

Change HLQ1 to the HLQ of the product data sets (original SMP/e target), and change HLQ2 
to the same value that you used in the AVZDFDIV member to denote the HLQ where the 
global variable and trace datasets are stored. This location, HLQ2 (can be server specific), is 
used to store the configuration datasets for each DVM SSID you define. For example, HLQ1 
can be set to our SMP/e target lib example of DVM110, and HLQ2 can be set to DVM.AVZ1, 
so that the configuration that is specific to SSID AVZ1 is separated from the original SMP/e 
product lib DVM110
Chapter 3. Installation and configuration 31



The second batch job to run is called AVZGNMP1 (see Figure 3-2) to generate a user-defined 
map file. As a user creates maps or edits existing maps, they are saved in the user-defined 
map file instead of being stored in the map file that is supplied by the product data sets. 

Figure 3-2   Job AVZGNMP1

Change HLQ1 to the high-level qualifier of the product data sets and change HLQ2 to a value 
to create the map file data set with.

Change AVZS to a wanted server subsystem name, (keeping in mind the xVZx rule). Anyone 
that uses this product requires UPDATE authority to this map data set so that maps can be 
created and then stored in the user-was defined map file.

Tip: Users need UPDATE authority to the MAP data sets that are created in this job.
32 IBM Data Virtualization Manager for z/OS



3.3  Setting up the security application

The second step is to define security authorizations for the server that are based on the 
security application in use at your data center. You might need to involve your z/OS security 
specialists to ensure that you use the correct security application. 

Run the following suitable job for your security application from within hlq.SAVZCNTL:

� AVZRAVDB: IBM Resource Access Control Facility (RACF) security
� AVZA2VDB: CA AFC2 security
� AVZTSVDB: CA top secret security

Figure 3-3 shows an example of the settings for RACF. Change WLMUSERID to the user ID 
you want to use to allow AVZ access to the WLM Policy definitions. This same user ID is used 
in the HLQ.SAVZEXEC.xxxxIN00 in the WLM parameter definitions. This permit can be removed 
if a user ID that includes the correct permissions is used. 

Figure 3-3   RACF job example

In our example, we defined a new admin user ID of DVMADM, with its own OMVS segment. 
Change AVZS to your AVZ subsystem name (the default is AVZS for a new installation). We 
used AVZ1 to designate the DVM SSID we configured. 

Also, the started task user ID requires READ, EXECUTE, READ, or READ/WRITE/UPDATE 
to the data sets that are listed in Table 3-1. 

Table 3-1   Product data sets and their specific access privilege requirements

Data definition Access Data set name

STEPLIB READ, EXECUTE hlq.SAVZLOAD

AVZRPCLB READ, EXECUTE hlq.SAVZRPC

SYSEXEC READ hlq.SAVZEXEC

AVZTRACE READ, WRITE hlq.SAVZTRACE

AVZCHK1 READ, WRITE hlq.SYSCK1

AVZMAPP READ, WRITE hlq.SAVZMAP
Chapter 3. Installation and configuration 33



3.4  Configuring the Workload Manager

The third step involves configuring a suitable WLM policy for the DVM server. The following 
guidance can be used for the installation and customization. Most system programmers are 
familiar with the steps that are associated with WLM policy definitions.

A best practice is to configure the DVM server to use a medium to high performing WLM 
velocity goal, as its default service class. Complete the following steps:

1. Create a WLM classification rule:

a. From the WLM ISPF application, select option 6 (Classification Rules).

b. Select option 1 to create a rule.

c. Set the Subsystem Type to AVZ and provide an optional description.

d. When a default service class name does not exist, select option 4(Service Classes) 
from the WLM menu and press Enter and PF3 to save.

2. Define the DVM server started task AVZ1PROC to a WLM service class:

a. From the WLM ISPF application, select option 6 (Classification Rules).

b. For STC WLM-subsystem type, select Modify.

c. Add an entry for AVZ1PROC.

d. Provide a suitable service class for the started task and define it relative to workload 
management objectives.

e. Add a unique report class for the started task.

3. Activate the new WLM Policy definition.

3.5  Authorizing the program LOAD library

The next step is to APF-authorize the SAVZLOAD dataset from SDSF by using the 
SETPROG APF command. 

Complete the following steps:

1. Verify the correct volume name from the Data Set List utility menu (see Figure 3-4).

Figure 3-4   Verify the volume for SAVZLOAD
34 IBM Data Virtualization Manager for z/OS



2. From the SDSF main menu, enter command mode by entering / and then, pressing Enter. 
This mode gives you a bigger editor session to complete the next command. then, run the 
SETPROG APF command (see Figure 3-5).

Figure 3-5   SETPROG APF command

3. From SDSF, run the APF command from the main menu to see the list of APF authorized 
datasets (see Figure 3-6). 

Figure 3-6   APF command

You should see SAVZLOAD listed, as shown in Figure 3-7. 

Figure 3-7   List of APF authorized datasets

3.6  Creating a backup of the product libraries

Next, a copy of the product libraries that are generated from the SMP/E installation must be 
created as a best practice. Also, a backup for recovery must be created when any 
customization must be retained. When you do not create a copy of your product data sets, 
any SMP/E maintenance you apply going forward overlays any customizations that are made.

Create the backup by using one of the following methods:

� Copy the product libraries to a runtime set of libraries.
� Run the IEFBR14/IEBCOPY job.
� Run the ADRDSSU DUMP job.
Chapter 3. Installation and configuration 35



3.7  Configuring support for the DBCS system

In the next step, configure the initialization member, also known as the server configuration 
member, in the exec data set. The name of the member depends upon the four characters 
subsystem ID that you assigned the server. Therefore, we called it AVZS in our example; 
therefore, the initialization member is called AVZSIN00.

Consider the following points:

� HLQ.SAVZEXEC(AVZAIN00) is used to configure support for Japanese code pages and 
double-byte sets (see Figure 3-8).

Figure 3-8   Configure support for DBCS

� SQLENGDFLTCCSID is the default CCSID to use when processing data by way of the 
server for non-Db2 data

� SQLENGDBCSLTFMT is the default DBCS format to use when translating a single-byte 
code page to double-byte code page. Letters in single-byte code page are translated to full 
width DBCS characters.

3.8  Customizing the DVM server for access to databases

Customize the HLQ values (see Figure 3-4) in the initialization member to point to those 
libraries with which you created the product. HLQ1 is for the product target libraries that you 
created during the SMP/E installation process. HLQ2 represents the runtime libraries for the 
product. When runtime libraries are not created (as described in 3.6, “Creating a backup of 
the product libraries” on page 35), map HLQ2 to the product data sets that were created 
during the SMP/E installation process.

Figure 3-9   Customize the HLQ values

Modify the configuration member HLQ.SAVZEXEC(AVZSIN00) by providing the high-level 
qualifier of:

� Installation libraries in SHLQ
� Runtime libraries in SHLQ2

When no runtime libraries exist, SHLQ2 and SHLQ are recommended to have the same 
value.
36 IBM Data Virtualization Manager for z/OS



During this process, you can customize the server initialization member for the TCP/IP ports 
that the server needs to communicate. You must have a dedicated web service port number 
(WSOEPORT) that the Eclipse plug-in can use to communicate with the DVM server (see 
Figure 3-10).

Figure 3-10   Customize the server initialization member for TCP/IP ports

3.8.1  Customizing the relational database

In this section, we present examples of how to set up the initialization member to access 
relational database management systems (RDBMS). Always add a DEFINE DATABASE 
section to the initialization file for RDBMS configurations. However, some data sources do not 
need any customization, such as VSAM. Data sources, such as Db2 distributed databases, 
Oracle, Teradata, or Amazon Redshift, require customization.

Figure 3-11, Figure 3-12, and Figure 3-13 show the initialization member configuration for 
DB2 for z/OS, DB2 LUW, and Oracle. A pattern exists for each defined database block with 
subtle changes that require database administrators for each data source to get specific 
values for the unique parameters for each.

Figure 3-11   Initialization member for DB2 for z/OS

Figure 3-12   Initialization member for DB2 LUW

Figure 3-13   Initialization member for Oracle
Chapter 3. Installation and configuration 37



3.8.2  IMS database customization

IMS is customized differently from relational database management systems (see 
Figure 3-14).

Figure 3-14   Customization for IMS

Provide the IMS ID and the IMS SDFSRES library to access your IMS subsystem as a data 
source.

IMS access is broken down into two sections: 

� The first section is used for CCTL or DBCTL support, which means you are making DLI 
transaction calls to IMS.

� The second section is for IMS Direct, which means we are accessing underlying files 
directly without making DLI calls. The IMS DBA can provide values to customize this 
block.

It is recommended that you collaborate with your IBM DBA to ensure data mappings and 
configuration settings are compatible.
38 IBM Data Virtualization Manager for z/OS



3.8.3  Adabas customization

Customizing Adabas as a data source involves enabling an initialization member by setting 
the MODIFY PARM NAME (ADABAS) to YES. It is recommended that you collaborate with 
the ADABAS DBA to ensure that the data mappings and configuration are accounted for (see 
Figure 3-15). 

Figure 3-15   Customize for ADABAS

3.8.4  Configuring the started task JCL

After the DVM started task JCL is customized, it must be moved to the suitable procedure 
library. The started task is run immediately as the result of a START command and offers 
control over where and when the JCL is run.

In DVM for z/OS, the high-level qualifier of the target product installation libraries or the 
runtime libraries must be defined in the HLQ field.

Consider the following points:

� Db2 for z/OS requires the SDSNEZXIT and SDSNLOAD libraries to be added to the 
STEPLIB.

� IMS requires the IMS SDFSRESL library to be added to the STEPLIB concatenation.

� Adabas requires the ADABASE load library to be added to the STEPLIB.

� Ensure that the SYSEXEC DD statement allocates the correct data set name from the 
AVZSIN00 member.
Chapter 3. Installation and configuration 39



The started task configuration is shown in Figure 3-16.

Figure 3-16   Started task configurations

Ensure that the SYSEXEC DD statement allocates the data set name that contains the 
initialization member for your customized data sets (see Figure 3-16). 

Figure 3-17   Update SYSEXEC to point to the data set with the initialization member

Ensure that the AVZMAP concatenation contains the user-defined map data set as the first 
defined map dataset.

After these changes are made to the SYSEXEC file, start the DVM server for this example by 
using the /s AVZJ command.
40 IBM Data Virtualization Manager for z/OS



3.8.5  Configuring the Command List 

Configure the ISPF application (see Figure 3-18) to use the member AVZ in the SAVZEXEC 
data set of the fully qualified load library from the runtime library that you created in 3.6, 
“Creating a backup of the product libraries” on page 35. You can also use the product target 
library that was created by using the SMP/E installation process.

Figure 3-18   Configure the CLIST using ISPF

Complete the following steps to start the ISPF panels by using commands: 

1. Edit hlq.SQVZEXEC member AVZ. Then, edit the parameter for your product load library 
llib=’hlq.SAVZLOAD’.

2. Start the ISPF application by enter the following command on the ISPF command shell 
(see Figure 3-19):

EX ‘hlq.SAVZEXEC(AVZ)’ ‘SUB(AVZS)’

Figure 3-19   Start the ISPF application
Chapter 3. Installation and configuration 41



The ISPF application can be used to administer the server. Ensure that the server is running 
before you start the ISPF application by completing the following steps:

1. Edit hlq.SQVZEXEC member AVZ, and edit the parameter to that of your product load library 
llib=’hlq.SAVZLOAD’.

2. Copy the AVZ member to a data set that is allocated to the SYSPROC allocation for all 
TSO users.

3. Start the ISPF application by entering the following command on the ISPF command shell 
(see Figure 3-20):

EX ‘hlz.SAVZEXEC(AVZ)’ ‘SUB(AVZS)’

Figure 3-20   ISPF panels with server admin options
42 IBM Data Virtualization Manager for z/OS



3.9  Verifying the installation

Use the Eclipse-based DVM Studio Client to verify the installation by creating a virtual table to 
access your underlying data files as a relational database format that uses SQL.

The detailed checklist can be used to assist you in gathering the information that you need to 
successfully install and configure the DVM server (see Table 3-2).

Table 3-2   Pre-customization tasks: DVM server (AVZ)

Asset type Your value Description

Started Task User ID Grant security authority to write to its own data set (SAVZCNTL).

Administrator User ID Grant security authority to write the SAVZCNTL and SACZMAP data sets.

Started Task User ID User ID assigned to aVZ1PROC requires an OMVS segment defined.

Started Task name Started Task User ID needs to be assigned or created and assigned.

User ID User ID requires proper authority to run BINDS from the Studio.

IMS IMS load library, PSB Library, and subsystem names.

Distributed RDBMS User ID and password to read data, and the location, port, and IP.

Subsystem name Assign the DVM server an unused subsystem and ID by way of TCz.

Started Task User ID For RACF, a class must be defined to a descriptor table and system IPL’d. 

Start the AVZ1PROC server.

RACF access granted to specific data sets.

Db2 for z/OS RACF PassTickets must be created per the user guide

Library Eclipse plug-in Users must update their authority to the user map data 
sets specified in the AVZ1 started task.

Port Obtain the TCP/IP OE port number (Open Edition [OE]).

Port Obtain a Web service port number that the Eclipse plug-in can use to 
communicate.

Ports If TCP/IP ports are protected, the AVZ1 subsystem name needs to have 
proper access NOT the AVZ1PROC Started Task.

User During installation of DVM Studio Eclipse plug-in, the user must be signed 
on to DVM Studio as Administrator.
Chapter 3. Installation and configuration 43



44 IBM Data Virtualization Manager for z/OS



Chapter 4. Connecting to z/OS data sources

In this chapter, we discuss how the DVM server can access data on the mainframe by using 
mainframe database systems, file management systems, or system files.

This chapter includes the following topics:

� 4.1, “Introduction” on page 46
� 4.2, “Getting started” on page 47
� 4.3, “Direct access to z/OS databases” on page 47
� 4.4, “Db2 for z/OS” on page 52
� 4.5, “IBM ESA/IMS database” on page 54
� 4.6, “Accessing mainframe files” on page 56

4

© Copyright IBM Corp. 2021. 45



4.1  Introduction

The DVM server has built-in intelligence to use direct-access paths to underlying data that is 
on the mainframe environment, such as mainframe database systems, file management 
systems, or system files. 

The benefits are faster access and run time, and the ability to more readily offload general 
processing to zIIP specialty engines, if available. Clients access the DVM server through 
ODBC/JDBC, HTTP/HTTPS, DRDA, including RRSAF and CAF for Db2 z/OS (see 
Figure 4-1).

Figure 4-1   Client access methods to the DVM server
46 IBM Data Virtualization Manager for z/OS



4.2  Getting started

Within the DVM configuration member, specify the DRDA RDBMS settings through a 
definition statement and provide local environment values for all the parameters. The DVM 
Started Task must be recycled after the Define Database specifications are set.

Example 4-1 shows the section in the configuration member to enable.

Example 4-1   Define database specifications

"DEFINE DATABASE TYPE(type_selection)", 
"NAME(name)" , 
"LOCATION(location)" , 
"DDFSTATUS(ENABLE)" , 
"DOMAIN(your.domain.name)" , 
"PORT(port)" , 
"IPADDR(1.1.1.1)" , 
"CCSID(37)" , 
"APPLNAME(DSN1LU)" , 
"IDLETIME(110)"

For more information about installing and configuring the DVM server, see IBM 
Documentation.

4.3  Direct access to z/OS databases

DVM for z/OS provides direct access to popular z/OS databases, such as Db2 for z/OS, 
IMSDB, and Adabas. The DVM server evaluates and processes optimized query access, 
which in some cases (depending on the data source) can avoid management subsystems for 
I/O. 

4.3.1  ADABAS

Adabas is designed to support thousands of users in parallel with subsecond response times. 
Access to Adabas can be from Natural, Software AG’s 4RL dev IDE, ODBC/JDBC, and 
embedded SQL. Adabas supports up to 65,535 DBs with each supporting up to 5,000 files, 
where each file can contain up to 4 trillion records, each with up to 926 fields. DVM for z/OS 
supports Adabas 8.x or later and the DVM server supports long names for fields, Multi-file 
joins optimized connection modes, Natural subsystem security, and dynamic switching 
between TCB and SRB mode for improved parallelism and zIIP-eligibility (Figure 4-2). The 
DVM server supports ET/BT transaction-based commands, MU and PE file structures, and 
Natural DATE and TIME formats.

Benefits of using DVM for z/OS to access Adabas
The use of DVM for z/OS to access Adabas realizes the following benefits:

� Software AG’s Adabas SQL requires an off-host server (CONNX) with limits for scale, 
performance, and failover that can be addressed with DVM server technology.

� The DVM server can service both Adabas and Natural programs and serve as a substitute 
for Software AG’s EntireX solution.

� DVM for z/OS is an integral component for IBM’s IDAA Loader component for loading 
Adabas data to IBM’s Data Analytics Accelerator (IDAA).
Chapter 4. Connecting to z/OS data sources 47

https://www.ibm.com/docs/en/dvm/1.1.0?topic=administering-configuring-access-data-sources
https://www.ibm.com/docs/en/dvm/1.1.0?topic=administering-configuring-access-data-sources


� DVM for z/OS DSclient supports DRDA and the JDBC Gateway server. This support offers 
a replacement option to Software AG’s Natural SQL Gateway.

� Organizations with Db2 for z/OS can drive transaction activity through their Db2 
subsystem by using the Integrated DRDA Facility (IDF) that uses Db2 as a Data Hub. This 
option isolates workloads to a single system.

� DVM for z/OS integrates with AT-TLS and improves configuring secure access to Adabas 
data.

� DVM for z/OS helps to offload SORT, JOIN, and data translation operations.

Adabas can run a single Adabas command that retrieves multiple rows (multi-fetch). When a 
SELECT statement runs within the DVM server, the request can be split into multiple and 
separate READ requests when MapReduce is dynamically activated and returns a list of 
record IDs (ISN), as shown in Figure 4-2.

Figure 4-2   DVM server architecture for Adabas

Virtualizing Adabas 
Typically, any older data source for virtualizing DVM uses the physical file and a COBOL or 
PL/1 copybook to map the meta-data into DVM format (DVM Catalog tables). However, in the 
case of Adabas, this procedure is slightly different. Adabas uses a data definition module 
(DDM) to create a view of the Adabas file, manage long column names, or limit the view to a 
subset of defined fields. The DDM represents the metadata for the Adabas data, which is 
analogous to catalog tables for a relational database.

The virtualization procedure in DVM for z/OS for Adabas is a manual procedure and is run by 
using JCL (which is provided with the DVM server) or can be used by using DVM Studio.
48 IBM Data Virtualization Manager for z/OS



Creating virtual tables with JCL
DVM for z/OS is packaged with Batch JCL, where the administrator selects one file number at 
a time. Batch JCL parameters include; Subsystem, SSID, DBID, and File Number. Running 
the Batch JCL generates metadata in XML and then parsed by the DVM parser to create DVM 
server metadata (see Figure 4-3).

Figure 4-3   Virtualizing Adabas with Batch JCL

Working with Adabas
Adabas features basic fields, special fields, and multi-value fields. These fields must be 
translated by the DVM server and transformed collectively into a relational format for client 
tools to more easily access and query the underlying data. The DVM catalog stores the 
metadata for virtual tables. Table 4-1 lists basic fields format conversions.

Table 4-1   Basic field format conversions for Adabas

Field format Length SQL data type

Binary 126 bytes Binary

Fixed 2 bytes Small integer

Fixed 4 bytes Integer

Fixed 8 bytes Big integer

Float 4 bytes Real float

Float 8 bytes Double

Packed 29 bytes Decimal

Unpacked 29 bytes Decimal or numeric

Alpha 253 bytes Varchar
Chapter 4. Connecting to z/OS data sources 49



Table 4-2 lists special field format conversions.

Table 4-2   Special field format conversions for Adabas

The DVM server also works with Multi-value (MU) fields in an Adabas record and periodic 
groups (PE), which are repeating groups in an Adabas record. Both multi-value field and 
periodic groups are limited to 191 occurrences and a maximum fetch of 64 K occurrences. If 
Adabas applications run a delete, the Adabas data set collapses the array of data by 
removing the deleted record and reassigning the next record in its place.

When a virtual table is flattened, each multi-value occurrence becomes a column. When the 
table is not flattened, each multi-value field is written its own subtable with an index, parent 
key, and base key (see Figure 4-4).

Figure 4-4   Multi-value fields in a flattened virtual table

When working with periodic groups, one level of multi-value (MU) fields can be inside of a PE, 
to make a 3-D array. Deleting an occurrence does not collapse the array. When the virtual 
table is flattened, each field in the PE is a column. When the virtual table is not flattened, the 
PE is a subtable with a group of columns with an index and parent key.

Best practices for field naming
Adhere to the following best practices when naming fields:

� Adabas by design includes field names that are two characters and it is recommended to 
use longer field names.

� Generate Natural DDM views as an Adabas DBA.

� When flattening ME or PU arrays, limit the field name to 26 bytes to account for extra bytes 
that are used during data mapping.

Field format Length SQL data type

ISN RECORD_ID Big integer

Natural/Predict (D) date 4 bytes Date

Natural/Predict (T) time 7 bytes Timestamp
50 IBM Data Virtualization Manager for z/OS



Best practices for load testing
Each DVM ODBC/JDBC client connection performs an (OP)en for an Adabas User Queue 
Element (UQE). These UQEs share a pool of Adabas Nucleus Threads (NT) that run on the 
General Processors. 

The DVM server takes advantage of Adabas v8 multi-buffers and Adabas 64-bit storage 
through multiple fetches of records for better performance and reduced CPU. Depending on 
the type of transaction, the size of the format buffer and result-set (record buffer), Adabas 
manages the workload based on the ADARUN parameter settings that are listed in Table 4-3.

Table 4-3    ADARUN parameters

Parameter Definition Recommendation

V64BIT YES A setting of YES activates 64-bit storage.

NU Maximum # of user queue 
elements.

Consider increasing this parameter for a larger 
number of application connections (for 
example, 800 for a total of 800 user connection 
pool).

LU All user buffers (format, record, 
search, value, and ISN). 
Recommended value of 
1024000.

LU represents all buffers that might be required 
for any Adabas command:
� Increase this value to improve performance 

and ability to handle large PE groups.
� Minimum value of 64 K.
� Recommend 1024 K.

NAB The number of attached buffers 
to be used. Recommended 
value of 10000.

Increase this value with corresponding 
increases in LU.

LWP The size of the Adabas work 
pool. Recommended value of 
3,500,000.

Increase this value with corresponding 
increases in LU.

NISNHQ The maximum number of 
records that can be placed in 
HOLD status at the same time 
by one user.

Typically one quarter of the NH HOLD queue 
size. Important for large updates; for example, 
up to and exceeding 12000.

NH HOLD queue element (HQE) This setting is required for each record (ISN) 
placed in HOLD status. This value is important 
for large updates; for example, up to and 
exceeding 50000.

LBP The maximum size of the 
Adabas buffer pool.

Monitor Adabas shutdown stats to size this 
value for performance; for example, 
1,200,000,000.

NTS The number of user threads 
used during the Adabas 
session.

Typically, corresponds to the number of General 
Processors + 1.
Chapter 4. Connecting to z/OS data sources 51



Generating code for Adabas
DVM for z/OS provides natural code generation, which can be used to access Adabas. The 
DVM server supports Software AG Natural version 4 and later. 

DVM Studio provides an option for compiling the generated natural program outside of the 
mainframe. After virtual tables are defined for an Adabas data set, by right-clicking the Virtual 
Tables section and selecting Generate Query with *, the administrator can quickly generate 
code that can be used by a client application to access the data set.

In DVM Studio, select Server Tab → SQL → Data → SSID → Virtual Tables → Generate 
Query with * (see Figure 4-5).

Figure 4-5   Adabas code generator

The IBM Documentation provides detailed 

For more information about this configuration process, see this web page.

4.4  Db2 for z/OS

A user-defined-table-function (UDTF) is a function that is defined within a Db2 systems by 
using the Create Function statement and can be accessed from SQL. DVM provides the 
ability to define UDTF's on virtual tables and virtual views, which allows Db2 applications the 
ability to access DVM's virtual data real-time. 

UDTFs are programs that can reach outside of Db2 for z/OS to the operating system or file 
system to retrieve data and return it in a relational format. DVM for z/OS can create Db2 for 
z/OS UDTFs that point to virtual tables provisioned on the DVM server.

IDF enables DVM to be defined as an application server within Db2 communication database.
52 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/docs/en/dvm/1.1.0?topic=sources-configuring-access-adabas


4.4.1  Db2 for z/OS access options

Db2 for z/OS can be accessed by the DVM server by using the Distributed Relational 
Database Architecture (DRDA) access method or the Resource Recovery Services 
attachment facility (RRSAF) access method.

The DRDA method allows a higher percentage of the Db2 workload to run in Service Request 
Block (SRB) mode and be offloaded to a zIIP specialty engine. Running workloads in SRB 
mode lowers the total cost of ownership when compared to RRSAF by reducing the 
dependency on z/OS General Purpose processor use (MIPS). 

If the z/OS environment uses a zIIP specialty engine, configure the DVM server to access 
Db2 for z/OS with the DRDA access method. Before Db2 requests are issued, you must bind 
DRDA, RRSAF, or both into packages within each Db2 subsystem. Binding both access 
methods is recommended.

Two Db2 for z/OS data access constructs are available by the Data Virtualization Manager 
server:

� Traditional Db2 APIs allows for reading and writing the data, and transactional integrity.

� Db2 Direct reads the underlying Db2 VSAM linear data sets directly, without issuing an 
SQL statement against Db2 for z/OS. This access method allows read-only access to the 
data and provides high performance and bulk data access. 

This method can be used when you create virtual tables against Db2 database objects 
with DVM Studio. In a controlled environment, the Db2 Direct access was used on a large 
z14 configuration to virtualize and facilitate large data pulls that resulted in greater than 5 
times improvement in elapsed time when compared to traditional DRDA access. In this 
case, the work is 100% zIIP eligible compared to 60% eligible where Db2 uses DRDA 
requesters. This access method does not use any Db2 resources (see Figure 4-6).

Figure 4-6   Db2 Direct provides direct access to underlying data without DB2 resources

For more information about configuring access to Db2 for z/OS, see this web page.
Chapter 4. Connecting to z/OS data sources 53

https://www.ibm.com/docs/en/dvm/1.1.0?topic=rdbms-configuring-access-db2-zos#dvs_sql_tsk_cfg_DB2


4.5  IBM ESA/IMS database

IBM IMS database support is provided through three access methods that use simple 
SQL-based queries, as described next.

4.5.1  IMS database control

Database Control (DBCTL) is an IMS facility that provides an IMS Database Manager (IMS 
DM) subsystem that can be attached to CICS but runs in its own address spaces. DBCTL 
access supports SELECT INSERT UPDATE and DELETE.

4.5.2  IMS Direct

The DVM server directly accesses underlying native data sets and bypasses the IMS 
management software for savings on general CPU usage. This access method eliminates the 
need to traverse the IMS Subsystem with no locking involved when accessing the data. Direct 
access in this fashion does not fully secure data integrity if the application is performing 
updates and deletes of data. 

Security is managed on the IMS native data set when IMS Direct is used. The user ID of the 
client connection must have the necessary security permissions for reading the IMS database 
data sets, as shown in Figure 4-7.

Figure 4-7   IMS Direct is fully zIIP-eligible and faster for direct access to IMS data

When IMS Direct is unavailable, the DVM server uses the DBCTL access method. Statistics 
about the IMS database are collected and stored within a metadata repository from which the 
SQL engine optimizes the MapReduce process and dynamically determines which is the 
most performant method for access based on the SQL query. IMS Direct supports all IMS 
database types, except SHISAM and HISAM:

� Hierarchical direct access method (HDAM): VSAM and OSAM
� Hierarchical indexed direct-access method (HIDAM): VSAM and OSAM
� Partitioned HDAM (PHDAM): VSAM and OSAM

Note: ODBA and DBCTL are mutually exclusive. Enable only one of these two methods to 
access IMS.
54 IBM Data Virtualization Manager for z/OS



� Partitioned HIDAM (PHIDAM): VSAM and OSAM
� Fast Path data entry database (DEDB)

IMS Direct supports SELECT Only for bulk data access and low general processor usage. 
Multiple IMS subsystems can be accessed by using this method.

4.5.3  IMS Open Database Access

IMS Open Database Access (ODBA) provides a callable interface that enables any z/OS 
recoverable, resource-managed z/OS address space, including the DVM server, to issue DL/I 
database calls to an IMS DB subsystem. The interface provides access to full-function DL/I 
databases and data entry databases (DEDBs). 

ODBA supports SELECT, INSERT, UPDATE, and DELETE and two-phase commit. Multiple 
IMS subsystems can be accessed by using this method. When configuring multiple IMS 
subsystems, enable DBCTL and IMS Direct or ODBA and IMS Direct.

4.5.4  Configuring IMS

As with other data sources, there are two data sets that are supplied by DVM for z/OS that 
must be edited to configure IMS. To configure access, the DVM server started task JCL and 
configuration member hlq.xVZy.SAVZEXEC.(xVZyIN00) must be modified. More 
configuration changes are necessary to the IMS system.

4.5.5  Creating virtual tables

The Program Specification Block (PSB) and Database Definition (DBD) source members and 
the copybooks for each IMS segment must exist in the virtual source libraries that are defined 
to the server. For more information, see this web page.

4.5.6  Enabling IMS Direct

Enable the IMSDIRECTENABLED parameter configuration member. When an IMS SQL 
query is run, the SQL Engine determines whether the request is best run with IMS Direct 
(native file support) or if IMS APIs are required. This determination is based on the supported 
database and file types, and the size of the database. 

The PSB and DBD source members and the copybooks for each IMS segment must exist in 
the virtual source libraries that are defined to the server. For more information, see this web 
page.

Note: ODBA and DBCTL are mutually exclusive. Use only one of these two methods to 
access IMS for a single DVM server.
Chapter 4. Connecting to z/OS data sources 55

https://www.ibm.com/docs/en/dvm/1.1.0?topic=metadata-creating-virtual-source-libraries
https://www.ibm.com/docs/en/dvm/1.1.0?topic=metadata-creating-virtual-source-libraries
https://www.ibm.com/docs/en/dvm/1.1.0?topic=metadata-creating-virtual-source-libraries


In the IN00 configuration member, search for the following sections to enable access 
methods:

DoThis = 1 
DontDoThis = 0 
... 

/* Enable IMS CCTL/DBCTL support */ 
if DontDoThis 
then 
do MODIFY PARM NAME(DBCTL) VALUE(YES)" 
... 

4.6  Accessing mainframe files

Much of critical business data on the mainframe exists in file formats and data sets that are 
not managed by any specific database management system. While these files lack the DBMS 
to ensure data integrity, the DVM server can access the files through its Data Mapping Facility 
(DMF) and transform them into a normalized relational view for SQL access.

Consider the following points:

� Sequential files feature records in the file in the order that they are written and can be read 
back in the same order only. They are a simple form of a COBOL file. Every record in a 
relative file can be accessed directly without reading through the other records. After it is 
virtualized, the DVM server allows this sequential data to be retrieved in any group order, 
along with query predicates.

� Delimited files typically are not found in a mainframe environment, but can be in any file 
storage system and include column delimiters for a stream of records that consist of fields 
that are ordered by column. Each record contains fields for one row, with individual fields 
that are separated by column delimiters. The DVM server requires the use of rules to 
virtualize delimited files.

� System Management Facility (SMF) offers a way of keeping track of what is occurring on 
your mainframe. A total of 255 SMF records are available to help deliver information about 
all functions and products that are running on the z/OS environment from the machine 
level to application-specific activity that is related to processing, I/O, allocated memory, 
and so on.

� Syslog is a standard for computer message logging and can be used for computer system 
management, security auditing, analysis, and debugging messages.

� Log stream is an application-specific collection of data that oftentimes organizations use 
to optimize their environment and routinely store in the form of SMF records. Log stream 
data sets are VSAM linear data sets.

� Operations log (OPERLOG) is a sysplex-wide log of system messages that are in a 
system logger log stream, which is similar to Syslog.
56 IBM Data Virtualization Manager for z/OS



4.6.1  VSAM

VSAM is a type of data set and an IBM DASD file storage access method that is used to store 
mission-critical data and managed by a file management system. The problem is that modern 
applications want to access this data more readily, but VSAM is not a database. 

DVM for z/OS provides seamless access to native VSAM data without configuring for SQL 
access, other than creating a virtual source library that maps DVM server metadata to the 
native data that is on disk that describes the record structure in copybooks. This mapping 
helps to correctly read the data. The DVM server supports COBOL, PL/I, and DCSCECT 
formatted copybooks.

This section divides this process into steps to help simplify this process into the following 
building blocks that are required to virtualize VSAM data with DVM Studio:

� A VSAM cluster that represents the VSAM data set, including one or both of data or index 
data records. The DVM server requires the name of a valid VSAM cluster as part of the 
source library for mapping purposes. No other configuration steps are required for the 
DVM server to set up the SQL interface to native VSAM files.

� The data set Member name that is included in the virtual source library that maps to the 
copybook (record layout) for the underlying data structure residing on disk.

The process involves the one-time creation of a virtual source library by containing metadata 
that is needed to correctly access and read VSAM data, followed by the creation of a virtual 
table, which allows for SQL access by any number of client applications.

Creating a virtual source library
DVM Studio is instrumental in creating the building blocks for the DVM server to use in 
virtualized data. All data sources require a virtual source library to be configured to virtualize 
underlying data. The library structure ensures a valid description and mapping for the DVM 
server for locating, accessing, and processing SQL statements.

DVM Studio allows a user to create a virtual source library under the Admin folder of the 
Server Tab for Source Libraries.

In DVM Studio, select Server Tab → Admin → Source Libraries → Create Virtual 
Source Library (see Figure 4-8).

Figure 4-8   Creating a virtual source library
Chapter 4. Connecting to z/OS data sources 57



The Virtual Source Library wizard requires a name, description, and the selected host library 
name that includes the VSAM record layout from a drop-down list of available source libraries. 
The underlying data structure can be virtualized into a virtual table for clients to access and 
query.

Creating a virtual table
DVM Studio allows a user to create a virtual table under the SQL folder of the Server Tab for 
Virtual Tables. This step requires the name of the DVM subsystem (SSID) that includes the 
metadata and virtual source library for the wanted data set.

In DVM Studio, select Server Tab → SQL → Data → SSID → Virtual Tables.

Right-clicking the Virtual Tables label opens a Virtual Tables wizard to help define criteria for 
access, fields to include in the virtual table, and allows for the ability to validate the virtual 
table definition. In this example, it ensures that the VSAM cluster name and VSAM cluster 
type match and display the suitable success or failure.

The Virtual Tables wizard prompts you to select the data type; then, it advances to the New 
VSAM Virtual Table dialog window for more definitions and requires that the data mapping 
library that is defined during the configuration of the DVM server as part of the started task 
JCL be selected. 

The accessing USER and SERVER must include READ/WRITE permissions to the target 
data set, as shown in Figure 4-9.

Figure 4-9   Creating a virtual table with DVM Studio Wizard

The Virtual Tables wizard then requests the administrator to select the previously defined 
virtual source library that contains copybooks for available data. After the suitable source 
library is downloaded and selected, a list of copybook members appears for selection. 

Selecting the suitable copybook member that is associated with the VSAM data set allows the 
administrator to advance through the wizard and define the table layout when querying the 
data, shown in Figure 4-10 on page 59.
58 IBM Data Virtualization Manager for z/OS



Figure 4-10   Associating the source copybook to virtual table

If the last field from the source file’s Copybook is required, the Enable End Field Selection 
option must be selected, as shown in Figure 4-11.

Figure 4-11   Virtual table layout

The virtual table definition must be validated before creation. In this example, the VSAM 
cluster name matches the type for the underlying file (KSDS), as shown in Figure 4-12.

Figure 4-12   Associating VSAM cluster name to virtual table
Chapter 4. Connecting to z/OS data sources 59



The DVM server checks the VSAM cluster name that is provided and returns a confirmation 
message with the type of VSAM cluster (see Figure 4-13).

Figure 4-13   Successful validation of VSAM cluster

Querying the new virtual table
With the new virtual table created, right-clicking the virtual tables label again and selecting 
Generate Query with * allows the administrator to quickly verify that data can be retrieved 
without error. With this step complete, the administrator is ready for the next step in 
provisioning the new object for test, development, or production-ready applications to use, as 
shown in Figure 4-14.

In DVM Studio, select Server Tab → SQL → Data → SSID → Virtual Tables → 
Generate Query with *. This selection auto-generates a scripted query statement with 
details about data set type, retrieved rows, and location of the data. The generated SQL 
statement can be modified inline or copied and use as part of application development. The 
following SQL output provides a sample view of how the auto-generated SQL looks:

-- Description: Retrieve the result set for OPERLOG_SYSLOG (up to 1000 rows)
-- Tree Location: 10.3.58.61/1200/SQL/Data/AVZS/Virtual Tables/OPERLOG_SYSLOG
-- Remarks: Logstream - SYSPLEX.OPERLOG
SELECT * FROM OPERLOG_SYSLOG WHERE SYSLOG_JOBID = 'AVZS';

-- Description: Retrieve the result set for VSAM_TABLE (up to 1000 rows)
-- Tree Location: 10.3.58.61/1200/SQL/Data/AVZS/Virtual Tables/VSAM_TABLE
-- Remarks: VSAM - FBOR.STAFF.VSAM
SELECT * FROM VSAM)_TABLE LIMIT 1000;

Figure 4-14   Result of SQL query on VSAM virtual table VSAM_TABLE

4.6.2  System and operations logging

As workload processes on the mainframe, z/OS communicates status and problems through 
messages that it writes to logs. Busy systems can generate a large amount of data, which is 
written to SYSLOG and OPERLOGS. Many organizations began forwarding this data to 
Splunk for analysis.
60 IBM Data Virtualization Manager for z/OS



In this case, DVM for z/OS can be used to virtualize selective logs for local analysis or forward 
those logs to Splunk, where the DVM server can virtualize that data and blend it with other 
local data. Many users choose to use IBM Common Data Provider for z Systems® (CDPz).

Although other options are available, some are costly from a licensing perspective and require 
more capital outlay from an infrastructure standpoint regarding CPU, storage, and memory, 
staging environments, and so on. It is for this reason that DVM for z/OS becomes an option 
with no data movement and in-place access to the system and operational data. 

The DVM server supports over 35 data sources, including SMF, SYSLOG, OPERLOG, and 
JOBLOG and can serve in a multi-purpose manner for various use cases. 

OPERLOG is a merged, sysplex-wide system message log that is provided by a log stream of 
data. SYSLOG contains a partition (LPAR) message log and is an SYSOUT data set that is 
produced by JES2 or JES3. DVM for z/OS provides five predefined virtual tables to display 
OPERLOG and SYSLOG:

� OPERLOG_SYSLOG accesses the SYSPLEX log stream and is defined in the global 
variable GLOBAL2.SYSLOG.DEFAULT after the AVZSYSLG rule is enabled

� OPERLOG_MDB

� OPERLOG_MDB_MDB_CONTROL_OBJECT

� OPERLOG_MDB_MDB_TEXT_OBJECT

� SYSLOG

Configuring access for SYSLOG
To configure access to system log (SYSLOG) files, the use of the DVM server configuration 
member AVZSIN00 and built-in VTB rules are required. VTB rules are provided to define the 
SYSLOG data set name. Each of the rules for SYSLOG processing requires that table names 
for use by SQL begin with SYSLOG. 

The following rules are provided:

� AVZSYSLG uses a global variable to specify the name of the data set to use for the 
SYSLOG data.

� AVZSYSL2 supports the use of generation data group (GDG) data set names. One of the 
following formats is expected and the general use of global variables allows for maximum 
flexibility in the overall configuration:

– SYSLOG_GDG_nnnn, where nnnn is a relative GDG number (0 - 9999) that is 
appended to the GDG base name value that is obtained from the 
GLOBAL2.SYSLOG.GDGBASE variable.

For example, if the table name as specified in the SQL statement is SYSLOG_GDG_1, 
the data set name that is returned by this rule is HLQ.SYSLOG(-1), depending on the 
value in GLOBAL2.SYSLOG.GDGBASE.

– SYSLOG_DSN_suffix, where suffix is used as the last part of a global variable of the 
form GLOBAL2.SYSLOG.suffix to look up the name of the data set to be used. If this 
variable does not exist, the data set name is specified in 
GLOBAL2.SYSLOG.DEFAULT is used to read the SYSLOG records.

Global variable examples possible for use with this rule:

• GDGBASE       hlq.SYSLOG
• DEFAULT         hlq.SYSLOG(0)
• TODAY             hlq.SYSLOG(0)
• YESTERDAY   hlq.SYSLOG(-1)
Chapter 4. Connecting to z/OS data sources 61



Customizing rules for SYSLOG
After the VTB rules for SYSLOG are enabled, they persist for every occurrence of an SQL 
statement where the use of SYSLOG as a prefix for table names in SQL statements. To 
enable VTB events for SYSLOG, the DVM server configuration member must be customized 
by configuring the SEFVTBEVENTS parameter in the AVZSIN00 member from the DVM 
server ISPF PANEL. 

"MODIFY PARM NAME(SEFVTBEVENTS) VALUE(YES)"

When configuring AVZSYSL2 for SYSLOG, no customization of the VTR is required. 
However, when configuring for AVZSYSLG, specify S next to the AVZSYSLG in the ISPF 
PANEL and change the data set name to SYSLOG.

Enabling rules for SYSLOG
Enable AVZSYSLG and AVZSYSL2 rules by specifying E next to the member in the ISPF 
PANEL. To auto-enable these rules after each DVM server restart, specify A next to the 
member name instead. If the event global variables are needed, the administrator must 
configure the SYSLOG global variable, shown in Figure 4-15.

Figure 4-15   Auto-Enabling AVZSYSLG and AVZSYSL2 VTB rules

DVM Studio can now be used similar to running sample queries on VSAM by selecting 
SYSLOG in the virtual tables section of the Server Tab. Figure 4-16 shows the generated 
SQL statement and the results.

Figure 4-16   Generated query and results for SYSLOG with DVM Studio

In DVM Studio select: Server Tab → SQL → Data → SSID → Virtual Tables → SYSLOG → 
Generate Query with *.

The following query is generated and the output resembles the output that is shown in 
Figure 4-16:

-- Description: Retrieve the result set for SYSLOG (up to 1000 rows)
-- Tree Location: 10.3.58.61/1200/SQL/Data/AVZS/Virtual Tables/SYSLOG
-- Remarks: HTTP://10.3.58.61:1201
SELECT * FROM SYSLOG LIMIT 1000;
62 IBM Data Virtualization Manager for z/OS



Configuring access to OPERLOG
No modifications are needed to configure the DVM server to access OPERLOG data; 
however, OPERLOG must be active in a system logger log stream. Use the IBM mainframe’s 
System Display and Search Facility (SDSF) to verify whether OPERLOG is active with the 
‘/D C,HC’ inputs. OPERLOG is actively configured and enabled if the following message is 
displayed:

CNZ4100I 15.19.16 CONSOLE DISPLAY 056
CONSOLES MATCHING COMMAND: D C,HC
MSG:CURR=0 LIM=9000 RPLY:CURR=0 LIM=9999 SYS=P02
PFK=00
HARDCOPY LOG=(SYSLOG,OPERLOG) CMDLEVEL=CMDS
ROUT=(ALL)
LOG BUFFERS IN USE: 0 LOG BUFFER LIMIT: 9999

DVM Studio can now be used similarly to run sample queries on VSAM by selecting 
OPERLOG_SYSLOG in the virtual tables section of the Server tab. Figure 4-17 shows the 
first 100 rows.

Figure 4-17   Generating Query on OPERLOG with DVM Studio

In DVM Studio select: Server tab → SQL → Data → SSID → Virtual Tables → 
OPERLOG_SYSLOG → Generate Query with *.

We can verify access to OPERLOG data by issuing the following query, a limit value was 
added to the end of the query: 

SELECT * FROM OPERLOG_SYSLOG LIMIT 1000;

These results are similar to the SYLOG example; however, records exist for a different ZB02 
LPAR because we are now reporting across the sysplex. Querying on the ZB01 LPAR allows 
us to test and validate only in an interactive mode in the ISPF PANEL for the DVM server. 
Replace sentence with:

We can add predicates to our previous example to query for the DVM server with more 
specificity by using the AVZS JOBID:

SELECT * FROM OPERLOG_SYSLOG
WHERE SYSLOG_JOBID='AVZS';

The query results for the AVZS subset are identical to the results that are shown in 
Figure 4-17 because they are ordered by the SYSLOG_JOBID column.
Chapter 4. Connecting to z/OS data sources 63



In the DVM server ISPF PANEL in interactive mode, the Address Environment can be 
updated to AVZ to generate a message in the OPERLOG by running the DISPLAY REMOTE 
USER(*) command, as shown in Figure 4-18.

Figure 4-18   Displaying remote users

When running the same query again in DVM Studio, the SYSLOG_DATE_TIME value is 
incremented, as AVZS generates a new message in OPERLOG (see Figure 4-19):

-- Description: Retrieve the result set for OPERLOG_SYSLOG (up to 1000 rows)
-- Tree Location: 10.3.58.61/1200/SQL/Data/AVZS/Virtual Tables/OPERLOG_SYSLOG
-- Remarks: Logstream - SYSPLEX.OPERLOG
SELECT * FROM OPERLOG_SYSLOG WHERE SYSLOG_JOBID = 'AVZS';

Figure 4-19   SQL Query result from OPERLOG with recent messages

4.6.3  Delimited file data sets

The most common form of delimited data is CSV file or Microsoft Excel worksheet. When 
delimited data processing is activated through VTB rules, processing occurs in columnar 
order. The delimited data must include a value for each column in the map in the correct order 
to prevent errors.

To enable delimited data processing, the DVM server configuration member (AVZSIN00) must 
be customized by configuring the SEFVTBEVENTS parameter: 

"MODIFY PARM NAME(SEFVTBEVENTS) VALUE(YES)"

The DVM server ISPF panel allows you to customize a sample rule that is named 
AVZMDDLM from the VT rule management section. Within this section, column and string 
delimiter values, and control header processing can be enabled. 
64 IBM Data Virtualization Manager for z/OS



The vtb.optbdlcv option must be set to 1:

/*------------------------------------------------------------------*/
/*    Activate delimited data processing for the table              */
/*------------------------------------------------------------------*/
vtb.optbdlcv = 1            /* flag that data is delimited.         */

The following options are available to assist with processing delimited data:

� vtb.optbdlco sets the column delimiter (default value is the comma “,”).

� vtb.optbdlch sets the delimiter (default is the double quotation mark “).

� vtb.optbdlhr identifies and removes the header record containing column names. If 
specified without a header prefix, the system compares the first token in each line to the 
first column name in the table to recognize and discard the header. The default is no 
header checking with value 0.

� vtb.optbdlhp is a global parameter that defines prefix data that identifies the beginning of 
a header line to be discarded. The specified value can contain a maximum of 32 bytes. 
This value is compared to the beginning of each delimited line of data before any 
tokenization is performed.

Defining map definitions for delimited data sets
To read a delimited data set, data type mappings must be in place for the delimited file we 
want to virtualize. Figure 4-20 shows a sample CSV file that is in the local zFS file system.

Figure 4-20   DCL definitions for CLIENT_INFO delimited data set

Map definitions are needed to ensure that columns are displayed in the correct order. The 
process is similar to that performed for VSAM or other input files. Figure 4-21 shows a 
copybook definition of the delimited file data set that declares the field definitions to be 
created in the DVM server virtual source library.

Figure 4-21   DCL definitions for CLIENT_INFO delimited data set

DVM Studio can now be used in a similar way to running sample queries on VSAM by 
selecting zFS in the Virtual Tables section of the Server tab. Figure 4-22 on page 66 shows 
the generated SQL statement and results. 
Chapter 4. Connecting to z/OS data sources 65



Figure 4-22   Result from SQL Query on Delimited data set

Be careful to add the MDDLM_ prefix before the Virtual Table name to format data correctly 
for display. The MDDLM_ prefix is required for SQL to ensure correct formatting.

In DVM Studio, select: Server tab → SQL → Data → SSID → Virtual Tables → zFS → 
Generate Query with * to result in the following query:

-- Description: Retrieve the result set for CLIENT_INFO_DELIMITED (up to 10000 
rows)
-- Tree Location: 10.3.58.61/1200/SQL/Data/AVZS/Virtual 
Tables/CLIENT_INFO_DELIMITED
-- Remarks: zFS file - /u/arnould/CLINET_INFO/DELIMITED.csv
SELECT * FROM MDDLM_CLIENT_INFO_DELIMITED LIMIT 10000;

Data conversion errors occur if the delimited data is not compatible with the host types of the 
columns. If the conversion fails, diagnostic information that is related to the error is 
automatically logged for troubleshooting problems.

4.6.4  System Management Facility

IBM z/OS System information can be logged by using the IBM System Management Facility 
(SMF) and the native DVM server logging feature. Logging allows you to collect various 
systems and operations-related information. 

The following IBM APARs must be applied on the z/OS SMP/E base system:

� APAR OA49263 provides real-time SMF support and is a requirement for the configuration 
of real-time SMF data access.

� APAR OA48933 is required to address accessing log streams. SMF log stream 
configuration is required for in-memory resource support. In this section, we cover how to 
access this information from the DVM server.

The following methods are available to access to SMF files:

� SMF data sets: SMF information is recorded in MANx data sets. When a data set is full, 
the data is processed by using IFASMFDP. The output of IFASMFDP is required when 
global variables are used.

� Log streams: SMF information can be recorded in multiple log streams and determined by 
the data set name beginning with IFASMF, which is used by the VTB rule for SMF.

� In-memory SMF data offers real-time access and can be read directly from the z/OS 
system buffer.

Upon DVM server initialization, SMF connects to the in-memory resource and continuously 
reads a buffer of SMF activity by using a REXX procedure. The REXX procedure is 
responsible for reading data set names from in-memory objects.
66 IBM Data Virtualization Manager for z/OS



From a DVM server perspective, the SMF data set is driven by the Server Event Facility (SEF) 
rules. SEF rules are provided with default values in member hlq.AVZS.SAVZXVTB(AVZSMFT1). It 
is used when a table with the prefix SMF_TYPE_ is found in the SQL statement. 

It also is used to specify the base map name and the data set name for SMF tables in a global 
variable. A data set name can be specified for a specific table (SMF record type) by creating a 
global variable for the table name. This allows applications to use other SMF data sources 
without exposing their names.

This REXX procedure provides the name of data sets or in-memory objects that must be read 
(a global variable that is named VTB.OPTBDSNA is going to be completed at execution).

To configure access to SMF files, you must configure the server started task JCL, server 
configuration member, and server virtual table member. To enable reading SMF data in real 
time in log streams, you must have the SMFPRMxx member in the system PARMLIB data set 
that is configured to use both log streams and in-memory resources.

SMF data set names are dynamic in local environments and require SEF rules enablement 
and optionally global variables set to specific values to provide data set names to the virtual 
tables and views from SMF data sets or log stream configurations.

You can choose a GDG data set name to support or dynamic data set name support, or both, 
to quickly access your SMF data. These two options are provided for your convenience to 
help you start accessing your SMF data. Custom rules likely must be developed to use your 
local naming convention to access your SMF files. It is common to use GDG data sets to 
automatically export SMF data to disk from a fixed GDG base name.

SMF from GDG data sets
Enable read access of SMF data from GDG data sets, and access to SMF data through 
dynamic data set names, by enabling Data Virtualization Manager Server Event Facility rule 
AVZSMFT1.

On the DVM server, select Rules Mgmt → SEF Rule Management → VTB → Enable → 
Auto-enable.

To configure the access method, complete the following steps:

1. In the global variables display of the DVM server ISPF panel, update the global prefix to 
GLOBAL2.

2. Configure the SMF data access for the SMFTBL2 data set. The DEFAULT variable should 
have a corresponding SMF dump data set name if used. This option is used to specify the 
source SMF:

GLOBAL2.SMFTBL2.DEFAULT = "YOUR.DATASET.SMF.GDG"

This syntax is useful if we want to read the FULL GDG data set.

Note: You must at least define the global variable GLOBAL2.SMFTBL2.DEFAULT to make 
these rules work. These VTB rules also can be customized according to your needs and 
naming conventions.

Pro tip: Be careful to define the data set name when uppercase is used. If you specify the 
correct name, but in lower or mixed cases, the allocation fails.
Chapter 4. Connecting to z/OS data sources 67



To filter out or select specific GDG members, other variables must be configured. For 
example, to add TODAY, in the command line of the global prefix GLOBAL2.SMFTBL2, enter 
S TODAY and exit edit mode, as shown in the following example: 

GLOBAL2.SMFTBL2.TODAY = "YOUR.DATASET.SMF.GDG(+0)"  (for today's GDG only)
GLOBAL2.SMFTBL2.YESTERDAY = "YOUR.DATASET.SMF.GDG(-1)" (for yesterday's GDG only)

Next, we test that the definitions are correctly defined by running a query against our GDG 
data set. In Data Studio, which was used earlier to access VSAM files, we edit and run the 
following query:

SELECT * FROM SMF_07001_YESTERDAY

Then, we see result that is shown in Figure 4-23 when we run the query.

Figure 4-23   Result from SQL Query on SMF70 records from Yesterday

If we want to change the default GDG data set name, we can change the VTB global variable 
or submit the new GDG data set name in the SQL Query. To pass a dynamic data set name to 
query an SMF data set, we use the following format for the table name in the SQL statement:

- TableMapName__DataSetName 

Where:

� - TableMapName is SMF_07001

� - DatasetName is prefixed by two underscores (__) and the periods in the data set name 
are replaced with single underscores (_).

Edit and run the following SQL from Data Studio to get the results that are shown in 
Figure 4-24. To display SMF records from "Today", run the following Select statement and use 
parenthesis in the SQL and double quotation mark for the table name:

SELECT * FROM "SMF_07001__SMF_RECORDS_ZB01_SMF_SAVE(+0)"

Figure 4-24   Result from SQL Query on SMF70 records from a dynamic data set name

SMF from log stream
Another way to read SMF data is to connect to a log stream to make available more real-time 
SMF Data. Enable rule AVZSMFT1 and add the following global variable to the existing 
variables:

GLOBAL2.SMFTBL2.LOG = "LOGSTREAM.dataset.name"
68 IBM Data Virtualization Manager for z/OS



Figure 4-25 shows the current SMF PARMLIB member that is associated with the DVM 
server. The SMFPRMxx member can be modified to make any change to the SMF collection. 
SMFPRMxx members are in the z/OS PARMLIB data set and can be modified to change the 
SMF recording interval and SMF types for the collection.

Figure 4-25   Displaying the current SMF PARMLIB member

Figure 4-26 shows the PARMLIB(SMFPRMxx) member.

Figure 4-26   SMFPRMxxPARMLIB member

The example collects SMF data every 5 minutes (INTVAL(05)) across all SMF Types, except 
ranges 16 - 19, 62 - 63, 65 - 69, 99, 100  102, 110, and 119 - 120. Any changes to this 
member must be submitted in the SDSF log to account our changes: /SET SMF=xx.
Chapter 4. Connecting to z/OS data sources 69



Test that the definitions are correctly defined by running a query against the LOGSTREAM. 
Edit and run the following query in DVM Studio to get the results (see Figure 4-27).

SELECT * FROM "SMF_07001_LOG" LIMIT 1000;

Figure 4-27   Result from SQL Query on SMF70 records with log stream

In-memory SMF access
Another way to read SMF data is to directly connect to in-memory buffers. This approach 
bypasses the SMF dump to GDG data set and SMF LOGSTREAM intervals. The method is 
similar to reading GDG or LOGSTREAM data sets.

In addition, we must modify the DVM configuration member AVZINS00 by adding the 
following statements after the GLOBAL PRODUCT OPTIONS statement:

IF DoThis 
THEN DO 
"DEFINE SMF NAME(IFASMF.INMEM)", 
"STREAM(IFASMF.ZB01.INMEM)", 
"BUFSIZE(500)", 
"TIME(0)" 
END 

NAME is the name of the INMEMORY resource that matches the name of the resource that is 
defined to SMF with the INMEM parameter. If this parameter is included, the INMEMORY API 
is read continuously and a buffer of the most recent records is maintained. This parameter or 
the STREAM parameter, or both, must be specified. This parameter must begin with IFASMF.

Looking at the SMFPRMxx member in z/OS system PARMLIB in Figure 4-28, the INMEM 
parameter is an in-memory resource to record SMF records in memory for real-time 
processing.

Figure 4-28   INMEM parameters in SMFPRMxxPARMLIB member

Pro tip: You must have your SMFPRMxx member in the system PARMLIB data set that is 
configured to use log streams and in-memory resources.
70 IBM Data Virtualization Manager for z/OS



The INMEM parameter in SMFPRMxx features the following syntax:

INMEM(rname, RESSIZMAX({nnnnM|nG}), {TYPE({aa,bb|aa,bb:zz|aa,bb:zz,…})| 
NOTYPE({aa,bb|aa,bb:zz|aa,bb:zz,…})}

The following subparameters are specified:

� rname is the name of the in-memory resource.

� RESSIZMAX defines the size of the buffer available for this in-memory resource, in 
megabytes or gigabytes.

� TYPE defines the SMF record types that are to be recorded to this in-memory resource.

� NOTYPE directs SMF is to collect all SMF record types, except record types that are 
specified.

Check the DVM server to ensure that in-memory log streams are updating the internal buffers 
(see Figure 4-29).

Figure 4-29   DVM server management menu

The internal buffer status for the in-memory resources that are defined earlier in SMFPRMxx 
is shown in Figure 4-30. The streams are enabled and active with available records.

Figure 4-30   Displaying current SMF real-time streams

Use the following command to display SMF recording parameters and verify that in-memory 
streams are active (see Figure 4-31).

Figure 4-31   Displaying SMF recording parameters from LOGSTREAM
Chapter 4. Connecting to z/OS data sources 71



Similar to GDG or LOGSTREAM, enable rule AVZSMFT1 in the VTB rule set in the DVM 
server. In the global variables display, complete the following steps:

1. Change global prefix to GLOBAL2.

2. Select SMFTBL2 (see Figure 4-32).

Figure 4-32   Editing SMFTBL2 VTB rule

3. Configure the SMF data access option for IN-MEMORY by adding the following Global 
Variable to the existing variables:

S IM = "IFASMF.INMEM"
S IM2 = "IFASMF.INMEM.Db2"

You should see the new global variables in the list:

GLOBAL2.SMFTBL2.IM = "IFASMF.INMEM"
GLOBAL2.SMFTBL2.IM2 = "IFASMF.INMEM.Db2"

4. Submit the following SQL Query to display SMF30 records (which are collected), from the 
IFASMF.INMEM buffer (see Figure 4-33) displays records that are captured in real-time 
through in-memory SMF collection. The SQL syntax for Virtual Tables is composed of the 
Table Mapping (SMF_03000) with IM (IFASMF.INMEM) separated by a 'single' underscore 
"_":

SELECT * FROM SMF_03000_IM LIMIT 10000;

Figure 4-33   Result from SQL Query on SMF30 in-memory records

Pro tip: Be careful when defining the data set name. You must enter the name in 
uppercase characters. If you specify the correct name, but in lower or mixed cases, the 
allocation fails.
72 IBM Data Virtualization Manager for z/OS



How SMF records are mapped in DVM for z/OS
Although Data Studio makes it easy to access fields in SMF records, you still need to 
understand the underlying data and how it is structured. SMF records typically vary in length 
and allow the same record type to contain various amounts of information.

This mechanism is a flexible and effective way to present the maximum amount of information 
in the smallest amount of space. Maintain relationships between the rows in the various 
tables by adding a field to the table that contains the base part of the record and a 
corresponding field in the tables that contains the repeating sections.

DVM Studio shows nearly every record type that is mapped. One type is called SMF_tttss, 
and one or more is called SMF_tttss_aaaaaa, where ttt is the record type (in decimal), ss is 
the subtype, and aaaaaa is a string of characters and numbers that indicate the repeating 
section that resides in that table.

For example, the type 70 subtype 1 record is loaded into the following tables:

� SMF_07001
� SMF_07001_SMF70AID
� SMF_07001_SMF70BCT

In DVM terminology, the table that contains the record header is called the base table and the 
tables that contain the repeating sections are called subtables. The base table contains a 
generated column that is called CHILD_KEY, and the subtables contain a generated field that 
is called PARENT_KEY. All of the rows in the base table and the subtables that include the 
same CHILD_KEY and PARENT_KEY values came from the same SMF record.

If you want to extract fields from the base table and from repeating sections that were in the 
same record, you run a JOIN between the PARENT_KEY and CHILD_KEY fields, as shown 
in the following example:

SELECT SMF_TIME, SMF_SID, SMF_SEQN, SMF70VPA, SMF70BPS, 
FROM SMF_07001 A0 JOIN SMF_07001_SMF70BPD A9 
ON A0.CHILD_KEY = A9.PARENT_KEY; 

Supported SMF record types 
Rocket is constantly developing support for more SMF record types and shipping PTFs to 
deliver that support to customers. If you are trying to determine if a record type is supported, 
the easiest way to make that determination is to scroll through the list of support virtual tables 
in DVM Studio.

You can also get a list of the record types and the field names (but not the subtable names) 
from the ISPF interface (see Figure 4-34) from the primary DVM server menu.

Figure 4-34   Displaying maps in the DVM server
Chapter 4. Connecting to z/OS data sources 73



A row for each record type and subtype is available (see Figure 4-35).

Figure 4-35   SMF records mappings

Enter an X next to the base table and a list of all the fields in that base table and all of its 
subtables, as shown in Figure 4-36.

Figure 4-36   Displaying MAP for SMF70 records

By scrolling to the right, you can also see the definition of each field, such as its format, 
length, and offset (see Figure 4-37).

Figure 4-37   Displaying SMF70 records mapping definitions

4.6.5  Db2 unload data sets

To access a Db2 unload data set directly with an SQL query, you must configure a virtual 
table rule to define the Db2 unload data set name to the Db2 virtual table. 

To configure access to a Db2 unload data set, you must add the Db2 unload data set name to 
the Db2 virtual table in a Data Virtualization Manager Server Event Facility (SEF) virtual table 
rule. With this access, you can issue SQL queries directly against Db2 unload data sets for 
existing Db2 virtual tables.

Switching a Db2 virtual table to read an unload data set is done by assigning a data set name 
to the table in a virtual table rule. The VTB global variable vtb.optbdsna is used to redirect 
access from Db2 to reading the sequential file that is named in the variable. The named 
sequential file must contain the unload data that is created by the Db2 UNLOAD utility. A 
model VTB rule, AVZMDLDU, is provided to demonstrate redirecting a Db2 virtual table to a 
Db2 unload data set.
74 IBM Data Virtualization Manager for z/OS



For the example that is shown in Figure 4-38, consider a virtual table that is named 
DW01_DSN81210_EMP that maps to the EMP table in the Db2 subsystem DW01.

Figure 4-38   DW01_DSN81210_EMP virtual table

By activating the model rule AVZMDLDU, you can query an unloaded sequential data set 
named DSNDW00_UNLD_DSN81210_EMP by issuing the following query. The results are 
shown in Figure 4-39:

SELECT * FROM MDLDU_DW01_DSN81210_EMP_ARNOULD_DW00_UNLD_DSN8D12A_DSN8S12E;

Figure 4-39   Result from SQL Query access to an UNLOAD data set for DW01_DSN81210_EMP

The AVZMDLDU rule performs the following steps:

1. Extracts the table name DW01_DSN81210_EMP and sets the VTB global variable 
vtb.optbmtna.

2. Extracts the data set name ARNOULD_DW00_UNLD_DSN8D12A_DSN8S12E, converts 
the underscores to periods, and then, sets the VTB global variable vtb.optbdsna.

The following restrictions and considerations apply for this feature:

� SQL access to Db2 unload files is limited to SQL queries only.

� The columns in the Db2 virtual table definition must exactly match the table that is 
unloaded in Db2.

� To use this feature, the corresponding Virtual Table must exist in the DVM server.

The sample rule AVZMDLDU can be used as a reference for more customization. When 
customizing this rule, more logic is likely needed to be added if different unload data sets 
require different VTB variable settings for CCSID or internal or external format.
Chapter 4. Connecting to z/OS data sources 75



Customize the Data Virtualization Manager configuration member (AVZSIN00) to enable 
virtual table rule events by configuring the SEFVTBEVENTS parameter in the member (see 
Figure 4-40). 

Figure 4-40   Activating SEFVTBEVENTS in AVZSIN00 member 

Complete the following steps to access the VTB rules:

1. In the Data Virtualization Manager server Primary Option Menu, specify option E, Rules 
Mgmt.

2. Specify option 2, SEF Rule Management.

3. Enter VTB for Display Only the Ruleset Named setting (see Figure 4-41).

Figure 4-41   Displaying VTB rules only

4. Complete the following steps to customize the AVZMDLDU rule:

a. Specify S next to AVZMDLDU to edit the rule (see Figure 4-42).

Figure 4-42   Editing VTB rule AVZMDLDU
76 IBM Data Virtualization Manager for z/OS



b. Find the vtb.optbdsna variable and specify the name of the Db2 unload data set to 
process (see Figure 4-43).

Figure 4-43   vtb.optbdsna variable in AVZMDLDU rule

c. Run the following SELECT command to query the UNLOAD data set:

SELECT * FROM MDLDU_DW01_DSN81210_EMP_WHATEVER_DATASET;

Figure 4-44   Result from SQL Query specifying UNLOAD Dataset name

If you do not want to see this behavior, you do not need to modify the sample rule 
vtb.optbdsna variable. Every SQL must specify the correct UNLOAD data set name to 
work correctly.

Pro Tip: If you update the sample AVZMDLDU rule as described in the preceding 
steps, you can provide a default value for the vtb.optbdsna variable. By updating 
this rule, you do not need to specify the correct dataset name in the SQL statement 
for execution. Figure 4-44 shows a simple SQL that returns values from the default 
UNLOAD dataset.
Chapter 4. Connecting to z/OS data sources 77



d. Update rule options as needed. Figure 4-45 shows the VTB rule options that support 
Db2 unload data set access.

Figure 4-45   Options for AVZMDLDU rule

The following list has the VTB variables are available

– vtb.optbdlcv: If the data was unloaded with a DELIMITED statement, set 
vtb.optbdlcv to 1 to declare the data is in delimited format. It might be necessary to 
declare the delimiters if the default column delimiter (,) and character string delimiter (“) 
were overridden when the data was unloaded.

– vtb.optbdsna: Specifies the name of the sequential unload data set that was created 
by the Db2 UNLOAD utility to access.

– vtb.optbduif: By default, the Db2 unload utility writes data in external format. If 
FORMAT INTERNAL is used when unloading data, vtb.optbduif must be set to 1 to 
declare that the data was unloaded in internal format.

– vtb.optbmtna: Specifies the map name of the Db2 virtual table that is describing the 
unload file.

– vtb.optbtbcc: Is used if the table CCSID is not compatible with the CCSID defined for 
the SQL engine (AVZSIN00 SQLENGDFLTCCSID parameter). 

– vtb.optbtbcc: Can be used to declare the CCSID of the data. It is important for 
Unicode tables and tables that contain GRAPHIC columns.

5. Enable the rule by specifying E next to AVZMDLDU and then, press Enter.

6. Set the rule to auto-enable by specifying A next to AVZMDLDU, as shown in Figure 4-46. 
Then, press Enter. Setting a rule to Auto-enable activates the rule automatically when the 
server is restarted.

Figure 4-46   Auto-enabling the AVZMDLDU VTB rule
78 IBM Data Virtualization Manager for z/OS



Chapter 5. Connecting to non-Z data 
sources

Many organizations must integrate structured data from various relational database 
management systems (RDBMS) that are not on the mainframe environment, such as Linux, 
UNIX, Windows, and the cloud.

Data Virtualization Manager for z/OS (DVM for z/OS) can access relational databases by 
using built-in DRDA connections. DVM for z/OS also provides an application server (the 
JDBC Gateway Server) that provides access to many non-mainframe JDBC data sources.

In this chapter, we discuss how to connect with non-mainframe data sources by using the 
JDBC Gateway server client component. 

This chapter includes the following topics:

� 5.1, “Introduction” on page 80
� 5.2, “Accessing non-z/OS data sources by using the JDBC Gateway server” on page 81

5

© Copyright IBM Corp. 2021. 79



5.1  Introduction

Many enterprises that maintain business-critical data on the mainframe also need to integrate 
structured data from various RDBMS systems that are off of the mainframe environment 
(distributed, Linux, UNIX, and Windows-based). Several distributed data sources can be 
accessed by using built-in DRDA connections (as described in 1.2, “Why DVM for z/OS in 
modernization?” on page 2). DVM for z/OS also provides an application server (the JDBC 
Gateway server) that provides access to many non-mainframe JDBC data sources, as shown 
in Figure 5-1.

Figure 5-1   Example of non-z/OS endpoint support

This chapter references the configurations and processes that are specific to different 
distributed databases, such as IBM DB2 Big SQL, IBM Db2 Warehouse, on-premises Db2 
Family, Microsoft SQL Server, and many other data sources that use the JDBC Gateway 
server.

5.1.1  Standard access to data sources

Standard access to data sources is performed by client requesters that use ODBC or JDBC 
compliant connections. These protocols connect to the DVM server and issue access 
requests to specific data sources with accompanying DML operations to be performed.

5.1.2  Distributed Relational Database Architecture

Many distributed databases can also be accessed by configuring standard Distributed 
Relational Database Architecture (DRDA) access methods.

To access distributed databases, the DVM server must be configured to use the DEFINE 
DATABASE definition in the DVM configuration server member 
hlq.xVZy.SAVZEXEC.(xVZyIN00). After it is added, the DVM must be restarted.

Virtual Table Map

Data Mapping 
Facility (DMF) 
Parser

*zIIP-eligible

SQL Engine

DVM Server

DRDA AR 
(JGATE)

DRDA SSL

DRDA Non-SSL

RDBMS 
DRDA-supported
(must be pre-enabled)

Db2 LUW

Oracle 
(DRDA)

SQL Server

DRDA AR

Informix

Browser

Postgres
Oracle
Hive

SQL Server
MySQL

. . .

RDBMS 
Non-DRDA 

https

JDBC Gateway Server
(DRDA AS)

DB 
1

DB 
2

DB 
n

Driver 1

Driver 2

Driver n

JDBC Gateway 
Administrator 

Console
(Currently HTTP)

J
D
B
C

80 IBM Data Virtualization Manager for z/OS



For IBM Db2 family products that are running with a built-in federation capability, you can use 
nicknames and remote tables to connect to the DVM server to access mainframe data 
sources. The Db2 distributed portfolio, including Data Warehouse offerings, is shipped with 
the DVM server ODBC/JDBC drivers, and are set up and configured, ready for use.

Connecting to non-z/OS sources through DRDA, such as Oracle, the Oracle Database 
Provider for DRDA is required. A Host Integration Server (HIS) DRDA Service is required for 
connections to a Microsoft SQL Server database. For more information, see the Microsoft 
documentation Configuring Service for DRDA.

Generally, the configuration member needs updating with more configuration for the DVM 
server Event Facility (SEF) rules, as needed. Optionally, any alternative authentication 
information also can be configured. Within the DVM configuration member, specify the DRDA 
RDBMS settings through a definition statement and provide local environment values for all 
the parameters. As shown in the Define Database specification in Example 5-1, the DVM 
Started Task must be recycled. 

Example 5-1   DVM configuration member definition

"DEFINE DATABASE TYPE(type_selection)", 
"NAME(name)", 
"LOCATION(location)", 
"DDFSTATUS(ENABLE)", 
"DOMAIN(your.domain.name)", 
"PORT(port)", 
"IPADDR(1.1.1.1)", 
"CCSID(37)", 
"APPLNAME(DSN1LU)", 
"IDLETIME(110)"

For more information, see IBM Documentation.

5.2  Accessing non-z/OS data sources by using the JDBC 
Gateway server

In this section, we demonstrate the installation and configuration process for the JDBC 
Gateway server and provide an example for accessing a remote data source. In our overview, 
we refer to the following components that are involved in the installation and configuration of 
the JDBC Gateway server environment:

� JDBC Gateway server (JGATE) is the server that is the back-end component that bridges 
the communication between the DVM server and remote data source.

� JDBC Gateway Admin UI is the administrative console that serves as the front-end web 
user interface that is used to configure data sources.

� DVM server is the resident server that is running in a z/OS started task that receives the 
incoming connections, virtualizes data sources, and processes the SQL requests against 
the data source.
Chapter 5. Connecting to non-Z data sources 81

https://www.ibm.com/docs/en/dvm/1.1.0?topic=gateway-configuring-access-data-sources-using-jdbc
https://docs.microsoft.com/en-us/host-integration-server/core/configuring-service-for-drda


5.2.1  Setting up the JDBC Gateway server

In this section, we review how to prepare for installing the JDBC Gateway server. IBM 
Documentation provides more information about the JDBC Gateway server installation 
process at IBM Documentation.

The JDBC Gateway server is a pure Java application, which can run on any platform that 
supports Java 8 or higher.

The installation file can be obtained from the IBM Support Fix Central download site. This file 
can be transferred from the mainframe that uses FTP, renamed, and unarchived. The 
resulting JAR file can be run on the target platform to complete the server installation, as 
shown in Figure 5-2.

Figure 5-2   FTP transfer of the JGATE server installation file

After the installation file is downloaded, it can be renamed to JDBCGateway.zip and 
transferred (for example, by using FTP) to the target platform to be installed, as shown in 
Figure 5-3.

Figure 5-3   - Renaming J GATE installation file

Note: If it is not practical to install the JDBC Gateway server on the target data source’s 
platform, it can also be installed in a UNIX System Services environment on the 
mainframe.
82 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/support/fixcentral/
https://www.ibm.com/docs/en/dvm/1.1.0?topic=installing-jdbc-gateway


5.2.2  Installing the JDBC Gateway server

Figure 5-4 shows the process for extracting and installing the JDBC Gateway server client 
component.

Figure 5-4   JGATE server installation 

Extract the JDBCGateway.zip. in the library where it was transferred to the target system. If 
your host machine does not have an extract utility, extract the contents of the installation file 
on a Windows workstation and copy the JDBCGatewaySetup11.jar file to the host machine.

Change to the directory where the installation package was extracted:

cd jdbc-gateway-x.x.x.xxxxxxxx

Run the following command:

java -jar JDBCGatewaySetup11.jar

5.2.3  Running JDBC Gateway server by using UNIX System Services

The JDBC Gateway server also can be installed in a UNIX System Services (OMVS) 
environment on the mainframe. Information about this process, including configuration 
settings that are required for a UNIX System Services installation, is described in the IBM 
Documentation article, Installing JDBC Gateway.

The UNIX System Services environment provides a centralized location for the JDBC 
Gateway server to access remote data sources that are provisioned by the DVM server. 
Isolating the JDBC Gateway server from the DVM server results in better co-location with 
source data. Because the JDBC Gateway server is a pure Java application, it can run 
anywhere that Java 8 is supported.

Configuration
For installation in UNIX System Services, it is recommended that you define the following 
environment variables:

� export IBM_JAVA_OPTIONS="-Dfile.encoding=ISO8859-1"
� export _BPXK_AUTOCVT=ON
Chapter 5. Connecting to non-Z data sources 83

https://www.ibm.com/docs/en/dvm/1.1.0?topic=installing-jdbc-gateway


When the JDBC Gateway server installer generates Start and Stop scripts, the following 
actions occur (depending on these variables):

� If the recommended environment variables are not set, the scripts are generated in 
EBCDIC. You can run the gateway as normal for UNIX by using the sh startServer.sh 
command.

� If you set the IBM_JAVA_OPTIONS variable, the scripts are generated in ASCII, and you 
must use the chtag -tc ISO8859-1 command.

Tagging in UNIX System Services means that _BPXK_AUTOCVT must be ON if you want to 
edit or run the script in the shell.

� Files that are generated by the JDBC Gateway server, such as log files and the 
jgate.properties file, are generated in ASCII regardless of the environment variable 
settings (the exception is jetty.out, which is in EBCDIC). To browse these files in UNIX 
System Services, you must use the chtag command and set _BPXK_AUTOCVT=ON.

Customized installation
As a best practice, install the JDBC Gateway server to a non-user library in UNIX System 
Services. Doing so allows centralized access to the Gateway server by any authorized user. It 
also prevents issues where an administrator user’s access permissions change or are no 
longer accessible to the platform.

When running the JDBCGatewaySetup11.jar executable, override the Duser.home variable by 
using the Duser.home argument and point it to a directory. This directory must be empty 
before proceeding with this type of installation:

java -Duser.home=<dir where the properties and config files are created> -jar 
JDBCGatewaySetup11.jar

java -Duser.home="C:\ZDVM\product\JGateway3-config" -jar JDBCGatewaySetup11.jar

After successful installation, the startServer.cmd and stopServer.cmd must be updated. 
When the startServer.sh is run, the new directory path is used:

java -Duser.home=<dir where the properties and config files were created> -jar 
JDBCGatewaySetup11.jar

java -Duser.home="C:\ZDVM\product\JGateway3-config" -jar JDBCGateway.jar
84 IBM Data Virtualization Manager for z/OS



Starting the JDBC Gateway server to use batch execution
Use a batch interface as a best practice to start and stop the JDBC Gateway server in a UNIX 
System Services environment. The JCL examples that are shown in Figure 5-5 can be used 
to start the startServer.sh and stopServer.sh scripts.

Figure 5-5   The use of batch scripting to efficiently start and stop the JDBC Gateway server

The use of the start and stop scripts directly in OMVS limits the number of resources that is 
available to the JDBC Gateway server for a user’s OMVS segment. Starting from JCL with 
BPXBATCH, the customer can set the REGION size, as shown in Figure 5-5.

5.2.4  Managing JDBC Gateway server software upgrades

Periodically, the JDBC Gateway server must apply fix levels or new releases. To ensure that 
all of the current environment and configuration settings are preserved, a backup of the 
startServer.sh and stopServer.sh scripts are required. After the new fix or release level of 
the software is downloaded, install the newer version by using the following command:

java -jar JDBCGatewaySetupxx.jar

The installation script automatically installs by using the original installation directory. Reply Y 
when prompted to clear the directory and edit the new startServer.sh and stopServer.sh 
scripts to re-implement any changes from the previous installation.
Chapter 5. Connecting to non-Z data sources 85



5.2.5  Starting the JDBC Gateway server that uses administrative UI

The Gateway server also can be used as an administrative UI. The JDBC Gateway server can 
be started and stopped on an MS-Windows, Linux, UNIX, Mac OSx, and web browser (see 
Figure 5-6).

Figure 5-6   Starting JGATE server 

At a command prompt in the JDBC Gateway server installation directory, run one of the 
following commands to start or stop the Gateway server on MS-Windows or Linux, Windows, 
or Mac OSx:

� MS-Windows: startServer, stopServer

� Linux, UNIX, or Mac OSX: sh startServer.sh, sh stopServer.sh

A web browser can be used by connecting to the server IP address and port that were chosen 
for the Admin UI during installation (that is, https://192.168.1.31:8091), in which a 
username and password prompt appears. The default username is admin. 

The user interface initializes and a user access dialog window appears in which you are 
prompted to enter a username (the default is admin) and a password that you chose during 
the server installation process, as shown in Figure 5-7.

Figure 5-7   New Data Source configuration window
86 IBM Data Virtualization Manager for z/OS



5.2.6  Configuring data sources that use the JDBC Gateway server UI

Data sources can now be configured by using the administration UI console. For our example, 
we add a connection to a PostgreSQL database on a remote server (see Figure 5-8).

Figure 5-8   Adding a data source 

By using the Connections parameters drop-down list for the JDBC, supported data sources 
can be selected. If the data source does not exist, the ellipsis can be selected for a new data 
source, as shown in Figure 5-9.

Figure 5-9   Selecting JDBC driver
Chapter 5. Connecting to non-Z data sources 87



After the data source is selected, JDBC connection string details can be added for the target 
database that uses the suitable format, as shown in Figure 5-10.

Figure 5-10   Data source connection details

Access and authentication credentials also are maintained for access to the target database 
with the ability to test a successful connection, as shown in Figure 5-11. 

Figure 5-11   Define user access for a target data source

5.2.7  Configuring the DVM server to access the JDBC Gateway server

To create a mapping or linkage between the requesting DVM server and a newly installed 
JDBC Gateway server, a z/OS TSO/e session is needed to update DVM server configuration 
members. Depending on the SMP/e installation and the naming that is chosen for the DVM 
server subsystem, the server initialization member is found by finding the 
hlq.xVZy.SAVZEXEC(xVZyIN00) configuration libraries.
88 IBM Data Virtualization Manager for z/OS



By using ISPF, the installation library can be found in DVM110.AVZ1.SAVZEXEC, where the 
xVZyIN00 configuration member exists, as shown in Figure 5-12 and Figure 5-13.

Figure 5-12   Locating DVM zVZyIN00 configuration member

Figure 5-13   Editing DVM xVZyIN00 configuration member

The AVZ1IN00 member needs the DRDA specification that is updated for the PostgreSQL 
data source that is defined in the JDBC Gateway server. Adding a DEFINE DATABASE TYPE 
block definition after sample definitions for Db2, MSSQL, and other DRDA connection types 
establishes a mapping for the DVM server to connect to the PostgreSQL data source through 
the JDBC Gateway server. A portion of a sample DEFINE DATABASE TYPE is shown in 
Example 5-2.

Example 5-2   Define Database Type

"DEFINE DATABASE TYPE(JGATE)", 
"NAME(PSG1)", 
"LOCATION(POSTGRES)", 
"DDFSTATUS(ENABLE)", 
"DOMAIN(your.domain.name)", 
"PORT(443)", 
"IPADDR(192.168.164.74)", 
"CCSID(37)" 

This example uses the location POSTGRES and port 443 (default) as defined in the previous 
Admin UI configuration that was shown in 5.2.6, “Configuring data sources that use the JDBC 
Gateway server UI” on page 87. We selected PSG1 as our connection Name. The IPADDR 
parameter is set to the IP address of the system where the JGATE server was installed 
previously.

After the DEFINE DATABASE changes are completed, the edit session on 
SAVZEXEC(xVZyIN00) can be saved and closed.
Chapter 5. Connecting to non-Z data sources 89



5.2.8  Setting user credentials for the JDBC Gateway server

The DVM server provides pass-through authentication for the user that is logged in to the 
current session. This session uses RACF credentials by default to the remote data sources 
that are connected through the JDBC Gateway server. In most cases, user credentials are not 
the same for the remote JDBC data sources and can to be mapped for each source.

Consider the following points:

� AVZDRATH is a utility that sets encrypted passwords in GLOBALU variables. This utility 
can be used to list credential information.

� Alternative user credentials can be set up with changes to auto-enable a SEF Rule, 
AVZEJGAG, and mapped with the AVZDRATH utility.

� AVZEJGAG is an ATH rule that switches credentials when accessing the JGATE data 
source that uses DRDA. This rule uses AES encrypted passwords that are stored as 
GLOBALU system variables.

5.2.9  Establishing secure access using AVZDRATH

DVM provides the ability to configure authorization credentials by using the SEF event facility. 
An authorization rule is shipped with DVM and is used to provide credentials when connecting 
to remote databases.

Setting user credentials for JDBC Gateway server
The DVM server provides a pass-through authentication for the logged in user and by default 
establishes access that is based on that the user’s credentials for the Resource Access 
Control Facility (RACF) on the z/OS system.

When accessing remote data sources by using the JDBC Gateway server, these RACF user 
credentials are referenced to access and retrieve remote data. In most cases, the user 
credentials across remote data sources are different. The JDBC Gateway server allows you 
to map user authentication and authorization individually for each targeted remote data 
source.

Alternative user credentials can be set up with changes to auto-enable a SEF Rule, 
AVZEJGAG, and mapped with the AVZDRATH utility.

To define alternative authentication information, edit the sample job for the AVZDRATH utility 
to add a global default user definition or authentication information for specific mainframe 
users.

The AVZDRATH member can be edited in the hlq.SAVZCNTL data set by adding a definition 
for the example PostgreSQL database to map the value from RACF to the user ID that is 
needed to access the PostgreSQL database. The DBTYPE=JGATE and DBNAME=name are 
required to proceed with each set of user ID mappings for a specific data source instance, as 
shown in Figure 5-14.

Figure 5-14   Specific user authorization for PSG1 J GATE data source
90 IBM Data Virtualization Manager for z/OS



After the definition entries are complete, the AVZDRATH JCL job can be submitted. 
AVZDRATH also provides a means for setting a DEFAULTUSER. This setting allows the Jgate 
Server to establish a proxy or functional ID for a larger set of RACF IDs, which provides 
default credentials for a JGATE-connected data source.

The example that is shown in Figure 5-15 shows a DEFAULTUSER on lines 002500 and 
003800. Other keywords enable printing the SYSIN statements in the job output 
(ECHO=ON/OFF), and provide more detailed or summary information about the AVZDRATH 
utility settings in the job output (REPORT=DETAIL/SUMMARY).

Figure 5-15   Report job summary for AVZDRATH settings

Providing user credential entries in the AVZDRATH utility job can introduce a security risk if 
unauthorized users can browse the AVZDRATH member to view user ID entries.

5.2.10  User access that uses rules

The DVM server provides pass-through authentication for the user that is logged in to the 
current session. This session uses RACF credentials by default to the remote data sources 
that are connected through the JDBC Gateway server. In most cases, user credentials are not 
the same for the remote JDBC data sources and can to be mapped for each source.

Consider the following points:

� AVZDRATH is a utility that sets encrypted passwords in GLOBALU variables. This utility 
can be used to list credential information.

� AVZEJGAG is an ATH rule that switches credentials when accessing a JGATE data 
source that uses DRDA. This rule uses AES encrypted passwords that are stored as 
GLOBALU system variables.
Chapter 5. Connecting to non-Z data sources 91



List ZOSUSER mapping in the AVZ member
Another option to listing the ZOSUSER mappings directly in the member is to concatenate a 
separate sequential dataset entry by using a SYSIN DD specification. The dataset that is 
specified in the SYSIN DD can be RACF protected to prevent unauthorized access to the 
user credentials, as shown in Figure 5-16 for DVM110.AVZ1.AUTH.

Figure 5-16   ZOSUSER authorization mappings

The dataset that is specified in the SYSIN DD can be RACF protected to prevent 
unauthorized access to the user credentials shown (as shown in Figure 5-17) for 
DVM110.AVZ1.AUTH.

Figure 5-17   Prevent unauthorized access that uses RACF

5.2.11  Using rules to ensure global user authorization

Running the AVZDRATH utility ensures that the new GLOBALU settings are referenced in the 
DVM server by automatically enabling the SEF ATH rule for the PDS member AVZEJGAG. 
This section describes how to use the TSO ISPF panel to make changes to the SEF rule for 
user authorization on the DVM server.

Starting ISPF panels that use TSO
In some instances, ISPF panels can be set up as a secondary menu from the ISPF Primary 
options menu or can be started by running the EXEC command from a TSO command line. 
The ISPF panel can be set up in the hlq.xVZy.SAVZEXEC library, and started by running a TSO 
command shell (see Example 5-18 on page 93):

EXEC ‘hlq.xVZy.SAVZEXEC(xVZ)’‘SUB(xVZy)
92 IBM Data Virtualization Manager for z/OS



Figure 5-18   Starting DVM ISPF interface from TSO command line

Updating rulesets by using the DVM server ISPF panel
By using the DVM server ISPF panel, rules can be defined to handle specific business needs. 
The use of Rules Management is needed for this alternative method for managing secure 
access to a target data source through the JDBC Gateway server, as shown in Figure 5-19.

Figure 5-19   Navigating to Rules Management on the DVM server

The Event Facility (SEF) provides the unique ability to customize rules for use of variables, 
handle data or business triggers, and monitor their use. Option 2 for SEF Rule Management 
steps through the creation of a rule for the ZOSUSER in SYSIN, as shown in Figure 5-20.

Figure 5-20   SEF Rules Management

For the SEF change, all of the default values apply for rulesets, types, directory reads, 
confirmations, and the entry panel. To address this rule, the ATH ruleset can be ENABLED 
under status. Selecting this ruleset for DVM110.AVZ1.SAVZXATH displays a list of associated 
PDS members.
Chapter 5. Connecting to non-Z data sources 93



The PDS member for the ATH rule is AVZEJGAG. Option B was selected for this member and 
rule to auto-enable ATH by showing a Y flag for always-on, as shown in Figure 5-21.

Figure 5-21   Enabling and automatically enabling the AVZEJGAG ATH rule

After the ATH settings for the AVZEJGAG PDS member are completed and the ISPF panel 
exists, the DVM server started task is to be stopped and restarted.

5.2.12  Connecting to a JGATE Data Source in DVM Studio

In this section, we review our Data Virtualization Manager Studio to view the sample 
PostgreSQL connection we configured by using the JDBC Gateway server. 

DVM Studio includes a Server panel with DVM server information. For this example, AVZ1 is 
the host DVM server that is configured and connected to the JDBC Gateway server named 
JGATE. Figure 5-22 shows a tree structure for the AVZ1 server with references to Virtual 
Tables and Virtual Views that are mapped to local data sets and remote sources that are 
mapped that use the JDBC Gateway server.

Figure 5-22   Navigating in DVM Studio to other subsystems
94 IBM Data Virtualization Manager for z/OS



The tree structure also lists “Other Subsystems” that are configured for the DVM server. The 
current view that is shown in Figure 5-19 displays Db2 members and a series of JDBC 
Gateway servers that are configured across various workstations that represent Windows, 
Linux, and macOS. Each of the JGATE references represents database definitions that are 
linked to the AVZ1 DVM server, and in particular, the PSG1 (JGate) server that is used to 
access Postgres data remotely, as shown in Figure 5-23.

Figure 5-23   Displaying the PSG1 Postgres database running non main-frame

The DVM server maintains metadata in memory that is associated with each data source that 
is mapped for access. The DVM server also performs data discovery for the target data 
source and captures details about schema, tables, and views that are on those database 
systems. As a result, DVM Studio can immediately access all of the DVM server metadata 
and easily present database objects in a relational format for simple access by SQL API and 
other modern programming languages.

DVM Studio can access a remote server’s database by schema where tables and views can 
be virtualized. Figure 5-24 shows the emp table under the dvm_schema. The JDBC Gateway 
server serves as a literal gateway for the DVM server, which then allows client applications to 
read/write to and from the respective data source.

Figure 5-24   Data discovery of Postgres database 
Chapter 5. Connecting to non-Z data sources 95



Figure 5-25 shows two tables that exist within the dvm_schema for the PSG1 PostgreSQL 
database. One of the tables is named emp. DVM Studio can create a virtual table that maps to 
the emp table, and generates SQL and programming code (Java, Python, and so on). DVM 
Studio also can create and publish web services that can be used by RESTful applications.

Figure 5-25   Tree structure of remote PSG1 PostgresSQL database with the emp table selected

Generating a query
DVM Studio generates SQL statements dynamically for the selected database object, which 
defaults to selecting all columns and rows up to a built-in limit to the Studio, as shown in 
Example 5-3.

Example 5-3   Result from SQL query in emp table in PostgreSQL

-- Description:      Retrieve the result set for emp
-- Tree Location:   192.168.164.74/12050/SQL/Data/Other Subsystems/PSG1/dvm_schema/Tables/emp
-- Remarks:
SELECT "empno", "firstnme", "midinit", "lastname", "workdept", "phoneno", "job", "edlevel"
FROM "dvm_schema"."emp";

Running and viewing generated query results
DVM Studio then can display results from \ tables, view results of a newly created virtual 
table, and join results from two heterogeneous database tables. Join operations can occur 
exclusive to relational, non-relational, or any combination of types.

The example that is in Figure 5-26 on page 97 shows the result set from the query that was 
run in Example 5-3. Notice that the generated query selects all columns and includes the 
normalized 3-part name.
96 IBM Data Virtualization Manager for z/OS



Figure 5-26   Result from executed SQL query of emp table in PostgreSQL 

Creating a virtual table using DVM Studio
A target system must be referenced for the virtual tables from the remote JDBC source. After 
the target system exists for the remote database, DVM Studio discovers the database objects 
for the target system that can now be virtualized. 

In the window that is shown in Figure 5-27, the metadata library is displayed where the 
mapping for the data source is stored. In this example, a 3-part naming pattern is defined for 
the emp PostgreSQL table that is selected.

Figure 5-27   New virtual target system

After the virtual table is created, a query can be generated from the newly defined mapping, 
much in the same way the query was generated by accessing the data directly (see 
Figure 5-26). 
Chapter 5. Connecting to non-Z data sources 97



The results from the virtual table of the emp base table display in DVM Studio output, as shown 
in Figure 5-28.

Figure 5-28   Query results from EMP virtual table

Joining data with virtual views using DVM Studio
A virtual view that joins two tables from different data sources also can be created. In the 
example that is shown in Figure 5-29, a JOIN is created between DB1M_DSN81210_DEPT 
(from Db2 z/OS) and PSG1_DVM_SCHEMA_EMP (from PostgreSQL).

Figure 5-29   Creating a virtual view that JOINs across two Virtual Tables
98 IBM Data Virtualization Manager for z/OS



With several virtual views defined, you can start with a single view and then add tables with 
JOIN criteria by using a free form SQL Editor, as shown in Figure 5-30.

Figure 5-30   SQL SELECT JOIN between EMP and DEPT virtual tables

For this example, the DEPT table from the Db2 for the z/OS database is joined with the EMP 
table from the PostgreSQL database. With the Virtual View created, a query can be 
generated and run to view the result of the JOIN operation between the two Virtual Tables, as 
shown in Figure 5-31. The example shows accessing data on the mainframe and joining it 
with a table on a remote distributed environment through the JDBC Gateway server.

Figure 5-31   Result from SQL Query on joined tables EMP and DEPT
Chapter 5. Connecting to non-Z data sources 99



5.2.13  Secure access that uses AVZDRATH

The DVM server provides pass-through authentication for the user that is logged in to the 
current session that uses RACF credentials by default to the remote data sources that are 
connected through the JDBC Gateway server. In most cases, user credentials are not the 
same for the remote JDBC data sources. The DVM server can be used to encrypt a unique 
password for the user access to be mapped for each source.

Alternative user credentials can be set up with changes to auto-enable a SEF Rule, 
AVZEJGAG, and mapped with the AVZDRATH utility.

To define alternative authentication information, edit the sample job for the AVZDRATH utility 
to add a global default user definition or authentication information for specific mainframe 
users.

The AVZDRATH member can be edited in the hlq.SAVZCNTL data set by adding a definition 
for the example PostgreSQL database to map the value from RACF to the user ID that is 
needed to access the PostgreSQL database. The DBTYPE=JGATE and DBNAME=name are 
required to proceed with each set of user ID mappings for a specific data source instance, as 
shown in Figure 5-32.

Figure 5-32   Specific user authorization for PSG1 JGATE data source

After the definition entries are completed, the AVZDRATH JCL job can be submitted. 
AVZDRATH also provides a means for setting a configurable DEFAULTUSER. This setting 
allows the Jgate Server to establish a proxy or functional ID for a larger set of RACF IDs, 
which provides default credentials for a JGATE-connected data source.
100 IBM Data Virtualization Manager for z/OS



Figure 5-33 shows a DEFAULTUSER on lines 002500 and 003800. Other keywords allow 
printing of the SYSIN statements in the job output (ECHO=ON/OFF), and providing more 
detailed or summary information of the AVZDRATH utility settings in the job output 
(REPORT=DETAIL/SUMMARY).

Figure 5-33   Specific user authorization for PSG1 JGATE data source

Note: Security risks can result if clear text user credentials are entered in the AVZDRATH 
member.
Chapter 5. Connecting to non-Z data sources 101



102 IBM Data Virtualization Manager for z/OS



Chapter 6. Access methods

DVM for z/OS technology supports multiple APIs that can be used access to virtualized data 
sources. In this chapter, we discuss the different access methods that allow applications to 
seamlessly make requests for read or write operations of underlying data, regardless of 
location or format.

This chapter includes the following topics:

� 6.1, “Interface methods for client access” on page 104
� 6.2, “Standard access” on page 105
� 6.3, “DS Client” on page 109
� 6.4, “REST and SOAP Web service interfaces” on page 111
� 6.5, “Integrated Data Facility for mainframe applications” on page 122
� 6.6, “Db2 for z/OS UDTF” on page 123
� 6.7, “Db2 federation” on page 126
� 6.8, “IBM Cloud Pak for Data” on page 128

6

© Copyright IBM Corp. 2021. 103



6.1  Interface methods for client access

DVM for z/OS technology provides multiple methods for client applications to access data. 
These access methods allow external applications to seamlessly make requests for READ or 
WRITE operations of underlying data, regardless of location or format (see Figure 6-1).

Figure 6-1   DVM for z/OS endpoint architecture

Organizations often use various applications, depending on the business objective. 
Traditional mainframe applications, such as Cobol, are prevalent and commonly associated 
with any digital transformation or modernization initiative where DVM for z/OS exists.

Modernization commonly involves transforming traditional programs into a more portable or 
updated interface that is driven by Java by using the DVM JDBC driver. Additionally, native 
and commercial applications use both DVM ODBC and JDBC drivers.

Mobile or cloud applications can interact with data that uses the web browsers and mobile 
applications over http or https to service cloud environments. In each instance, for any 
application, DVM for z/OS provides the needed translation and routing that is required for 
access through specific interfaces; DVM server, JDBC Gateway, DVM WOLA Service 
Provider, DVM DSCLIENT, Interactive System Productivity Facility (ISPF). Common client 
access methods are shown in Table 6-1.

Table 6-1   DVM for z/OS access methods

Browser or 
application

z Connect EE Server

http

https

DVM 
WOLA 

Service 
Provider

DVM Server

Virtual Table - Map

SQL Engine

Data Mapping 
Facility (DMF) 
Parser

Control 
Block

DVM DSCLIENT

Assembler, Metal C

VSAM

VSAMCICS

ADABAS ZFS

Sequential

MQ

IMS

IDMS

Db2 on 
z/OS

Mainframe 
Data Sources

IMS I/O

IDMS I/O

RRSAF, CAF, DRDA

Mainframe

Mainframe Apps,
Db2 UDTF

LPAR-1

DRDA AR
DRDA SSL

DRDA NonSSL

File I/O

RDBMS 
DRDA-supported
(must be pre-enabled)

Db2 LUW

Oracle 
(DRDA)

SQL Server

Informix

T
h
e 

ISPF UI
System, server, and 
user administration

RDBMS 
Non-DRDA 
examples

OEPORTNUMBER

OESSLPORTNUMBER

ODBC
driver

CMBU

CMBU

WSOEPORT

WSOESSLPORT

http

https

DVM Studio Eclipse UI 
Administration, virtual table 
and view creation

JDBC
driver

Browser

DRDA AR 
(JGATE) DRDA SSLDRDA NonSSL

JDBC Gateway Server
(DRDA AS)

DB 
1

DB 
2

DB 
n

Postgres
Oracle
Hive

SQL Server
MySQL

…
…
…

Driver 1

Driver 2

Driver n

JDBC Gateway 
Administrator 

Console
(Currently HTTP)

J
D
B
C

IDFPORTDRDA

DRDA
IDFSSLPORT

*zIIP-eligible

zCEE https

zCEE http

Business 
applications
C, C++ apps
Java apps

Mainframe Apps,
Peer DVM Server
DRDA based clients

MONGOPORThttp

https
MONGOSSLPORT

MongoDB Client

Client types Access method

CC, C++ based applications ODBC driver to DVM server

Java applications JDBC driver to DVM server
JDBC driver to DVM Studio to DVM server

Mainframe applications
Peer DVM instance servers

IDF using DRDA

Mainframe applications IDF using DRDA
104 IBM Data Virtualization Manager for z/OS



6.2  Standard access

DVM for z/OS supports ODBC and JDBC SQL access to the DVM server. The JDBC and 
ODBC drivers are available at IBM’s Fix Central repository and can be easily downloaded. 
After the drivers are downloaded to a workstation, they can be decompressed and installed.

6.2.1  JDBC/ODBC (including security or Kerberos)

Client applications that use the JDBC driver can connect to a Db2 subsystem or other data 
source on or off the mainframe and access a remote system catalog or defined tables.

A minimum JDBC connection string contains the hostname, port, and DBTY, as shown in the 
following example:

jdbc:rs:dv://<hostname>:<port number>;DBTY=DVS

The JDBC driver dv-jdbc-3.1.201912091012.jar requires log4j-api-<version number>.jar 
and log4j-core-<version number>.jar files. It is available to use with any application by 
using JDBC. 

An IBM Db2 QMF for Workstation contains common JDBC connection string elements, as 
shown in the following example:

jdbc:rs:dv://<hostname>:<port number>;DBTY=DVS;Subsystem=NONE 

The DVM server can also be used as an ODBC Type 4 connection for IBM Db2 Connect. In 
this case, the DBTY and Subsystem parameters reference DB2, as shown in the following 
example:

jdbc:rs:dv://<hostname>:<port number>;DBTY=DB2;Subsystem=<DB2 CSSID>

Web browser (HTTP and HTTPS) z/OS Connect EE to DVM WOLA service provider

Web browser (HTTPP) JDBC Gateway to DRDA

ISPF DVM server

RDBMS (DRDA Supported)
Db2 distributed family
Oracle (DRDA)
SQL Server
IBM Informix
...

DRDA to DrDA AR to DVM server

RDBMS (non-DRDA)
Postgres
Oracle
Apache Hive
SQL Server
MySQL
... 

JDBC driver to JDBC Gateway Server 
JDBC Gateway Server to DVM DS Client
DS Client to mainframe applications or Db2 UDTF

Client types Access method
Chapter 6. Access methods 105

https://www.ibm.com/support/fixcentral/


6.2.2  ODBC (including security or Kerberos) 

The ODBC driver is available for 32-bit and 64-bit environments across Red Hat Linux and 
SUSE Linux distributions. DVM Studio is the quickest approach for accessing, connecting, 
and discovering virtualized data asset; however, other SQL-based client programs that offer 
support for ODBC or JDBC connectivity are valid, such as MS-Excel, as shown in Figure 6-2.

Figure 6-2   MS-Excel querying DVM 

Using DVM Studio to enhance programmer productivity 
After the underlying data is formally mapped and made available by using a virtual source 
library, data can be easily discovered and previewed by using default connectivity to the DVM 
server. All virtual data assets that are provisioned through the DVM server can be used as a 
reference for generating customized code snippets across available modern programming 
languages and used for accelerating application development. Figure 6-3 shows the menu 
option in DVM Studio to generate programming code from SQL. 

Figure 6-3   Generating sample Java code 
106 IBM Data Virtualization Manager for z/OS



Generated SQL code is saved in the current workspace in your Eclipse environment, as 
shown in Figure 6-4. By default, this code stored in the following user-profile:

C:\Users<your-id>\dvm_workspace\Data Virtualization Manager\src. 

Figure 6-4   Generated Java sample code 

6.2.3  Java application programming interface 

DVM for z/OS provides a Java application programming interface (API) that includes a list of 
classes, interfaces with methods, fields, and constructors. These pre-written classes provide 
significant functions for application developers. 

Metadata 
The Java API allows external tools and applications to discover DVM server objects, such as 
tables, views, and other object descriptions, such as column names, and column data type. 

Use the standard DatabaseMetaData API to access the DVM server metadata, such as 
database product name, version, driver name, name of the total number of tables, and views. 
If you need more information about the DatabaseMetaData Interface and the methods it 
offers, search on the web for the Java official documentation. 

Example 6-1 shows some standard configuration parameters for generating Java code 
snippets. 

Example 6-1   Java code snippet to retrieve all from a DVM server

DatabaseMetaData databaseMetadata = conn.getMetaData();
String catalog = conn.getCatalog(); String schemaPattern = null;
String tableNamePattern = "%";
String[] types = null;
ResultSet tables = databaseMetadata.getTables(catalog, schemaPattern, 
tableNamePattern, types;
Chapter 6. Access methods 107



Where: 

� tableNamePattern is used to filter objects based on their name

� types can be used to filter objects based on their type, such as TABLE objects String[] 
types = {"TABLE"}; 

The DatabaseMetaData object is obtained by using the getMetaData() method of a 
Connection class. The getTables() method of the DatabaseMetaData interface is used to list 
all columns (see Example 6-2).

Example 6-2   List all columns for all objects in the DVM server

DatabaseMetaData databaseMetadata = conn.getMetaData();
String catalog = conn.getCatalog();
String schemaPattern = null;
String tableNamePattern = "%";
String colNamePattern = "%";
ResultSet tables = databaseMetadata.getColumns(catalog, schemaPattern, 
tableNamePattern, colNamePattern;

Where:

� tableNamePattern can be used to filter objects based on their name
� colNamePattern can be used to filter columns based on their name 

The DatabaseMetaData object is obtained by starting the getMetaData() method of the 
Connection class. The list of columns is obtained by using the getColumns() method of the 
DatabaseMetaData interface passing all required filters. 

The DVM server metadata that uses the Java API can generate reusable code snippets for all 
available virtualized objects. Replace XXX and YYY to match your environment for hostname or 
IP and Port number. Replace AAA and BBB with valid credentials that are needed for the 
getConnection() method. 

Include the following DVM for z/OS JDBC JAR file in the Java application class path:

� dv-jdbc-[version #].jar: DVM JDBC driver core implementation file
� log4j-api-[version #].jar: The logging framework API file
� log4j-core-[version #].jar: The logging framework implementation file
� log4j2.xml: A sample logging configuration file

For more information about sample reusable code, see Appendix B, “Java API sample code 
snippet” on page 233.
108 IBM Data Virtualization Manager for z/OS



6.3  DS Client 

The DS Client high-level API can be called from within more traditional mainframe languages, 
such as COBOL, Natural, or PL/I. This high-level API allows an application that is running on 
z/OS to use a call-level interface to communicate with the DVM server to process SQL 
requests and retrieve results that are buffered in a 64-bit shared memory object. 

6.3.1  CICS and other TXN or workload balancers 

To use the DsClient API with CICS, the CICS started task JCL, program list table (PLT), and 
DFHCSD file must be modified. 

The DVM.AVZ.SAVZCLOD library must be added to the DFHRPL concatenation in each 
CICS region that is connecting to the DVM server for the SYSP.PROCLIB(CICSBS54) data 
set. Figure 6-5 shows this addition by using the DVM ISPF pane. 

Figure 6-5   Add the DVM.AVZ.SABZCLOD library when using CICS 

Update and assemble the CICS program list table/program initialized (PLTPI) list for the DS 
Client task-related user exit. The entry for the AVZXMTRI program must follow the first 
DFHDELIM entry in the PLTPI list to ensure that the AVZXMTRI program is run during the 
second stage of the CICS PLTI process.

Complete the following steps:

1. Locate the first DFHDELIM entry in the PLTP1 list:

DFHPLT TYPE=ENTRY, PROGRAM=DFHDELIM

2. Insert the AVZXMTRI list as the second entry for the DS Client task-related user exit:

DFHPLT TYPE=ENTRY, PROGRAM=AVZXMTRI

3. Run your CICS assembly job. 

Complete the following steps to update the DFHCSD file:

1. For each CICS region, modify and submit the AVZCICSD job that is in hlq.SAVZCNTL 
data set.

2. Update LIST(YOURLIST) to match the start-up group list for the CICS region.
Chapter 6. Access methods 109



Restart CICS and check for the following message in the CICS job log: 

AVZ4459I CICSE DS Client exit program AVZCTRUE is enabledAdd body text. 

6.3.2  Using Data Virtualization Manager in a COBOL program 

Assume now that you have a VSAM data set that is virtualized as a virtual table STAFFVS, 
and you must access it from a program that is written in a high-level language, such as 
COBOL from CICS. DVM for z/OS offers a DS Client high-level language API through the 
program AVZCLIEN through this sequence:

1. Open a connection to the DVM server.
2. Send the SQL command to the DVM server.
3. Receive the complete query results from the issues SQL statement.
4. Close the connection to the DVM server.

Program’s data structures 
The COBOL program requires the definition of the DS Client Control Block (DVCB) fields be 
added to the programs Working Storage Section. These fields are used to interface with the 
DVM server. 

For more information about the DVCB, see IBM Documentation.

AVZCLIEN program preparation 
The program is compiled without any specific options and linked as shown in the following 
example: 

//SYSLIB DD DSN=DVM.SAVZLOAD,DISP=SHR
//SYSLMOD DD DSN=APPL.LOADLIB,DISP=SHR
//SYSIN DD * 
INCLUDE SYSLIB(AVZCLIEN)
NAME module (R)

AVZCLIEN can be found in the SAVZLOAD library. 

SQL Command Writing 
Instrument the SQL command in the COBOL program by using COBOL character functions, 
as shown in the following example:

STRING
"SELECT STAFFVS_KEY_ID,
"DELIMITED BY SIZE" STAFFVS_DATA_NAME,
"DELIMITED BY SIZE" STAFFVS_DATA_DEPT,
"DELIMITED BY SIZE" STAFFVS_DATA_JOB,
"DELIMITED BY SIZE" STAFFVS_DATA_YRS,
"DELIMITED BY SIZE" FROM STAFFVS,
"DELIMITED BY SIZE" INTO SQL-TEXT.

The example statement results in dynamic SQL being run where STAFFVS is the virtual table 
requested, as shown in the following example:

SELECT STAFFVS_KEY_ID, STAFFVS_DATA_NAME, STAFFVS_DATA_DEPT, STAFFVS_DATA_JOB, 
STAFFVS_DATA_YRS 
FROM STAFFVS;
110 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/docs/en/dvm/1.1.0?topic=api-dvcb-control-block


For more information about developing your Cobol application by using the DSclient API, see 
the Developer’s Guide.

6.4  REST and SOAP Web service interfaces 

Cloud and mobile applications changed the way enterprises and systems interact. RESTful 
APIs that use JSON messages are the predominant standards for new application 
development. IBM z/OS Connect Enterprise Edition (zCEE) provides a framework that 
enables z/OS-based programs and data to participate fully in the new API economy for 
mobile and cloud applications. 

6.4.1  IBM z/OS Connect Enterprise Edition 

z/OS Connect EE provides RESTful API access to z/OS applications and data that is hosted 
in subsystems, such as CICS, IMS, IBM MQ, and Db2 for z/OS. Moreover, the combination of 
z/OS Connect and DVM enables direct RESTful API access to perform SELECT, INSERT, 
UPDATE, and DELETE operations to traditional mainframe data, such as VSAM, Sequential, 
SMF, Adabas, and even to non-z/OS data sources. Any data that is virtualized by using DVM 
for z/OS is available to z/OS Connect. 

Interaction between the DVM server and z/OS Connect is enabled by the DVM Service 
Provider, which is a UNIX System Services component that can integrate with zCEE to 
enable DVM Web services invocation. In turn, the DVM Service Provider establishes the 
communication channel with DVM server by using WebSphere Optimized Local Adapter 
(WOLA) Service Provider, which is natively supplied by z/OS Connect EE. 

WOLA is a function that enables fast, efficient, and low-latency cross-memory exchanges 
between z/OS Connect and external address spaces, such as DVM for z/OS. WOLA requires 
the DVM server and zCEE server to be on the same LPAR. 

WOLA uses a three-part name to uniquely identify the WOLA server (or communication 
channel). This name is derived from the wolaGroup, wolaName2, and wolaName3 attribute 
values. 

6.4.2  Configuring the DVM server for use with z/OS Connect 

Allocate a WebSphere Optimizer Local Adapter (WOLA) PDSE data set with the following 
characteristics to configure the DVM server to work with the zCEE server. A best practice is to 
use the DVM server naming convention for the WOLA PDSE definition:

� Space units: TRACK
� Primary Quantity: 30
� Secondary Quantity: 2
� Directory blocks: 15
� Record format: U
� Record length: 0
� Block size: 32760
� Data set name type: LIBRARY 

Start a z/OS UNIX shell and browse to the working directory: 

cd //wlp/clients/zos 
cd /usr/lpp/zosconnect/v330/wlp/clients/zos
Chapter 6. Access methods 111

https://www.ibm.com/docs/en/dvm/1.1.0?topic=dchla-example-using-data-virtualization-manager-in-cobol-program


Then, issue the following command to copy modules from UNIX System Services into WOLA 
PDSE. These modules enable WOLA communication between a DVM server and a zCEE 
server. You can have multiple zCEE and DVM servers that use a single WOLA PDSE data 
set:

cp -Xv ./* "//'<WOLA PDSE>'"

Add your WOLA PDSE data set to the AVZRPCLB ddname in the server started task JCL:

//AVZRPCLB DD DISP=SHR,DSN=&HLQ..SAVZRPC
// DD DISP=SHR,DSN=

APF authorizes the <WOLA PDSE> data set and finds Enable z/OS Connect interface 
facility in xxxIN00 configuration member where xxx is the DVM server subsystem name: 

/*------------------------------------------*/
/* Enable z/OS Connect interface facility */
/*------------------------------------------*/
if DontDoThis then do

Change DontDoThis in DoThis to enable the WOLA parameters and confirm that the 
ZCONNECT parameter is enabled. 

Optionally, add the ZCONNECTPWNAMEX parameter and set the value to the concatenation 
of WolaName2 and WolaName3, separated by a dot (<WolaName2>.<WolaName3>). Default 
values for WolaName2 and WolaName3 are NAME2 and NAME3. WolaName2 and 
WolaName3 can be arbitrary 1 - 8 characters strings, as shown in the following example:

"MODIFY PARM NAME(ZCONNECTPWNAMEX) VALUE(NAME2.NAME3)" 

Customize the DEFINE ZCPATH command, which is used to define a connection to a specific 
z/OS Connect region (server):

"DEFINE ZCPATH",
" NAME(ZCNALL)",
" RNAME(DVJR1)",
" WNAME(DVJG1)"

NAME is an arbitrary name and RNAME is up to 12 characters. The WNAME is up to 8 characters for 
the WolaGroup name. 

By default, DVM for z/OS retries failed connections with the zCEE server. Sometimes, failed 
connections are caused by an inactive zCEE server, but the communication error is always 
logged in the DVM server traces file. If you use RACF, a profile definition of CBIND resource 
class is required to allow the zCEE server and the DVM server to connect and function 
properly. 

Consider the following points:

� A generic or discrete CBIND resource definition is required. A generic definition uses a 
CBIND class profile of BBG.WOLA.<WolaGroup>.** with UACC(READ), whereas a 
discrete definition uses a CBIND class profile of 
BBG.WOLA.<WolaGroup>.<WolaName2>.<WolaName3> with UACC(READ).

Tip: WolaName2 and WolaName3 also are used during zCEE WOLA configuration. 
Therefore, if specified, it is recommended to make note of them. 

Tip: RNAME and WNAME are also used during zCEE WOLA configuration; therefore, it is 
recommended to make note of them. 
112 IBM Data Virtualization Manager for z/OS



� The WolaGroup is the WNAME that is specified in the DEFINED ZCPATH command, 
WolaName2 and WolaName3 are the values that are defined in the 
ZCONNECTPWNAMEX parameter. If ZCONNECTPWNAMEX is not defined, the 
WolaName2 value must be NAME2 and the WolaName3 value must be NAME3. 

6.4.3  Installing the DVM Service Provider 

After the zCEE server is defined with security authentication enabled, complete the following 
steps to install the DVM Service Provider that is included in hlq.SAVZBIN(AVZBIN4):

1. Transfer the member hlq.SAVZBIN(AVZBIN4) to your workstation in binary mode.

2. Rename the file to com.rs.dv.zosconnect.provider.feature_1.0.0.esa.

3. Copy the file to a UNIX System Services directory.

4. Change the directory to //wlp/bin, where // is the path directory for your z/OS Connect 
EE installation. For example, change to the following directory:

cd /usr/lpp/zosconnect/v330/wlp/bin

5. Set the JAVA_HOME = environment variable to the path of your 64-bit IBM Java SDK:

export JAVA_HOME=/usr/lpp/java/IBM/J8.0_64

6. Set the WLP_USER_DIR environment variable to the location where your server instances 
and user features are stored:

export WLP_USER_DIR=/var/zosconnect

./installUtility install 
/dvmServiceProvider/com.rs.dv.zosconnect.provider.feature_1.0.0.esa

7. The zCEE server.xml can be edited by using IBM Explorer for z/OS. 

Under xml element, add the following lines:

<feature>usr:dvsProvider</features>
<feature>zosLocalAdapters-1.0</feature>

Where usr:dvsProvider is DVM Service Provider on zCEE. zosLocalAdapters-1; 0 is the 
WOLA provider that is used to communicate between the DVM Service Provider on zCEE 
and DVM server.

8. Under the <server> xml element, add entries for the required DVM Service Provider on 
zCEE:

<zosconnect_zosConnectService
      id="zosConnectDvsService"
      serviceName="DvsService"
      serviceRef="dvsService"
      serviceDescription="IBM DV Service provider"
      invokeURI="/dvs" />

    <usr_dvsService
      id="dvsService"
      connectionFactoryRef="wolaCF"
      registerName="DVJR1"
      serviceName="DVJS1"
      invokeURI="/dvs" />

Where:

– serviceRef in <zosconnect_zosConnectService> must be the same as ID in 
<usr_dvsService>.
Chapter 6. Access methods 113



– invokeURI in <zosconnect_zosConnectService> must be the same as invokeURI in 
<usr_dvsService>. It represents the “root” directory of DVM Web services, which 
means that all DVM Web services are reachable with a URL and starts with 
http(s)://<zos_connect_ip>:<zos_connect_port>/dvs/.

– connectionFactoryRef in <usr_dvsService> must have the same value as 
connectionFactoryRef in <zosconnect_localAdaptersConnectService> and ID in 
<connectionFactory>, which are defined in the next step.

– registerName in <usr_dvsService> is the same as RNAME that is defined in the DEFINE 
ZCPATH command in the DVM IN00 configuration member.

– serviceName in <usr_dvsService> must have the same value as serviceName in 
<zosconnect_localAdaptersConnectService>, which is defined in the next step.

9. Under <server> xml element, add the entries that are shown in Example 6-3 that are 
required for the WOLA service providers.

Example 6-3   Required entires for WOLA service providers

<zosLocalAdapters
        wolaGroup="DVJG1"
        wolaName2="NAME2"
        wolaName3="NAME3" />
        
    <connectionFactory id="wolaCF" jndiName="eis/ola">
        <properties.ola />
     </connectionFactory>
        
     <zosconnect_zosConnectService
        id="sdef1"
        serviceName="dvs1"
        serviceAsyncRequestTimeout="600s"
        serviceRef="svc1" />
        
<zosLocalAdapters
        wolaGroup="DVJG1"
        wolaName2="NAME2"
        wolaName3="NAME3" />
        
    <connectionFactory id="wolaCF" jndiName="eis/ola">
        <properties.ola />
     </connectionFactory>
        
     <zosconnect_zosConnectService
        id="sdef1"
        serviceName="dvs1"
        serviceAsyncRequestTimeout="600s"
        serviceRef="svc1" />
        
<zosconnect_localAdaptersConnectService
        id="svc1"
            registerName="DVJR1"
        serviceName="DVJS1"
              connectionFactoryRef="wolaCF"
              connectionWaitTimeout="7200" />
114 IBM Data Virtualization Manager for z/OS



Where:

– wolaGroup in <zosLocalAdapters> includes the same value as WNAME defined in:

DEFINE ZCPATH command in the DVM IN00 configuration member

– wolaName2 and wolaName3 have the same value as WNAME defined in the 
ZCONNECTPWNAMEX parameter in the DVM IN00 configuration member. If 
ZCONNECTPWNAMEX is not defined in DVM IN00 configuration member, 
WolaName2 value must be NAME2 and WolaName3 value must be NAME3.

– id in <connectionFactory> is the same as connectionFactoryRef in 
<zosconnect_localAdaptersConnectService> and <usr_dvsService>.

– serviceRef in <zosconnect_zosConnectService> must have the same value as id in 
<zosconnect_localAdaptersConnectService>.

– registerName in <zosconnect_localAdaptersConnectService> is the same as RNAME 
that is defined in the DEFINE ZCPATH command in the DVM IN00 configuration member.

– serviceName in <zosconnect_localAdaptersConnectService> must have the same 
value as serviceName in <usr_dvsService>. 

6.4.4  Creating zCEE RESTful APIs for access to the DVM server 

When a RESTful API requests mainframe data, z/OS Connect communicates the request to 
the DVM server by using the WebSphere Optimized Local Adapter (WOLA). The DVM server 
runs the requested web service to get data. 

After the configuration steps are completed, recycle the DVM and z/OS Connect Started 
tasks to establish a connection between the two servers. A successful pairing is written to the 
DVM server log: 

19.10.58 STC05152 AVZ4502H ZCPRHUPR subtask is active 
19.10.58 STC05152 AVZ4502H ZCPRHLWR subtask is active 

Setting REST z/OS Connect web services preferences 
REST z/OS Connect web services preferences are required when starting and running a web 
service request for z/OS Connect by using DVM Studio. Set web services preferences to REST 
using z/OS Connect and provide a Service Provider URL by using the following 
nomenclature:

https://<zos_connect_ip>:<zos_connect_port>/<invokeURI>

Where <invokeURI> is as represented in the server.xml.
Chapter 6. Access methods 115



Figure 6-6 shows the settings for a RESTful configuration.

Figure 6-6   Preferences setting for REST-based web services with z/OS Connect Service Provider

Use the Max Records Parameter to set a limit for the number of records that is retrieved when 
run and use the Prompt user before running the generated query to prompt users before 
query execution. 

Assigning DVM servers where web services are run 
Use the Target Systems Wizard in DVM Studio to identify a DVM server where the service 
provider starts web service requests. More than one target system can be defined to suit your 
specific configuration, as shown in Figure 6-7. 

Figure 6-7   Target System creation 

Creating the web services metadata repository 
Use the Web Services Directory Wizard to define Partitioned Data Sets (PDS) on the 
mainframe where web services metadata is stored. You provide a name for your web services 
directory, which is a high-level qualifier to use as a data set prefix as you create, verify, or edit 
metadata that is associated with web services for your mainframe system. 
116 IBM Data Virtualization Manager for z/OS



The library for the web services metadata is automatically created if it does not exist. 
Figure 6-8 shows the Web services directory definition. 

Figure 6-8   Web services directory definition

Use the Microflow Library Dataset dialog to create a microflow metadata library on your 
mainframe, as shown in Figure 6-9. 

Figure 6-9   Microflow library dataset generation 

Creating web services by using DVM Studio 
Use the Web Services Wizard to create a web service for your specific DVM server’s web 
directory. The newly created web service metadata is written to your DVM server web 
directory. This wizard steps through assigning a name, web service operation type (REST 
using z/OS Connect, and business and window-level SOAP option). 

You can select a virtual table or stored procedure to associate with the web service you are 
creating and then have the option to update the name, description, or SQL statement that is 
used to put or get data from a web-based client request. 
Chapter 6. Access methods 117



Figure 6-10 shows the SQL editor element for defining a web service. 

Figure 6-10   Web service definition: SQL editor 

The web services workflow accommodates dynamic inputs for the SQL statement for your 
web service with the z/OS Connect REST interface by refreshing communication between the 
DVM server and the zCEE Server, as shown in Figure 6-11 and Figure 6-12 on page 119. 

Figure 6-11   Web services sample list output 
118 IBM Data Virtualization Manager for z/OS



Figure 6-12   Web services sample list output

Deploying DVM web services to z/OS Connect RESTful API 
To define and deploy a z/OS Connect RESTful API, DVM Studio and an Eclipse IDE with a 
z/OS Connect EE API Toolkit are used to build and make available SAR files. The IBM 
Explorer for z/OS can use Eclipse-based plug-ins from DVM Studio and API Toolkit from 
zCEE to product modern applications. 

You can promote a web service by generating SAR files. In DVM Studio, web services can be 
selected and transformed into a z/OS Connect RESTful API on the Server tab by 
right-clicking the wanted web service and selecting Create z/OS Connect SAR file.

The hypothetical DvsqlStaffvs web service uses the zCEE SAR file Generator to convert from 
stand-alone use to general consumption by using the zCEE REST Interface. Figure 6-13 
shows SAR file generation. 

Figure 6-13   SAR File generation 
Chapter 6. Access methods 119



By using the z/OS Connect EE API Toolkit, create a project from the Project Explorer dialog. 
The Editor API dialog defines the name of the service, its path, and version, as shown in 
Figure 6-14. 

Figure 6-14   REST API path and input parameters 

For each method, define the associated SAR file by using the Service button and locating the 
SAR file that was generated in your file system. Figure 6-15 shows how to associate a file to a 
RESTful API. 

Figure 6-15   SAR file association to a REST API 

Using dynamic user input parameters 
If any user input is available for the web service, use Request Mapping to define and link any 
input parameters that correspond to the web service parameters that are defined on DVM 
Studio. Finally, deploy your RESTful API by clicking the icon that is indicated in Figure 6-16. 

Figure 6-16   RESTful API deployment 

6.4.5  Db2 Query Management Facility API 

DVM for z/OS features a unique synergy with ZCEE in that RESTful web services can be 
created to access and submit requests against virtual tables that map to underlying 
unstructured data that is on the mainframe. 
120 IBM Data Virtualization Manager for z/OS



Db2 Query Management Facility (QMF) provides a RESTful API that can use DVM for z/OS 
by using the distributed DVM JDBC driver. Sample output from a JavaScript application is 
shown in Example 6-4. The output was created from Db2 SMF that calls the QMF REST API 
to run a query against SMF records.

Example 6-4   SQL sub-select used to access an SMF record

SELECT SMF30JBN AS JOB_NAME, SMF30STM AS STEP_NAME, SMF30PGM AS PROGRAM, SMF_SSI 
AS TYPE, SMF30CSU AS CPU
FROM ( SELECT SMF_STY, SMF30HPT, SMF30IIP, SMF30RCT, SMF30HPT, SMF30JQT, 
SMF30RQT,SMF30HQT, SMF30SQT, SMF30STI, SMF_TIME,
SMF30SIT, SMF30IO, SMF30PSN,SMF30MSO, SMF30SRB, SMF30CSU, SMF30SRV, SMF30ISB, 
SMF30ICU, SMF30PGM,SMF30CL8, SMF30SSN,
SMF30JBN, SMF30JNM, SMF30STM, SMF30STN, SMF_SSI,SMF_SID, SMF30CPT, SMF30CPS, 
SMF30CPT, SMF30CPS,SMF30_TIME_ON_IFA,
SMF30_TIME_ON_SUP, SMF30TCN, SMF30TEP, SMF30SCC, LS_TIMESTAMP_LOCAL FROM 
SMF_03000_SMF30IDA INNER JOIN
SMF_03000_SMF30CAS B ON A.BASE_KEY = B.BASE_KEY INNER JOIN SMF_03000 C ON 
A.BASE_KEY = C.BASE_KEY INNER JOIN
SMF_03000_SMF30CMP D ON A.BASE_KEY = D.BASE_KEY INNER JOIN SMF_03000_SMF30URA E ON 
A.BASE_KEY = E.BASE_KEY INNER JOIN SMF_03000_SMF30PRF F ON A.BASE_KEY = F.BASE_KEY 
) WHERE SMF_STY = 4;

Figure 6-17 shows results from the defined web service that was generated from the Db2 
QMF RESTful API that are now available to help drive operational analytics and opportunities 
for optimization for the application and use of resources. 

Figure 6-17   Results of SMF query in a spreadsheet 
Chapter 6. Access methods 121



6.5  Integrated Data Facility for mainframe applications 

DVM for z/OS introduced the Integrated Data Facility (IDF), which supports a DRDA server 
interface. This support enables Db2 for z/OS to read or JOIN any virtual data sources that are 
provisioned on the DVM server that has a registration in SYSIBM.LOCATIONS and 
SYSIBM.IPNAMES. 

6.5.1  DVM server subsystem in the Db2 communications database 

In this case, the DVM subsystem is AVZW. The DVM server has a valid virtual table that is 
named SASAPPLICANT with a schema having a default three-part name of 
RS01AVZW.DVSQL.SASAPPLICANT. 

Figure 6-18 shows a select statement that uses a three-part name of 
schema.database.table: 

SELECT * FROM RS01AVZW.DVSQL.SASAPPLICANT 

Figure 6-18   Selecting DVM data with three-part names using DB2 

The three-part name can be simplified by creating a View or an Alias. However, as shown in 
Figure 6-18, Db2 QMF for TSO is used to generate output. The use of IDF makes DVM server 
virtual tables available by using three-part names or by way of a View or Alias to other 
mainframe applications, such as Cobol, Db2 Stored Procedures, Db2 for z/OS Restful 
Services, and SPUFI. 

6.5.2  Use cases 

Mainframe applications are the primary use case with limited testing against non-Z sources. 
Typical non-Z applications, such as MS-Excel, QMF for Workstation, IBM Cognos®, IBM 
SPSS®, and other client applications often use the DVM JDBC or ODBC driver through the 
DVM server directly. 

Db2 as an entry point 
Using Db2 as an entry point allows you to take advantage of skills and use applications that 
are in place as templates for new applications. Consider the following use cases:

� Use Case 1: TSO or SPUFI

QMF for TSO or SPUFI can query the DVM data with three-part names.

� Use Case 2: Cobol applications

Custom Cobol programs can be used to pull data by using embedded SQL with three-part 
names (or View or Alias). However, when the packages for the SQL are bound, they also 
must be bound in the DVM server instance that is associated with IDF. The same situation 
is faced with three-part names accessing another remote Db2 for the z/OS subsystem. 
The job that compiles the program includes a step to \ perform a remote bind or copy the 
packages to the instance of DVM that is associated with IDF.
122 IBM Data Virtualization Manager for z/OS



� Use Case 3: Db2 Stored Procedures

Db2 Stored Procedures can be created that run queries that are aimed at DVM data 
sources by using IDF. SQL Call statements to these Db2 Stored Procedures can then be 
incorporated into DB2 Restful Services. 

6.5.3  Choosing Db2 UDTF or IDF

DVM’s UDTFs and IDF appear similar. Therefore, how do you decide which to use? Table 6-2 
shows a comparison between the two access interfaces. 

Table 6-2   Db2 UDTF versus IDF

6.6  Db2 for z/OS UDTF 

Db2 for z/OS includes a database function that is called a user-defined table function (UDTF). 
A UDTF depends on a custom program that is started by Db2 when a UDTF is called as part 
of a SELECT statement. This custom program can access Db2 data or it can directly access 
the underlying file system that is backing the Db2 database. Then, it returns the results in the 
normalized relational format as though seamlessly part of the local Db2 database. 

You can use the Db2 for z/OS database as an information or federation hub for your 
enterprise. DVM Studio allows you to create Db2 UDTFs for a virtual table. These external 
Db2 UDTF functions provide read only support and are created within the studio on virtual 
tables and virtual views. These functions expose your applications to data sources that are 
outside of your Db2 subsystem, which allows Db2 to become a central data store for 
disparate data that is on or off the mainframe, such as relational, big data, Kafka, or flat files. 

Db2 UDTF IDF

Can be created by any valid user with access to 
DVM Studio and Db2 for z/OS. No setup required.

IDF must be configured by the administrators for 
the DVM server and Dvb2 for z/OS by using the 
Db2 communications database. The DVM server 
must be registered to populate metadata with 
suitable user privileges.

SELECT SELECT, SELECT INTO, INSERT, UPDATE, 
DELETE

By default, passes only the SELECT portion of 
the query to the DVM server. No SQL pushdown 
of WHERE predicates

IDF passes the SQL through the DVM server with 
ANSI-SQL 92 support. Also supports WHERE 
predicates and an SQL pushdown.

Supported by all Db2 for z/OS clients on the 
mainframe and over the distributed environment. 
For example, QMF, Cognos, and MS-Excel.

IDF is limited to mainframe client applications.
Chapter 6. Access methods 123



Db2 UDTFs that point to DVM virtual tables can be created by using DVM Studio (see 
Figure 6-19) and referenced as a UDTF or View in the local Db2 database. 

Figure 6-19   Creating a UDTF 

As of this writing, the following optimized UDTF modules are available for different hardware 
environments:

� AVZUDT9N for the z196 system 
� AVZUDTAN for the zEC12 system 
� AVZUDTBN for the IBM z13® system 
� AVZUDTCN for the z14 system 
� AVZUDTDN for the IBM z15™ system 

Db2 for z/OS Subsystem uses the Db2 Workload Manager environment for User Defined 
Functions (UDF) and User Defined Routines (UDR). The Db2 Wizard can be used to 
generate UDTF definitions or Views for the Db2 for the z/OS database that is referencing IBM 
Z provisioned data on the DVM server, as shown in Figure 6-20. 

Figure 6-20   Creating a UDTF using the Db2 Wizard 
124 IBM Data Virtualization Manager for z/OS



The SQL results profile the Db2 UDTF execution trace. The UDTF is now present in 
SYSIBM.SYSROUTINES on the designated Db2 Subsystem, as shown in Figure 6-21. 

Figure 6-21   SQL Window report on the process of UDTF creation

Without a view, a DVM UDTF is addressed in SQL with a less familiar SQL syntax. UDTFs do 
not appear in SYSIBM.SYSTABLES and are not exposed to third-party commercial software. 
Creating a view addresses SQL standards and the ability to discover views that do not 
perform SQL Pushdown at the source and return all rows for processing to the Db2 for z/OS 
Subsystem. 

The back-end DVM server is not technically known to the Db2 database and does not know 
the DVM SQL engine backing a view on a UDTF. Therefore, the WHERE clause is not passed 
through to the remote data source. Db2 receives all of the data and then applies the WHERE 
clause. This process is not a challenge for Db2 in many cases, but what if the virtualized table 
contains billions of records? 

In this example, a query SELECTs from the VIEW on the UDTF: 

SELECT TEMPID, NAME, ADDRESS, EDLEVEL,COMMENTS
FROM TWSHAWN.AVZW_VSASAPPLICANT
WHERE TEMPID >450

The following SQL statement is more efficient. The first parameter in the syntax for the DVM 
UDTF is a pair of single quotation marks with nothing in them ''. This spot is reserved for a 
WHERE clause predicate:

SELECT TEMPID,NAME,ADDRESS,EDLEVEL,COMMENTS
FROM TABLE (TWSHAWN.AVZW_SASAPPLICANT ('WHERE TEMPID >450', 'AVZW...SASAPPLICANT', 
'5,TEMPID,NAME,ADDRESS,EDLEVEL,COMMENTS', ''))
Chapter 6. Access methods 125



Some query tools, such as IBM QMF, allow you to parameterize the SQL when host variables 
are used. Figure 6-22 shows the WHERE clause that is prompted for at run time. 

Figure 6-22   Prompting for a WHERE clause at run time 

If the WHERE clause is operating on TEXT or DATE\TIME values that require single quotation 
marks, the single quotation marks must be doubled to two single quotation marks, not a 
double quotation mark, as shown in Figure 6-23. 

Figure 6-23   Character data in the WHERE clause 

The final parameter also is a set of empty single quotation marks. This format is used to 
contain DVM runtime options, such as Map Reduce. 

6.7  Db2 federation 

DVM for z/OS features a level of integration with IBM’s distributed Db2 family portfolio by 
distributing the DVM JDBC and ODBC drivers across all on-premises and cloud offerings, 
including:

� Db2 AESE
� Db2 Warehouse
� Db2 Warehouse on Cloud
� IBM Integrated Analytics Systems
� IBM Netezza
� Cloud Pak for Data running on-premises and Cloud Pak for Data as a Service 

Drivers do not need to be downloaded or installed, and Db2 family database engines are not 
needed for data federation because this capability now is a built-in, including capability that 
does not require manual commands for creating wrappers or data type mappings. 

The Db2 database optimized the DVM server as a remote database and information 
architecture and performs SQL Pushdown. It also can create local Nicknames or Remote 
Tables that map to virtual tables that are provisioned on the DVM server for underlying IBM Z 
sources, such as VSAM, IMS, Adabas, Sequential Files, Logstream, Syslog, SMF, and Tape 
systems. 
126 IBM Data Virtualization Manager for z/OS



Complete the following steps:

1. Connect to the database that requires access to DVM server by using the command line 
or the Data Studio Manager (DSM), Data Management Console (DMC), Unified Consoles 
as part of Db2 Warehouse on-premises and cloud offerings, and the IIAS system.

2. Create a connection server that points to the DVM server along with all other options that 
are specified in the following command, and in Figure 6-24:

db2 "CREATE SERVER <server_name> TYPE JDBC WRAPPER JDBC OPTIONS
(DRIVER_PACKAGE '<path to DVM jdbc driver>',
DRIVER_CLASS 'com.rs.jdbc.dv.DvDriver',
URL 'jdbc:rs:dv://<dvm_ip_address>:<dvm_port>;DBTY=DVS;SUBSYS=NONE;
PMDSQL=true',
pushdown 'Y',
DB2_MAXIMAL_PUSHDOWN 'Y',
db2_varchar_blankpadded_comparison 'Y',
db2_char_blankpadded_comparison 'Y',
collating_sequence 'Y' )"

Figure 6-24   Server creation command 

The following options are specified in server creation statement:

� pushdown ‘Y’

The federated server considers allowing DVM evaluate operations. If you set PUSHDOWN 
to N, the federated server retrieves select columns from the remote data source and does 
not allow the DVM server evaluate other operations, such as joins.

� DB2_MAXIMAL_PUSHDOWN ‘Y’

The federated server pushes as many parts of the query as possible to DVM for 
processing.

� db2_varchar_blankpadded_comparison 'Y’ and db2_char_blankpadded_comparison ‘Y’

The federated server pushes filtering that is based on character columns to DVM server.

� collating_sequence 'Y’

Character or numeric data predicates comparison, character range predicates 
comparison, and sort operations might be pushed down if collating sequences are the 
same.

Create a user mapping for all users that require access to the federated DVM server, as 
shown in the following db2 statement and in Figure 6-25 on page 128: 

db2 "CREATE USER MAPPING FOR <user> SERVER <server_name> OPTIONS (REMOTE_AUTHID 
'XXX', REMOTE_PASSWORD 'xxx')"
Chapter 6. Access methods 127



Figure 6-25   User mapping command 

To validate the access to DVM server, create a nickname for a remote DVM Virtual Table or 
Virtual View:

db2 "CREATE NICKNAME <nickname> FOR <server_name>.<virtual table/view>"

6.8  IBM Cloud Pak for Data 

IBM Cloud Pak for Data is a fully integrated data and AI platform that helps modernize the 
way data can be collected, organized, analyzed, and infused with AI. The platform is cloud 
native and is designed to add powerful new capabilities for data management, DataOps, 
governance, business analytics, and AI. 

IBM Cloud Pak for Data delivers the modern information architecture to turn AI aspirations 
into tangible business outcomes, while improving governance and protecting your data. 

IBM Cloud Pak for Data also can access z/OS data by using Data Virtualization Manager for 
z/OS. By using a built-in JDBC driver (for more information about the DVM-JDBC driver, see 
Chapter 5, “Connecting to non-Z data sources” on page 79), any z/OS data that is virtualized 
with DVM is available to various Cloud Pak for Data applications. It can be cataloged, 
analyzed, and infused with AI on the platform. 

In this section, we show how to access DVM virtualized data sources by using the Cloud Pak 
for Data DVM connector component. 

6.8.1  Cloud Pak for Data interface and adding a DVM connection 

Complete the following steps to add a DVM connection:

1. Log in to an available IBM Cloud Pak for Data instance, as shown in Figure 6-26. 

Figure 6-26   IBM Cloud Pak for Data login
128 IBM Data Virtualization Manager for z/OS



2. Access the Platform connection from the main drop-down menu on the Cloud Pak for Data 
environment to create a connection and choose Data Virtualization Manager for z/OS as 
the connection service, as shown in Figure 6-27 and Figure 6-28. 

Figure 6-27   Available connection service for DVM for z/OS

Figure 6-28   Connection service name, hostname, Port, and access credentials 
Chapter 6. Access methods 129



6.8.2  Previewing data from your newly connected DVM server

After a connection is established, you can easily discover provisioned data on the DVM 
server. This connection provides access to persisted data on the mainframe for single queries 
or JOINs across sources, such as VSAM, IMS, Adabas, Sequential Files, Syslogs, 
Logstream, SMF, and tape. By using the SQL editor on the Cloud Pak for Data user console, 
you can preview, refine, and create virtual assets that map to the DVM for z/OS information 
architecture. 

Therefore, you can create public or private projects that often are used by Data Engineers or 
Data Scientists and work to request the publishing of virtual assets to the Watson Knowledge 
Catalog by the Data Curator that is responsible for Data Governance. 

After remote IBM Z data assets are published to the Watson Knowledge Catalog, they are 
accessible for Machine Learning, Analytics, and AI-related activities. 

From the DVM Connection, you can create a project or open a project where you want to work 
with the data that is available. The data assets, which include individual tables, metadata, or 
connections, are available from within a CPD project. 

Figure 6-29 shows the projects for an active user.

Figure 6-29   List and create projects in IBM Cloud Pak for Data
130 IBM Data Virtualization Manager for z/OS



Chapter 7. Managing and monitoring

Data Virtualization Manager for z/OS (DVM for z/OS) supports following interfaces to the DVM 
server:

� Traditional interface in ISPF
� Graphical user interface (GUI) that is called DVM Studio
� Batch interface
� API interface to retrieve status information about DVM

This chapter discusses the various interfaces that can be used with the DVM server and 
includes the following topics:

� 7.1, “Accessing the ISPF interface” on page 132
� 7.2, “DVM Studio” on page 139
� 7.3, “Batch interface” on page 161
� 7.4, “API interface” on page 164
� 7.5, “Metadata” on page 166

7

© Copyright IBM Corp. 2021. 131



7.1  Accessing the ISPF interface

The purpose of this interface is to monitor and administer the main functions of the DVM 
server by using the ISPF interface through TSO commands. TSO commands also can be 
incorporated into the ISPF menu.

The following command shows how to access the ISPF interface:

EX hlq.SAVZEXEC(AVZ)'    'SUB(dvm subsys)'

Where:

� hlq is the high-level qualifier of the DVM libraries of your DVM subsystem
� dvm subsys is the name of your DVM subsystem

The command option allows access to the ISPF interface that is specific to the DVM server 
without being integrated into any menu. Only users that know the exact command are allowed 
access.

A better option is to include access to the ISPF interface into a menu option on one of the 
ISPF menu panels. This configuration limits access to user IDs that are allowed to use 
specific log on procedures. When creating a menu option in ISPF that runs a command, refer 
to the MVS manuals or consult your z/OS system programmer.

7.1.1  DVM server ISPF panel

The DVM server ISPF panel is shown in Figure 7-1.

Figure 7-1   Main ISPF menu of DVM 

Switching DVM servers 
Throughout the main panel and the subsidiary panels, you can switch servers for some 
options. In the main panel, you can switch for the Interface Facilities and the Server Trace. 

You switch servers by entering the correct server name in the input field and then enter the 
option of your choice. This process works only if the DVM server you want to switch to is 
actively running; otherwise, you receive an error message.
132 IBM Data Virtualization Manager for z/OS



Main panel sections
The main panel is divided into the following sections:

� Interface Facilities
� Administration

For more information about the main ISPF panel sections, see Invoking the ISPF application 
using the command shell.

VSAM/Sequential examples of Interface facilities
The options in the upper section give you access to the features for the various data sources. 
For example, you can create and maintain data mappings for VSAM and sequential files by 
the VSAM/Sequential option (which is option number 7).

Server trace
The server trace option (B) on the main panel, gives you access to the log of the DVM server 
(see Figure 7-2).

Figure 7-2   DVM server trace

It shows activities, such as user log ons and log offs, query runs, and their results. It also 
shows errors and can be helpful in problem determination.
Chapter 7. Managing and monitoring 133

https://www.ibm.com/docs/en/dvm/1.1.0?topic=server-invoking-ispf-application-using-command-shell
https://www.ibm.com/docs/en/dvm/1.1.0?topic=server-invoking-ispf-application-using-command-shell


Modifying the display of the Server Trace
The Server Trace display is regulated by a profile. You can change this profile by entering the 
word profile in the command line and pressing it. The panel that is shown in Figure 7-3 is 
displayed. Here, you can select the trace items you want to see by setting the Y/N switches, 
or by selecting a specific job name of the user ID, and so on.

Figure 7-3   Profile panel of the Server Trace 

Data mapping
The data mapping module is where you can create and maintain the data mappings for the 
various data sources. 

Monitor
The monitor module (option F) gives you insight into what is happening in your DVM server. 
When you open option F on the main panel, the panel in Figure 7-4 is shown.

Figure 7-4   Main menu of the Monitoring function of DVM
134 IBM Data Virtualization Manager for z/OS



Interval activity
The first option (Interval Activity) shows CPU usage of the DVM server at 15-minute intervals. 
The information is spread over three panels, which can be shown by using PF11 (shift right) 
and PF10 (shift left). The only fixed column on the panels is the timestamp, which indicates 
the start time of each interval (see Figure 7-5).

Figure 7-5   Resume per interval of 15 minutes

Figure 7-5 also shows how much CPU time during the interval that is qualified for offloading to 
zIIP engines (column “zIIP Qual CPU Time”). However, it also shows how much CPU time 
during the interval was off-loaded to zIIP engines (column “zIIP CPU Time”). These columns 
provide to the degree that the DVM server is using zIIP engines, or whether you need more 
zIIP capacity. The Interval Activity also shows how many users were connected during the 
interval (column “User Count”) and how many SQL queries were run (column “SQL Count”).

Remote users
The second option (Remote Users) gives you the list of all user IDs that are connected to the 
DVM server at a specific time. You also can review the activities that a user ran 
(line-command T), get details about the CPU usage by the user (line-command U), cancel a 
thread running on the DVM server (line-command C), or disconnect the user from the DVM 
server (line-command K). 

Other options
Other options on the Monitor panel give you an overview of storage usage (option 4 - Storage 
Monitor), active tasks (option 5 - Task Monitor), and statistics about the DVM server (option 6 
- Statistics).

7.1.2  Creating virtual tables in the ISPF interface

In this section, we look at how to create a virtual table for a flat file when the ISPF interface is 
used. 

Creating the source library
In DVM, the source library is the library where your copybooks are stored. If you want to 
create a virtual table on the non-relational data source, you need a copybook. 

Open option D (Data Mapping) → option S (Source Library Management) → option 1 
(Create Source Library Map) and complete the following fields (see Figure 7-6 on 
page 136):

� Name: The short name for our source library within DVM.

� Description: An optional description of our copybook.

� Data Set Name: The physical name of the library in z/OS. Make sure to put the name 
between commas.
Chapter 7. Managing and monitoring 135



Figure 7-6   Source library definition panel 

Press Enter, and any message (failure or success) appears in the upper right when the 
process is done. Return to the main panel by pressing PF3 three times.

Creating the virtual table
Complete the following steps to create a virtual table:

1. Enter option 7 (VSAM/Sequential) → option 2 (Extract Seq). In the first panel (see 
Example 7-7), complete the following information and then, press Enter:

– Source Library Name: The name of our copybook library. Make sure to include the 
correct member within the library.

– Start Field: The field within the data structure of your flat file where you want the data 
mapping to start. The mapping considers the entire structure within the copybook until 
the next field at the same level as the start field, unless you define another end field.

– Map Name: This field is optional. If you leave it blank, DVM assigns the name of the 
first field in the mapping as the map name.

Figure 7-7   First panel of the mapping definition

2. In the next panel (see Figure 7-8 on page 137), enter only the DSN name and then, press 
Enter. Upon successful execution, the system returns to the previous panel with a 
message in the upper right. 

Note: DSN (R) is the physical file name of the data source in z/OS (never between 
commas on this panel)
136 IBM Data Virtualization Manager for z/OS



Figure 7-8   Second panel of the mapping definition

3. Go back one panel by pressing PF3 and select option 5. When pressing PF3, the list of 
maps in the metadata catalog is refreshed. When done, the message Refresh Successful 
appears in the upper right. Press PF3 again to return to the main menu.

4. Use option 8 (DSSPUFI to test your virtual table. This option is similar to SPUFI. On the 
panel, complete the following information (see Figure 7-9):

– Change Options?: If you want to review or change the defaults for the execution of your 
query, you can set this option to Y. If not, you can set it to N.

– Input Data Set: The name of a partitioned data set with a member name. The data set 
should exist. If the member does not exist, DVM creates it. You can use any standard 
80-byte record PDS.

Figure 7-9   The input panel for testing virtual tables

5. Press Enter. If you set the Change Options? field to Y, the panel that includes the default 
settings displays. Review and change any settings as necessary and press Enter. 

If you set the Change Options? field to N, you do not need to press Enter again.
Chapter 7. Managing and monitoring 137



The member that you indicated on the previous panel opens and now can be edited. You can 
insert your query or queries here (close each query with a semicolon). To run immediately, 
you can enter three semicolons (;;;) on the command line and press Enter. A view-only 
temporary data set appears with the query results, as shown in Figure 7-10.

Figure 7-10   Output of testing a virtual table in ISPF

Showing the new virtual table in the ISPF interface
The new virtual table can be visualized in the ISPF interface. 

Enter option 7 (VSAM/Sequential) → option 3 (Map Display). The list of data mappings is 
displayed (see Figure 7-11).

Figure 7-11   List of existing virtual tables

If you enter X in front of the map, the contents of the map display, as shown in Figure 7-12.

Figure 7-12   Showing the contents of a virtual table
138 IBM Data Virtualization Manager for z/OS



Displaying the new virtual table in DVM Studio
When you start DVM Studio, the newly created virtual table does not appear in the list of 
provisioned data objects. This issue is the result of the fact that any change that is made 
directly to the metadata in the DVM server is not automatically propagated to DVM Studio. 

Therefore, right-click the Virtual Tables and select Refresh. The new virtual table is 
displayed in the list.

7.1.3  ISPF interface and IBM Parallel Sysplex

The ISPF interface allows you to switch between DVM servers that are running on the same 
LPAR. However, it is not possible to switch between DVM servers that are running on different 
LPARs; even when these LPARs are within an IBM Parallel Sysplex® and the DVM servers 
are running in data sharing mode.

7.2  DVM Studio

By using DVM Studio, users can create and manipulate virtual tables and views, create 
queries, and generate code to embed queries into applications. After it is installed, getting 
started with DVM Studio is a matter of a few clicks. 

The interface is started from the desktop by clicking DVM Studio icon. If DVM studio and the 
DVM server are both running, DVM Studio automatically connects to the DVM server.

Upon your first use of DVM Studio, the server must be defined. Click Set Server..., or Set 
Current Server, as shown in Figure 7-13. A dialog panel displays in which you enter your 
credentials.

Figure 7-13   Configure the server to DVM Studio
Chapter 7. Managing and monitoring 139



7.2.1  Navigator wizard

The most useful widget in DVM Studio is the Navigator, which is the default panel that is 
shown when DVM Studio is started. This panel is used to create and manipulate virtual 
tables, virtual views, APIs, and target systems that connect source libraries and review DVM 
parameters. 

The Navigator opens the list of virtual tables and virtual views. Various data sources on IBM Z 
and outside IBM Z can be accessed by clicking SQL → Data. Two entries are available: the 
first features the name of your DVM server; the other entry is called Other Subsystem, as 
shown in Figure 7-14.

Figure 7-14   SQL Data menu of DVM Studio

The data section under the DVM server name contains all of the metadata that you created 
and stored directly on the DVM server, including virtual tables and virtual views. 

The data section in the display that is called Other Subsystems lists the connections to all 
relational data sources for which objects do not require you to create a virtual table; for 
example, Db2 subsystems. Here, you can access the objects of these subsystems and create 
queries directly on these objects. 

To create a view over multiple data sets, a virtual table must be created for each data source 
before creating a virtual view. The creation of a virtual view requires that virtual tables exist.

The Set Server section includes the following options (see Figure 7-15 on page 141):

� SQL
� Discovery
� NoSQL
� Services
� Admin
140 IBM Data Virtualization Manager for z/OS



Figure 7-15   Set Server options

These options are described next.

SQL
Clicking SQL opens a drop-down menu in which the following options are available:

� Data
� Storage procedures
� Target systems

Each menu option features a filtering capability that you can access by right-clicking the 
option and selecting Set Tree Filter, as shown in Figure 15. A dialog window opens in which 
you can enter your filtering criteria.

Figure 7-16   Filtering tree data is available on any menu option

The individual SQL options are described next.

Data
SQL Data allows you to display a list of virtual tables and virtual views along with the various 
access paths to data. 

Stored Procedures
The next item on the main menu of DVM Studio is Stored Procedures under SQL. Here, you 
can create connections to stored procedures on Db2. You can also generate code on these 
stored procedures. However, you cannot virtualize these stored procedures; therefore, they 
cannot be combined with other objects within DVM Studio.
Chapter 7. Managing and monitoring 141



Target Systems
Target Systems shows virtual destinations for your query outputs. Target systems can be on a 
DBMS or zFS (typically mounted on a directory in UNIX System Services). 

All queries that are in the DVM server must include a target data source. Whenever you run a 
query in DVM, the query must point to a target system.

Discovery
The Discovery option that is shown in Figure 7-17 enables access to IDMS data sources. 
Data discovery also provides integration with IBM Application Discovery and Delivery 
Intelligence (ADDI) and IBM Rational® Asset Analyzer.

Figure 7-17   Discovery menu

NoSQL
The NoSQL option enables users to create access to data sources that use the MongoDB 
language. This option is useful in environments where data scientists prefer to use MongoDB 
instead of SQL. 

The NoSQL option is available when access is enabled for MongoDB to connect to DVM. This 
access allows MongoDB to generate and run queries against DVM's virtualized data. 

For more information about activating this option, see Chapter 4 of the User's Guide at IBM 
Documentation.

Services
The Services menu includes options with which you can create, test, and administer APIs 
(see Figure 7-18):

Figure 7-18   Services menu

� Web services

By using the Web Services option, you can create, test, and deploy APIs, along with z/OS 
Connect Enterprise Edition. 
142 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/docs/en/dvm/1.1.0?topic=solution-modifying-data-virtualization-manager-configuration-member
https://www.ibm.com/docs/en/dvm/1.1.0?topic=solution-modifying-data-virtualization-manager-configuration-member


An API SOAP interface is handled natively by DVM. If an API uses REST it must interlock 
with z/OS Connect Enterprise Edition.

� Target systems

The Target Systems option is used to create the target systems that are needed for API 
executions. Most of the DVM server administration uses the ISPF interface. A few tasks 
that DVM Studio can perform also are available. 

� WSC

Web Service consumption.

Admin
Figure 7-19 shows some of the administration tasks that are available under the Admin menu:

Figure 7-19   Administration menu

� Server Parameters

The Server Parameters option allows you to look up the value parameters of the DVM 
server and connect source libraries with data mapping sources. This facility allows you to 
define which libraries are in use for data virtualization. 

� Source Libraries

Source libraries point to the libraries the DVM server must access specific types of 
mainframe data. The source library is a server metadata object that is referenced by the 
DVM server. All library names, data set names, and SYSIN parameters must adapt to your 
local DVM installation. 

� Virtualization Facility

The Virtualization Facility option gives you access to special objects of your data sources 
that are not common virtual tables. For example, virtualized PARTROOT DBD and PSB 
definitions of IMS.
Chapter 7. Managing and monitoring 143



7.2.2  DVM Studio perspectives and views

The navigator is one of the many views that is available on DVM Studio. These views are 
grouped into perspectives (some views appear in more than one perspective). 

The DV Data perspective is by far the most important, but it is not the only one. At the upper 
right of your DVM Studio panel, a button is available (see Figure 7-20) with which you can 
access the list of perspectives. The perspectives that are open are shown to the right of the 
button. Clicking the perspective button opens a pop-up window in which you can select other 
perspectives. If you want to close a perspective, right-click the button of that perspective and 
choose Close.

Figure 7-20   Perspectives button

Data Virtualization Data perspective
The Data Virtualization Data perspective groups views that are needed to virtualize objects 
on (or off) the mainframe, develop and run queries, generate code, handle APIs and so on.

Studio Navigator panel
The options on the Studio Navigator panel focus on the views on the perspective (see 
Figure 7-21).

Figure 7-21   DVM Studio navigator panel

Data Navigator panel
The Data Navigator panel features several views. The navigator view is the most important 
view. The navigator view gives you access to the virtualization features of DVM. This view is 
shown in the upper center of the GUI.
144 IBM Data Virtualization Manager for z/OS



Generated Objects panel
When you generate queries or code, it appears in Generated Objects panel. As shown in 
Figure 7-22, this panel is in the upper right. You now see views with extensions, such as .sql 
(for generated SQL statements), or .java for generated Java code.

Figure 7-22   An overview of the default DV Data perspective

Output panel
In the output panel (as shown in the lower right of Figure 7-22), you now see the results of 
queries (SQL Results view) or messages when you connect to a server (Console view).

Connections panel
The Connections view shows open connections. Right-clicking the view allows you to open a 
new connection or close an existing connection (see Figure 7-22).

Working with the views, panels, and perspectives
Panels and views are flexible to work with because they can be resized and moved. You also 
can modify perspectives.
Chapter 7. Managing and monitoring 145



Modifying a perspective
You can close a view by clicking the X that is on the right side of the tab of the view. You can 
add a view to your perspective by clicking in the menu bar Window → Show View → Other, 
as shown in Figure 7-23.

Figure 7-23   Changing the contents of a perspective

Suppose that you want to add the Debug view to your DV Data perspective. Clicking 
Window → Show View → Other... opens a pop-up window in which you see a list of 
perspectives and views, as shown in Figure 7-24. Select the Debug perspective and then, the 
Debug view.

Figure 7-24   List of available of Virtual Views

When you click OK, the view is added to one of the panels in your perspective (in our 
example, the Output panel). If you want to preserve this new setting of your view, right-click 
the perspective icon in the upper right of your panel and select Save as. You can give your 
perspective a new name and create a perspective, or save it under the existing name and 
replace the current perspective.
146 IBM Data Virtualization Manager for z/OS



Default perspective
When you open DVM Studio for the first time, you notice that the DV Data perspective is the 
default perspective. You can assign another perspective to be the default perspective by 
clicking Window → Preferences. In the pop-up window, you can select the perspective of 
your choice and click Make Default (see Figure 7-25).

Figure 7-25   Changing the default view

7.2.3  Common tools

When you look at the bottom of the Studio Navigator panel, you see that another panel is 
available, which is called Common Tools. This panel can be opened up by clicking the double 
arrow on the right side (see Figure 7-26).

Figure 7-26   Opening the Common Tools menu

When opened, you see the Common Tools menu (see Figure 7-27 on page 148). Several 
useful tools are available, as described next.
Chapter 7. Managing and monitoring 147



Figure 7-27   Common Tools menu

Server Trace
When you click Server Trace, the server trace is opened as a view in the Output panel. It is 
empty when it opens. Click the blue arrow to start the trace (see Figure 7-28). 

Figure 7-28   Starting the server trace

The server trace can be viewed after it is started. The arrows on the right side are used for 
scrolling. The upper and lower arrows navigate through the trace. The remaining two arrows 
scroll up and down page-by-page. The identical server trace can also display by using the 
DVM ISPF panel.

Modifying the display of the server trace
As with the server trace on the ISPF interface, you can modify the display. In DVM Studio, 
click the Profile and Display buttons. In each case, a pop-up window opens in which you can 
modify the display, as shown in Figure 7-29.

Figure 7-29   Changing the display of the server trace
148 IBM Data Virtualization Manager for z/OS



On the Display panel, you can add columns to the trace display by selecting them from the list 
on the left and clicking Add > or remove them from the list on the right by clicking < Remove. 
By using the Up and Down buttons, you can modify the sequence of the selected columns on 
the server display (see Figure 7-30).

Figure 7-30   Profile pop-up panel

Exporting the server trace
In some cases, IBM Support can request to see the server trace. You can export the server 
trace to an external file, which can then be sent to the Support team. Right-click any message 
and select Export (see Figure 7-31).

Figure 7-31   Export the server trace
Chapter 7. Managing and monitoring 149



A pop-up panel appears in which you enter your selection criteria and formatting information. 
Click Finish (see Figure 7-32).

Figure 7-32   The export pop-up panel

Gather Diagnostics
Another feature of the Common Tools menu is the Gather Diagnostics button. By clicking this 
button, a .zip file the includes diagnostic information is created, which can be used for 
troubleshooting or problem investigation. Click the button and a dialog window opens when 
the process completes. The dialog window also indicates where the file was stored.

7.2.4  More menu options

Several other menu views are available on the Studio Navigator panel. Clicking Set Up Pages 
in the upper right of the panel displays a window with other options, as shown in Figure 7-33.

Figure 7-33   Enabling more menus

Services
When the Services menu is enabled, a list of services is shown (see Figure 33).

Figure 7-34   The services menu
150 IBM Data Virtualization Manager for z/OS



One of the options that is available here is the z/OS Connect Configuration option. This menu 
option helps you configure the z/OS Connect Enterprise Edition on DVM. It also generates 
the necessary .xml file. When you click this option, a pop-up window opens (see 
Figure 7-35).

Figure 7-35   z/OS Connect configuration panel

When done, click Finish and the .xml appears in the generated objects panel (see 
Figure 7-36). At the bottom of the panel, you can toggle between the design version and the 
source version. The source version can be copied to the configuration file that you want to 
use.

Figure 7-36   z/OS Connect configuration file 11

7.2.5  Using DVM Studio to virtualize IMS data segments

This section takes a closer look at virtualizing IMS data segments BY using DVM Studio. It 
Also demonstrates the workflow to map data and create virtual tables and views. IMS is a 
hierarchical database that includes specific control block mechanisms that define its data 
segments. 

The Program Control Block (PCB) indicates which segments in the logical database the 
application program can process. It also indicates what type of processing the application 
program can perform on each segment. Internally, the PSB, PCBs, logical IMS Data Base 
Definition (DBD), and physical DBD are represented to IMS as control blocks. The DBD 
describes the name, type, and access method for the database (DEDB, MSDB, HDAM, 
HIDAM, HSAM, HISAM, GSAM, SHISAM, or SHSHAM). 
Chapter 7. Managing and monitoring 151



DVM Studio uses a COBOL copybook overlay with the DBD to define fields in the IMS 
segment to virtualize. DVM Studio includes an explorer tree that is used to create the virtual 
table by right-clicking Create Virtual Table(s) to begin the process. Expand the explorer tree 
to the Virtual Tables node, right-click and then, select Create Virtual Table, as shown in 
Figure 7-37.

Figure 7-37   DVM Studio explorer tree filter view

You are presented a wizard to select the data set type of IMS. After it is selected, click Next 
as shown in Figure 7-38, to select an extraction type from the IMS DBD and PSB.

Figure 7-38   DVM Studio wizard for selecting data sets to virtualize

The process for extraction involves exporting the DBD and PSB to data sets from IMS and 
placing them in a well-named partitioned data set (PDS) that contain multiple members, each 
of which holds a separate sub-data set. 

After the member is located, the data that is stored in that member must be mapped by using 
the DVM Data Studio in the explorer tree under the Admin node → Source Libraries.
152 IBM Data Virtualization Manager for z/OS



Click Extract DBD on the New Virtual Table Wizard for this specific IMS segment, as shown 
in Figure 7-39.

Figure 7-39   Extracting DBD using the New Virtual Table Wizard

After it is selected, the New IMS DBD Metadata Wizard starts (see Figure 7-40). This wizard 
is used to create the necessary metadata for the DVM server to create a logical mapping to 
the physical IMS data set. Details, such as the DBD name, source or target library, host 
system, server, and port make up the mapping that is needed to virtualize IMS segmented 
data into a relational format.

Figure 7-40   Defining DBD metadata or map for IMS segmented data
Chapter 7. Managing and monitoring 153



After populating the DBD metadata for the IMS segment, click Next to choose the suitable 
source library, as shown in Figure 7-41.

Figure 7-41   Defining the virtual source library to map DBD metadata

The wizard displays a list of source library members (DBD files) to select from that define the 
IMS data set layout. A DBA and system programmer might need to work together to 
determine the suitable library members that are targeted for virtualization. You can then 
review the contents of a source library before clicking Finish, as shown in Figure 7-42.

Figure 7-42   DBD wizard allows you to view the source library contents
154 IBM Data Virtualization Manager for z/OS



If the virtual source library is downloaded, you can select the DBD and PSB IMS definitions 
directly from the drop-down lists on the New Virtual Table Wizard. Figure 7-43 shows a 
completed view for extracted DBD and PSB copybook.

Figure 7-43   Drop-down lists on the New Virtual Table Wizard

Click Create Virtual Table to name the new virtual table (see Figure 7-44). A best practice is 
to use a name that conforms to your local standards. The name of this new virtual table is 
DEMO_IMS_BACK03. More fields are available for a description and methods to access and 
retrieve data. After the fields on this dialog are completed, click Next. 

Figure 7-44   Naming the virtual table
Chapter 7. Managing and monitoring 155



Now that the metadata for the IMS segment is detailed and a source library is configured, you 
can download the suitable copybook from a list, as shown in Figure 7-45.

Figure 7-45   Download the source library member for the IMS data segment

Next, review the virtual table layout for accuracy, as shown in Figure 7-46.

Figure 7-46   Virtual table layout

If there is nothing to redefine, click Next, select the target IMS segment, and then, choose an 
access method to the data, as shown in Figure 7-47. For IMS, two options are available: 
DBCTL or IMS-Direct.

Figure 7-47   Select IMS segment and access method
156 IBM Data Virtualization Manager for z/OS



Click Finish to create the new virtual table that is named DEMO_IMS_BACK03. The virtual 
table is now in the DVM server list of available virtual tables. Client applications can now 
access that data as though it were a relational database that uses standard SQL or RESTful 
APIs. 

You can also use DVM Studio to run queries against the newly created virtual table. By 
default, after a virtual table is created, it is preselected in DVM Studio’s explorer tree for 
testing. Right-click the new virtual table (in our example, DEMO_IMS_BAK03) and select 
Generate query with * (see Figure 7-48). 

Figure 7-48   Explorer view with new virtual table preselected

This selection creates and issues a select * from DEMO_IMS_BAK03; SQL statement and 
displays the result set in DVM Studio, as shown in Figure 7-49.

Figure 7-49   Generated query results for DEMO_IMS_BAK03

Also, DVM Studio can be used to create virtual views over virtual tables. This feature is helpful 
when performing JOIN operations over heterogeneous data or when running nested 
operations against the same table. 
Chapter 7. Managing and monitoring 157



Create a View can simplify query access. Views help to model data from different sources 
and can be queried directly or by using dynamic SQL.

After virtual tables are created and discoverable, creating virtual views is greatly simplified, 
because the data sets to virtual source libraries does not need to be extracted or mapped. 
The virtual table data assets already exist. With virtual tables, the process for creating a 
virtual view is similar; that is, by using DVM Studio explorer tree view, right-click Virtual View 
and select Create Virtual View, as shown in Figure 7-50.

Figure 7-50   Create a virtual view using DVM Studio

After right-clicking Create Virtual View, a pop-up dialog appears. It is here where you provide 
a name for the view and select the associated library where the data exists. Click Next, as 
shown in Figure 7-51.

Figure 7-51   Name the new virtual view in the New Virtual View Wizard
158 IBM Data Virtualization Manager for z/OS



Expand the table list using the virtual view wizard, choose the virtual table to be used for the 
new view and click Next, as shown in Figure 7-52. Change the Select Statement as wanted 
by using the wizard. You can remove columns you do not want and add where predicates to 
limit results.

Figure 7-52   Select one or more virtual tables that make up the new virtual view

After this process is complete, click Next and validate the SQL by clicking Validate, as shown 
in Figure 7-53.

Figure 7-53   Validate the SQL statement for the new virtual view definition.
Chapter 7. Managing and monitoring 159



After the validated process completes successfully, click OK and then, click Finish, as shown 
in Figure 7-54.

Figure 7-54   Successful SQL validation

DVM Studio returns you to the SQL server tree with the new virtual view displayed. After the 
new virtual view appears in the list, you can right-click the view name and select Generate 
Query to run a live test against the underlying data for its virtual table, as shown in 
Figure 7-55.

Figure 7-55   Generate a query against the newly created virtual view
160 IBM Data Virtualization Manager for z/OS



Results are displayed in the SQL editor (see Figure 7-56).

Figure 7-56   Query results from newly created Virtual View STAFFVS

7.3  Batch interface

The batch interface of DVM is a z/OS-based set of JCL jobs that can be used for any of the 
following table activities:

� Create a table mapping.
� Unload or load table mappings at the DVM server.
� Query virtual tables and views.

Jobs also are available to manage the DVM configuration and metadata, which are used 
during upgrades or version migration. 

7.3.1  Creating a virtual table with the batch interface

The batch interface to create a table mapping in the DVM server can be used in situations 
where DVM Studio is not available or where connection issues exist. Creating a table 
mapping by using batch scripting is done with one job, hlq.SAVZCNTL(AVZMFPAR). The job 
can be used for any type of data mapping. The needed parameters are explained in the 
comment section of the JCL.

The job to create the same virtual table that we used earlier (OFFICES) resembles the JCL 
that is shown in Example 7-1. A job card (work item) must be added. Also, all library names, 
data set names, and SYSIN parameters must adapt to your local DVM installation. 

Example 7-1   Example JCL to create a virtual table by using a batch JCL

// SET LOADLIB=DVM.V1R1.SAVZLOAD
// SET REXXLIB=DVM.V1R1.SAVZEXEC
//DMFEXTR1 EXEC PGM=IKJEFT01,PARM=('AVZMBTPA O'),REGION=0M /
/STEPLIB DD DISP=SHR,DSN=&LOADLIB /
/SYSEXEC DD DISP=SHR,DSN=&REXXLIB
//SOURCE DD DISP=SHR,DSN=WGELDER.COPYBOOK(SALESOFF) /
/SYSTSPRT DD SYSOUT=* //SYSTSIN DD DUMMY
//SYSIN DD *
    SSID = AVZ1
    FUNCTION = STOD
    SOURCE = WGELDER.COPYBOOK(SALESOFF)
    START FIELD = SALES-OFFICE
    MAP NAME = OFFICES
Chapter 7. Managing and monitoring 161



    SEQ FILE = WGELDER.SALESREP.OFFICE
/*(in our example 2 'WGELDER.DVM.DVMEXTR')

The following SYSIN parameters are used:

� SSID: The name of the DVM server.

� FUNCTION: The functions to run (in our example, STOD, which is the function to create a 
VSAM/Sequential table mapping).

� SOURCE: The name of the copybook library and the member for this specific mapping.

� START FIELD: The field within the data structure of your flat file where you want the data 
mapping to start. Usually, this field is the first field within the structure. The mapping 
considers the entire data structure within the copybook until the next field at the same level 
as the start field, unless you define another end field.

� MAP NAME: An optional field. If you leave it blank, DVM assigns the name of the first field 
in the mapping as the map name.

� SEQ FILE: The physical file name of the data source you want to map.

7.3.2  Migrate virtual tables with the batch interface

A batch interface can extract data mappings from a DVM server and store them in an XML 
file. The file contents are uploaded into another DVM server. It is a two-step process. The first 
job hlq.SAVZCNTL(AVZGNMPM) performs the following tasks:

1. Generates the job that is used to load the extracted data mappings into the target DVM 
server.

2. Creates the extracted file.

Next, you run the generated job to the load on the target DVM server. You can specify more 
than one map on the extract if wanted, but be aware that wild cards cannot be used. You must 
individually list all of the maps that you want to migrate by using a comma-separated list that 
uses their exact matching names.

The .xml file that is shown in Example 7-2, WGELDER.DVM.DVMEXTR, does not need to 
exist. It is created automatically, if necessary. The same is true for the member name that 
holds the load JCL (in our example DVMEXTR). This load job will be created in the JCLLIB 
library included in the example JCL.

Example 7-2   Example JCL to migrate an existing virtual table

// SET LOADLIB=DVM.V1R1.SAVZLOAD
// SET REXXLIB=DVM.V1R1.SAVZEXEC
// SET SKELLIB=DVM.V1R1.SAVZSLIB
// SET ISPF='ISP'
// SET JCLLIB=WGELDER.JOBLIB
//*
//JCLBLD EXEC PGM=IKJEFT01,DYNAMNBR=200
//STEPLIB DD DISP=SHR,DSN=&LOADLIB
//SYSEXEC DD DISP=SHR,DSN=&REXXLIB
//SYSPRINT DD SYSOUT=*
//ISPPROF DD DISP=(NEW,DELETE,DELETE),DSN=&&PROF,
// DCB=(RECFM=FB,LRECL=80,DSORG=PO),UNIT=SYSDA,
// SPACE=(CYL,(1,1,2))
//ISPMLIB DD DISP=SHR,DSN=&ISPF..SISPMENU
//ISPPLIB DD DISP=SHR,DSN=&ISPF..SISPPENU
162 IBM Data Virtualization Manager for z/OS



//ISPTLIB DD DISP=SHR,DSN=&ISPF..SISPTENU
//ISPSLIB DD DISP=SHR,DSN=&SKELLIB
//ISPLOG DD SYSOUT=*,DCB=LRECL=133,RECFM=FB
//ISPLIST DD SYSOUT=*,DCB=LRECL=133,RECFM=FB
//ISPFILE DD DSN=&JCLLIB,DISP=SHR <=JCL LIBRARY OUTPUT
//***************************************************************
//* SAY STATEMENTS WRITTEN TO THIS DDNAME
//***************************************************************
//SYSTSPRT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=256,BLKSIZE=25600)
//SYSTSIN DD * PROFILE NOPREFIX ISPSTART PGM(AVZIMEX) PARM(PROGRAM(AVZMFMIG) 
ARG('O') + SUBSYS(AVZ1) MAXEDQ(1000)) /*
//SYSIN DD *
  SOURCE AVZ SSID = AVZ1
  TARGET AVZ SSID = AVZ2
  TARGET LOADLIB = DVM.V1R1.SAVZLOAD
  TARGET EXECFB = DVM.V1R1.SAVZEXEC
  MAP EXPORT PDS = WGELDER.DVM.DVMEXTR
  JCL MEMBER NAME = DVMEXTR
  JCL MEMBER REPLACE = YES
  MAP = OFFICES JOBCARD = 
//WGELDERA JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=H, JOBCARD1 =
// REGION=0M,NOTIFY=&SYSUID JOBCARD2 =
//* SAVE OPTION = SAVE REFRESH OPTION = REFRESH /*
//

The extracted job resembles the JCL that is shown in Example 7-2. Again, a valid job card 
must be added and all library names, data set names, and SYSIN parameters must be 
adapted to your local DVM installation.

The following SYSIN parameters are used:

� SOURCE AVZ SSID is the source DVM server from which you are extracting the data 
mapping.

� TARGET AVZ SSID is the target DVM server where you want to upload the data mapping.

� TARGET LOADLIB is the load library of your target DVM server.

� TARGET EXECFB is the EXEC library of your target DVM server.

� MAP EXPORT PDS is the library that holds your extracted maps. One member for each 
extracted map is created.

� JCL MEMBER NAME is the member name on the JCLLIB library that contains your load 
JCL.

� JCL MEMBER REPLACE: If the value is YES, the member with the load JCL replaces any 
member with an identical name in the JCLLIB library. If the value is NO and a member with 
an identical name exists in the JCLLIB library, the extract JCL fails.

� MAP is the name of the maps to be extracted.

� JOBCARD is the first line of the job card to be added to your load JCL.

� JOBCARD1 is the second line of the job card to be added to your load JCL (you can 
specify up to three jobcard lines).

� SAVE OPTION: If SAVE, the new MAP is saved on the target DVM server, even if a map 
exists with an identical name, REPLACE replaces it and NOSAVE discards it.

� REFRESH OPTION: If YES, the map list on the target DVM server is refreshed.
Chapter 7. Managing and monitoring 163



7.3.3  Querying virtual tables with the batch interface

You can also use the batch interface to query virtual tables and views. The query job 
resembles the JCL that is shown in Example 7-3. A job card must be added. Also, make sure 
the correct library names and DVM server names (parm SSID) are used. The SQL output is in 
the file that is labeled FMT. The same virtual table that we created in 7.1.2, “Creating virtual 
tables in the ISPF interface” on page 135 is used in Example 7-3. 

Example 7-3   Example JCL to query an existing virtual table

//STEP01  EXEC PGM=AVZXMAPD,PARM='SSID=AVZ1,MXR=0,MXP=999'
//STEPLIB  DD DISP=SHR,DSN=DVM.V1R1.SAVZLOAD 
//RPT        DD SYSOUT=*,OUTLIM=250000 <== SUMMARY
//FMT        DD SYSOUT=*,OUTLIM=250000 <== SQL RESULt
//TRC        DD SYSOUT=*,OUTLIM=250000 <== TRACE
//DUMP     DD SYSOUT=*,OUTLIM=250000 <== SQLCA
//IN           DD DDNAME=SYSCNTL
//SYSCNTL DD *
   SELECT * FROM OFFICES;

7.4  API interface

The API interface of DVM can be used to retrieve the following type of information regarding 
the DVM address space:

� Status
� Control parameters
� Performance characteristics
� Resource consumption information

7.4.1  API interface purpose

DVM maintains diagnostic information regarding activities and status for active connections 
from JDBC, J2CA, and ODBC applications on the DVM server. This information is of the 
following types:

� Real-time data exists while a connection is active. Much of the information (such as CPU 
time and session elapsed time) changes continuously over time.

� Trace information is stored in an in-memory data set. The size of the data set sets the limit 
to the amount of trace information that is kept.

For system management tasks that are related to the execution status of DVM, the 
getconnectioninfo functions return information from the real-time information features. For 
system management tasks that are related to the diagnosis of past systems events, the 
getmessages functions return information from the trace data set.
164 IBM Data Virtualization Manager for z/OS



7.4.2  Calling the API interface

API interface command uses the following syntax:

CALL DVS_SERVER(‘parameter’,[‘optional parameters’,…])

This command returns a standard JDBC (or ODBC) result-set. In the background, each API is 
a stored procedure that runs on z/OS within the DVM server. The JDBC or ODBC adapter of 
DVM is used to run the API call. The following parameters are needed in the connection string 
for the API call:

� Hostname
� Port
� UserID
� Password

We recommend that you do not to put more parameters on the connection string. All results 
are returned as string fields. Several APIs return information about the other APIs.

7.4.3  API functions

The following APIs are available:

� CALL DVS_SERVER (‘ping’)

� CALL DVS_SERVER (‘getloadbalance’,’all’)

The all parameter is optional and returns information about all the DVM servers within the 
system. When the all parameter is omitted, only information about the DVM servers within 
the same group is returned. The group in this context refers to the high available 
configuration (this terminology is similar to Db2 Data Sharing).

� CALL DVS_SERVER(‘getconnectioninfo’,[‘usefieldnames’])

When the extra parameter usefieldnames is used, the field names are used as column 
headers on the result set.

� CALL DVS_SERVER (‘getmessages’,[‘search vector(parameter)’])

� CALL DVS_SERVER (’getevents’,[‘search vector(parameter)’])

� CALL DVS_SERVER (‘getformat’,’cbbk’)

� CALL DVS_SERVER(‘getparametervalues’,’keyword’,’value’)

The keyword is the name of the parameter.

� CALL DVS_SERVER(‘setparametervalue’,’parm’,’value’)

Sets the parameter 'parm' to the value 'value'.

� CALL DVS_SERVER(‘getparameterdescriptions’)

� CALL DVS_SERVER(‘getgroupnames’)

This API returns the group name for the associated DVM server if the DVM server is part 
of a high availability configuration.

� CALL DVS_SERVER(‘getdb2subsysids’)

� CALL DVS_SERVER(‘getimssubsysids’)

� CALL DVS_SERVER(‘getcicsconnectids’)

� CALL DVS_SERVER (‘getportids’)
Chapter 7. Managing and monitoring 165



7.4.4  API interface and DVM Studio

The API interface also can be used and tested by using DVM Studio. You need only to write 
call DVS_SERVER('getportids') in the generated.sql view, select the statement, and then, 
press PF5 to run it. The results are shown in the SQL Results view (see Figure 7-57). By 
using the setparametervalue API, you can dynamically manipulate the DVM parameters from 
within DVM Studio.

Figure 7-57   Running the API interface from DVM Studio

7.5  Metadata

The metadata for this technology is contained in the catalog of the objects you created within 
the DVM server (mostly virtual tables and views). This catalog works similar to a database 
catalog, such as Db2. 

Therefore, you can query this catalog as is done with any other virtual table or view in DVM. A 
system or database administrator can query this metadata by using DVM Studio, the ISPF 
interface, or batch scripting. 

The following metadata tables exist in the DVM server:

� SQLENG.COLUMNS
� SQLENG.COLUMNPRIVS
� SQLENG.ERRORMSGS
� SQLENG.FOREIGNKEYS
� SQLENG.PRIMARYKEYS
� SQLENG.ROUTINES
� SQLENG.SPECIALCOLS
� SQLENG.STATISTICS
� SQLENG.TABLES
� SQLENG.TABLEPRIVS
166 IBM Data Virtualization Manager for z/OS



Chapter 8. Performance tuning and query 
optimization

The Data Virtualization Manager (DVM) server optimizes the allocation and use of resources 
for processor types (General and zIIP) and system memory. Every resource affects the 
environment in how it is used when running various of workloads.

This chapter details various techniques for managing performance across the DVM server, 
parallelism, zIIP utilization, and query execution. 

This chapter includes the following topics:

� 8.1, “Introduction” on page 168
� 8.2, “Combined GP and zIIP consumption” on page 168
� 8.3, “Parallel I/O and MapReduce” on page 170
� 8.4, “Virtual Parallel Data” on page 171
� 8.5, “Workload management” on page 172
� 8.6, “ODBC performance” on page 185
� 8.7, “Integrated Data Facility and DS Client API” on page 185
� 8.8, “Query optimization and performance” on page 186

8

© Copyright IBM Corp. 2021. 167



8.1  Introduction

Parallel I/O, MapReduce capability, block-fetch, and memory caching all require memory to 
obtain optimal performance for workloads. For example, the maximum number of parallel 
threads that is possible for a DVM server depends on the number of zIIP specialty engines 
that is available in combination with available system memory. 

Similarly, block-fetch of data into system memory requires adequate allocation of cache to 
improve run time in accessing data in memory versus more I/O cycles that are associated 
with data retrieval from disk.

A general slide rule applies between zIIP specialty engines and general processors. DVM 
throttles processing between two types of processors, whereby zIIP engine processing is 
restricted. An increase of processing naturally occurs on the general processors. To reduce 
the MSU consumption for the system, your environment must ensure that you have adequate 
zIIP engines to shift workloads and reduce the overall costs for processing.

The best recommendation for an initial installation is to focus on a standard resource 
allocation of two zIIP engines and 32 Gigabytes of memory for a 1 - 2 General Processor 
configuration. 

Starting with a balanced resource plan simplifies monitoring resource allocation that uses 
SMF72 record types. The Resource Group data section of the SMF 72 record provides 
information about MIN/MAX capacity across various resource groups:

� Percentage of:

– LPAR share
– Processor capacity

� Memory limit

� MSU/H

8.2  Combined GP and zIIP consumption

As workloads are introduced through the DVM server, adjustments to resources can be made 
to allocate processing and memory to ensure optimal performance. Tests that were 
conducted at the IBM Systems Benchmark Center in a controlled environment demonstrate 
how increasing numbers of zIIP engines directly affect parallelism. Performance improves 
significantly with reduced elapsed time to run workloads, as shown in Table 8-1 and Table 8-2 
on page 169. 

Table 8-1   zIIP engine use

Note: These results are from a unique test environment and are for illustration purposes 
only. The actual results are specific to your environment. 

Server Total CPU Time Total zIIP Time Total IICP Time Total zIIP NTime %zIIP eligible

DVM1 7099.33 5609.55 1389.58 5609.55 98.59%
168 IBM Data Virtualization Manager for z/OS



Table 8-2   Performance with parallelism and zIIP engine use

This test was run against an older z13 machine that uses 800 Gigabytes of financial data. The 
test achieved approximately 99% offload to zIIP specialty engines. However, tests 2 and 4 
were run against identical system resources where the degree of parallelism is set to a value 
of 8. This test result in a reduction of elapsed time from 98.68 minutes to 17.14 minutes.

Increasing the number of zIIP specialty engines from 5 to 8 further reduced the overall 
elapsed time to 13.83 minutes. 

Increasing the number of zIIP engines and the degree of parallelism within the DVM server 
can result in performance improvements up to 1,000% for elapsed times. 

Test GPPs Number of zIIP engines Degree of parallelism Elapsed time (ms) SMT

1 8 0 0 118.96 1

2 8 5 0 98.68 1

3 8 5 4 27.05 1

4 8 5 8 17.14 1

5 8 5 8 20.84 2

6 8 5 10 17.00 2

7 8 5 16 15.73 2

8 8 8 8 13.83 1

9 8 8 8 17.62 2

10 8 8 16 11.72 2

Note: Consider the following points:

� The improvements that are noted here are from a unique test environment and are for 
illustration purposes only. The actual results are specific to your environment. 

� Begin with smaller projects as you deploy and use the DVM server. Over time, slowly 
expand the use of more resources, such as memory, zIIP processing, and general 
purpose processing, as your deployments expand in the amount of data and number of 
users that are accessing the data.
Chapter 8. Performance tuning and query optimization 169



8.3  Parallel I/O and MapReduce

DVM for z/OS optimizes performance by using a multi-threaded z/OS-based runtime engine 
that use parallel I/O and MapReduce capabilities to simultaneously fetch data from disk or 
memory. The DVM server parallelism that uses MapReduce is shown in Figure 8-1.

Figure 8-1   DVM server parallelism achieved using MapReduce

MapReduce reduces query elapsed time by splitting queries into multiple threads that read 
large files in parallel. Each interaction, whether started by a distributed data consumer or 
application platform, runs under the control of a separate z/OS thread. A thread is a single 
flow of control within a process.

The DVM server can deliver predicate pushdown and filtering to all data sources and 
supports heterogeneous JOINs with associated pushdown processing of filters for subqueries 
and their respective sources.
170 IBM Data Virtualization Manager for z/OS



8.4  Virtual Parallel Data

Virtual Parallel Data (VPD) provides a means to cache data into defined members for faster 
and more optimal subsequent queries. Similar to other cache mechanisms, data is initially 
populated and persisted as a materialized view that can be accessed repetitively by client 
applications and refreshed as needed to maintain currency for the business. This cache 
benefits by performing disk I/O once to populate the cache, which reduces associated 
expense (see Figure 8-2).

Figure 8-2   DVM VPD

VPD allows applications or users to group multiple simultaneous requests against the same 
data source in parallel without subsequent data refreshes. This function also allows single or 
multiple requests to run with asymmetrical parallelism, which separately tunes the number of 
I/O, client, or SQL engine threads.

8.4.1  Using VPD groups

All requests that are submitted against the same DVM server instance must refer to a group 
name. VPD groups also have a predefined amount of time for the group to persist. One or 
more I/O threads read the data source and then write to a circular buffer that is assigned to 
the VPD group. Group members share buffered data without having to read directly from the 
disk.

I/O threads are started when the VPD group is created, and data flows to the buffer. If the 
buffer fills before the group is closed, the I/O threads wait. After the group is closed and active 
members use the data, the buffer space is reclaimed, and I/O continues.

8.4.2  Example

In this example, we have a large sequential file that must be used by multiple applications. We 
want this file to be read only once for operational or performance reasons. A VPD group can 
be established for this file. The first query loads the data into cache and subsequent queries 
can attach to this VPD group, each specifying their own degree of parallelism.
Chapter 8. Performance tuning and query optimization 171



Table 8-3 lists supported data sources and client access methods that support VIPA.

Table 8-3   Supported data sources and client access using VIPA

8.4.3  Considerations and limits

When considering the use of VPD, include the following information in your decision making:

� If VPD is not used, each client must create a separate virtual table to access the same set 
of data from the source. With VPD, DVM creates one virtual table for accessing the data by 
all the clients.

� The end-to-end read operation must be carried out by each client application. With VPD, 
the data is read from the source once and the same data is used by each client application 
in parallel.

� Input devices, such as tape, can be read-only serially; therefore, parallelization is not 
possible. Each of the client applications must read the data from source to destination 
serially. With VPD, DVM can read the data from tape serially once and the client 
applications can access the data in parallel from DVM buffers.

� Client applications that must read data in a specific order must read the data from an 
original data source in its specific order. Even when the data can be read from the source 
in parallel, VPD allows the data to be read into DVM buffers in parallel. Client applications 
can then read the data from buffers in any specific order.

8.5  Workload management

Workload management is critical to ensure optimal performance across different workloads. 
Performance goals for various workloads can be defined by using the IBM Workload Manager 
for z/OS (WLM) with the ability to further assign the required importance of each workload in 
business terms. Resources are assigned to specific work items to determine the ability to 
attain goals through continuous monitoring where resource adjustments are made to achieve 
wanted business objectives.

IBM Z resources are assigned based on goals that are defined in the IBM Workload Manager 
shown in Figure 8-3.

Figure 8-3   Resource priority assignments by WLM

Supported data sources Supported client access

� Adabas
� IDMS
� IMS
� VSAM
� Logstreams
� IBM MQ Series
� Sequential
� Tape
� zFS

� Batch
� DSSPUFI
� JDBC
� ODBC
� IzODA (Spark Scala, Spark Java, Python DB 

API)
� Db2 Query Manager Facility
� IDAA Loader
172 IBM Data Virtualization Manager for z/OS



Business priority can be specified for the WLM services in the DVM server. Specific service 
classes are used to inform the operating system of specific performance goals and priority 
levels, as shown in Figure 8-4.

Figure 8-4   Resource priority assignments by WLM

In the service class, you assign each goal and its relative importance and associate the 
service class with a specific workload and resource group. The DVM server uses the following 
service classes:

� AVZ_SCHI ZIIPCLASS=AVZ High priority. This service class is for IBM Data Virtualization 
Manager for z/OS critical work. Assign this class goal as close to SYSSTC as possible.

� AVZ_SCNM ZIIPCLASS=AVZ Normal work. This class is for IBM Data Virtualization 
Manager for z/OS administrative work. Assign this class the same priorities as those that 
are used for DB2 master or the IMS control region.

� AVZ_SCTX ZIIPCLASS=AVZ Client work. This service class is for client requests. Assign 
this class the same goals as those that support the data source for the CICS, IMS/TM, or 
DB2 WLM address space.

To enable the WLM policy for the DVM server, the DVM user ID (default: AVZS) can have 
UPDATE access to MVSADMIN.WLM.POLICY. If the WLM policy is not defined for the DVM 
server, WLM assigns the lowest service class SYSOTHER to DVM workloads, which 
negatively affects the DVM server performance.

8.5.1  Configuring WLM for the DVM server

DVM provides the ability to dynamically set WLM information within the AVZSIN00 
configuration member by enabling the following parameters:

If DoThis then
   do
        “MODIFY PARM NAME(WLMFORCEPOLICY) VALUE(YES)”
        “MODIFY PARM NAME(WLMTRANNAME) VALUE(APPLNAME)”
        “MODIFY PARM NAME(WLMUSERID) VALUE(AVZS)”
End

The DVM server's WLM definitions can also be specified within WLM policies. For more 
information, see this web page.
Chapter 8. Performance tuning and query optimization 173

https://www.ibm.com/support/knowledgecenter/en/SS4NKG_1.1.0/havada10/topics/dvs_sg_con_workload_manager.html


8.5.2  Working with multiple DVM servers

To handle more workloads and ensure organizational service level objectives, more DVM 
servers can be instantiated and the server workload can be balanced across multiple DVM 
servers. Load balancing allows inbound connections to be automatically directed to the DVM 
server instance that features the most available resources for the number of connections. The 
overall availability of virtual storage (less than or greater than 16 Megabytes reference point) 
determines which DVM server instance handles an individual request.

Managing Workload within a single LPAR
Load balancing is transparent to the client application. Client applications use a port number 
to connect to a DVM server, which then performs Port sharing to route a request to a more 
optimal DVM server as needed. TCP/IP’s SHAREPORT or SHAREPORTWLM is the 
recommended approach to load balance workload across multiple DVM servers within a 
single LPAR.

Managing Workload over multiple LPARs, Regions or Sysplex
When balancing workload across a Sysplex, Dynamic Virtual IP Addressing (DVIPA) can be 
used as it provides workload balancing and failover for applications that use TCP/IP services. 
With SHAREPORT, SHAREPORTWLM, and DVIPA, all the balancing is done at the TCP/IP 
layer and the Server is unaware that any balancing is occurring. The load balancing of CICS 
regions is handled differently in DVM servers by using LOADBALGROUP parameter.

Using SHAREPORT and SHAREPORTWLM
Port sharing is a method to distribute workloads for DVM servers within a z/OS LPAR. TCP/IP 
allows multiple listeners to listen on the same combination of port and interface. Workloads 
that are destined for this application can be distributed among the group of DVM servers that 
listen on the same port. 

Port sharing does not rely on an active sysplex distributor implementation; it works without a 
Sysplex distributor. Port sharing can be used in addition to sysplex distributor operations. As 
of this writing, z/OS supports two modes of port sharing: SHAREPORT and 
SHAREPORTWLM.

SHAREPORT
Incoming client connections for a configured port and interface are distributed by the TCP/IP 
stack across the listeners that use a weighted round-robin distribution method that is based 
on the Server accept Efficiency Fractions (SEFs). The SEF is a measure of the efficiency of 
the server application (it is calculated at intervals of approximately one minute) in accepting 
new connection requests and managing its backlog queue, as shown in Figure 8-5.

Figure 8-5   SHAREPORT configuration
174 IBM Data Virtualization Manager for z/OS



SHAREPORTWLM
Similar to SHAREPORT, SHAREPORTWLM causes incoming connections to be distributed 
among a set of TCP listeners. However, unlike SHAREPORT, the listener selection is based 
on WLM server-specific recommendations, and modified by the SEF values for each listener. 
These recommendations are acquired at intervals of approximately one minute from WLM, 
and they reflect the listener’s capacity to handle more work (see Figure 8-6).

Figure 8-6   SHARPORTWLM configuration

WLMHEALTHREPORT, SHAREPORTWLM, and the DVM server
The DVM server reports a health status to WLM to allow WLM to better manage which DVM 
server to pass an inbound connection when SHAREPORTWLM is used.

The WLMHEALTHREPORT parameter must be set to YES, which is the default setting. An 
informational message similar to the following example is available with the server 
WLMHEALTHREPORT support to indicate when the health status of the DVM server 
changes:

VDB1DB0724I Server VDB1 WLM health changed from 100% to 90%.

Depending on the severity or frequency of errors, the health setting percentage can be 
reduced further and extra messages issued. After the health of the server increases, an extra 
message is generated similar to the following example:

VDB1DB0724I Server VDB1 WLM health changed from 90% to 100%.

The Server Trace Browse can be used to further investigate abrupt changes in WLM Health 
Status. No change is required for the DVM server configuration member AVZSIN00 to support 
SHAREPORT or SHAREPORTWLM.

Sysplex load balancing with DVIPA
The distributor stack is a network-connected stack that owns a specific VIPA address and 
acts as the distributor for connection requests. The target stack is the owner of DVM server 
instances, to which the distributing stack forwards the requests. Together, they are called 
participating stacks for the sysplex distributor.
Chapter 8. Performance tuning and query optimization 175



All participating z/OS images communicate through XCF, which permits each TCP/IP stack to 
have full knowledge of IP addresses and server availability in all stacks. Sysplex distributor for 
z/OS-integrated intra sysplex workload balancing of DVM servers is shown in Figure 8-7.

Figure 8-7   Sysplex load balancing using DVIPA

Sysplex distributor provides an advisory mechanism that checks the availability of DVM 
servers that are running on separate z/OS images in the same sysplex and then selects the 
best-suited target server for a new connection request. The Sysplex distributor bases its 
selections on real-time information from IBM Workload Manager (WLM). Sysplex distributor 
also measures the responsiveness of target servers in accepting new TCP connection setup 
requests, favoring those servers that are accepting new requests.

When the selection of the target stack is complete, the connection information is stored in the 
sysplex distributor stack to route future IP packets that belong to the same connection as the 
selected target stack. Routing is based on the connection (or session) to which IP packets 
belong, which is known as connection-based routing.

Configuring DVIPA and Sysplex Distributor are done within the TCP/IP stack and no 
components are in DVM server, which must be configured. After the Sysplex is configured to 
enable dynamic linking, any inbound connections can issue a CALL to WLM to check, which 
is the ideal stack to which the connection is routed.

Configure DVIPA by using IBM Documentation and define a VIPADYNAMIC section in the 
TCP/IP profile, as shown in the following example:

VIPADYNAMIC
   VIPADEFINE 255.255.255.0 10.17.100.60
   VIPADISTRIBUTE
       DISTMETHOD BASEWLM 10.17.100.60
       PORT 2200
   DESTIP
       192.168.1.1
       192.168.1.2
ENDVIPADYNAMIC
176 IBM Data Virtualization Manager for z/OS



The DVIPA address is 10.17.100.60. The further definition (DISTMETHOD BASEWLM) 
states to perform WLM distribution of all inbound requests that are received by port 2200. 
Plan on having one DVIPA address and one non-DVIPA address for those applications and 
connections that do not need broadcast. To have the DVM server’s TCP/IP listener listen on 
two IP addresses (one DVIPA and one non-DVIPA), the extra parameters in the following 
example must be set: 

IF DoThis then
     “MODIFY PARM NAME(ALTERNATEIPADDRESS1) VALUE(10.17.100.60)”
     “MODIFY PARM NAME(DVIPABINDALL) VALUE(YES)”
END

It is recommended to use ALTERNATEIPADDRESS1 as the DDVIPA address. 
ALTERNATEIPADDRESS2 is another optional parameter that can be used to specify a third IP 
address.

8.5.3  Load balancing with CICS regions

The DVM server manages load balancing for CICS regions by using the LOADBALGROUP 
parameter in the CICS definition for the CICS server configuration member. Define the 
following statements in IN00, as shown in the following example:

“DEFINE CONNECTION NAME(AAAA)”,”GROUP(AAAA)”, 
“ACCESSMETHOD(IRC)”,”NETNAME(SDBAAAA”, “INSERVICE(YES)”,”PROTOCOL(EXCI)”, 
“APPLID(CICSJ)”,”LOADBALGROUP(LBG1)” “DEFINE CONNECTION NAME(BBBB)”, 
“GROUP(BBBB)”,”ACCESSMETHOD(IRC)”, “NETNAME(SDBBBBB)”,”INSERVICE(YES)”, 
“PROTOCOL(EXCI)”,”APPLID(CICSL)”, “LOADBALGROUP(LBG1)”

These statements tell the DVM server the CICS region associated with the corresponding 
LOADBALGROUP (CICSJ or CICSL) and how to send the request. The DVM server often 
performs this operation in a round robin fashion.

If one CICS that belongs to the LOADBALGROUP becomes INACTIVE (for example, CICSJ), 
the DVM server sends a new CICS request to the other CICS (CICSL), which is part of the 
same LOADBALGROUP. Many CICS regions can exist for the same LOADBALGROUP.

8.5.4  Db2-Direct and IMS-Direct

Db2-Direct and IMS-Direct are features that are provided by the DVM server to directly 
access the back-end datasets of Db2 for z/OS and IMS by bypassing the respective database 
managers for improved performance and reduced elapsed time. This feature can be used for 
READ-ONLY operations, which do not require data integrity of the latest database UPDATE 
operations that are similar for analytical queries. Figure 8-8 on page 178 shows bypassing the 
underlying database subsystems for I/O.
Chapter 8. Performance tuning and query optimization 177



Figure 8-8   DVM server bypass of database I/O subsystems

Db2-Direct
Db2-Direct is a DVM server access method that reads Db2 VSAM linear datasets directly, 
outside the Db2 address space, instead of accessing the data through traditional Db2 APIs. 
Large data pulls can be performed in service request block (SRB) mode with MapReduce and 
VPD features without any prerequisite processing, such as the collection of statistics that use 
the DVM command DRDARange. Db2-Direct allows READ-ONLY access to the data. It also 
provides a significant benefit in performance and reduced elapsed time in processing 
analytical queries.

Transactional integrity is not guaranteed because of the absence of record-level locking 
during reading activity. Security is managed by using Db2 table authorization.

Consider the following points about DB2-Direct:

� Db2-Direct does not support tables with edit procedures or SQL statements that contain 
joins, LOB columns, or key columns.

� The Db2 subsystem that is hosting a Db2 table must be active when Db2-Direct enabled 
tables are loaded or refreshed. The MAP building requires Db2 system access to identify 
data set information in the Db2 system catalog.

� The DVM server requires READ access to the Db2 VSAM linear datasets and that 
datasets are available during map load or refresh for the virtual table.

� Virtual tables that are enabled for Db2-Direct must include all the columns that are defined 
in the base Db2 table as the column information is not available while loading directly from 
DB2 VSAM linear datasets.

� If Db2-Direct table security is enabled, the Db2 subsystem must be available to check 
security at SQL query time.

� Users can check the DVM server trace logs for the following messages to confirm whether 
DB2-Direct is enabled or used:

– Startup: DB2 direct processing enabled for <map-name>
– Running: Processing table that uses DB2 direct
– Failure: DB2 direct processing disabled for <map-name>

By default, Db2-Direct is enabled in the DVM server. To disable the Db2-Direct feature for a 
virtual table, set the variable OPTBDIDD to 1 in a VTB rule. Db2-Direct can be disabled by 
using the following parameter in the DVM configuration file hlq.SAVZEXEC(AVZSIN00):

Disable: “MODIFY PARM NAME(DISABLEDB2DIRECT) VALUE(YES)”
178 IBM Data Virtualization Manager for z/OS



For more information about DB2-Direct configuration, see this web page.

IMS-Direct
The IMS-Direct feature provides MapReduce and parallelism support for accessing native 
IMS files. This support bypasses the requirement of having to use native IMS API calls by 
reading the IMS database files directly, which is similar to how an unload utility can work. This 
method provides a significant performance improvement and reduces elapsed time in 
processing analytical queries.

The DVM server determines the best method of access to underlying IMS data. The DVM 
server chooses to activate IMS-Direct (native file support) or use IMS APIs. This 
determination is based on the database and file types that are supported and the size of the 
database. Virtual tables of IMS segments are required. IMS-Direct is supported by the 
following types of IMS Databases:

� Hierarchical direct access method (HDAM): VSAM and OSAM
� Hierarchical indexed direct access method (HIDAM): VSAM and OSAM
� Partitioned HDAM (PHDAM): VSAM and OSAM
� Partitioned HIDAM (PHIDAM): VSAM and OSAM
� Fast Path data entry database (DEDB)

Security is managed on the IMS native data set when IMS-Direct is used. The USERID of the 
client connection must have the necessary security permissions for reading the IMS database 
datasets. Transactional integrity is not guaranteed because of the absence of record-level 
locking during reading activity.

IMS-Direct can be enabled by changing the syntax of DontDoThis to if DoThis, and then, 
setting the parameter IMSDIRECTENABLED to YES. The following parameters in the DVM 
configuration file hlq.SAVZEXEC(AVZSIN00) are used to enable IMS Direct:

IF DoThis then do
   “MODIFY PARM NAME(IMSDIRECTENABLED) VALUE(YES)”
   “MODIFY PARM NAME(IMSDIRECTBUFFERSIZE) VALUE(1024)”
   “MODIFY PARM NAME(ACIINTSEGMP256) VALUE(200)”
   “MODIFY PARM NAME(TRACEIMSDBREFRESH) VALUE(YES)”
   “MODIFY PARM NAME(TRACEIMSDIRSTATS) VALUE(YES)”
   “DEFINE IMSDBINFO”,
     . . .
END

Enabling IMS-Direct
MapReduce must be enabled in the IN00 configuration file when IMS-Direct is turned on. If 
you are performing an INSERT, UPDATE, or DELETE, IMS-Direct switches to DBCTL 
automatically, even when IMS-Direct is enabled. Users can enable the trace option in the 
IN00 configuration file with the following parameters to confirm IMS-Direct is used while 
querying the table:

“MODIFY PARM NAME(TRACEIMSDIRTASKSETUP) VALUE(YES)”

For more information about IMS-Direct configuration, see this web page.
Chapter 8. Performance tuning and query optimization 179

https://www.ibm.com/support/knowledgecenter/SS4NKG_1.1.0/havica10/topics/dvs_tsk_cfg_Db2Direct.html
https://www.ibm.com/support/knowledgecenter/en/SS4NKG_1.1.0/havica10/topics/dvs_sql_tsk_cfg_DVS_IMS_Direct.html


8.5.5  Java Database Connectivity performance

Modern applications can connect to the DVM server that uses Java Database Connectivity 
(JDBC). This standard Java API is used for database-independent connectivity between the 
Java programming language and a wide range of databases. Specific properties are available 
to help influence performance characteristics. Data buffering, parallelism, and MapReduce 
are specific DVM server functions that can be dictated as part of the JDBC connection string 
that is used by the client application to significantly improve overall performance.

JDBC and buffering data
When sending large amounts of data to the client or the server, one way to optimize 
performance is by choosing the suitable size of the buffer that the driver uses to send data. 
The JDBC driver communicates with the DVM server by using the Communication Buffer 
(CMBU) protocol, which specifies the number of buffers to be used. The maximum size of a 
buffer is set by using the MaximumBufferSize (MXBU) JDBC property and the 
NETWORKBUFFERSIZE parameter in the server configuration file. 

The application can use the MaximumBufferSize JDBC property to optimize the query 
performance. The buffer size value that the JDBC driver uses is the result of a handshake 
between the driver and server.

When the driver logs on to the server, it requests for the MaximumBufferSize. If the 
MaximumBufferSize is greater than NETWORKBUFFERSIZE, the server tells the driver to 
use the NETWORKBUFFERSIZE in the log-on response. When setting the 
MaximumBufferSize value, consider the distance between the client and the server because 
network latency can harm performance. 

The buffer size that works best for clients and servers that are closer in proximity (low latency) 
need not be the buffer size that works best when clients and servers are farther away (high 
latency). Figure 8-9 shows how an INSERT statement is sent by using multiple buffers to the 
DVM server. 

Figure 8-9   JDBC driver sending multiple buffers for INSERT

When you run a large SQL INSERT statement or a batch of INSERT statements, the 
statements are divided into multiple data buffers that are no larger than the size you specify 
for MaximumBufferSize. The buffers are then sent to the server. 

When you run a large SQL INSERT statement or a batch of INSERT statements, the 
statements are divided into multiple data buffers of buffer size that is negotiated with the DVM 
server. The buffers are then sent to the server. 
180 IBM Data Virtualization Manager for z/OS



Figure 8-10 shows the server sending the client rows of data in a single buffer. 

Figure 8-10   DVM server returns one buffer at a time

After running an SQL SELECT statement, the server divides and returns the requested rows 
of data in buffers that was sized, one buffer at a time. The client can call next() on the result 
set until all rows are read. When the next() call no longer has a row to read from the buffer, the 
driver issues a request to the server for another row buffer. This cycle continues until the 
client reads all rows from all buffers. 

The following code provides a sample implementation:

Connection con = DriverManager.getConnection
(“jdbc:rs:dv://host:port;Key=Value;Key=Value;”,username,password);
  Statement stmt = con.createStatement();
  ResultSet rs = stmt.executeQuery(“SELECT a, b, c FROM Table1”);
  while (rs.next())
  {
    int x = rs.getInt(“a”);
    String s = rs.getString(“b”);
    loat f = rs.getFloat(“c”);
  }

The client can experience a pause during the next() API calls when all rows in the current 
buffer are read and the driver fetches another buffer of data. This pause can be avoided by 
enabling the parallel I/O.

JDBC and parallel I/O
When parallel I/O is enabled, the JDBC driver creates multiple and separate threads by using 
DVM server buffers to pre-fetch, read, and insert rows into a queue. The JDBC driver works to 
ensure that this queue is fully used so at least one buffer always is ready for the next() API call 
to use. Pauses are eliminated so the client can continue to call the next() buffer in the results 
set. The process iterates until all rows in all buffers are read and queued.
Chapter 8. Performance tuning and query optimization 181



Figure 8-11 shows row data being sent to the client by using the main and parallel thread. 
The ParallelIoBufferCount (PIOBC) property determines the number of buffers in use.

Figure 8-11   Parallel IO pre-fetches buffers

JDBC and MapReduce
MapReduce is a JDBC driver-controlled feature that can be used to improve SQL query 
performance by reading results with multiple connections between the driver and server. The 
following types of MapReduce are available:

� Server-controlled MapReduce: MapReduce is performed on the server by using the JDBC 
driver.

� Client-controlled MapReduce: MapReduce is performed on the client and the JDBC driver 
manages single connections, whereas the client manages other connections and 
aggregate the results from each connection.

If you use MapReduce with RDBMS or IMS, you must complete metadata repository 
configuration requirements.

Server-controlled MapReduce
The data mapping step creates threads that run a query by using more than one DVM server 
connection. Each thread maps one connection to one server. The reduce step reads results 
on each thread in parallel for each connection, and then transparently presents the data to the 
client, as shown in Figure 8-12 on page 183.
182 IBM Data Virtualization Manager for z/OS



Figure 8-12   Server controlled MapReduce with a single DVM server

A single-server connection is configured by setting the MapReduceClient JDBC property:

MapReduceClient = (Hostname, Port, TaskCount)
MapReduceClient= (dvs.example.com, 9999, 7)

MapReduce also can be configured to use multiple server connections. Figure 8-13 shows a 
client that is connected to two servers with MapReduce. 

Figure 8-13   Server-controlled MapReduce with two DVM servers

Configure multiple server connections by setting the MapReduceClient property:

MapReduceClient = (Hostname1, Port, TaskCount1), (Hostname2, Port, TaskCount2)
MapReduceClient = (dvs1.example.com, 9999, 4), (dvs2.example.com, 1111, 3)
Chapter 8. Performance tuning and query optimization 183



MapReduce also can be controlled to use a specific range of clients:

Example (clients 1 - 4 and 5 - 7) 

MapReduceClient = (Hostname, Port, maxClientNo, startClientNo, endClientNo)
MapReduceClient = (host1, 1200, 7, 1, 4), (host2, 1200, 7, 5, 7)

Client-controlled MapReduce
In some use cases, the client application can perform the MapReduce process by using 
Apache Spark and still benefit from the server’s MapReduce feature. The JDBC driver 
supports this use case by specifying a single connection as the JDBC MapReduce 
connection. This connection is then available for use by a group of specified connections. The 
JDBC driver manages single connections. The client application must aggregate the results 
from each connection managed (see Figure 8-14). 

Figure 8-14   Client controlled MapReduce with seven parallel connections

The JDBC driver creates a single connection, which is indicated as connection 2 out of 7 
available connections. By using a framework, such as Apache Spark, you must create and 
manage all remaining connections and aggregate the results from each of those connections.

Client-controlled MapReduce can be enabled by setting the JDBC driver properties 
MapReduceClientCount and MapReduceClientNumber. 

Consider the following points:

� The MapReduceClientCount property is used to specify the total number of connections 
that are associated with the group of client connections.

� The MapReduceClientNumber property defines a specific client connection within the 
group is managed by the JDBC driver and has a value between 1 and the number that is 
specified for the MapReduceClientCount property.

� The JDBC driver runs queries by using the single MapReduce connection for the client 
connection that is specified in the MapReduceClientNumber property.

� Data for the specified connection are returned, as opposed to the use of 
MapReduceClientCount over one or more connections to get all rows of data.
184 IBM Data Virtualization Manager for z/OS



� To configure client-side MapReduce, set the JDBC driver MapReduceClientNumber and 
MapReduceClientCount parameters, as shown in the following example:

MapReduceClientNumber, MapReduceClientCount
MapReduceClientNumber=2; MapReduceClientCount=7;

8.6  ODBC performance

The ODBC drivers are used by non-Java applications and tools to access data that is made 
available through the DVM server. The ODBC driver implements the ODBC Direct network 
protocol that is used to connect to the DVM server and uses the ODBC API to run SQL 
queries. 

The DVM server ODBC driver for the Windows platform can be downloaded from the IBM 
Support Fix Central download site.

The performance of ODBC drivers with DVM can be optimized by using connection pooling 
and optimized fetch. The connection pooling in the Windows platform can be configured 
through the ODBC Data Source Administrator. For UNIX and Linux platforms, connection 
pooling is managed by the ODBC Driver Manager. 

When optimized fetch is enabled, rows ahead of the current row are asynchronously 
extracted before the client application requests them. This data is then returned to the client 
application in blocks that can be as large as 32 KB. Enabling optimized fetch helps to 
minimize network traffic and speeds subsequent fetches because the requested data is likely 
already in a returned block.

Optimized fetch is enabled by including the RO=YES connection property in a connection string 
(a connection string can be used with a DSN) or by appending the FOR FETCH ONLY clause to 
a SELECT statement.

The performance of ODBC connected applications also can be improved by using catalog 
functions, retrieving the required data, selecting functions that optimize performance, and 
managing connections efficiently. For example, catalog functions often are expensive, and 
minimize the use of catalog functions. Avoiding search patterns in catalog functions can 
improve performance. Similarly, the use of bound columns (for example, SQLBindCol instead 
of SQLGetData) and the use of SQLExtendedFetch instead of SQLFetch can help to improve 
the performance

8.7  Integrated Data Facility and DS Client API

DVM for z/OS provides an interface to access virtualized data from within more traditional 
mainframe languages, such as COBOL, Natural, or PL/I. With Db2 Integrated DRDA Facility 
(IDF), the traditional mainframe applications can use standard EXEC SQL statements to 
access established data sources, such as VSAM, IMS, and ADABAS.

The DS Client high-level API allows an application that is running on z/OS to use a call-level 
interface to communicate with DVM to process SQL requests and to retrieve result sets. The 
performance of Db2 IDF and DS Client APIs is similar for single user address space 
applications. However, Db2 IDF performed much better than DS Client API for multiuser 
environments, such as CICS and IMS. 
Chapter 8. Performance tuning and query optimization 185

https://www.ibm.com/support/fixcentral/


Also, the applications can use the popular API with Db2 IDF compared to specific high-level 
API with DS Client. Therefore, it is recommended to use Db2 IDF to access data sources 
from traditional mainframe languages when Db2 is available in the customer environment. For 
those customer environments where Db2 is not available, DS Client APIs can be used.

The performance of DS Client API can be optimized with data buffering and MapReduce 
features that are similar to JDBC. The number of active client interface servers to process 
client requests also can be optimized by tuning the parameter ACIDVCLIENTMIN. The 
maximum number of MapReduce tasks that starts to process a request from a DS Client 
application can be specified by using ACIMAPREDUCECLIMAX.

Similarly, the default size (DSCLIENTBUFFERSIZ) of the buffer, the maximum 
(DSCLIENTBUFFERSIZEMAX) and minimum (DSCLIENTBUFFERSIZEMIN) buffer size, 
and the maximum number of buffers (DSCLIENTBUFFERNUMMAX) also can be specified.

8.8  Query optimization and performance

DVM for z/OS provides default values that are part of the standard installation in the IN00 
configuration file that serves as standard level optimization. These defaults are fine-tuned 
over years of customer experience.

8.8.1  SQL best practices

Though increasing resources is an easy option, it is worthwhile to invest time into writing 
efficient SQL statements for the DVM server to use. The DVM server is an SQL engine that 
works with data sources that do not conform to relational database rules. A best practice is to 
conform to the most compliant SQL that matches the source data system, including SQL, 
functions, routines, and data type.

Consider the following points:

� Select only the required fields
� Understand how a Large and Small table is being JOINED
� Avoid scalar, arithmetic process into the SQLs

Consider the following best practices:

� Use simple predicate rewrites. Doing so causes the optimizer to generate significantly 
different query plans and force a different access path, which result in getting the best out 
of the SQL.

� Avoid table space scans when your goal is to fetch a much smaller subset of data.

� Sort only on the columns needed.

� Minimize the number of times cursors are opened and closed.
186 IBM Data Virtualization Manager for z/OS



Designing SQL is an art form. Although many different statements result in the same output, 
variances exist in the execution time that are based on how the query is constructed. 
Table 8-4 provides some guidance for creating queries.

Table 8-4   Best practices for query design

Category Description

Efficient SQL Do not code mathematics on columns in predicates.

Sort only on the columns that are needed. No need to 
ORDERBY BY EMPNO,LASTNAME when you can ORDERBY 
EMPNO. 

Watch out for the LIKE predicate. Begins With logic is 
indexable. Contains is not indexable. Ends With is not indexible.

Do not code Not Between. Rewrite it as >HV or <HV.

Use Fetch First XX Rows whenever possible.

Make sure cardinality statistics exist for all columns in all tables.

Code Not Exists over Not In. Both are stage 2 predicates but 
Not Exists typically outperforms the Not In, especially if the list 
is long.

When joining two tables the execution is faster if the larger table 
is on the left side of the join.

Code WHERE clauses with columns that have unique or good 
indexes.

Prioritize WHERE clauses to maximize their effectiveness. First 
code the WHERE column clauses that reference indexed keys, 
then the WHERE column clauses that limit the most data, and then 
the WHERE clauses on all columns that can filter the data further.

Good coding practice When looking for a small set of records, try to avoid reading the 
full table by using an index and by providing any possible key 
values. You can also use more WHERE clauses so that the fetch 
goes directly to the actual records.

All Case logic should have an else coded, which eliminates 
DB2 returning nulls by default if all the Case conditions are not 
met.

Stay away from Not logic if possible.

Minimize the number of times cursors are opened and closed.

Code stage 1 predicates only. Rewrite any stage 2 predicates.

Use FOR FETCH ONLY on all read only cursors.

Reduce the number of rows to process early by using 
Sub-selects and WHERE predicates.

Avoid joining two types of columns and lengths when joining two 
columns of different data types or lengths. One of the columns 
must be converted to either the type or the length of the other 
column.

Limit the use of functions against large amounts of data.
Chapter 8. Performance tuning and query optimization 187



Example of a non-optimized query
Consider the query in Example 8-1, which can take more than 30 minutes to run in a test 
environment. 

Example 8-1   Sample query before best practices

Level 5 ========

SELECT SR_SYS_ID, ACCT_UNQ_ID,
ACCT_NUM, FULL_NAME, FIRST_NAME, MIDDLE_NAME,
LAST_NAME,
TAB1_ADDR_1, TAB1_ADDR_2, CITY, TAB1_PROV,
TAB1_POST_CD,
TAB1_CNTRY, S_IND_FLG,
INT_DEP_FLG,
INT_DEP, BNF_ID,
T_ACCT_TYP_CD, L_ENT_CD
FROM VIEW4;

Level 4 ==========

VIEW4
SELECT A.SR_SYS_ID, A.ACCT_UNQ_ID, A.ACCT_NUM,
CAST(B.TAB2_NAME AS CHAR(255)) FULL_NAME, CAST(B.TAB2_FNAME AS CHAR(25)) 
FIRST_NAME,
CAST(B.TAB2_MNAME AS CHAR(10)) MIDDLE_NAME, CAST(B.TAB2_LNAME AS CHAR(25)) 
LAST_NAME,
B.TAB1_ADDR_1, TAB1_ADDR_2, CAST(B.TAB1_CITY AS CHAR(35)) CITY, B.TAB1_PROV,
B.TAB1_POST_CD, B.TAB1_CNTRY, A.S_IND_FLG,
A.INT_DEP_FLG, A.INT_DEP, A.BNF_ID,
A.T_ACCT_TYP_CD, A.L_ENT_CD
FROM VIEW_3A A
INNER JOIN VIEW_3B B ON A.ACCT_UNQ_ID = B.INP_ACCT_UNQ_ID

Level 3 =========

VIEW_3A
SELECT SR_SYS_ID, ACCT_UNQ_ID, ACCT_NUM,
BNF_NAME, BNF_FNAME, BNF_MNAME,
BNF_LNAME, BNF_ADD1, BNF_ADD2, BNF_CITY,
BNF_PROV, BNF_PST_CD, BNF_CNTRY,
S_IND_FLG, INT_DEP_FLG, INT_DEP,
BNF_ID, T_ACCT_TYP_CD, L_ENT_CD

Reduce impacts to the DVM server Do not code functions on columns in predicates.

Minimize the number of times DB2 SQL statements are sent.

Only select the columns that are needed.

Virtualization Instead of using multi-level views, try to optimize your SQL 
queries. Creating views that call other views that call other views 
can result in joining to the same table multiple times when you 
only need it once. It creates millions of records in an underlying 
view where you are interested only in a handful of records.

Category Description
188 IBM Data Virtualization Manager for z/OS



FROM VIEW_2A WHERE T_ACCT_TY_CD= '00999'

VIEW_3B
SELECT A.INP_ACCT_UNQ_ID, A.INP_DEP_UNQ_ID, B.TAB2_NAME,
A.TAB2_FNAME, A.TAB2_MNAME, A.TAB2_LNAME, A.TAB1_ADDR_1,
A.TAB1_ADDR_2, A.TAB1_CITY, A.TAB1_PROV, A.TAB1_POST_CD, A.TAB1_CNTRY
FROM VIEW_2B A
INNER JOIN VIEW_2C B ON A.INP_ACCT_UNQ_ID = B.INP_ACCT_UNQ_ID

Level 2 ============

VIEW_2A
SELECT A.SR_SYS_ID, A.ACCT_UNQ_ID, A.ACCT_NUM,
A.BNF_NAME, A.BNF_FNAME, A.BNF_MNAME,
A.BNF_LNAME, A.BNF_ADD1, A.BNF_ADD2, A.BNF_CITY,
A.BNF_PROV, A.BNF_PST_CD, A.BNF_CNTRY,
A.S_IND_FLG, A.INT_DEP_FLG, A.INT_DEP,
A.BNF_ID, A.T_ACCT_TYP_CD, A.L_ENT_CD
FROM TABLE4 A
INNER JOIN TABLE3 B ON A.ACCT_UNQ_ID = B.W4_ACCOUNT_UNIQUE_ID

VIEW_2B
SELECT A.INP_ACCT_UNQ_ID, A.INP_DEP_UNQ_ID, B.TAB2_NAME,
B.TAB2_FNAME, B.TAB2_MNAME, B.TAB2_LNAME, C.TAB1_ADDR_1,
C.TAB1_ADDR_2, C.TAB1_CITY, C.TAB1_PROV, C.TAB1_POST_CD, C.TAB1_CNTRY
FROM TABLE1 A
INNER JOIN TABLE2 B ON A.INP_DEP_UNQ_ID = B.TAB2_DEP_UNQ_ID INNER JOIN TABLE5 C ON 
A.INP_DEP_UNQ_ID = C.TAB1_DEP_UNQ_ID WHERE C.TAB1_PR_ADDR_FLG = 'Y' AND 
UPPER(A.INP_PR_ADDR_H_FLG) = 'Y'

VIEW_2C
SELECT INP_ACCT_UNQ_ID, GROUP_CONCAT(TAB2_NAME, ' AND ' , 255) AS TAB2_NAME
FROM VIEW1 GROUP BY INP_ACCT_UNQ_ID

Level 1 ==============

VIEW1
SELECT A.INP_ACCT_UNQ_ID, A.INP_DEP_UNQ_ID, B.TAB2_NAME
FROM TABLE1 A INNER JOIN TABLE2 B ON A.INP_DEP_UNQ_ID = B.TAB2_DEP_UNQ_ID

From this query, we observe the following results:

� Each level of view is an SQL statement that must be parsed and validated.
� View1 causes a table scan for table1 and table2 and produces resultset1.
� View2a causes table scan on table4 and table3 and produces resultset2.
� View2b causes table scan of table1, table2, and table5, and produces resultset3.
� View2c reads resultset1 and creates resultset4.
� View3a reads resultset2 and creates resultset5.
� View3b reads resultset3 and resultset4 and creates resultset6.
� View4 reads resultset5 and resultset6 and creates resultset7.
� Client query reads resultset7 to create the final result set.

In conclusion, this non-optimized query features the following characteristics.

� The tables table1 and table2 are scanned twice.
� Seven intermediate result sets are created.
Chapter 8. Performance tuning and query optimization 189



� Seven SQL statements are parsed and validated.

An optimized version of the query
The query that is shown in Example 8-2 is a result of following good practices and optimizing 
the sample query. It takes less than 3 minutes to offer the same result. 

Example 8-2   Optimized query

SELECT SR_SYS_ID, ACCT_UNQ_ID,
ACCT_NUM,
CAST(T5.TAB2_NAME AS CHAR(255)) AS FULL_NAME,
CAST(TAB2_FNAME AS CHAR(25)) AS FIRST_NAME,
CAST(TAB2_MNAME AS CHAR(10)) AS MIDDLE_NAME,
CAST(TAB2_LNAME AS CHAR(25)) AS LAST_NAME,
TAB1_ADDR_1, TAB1_ADDR_2,
CAST(TAB1_CITY AS CHAR(35)) AS CITY,
TAB1_PROV,
TAB1_POST_CD,
TAB1_CNTRY, S_IND_FLG,
INT_DEP_FLG,
INT_DEP, BNF_ID,
T_ACCT_TYP_CD, L_ENT_CD

FROM TABLE4 T1
INNER JOIN (A)
TABLE3 T2
ON T1.ACCT_UNQ_ID = T2.W4_ACCOUNT_UNIQUE_ID
INNER JOIN (B)
TABLE1 T3
ON T1.ACCT_UNQ_ID = T3.INP_ACCT_UNQ_ID
INNER JOIN (C)
TABLE2 T4
ON T3.INP_DEP_UNQ_ID = T4.TAB2_DEP_UNQ_ID
INNER JOIN (D)

(SELECT INP_ACCT_UNQ_ID,
GROUP_CONCAT(TAB2_NAME, ' AND ') AS TAB2_NAME
FROM TABLE1 T5A
INNER JOIN (resultset1 join)
TABLE2 T5B
ON T5A.INP_DEP_UNQ_ID =
T5B.TAB2_DEP_UNQ_ID
GROUP BY INP_ACCT_UNQ_ID) T5

ON T1.ACCT_UNQ_ID = T5.INP_ACCT_UNQ_ID
INNER JOIN (E)
TABLE5 T6
ON T3.INP_DEP_UNQ_ID = T6.TAB1_DEP_UNQ_ID
WHERE T_ACCT_TY_CD= 00999
AND T6.TAB1_PR_ADDR_FLG = 'Y'
AND T3.INP_PR_ADDR_H_FLG = 'Y

By combining View1 and View2C into one sub-select, we reduce overhead of parsing, 
validation, and result set caching:

View1
190 IBM Data Virtualization Manager for z/OS



SELECT A.INP_ACCT_UNQ_ID, A.INP_DEP_UNQ_ID, B.TAB2_NAMEFROM TABLE1 A INNER JOIN 
TABLE2 B ON A.INP_DEP_UNQ_ID = B.TAB2_DEP_UNQ_ID

This creates a result set to be used by View2C, including a column that is never used, 
A.INP_DEP_UNQ_ID:

View2C
SELECT INP_ACCT_UNQ_ID, GROUP_CONCAT(TAB2_NAME, ' AND ' , 255) AS TAB2_NAMEFROM 
VIEW1 GROUP BY INP_ACCT_UNQ_ID

The consolidated select statement JOINs across View1 and View2C by using a unique 
common field. In this example, column T5A.INP_DEP_UNQ_ID and 
T5B.TAB2_DEP_UNQ_ID are the JOIN columns between the two views:

SELECT INP_ACCT_UNQ_ID,
GROUP_CONCAT(TAB2_NAME, ' AND ') AS TAB2_NAME
FROM TABLE1 T5A
INNER JOIN
TABLE2 T5B
ON T5A.INP_DEP_UNQ_ID =
T5B.TAB2_DEP_UNQ_ID
GROUP BY INP_ACCT_UNQ_ID

This creates resultset1, which is equivalent to the output of view2c that is used by JOIN (D):

� JOIN (A) uses T1 and T2 to produce derived table TA

� JOIN (B) uses TA and T3 and expands TA to TA+T3

� JOIN (C) uses TA+T3 and T4 and expands TA+T3 to TA+T3+T4

� JOIN (D) uses TA+T3+T4 and resultset1 and expands TA+T3+T4 to TA+T3+T4+resultset1

� JOIN (E) uses TA+T3+T4+resultset1 and T6 and expands TA+T3+T4+resultset1+T6

� The WHERE criteria is then applied to TA+T3+T4+resultset1+T6 to produce the final 
result.

In conclusion, this optimized query features the following characteristics:

� Each table is scanned only once.
� Only two SQL statements have to be parsed and validated.
� Only one derived table is created and augmented by each JOIN.
� Less data is cached.

8.8.2  Performance testing with Apache JMeter

The Apache JMeter application is open source software, a 100% pure Java application that 
load tests functional behavior and measures performance. Customers can use JMeter to 
measure the performance of the services and queries run on the DVM server. 

Apache JMeter can be download from this web site. 

Complete the following steps to configure the DVM server for use with Apache JMeter:

1. Copy the DVM for z/OS client JDBC driver into the lib directory of the Apache JMeter 
installation directory. The JDBC driver for DVM is available with the driver installation 
member AVZBIN2. 

2. Rename the file to JDBCdriver.zip and extract its content into the lib directory of the 
Apache JMeter installation directory.
Chapter 8. Performance tuning and query optimization 191

https://jmeter.apache.org/


After Apache JMeter is installed along with the DVM for z/OS JDBC driver, you can begin to 
define a thread group, which is a pool of users that run a specific test case per your SLA. You 
can consider a thread group as a Virtual User Group that perform a set of steps that you 
recorded. The Thread Group element helps to define a performance test scenario in JMeter.

For JMeter to connect to access mainframe data through the DVM server, a JDBC connection 
is required to ensure location and authorization credentials are defined for a successful 
connection. JMeter calls this a database connection pool.

After the thread group and connection pool are defined, JMeter uses the database connection 
pool to issue a named JDBC request or basically, an SQL statement to be run. Each JDBC 
request allows for several different JDBC configuration elements to be used, such as 
parameter values, parameter types, variable names, query timeout, and others.

Thread groups also can have a summary report generated for run tasks. The summary report 
creates a table row for each differently named request in your test and considers the total time 
over which the requests were generated. A sample summary report for JDBC request 
VSAM.STAFF is shown in Figure 8-15.

Figure 8-15   Apache JMETER

Based on the number of samples set, JMeter runs the JDBC query for the number of 
iterations that is defined and provides the average, minimum, and maximum elapsed time and 
throughput for the performance evaluation. The performance evaluation can be carried out 
further by testing with different query types and number of connections.

8.8.3  Performance testing by using the Command Line Tester

You can use the Command Line Tester (CLT) for evaluating the performance of specific 
queries, understand the number of rows, bytes read, elapsed time, and so on. CLT was 
developed by IBM specifically for DVM for z/OS and works to simplify development, 
troubleshooting, and diagnosing problem queries. 
192 IBM Data Virtualization Manager for z/OS



This tool also is used through RESTful API calls and includes the following features:

� No limit on the number of rows processed. 
� Reports summarized execution time for data transfer.
� Isolates performance issues from application requesters.
� Uses ANSI SQL ? Flexible OUTPUT options.
� Command-line driven.
� Validated through a RESTful API.

The Command Line Tester utility is a preferred approach instead of DVM Studio for verifying 
query performance. DVM Studio is not meant to be used for performance testing. (As of this 
writing, it is not included in the DVM for z/OS packaged software or as part of PTF 
maintenance releases.) 

CLT is not a host application that runs on the mainframe; rather, it is a Java-based application 
that runs from a command prompt on MS-Windows or a terminal on Linux (see Figure 8-16).

Figure 8-16   CLT output reading a VSAM file with 4,000,000 records

It is encouraged to avoid the use of DVM Studio for query performance evaluation. DVM 
Studio includes limits for the number of rows that can be displayed, and the amount of HEAP 
space that is available.

Setup
This package comprises the test harness jar files and includes log4j2. The easiest approach 
is to copy the JDBC driver jar (for example, dv-jdbc-3.1.xxx.jar) from your production area 
to the same directory as these tester jar files.

Basic usage
Run the tool by using Java from a command prompt:

� Windows: java -cp .;* com.rs.jdbc.dv.CommandLineTester
� UNIX/Linux: java -cp .:* com.rs.jdbc.dv.CommandLineTester <options>

Options
Use the --help option to display the usage options, as shown in the following example (run a 
query and display the elapsed time):

java -cp .;* com.rs.jdbc.dv.CommandLineTester –help
java -cp .;* com.rs.jdbc.dv.CommandLineTester --url "jdbc:rs:dv..." --sql "SELECT 
* FROM VT"
Chapter 8. Performance tuning and query optimization 193



Multi-threaded MapReduce client test by using MRCC/MRCN
Use the CommandLineMrcnTester class to run a multi-threaded MapReduce client test by 
using MRCC/MRCN:

java -cp .;* com.rs.jdbc.dv.CommandLineMrcnTester --url "jdbc:rs:dv://host:1234; 
MRCC=4; ..." --sql "SELECT ..." --verbose

The URL must include the MapReduceClientCount/MRCC property, and then the tool adds 
the suitable MapReduceClientNumber/MRCN setting for each separate connection. The 
--verbose flag displays the per-thread fetched row count and other information.
194 IBM Data Virtualization Manager for z/OS



Chapter 9. Capacity planning and 
deployment

This chapter helps the user to understand basic principles that are needed in planning for an 
initial setup of the DVM for z/OS software and some estimation around capacity as workloads 
and data expand and grow in your environment. 

The content in this chapter is not a comprehensive listing of areas to explore when assessing 
the size and capacity for a DVM server. Instead, it provides a generalized approach to 
capacity planning. Each customer environment is different and governed by different 
objectives, workload characteristics, and unique hardware and software needs.

This chapter includes the following topics:

� 9.1, “Capacity planning” on page 196
� 9.2, “Monitoring workloads” on page 199
� 9.3, “Capacity planning for future growth” on page 202
� 9.4, “Scaling for growth with the DVM server” on page 203
� 9.5, “Workload balancing” on page 206
� 9.7, “Best practices for deploying the DVM server” on page 207
� 9.8, “Developing queries” on page 208
� 9.9, “Administering the DVM server in production” on page 211

9

© Copyright IBM Corp. 2021. 195



9.1  Capacity planning

The objective of capacity planning is to have enough spare capacity to handle any likely 
increases in workload, and enough buffer capacity to absorb normal workload spikes 
between planning iterations. Capacity planning helps organizations operate efficiently.

DVM for z/OS can service many virtual tables over 35 different data sources that are running 
natively on all versions of z/OS, including z15 for 32-bit and 64-bit instruction sets. The 
inherent architecture uses MapReduce’s capability to create parallel threads at the DVM 
server level, and the client driver for inbound requests.

DVM for z/OS virtualization architecture is zIIP eligible and works to help balance processing 
capacity for specific applications without affecting their total million service units (MSU) rating 
or machine model designation. When workload is dispatched onto a zIIP processor, the 
processing cycles that are used do not contribute to the MSU count; therefore, they do not 
affect software usage charges. Adding applications to IBM Z is more cost-effective, especially 
when compared to competing platforms, such as distributed systems or public cloud.

IT capacity planning revolves around how an organization can meet the storage, computer 
hardware, software, and connection infrastructure demands over time. Organizations require 
flexibility in scaling resources (typically the servers, CPU, and memory).

The DVM for z/OS architecture provides key technologies to facilitate the needs of any 
organization. One or more DVM servers can be configured to address the following needs:

� Improved user concurrency.

� The ability to distribute workloads.

� High availability for:

– When failover or relocation of workloads is required

– Outages that are related to a hardware problem, network failure, or required 
maintenance

� zIIP eligibility; facilitates cost reduction for production environments and provides more 
CPU processing availability by delivering up to 99% utilization.

� MapReduce improves elapsed time reduction and overall performance.

� DVM server memory allows the execution of complex SQL with the benefits of improved 
response time. Server memory or cache maintains the metadata (as opposed to physical 
data) to enhance SQL processing.

� Key-based access methods provide direct access to back-end data files that are servicing 
popular databases that are running on the mainframe, such as Db2 for z/OS and IMS.

Key capacity planning areas are specific to the physical server, available storage (on disk and 
in memory), network, power, and cooling. Cost drives discussions for new implementations 
and projected demand and growth. 

Capacity planning must accommodate a balance of workloads that are involved in the cloud, 
external service providers or hosted solutions, and an overall increase in the number of 
networked devices.

It is commonplace to run wide-ranging workloads (mixtures of batch, transactions, web 
services, database queries, and updates) that are driven by transaction managers, database 
systems, web servers, and message queuing and routing functions.
196 IBM Data Virtualization Manager for z/OS



The following primary workload types are used to evaluate capacity planning. Each workload 
type has unique effects on resources with the added independent variable of time:

� Transaction-based workloads

Typically, small amounts of data that are processed and transferred per transaction that is 
delivered to many users. Interactions between the user and the system are nearly real 
time. Mission-critical applications require continuous availability, high performance, data 
protection, and data integrity. Transaction examples include ATM transactions, such as 
deposits, withdrawals, inquiries or transfers, supermarket payments with debit or credit 
cards, and online purchases.

� Web-based workloads

Enterprises shift functions and applications to online activity for greater access and 
improved usability through an application programming interface (API), such as Java, 
where they can be written to run under a Java virtual machine (JVM). The advantage is 
that applications become independent of the operating system in use.

� Batch processing

Run without user interaction, where the job reads and processes data in bulk, perhaps 
terabytes of data, and produces output, such as billing statements. Mainframe systems 
are equipped with sophisticated job scheduling software with which data center staff can 
submit, manage, and track the execution and out-of-batch jobs. Key characteristics are 
larger amounts of data that represent many records, run in a predefined batch window, 
and can consist of the execution of hundreds or thousands of jobs in a pre-established 
sequence.

� Mixed workloads

Consist of a combination of online transactions, web-based, and batch processing that 
perform analytic processing, real-time analytics, Machine Learning, and Artificial 
Intelligence.

As a result, organizations must monitor their current capacity to establish a baseline and 
understand future business needs for any capacity that is needed to scale as the organization 
grows. z/OS enables capacity provisioning, workload management, fine-tuning your system 
for prioritization, scheduling, and resource allocation through WLM, z/OSMF, RMF, and CPM.
Chapter 9. Capacity planning and deployment 197



As a mainframe middleware application, the DVM server also can fine-tune based on 
workload demands. The DVM server determines the optimal method to access the underlying 
data for the various workload types (see Figure 9-1).

Figure 9-1   DVM server manages both transaction and batch processing

Table 9-1 lists models that are based on the current processing volume for any business and 
the maximum resources that are required for the next planning iteration.

Table 9-1   Initial recommendations based on workload type

The volume of data within a data source and the type of Data Manipulation Language (DML) 
operations against that data are key considerations for assessing capacity planning. DML 
operations that represent complex JOINs with predicates, GROUP BY clauses, or aggregate 
functions require more processing to complete.

It is possible to configure multiple JDBC Gateway Servers along with the DVM server to 
access distributed (non-mainframe) data to accommodate high transactional processing or 
reading large volumes of data without negatively affecting latency or server processing. The 
amount of memory that is allocated to user space can be adjusted to better accommodate a 
larger number of users and overall concurrency.

Workload type Number of servers GPA zIIP processors

Transactional 1 - 5 16 Gigabytes 4

Batch processing 
(large data pulls

More than 5 32 Gigabytes More than 5
198 IBM Data Virtualization Manager for z/OS



9.2  Monitoring workloads

Workload management is critical in defining, assigning, reporting, monitoring, and managing 
performance goals. These activities help you understand how many resources, such as CPU 
and storage, can help meet demands for a specific environment. 

IBM provides foundation tools for monitoring the end-to-end health and capacity of a system 
or LPAR. These tools are widely available and likely core to any mainframe environment:

� Tools provided by IBM for capacity planning (monitoring)
� System Management Facility (SMF)
� Resource Monitoring Facility (RMF)
� Capacity Provisioning Manager (CPM)

The DVM server can virtualize SMF records to help monitor the overall capacity of the DVM 
server and manipulate output through standard ANSI SQL syntax. The DVM server also 
features an ISPF window and workload generators to help evaluate the capacity and 
performance levels of the DVM server.

A command-line tester utility also can be used to help measure the performance of the DVM 
server. This utility can be requested from IBM Support and downloaded for your use. As of 
this writing, it is not included in the DVM for z/OS packaged software or as part of PTF 
maintenance releases.

9.2.1  Monitoring capacity with SMF records

The SMF data that is recorded as part of Record type 72 Sub Type 3 provides the resource 
consumption and response time of the DVM server.

Figure 9-2 shows key workload management elements within a service definition, including 
service policy, resource group, workload, service class, service class period number, and 
goals. 

Figure 9-2   Workload management elements
Chapter 9. Capacity planning and deployment 199



The SFM 72 subsystem includes the following sections:

� The Workload Manager Control section provides SMF output to understand details that 
are related to the service policy, workload, service report, class name, and workload data.

� The Service Class Served section shows the name of the service classes that are served 
and the number of times the address space runs in the named service class.

� The Resource Group section contains information about the resource group to which the 
service class or tenant report class belongs. Each Resource Group has minimum and 
maximum capacity values for different resource types:

– Percentage of the LPAR share
– Percentage of a single processor capacity
– Memory Limit
– MSU/H
– Combined general purpose and specialty processor consumption

� The Service/Report Class Period section contains goals and measured values for each 
service and reports class period.

� The Response Time Distribution section contains response time distribution buckets that 
are built around a midpoint that is calculated based on the goal of the associated service 
class period. The response time distribution count table shows the number of transactions 
that completed as a percentage of the midpoint.

SMF output from all these sections can be virtualized by creating virtual views that contain 
SQL queries. The SMF output helps analyze the capacity requirements in terms of CPU or 
Storage.

9.2.2  Monitoring performance by using SMF Record 249 Subtype 06

DVM SMF 249 Subtype 6 provides a more granular output when compared to a standard 
SMF 30 record. The DVM SMF 249 can state where the CPU is used more specifically and 
can log each inbound client request in the DVM server.

Each SMF record type 249 record contains information about all the work that was performed 
on behalf of a requesting client for each transaction. Inbound client requests can trigger zero, 
one, or more SQL operations to be run. Many Subtype 06 SMF records can be written in 
high-volume environments because a single SMF record is created for each transaction:

� Detailed CPU time based on Server (client/server request)
� Detailed CPU time based on Server (non-SOAP web request)
� Detailed output on each SQL statement run
� CPU and zIIP details based on each query by combining data from Type 01 and Type 0
200 IBM Data Virtualization Manager for z/OS



AVZ.STORAGE is used to record the private and virtual storage that is used by the DVM 
server address space in 15-minute intervals. Table 9-2 lists the elements of the 
AVZ.STORAGE definition. 

Table 9-2   AVZ.STORAGE definition

9.2.3  Monitoring by using DVM ISPF panels

The DVM server tracks a subset of system resources and can be viewed by using option F4 
on its ISPF interface.

The DVM ISPF interface (see Figure 9-3) provides more information about the type of request 
that is coming into the DVM server by tracking the source of these inputs, the time it takes to 
run, and so on. This information is useful and helps administrators to understand workloads 
that are running on the DVM server.

Figure 9-3   DVM ISPF panel

Column Description

PRODUCT_SUBSYSTEM The four-character DMV subsystem ID.

INTERVAL_START The start time of the summary activity.

MAXIMUM USERS The maximum number of users allowed.

SUBPOOL The name of the virtual storage information.

BELOW_16M The amount of memory in use under 16 Megabytes.

ABOVE-16M The amount of memory in use over 16 Megabytes

SMFID The SMFID as defined within the DVM server.
Chapter 9. Capacity planning and deployment 201



9.3  Capacity planning for future growth

Although they are not exact numbers, mainframe capacity planners find CPU hours, MIPS, 
and MSUs are good indicators for the ability to hand workloads.

Organizations should consider hardware upgrades, use of zIIP and zAAP specialty 
processors for processing improvements and optimal performance.

Much of the planning for the DVM server has more to do with configuration and use, rather 
than entirely on increases in existing or additions of new workloads. To determine the optimal 
number of servers that is needed to manage workloads, an iterative approach is 
recommended, in which the number of DVM server instances can require adjusting. The 
number of DVM servers generally ranges 1 - 3 for an environment, based on the workload 
demands.

9.3.1  Customer example

A customer needed to validate if their DVM server can sustain a transactional workload by 
using a JDBC connection to meet subsecond response time objectives. The scenario resulted 
in configuring each DVM server to run 300 concurrent threads and by managing the SQL rate 
per thread up to 4,000 statements per second. 

This example configuration allowed for the ability to easily scale across multiple servers in 
their simulated environment.

This example also is a simulated workload that is driven by using an SQL load testing tool, 
based on the CPU configuration, data (VSAM), and SQL complexity. This example is for 
reference only and specific to this customer environment and set of requirements.

9.3.2  General recommendations

Table 9-3 provides general guidelines to maximize performance for an environment that is 
running more than one DVM server. 

Table 9-3   General recommendations for performance for capacity planning

Triggers Recommendations

Number of DVM servers � Perform load balancing with WLM over multiple DVM servers that use the same port
� Distribute workloads across multiple DVM servers
� Investigate implementing High Availability that uses VIPA

8 - 16 Gigabytes of memory � Allows:
– Better concurrency
– Complex SQL to be better processed
– Large data pulls to be processed

� More memory improves query response time

Parallelism � Implement Driver or Server-level parallelism
� Configure MRC and MRCC to run a single request over multiple threads
� Configure the use of Virtual Parallel Data (VPD)

Access method � For keyed data that use Database Control (open thread access is preferred)
� Open Database Access (ODBA) for concurrent access to data
� Use IMS direct or DB2 direct for read-only access to bypass related subsystems
� Distributed Relational Database Architecture (DRDA)
202 IBM Data Virtualization Manager for z/OS



9.4  Scaling for growth with the DVM server

The DVM server is confirmed to support over 1,000 tables through internal testing without any 
effect on local processing or memory. It also successfully tested with up to 15,000 virtual 
tables. The architecture is designed to perform well for environments with many virtual tables.

DVM for z/OS supports IBM Parallel Sysplex, which is a cluster of IBM mainframes that act 
together as a single system image. Sysplex often is used for Disaster Recovery and 
combines data sharing and parallel computing to allow a cluster of up to 32 systems to share 
a workload for high performance and high availability.

Specific usage for IMSplex is not supported as of this writing. IMSplex is a set of IMS systems 
working together to share resources or message queues (or both) and workload. Basic 
support exists for ODBA, which is needed to support IMSplex, but is insufficient for a 
connection to IMSplex with access to multiple IMS regions.

Database administrators can stop and start servers as needed for maintenance or addressing 
the need for scalability of workloads. Flexibility also exists for managing across sysplexes or 
for use in providing a highly available solution.

No significant use or accumulation of resources is associated with DVM servers that require 
that they be restarted routinely or as part of scheduled maintenance.

The DVM for z/OS architecture can start and run multiple DVM servers concurrently to help 
address high levels of user concurrency or thread concurrency. The use of multiple DVM 
servers is easily managed through scripting and can be performed in minutes to help satisfy 
peak operations or general scalability for business applications.

9.4.1  Memory consumption

It is recommended to start 8 - 16 GB of memory and then increase up to 32 GB of memory 
virtual storage per system for an initial deployment. Allocating memory helps to avoid staging 
data on each participating IBM Z system. Based on a customer’s complexity of SQL, JOINs, 
and other types of operations that can be performed in memory, more capacity might be 
needed, depending on current usage.

The number of virtual tables does not degrade performance, but the number of virtual tables 
that are joined into a complex SQL can exceed the total memory that is allocated to the SQL 
engine. The amount and length of columns, data types, and the number of records that are 
materialized in physical memory must be monitored.

General processors Recommend a minimum of two general processors for an initial configuration. Free 
capacity in GPA buffer to protect against unexpected workload spikes, server outages, or 
performance regressions in your code. It is recommended to have more free capacity of 
30%.

zIIP specialty engines Improves latency and transition of GP processing to zIIP processors

Workloads � Use workload based server definitions (transactional versus large data pulls)
� Group data sources dictated by the business model
� Write SQL statements whose result set size does not exceed the LPAR configuration

Triggers Recommendations
Chapter 9. Capacity planning and deployment 203



The number of SQL statements that are running concurrently depends upon the memory 
allocated versus the size of the result set record, number of records read, number of users, 
and so on. Writing optimized SQL statements can reduce the workload that is required for an 
IBM Z system.

9.4.2  zIIP processing

The DVM server can run in Service Request Block (SRB) mode, which allows significant 
portions of workloads to be offloaded onto zIIP processors (in some cases up to 99%). This 
feature delivers a low-cost benefit for organizations because they can offload workloads onto 
much more cost-effective specialty engines in comparison to General Processors.

ZIIP eligibility varies based on the access path to underlying data structures, and 
DVM-specific operations that are performed on that data. Offload also varies across DBCTL, 
Java, and combinations of z/OS Connect, IMS Connect, and IMS-Direct, for example. Each 
data source has a specific range of zIIP eligibility.

Consider the following points:

� IMS DBCTL does not provide any zIIP eligibility.

� Java offers unrestrained zIIP eligibility by using DRDA.

� Java workloads that originate outside of the IBM Z system do not benefit from zIIP 
eligibility.

� z/OS Connect to IMS Connect delivers a portion of zIIP eligibility.

� IMS Direct for larger data pulls to support analytics is fully zIIP eligible (non-TXN 
environment).

IMS operations are general processors that are bound for DBCTL; however, subsequent 
processing of that data that is run within the DVM server (for example, JOINs) has a degree of 
zIIP-eligibility. Based on experience, approximately 40% of total SQL operations can be 
offloaded for zIIP processing. 

Because the calling method (DRDA) is restricted to general processes, the zIIP offload is 
attributed to DVM instrumented code. This processing is separate and independent of any 
initial IMS operations.

zIIP-eligible workloads use the IMS Direct access method to perform large data pulls. The 
DVM server processes up to 99% of eligible processing when zIIP processors are available 
on the IBM Z system. Highly transactional workloads that are running against IMS data 
perform better by using the DBCTL access method.

When new applications are not at their full productive state, it is difficult to gauge the overall 
effect. For some time, the workload on IMS increases as existing and new applications run 
simultaneously. When new workloads are driving highly concurrent threads or users, you 
might want to add a zIIP processor to avoid any CPU processor contention.

9.4.3  Use of MapReduce for parallelism

DVM for z/OS supports parallel processing and can be configured according to the 
processing needs of an organization. The DVM server supports various types of parallel 
processing, such as MRC, MRCC, and VPD, at the driver level and server level. 

MapReduce does not have the same effectiveness for SQL statements that use Order By or 
Group By clauses.
204 IBM Data Virtualization Manager for z/OS



A best practice is to establish a controlled benchmark. IBM conducted an internal benchmark 
for the DVM server and its use of zIIP special engines. Table 9-4 and Table 9-5 list zIIP 
eligibility and the effect of parallel execution by using MapReduce.

Table 9-4   Sample test results for zIIP usage for virtualized data

Table 9-5 shows how parallelism allows for the maximum use of GPA and zIIP, which provides 
organizations with the best use of resources for persisted data with no changes to application 
or environment.

� Test cases 4 and 2 in Table 9-5 feature similar configurations.

� The degree of parallelism of 8 reduces the overall elapsed time from 89.68 minutes to 
17 minutes.

� Adding three zIIP specialty engines that are shown in Test Cast 8 reduces the elapsed 
time to 13.82 minutes. This change results in an 85% improvement in query execution 
time.

Table 9-5   Effect of parallelism on the elapsed time

9.4.4  Performance differences by access method

DVM for z/OS supports various types of access methods when connecting to target data 
sources. Organizations can choose the suitable access method based on transactional 
needs. 

If a full load of Db2z is required, assess the ability to perform a Db2 direct read, which results 
benefits in terms of speed (elapsed time) and zIIP utilization because it is SRB enabled. 
Table 9-6 on page 206 lists some sample timings that are based on IUD operations that use 
the Integrated Data Facility (IDF) access method with DVM. The results in the table show 
some variation regarding access methods to mainframe and non-mainframe data sources.

Row label Sum of CPU 
time (ms)

Sum of zIIP time 
(ms)

Sum of IICP 
time (ms)

Sum of zIIP 
NTime (ms)

%zIIP eligibility

DVM1 7099.03 5609.55 1389.58 5609.55 98.59%

Test case GPP Amount of zIIP 
engines

Degree of 
parallelism

Elapsed time
(in minutes)

SMT

1 8 8 8 118.96 1

2 8 5 0 98.68 1

3 8 5 4 27.05 1

4 8 5 8 17.14 1

5 8 5 8 20.84 2

6 8 5 10 17.00 2

7 8 5 16 15.73 2

8 8 8 8 13.83 1

9 8 8 8 17.62 2

10 8 8 16 11.72 2
Chapter 9. Capacity planning and deployment 205



Table 9-6   Sample access methods, performance impacts with the same degree of parallelism, GPA, and zIIP resources

9.5  Workload balancing

Inbound connections are automatically directed to the DVM server instance that has the most 
available resources. To determine which instance handles a request, the DVM server 
evaluates the number of connections that are handled by each instance, and the availability of 
virtual storage (over and under the 16-MB line).

Load balancing is not apparent to the client application. An application uses a port number to 
connect to an instance. Then, the instance determines whether it or a separate instance is 
better equipped to handle the session. If another instance is a better choice, the session is 
transferred.

9.6  User concurrency

The solution can start and run multiple DVM servers concurrently to help address high levels 
of user concurrency or thread concurrency. This operation is easily managed through 
scripting and can be performed in minutes to help satisfy peak operations or general 
scalability for business applications. 

This client achieved their objective with each DVM server running up to 300 concurrent 
threads before measurable degradation began to occur. This customer also varied the SQL 
rate per thread up to 4,000 statements per second, which met the customer response time 
requirements. By using this approach, they easily scaled across multiple servers. 

This simulated workload was driven by using an SQL load testing tool. It also was based on 
the CPU configuration, data (VSAM) and SQL complexity. Other factors can be significantly 
different from what other customers experience.

These numbers are for reference only and might not be similar to results that other customers 
achieve.

Access Insert Update Delete

IMS (DBCTL) 99.93443898 99.3218316 99.21321732

IMS (OTT) 99.95473499 99.3764378 99.36438997

DB2 pass-through 99.32632198 99.3476346 99.38136378

VSAM 84.62641988 77.337337 81.2397289

Jgate - Oracle 97.83463378 97.2623789 97.32113628
206 IBM Data Virtualization Manager for z/OS



9.7  Best practices for deploying the DVM server

After a successful proof of concept, the next phase involves identifying a test and 
development environment in which you can realize the power of DVM. 

9.7.1  Data sources

From a data virtualization architecture perspective, the use of DVM requires knowledge of the 
data sources, data format, and access methods to virtualize data on disk. The following 
building blocks are used for progressing your idea to productive use in your organization:

� Access to:

– Data sources
– Copybooks

� Naming conventions

� Test data

List all of the data sources that you need to fulfill the requirement. For more information about 
conducting a Project Survey, see Appendix A, “Project survey” on page 225. 

This survey approach is a good way to ensure that you are considering all aspects of data 
virtualization. After you produce a list of data sources, ensure that you have read/write access 
to the data. 

For data sources that do not have their own metadata, such as flat files or VSAM files, you 
need a copybook to map the data. These copybooks are always stored in separate libraries 
and you need access to these libraries. Read access is enough to get started.

9.7.2  Naming conventions

Establishing naming conventions for the objects that you are going to create also is important. 
Consider that objects are likely to exist in several different environments with like-named data 
sources and schema. You must distinguish between to which environment each object 
belongs. 

Also, naming conventions are important when migrating objects into a production 
environment. The application developers can provide standards and conventions for their 
particular business applications.

You also need enough test data for development purposes that balances out production-like 
samples for the amount and variety of data on which applications perform SQL operations. 
Ensure that the data that is used is of high accuracy. Many times, it is possible to obtain a 
subset of masked production data to initially populate your environment. This process 
ensures that your test environment emulates some key characteristics of your system of 
record (SOR). 
Chapter 9. Capacity planning and deployment 207



9.8  Developing queries

After you set up your environment, you can start developing your queries. The DVM server is 
ANSI SQL-92 compliant. Future releases will iterate toward compliance with ANSI SQL-99.

For example, the following query successfully runs by using the DVM server:

SELECT * FroM table LIMIT 10;

However, a similar query using the TOP operator is not currently supported by the DVM 
server.

SELECT TOP 10 * FROM table;

9.8.1  Creating virtual tables

Virtual tables are the data objects that are needed to map to the data. If your data source is 
Db2 for z/OS, the DVM server uses the Db2 catalog to map the data. If your data source is 
VSAM or a flat file, a copybook is needed to map the data. 

Many times, system programmers know the copybooks, their layout, and where they map to 
data on disk. For more information about how to create virtual tables by using DVM Studio or 
the ISPF interface for DVM, see Chapter 7, “Managing and monitoring” on page 131.

9.8.2  Combining data from different data sources

The DVM server can combine different data sources into a single data source. Each of the 
data sources is defined by a virtual table that maps to the location and data. By creating a 
virtual view, you can combine individual virtual tables into a uniform and fully transformed set 
of records. This view can be defined by the selected columns and joined by a unique ID that is 
common to both data sets. Then, a query predicate can be applied to the definition of the view 
to filter or reduce the result sets according to the operators in your structured query language 
(SQL).

You can select a base Virtual table to include as part of a new virtual view, and then modify 
the DDL for the new view to include all other virtual tables. You also can check to validate the 
DDL syntax before finalizing your new Virtual View.

9.8.3  Creating a query 

After you create the objects that you need (a virtual table, virtual view, or Db2 table), you can 
easily create a query from them by using DVM Studio. The query can be adapted to be less or 
more restrictive. 

You can determine which columns and the subset of data are needed for extraction. Nearly all 
extract, transform, and load (ETL) data workflow can be written by using SQL syntax for the 
selection, cleansing, and curation of data. In many ways, the use of predefined data models in 
the form of virtual tables and views allows for greater sophistication in your design.
208 IBM Data Virtualization Manager for z/OS



9.8.4  Testing

Queries can easily be tested to verify your results in advance in DVM Studio or as part of an 
application. You can test the query directly in DVM Studio by using one of the following 
methods:

� Select the query on the panel and press <F5>
� Select the query and then, right-click and select the Execute SQL option.

9.8.5  Embedding your query in an application 

After your query is ready for a functional test, it can be embedded into any application, such 
as Java. DVM can generate Java code snippets that are based on your query, which can then 
be pasted into a Java application and then, compiled and run. 

Right-clicking the virtual table or virtual view shows the Generate Code from SQL option (see 
Figure 9-4).

Figure 9-4   Generating code from SQL option

DVM Studio adds to programmer productivity by allowing users to automatically generate and 
modify queries. DVM Studio provides the ability to compose code snippets for generated or 
modified queries into a range of programmable APIs, which speeds up the time to prototype 
applications for development and testing purposes.
Chapter 9. Capacity planning and deployment 209



Code can be generated in any of the modern programming languages that are shown in 
Figure 9-5.

Figure 9-5   Code Generation window in DVM Studio

The generated code includes associated object handling, Java classes, the defined SQL 
statement, and JDBC connection string with user credentials for successful execution. 
Generated code can be tested immediately in DVM Studio by placing the cursor anywhere in 
the Java code and then, right-clicking and selecting Run as → Java application. The result 
is shown in the Console view (see Figure 9-6).

Figure 9-6   DVM Studio generated Java code
210 IBM Data Virtualization Manager for z/OS



The quality assurance phase of deployment is to ensure that the solution you want to 
implement is not going to harm your production environment. It is a necessary step before 
finished products are promoted into production. 

Deploying applications in the test environment requires that users have suitable credentials 
and access to data sources. Also, it is important that the required metadata from the DVM 
server that is associated with virtual tables and views represent the original data from the 
development environment. 

It is recommended that your test environment mimics your production environment as much 
as possible. Therefore, the test data must be identical to the production environment with data 
obfuscation or masking as needed to ensure suitable data privacy and protection of 
potentially sensitive data.   

Moving applications into production is no different than moving an application from 
development to test. However, both DVM administrative tasks and requirements around high 
availability often are critical to the reliability and resiliency of business-critical applications.

9.9  Administering the DVM server in production

A bigger concern for organizations revolves around providing seamless access to underlying 
mainframe data. The DVM server controls access by using RACF (or any other security 
module you use on IBM Z). The DVM server captures information for each user who is 
attempting access to the mainframe data sets. It also controls access for users who are 
attempting to access non-mainframe data sources.

9.9.1  Limiting access to the DVM server

The client user ID that is accessing the DVM server is like any RACF user ID with data 
access. The main tasks within the DVM server in a production environment are to create and 
maintain metadata for production data sources (by a DBA), and perform ongoing monitoring 
of the IBM Z system (system programmer).

9.9.2  High availability configurations

When you are running a parallel sysplex in your production environment on IBM Z (usually 
with Db2 for z/OS in data sharing mode), you must adapt your installation to accommodate 
the complexities for the following components:

� Multiple DVM server instances

Each LPAR within your Parallel Sysplex might need to have an active DVM server because 
individual servers cannot connect to other servers without extra configuration. Each DVM 
server must be connected to the local Db2 subsystem; for example, if you use Db2 for 
z/OS.

� Shared resources

All resources that are required by the DVM server (data sources, copybooks, configuration 
files, and metadata catalogs) must be on a shared DASD. In this way, all the DVM servers 
within your Parallel Sysplex can use the same information.

Note: If a different user uses this code than when the Java code was created, the Java 
code must regenerated by using the correct user credentials.
Chapter 9. Capacity planning and deployment 211



� WLM and DVIPA connections

In a production environment, it is recommended to connect your DVM servers to the 
workload balancer you use (for example, Workload Manager) and enable DVIPA 
connections to each of your DVM servers. This configuration allows WLM to balance the 
workload between the servers in your Sysplex. It also allows the workflow to continue 
uninterrupted if the servers in your Sysplex fail, or a complete LPAR goes offline for any 
reason.
212 IBM Data Virtualization Manager for z/OS



Chapter 10. Best practices for project 
success

This chapter provides best practices for defining a successful validation of Data Virtualization 
Manager for z/OS (DVM for z/OS) software as part of solving critical business problems, 
which is specific to the use of data virtualization to provide seamless SQL access to data that 
is on IBM z Systems®. 

The chapter works through project definition and best practices and includes the following 
topics:

� 10.1, “Defining successful projects” on page 214
� 10.2, “Defining the approach” on page 214
� 10.3, “POC checklist” on page 216

10
© Copyright IBM Corp. 2021. 213



10.1  Defining successful projects

A successful roadmap helps to balance precarious project elements, such as time and skill 
against complexity and risk. To motivate technology, you must define an approach that 
progresses value as you work to bring new technology forward (see Figure 10-1).

Figure 10-1   Project lifecycle

Setting timelines, scope, focus areas, and success criteria are “must-haves”.

10.2  Defining the approach

The best approach for most technology is to funnel the business value through a series of 
discussions with a balance of business and technical involvement. Technology influences the 
business decision and ultimately the business decides whether to invest. Starting small and 
building on interest and business value ultimately leads to a successful implementation.

IBM provides key data assets on its IBM Demos website that help users to explore, learn, and 
try various IBM solutions. DVM for z/OS includes a guided tour and several videos that are 
presented by technical experts that walk you through common use cases, highlighting key 
capabilities. 
214 IBM Data Virtualization Manager for z/OS



Figure 10-2 shows the landing web page for IBM Data Virtualization Manager for z/OS. 

Figure 10-2   IBM Data Virtualization Manager for z/OS landing page

IBM offers a full range of approaches where you can learn more about DVM for z/OS, such as 
self-service demos, deep dive discussions with product experts, and proofs of technology or 
concept.

Contact your IBM client representative to schedule a demo or to get more information about 
DVM for z/OS. Consider the following points:

� IBM Demos provide a set of useful videos, product tours, and hands-on labs that simplify 
and offer the ability to exercise technology without levels of investment that are required 
for local infrastructure, capital, and operating expenses. 

� Deep dive presentations by IBM and Business Partners help to orchestrate a lower-level 
discussion that describes how DVM for z/OS matches well for their environment. These 
presentations are a perfect time to uncover the primary use cases.

� Deep dive Demos by IBM and Business Partners are well equipped to demonstrate 
various functions.

� Proof of Technology

IBM has internal lab environments that can be used to demonstrate capabilities and make 
available on-Z and off-Z sources by using modern APIs, such as SQL, JSON, HTTP, and 
REST.

� Proof of Concept (POC)

Not every project requires a fully invested project plan to prove the value to the business. 
A real concept requires that the business map a project with key milestones, systems, 
data, infrastructure, and human capital to become realized.
Chapter 10. Best practices for project success 215

https://www.ibm.com/demos/asset/collection/data-virtualization-manager-for-zos


10.3  POC checklist

Any project is an investment commitment and an agreement between groups with a mutual 
goal in mind. Focus on a simple checklist to drive the concept forward that includes the 
following components:

� Clearly defined use case
� Identified sponsors
� Finances and budget
� Clear responsibilities
� Project management
� Clearly fenced milestones
� Prevent scope creep
� Compelling outcome

10.3.1  Timelines

When defining timelines for the project, consider the following best practices:

� Target 90 days maximum for proving your project.
� Use weekly checkpoints, which are critical to ensure that no issues exist.
� Keep the pulse of key stakeholders throughout the project schedule.
� Have successful milestones.

10.3.2  Setting scope

When setting scope, ensure that you adhere to the following best practices:

� Keep the project well defined.

� After engaging with IBM to set up and run a proof of technology or proof of concept, IBM 
ensures a successful engagement by capturing goals, objectives, data sources, and uses 
through a document of understanding, whose framework is shown in Figure 10-3 on 
page 218.

Remember, Scope creep is the number 1 reason why projects fail.

10.3.3  Focus

When defining the focus, keep it on track. Consider the following points:

� Focus on the business use case.
� Technology is important specific to the configuration.
� View the project entirely as a solution, not as a “product”.
216 IBM Data Virtualization Manager for z/OS



10.3.4  Success criteria

Well-defined success criteria is critical in knowing whether you accomplished what you set 
out to do. Consider the following points:

� Keep it Super Simple (KISS) is a perfect model to follow.

� Keeping the project simple in scope concisely establishes reasonable goals and timely 
closure.

� Success should not be only performance-based.

� Provide an executive summary.

10.3.5  Best practices

Consider the following best practices as you go through the proof of concept activities:

� Incorporate measures from an alternative or today’s state of business for comparison with 
DVM.

� Over-communicate the project scope and estimate the required effort.

� Avoid poorly documented DoUs, which lengthen and introduce ambiguity into the project.

� Maintain regular checkpoints to keep the project on track and heading in the right 
direction.

� Monitor performance through SMF to validate “do no harm” effects on production.

� Ensure that your data sources are accurate and current by avoiding staging or copying 
data.

� You are on track if you start with simple access and query results.

� Be flexible. If the initial use case fails, it is typically followed by other uses that have 
positive effects.

� Success can breed scope creep; therefore, stay on track and close out the current project. 

� Be sure to really rationalize the use cases. A poorly defined use case can deflate the 
project.
Chapter 10. Best practices for project success 217



As shown in Figure 10-3, an agreed framework helps to drive an overall comprehensive 
approach for a proof of concept. The agreement features specific sections that capture all 
elements from requirements, use cases, business drivers, and closing criteria.

Figure 10-3   DOU framework example

10.3.6  Roles and responsibilities

Failure to define roles and responsibilities (as listed in Table 10-1) is the downfall of any 
project. Without the “who” and the “what”, success is hard-fought. With this idea in mind, 
assign a name to each role on the project team. Identify at least one project manager and 
ideally two that complement or bridge the technical team to the respective line of business. 
With these roles assigned, the scope, project velocity, key milestones, and results are always 
visible.

Table 10-1   Roles and responsibilities

Role Responsibilities Person

Project manager 
(business)

Provide business physical and technical resources to complete 
the objectives of the POC. Facilitates scheduling of technical 
resources, timeframes, POC technical goals, and objection 
handling.

David

Use cases 
(business)

Participate and support use cases execution and evaluation. Suali

System
administration 
(business)

Responsible for DVM installation, configuration, and monitoring 
(including authentication, authorization, and network tasks).

Fred, 
Susan

Database 
administrator
(business)

IBM Db2 for z/OS experts or those team members who are 
responsible for DVM integration with Db2 for z/OS.

Ankar,
Lei Ping

Application 
developer 
(business)

Participate and support Copybook – VSAM mapping Ana, Denis, 
Francesco

Coordinator 
(technical team)

Primary customer contact Marie
218 IBM Data Virtualization Manager for z/OS



Define a detailed timeline and project plan to maintain periodic status calls and checkpoints. 
The success or failure of your project might depend on this frequency. A weekly call for 
30 minutes at a time is recommended to help speed up the resolution of issues.

10.3.7  Installation

Installation of the DVM SQL engine and administration Studio is simple and straightforward. 
IBM DVM for z/OS SMP/E installation is quick and DVM Studio is an MS-Windows 
point-and-click installation that is fast and easy.

10.3.8  Configuration

During the configuration process, consider the following tips:

� Always perform IVP sample VSAM virtualization by using DVM Studio.

� Upon start, be sure to read the DVM started task SYSOUT carefully.

� Only configure what you need:

– Change or activate only the required IN00 sections.

– JGATE does not need to be configured if no external or relational data sources are 
involved with the project.

– Db2 for z/OS does not need to be configured if it is not part of the project, regardless of 
the benefits that are realized by IDF or Db2 UDTF.

10.3.9  Architectural topology

The architectural topology (see Figure 10-4 on page 220) must be discussed with your project 
teams and up-line business owners to ensure that you have a schematic that represents 
reality. Working with Systems and IT operations team members, build out a facsimile of the 
current environment.

Project 
manager
(technical team)

Provide technical resources to complete the objectives of POC. 
Facilitates scheduling of technical resources, timeframes, and 
objection handling.

Jonathan

Product 
specialist 
(technical team)

Technical contacts providing on-site or remote technical support 
for business POC. Help to install and configure DVM and to assist 
use case execution and evaluation. Provide technical knowledge 
transfer.

Andrew, Bill

Role Responsibilities Person
Chapter 10. Best practices for project success 219



Figure 10-4   Sample topology

Also, the project team should ensure that all endpoint client access is clearly identified with 
the associated access method and data flow, including all staged and non-staged read/write 
activity.

10.3.10  Defining use cases

When defining use cases for your project, put more emphasis on functional aspects than 
performance-driven characteristics. Instances exist in which performance metrics are difficult 
to measure. 

You also want your project to be configured in a non-production environment if at all possible. 
If the number of zIIP processors is limited, DVM workloads can be run by General Processor 
engines. If performance testing is unavailable, work to ensure that your tests are measurable 
and well-defined.

Limit the number of use cases to two if possible and allow for up to two separate tests for 
each use case; for example, use two Db2 for z/OS tables and two VSAM virtual tables. 
Remember that your project is not a surrogate for production-ready development and testing.

When working with VSAM and sequential file sets, limit the scope to the number of virtual 
tables, instead of data segments, because hundreds of copybooks can exist that are 
associated with a single VSAM file. Application developers must be involved in your project 
and sample copybooks and data are the first requirement to validate the data set and 
determine any invalid data or data types.

Possible use cases include the following examples:

� Client Access: Typically, businesses focus the POC on how the DVM server can satisfy 
needs for critical business applications. They see the implementation is the primary target. 
After the technology is acquired, customers gain experience by solving lower tier business 
problems and progress toward meeting the more substantial ROI for the larger and more 
critical applications that inspired the POC.

You can shorten the testing intervals for a project by using common tools and utilities. In 
these cases, use the ODBC/JDBC SQL drivers. Also, consider the use of the DVM server 
as a complement to ETL processing by greatly improving parallelism and reducing the 
overall latency of copying subsets of transformed data to an operation store for 
downstream processing or reporting.
220 IBM Data Virtualization Manager for z/OS



� Data integration: Use a maximum of two virtual tables for extracting large data sets that 
use the JDBC driver. Consider the use of DVM for z/OS as a data pump for ETL tools.

� Read/write access: DVM for z/OS also can WRITE back to original data sources. This 
method is a good way to simulate transaction-based activity by using DVM Studio.

� IBM Cloud Pak for Data: Use the DVM connection service with DV, Watson Knowledge 
Catalog, or Watson Studio to experience the full power of IBM’s new platform architecture 
that is built for the Hybrid Cloud.

� DVM as an application server: Use DVM as an application server by way of IDF for DRDA 
access to Z data

10.3.11  Best practices for defining success criteria

When defining the success criteria for your project, consider the following best practices:

� Usability: Ease of use for DVM installation and configuration (up and running user 
experience).

� Data access by way of Studio: The ability to access, transform, and virtualize VSAM and 
sequential files, and Db2 for z/OS tables by using DVM Studio.

� Data access by way of xDBC drivers: Ability to access, transform, and virtualize VSAM 
and sequential files, and Db2 for z/OS tables.

� Handling loads or data synchronization for large amounts of data. Establish an evaluation 
of performance (sequential versus parallel) for bulk copies of data.

10.3.12  Concluding the POC

After your project completes the evaluation phase, the project should result in a clear set of 
tangible assets that speak to the original problem statement, milestones met metrics, and 
results that clearly articulate the value proposition and effect for the business.

10.3.13  Finalizing deliverables

A first step in finalizing the deliverables is to verify acceptance with your stakeholders or 
project sponsors and determine whether any extensions or more testing during deployment 
must be amended to the current agreement for the project (the DOU framework).

Create a full disclosure report and present it to key decision-makers that includes the 
following information:

� Summary of the project scope
� Clearly reemphasizes the success criteria and results obtained
� Visuals (performance charts, metrics, and so on)
� Customer user feedback (including direct quotes)

Review the report with the technical sponsors for the project before delivering it to key 
stakeholders in a larger audience. Work to ensure that all agreement details were met for the 
overall sentiment of success criteria and results.

Elements of the full disclosure report examples
On this section, we present examples of elements of the full disclosure report that give you an 
idea of how the report might be built.
Chapter 10. Best practices for project success 221



Project timeline
Figure 10-5 shows a sample project timeline, including weekly actions and results. 

Figure 10-5   Project timeline

Evaluation of critical success factors and status
Figure 10-6 shows an example of the report that highlights the success criteria and results 
obtained.

Figure 10-6   Evaluation report
222 IBM Data Virtualization Manager for z/OS



Business value
The business value of the example project is highlighted by the following goals that were 
accomplished:

� Access to combined relational and non-relational data sources on z/OS in real time for 
downstream analytics and reporting. React to business demands quickly:

– Offload VSAM data and merge with Db2 LUW data that used to take two days 
end-to-end.

– The daily summary report now occurs in real time with less than 5 minutes of 
transaction latency.

� The use of existing infrastructure, processes, and people:

– Eliminated VSAM data movement to x86 environment and save time and personal 
hours

– No extra infrastructure cost was required to access data in place, while maintaining 
SQL compatibility

� Provide real-time access for BI solutions instead of working with of outdated, inaccurate 
non-Z data:

– BI solutions and IBM Z solution can all see real-time data
– Access is fast and cost-effective
– Greater than 95% offload to zIIP processors with lowered costs

Business and sponsor quotes
Be sure to capture positive statements by business stakeholders as you progress through 
your project. The bottom line is often driven by the positive perceptions that are captured. 
TCO and savings always are critical factors in the success of a project. 

Also, performance places a critical factor, but always incorporate the user experience and 
overall usability of your solution. Collect the following types of outtakes from your project that 
and present them to the business:

� Setup is simple and straightforward for those with TSO access.

� Mainframe access was immediate.

� User experience was identical regardless of data source.

� Benefits that are derived from zIIP specialty engine offload without having to create 
special processing.
Chapter 10. Best practices for project success 223



224 IBM Data Virtualization Manager for z/OS



Appendix A. Project survey

The information and tables in this appendix help you to capture information that is related to 
your z/OS environment and workloads as it relates to processing, storage, and memory 
impacts on an environment as part of running DVM for z/OS.

This appendix includes the following topics:

� “Business drivers” on page 226
� “Virtualization topology” on page 227
� “Primary use cases” on page 227
� “Physical storage or memory” on page 228
� “Environment” on page 229
� “Access to data sources” on page 230
� “Application workloads” on page 231

A

© Copyright IBM Corp. 2021. 225



Business drivers

Data Virtualization Manager for z/OS (DVM for z/OS) delivers a virtualization architecture for 
accessing z/OS and non-z/OS data sources. It also performs transformative operations that 
translate hierarchical data formats into a relational format for SQL-based and modern 
applications to access. The program generates virtual tables and virtual views that logically 
map to files, segments, and data records that are on an IBM Z LPAR environment or 
distributed database servers.

The data virtualization service brings great value for generating shared access to “difficult to 
access and work with” data that is on IBM Z. DVM for z/OS dramatically reduces the work that 
is associated with ETL operations by allowing direct real-time access to persisted data. This 
data type represents the Source of Record for many critical business applications. 

DVM for z/OS supports z/OS and non-z/OS data sources and can deliver scalability, reliability, 
and extreme performance through its unique machine-specific optimization. DVM also 
supports read and write SQL operations in parallel by using MapReduce. 

DVM delivers zIIP-eligibility, which works to offload MIPS from General Processors that in turn 
reduce the cost for running production applications. DVM lowers total cost of ownership 
(TCO), provides high return on investment (ROI), and fast time to market (TTM), which are 
critical for driving business agility.

Service level agreements or objectives also influence infrastructure, topology, and overall 
design decisions for data virtualization needs. In many instances, downtime is an inhibitor to 
introducing new technology to a technology stack.

One of the strengths of this solution is its simple and flexible deployment of the solution, which 
is resident to the IBM Z. The program features high availability capabilities that ensure 
resiliency and improved fault tolerance when network, software, and hardware failures occur. 
It also facilitates update or refresh software functions by allowing for zero downtime for 
software refreshes or fixes.

Ask the following questions:

� What are the primary pain points for the business when it comes to accessing z/OS data?

� Is an outage acceptable for the initial setup?

� What are business requirements for application response times?

� What are business requirements around resiliency or availability of the solution if an LPAR 
ceases to function?

� What are business requirements around User, Group, and Role level security?
226 IBM Data Virtualization Manager for z/OS



Virtualization topology

The designed solution offers some strengths that allow for added simplicity and flexibility 
across your IBM-driven solutions for hybrid cloud infrastructure. The solution delivers an IBM 
Z resident installation that is straightforward with setup and installation in the order of hours, 
not days. 

DVM is IBM Z-resident software that is required for installation to a designated LPAR. Specific 
configurations that need high availability (HA) requires multiple installations and 
corresponding licenses to support failover and failback when an outage or disaster occurs.

The solution includes the flexibility to run multiple DVM servers concurrently to aid in overall 
performance. Therefore, file system requirements must be sized to support a range of DVM 
servers, based on transactions per hour and the amount of user concurrency.

Distance between the DVM servers and data sources

The distance between DVM servers that access z/OS or non-z/OS datasets should be 
considered in the planning phase for any initial installation and configuration.

Ask the following questions:

� What is the distance between IBM Z in a Sysplex that is participating in data virtualization?

� If non-local data sources are used, what is the distance between the DVM server and the 
target database server?

� What is the distance between database servers that are planned to support HA for the 
data virtualization environment?

� What is the current cross-site network bandwidth between these servers today and is that 
shared with multiple applications or dedicated?

Insufficient network bandwidth can lead to an increase in latency, which increases 
response and execution time.

� What type of network configuration is in place between existing systems that are targeted 
for data virtualization? Also, do specific requirements for security exist, such as SSL?

Primary use cases

Our data virtualization solution offers support for a range of use cases that range from shared 
access, centralized management, HA use with Disaster Recovery support through continuous 
delivery following our initial release. 

Use cases continue to surface as the data landscape changes in the market and customer 
environment. The following examples are of primary use cases in use today:

� Real-time access to disparate data across z/OS and non-z/OS data sources

� Modernize mainframe applications to enable web-based and mobile applications for 
access

� Centralize access with control to drive governance for a trusted view of all enterprise data

� Low-level data integration that enables copying data by way of SQL-based operations

� Use data virtualization as a methodology for application development and incubation of 
production-level prototypes
Appendix A. Project survey 227



� Establish a single view to drive operational and business analytics

� Forge new business models by using Machine Learning algorithms and Artificial 
Intelligence over shared data

Ask the following questions:

� Do you plan to use data virtualization for workload balancing to offload queries to one or 
more sources?

� Do you anticipate the use of data virtualization as part of your build, test, and deployment 
process for new applications through a logical Data Model that is targeted for 
development, test, or quality assurance?

� Do you plan to use data virtualization to reduce business interruption or outages that are 
caused by planned or unplanned maintenance windows? If so, what are your SLA/SLO 
ranges across multitier business applications?

Physical storage or memory

To support data virtualization processing, DVM can use more physical storage or physical 
memory to achieve the most optimal query run time or write operation. As data 
transformations, pushdown operations, JOINs, and UNIONs and functions are run, more 
resources can require specific “pre” and “post” processing of a normal operation. 

Ask the following questions:

� What is the range of daily transactional volume for virtualized data across systems that are 
targeted for replication?

� Are you open to using more zIIP processing to help in achieving your performance goals?

� Would you like to have flexibility around the number of active DVM servers processing 
read/write operations to drive improved parallelism for generalized workloads beyond local 
processing occurring independently of the DVM server?

� Would you like this to be configurable within the user interface upon initial configuration or 
as part of the management of an active data virtualization environment system while in 
production state? Is a managed outage or failover to secondary acceptable to perform this 
operation?
228 IBM Data Virtualization Manager for z/OS



Environment

Foundational to the use of DVM for z/OS is gaining and understanding of the underlying z/OS 
system, its configuration, memory, processing power, and security. Each element is critical to 
the configuration and optimization of virtualized data assets that are managed by the DVM 
server.

Hardware configuration

Specify the memory requirements as real storage that is assigned to an LPAR in Gigabytes. If 
the product is installed on more than two LAPRs, specify the largest and smallest amount of 
configurable memory that can be used.

Table A-1 can be used as a template for capturing your development, test, and production 
environments.

Table A-1   Hardware configuration

z/OS environment

Specify support software programs that are targeted for use with data virtualization. Add 
configurations by using Table A-2.

Table A-2   z/OS environment configuration

LPAR Model Number of GPPs Number of zIIPs Memory (GB) Comments

Configuration Y/N Details

Security

ENQ manager

VSAM RLS

Innovation IAM

CDC for Db2

CEC for VSAM

z/OS Connect Enterprise Edition

CICS

IBM Cloud Pak for Data
Appendix A. Project survey 229



Access to data sources

Taking inventory of the active data sets that are targeted for use with DVM for z/OS is 
important to understand. In addition to the data sources, it is important to specific the various 
client connections, types of workloads, and version levels.

Client connections to DVM for z/OS

Specify applications or client tools that access the DVM server for SQL-based read/write 
operations by using Table A-3.

Table A-3   Client connection information

Data sources

Specify the data sources that must be virtualized and available to the mainframe, Java, ETL, 
analytic, and reporting tools by using Table 4. 

Table A-4   Data sources

Product Product 
version

OS OS 
Version

REST JDBC ODBC

IBM Data Stage

IBM Query Management Facility

Informatica PowerCenter

Microsoft Excel

Microsoft Power BI

Tableau

Product Product 
version

Platform Data source Workload Platform ODBC

Adabas Oracle Cloud

Db2 distributed Netezza

Db2 for z/OS Postgres

Hadoop (Apache, 
HDP,CDH,GP)

SQL Server

IDMS Azure

IMS AWS Redshift

MongoDB Sequential files

IBM MQ SMF

MySQL SYSLOG

Oracle Teradata

Oracle Exadata VSAM or CICS/VSAM
230 IBM Data Virtualization Manager for z/OS



Application workloads

Workloads often are separated into online workload or batch workload. Online workload can 
be divided further by line of business. Active/active workload has more strict definitions. The 
active workload is a business-related definition and is the aggregation of the following items: 

� Software: A user-written application and the middleware runtime environment.

� Data: A set of related objects that feature maintained transactional consistency, and 
optionally, referential integrity constraints preserved.

� Network connectivity: One or more TCP/IP addresses or hostnames and ports (for 
example, 10.10.10.1:80).

This definition is intended to preserve the transaction consistency of the data. Data 
virtualization supports all create, retrieve, update, and delete operations that are supported 
by the underlying data sources. This support includes data type mapping, function mapping, 
and optimized transformations into virtual tables and virtual views. 

The DVM solution receives client requests, performs costing calculations and parsing 
operations to best optimize the round-trip response and execution time for a workload.

Applications can be select subsets of data or a complete data set through a subset of virtual 
tables or virtual views within or across schema. Processed workloads can have multiple 
query plans that include transform, pushdown, and JOIN operations in specific frequency and 
volume daily. These applications are critical to business operations and this solution works to 
optimize query execution and response time for requesting applications.

Ask the following questions:

� What types of application workloads are active in your environment (batch, transactional, 
ISPF, and so on)?

� Do you have a maintenance window for deploying application upgrades to the production 
system during which you take the server offline?

� Do you perform DDL operations for specific workloads or have write-intensive 
applications?

� How frequently do you delete data (and how much)? Truncate? Entire table? Subset with a 
where clause? How do you typically load data or perform bulk operations (for example, 
external table)?

� Do you use indexes or primary keys for your data models?
Appendix A. Project survey 231



Complete the table that is shown in Table A-5 for the best representation of critical workload 
types. A sample entry is provided in the first row of Table A-5. 

Table A-5   Workload information

Workload 
name

Volume of
data

Transaction 
rate

Workload
characteristics

Responsive 
objectives

Execution 
objectives

Description

Workload1
{sample}

Daily volume:
MB/TB

% annual 
growth

24-hr period
8-hr workday
Batch Load
� Frequency
� Timeframe

Avg. TXN size
Total # of Tables
% Inserts
% updates
% deletes

Seconds
Minutes
Hours
Days

Milliseconds
Seconds
Minutes
Hours

Describe workload
Concurrency
Type of queries
Columns per Table

Workload2

Workload3

Workload4
232 IBM Data Virtualization Manager for z/OS



Appendix B. Java API sample code snippet

In this appendix, we present Java API sample code snippets.

B

© Copyright IBM Corp. 2021. 233



Available metadata in the DVM server

This sample code snippet lists all available metadata in the DVM server.

This example programmer code that is shown in Figure B-1 is representative of the output for 
the included reusable code snippet.

Figure B-1   Sample output for the included reusable code snippet

The example output in Figure B-2 is representative of output that includes all available 
columns for two virtual tables over VSAM (STAFFVS) and zFS (SYSLOGD) data sources

Figure B-2   Sample output of Java code snippet with all columns
234 IBM Data Virtualization Manager for z/OS



Example B-1 shows a reusable code snippet for listing metadata.

Example B-1   Code for listing metadata

import java.sql.Statement;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Properties;

public class DVMMetadataTablesApp {
protected Properties props = new Properties(); 
protected Connection conn;
protected Statement stmt;
protected ResultSet rs;
private long start;
private DateFormat df = new SimpleDateFormat("dd.MM.yyyy  

 HH:mm:ss:SSSSSSS");
private long previousTime = start;
protected Connection getConnection() 

throws Exception {
String url = "jdbc:rs:dv:DatabaseType=DVS; Host=XXX; Port=YYY;";

props.setProperty("user", "AAA");
props.setProperty("password", "BBB");

show("----------");
show("Connecting using url ");
show("url = " + url);

  conn = DriverManager.getConnection (url, props);
  show("Connected !");
  show("----------");
  conn.setAutoCommit(false);
  return conn;
}

public static void main(String[] args) throws Exception 
{
DVMMetadataTablesApp dvmApp = new
DVMMetadataTablesApp();
dvmApp.getConnection();

for(int i=1; i <= 1; i++) {
dvmApp.show("Run " + i);
dvmApp.fetchMetadata();
dvmApp.show("");

}
dvmApp.closeAll();

}

private void show(Object msg) 
{

System.out.println(msg);
}

private void fetchMetadata() throws Exception 
{

// TODO Auto-generated method stub
start = System.currentTimeMillis();
Appendix B. Java API sample code snippet 235



log("Fetch Metadata - START", false);
DatabaseMetaData databaseMetadata = conn.getMetaData();
log("Conn.getMetaData(): " + databaseMetadata, true);
printWithCRLF("databaseMetadata=" + databaseMetadata);
String catalog = conn.getCatalog();
String schemaPattern = null;
String tableNamePattern = "%";
String[] types = null;

printWithCRLF("catalog: " + catalog + ", schemaPattern: " + schemaPattern + ", 
tableNamePattern: "+ tableNamePattern + ", types: "+ types );
ResultSet tables = databaseMetadata.getTables(catalog, schemaPattern, 
tableNamePattern, types);

printWithCRLF("tables=" + tables);
int columnCount = printHeader(tables);
int rowCounter = 0;
while(tables.next()) 

{
for(int i=1; i <= columnCount; i++) 

{
String value = tables.getString(i);
if(value == null && i == 1) 

{
value = " " + ++rowCounter + " ";
}
printWithOUTCRLF(value + " |\t");
}
printWithCRLF("");
}

log("Processed DatabaseMetaData.getTables().getColumns(). Tables:" + rowCounter + 
" Columns: " + columnCount, true);

long end = System.currentTimeMillis();
long elapsed = end - start;

log("Fetch Metadata - END. START-to-END took total " + elapsed + " ms (" + 
(elapsed/1000) + " secs).", false);

closeStatement();
}
private int printHeader(ResultSet tables) throws SQLException 
{

ResultSetMetaData resultSetMetaData = tables.getMetaData();
int columnCount = resultSetMetaData.getColumnCount();
printWithCRLF("columnCount=" + columnCount);

printWithCRLF("--------------------------------------------------");
int lineLengh = 0;
for(int i=1; i <= columnCount; i++) {

printWithOUTCRLF(resultSetMetaData.getColumnName(i) + " | ");
lineLengh += resultSetMetaData.getColumnDisplaySize(i);
}
printWithCRLF("");
for(int i=1; i <= lineLengh; i++) 

{
printWithOUTCRLF("-");
}
printWithCRLF("");
return columnCount;
}

236 IBM Data Virtualization Manager for z/OS



private void printWithCRLF(String message) 
{

System.out.println(message);
}

private void printWithOUTCRLF(String message) 
{

System.out.print(message);
}

Appendix B. Java API sample code snippet 237



238 IBM Data Virtualization Manager for z/OS



Appendix C. Troubleshooting and diagnosing

This appendix focuses on best practices for troubleshooting and diagnosis of general 
problems that are encountered with the IBM Data Virtualization Manager for z/OS (DVM for 
z/OS) technology. 

When you encounter problems with your environment or application, it is always good to know 
where to start and how to characterize the situation. This appendix focuses on initial 
assessment, must gather, and server trace practices in displaying, viewing, and gathering 
details. 

If IBM Support is required, some direction also is provided specifically to “must gather” 
materials.

For specific technical problems or an inability to procure PTFs or updated client components, 
open a problem ticket with IBM Support.

This appendix includes the following topics:

� “Initially characterizing problems” on page 240
� “Must Gather information” on page 240
� “Capturing trace browse from the DVM server ISPF panel” on page 241
� “Search Techdocs for answers” on page 248

C

© Copyright IBM Corp. 2021. 239



Initially characterizing problems

Suitable context around the environment, configuration, accessing applications, and active 
workloads are critical to determining the severity of a problem and tracking down its 
resolution. 

The following questions are useful to assess the problem and overall context:

� Is this a new or existing application?
� Has anything changed in the environment, application, or configuration?
� If failure occurred, what is the display or recorded message?
� Did the problem result in a down or unproductive system? 
� Did the problem occur in a Test, Development, QA, or Production environment?
� Is the problem encountered delaying a production deployment? 
� What is the timeframe for a resolution to your problem?
� Can you reproduce the problem and capture output to support your experience? 
� If your problem can be reproduced, can you provide the exact steps for reproduction?
� Can sample SQL or source code that affects the problem be provided?

Must Gather information

If you are unsuccessful in searching available Techdocs for your problem, you can gather 
more information about your environment, application, and the behavior that was experienced 
and start a problem ticket with IBM Support.

DVM for z/OS version

IBM distributes and supports version 1.1.0 of DVM for z/OS.

High Module date

Provide a complete copy of your DVM server JOBLOG. This file contains the following 
information and more, which helps the IBM support team. The job log is a record of 
job-related information for the programmer, as shown in the following example:

AVZ0340I SVFXLevel = 2016/02/18 13:40:50 SVFX0000 01.01.00
AVZ0340I High module OPTPIN assembled at: 2016/02/18 13.40 

PTF Level

The PTF level can be found that uses the sample job that is shown in Example C-1.

Example C-1   Sample job to get PTF level

//GIMSMP   EXEC PGM=GIMSMP,REGION=0M              
//SMPCSI   DD  DISP=SHR,DSN=<HLQSMP>.GLOBAL.CSI   
//SMPLOG   DD  DUMMY                              
//SMPOUT   DD  SYSOUT=*                           
//SMPCNTL  DD  *                                  
    SET BDY(<TGTZONE>) .                          
    LIST  SYSMODS  XREF .                         
/* 
240 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/support/producthub/db2/resources/techdocs


Operating system

Provide the following information about the operating system:

� Level of z/OS in use
� IBM Z architecture that is in use (for example, z13, z14, or z15)

DVM server environment

Provide the following information about the DVM server environment:

� Client operating system where DVM Studio is installed
� Version of Microsoft Windows and whether the workstation is 32-bit or 64-bit
� Build version of DVM Studio
� Version of JDBC or ODBC driver in use

Capturing trace browse from the DVM server ISPF panel

Trace Browse is a facility in which the DVM server logs critical events that can be viewed to 
help diagnose, debug, and correct problems that are encountered with the configuration or 
execution of the solution. 

The trace adds records to a trace buffer that is maintained in virtual storage. When a session 
completes, the trace records are automatically saved in a VSAM data set. 

Capturing a copy of the Trace Browse

DVM for z/OS has one principle mechanism for diagnostics and troubleshooting. During the 
initial configuration of the DVM server, the system administrator is prompted to designate a 
data set for traces. The traces can be viewed from the DVM server ISPF panel or the desktop 
DVM Studio.

The trace is accessed from menu selection B in the ISPF interface, as shown in Figure C-1.

Figure C-1   Selecting Server Trace from the DVM server ISPF panel
Appendix C. Troubleshooting and diagnosing 241



With the cursor in the Option prompt, press F1 to see an inline tutorial for Server traces, as 
shown in Figure C-2.

Figure C-2   Server Trace inline tutorial

Paging through the tutorial displays DISPLAY, LOCATE, FIND, RFIND, and PROFILE. 
Double-clicking any of these words ZOOMs into details for the command. For example, select 
DISPLAY to see more information about that command, as shown in Figure C-3.

Figure C-3   ZOOM on display
242 IBM Data Virtualization Manager for z/OS



Displaying and viewing server traces

Server trace information can be viewed and printed from the ISPF interface and DVM Studio.

Using the ISPF panel to display and view the server trace
Entering 1 at the command prompt in the Server Trace ISPF panel displays the latest Server 
Trace that was written, as shown in Figure C-4.

Figure C-4   Server trace display

Complete the following steps:

1. Connect to the DVM ISPF panel.

2. Select B (Server Trace).

3. On the command line, run the following command and press Enter:

D MSGNO T CNID

4. Print a block of the trace by entering SS over the MSGNO column from the lines to copy 
from and SS over the MSGNO column for where to copy to, and then, press Enter. 

The printed block of the trace is written to the ISPF list data set.

5. Run the LIST command from the command line and specify option 3 to keep the listed data 
set and allocate a new one.

6. Terse the trace data set and attach it to your problem ticket.

The display shows the timestamp for the trace record without the date the trace record was 
written. Running the following command at a command-line prompt displays date and time in 
DDMMM HH:MM:SS format, as shown in Figure C-5:

D DATE TIME

Figure C-5   Server trace display with date and time
Appendix C. Troubleshooting and diagnosing 243



This panel in the Server Trace Facility shows summary steps that are being traced. 
Double-clicking any line in this view ZOOMs into the capture for the specific record. The 
example in Figure C-6 shows processing an SQL statement with associated detail 
information.

Figure C-6   Server Trace display with detail for SQL statement

This type of Server Trace information is helpful when working with IBM Support. At times, the 
system administrator might need to capture a Server Trace for a specific situation that 
occurred or can be re-created in a separate environment and send it for further analysis.

Capturing and printing server trace output

To capture and print the server trace output, the administrator must export the trace to a data 
set by completing the following steps:

1. From the Server Trace Command prompt, enter the following command and press Enter:

D MSGNO T TCB

2. Enter PP over the displayed MSGNO column for the start line of the block to copy and PP 
over the MSGNO column for the last line of the block to copy.

3. Run the LIST command from the Server Trace command prompt.

4. Specify option 3 to keep the list data set and allocate a new one.

5. Download the list data set and attach the file to your IBM Support problem ticket.

Tip: Capturing more lines before and after the problem error as a good practice. 
Substitute SS for PP for zoomed trace to get all of the underlying content you get by 
double-clicking.
244 IBM Data Virtualization Manager for z/OS



Using DVM Studio to display and view a server trace

Chapter 7, “Managing and monitoring” on page 131 describes how to use DVM Studio to 
display, view, capture, and export Server Trace information. 

Using DVM Studio to diagnose SQL results

A more accessible form of debugging is in the SQL Results tab and the Console View. This 
example includes a stray key stroke in the SQL that makes the virtual table name invalid, as 
shown in the SELECT statement in Figure C-7. This issue results in the SQL error attempting 
to run the statement.

Figure C-7   SQL results error message from the SQL tab

The SQL results show the error Unable to process map ASTAFFVS. Also of interest to IBM 
Support and developers is the version number of the JDBC driver: 

[DV][JDBC Driver][3.1.201912091012] 

The console provides more detailed messaging, as shown in Figure C-8.

Figure C-8   Detailed message from the Console
Appendix C. Troubleshooting and diagnosing 245



In the event, the Console View is closed. Click Show View → Other. Entering the first few 
letters of Console displays the icon as a selection for the console that can be selected to 
continue diagnosis, as shown in Figure C-9.

Figure C-9   Show View input field

Consolidating server trace over multiple DVM servers

This section focuses primarily on a single DVM server subsystem for working with Server 
Trace. However, when multiple DVM servers are participating in a single LPAR, across 
LPARs, or part of a Sysplex, the settings can be adjusted in the IN00. This feature helps the 
administrator centralize all DVM subsystem server traces to a single repository so that 
analysis and troubleshooting can be performed more easily.

This process is done by enabling the DVM Instrumentation Server in the IN00 file, as shown 
in Figure C-10.

Figure C-10   Edit the INOO file to enabled the DVM Instrumentation Server (SIS)
246 IBM Data Virtualization Manager for z/OS



Customize the server trace to enable the Instrumentation Server (SIS) by defining the 
parameters from Figure C-11 for the JCL shown in Figure C-10 on page 246. 

Figure C-11   Add code to define the SISXCF server

Figure C-12 shows an example of combining the logs from two different LPARS. The fields 
inside the IF statements are used to identify which records come from each LPAR.

Figure C-12   Combined Server Trace logs from two DVM servers over two LPARs

Figure C-13 shows combined Server Trace output for both DVM servers. RS28AVZ1BERT is 
one LPAR, RS22AVZ1ERNIE is a second LPAR, and SISLOCALRS28 is the local DVM 
server for the present environment.

Figure C-13   Server Trace output for both DVM servers
Appendix C. Troubleshooting and diagnosing 247



Search Techdocs for answers

Answers to many problems can be found on the IBM Support website.

Entering keywords into the search field always is the first recommendation when you 
encounter a problem in your running environment. 

Over 150 Techdocs about DVM for z/OS are available that can assist in solving your technical 
issue before an IBM Support problem ticket is opened, as shown in Figure C-14.

Figure C-14   IBM Support website

Table 1 lists frequently encountered problems when first starting to work with DVM for z/OS. 
This shortlist represents topics that are available by searching the web. Links to these 
Technotes can be found in the Troubleshooting and Diagnosis Technote.

Table C-1   Popular DVM for z/OS Technotes

Category Technotes

Data How to control the number of rows returned on a SQL query using the Data Virtualization 
Manager ODBC driver?

SSL � How to resolve the "Communication link broken" and "Invalid HTTP headers - NETWORK 
I/O ERROR" error when setting up server only SSL with Data Virtualization ODBC Drivers

� Setting up Driver when using an SSL certificate to access Data Virtualization Manager

JDBC Gateway server � JGATE running on UNIX System Services gets "Undefined Error" when connecting to 
Oracle

� How to launch JGate as a started task?
� Change JGATE Memory Size on Startup
� How to connect from JGate to other databases using TLS1.2
248 IBM Data Virtualization Manager for z/OS

https://www.ibm.com/support/home/
https://www.ibm.com/support/pages/troubleshooting-and-diagnosis


Also, DVM for z/OS includes a new IBM Community that is available to submit questions, 
download sample videos, and so on. IBM also produces IBM demonstrations that can help 
introduce new users to the product through demos, product tours, and hands-on labs:

� IBM Data Virtualization Manager for z/OS Community 

A valid IBM user ID and password is required to log in to the IBM DVM Community for 
access to various resources, white papers, videos, and so on, to learn more about 
different uses of the technology and interact with other community members.

� IBM Demos for IBM Data Virtualization Manager for z/OS 

Performance Db2 Performance in DVM

Load balance 
configuration

� Load Balance and Failover of CICS Regions
� How to configure TCP/IP shareportwlm for Server load balancing

DVM Studio � Failure to export configuration

Server trace � How to eliminate XTX messages to be written to Server Trace browse
� How to send messages from a Natural program to Trace Browse using ACI API

z/OS Connect Service 
Provider logging

z/OS Connect Service Provider Logging Control

Service ISPF activity 
display

How to Enable/Populate “Interval Activity” (Option F.1) in Data Virtualization Server ISPF panel

Others � Unable to connect to the DVM server from DVM Studio
� How to connect the JDBC Gateway to relational databases
� Encountering a syntax error when creating a Virtual Table (sample program to resolve)
� Hints on determining whether the DVM server is configured for z/OS (most popular)

Category Technotes
Appendix C. Troubleshooting and diagnosing 249

https://community.ibm.com/community/user/hybriddatamanagement/communities/community-home?CommunityKey=b38bef70-6814-4ee9-9a5d-a36ff4f9be2f
https://www.ibm.com/demos/?filter=ibm%20data%20virtualization%20manager%20for%20z%2Fos&search=data%20virtualization%20manager
https://www.ibm.com/demos/?filter=ibm%20data%20virtualization%20manager%20for%20z%2Fos&search=data%20virtualization%20manager


250 IBM Data Virtualization Manager for z/OS



(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 Data Virtualization M

anager for z/OS







ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738459984

SG24-8514-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Protecting your investment by using IBM Z technology
	1.2 Why DVM for z/OS in modernization?
	1.3 Why is today different?
	1.4 What does the market offer today?
	1.5 What can you do?
	1.6 Resolving the data latency gap through data virtualization
	1.7 DVM for z/OS
	1.8 IBM Cloud Pak for Data
	1.9 Unlock enterprise data for virtually any application
	1.10 Why and when should you consider DVM for z/OS

	Chapter 2. Architecture and implementation
	2.1 Reference architecture for DVM for z/OS
	2.2 Technical components
	2.3 SQL engine and query optimization
	2.3.1 Query processing by SQL engine
	2.3.2 WHERE predicate PUSHDOWN
	2.3.3 Join processing
	2.3.4 Referential integrity
	2.3.5 Virtual Parallel Data
	2.3.6 Flatten arrays

	2.4 Metadata repository
	2.4.1 DVM catalog tables

	2.5 Parallel processing through MapReduce
	2.6 z/OS resident optimization
	2.7 zIIP eligibility and data compression
	2.8 DVM Studio
	2.9 Integrated DRDA Facility
	2.9.1 Peer-to-peer configuration
	2.9.2 Db2 Information Hub

	2.10 DVM endpoint connections
	2.10.1 Drivers
	2.10.2 DVM Parser and Data Mapping Facility
	2.10.3 DS-Client API interface
	2.10.4 z/OS Connect Enterprise Edition
	2.10.5 Java Database Connectivity Gateway
	2.10.6 Connection and port security

	2.11 Summary

	Chapter 3. Installation and configuration
	3.1 Installation overview
	3.2 Creating the DVM server data sets
	3.3 Setting up the security application
	3.4 Configuring the Workload Manager
	3.5 Authorizing the program LOAD library
	3.6 Creating a backup of the product libraries
	3.7 Configuring support for the DBCS system
	3.8 Customizing the DVM server for access to databases
	3.8.1 Customizing the relational database
	3.8.2 IMS database customization
	3.8.3 Adabas customization
	3.8.4 Configuring the started task JCL
	3.8.5 Configuring the Command List

	3.9 Verifying the installation

	Chapter 4. Connecting to z/OS data sources
	4.1 Introduction
	4.2 Getting started
	4.3 Direct access to z/OS databases
	4.3.1 ADABAS

	4.4 Db2 for z/OS
	4.4.1 Db2 for z/OS access options

	4.5 IBM ESA/IMS database
	4.5.1 IMS database control
	4.5.2 IMS Direct
	4.5.3 IMS Open Database Access
	4.5.4 Configuring IMS
	4.5.5 Creating virtual tables
	4.5.6 Enabling IMS Direct

	4.6 Accessing mainframe files
	4.6.1 VSAM
	4.6.2 System and operations logging
	4.6.3 Delimited file data sets
	4.6.4 System Management Facility
	4.6.5 Db2 unload data sets


	Chapter 5. Connecting to non-Z data sources
	5.1 Introduction
	5.1.1 Standard access to data sources
	5.1.2 Distributed Relational Database Architecture

	5.2 Accessing non-z/OS data sources by using the JDBC Gateway server
	5.2.1 Setting up the JDBC Gateway server
	5.2.2 Installing the JDBC Gateway server
	5.2.3 Running JDBC Gateway server by using UNIX System Services
	5.2.4 Managing JDBC Gateway server software upgrades
	5.2.5 Starting the JDBC Gateway server that uses administrative UI
	5.2.6 Configuring data sources that use the JDBC Gateway server UI
	5.2.7 Configuring the DVM server to access the JDBC Gateway server
	5.2.8 Setting user credentials for the JDBC Gateway server
	5.2.9 Establishing secure access using AVZDRATH
	5.2.10 User access that uses rules
	5.2.11 Using rules to ensure global user authorization
	5.2.12 Connecting to a JGATE Data Source in DVM Studio
	5.2.13 Secure access that uses AVZDRATH


	Chapter 6. Access methods
	6.1 Interface methods for client access
	6.2 Standard access
	6.2.1 JDBC/ODBC (including security or Kerberos)
	6.2.2 ODBC (including security or Kerberos)
	6.2.3 Java application programming interface

	6.3 DS Client
	6.3.1 CICS and other TXN or workload balancers
	6.3.2 Using Data Virtualization Manager in a COBOL program

	6.4 REST and SOAP Web service interfaces
	6.4.1 IBM z/OS Connect Enterprise Edition
	6.4.2 Configuring the DVM server for use with z/OS Connect
	6.4.3 Installing the DVM Service Provider
	6.4.4 Creating zCEE RESTful APIs for access to the DVM server
	6.4.5 Db2 Query Management Facility API

	6.5 Integrated Data Facility for mainframe applications
	6.5.1 DVM server subsystem in the Db2 communications database
	6.5.2 Use cases
	6.5.3 Choosing Db2 UDTF or IDF

	6.6 Db2 for z/OS UDTF
	6.7 Db2 federation
	6.8 IBM Cloud Pak for Data
	6.8.1 Cloud Pak for Data interface and adding a DVM connection
	6.8.2 Previewing data from your newly connected DVM server


	Chapter 7. Managing and monitoring
	7.1 Accessing the ISPF interface
	7.1.1 DVM server ISPF panel
	7.1.2 Creating virtual tables in the ISPF interface
	7.1.3 ISPF interface and IBM Parallel Sysplex

	7.2 DVM Studio
	7.2.1 Navigator wizard
	7.2.2 DVM Studio perspectives and views
	7.2.3 Common tools
	7.2.4 More menu options
	7.2.5 Using DVM Studio to virtualize IMS data segments

	7.3 Batch interface
	7.3.1 Creating a virtual table with the batch interface
	7.3.2 Migrate virtual tables with the batch interface
	7.3.3 Querying virtual tables with the batch interface

	7.4 API interface
	7.4.1 API interface purpose
	7.4.2 Calling the API interface
	7.4.3 API functions
	7.4.4 API interface and DVM Studio

	7.5 Metadata

	Chapter 8. Performance tuning and query optimization
	8.1 Introduction
	8.2 Combined GP and zIIP consumption
	8.3 Parallel I/O and MapReduce
	8.4 Virtual Parallel Data
	8.4.1 Using VPD groups
	8.4.2 Example
	8.4.3 Considerations and limits

	8.5 Workload management
	8.5.1 Configuring WLM for the DVM server
	8.5.2 Working with multiple DVM servers
	8.5.3 Load balancing with CICS regions
	8.5.4 Db2-Direct and IMS-Direct
	8.5.5 Java Database Connectivity performance

	8.6 ODBC performance
	8.7 Integrated Data Facility and DS Client API
	8.8 Query optimization and performance
	8.8.1 SQL best practices
	8.8.2 Performance testing with Apache JMeter
	8.8.3 Performance testing by using the Command Line Tester


	Chapter 9. Capacity planning and deployment
	9.1 Capacity planning
	9.2 Monitoring workloads
	9.2.1 Monitoring capacity with SMF records
	9.2.2 Monitoring performance by using SMF Record 249 Subtype 06
	9.2.3 Monitoring by using DVM ISPF panels

	9.3 Capacity planning for future growth
	9.3.1 Customer example
	9.3.2 General recommendations

	9.4 Scaling for growth with the DVM server
	9.4.1 Memory consumption
	9.4.2 zIIP processing
	9.4.3 Use of MapReduce for parallelism
	9.4.4 Performance differences by access method

	9.5 Workload balancing
	9.6 User concurrency
	9.7 Best practices for deploying the DVM server
	9.7.1 Data sources
	9.7.2 Naming conventions

	9.8 Developing queries
	9.8.1 Creating virtual tables
	9.8.2 Combining data from different data sources
	9.8.3 Creating a query
	9.8.4 Testing
	9.8.5 Embedding your query in an application

	9.9 Administering the DVM server in production
	9.9.1 Limiting access to the DVM server
	9.9.2 High availability configurations


	Chapter 10. Best practices for project success
	10.1 Defining successful projects
	10.2 Defining the approach
	10.3 POC checklist
	10.3.1 Timelines
	10.3.2 Setting scope
	10.3.3 Focus
	10.3.4 Success criteria
	10.3.5 Best practices
	10.3.6 Roles and responsibilities
	10.3.7 Installation
	10.3.8 Configuration
	10.3.9 Architectural topology
	10.3.10 Defining use cases
	10.3.11 Best practices for defining success criteria
	10.3.12 Concluding the POC
	10.3.13 Finalizing deliverables


	Appendix A. Project survey
	Business drivers
	Virtualization topology
	Distance between the DVM servers and data sources

	Primary use cases
	Physical storage or memory
	Environment
	Hardware configuration
	z/OS environment

	Access to data sources
	Client connections to DVM for z/OS
	Data sources

	Application workloads

	Appendix B. Java API sample code snippet
	Available metadata in the DVM server

	Appendix C. Troubleshooting and diagnosing
	Initially characterizing problems
	Must Gather information
	DVM for z/OS version
	High Module date
	PTF Level
	Operating system
	DVM server environment

	Capturing trace browse from the DVM server ISPF panel
	Capturing a copy of the Trace Browse
	Displaying and viewing server traces
	Capturing and printing server trace output
	Using DVM Studio to display and view a server trace
	Using DVM Studio to diagnose SQL results
	Consolidating server trace over multiple DVM servers

	Search Techdocs for answers

	Back cover

