@ Redbooks

Building Cognitive Applications with

IBM Watson Services: Volume 2
Conversation

Ahmed Azraq
Hala Aziz
Nicolas Nappe .- _ | == s>
Cesar Rodriguez Bravo : i

Lak Sri

In partnership with
IBM Skills Academy Program

International Technical Support Organization

Building Cognitive Applications with IBM Watson
Services: Volume 2 Conversation

May 2017

SG24-8394-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page Vvii.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES vii
Trademarkso e viii
Preface iX
AUNOIS . L e iX
Now you can become a published author,too! Xi
CommeENtS WEICOME. o e e Xi
Stay connected t0 IBM RedbOOKSttt e Xii
Chapter 1. Basics of Conversationservice 1
1.1 Introduction to Watson Conversationservice 2
1.1.1 Supported languageso e 3
1.1.2 Innovative ways to use the Watson Conversation service 3
1.2 How to use the Conversation service e 3
1.3 Conversation CONCEPLSo vt 4
1.3.1 Intentsand entities e 4
1.3.2 An example of intents and entitiesina conversation 5
1.3.3 DHalog . ..o e 5
1.3.4 Dialog node.o e 6
1.3.5 ConteXt . ..ot e e 7
1.3.6 Condition and reSPONSESttt e 8
1.3.7 Conversation turn e 10
1.3.8 Typical conversationflow 10
1.4 CONCIUSION . .. oo e e 11
1.5 References 12
Chapter 2. Conversation service workspace 13
2.1 How to use the Conversation service i 14
2.1.1 Creating a Watson Conversation serviceinstance 14
2.1.2 Launching the Conversationtool 16
2.1.3 Working withaworkspace i e 17
214 Addingintents 23
215 Adding entities 27
2.1.6 Buildingadialog e 30
2.2 Exportingthe workspace. e 54
2.3 References e 54
Chapter 3. Cognitive Calculator chatbot. 55
3.1 Getting started. e 56
311 ObJeCtiVES . . e 56
B3.1.2 Prerequisites. e 56
3.1.3 Expected resultso 56
3.2 Architecture. e 58
3.3 Two ways to deploy the application: Step-by-step and quick deploy 59
3.4 Step-by-step implementation 59
3.4.1 Downloading the project from the Git repository. 59
3.4.2 Configuring the Conversation workspace for the Cognitive Calculator chatbot . . 59
3.4.3 Developing the Cognitive Calculator chatbot application 90
3.4.4 Testingthe application 104

© Copyright IBM Corp. 2017. All rights reserved. iii

iv

3.5 Quick deployment of application. 107

3.6 References e 107
Chapter 4. Help Desk Assistantchatbot. 109
4.1 Getting started. e 110
411 ObJeCtiVES . . i e e 110
4.1.2 PrerequIsSites. e 110
41.3 Expected results 110
4.2 Architecture. e 111
4.2.1 Projectstructure 112
4.3 Two ways to deploy the application: Step-by-step and quick deploy 112
4.4 Step-by-step implementation 112
4.4.1 Creating a new Conversation workspace, 113
442 Addingintents. 115
4.4.3 Adding entities e 117
4.4.4 Creatingthedialog 119
445 Testingthedialog 122
4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED 122
4.4.7 Setting up the chatservice (Slack) 131
4.5 Quick deployment of application. i 136
4.6 NeXt StOPS . . . ottt 138
4.7 Referenceso e 138
Chapter 5. Using a cognitive chatbot to manage loT devices 139
5.1 Getting started. e 140
511 ObJeCtiVeS . . . e 140
5.1.2 Prerequisites.ot e 140
5.1.3 Expected results 140
5.2 Architecture. e 141
5.3 Step-by-step deployment of application 142
5.3.1 Creating the Watson loT Platform service 142
5.3.2 Configuring the Android mobile device as an loT device 147
5.3.3 Modifying the Chatbot Conversation workspace. 149
5.3.4 Connecting the chatbot application to the IoT platform. 152
5.3.5 Testing the application 156
5.4 RefereNCES . . . oo e e 156
Chapter 6. Chatting about the weather: Integrating Weather Company Data with
the Conversation service. i 157
6.1 Getting started. e 158
B6.1.1 Objectives e e 158
6.1.2 Prerequisites. 158
6.1.3 Expected results e 158
6.2 ArchitectUre. e 159
6.3 Two ways to deploy the application: Step-by-step and quick deploy 160
6.4 Step-by-step implementation 160
6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast chatbot . 161
6.4.2 Creating the Weather Company Data service instance 165
6.4.3 Developing the Cognitive Weather Forecast chatbot application 171
6.4.4 Testingthe application 180
6.5 Quick deployment of application. 182
6.6 Referenceso 183

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Chapter 7. Improving chatbot understanding. 185

7.1 Getting started.o e 186
711 ObJeCtiVES . . e 186
7.1.2 Prerequisitest 186
713 Expected results 186

7.2 Use caseimplementation 188
7.2.1 ldentifying the additional training that the Conversation workspace requires. .. 188
7.2.2 Using the Improve component to train the Conversation workspace 189
7.2.3 Testing the improved Conversation workspacecooouu... 201

7.3 ReferenCes 202

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech

with the Conversation service. 203

8.1 Getting started. e 204
8.1.1 Objectives e 204
8.1.2 PrereqUIsSites. e 204
8.1.3 Expectedresults e 204

8.2 Architecture. e 205

8.3 Two ways to deploy the application: Step-by-step and quick deploy 206

8.4 Step-by-step implementation 207
8.4.1 Creatingthe Speechto Textservice........... 207
8.4.2 Creatingthe Textto Speechservice. o .. 208
8.4.3 Developing the Cognitive Weather Forecast chatbot application 208
8.4.4 Testingthe application 217

8.5 Quick deployment of application. i 219
8.5.1 Deploy the applicationto Bluemix. i, 219

8.6 References e 225

Appendix A. Additional material L 227

Locating the web material e 227

Related publications L 229

IBM RedbOOKSo e 229

ONlNE rBSOUICES . . ottt ittt e e e e e e e e e 229

Help from IBM ... e 230

Contents v

Vi Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS I1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS 1S”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.

© Copyright IBM Corp. 2017. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/1egal/copytrade.shtmi

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Ask Watson™ IBM MobileFirst™ Tivoli®
Bluemix® IBM Watson® Watson™
developerWorks® IBM Watson loT™ Watson loT™
Global Business Services® Redbooks® WebSphere®
Global Technology Services® Redbooks (logo) (@ ®

IBM® Redpapers™

The following terms are trademarks of other companies:

The Weather Company, and Wundersearch are trademarks or registered trademarks of TWC Product and
Technology LLC, an IBM Company.

ITIL is a Registered Trade Mark of AXELOS Limited.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

viii Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://www.ibm.com/legal/copytrade.shtml

Preface

Authors

The Building Cognitive Applications with IBM Watson Services series is a seven-volume
collection that introduces IBM® Watson™ cognitive computing services. The series includes
an overview of specific IBM Watson® services with their associated architectures and simple
code examples. Each volume describes how you can use and implement these services in
your applications through practical use cases.

The series includes the following volumes:

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

YyVVyVYyVYVYYVYY

Whether you are a beginner or an experienced developer, this collection provides the
information you need to start your research on Watson services. If your goal is to become
more familiar with Watson in relation to your current environment, or if you are evaluating
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 2, describes how the Watson Conversation service
can be used to create chatbots and user agents that understand natural-language input and
communicate with your users simulating a real human conversation. It introduces the
concepts that you need to understand in order to use the Watson Conversation service. It
provides examples of applications that integrate the Watson Conversation service with other
IBM Bluemix® services, such as the IBM loT Platform, Text to Speech, Speech to Text, and
Weather Company Data, to implement practical use cases. You can develop and deploy the
sample applications by following along in a step-by-step approach and using provided code
shippets. Alternatively, you can download an existing Git project to more quickly deploy the
application.

This book was produced by a team of specialists from around the world working in
collaboration with the IBM International Technical Support Organization.

Ahmed Azraq is a Certified IT Specialist in IBM Egypt. Since joining IBM in 2012, Ahmed
worked as a Senior Cloud Developer, Technical Team Leader, and Architect in the IBM Middle
East and Africa (MEA) Client Innovation Center, which is part of IBM Global Business
Services® (GBS). His areas of expertise include cloud, IBM Business Process Manager,
middleware integration, Java, and IBM Watson. Ahmed has acquired several professional
certifications, including Open Group IT Specialist, IBM Bluemix, Java EE, IBM Business
Process Manager, Agile development process, and IBM Design Thinking. Ahmed has
delivered training on IBM Bluemix, DevOps, hybrid cloud Integration, Node.js, Watson APls,
and IBM WebSphere® Liberty Profile to IBM clients, IBM Business Partners, and university
students and professors around the world. He is the recipient of several awards, including
Eminence and Excellence Award in the IBM Watson worldwide competition Cognitive Build,
the IBM Service Excellence Award for showing excellent client value behaviors, and

© Copyright IBM Corp. 2017. All rights reserved. ix

knowledge-sharing award. Ahmed is also a published author for IBM Redbooks Essentials of
Cloud Application Development on IBM Bluemix, SG24-8374.

Hala Aziz is an Experienced Certified IT Specialist in the Cairo Technology Development
Center (CTDC) in IBM Egypt. She has more than 10 years of experience in IBM Application
and Integration Middleware software and IBM Cloud such as IBM WebSphere Application
Server, IBM WebSphere Portal, IBM MobileFirst™, IBM Endpoint Manager, IBM Bluemix, and
IBM Watson services. She worked as a consultant on eGovernment, telecom, and banking
solutions for clients in Egypt, Saudi Arabia, Dubai, Oman, and Switzerland. Hala has several
technical professional certifications, such as Certified Application Developer for IBM Web
Content Manager, IBM MobileFirst and Cloud Platform Application Developer v1, and she has
published several articles and IBM Redbooks publications. Hala has delivered IBM internal
education and client enablement training workshops around the world.

Nicolas Nappe is an Open Group Master Certified IT Specialist and IBM Certified Cloud
Advisor working in IBM Global Technology Services®, IBM Argentina. Nicolas works as a
DevOps Specialist, with a focus in infrastructure automation and cloud computing. Nicolas
has more than 15 years of experience in UNIX technologies, Information Technology
Infrastructure Library (ITIL), and IT service management (ITSM). Nicolas developed the
Cognimation solution that uses Watson cognitive service to summarize documents and
deliver them in a presentation format. Cognimation uses Watson Alchemy Language and
Natural Language Processing to extract the most relevant concepts and deliver a
presentation explaining the concepts customized for the user.

Cesar Rodriguez Bravo is a Program Manager in the IBM North America Cyber Security
Project Office. Cesar holds a Master of Science degree in Cyber Security and many
certifications in Project Management including PMP, Scrum Master, Scrum Developer, Scrum
Product Owner, Agile Expert, and Scrum Trainer. Cesar is also certified as an IBM Expert
Project Manager and is currently the Project Manager competence leader for IBM Costa Rica.
Cesar is a university professor; he enjoys teaching students about new technologies such as
Internet of Things (loT) and cognitive computing. Cesar is currently working with IBM Master
Inventors developing patents in the cognitive and cyber security domains. Cesar won the
Internet of Things contest in the regional IBM Technical Exchange with a project based on
IBM Watson technologies. Cesar won an IBM worldwide contest (with votes from 41
countries) with the idea of an IoT robot that helps children learn by using IBM Watson
capabilities.

Lak Sri currently serves as a Program Director in IBM developerWorks® part of the IBM
Digital Business Group organization. Lak leads innovation in the developer activation space.
He was the Technical Leader for the Building Cognitive Applications with IBM Watson
Services Redbooks series. Lak led the development of the IBM Cloud Application Developer
Certification program and the associated course. Earlier he worked as a Solution Architect for
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built
strategic partnerships in education and IBM Watson lIoT™. Lak is an advocate and a mentor
in several technology areas, and he volunteers to plan and support local community
programs.

X Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.
Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

lain Mclntosh
IBM Watson and Cloud Platform

Juan Pablo Napoli
Skills Academy Worldwide Leader, IBM Global University Programs

Teja Tummalapalli
IBM Digital Business Group

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface Xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

» Find us on Facebook:
http://www.facebook.com/IBMRedbooks

» Follow us on Twitter:
http://twitter.com/ibmredbooks

» Look for us on Linkedin:
http://www.Tinkedin.com/groups?home=8&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Xii Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Basics of Conversation service

With the IBM Watson Conversation service, you can create an application and user agents
that understand natural-language input and communicate with your users simulating a real
human conversation. Conversation service uses machine learning to respond to customers in
a way that simulates a conversation between humans.

This chapter introduces the concepts you need to understand to use the Watson
Conversation service.

The following topics are covered in this chapter:

» Introduction to Watson Conversation service
How to use the Conversation service
Conversation concepts

Conclusion

»
»
»
» References

© Copyright IBM Corp. 2017. All rights reserved. 1

1.1 Introduction to Watson Conversation service

Figure 1-1 depicts the overall architecture of a solution that includes an application that
integrates the Conversation service.

L)

"

® 0L

Figure 1-1 Typical architecture of a Conversation application

Consider this information about the architecture in Figure 1-1:

» Users interact with your application through one or more of your chosen interfaces.
Common choices might be messaging services, a chat window within a website, or even
audio interfaces when combined with Watson Speech to Text services.

» The application sends the user input to the Conversation service:

— The application connects to a workspace. The natural-language processing for the
Conversation service happens inside a workspace, which is a container for all of the
artifacts that define the conversation flow for an application. You can define multiple
workspaces in a Watson Conversation service instance. Each workspace will be
trained to recognize certain concepts and to direct the conversation flow that governs
user interaction.

— The Conversation service interprets the user input, directs the flow of the conversation
and gathers information that it needs. The Watson Conversation service uses machine
learning to identify the concepts it was trained for. Based on what concepts it identifies,
it directs the conversation flow, to provide the user with information or to gather
additional information from users.

— You can connect additional Watson services to analyze user input, such as Tone
Analyzer or Speech to Text.

» Your application can also interact with existing back-end systems based on the user’s
intent and additional information. For example, search for information in public or private
databases, open tickets, show diagrams and maps, or write the user input into your
systems of record.

The steps for setting up a working Conversation service are described in 1.2, “How to use the
Conversation service” on page 3.

2 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

1.1.1 Supported languages

The natural language classifiers used in the Conversation service support English,
Portuguese (Brazilian), French, Italian, Spanish, and Japanese, and has experimental
support for German, Traditional Chinese, Simplified Chinese, and Dutch. Arabic is supported
through the use of the Conversation API but not through the tooling interface.

1.1.2 Innovative ways to use the Watson Conversation service

After completing this book, you should be able to implement all kinds of innovative and
creative interactions with your users in your applications. Here are some examples:

>

You can integrate your application with the Watson Conversation, Speech to Text and Text
to Speech services and drive your application by speaking to it. You can use Watson Tone
Analyzer to identify the emotions, social tendencies, and writing style expressed by your
users.

In Watson Developer Cloud, you can find an example of a Conversation agent helping
your users while they drive cars. You can integrate this application with Weather Company
data, to retrieve weather-related information while driving your car.

You can build an agent to chat with young people around the world and engage them in
community issues, similar to the UNICEF custom social platform, U-Report.

You can build a natural language tutor to chat with your users and teach them as they
learn to play a game that you built, giving advice or supporting them.

A chatterbot can be created that is present in a dialog between two other people and
identifies when they talk about going out, and offers making a reservation, or calling a taxi.

1.2 How to use the Conversation service

These are the steps for using the Conversation service:

1.
2.

Create a workspace in a Watson Conversation service instance.

Train the Conversation service instance to recognize concepts in the user input (intents
and entities):

— Train the Conversation service instance with natural language examples of each
possible intent. At least five examples are required for minimal training. Providing many
examples will give more accurate results, especially if they are varied and
representative of possible input from users.

— Train the Conversation service instance with natural language examples of each
possible entity. Add as many synonyms as you expect your user to possibly use. The
Improve interface will allow you to refine this process later on, adding more synonyms
as you test your dialog.

Create a workflow of the stages of the dialog. Use logical conditions evaluating the
concepts identified in the user’s reply.

Test your dialog in the embedded chat in the Conversation workspace. You can monitor
how the Watson Conversation service interprets the flow, what intents and entities it
detects, and improve its training data in real time.

Call your workflow from your application using the REST API.

Chapter 1. Basics of Conversation service 3

1.3 Conversation concepts

This section describes the main concepts you need to understand about Watson
Conversation service.

1.3.1 Intents and entities

Watson Conversation service uses a natural language processing (NLP) to identify key
information from user’s interactions. The information that the Conversation service extracts
falls into two categories, as explained in Figure 1-2:

» Intent: The purpose of a user’s input (the user’s intent).
» Entity: A term or object that is relevant to the intent (context for the intent).

#INTENT In most cases, intents

Represents the purpose of a user's input. indicate the user stories

i or use case the user
Whe_\t the users want to achieve. wants to perform.
Active, a goal, an action, verbs.

@ENTITY

Entities provide the

context required to . .
How the user’s goal is to be achieved.

Passive, qualifies the intents. Noun, things, objects, terms

perform the user story
or use case.

Figure 1-2 Intent and entity definitions

The dialog component of the Conversation service uses the intents and entities that are
identified in the user’s input to gather required information and provide a useful response to
each user input. The dialog is the logical flow that determines the responses your bot will give
when certain intents and/or entities are detected.

The dialog can be considered a user interface to extract the intents and entities from the
users, process them to create a helpful response, and return the results in the form of natural
language.

4 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

1.3.2 An example of intents and entities in a conversation

You can try to extract intents and entities from a conversation between two people
(Figure 1-3).

Nelson: - Hi! Do you know where is the train station?

#find_a_place @transp_landmark

Marie: - Excuse me?

Nelson: - Oh, | asked you how to get to the train station

#find_a_place | | @transp_landmark

Figure 1-3 Example of intents and entities in a conversation

If you want to create a conversational application that is able to help Nelson in the same way
that Marie can, you must train it to identify the intent #find_a_place and the entity
@transp_landmark, and its possible values. Then, you can trigger a mapping API to direct
Nelson to his destination.

1.3.3 Dialog

Your users will unlikely provide all of the required information in one pass. Instead, you must
organize a conversation flow. The flow will ask users the questions that are useful in order to
gather all the necessary input to provide a helpful answer.

A dialog is a branching conversation flow that defines how your application responds when it
recognizes the defined intents and entities. It is composed of many branching dialog nodes.
Create a dialog branch for each intent, to gather any required information and make a helpful
response.

Figure 1-4 on page 6 shows the dialog for a weather Conversation flow, which is composed of
the following dialog nodes:

v

A greeting node

A node to ask the user the city of interest

A reply after the city is identified

A backup reply in case the program cannot identify the city

vvyy

More details about how to build intents, entities, and the dialog for weather Conversation are
in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157.

Chapter 1. Basics of Conversation service 5

areet

@
ask_for_city reply_with_weather
Triggered by

#weather_inquiry

Watson responses o city_noi_recognized

What's the city that you'd like to
forecast the we...

m < @ &

@

Figure 1-4 Example of dialog flow

1.3.4 Dialog node

The dialog is made up of nodes that define steps in the conversation. Dialog nodes are
chained together in a tree structure to create an interactive conversation with the user.

Each node starts with one or more lines that the bot shows to the user to request a response.
Each node includes conditions for the node to be active, and also an output object that
defines the response provided. You can think of the node as an if-then construction: if this
condition is true, then return this response. The simplest condition is a single intent, which
means that the response is returned if the user’s input maps to that intent

Dialog nodes that originate on another node are their children nodes. Dialog nodes that do
not depend on other nodes are base nodes.

6 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 1-5 shows a sample dialog node, with a labeling name, a condition, and an example
response.

ask_for_city X

riggered by

if #weather_inquiry

Fulfill with a response @ [Jumpto...

(+) Add response condition

What's the city that you'd like to forecast tt

TN
i+
e

Create another response

Figure 1-5 Example dialog node

1.3.5 Context

As in a real life conversation, context matters. The dialog context is the mechanism for
passing information between the dialog and your application code. Context allows you to
store information to continue passing it back and forth across different dialog nodes. For
example, if you identify the names of your users in the Conversation flow, you could store the
information in the context and retrieve it any time you want to call your user by name. Context
is described as a JSON entry within the node, or can be modified in your app before the
REST call.

Chapter 1. Basics of Conversation service 7

Figure 1-6 shows a sample that sets NYC coordinates in the context, for use later.

reply_with_weather b4

b

if @city:NYC £}

{
"context": {
"coordinates”; {
“latitude”: 40.785091,
"longitude": -?S.QGBEIEJS
1
b
output”: {
"text": {
"values": [
"[REPLACE WITH WEATHER DATA]"
1
"selection_policy": "sequential”

1

1

N v
Figure 1-6 Example context, setting the NYC coordinates in the context for future use

The dialog is stateless, meaning that it does not retain information from one interchange to the
next. Your application is responsible for maintaining any continuing information. However, the
application can pass information to the dialog, and the dialog can update the context
information and pass it back to the application.

In the context, you can define any supported JSON types, such as simple string variables,
numbers, JSON arrays, or JSON objects.

1.3.6 Condition and responses

The condition portion of a dialog node determines whether that node is used in the
conversation. Conditions are logical expressions that are evaluated to true or false.
Conditions are used to select the next dialog node in the flow, or to choose among the
possible responses to the user.

Conditions are expressed in the Spring Expression Language (SpEL).

Conditions usually evaluate the intents and entities identified in the user responses but also
can evaluate information stored in the context. This information in the context can be stored in
previous dialog nodes or in your application code as part of an API call.

8 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Figure 1-7 shows a sample dialog node conditioned on a specific location (NYC) and time
(31-Dec-2017) so you can recommend visiting Times Square for New Year’s Eve.

Responses are messages based on the identified intents and entities that are communicated
to the user when the dialog node is activated. You can add variations of the response for a
more natural experience, or add conditions to pick one response out of many in the same
dialog node.

right_moment_and_place b4

if @city:NYC and

@sys-date == "2017-12-31"

Fulfill with a response © [Jump to..
(¥ Add response condition 3

Try not to miss the New Year's Eve countdown!

@ Create another response L

Figure 1-7 Special condition (place and time) to celebrate New Year'’s Eve in Times Square

Chapter 1. Basics of Conversation service 9

1.3.7 Conversation turn

A single cycle of user input and a response is called conversation turn (Figure 1-8).
Each conversation turn starts in one dialog node, called the active node.

Display response
in active node

Select next Get user input and

active node application context

Evaluate conditions Extract entities
using context + and intents from
entities + intents user Input

Figure 1-8 Conversation turn

1.3.8 Typical conversation flow

10

Figure 1-9 on page 11 shows a typical conversation flow and how the nodes are selected:

1. The conversation starts in an initial node set up with the conversation_start special
condition.

2. After some conversation turns, the dialog progresses to the node marked as active node.
The response configured in this node is shown to the user. The user input is analyzed for
intents and entities and used to select the next dialog node in the flow.

3. The conditions in the child nodes are evaluated in descending order using the extracted

intents and entities. The first child node to match a condition is selected as the next active

node and a new conversation turn starts (not shown in the figure).

4. If no child node matches the condition, the Conversation service evaluates the conditions

of each base node in the dialog and selects the first matching dialog node as the next
active node.

5. A useful approach is to have a base node configured with the anything_else special
condition so that the conversation defaults to this node when no other nodes match the
conditions. The special anything_else condition always evaluates to frue. You can use
this node in the dialog to tell the user that the input was not understood and suggest valid
interaction.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

o e m— conversation_start

A

> anything_else

Base nodes Child nodes

Figure 1-9 Next active node selection criteria

1.4 Conclusion

In this chapter, you learned the basic concepts that apply to the Watson Conversation
service. In the next chapters, you learn to combine the concepts introduced in this chapter to

create meaningful conversations with your users.

The Conversation service will extract intents and entities from user input. It will use this
information and context information to traverse a flow of dialog nodes, called a dialog. Each
node will be selected based on its configured conditions, and will have a response to present

to the user.

These simple basic concepts allow you to create a complex, powerful, and practical user
interaction experience.

Chapter 1. Basics of Conversation service 11

1.5 References

For more information, see the following resources:

» Overview of the Watson Conversation service:
https://www.ibm.com/watson/developercloud/doc/conversation/index.html

» How Watson Conversation Service Works (video):
https://youtu.be/CV8nNIIQhlc

» Building chatbots with Watson (video):
https://www.youtube.com/watch?v=ccLKDBg8Ht8

12 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.ibm.com/watson/developercloud/doc/conversation/index.html
https://www.youtube.com/watch?v=ccLKDBg8Ht8
https://youtu.be/CV8nNIIQh1c

Conversation service workspace

The natural language processing for the Watson Conversation service happens in a
workspace, which is a container for all of the artifacts that define the conversation flow for an
application.

This chapter explains how to create and use a Conversation workspace with the Conversation
tool. This chapter shows, by example, how to add intents and entities to the workspace and
how to build a dialog.

The information in this chapter is a prerequisite for the other chapters in this book.

The following topics are covered in this chapter:

» How to use the Conversation service
» Exporting the workspace
» References

© Copyright IBM Corp. 2017. All rights reserved. 13

2.1 How to use the Conversation service

Using the Conversation service involves the following steps:

Creating a Watson Conversation service instance
Launching the Conversation tool

Working with a workspace

Adding intents

Adding entities

Building a dialog

2R o S

In the following sections, you import the Weather Forecast workspace to your Conversation
service instance. You add new intents and entities to it to become a complete car chatbot,
which gives weather information and can also provide traffic information.

Objectives
By the end of this chapter, you should be able to accomplish these objectives:

Create a Conversation service instances in Bluemix.
Use the Conversation tool.

Create and import a workspace.

Create intents.

Create entities.

Build dialogs.

vVvyvyvyYYyypy

2.1.1 Creating a Watson Conversation service instance

Bluemix provides resources to your applications through a service instance. Before you can
use the Watson APIs you must create an instance of the corresponding service. You will need
to create a Watson Conversation service instance for use in all the examples in this book.

To create an instance of the Conversation service, follow these steps:

1. Create an IBM Bluemix account if you do not have one.

You must have a Bluemix account to access the Watson APIs. You can create a free trial
Bluemix account.

2. Login to IBM Bluemix.
3. Click Watson (under Services).

The Watson services that are available in Bluemix are listed.
4. Click Conversation (Figure 2-1 on page 15).

14 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net

@, IBM Bluemix Catalog

95 Trial Days Remaining

Whsssie fuliss sl | US South dev

Catalog Support

All Categories

Infrastructure

Q, search

Build cognitive apps that help enhance, seale, and accelerate human expertise.

Gonversation

your appiication to

Discovery

Add a cognitive search and content analytics engine to
applications

BM

Services

Language Translator

Transiate text from one language to another for specific
domains,

=]

Personality Insights

tson Personality Insights derives insights from
transactional and social media data o

BM

Text to Speech

Synthesizes natural-sounding speech from text

=

Visual Recognition

Eincimes | contast 5

Natural Language Classifier

tural language

Retrieve and Rank

*A./mad machine lsarning enhanced search capabilities 1o
your application

BM

Tone Analyzer

iinguistic analysis to detect three

Filter

Document Gonversion

Converts a HTML, PDF, or Micros
into a normalized HTML, plain tex

Word™ document

Natural Language Understanding

0 extrac from content such as

entities, emotion, relations

Speech to Text

Low-latency, streaming transcription

Tradeoff Analytics

Helps make better

multiple conflicting
goals. Gombines a

Figure 2-1 Watson services in Bluemix: Select Conversation

5. Do these steps on the next web page (Figure 2-2):

a.

b.
c.
d

Enter Conversation as the service instance name.
Notice the credential name, Credentials-1.

Select the pricing plan you want to use.

Click Create and wait for Bluemix to create an instance of your Conversation service.

'ﬂl;..a

IBM Bluemix Catalog

<« Viewall

Conversation

Add a natural language interface
to your application to automate
interactions with your end users.
Commeon applications include
virtual agents and chat bots that
can integrate and communicate
on any channel or device. Train

Watson Conversation service

Service name:

Conversation

Credential name:

Credentials-1

MNeed Help?
Contact Bluemix Sales

Estimate Monthly Cost
Cost Calculator

Figure 2-2 Conversation service instance name

Chapter 2. Conversation service workspace

15

2.1.2 Launching the Conversation tool

The Conversation tool is a visual dialog builder to help you create natural conversations
between your apps and users, without any coding experience required. Complete these steps
to launch the tooling:

1. After creating the Conversation service instance, click Launch tool (Figure 2-3).

Conversation

Add a natural language interface to your

e interactions w

application to automa ith your Developer resources:
end users. Common applications include
virtual agents and chat bots that can

and communicate on ar 1Y

Conversation tooling

Train bots with the Watson Conversation service through an easy-to-use web application. Designed so you can quickly buld

natural conversation flows between your apps and users, and deploy scalable, cost effective solutions.

Intended Use

Use Watson Con n wherever you nal capability to your apps to engage with end-usears on their

as mobile, web, ms oT, and robots.

platforms of choice,

Figure 2-3 Launching the conversation tool immediately after creating the service instance

2. Alternatively, you can launch the tool at a later time:
a. Go to the Bluemix dashboard.
b. Click your Conversation service instance.

c. On the service details page, click the Manage tab (Figure 2-4), scroll to Conversation
tooling, and click Launch tool.

Conversation

Manage Service credentials Connections

Conversation tooling

Train bots with the Watson Conversation service through an easy-to-use web application. Designed so you can quickly build

natural conversation flows between your apps and users, and deploy scalable, cost effective solutions.

Intended Use

Use Watson Conversation wherever you want to add conversational capability to your apps to engage with end-users on their

platforms of choice, such as mobile, web, messaging channels, loT, and robots.

Figure 2-4 Launch Conversation tooling

16 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. If this is the first workspace, the Watson Conversation login page opens (Figure 2-5). If

you have an IBMid, click Log in with IBM ID; otherwise, click Sign up for IBM ID.

Watson Conversation

Log in with IBM ID

Sign up for IBM ID

Figure 2-5 Log in Watson Conversation tooling

2.1.3 Working with a workspace
This section describes how to create, delete, import, and rename a workspace.

Create a new workspace
Complete the following steps:

1. Launch Conversation tooling.

2. Click Create to create a workspace (Figure 2-6).

Create workspace

Workspaces enable you to maintain separate intents,
user examples, entities, and dialogs for each use or
application.

Create () & Import

Figure 2-6 Create new workspace

Chapter 2. Conversation service workspace

17

3. As shown in Figure 2-7, specify the details of the new workspace:

— Name: conv-lab-workspace

— Description: Any description not more than 128 characters.

— Language: Language of user input that the workspace will be trained to understand;
Keep as default: English (U.S.).

Create a workspace X

Workspaces enable you to maintain separate intents, user examples, entities, and dialogs for each use or application.
Name
conv-lab-workspace

Description

Language

English (U.S)) v

Figure 2-7 New workspace details
4. Click Create.

Delete a workspace
Complete the following steps:

1. Click the menu icon E and then click Back to workspaces (Figure 2-8).

T
3
)

Intents

Mo intents yet.
An intent is the goal or purpose of the user's input. Adding examples

to intents helps your bot understand different ways in which people
would say them.

Figure 2-8 Conversation workspace

18 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Click the three vertical dots, then click Delete (Figure 2-9).

Watson C

Workspaces

conv-lab-workspace
iption added
Duplicate

Download as JSON

Delete

Figure 2-9 Delete workspace

3. Type the word delete in the “Delete a workspace” confirmation dialog and then click
Delete workspace (Figure 2-10).

Delete a workspace

-

i) You are about to delete conv-lab-workspace
workspace.

This workspace contains 0 intents, 0 entities, and 0 dialog
nodes. This action cannot be undone. To proceed, type
"delete” below.

delete

del etr:l

_

Figure 2-10 Delete workspace confirmation dialog

Chapter 2. Conversation service workspace

19

Import a workspace
Complete the following steps:

1. Download the Weather Forecast workspace JSON file:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/tr
aining/1.4-conv-101-createservice-incomplete.json

2. Launch the Conversation tooling by doing one of the following steps:

— If this is your first workspace, click Import. Figure 2-11 shows an empty service with no
workspaces created.

Create workspace

Workspaces enable you to maintain separate intents, user examples, entities, and
dialogs for each use or application.

Create (B & Import

Figure 2-11 First time Import workspace

— If this is not your first workspace, and workspaces are already associated with the
Conversation instance, click the Import workspace button at the top of the page
(Figure 2-12).

Workspaces

Figure 2-12 Import workspace

3. In the “Import a workspace” dialog (Figure 2-13 on page 21), use these steps:
a. Click Choose a file and select the downloaded JSON file.

b. Select Intents and Entities to use the intents and entities from the exported
workspace; you will build a new dialog. Figure 2-13 on page 21 shows how to import
intents and entities from the workspace JSON file.

20 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json

Import a workspace

X

Select a JSON file then choose which elements from the workspace to import.

Choose afile workspace-5cea3898-6427-4261-bcb1-3ae3655e5a3f (1).json

Import

Everything (Intents, Entities, and Dialog)

{®) Intents and Entities

Figure 2-13 Choose JSON file to import

4. Click Import to import the intents and entities.
Figure 2-14 shows the imported intents.

5 #out_of scope
Good Morning

5 #weather_inquiry

is it going to be raining tomorrow?

Sortby: Newest

v

Figure 2-14 Weather Forecast intents imported

Figure 2-15 shows the imported entities.

@city
Cairo, NYC

Sortby: Newest

v

Figure 2-15 Weather Forecast entities imported

Chapter 2. Conversation service workspace

21

Rename the Weather Forecast workspace

After importing the Weather Forecast workspace, rename it to Car Chat-bot to add more
car-related features to it.

Complete the following steps to rename the workspace:

1. Go back to Workspaces by clicking the menu button in the upper left corner.

2. Click the Actions icon (three vertical dots) and select Edit (Figure 2-16).

Workspaces

Weather Forecast

Weather Forecasting Workspace View details
Edit

English (U.S.) Duplicate
Download as JSON

Delete

Last modified: just now

Figure 2-16 Edit the workspace

3. Change the name and description of the workspace (Figure 2-17):

— Name: Car Chat-bot
— Description: Car Chat-bot workspace

Click Done.

Car Chat-bot

Car Chat-bot workspac-e|

English (U.S.) v

Figure 2-17 Rename workspace

22 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2.1.4 Adding intents

In this section, you add the following intents to the workspace. The workspace currently has
the imported intents weather_inquiry and out_of_scope.

» Greeting
» Traffic
» Goodbye

Create a greeting intent
Use the Conversation tool to create a new intent:

1. Click the Car Chat-bot workspace. The Intents tab opens automatically.
2. Click Create new (Figure 2-18).

Iii 2 intents Sortby: Newest s/

S #out_of_scope 5
Good Morning

S #weather inquiry 5

is it going to be raining tomorrow?

Figure 2-18 Create new Intent
3. Name the intent #greeting.

Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

4. Inthe User example section (Figure 2-19 on page 24), add these greeting examples to the
#greeting intent; click the plus sign (+) or press Enter to add each user example:
— Hi
— How are you?
— Hello
— Hey
— Good morning
— Good afternoon

Add as many greeting examples as you can, so that the application can be more accurate
(five examples is the minimum).

Chapter 2. Conversation service workspace 23

Intent name

#greeting

User example

Hi O

Hey O

How are you? (D)

Good morning ()
Good afternoon (D)

Hello @

Figure 2-19 Add greeting intent and examples

5. When you finish adding user examples, click Create to save the intent.
After you create the intent, the system starts to train itself with the new data.

Create a traffic intent
Use the Conversation tool to create a traffic intent:

1. Click Create new. Name the intent: #traffic.
Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

2. In the User example section (Figure 2-20 on page 25), add these traffic examples to the
#traffic intent; click the plus sign (+) or press Enter to add each user example:

— What is the traffic today?

— Please tell me if it's crowded now

— What's the traffic Tike?

— How crowded is it now?

— Is it ok to go to my destination now?

Add as many traffic examples as you can, so that the application can be more accurate
(five examples is the minimum).

24 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Intent name

#traffic

User example

What is the traffic today? @
Please tell me if it's crowded now @
What's traffic like? @

How crowded is it now? @

Is it ok to go to my destination now? @

Figure 2-20 Add traffic intent and examples

3. When you finish adding user examples, click Create to save the intent.
After you create the intent, the system starts to train itself with the new data.

Create a goodbye intent
Complete these steps:

1. Click Create new. Name the intent: #goodbye.
Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

2. Inthe User example section (Figure 2-21 on page 26), add these goodbye examples to
the #goodbye intent; click the plus sign (+) or press Enter to add each user example:

— bye

— farewell

— goodbye

— I'm done

— see you later

— Thanks for your help

Add as many goodbye examples as you can, so that the application can be more accurate
(five examples is the minimum).

Chapter 2. Conversation service workspace 25

Intent name

#goodbye

User example

bye (O

farewell (D)
goodbye ()
I'mdone (O

Thanks for your help @

see you later @

Figure 2-21 Add goodbye intent and examples

3. When you finish adding user examples, click Create to save the intent.
After you create the intent, the system starts to train itself with the new data.

Final intents list in workspace
Figure 2-22 shows the final list of intents in the Car Chat-bot workspace.

S #goodbye
bye
S #traffic

How crowded is it now?

S #greeting

Good afternoon

S #out_of_scope

Please close the music

S #weather _inquiry

is it going to be raining tomorrow?

Figure 2-22 Car chatbot intents

26 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Test your intent
After defining the new intents and examples. You can test your system to be sure it accurately
recognizes the intents. If not, then the intents must be refined.

Complete these steps to test your system:

1. Click the ellipses button at the top right corner of the page.

2. Enter a question or a phrase to test whether the system recognizes the correct intent
(Figure 2-23).

Try it out

Please tell me the temperature now

What about the traffic now?

Thank you

Figure 2-23 Testing intents

3. If the system does not recognize the correct intent, you can correct it by clicking on the
displayed intent and choosing the correct intent from the list. After selecting the intent, the
system starts training itself with the new data.

2.1.5 Adding entities

An entity represents a class of object or a data type that is relevant to a user’s purpose. By
recognizing the entities that are mentioned in the user’s input, the Conversation service can
choose the specific actions to take to fulfill an intent.

The workspace has an imported city entity. In this section, you add a destination entity to
the workspace.

Chapter 2. Conversation service workspace 27

Create destination entity
Use the Conversation tool to create a new entity:

1. Click the Entities tab.
2. Click Create new (Figure 2-24).

Iii 1 entity Sortby: Newest <~/

@city
Cairo, NYC

Figure 2-24 Create new entity

3. Name the entity @destination.
Note: The at sign (@) is added by default to the name; do not add it yourself.

4. Add the following values and synonyms (Figure 2-25).

— Value: Home
— Synonyms: My Address
— Value: Work
— Synonyms: IBM, Office

« @destination =

@ Add a new value

|j| Home My Address (1 Synonym)

|:| Work IBM Office (2 Synonyms)

Figure 2-25 Add location entity

5. Click Create.
The entity you created is added to the Entities tab, and the system begins to train itself
with the new data.

Add sys-time system entity

The Conversation service provides a number of system entities, which are common entities
that you can use for any application.

The @sys-time system entity extracts mentions such as 2pm, at 4, or 15:30. The value of this
entity stores the time as a string in the HH:mm:ss format, for example, 13:00:00.

28 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Complete the following steps to add a system entity from the Conversation tool:
1. Select the System entities tab. You can then choose from a list of system entities.
2. Click the on/off toggle switch next to the @sys-time entity to enable it (Figure 2-26).

My entities System entities

These are common entities created by IBM that could be used
across any use case. They are ready to use as soon as you add All: .
them to your workspace. *System entities cannot be edited. Learn

more

P

Extracts time mentions (at 10)

@sys-date . e

Extracts date mentions (Friday)

@sys-currency =~
Extracts currency values from user examples including the amount and the unit. (20 cents)

Figure 2-26 Add @sys-time system entity

Final entities list in workspace
Figure 2-27 shows the final My Entities list in the Car Chat-bot workspace.

5 @destination
Home, Work

s @city
Cairo, NYC

Figure 2-27 My Entities final list

Figure 2-28 shows the final system entities list in the Car Chat-bot workspace.

Extracts time mentions (at 10)

@sys-time m

Figure 2-28 System entities final list

Chapter 2. Conversation service workspace

29

2.1.6 Building a dialog

In this section, you build the Conversation dialog for the car chatbot by using the created and
imported intents and entities.

Start the dialog
Complete the following steps:

1. Click the Dialog tab and click Create (Figure 2-29).

Intents Entities Dialog

No dialog yet

A dialog uses intents, entities, and context from your application to define a response to each user's
input. Creating a dialog defines how your bot will respond to what your users are saying.

Figure 2-29 Create new dialog

An untitled node is displayed in the dialog, when it is first created (Figure 2-30).

Conversation starts @
v Untitled Node

Triggered by

anything_else
Watson responses o

No response yet

W & @ X

Figure 2-30 Dialog created with a default node

30 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. In the edit view (Figure 2-31), enter the following details:

— Node name: conversation _node
— In the “Triggered by” (if) section:

i. Start typing the word welcome.
ii. From the list, select Welcome (create new condition).

Note: When you create the condition in your first dialog node, a node with the
anything_else condition is created in the dialog tree.

— In the “Fulfill with a response” section, add the following text:

Welcome to Car chat bot!

conversation_start e

Triggered by ®

if welcome

Fulfill with a response © & Jump to...
) Add response condition {3

Welcome to Car chat bot]| ©

@ Create another response

Figure 2-31 First node details

3. In the dialog, click the anything_else node, to edit its details.

Chapter 2. Conversation service workspace 31

4. In the edit view (Figure 2-32), add a response in the “Fulfill with a response” section:

I can't understand your question. Please try again.

X

Triggered by ©®

if anything_else

Fulfill with a response ® [Jump to..
(® Add response condition

| can't understand your question. Ple

@ Create another response

Figure 2-32 Details of the anything_else node

32 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 2-33 shows the dialog with the two nodes created so far.

Conversation starts

~ conversation_start

Triggered by
welcome

Watson responses o

Welcome to Car chat bot!

mw < @ &

v Untitled Node

Triggered by

anything_else
Watson responses o

| can't understand your question.
Please try again...

W < & X

Figure 2-33 Dialog with two initial nodes

5. You can collapse the anything_else node by clicking its Toggle node button (Figure 2-34).

®

~ |Untitled Node

Toggle node

Triggered by

anything_else
Watson responses o

| can't understand your question.
Please try again...

mw < &

Figure 2-34 Collapsing the anything_else node

Chapter 2. Conversation service workspace 33

Create a branch to respond to the greeting intent
Complete the following steps

1. In the dialog, click the conversation_start node.

2. Click the plus sign (+) below the conversation_start node (Figure 2-35), to create a base
node peer of the conversation_start node.

Conversation starts @
Vv conversation_start

Triggered by

welcome

Watson responses o

Welcome to Car chat bot!

[Create alternative conversation }

v Untitled Node

Triggered by

Figure 2-35 Create greeting node

34 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. In the edit view (Figure 2-36), add these details:

— Node name: greeting
— Inthe “Triggered by if” section:

i. Start typing the word greeting.
ii. From the list, select #greeting, which is the greeting intent you created previously.

— In “Fulfill with a response” section, add the following text:

Hi! What can I do for you?

greeting B4

Triggered by ®
if #greeting

Fulfill with a response @ [3 Jump to...
(¥ Add response condition

Hil What can | do for you?

@ Create another response

Figure 2-36 The greeting node details

Chapter 2. Conversation service workspace 35

Create a branch to respond to the goodbye intent
Complete the following steps:

1. In the dialog, click the greeting node.

2. Click the plus sign (+) below the greeting node (Figure 2-35 on page 34), to create a base
node peer of the greeting node.

3. In the edit view (Figure 2-37), add these details:

— Node name: goodbye
— In the “Triggered by if” section:

i. Start typing the word goodbye.
ii. From the list, select #goodbye, which is the goodbye intent you created previously.

— In “Fulfill with a response” section, add the following text:

It is my pleasure to help you. Bye

goodbye b4

Triggered by ©
if #goodbye

Fulfill with a response ® 3 Jumpto..
(¥) Add response condition

It is my pleasure to help you. Bye

@ Create another response

Figure 2-37 The goodbye node details

36 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a branch to respond to the traffic intent
Complete the following steps:

1. In the dialog, click the greeting node.

2. Click the plus sign (+) below the greeting node (Figure 2-38), to create a base node peer
of the greeting node (that is, create an alternative conversation).

®

v greeting

Triggered by

greeting
Watson responses o

Hi! What can | do for you?

W @ %

©)

lCreate alternative conversation }

Figure 2-38 Create traffic node

Chapter 2. Conversation service workspace 37

3. In the edit view (Figure 2-39). add these details:

— Node name: traffic
— In the “Triggered by if” section:

i. Start typing the word traffic.
ii. From the list, select #traffic, which is the traffic intent you created previously.

— In “Fulfill with a response” section, add the following text:

Where is your destination?

traffic b 4

Triggered by ©
if #traffic

Fulfill with a response ©® [Jump to...

(® Add response condition 4

Where is your destination?

@ Create ancther response

Figure 2-39 The traffic node details

38 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a child node for the traffic node

The #traffic intent requires additional processing, because the dialog needs to determine the
location to get the traffic information for. To handle this, create a location child node for the
traffic node:

1. In the dialog, click the traffic node.

2. Click the plus sign (+) next to the traffic node (Figure 2-40), to create a child node of the
traffic node.

@

traffic |Cont.’nue conversation

Triggered by
#traffic
Watson responses o

No response yst

2 anything_else

Figure 2-40 Create a destination node

3. In the edit view (Figure 2-41 on page 40), add these details:

— Node name: destination
— In the “Triggered by if” section:

i. Start typing the word destination.
ii. From the list, select @destination, which is the destination entity you created
previously.

— In “Fulfill with a response” section, add the following text:

For what time do you need to know the traffic information

Chapter 2. Conversation service workspace 39

destination X

Triggered by ©

if @destination

Fulfill with a response @ [Jump to..

() Add response condition {1

For what time do you need to know t

@ Create another response

Figure 2-41 The destination node details

Create a fallback node for the destination node
Create a fallback node, in case the user did not enter valid input for the destination, which is

either the synonym of @destination.Home or @destination.Work.
Complete these steps:

1. Click the plus sign (+) next to the destination node to create a child node of the
destination node.

2. In the edit view (Figure 2-42 on page 41), add these details:

— Node name: anything else
— In the “Triggered by if” section:

i. Start typing the word anything _else.
ii. From the list, select anything_else (create new condition).

— In “Fulfill with a response” section, add the following text:

I'm not trained for this destination. Please enter Home or Work only as a
destination.

40 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

anything_else e

Triggered by ®

if anything_else

Fulfill with a response @ 3 Jumpto..
() Add response condition

I'm not trained on this destination. Pl &)

@ Create another response

Figure 2-42 The destination fallback node details

After the response is fulfilled, you need to repeat the destination question again to let the user
re-enter the destination. This can be done by using the Jump to function. You create a Jump
to response as follows:

1. Click the Jump to button at the bottom of the anything_else node you just created
(Figure 2-43).

v anything_else

Triggered by

anything_else
Watson responses o

I'm not trained on this destination.
Please select...

< |2 &

Figure 2-43 The Jump to button

Chapter 2. Conversation service workspace 41

42

2. Click the node that you want the response to go to. In this case, it is the traffic node to ask

for the location again.

3. Select Go to response (Figure 2-44).

& Go to condition

& Goto response

||

v traffic

Triggered by
#traffic

Watson responses o

Where is your destination?

%

Figure 2-44 Go to response of traffic node

Create a child node for the destination node

After choosing the destination in the @destination entity, the dialog needs to know the time
for which to get traffic information. Therefore, you create a time child node for the destination

so the user can enter the time:

1. In the dialog, click the destination node.
2. Click the plus sign (+) next to the destination node (Figure 2-45) to create a child node of

the destination node.

Conversation starts

> conversation_start

» greeting
traffic -~ destination
igoe: Trigger
#traffic @destination
tson responses ° Watsan responses
Where is your destination?
the traffic info...
G 3y
— 7
]ﬁl— + E & @I— PO =
+ B}
®

For what time deo you need to know

Figure 2-45 Creating child of destination node

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

. In the edit view (Figure 2-46), add these details:

— Node name: time
— Inthe “Triggered by if” section:

i. Start typing the word sys-time.
ii. From the list, select @sys-time, which is the system entity @ sys-time that you
selected previously.

— In “Fulfill with a response” section, add two random responses (press Enter after you
add the first response):

e The traffic is low at this time
e The traffic is high at this time of the day

— Click the Set to random link, to make sure the dialog randomly selects a response.

time

Triggered by ©

if @sys-time

Fulfill with a response © [2 Jump to...
(® Add response condition {3
The traffic is low at this time

The traffic is high at this time of the da

Response variations are set to random. —,
; gLV
Set to sequential

@ Create another response

Figure 2-46 The time node details

Chapter 2. Conversation service workspace 43

After the chatbot responds with the traffic information, the dialog goes to the goodbye node to
end the conversation.

To ensure that the dialog flows to the goodbye node, complete these steps:
1. On the time node, click the Jump to button (Figure 2-47).

v time

Triggered by
@sys-time
Watson responses o

The traffic is low at this time

M <~ | [o3

Figure 2-47 Jump to the goodbye node
2. Select the goodbye node, then select Go to response.

Create a fallback node for the time node

As for the location node, create a fallback node for the time node so that the dialog can go to
it if the user did not enter a valid time.

Make the fallback node jump to a destination node response (Figure 2-48).

®

Vv anything_else Jump to... & M

destination

Triggered by

anything_else
Watson responses o

Please enter a valid time.

i < @ &

Figure 2-48 The time node fallback

44 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a branch to respond to the weather_inquiry intent
Complete the following steps:

1. In the dialog, click the traffic node.

2. Click the plus sign (+) at the bottom of the traffic node, to create a base node peer of the
traffic node.

3. In the edit view, add these details:

— Node name: weather
— In the “Triggered by if” section:

i. Start typing the word weather.
ii. From the list, select #weather_inquiry, which is the weather_inquiry intent you
created previously.

— In “Fulfill with a response” section, add the following text:
What's the city that you'd 1ike to forecast the weather?

Figure 2-49 shows the weather node after creation.

v weather

Triggered by

#weather_inquiry
Watson responses o

What's the city that you'd like to
forecast the we...

m < @ &

Figure 2-49 weather dialog node

Create a child node for the weather node

The #weather_inquiry intent requires additional processing because the dialog needs to
determine the city in order to get the weather data for it. To handle this, create a city child
node for the weather node:

1. In the dialog, click the weather node.

2. Click the plus sign (+) next to the weather node, to create a child node of the weather
node.

3. In the edit view of the created node, add these details:

— Node name: city
— In the “Triggered by if” section:

i. Start typing the word city.
ii. From the list, select @city, which is the city entity you created previously.

— In “Fulfill with a response” section, add the following text:
[REPLACE WITH WEATHER DATA]

Chapter 2. Conversation service workspace 45

Important: Do not provide a response here. In Chapter 6, “Chatting about the weather:
Integrating Weather Company Data with the Conversation service” on page 157, this part
will be integrated with the Weather Data Company service to get the weather information.

Figure 2-50 shows the city node after creation.

®

Vv city

Triggered by

@city

Watson responses (1)
[REPLACE WITH WEATHER DATA]

W < @ &

Figure 2-50 The city dialog node

After the chatbot responds with the weather data, the dialog goes to the goodbye node to end
the conversation

To ensure the dialog flows to the goodbye node, complete these steps:
1. On the city node, click the Jump to button.
2. Select the goodbye node, and then select Go to response.

46 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a fallback node for the city node

Create a fallback node for the city node, for the dialog to go to if the user did not specify the
NYC or Cairo cities.

Make the fallback node jump to the weather node response (Figure 2-51).

Vv anything_else Jump to... & W

weather

Triggered by

anything_else
Watson responses o

| am trained only for Cairo and NYC
cities

@ %

Figure 2-51 the city node fallback

Move the goodbye node to the bottom
Complete the following steps to move the goodbye node to the bottom of the weather node:

1. On the goodbye node, click the Move button (Figure 2-52).

goodbye

Triggered by
#goodbye
Watson responses o

It is my pleasure to help you. Bye

T —
(<] 3 &

Figure 2-52 Move dialog node

Chapter 2. Conversation service workspace 47

2. Select the weather node, then click the Move icon below it (Figure 2-53).

|lr o \I
X -

v weather

Triggered by
#weather_inquiry
Watson responses o

What's the city that you'd like to
forecast the we...

Figure 2-53 Moving goodbye node to the bottom of weather node

48 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The complete car chatbot dialog

This section acts as a checkpoint to make sure the dialog is created as it should be. The
following sections show the first level dialog nodes and the traffic and weather child nodes.

Base nodes
Figure 2-54 shows the base nodes created with the child nodes collapsed.

Conversation starts

> conversation_start

> greeting

> traffic

> weather

> goodbye

> anything_else

Figure 2-54 Base nodes in the dialog

Chapter 2. Conversation service workspace 49

The traffic child nodes

Figure 2-55 shows the traffic child nodes created with the fallback nodes collapsed.

traffic

Trig)gened

#traffic

Walaon responses

Whare & vour destination?

d by

destination

Trigpered by

Gdes

o Watsor

the traffic info...

anything_else

For what fime do you nesd io know

Fed

time

Triggened by
Bsys-tima

Watacn respanses

Jump to..
goodbye

Thie traffic is kow at this tma

g

anything_else

&

Figure 2-55 The traffic child nodes

The weather child nodes

Figure 2-56 shows the weather child nodes created with the fallback nodes collapsed.

weather

Triggered by

#weather_inquiry

Watson responses

What's the city that you'd like to

Triggered by
@city

Watson responses

[REPLACE WITH WE

Figure 2-56 The weather child nodes

50

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Test the dialog
After creating the nodes of the dialog, test it to determine how it responds to user inputs:

1. From the Dialog tab, click the icon at the upper right corner of the page (Figure 2-57).

Intents Entities Dialog

Conversation starts

> conversation_start

> greeting

> | traffic

Figure 2-57 Test Dialog icon

2. Wait until the system finishes training your most recent changes before you start testing
the dialog. If the system is still training, a message appears at the top of the chat pane
(Figure 2-58).

Try it out) Clear

Watson is training on your recent changes.

Figure 2-58 Watson is training message

3. Start testing the dialog after the system finishes the training. Check the response to see if
the dialog correctly interpreted your input and chose the correct response.

The chat window indicates what intents and entities were recognized in the input.

Chapter 2. Conversation service workspace 51

52

Figure 2-59 shows the Car chatbot conversation dialog to get the traffic information.

Try it out

| Welcome to Car chat botl

Hi

| Hil What can | de for you?

| want to know information about the traffic, please

| Where is your destination?

to the Office

stination:Weork
| For what time do you need to know the traffic information?

in an hour

@sys-time:14

| The traffic is high at this time of the day

| It is my pleasure to help you. Bye

Figure 2-59 Testing traffic conversation dialog

Figure 2-60 on page 53 shows the Car chatbot conversation dialog to get the weather
data.

Note: The weather response is now [REPLACE WITH WEATHER DATA]. In Chapter 6,
“Chatting about the weather: Integrating Weather Company Data with the Conversation
service” on page 157, the response will be replaced with the real-time weather after
integrating the Conversation service with the Weather Data Company service to
provide real-time weather data for the selected city.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Try it out

| Welcome to Car chat bot!

Hey

| Hil What can | do for you?

Please tell me the temperature tomorrow

| What's the city that you'd like to forecast the weather?

MNew York

| [REPLACE WITH WEATHER DATA]

| tis my pleasure to help you. Bye

Figure 2-60 Testing weather conversation dialog

As you continue to interact with the dialog, you can see how the conversation flows through
the dialog.

If you determine that the wrong intents or entities are being recognized, you might need to
modify your intent or entity definitions. If the correct intents and entities are being recognized,
but the wrong nodes are being triggered in your dialog, make sure your conditions are written
correctly.

Chapter 2. Conversation service workspace 53

2.2 Exporting the workspace

You created intents, entities, and the dialog in the previous sections of this chapter.

Now you can export the workspace to a JSON file with all intents, entities, and dialog. To do
this, click the Actions button (vertical dots) at the top right of the Workspaces box, and then
select Download as JSON (Figure 2-61).

Workspaces Create @

Car Chat-bot

Car Chat-bot workspace View details
Edit

English (U.5.) Duplicate
Download as JSON

Delete

Last modified: 3 hours ago

Figure 2-61 Export workspace

A JSON file will be downloaded automatically.

2.3 References

Watch the following videos about the Watson Conversation service:

» Watson Conversation Service Overview:
https://www.youtube.com/watch?v=1rT11WEbg5U

» IBM Watson Conversation: Working with intents:
https://www.youtube.com/watch?v=DmvN6ZJrZE4

» IBM Watson Conversation: Working with entities:
https://www.youtube.com/watch?v=0SNF-QCbuDc

» IBM Watson Conversation: Working with dialog:
https://www.youtube.com/watch?v=3HSaVfr3ty0

» IBM Watson Conversation: Working with Conditional Responses:
https://www.youtube.com/watch?v=KcvVQAsnhLM

54 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.youtube.com/watch?v=1rTl1WEbg5U
https://www.youtube.com/watch?v=DmvN6ZJrZE4
https://www.youtube.com/watch?v=oSNF-QCbuDc
https://www.youtube.com/watch?v=3HSaVfr3ty0
https://www.youtube.com/watch?v=KcvVQAsnhLM

Cognitive Calculator chatbot

This chapter guides you through building the Cognitive Calculator chatbot sample application.
The app demonstrates the use of Watson Conversation service in creating a calculator
chatbot. The chatbot chats with the user in natural language, the Conversation service
determines the user request and the application performs simple calculations to respond to
the user.

The sample application demonstrates the integration of the Conversation service with a
Node.js application.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

vyvyvyvYyYyvyy

© Copyright IBM Corp. 2017. All rights reserved. 55

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

>

>

Create a Conversation service instance in IBM Bluemix.

Create a Conversation workspace, add intents, entities, system entities, and a dialog for
the Cognitive Calculator chatbot application.

Integrate the Watson Conversation service in a Node.js application to perform the
calculation functionality.

3.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

>

Review Chapter 1, “Basics of Conversation service” on page 1, and Chapter 2,
“Conversation service workspace” on page 13

Access to a web browser (Chrome, Firefox, or Internet Explorer)
Basic JavaScript skills

Understand Bluemix DevOps basics

Understand Git basics

Have a Bluemix account

Have an account on GitHub

3.1.3 Expected results

Figure 3-1 on page 57 shows the simple Cognitive Calculator chatbot application:

1.
2.

© N o o &

The user starts the conversation with the addition operation.

The user tries to add two numbers but specifies only one number without specifying the
other number.

The chatbot application prompts the user to specify two numbers to be able to perform the
addition operation.

The user specifies the two numbers to add.

The application adds the two numbers and returns the result to the user.
The user then wants to multiply two numbers.

The chatbot prompts the user to enter the numbers to multiply.

The user requests a subtraction operation which the chatbot application does not
understand.

56 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

| | can't understand what you say. You can say
things like "addition" or "multiplication”.

Figure 3-1 Cognitive Calculator chatbot

Chapter 3. Cognitive Calculator chatbot 57

3.2 Architecture

Figure 3-2 shows the components and runtime flow of the application.

Public network

User

Bluemix network

o 2]

Request simple calculationin a dialog Send the user input
Receive answers Receive answer

Receiving answer
Send the userinput

Figure 3-2 Architecture

The figure describes these steps:

1.

In a web browser, the user engages in a conversation with the Cognitive Calculator
chatbot application, requesting a simple calculation operation, suchas I'd Tike to
calculate the addition of 3 and 5.

The request is passed from the web browser to the chatbot application that runs on
Node.js.

3. The application passes the request to the Conversation service.

4. The Conversation service understands the intent and entities passed by the application.

For the userrequest I'd Tike to calculate the addition of 3 and 5, the intentis
addition and the entfities are 3 and 5. Then, it returns a response to the application based
on the dialog built in the workspace associated with Conversation service instance. It
returns a response (The result of calculating the two numbers is result . What
else would you like to do (addition or multiplication)?)and the entities to the
calling chatbot application.

The chatbot Node.js application adds the two entities returned from the Conversation
service, replaces the result_ with the calculation results and sends the response to the
web browser.

. The user sees the response on the web browser: The result of calculating the two

numbers is _result_. What else would you 1ike to do (addition or
multiplication)?

58 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3.3 Two ways to deploy the application: Step-by-step and quick

deploy

Two Git repositories are provided for this use case:

>

Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 3.4, “Step-by-step implementation” on page 59. This version takes you through
the key steps to integrate the IBM Watson APIs with the application logic.

Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 3.5,
“Quick deployment of application” on page 107.

3.4 Step-by-step implementation

Implementing this use case involves the following steps:

1.

Downloading the project from the Git repository.

2. Configuring the Conversation workspace for the Cognitive Calculator chatbot.
3.
4. Testing the application.

Developing the Cognitive Calculator chatbot application.

3.4.1 Downloading the project from the Git repository

The version of the repository that you use in these steps includes the incomplete version of
the application code. You will follow the steps to complete the code.

Download the code from GitHub:

https://github.com/watson-developer-cloud/conversation-simple

3.4.2 Configuring the Conversation workspace for the Cognitive Calculator

chatbot

This section guides you through creating the Calculator Conversation workspace for the
Cognitive Calculator chatbot, and developing the relevant intents, entities, and dialog that are
specific to the application. It also shows you how to test the conversation flow.

Complete these steps:

1.
2.

Log in to Bluemix.

On the Bluemix Dashboard, click the Conversation service instance that you created in
2.1.1, “Creating a Watson Conversation service instance” on page 14, which is listed
under Services (Figure 3-3 on page 60).

Chapter 3. Cognitive Calculator chatbot 59

https://github.com/watson-developer-cloud/conversation-simple

@, IBM Bluemix Catalog Support Account

All Services (6)

Services 32/40 Used

NAME SERVICE OFFERING ACTIONS

Conversation Conversation

Figure 3-3 Conversation service instance

3. Click Launch tool (Figure 3-4) to open the Conversation tool.

= @3 IBM Bluemix V

< Watson .
L
Conversation
Manage Service Credentials Connections

Conversation e

Add a natural language
Figure 3-4 Launch Conversation tool

60 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4. On the Watson Conversation dashboard, click Create to create a workspace (Figure 3-5).

Watson C

Create workspace

Workspaces enable you to maintain separate
intents, user examples, entities, and dialogs
for each use or application.

Create (¥ & Import

Figure 3-5 Watson Conversation Dashboard

5. Inthe Create a workspace window (Figure 3-6 on page 62), enter the following information
and then click Create:

— Name: Calculator

— Description: Calculator Conversation workspace that allows addition and
multiplication operations using Natural Language.

— Language: English (U.S.)

Chapter 3. Cognitive Calculator chatbot 61

Create a workspace

Workspaces enable you to maintain separate intents, user examples, entities, and dialogs for each use or
application.

Name
Calculator
Description

Calculator Conversation workspace that allows addition and multiplication operation using Matural Language.

Language

English (U.S.) Vv

Figure 3-6 Create the Calculator workspace

6. Get the Workspace ID so that you can configure your application to point to this
workspace in step 1 on page 91:

a. Click the three horizontal bars at the top-left corner (Figure 3-7).

Intents Entities

No intents yet.

An intent is the goal or purpose of the user's input. Adding examples to
intents helps your bot understand different ways in which people would
say them.

Figure 3-7 Calculator workspace

62 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

b. Click Back to workspaces (Figure 3-8).

Intents Entit

D -
Build

Intents

ntents yet.

- of the user's input. Adding examples to
d different ways in which people would
ay them.

Figure 3-8 Calculator Conversation workspace

c. Click the three vertical dots at the top right of the Calculator box and then select View
details (Figure 3-9).

Watson C

Workspaces

Calculator

Calculator Conversation workspace that I

multiplication operation using Natural Lan it

English (U.S) Duplicate
Download as JSON
Delete

Last modified: 40 minutes ago

Figure 3-9 Calculator workspace menu

Chapter 3. Cognitive Calculator chatbot 63

d. Copy the Workspace ID value and save it in a local text file (Figure 3-10). You will use
the value of the Workspace ID in step 1 on page 91.

Watson C

Workspaces Create @ T,

Created: 1/31/2017, 6:14:15 AM @
Last modified: 2/4/2017, 1:48:07 PM

Documentation

Bluemix

Workspace ID: 44202034-4a11-4e2{-8c8b-b86defc92alc

6 1 5

Figure 3-10 Workspace ID

Add intents

For the Conversation service to be able to understand the goal or purpose of the user’s input
in natural language, you must train the workspace with some examples for each intent. You
will create an intent for the addition operation functionality and another intent for the
multiplication operation functionality. Although you are required to train the workspace by
providing a minimum of five examples of user input for each intent, to improve the accuracy,
you should provide more than five examples.

The steps in this section describe how you create the intents that are listed in Table 3-1.

Table 3-1 Intents to be created for the Calculator chatbot use case

Intent Description

#add_operation Identifies that the user wants to perform an addition operation.
User examples:

» Add

Addition

Add Operation

Sum

Summation

yvyYyy

#multiply_operation Identifies that the user wants to perform a multiplication operation.
User examples:

» Multiply

Multiplication

Multiply Operation

| have two numbers and I'd like to multiply them

Please help me multiply two numbers.

vyvvyVvyy

64 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Intent

Description

#add

Identifies that the user provided two operands and wants to calculate
the result of adding them.

User examples:

> 3+2

42534452

calculate 4+6

five plus six equals?

I'd like to add 3 and 4

tell me the results of adding eight and two
three plus eleven

what's the result of adding ten to fifteen?
what's the sum of 1 and 57

YyYYVYVYVYYVYY

#add_missing_number

Identifies that the user provided only one operand for the addition.
User examples:

> 3+

calculate 4+

calculate adding 76

I'd like to add 8

what's the sum of 2?

would you please calculate adding six to the result?

vyvyvyYyy

#multiply

Identifies that the user provided two operands and wants to calculate
the result of multiplying them.

User examples:

> 2%6

2X5

3*5

3x1

5*53

5 multiply 7 equals?

6*8

9Xx2

9x5

calculate 69*54

tell me the results of multiplying four and seven
twenty multiply thirty

YVVYYYYVYVYVYVYYY

#multiply_missing_number

Identifies that the user provided only one operand for the
multiplication.
User examples:
» 2X
3*
5x
9 x
multiply 6

vyvyYyy

Chapter 3. Cognitive Calculator chatbot 65

Figure 3-11 shows a conversation between the user and the Calculator chatbot application,
and shows how the Conversation service maps the user input in natural language to the
corresponding intent configured in the Conversation workspace.

e §

"subtract"®

Let's start with the addition #add_operation :

n_id": "62d25313-534f-4dsh

I'd like to add three #add_missing_number [
1
I'd like to add three and four

Okay.. multiply two numbers #multiply_operation
14
a #multiply_missing_number
]l

l | can't understand what you say. You can say
things like "addition" or "multiplication”.

Figure 3-11 Cognitive Calculator chatbot showing intents extracted from the user input

66 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

To add the intents that are listed in Table 3-1 on page 64 to the Calculator workspace, follow
these steps:

1. Open the Calculator workspace (Figure 3-12).

Watson (

Workspaces Create ® 1,

Calculator

Calculator Conversation workspace that allows addition and
multiplication operation using Natural Language.

English (U.S)

Get started

Last medified: 23 hours ago

Figure 3-12 Conversation Workspaces

2. At the start of the conversation, the user specifies the mathematical operation to be
performed, addition or multiplication, (Figure 3-13).

| Hi, Welcome to Watson Calculator. What
would like to calculate today (addition or
multiplication)?

Figure 3-13 Calculator chatbot

Create the intents that will enable the Conversation service to interpret the user input:
a. Create an intent for the addition operation capability:
i. Click Create new to create new intent (Figure 3-14 on page 68).

Chapter 3. Cognitive Calculator chatbot 67

Intents Entities Dialog

No intents yet.

An intent is the goal or purpose of the user's input.
Adding examples to intents helps your bot understand
different ways in which people would say them.

X Import

Figure 3-14 Create #add_operation intent (1 of 3)

i. Type add_operation in the Intent name field (Figure 3-15).

Intents Ent

-« x

ntent name

#add_operation

User example

Figure 3-15 Create #add_operation intent (2 of 3)

68 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

ii. Add a minimum of five user examples for this intent (Figure 3-16), then click Create.

Intents Entities Dialog

- x

ntent name

#add_operation

User example

Add

Addition
Add Operation
Sum

Summation

Figure 3-16 Create #add_operation intent: user examples (3 of 3)

Chapter 3. Cognitive Calculator chatbot 69

b. Create amultiply_operation intent for the multiplication operation capability and
provide user examples (Figure 3-17).

Intents Entities

ntent name

#multiply_operation

User example

Multiply

Multiplication
Multiply Operation
| have two numbers and I'd like to multiply them

Please help me multiply two numbers

Figure 3-17 Create #multiply_operation intent with user examples

3. After the user requests the operation to be performed, the user specifies the actual
addition or multiplication calculation. The Conversation service must be able to identify the
intent of the user for addition or multiplication. The service must also be able to identify
whether the user provides only one operand and respond accordingly.

70 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

So that the Conversation service can understand user inputs, create add, multiply,

add_missing_number, and multiply_missing_number intents:

a. Create the add intent with the user examples (Figure 3-18).

Intents

ntent name

#add

User example

342

42534+52

calculate 4+6

five plus six equals?

I'd like to add 3 and 4

tell me the results of adding eight and two
three plus eleven

what's the result of adding ten to fifteen?

what's the sum of 1and 57

-« x

Figure 3-18 Create #add intent and user examples

Chapter 3. Cognitive Calculator chatbot

71

72

b. Create add_missing_number intent with the user examples (Figure 3-19).

Intents Entities

ntent name

#add_missing_number

User example

3+

calculate 4+
calculate adding 76
I'd like to add 8
what's the sum of 27

would you please calculate adding six to the result?

-« x

Figure 3-19 Create #add_missing_number intent with user examples

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

c. Create the multiply intent with the user examples (Figure 3-20).

Intents En

ntent name

#multiply

User example

276

2X5

35

3x1

553

5 multiply 7 equals?

68

9x2

9x5

calculate 6954

tell me the results of multiplying four and seven

twenty multiply thirty

-« x

Figure 3-20 Create #multiply intent with user examples

d. Create the multiply missing_number intent with the user examples (Figure 3-21).

Intents Entitie

ntent name

#multiply_missing_number

User example

2X
3t
5x
9x

multiply 6

-« x

Figure 3-21 Create #multiply_missing_number intent with user examples

Chapter 3. Cognitive Calculator chatbot

73

74

Now, you have all the intents needed for the Cognitive Calculator chatbot (Figure 3-22).

Intents Entities Dialog

|i| 6 intents Sortby: Newest s
5 #multiply_missing_number
2X
1 #fmultiply
2+
6 #add_missing_number
3+
9 #add
3+2
B #multiply_operation
| have two numbers and I'd like to multiply them
& #add_operation
Add

Figure 3-22 Calculator workspace intents

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Add entities

You want the service to identify the operands of the addition and multiplication operations.
The operands are numbers written as either digits (3, 64, 873, and so on) or text (one, two,

eighty-seven, and so on). Use an available system entity that identifies the numbers:

1. Click Entities on the top toolbar (Figure 3-23).

Intents En
o 6 intents
#multiply_missing_number
3]
2X
#fmultiply
12 i
#add_missing_number
6
3+
#add
9 3+2
B #multiply_operation
| have two numbers and I'd like to multiply them
& #add_operation
Add

Sortby: Newest N/

Figure 3-23 Calculator workspace: Adding entities

Chapter 3. Cognitive Calculator chatbot

75

2. Click System entities (Figure 3-24).

Entities

My entitiesé System entities

No entities yet

An entity is a portion of the user's input that you can use to provide a different
response to a particular intent. Adding values and synonyms to entities helps your bot
learn and understand important details that your users mention.

Use system entities

& Import

Figure 3-24 System entities

76 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Switch the off toggle to the on position beside @sys-number to enable this system entity
(Figure 3-25).

Entities

My entities System entities

These are common entities created by IBM that could be used
across any use case. They are ready to use as soon as you add them All: .
to your workspace. *System entities cannot be edited. Learn more

@sys-time .
off

Extracts time mentions (at 10)

@sys-date @ -

Extracts date mentions (Friday)

@sys-currency .
off

Extracts currency values from user examples including the amount and the unit. (20 cents)

@sys-percentage .
off

Extracts amounts from user examples including the number and the % sign. (15%)

@sys-number

Extracts numbers mentioned from user examples as digits or written as numbers. (21)

Figure 3-25 System entities: Enable @sys-number

Chapter 3. Cognitive Calculator chatbot 77

Create the dialog
Follow these steps:

1. Click Dialog in the top toolbar and click Create to create the dialog (Figure 3-26).

No dialog yet

A dialog uses intents, entities, and context from your
application to define a response to each user's input.
Creating a dialog defines how your bot will respond to what
your users are saying.

Figure 3-26 Dialog

78 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

A default node is created (Figure 3-27).

Conversation starts

~ Untitled Node

Triggered by
No condition yet
Watson responses (o]

No response yet

> anything_else

This "Anything efse” node &
a Ellback answer when Watson daesn
understand the User's interd.

enables you to provide
'| x

Triagered by @
Iriggerea by W

if |

Fulfill with a response © 3 Jump to.
(¥) Add response condition {3

Figure 3-27 Dialog default base node

Chapter 3. Cognitive Calculator chatbot

79

2. Under Triggered by, begin typing conversation_start and then select
conversation_start (create_new condition), as shown in Figure 3-28.

Conversation starts @ B

~ Untitled Node

Triggered by

No condition yet Tri gge red l:J'\;-' ::

Watson responses ‘:’ 4 ¥
3 if conversation_start
No response yet

conversation_start (create new condition)

171 e E* >< #conversation_start (create new intent)

- | @conversation_start (create new entity) mpto..

o : (¥ Add response condition e}
2 anything_else)

This “Amything else”™ node enables you fo provide x

a fallback answer when Watson doesn't
understand the user's intent.

Figure 3-28 The conversation_start condition

80 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Write the response that you want the chatbot to provide and then press Enter
(Figure 3-29). In this case, you might want the chatbot to respond with this greeting:
Hi, Welcome to Watson Calculator. What would like to calculate today (addition
or multiplication)?.

Conversation starts @ ><
~ Untitled Node
Triggered by
conversation_start Tri gge red by i:
Watson responses o if conversation_start
Hi, Welcome to Watson Calculator.
What would like .
i < @ X
Fulfill with a response @© A Jump to...
(¥ Add response condition &
» anything_else
Hi, Welcome to Watson Calculator. What w ©
This “Anything else”™ node enables you fo provide x
a fallback answer when Watson doesn't
understand the user's intent.
(‘E‘ Create another response
Figure 3-29 The conversation_start response
Chapter 3. Cognitive Calculator chatbot 81

4. Click the plus sign (+) to create a new node (Figure 3-30).

Conversation starts
~ Untitled Node

Triggered by

conversation_start

Watson responses

What would like

> anything_else

understand the user's intent.

This “Anything else™ node enables ‘,uulb provide

a fallback answer when Watson doesn't

Hi, Welcome to Watson Calculator.

X

x

e

Triggered by W

if conversation_start
Fulfill with a response @ A Jump to...
(® Add response condition &

L,

Hi, Welcome to Watson Calculator. What w

=
G;' Create another response

Figure 3-30 Create a new node

82 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. This node will be triggered when the user input is recognized as the #add_operation intent
(Figure 3-31).

Specify this information and then press Enter:

a. Under Triggered by, start typing #add_operation and then select it from the
autocomplete text box.

b. Under Add response condition, type What would you like to add?

Intents Entities Dialog

Conversation starts ><
~ Untitled Node

Triggered by

conversation_start Triggere
121C)

Dy

Wat i = .
S e o if #add_operation

Hi, Welcome to Watson Calculator.

What would like ..

= L
iy < =@ &
Fulfill with a response @ (7 Jump to...
T
T ot
Untitlied Node
ety (® Add response condition Ty
#add_operation
Watson=pri=es (1] What would you like to add?
No condition yet
What would you like to add?
= L
w < = X o
a
) Cf' Create another response

Figure 3-31 The add_operation node

6. Click the plus sign (+) on the right side of the node that you just created (see
#add_operation Figure 3-31) to continue building the flow of the conversation.

7. This node will be triggered when the user input is recognized as an #add intent
(Figure 3-32 on page 84).

Specify this information and then press Enter:
a. Under Triggered by, type #add.

b. You can let the Conversation service return various responses. Under Add response
condition, provide the following responses. The result_textis a placeholder that you
will replace with the actual result after developing the application logic in the Node.js
application.

i. The result of calculating the two numbers is _result_. What else would you
Tike to do (addition or multiplication)?

ii. The result is _result_. What else would you like to do (addition or
multiplication)?

ii. I've added the two numbers for you;) The result is result . What else
would you Tike to do (addition or multiplication)?

Chapter 3. Cognitive Calculator chatbot 83

Entities Dialog

Conversation starts SN
Untitled Node
Triggered by -
conversation_start riggere
responses (1] if #add
lcome to Watson Calculator.
What would like ..
mw < &
Fulfill with a resp: B dumpto..
®)
Untitled Node ~ Untitled Node (® Add response condition
Tiggered by Triggered by .
The result of calculating the two numbers is _result_. What else would you like
#add cperation 2
SEtsonENapmE. o The resultis _result_. What else would you like to do (addition or multiplicatior
tion yet
it woLld you ke to add? I've added the two numbers for you ;) The resultis _result_. What else would y
z P i GY b4
o Response variations are sequential. Set to random (O
@
anything_else
A S e s T X
Understand the user's ntent. -

Figure 3-32 The add node

8. Click the plus sign (+) at the bottom of the node that you just created to create an
alternative conversation.

9. This node will be triggered when the user input is recognized as an #add_missing_number
intent (Figure 3-33).

Specify this information and then press Enter:

a. Under Triggered by, type #add_missing_number.

b. Under Add response condition, enter Please specify the two numbers.

lcome to Watson Caleulator.
at would like ...
T Gy &
Trigge!
if #add_missing_number
+ Untitled Node ~ Untitled Node = s
Tiggered by Triggered by
#add_operation #add
responses) watson responses o Fulfill with a respor P ra—
The result of calculating the tw
umbers is_resu..
() Add response condition
5w m - @ &
< = & -
Please specify the two numbers
®
< Untitled Node
Triggered by
#add_missng_number sponse
Watson responses []
specify the two rumbers
m < @ X
@

Figure 3-33 The add_missing_number node

84 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

10.In case of a missing number, the chatbot should return to the user the response What
would you Tike to add? Then, allow the user to try again. To accomplish this, click the
Jump to icon in the node (Figure 3-34).

Hi, Welcome to Watson Calculator.
What would like ... e o %

mw - @ &

Triggered by ©

=
g
5 if #add_missing_number
~ Untitled Node ~ Untitled Node il
Triggered by Triggered by
#add_operation #add
Lol L Ve po L Fulfill with a response @ [Frdump to-
No condition yet The result of calculating the two

What would you like to add? numbers is_resu. i
() Add response condition

m < B &
)
< = &
Please specify the two numbers
o
52
~ Untitled Node
Triggered by
#add_missng_number @ Create another response
Watson responses []

Pleass speciy the fwe rumbers

o + %

Figure 3-34 Click Jump to icon

11.Click the #add_operation node and then click Go to response (Figure 3-35).

Dialog

Select where you want the conversation to continue. Cancel

Watson responses o

Hi, Welcome to Watson Calculator.
What would like ...

i < &
Untitled Node ~ Untitled Node
PG d Triggered by Triggered by
o 1 it
kbR #add_operation #add
Watson responses o Watson responses o

& Go to response

The result of calculating the two

No condiition yet :
numbers is _resu..

What would you like to add?

~ Untitled Node

Figure 3-35 Go to another node response

Chapter 3. Cognitive Calculator chatbot 85

12.Similarly create the nodes to handle the multiplication conversation flow (Figure 3-36).

Untitled Node ~» Untitled Node
Trigger Trigger
#multiply_operation #multiply
Watson responses o Watson responses o
What would you like to multiply? T['Ee result of multiplying is _result_.
t elze w..

[The result of multiplying is _result_, What else would you like to do {(addition or multiplication)? ‘

! i W 3)

@

Gl

T
-

Jump to.. &£

What would you like to multiphy?

.~ Untitled Node

Trigger

#multiply_missing_number

Watson responses. o

Please specify the two numbers

W - &

4
Figure 3-36 Muiltiplication conversation flow

86 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

13.Edit the response in the anything_else node (Figure 3-37) to be:

I can't understand what you say. You can say things like "addition" or
"multiplication”.

Conversation starts e
conversation_start
#add_operation if anything_else
#multiply_operation T i —
Fulfill with a response @© [B¥ Jump to..
) () Add response condition

Untitled Node
Triggered by | can't understand what you say. You can say thing
anything_else
Watson responses o
| can't understand what you say. You
can say thing...

Figure 3-37 The anything_else node

Chapter 3. Cognitive Calculator chatbot 87

Test the conversation flow
Follow these steps:

1. Click the Ask Watson icon at the top right (Figure 3-38).

Intents Entities Dialog

Conversation starts

> conversation_start
#add_operation
2 #multiply_operation

> anything_else

Figure 3-38 Calculator Conversation workspace

88 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Test the dialog. For each user input, the Conversation service analyzes intents and entities
and responds according to the conversation flow in the dialog (Figure 3-39).

Intents Entities Dialog

Conversation starts

hv4

conversation_sLSALEEI £ Clear

| Hi, Welcome to Watson Calculator.
What would like to calculate today
(addition or multiplication)?

> #add_operatio

I'd like to multiply two numbers

R

#multiply_oper; @sys-number:2
| What would you like to multiply?

> anything_else four times five

Esys-number:4

Isys-number:5

| The result of multiplying the two
numbers is _result_. What else
would you like to do (addition or
multiplication)?

addition

Figure 3-39 Testing the dialog

Chapter 3. Cognitive Calculator chatbot 89

3.4.3 Developing the Cognitive Calculator chatbot application

This section shows how to develop the Cognitive Calculator chatbot application that
integrates with the Conversation service in Node.js.

Create a Node.js application on Bluemix
Follow these steps:

1. From the Bluemix dashboard, click Create App.
2. From the Cloud Foundry Apps section, click SDK for Node.js.

3. In the Create a Cloud Foundry App window (Figure 3-40) enter the following information,
and then click Create:

— App name: conv-201-xxx-calc
— Host name: conv-201-xxx-calc

Replace xxx with a random value; the host name of the application must be unique.

@, |IBM Bluemix Catalog Catalog Support Account

Create a Cloud Foundry App

SDK for Node,js™ #PPrame

conv-201-xxx-calc
Develop, deploy, and scale

server-side JavaScript® apps

Host name: Domain:
with ease. The IBM SDK for
Node.js™ provides enhanced conv-201-xxx-calc mybluemix.net
performance, security, and
serviceability.
B\ PI’IGIﬂg P|aﬂ8 Monthly prices shown are for country or region: Egypt

Meed Help? Estimate Monthly Cost $0.0749 USD/GB-Hour
Contact Bluemix Sales Cost Calculator

Figure 3-40 Create Node.js application

Stop: Wait until the application is started to proceed. The application status should
indicate Running, as shown in Figure 3-41 on page 91.

90 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Configure the application
Follow these steps:

1. Configure the application environment variables. Add the WORKSPACE_ID environment
variable with the Workspace ID of your Calculator Conversation workspace (Figure 3-41):

Click Runtime on the left navigation bar.

Click the Environment variables tab.

Click Add.

For the name, specify WORKSPACE_ID.

For the value, specify the Workspace ID value that you copied in step 6 on page 62.
Click Save.

~0 Q00T

@, IBM Bluemix

<« Dashboard

conv-201-xxx-calC status: @ Rumning

. 3 .
s ey -~ | -Jclof
L]

Overview

Rum’me [hlllemor‘:.. and inStanCES

Connections

o
(4]
oL

VCAP_SERVICES
Logs

r VCAP_SERVICES is empty. Efther there are no services associated with this

Monitoring r you are not autharized to view them.

User defined
MNAME VALUE ACTION
WORKSFACE_ID 44202034-4a11-4e2-8c8b- ®

“ “ Reset

Figure 3-41 Adding WORKSPACE_ID as environment variable

Stop: Wait until the application is restaged before you continue.

2. Bind the Conversation service to your application (Figure 3-42 on page 92):

a. Click Connections from the left toolbar.
b. Click Connect existing.

c. Click Conversation.

d. Click Connect.

Chapter 3. Cognitive Calculator chatbot 91

92

@, 1BM Bluemix

¢ Dashboard

| Connect existing service o
Getting started

Overview

Runtime

Connections =
e Com

Comersation

Logs

L T

Connect Conversation to conv-201-xxx-calc? m

Figure 3-42 Connect existing service

e. Click Restage to make the service available for use by the application (Figure 3-43).

Restage application

Your 'conv-201-xxx-calc' app must be restaged
to use the new 'Conversation’ service. Restaging
makes this service available for use. Do you want
to restage it now?

Figure 3-43 Restage application

Stop: Wait until the restaging is completed and the application is in a running state before
you continue.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Clone the Conversation sample application

In the next steps, you clone a sample Node.js application, which is a simple chatbot, to your
Bluemix workspace.

1. Click Overview in the left navigation toolbar (Figure 3-44).
2. Scroll to the Continuous delivery panel, on the right, and click Enable.

This enables the continuous delivery toolchain. With it, you can automate builds, tests, and
deployments through the Delivery Pipeline, GitHub, and more.

IBM Bluemix Catalog Support Account

€& Dashboard

COHV'201‘XXX'C&|C Status: Running

) -
Getting started Rollback to DEA View app - E -
L

Overview

Activity feed
Runtime Continuous delivery

started conv-201-xxx-calc app

Connecti
e Feb 4, 2017 2:14:20 PM | aazrag@eg.ibm.c...

Continuous delivery is not enabled for this app.

Logs started conv-201-xxx-calc app Enable continuous delivery to automate builds,
Feb 4, 2017 2:14:20 PM | aazrag@eg.ibm.c... tests, and deployments through the Delivery
Monitoring Pipeline, GitHub, and more.

updated conv-201-xxx-calc app

changed routes Enable ®

Feb 4, 2017 2:14:12 PM | aazrag@eg.ibm.co...

Locking for the ADD GIT buttonto setupa
created conv-201-xxx-calc app project at hubjazz.net? Click here
Feb 4, 2017 2:14:12 PM | aazraq@eg.ibm.co...

Figure 3-44 Application overview

Chapter 3. Cognitive Calculator chatbot 93

3. A new tab opens (Figure 3-45):
a. Scroll to Configurable Integrations and click GitHub.
b. Keep the repository type as Clone.
c. Keep the default new repository name.
d. For the Source repository URL, specify this GitHub repository URL:
https://github.com/watson-developer-cloud/conversation-simple
e. Click Create.

= @ I|BM Bluemix

Configurable Integrations

configuration recommended

/7 GitHub -~ Eclipse Orion Web
{ o \ =

I-.__ Q __.-I Third Party X ___-' IDE

o —" IBM

Store your source code in a new or existing repository on GitHub.com and engage in
social coding through wikis, issue tracking, and pull requests.

Repository type:
Clone

Clone the repository that is specified in the Source repository URL field.

New repository name:
conv-201-xxx-calc-1486207022447

Source repository URL: (D
https://github.com/watson-developer-cloud/conversation-simple

¥ Enable GitHub lssues @

_

Figure 3-45 GitHub configurations

94 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple

Edit the application code
In this section, you edit the code to implement the calculation functionality:

1. In the Toolchains window, click Eclipse Orion Web IDE (Figure 3-46).

= @, I|BM Bluemix D

¢ Toolchains

Overview

Connections Add a Tool @

Manage THINK CODE DELIVER
Issues GitHub Delivery Pipeline
conv-2071-xxx-calc-148... conv-201-xxx-calc-148... conv-201-xxx-calc-148...
W o W

Eclipse Orion Web IDE

) Feedback

Figure 3-46 Toolchains window: Click Eclipse Orion Web IDE

Chapter 3. Cognitive Calculator chatbot 95

2. Update the manifest.yml file with the host name and service name (Figure 3-47):

a. In the list of files on the left, click the manifest.ym]1 file.

IBEM Bluemix

& Fie Edt View Took | B =
w conv-201-xxx-calc-1486207022447 manifest. ymil

» launchConfigurations 1 |-
<7> » public declare 5
%t » readme_images 5 ! :

» test

» training rsation-simple

[cfignore DR SEAEE

D env.example 256M

D .eslintignore 1 E Shel

[-eslintre.yml 13 5 .m;.--ccn-.'er'Sati.nr.-SEl".-ice

[y -gitignore 15 ™ |_CONFIG_PRODUCTION: false

D travis.ymi

app js

@ Casper-runner js

[y CONTRIBUTING.md
[LICENSE

B package.json

D Procfile

[README.md

SETVET j5

Figure 3-47 The manifest.yml file before update

96 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

b. Inthe manifest.yml file shown in Figure 3-48, update this information:

¢ Update the Conversation service to match the name of the Conversation service
instance created in 2.1.1, “Creating a Watson Conversation service instance” on
page 14. To do this, replace my-conversation-service in line 3 and line 13 by

Conversation.

¢ Update the application name to match the name of your application. To do this,
update line 7 to conv-201-xxx-calc (where xxx is the value that you used to make
your application and host names unique in step 3 on page 90).

¢ Increase the memory to 512M, by updating line 10.

@, IBM Bluemix

Catalog Support Account

casper-runnerjs
™ CONTRIBUTING.md
[LICENSE

[manifestymi

package.json

€& File Edit View Tools ‘ ® conv-201-x-calc-1486207022447 [3 =
v conv-201-xxx-calc-1486207022447 = manifestym|
» launchConfigurations i
B |, bk e !
'L':I' » readme_images conversation
free
» fest ions:
p training 1ame: conv-2@1-xxx-calc
' npm start
[cfignore & .
[me 512H |
D envexample eg: 1
[y -eslintignore | = ConveragEion |
-eslintrc.yml >
0 y PM_CONFTG_PRODUCTION: false
[-gitignore |
D travis.ymi
app.js

Figure 3-48 The manifest.yml file after the update

Chapter 3. Cognitive Calculator chatbot 97

3. Edit app.js to perform the calculation and update the response received from the
Conversation service with the calculation results based on the intents and entities:

a. From the list of files on the left, click the app. js file.

b. Add function getCalculationResult (Example 3-1) before the last line in the code,
which is (module.exports = app) as shown in Figure 3-49 on page 99. This function
performs the calculation and updates the response text.

Example 3-1 Get calculation result function

/**

* Get the operands, perform the calculation and update the response text based on the

* calculation.

* @param {Object} response The response from the Conversation service

* @return {Object} The response with the updated message

*/

function getCalculationResult(response){
//An array holding the operands
var numbersArr = [];

//Fill the content of the array with the entities of type 'sys-number'
for (var i = 0; i < response.entities.length; i++) {
if (response.entities[i].entity === 'sys-number') {
numbersArr.push(response.entities[i].value);
1
1

// In case the user intent is add, perform the addition
// In case the intent is multiply, perform the multiplication
var result = 0;

if (response.intents[0].intent === 'add') {
result = parselnt(numbersArr[0]) + parselnt(numbersArr[1]);
} else if (response.intents[0].intent === 'multiply') {

result = parselnt(numbersArr[0]) * parselnt(numbersArr[1]);

}

// Replace _result_ in Conversation Service response, with the actual calculated result
var output = response.output.text[0];

output = output.replace(' result ', result);

response.output.text[0] = output;

// Return the updated response text based on the calculation
return response;

98 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 3-49 shows the result of adding the getCalculationResult function to the app. js file.

€ File Edit View Tnuls‘ @ conv-201-x00-calc-1486207022447] r

v conv-201-xxx-calc-148620702% appjs

understand your intent';

for (i=8; i< response.ehtities.length; i++) {

» launchConfigurations B9 ; ElSE 4
<j>) 9@ responseText = 'I did not
» public a1 }
e » readme_images ¥
33 response.output.text = responseText;
p test 94 return response;
» training a¢ ¥
[-cfignore 978
[envexample !
D -eslintignare 1
[-eslintrc.yml S 1ding
[j gitignare numbersArr = [];
™ Aravisyml Fill the content of the arr
appjs if (response.entities[i

casper-runnerjs }

-

[CONTRIBUTING.md
[LICENSE

- -

D manifest.ymil ~ result = 8;
package.json
D Procfile

™ README.md
SEVers

result = parseInti(numbe
} else if (response.intents

result = parselnt({numbe
1
¥

return response;

t

module.exports = app;

].entity === 'sys-number") {

numbersArr.push(response.entities[i].value);

if (response.intents[@].intent === 'add') {

rsArr[@]) + parseInt{numbersArr[1]);
[8].intent === 'multiply’) {
rsArr[8]) * parseInt{numbersArr[1]};

PO L. Caryd rea reEsOOncs R i e i

rsatio 1CE ESpoOnse, W1t the ac

r output = respnﬁse.output.iext[e]j
output = output.replace(’_result_', result);
response.output.text[8] = output;

Figure 3-49 The app.js file after adding the getCalculationResult function

c. Call the getCalculationResult function (Example 3-2) on line 76 (Figure 3-50 on

page 100).

Example 3-2 Check intent

// Check if the intent returned from Conversation service is add or multiply,
// perform the calculation and update the response

if (response.intents.length > 0 & (respons
response.intents[0].intent === 'multiply'))

e.intents[0].intent === 'add' ||
{

response = getCalculationResult(response);

}

Chapter 3. Cognitive Calculator chatbot

99

Figure 3-50 shows calling getCalculationResult on line 76.

€ File Edit WView Tnuls‘ @ conv-201-x0-cale-1486207022447 v

p training :
[cfignore
® [y -envexample - ' E R R R R
T, [-eslintignare : bject} input The re
[-eslintrc.yml The response with the updated message
[-gitignore | ipdate age(input, response) {
. 72 responseText = null;
[Y travis.yml 73 if (!response.output) {

. 7d response.output = {};

[appis } else {
CASPer-runnerjs / Che if intent ret =d from Conversation service is ad
if (response.intents.length > @ &% (response.intents[@].intent === 'add" ||

D CONTRIBUTING.md 78 response = getCalculationResult{response);
Figure 3-50 Calling getCalculationResult
Push the changes to Git

Follow these steps:
1. Click the Git icon on the left toolbar (Figure 3-51).

IBM Bluemix Catalog Support Account
€& File Edit View Tools ‘ ® conv-201-x-calc-1486207022447 'y > =
trainin ~)
Py P app s
[y cfignore 54 o
<1‘> [.envexample ey e the recponce text Lsing the i mbent
'ﬂ' D eslintignare
[-eslintrc.yml
[y -oitignore 1 pdateMessage(input, response} {
: 72 responseText = null; =
[y travisyml 73 if (!response.output) {
5 respense.output = {};
appJs } else {
Casper-runnerjs 7 _heck 1f the intent returne -onversati
P : if (response.intents.length > @ &% (response.in
|__‘| CONTRIBUTING.md 78 response = getCalculationResult{respons
3 :l' 4]
3

Figure 3-51 Click the Git icon in the IBM Bluemix DevOps page

2. Enter any descriptive commit message (such as Edit the application logic to perform
the calculation functionality), and click Commit (Figure 3-52 on page 101).

100 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

IBM Bluemix

(— Repository: | conv-201-00-calc-1486207022447 w

I

f Active Branch (master) Waorking Directory Changes m
v ¢ ¥ ER —=
3} Working Directory -
D Shates ~ Edit the application logic te perform
3 files changed. 3 files the calculation functionality|

ready to commit.

¥ Outgoing (D) P

I_| Amend previous commit maore

Mo Changes

oy e T 2 ™ SelectAll 3files selected
v L
Haiianges » [launchConfigurationsico

1486207022447 launch

¥ History
l Merge pull request #82 B » [} manifestyml

from bellabieftest-add...

German Aftanasio on
4M7POAT 2-AN-RT AR

i

Figure 3-52 DevOps Git: Commit changes

3. Click Push to push your committed changes to the remote branch (Figure 3-53).

IBM Bluemix
(— Repository: | conv-201-00-calc-1486207022447 w a
f Active Branch (master) Y ¢ * Sync Working Directory Changes

g Commit

Working Directory Changes

=+l

+ll

Nothing fo commit.
¥ Outgoing (1)
Edit the application logic to perform the calculation
functionality
Ahmed Azraq on 2/52017, 3:56:28 AM “

nare more

¥ inccemen () e. I‘ 2‘ Amend previous

No Changes commit

¥ History

B Merge pull request #82 from bellabieftest-add...
l German Attanasio on 1/17/2017, 2:40:57 AM

4

Figure 3-53 DevOps Git: Push changes to remote branch

Chapter 3. Cognitive Calculator chatbot 101

4. Return to the Toolchains tab, and click on Delivery Pipeline (Figure 3-54).

Catalog Support Account

< Toolchains
conv-201-xxx-cale-1486207.. | I :

Overview
Gonnections Add a Tool &
Manage THINK CODE DELIVER
n |
lzsues GitHub Delivery Pipeline
conv-201-xxx-calc-148. .. conv-201-xxx-calc-148. .. conv-201-ooc-cale-148...
v v v e

~ &
Orien
L]

Eclipse Orion Web IDE

©) Feedback

Figure 3-54 Toolchains: Select Delivery Pipeline

102 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Wait until the build and deploy stages are completed (Figure 3-55). When they are
completed, and with no errors, your application is ready to be tested.

IBM Bluemix De Catalog Support Account

€ Toolchain .

conv-201-xxx-calc-1486207022447 | .
Delivery Pipeline

Build Stage ® # 2 Deploy Stage ® @ .
LAST INPUT o Git URL LAST INPUT Stage: Build Stage / Job: Build
& E:it:i:;q;i:zt;z:rr;;cimzqerbm i;.lc::;go é Build 1 L'-’T)

JoBs View logs and history JoBS View logs and history
@ Build Passed 4mago @ Deploy Passed now
LAST EXECUTION RESULT LAST EXECUTION RESULT
é Build 1 e~ d$ cony-201-xxx-calc L]
conv-201-xxx-cale. mybluemix.net

Figure 3-55 Delivery Pipeline: Build Stage and Deploy Stage

Stop: Wait until the build and deploy stages are completed before testing.

Chapter 3. Cognitive Calculator chatbot 103

3.4.4 Testing the application

Follow these steps:

1. Open your application route (the URL to access your application) in a web browser with
the following address, where xxx is the value that you added in step 3 on page 90 to make
your application name unique (Figure 3-56):

http://conv-201-xxx-calc.mybluemix.net/

| Hi, Welcome to Watson Calculator.
What would like to calculate today
(addition or multiplication)?

i, Welcome to Watson Calculator. wWhat would like to cal

Figure 3-56 Calculator chatbot application

104 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Test the addition and multiplication functionalities by chatting with the application
(Figure 3-57).

Let's try your multiplication
capabilities ;)

I The result of multiplying the two numbers
is 608043. What else would you like to do
(addition or multiplication)?

Figure 3-57 Multiplication test on the Cognitive Calculator chatbot

Chapter 3. Cognitive Calculator chatbot 105

3. Try various scenarios and identify those for which the application fails to respond
appropriately. Failing to respond correctly means that more training is needed. Training is
performed by adding more user examples to the intents in the Calculator Conversation
workspace (Figure 3-58).

Let's try your multiplication
capabilities ;)

If | give you two numbers, will you be
able to add them for me?

Here you go.. 532 and 4

I'd like to calculate the result of
adding two numbers together

| | can't understand what you say. You can
say things like "addition" or
"multiplication”.

Figure 3-58 Various scenarios in the Cognitive Calculator chatbot shows that the intents need more training

106 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3.5 Quick deployment of application

A second GIT repository is provided so that you can build and deploy the full Cognitive
Calculator chatbot even if you did not perform the steps described in 3.4, “Step-by-step
implementation” on page 59. This section is independent from the rest of the chapter and it
contains instructions to run the application more quickly.

You can find the full version of the application in the following Git repository:
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

The file calculator_workspace. json includes the Calculator workspace created in this
chapter and is at this GitHub location:
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training
/calculator_workspace.json

Use the following steps to quickly deploy the full application:

1. Click Deploy this application to Bluemix at the following web page:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-calc-nodejs

2. Import the Calculator workspace into your Conversation service. For information on
importing a Conversation workspace see “Import a workspace” on page 20.

3. Follow the steps in “Configure the application” on page 91 to configure your application to
point to the Calculator workspace.

4. Test the application as described in 3.4.4, “Testing the application” on page 104.

3.6 References

For helpful information, see the following resources:

» Explore other sample applications to understand the types of apps you can develop with
the Conversation service:

https://www.ibm.com/watson/developercloud/doc/conversation/sample-applications.
html

» See the README.md file in the incomplete GitHub repository of the application:

https://github.com/watson-developer-cloud/conversation-simple

Chapter 3. Cognitive Calculator chatbot 107

https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-calc-nodejs
https://www.ibm.com/watson/developercloud/doc/conversation/sample-applications.html
https://github.com/watson-developer-cloud/conversation-simple
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

108 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Help Desk Assistant chatbot

This chapter describes how to create a chatbot application quickly without coding and
integrate it with the Watson Conversation service. For this use case example, you create a
Help Desk Assistant chatbot, however you can customize the chatbot to take any other role
such as delivery service, Q&A, student assistant, and more.

To create the chatbot application, you use the Node-RED programming tool. With this
powerful tool you can create, edit, and deploy applications quickly. Node-RED is a
programming tool for wiring together hardware devices, APls and online services in new and
interesting ways. It provides a browser-based editor that makes it easy to wire together flows
using the wide range of nodes in the palette that can be deployed to its runtime in a
single-click.

Node-RED, created by IBM but now part of JS Foundation, provides full integration with
Watson APls, allowing you to make great applications quickly and easy.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

Next steps

References

vVVvyVYyVvYyYVvYYyvYyyYy

© Copyright IBM Corp. 2017. All rights reserved. 109

https://js.foundation/
https://nodered.org/

4.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

» Understand the basics of Node-RED.

» Configure a conversation workspace with intents, entities and dialog.

» Create a Node-RED application and integrate the Watson Conversation service in the
application.

» Configure a Slack chatbot to call your Node-RED application.

4.1.2 Prerequisites

To complete the steps in this chapter, be sure you have these prerequisites:

» Access to a Bluemix account

» Basic knowledge of Bluemix

» Basic knowledge of the IBM Watson Conversation service

» Access to a Slack account (you can create a free account at www.slack.com)

Also be sure you completed the previous chapters in this book.

4.1.3 Expected results

Figure 4-1 shows the Help Desk Assistant chatbot application interface during a conversation
in Slack. Although this chatbot uses Slack, consider that the chatbot can be also integrated
with other chat services such as Facebook Messenger.

@ Hi Watson

~ =~ Watson . . ,

L2 ow can | he (2] © | have some issues with my printer
rect e e' Yes, that is correct

@ » @ O;tislenovo

Figure 4-1 Help Desk Assistant chatbot interface

110 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.2 Architecture

Figure 4-2 shows the components of the application.

Public network Bluemix network

User input to web front-end Request to Node-RED chatbot app

< > E N o

Present response on user web front-end Response to chat service Node-RED

. Chatbot application
User e Chat service °

3

Request to

Conversation service

Response to Node-RED chatbot app

Watson
Conversation service

Figure 4-2 Architecture

Notice that the flow shown in the figure represents one loop of a conversation, therefore this
cycle repeats several times during a conversation:

1. The user sends a message to the web front-end (chat service).

2. The chat service (for example, Slack, Facebook Messenger, web app) determines whether
the message is for the Help Desk Assistant chatbot application. If the message is for the
chatbot, then the chat service sends the message to your chatbot application
(Node-RED).

3. Your application parses the message and sends the filtered message to the Watson
Conversation service for processing.

4. The Watson Conversation service processes the message and provides a response.

5. The response is received and filtered by your application, which then sends the response
to the chat service.

6. The chat service identifies that the inputs are from the Help Desk Assistant chatbot and
presents the message as a response from the chatbot to the user.

Chapter 4. Help Desk Assistant chatbot 111

4.2.1 Project structure

These are the components you use in this use case:

» A Node-RED instance that is created in Bluemix, which is cloud-based, so installing
software is not necessary

» A Watson Conversation service instance

» A team space in Slack, which is the cloud collaboration tool that provides the chat service
in this use case

4.3 Two ways to deploy the application: Step-by-step and quick
deploy

These are the two ways to experience this use case:
» Step-by-step implementation

This approach takes you through the key steps to integrate the IBM Watson Conversation
service with the application logic. All sections of 4.4, “Step-by-step implementation” on
page 112 take you through step-by-step deployment.

» Quick deployment

A Git repository is provided with a version of the Node-RED application. You only need to
perform the required steps to customize the application for your specific Conversation
service instance and Slack team. This approach is explained in 4.5, “Quick deployment of
application” on page 136.

4.4 Step-by-step implementation

Implementing this use case involves the following steps:

Creating a new Conversation workspace

Adding intents

Adding entities

Creating the dialog

Testing the dialog

Creating the Help Desk Assistant chatbot application in Node-RED
Setting up the chat service (Slack)

NoO O kON =

112 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.1 Creating a new Conversation workspace

Complete the following steps:
1. Log in to Bluemix and open the Dashboard.

2. Find the Watson service instance created in 2.1.1, “Creating a Watson Conversation
service instance” on page 14 and click to open it (Figure 4-3).

All Services (6)

Services 32/40 Used

NAME SERVICE OFFERING PLAN ACTIONS

Conversation Conversation free

Figure 4-3 Access the Conversation service instance

3. Click Launch tool to access your Conversation workspaces (Figure 4-4).

IBM Bluemix W

Manage Service Credentials Connections

& Conversation e

Add a natural language
Figure 4-4 Launch Conversation service tool

4. Previously created workspaces are listed (Figure 4-5). However, for this app you need a
new workspace, so click Create.

Watson Com

Workspaces

Calculator

Calc
multip

English U5

Figure 4-5 Watson Conversation workspaces

Chapter 4. Help Desk Assistant chatbot 113

114

5. Add a name and description and click Create (Figure 4-6).

Create a workspace X

Workspaces enable you fo maintain separate intents, user examples, entities, and dialogs for each use or application.
MNama
Chatbot
Description

Chatbot application

Language

English (LIS.) LW

Figure 4-6 Create a workspace

The new Conversation workspace is created (Figure 4-7).

Intents Entities

No intents yet.

An intent is the goal or purpose of the user's input. Adding
examples to intents helps your bot understand different ways in
which people would say them.

& Import

Figure 4-7 Watson Conversation workspace

For more information about creating Conversation workspaces, see 2.1.1, “Creating a Watson
Conversation service instance” on page 14.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.2 Adding intents

In this section, you add intents to the Chatbot workspace. The intents should be appropriate
for the Help Desk Assistant chatbot. For more information about adding intents to a
Conversation workspace, see 2.1.4, “Adding intents” on page 23.

Add the four intents that are shown in Figure 4-8 through Figure 4-11 on page 116.

Intents Entities

Intent name

#Software-Issues

User exampie

Application Issue @
Issues with Office @
Problems with automatic updates @

My email is not working @

Application not running @
Figure 4-8 Add #Software-Issues intent (part 1 of 4)

Intents

Intent name

#Hardware-Issues

User example

Iﬂ\c'd a user example... @

My computer is not turning on @
My hard disk is not working @
My laptop is not charging e

My pc is off @

My printer is not working @

Figure 4-9 Add #Hardware-Issues intent (part 2 of 4)

Chapter 4. Help Desk Assistant chatbot 115

116

Intents

Intent name

#Hello

User example

Good Morning @
Good Evening @

Good Afternoon @

Hello @.
Hi @
Hola @

Figure 4-10 Add #Hello intent (part 3 of 4)

Entities

Intents

Intent name

#Affirmative

User exampie

Add a user example... @

correct (D)
right (D)
exactly (D)
yes (O
yeap (o)

you are right @

«» x

Figure 4-11 Add #Affirmative intents (part 4 of 4)

Those intents are enough for this example; however, you can create as many as you want.
Some examples include OutOfScope (for incomprehensible user input), Bye (to close the

conversation), and others.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.3 Adding entities

In this section, you add entities to the Chatbot workspace. The entities should be appropriate
for the Help Desk Assistant chatbot. For more information about adding entities to a
Conversation workspace, see 2.1.5, “Adding entities” on page 27.

Select Entities and create the four entities that are shown in Figure 4-12 through Figure 4-15
on page 118.

Entities

My entities System entities
Create
@Security
Value Synonyms

P»ac a value, for example, Cat

Data Loss
Privacy
SPAM

Spyware

OB ONONONO.

Virus

Figure 4-12 Add @Security entity (part 1 of 4)

Entities

My entities Systemn entities
Create
@OS
Value Synonyms

Pn::r.i a value, for example, Cat

HPUX

Red Hat

Linux

Windows

UNIX

ONONONONO.

Figure 4-13 Add @OS entity (part 2 of 4)

Chapter 4. Help Desk Assistant chatbot 117

118

Entities

My entities Systemn entities

Entity

@Printers

Value Synonyms

Colorjet
Color Stylus
Inkjet
Laserjet

Full color

ONONONONO,

«» x

Figure 4-14 Add @Printers entity (part 3 of 4)

Entities

My entities System entities

Entity

@Brands

Value Synonyms

Acer
Asus
HP
Toshiba
Apple

Lenovo

ONONONONORO,

«» x

Figure 4-15 Add @Brands entity (part 4 of 4)

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.4 Creating the dialog

In this section, you build the Conversation dialog for the Help Desk Assistant chatbot by using
the intents and entities created in the previous sections. For more information about building a
dialog, see 2.1.6, “Building a dialog” on page 30.

Complete the following steps:
1. Select Dialog and create the base node Hello as shown in Figure 4-16.

Conversation starts
v Hello

Triggered by
#Hello

Watison responses o

Hi, I'm Watson, how can | help you?

m PO ﬁ
| I Lo}

Figure 4-16 Create the dialog: base node Hello (part 1 of 4)

2. Create the dialog branch shown in Figure 4-17 with the following nodes:

— Hardware Issues (parent)
— Affirmative HW (child of Hardware Issues)
— HW Brands (child of Affirmative HW)

+ &

Hardware Issues -~ Affirmative HW s HW Brands

Trigger Trigger Trigger

#Hardware-lssues #Affirmative @Brands

Looks like you're having some Gt it. Please tell me the brand.

hardware issues. @_ =

A - = [
N m <= = &
m < @ &

i
1'}
== Show help b
4 »

Figure 4-17 Adding Hardware Issues, Affirmative HW, and HW Brands nodes (part 2 of 4)

Chapter 4. Help Desk Assistant chatbot 119

3. In the HW Brands node, create a response for each example in the @Brands entity (Acer,
Asus, HP, Toshiba, Apple, Lenovo, and so on):

a. Click the HW Brands node and then click Add response condition (Figure 4-18).

HW Brands

Enter a response...

Add a variation to this response

Figure 4-18 Add response condition (part 3 of 4)

b. Enter the appropriate response for each example in the @Brands entity (Figure 4-19).

HW Brands

1 if @Brands:Acer 8

For support with

Add a variation to thi

Figure 4-19 Adding a response if brand is Acer part 4 of 4)

120 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 4-20 shows the dialog branch built in this example for hardware issues.

Gl)
~ Hardware Issues v Affirmative HW v~ HW Brands
Triggered by Triggered by Triggered by
#Hardware-Issues #Affirmative @Brands
Watson responses o Watson responses o Watson responses o
Looks like you are having some Got it, now, could you please tell me @Brands:Acer
Hardware Issues, is... the brand of...

For support with Acer hardware,
please go to the f...

@ '—i—> E_) & @ '—:—' E]_\’ y @Brands:Apple
We do not provide support for
Apple devices. Pleas...

@Brands:Asus

For support with Asus hardware,
please call the fo...

<G> more...

W < @ &

Figure 4-20 Dialog branch for hardware issues

4. Repeat the process described in step 2 on page 119 and step 3 on page 120 for software
issues. In the OS node, create a response for each example in the @OS entity (HPUX,
Red Hat, Linux, Windows, UNIX, and so on).

Intents

=) &
~ Software Issues ~ - Affirmative-SW < 08
Triggered by Triggered by Triggered by
#Software-Issues #Affirmative @os
Watson responses o Watson responses o Watson responses o
Looks ike you are having Software Got it, now, could you please tell me @OS:HPUX
issues, is that ... the OS that ... Sorry, HPUX is not supported.
@0S:Linux
m “I* [f il FI* [Q Sorry, Linux is not supported.
@0S:(Red Hat)
For Red Hat issues, please visit the
following pag...
&> More...
w < @ &

Figure 4-21 Dialog branch for software issues

Chapter 4. Help Desk Assistant chatbot 121

4.4.5 Testing the dialog

To test the dialog, first click the Ask Watson icon (upper right corner).

The Chatbot panel opens (Figure 4-22). Interact with the chatbot by asking questions to test
the responses.

Try it out

Hi Watson

Hi, I'm Watson, how can | help you?

| have issues with my printer

Looks like you are having some Hardware

Issues, is that correct?

Figure 4-22 Test the dialog

4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED

Node-RED is a useful tool to create applications without having to write code. Instead, it uses
simple visual components that you configure and connect.

To make this task even easier, you do not need to install Node-RED, because it is available in
Bluemix. In this section, you create a Node-RED application and configure the flow:

» Create the Node-RED application in Bluemix
» Create the Help Desk Assistant chatbot application flow with the Node-RED flow editor
» Configure the Help Desk Assistant chatbot application in Node-RED

122 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create the Node-RED application in Bluemix

Complete the following steps:
1. Go to the Bluemix catalog.

2. In the catalog, go to Apps — Boilerplates and click Node-RED Starter (Figure 4-23).

Node-RED Starter

This application demonstrates how to run the

Community

MNode-RED open-source project within IBM Bluemix.

Figure 4-23 Node-RED Starter app in Bluemix

3. Enter the name of your application and host as conv-201-xxx-nodered. Replace xxx with
any random key because the host name of the application must be unique (Figure 4-24).
Accept the default values for the remaining fields and click Create.

Create a Cloud Foundry App

Node-RED Starter PP rmes

This application demonstrates how EHE

to run the Node-RED open-source H -
ost name:
project within IBM Bluemix.

conv-201-xxx-nodered

Community
View Docs
Selected Plan:
VERSION 0.51 SDK for Node.js™
TYPE Boilerplate
REGION US South Default

Domain:

mybluemix.net

Cloudant NoSQL DB

Lite

Figure 4-24 Creating a Node-RED application instance

Note: Wait until the application is created and it is started. The application status

should be Running before you can proceed.

Chapter 4. Help Desk Assistant chatbot

123

4. While you are waiting for the status to change to Running (with a green dot as shown
Figure 4-26), read through the Start coding with Node-RED information displayed on the
page. Also, be sure to record the link to your application (Figure 4-25) because you will
need it during the Slack configuration.

@2, IBM Bluemix Catalog Support ~ Manage

& Dashboard conv-201-xxx-nodered

C starting

Node-RED | |

Getting started
Overview

Runtime

Ctart ~radinn with NlnAa-RFEFN X

Figure 4-25 The link to your Bluemix application

5. After the application starts, click the route URL (highlighted in Figure 4-26).

@, |IBM Bluemix Catalog Support Mar|

conv-201-xxx-nodered a :

Running conv-201-xxx-nodered.mybluemix.net

€ Dashboard

Getting started

Overview
Runtime

Runtime

Coannantinne /—\ < N & k. 7~

Figure 4-26 Launch your Node-RED instance

The window shown in Figure 4-27 on page 125 opens. The Node-RED starter application
is created.

124 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create the Help Desk Assistant chatbot application flow with the
Node-RED flow editor

Now you can start to create flows. You use the Node-RED flow editor to add nodes and
values and create and wire (connect) the flows:

1. Click Go to your Node-RED flow editor (Figure 4-27).

Note: When you first run this application you are presented with some options to
secure the Node-RED flow editor with a username and password. Securing the editor is
optional but it is a good practice to do so. Skip through optional windows for this
example until you get to the window shown in Figure 4-27.

Node-RED in Bluemix

A visual tool for wiring the Internet of Things

MNode-RED prowides a browser-based editor that makes i easy
o wire together flows that can be deployed 1o the runtime in a Go fo your Node-RED flow edior
single-click

The varsion running here has baen cusiomised for the Bluemix
e " = % Learn how o password-protect your mstance

cloud erdaranmient

Figure 4-27 Open the Node-RED flow editor

Chapter 4. Help Desk Assistant chatbot 125

The Node-RED flow editor opens (Figure 4-28). The panel on the left shows a palette of
nodes. You can drag nodes to the workspace and connect them together (wire them) to
create an application. After dragging a node to a workspace, you can double-click the
node to open the Edit (configuration) dialog to provide values for the node.

=<5 Node-RED

Deploy = —

Q Flow 1 + info debug

v input

inject
catch
status

link

matt

http

websocket [

tep

~ maight

~ output
debug |

link

matt

http response =

-

Figure 4-28 Node-RED flow editor workspace

2. In the next steps, drag the following nodes to the workspace, add values as shown in the
figures of each step, and then click Done:

a. http input node (Figure 4-29 on page 127): This node will receive the text that the user
submits to the Help Desk Assistant chatbot. Edit the node and add these values:

* Method is the method used to receive the data, POST in this example.

* URL is the last part of the URL (the first part is the route to the Node-RED application
as shown in Figure 4-25 on page 124). Enter /watson-chatbot for this example. You
can customize this value as desired. Just remember that it should always start with
a forward slash character (/).

Remember: You will use this value later in step 8 on page 134, so remember it
or keep a record of it.

¢ Name is the node name (optional)

126 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http

Edit http in node

Done

= Method POST E|
@ URL fwatson-chatbot
% Name Input

Figure 4-29 Edit http in node

. debug node (Figure 4-30): This node displays the message info (for example, Slack
user_id, token, and text) received from Slack. You configure and integrate Slack
components later in the chapter. In fact, every time that a user submits text to the Help
Desk Assistant chatbot, you can see the information received on the debug panel (at
the right of the window). This data is important for troubleshooting and analysis of the
flow.

debug

Edit debug node

Done

E Qutput = msg. payload
X to debug tab E|
% Name

Figure 4-30 Edit debug node

. switch node (Figure 4-31 on page 128): This node is a filter to avoid unauthorized
users from using the chatbot.

Add two rules as shown in Figure 4-31 on page 128 which will create two outputs on
the node. The token to be pasted in the rule will be created and copied in steps 15 on
page 136 and 16 on page 136.

This node routes messages based on the value of the payload. When a message
arrives, this node checks the value of the Slack token (contained in payload.token)
against the values configured in this node. If a match is found then the flow goes to the
first output (to continue the flow), otherwise the flow goes to the second output (to exit
the flow).

Chapter 4. Help Desk Assistant chatbot 127

1 ; il
[)
T switch B

Node-RED

Edit switch node info debug

Type switch

¥ Name Authentication 1D afac800b.3d66c

» Properties
Property ~ mMsg. payload.token
A node to route messages

based on property values.
== v |~ % Paste Token Here -1 |x

When a message arrives
the selected property is
evaluated against each of
the defined rules. The
message is then sent to
the output of all rules that
pass

otherwise v —+2 [x

Note: the otherwise rule
applies as a "not any of"

the rules preceding it
+ acd

checking all rules v

Figure 4-31 Edit switch node

d. function node (Figure 4-32): This is the first function node you use. Every time a user
sends a question to the Help Desk Assistant chatbot, some metadata will be submitted
with the text, so this function filters the data to send only the user text to the
Conversation service. This example queries just the text from the payload. Be sure you
enter the same information as shown in the figure.

1 ; i
Il (]
T function B

Edit function node

Delete Cancel Done

% Name text filter &~
#& Function
i 1 msg.payload = msg.payload.text

2 return msg;

3

Figure 4-32 Edit function node, 1

128 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

e. conversation node (Figure 4-33): Here you add the Conversation service and

interconnect it to your chatbot application. Before you can edit the conversation node,
you must gather the credentials and workspace ID as described in the steps after
Figure 4-33 (steps i through vi on page 130).

Edit conversation node

Done

& Username Conversation |D Username
&, Password sssssssseee
¥ Name Conversation

% Workspace
ID Bluemix Workspace 1D

[¥] Save context

[C] Multiple Users

Figure 4-33 Edit conversation node

Gather the information needed to fill out the values in the conversation node:

i. In another window, open the Bluemix Dashboard, find the Conversation service
instance you created in 2.1.1, “Creating a Watson Conversation service instance”
on page 14 and click to open it (shown in Figure 4-3 on page 113).

ii. Select Service Credentials and click View Credentials (Figure 4-34). If you do not
yet have any listed credentials, click New Credential to create one.

Conversation

Manage Service Credentials Conncctions
Service Crodentials Service Credentials New Credential (%)
Credontials are provided in JSON format, The _| KEY NAME DATE CREATED ACTIONS
JSON snippat Ests credentials, such as. tha AP

ke and secret, as well as connaction [] Credentials.1 Jan 31, 2017 - 02-33:22

information for the service.

Figure 4-34 Watson Conversation credentials

iii. Copy the Username and Password values and paste them in the Node-RED
conversation node, as shown in the Edit conversation node window (Figure 4-33).

iv. Click the Manage tab and click Launch tool to open the Conversation workspace.

v. Find the Chatbot workspace, click the three vertical dots icon (upper right corner as
shown in Figure 4-35 on page 130) and select View details.

Chapter 4. Help Desk Assistant chatbot 129

130

Chatbot

Chatbot application View details
Edit

English (U.5.) Duglicate
Download as JSOMN

Delete

Last modified: 6 hou

Figure 4-35 Click View details to find the Watson Conversation workspace 1D

vi. From the details, copy the Workspace ID and paste it in the Node-RED
conversation node, as shown in the Edit conversation node window (Figure 4-33 on
page 129).

f. function node (Figure 4-36): This is the second function. It will filter all the output from
the Conversation service and send only the response in the format needed.

Add the values shown in Figure 4-36 (the end of line 1 (+ " ") was added for formatting
purposes).

- 1
function [J

Edit function node

L 1]

¥ Name output text filter

#~ Function

1 msg.payload = msg.payload.output.text + "";
2 return msg;

Figure 4-36 Edit function node, 2

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

g. http response node (Figure 4-37): This node takes the response from the Conversion
service and sends it back to the chat service (Slack). Add two instances of this node
(one for each flow). The configuration for both nodes is the same as shown in
Figure 4-37.

http response

Edit http response node

Done

¥ Name

Figure 4-37 Edit http response node

Configure the Help Desk Assistant chatbot application in Node-RED

Now you can connect and configure all the nodes that you dragged to the Node-RED
workspace.

Connect the modules (Figure 4-38). To connect each module, click the small grey connector
on the edge of the node and drag it to the desired node.

Figure 4-38 Connecting the required nodes for the application

To run your Node-RED application, click Deploy at the top right of the window.

4.4.7 Setting up the chat service (Slack)

As described in the architecture of this use case (4.2, “Architecture” on page 111), the chat
service (for example, Slack, Facebook Messenger, web app) determines whether the input

message from the user is for the Help Desk Assistant chatbot application. If the message is
for the chatbot, then the chat service sends the message to your Node-RED application.

Chapter 4. Help Desk Assistant chatbot 131

This use case uses Slack as an example of a front-end chat service. To configure Slack to
work with your Node-RED application, complete the following steps:

1. Sign in to Slack and create a new Slack team if you do not have a team.

2. After you sign in, go to the top of the left panel and click under your room name, and then
click Apps & integrations (Figure 4-39).

Watson APl ~
cesarrod
- cesarrod

Profile & account

Preferences
Set yourself to away
Help & feedback

m Watson API

Invite people

Manage team members

Team settings

Customize Slack

Figure 4-39 The Apps & integrations link

3. At the upper right corner, click Build (Figure 4-40).

@slack | App Directory Browse Manage Build

Figure 4-40 Access to build the integration

4. Click Start Building to start building the Slack app (Figure 4-41).

Build

internal tools D

for just your team, or S millions of users

Figure 4-41 Click Start Building

132 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://slack.com
https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team

5. The Create an App window opens (Figure 4-42). Enter an app name, select your Slack
team, and click Create App.

Create an App

App Name

sample-conv-chatbot

Don't worry; you'll be able to change this later.

Development Slack Team

c sample-team -

Your app belongs to this team—leaving this team will remove your ability to

manage this app. Unfortunately, this can't be changed later.

By creating a Web API Application, you agree to the Slack API Terms of
Service.

Figure 4-42 Create an App in Slack

6. Click Slash Commands (Figure 4-43).

Building Apps for Slack

o that's, just for yous team dor Bulld one that can be wrsed ey v tram| by fodlowing
Add features and functionality -
Incoming Webhooks Interactive Messages

Pl mrevaages from cuieen: L i Auciel Butior b pour B’y e

Slash Commands Event Subscriptions

Ay Ui 10 perfiosm 200 actirn by Tyiiny Wk 1 gty For vour 390 b0 reapond 1o
Bots Permissions

Add 3 bot o sliows ukery (0 exctiarmg Cortguar pr gy | W y

ages with your apg rar it b AP

Figure 4-43 Add features in Slack integration

7. In the next window, click Create New Command.

Chapter 4. Help Desk Assistant chatbot 133

8. In the Create New Command window (Figure 4-44), enter the following information, and
then click Save:

— Command: /watson
This is the trigger to call Watson-chatbot when you type text in Slack.
— Request URL: https://conv-201-xxx-nodered.mybluemix.net/watson-chatbot

This is the URL of the Node-RED application (/watson-chatbot) that you configured in
the http input node in step a on page 126 and Figure 4-29 on page 127.

— Short Description: Any text

Create New Command 5
Command fwatson)
Request URL dered.mybluemix.net/watson-chhtbot ()
Short Description watson chatbot

Usage Hint

rs that can be passed

Figure 4-44 Create New Command: Add Slack command

9. Click Install App, and then click Install App to Team (Figure 4-45).

® smpie-conv-chate.. » Install App to Your Team

Settings
tokers you nesd ta inter
chicking Install App to Team.

tive Mescaons

-45 Install the app to the Slack team

Figure 4

134 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

10.Click Authorize (Figure 4-46).

® D

sample-conv-chatbot would like access to zac-kl

Confirm your identity on zac-kl

Add commands to zac-kl

Authorize Cancel

Figure 4-46 Authorize the Slack application

11.Return to the Slack room:

http://<room-name>.slack.com

12.At any channel (for example the #general channel), in the send message text column,

type the text /watson, and notice the pop-up message (Figure 4-47).

conv-201

#general
| 21| %0 | Company.

@ (B | Qsearch

You created this channel today. This is the very be
the #general channel. Purpose: This channel is for 1
communication and announcements. All team memk
channel. (edit)

general

+ Add an app or custom integration

& Send this link to your team to invite them

+ Invite people -

Commands matching "/watso

sample-conv-chatbot

/watson watson chatbot

+ | /watso

*bold" _italics_ ~strike~ *code’

Figure 4-47 Test application

13.Continue typing any message, such as /watson hi. For now, the response is only the echo

back of the message you send.
14.Go to the Node-RED flow editor:

http://<node_red_appname>.mybluemix.net/red

Chapter 4. Help Desk Assistant chatbot

135

15.Click the debug tab (Figure 4-48). Notice the msg.payload message that contains Slack
information including token, command, text, user_name, and others under object.

info

debug

¥ { text: "hi", token:

"wHBY¥x1kAIFKEs jIoEN

msg.payload | Object

wobject

It-:(e':: L

team_id:
team_domzin:
channel_id:

channel_name:

user_id: "Cue——
USEr_name: Cadppmetml

command :

text:

*ftest”
Ri

response_url:

"http hocks.slack.com/command s/ W

Figure 4-48 QObject information in the msg.payload

16.Copy the token value (copy only the text inside double quotation marks).

17.0pen switch node (named Authentication). Paste the token you just copied in the first rule
(input box) replacing the text Paste Token Here in Figure 4-31 on page 128.

18.Click Done, then click Deploy (located at the top right).
19.Return to the Slack room:
http://<room-name>.slack.com

20.Now type the text /watson hi. Notice that this time, the response is coming from the
Conversation service.

4.5 Quick deployment of application

This section provides a quicker way to create the chatbot application in Node-RED if you want
to skip many of the steps described in 4.4, “Step-by-step implementation” on page 112:

1. Access the Node-RED Bluemix Starter Application, which is at this GitHub location:

https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-14873
32833126

2. Scroll to and click Deploy to Bluemix (Figure 4-49); then follow the prompts.

4=, Deploy to Bluemix

Figure 4-49 Click Deploy to Bluemix

136 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

3. Open the Node-RED flow editor for your application by entering the following URL in your
browser; replace <HOSTNAME> with the host name of your application:

https://<HOSTNAME>.mybluemix.net/red/
4. Import the additional nodes developed in this chapter, which are at this GitHub location:

https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-
201-iot-nodered-flow.json

Copy the content of this file to your clipboard.

5. To import the nodes, click the menu at the top-right and select Import — Clipboard
(Figure 4-50).

Node-RED

View

Clipboard Import

{ Library

catch : Search flows

Input
status Configuration nodes

Flows

link
Subflows

matt
Manage paletie

http
Keyboard shortcuts

websocket

Show tips

tep : Node-RED website
vD.16.2

A | P it

https://conversation-api-node-red mybluemixnet/red/#

Figure 4-50 Import Node-RED nodes from the clipboard

6. Follow the steps described in these sections:

4.4.1, “Creating a new Conversation workspace” on page 113
4.4.2, “Adding intents” on page 115

4.4.3, “Adding entities” on page 117

4.4.4, “Creating the dialog” on page 119

4.4.7, “Setting up the chat service (Slack)” on page 131

7. Edit the nodes and add the authentication values based on your Conversation service
instance credentials, workspace ID (edit conversation node as shown in Figure 4-33 on
page 129) and Slack token (edit switch node as shown in Figure 4-31 on page 128).

Chapter 4. Help Desk Assistant chatbot 137

https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json

4.6 Next steps

You can enhance your chatbot. For example, you can add intents, entities, and dialogs.

Also if you identify any unexpected responses, you can make the corrections to improve
the answers.

4.7 References

For more information, see the following resources:

» Node-RED:
https://nodered.org/

» Creating apps with Node-RED Starter:
https://console.ng.bluemix.net/docs/starters/Node-RED/nodered.html#nodered

138 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net/docs/starters/Node-RED/nodered.html#nodered
https://nodered.org/

Using a cognitive chatbot to
manage loT devices

A cognitive chatbot understands natural language. In Chapter 4, “Help Desk Assistant
chatbot” on page 109, you learn how to create a cognitive chatbot to answer questions from
users requesting help with software and hardware problems.

In this chapter, you learn to expand the cognitive chatbot capabilities so it can interact with
loT devices and send commands to them in response to user’s requests.

In this use case the Node-RED sample application created in Chapter 4, “Help Desk
Assistant chatbot” on page 109 is modified to connect to the Watson Internet of Things
Platform service in order to manage a device. The application also integrates the Watson
Conversation service to understand the user’s request in natural language.

This example considers a mobile smartphone as an loT device because getting access to an
Android phone for testing purposes is fairly easy. This example can be applied to other loT
devices such as street light sensors, smart meters, sensors to manage household
appliances, and so on.

The following topics are covered in this chapter:

v

Getting started

Architecture

Step-by-step deployment of application
References

vYyy

© Copyright IBM Corp. 2017. All rights reserved. 139

5.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

5.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:
» Create a Watson loT Platform service instance and connect devices to be managed.

» Integrate the Watson loT Platform service with the cognitive chatbot application to handle
the user’s requests and respond to the user.

» Train the Chatbot Conversation workspace with the appropriate intents for understand
user’s request in natural language to manage loT devices.

» Add capabilities to the chatbot Node-RED application to send commands to the loT
device.

5.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

» You implement the use case in Chapter 4, “Help Desk Assistant chatbot” on page 109.
» You have an Android smartphone.

5.1.3 Expected results

In this chapter, the cognitive chatbot that you developed in Chapter 4, “Help Desk Assistant
chatbot” on page 109 is enhanced to understand user’s request to change the background
color of a smart phone by sending commands to the device in response to the user’s request.

The approach used in this simple example can be used to send other commands and send
and receive information to and from loT devices.

Figure 5-1 on page 141 shows the final chatbot application. It receives a request from the
user to change the background color of the smart phone from gray to green. By integrating
with the Watson Conversation service the chatbot is able to understand the user’s request in
natural language and respond in the user’s language. By integrating with the Watson loT
Platform service the chatbot application sends commands to the smart phone to change the
background color.

140 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Q laT Staner
hi watson

Hi, I'm Watson, how can [help you?

Could you please change the color of my
brackground

Sure, I can change the gray color of the background
i yvour cellphone Please tell me which color do vou

prefer: Blue or Green?

let's make it green

Messages Published: 49491
Messages Received: 8077

green

Figure 5-1 Using the chatbot to change the background color of a smart phone

5.2 Architecture

Figure 5-2 shows the components of the application and how the components interact with

each other.
Public network Bluemix network
Send message to chat service @ Message to Node-RED chatbot app Request to Watson IoT Platform service e
N] Send Conversation Node-RED
Receive message service response -
User o Chat service to the chat service Chatbot application Watson loT Platform
A A

o
2 S e}
D = o -
221155 2
c = o » T o
22|l gc g5
§S|| 2o E£
2 9 o= €S
g= Il EG SE
3 L] 8®

172}
c 2 c > . £
S| &5 So
=g S &£
O o
(%2} v v
Watson Smartphone
Conversation service

Figure 5-2 Architecture

The numbers in the diagram represent the following steps:
1. The user sends a message to the chatbot through the chat service (Slack in this example).

2. The chat service checks whether the message is for the chatbot. If it is, the service sends
the message to the chatbot application (Node-RED).

Chapter 5. Using a cognitive chatbot to manage loT devices 141

The application parses the message and sends the filtered message to the Watson
Conversation service for processing.

The Watson Conversation service processes the message and provides a response.

5. The Node-RED application determines whether an action is required. If an action is

required, the application sends a command to the Watson loT platform to perform the
requested action.

The Watson loT service sends a request to the smartphone to perform the action
requested.

The Node-RED application sends the response from the Conversation service to the
chatbot service (Slack).

The chatbot service receives the message and displays the message to the user.

5.3 Step-by-step deployment of application

Implementing this use case involves the following steps:

o0~

Creating the Watson loT Platform service.

Configuring the Android mobile device as an loT device.
Modifying the Chatbot Conversation workspace.
Connecting the chatbot application to the IoT platform.
Testing the application.

5.3.1 Creating the Watson loT Platform service

142

To create the Watson loT Platform service instance, follow these steps:

1.
2.

Go to your Bluemix Dashboard and click Create Service.
Select the Internet of Things Platform service (Figure 5-3).

e Internet of Things Platform

This service is the hub of all things IBM loT,
it is where you can set up and n

IBM

Figure 5-3 Internet of Things Platform service

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Enter a unique name in the Service name field, and click Create (Figure 5-4).

IBM Bluemix Catalog

This service is the hub for IBM Watson
loT and lets you communicate with and
consume data from connected devices
and gateways. Use the built-in web
console dashboards to monitor your loT
data and analyze it in real time. Then,
enhance and customize your IBM
Watson loT Platform experience by
building and connecting your own apps

by using messaging and REST APls.

IEM

Connect to:

Leave unbound v

View Docs

AUTHOR IBM
PUBLISHED 03/17/2017

Service name:

Internet of Things Platform-ep

Features

* Connect

Quickly and securely register and connect
your devices and gateways. You can find
simple step-by-step instructions for
connecting popular devices, sensors, and
gateways in our recipes site.

* Analyze in real time

Monitor your real-time device data through
rules, analytics, and dashboards. Define
rules to monitor conditions and trigger

automatic actions that include alerts, email,

IFTTT, Node-RED flows, and external
services to react quickly to critical
changes.

Images

* [nformation Management

Control what happens to the data that is
received from your connected devices. Manage
data storage, configure data transformation
actions. and integrate with other data services
and device platforms.

* Risk and Security management

Our secure-by-design control capabilities
protect the integrity of your loT sclution through
secure connectivity and access control for
users and applications. Extend the base
security with threat intelligence for loT to
visualize critical risks and automate operational
respenses with policy-driven mitigation actions.

TYPE Service

Need Help?
Contact Bluemix Sales

Estimate Monthly Cost
Cost Calculator

Figure 5-4 create IoT Platform service

4. On the Welcome page, click Launch to access the service dashboard.

The loT dashboard includes much useful information. For example, you can launch the
Watson loT Platform documentation and Quickstart from the dashboard (Figure 5-5).

IBM Watson loT Platform

ID: (iog@qp)

+ Create New Board

All Boards

Your boa

USAGE OVERVIEW RULE-CENTRIC ANALYTICS DEVICE-CENTRIC

ANALYTICS

Figure 5-5 IoT dashboard

Chapter 5. Using a cognitive chatbot to manage loT devices 143

5. From the menu on the right, click the devices icon. Then, in the Devices window, click
Add Device (Figure 5-6).

ol B ocnve W
IBM Watson loT Platform QUICKSTART SERVICE STATUS DOCUMENTATION BLOG =
ID: (Bxdnvy)
D :
) o + Add Device
Browse | Diagnose | Action Device Types Manage Schemas
o
22
Device ID Device Type Class ID Date Added m
J‘r This table shows a summary of all added devices. It can be fitered, organized, and searched on multiple device
criteria. You can get started by adding devices using the Add Device button at the bottom of the page, or by using
our AP/

Figure 5-6 Watson IloT Platform dashboard: Add Device

6. Each device must have a device type associated, which is a way to categorize similar
devices. So, before creating a device, you must create a device type.

Click Create device type (twice), Enter Android as the device type name, add a
description, and then click Next. If you want, you can use the same information as shown
in Figure 5-7.

The remainder of the information is optional, so you can click Next until you see the option
to click Create.

Important: The device type name must be Android because this is the value that is
hardcoded in the mobile app example that is used in 5.3.2, “Configuring the Android
mobile device as an loT device” on page 147.

Create Device Type

General Information 0

Name Android

The device type name is used to identify the device type uniquely, using a restricted set of characters to
make it suitable for APl use.

Description Mobile loT Device

The device type description can be used for a more descriptive way of identifying the device type.

Figure 5-7 Create Device Type

7. The Add Device window is displayed again, but this time a device type is available to
choose (Android). Make sure the device type is selected, and then click Next at the lower
right corner.

144 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8. Add an ID for the device. The device ID should be unique within your organization. The
suggestion is to use something that will identify the device (such as the MAC Address, a
phone number, and so on). Enter a device ID value (Figure 5-8), and then click Next.

Add Device

Device Info

Device ID is the only required information, however other fields are populated according to the attributes set
in the selected device type. These values can be overridden, and attributes not set in the device type can be
added.

Device ID 2244668800

Figure 5-8 Adding the device ID

9. The metadata is optional; click Next.

10.Next, you add security. You can generate your own token or allow the system to generate
one for you. For this example, click Next so that the system automatically generates the
token.

11.A summary of all submitted information is displayed. Click Add to complete the process.

12.Note all the information on the page (Figure 5-9 on page 146), including the following
items, because you will use this information later:

— Organization ID

— Device type

— Device ID

— Authentication method
— Authentication token

Remember: The authentication token is non-recoverable; therefore, if you miss i,
you must register the device again.

Chapter 5. Using a cognitive chatbot to manage loT devices 145

146

Device 2244668800

Your Device Credentials o

ou need to add these credentials to

janization. To get it con

t from your device in the "Sensor

, you should see the mess

By

Android
De 2244668800
Authentication Method token
Authentication Token T RAN S

Figure 5-9 IoT device credentials

The device is now added to the Watson loT Platform service instance.

13.Go to the Bluemix Dashboard and find the loT Platform service instance that you just
created. Select it by clicking it. This action opens the Bluemix loT Service landing window.
In this window, go to the Connections tab and click Create Connection (Figure 5-10).

= @, IBM Bluemix Internet o Catalog Support Manage

& Allitems

Internet of Things Platform-ep

Manage Plan Connections

O,

4

Figure 5-10 Create connection

14.Find the Node-RED application (conv-201-xxx-nodered) that you created in 4.4.6,
“Creating the Help Desk Assistant chatbot application in Node-RED” on page 122. Click
Connect.

15.To apply the changes, the application must be restaged. So, click Restage. Keep in mind
that if you make any mistake while staging, you can stop the application and restage.

16.After these steps are complete, you will be able to see the Node-RED application under
the Connections tab of the loT Platform service instance, which means that both are
successfully connected.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5.3.2 Configuring the Android mobile device as an loT device

To establish the communication between the Watson loT platform and a smartphone, you
need to install an application.

If you are an Android developer, the code is on the IoT starter for Android page in GitHub:

https://github.com/ibm-watson-iot/iot-starter-for-android

This section describes the options to configure and install the application for an Android
device. However, if you want to run the application on iOS, see the |oT starter application for
IBM Watson loT on iOS in GitHub:

https://github.com/ibm-watson-iot/iot-starter-for-ios

Use these steps to complete the installation:

1.

Set up the phone to enable the installation of applications (.apk) outside of the Google Play
Store. Go to Settings/Security, and under Device Administration, enable Unknown
Sources.

Important: Remember to revert this setting after you install the application.

The instructions to enable this setting vary in different Android versions. Refer to your
device documentation as needed.

. On your phone, open a browser and go to the following address:

http://ibm.biz/mobile-app
Case-sensitive: This URL is case-sensitive.
Click Open binary file. Accept any warning notifications and click Download.

Note: Depending on your Android phone model and operating system level, warning
messages can differ.

After the download is complete, click over the file to install it. If you missed this option, find
the downloads folder using any file manager for Android, and then click to install it.

Chapter 5. Using a cognitive chatbot to manage loT devices 147

https://github.com/ibm-watson-iot/iot-starter-for-android
https://github.com/ibm-watson-iot/iot-starter-for-ios
http://ibm.biz/mobile-app

4. After the app is installed, open it. Add the values from step 12 on page 145 (Organization
ID, device ID, and authentication token) and click Activate Sensor at the bottom of the
screen (Figure 5-11).

& loT Starter

Organization:

iog9gp
Device ID:

2244668800

Auth Token:

Connected to loT: No

Figure 5-11 Adding the Watson IoT Platform service values to the smartphone app

148 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. If nothing happens, you probably miss-typed a value. Otherwise, it displays the
accelerometer data that is being read by the device (Figure 5-12).

£ |oT Starter

LOGIN

Device ID: 2244668800

Accelerometer Data
x:-0.325
y: 5.305
z:8.236

Messages Published: 107
Messages Received: 0

Send Text

Figure 5-12 Reading from the accelerometer sensor

The smartphone is now connected to the Watson loT Platform service instance that you
created in 5.3.1, “Creating the Watson loT Platform service” on page 142.

5.3.3 Modifying the Chatbot Conversation workspace

In this section, you modify the Chatbot Conversation workspace created in 4.4.1, “Creating a
new Conversation workspace” on page 113. You will add the intents, entities, and dialog to
handle a chat with a user submitting requests through the chatbot to change the color of the
phone background. The steps in this section assume you start with the previously created
Chatbot workspace. Alternatively, you can create a new Conversation workspace for this use
case. For information about creating Conversation workspaces, see Chapter 2, “Conversation
service workspace” on page 13.

Chapter 5. Using a cognitive chatbot to manage loT devices 149

Complete the following steps:

1. Find the Conversation service instance created in 2.1.1, “Creating a Watson Conversation
service instance” on page 14 and click to open it.

2. Click Launch tool to open Conversation tooling. Previously created workspaces are
listed.

3. Find the Chatbot workspace created in 4.4.1, “Creating a new Conversation workspace”
on page 113.

4. Add the intent #Change-color and the examples shown in Figure 5-13.

 #Change-color i

@ Add a new user example...

|:| change color smartphone

|:| change the background

|:| change the color cellphone

|:| change the color of the background

|_| Please change the color

Figure 5-13 Adding the new intent

5. Add the @colors entity shown in Figure 5-14. Notice that you can add synonyms to
describe colors that are not available.

@colors a
@ Add a new value

|:| blue azul (1 Synonym)
|:| green verde (1 Synonym)
|:| others black orange pink red white (6 Synonyms)

Figure 5-14 Adding the new entity

150 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6. Add the dialog as shown in Figure 5-15.

WS
~ Colors ~ Select Color
Triggered by Triggered by
#Change-color @colors
Watson responses o Watson responses o
Sure, | can change the gray color of @colors-blue
the backgroun... e

@colors:green
+ :
-@ s b ‘é} green
@colors:others

Sorry but my super powers just
allows me to change...

Figure 5-15 Adding the new dialog

7. Test the dialog. Click the Ask Watson icon (green bubble on the upper right corner) to test
the dialog. Type change color and then green to get the results shown in Figure 5-16 on
page 152. If you have different results, make the corrections by selecting the correct intent
or entity.

Notice that in this step you are only testing the conversation with the user, not sending
commands to the device to change the color of the background of the cellphone.

Chapter 5. Using a cognitive chatbot to manage loT devices 151

Try it out

green

@colors:green
l green

change color

I Sure, | can change the color of the background
in your cellphone. Please tell me which color do
you prefer: Black, Blue or Green?

blue

@colors:blue

I blue

Figure 5-16 Testing the dialog

5.3.4 Connecting the chatbot application to the loT platform

152

Next, open the Node-RED application created in 4.4.6, “Creating the Help Desk Assistant
chatbot application in Node-RED” on page 122. Modify the application by making the
following changes:

1. Add a function node (named Color change) and one IBM IoT output node and then
connect them to the conversation node (Figure 5-17).

L o —

@ connected

Figure 5-17 New nodes

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Editthe Color change function node. Add lines of code to specify the codes of the colors to
use. To do that, add the lines of code shown in Example 5-1 to the function node
(Figure 5-18 on page 154). The code in the example creates three variables (one for each
color), and then depending on the message received by the chatbot, it will pass the color
data to the IBM IoT node to send it to the smartphone. You can change the code of the
colors (Example 5-1) to display different backgrounds on your smartphone.

Example 5-1 Code for the function node

var r = 0.
var b
var g =

o O o

0.
0.0;

if (typeof (msg.payload.output.text) == "string"){
msg.payload = msg.payload.output.text + "";
} else {
msg.payload = msg.payload.output.text[0] + "";
}

if (msg.payload == "green") {
g = 255;
} else if (msg.payload == "blue") {
b = 200.0;
} else {
r = 100;
g = 100;
b = 100;

a=1.0;

msg.eventOrCommandType = "color";
msg.payload = JSON.stringify({"d":{"r":r,"b":b,"g":g,"alpha":a}});

return msg;

Chapter 5. Using a cognitive chatbot to manage loT devices 153

154

¥ Mame change color 8~

Function

1 wvarr =

2 wvar b =

3 var g =

4

5- if (typeof (msg.payload.output.text) == "string"){
5] msg.payload = msg.payload.output.text + "";
7~} else {

8 msg.payload = msg.payload.output.text[O] + "";
g}

10

11~ if (msg.payload == "green") {

12 g = 255;

13- } else if (msg.payload == "blue") {

14 b = 200.0;

15~ } else {

16 r = 100;

1% g = 108

18 b =

1=}
20 a =1.0;
21
22 msg.eventOrCommandType = "color";
23 msg.payload = JSOM.stringify({"d":{"r":r,"b":b,"q":g, "alpha":a}});
24
25 return msg;
26

Figure 5-18 Testing the responses; lines of code added

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Edit the IBM loT out node: enter the values of your IBM loT Platform service to finish the

setup (Figure 5-19).

Edit ibmiot out node

Authentication

#f Output Type

«f Device Type

A Device Id

4, Command Type

Ik Format

£ Data

@ QoS

W Name

Bluemix Service
Device Command
Android
2244668800

text

json
{"d"{"value""text"}}
0 ||

IBM loT

Figure 5-19 Configuring the IBM loT node

Chapter 5. Using a cognitive chatbot to manage loT devices

4. Click DEPLOY (upper right corner) and then close the Node-RED workspace.

155

5.3.5 Testing the application

Return to the chat service (Slack) that you set up in 4.4.7, “Setting up the chat service
(Slack)” on page 131. Enter a request for the chatbot to change the background color of the
smartphone. Remember that for this example to work, the application that you installed in
5.3.2, “Configuring the Android mobile device as an loT device” on page 147 must be open in
the smartphone. Figure 5-20 shows the result.

O |oT Starter -
hi watson © IoT Starter

Hi, I'm Watson, how can [help you?

Could you please change the color of my
brackground

Sure, I can change the gray color of the background
in your cellphone. Please tell me which color do you
prefer: Blue or Green?

let's make 1t green

green

Figure 5-20 Testing the application

5.4 References

For more information, see the following resources:

» Watson loT Platform documentation:
https://console.ng.bluemix.net/docs/services/IoT/index.html

» Watson loT Platform Quickstart:

https://quickstart.internetofthings.ibmcloud.com

156 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net/docs/services/IoT/index.html
https://quickstart.internetofthings.ibmcloud.com

Chatting about the weather:
Integrating Weather Company
Data with the Conversation
service

The Weather Company® Data for Bluemix service lets you integrate weather data from The
Weather Company into your IBM Bluemix application. You can retrieve weather data for an
area specified by a geolocation.

This chapter guides you through the creation of a sample chatbot application, the Cognitive
Weather Forecast chatbot, that integrates with the Watson Conversation and Weather
Company Data services. The application demonstrates the use of both services to get the
forecasted weather for a city through chatting with the user.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

vVvyvyvyYYyypy

© Copyright IBM Corp. 2017. All rights reserved. 157

6.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

6.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

>

>

Integrate the Watson Conversation service and Weather Company Data service with your
application.

Develop a cognitive conversation application to retrieve the weather forecast for a specific
city.

6.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

>

>

Review Chapter 1, “Basics of Conversation service” on page 1.

Review Chapter 2, “Conversation service workspace” on page 13 and create a
conversation service instance and a Conversation workspace as described in this chapter.

Use any web browser (Chrome, Firefox, or Internet Explorer).
Have basic JavaScript skills.

Have basic knowledge of Git.

Install Cloud Foundry tool on your workstation.

Install Git tool on your workstation.

6.1.3 Expected results

158

Figure 6-1 on page 159 shows the application. The user requests tomorrow’s weather
forecast, and the application asks for the name of a city. The user responds with a name, in
this case London, and the application responds that only Cairo and NYC are supported. The
user chooses a supported city and the application responds with the weather forecast that it
receives from Weather Company Data.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

I'd like to know tomorrow's weather
forecast please

| Partly cloudy. Highs in the mid single digits
and lows -13 to -9F.

It is my pleasure to help you. Bye

Figure 6-1 Cognitive Weather Forecast chatbot

6.2 Architecture

Figure 6-2 shows the components involved in this use case and the runtime flow.

Public Network Bluemix Network

Send user request

> >

Request weather conditions for a city

Respond with with weather data Respond with weather data

Send user request

Respond with intent and entity

User o Web Cognitive Weather Forecast chatbot o Watson
Browser Node.js runtime Conversation service
A

5 0

s 55

c$ T E

= = @©

= -8

2|l 52

28 £ S

S = © O

a o O T

3% 22

x § >

2 o5

3 =

Cwo

v

Weather Company
Data service

Figure 6-2 Architecture

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service

159

The flow for this use case is as follows:

1. The user engages in a conversation with the application, requesting the weather forecast
for a city; for example, Cairo.

2. The request is passed from the web browser to the Cognitive Weather Forecast
application that runs on Node.js.

3. The application passes the user’s request in natural language to the Conversation service.

4. The Conversation service understands the intent and entities in the user's message
passed by the application. Then it returns a response to the application based on the
dialog configured in the Conversation workspace. It returns ' [REPLACE WITH WEATHER
DATA] ' and the entities to the calling application (for example: Cairo).

5. The Node.js application queries the Weather Company Data service for the weather
forecast for the requested city, passing to it the latitude and longitude of the entity.

6. The Weather Company Data service responds with the weather forecast.

7. The Node.js application replaces ' [REPLACE WITH WEATHER DATA]' with the result received
from the Weather Company Data service and sends it to the web browser.

8. The user sees the response on the web browser. For example Sunny. Highs in the Tow
70s and Tows in the Tow 50s.

6.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:
» Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 6.4, “Step-by-step implementation” on page 160. This version takes you
through the key steps to integrate the IBM Watson service with the application logic.

» Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 6.5,
“Quick deployment of application” on page 182.

6.4 Step-by-step implementation

160

Implementing this use case involves the following steps:

—

. Configuring Conversation workspace for Cognitive Weather Forecast chatbot.
2. Creating the Weather Company Data service instance.

3. Developing the Cognitive Weather Forecast chatbot application.

4. Testing the application.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast

chatbot

Note: If you created a Conversation workspace by following the instructions in Chapter 2,
“Conversation service workspace” on page 13, skip to “Get the Workspace ID” on

page 163.

In this section, you create the Conversation workspace that will be used by the Cognitive
Weather Forecast chatbot to understand the user’s request regarding to weather conditions in
a city. This workspace includes entities, intents, and dialog specific to the application.

To simplify the creation of the Conversation workspace for this use case, import the

workspace from the GitHub location:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/train

ing/1.4-conv-101-createservice.json

To import the workspace, follow these steps:

1. Log in to Bluemix.

2. In the Services section of the dashboard, click Conversation which is the Conversation
service instance that you created in Chapter 2, “Conversation service workspace” on

page 13 (Figure 6-3).

@, IBM Bluemix

All Services (6)

Services 32/40 Used

Catalog Support Account

NAME

Conversation

SERVICE OFFERING ACTIONS

Conversation

Figure 6-3 Conversation service instance for this use case in the Bluemix dashboard

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 161

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json

162

3. Click Launch tool to open the Conversation tool (Figure 6-4).

IBM Bluemix Wz

Catalog Support Account

< Watson

Conversation

Conversation

Add a natural language
interface to your
application to automate
interactions with your end
users. Common

Developer
resources:

Figure 6-4 Launching the Conversation tool

4. Click the Import workspace icon to import the workspace (Figure 6-5).

Watson Cc
Workspaces Create

Calculator

Calculator Conversation workspace that allows addition and
multiplication operation using Natural Language.

English (US)

Last modified: 4 day= ago

Figure 6-5 Importing a workspace

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Click Choose a file and select the 1.4-conv-101-createservice.json file that you
downloaded at the start of this section. You should choose to import everything (intents,
entities and dialog).

6. Click Import.

The Car Chat-bot workspace is imported. It will be used for this use case.

Get the Workspace ID

Get the Workspace ID that you will need in order to configure the application to point to the
workspace:

1. Click the Menu icon, which is the three horizontal bars at the upper left corner (Figure 6-6).

Intents Entities

in 5 intents Sortby: MNewest N

5 #goodbye 6
bye
% #igreeting 6

Good afternoon

> #out_of_scope 5

Please close the music

5 #traffic 5

How crowded is it now?

Figure 6-6 Car Chat-bot workspace: Menu

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service ~ 163

2. Click Back to workspaces (Figure 6-7).

5 intents Sortby: MNewest

Intents

Figure 6-7 Car Chat-bot Conversation workspace: Back to workspaces
3. Click the Actions icon (three vertical dots on the top-right corner of the Car Chat-bot

workspace) then choose View Details.

4. Copy the Workspace ID value and save it in any local text file (Figure 6-8). You will need
this value in step 5 on page 179.

Watson C

Workspaces Create

Created: 1/31/2017, 6:14:15 AM

Last modified: 2/4/2017, 1:48:07 PM
Documentation

Bluemix

Workspace |D: 44202034-4a11-4e2{-Bc8b-b86defc92alc

6 1 9

Figure 6-8 Workspace ID

164 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6.4.2 Creating the Weather Company Data service instance

To create a Weather Company Data service instance, follow these steps:

1. Open the Bluemix Catalog by clicking Catalog at the top bar.

2. Scroll to Services and select Data & Analytics — Weather Company Data (Figure 6-9).

= @; IBM Bluemix Catalog
All Categories

Infrastructure

Compute
Storage
MNetwork

Security

Apps
Boilerplates

Cloud Iry Apps

Insights for Twitter

- Use IBM Insights for
Twitter to incorpo

IBM

Streaming Analytics

’ Ingest, analyze,
manitor, and corr

IBM

Catalog

®

Support Account

Lift

Lift is a fully managed
data migration zervice.

1BM

Weather Company
Data

Use the Weather
Company Data fo

1BM

Figure 6-9 Bluemix Catalog: Weather Company Data

3. For the Service name, use weather-company-data, and then click Create (Figure 6-10).

= @, IBM Bluemix Catalog

< Viewall

Weather Company Data

Catalog Support

This service lets you integrate
weather data from The Weather
Company into your IBM Bluemix
application. You can retrieve
weather data for an area
specified by a geclocation. The
data allows you to create

applications that solve real

Service name:

weather-company-data

Credential name:

Credentials-1

Need Help?

Contact Bluemix Sales

Estimate Monthly Cost

Cost Calculator

Figure 6-10 Create Weather Company Data service instance

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 165

4. Click the Service Credentials tab (Figure 6-11).

@2, IBM Bluemix Da Catalog Support Accoul

Data & Analytics "

weather-company-data

Manage Service Credentials Connections
-
Service Credentials Service Credentials New Credential (3 s
Credentials are provided in JSON | KEY NAME DATE CREATED ACTIONS

format. The JSOM snippet lists

credentials, such as the APl key [] Credentials-1 Feb 19, 2017 - 10:32:57 View Credentials

and secret, as well as connection

Figure 6-11 Weather Company Data: Service Credentials tab

5. Under ACTIONS column and in the Credentials-1 row, click View Credentials
(Figure 6-12) to display the username and password for the service instance. You use this
information to test Weather Company Data API in step e on page 170.

@, IBM Bluemix Data & Anal

Credentials are provided in JSON
format. The JSON snippet lists
credentials, such as the APl key [[] Credentials-1 Feb 19, 2017 - 10:32:57 |View Credentials =

{

"username": "@96a3765f-8992-4b89-3594-223b6bT7el5
2",
"password”: "ROvOUSwWmD1",

and secret, as well as connection

information for the service.

"host": "twcservice.mybluemix.net”,

"port": 443,

"url": "https://@96a7657-8992-4b89-3594-223b6bf7e
154: ROVOUSWmDlgtwecservice.mybluemix. net”
}

Figure 6-12 Weather Company Data: Service Credentials details

166 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Try the Weather Company Data APIs before you use them

Browse through the APl documentation and try the APIs before you use them. Complete

these steps:

1. Click the Manage tab, scroll to Get Started, and click APIs (Figure 6-13).

@2, |BM Bluemix Data & Analytics

Get Started

Learn
Browse Weather
Company Data
documentation and

learn from examples.

O
O 0

N]
Discover

Check out our forums
to see what other
people are doing with
Weather Company
Data.

Catalog Support

api
[

APls

Browse our AP
documentation and try
the APIs before you
use them.

Figure 6-13 Weather Company Data service: Get started

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service

167

A new tab opens. The Weather Company Data For IBM Bluemix APIs for Bluemix APls is
listed (Figure 6-14).

() Weather Company Data API

Weather Company Data For IBM Bluemix APIs

This preduct includes software originally developed by IBM Corporation, Copyright 2016 IBM Corp.

Figure 6-14 Weather Company Data APIs

168 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Inthese steps, use Daily Forecast for 3 days to get the forecast of the weather for
tomorrow:

a. Click Daily Forecast.
b. Click GET /vi/geocode/{latitude}/{longitude}/forecast/daily/3day.json
(Figure 6-15).

A1igeocode/{latitude)/{longitude}/forecastidaily/3dayjson 3-Day Daily Forecast by Geocode

Implementation Notes
The three-day forecast API returns the geocode weather forecasts for the current day up to three days.

Response Class (Status 200)

OK
Example Value
{
"metadata": {
"version": "string",
"transaction_id": "string",

"expire_time_gmt": @,
"location_id": "string”,
"countrycode”: "string",
"latitude”: @,
"longitude™: @,
"language™: "string",

(LY ST [P e Sy B

Response Content Type | application/json ¥

Parameters
Parameter Value Descripticn Parameter Data
A : P ype ype
latitude [33.40 The latitude for the path string
requested forecast.
For example, 33.40.
longitude | §3.42 The longitude for path string

the requested
forecast. For
example -83.42.

Figure 6-15 Three-day forecast Weather Company Data API

c. Inthe latitude, and longitude text boxes, type the latitude and longitude of any city. For
example, Cairo’s latitude is 30.0444, and longitude is 31.2357.

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 169

170

d. Scroll to the bottom and click on Try it out (Figure 6-16).

Try it outl

588 Internal server error. The
server encountered an
unexpected condition that
prevented it from fulfilling
the request.

Figure 6-16 Testing three-day forecast Weather Company Data API

e. Authentication is required; you are prompted for the user name and password of the
Weather Company Data service instance credentials that you obtained in step 5 on
page 166. Provide your service credentials to log in (Figure 6-17).

HTTP N . x -
Status Code Reast Authentication Required Headers
400 Badr bhitps/ftwcservice.mybluemix.net requires a username and
CDLlllj [FESSWOI,
the =&
malfa
; USE'NEHE:||
imple
ThE A Password:
if any
are s
4al Unaul Log In Cancel
requir
4e3 Forbidden reguest. Limit -

Figure 6-17 Testing three-day forecast Weather Company Data API - Authentication

f. The three-day forecast API returns the geocode weather forecasts for the current day
and up to three days. The response of the service call is displayed in Response Body
section (Figure 6-18).

Response Body
"moonset™: "2017-84-15T@8:17:53+8288",

"gualifier code™: null,

"gqualifier”: null,

"narrative™: "Partly cloudy. Lows overnight in the mid 5@s.",
"gpf": @,
"snow_gpf": @,
"snow_range":
"snow_phrase"”:

"snow_code™:

Figure 6-18 Weather Company Data Response

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Example 6-1 shows the weather forecast for tomorrow is under forecasts[1] .narrative.

Example 6-1 Response body snippet

"forecasts": [
{

"class": "fod_long range daily",
"expire_time _gmt": 1492289627,
"fcst_valid": 1492232400,
"fcst valid _local": "2017-04-15T07:00:00+0200",
"num": 1,
"max_temp": null,
"min_temp": 54,
"torcon": null,
"stormcon": null,
"blurb": null,
"blurb_author": null,
"lunar_phase_day": 18,
"dow": "Saturday",
"Tunar_phase": "Waning Gibbous",
"Tunar_phase_code": "WNG",
"sunrise": "2017-04-15T05:32:08+0200",
"sunset": "2017-04-15T18:28:06+0200",
"moonrise": "2017-04-15T22:13:12+0200",
"moonset": "2017-04-15T08:17:53+0200",
"qualifier_code": null,
"qualifier": null,
"narrative": "Partly cloudy. Lows overnight in the mid 50s.",
"gpf": 0,
"snow _gpf": 0,
"snow_range":
"snow_phrase": "",
"snow_code": "",
"night": {

6.4.3 Developing the Cognitive Weather Forecast chatbot application

This section describes how to develop the application logic by creating a Node.js application
that integrates with the Conversation service and the Weather Company Data service. You
start by cloning a sample Node.js app, which is a simple chatbot, and deploy it to your
Bluemix workspace.

The steps are summarized in the following list:

1. “Clone the Conversation sample app” on page 172

2. “Integrate the application with the Conversation and Weather Company Data services” on
page 173

3. “Push the application to Bluemix” on page 177

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 171

172

Clone the Conversation sample app
Clone the incomplete repository:
1. Create a new C:\redbook directory.

2. Open a command prompt (cmd. exe).
3. Open that directory by using the cd C:\redbook command (Figure 6-19).

BN C\windows\system32\cmd.exe |ﬂlﬁ

Microsoft Windows [Uersion 6.1.76811
Copyright <c?> 208? Microsoft Corporation. All rights reserved.

C-Uzsers~ IBM_ADMIN}cd C:redbook
C:~redhooky_

Figure 6-19 Command to open the directory

4. Clone the incomplete repository (Figure 6-20). Run the following Git command:

git clone https://github.com/watson-developer-cloud/conversation-simple

BN Clwindows'system32\cmd.exe |ﬂ|&]

Microsoft Windows [Uersion 6.1.76811
Copyright (c?» 2807? Microsoft Corporation. All rights reserved.

G- Uszers~IBM_ADMIN>»cd C:~redhook

%:\redhuuk)git clone https:rssgithub_comsuvatson—developer—cloud/sconuversation—sinp
e

Cloning into ‘conversation—simple’ ...

remote: Counting obhjects: 595, done.

remote: Compressing objects: 188x (9.9}, done.

remote: Total 595 (delta 2>, reused B (delta B>, pack—reused 584

Receiving obhjects: 188:x (595-.595>, 2.18 MiB | 291 .80 KiB-=. done.

Rezoluing deltas: 188x (259-259>, done.

C:sredbook>

Figure 6-20 Clone the repository with the incomplete code

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple

Integrate the application with the Conversation and Weather Company
Data services

Modify the code to integrate the application with the Conversation and Weather Company
Data services:

1. Update the manifest.yml file with the host name and the details of the Conversation
service and the Weather Company Data service:

a. Open C:\redbook\conversation-simple\manifest.yml (Figure 6-21) with your favorite
text editor (Figure 6-21).

2 declared-services:
ny-conversation-service:

label: conversation
plan: free

applications:

- name: conversation-simple

8 command: npm Start

G path:

10 memory: 256M

11 instances:

12 services:

13 - my-conversation-service

env:

NPM CONFIG PRODUCTION: false

Figure 6-21 The manifest.yml file before the update

b. Update declared-services section (Example 6-4 on page 174). In this section,
replace lines with the name and details of your Conversation and Weather Company
Data service instances (Example 6-2).

Example 6-2 Name and details

Conversation:
label: conversation
plan: free
weather-company-data:
label: weather
plan: free

c. Inthe applications section, change the application name to conv-201-xxx-weather.
Replace xxx by a random number because this name will also be used as the
hostname for your application so it needs to be unique.

d. Inthe services section, add an application dependency on the declared services
(Example 6-3).

Example 6-3 Add application dependency

- Conversation
- weather-company-data

e. For memory, increase the memory to 512M.
f. Save the file. It should look like Example 6-4 on page 174.

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 173

Example 6-4 The manifest.yml file after the update with the values for this use case

declared-services:
Conversation:
label: conversation
plan: free
weather-company-data:
label: weather
plan: free
applications:
- name: conv-201-xxx-weather
command: npm start
path:
memory: 512M
instances: 1
services:
- Conversation
- weather-company-data
env:
NPM_CONFIG_PRODUCTION: false

2. Addthe request module to package. json. The request module is a third-party module that
allows making HTTP calls. Here it is used for interaction with REST APIs exposed by the
Weather Company Data service.

a. Open C:\redbook\conversation-simple\package.json (Figure 6-22).

|=| manifestyml &3 = package json E
1 HIf e
"name™: "conversation-simple™,
"description™: "A =simple Node.js based web app which shows
how to use the Conversation APT to recognize user intents.”™, (=
"wversion™: "0.1.1",
"main": "serwver.js",
"scriptas™: {

"start™: "node server.js",
8 "test-integration™: "casperijs test
Jftest/integration/test.*.js",
"test-integration-runner™: "NODE ENV=test node
casper-runner.js”,
10 "test™: "npm run lint && npm run test-unit && npm run
test-integration-runner®™,
11 "test-unit™: "istanbu
./node modules/mocha/bin/ mocha test/unit™,
12 mldGvEm: (MESTETE e i

L k|

1 & ik
[T}
[

COVEer

Figure 6-22 The package.json file

b. Add the latest version of the "is-property" and "request" modules (Example 6-5) as
a dependency on the dependencies tag (Figure 6-23 on page 175).

Example 6-5 Add request and is-property

"is-property":"*",
Ilrequestll : nn

174 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 6-23 shows dependencies.

21 [H "dependencies™: { .
22 "body-parser™: "~1.15.2",

23 "dotenv": "°2.0.0",

24 "express": ""~4.,14.0",

25 "watson-developer-cloud™: "~2.8.1"7,

26 "isz-property™:"E",

27 "l’Eq';ESt": ™o T

28 Lo}
p L]] rIll -) - - = "o
24 = devDependencies": {

"babel-eslint™: ""6.0.4",
31 "casperjs™: "~1.1.3",
32 "codecow™: "~1.0.17, =
z "ezlint™: ""2.8.0",
4 "iztanbul™: "*0.4.2",
5 "mocha": "°2.4.5",
6 "phantomjs-prebuilt™: "~2.1.13",
7 "supertest™: "~1.2.0" o

Figure 6-23 The package.json: dependencies

c. Save the file.

3. Edit the application logic to integrate with the Conversation and Weather Company Data
services:

a. Open the C:\redbook\conversation-simple\app.js file.
b. After the updateMessage function, add the function getLocationCoordinatesForCity
(Example 6-6) to get the latitude and longitude for cities.

Example 6-6 Get latitude and longitude for cities

/*'k

* Get the Tatitude and longitude of city

* @Eparam {Object} city The target city

* @return {Object} The Tatitude and Tongitude of the city
*/

function getlLocationCoordinatesForCity(city) {

var location = {};

if (city === 'Cairo') {
location.Tatitude = '30.0444"';
location.longitude = '31.2357"';

} else if (city === 'NYC') {
location.latitude = '40.7128"';
location.longitude = '74.0059"';

}

return location;

}

c. After the last function, add the functiongetWeatherForecastForCity (Example 6-7) that
gets tomorrow's weather forecast for a city by calling a Weather Company Data API.

Example 6-7 Get tomorrows weather

var request = require('request'); // request module

//Weather Company Endpoint

var vcap = JSON.parse(process.env.VCAP_SERVICES);

var weatherCompanyEndpoint = vcap.weatherinsights[0].credentials.url;
/7\-*

* Get the weather forecast for a city through calling Weather Company Data

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 175

* @param {Object} city The target city

* @return {Object} Weather Forecast for the specified city.
*/

function getWeatherForecastForCity(location, callback) {

var options = {
url: weatherCompanyEndpoint + '/api/weather/vl/geocode/' +
Tocation.latitude + '/' + location.longitude + '/forecast/daily/3day.json’
}s
request (
options,
function(error, response, body) {
try {
var json = JSON.parse(body);
var weatherOutput = json.forecasts[1].narrative;
callback(null, weatherQutput);
} catch (e) {
callback(e, null);
}

)s
}s

d. Replace the updateMessage function with the function in Example 6-8. If the entity is
city, then get the location coordinates for the city and call a Weather Company Data
API to get the forecast for this city.

Example 6-8 Replacement for updateMessage function

/**
* Updates the response text using the intent confidence
* @Eparam {Object} input The request to the Conversation service

* @Eparam {Object} response The response from the Conversation service
* @Eparam {Object} callback The response from Weather Company Data

* @return {Object} The response with the updated message

*/

function updateMessage(input, response, callback) {
var responseText = null;
if (!response.output) {
response.output = {};
callback(response);
}
// In case the entity is city, then get the location coordinates for the city and call
// Weather Company Data to get the forecast for this city.
else if (response.entities.length > 0 && response.entities[0].entity === 'city') {
var location = getlLocationCoordinatesForCity(response.entities[0].value);
getWeatherForecastForCity(Tocation, function(e, weatherOutput) {
response.output.text[0] = weatherOutput;
callback(response);

1
} else {
callback(response);

}

176 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

e. Call the updated updateMessage function. In line 61, replace the message call as in
Example 6-9.

Example 6-9 Replace message call

updateMessage(payload, data, function(response) {
return res.json(response);

1)

f. Save the file.

Note: You can find the full listing of the app.js code at this GitHub location:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/ap
p.Jjs

Push the application to Bluemix
Push the modified code to Bluemix:

1. At the command prompt, change to the C:\redbook\conversation-simple directory:
cd C:\redbook\conversation-simple

2. Log in to Cloud Foundry by using the cf 1ogin command (Figure 6-24). When prompted
enter the email and password that you use to log in to your Bluemix account.

BN Clwindows\system32icmd.exe lﬂl—ﬁ_hj

C=sredbook conversation—sinple>cf login

API endpoint? https:--7api.ng.bhluemix.net

Email> aazragleg.ibm.com

Pazsword?>
Authenticating...
OK

Select an org Cor press enter to skipd:
usamaaleqg.ibm.com
aazragleg.ibm.com
aazraq
v 3Bl —exx
vy3fAl-932
ata_johuryg
tunis_prep
CKigi_U1i

Org> 2
Targeted org aazraglfeg.ibm.com

Select a space Cor press enter to skipd:
aazraq
SUP-DEU
redhooks
apic
hlockchain
Conversation

https:/7api.ng.bhluemnix.net (APl version: 2.54.@>
aazraglfeqg.ibm.com

aazraglfeqg.ibm.com

Conversation

- - JI— . P S—

Figure 6-24 Log in to Cloud Foundry (cf login)

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 177

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/app.js

178

3. Push the application to Bluemix by using the cf push command (Figure 6-25).

BN C\windows\system32\cmd.exe - of push |ﬂlﬁ
C:sredhook“conversation—simple>cf push
llzing manifest file C:wredbook“conversation—simpleswmanifest.yml

Creating app conu—201-—xxx—weather in org aazraglfeg.ibm.com ~ space Conversation
las aazraglfeg.ibm.com...
(OK

Creating route conuv—281-—xxx—weather.mybluemix.net...
OK

Binding conuv—281-—xxx—weather.mybluemix.net to conv—201-—xxx—weather...
(OK

lUploading conv—281-—xxx—weather...

Uploading app files from: C:sredbooksconuversation—simple
Uploading 1.1M,. 73 files

Done uploading

0K

Binding service Conversation to app conuv—281-—xxx—weather in org aazragqlfeg.ibm.co
m ~ space Conversation as aazraqleg.ibm.com...

0K

Binding service weather—company—data to app conv—281-xxx—weather in org aazragle
. ibm.com ~ space Conversation as aazragleg.ibm.com...

K

Starting app conu—201-—xxx—weather in org aazraglfeg.ibm.com ~ space Conversation
las aazraglfeg.ibm.com...

Downloading swift_buildpack_v2_@_3-20161217-1748...
Downloading python_buildpack..

Down loading java_buildpack...

Down loading ruby_buildpack...

Down loading nodejs_buildpack...

Downloading go_buildpack...

Down loaded swift_buildpack _v2_@_3-20161217-1748
Down loaded nodejs_buildpack

Downloading liberty—for—java...

Down loaded ruby_buildpack

Down loading xpages_buildpack...

Down loaded go_buildpack

Down loading php_buildpack...

Downloaded sdk—for—nodejs

Downloading staticfile_buildpack...

Down loaded libherty—for—java

Figure 6-25 Pushing the application to Bluemix

4. Wait until the build and deployment are completed (Figure 6-26).

BN Clwindows\system32icmd.exe |ﬂlﬁ

@ of 1 instances running, 1 starting
1 of 1 instances running

p started

0K
App conu—201—-xxx—weather was started using this command “npm start’

Ghowing health and status for app conu—2081-—oocweather in org aaszragleg.ibm.com
. zpace Conversation as aazragfeg.ibm.com...
0K

: started

Py
5812M x 1 instances
conu—281—xxx—weather mybluemix.net
: Mon Feb 28 B@A:36:41 UTC 2817
inuxfs2
k= SDK for Hode.js(IM> {(ibm—node.js—4.7.2. buildpack—v3_18-28178119-1146

deta

5 2 s e C T } disk
A running 2017-02-20 B3:39:-83 AM B.@:x B of 512HM 8 of 1G

C-“redbook conversation—sinple >

Figure 6-26 Pushing application completed

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Set the WORKSPACE_ID environment variable to point to the Weather Forecast Conversation
Workspace ID that you obtained in “Get the Workspace ID” on page 163 (Figure 6-27):

cf set-env conv-201-<xxx>-weather WORKSPACE_ID <WORKSPACE_ID>

(s

B C\windows\system32\cmd.exe

C:sredbookconversation—simple >cf set—env conv-201-xxx—weather WORKSPACE_ID Scea

3898-6427—-426f-bchl—3ae3655e5a3f
Getting env variable ‘WORKEPACE_ID' to 'Scead3B?8-6427-426f-bchl—3ae3655e5a3df’ fo

r app conv—2ZB1l-—xxx—weather in org aazragqPeg.ibm.com .~ space Conversation as aa=p

to ensure your env variahle changes t

iC:“redhooksconversation—simple>

Figure 6-27 Set the environment variable

6. Restage the application so that your environment variable changes take effect
(Figure 6-28):

cf restage conv-201-<xxx>-weather

Bl C\windows\system32\cmd.exe

C:sredbook conversation—simple >cf restage conv—281-xxx—weather

Restaging app conv—201-xxx—weather in org aazragleg.ibm.com ~ space Conversation
as aazragleqg.ibm.com...

Downloading swift_buildpack v2 B _3-20161217-1748...

Downloading bhinary_buildpack. ..

Figure 6-28 Restage the application

7. Wait until the application is running (Figure 6-29).

B Cl\windows\system32\cmd.exe
0K
App conu—2P01-xxx—weather was started wusing this command ‘npm staprt®

Fhowing health and status for app conv—281-—xxx—weather in org aazraglfeqg.ibm.con
. space Conversation as aazragPeg.ibm.com...
0K
: started
11
512M x 1 instances
conv—201—xxx—weather myhluemix.net
] led: Mon Feb 28 BB:36:41 UTC 2817

cf linuxfs2
: EDK for Hode.js<TH> <ibm—node.js—41.7.2, buildpack-uv3. 18-20178119-1146

[

ﬁﬁ running 2817-82-20 B83:49:55 AM 8.8 796K of 512M 1.3M of 1G

C:sredhooksconversation—simple>_

Figure 6-29 Restaging completed

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 179

6.4.4 Testing the application

To test the application, follow these steps:

1. Open your application route (URL to access your application) in a web browser; xxx is the
number you use to make your application name unique:

http://conv-201-xxx-weather.mybluemix.net/

Your application opens in the browser (Figure 6-30).

| Welcome to Car chat bot!

41-b432-4474-badd-8

Figure 6-30 Cognitive Weather Forecast chatbot

2. Get the weather for one of the two supported cities (Figure 6-31 on page 181).

180 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Is it possible to tell me the expected
weather tomorrow?

' Sunshine. Highs in the low 70s and lows in the
low 50s.

It is my pleasure to help you. Bye

Figure 6-31 Getting the weather for Cairo on the Cognitive Weather Forecast chatbot

3. Try different scenarios (Figure 6-32). If the chatbot fails, more training is necessary. To
provide more training, add more user examples to the intents in the Car Chat-bot
Workspace, or edit the entities. Also you can add support for more cities.

' Partly cloudy. Highs in the mid single digits
and lows -13 to -9F.

It is my pleasure to help you. Bye

Figure 6-32 Scenarios for Cognitive Weather Forecast chatbot; more training is needed

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 181

6.5 Quick deployment of application

A second Git repository is provided so that you can build and deploy the full Cognitive
Weather Forecast chatbot even if you did not perform the steps described in 6.4,
“Step-by-step implementation” on page 160. This section is independent from the rest of
the chapter and it contains instructions to run the app more quickly.

The full version of the code is in the Git repository:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

The workspace that was created for this chapter is in the following GitHub location:
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/train
ing/1.4-conv-101-createservice.json

To deploy the full application directly and more quickly, use these steps:

1. Open this location:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-weather-nodejs

2. Log in with your Bluemix ID and password.

3. Enter the application name conv-201-xxx-weather where xxx is any random number to
make your application and host name unique.

4. Click Deploy (Figure 6-33).

IBM Bluemix

Newl! The Contint

Deploy this application to Bluemix

1. Sign Up /Log In
gn Up fLog Deploying this app will create a private DevOps Services project for you. Learn more.

2. App Details

REDBOOKS-CONV-201-WEATHER-NODEJS

conv-201-xxx-weather

IBM Bluemix US Sot ~

Figure 6-33 Quick deployment of the application

182 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs
https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

5. Follow the steps in 6.4.1, “Configuring Conversation workspace for Cognitive Weather
Forecast chatbot” on page 161, to import the Car Chat-bot Workspace into your
Conversation service. Record the workspace ID.

6. Configure your application to point to the Calculator Workspace by following these
three steps:

— 5onpage 179
— 6onpage 179
— 7onpage 179

7. Test the application as described in 6.4.4, “Testing the application” on page 180.

6.6 References

For helpful information, see the following resources:

» Explore Weather Company Data documentation and learn from examples:
https://console.ng.bluemix.net/docs/services/Weather/index.html

» Explore the REST APl documentation for Weather Company Data:

https://twcservice.mybluemix.net/rest-api/

Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service

183

https://console.ng.bluemix.net/docs/services/Weather/index.html
https://twcservice.mybluemix.net/rest-api/

184 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Improving chatbot
understanding

One of the major challenges in developing a conversational interface is anticipating every
possible way in which your users will try to communicate with your chatbot.

The Improve component of the Conversation service provides a history of conversations with
users. You can use this history to improve your chatbot’s understanding of user input.

This chapter has an example of how to use the Improve interface to access user conversation
logs and identify intents and entities that are not recognized by the sample workspace. The
example in this chapter shows how you can improve the workspace understanding.

The following topics are covered in this chapter:

» Getting started
» Use case implementation
» References

© Copyright IBM Corp. 2017. All rights reserved. 185

7.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

7.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

» Review past interactions and train the Conversation service with intent examples.
» Review past interactions and train the Conversation service with new entity synonyms.

7.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

» Have basic knowledge of Watson Conversation service concepts: intents, entities and
dialog. Review Chapter 1, “Basics of Conversation service” on page 1.

» Complete the use case by following the example in Chapter 6, “Chatting about the
weather: Integrating Weather Company Data with the Conversation service” on page 157.
In this chapter you will use the Conversation workspace and application created in
Chapter 6.

7.1.3 Expected results

In this chapter, you modify the Car Chat-bot workspace to recognize these items:

» The Big Apple entity synonym for Manhattan, NYC
» TheWill it rain? intent as a weather-related question

Before this modification, your workspace does not recognize this intent and the entity
synonym (Figure 7-1 on page 187).

186 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

is it going to be rainy?

l Afternoon snow showers. Highs in the low
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

The Big Apple

Figure 7-1 Before modification: The workspace does not understand some user’s terms

After modification, the workspace can recognize both user inputs (Figure 7-2).

| Afternoon snow showers.

It is my pleasure to help you. Bye

Highs in the low
single digits and lows -6 to -2F.

In the Big Apple

Figure 7-2 After modification: The workspace recognizes the user’s terms

Chapter 7. Improving chatbot understanding

187

7.2 Use case implementation

Implementing this use case involves the following steps:

» Identifying the additional training that the Conversation workspace requires.
» Using the Improve component to train the Conversation workspace.
» Testing the improved Conversation workspace.

7.2.1 Identifying the additional training that the Conversation workspace

requires

When the user tries to get the weather information by asking Will it rain? (as shown in
Figure 7-3 on page 189), the workspace does not understand this question. Next, try again by
changing your question to Is it going to be rainy? When the chatbot asks for the city, the
user replies The Big Apple (another name for Manhattan). The workspace is not trained to
recognize this entity.

Complete these steps:

1. In a web browser, open the application URL. If you followed the naming convention in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157, the URL is as follows, where xxx is a random
number you selected to make the hostname unique:

http://conv-201-xxx-weather.mybluemix.net/

2. Invoke the service by chatting with the application. In this example, you will input the
following intents and entities to the application (Figure 7-3 on page 189):

Will it rain?
The Conversation service does not understand this intent.
Is it going to be rainy?

The Conversation service understands this intent and asks which city you are
interested in, to get your entity.

The Big Apple
The Conversation service doe not understand this entity.
NYC

After training, the Conversation service understands this entity and completes the flow
with the #weather_inquiry intent and the GNYC entity.

188 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

is it going to be rainy?

The Big Apple

l Afternoon snow showers. Highs in the low
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

Figure 7-3 Trying out user interactions

7.2.2 Using the Improve component to train the Conversation workspace

The Improve component of the Conversation service provides a history of conversations with
users. You can use this history to improve your chatbot’s understanding of user inputs.

While you develop your workspace, you use the Try it out panel to verify that it recognizes the
correct intents and entities in test inputs, and make corrections as needed. In the Improve
panel, you can view actual conversations with your users and make similar corrections to
improve the accuracy with which intents and entities are recognized.

In this example, you use the sample Car Chat-bot workspace to conduct a simple dialog with

the user, and try to get information by communicating your intents and entities in unexpected
ways.

Chapter 7. Improving chatbot understanding 189

Access the Improve component and open the chat logs
To access the Improve component and open the chat logs for the Car Chat-bot workspace:

1. Open the Car Chat-bot workspace.

2. Click the Menu icon E (three horizontal lines). Then, select Improve — User
conversations (Figure 7-4).

Intents Entities Dialog

Build

| Intents omorrow?
Entities

Dialog

Imp

User cc

G Log out

Figure 7-4 Improve component

The chat logs saved represent the user interactions through the API (not the interactions
through the Try it out panel in the workspace). The Improve feature shows you the most
recent user interactions. The top intent and any entities used in the message, the message
text, and the chatbot's reply are available.

190 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

You see each user interaction, starting with the most recent (Figure 7-5).

User conversations

O,\ '\Tﬁ' Show filters
Showing 1 through 16 of 16 results Newest first I
Original Understanding NYC
Sk [REPLACE WITH WEATHER DATA]
’ It is my pleasure to help you. Bye
l &> View conversation
Original Understanding The Big Apple
@ #greeting 03/02/2017 @ 1:28 AM
| am trained only for Cairo and NYC
cities
What's the city that you'd like to
Va forecast the weather? v

Figure 7-5 User conversations history

Chapter 7. Improving chatbot understanding 191

Find the unrecognized entity synonym and train the workspace to
recognize it

You will edit the input where you referred to Manhattan as The Big Apple (Figure 7-6). You will
see that no entities are found, and the #greeting intent is identified. You correct both of these

issues by first disassociating the phrase with the #greeting intent. Then, you train the
workspace to recognize that NYC and Big Apple are synonyms. Complete these steps:

1. Click the Edit icon (pencil).

User conversations

16 results: Last 90 days ? Show filters
Original Understanding The Big Apple
@ #greeting 03/02/2017 @ 1:28 AM
| am trained only for Cairo and NYC I
cities
What's the city that you'd like to
P forecast the weather?

@ View conversation

Original Understanding is it going to be rainy?
@ :Ililk,-,.,'ea‘ther_i nquwy 03/02/2017 @ 1:28 AM

What's the city that you'd like to
forecast the weather?

@ View conversation

Original Understanding will it rain? |

P
Figure 7-6 Editing an interaction

192 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The window now looks like the one in Figure 7-7.

User conversations

16 results: Last 90 days V Show filters
Highlight a word from the utterance below to add as an entity value |
The Big Apple
ntent clas 1on entl | I
[#greeting v]

Cancel
Original Understanding is it going to be rainy?
@ #"."‘."eather_| nqu[ry 03/02/2017 @ 1:28 AM
What's the city that you'd like to
’ forecast the weather?
@ \iew conversation
Original Understanding will it rain? 9

Figure 7-7 Editing the user interaction

Chapter 7. Improving chatbot understanding 193

2. Select the intent from the drop-down menu, and replace #greeting with Mark as
irrelevant (Figure 7-8). This ensures that next time The Big Apple will not be recognized
as a greeting.

User conversations

16 results: Last 90 days \Tﬁ' Show filter,

Highlight a word from the utterance below to add as an entity value

The Big Apple

ntent classification Entity values
, Enter intent name... A
#goodbye
#greeting
#out_of_scope
#traffic nding is it going to be rainy?
#weather_inquiry ry 03/02/2017 @ 1:28 AM
What's the city that you'd like to
Mark as irrelevant (i) forecast the weather?

@ View conversation

Figure 7-8 Marking the phrase as not matching any intent.

194 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Select the part of the phrase that is a synonym of your entity. In this case, use the mouse
to highlight Big Apple (Figure 7-9). A pull-down menu opens under Entity values (where
you will select the matching entity value).

User conversations

16 results: Last 90 days \Tﬁ' Show filter,

Highlight a word from the utterance below to add as an entity value

The Big Apple

Select an entity or entity:value below to add "Big Apple" as a value or synonym.

ntent classification Entity values
[Irrelevant v] [Select entity... \v] Cancel
Save Cancel
Original Understanding is it going to be rainy?

Figure 7-9 Menu opens so you can select a matching entity value

Chapter 7. Improving chatbot understanding 195

4. Select the entity value that corresponds to Big Apple: @city:NYC (Figure 7-10). Then,
click Save.

User conversations

16 results: Last 90 days \Tﬁ' Show filter,

Highlight a word from the utterance below to add as an entity value

The Big Apple

Select an entity or entity:value below to add "Big Apple" as a value or synonym.

ntent classification Entity values
[Irrelevant v] a| A | Cancel
@city g
Sa\lre Cancel -’@Gil"jicaim
@city:NYC
i . @destination 2
Original Understanding o ainy?
@destination:Home v

@ #weather_inquiry

Figure 7-10 Selecting the corresponding entity and value

196 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The result is shown in Figure 7-11.

User conversations Car Chat-bot

16 results: Last 90 days \Tﬁ' Show filters

A a~

@ View conversation

Updated Understanding The Big Apple
@ Irrelevant 03/02/2017 @ 1:28 AM
@city:NYC . .
e | am trained only for Cairo and NYC
cities
What's the city that you'd like to
ya forecast the weather?
@> View conversation
Original Understanding is it going to be rainy?
What's the city that you'd like to
& forecast the weather?

Figure 7-11 After saving your changes

A phrase that includes Big Apple can now be recognized as a synonym of the NYC value for
the entity @Gcity.

Chapter 7. Improving chatbot understanding 197

Find the unrecognized intent and train the workspace to recognize it
Complete the following steps:

1. Edit this interaction: Wi11 it rain? (Figure 7-12).

User conversations

16 results: Last 90 days ? Show filters
W LRSS LBV VR AV R = LNL
Original Understanding will it rain?
| can't understand your question. Please
. try again.
P yag
& View conversation
Original Understanding 03/02/2017 @ 1:28 A
Welcome to Car chat bot!
@ View conversation
Original Understanding Cairo
@ #greeting 03/02/2017 @ 1:28 AM

@citv-Cairn

https:/fwww.ibmwatsonconversa...a-860f-bfe6d619dcbe/userdatas [REPLACE WITH WEATHER DATA]
Figure 7-12 Editing intent interaction: will it rain?

198 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Add an intent for this interaction. Select the correct #weather_inquiry intent (Figure 7-13).

User conversations

16 results: Last 90 days ? Show filter

p Vs VY Wl TV A LI

Highlight a word from the utterance below to add as an entity value

will it rain?

ntent classification Entity values

|E|'|I'e| intent name... A

#goodbye
#greeting
#out_of_scope
#traffic nding 03/02/2017 @ 1:28 AM
#weather_inquiry
Welcome to Car chat bot!

Mark as irrelevant (i) ® View conversation

Original Understanding Cairo
Figure 7-13 Selecting the correct intent

Chapter 7. Improving chatbot understanding 199

3. Click Save to save your intent changes (Figure 7-14).

User conversations

16 results: Last 90 days V Show filters

WS VI VT Ll IV] SR

Highlight a word from the utterance below to add as an entity value

will it rain?

ntent classification Entity values

[#weather_inguiry A]

Save Cancel

Original Understanding 03/02/2017 @ 1:28 AM
Welcome to Car chat bot!

@ \View conversation

Figure 7-14 Saving intent changes

The interaction (will it rain?) is added as another example for the #weather_inquiry
intent.

The result is shown in Figure 7-15 on page 201.

200 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

User conversations

16 results: Last 90 days "1_6' Show filter,
Updated Understanding will it rain?
@ #weather_inquiry 03/02/2017 @ 1:28 AM
| can't understand your question. Please
s try again.

@ View conversation
Original Understanding 03/02/2017 @ 1:28 AM

Welcome to Car chat botl

@ View conversation

Figure 7-15 After saving intent changes

7.2.3 Testing the improved Conversation workspace

To test the improved Car Chat-bot workspace, complete these steps:

1. Open the application URL again in order to test the newly trained intents and entities. If
you followed the naming convention in Chapter 6, “Chatting about the weather: Integrating
Weather Company Data with the Conversation service” on page 157, the URL is as
follows, where xxx is a random number you selected to make the hostname unique:

http://conv-201-xxx-weather.mybluemix.net/
2. Inquire about the weather forecast by using the following lines:

— Will it rain?
— The Big Apple

Chapter 7. Improving chatbot understanding 201

You can see that it works correctly now (Figure 7-16).

In the Big Apple

I Afternoon snow showers. Highs in the low
single digits and lows -6 to -2F.

It is my pleasure to help you. Bye

Figure 7-16 The application now recognizes intent and entity

7.3 References

For more information, see the following resource:
» Improving understanding:

https://www.ibm.com/watson/developercloud/doc/conversation/logs.html

202 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.ibm.com/watson/developercloud/doc/conversation/logs.html

Talking about the weather:
Integrating Speech to Text and
Text to Speech with the
Conversation service

This chapter guides you through the process of updating the Cognitive Weather chatbot
application created Chapter 6, “Chatting about the weather: Integrating Weather Company
Data with the Conversation service” on page 157 to integrate it with the Watson Speech to
Text (STT) and Text to Speech (TTS) services.

The scenario in this chapter enables the user to send speech queries about weather forecast
to the application by integrating with the Speech-to-Text service. The application responds to
the user by integrating with the Text to Speech service.

The application demonstrates the use of Text to Speech, Speech to Text, Conversation and
Weather Company Data services to get the forecasted weather for a city through talking with
the user.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

vyVyVYyVvYVvYyyYy

© Copyright IBM Corp. 2017. All rights reserved. 203

8.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

8.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

>

>

Create Speech to Text (STT) and Text to Speech (TTS) services in Bluemix.

Integrate a Conversation service with STT and TTS services in a Node.js application to
provide weather information responding to spoken requests from the user.

8.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

>

»

»

Finish the Cognitive Weather Forecast chatbot application implementation as described in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157.

Use only Chrome or Firefox web browser; these browsers are required for Speech to Text
and Text to Speech to work correctly.

Understand basic JavaScript concepts.

Have the Git command line installed on local workstation.

Have the Cloud Foundry (CF) command line installed on the local workstation.

Ensure that the microphone and speaker are working correctly on the local workstation.

In addition, if you see the word snippet before example code, then use the example to
complete the code.

8.1.3 Expected results

Figure 8-1 on page 205 shows the expected results of the running application. It illustrates
how the user can talk to the application to request information about tomorrow’s temperature.
In addition, it illustrates how the application responds in speech to specify the city to get the
weather information about. Then, the user specifies the city as Cairo, and the application
replies with the specific weather information for that city.

204 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

..

What is the temperature tomorrow?

| Abundant sunshine. Highs in the low 70s and
lows in the low 50s.

1

It is my pleasure to help you. Bye

o |

Figure 8-1 Cognitive Weather Forecast Application

8.2 Architecture

Figure 8-2 shows the components involved in this use case and the runtime flow.

Public Network Bluemix Network
Send the user speech

Respond with speech
converted to text

Speech to Text
service

Request weather conditions Send the user speech «—
for a city using speech

Send the text

Respond with intent
and entity

< P
Respond with speech Respond with speech -—

User @ Web 0 Cognitive Weather Forecast
Browser chatbot

Node.js runtime

Watson Conversation
service

Query weather data for
a longitude and latitude

Respond with weather
condition as text

Weather Company
Data service

Send the text
of the weather condition

Respond with weather
condition as speech

06 00 00

Text to Speech
service

Figure 8-2 Architecture

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 205

The flow for this use case is as follows:

Eal S

. The user speaks to the application to ask for weather information for a city.

The request is passed from the web browser to the Node.js application on Bluemix.
The Node.js application passes the speech request to the Speech to Text service.

The Speech to Text service converts the speech request to text and sends it back to the
Node.js application.

5. The Node.js application passes the text to the Conversation service.

6. The Conversation service understands the intent and entities passed by the application.

9.

Then it returns a response to the application based on the dialog configuration in the
workspace of the Conversation service.

. The Node.js application receives the response from the Conversation service and passes

it to the Weather Company Data service to query the city weather.

The Weather Company Data service responds to the Node.js application with the weather
information in text.

The Node.js application passes the response text to the Text to Speech service.

10.The Text to Speech service converts the text into audio and returns the audio to the

Node.js application.

11.The Node.js application passes the audio to the web browser to play it to the user.

12.The user listens to the weather information for the city requested.

8.3 Two ways to deploy the application: Step-by-step and quick

deploy

Two Git repositories are provided for this use case:

»

Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 8.4, “Step-by-step implementation” on page 207. This version takes you
through the key steps to integrate the IBM Watson APIs with the application logic.

Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 8.5,
“Quick deployment of application” on page 219.

206 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8.4 Step-by-step implementation

This section shows how to integrate the Cognitive Weather Forecast chatbot application
(created in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157) with the Speech-to-Text and Text-to-Speech
services.

Implementing this use case involves the following steps:

1. Creating the Speech to Text service

2. Creating the Text to Speech service

3. Developing the Cognitive Weather Forecast chatbot application
4. Testing the application

8.4.1 Creating the Speech to Text service

To create the Speech to Text service, complete these steps:
1. In IBM Bluemix Catalog, scroll to Services select Watson, and then click Speech to Text.
2. In the Service name field, enter speech-to-text-student (Figure 8-3), then click Create.

& Viewall

Speech to Text

The Speech to Text service Service name:

converts the human voice into

the written word. It can be used Sl e
anywhere there is a need to
bridge the gap between the Cfedontdt Fmines
spoken word and their written Tt
form, including voice control of

embedded systems,

Figure 8-3 Create STT service

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 207

8.4.2 Creating the Text to Speech service

To create the TTS service, follow these steps:
1. In IBM Bluemix Catalog, scroll to Services select Watson, and then click Text to Speech.
2. In the Service name field enter text-to-speech-student (Figure 8-4), then click Create.

< Viewall

Text to Speech

The Text to Speech service Service name:

processes text and natural

text-to-speech-student
language to generate

synthesized audio output

: : Credential name:
complete with appropriate
cadence and intonation. It is et
available in several voices:

Figure 8-4 Create TTS service

8.4.3 Developing the Cognitive Weather Forecast chatbot application

In this section, you modify the application to add integration with the Speech to Text and Text
to Speech services.

Clone the application code from the Git repository to your local
workstation

Clone the incomplete code for the Cognitive Weather Forecast application to your local
workstation by using the Git command line. You will then add the integration code to STT and
TTS services to it.

Use the following steps:

1. Create a new folder under the C:\ directory and name it Bluemix.

2. Open a command prompt (cmd.exe), and change the working directory to the new folder
that you created:

cd C:\Bluemix
3. Type the following command to clone the incomplete repository to your local workstation:
git clone https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

Figure 8-5 shows the command prompt result messages when cloning the code.

c:“bluemix>git clone https: s github.comssnippet—Jjavasredbooks—conv-2B81l-stt—tts—n
odejz—student . git
Cloning into ‘redbooks—conv-2B8l-stt—ttz—nodejs—student’ ...

: Counting ohjects: 183, done.

: Compressing ohjects: 18@8x (93-93>. done.

: Total 183 <delta 5>, reused 183 <(delta 5>, pack—reused 8@

Receiving ohjects: 188x <1@83-183>, 1.49 MiB | @ bhytesss,. done.
Rezolving deltas: 188x (5-5>. done.
Checking connectivity... done.

c:sbluemix>

Figure 8-5 Git clone result in command prompt

208 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

Complete the code
To modify the code so it is ready to be deployed, you update these files as follows:

1. Complete the manifest.yml file.
2. Complete the app. js file.
3. Complete the index.html file.

The sections that follow explain these steps in detail.

Complete the manifest.yml file

Completing the manifest.ym]l file involves renaming the application and renaming the
services to match your Conversation, Weather Company Data, Speech to Text, and Text to
Speech services instances in Bluemix:

1. Open the manifest.yml file in a text editor. The file is in the following path:
C:\BlueMix\conv-201-stt-tts-nodejs-student\manifest.yml
The file opens as shown in Figure 8-6.

declared-services:

(%]

- my conversation:
label: conversation

o plan: free

£ my weather company data:
label: weather

plan: free

¢ EH my speech to text:

1C label: speech to text
NI, - plan: standard

S e s T ¥ BT = 'S

[wa]
T

12 EH my text to speech:

13 label: text to speech
14 - plan: standard

15 applications:

16 H- name: weather-conv-stt-tts
17 command: npm start

18 path:

19 memory: 512M

instances:

(%]

1 services:

1 Ba

I
PRI

& —| env
24 ? NPM CONFIG_PRODUCTION: false

Figure 8-6 The manifest.yml file before the update

2. Change the application name and names of the services in the file to match those on
Bluemix:

Line 3: Change my conversation to Conversation.

Line 6: Change my weather company data to weather-company-data.
Line 9: Change my speech to text to speech-to-text-student.
Line 12: Change my text to speech to text-to-speech-student.

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 209

— Line 22: Add the following lines:
e C(Conversation
e weather-company-data
e speech-to-text-student
e text-to-speech-student

— Line 16: Add a suffix to the application name to ensure uniqueness (for example,
weather-conv-stt-tts-XXX, where XXX is your favorite word).

The completed manifest.yml file is shown in Figure 8-7.

declared-services:
- Ceonversation:
label: conversation
o plan: free
£ weather-company-data:
label: weather
L plan: free
speech-to-text-student:
10 label: speech to text
NI, - plan: standard

= [T B = R T S R S

LD O
{1}
[N

12 EH text-to-speech-student:
13 label: text to speech
14 - plan: standard
applications:

Fl= name: weather-conv-stt-tiLs-XXX

I
-] On Ln

command: npm start
path:
memory: 512M

|
L T s T

[I

instances:
21 services:
22 - Conversation
23 - weather-company-data
24 - speech-to-text-student
25 - text-to-speech-student
26 T env:
27 NFM CONFIG FPRODUCTION: false
28 ‘

Figure 8-7 The manifest.yml file after the update

Complete the app.js file

Completing the app. js file involves adding the integration code to the Speech to Text and Text
to Speech services:

1. Open the app. js file in a text editor. The file is in the following path:
C:\BlueMix\conv-201-stt-tts-nodejs-student\app.js
The app. js file contains the application logic and integrations.

210 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Addthe STT and TTS integration code to the file:

a. Replace the "// ADD SPEECH TO TEXT INTEGRATION CODE HERE" comment with the code

snippet (Example 8-1) to integrate the STT service with the application logic.

Example 8-1 Code snippet - STT integration code

// Speech to Text Integration Code
var sttEndpoint = vcap.speech to text[0].credentials.url;
var stt _credentials = Object.assign({
username: process.env.SPEECH_TO _TEXT USERNAME || '<username>',
password: process.env.SPEECH_TO_TEXT_PASSWORD || '<password>',
url: process.env.SPEECH_TO TEXT_URL ||
'https://stream.watsonplatform.net/speech-to-text/api',
version: 'vl',},vcap.speech to text[0].credentials);

b. Replacethe "// ADD TEXT TO SPEECH INTEGRATION CODE HERE" comment with the code

snippet (Example 8-2) to integrate the TTS service with the application logic.

Example 8-2 Code snippet - TTS integration code

// Text to Speech Integration Code
var ttsEndpoint = vcap.text _to speech[0].credentials.url;
var tts _credentials = Object.assign({
username: process.env.TEXT TO _SPEECH USERNAME || '<username>',
password: process.env.TEXT _TO SPEECH PASSWORD || '<password>',
url: process.env.TEXT_TO SPEECH URL ||
'https://stream.watsonplatform.net/text-to-speech/api',
version: 'vl',
},vcap.text_to_speech[0].credentials);

Figure 8-8 shows the app. js file after adding the previous integration code.

// Speech to Text Integration Code

var sttEndpoint = vcap.speech_to_text[ﬂ].credentials.url;

var stt credentials = Object.assign({
username: process.env.SPEECH TCO TEXT USERNAME ||
password: process.env.SPEECH TO TEXT PASSWORD ||
url: process.env.SPEECH TO TEXT URL || 'https://st:

version: 'wl',
},vcap.speech_to_text[ﬂ].credentials};

// Text to Speech Integration Code
var ttsEndpoint = vcap.text_to_speech[ﬂ].credentials.url;
var tts credentials = Object.assign({
username: process.env.TEXT TO SPEECH USERNEME ||
password: process.env.TEXT TQO SPEECH PASSWORD ||

url: process.env.TEXT TO SPEECH URL || 'https://s
version: 'wl',
},vcap.text_to_speech[ﬂ].credentials}4

Figure 8-8 The app.js file after adding integration code

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service

211

212

c. Replace the "//ADD TEXT TO SPEECH GET TOKEN ENDPOINT HERE" comment with the

code snippet (Example 8-3) to add the TTS get token endpoint. This endpoint is used
to get the authorization token of the service that is needed to access the service’s
APls.

Example 8-3 Code snippet - TTS get token endpoint

// Text-to-Speech Get Token Endpoint
app.get('/api/text-to-speech/token', function(req, res, next){
watson.authorization(tts_credentials).getToken({ url:
tts_credentials.url }, function(error, token){

if (error) {
if (error.code !== 401)
return next(error);
} else {
res.send(token);

. Replace the "//ADD SPEECH TO TEXT GET TOKEN ENDPOINT HERE" comment with the

code snippet (Example 8-4) to add the STT get token endpoint. This endpoint is used
to get the authorization token of the service that is needed in order to access the
service’s APIs.

Example 8-4 Code snippet - STT get token endpoint

//Speech-to_text Get Token Endpoint
app.get('/api/speech-to-text/token', function(req, res, next){
watson.authorization(stt_credentials).getToken({ url:
stt_credentials.url }, function(error, token){
if (error) {
if (error.code !== 401)
return next(error);
} else {
res.send(token);
}
s

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 8-9 shows the app. js file after adding the endpoint code for the STT and TTS.

// Text-to-Speech Get Token Endpoint
lapp.get (' /api/text-to-speech/token', function{req, res, next){
| watson.authorization{tts_credentials).getToken({ url: tts_credentials.url }, function(error, token){

| if (error) {

if (error.code '== 401)
return next (error) ;
} else {

res.send (token) ;
}
DD §
D &

//Speech-to_text Get Token Endpoint
| app.get('/api/speech-to-text/token', function(req, res, next){
| watson.authorization(stt credentials).getToken({ url: stt credentials.url }, function(error, token){
| if (error) {
if (error.code == 401)
return next(error) ;
} elsze {
res.send(token) ;
}
b &
b

Figure 8-9 The app.js file after adding the endpoints

Complete the index.html file
Completing the index.html file involves adding the user interface changes needed in order to
integrate the STT and TTS features:

1. Open the index.html file in a text editor. The file is in the following path:
C:\BlueMix\conv-201-stt-tts-nodejs-student\public\index.html
The index.htm] file contains the user interface of the application.
2. Add the STT and TTS features to the user interface:
a. Replace the "<!-- ADD AUDIO ELEMENT HERE -->"comment with the code snippet
(Example 8-5) to integrate the Audio Element to show the user the TTS feature.

Example 8-5 Code snippet - Integrate the Audio Element

<div id="output-audio" class="audio-on" onclick="TTSModule.toggle()" value="ON"></div>

b. Replace the "<!-- ADD MIC ELEMENT HERE -->"comment with the code snippet
(Example 8-6) to integrate the Microphone Element to show the STT feature.

Example 8-6 Code snippet - Integrate the Microphone Element

<div id="input-mic-holder">

<djv id="input-mic" class="inactive-mic" onclick="STTModule.micON()">
</div>

</div>

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 213

214

Figure 8-10 shows the index.html file after adding user interface HTML elements for
integrating the STT and TTS features.

<div id="contentParent" class="responsive-columns-wrapper">
<div id="chat-column-holder" class="responsive-column content-column":>
<div id="output-audio" class="audio-on" onclick="TTSModule.toggle ()" valus="ON"
></div>

<div class="chat-column">
<div id="scrollingChat"></div>

<div id="input-wrapper" class="responsive-columns-wrapper">
<div id="input-mic-holdexr">
<div id="input-mic" class="inactive-mic" onclick="STTModule.micON()"
></div>
</div>
<label for="textInput" class="inputOutline">
<input id="textInput" class="input responsive-column"

placeholder="Type something" type="text"
onkeydown="ConversationPanel . inputKeyDown (event, this)">
</label>
</div>
</div>
</div>

Figure 8-10 The completed index.html file

Deploy the application to Bluemix

After completing the code as described in the previous section, deploy the application to
Bluemix, using the CF command line, by completing the following steps:

1. Log in to the Bluemix region, organization and space.
2. Push the application.

3. Set the WORKSPACE_ID environment variable.

4. Restage the application.

The sections that follow explain these steps in detail.

Log in to the Bluemix region, organization and space
To log in to the Bluemix organization and space:

1. Atthe command prompt (cmd.exe), change from the working directory to the directory that
contains the application code:

cd C:\Bluemix\conv-201-stt-tts-nodejs-student
2. Type the following command to log in to the Bluemix region:
cf api https://api.ng.bluemix.net
In this example, you log in to the US South Region.
3. Connect to your organization and space by using the following command:
cf login -u <USERNAME> -0 <ORG_NAME> -s <SPACE_NAME>
The command has the following values:

— <USERNAME> is your Bluemix user name.
— <ORG_NAME> is the organization name that you want to push the application to.
— <SPACE_NAME> is the space name that you want to push the application to.

4. When prompted, enter your password.

Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Push the application
To push the application:

1. Type the following command:
cf push

2. Wait until the application deploys and a message indicating that the application is running
is logged on the command line, as shown in Figure 8-11.

App Weather-conu-sst-tts-xxx was started using this command “npm start’

Showing health and status for app weather-conu-sst-tts-xxx in org aazrag@eg.ibm.
com / space Conversation as haziz@eg.ibm.com. ..
OK

started
1/1
512M x 1 instances
weather-conu-sst-tts-xxx.mybluemix.net
Wed Feb 22 11:02:19 UTC 2017
cflinuxfs2
SDK for Node.js{TM) (ibm-node.js-4.7.2, buildpack-u3.10-20170119-1146)

HO running 2017-02-22 01:04:23 PM ©.0% 73M of S512M 165M of 1G

Figure 8-11 Successful application deployment message

Note: Deploying the application to Bluemix and starting it might take some time.

Set the WORKSPACE_ID environment variable
To set the WORKSPACE_ID environment variable:

1. Copy the Workspace ID of the Car Chat-bot workspace, as described in “Copy the Car
Chat-bot workspace ID” on page 223.

2. To set the WORKSPACE_ID environment variable to the application to use the Car
Chat-bot workspace in the Conversation service, use the following command:

cf set-env weather-conv-stt-tts-XXX WORKSPACE_ID $WORKSPACE ID
The command has the following values:
— XXX is a suffix that you added to the application name to make the name unique.

— $WORKSPACE_ID is the Car Chat-bot Workspace ID that you copy as describe in “Copy
the Car Chat-bot workspace ID” on page 223.

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 215

Figure 8-12 illustrates how to set the environment variable using the command line.

C:\BlueMix\conu-201-stt-tts-nodejs-student>cf set-env weather-conu-sst-tts-xxx
ORKSPACE_ID c7073d4b-atea-4607-a921-76a82788d1dT

Setting env variable 'WORKSPACE_ID' to 'c7O73d4b-alea-4607-a921-76a82788d1d7" fo
r app weather-conu-sst-tts-xxx in org aazrag@eg.ibm.com / space Conversation as

haziz@eg.ibm.com. . .

‘cf restage weather-conu-sst-tts-xxx' to ensure your env variable chang
es take effect

Figure 8-12 Set the environment variable using CF command line

Restage the application

For the setting of the environment to take effect, restage the application by using this
command:

cf restage weather-conv-stt-tts-XXX

Wait for the application to restage and for the message indicating that the application is
running in the log. After you deploy the application, proceed to the next section for information
about how to use the application and test it.

216 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8.4.4 Testing the application

After deploying the application, using either the full version (from 8.5, “Quick deployment of
application” on page 219) or the incomplete code (which you just completed in 8.4.1,
“Creating the Speech to Text service” on page 207), you must run the application and test it.

Speaker and microphone: Make sure that the speaker and microphone are turned on for
the workstation.

Support: Only Chrome and Firefox are supported for testing the application.

The following steps describe how the application works:

1. Open the application’s URL in your web browser:
https://weather-conv-sst-tts-XXX.mybluemix.net/
The application opens (Figure 8-13); the audio greeting starts by saying:

Welcome to Car chat bot!

I Welcome to Car chat bot!

Figure 8-13 Cognitive Weather Forecast application opens

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 217

2. Click the microphone at the bottom of the page to enable the browser microphone so that
you can talk to the application. As shown in Figure 8-14, a message displays to Accept
the microphone prompt in your browser. Watson will lTisten soon. The audio greeting
says, Welcome to Car Chat bot!

Watson understands
| Accept the microphone prompt in your
browser. Watson will listen soon. i

Figure 8-14 Enable the microphone on the application

3. Speak into the microphone. Try saying, “Hi.” The application responds in voice and text by
saying, Hi! What can I do for you?

4. You can speak to the application by asking for the temperature. For example, ask What is
the temperature tomorrow, please? The application prompts you with both voice and
text: What’s the city that you’d like to forecast the weather?

5. Choose a city. For example, you can choose New York.

6. The application responds with the expected weather for tomorrow for that city. For
example, the application responds with both voice and text: A few clouds. Highs in the
low teens and lows -12 to -8F.

218 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 8-15 shows the complete exchange between the application and the user.

User input
What is the temperature tomorrow,
please?

l A few clouds. Highs in the low teens and lows
-12to -8F.

It is my pleasure to help you. Bye

Figure 8-15 Complete exchange asking for the temperature of New York

Note: Try different scenarios to test the application. If the application fails to respond to
some scenarios, it needs more training by adding more user examples to the intents in the
Car Chat-bot Workspace or by editing the entities.

8.5 Quick deployment of application

A second GitHub repository is provided so that you can run the application in this use case
even if you did not perform the steps described in 8.4, “Step-by-step implementation” on

page 207. This section is independent from those steps, and it includes instructions to run the
application more quickly.

Use the GitHub repository that contains the complete code:
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

8.5.1 Deploy the application to Bluemix

To deploy the completed code, follow these steps:
1. Click the following link to begin deployment of the application to Bluemix:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-stt-tts-nodejs

2. Log in with your account on Bluemix (Figure 8-16 on page 220).

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 219

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more

REDBOOKS-CONV-201-STT-TTS-NODEJS

\J
¥

GIT URL: htf
GIT BRANCH:

A Bluemix account is required. Log in or sign up to activate your free Bluemix irial.

LOGIN

Figure 8-16 Log in for click to deploy

3. You can leave the default APP NAME, or change it. Change the REGION,
ORGANIZATION, and SPACE to match the one used in Chapter 6, “Chatting about the
weather: Integrating Weather Company Data with the Conversation service” on page 157
to use the same Conversation Service and Weather Company Data service, as shown in
Figure 8-17.

Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more

redbooks-conv-201-stt-tts-nodejs-1138

IBM Bluemix US SoL ~

Figure 8-17 Click to deploy application details

220 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4. Click DEPLOY.
5. The application begins to deploy as it goes through the following actions:
— Creates a private DevOps Service project for the app.
— Clones the code from the GitHub URL to the new project created.
— Configures the pipeline to build and deploy automatically.
— Creates the Node.js application.

— Binds the Conversation and Weather Company Data service instances created in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157 to the new application.

— Creates new Speech to Text and Text to Speech instances and binds them to the new
application.

6. The status of the deployment is shown in Figure 8-18.

Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more.

CONV-201-STT-TTS-NODEJS

GIT URL: hilps
GIT BRANCH: maste

Created project successfully
Cloned repository successfully
Configured pipeline successfully

Deploying to Bluemix...

Figure 8-18 Click to deploy status

Note: The deployment can take some time.

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 221

When deployment is finished, a deployment success message displays (Figure 8-19).

Created project successfully

Cloned repository successfully

Configured pipeline successfully

Deployed to Bluemix successfully

Success!

You've added an instance of this app to your organization in Bluemix.

Figure 8-19 Click to deploy success message

Important: Do not view the application now.

222 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Copy the Car Chat-bot workspace ID
To copy the Car Chat-bot workspace ID, follow these steps:

1. Open your Bluemix Dashboard.

2. Click the Conversation service created in Chapter 6, “Chatting about the weather:
Integrating Weather Company Data with the Conversation service” on page 157.

3. Launch Conversation Tooling by clicking Launch tool.

4. The Workspaces page opens. On the Car Chat-bot workspace, click the Actions icon (top
left of the Workspaces box) and select View details (Figure 8-20).

Car Chat-bot

Car Chat-bot workspace View details

Edit
English {U.S.) Duplicate

Get started Download as JSON

Delete

Last modified: 2 minutes ago

Figure 8-20 Car Chat-bot workspace view details

5. Copy the Workspace ID, as shown in Figure 8-21.

Workspace ID: e155b1fc-dce9-4fe7-91e6-bbaeb5050d1b

Figure 8-21 Workspace ID example

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 223

Add the WORKSPACE_ID environment variable
To add the WORKSPACE_ID environment variable, follow these steps:

1. Return to Bluemix Dashboard.

2. Click the application deployed previously. (in this example it is named
conv-201-stt-tts-nodejs-1138). The application details are displayed.

3. Click Runtime from the navigation bar (Figure 8-22).

< Dashboard

Getting started

Overview

Runtime

Connections

Logs

Monitoring

Figure 8-22 Application Runtime details

4. Select the Environment variables tab (Figure 8-23).

P
Memory and instances Environment variables SSH

Figure 8-23 Environment variables tab

5. Scroll to the user-defined section, and click Add.

224 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6. Enter WORKSPACE_ID as the NAME, and paste the Workspace ID copied from “Copy the Car

Chat-bot workspace ID” on page 223) as the VALUE (Figure 8-24).

User defined
NAME VALUE ACTION
NPM_CONFIG_PRODUCTION false @
WORKSPACE_ID c7073d4b-adea-4607-a921-76a82788d1d7 ®

Figure 8-24 WORKSPACE_ID environment variable

7. Click Save. Wait for the application to restart and the status to show as Running

(Figure 8-25).

Status: Running

Figure 8-25 Application running status

8. Click the View app button to run the application.

For more information about the expected behavior of the application, see 8.4.4, “Testing the

application” on page 217.

8.6 References

For more information about this topic, see the following resources:
» IBM Watson Conversation service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/conversation/index.html

» Speech to Text service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/speech-to-text/index.html

» Text to Speech service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.htm]

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 225

https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html
https://www.ibm.com/watson/developercloud/doc/speech-to-text/index.html
https://www.ibm.com/watson/developercloud/doc/conversation/index.html

226 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Additional material

This book refers to additional material that can be downloaded from the Internet.

Locating the web material

The following Git repositories and files are available to help you with examples in this book:
» Chapter 2, “Conversation service workspace” on page 13

— https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/
training/1.4-conv-101-createservice-incomplete.json

» Chapter 3, “Cognitive Calculator chatbot” on page 55
— https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

— https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/tra
ining/calculator_workspace.json

— https://github.com/watson-developer-cloud/conversation-simple
» Chapter 4, “Help Desk Assistant chatbot” on page 109

— https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-148
7332833126

— https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/con
v-201-iot-nodered-flow.json

» Chapter 5, “Using a cognitive chatbot to manage IoT devices” on page 139
— https://github.com/ibm-watson-iot/iot-starter-for-android

— https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-148
7332833126

— https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/con
v-201-iot-nodered-flow.json

© Copyright IBM Corp. 2017. All rights reserved. 227

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/ibm-watson-iot/iot-starter-for-android
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/watson-developer-cloud/conversation-simple

» Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157

— https://github.com/watson-developer-cloud/conversation-simple

— https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/
training/1.4-conv-101-createservice.json

— https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

» Chapter 8, “Talking about the weather: Integrating Speech to Text and Text to Speech with
the Conversation service” on page 203

— https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git
— https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

228 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

The volumes in the Building Cognitive Applications with IBM Watson Services series:

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

vVVvyVYyVYVvYYyVvYYyY

You can search for, view, download or order these documents and other Redbooks, IBM
Redpapers™, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:
» Spring Expression Language (SpEL):

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expre
ssions.html

» IBM Bluemix, log in or create an account:
https://console.ng.bluemix.net
» Node-RED programming tool:
https://nodered.org/
» JS Foundation:
https://js.foundation/
» Slack:
http://slack.com
» Create a new Slack team:
https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team

© Copyright IBM Corp. 2017. All rights reserved. 229

http://slack.com
https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team
https://js.foundation/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://nodered.org/
https://console.ng.bluemix.net
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

» Node-RED Bluemix Starter Application:

https://github.com/snippet-java/Node-RED-bTuemix-conversation-starter.git-14873
32833126

» loT starter app for Android phone:

https://ibm.ent.box.com/v/iotstarterapp

Also see the list of online resources for the following chapters in this book:

» Basics of Conversation service: 1.5, “References” on page 12

» Conversation service workspace: 2.3, “References” on page 54

» Cognitive Calculator chatbot: 3.6, “References” on page 107

» Help Desk Assistant chatbot: 4.7, “References” on page 138

» Using a cognitive chatbot to manage IoT devices: 5.4, “References” on page 156

» Chatting about the weather: Integrating Weather Company Data with the Conversation
service: 6.6, “References” on page 183

» Improving chatbot understanding: 7.3, “References” on page 202

» Talking about the weather: Integrating Speech to Text and Text to Speech with the
Conversation service: 8.6, “References” on page 225

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

230 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://ibm.ent.box.com/v/iotstarterapp
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

Redhooks Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation H

(0.2"spine)
0.17"<->0.473"
90<->249 pages

“llil

SG24-8394-00
ISBN 0738442569

Printed in U.S.A.

flsjolvlinlail @® Redbooks,

ibm.com/redbooks

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Conversation service
	1.1 Introduction to Watson Conversation service
	1.1.1 Supported languages
	1.1.2 Innovative ways to use the Watson Conversation service

	1.2 How to use the Conversation service
	1.3 Conversation concepts
	1.3.1 Intents and entities
	1.3.2 An example of intents and entities in a conversation
	1.3.3 Dialog
	1.3.4 Dialog node
	1.3.5 Context
	1.3.6 Condition and responses
	1.3.7 Conversation turn
	1.3.8 Typical conversation flow

	1.4 Conclusion
	1.5 References

	Chapter 2. Conversation service workspace
	2.1 How to use the Conversation service
	2.1.1 Creating a Watson Conversation service instance
	2.1.2 Launching the Conversation tool
	2.1.3 Working with a workspace
	2.1.4 Adding intents
	2.1.5 Adding entities
	2.1.6 Building a dialog

	2.2 Exporting the workspace
	2.3 References

	Chapter 3. Cognitive Calculator chatbot
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results

	3.2 Architecture
	3.3 Two ways to deploy the application: Step-by-step and quick deploy
	3.4 Step-by-step implementation
	3.4.1 Downloading the project from the Git repository
	3.4.2 Configuring the Conversation workspace for the Cognitive Calculator chatbot
	3.4.3 Developing the Cognitive Calculator chatbot application
	3.4.4 Testing the application

	3.5 Quick deployment of application
	3.6 References

	Chapter 4. Help Desk Assistant chatbot
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.2.1 Project structure

	4.3 Two ways to deploy the application: Step-by-step and quick deploy
	4.4 Step-by-step implementation
	4.4.1 Creating a new Conversation workspace
	4.4.2 Adding intents
	4.4.3 Adding entities
	4.4.4 Creating the dialog
	4.4.5 Testing the dialog
	4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED
	4.4.7 Setting up the chat service (Slack)

	4.5 Quick deployment of application
	4.6 Next steps
	4.7 References

	Chapter 5. Using a cognitive chatbot to manage IoT devices
	5.1 Getting started
	5.1.1 Objectives
	5.1.2 Prerequisites
	5.1.3 Expected results

	5.2 Architecture
	5.3 Step-by-step deployment of application
	5.3.1 Creating the Watson IoT Platform service
	5.3.2 Configuring the Android mobile device as an IoT device
	5.3.3 Modifying the Chatbot Conversation workspace
	5.3.4 Connecting the chatbot application to the IoT platform
	5.3.5 Testing the application

	5.4 References

	Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service
	6.1 Getting started
	6.1.1 Objectives
	6.1.2 Prerequisites
	6.1.3 Expected results

	6.2 Architecture
	6.3 Two ways to deploy the application: Step-by-step and quick deploy
	6.4 Step-by-step implementation
	6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast chatbot
	6.4.2 Creating the Weather Company Data service instance
	6.4.3 Developing the Cognitive Weather Forecast chatbot application
	6.4.4 Testing the application

	6.5 Quick deployment of application
	6.6 References

	Chapter 7. Improving chatbot understanding
	7.1 Getting started
	7.1.1 Objectives
	7.1.2 Prerequisites
	7.1.3 Expected results

	7.2 Use case implementation
	7.2.1 Identifying the additional training that the Conversation workspace requires
	7.2.2 Using the Improve component to train the Conversation workspace
	7.2.3 Testing the improved Conversation workspace

	7.3 References

	Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service
	8.1 Getting started
	8.1.1 Objectives
	8.1.2 Prerequisites
	8.1.3 Expected results

	8.2 Architecture
	8.3 Two ways to deploy the application: Step-by-step and quick deploy
	8.4 Step-by-step implementation
	8.4.1 Creating the Speech to Text service
	8.4.2 Creating the Text to Speech service
	8.4.3 Developing the Cognitive Weather Forecast chatbot application
	8.4.4 Testing the application

	8.5 Quick deployment of application
	8.5.1 Deploy the application to Bluemix

	8.6 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

