
Redbooks

In partnership with
IBM Skills Academy

Front cover

Developing Node.js
Applications on IBM Cloud

Ahmed Azraq

Mohamed Ewies

Ahmed S. Hassan

International Technical Support Organization

Developing Node.js Applications on IBM Cloud

December 2017

SG24-8406-01

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (December 2017)

This edition applies to IBM SDK for Node.js.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . viii
Comments welcome. ix
Stay connected to IBM Redbooks .x

Chapter 1. Developing a Hello World Node.js app on IBM Cloud 1
1.1 Getting started. 2

1.1.1 Objectives . 2
1.1.2 Prerequisites . 2
1.1.3 Expected results . 3

1.2 Architecture . 4
1.3 Step-by-step implementation . 4

1.3.1 Set up your IBM Cloud account . 4
1.3.2 Log in to your IBM Cloud account . 7
1.3.3 Create the Node.js application on IBM Cloud . 8
1.3.4 Enable continuous delivery by using toolchain . 10
1.3.5 Create a Hello World Node.js server. 14
1.3.6 Add a module to the Node.js application . 21
1.3.7 Stop the application . 25

1.4 Exercise review . 25

Chapter 2. Understanding asynchronous callback . 27
2.1 Getting started. 28

2.1.1 Objectives . 28
2.1.2 Prerequisites . 28
2.1.3 Background. 28
2.1.4 Expected results . 29

2.2 Architecture . 30
2.3 Step-by-step implementation . 31

2.3.1 Log in to your IBM Cloud account . 31
2.3.2 Create the Node.js application on IBM Cloud . 31
2.3.3 Enable continuous delivery . 33
2.3.4 Integrate the Node.js app with the Watson Language Translator service. 35
2.3.5 Access the Language Translator service from the Node.js app 41
2.3.6 Access the Language Translator service through a Node.js module 46
2.3.7 Stop the application . 52

2.4 Exercise review . 52

Chapter 3. Creating your first Express application . 53
3.1 Getting started. 54

3.1.1 Objectives . 54
3.1.2 Prerequisites . 54
3.1.3 Expected results . 54

3.2 Architecture . 56
© Copyright IBM Corp. 2017. All rights reserved. iii

3.3 Step-by-step implementation . 57
3.3.1 Log in to your IBM Cloud account . 57
3.3.2 Create the Node.js application on IBM Cloud . 58
3.3.3 Create the Hello World Express application . 62
3.3.4 Create a simple HTML view and organize the code . 67
3.3.5 Integrate with Watson Natural Language Understanding service 74
3.3.6 Deploy the application and run it. 81

3.4 Exercise review . 88

Chapter 4. Building a rich front-end application by using React and ES6 89
4.1 Getting started. 90

4.1.1 Objectives . 90
4.1.2 Prerequisites . 90
4.1.3 Background concepts . 90
4.1.4 Expected results . 97

4.2 Architecture . 98
4.3 Step-by-step implementation . 99

4.3.1 Log in to IBM Cloud . 99
4.3.2 Clone the Express application from Git by using the Delivery Pipeline. 100
4.3.3 Create your first React page . 106
4.3.4 Add a dynamic form to the page . 110
4.3.5 Add more components to the form . 115
4.3.6 Using the Fetch API to call the Node.js author service . 121

4.4 Exercise review . 124

Appendix A. Additional material . 127
Locating the material on GitHub. 127

Related publications . 129
IBM Redbooks . 129
Online resources . 129
Help from IBM . 129
iv Developing Node.js Applications on IBM Cloud

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Global Business Services®
IBM®

IBM Watson®
Redbooks®

Redbooks (logo) ®
Watson™

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
vi Developing Node.js Applications on IBM Cloud

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication explains how to create various applications based on
Node.js, and deploy and run them on IBM Cloud. This book includes the following exercises:

� Develop a Hello World application in Node.js on IBM Cloud
� Use asynchronous callback to call an external service
� Create an Express application
� Build a rich front-end application by using React and ES6

During these exercises, you will perform these tasks:

� Create an IBM SDK for Node.js application.
� Write your first Node.js application.
� Deploy an IBM SDK for Node.js application on an IBM Cloud account.
� Create a Node.js module and use it in your code.
� Understand asynchronous callbacks and know how to use it to call an external service.
� Understand IBM Watson™ Language Translator service.
� Create a Hello World Express application.
� Create a simple HTML view for your application.
� Understand Express routing.
� Use third-party modules in Node.js.
� Understand IBM Watson® Natural Language Understanding service.
� Use a Git repository on IBM Cloud DevOps services.
� Understand Delivery Pipeline.
� Understand how to clone an IBM Cloud application.
� Use React to create interactive web pages.
� Understand the following concepts of ES6: Classes, arrow functions, and promises.

This book is for beginner and experienced developers who want to start coding Node.js
applications on IBM Cloud.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Ahmed Azraq is a Cloud Solution Leader in IBM Egypt. He has recently joined the Global
IBM Cloud Services and Solutioning, East Hub organization. His primary responsibility is to
help clients across the Middle East and Africa (MEA) and Asia Pacific to adopt IBM Cloud and
IBM Watson. Since joining IBM in 2012, Ahmed has worked as a technical team leader, and
architect in the IBM MEA Client Innovation Center, which is part of IBM Global Business
Services® (GBS). Ahmed has several professional certifications, including Open Group IT
Specialist, IBM Certified Solution Advisor - Cloud Reference Architecture, IBM Certified
Application Developer - Cloud Platform, Java EE, IBM Business Process Manager, Agile
development process, and IBM Design Thinking. Ahmed has delivered training on IBM Cloud,
DevOps, hybrid cloud Integration, Node.js, and Watson APIs to IBM clients, IBM Business
Partners, university students, and professors around the world. He is the recipient of several
awards, including Eminence and Excellence Award in the IBM Watson worldwide competition
Cognitive Build, the IBM Service Excellence Award for showing excellent client value
behaviors, and knowledge-sharing award.
© Copyright IBM Corp. 2017. All rights reserved. vii

Ahmed has authored several IBM Redbooks publications, including Building Cognitive
Applications with IBM Watson Services: Volume 2 Conversation, SG24-8394, and Essentials
of Cloud Application Development on IBM Bluemix, SG24-83742.

Mohamed Ewies is a Certified Expert IT Specialist and IBM Certified Application Developer
for Cloud Platform. He has 12 years of experience in developing enterprise applications in
IBM Application Middleware Software. He worked as an Application Architect and Technical
Team Lead on several large-scale projects. His technical experience includes Java EE,
Web/Portal, Cloud, and Application Integration development. He worked on the architecture
and implementation of several web applications and proofs of concept on IBM Cloud.

Ahmed S. Hassan has over 11 years experience in information technology. He worked as
software developer and integration engineer for many projects in different industries, including
electronic design automation, electronic payment, telecommunications, and travel and
transportation. Ahmed is an IBM Certified Cloud Application Developer.

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.

Thanks to the following author of the previous edition of this book:

Ahmed E. Marzouk
IBM Client Innovation Center, IBM Egypt

Thanks to the following people for their contributions to this project:

Andrea Emliani
Ossama Hakim
Juan Pablo Napoli
Denny Punnoose
IBM Skills Academy

Aya A. Fathy
Global Business Services, IBM Egypt

Khaled Sallam
Global Business Services, IBM Egypt

Uzma Siddiqui
IBM Hybrid Cloud, IBM US

Arlemi Turpault
IBM Digital Business Group, IBM UK

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
viii Developing Node.js Applications on IBM Cloud

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface ix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
x Developing Node.js Applications on IBM Cloud

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Developing a Hello World Node.js
app on IBM Cloud

IBM SDK for Node.js provides a stand-alone JavaScript runtime and server-side JavaScript
solution for IBM platforms. It provides a high-performance, highly scalable, event-driven
environment with non-blocking I/O that is programmed with the familiar JavaScript
programming language. The IBM SDK for Node.js is based on the Node.js open source
project.

The Eclipse Orion Web IDE is a web-based, integrated development environment (IDE)
where you can create, edit, run, debug, and perform source-control tasks. You can
seamlessly move from editing to running, submitting, and deploying.

In this chapter, you install the IBM SDK for Node.js on an IBM Cloud account. You develop a
Node.js-based server application (by using the Eclipse Orion Web IDE) that responds to web
browser requests.

This chapter contains the following topics:

� Getting started
� Architecture
� Step-by-step implementation
� Exercise review

1

© Copyright IBM Corp. 2017. All rights reserved. 1

1.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

1.1.1 Objectives

Web developers write JavaScript applications to add interactivity to client-side web
applications. As an interpreted scripting language, developers do not need to use compilers
to write applications. The syntax of the programming language is simple enough for web
developers with little programming experience to write simple applications.

IBM SDK for Node.js uses the JavaScript programming language for server-side applications.
Instead of running scripts in a web browser, the node application interprets and runs
JavaScript applications on a server. Node.js works on an event-driven model, which means it
responds to events through callback functions that Node.js calls when an operation
completes.

By completing the steps in this chapter, you install the IBM SDK for Node.js on an IBM Cloud
account. You develop a server application that responds to web browser requests.

By the end of this chapter, you should be able to accomplish these objectives:

� Create an IBM SDK for Node.js application.
� Write your first Node.js application.
� Deploy an IBM SDK for Node.js application on an IBM Cloud account.
� Create a Node.js module and use it in your code.

1.1.2 Prerequisites

Before you start, be sure that you meet these prerequisites:

� A valid email account

� A workstation that has these components:

– Internet access

– Web browser: Google Chrome or Mozilla Firefox

– Operating system: Linux, Mac OS, or Microsoft Windows
2 Developing Node.js Applications on IBM Cloud

1.1.3 Expected results

The expected result of this exercise is to have a running Node.js application on IBM Cloud, as
shown in Figure 1-1.

Figure 1-1 Expected results: Node.js app

This application is developed by using Eclipse Orion Web IDE. Eclipse Orion Web IDE is a
web-based IDE where you can create, edit, run, debug, and perform source-control tasks.

The Web IDE is part of the IBM Cloud continuous delivery toolchains. Figure 1-2 shows the
code.

Figure 1-2 Expected results: Node.js code

The application’s scope is to show a Hello NodeJS! message in the web browser for the user.
It will also show the current system date by using a custom Node.js module that you will
develop in this exercise. The output is shown in Figure 1-3.

Figure 1-3 Expected results: Hello NodeJS! message and system date and time
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 3

1.2 Architecture

The architecture of the Node.js Hello World app is shown in Figure 1-4.

Figure 1-4 Architecture

The following steps explain the sequence of interactions between the components that are
used in the exercise:

1. The user accesses the web application in a web browser through a URL provided by IBM
Cloud.

2. The web browser sends the HTTP request to the deployed Node.js app in IBM Cloud.

3. The Node.js app listens to the incoming request and responds with a Hello World
message that includes the current date and time.

4. The web browser shows the received message to the user.

1.3 Step-by-step implementation

This section describes how to implement the Hello World Node.js app.

1.3.1 Set up your IBM Cloud account

Register with IBM Cloud by providing a valid, unique email address. Your email address acts
as your user name for IBM Cloud, and you provide a password of your choice. When you sign
up to IBM Cloud, you are prompted for your demographic information (such as your name and
company). An email is sent to the email account that you provide in the registration to confirm
that your email account is valid and active.

Public network IBM Cloud network

2

3

Send the HTTP request

Respond with the HelloWorld message
appended with the current date time

1

4

Request the HelloWorld App

Respond with the text

User APPLICATION LOGIC
ON NODE.JS RUNTIME

Web Browser
4 Developing Node.js Applications on IBM Cloud

Complete these steps to set up your IBM Cloud account:

1. Open the IBM Cloud console at http://bluemix.net.

2. Click Create a free account. You are presented with a page similar to Figure 1-5.

Figure 1-5 IBM Cloud Sign up pane

Important note: Select United States for Country or Region. The exercises in this
course were developed and tested in the IBM Cloud US South region. You must select
United States to ensure that you create the resources in the US South region to be
consistent with the services that are used during course development. IBM Cloud
assigns you a region that is nearest to the country or region that you specify in your
registration form.

If you are physically located in a country that is closer to an IBM Cloud region other than
the US South, the closest region might be selected when you log in. Every time you log
in to IBM Cloud, check that the US South region was selected and, if not, switch the
region to US South.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 5

http://bluemix.net

3. Complete the form with your personal information. Note that you must use a valid email
address for this course because IBM Cloud sends you an email to verify your account.

4. Click Create Account. You are redirected to a page that looks similar to Figure 1-6. Close
the page.

Figure 1-6 Email sent confirmation page

5. Check your email at the email account that you used to sign up to IBM Cloud. You will
receive an email similar to the one shown in Figure 1-7.

Figure 1-7 Confirm your account
6 Developing Node.js Applications on IBM Cloud

6. Click Confirm Account. A page opens that explains that you have now activated your IBM
Cloud account.

7. Close this browser or browser tab. You may proceed to the next step.

The page that confirms that your account was activated also includes a Log in link. Instead of
following this Log in link, open a new browser window to experience the regular login to IBM
Cloud.

1.3.2 Log in to your IBM Cloud account

Log in to your IBM Cloud account by completing these steps:

1. Open your web browser, enter the following web address, and press Enter:

https://bluemix.net

2. The IBM Cloud login page opens (Example 1-8). Click Log in and provide your
authentication credentials.

Figure 1-8 IBM Cloud login
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 7

https://bluemix.net

1.3.3 Create the Node.js application on IBM Cloud

Create the Node.js app by using the SDK for Node.js runtime on IBM Cloud by completing
these steps:

1. In the IBM Cloud Dashboard, click Create resource (Figure 1-9).

Figure 1-9 Creating the application

2. The IBM Cloud Catalog page opens. It lists the infrastructure and platform resources that
can be created in IBM Cloud. Scroll down to the Cloud Foundry Apps section under
Platform and click SDK for Node.js (Figure 1-10).

Figure 1-10 IBM Cloud catalog
8 Developing Node.js Applications on IBM Cloud

3. In the App name field, enter vy102-XXX-nodejs. Replace XXX by three random characters
that become your unique key (Figure 1-11). You will be using this unique key in the naming
convention of this exercise.

The Host name field is automatically populated with the same value as the app name.

Keep the default values for the other fields.

In the Pricing Plans section, select 128 MB.

Click Create.

Figure 1-11 Creating the Node.js app

4. The Getting started page for the created application opens (Figure 1-12). The status for
vy102-XXX-nodejs is shown as Starting until the application runs. Wait until the status
changes to This app is awake (for IBM Cloud Lite accounts) or Running (for non-IBM Lite
accounts).

Figure 1-12 Created Node.js App

Note: If you are physically located in a country that is closer to an IBM Cloud region
different from the US South, the closest region might be selected when you log in.
Every time you log in to IBM Cloud, check that the US South region was selected and, if
not, switch the region to US South.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 9

1.3.4 Enable continuous delivery by using toolchain

The Getting started page of your app shows instructions for accessing your app through the
command-line interface (CLI). However, in this exercise, you use continuous delivery.

Enable continuous delivery for the Node.js app by completing these steps:

1. Click Overview on the left pane, scroll down to the Continuous delivery tile, and then click
Enable (Figure 1-13).

Figure 1-13 Enabling continuous delivery
10 Developing Node.js Applications on IBM Cloud

2. A new Continuous Delivery Toolchain tab opens. This toolchain includes tools to develop
and deploy the application.

The Toolchain Name field is automatically populated. Keep the default values for the
Select Region and Choose an organization fields (Figure 1-14).

Figure 1-14 Toolchain page
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 11

Scroll down to see three main icons (Figure 1-15), which are described later:

– Git Repos and Issue Tracking.

– Eclipse Orion Web IDE.

– Delivery Pipeline.

The Git Repos and Issue Tracking icon is selected by default.

Figure 1-15 Three primary icons: Git Repos and Issue Tracking is selected by default

The Repository type field menu lists options to start from your code base:

New Start a new application.

Fork Start from a certain existing repository (you specify its URL), and then have a
separate stream of the same repository.

Clone Clone an existing repository to create a new one.

Existing Link to an existing repository and continue working on it.

3. The default selection is Clone. For this exercise, select New, so that you can start your
application from scratch.

4. For the other fields, keep their default values, then click Create.
12 Developing Node.js Applications on IBM Cloud

5. A new page opens, showing the three main phases (Figure 1-16). A toolchain is a set of
tool integrations that support development, deployment, and operations tasks. The UI to
create a new toolchain groups the tools into the following phases:

THINK This phase is for planning the application by creating bugs, tasks, or ideas by
using the Issue Tracker, which is part of the Git repository.

CODE This phase is for the implementation of the application by providing a GIT
repository as source code management system, and a Web IDE (Eclipse
Orion) to edit your code online. In the repository, you can specify whether to
clone a repository or start from scratch by selecting New in the repository
type.

DELIVER This phase is for configuring the delivery pipeline. It allows you to specify
automatic build, deployment, and testing of your code after a developer
pushes new code to the Git repository.

Figure 1-16 THINK, CODE, and DELIVER
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 13

1.3.5 Create a Hello World Node.js server

The following steps describe how to write Node.js code from Eclipse Orion Web IDE, and how
to link this code to the Node.js app on IBM Cloud that you created in the previous sections:

1. On the Toolchain page, click the Eclipse Orion Web IDE icon (Figure 1-16 on page 13).

2. The page now shows the generated Node.js project through the Eclipse Orion Web IDE
(Figure 1-17).

The Eclipse Orion Web IDE is a browser-based development environment where you
develop for the web. You can develop in JavaScript, HTML, and CSS with the help of
content-assist, code-completion, and error-checking.

The left side of the current page shows the project structure. Currently, no Node.js files are
available. In the next steps, you create these files one by one.

Figure 1-17 Eclipse Orion Web IDE

3. Right-click the root of the project (named vy102-XXX-nodejs) from the project structure on
the left, and then select New → File (Figure 1-18).

Figure 1-18 Creating a file
14 Developing Node.js Applications on IBM Cloud

4. A text field is displayed (Figure 1-19). Type manifest.yml and then press Enter.

Figure 1-19 Creating the manifest.yml file

The manifest.yml file is now created (Figure 1-20).

Figure 1-20 Viewing the manifest.yml file

The manifest.yml file contains information about the deployment of the application to IBM
Cloud.

Add the code snippet from Example 1-1 to manifest.yml.

Example 1-1 Code snippet: Application details

applications:
- path: .
memory: 256M
instances: 1
domain: mybluemix.net
name: vy102-XXX-nodejs
host: vy102-XXX-nodejs
disk_quota: 1024M

Note: Replace the XXX with your unique key (three random characters) that you chose
in step 3 on page 9 to give a unique name to your Node.js app and host.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 15

Table 1-1 explains the meaning of each attribute in the manifest.yml file.

Table 1-1 manifest.yml file attributes

5. If required, change the domain based on your IBM Cloud region as listed in Table 1-2.

Table 1-2 IBM Cloud regions and domains

6. Save the file by clicking File → Save.

7. Right-click the root of the project (named vy102-XXX-nodejs), select New → File, name
the file package.json, and then press Enter.

The package.json file holds various metadata relevant to the project. For example, in
Example 1-2, the “start” field specifies app.js, which is the starting point (entry JS file)
for this application. The package.json file also specifies the dependencies on other
Node.js modules.

The package.json file is used by node package manager (NPM), which is the default
package manager for the JavaScript runtime environment, Node.js.

NPM provides two main functions:

– Online repositories for Node.js packages/modules, which are searchable at the Node.js
website at https://nodejs.org/en/.

– A command-line utility to install Node.js packages, and perform version management
and dependency management of Node.js packages.

NPM accesses the package.json file to perform tasks such as registering the application
by using the name field in the package.json file, making sure the dependencies in the
package.json file are available in the Node.js online repository with the specified versions,
and so on.

Attribute Description

path Indicates to Cloud Foundry the directory where the application is located.

memory Specifies the memory limit for all instances of the application.

instances Specifies the number of app instances that are needed for the application.
A value of one instance is sufficient for this exercise.

domain The Cloud Foundry domain to which you are deploying the application.

name The name of the application that you specified when you created the Cloud
Foundry app in IBM Cloud.

host The subdomain where the application is available.

disk_quota Specifies the allocation amount of disk space for the app instance.

Note: If you followed the instructions for this exercise, you should be in the US South
region.

Region Domain

US South mybluemix.net

United Kingdom eu-gb.mybluemix.net

Sydney syd.mybluemix.net

Germany eu-de.mybluemix.net
16 Developing Node.js Applications on IBM Cloud

https://nodejs.org/en/

Insert the code snippet from Example 1-2 in the package.json file.

Example 1-2 Code snippet for package.json file

{
 "name": "NodejsStarterApp",
 "version": "0.0.1",
 "description": "A Hello World NodeJS sample",
 "scripts": {

"start": "node app.js"
}

}

The main attributes of the package.json file are described in Table 1-3.

Table 1-3 Main attributes

Save the file by clicking File → Save.

8. Create a file and name it app.js. This is the entry JavaScript file for your application.

9. Insert the line from Example 1-3 into the app.js file.

Example 1-3 Add variable

var http = require("http");

Figure 1-21 shows the variable in IBM Cloud DevOps.

Figure 1-21 The app.js file: Importing the HTTP module

The require statement is used to import node modules that are managed by NPM.

Attribute Description

name The name of your node application. The name and version together form an
identifier that is assumed to be completely unique.

version The version of the current application. The version must always be in the form
of n.n.n (that is, 1.0 is not an allowed value).

description A simple description about the application.

scripts A dictionary property containing script commands that are run at various times
in the lifecycle of your package. The key is the lifecycle event, and the value is
the command to run at that point. In this case, the “start” event is needed to
refer to the node app.js command.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 17

The name of the built-in module, http, is managed by NPM. This module is mainly used to
allow Node.js to transfer data over the Hypertext Transfer Protocol (HTTP).

10.Enter the code snippet from Example 1-4 to create the server. This server is expected to
handle the HTTP requests coming from the client.

Example 1-4 Code snippet: Creating the server

// Read the port from the underlying environment.
// If not exist, use the default port: 8080
var port = process.env.VCAP_APP_PORT || 8080;

// Create the server and listen to requests on the specified port.
http.createServer(function (request, response) {

}).listen(port);

Your app.js file, which now looks like Figure 1-22, shows the createServer function.

Figure 1-22 The createServer function

As shown, the HTTP module has a createServer callback function, which is responsible
for creating a server. This server provides a callback that receives two parameters:

– request: This object contains the HTTP request details from the client. You should be
able to read parameters from this request to use in your application.

– response: This object is created by the HTTP module and you add the response details
to it. Then, the HTTP module sends the response object back to the client as an HTTP
response to the original HTTP request from the client.

The server listens to a port variable. The port variable is set by the following value:

process.env.VCAP_APP_PORT

The process.env property returns an object that contains the user’s environment. In this
case, it contains properties related to the deployed application and its underlying IBM
Cloud environment.

The process.env.VCAP_APP_PORT port value is provided by IBM Cloud automatically when
you create the project.

If the process.env.VCAP_APP_PORT is null for some reason (this can happen if you run this
application outside the IBM Cloud), then the port variable is set to 8080 (port 8080 is the
default port for Node.js).
18 Developing Node.js Applications on IBM Cloud

11.Inside the function of the createServer, add the code snippet from Example 1-5.

Example 1-5 Code inside createServer function

// Set the content type of the response
response.writeHead(200, {'Content-Type': 'text/plain'});

This line has the response’s header details:

– Status code: Identifies whether the request was a success, a bad request, a forbidden
request, and so on. The code for success is 200.

– Content type: Identifies the type of content returned in the body of the response. The
content type can be text/plain, text/html, and other types. In this scenario, content type
is set as text/plain.

12.Add the code snippet from Example 1-6 to the end of the createServer function.

Example 1-6 Code snippet: Response - Hello NodeJS

// Write a simple Hello World message,
// which will be shown in the user's web browser
response.end('Hello NodeJS!');

The end function is used to add the text passed as an argument to the body of the
response.

The app.js file now looks like the one in Figure 1-23, showing the added response.

Figure 1-23 The app.js file: Added response

Save the file by clicking File → Save.

13.In the server toolbar, select Create new launch configuration from the drop-down list
and click the “+” button to display the Edit Launch Configuration window. If you do not have
the Create new launch configuration option, skip this step.

In the Edit Launch Configuration window, ensure that the Organization is set to your email
address, Space is set to dev, and click Save.

14.Now, you can click the play button (Deploy the App from the Workspace), highlighted
in Figure 1-23. Clicking this button deploys the application to IBM Cloud.

You might receive a notification warning you that your application will be redeployed. Click
OK to confirm.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 19

The deployment status indicates that deployment is in progress (Figure 1-24).

Figure 1-24 Pressing the Deploy the App from the Workspace button

15.After the deployment is complete, click Open the Deployed App (Figure 1-25).

Figure 1-25 Opening the deployed app

A new tab opens and displays the Hello NodeJS! message.

Note: If you receive an error message about a timeout, refresh the page.
20 Developing Node.js Applications on IBM Cloud

1.3.6 Add a module to the Node.js application

In this section, you add a Node.js module to your application.

A module encapsulates related code into a single unit of code. Creating a module means
moving the related functions into one file. This point is illustrated next with an example
involving an application that is built with Node.js.

Several modules are built in Node.js. For example, the HTTP module is a built-in module. The
following steps show how to create your own custom module:

1. Close the Running Application tab to return to Eclipse Orion.

2. Right-click the vy102-XXX-nodejs folder, and then select New → Folder (Figure 1-26).

Figure 1-26 Creating a folder

3. Name the new folder currentDate.

4. In the currentDate folder, create a file named package.json.

5. In this package.json file, add the code snippet from Example 1-7.

Example 1-7 Code snippet: Add currentDate

{
 "name": "currentDate",
 "main": "./lib/currentDate"
}

Chapter 1. Developing a Hello World Node.js app on IBM Cloud 21

The results are shown in Figure 1-27.

The figure shows that the new package.json file represents the new module:

– It has the usual name attribute and another attribute named main.
– This main attribute has the path of the JS file that contains the code of this module.
– The value of the main attribute is "./lib/currentDate". You need to create a

currentDate.js file inside the lib folder, which you do in the next steps.

Save the file by clicking File → Save.

Figure 1-27 The currentDate module in the package.json file

6. In the currentDate folder, create a folder named lib.

7. In the lib folder, create a new file named currentDate.js. The result is shown in
Figure 1-28.

Figure 1-28 The currentDate module in the currentDate.js file

8. In the currentDate.js file, enter the code snippet from Example 1-8.

Example 1-8 Code snippet: Export current date time

exports.currentDateTime = function() {
 return Date();
};
22 Developing Node.js Applications on IBM Cloud

This new currentDateTime function simply returns the current date by using Date().

This function is added to a variable named exports, which is used for exposing the function
so it can be used by other modules in the system. It is a special object, which by default is
included in every JS file in the Node.js application.

Your file now looks like the one shown in Figure 1-29.

Figure 1-29 The currentDate module: Exporting the currentDateTime function

Save the file by clicking File → Save.

9. Open the app.js file and find the line that is shown in Example 1-9.

Example 1-9 Set variable http

var http = require("http");

Below that line, add the line from Example 1-10.

Example 1-10 Set variable dateModule

var dateModule = require('./currentDate');

This line imports the currentDate, which you just created, to your app.js file.

10.Find the lines that are shown in Example 1-11.

Example 1-11 Write Hello world message

/ Write a simple Hello World message,
// which will be shown in the user's web browser
response.end('Hello NodeJS!');

Replace those lines with the lines from Example 1-12.

Example 1-12 Lines to use

// Write a simple Hello World message appended with the current date
response.end('Hello NodeJS! The time now is: ' + dateModule.currentDateTime());

Note: In the line, the period and forward slash (./) characters indicate that the
currentDate module exists in the same folder as the folder that contains this app.js file.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 23

The result is shown in Figure 1-30.

Figure 1-30 Using the currentDate module in the app.js file

All changes are automatically saved in Eclipse Orion. If the changes are not automatically
saved or if you want to force a save, select File → Save.

To deploy, click the play button (Deploy the App from the Workspace), as shown in
Figure 1-31. You might receive a notification warning you that your application will be
redeployed. Click OK to confirm.

Figure 1-31 Deploying the application that is using the currentDate module
24 Developing Node.js Applications on IBM Cloud

11.After deployment is complete, open the deployed application by clicking Open the
Deployed App (Figure 1-32).

Figure 1-32 Opening the deployed application that is using the currentDate module

Your web browser now opens and displays the result (Figure 1-33).

Figure 1-33 Results

1.3.7 Stop the application

IBM Cloud Lite account provides you with 256 MB of application memory for Cloud Foundry
apps and 100 Cloud Foundry services.

To free the resources assigned to your application, you can either stop your
application or delete it:

1. Stop your application by clicking the Stop the App icon (Figure 1-34).

Figure 1-34 Stop the application

2. Close your web browser.

1.4 Exercise review

In this exercise, you accomplished the following goals:

� Created a Node.js App on the IBM Cloud environment.
� Used the Continuous Delivery Toolchain to develop and deploy the Node JS App.
� Wrote your first Node.js “Hello NodeJS!” application.
� Created a module in Node.js to wrap functionality and use it from other JS files.
Chapter 1. Developing a Hello World Node.js app on IBM Cloud 25

26 Developing Node.js Applications on IBM Cloud

Chapter 2. Understanding asynchronous
callback

This chapter discusses two important concepts: Asynchronous method invocation and
callbacks:

� Asynchronous method invocation

This is a design pattern where an invoker method does not block while waiting for the
invoked method to finish processing and return a result. Instead, the invoked method is
run in a separate thread and the invoker is notified when the result is ready.

� Callback function

This is a function that is passed to another function as a parameter and the callback
function is called and run within this other function.

An asynchronous callback has considerations that differ from a synchronous callback. This
chapter describes those considerations.

This chapter shows how to use callback functions to call an external service. This exercise
uses the IBM Watson Language Translator service in IBM Cloud. You will create a Node.js
module that contains the logic for these calls.

This chapter contains the following topics:

� Getting started
� Architecture
� Step-by-step implementation
� Exercise review

2

© Copyright IBM Corp. 2017. All rights reserved. 27

2.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

2.1.1 Objectives

By the end of this chapter, you should be able to understand asynchronous callbacks and be
able to write the code in a Node.js application.

2.1.2 Prerequisites

Before you start, be sure that you meet these prerequisites:

� Basic knowledge of JavaScript

� An IBM Cloud account available at https://console.bluemix.net/.

� A workstation that has these components:

– Internet access

– Web browser: Google Chrome or Mozilla Firefox

– Operating system: Linux, Mac OS, or Microsoft Windows

2.1.3 Background

In this exercise, you will use asynchronous callback functions.

A callback function is a function that is passed as a parameter to another function. The
callback function is to be run only after the called function finishes running.

Example 2-1 shows an example of a callback function.

Example 2-1 Callback function example

setTimeout(function() {
 console.log("A");
}, 3000);

setTimeout(function() {
 console.log("B");
}, 2000);

setTimeout(function() {
 console.log("C");
}, 4000);

setTimeout(function() {
 console.log("D");
}, 1000);

The setTimeout function in Example 2-1 is a function that receives the following parameters:

� A callback function that should be run after a certain time interval.

� The time interval (in milliseconds) that should elapse before the callback function can run.
28 Developing Node.js Applications on IBM Cloud

https://bluemix.net
https://console.bluemix.net/

When calling the setTimeout function, Node.js is not waiting for the processing to finish.
Instead, Node.js registers the callback function for it to be run after the response is returned.

When the code in Example 2-1 runs, the following output is returned in the console:

D
B
A
C

The result depends on the sequence of the setTimeout functions finishing their execution and
not on the sequence of their declaration in the JavaScript file.

2.1.4 Expected results

This exercise shows how to use callback functions to call an external service (this exercise
uses the Watson Language Translator service on IBM Cloud).

The logic of these calls will be in a Node.js module that you will create. Figure 2-1 shows a
callback function to call the Language Translator service.

Figure 2-1 Expected results

The expected result of running this function is to see the translation of a word from English to
Spanish using IBM Watson Language Translator service. (Figure 2-2).

Figure 2-2 Example results
Chapter 2. Understanding asynchronous callback 29

2.2 Architecture

The architecture of the asynchronous callback in this chapter is shown in Figure 2-3.

Figure 2-3 Asynchronous Callback sample architecture diagram

This exercise shows how to use callback functions in your Node.js application. In this
scenario, the Node.js app accesses the IBM Watson Language Translator service in IBM
Cloud. The flow that is shown in Figure 2-3 is as follows:

1. The user enters the application’s URL in the web browser.

2. The web browser sends the HTTP request to the Node.js app that is deployed in IBM
Cloud.

3. The Node.js app asynchronously calls the Language Translator service and registers a
callback function that is to be called when the Language Translator service sends the
response.

4. The Node.js app sends an HTTP request to the Language Translator service on IBM
Cloud that is exposed as a REST API.

5. The Language Translator service responds to the HTTP request with the requested data
(translated text).

6. The callback function (from step 3) is now run. This function responds to the HTTP
request (from step 2).

7. The Node.js app sends the data to the web browser in the HTTP response.

8. The web browser displays a web page that shows the data to the user.

Public network IBM Cloud network

2

7

Send the HTTP request

Response with the
translated text

1

8

Enter the application’s URL

Response with text

5

4

User

APPLICATION LOGIC
ON NODE.JS RUNTIME

Web Browser

Watson Language Translator service

Call the
Language
Translator
service

Respond to the
caller with the
required data

3

Call the
Watson Language Translator
service and register
a callback function

Execute the
callback
function

6

30 Developing Node.js Applications on IBM Cloud

2.3 Step-by-step implementation

This section describes how to make asynchronous callback calls by using Node.js.

2.3.1 Log in to your IBM Cloud account

Follow these steps to log in to IBM Cloud:

1. Open your web browser, enter the following web address, and then press Enter:

https://bluemix.net

2. The IBM Cloud login page opens (Figure 2-4). Click Log in and provide your account
credentials.

Figure 2-4 IBM Cloud login

2.3.2 Create the Node.js application on IBM Cloud

Create the Node.js app by using the SDK for Node.js runtime on IBM Cloud:

1. In the IBM Cloud dashboard, click Create resource (Figure 2-5).

Figure 2-5 Create resource
Chapter 2. Understanding asynchronous callback 31

https://bluemix.net

2. The IBM Cloud Catalog page opens (Figure 2-6). It lists the infrastructure and platform
resources that can be created in IBM Cloud. Scroll down to the Cloud Foundry Apps
section and click SDK for Node.js.

Figure 2-6 IBM Cloud Catalog

3. In the App name field, enter vy102-XXX-nodejs. Replace XXX with any three random
characters, which become your unique key (Figure 2-7). Make sure that the name of this
application is different from the name of the application that you created in Chapter 1,
“Developing a Hello World Node.js app on IBM Cloud” on page 1. Take note of the random
characters because you will be using your unique key in the naming convention of this
exercise.

The Host name field is automatically populated with the same value as the app name.

Keep the default values for the other fields.

Click Create.

Figure 2-7 Creating the Node.js app
32 Developing Node.js Applications on IBM Cloud

4. The Getting started page for the created application opens (Figure 2-8). For a while, the
status for vy102-XXX-nodejs is shown as Starting. Wait until the status changes to This
app is awake (for IBM Cloud Lite accounts) or Running (for non-IBM Lite accounts).

Figure 2-8 Created Node.js app

2.3.3 Enable continuous delivery

Enable continuous delivery for the Node.js app by completing these steps:

1. Click Overview on the left pane, scroll down to the Continuous delivery tile, and then click
Enable (Figure 2-9).

Figure 2-9 Enabling continuous delivery

A new continuous delivery toolchain tab opens (Figure 2-10).

Figure 2-10 Toolchain creation page
Chapter 2. Understanding asynchronous callback 33

Scroll down to see the three main icons shown in Figure 2-11:

– Git Repos and Issue Tracking
– Eclipse Orion Web IDE
– Delivery Pipeline

The Git Repos and Issue Tracking icon is selected by default.

Figure 2-11 Three primary icons: Git Repos and Issue Tracking is selected by default
34 Developing Node.js Applications on IBM Cloud

2. To create the Node.js app from scratch, select New from the Repository type menu, and
then click Create. A new page opens (Figure 2-12).

Figure 2-12 Create a toolchain page

2.3.4 Integrate the Node.js app with the Watson Language Translator service

An IBM Cloud service is a ready-for-use functionality that is hosted on IBM Cloud and can be
accessed from your application over the internet. Examples of services are databases,
message queues, and many others. In this exercise, you use the Watson Language
Translator service.
Chapter 2. Understanding asynchronous callback 35

Create a Language Translator service instance
In the following steps, you create an instance of the Watson Language Translator service that
is hosted on IBM Cloud and access this service from your Node.js application:

1. Right-click Catalog and select Open link in new tab (Figure 2-13). A Catalog tab opens.

Figure 2-13 Open Catalog in new tab

2. In the filter field, search for the Language Translator service and click it (Figure 2-14).

Figure 2-14 Language Translator service icon
36 Developing Node.js Applications on IBM Cloud

Use this service to translate text from one language to another.

3. The Language Translator service page opens (Figure 2-15). Keep the default values and
click Create.

i

Figure 2-15 Creating the Language Translator service

Connect the Node.js app to the Language Translator service
To connect your Node.js app to the Language Translator service, complete these steps:

1. Click Connections on the left navigation bar, then click Create Connection.

2. From the list, select your Node.js application that you created in 2.3.2, “Create the Node.js
application on IBM Cloud” on page 31, and click Connect.

3. A message prompts you to restage the application so that it can use the Language
Translator service (Figure 2-16). Click Restage.

Figure 2-16 Restage after connecting to the Language Translator service
Chapter 2. Understanding asynchronous callback 37

Obtain the Language Translator service credentials
The service credentials are required to access the service. To create and obtain the
credentials for your Language Translator service instance, complete these steps:

1. In the Language Translator Service Details page, click Service credentials on the left
navigation bar, then click New Credential (Figure 2-17).

Figure 2-17 Service Credentials

2. The Add new credential window opens. Click Add.
38 Developing Node.js Applications on IBM Cloud

3. Click View credentials to display the credentials. Figure 2-18 shows a JSON object that
contains the service credentials. Click the Copy icon to copy the service credentials and
paste them in a text editor. These credentials are needed to access the Language
Translator service instance.

Figure 2-18 Language Translator service credentials

4. Close the Service Details browser tab.

Understand the Language Translator REST API
The Language Translator service provides REST APIs, which can be called by the
applications linked to it. The following steps walk you through a demo showing you how the
Language Translator REST API works:

1. Open a new web browser tab. Use the following web address to open the Language
Translator for IBM Watson Developer Cloud API:

https://language-translator-demo.ng.bluemix.net/
Chapter 2. Understanding asynchronous callback 39

https://language-translator-demo.ng.bluemix.net/

2. Scroll down to the Translate Text section. Select English for the input language, and
Spanish for the Output language. Then, write Hello in the Text input field and press
Enter. The Text output field shows the translation as Hola as shown in Figure 2-19.

Figure 2-19 Language Translator For IBM Cloud API

3. In the Output section, click JSON. The JSON object retrieved from the API call is shown
(Example 2-2).

Example 2-2 JSON object as response

{
{
 "translations": [
 {
 "translation": "Hola"
 }
],
 "word_count": 1,
 "character_count": 5
}

4. Close the opened tab of the web browser.

Note: The translations.translation field contains the translated text result. You will
learn how to read the content of this field in a Node.js app in the next section, 2.3.5,
“Access the Language Translator service from the Node.js app”.
40 Developing Node.js Applications on IBM Cloud

2.3.5 Access the Language Translator service from the Node.js app

This section describes the steps to access the Language Translator service from a Node.js
application.

1. On the View toolchain page, click the Eclipse Orion Web IDE icon.

The browser shows the generated Node.js project in the Eclipse Orion Web IDE
(Figure 2-20).

Figure 2-20 Eclipse Orion Web IDE

2. Right-click the root of the project (named vy102-XXX-nodejs), and select New → File.
A text field is displayed. Type manifest.yml and then press Enter. The manifest.yml file is
now created.

3. Add the code snippet from Example 2-3 to the manifest.yml file. Replace the XXX with
your unique key (three random characters).

Example 2-3 Code snippet: manifest.yml file

applications:
- path: .
 memory: 256M
 instances: 1
 domain: mybluemix.net
 name: vy102-XXX-nodejs
 host: vy102-XXX-nodejs
 disk_quota: 1024M

4. If required, change the domain on based on your IBM Cloud region as listed in Table 2-1.

Table 2-1 IBM Cloud regions and domains

Region Domain

US South mybluemix.net

United Kingdom eu-gb.mybluemix.net

Sydney syd.mybluemix.net

Germany eu-de.mybluemix.net
Chapter 2. Understanding asynchronous callback 41

5. Create a file and name it package.json. Insert the code snippet from Example 2-4 into the
package.json file.

Notice the dependencies section, which includes the ready made packages to be used by
the application. The package used in this exercise is watson-developer-cloud, which is
the Node library used to access the Watson Developer Cloud services. You will use it in
the exercise to access the Language Translator service.

Example 2-4 Code snippet: package.json file

{
 "name": "NodejsStarterApp",
 "version": "0.0.1",
 "description": "App for understanding Callback",
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "watson-developer-cloud": "^1.0.0"
 }
}

6. Create a file and name it app.js. In the app.js file, insert the code from Example 2-5.

Example 2-5 Code snippet: Create http instance

const http = require('http');

The http module is used for HTTP functions.

7. Next, insert the code shown in Example 2-6.

Example 2-6 Code snippet: Create watson-developer-cloud instance

const watson = require('watson-developer-cloud');

This line imports the watson-developer-cloud package. This package allows access to all
of the Watson APIs, one of which is the Language Translator service that you use in this
exercise.

8. Next, insert the code snippet from Example 2-7.

Example 2-7 Code snippet: Create server to receive http request

var portNumber = process.env.VCAP_APP_PORT || 8080;
const server = http.createServer(handleRequests);
server.listen(portNumber, function() {
 console.log('Server is up!');
});

This code creates a server to receive the http requests from the user. The function
handleRequests is called whenever a request is received.

9. The next step is to implement the handleRequests function. Insert the code snippet from
Example 2-8 at the end of the app.js file.

Example 2-8 Code snippet: handleRequests function

function handleRequests(userRequest, userResponse) {

}

42 Developing Node.js Applications on IBM Cloud

The handleRequests function has two parameters:

– The request (named userRequest in this example).
– The response (named userResponse in this example).

Figure 2-21 shows the app.js file up to this point in the exercise.

Figure 2-21 Watson developer cloud library, server, and handleRequests function

In the handleRequests function, add the following line for setting the header data:

userResponse.writeHead(200, {'Content-Type': 'text/plain'});

10.Below the userResponse.writeHead line, enter the code snippet from Example 2-9.

Example 2-9 Code snippet: Identify translation request message

var helloText = 'Hello';
var fromLanguage = 'en';
var toLanguage = 'es';

These variables contain the data to be sent in the request to the Language Translator
service:

– helloText stores the text that will be translated.
– fromLanguage stores the source language for the translation.
– toLanguage stores the target language for the translation.

11.After the variables declaration in the function handleRequests, enter the code snippet from
Example 2-10.

Example 2-10 Code snippet: Language Translator object

var language_translator = watson.language_translator({
version: 'v2'

});

The watson module includes the language_translator API. This function expects a JSON
object containing details about the connection to the Language Translator service such as
the URL, username, and password.

However, because the Language Translator service is bound to the Node.js app through
IBM Cloud, there is no need to specify these details as they are stored in
VCAP_SERVICES. Only the version of the Language Translator service is specified here.
Chapter 2. Understanding asynchronous callback 43

12.Enter the code snippet from Example 2-11.

Example 2-11 Code snippet: language_translator.translate

language_translator.translate({
text: helloText,
source: fromLanguage,
target: toLanguage

}, callback);

The language_translator.translate function is called. The translate function expects
two arguments:

– A JSON object. This JSON object contains the text, source, and target fields. As shown
Example 2-11, the variables helloText, fromLanguage, and toLanguage are used for
setting the values.

– A callback function. This function will be run after the Language Translator service
finishes processing the request and returns the response to the Node.js app. While the
Language Translator service is processing the request, the Node.js app registers the
callback function so it can be run after the response is returned.

13.Before the line language_translator.translate, enter the code snippet in Example 2-12.

Example 2-12 Code snippet: language_translator callback function

var callback = function(err, data) {
if (err) {

console.log(err);
userResponse.end('Error: ' + err);

} else {
console.log(data);
userResponse.end('Translation of ' + helloText + " is " +

data.translations[0].translation);
}

};

The callback function has two arguments:

– The err object, which is used if an error occurs in the function
– The data object, which contains the data returned by the Language Translator service.

The translation data can be sent in the userResponse object, which is the response object
that contains the text to be returned to the web browser.
44 Developing Node.js Applications on IBM Cloud

The handleRequests function should now look as shown in Example 2-13.

Example 2-13 Code snippet: handleRequests function complete

const http = require('http');
const watson = require('watson-developer-cloud');

var portNumber = process.env.VCAP_APP_PORT || 8080;
const server = http.createServer(handleRequests);
server.listen(portNumber, function() {

console.log('Server is up!');
});

function handleRequests(userRequest, userResponse) {

userResponse.writeHead(200, {
'Content-Type': 'text/plain'

});

var helloText = 'Hello';
var fromLanguage = 'en';
var toLanguage = 'es';
var language_translator = watson.language_translator({

version: 'v2'
});

var callback = function(err, data) {
if (err) {

console.log(err);
userResponse.end('Error: ' + err);

} else {
console.log(data);
userResponse.end('Translation of ' + helloText + " is " +

data.translations[0].translation);
}

};

language_translator.translate({
text: helloText,
source: fromLanguage,
target: toLanguage

}, callback);

}

14.If you see a warning message Parameter 'userRequest' is never used for the line
function handleRequests(userRequest, userResponse), click Disable
no-unused-params.

15.Next, click Create new launch configuration and the “+” sign in the drop-down list. If you
do not have the Create new launch configuration option, skip this step.

In the Edit Launch Configuration window, ensure that the Organization is set to your email
address, and Space is set to dev, and click Save.
Chapter 2. Understanding asynchronous callback 45

16.Click the play icon (Deploy the App from the Workspace) to deploy the app.

17.After the deployment is complete, click the Open the deployed app icon.

You see the output in your browser (Figure 2-22). The output shows the translation of the
Hello text from English to Spanish.

Figure 2-22 Language Translator output

2.3.6 Access the Language Translator service through a Node.js module

In 1.3.6, “Add a module to the Node.js application” on page 21, you learned how to create a
Node.js module. In this section, you will learn how to return a callback function in a module.

The following steps create a Node.js module, called translator, that will contain the logic for
accessing the Language Translator service:

1. In the root path, create a new folder and name it translator.

2. In the translator folder, create a file named package.json.

3. Enter the code snippet in Example 2-14 in the package.json file. The main field contains
the path of the JS file that has the Language Translator service code.

Example 2-14 Code snippet: package.json for Language Translator

{
 "name": "translator",
 "main": "./lib/translator",
 "dependencies": {
 "watson-developer-cloud": "^1.0.0"
 }
}

The package.json file in Example 2-14 represents the translator module.

4. In the translator folder, create a new folder named lib.
46 Developing Node.js Applications on IBM Cloud

5. In the lib folder, create the translator.js file.

The translator folder (and translator.js file) now look like Figure 2-23.

Figure 2-23 The translator.js file

Leave the translator.js file empty for now.

6. Open the app.js file and remove all code in this file.

7. Add the code in Example 2-15 to the app.js file.

Example 2-15 Code snippet: Importing http and translator

const http = require('http');
const translatorModule = require('./translator');

The first line is for importing the http module. The second line is for importing the
translator module that you created in the previous steps. You now import the translator
module into the app.js file. You implement the translator module later.

8. Add the code snippet from Example 2-16 to the app.js file.

Example 2-16 Code snippet: Declare text, from and to fields

var helloText = 'Hello';
var fromLanguage = 'en';
var toLanguage = 'es';

These lines declare the variables for the input fields that you use when accessing the
Language Translator service.
Chapter 2. Understanding asynchronous callback 47

9. Below the var toLanguage line, add the code snippet from Example 2-17.

Example 2-17 Code snippet: Create server and listen on a port

var portNumber = process.env.VCAP_APP_PORT || 8080;
const server = http.createServer(handleRequests);
server.listen(portNumber, function() {

console.log('Server is up!');
});

These lines create the server and listen on a certain port.

createServer receives the handleRequests callback function. You implement this function
in the next step.

10.Add the code snippet from Example 2-18 for the handleRequests callback function.

Example 2-18 Code snippet: handleRequests

function handleRequests(userRequest, userResponse) {
userResponse.writeHead(200, {

'Content-Type': 'text/plain'
});

}

The body has code that sets the header content.

11.Inside the handleRequests callback function, after the userResponse.writeHead(200, {
'Content-Type': 'text/plain' }); function call, enter the code snippet from
Example 2-19.

Example 2-19 Code snippet: getTranslation

translatorModule.getTranslation(helloText, fromLanguage, toLanguage, callback);

The code line in Example 2-19 calls the getTranslation function that should be defined in
the Language Translator module.

This function has following parameters:

– helloText
– fromLanguage
– toLanguage
– callback function, which will be called after the getTranslation function finishes its

execution
48 Developing Node.js Applications on IBM Cloud

12.Before the translatorModule.getTranslation() line you just added, insert the code
snippet from Example 2-20 for the callback function that is mentioned in the previous step.

Example 2-20 Code snippet: The callback function with translatorOutput

var callback = function(error, translatorOutput) {
if (error) {

userResponse.end(error);
} else {

userResponse.end('Translation of ' + helloText + " is " +
translatorOutput);

}

};

The callback function is expected to have an error parameter that holds a value in case
of errors. The other parameter is for the translatorOutput. If the error object is not null,
the HTTP response is sent back to the user with this error. If no error occurs, the message
containing the translatorOutput is sent in the HTTP response back to the user.

The app.js file now looks like the file in Figure 2-24.

Figure 2-24 The app.js file using the translator module

Save the file by clicking File → Save.
Chapter 2. Understanding asynchronous callback 49

13.Open the translator.js file. Add the code snippet from Example 2-21 to import the
watson-developer-cloud module.

Example 2-21 Code snippet: Importing the watson-developer-cloud API

var watson = require('watson-developer-cloud');

14.Next, define and export the getTranslation data, which is used in the app.js file. The
initial code looks like the code snippet shown in Example 2-22.

Example 2-22 Code snippet: Exporting the getTranslation function

exports.getTranslation = function getTranslation(helloText, fromLanguage, toLanguage, callback) {

};

This function receives the fields helloText, fromLanguage, toLanguage, and the callback
function that is to be run when the getTranslation function finishes execution.

15.Inside the getTranslation function, add the code snippet from Example 2-23. This code is
for accessing the Language Translator API.

Example 2-23 Code snippet: Access Language Translator API

var language_translator = watson.language_translator({
version: 'v2'

});

Below the code in Example 2-23, add the code snippet from Example 2-24 for the actual
call to the Language Translator service.

Example 2-24 Code snippet: language_translator translate function

language_translator.translate({
text: helloText,
source: fromLanguage,
target: toLanguage

}, translatorCallback);

16.Before the language_translator.translate line, add the code snippet from
Example 2-25. This code defines the translatorCallback callback function.

Example 2-25 Code snippet: translatorCallback function

var translatorCallback = function(err, data) {

};

The translatorCallback callback function is called after the response from the
language_translator.translate function is returned.

The translatorCallback function contains two parameters:

– err: This parameter has a value if there is an error returned when the
language_translator.translate function is run.

– data: This parameter has the returned response data from running the
language_translator.translate function.
50 Developing Node.js Applications on IBM Cloud

17.Inside the translatorCallback function, add the code snippet from Example 2-26.

Example 2-26 Code snippet: translatorCallback callback function details

if (err) {
console.log(err);
callback(err, null);

} else {
console.log(data);
callback(null, data.translations[0].translation);

}

The code first checks if an error occurred. In case of error, run the callback function, with
the first parameter set to the err value and the second parameter, the data object, to null.

If err is null, then no errors occurred. In this case, the data object has the response data
from calling the Language Translator service.

Now, the callback function can be run by setting the first parameter as null (because no
errors occurred) and the second parameter as data.translations[0].translation to
read the returned translation from the data JSON object. The JSON object structure is
shown in Example 2-2 on page 40.

Figure 2-25 shows the translator.js file at this point.

Figure 2-25 Translator module code

18.Click the play icon (Deploy the App from the Workspace) to deploy the app. Confirm if
you are prompted to restart the app. After the deployment is complete, click the Open the
Deployed App icon.

The window showing the translation is displayed (Figure 2-26).

Figure 2-26 Results of translator output
Chapter 2. Understanding asynchronous callback 51

2.3.7 Stop the application

IBM Cloud Lite account provides you with 256 MB of application memory for Cloud Foundry
apps and 100 Cloud Foundry Services.

To free the resources that are assigned to your application, you can either stop your
application or delete it. To do so, complete these steps:

1. Stop your application by clicking the Stop the App icon(Figure 2-27).

Figure 2-27 Stop the application

2. Close your web browser.

2.4 Exercise review

In this exercise you accomplished the following goals:

� Created the Language Translator service in IBM Cloud and connected it to your Node.js
app.

� Used asynchronous callback functions in your Node.js app and learned how the callback
function is run.

� Created a module in Node.js to call the Language Translator service and used it from
other JS files.
52 Developing Node.js Applications on IBM Cloud

Chapter 3. Creating your first Express
application

Express is a Node.js web framework. It allows rapid development of web applications.
It provides an easy way to handle routing of an application by exposing REST APIs.

In this chapter, you create an application that uses the Express framework and the Watson
Natural Language Understanding service to extract the author name from articles that are
published on the web. You provide the web address (URL) of the article to the application, and
it outputs the name of the author (or multiple names if the article has multiple authors).

This chapter contains the following topics:

� Getting started
� Architecture
� Step-by-step implementation
� Exercise review

3

© Copyright IBM Corp. 2017. All rights reserved. 53

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

Express is a Node.js web framework. It allows rapid development of web applications. It
provides an easy way to handle routing of an application by exposing REST APIs.

By the end of this chapter, you should be able to accomplish these objectives:

� Create a Hello World Express application.
� Create a simple HTML view for your application.
� Understand Express routing.
� Use third-party modules in Node.js.
� Understand IBM Watson Natural Language Understanding service.
� Use a Git repository on IBM Cloud DevOps.
� Understand Delivery Pipeline.

3.1.2 Prerequisites

Before you start, be sure that you meet these prerequisites:

� Basic JavaScript skills

� Basic HTML skills

� An IBM Cloud account available at https://console.bluemix.net/.

� A workstation that has these components:

– Internet access

– Web browser: Google Chrome or Mozilla Firefox

– Operating system: Linux, Mac OS, or Microsoft Windows

3.1.3 Expected results

You create an application that uses Express framework and Watson Natural Language
Understanding service to extract the author name from any article that is published on the
web. You provide the web address (URL) of the article, and the application outputs the name
of the author (or multiple names if the article has multiple authors).
54 Developing Node.js Applications on IBM Cloud

https://bluemix.net
https://console.bluemix.net/

The application involves the following steps:

1. Figure 3-1 shows the starting page of the application. Enter the web address of any
article, such as the following URL, and then click Submit. In this example, the URL of the
article is as follows:

http://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-ke
nny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale/

Figure 3-1 Watson Author Finder

2. The URL of the article is posted to the /author URL (Figure 3-2), then Watson Natural
Language Understanding service is called to extract the author name (or names) from the
article.

Figure 3-2 Watson Author Finder returned these results
Chapter 3. Creating your first Express application 55

http://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale/

3.2 Architecture

Figure 3-3 shows the components and runtime flow of the application.

Figure 3-3 Architecture

The following steps explain the sequence of interactions between the various components in
the exercise:

1. In a web browser, navigate to the application URL of this exercise:

http://vy102-XXX-express.mybluemix.net

2. The web browser sends a GET request to the Node.js server. As mentioned in step 1, the
application URL for this example is http://vy102-XXX-express.mybluemix.net. The path
that follows this URL is a route, and there should be a handler for this route in the Node.js
application.

For example, if the user sends the following request, there should be a route called 'GET
/sample' in the Node.js application:

http://vy102-XXX-express.mybluemix.net/sample

This route can return a resource (HTML page, image, and so on), call a back-end service,
or both.

In step 1, the user requested the home page of this exercise’s application. The browser
sends a GET request to http://vy102-XXX-express.mybluemix.net/. That means that the
'GET /' (root) route will be called.

3. The Express framework in Node.js returns the index.html file in response to the 'GET /'
route request.
56 Developing Node.js Applications on IBM Cloud

http://vy102-XXX-express.mybluemix.net

4. The web browser shows the index.html page to the user. The index.html page contains
a form that has one text box, and a Submit button. In the text box, the user can enter the
URL of the article.

5. The user enters the article’s URL, and then clicks Submit.

6. The web browser sends a POST request to the /author route with the article URL passed
in the body.

7. Express framework in Node.js passes the article URL to Watson Natural Language
Understanding service. Also, it requests that the metadata be returned.

8. The metadata of the article is returned by the Natural Language Understanding service.

9. Node.js filters the metadata to return only the author name (or names).

10.The author name (or names) of the article are returned to the user on the web browser.

3.3 Step-by-step implementation

This section provides details of how to implement the Hello World Node.js app by using the
Express framework.

3.3.1 Log in to your IBM Cloud account

Log in to IBM Cloud by completing these steps:

1. Open your web browser, enter the following web address, and then press Enter:

https://bluemix.net

2. The IBM Cloud login page opens (Figure 3-4). Click Log in and provide your
authentication credentials.

Figure 3-4 IBM Cloud login

Note: The Watson Natural Language Understanding service uses natural language
processing (NLP) to analyze semantic features of any text. The Natural Language
Understanding service has many features, such as concepts, categories, emotion,
entities, keywords, metadata, and sentiment.

The feature that you use in this exercise is metadata.The feature gets document
metadata, including author name, title, RSS and Atom feeds, prominent page image,
and publication date.
Chapter 3. Creating your first Express application 57

https://bluemix.net

3.3.2 Create the Node.js application on IBM Cloud

Complete these steps to create the Node.js app by using the IBM SDK for Node.js runtime on
IBM Cloud and to enable continuous delivery for the application:

1. Click Catalog on the top bar and select Cloud Foundry Apps on the left pane.

2. Click SDK for Node.js (Figure 3-5).

Figure 3-5 IBM Cloud Catalog: Cloud Foundry Apps

3. In the App name field, type vy102-XXX-express (Figure 3-6). Replace XXX with any three
random characters. Click Create.

Figure 3-6 Create an SDK for Node.js application
58 Developing Node.js Applications on IBM Cloud

4. In the next steps, you enable continuous delivery for this application. Application Details
displays the Getting started page (Figure 3-7). Wait until the application is started and
then click Overview.

Figure 3-7 Application details: Getting started page

5. In the Continuous delivery tile of the Overview page, click Enable (Figure 3-8).

Figure 3-8 Application details: Overview page
Chapter 3. Creating your first Express application 59

6. A new tab opens (Figure 3-9) where you create a toolchain. In the Repository type field,
select New to create an empty application, and then click Create.

Figure 3-9 Create a toolchain
60 Developing Node.js Applications on IBM Cloud

7. To start editing the code, click Eclipse Orion Web IDE (Figure 3-10).

Figure 3-10 IBM Cloud DevOps toolchain

8. On the left, expand the twistie for vy102-xxx-express (highlighted in Figure 3-11).

Figure 3-11 Eclipse Orion
Chapter 3. Creating your first Express application 61

Notice that an empty project is created (Figure 3-12).

Figure 3-12 An empty project is created: vy102-xxx-express

3.3.3 Create the Hello World Express application

Express is a Node.js framework. It is used to simplify the creation of web applications on
Node.js. The core component of Express is routes.

Route refers to the definition of application end points (Uniform Resource Identifiers (URIs))
and how they respond to client requests. Express supports the routing methods that
correspond to the HTTP methods GET, POST, PUT, HEAD, DELETE, OPTIONS, and
TRACE.

In the following steps, you create the Hello World Express application that returns the words
“Hello Express!” in response to the GET / route request. The root (/) route is called whenever
a user accesses the URL of the application. Also, you will create another route, POST /author,
after the user sends a POST request to the /author resource. This route returns “Author
Name” to the user.

1. Create the package.json file and add Express framework as one of its dependencies:

a. Right-click vy102-xxx-express in the left navigation bar, and select New → File.

b. Name the file package.json (Figure 3-13) and then press Enter.

Figure 3-13 The empty package.json file
62 Developing Node.js Applications on IBM Cloud

c. Copy the code snippet from Example 3-1 to the package.json file.

Example 3-1 Code snippet: package.json

{
 "name": "vy102-XXX-express",
 "version": "0.0.1",
 "description": "A sample express app",
 "dependencies": {
 "express": "4.*"
 }
}

d. Notice that Express version 4.x is added as a dependency. In the name, replace XXX
with the three characters that you assigned as part of your application name
(Figure 3-14).

Figure 3-14 The package.json file with the Express version 4.x dependency

2. Create the app.js file. In app.js, you create an instance of Express and it will be the
starting point of your application:

a. In the navigation bar, right-click vy102-xxx-express, and then select New → File.

b. Name the file app.js and press Enter. At this point, app.js is empty (Figure 3-15).

Figure 3-15 The empty app.js file
Chapter 3. Creating your first Express application 63

c. Copy the code snippet from Example 3-2 into the app.js file.

Example 3-2 Code snippet: Instantiate Express framework (GET and POST)

var port = process.env.VCAP_APP_PORT || 8080;

//Express Web Framework, and create a new express server
var express = require('express'),

app = express();

// In case the caller calls GET to the root '/', return 'Hello Express!'.
app.get('/', function(req, res) {
 res.send('Hello Express!');
});

// In case the caller calls POST to /author, return 'Author name'
app.post('/author', function(req, res) {
 res.send('Author name');
});

// start server on the specified port and binding host
app.listen(port);

The code instantiates the Express framework, listening to the default port of IBM
Cloud, and exposes two routes (Figure 3-16):

GET / Returns “Hello Express!” to the caller when the caller requests the
root of the application.

POST /author When the caller issues a post request to /author, “Author name” is
returned.

Figure 3-16 The app.js file with Express starter code

Note: You can usually press Shift+Alt+F to format the code.
64 Developing Node.js Applications on IBM Cloud

3. Add the manifest.yml file with the domain and host, and configure it to run app.js after
the Node.js server starts:

a. Right-click vy102-xxx-express in the left navigation bar, and then select New → File.

b. Name the file manifest.yml and press Enter.

c. Copy the code snippet from Example 3-3 to the manifest.yml file. This code configures
the domain, name, and memory of the application.

In the manifest.yml file, replace XXX with the three characters you chose as part of
your application name and host.

Example 3-3 Code snippet: Add domain and host, and configure to run app.js

applications:
- path: .
 memory: 256M
 instances: 1
 domain: mybluemix.net
 name: vy102-XXX-express
 host: vy102-XXX-express

 disk_quota: 1024M

d. If needed, change the domain on based on your IBM Cloud region as listed in
Table 3-1.

Table 3-1 IBM Cloud regions and domains

e. Copy the following line to the end of the manifest.yml file. This line instructs IBM Cloud
to start app.js after the application is staged.

command: node app

Your manifest.yml now looks like the file in Figure 3-17.

Figure 3-17 The manifest.yml file

Region Domain

US South mybluemix.net

United Kingdom eu-gb.mybluemix.net

Sydney syd.mybluemix.net

Germany eu-de.mybluemix.net
Chapter 3. Creating your first Express application 65

The file is saved automatically. You can force save it by clicking File → Save.

4. Deploy the application from the workspace by completing these steps:

a. In the server toolbar, select Create new launch configuration from the drop-down list.
If you do not have the Create new launch configuration option, skip to step d.

b. Click the “+” button to display the Edit Launch Configuration window.

c. In the Edit Launch Configuration window, ensure that the Organization is set to your
email address, and Space is set to dev, and click Save.

d. Click the play icon (Deploy the App from the Workspace), which is highlighted in
Figure 3-18. Then, click OK in the window that opens to confirm the action.

Figure 3-18 Deploy the application

e. Notice that the Live Edit and debug options are visible on the top toolbar after the
deployment is completed (Figure 3-19). The Live Edit and debug features are available
only for the Node.js application. When IBM Cloud detects that you are creating a
Node.js application (from the manifest.yml file), the two features become available on
the toolbar.

Figure 3-19 The Live Edit and debug features are now available

Note: IBM Cloud Lite account does not support the Live Edit feature. If you are
using a Lite account, this option will not be displayed.
66 Developing Node.js Applications on IBM Cloud

5. Run the application by clicking the Open the Deployed App icon (Figure 3-20).

Figure 3-20 Open the application

A new tab opens with the application, and the “Hello Express!” text is returned
(Figure 3-21).

Figure 3-21 The Hello Express application

3.3.4 Create a simple HTML view and organize the code

In the next steps, you create a simple HTML page that has a form where the user enters the
URL of the article. When the user clicks Submit, the article URL is posted to /author in the
request body.

You will also organize the code by creating routing modules instead of having the routing
handled in the app.js file.

Note: While a Node.js application is in Live Edit mode, you can debug it on the
Web IDE. You can edit code dynamically, insert breakpoints, step through code, restart
the runtime, and more. You must use a Chrome browser to be able to use the debug
feature.
Chapter 3. Creating your first Express application 67

Complete these steps:

1. Add views/index.html as the starting page (Figure 3-22):

a. Close the browser tab where the application is running.

b. Right-click vy102-xxx-express on the left bar, and select New → Folder.

c. Name the folder views, and then press Enter.

d. Right-click the views folder on the left bar, and select New → File.

e. Name the file index.html, and then press Enter.

Figure 3-22 Empty index.html file

2. Copy the code snippet from Example 3-4 into the index.html file.

Example 3-4 Code snippet: HTML

<html>

<body>
 <h1 style="color:blue;">Watson Author Finder</h1>
 <p>To get information about the author of an article, enter the URL of that article.</p>
 <form action="author" method="post">
 <input type="text" name="url" />
 <input type="submit" value="Submit" />
 </form>
</body>

</html>

The HTML code indicates the following information:

• A heading that contains the words “Watson Author Finder” in blue.

• A paragraph that instructs the user what to do.

• A form that contains a text field and a Submit button. Upon submission, the
parameters are submitted in the form of x-www-form-urlencoded in the body. In this
code snippet, the only parameter is the URL of the article. The URL is submitted as
a POST method to the author action, which triggers the POST /author route.
68 Developing Node.js Applications on IBM Cloud

The index.html file now looks like the one shown in Figure 3-23.

Figure 3-23 The content of the index.html file

3. In app.js, change the root route (GET /) to send the index.html page to the caller:

a. Open app.js from the left navigation bar.

b. Add the following code snippet after the line that contains app = express();.

This code snippet references the path module. The path module provides utilities for
handling the directories, so it must point to the index.html file.

var path = require('path');

c. Update the callback function for / route, which is the line after app.get('/',
function(req, res) {. Change the code so that the callback function returns the
index.html page instead of the words Hello Express!:

res.sendFile(path.join(__dirname, 'views/index.html'));

Also, change the comment before the line app.get('/', function(req, res) { to the
following text:

// In case the caller calls GET to the root '/',
// return the content of index.html

Figure 3-24 shows the app.js file with your updates.

Figure 3-24 Updated app.js
Chapter 3. Creating your first Express application 69

4. To be able to receive the request parameter, you must add a module named body-parser.
The body-parser middleware module parses the data and populates the request object
with the data under the req.body module. Complete these steps:

a. After the line that contains var path = require('path');, add a reference to the
third-party body-parser module:

var bodyParser = require('body-parser');

//parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: false }));

b. Hover the cursor over body-parser and notice the warning message that is generated
by Eclipse Orion Web IDE (Figure 3-25). The message indicates that the body-parser
module is not defined in package.json.

Figure 3-25 Missing module in package.json warning

c. You can either update package.json manually to add dependencies to body-parser or
click Update package.json, which updates the dependencies automatically.

Open the package.json file and update the dependencies as shown in Example 3-5.

Example 3-5 Add body-parser

"dependencies": {
"express": "4.*",
"body-parser": "*"
}

d. Open app.js and update the callback function for the POST /author route to send the
URL to the user in response to post /author instead of sending Author name. Replace
res.send('Author name'); with the code snippet in Example 3-6.

Example 3-6 Code snippet: Send URL to user

res.send('You called the server requesting the author of the article: ' + req.body.url);

Note: Make sure that you add a comma after the express dependency line, as
shown in the example
70 Developing Node.js Applications on IBM Cloud

Change the comment before the line app.post('/author', function(req, res) { to
the following text:

// In case the caller calls POST to /author, return the url of the article

e. Press Shift + Alt + F to format the code. Your updated app.js is shown in Figure 3-26.

Figure 3-26 Updated app.js file

5. In this step, you organize the code by moving all the routing to the routes module:

a. Right-click vy102-xxx-express on the left navigation bar, and then select New →
Folder. Name the folder routes and press Enter.

b. Create index.js to handle all the routing related to the root resource, right-click the
routes folder, select New → File, name the file index.js, and then press Enter.

c. Copy the code snippet from Example 3-7 and paste it into the index.js file.

Example 3-7 Code snippet: Using expres.Router

// index.js - Index route module
var express = require('express');
var router = express.Router();

//Provides utilities for dealing with directories
var path = require('path');

// Home page route
router.get('/', function (req, res) {
 res.sendFile(path.join(__dirname, '../views/index.html'));
});

module.exports = router;
Chapter 3. Creating your first Express application 71

This code snippet uses express.Router, which is introduced in Express 4 and provides
an isolated instance of routes. It is used here to define an endpoint (URI) that handles
the routing when a user sends a GET request to the home page of the application for
this exercise.

The updated index.js file is shown in Figure 3-27.

Figure 3-27 Updated index.js file

d. Create an author.js file to handle all the routing related to the /author resource.
Right-click the routes folder, select New → File, name the file author.js, and then
press Enter.

e. Copy the code snippet from Example 3-8 into the author.js file.

Example 3-8 Code snippet: Add to author.js file

// author.js - Author route module
var express = require('express');
var router = express.Router();

router.post('/', function (req, res) {
 res.send('You called the server requesting the author of the article: ' + req.body.url);
});

module.exports = router;

Figure 3-28 shows the updated author.js file.

Figure 3-28 Updated author.js file
72 Developing Node.js Applications on IBM Cloud

f. Edit app.js to configure Express to use the index and author route modules:

i. Click app.js on the left navigation bar.

ii. Find lines of code between the comments // In case the caller calls GET and
// start server on the specified port and binding host.

iii. Replace those lines, including the comment // In case the caller calls GET
with the code snippet from Example 3-9. Remove any unintended line breaks,
especially in the comments, after pasting the code.

Example 3-9 Code snippet: Use app.js to bind routing modules

//Routes modules
var index = require('./routes'),
 author = require('./routes/author');

//In case the caller access any URI under the root /, call index route
app.use('/', index);

//In case the caller access any URI under /author, call author route
app.use('/author', author);

This example uses app.js to bind the routing modules that you defined previously with
specific paths. The handling of the routing of any URI under root (/) is handled by the
index routing module, and the handling of the routing of any URI under /author is
handled by the author routing module.

Your updated app.js file is shown in Figure 3-29.

Figure 3-29 Updated app.js
Chapter 3. Creating your first Express application 73

6. Deploy the application and run it by completing these steps:

a. Click the Play icon (Deploy the App from the Workspace) on the top toolbar to
deploy the app. Confirm that you want to restart the app if prompted to do so.

b. Wait for the deployment to complete.

c. Click the Open the Deployed App icon on the top toolbar to run the application.

The application opens in your browser (Figure 3-30).

Figure 3-30 Running the application

d. In the text box, enter the URL for an article of your choice and click Submit.

The route POST /author is then called (Figure 3-31).

In this example, the following URL was used for testing:

https://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-davi
d-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale

Figure 3-31 Author page

3.3.5 Integrate with Watson Natural Language Understanding service

The default Node.js framework includes only a minimal set of features. However, a large
community of developers add to the Node.js framework through third-party libraries.

In this section, you extract the author name by calling the Watson Natural Language
Understanding service. IBM Watson services provide REST APIs that you can use to add
cognitive capabilities to your applications.
74 Developing Node.js Applications on IBM Cloud

Natural Language Understanding uses natural NLP to analyze semantic features of any text,
which can be plain text, HTML, or a public URL. Natural Language Understanding returns
results for the features that you specify. The feature that you use in this exercise is metadata.
It gets document metadata, including author name, title, RSS/Atom feeds, prominent page
image, and publication date.

In Node.js, the Watson APIs are wrapped inside a third-party module that is named
watson-developer-cloud that you will use in this exercise. The watson-developer-cloud
module is developed and maintained by IBM. It is a third-party module because it is not
developed as part of the Node.js foundation, and not packed into Node.js by default. To
include the watson-developer-cloud module, you must add it as a dependency in the
package.json file.

Complete these steps:

1. In this step, you add the Watson Natural Language Understanding service and bind it to
the application.

IBM Cloud services are a set of capabilities or functions delivered over the Internet that
IBM Cloud hosts and manages. You can add services from the IBM Cloud catalog to your
IBM Cloud application. Services provide a predefined endpoint that you can access from
your application. The infrastructure for services is completely managed by IBM Cloud, and
your app only must use the provided endpoint.

You will bind the Natural Language Understanding service to your application so your
application can use it by completing these steps:

a. Close the running application tab and go back to the IBM Cloud DevOps page.

b. Right-click Catalog and select Open link in new tab (Figure 3-32).

Figure 3-32 Eclipse Orion
Chapter 3. Creating your first Express application 75

c. In the IBM Cloud Catalog, click Natural Language Understanding (Figure 3-33).

Figure 3-33 Catalog - Selecting Natural Language Understanding

The Natural Language Understanding page opens (Figure 3-34).

Figure 3-34 Natural Language Understanding creation page

d. Change the Service name field to natural-language-understanding. This is the name
of the service.

e. Click Create.

f. Click Connections on the left pane.
76 Developing Node.js Applications on IBM Cloud

g. Click Create connection, select your application vy102-XXX-express, and click
Connect (Figure 3-35).

Figure 3-35 Connect the Natural Language Understanding service with the application

h. To make the service available for use, click Restage on the dialog window that opens
(Figure 3-36). Restaging the application means redeploying the application.

Figure 3-36 Restage app dialog box

i. Close the Service Details tab to return to IBM Cloud DevOps.

2. For integration with Watson, you will be using a module named watson-developer-cloud.
Add a dependency for it in the package.json file:

a. Open the package.json file.

b. Add watson-developer-cloud as a dependency in package.json:

i. Find the line “body-parser”: “*” (it can also be “body-parser”: “latest” if
added automatically before). Add a comma (,) at the end of the line and press
Enter.

ii. On the new line, add the following code snippet:

"watson-developer-cloud": "2.25.1"

Important step: You must perform this step because it binds the instance of the
Natural Language Understanding service to the application so that your application
can use the service.
Chapter 3. Creating your first Express application 77

The updated package.json is shown in Figure 3-37.

Figure 3-37 Updated package.json

3. Create a module named articleServices to handle all the business logic related to
articles. This module has the function extractArticleAuthorNames that calls the Natural
Language Understanding service, passing to it the article URL, and returning the list of
author names. Complete these steps:

a. Right-click vy102-xxx-express in the left navigation bar and then select New →
Folder. Name the folder services, and then press Enter.

b. Create articleServices.js. Right-click the services folder, select New → File, name
the file articleServices.js, and press Enter.

c. Create an instance of the third-party node.js module watson-developer-cloud by
copying the code snippet from Example 3-10 to the articleServices.js file.

Example 3-10 Code snippet: Create instance of third-party Node.js module

// Watson Natural Language Understanding third party module
//Specify the release for the Natural Language Understanding service
var NaturalLanguageUnderstandingV1 =
require('watson-developer-cloud/natural-language-understanding/v1.js');
var natural_language_understanding = new NaturalLanguageUnderstandingV1({

'version_date': NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27
});

d. Create a function, extractArticleAuthorNames (Example 3-11) that calls the Natural
Language Understanding service to extract the authors’ names.

Example 3-11 Code snippet: extractArticleAuthorNames function

/*
 * Call Watson NLU Service to extract the list of author names for the requested article URL
*/
exports.extractArticleAuthorNames = function(req){
};

Unknown dependency: Eclipse Orion might raise an unknown dependency warning
message. You can ignore this warning because the parent module,
watson-developer-cloud, was included previously. The watson-developer-cloud
module contains the natural-language-understanding module.
78 Developing Node.js Applications on IBM Cloud

4. Prepare the parameters for calling the Natural Language Understanding service by
placing the code snippet from Example 3-12 inside the extractArticleAuthorNames
function.

Example 3-12 Code snippet: Parameters for calling Watson NLU

// url is the parameter passed in the POST request to /author
// It contains the URL of the article
// The metadata feature returns the author, title, and publication date.
 var parameters = {
 'url': req.body.url,
 'features': {
 'metadata': {}
 }
 };

5. Call the Natural Language Understanding service and return to the caller a callback
function that contains the author’s name. Complete these steps:

a. Add callback as a parameter to the function:

exports.extractArticleAuthorNames = function(req, callback){

b. Call the analyze function from the natural_language_understanding third-party
module. If the request succeeds, it returns a metadata object of the article. In this
exercise, you are interested in the authors object in the metadata that returns the list of
authors for the article.

Copy the code snippet from Example 3-13 to the extractArticleAuthorNames function
after the parameters variable initialization.

Example 3-13 Code snippet: Call the Natural Language Understanding service and return caller

// Call the Watson service and return the list of authors
 natural_language_understanding.analyze(parameters, function(err, response) {
 if (err)
 callback(err,null);
 else
 callback(null,response.metadata.authors);
 });

6. If the URL passed is empty, return an error message to the user:

a. Add the following error message as a constant after the initialization of the
natural_language_understanding variable:

//error message for missing URL
const MISSING_URL_ERROR = 'URL not passed';

b. Check whether the URL is empty. At the beginning of the extractAuthorNames function
(line exports.extractArticleAuthorNames = function(req, callback){), add the
code snippet from Example 3-14 to return the error message if the URL is not defined.

Example 3-14 Check URL

//If the url is not passed, return error to the caller
if(req===null||req.body===null||req.body.url===null){

callback(MISSING_URL_ERROR,null);
return;

}

Chapter 3. Creating your first Express application 79

c. Press Alt + Shift + F to format the code.

The complete articleServices.js file now looks like the file in Figure 3-38.

Figure 3-38 The full code of the articleService.js file

7. Edit the author route to call authorServices.extractArticleAuthorNames instead of just
returning the article URL by completing these steps:

a. From the navigation bar, open the routes folder and select the author.js file.

b. Add a reference to the authorServices module after the router variable initialization:

var articleServices = require('../services/articleServices');
80 Developing Node.js Applications on IBM Cloud

c. Edit / route to call the extractArticleAuthorNames function from the articleServices
module. This process involves replacing the line res.send('You called the server
requesting the author of the article: ' + req.body.url); with the code snippet
from Example 3-15.

Example 3-15 Code snippet: Add call to extractArticcleAuthorNames function

articleServices.extractArticleAuthorNames(req, function(err, response) {
 if (err)
 res.status(500).send('error: ' + err);
 else
 res.send(response);
 });

The code indicates that in case of error, a 500 status code is returned to the user,
which means Internal Server Error.

The updated author.js file is shown in Figure 3-39.

Figure 3-39 Updated author.js

3.3.6 Deploy the application and run it

Other ways to deploy the application exist in addition to deploying it from Eclipse Orion Web
IDE. In the next steps, you push the code to the Git repository, and then the IBM Cloud
Delivery Pipeline automatically builds and deploys the code.

By default, enabling continuous delivery for a project creates a DevOps toolchain for your
project. The toolchain includes a Git repository that is based on GitLab. Git is an open source
change management system.

The Git repository perspective in the IBM Cloud DevOps Services web IDE supports common
Git commands to manage your code. You can also develop your application on your own
workstation and commit your changes to the Git repository with a standard Git client.

By default, IBM Cloud Delivery Pipeline services automatically run the build and deploy tasks
when you commit changes to the Git repository.
Chapter 3. Creating your first Express application 81

Complete these steps:

1. Switch to the Git perspective by clicking the Git icon on the left toolbar (highlighted in
Figure 3-40).

Figure 3-40 IBM Cloud DevOps

2. Notice that all the changed files are listed in the Working Directory Changes window
(Figure 3-41). Enter a descriptive message for commit, for example Watson Author Finder
- Initial Code, and then click Commit.

Figure 3-41 IBM Cloud DevOps: Git
82 Developing Node.js Applications on IBM Cloud

3. Your change is displayed in the outgoing window (Figure 3-42). Click Push.

Figure 3-42 IBM Cloud DevOps: Git

4. After the application is pushed to Git, the Delivery pipeline automatically builds and
deploys the application. Complete these steps:

a. Close the IBM Cloud DevOps Git tab and return to the Application Details.

b. Scroll down to the Continuous delivery tile and then click View toolchain (Figure 3-43).

Figure 3-43 Application Details
Chapter 3. Creating your first Express application 83

c. Click Delivery Pipeline (Figure 3-44).

Figure 3-44 IBM Cloud DevOps toolchain
84 Developing Node.js Applications on IBM Cloud

d. Wait until all the jobs at the Build Stage and Deploy Stage are completed. Figure 3-45
shows that the Deploy Stage is still running.

Figure 3-45 Delivery Pipeline: Deploy Stage is in-progress
Chapter 3. Creating your first Express application 85

Figure 3-46 shows that both stages are completed.

Figure 3-46 Delivery Pipeline: Build Stage and Deploy Stage passed
86 Developing Node.js Applications on IBM Cloud

e. To run the application, click the URL of the last execution result of the Deploy Stage
(Figure 3-47).

Figure 3-47 Delivery Pipeline: Click URL

f. Run the application by entering the URL of any article and then clicking Submit
(Figure 3-48).

The following is an example of an article URL:

https://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-davi
d-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale

Figure 3-48 Watson Author Finder application
Chapter 3. Creating your first Express application 87

The author name is retrieved from the Natural Language Understanding service
(Figure 3-49).

Figure 3-49 Watson Author Finder returned results

3.4 Exercise review

During this exercise, you accomplished the following goals:

� Created Hello World Express Application that includes two routes handling the URIs GET
/, and POST /author. You should now understand the basics of Express Framework.

� Sent the index.html page to the caller of the GET URI. You should now know how to use
Express to send an HTML page to the user in response to a route.

� Learned how to integrate a Node.js application with Watson Natural Language
Understanding service.

� Organized the code into routes, views, and services. By following the steps, you should
now know about preferred practices for organizing Express applications in Node.js.
88 Developing Node.js Applications on IBM Cloud

Chapter 4. Building a rich front-end
application by using React and
ES6

This chapter guides you through building an interactive and rich client-side application by
using React. The app demonstrates the use of React components. It uses the Fetch API with
ECMAScript 6 (ES6) to communicate with Node.js back-end services that call the IBM
Watson Natural Language Understanding service to extract the authors of online articles that
are selected by the user.

The sample application demonstrates the integration of the React front-end application with
server-side Node.js services.

This chapter contains the following topics:

� Getting started
� Architecture
� Step-by-step implementation
� Exercise review

4

© Copyright IBM Corp. 2017. All rights reserved. 89

4.1 Getting started

To start, read the objectives, prerequisites, and expected results of this chapter.

4.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Clone an IBM Cloud application.

� Use React to create interactive web pages.

� Use the Fetch API to interact with back-end web services.

� Understand the following concepts of ES6:

– Classes.

– Arrow functions.

– Promises.

4.1.2 Prerequisites

Before you start, be sure that you meet these prerequisites:

� Basic JavaScript skills
� Basic HTML 5 skills
� An IBM Cloud account available at https://console.bluemix.net/.
� An understanding of Cloud DevOps basic concepts
� An understanding of Git basic concepts
� Access to a web browser: Google, Chrome, or Mozilla Firefox

4.1.3 Background concepts

In this exercise, you use ES6, React, and Bootstrap to build the front-end application. This
section briefly introduces the concepts used.

ECMAScript 6
Most modern UI frameworks and new JavaScript APIs require an understanding of ES6. This
exercise uses the ES6 Fetch API to call back-end services, classes to create the React
Component, and the arrow function to simplify the code.

In 2015, the European Computer Manufacturers Association (ECMA), released a new version
of the JavaScript standardization (ES6), which was considered a significant upgrade to the
JavaScript language, since the standardization done in 2009, which was called ES5. ES6
introduced a set of new features and syntactic sugar, to JavaScript language.

Syntactic sugar: Syntactic sugar is a term used in programming languages to define the
syntax introduced to make writing the code easier. It does not add new features. For
example, sum = sum +1; //The syntactic sugar is sum++;.

Both syntaxes are still valid and perform the same functions.
90 Developing Node.js Applications on IBM Cloud

https://bluemix.net
https://console.bluemix.net/

This chapter covers only four ES6 features:

� let keyword

let is a keyword used to refer to a variable. It is similar to the var keyword, but the main
difference is that the variable defined with let is visible only within the scope it is defined
in. In contrast, var can be accessible outside its defined scope. Example 4-1 shows the
difference between the var and let keywords:

Example 4-1 Difference between var and let keywords

for (var i = 0; i < 10; i++) {
 console.log(i);
}
// The variable i is accessible here, although it was defined inside the for loop.
console.log(i);
for (let k = 0; k < 10; k++) {
 console.log(k);
}
// The following line is invalid, because k is not accessible outside the for loop.
console.log(k);

� Classes

ES5 already included object-oriented and inheritance capabilities provided by prototype.
ES6 introduces the class syntax, which is a syntactic sugar to make it easier to program.

Example 4-2 shows how to define a class by using prototype in ES5. Notice that in ES5 a
class is defined by using the function keyword, which is confusing.

Example 4-2 Defining a class by using prototype in ES5

function Rectangle(x, y) {
 this.x = x;
 this.y = y;
}

Rectangle.prototype.draw = function() {
 // your rectangle drawing code goes here
}
// Initialize Rectangle.
var rect = new Rectangle(2,3);

Example 4-3 shows how to define a class in ES6 by using the class syntax. This approach
eliminates the confusion and is better aligned with object-oriented programming syntax.

Example 4-3 Defining a class using ES6 syntactic sugar

class Rectangle {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }
 draw() {
 // your rectangle drawing code goes here
 }
}
let rect = new Rectangle(2,3);
Chapter 4. Building a rich front-end application by using React and ES6 91

� Arrow function

Classical JavaScript function syntax does not provide flexibility for defining a function with
just one statement when compared to defining a function with a longer body. Regardless
of the number of statements in the function, you always must enter function () {}. The
arrow function simplifies the syntax for a simple single-line function.

Example 4-4 shows a simple function definition in ES5.

Example 4-4 Defining the add function in ES5

var add = function(a, b) {
 return a + b;
}

console.log(add(3, 4));

Example 4-5 shows the same function with a simplified arrow syntax in a single line.

Example 4-5 Same example with ES6

let add = (a, b) => a + b;

console.log(add(3, 4));

� Promises

Promises are a compelling alternative to callback functions when dealing with
asynchronous code. Unfortunately, promises can be confusing. However, significant work
has been done to bring out the essential advantages of promises in a way that is
interoperable and verifiable.

The core component of a promise object is its then method. then takes two optional
callback functions as arguments (fulfillment value and rejection reason). The then method
is how you get the return value (known as the fulfillment value) or the exception thrown
(known as the rejection reason) from an asynchronous operation.

Example 4-6 shows calling an asynchronous function and handling the returned promise
by using two callback functions, which are called onFulfilled and onRejected in this
example.

Example 4-6 Promises with ES6

var promise = doSomethingAync()
promise.then(onFulfilled, onRejected)

Note: There are several promises libraries, but the one introduced in ES6 is based on
the Promises/A+ specification. For more information, see Promises/A+ at
https://promisesaplus.com/.
92 Developing Node.js Applications on IBM Cloud

https://promisesaplus.com/

Example 4-7 and Example 4-8 illustrate the difference between handling callback
functions in ES5 and ES6..

Example 4-7 shows a sample code written in ES5 to read a file. It uses asynchronous
callback functions to process the file and handle the error.

Example 4-7 Reading files and handling errors in ES5

readFile(function(err, data) {
 if (err) {
 console.error(err);
 }
 console.log(data);
});

With ES6 promises, the code looks like in Example 4-8.

Note that the data argument in console.log and the err argument in console.error do
not need to be specified. The code can be simplified as shown in the example because the
interpreter implicitly passes the argument to functions that accept only one parameter.

Example 4-8 Reading files and handling errors in ES6

var promise = readFile()
promise.then(console.log, console.error)

You can pass the promise around and anyone with access to the promise can consume it
using then regardless whether the asynchronous operation has completed or not. You are
also ensured that the result of the asynchronous operation will not change for any reason
because the promise will be resolved only once (either fulfilled or rejected).

React concepts
In this exercise, you use React to build a client-side application that takes the URL of an
article published on the internet as input from the user and communicates asynchronously
with a back-end Node.js service to extract the author of the article.

React is a framework for building client-side dynamic web applications. React uses dynamic
data binding and virtual Document Object Model (DOM) to extend HTML syntax and to
eliminate the need for code that keeps the UI elements synchronized with the application
state. This code, sometimes referred to as glue code, serves solely to synchronize the state
of the UI components with changes in the back-end application. It does not add business
value capabilities to your solution. React saves you the time and effort needed to create this
code.

Note: It is helpful to think of then not just as a function that takes two callbacks
(onFulfilled and onRejected in this example), but as a function that unwraps the
promise to reveal what happened from the asynchronous operation. Anyone with
access to the promise can use then to unwrap it.
Chapter 4. Building a rich front-end application by using React and ES6 93

Some of the basic concepts of React applications are as follows:

� Virtual DOM

HTML pages use what is called DOM to render, traverse, and update UI elements in a
responsive way. JavaScript code traverses the DOM tree to create, update, or hide HTML
components. JavaScript traverses the DOM by using browser-specific application
programming interfaces (APIs).

Sometimes this approach creates compatibility issues across browsers. Also, some
browsers implement the function more efficiently than others. For example, you might
experience better performance when using Chrome to access a website compared to
another browser.

Figure 4-1 shows the DOM of the HTML page for the Watson Author Finder application
developed in Chapter 3, “Creating your first Express application” on page 53.

Figure 4-1 DOM of the HTML page for the Watson Author Finder application

Example 4-9 shows the HTML code represented by the DOM in Figure 4-1.

Example 4-9 Code snippet: HTML code for application Watson Author Finder

<html>
<body>

<h1 style="color:blue;">Watson Author Finder</h1>
<p>To get information about the author of an article, enter the URL of that article.</p>
<form action="author" method="post">

<input type="text" name="url"/>
<input type="submit" value="Submit"/>

</form>
</body>

</html>
94 Developing Node.js Applications on IBM Cloud

React addresses this issue by using the concept of virtual DOM to provide an abstraction
of the HTML DOM. With this approach, the responsibility for traversing the virtual DOM
lies on the React framework, which makes it independent of the browser.

Example 4-10 shows the same HTML code written in React. Note the following in the
code:

– The AuthorCheckForm class is equivalent to the <form> tag.
– The InputUI class is equivalent to the content of the form.

Example 4-10 HTML code in Example 4-8 written in React

class AuthorCheckForm extends React.Component {
 constructor(props) {
 super(props);
 }
 render() {
 return (
 <form action="author" method="post">

<InputUI label='URL'/>
 </form>

)
 }
}

class InputUI extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return (
 <div>

 <a>
{this.props.label}

<input type="text" name="url"/>
<input type="submit" value="Submit"/>

</div>
)
 }

}

� React components

React components are reusable pieces of the UI. Each component extends the React
class component, which has lifecycle methods that describe the behavior of the
component. Conceptually, components are like JavaScript classes. Your implementation
can override the component lifecycle methods to specify the behavior of each reusable
piece.

The component lifecycle methods are constructor() and render(). You initialize variables,
including the state, in the constructor() method and write the HTML code in the
render() method.

Another important property of the component is that it can be used to keep the state of
the UI.
Chapter 4. Building a rich front-end application by using React and ES6 95

Example 4-11 shows the basic skeleton of a React component.

Example 4-11 React component

class InputUI extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return (<p> hello world </p>)
 }

}

� React components properties

A React component property is similar to an attribute in an HTML tag. In React, you use a
custom tag to define component properties instead of using custom attributes for an HTML
tag. In Example 4-12, the component is InputUI and the property is label.

� React element

The React element is similar to standard HTML tags, such as <h1>, <body>, and so on.
The difference between React elements and HTML DOM elements is that React elements
can also be used to render the components.

Example 4-12 shows a React element rendering the InputUI component.

Example 4-12 React element

<InputUI label='URL' />

Example 4-13 shows React element example for a standard HTML tag.

Example 4-13 React element

<input type="submit" value="Submit"/>

� React state

To make the React components dynamic, you initialize the state in the constructor()
method and render the component data from the state. The state is updated by events, for
example an Ajax response. React renders the components to display the updated state.

States and virtual DOM complement each other to achieve the high performance of React.
React uses the virtual DOM to compute what the DOM of the final web page should look
like after the state of some elements is updated. The calculations happen in-memory on
the virtual DOM. The result of this algorithm is how the HTML DOM should look.

� JavaScript XML (JSX)

JSX simplifies code by enabling developers to write XML-like syntax in JavaScript code.
JSX is commonly used in React, but current browsers do not support JSX out of the box.
Writing code with JSX requires the use of the Babel JavaScript compiler (also known as
transpiler) to convert JSX into JavaScript supported by the browsers.

Example 4-14 shows creating an element in React by using JSX.

Example 4-14 Creating an element by using JSX

var sum = 3+2;
<input type=”text” value={sum}/>
96 Developing Node.js Applications on IBM Cloud

Example 4-15 shows creating the same element in React without using JSX.

Example 4-15 Creating the same element using JavaScript

var sum = 3+2;
React.createElement(“input”,{“type”:”text”,“value”:{sum});

As a developer, you can program in React with JavaScript without using JSX. However,
JSX is currently the preferred language for React programmers.

Bootstrap
Bootstrap is an HTML, CSS, and JavaScript front end for developing responsive web pages.

Bootstrap uses a responsive grid layout. Each Bootstrap page is arranged into nested rows
and columns. Each row holds exactly 12 columns. Classes are assigned to columns and used
to determine the width of the column at different screen sizes. For example, div tag with class
col-md-6 takes exactly half the screen width (6/12) on screens of medium size and larger. A
div with both classes col-xs-12 and col-md-6 takes the full screen width on extra small and
small screens, and half the width on medium and large screens.

For more information, see the Bootstrap documentation at this URL:

https://getbootstrap.com/docs/4.0/getting-started/introduction/

4.1.4 Expected results

Figure 4-2 shows the Author Finder application displaying the list of authors extracted from an
article published on the CNN website.

Figure 4-2 React app Watson Natural Language Understanding Author Finder
Chapter 4. Building a rich front-end application by using React and ES6 97

https://getbootstrap.com/docs/4.0/getting-started/introduction/

Here is how it works:

1. The user enters the URL of an article that has one or more authors.

2. The user clicks Retrieve Author.

3. React sends a request to the Node.js web service by using the Fetch API.

4. The web service calls the Watson Natural Language Understanding service to parse the
article and extract the authors.

5. The result is passed back to the React state, which renders it in a responsive grid.

4.2 Architecture

Figure 4-3 shows the components and runtime flow of the application.

Figure 4-3 Architecture

Figure 4-3 describes these steps:

1. In a web browser, the user navigates to the application URL:

http://vy102-xxx-react.mybluemix.net

2. The web browser sends a GET / request to the Node.js back-end application developed in
Chapter 3, “Creating your first Express application” on page 53.

3. The Express framework in Node.js returns frontend/index.html.

4. The frontend/index.html page is returned to the user. The index.html page contains a
form that has one text box and a Submit button. The text box is where the user enters the
URL of an article.

5. The user enters the article URL and then clicks Submit.
98 Developing Node.js Applications on IBM Cloud

http://vy102-xxx-angular.mybluemix.net

6. The web browser sends a POST request to the /author route with the article URL passed
in the body.

7. The Express framework in Node.js passes the article URL to the Watson Natural
Language Understanding service. It also specifies that metadata should be returned.

8. The metadata for the article is returned by the Watson Natural Language Understanding
service.

9. Node.js filters the metadata to return only the author names.

10.The authors of the article are returned to the user through the web browser.

4.3 Step-by-step implementation

The implementation involves the following steps:

1. Clone the express application from Git using the Delivery Pipeline.

2. Create your first React page.

3. Add a dynamic form to the page.

4. Add more components to the form.

5. Use the Fetch API to call the Node.js author service.

4.3.1 Log in to IBM Cloud

To log in to IBM Cloud, complete these steps:

1. Open the IBM Cloud console in your web browser:

http://bluemix.net

2. Click Log in.

IBM Watson Natural Language Understanding service: This service uses natural
language processing (NLP) to analyze semantic features of a text. Watson Natural
Language Understanding service has many features, such as concepts, categories,
emotion, entities, keywords, metadata, and sentiment.

The feature used in this exercise is metadata. It retrieves document’s metadata,
including the author name, title, RSS/ATOM feeds, prominent page image, and
publication date.
Chapter 4. Building a rich front-end application by using React and ES6 99

http://bluemix.net

3. Enter your IBM Cloud ID (Figure 4-4).

Figure 4-4 IBM Cloud login

4. Click Continue.

5. Enter your password and click Log in.

6. Confirm that your IBM Cloud account page opens.

4.3.2 Clone the Express application from Git by using the Delivery Pipeline

This application builds on the code that you developed in Chapter 3, “Creating your first
Express application” on page 53. If you successfully finished the application in Chapter 3,
“Creating your first Express application” on page 53, you can skip to “Create your first React
page” on page 106.

Complete the following steps to quickly deploy the application:

1. Open the following link:

https://console.bluemix.net/devops/setup/deploy?repository=https://github.com/i
bm-redbooks-dev/vy102-XXX-express
100 Developing Node.js Applications on IBM Cloud

https://console.bluemix.net/devops/setup/deploy?repository=https://github.com/ibm-redbooks-dev/vy102-XXX-express
https://console.bluemix.net/devops/setup/deploy?repository=https://github.com/ibm-redbooks-dev/vy102-XXX-express

2. On the page that opens (Figure 4-5), select the Delivery Pipeline tab. On the Delivery
Pipeline tab, set the App name to vy102-XXX-react (replace XXX with your unique key).
Keep all other settings unchanged and click Deploy.

Figure 4-5 Create a Toolchain window
Chapter 4. Building a rich front-end application by using React and ES6 101

3. A new window opens (Figure 4-6). Click Eclipse Orion Web IDE.

Figure 4-6 IBM Cloud toolchain: Select Eclipse Orion Web IDE
102 Developing Node.js Applications on IBM Cloud

4. The Eclipse Orion Web IDE lists your project files (Figure 4-7). The source code from the
application developed in Chapter 3, “Creating your first Express application” on page 53 is
displayed in the online IDE because the new project was cloned from it.

Figure 4-7 Eclipse Orion Web IDE
Chapter 4. Building a rich front-end application by using React and ES6 103

5. Make the following changes to the manifest.yml file (Figure 4-8 on page 104):

– Change the application name and host on lines 10 and 11 to vy102-xxx-react.
Replace xxx with your random key.

– If needed, change the domain based on your IBM Cloud region as shown in Table 4-1.

The exercises in this book were tested in the US South region. If you use another IBM Cloud
region and face any problem, register for a new IBM Cloud account and select United States
for country or region as described in 1.3.1, “Set up your IBM Cloud account” on page 4.

Table 4-1 IBM Cloud regions and domains

Figure 4-8 manifest.yml

6. Complete the following steps to configure the application to be deployed from Eclipse
Orion IDE to IBM Cloud:

a. Click Create new launch configuration, then press the + button (Figure 4-9).

Figure 4-9 Eclipse Orion launch bar

Region Domain

US South mybluemix.net

United Kingdom eu-gb.mybluemix.net

Sydney syd.mybluemix.net

Germany eu-de.mybluemix.net
104 Developing Node.js Applications on IBM Cloud

b. In the Edit Launch Configuration window (Figure 4-10), keep all the settings as default
and click Save. If your user is part of multiple organizations, choose the organization
that has your email as its name. Note that application name and host values are
defaulted from manifest.yml. If you change the host value, it overrides the value in
manifest.yml.

Figure 4-10 Edit Launch Configuration

c. Deploy the application by clicking the play icon, Deploy the App from the Workspace,
which is highlighted in Figure 4-11.

Figure 4-11 Eclipse Orion launch bar

7. Wait for the deployment to complete. To make sure that your application is running, either
click the Open the Deployed App icon (highlighted in Figure 4-12) or go directly to your
default route:

https://vy102-xxx-react.mybluemix.net/

Figure 4-12 Eclipse Orion launch bar

Troubleshooting: If you get the error The app space binding to service is taken,
delete the deployed app from your IBM Cloud dashboard. Then redeploy the app from
Eclipse Orion by clicking the play icon (Deploy the App from the Workspace).
Chapter 4. Building a rich front-end application by using React and ES6 105

4.3.3 Create your first React page

React is a JavaScript-based front-end web application framework that is used primarily to
develop single-page applications. The single-page application is a web page that loads one
HTML page, and dynamically updates it as the user interacts with the app.

The entire React application, including HTML views, JavaScript files, and CSS files, run on
the browser. In this exercise, to make these components available to the browser, all the
client-side files must be located under a single root folder and must be served by the Express
framework by using the express.static() method.

Complete the following steps:

1. Start Eclipse Orion Web IDE for your application if it is not opened already.

2. Update the app.js file by adding the following lines after the initialization of the routes
module:

//Serve the files in /frontend as static files
app.use(express.static(__dirname + '/frontend'));

Important: The application now uses two JavaScript frameworks: Express, which runs on
the server side and React, which runs on the client side. From the perspective of Node.js,
all the React code is a set of static text files that are passed to the browser without any
processing. To avoid confusion between the client-side files and the server-side files, this
exercise keeps all client-side files in a hierarchy inside the frontend folder.
106 Developing Node.js Applications on IBM Cloud

The updated app.js file is shown in Figure 4-13.

Figure 4-13 The added lines in the updated app.js file

The code in app.js initializes the Express framework and sets it to listen to all HTTP
requests. It also sets Express to use the /frontend folder as its static content root. This
setting means that when the user tries to access any URL in the application, Express tries
to find the file that matches that path inside the /frontend folder.

If a file is found, it is returned to the user. If no static file matches the path that is requested
by the user, Express tries to match the path to one of the routes. If no routes match, error
404 is returned.

If the user does not specify a path, Express checks whether a file named index.html
exists at the root of the /frontend folder. If that file exists, it is returned to users opening
the domain without specifying a path. Essentially, the /frontend/index.html file is the
home page, so the first order of business is to update that file to use React.

Note: Express tries to match static file paths first because the express.static()
method is called in this code before the routes are registered. If the invocation order is
reversed, Express checks the routes before looking up static files. In general, you
should match static files before matching routes.
Chapter 4. Building a rich front-end application by using React and ES6 107

3. Create the folder frontend under the root of the project and create the file index.html
inside it with the content shown in Example 4-16.

Example 4-16 Basic HTML page

<html>

<head>
 <title>React JS - Author Finder</title>
</head>

<body>

</body>

</html>

4. Reference React, and Babel in your HTML. This reference can be done by inserting the
script lines shown in Example 4-17 inside the <body> tag.

Example 4-17 Fetching required libraries

<!-- Loading the script in body is a recommendation to ensure faster loading,
 putting all scripts at the header will cause the page to wait till all scripts loaded

 Load React related files from internet -->
<script crossorigin src="https://unpkg.com/react@16/umd/react.production.min.js"></script>
<script crossorigin

src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

<!-- Load babel JavaScript compiler from internet -->
<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

5. Update the /frontend/index.html file to reference bootstrap CSS from the Content
Delivery Network (CDN). This update can be done by inserting the link line shown in
Example 4-18 inside the <head> tag right after the </title> tag.

Example 4-18 Fetching bootstrap stylesheets

<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"/>

CDN: A CDN is a distributed system that hosts common CSS, JavaScript, and other
web resources in a geographically dispersed group of servers so that the files are
delivered to users from the server nearest to them.
108 Developing Node.js Applications on IBM Cloud

6. Insert a simple HTML code that contains a <div> tag inside the <body> tag, right after the
last </script> tag (Example 4-19).

The React component is rendered in the <div> tag with id=”root”.

Notice the use of col-sm-10, col-sm-offset-1, and text-center bootstrap classes.

Example 4-19 <div> tag in HTML code

<div class="container">
<div class="row">

<!-- You do not need to write much html code, you will
 build the whole html on your JSPX code -->
<div class="col-sm-10 col-sm-offset-1 text-center" id="root">
</div>

</div>
</div>

7. With the /frontend/index.html file open in the IDE, press Alt + Shift + F to auto-format it.
It should look like Example 4-20.

Example 4-20 Formatted /frontend/index.html file

<html>

<head>
<title>React JS - Author Finder</title>
<link rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css" />
</head>

<body>
<!-- Loading the script in body is a recommendation to ensure faster loading,
 putting all scripts at the header will cause the page to wait till all scripts

loaded
 Load React related files from internet -->

<script crossorigin
src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script crossorigin
src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

<!-- Load babel JavaScript compiler from internet -->
<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<div class="container">
<div class="row">

<!-- You do not need to write much html code, you will
 build the whole html on your JSPX code -->
<div class="col-sm-10 col-sm-offset-1 text-center" id="root">
</div>

</div>
</div>

</body>

</html>
Chapter 4. Building a rich front-end application by using React and ES6 109

8. You no longer need the /views/index.html file because you replaced it with the
/frontend/index.html file. Delete the /views/index.html file and all references to it,
including the index.js route and the code registering it in the app.js file. To do so,
complete the following steps:

a. Right-click the views folder and select Delete to delete the folder and the index.html
file inside it.

b. Right-click the /routes/index.js file and select Delete to delete it.

c. In app.js, locate and delete index = require('./routes'),. Do not delete var
because it is still used to declare the author.

d. In app.js, locate and delete the app.use('/', index) line, along with the comment line
before it.

Your app.js file should look like Figure 4-14.

Figure 4-14 Updated app.js

4.3.4 Add a dynamic form to the page

Now, add a simple form to the page. The form consists of a text box, a label, and a button.
The user enters the article URL in the text box and then clicks the button so that React calls
the Node.js back-end service to extract the author’s name.

Note: Delete the index.js file only. Do not delete the routes folder.
110 Developing Node.js Applications on IBM Cloud

For this step, create the form but do not call the Node.js service:

1. Under the frontend folder, create a folder called components. Create the components.js
file in the components folder (Figure 4-15).

Figure 4-15 New components.js file

2. Inside the components.js file, create a class that extends React.Component as shown in
Example 4-21.

Example 4-21 Code snippet: Class Container

class Container extends React.Component {
 constructor(props) {
 super(props);
 }
 render() {}
}

3. Initialize the page state in the constructor by adding the code snippet from Example 4-22
to the constructor after the super(props) line.

Example 4-22 Code snippet: Class Container extends React.Component

this.state = {
 url: '',
 authors: [],
 inputVal: ''
};
Chapter 4. Building a rich front-end application by using React and ES6 111

4. After the constructor, add the updateUrl() method to update its state. Also, add the
getAuthor() method with no implementation for now. It will be implemented later to call the
back-end service to retrieve the authors (Example 4-23).

Example 4-23 Adding the updateUrl() and getAuthor() methods

updateUrl(e) {
 this.setState({
 inputVal: e.target.value
 });
 }

 // getAuthor uses the fetch function to retrieve authors
 // from the REST service created in the previous exercise
 getAuthor() {}

5. Replace the render () method with the code snippet in Example 4-24. It contains html tags
to render the author name and the button.

Example 4-24 Override the render() method

// Render is the core function behind React components.
// It defines components and elements in XML format.
// This is only feasible if using JSPX and Babel JavaScript compiler.
render() {
 return (
 <div class="jumbotron text-center">

 <h1>Author Finder</h1>
 <div id='input-form' class='text-center'>
 <input type="text" class="form-control input-lg text-center"

onChange={e=>this.updateUrl(e)} placeholder="Enter URL of Article here!"/>
 </div>

 <button type="button" class="btn btn-primary btn-lg" disabled =

{this.state.inputVal.length===0} onClick={()=>{this.getAuthor()}}>Retrieve Author</button>
 </div>

)
}

Note: Format the code correctly after pasting, especially any wrapped around lines,
and remove any unintentional line breaks in lines of code and comments.

Note: From this point on, do not use Shift + Alt + F to format the code in the
components.js file. If you need to format the code, do it manually.

Eclipse Orion Web IDE does not currently support JSX syntax formatting that is
combining HTML and JavaScript code. You can use other code formatting tools such as
jsbeautifier at http://jsbeautifier.org/. Select the Support e4x/jsx syntax option of
jsbeautifier if you will use this tool to format JSX code in the examples of this chapter.
112 Developing Node.js Applications on IBM Cloud

http://jsbeautifier.org/

6. Add the code snippet in Example 4-25 at the end, after the brace } closing the Container
class. This code updates the HTML DOM tree, with the new component, starting from the
<div id="root"> element. The code inserts the Container component in the <div
id="root"> element shown in Example 4-20 on page 109.

Example 4-25 ReactDOM.render

ReactDOM.render(<Container />, document.getElementById("root"));

7. Your code now should look like Example 4-26.

Example 4-26 Complete code for Container class

class Container extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 url: '',
 authors: [],
 inputVal: ''
 };

 }

 updateUrl(e) {
 this.setState({
 inputVal: e.target.value
 });
 }

 // getAuthor uses the fetch function to retrieve authors
 // from the Rest service created in the previous exercise
 getAuthor() {}

 // Render is the core function behind React components.
 // It defines components and elements in XML format.
 // This is only feasible if using JSPX and Babel JavaScript compiler.
 render() {
 return (
 <div class="jumbotron text-center">

 <h1>Author Finder</h1>
 <div id='input-form' class='text-center'>
 <input type="text" class="form-control input-lg text-center"

onChange={e=>this.updateUrl(e)} placeholder="Enter URL of Article here!"/>
 </div>

 <button type="button" class="btn btn-primary btn-lg" disabled =

{this.state.inputVal.length===0} onClick={()=>{this.getAuthor()}}>Retrieve Author</button>
 </div>

)
 }
}

ReactDOM.render(<Container />, document.getElementById("root"));
Chapter 4. Building a rich front-end application by using React and ES6 113

8. Update index.html to import the React Container component by adding the following line
in the <body> tag after the last </script> tag, as shown Figure 4-16.

<script type="text/babel" src="./components/components.js"></script>

Note that the script type is text/babel, not JavaScript, to indicate to the browser that it
needs the support of the Babel compiler to translate this page.

Figure 4-16 The /frontend/index.html file

9. Deploy the application by clicking the Play icon (Deploy the App from the Workspace). If
you receive a pop-up message warning you that the application will be redeployed, click
OK to confirm.

10.After the application deployment is complete, run the application by clicking the Open the
Deployed App icon. The UI should look like Figure 4-17. Notice that the Retrieve Author
button is disabled until the user starts writing in the text box.

Figure 4-17 Dynamic React form
114 Developing Node.js Applications on IBM Cloud

4.3.5 Add more components to the form

Figure 4-18 represents the React components to be developed in this exercise.

Figure 4-18 Component structure

In 4.3.4, “Add a dynamic form to the page” on page 110, you added an HTML form to the
page as a React component called Container.

In this section, you will add the Results and the AuthorRecord components using these steps:

1. Open the /frontend/components/components.js file.

2. Copy the code snippet from Example 4-27 on page 116 into the components.js file, before
ReactDOM.render(<Container />, document.getElementById("root")).

Note: Do not use SHIFT + ALT + F to format the code in the components.js file. If you
need to format the code, do it manually.

Container

Results

AuthorRecord
Chapter 4. Building a rich front-end application by using React and ES6 115

Example 4-27 shows a new component called Results. It displays the Article URL, and the
list of extracted author names.

Example 4-27 Code snippet: Results Component in components.js

// Results: is another React component
// that creates the list of AuthorRecords
class Results extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {

 if (this.props.hide) {
 return null;
 }

 return (
 <div class='form-inline'>
 <div class="row">
 <div class="col-xs-12 col-md-3">
 <h2>Article URL:</h2>
 </div>
 <div class="col-xs-12 col-md-9">
 {this.props.url}
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12 col-md-3">
 <h2>Authors:</h2>
 </div>
 <div class="col-xs-12 col-md-9">
 <div class="row">

 </div>
 </div>
 </div>
 </div>
)
 }
}

Note: If you see errors in the components.js file, ignore them. These errors are caused
by combining HTML code with JavaScript code as this file follows JSX syntax.
116 Developing Node.js Applications on IBM Cloud

3. Copy the code snippet from Example 4-28 into the components.js file after the render()
method in the Results class.

Example 4-28 shows a helper method called renderAuthors() to iterate over the authors
retrieved from the back-end service by using map().

Notice that the AuthorRecord is not defined in the file. You are going to define it in another
file in the next section. This is one of the powerful features of React Component because
putting the AuthorRecord in a separate file makes it a reusable component.

Example 4-28 Code snippet: renderAuthors()

/*
 Notice that the AuthorRecord is defined in a separate file. This is a
powerful feature of the React Component: Putting the AuthorRecord in a separate
file and making it a reusable component.
 */
renderAuthors() {
 /*
 When developing a component, you should capitalize it.
 Hence, you should use "AuthorRecord" instead of "authorrecord" to identify

it as a component to React.
 */
 let authors = this.props.authors;
 return authors.map(a => {
 return <AuthorRecord author = {a}/>;
 });
}

Chapter 4. Building a rich front-end application by using React and ES6 117

4. Call the renderAuthors() method, within the div class=”row”. It is highlighted in bold in
Example 4-29. Your final Results component should look like Example 4-29.

Example 4-29 Code snippet: Results component

// Results: is another React component
// It creates the list of AuthorRecords
class Results extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {

 if (this.props.hide) {
 return null;
 }

 return (
 <div class='form-inline'>
 <div class="row">
 <div class="col-xs-12 col-md-3">
 <h2>Article URL:</h2>
 </div>
 <div class="col-xs-12 col-md-9">
 {this.props.url}
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12 col-md-3">
 <h2>Authors:</h2>
 </div>
 <div class="col-xs-12 col-md-9">
 <div class="row">

{this.renderAuthors()}
 </div>
 </div>
 </div>
 </div>
)
 }

 /*
 Notice the AuthorRecord is defined in a separate file. This is a powerful feature of the React
Component: Putting the AuthorRecord in a separate file and making it a reusable component.
 */
 renderAuthors() {
 /* When developing a component, you should capitalize it.
 Hence, you should use "AuthorRecord" instead of "authorrecord" in order to identify it as a
component to React.
 */
 let authors = this.props.authors;
 return authors.map(a => {
 return <AuthorRecord author = {a}/>;
 });
 }

}

118 Developing Node.js Applications on IBM Cloud

5. In the Container class below the <button> tag, add the Results element to render the
Results component:

<Results url={this.state.url} hide={this.state.authors.length === 0}
authors={this.state.authors}/>

This line includes the Results component element and these properties:

– url retrieved from state.url
– authors retrieved from state.authors.

Figure 4-19 shows the Results component added to the Container class.

Figure 4-19 Adding Results to the Container class

6. Create a file called authorrecords.js and place it in the components folder.
authorrecords.js defines a new React component, but in a separate file.

Note: The value of url and authors is retrieved from the state. Therefore, any event that
updates state.url and state.authors causes the components to be rendered.
Chapter 4. Building a rich front-end application by using React and ES6 119

7. Add the code snippet in Example 4-30 to the newly created file authorrecords.js.

Example 4-30 Code snippet: authorrecords.js

//AuthorRecord : a component defined to hold author names
class AuthorRecord extends React.Component{

 render() {
 return (
 <div class="row">
 <div class="col-xs-12 col-md-6">
 {this.props.author.name}
 </div>
 </div>
);
 }
}

The code in Example 4-30 shows that you can define a component in a separate file, and
use it in your web page. This approach allows you to reuse the component in another
project by simply copying that file to your new project.

Figure 4-20 shows a snapshot of component.js rendering AuthorRecord.

Figure 4-20 Rendering AuthorRecord in component.js

8. To make the new component AuthorRecord accessible to the other component, import
authorrecords.js in index.html. In index.html, add the following line before importing
components.js:

<script type="text/babel" src="./components/authorrecords.js"></script>

Note: Do not use SHIFT + ALT + F to format the code in the authorrecords.js file. If
you need to format the code, do it manually.
120 Developing Node.js Applications on IBM Cloud

Your index.html file should look like Figure 4-21.

Figure 4-21 The /frontend/index.html file

4.3.6 Using the Fetch API to call the Node.js author service

React is a framework to implement the view components in the model view controller (MVC)
architecture. To retrieve resources from the back-end server, you need to use another library.
XMLHttpRequest is commonly used to call REST services, but in this example you will use the
Fetch API. It is a new API that provides a flexible feature set. It returns a promise that resolves
the Response, which makes calling REST services simpler.

You can use the Fetch API to call any REST API. All Watson APIs are exposed as REST
services, which means that you can call the Watson Language Translator service, the
Watson Natural Language Understanding services, or any other Watson service by using
the Fetch API.

In this part, you will call the author service that you developed in Chapter 3, “Creating your
first Express application” on page 53.
Chapter 4. Building a rich front-end application by using React and ES6 121

To call the author service that was developed in Chapter 3, “Creating your first Express
application” on page 53, complete these steps:

1. Open /frontend/components/components.js to update the getAuthor() method.

2. In the Container class, in components.js, replace getAuthor() with the code snippet in
Example 4-31.

Example 4-31 Code snippet: /frontend/components/components.js file

getAuthor() {
var myHeaders = new Headers();
myHeaders.append("Content-Type", "application/x-www-form-urlencoded");
fetch('/author', {

method: 'POST',
body: "url=" + this.state.inputVal,
headers: myHeaders

}).then(res => res.json())
.then(data => this.setState({

authors: data,
url: this.state.inputVal

}));
}

This code sends an asynchronous POST request to /author. In Chapter 3, “Creating your
first Express application” on page 53, you created an Express route that handles such
requests.

In Example 4-31 there are multiple then methods, which is called promises chaining.
Because then returns a promise, it means that promises can be chained. This method is
used to avoid nested callbacks.

The code snippet in Example 4-31 defines the HTTP method as POST and sets the path
to /author. It also passes the URL that is entered by the user in the url field in the body,
and sets the content type header to application/x-www-form-urlencoded.

3. Deploy the application using the Play icon (Deploy App from the Workspace) from the
server toolbar. If a window with Stop and redeploy? Your application
vy102-XXX-express will be redeployed is displayed, click OK.

4. After the deployment is complete, start the application by clicking Open the Deployed
App from the server toolbar.

5. To test the application, enter the following web address into the URL text box:

http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.
html
122 Developing Node.js Applications on IBM Cloud

http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html
http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html
http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html
http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html

The application now displays the complete list of authors (Figure 4-22).

Figure 4-22 Displaying the list of authors
Chapter 4. Building a rich front-end application by using React and ES6 123

6. Try resizing the window to be narrower (or open the application in your mobile device).
Notice how the page responds by adapting its layout. The “Article URL” and “Authors”
headings now appear above their respective results, as shown in Figure 4-23. This
approach is called responsive design, and is made possible by using Bootstrap.

Figure 4-23 Mobile view

4.4 Exercise review

During this exercise, you achieved the following goals:

� Learned the basics of the React framework.

You built a basic React application that uses React components to interact with the user. It
uses the Fetch API to communicate with the server.

� Learned the basics of ES6.

You used the class syntax, arrow functions, and promises with the Fetch API to call the
back-end services

� Learned the basics of the Bootstrap framework.

You used the Bootstrap framework responsive grid system to create a responsive page
that has different layouts on various screen sizes.
124 Developing Node.js Applications on IBM Cloud

� Learned how to use Express to serve static files and resources.

You used the Express framework’s express.static service to serve all the files that are
hosted in the /frontend folder.

� Used Git to clone an existing project.

You used Git to clone the source code from Chapter 3, “Creating your first Express
application” on page 53 and used it as the basis for this exercise.
Chapter 4. Building a rich front-end application by using React and ES6 125

126 Developing Node.js Applications on IBM Cloud

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet.

Locating the material on GitHub

The source code that is associated with Chapter 3, “Creating your first Express application”
on page 53 is available at the following GitHub location:

https://github.com/ibm-redbooks-dev/vy102-XXX-express

A

© Copyright IBM Corp. 2017. All rights reserved. 127

https://github.com/ibm-redbooks-dev/vy102-XXX-express

128 Developing Node.js Applications on IBM Cloud

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following publications provide additional information about the topic in this document:

� Essentials of Application Development on IBM Cloud, SG24-8374

You can search for, view, download or order this documents and other IBM Redbooks, IBM
Redpapers, Web Docs, draft and additional materials, at the following website:

http://www.redbooks.ibm.com/

Online resources

These websites are also relevant as further information sources:

� IBM Cloud console to sign up for an account

https://bluemix.net

� Node.js

https://nodejs.org/en/

� Express

https://expressjs.com/

� React

https://reactjs.org

� ECMAScript 2015 (ES6) Language Specification

https://www.ecma-international.org/ecma-262/6.0/

Help from IBM

IBM Support and downloads

https://www.ibm.com/support/home/

IBM Global Services

https://www.ibm.com/services/index.html
© Copyright IBM Corp. 2017. All rights reserved. 129

http://www.redbooks.ibm.com/
https://www.ibm.com/services/index.html
https://www.ibm.com/support/home/
https://reactjs.org
https://www.ecma-international.org/ecma-262/6.0/
https://expressjs.com/
https://bluemix.net
https://nodejs.org/en/

130 Developing Node.js Applications on IBM Cloud

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Developing Node.js Applications on IBM
 Cloud

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442852

SG24-8406-01

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Developing a Hello World Node.js app on IBM Cloud
	1.1 Getting started
	1.1.1 Objectives
	1.1.2 Prerequisites
	1.1.3 Expected results

	1.2 Architecture
	1.3 Step-by-step implementation
	1.3.1 Set up your IBM Cloud account
	1.3.2 Log in to your IBM Cloud account
	1.3.3 Create the Node.js application on IBM Cloud
	1.3.4 Enable continuous delivery by using toolchain
	1.3.5 Create a Hello World Node.js server
	1.3.6 Add a module to the Node.js application
	1.3.7 Stop the application

	1.4 Exercise review

	Chapter 2. Understanding asynchronous callback
	2.1 Getting started
	2.1.1 Objectives
	2.1.2 Prerequisites
	2.1.3 Background
	2.1.4 Expected results

	2.2 Architecture
	2.3 Step-by-step implementation
	2.3.1 Log in to your IBM Cloud account
	2.3.2 Create the Node.js application on IBM Cloud
	2.3.3 Enable continuous delivery
	2.3.4 Integrate the Node.js app with the Watson Language Translator service
	2.3.5 Access the Language Translator service from the Node.js app
	2.3.6 Access the Language Translator service through a Node.js module
	2.3.7 Stop the application

	2.4 Exercise review

	Chapter 3. Creating your first Express application
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results

	3.2 Architecture
	3.3 Step-by-step implementation
	3.3.1 Log in to your IBM Cloud account
	3.3.2 Create the Node.js application on IBM Cloud
	3.3.3 Create the Hello World Express application
	3.3.4 Create a simple HTML view and organize the code
	3.3.5 Integrate with Watson Natural Language Understanding service
	3.3.6 Deploy the application and run it

	3.4 Exercise review

	Chapter 4. Building a rich front-end application by using React and ES6
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Background concepts
	4.1.4 Expected results

	4.2 Architecture
	4.3 Step-by-step implementation
	4.3.1 Log in to IBM Cloud
	4.3.2 Clone the Express application from Git by using the Delivery Pipeline
	4.3.3 Create your first React page
	4.3.4 Add a dynamic form to the page
	4.3.5 Add more components to the form
	4.3.6 Using the Fetch API to call the Node.js author service

	4.4 Exercise review

	Appendix A. Additional material
	Locating the material on GitHub

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

