
Redbooks

In partnership with
IBM Skills Academy Program

Front cover

Building Cognitive Applications with
IBM Watson Services: Volume 2
Conversation

Ahmed Azraq

Hala Aziz

Nicolas Nappe

Cesar Rodriguez Bravo

Lak Sri

International Technical Support Organization

Building Cognitive Applications with IBM Watson
Services: Volume 2 Conversation

May 2017

SG24-8394-00

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xi
Comments welcome. xi
Stay connected to IBM Redbooks . xii

Chapter 1. Basics of Conversation service . 1
1.1 Introduction to Watson Conversation service . 2

1.1.1 Supported languages . 3
1.1.2 Innovative ways to use the Watson Conversation service 3

1.2 How to use the Conversation service . 3
1.3 Conversation concepts . 4

1.3.1 Intents and entities . 4
1.3.2 An example of intents and entities in a conversation . 5
1.3.3 Dialog . 5
1.3.4 Dialog node. 6
1.3.5 Context . 7
1.3.6 Condition and responses . 8
1.3.7 Conversation turn . 10
1.3.8 Typical conversation flow . 10

1.4 Conclusion . 11
1.5 References . 12

Chapter 2. Conversation service workspace . 13
2.1 How to use the Conversation service . 14

2.1.1 Creating a Watson Conversation service instance . 14
2.1.2 Launching the Conversation tool . 16
2.1.3 Working with a workspace . 17
2.1.4 Adding intents . 23
2.1.5 Adding entities . 27
2.1.6 Building a dialog . 30

2.2 Exporting the workspace. 54
2.3 References . 54

Chapter 3. Cognitive Calculator chatbot. 55
3.1 Getting started. 56

3.1.1 Objectives . 56
3.1.2 Prerequisites . 56
3.1.3 Expected results . 56

3.2 Architecture . 58
3.3 Two ways to deploy the application: Step-by-step and quick deploy 59
3.4 Step-by-step implementation . 59

3.4.1 Downloading the project from the Git repository . 59
3.4.2 Configuring the Conversation workspace for the Cognitive Calculator chatbot . . 59
3.4.3 Developing the Cognitive Calculator chatbot application 90
3.4.4 Testing the application . 104
© Copyright IBM Corp. 2017. All rights reserved. iii

3.5 Quick deployment of application . 107
3.6 References . 107

Chapter 4. Help Desk Assistant chatbot . 109
4.1 Getting started. 110

4.1.1 Objectives . 110
4.1.2 Prerequisites . 110
4.1.3 Expected results . 110

4.2 Architecture . 111
4.2.1 Project structure . 112

4.3 Two ways to deploy the application: Step-by-step and quick deploy 112
4.4 Step-by-step implementation . 112

4.4.1 Creating a new Conversation workspace . 113
4.4.2 Adding intents . 115
4.4.3 Adding entities . 117
4.4.4 Creating the dialog . 119
4.4.5 Testing the dialog . 122
4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED 122
4.4.7 Setting up the chat service (Slack) . 131

4.5 Quick deployment of application . 136
4.6 Next steps . 138
4.7 References . 138

Chapter 5. Using a cognitive chatbot to manage IoT devices 139
5.1 Getting started. 140

5.1.1 Objectives . 140
5.1.2 Prerequisites . 140
5.1.3 Expected results . 140

5.2 Architecture . 141
5.3 Step-by-step deployment of application . 142

5.3.1 Creating the Watson IoT Platform service . 142
5.3.2 Configuring the Android mobile device as an IoT device 147
5.3.3 Modifying the Chatbot Conversation workspace. 149
5.3.4 Connecting the chatbot application to the IoT platform. 152
5.3.5 Testing the application . 156

5.4 References . 156

Chapter 6. Chatting about the weather: Integrating Weather Company Data with
the Conversation service . 157

6.1 Getting started. 158
6.1.1 Objectives . 158
6.1.2 Prerequisites . 158
6.1.3 Expected results . 158

6.2 Architecture . 159
6.3 Two ways to deploy the application: Step-by-step and quick deploy 160
6.4 Step-by-step implementation . 160

6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast chatbot . 161
6.4.2 Creating the Weather Company Data service instance 165
6.4.3 Developing the Cognitive Weather Forecast chatbot application 171
6.4.4 Testing the application . 180

6.5 Quick deployment of application . 182
6.6 References . 183
iv Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Chapter 7. Improving chatbot understanding. 185
7.1 Getting started. 186

7.1.1 Objectives . 186
7.1.2 Prerequisites . 186
7.1.3 Expected results . 186

7.2 Use case implementation . 188
7.2.1 Identifying the additional training that the Conversation workspace requires . . . 188
7.2.2 Using the Improve component to train the Conversation workspace 189
7.2.3 Testing the improved Conversation workspace . 201

7.3 References . 202

Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech
with the Conversation service . 203

8.1 Getting started. 204
8.1.1 Objectives . 204
8.1.2 Prerequisites . 204
8.1.3 Expected results . 204

8.2 Architecture . 205
8.3 Two ways to deploy the application: Step-by-step and quick deploy 206
8.4 Step-by-step implementation . 207

8.4.1 Creating the Speech to Text service . 207
8.4.2 Creating the Text to Speech service . 208
8.4.3 Developing the Cognitive Weather Forecast chatbot application 208
8.4.4 Testing the application . 217

8.5 Quick deployment of application . 219
8.5.1 Deploy the application to Bluemix . 219

8.6 References . 225

Appendix A. Additional material . 227
Locating the web material . 227

Related publications . 229
IBM Redbooks . 229
Online resources . 229
Help from IBM . 230
 Contents v

vi Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Ask Watson™
Bluemix®
developerWorks®
Global Business Services®
Global Technology Services®
IBM®

IBM MobileFirst™
IBM Watson®
IBM Watson IoT™
Redbooks®
Redbooks (logo) ®
Redpapers™

Tivoli®
Watson™
Watson IoT™
WebSphere®

The following terms are trademarks of other companies:

The Weather Company, and Wundersearch are trademarks or registered trademarks of TWC Product and
Technology LLC, an IBM Company.

ITIL is a Registered Trade Mark of AXELOS Limited.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://www.ibm.com/legal/copytrade.shtml

Preface

The Building Cognitive Applications with IBM Watson Services series is a seven-volume
collection that introduces IBM® Watson™ cognitive computing services. The series includes
an overview of specific IBM Watson® services with their associated architectures and simple
code examples. Each volume describes how you can use and implement these services in
your applications through practical use cases.

The series includes the following volumes:

� Volume 1 Getting Started, SG24-8387
� Volume 2 Conversation, SG24-8394
� Volume 3 Visual Recognition, SG24-8393
� Volume 4 Natural Language Classifier, SG24-8391
� Volume 5 Language Translator, SG24-8392
� Volume 6 Speech to Text and Text to Speech, SG24-8388
� Volume 7 Natural Language Understanding, SG24-8398

Whether you are a beginner or an experienced developer, this collection provides the
information you need to start your research on Watson services. If your goal is to become
more familiar with Watson in relation to your current environment, or if you are evaluating
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 2, describes how the Watson Conversation service
can be used to create chatbots and user agents that understand natural-language input and
communicate with your users simulating a real human conversation. It introduces the
concepts that you need to understand in order to use the Watson Conversation service. It
provides examples of applications that integrate the Watson Conversation service with other
IBM Bluemix® services, such as the IBM IoT Platform, Text to Speech, Speech to Text, and
Weather Company Data, to implement practical use cases. You can develop and deploy the
sample applications by following along in a step-by-step approach and using provided code
snippets. Alternatively, you can download an existing Git project to more quickly deploy the
application.

Authors

This book was produced by a team of specialists from around the world working in
collaboration with the IBM International Technical Support Organization.

Ahmed Azraq is a Certified IT Specialist in IBM Egypt. Since joining IBM in 2012, Ahmed
worked as a Senior Cloud Developer, Technical Team Leader, and Architect in the IBM Middle
East and Africa (MEA) Client Innovation Center, which is part of IBM Global Business
Services® (GBS). His areas of expertise include cloud, IBM Business Process Manager,
middleware integration, Java, and IBM Watson. Ahmed has acquired several professional
certifications, including Open Group IT Specialist, IBM Bluemix, Java EE, IBM Business
Process Manager, Agile development process, and IBM Design Thinking. Ahmed has
delivered training on IBM Bluemix, DevOps, hybrid cloud Integration, Node.js, Watson APIs,
and IBM WebSphere® Liberty Profile to IBM clients, IBM Business Partners, and university
students and professors around the world. He is the recipient of several awards, including
Eminence and Excellence Award in the IBM Watson worldwide competition Cognitive Build,
the IBM Service Excellence Award for showing excellent client value behaviors, and
© Copyright IBM Corp. 2017. All rights reserved. ix

knowledge-sharing award. Ahmed is also a published author for IBM Redbooks Essentials of
Cloud Application Development on IBM Bluemix, SG24-8374.

Hala Aziz is an Experienced Certified IT Specialist in the Cairo Technology Development
Center (CTDC) in IBM Egypt. She has more than 10 years of experience in IBM Application
and Integration Middleware software and IBM Cloud such as IBM WebSphere Application
Server, IBM WebSphere Portal, IBM MobileFirst™, IBM Endpoint Manager, IBM Bluemix, and
IBM Watson services. She worked as a consultant on eGovernment, telecom, and banking
solutions for clients in Egypt, Saudi Arabia, Dubai, Oman, and Switzerland. Hala has several
technical professional certifications, such as Certified Application Developer for IBM Web
Content Manager, IBM MobileFirst and Cloud Platform Application Developer v1, and she has
published several articles and IBM Redbooks publications. Hala has delivered IBM internal
education and client enablement training workshops around the world.

Nicolas Nappe is an Open Group Master Certified IT Specialist and IBM Certified Cloud
Advisor working in IBM Global Technology Services®, IBM Argentina. Nicolas works as a
DevOps Specialist, with a focus in infrastructure automation and cloud computing. Nicolas
has more than 15 years of experience in UNIX technologies, Information Technology
Infrastructure Library (ITIL), and IT service management (ITSM). Nicolas developed the
Cognimation solution that uses Watson cognitive service to summarize documents and
deliver them in a presentation format. Cognimation uses Watson Alchemy Language and
Natural Language Processing to extract the most relevant concepts and deliver a
presentation explaining the concepts customized for the user.

Cesar Rodriguez Bravo is a Program Manager in the IBM North America Cyber Security
Project Office. Cesar holds a Master of Science degree in Cyber Security and many
certifications in Project Management including PMP, Scrum Master, Scrum Developer, Scrum
Product Owner, Agile Expert, and Scrum Trainer. Cesar is also certified as an IBM Expert
Project Manager and is currently the Project Manager competence leader for IBM Costa Rica.
Cesar is a university professor; he enjoys teaching students about new technologies such as
Internet of Things (IoT) and cognitive computing. Cesar is currently working with IBM Master
Inventors developing patents in the cognitive and cyber security domains. Cesar won the
Internet of Things contest in the regional IBM Technical Exchange with a project based on
IBM Watson technologies. Cesar won an IBM worldwide contest (with votes from 41
countries) with the idea of an IoT robot that helps children learn by using IBM Watson
capabilities.

Lak Sri currently serves as a Program Director in IBM developerWorks® part of the IBM
Digital Business Group organization. Lak leads innovation in the developer activation space.
He was the Technical Leader for the Building Cognitive Applications with IBM Watson
Services Redbooks series. Lak led the development of the IBM Cloud Application Developer
Certification program and the associated course. Earlier he worked as a Solution Architect for
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built
strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor
in several technology areas, and he volunteers to plan and support local community
programs.
x Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.

Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

Iain McIntosh
IBM Watson and Cloud Platform

Juan Pablo Napoli
Skills Academy Worldwide Leader, IBM Global University Programs

Teja Tummalapalli
IBM Digital Business Group

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Basics of Conversation service

With the IBM Watson Conversation service, you can create an application and user agents
that understand natural-language input and communicate with your users simulating a real
human conversation. Conversation service uses machine learning to respond to customers in
a way that simulates a conversation between humans.

This chapter introduces the concepts you need to understand to use the Watson
Conversation service.

The following topics are covered in this chapter:

� Introduction to Watson Conversation service
� How to use the Conversation service
� Conversation concepts
� Conclusion
� References

1

© Copyright IBM Corp. 2017. All rights reserved. 1

1.1 Introduction to Watson Conversation service

Figure 1-1 depicts the overall architecture of a solution that includes an application that
integrates the Conversation service.

Figure 1-1 Typical architecture of a Conversation application

Consider this information about the architecture in Figure 1-1:

� Users interact with your application through one or more of your chosen interfaces.
Common choices might be messaging services, a chat window within a website, or even
audio interfaces when combined with Watson Speech to Text services.

� The application sends the user input to the Conversation service:

– The application connects to a workspace. The natural-language processing for the
Conversation service happens inside a workspace, which is a container for all of the
artifacts that define the conversation flow for an application. You can define multiple
workspaces in a Watson Conversation service instance. Each workspace will be
trained to recognize certain concepts and to direct the conversation flow that governs
user interaction.

– The Conversation service interprets the user input, directs the flow of the conversation
and gathers information that it needs. The Watson Conversation service uses machine
learning to identify the concepts it was trained for. Based on what concepts it identifies,
it directs the conversation flow, to provide the user with information or to gather
additional information from users.

– You can connect additional Watson services to analyze user input, such as Tone
Analyzer or Speech to Text.

� Your application can also interact with existing back-end systems based on the user’s
intent and additional information. For example, search for information in public or private
databases, open tickets, show diagrams and maps, or write the user input into your
systems of record.

The steps for setting up a working Conversation service are described in 1.2, “How to use the
Conversation service” on page 3.
2 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

1.1.1 Supported languages

The natural language classifiers used in the Conversation service support English,
Portuguese (Brazilian), French, Italian, Spanish, and Japanese, and has experimental
support for German, Traditional Chinese, Simplified Chinese, and Dutch. Arabic is supported
through the use of the Conversation API but not through the tooling interface.

1.1.2 Innovative ways to use the Watson Conversation service

After completing this book, you should be able to implement all kinds of innovative and
creative interactions with your users in your applications. Here are some examples:

� You can integrate your application with the Watson Conversation, Speech to Text and Text
to Speech services and drive your application by speaking to it. You can use Watson Tone
Analyzer to identify the emotions, social tendencies, and writing style expressed by your
users.

� In Watson Developer Cloud, you can find an example of a Conversation agent helping
your users while they drive cars. You can integrate this application with Weather Company
data, to retrieve weather-related information while driving your car.

� You can build an agent to chat with young people around the world and engage them in
community issues, similar to the UNICEF custom social platform, U-Report.

� You can build a natural language tutor to chat with your users and teach them as they
learn to play a game that you built, giving advice or supporting them.

� A chatterbot can be created that is present in a dialog between two other people and
identifies when they talk about going out, and offers making a reservation, or calling a taxi.

1.2 How to use the Conversation service

These are the steps for using the Conversation service:

1. Create a workspace in a Watson Conversation service instance.

2. Train the Conversation service instance to recognize concepts in the user input (intents
and entities):

– Train the Conversation service instance with natural language examples of each
possible intent. At least five examples are required for minimal training. Providing many
examples will give more accurate results, especially if they are varied and
representative of possible input from users.

– Train the Conversation service instance with natural language examples of each
possible entity. Add as many synonyms as you expect your user to possibly use. The
Improve interface will allow you to refine this process later on, adding more synonyms
as you test your dialog.

3. Create a workflow of the stages of the dialog. Use logical conditions evaluating the
concepts identified in the user’s reply.

4. Test your dialog in the embedded chat in the Conversation workspace. You can monitor
how the Watson Conversation service interprets the flow, what intents and entities it
detects, and improve its training data in real time.

5. Call your workflow from your application using the REST API.
Chapter 1. Basics of Conversation service 3

1.3 Conversation concepts

This section describes the main concepts you need to understand about Watson
Conversation service.

1.3.1 Intents and entities

Watson Conversation service uses a natural language processing (NLP) to identify key
information from user’s interactions. The information that the Conversation service extracts
falls into two categories, as explained in Figure 1-2:

� Intent: The purpose of a user’s input (the user’s intent).
� Entity: A term or object that is relevant to the intent (context for the intent).

Figure 1-2 Intent and entity definitions

The dialog component of the Conversation service uses the intents and entities that are
identified in the user’s input to gather required information and provide a useful response to
each user input. The dialog is the logical flow that determines the responses your bot will give
when certain intents and/or entities are detected.

The dialog can be considered a user interface to extract the intents and entities from the
users, process them to create a helpful response, and return the results in the form of natural
language.

#INTENT
Represents the purpose of a user's input.

What the users want to achieve.
Active, a goal, an action, verbs.

@ENTITY

How the user’s goal is to be achieved.
Passive, qualifies the intents. Noun, things, objects, terms

In most cases, intents
indicate the user stories

or use case the user
wants to perform.

Entities provide the
context required to

perform the user story
or use case.
4 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

1.3.2 An example of intents and entities in a conversation

You can try to extract intents and entities from a conversation between two people
(Figure 1-3).

Figure 1-3 Example of intents and entities in a conversation

If you want to create a conversational application that is able to help Nelson in the same way
that Marie can, you must train it to identify the intent #find_a_place and the entity
@transp_landmark, and its possible values. Then, you can trigger a mapping API to direct
Nelson to his destination.

1.3.3 Dialog

Your users will unlikely provide all of the required information in one pass. Instead, you must
organize a conversation flow. The flow will ask users the questions that are useful in order to
gather all the necessary input to provide a helpful answer.

A dialog is a branching conversation flow that defines how your application responds when it
recognizes the defined intents and entities. It is composed of many branching dialog nodes.
Create a dialog branch for each intent, to gather any required information and make a helpful
response.

Figure 1-4 on page 6 shows the dialog for a weather Conversation flow, which is composed of
the following dialog nodes:

� A greeting node
� A node to ask the user the city of interest
� A reply after the city is identified
� A backup reply in case the program cannot identify the city

More details about how to build intents, entities, and the dialog for weather Conversation are
in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157.

Nelson: - Hi! Do you know where is the train station?

Marie: - Excuse me?

Nelson: - Oh, I asked you how to get to the train station

#find_a_place

#find_a_place

@transp_landmark

@transp_landmark
Chapter 1. Basics of Conversation service 5

Figure 1-4 Example of dialog flow

1.3.4 Dialog node

The dialog is made up of nodes that define steps in the conversation. Dialog nodes are
chained together in a tree structure to create an interactive conversation with the user.

Each node starts with one or more lines that the bot shows to the user to request a response.
Each node includes conditions for the node to be active, and also an output object that
defines the response provided. You can think of the node as an if-then construction: if this
condition is true, then return this response. The simplest condition is a single intent, which
means that the response is returned if the user’s input maps to that intent

Dialog nodes that originate on another node are their children nodes. Dialog nodes that do
not depend on other nodes are base nodes.
6 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 1-5 shows a sample dialog node, with a labeling name, a condition, and an example
response.

Figure 1-5 Example dialog node

1.3.5 Context

As in a real life conversation, context matters. The dialog context is the mechanism for
passing information between the dialog and your application code. Context allows you to
store information to continue passing it back and forth across different dialog nodes. For
example, if you identify the names of your users in the Conversation flow, you could store the
information in the context and retrieve it any time you want to call your user by name. Context
is described as a JSON entry within the node, or can be modified in your app before the
REST call.
Chapter 1. Basics of Conversation service 7

Figure 1-6 shows a sample that sets NYC coordinates in the context, for use later.

Figure 1-6 Example context, setting the NYC coordinates in the context for future use

The dialog is stateless, meaning that it does not retain information from one interchange to the
next. Your application is responsible for maintaining any continuing information. However, the
application can pass information to the dialog, and the dialog can update the context
information and pass it back to the application.

In the context, you can define any supported JSON types, such as simple string variables,
numbers, JSON arrays, or JSON objects.

1.3.6 Condition and responses

The condition portion of a dialog node determines whether that node is used in the
conversation. Conditions are logical expressions that are evaluated to true or false.
Conditions are used to select the next dialog node in the flow, or to choose among the
possible responses to the user.

Conditions are expressed in the Spring Expression Language (SpEL).

Conditions usually evaluate the intents and entities identified in the user responses but also
can evaluate information stored in the context. This information in the context can be stored in
previous dialog nodes or in your application code as part of an API call.
8 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Figure 1-7 shows a sample dialog node conditioned on a specific location (NYC) and time
(31-Dec-2017) so you can recommend visiting Times Square for New Year’s Eve.

Responses are messages based on the identified intents and entities that are communicated
to the user when the dialog node is activated. You can add variations of the response for a
more natural experience, or add conditions to pick one response out of many in the same
dialog node.

Figure 1-7 Special condition (place and time) to celebrate New Year’s Eve in Times Square
Chapter 1. Basics of Conversation service 9

1.3.7 Conversation turn

A single cycle of user input and a response is called conversation turn (Figure 1-8).
Each conversation turn starts in one dialog node, called the active node.

Figure 1-8 Conversation turn

1.3.8 Typical conversation flow

Figure 1-9 on page 11 shows a typical conversation flow and how the nodes are selected:

1. The conversation starts in an initial node set up with the conversation_start special
condition.

2. After some conversation turns, the dialog progresses to the node marked as active node.
The response configured in this node is shown to the user. The user input is analyzed for
intents and entities and used to select the next dialog node in the flow.

3. The conditions in the child nodes are evaluated in descending order using the extracted
intents and entities. The first child node to match a condition is selected as the next active
node and a new conversation turn starts (not shown in the figure).

4. If no child node matches the condition, the Conversation service evaluates the conditions
of each base node in the dialog and selects the first matching dialog node as the next
active node.

5. A useful approach is to have a base node configured with the anything_else special
condition so that the conversation defaults to this node when no other nodes match the
conditions. The special anything_else condition always evaluates to true. You can use
this node in the dialog to tell the user that the input was not understood and suggest valid
interaction.

Display response
in active node

Select next
active node

Get user input and
application context

Extract entities
and intents from

user Input

Evaluate conditions
using context +
entities + intents
10 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 1-9 Next active node selection criteria

1.4 Conclusion

In this chapter, you learned the basic concepts that apply to the Watson Conversation
service. In the next chapters, you learn to combine the concepts introduced in this chapter to
create meaningful conversations with your users.

The Conversation service will extract intents and entities from user input. It will use this
information and context information to traverse a flow of dialog nodes, called a dialog. Each
node will be selected based on its configured conditions, and will have a response to present
to the user.

These simple basic concepts allow you to create a complex, powerful, and practical user
interaction experience.

condition

conversation_start

condition

condition

anything_else

condition

condition

1

Base nodes Child nodes

Active Node

+

4

2

3

5

Chapter 1. Basics of Conversation service 11

1.5 References

For more information, see the following resources:

� Overview of the Watson Conversation service:

https://www.ibm.com/watson/developercloud/doc/conversation/index.html

� How Watson Conversation Service Works (video):

https://youtu.be/CV8nNIIQh1c

� Building chatbots with Watson (video):

https://www.youtube.com/watch?v=ccLKDBg8Ht8
12 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.ibm.com/watson/developercloud/doc/conversation/index.html
https://www.youtube.com/watch?v=ccLKDBg8Ht8
https://youtu.be/CV8nNIIQh1c

Chapter 2. Conversation service workspace

The natural language processing for the Watson Conversation service happens in a
workspace, which is a container for all of the artifacts that define the conversation flow for an
application.

This chapter explains how to create and use a Conversation workspace with the Conversation
tool. This chapter shows, by example, how to add intents and entities to the workspace and
how to build a dialog.

The information in this chapter is a prerequisite for the other chapters in this book.

The following topics are covered in this chapter:

� How to use the Conversation service
� Exporting the workspace
� References

2

© Copyright IBM Corp. 2017. All rights reserved. 13

2.1 How to use the Conversation service

Using the Conversation service involves the following steps:

1. Creating a Watson Conversation service instance
2. Launching the Conversation tool
3. Working with a workspace
4. Adding intents
5. Adding entities
6. Building a dialog

In the following sections, you import the Weather Forecast workspace to your Conversation
service instance. You add new intents and entities to it to become a complete car chatbot,
which gives weather information and can also provide traffic information.

Objectives
By the end of this chapter, you should be able to accomplish these objectives:

� Create a Conversation service instances in Bluemix.
� Use the Conversation tool.
� Create and import a workspace.
� Create intents.
� Create entities.
� Build dialogs.

2.1.1 Creating a Watson Conversation service instance

Bluemix provides resources to your applications through a service instance. Before you can
use the Watson APIs you must create an instance of the corresponding service. You will need
to create a Watson Conversation service instance for use in all the examples in this book.

To create an instance of the Conversation service, follow these steps:

1. Create an IBM Bluemix account if you do not have one.

You must have a Bluemix account to access the Watson APIs. You can create a free trial
Bluemix account.

2. Log in to IBM Bluemix.

3. Click Watson (under Services).

The Watson services that are available in Bluemix are listed.

4. Click Conversation (Figure 2-1 on page 15).
14 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net

Figure 2-1 Watson services in Bluemix: Select Conversation

5. Do these steps on the next web page (Figure 2-2):

a. Enter Conversation as the service instance name.
b. Notice the credential name, Credentials-1.
c. Select the pricing plan you want to use.
d. Click Create and wait for Bluemix to create an instance of your Conversation service.

Figure 2-2 Conversation service instance name
Chapter 2. Conversation service workspace 15

2.1.2 Launching the Conversation tool

The Conversation tool is a visual dialog builder to help you create natural conversations
between your apps and users, without any coding experience required. Complete these steps
to launch the tooling:

1. After creating the Conversation service instance, click Launch tool (Figure 2-3).

Figure 2-3 Launching the conversation tool immediately after creating the service instance

2. Alternatively, you can launch the tool at a later time:

a. Go to the Bluemix dashboard.

b. Click your Conversation service instance.

c. On the service details page, click the Manage tab (Figure 2-4), scroll to Conversation
tooling, and click Launch tool.

Figure 2-4 Launch Conversation tooling
16 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. If this is the first workspace, the Watson Conversation login page opens (Figure 2-5). If
you have an IBMid, click Log in with IBM ID; otherwise, click Sign up for IBM ID.

Figure 2-5 Log in Watson Conversation tooling

2.1.3 Working with a workspace

This section describes how to create, delete, import, and rename a workspace.

Create a new workspace
Complete the following steps:

1. Launch Conversation tooling.

2. Click Create to create a workspace (Figure 2-6).

Figure 2-6 Create new workspace
Chapter 2. Conversation service workspace 17

3. As shown in Figure 2-7, specify the details of the new workspace:

– Name: conv-lab-workspace
– Description: Any description not more than 128 characters.
– Language: Language of user input that the workspace will be trained to understand;

Keep as default: English (U.S.).

Figure 2-7 New workspace details

4. Click Create.

Delete a workspace
Complete the following steps:

1. Click the menu icon and then click Back to workspaces (Figure 2-8).

Figure 2-8 Conversation workspace
18 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Click the three vertical dots, then click Delete (Figure 2-9).

Figure 2-9 Delete workspace

3. Type the word delete in the “Delete a workspace” confirmation dialog and then click
Delete workspace (Figure 2-10).

Figure 2-10 Delete workspace confirmation dialog
Chapter 2. Conversation service workspace 19

Import a workspace
Complete the following steps:

1. Download the Weather Forecast workspace JSON file:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/tr
aining/1.4-conv-101-createservice-incomplete.json

2. Launch the Conversation tooling by doing one of the following steps:

– If this is your first workspace, click Import. Figure 2-11 shows an empty service with no
workspaces created.

Figure 2-11 First time Import workspace

– If this is not your first workspace, and workspaces are already associated with the
Conversation instance, click the Import workspace button at the top of the page
(Figure 2-12).

Figure 2-12 Import workspace

3. In the “Import a workspace” dialog (Figure 2-13 on page 21), use these steps:

a. Click Choose a file and select the downloaded JSON file.

b. Select Intents and Entities to use the intents and entities from the exported
workspace; you will build a new dialog. Figure 2-13 on page 21 shows how to import
intents and entities from the workspace JSON file.
20 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json

Figure 2-13 Choose JSON file to import

4. Click Import to import the intents and entities.

Figure 2-14 shows the imported intents.

Figure 2-14 Weather Forecast intents imported

Figure 2-15 shows the imported entities.

Figure 2-15 Weather Forecast entities imported
Chapter 2. Conversation service workspace 21

Rename the Weather Forecast workspace
After importing the Weather Forecast workspace, rename it to Car Chat-bot to add more
car-related features to it.

Complete the following steps to rename the workspace:

1. Go back to Workspaces by clicking the menu button in the upper left corner.

2. Click the Actions icon (three vertical dots) and select Edit (Figure 2-16).

Figure 2-16 Edit the workspace

3. Change the name and description of the workspace (Figure 2-17):

– Name: Car Chat-bot
– Description: Car Chat-bot workspace

Click Done.

Figure 2-17 Rename workspace
22 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2.1.4 Adding intents

In this section, you add the following intents to the workspace. The workspace currently has
the imported intents weather_inquiry and out_of_scope.

� Greeting
� Traffic
� Goodbye

Create a greeting intent
Use the Conversation tool to create a new intent:

1. Click the Car Chat-bot workspace. The Intents tab opens automatically.

2. Click Create new (Figure 2-18).

Figure 2-18 Create new Intent

3. Name the intent #greeting.

4. In the User example section (Figure 2-19 on page 24), add these greeting examples to the
#greeting intent; click the plus sign (+) or press Enter to add each user example:

– Hi
– How are you?
– Hello
– Hey
– Good morning
– Good afternoon

Add as many greeting examples as you can, so that the application can be more accurate
(five examples is the minimum).

Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.
Chapter 2. Conversation service workspace 23

Figure 2-19 Add greeting intent and examples

5. When you finish adding user examples, click Create to save the intent.

After you create the intent, the system starts to train itself with the new data.

Create a traffic intent
Use the Conversation tool to create a traffic intent:

1. Click Create new. Name the intent: #traffic.

2. In the User example section (Figure 2-20 on page 25), add these traffic examples to the
#traffic intent; click the plus sign (+) or press Enter to add each user example:

– What is the traffic today?
– Please tell me if it's crowded now
– What's the traffic like?
– How crowded is it now?
– Is it ok to go to my destination now?

Add as many traffic examples as you can, so that the application can be more accurate
(five examples is the minimum).

Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.
24 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 2-20 Add traffic intent and examples

3. When you finish adding user examples, click Create to save the intent.

After you create the intent, the system starts to train itself with the new data.

Create a goodbye intent
Complete these steps:

1. Click Create new. Name the intent: #goodbye.

2. In the User example section (Figure 2-21 on page 26), add these goodbye examples to
the #goodbye intent; click the plus sign (+) or press Enter to add each user example:

– bye
– farewell
– goodbye
– I'm done
– see you later
– Thanks for your help

Add as many goodbye examples as you can, so that the application can be more accurate
(five examples is the minimum).

Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.
Chapter 2. Conversation service workspace 25

Figure 2-21 Add goodbye intent and examples

3. When you finish adding user examples, click Create to save the intent.

After you create the intent, the system starts to train itself with the new data.

Final intents list in workspace
Figure 2-22 shows the final list of intents in the Car Chat-bot workspace.

Figure 2-22 Car chatbot intents
26 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Test your intent
After defining the new intents and examples. You can test your system to be sure it accurately
recognizes the intents. If not, then the intents must be refined.

Complete these steps to test your system:

1. Click the ellipses button at the top right corner of the page.

2. Enter a question or a phrase to test whether the system recognizes the correct intent
(Figure 2-23).

Figure 2-23 Testing intents

3. If the system does not recognize the correct intent, you can correct it by clicking on the
displayed intent and choosing the correct intent from the list. After selecting the intent, the
system starts training itself with the new data.

2.1.5 Adding entities

An entity represents a class of object or a data type that is relevant to a user’s purpose. By
recognizing the entities that are mentioned in the user’s input, the Conversation service can
choose the specific actions to take to fulfill an intent.

The workspace has an imported city entity. In this section, you add a destination entity to
the workspace.
Chapter 2. Conversation service workspace 27

Create destination entity
Use the Conversation tool to create a new entity:

1. Click the Entities tab.

2. Click Create new (Figure 2-24).

Figure 2-24 Create new entity

3. Name the entity @destination.

4. Add the following values and synonyms (Figure 2-25).

– Value: Home
– Synonyms: My Address
– Value: Work
– Synonyms: IBM, Office

Figure 2-25 Add location entity

5. Click Create.

The entity you created is added to the Entities tab, and the system begins to train itself
with the new data.

Add sys-time system entity
The Conversation service provides a number of system entities, which are common entities
that you can use for any application.

The @sys-time system entity extracts mentions such as 2pm, at 4, or 15:30. The value of this
entity stores the time as a string in the HH:mm:ss format, for example, 13:00:00.

Note: The at sign (@) is added by default to the name; do not add it yourself.
28 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Complete the following steps to add a system entity from the Conversation tool:

1. Select the System entities tab. You can then choose from a list of system entities.

2. Click the on/off toggle switch next to the @sys-time entity to enable it (Figure 2-26).

Figure 2-26 Add @sys-time system entity

Final entities list in workspace
Figure 2-27 shows the final My Entities list in the Car Chat-bot workspace.

Figure 2-27 My Entities final list

Figure 2-28 shows the final system entities list in the Car Chat-bot workspace.

Figure 2-28 System entities final list
Chapter 2. Conversation service workspace 29

2.1.6 Building a dialog

In this section, you build the Conversation dialog for the car chatbot by using the created and
imported intents and entities.

Start the dialog
Complete the following steps:

1. Click the Dialog tab and click Create (Figure 2-29).

Figure 2-29 Create new dialog

An untitled node is displayed in the dialog, when it is first created (Figure 2-30).

Figure 2-30 Dialog created with a default node
30 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. In the edit view (Figure 2-31), enter the following details:

– Node name: conversation_node
– In the “Triggered by” (if) section:

i. Start typing the word welcome.
ii. From the list, select Welcome (create new condition).

– In the “Fulfill with a response” section, add the following text:

Welcome to Car chat bot!

Figure 2-31 First node details

3. In the dialog, click the anything_else node, to edit its details.

Note: When you create the condition in your first dialog node, a node with the
anything_else condition is created in the dialog tree.
Chapter 2. Conversation service workspace 31

4. In the edit view (Figure 2-32), add a response in the “Fulfill with a response” section:

I can't understand your question. Please try again.

Figure 2-32 Details of the anything_else node
32 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 2-33 shows the dialog with the two nodes created so far.

Figure 2-33 Dialog with two initial nodes

5. You can collapse the anything_else node by clicking its Toggle node button (Figure 2-34).

Figure 2-34 Collapsing the anything_else node
Chapter 2. Conversation service workspace 33

Create a branch to respond to the greeting intent
Complete the following steps

1. In the dialog, click the conversation_start node.

2. Click the plus sign (+) below the conversation_start node (Figure 2-35), to create a base
node peer of the conversation_start node.

Figure 2-35 Create greeting node
34 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. In the edit view (Figure 2-36), add these details:

– Node name: greeting
– In the “Triggered by if” section:

i. Start typing the word greeting.
ii. From the list, select #greeting, which is the greeting intent you created previously.

– In “Fulfill with a response” section, add the following text:

Hi! What can I do for you?

Figure 2-36 The greeting node details
Chapter 2. Conversation service workspace 35

Create a branch to respond to the goodbye intent
Complete the following steps:

1. In the dialog, click the greeting node.

2. Click the plus sign (+) below the greeting node (Figure 2-35 on page 34), to create a base
node peer of the greeting node.

3. In the edit view (Figure 2-37), add these details:

– Node name: goodbye
– In the “Triggered by if” section:

i. Start typing the word goodbye.
ii. From the list, select #goodbye, which is the goodbye intent you created previously.

– In “Fulfill with a response” section, add the following text:

It is my pleasure to help you. Bye

Figure 2-37 The goodbye node details
36 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a branch to respond to the traffic intent
Complete the following steps:

1. In the dialog, click the greeting node.

2. Click the plus sign (+) below the greeting node (Figure 2-38), to create a base node peer
of the greeting node (that is, create an alternative conversation).

Figure 2-38 Create traffic node
Chapter 2. Conversation service workspace 37

3. In the edit view (Figure 2-39). add these details:

– Node name: traffic
– In the “Triggered by if” section:

i. Start typing the word traffic.
ii. From the list, select #traffic, which is the traffic intent you created previously.

– In “Fulfill with a response” section, add the following text:

Where is your destination?

Figure 2-39 The traffic node details
38 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a child node for the traffic node
The #traffic intent requires additional processing, because the dialog needs to determine the
location to get the traffic information for. To handle this, create a location child node for the
traffic node:

1. In the dialog, click the traffic node.

2. Click the plus sign (+) next to the traffic node (Figure 2-40), to create a child node of the
traffic node.

Figure 2-40 Create a destination node

3. In the edit view (Figure 2-41 on page 40), add these details:

– Node name: destination
– In the “Triggered by if” section:

i. Start typing the word destination.
ii. From the list, select @destination, which is the destination entity you created

previously.

– In “Fulfill with a response” section, add the following text:

For what time do you need to know the traffic information
Chapter 2. Conversation service workspace 39

Figure 2-41 The destination node details

Create a fallback node for the destination node
Create a fallback node, in case the user did not enter valid input for the destination, which is
either the synonym of @destination.Home or @destination.Work.

Complete these steps:

1. Click the plus sign (+) next to the destination node to create a child node of the
destination node.

2. In the edit view (Figure 2-42 on page 41), add these details:

– Node name: anything_else
– In the “Triggered by if” section:

i. Start typing the word anything_else.
ii. From the list, select anything_else (create new condition).

– In “Fulfill with a response” section, add the following text:

I'm not trained for this destination. Please enter Home or Work only as a
destination.
40 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 2-42 The destination fallback node details

After the response is fulfilled, you need to repeat the destination question again to let the user
re-enter the destination. This can be done by using the Jump to function. You create a Jump
to response as follows:

1. Click the Jump to button at the bottom of the anything_else node you just created
(Figure 2-43).

Figure 2-43 The Jump to button
Chapter 2. Conversation service workspace 41

2. Click the node that you want the response to go to. In this case, it is the traffic node to ask
for the location again.

3. Select Go to response (Figure 2-44).

Figure 2-44 Go to response of traffic node

Create a child node for the destination node
After choosing the destination in the @destination entity, the dialog needs to know the time
for which to get traffic information. Therefore, you create a time child node for the destination
so the user can enter the time:

1. In the dialog, click the destination node.

2. Click the plus sign (+) next to the destination node (Figure 2-45) to create a child node of
the destination node.

Figure 2-45 Creating child of destination node
42 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. In the edit view (Figure 2-46), add these details:

– Node name: time
– In the “Triggered by if” section:

i. Start typing the word sys-time.
ii. From the list, select @sys-time, which is the system entity @sys-time that you

selected previously.

– In “Fulfill with a response” section, add two random responses (press Enter after you
add the first response):

• The traffic is low at this time
• The traffic is high at this time of the day

– Click the Set to random link, to make sure the dialog randomly selects a response.

Figure 2-46 The time node details
Chapter 2. Conversation service workspace 43

After the chatbot responds with the traffic information, the dialog goes to the goodbye node to
end the conversation.

To ensure that the dialog flows to the goodbye node, complete these steps:

1. On the time node, click the Jump to button (Figure 2-47).

Figure 2-47 Jump to the goodbye node

2. Select the goodbye node, then select Go to response.

Create a fallback node for the time node
As for the location node, create a fallback node for the time node so that the dialog can go to
it if the user did not enter a valid time.

Make the fallback node jump to a destination node response (Figure 2-48).

Figure 2-48 The time node fallback
44 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a branch to respond to the weather_inquiry intent
Complete the following steps:

1. In the dialog, click the traffic node.

2. Click the plus sign (+) at the bottom of the traffic node, to create a base node peer of the
traffic node.

3. In the edit view, add these details:

– Node name: weather
– In the “Triggered by if” section:

i. Start typing the word weather.
ii. From the list, select #weather_inquiry, which is the weather_inquiry intent you

created previously.

– In “Fulfill with a response” section, add the following text:

What's the city that you'd like to forecast the weather?

Figure 2-49 shows the weather node after creation.

Figure 2-49 weather dialog node

Create a child node for the weather node
The #weather_inquiry intent requires additional processing because the dialog needs to
determine the city in order to get the weather data for it. To handle this, create a city child
node for the weather node:

1. In the dialog, click the weather node.

2. Click the plus sign (+) next to the weather node, to create a child node of the weather
node.

3. In the edit view of the created node, add these details:

– Node name: city
– In the “Triggered by if” section:

i. Start typing the word city.
ii. From the list, select @city, which is the city entity you created previously.

– In “Fulfill with a response” section, add the following text:

[REPLACE WITH WEATHER DATA]
Chapter 2. Conversation service workspace 45

Figure 2-50 shows the city node after creation.

Figure 2-50 The city dialog node

After the chatbot responds with the weather data, the dialog goes to the goodbye node to end
the conversation

To ensure the dialog flows to the goodbye node, complete these steps:

1. On the city node, click the Jump to button.

2. Select the goodbye node, and then select Go to response.

Important: Do not provide a response here. In Chapter 6, “Chatting about the weather:
Integrating Weather Company Data with the Conversation service” on page 157, this part
will be integrated with the Weather Data Company service to get the weather information.
46 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create a fallback node for the city node
Create a fallback node for the city node, for the dialog to go to if the user did not specify the
NYC or Cairo cities.

Make the fallback node jump to the weather node response (Figure 2-51).

Figure 2-51 the city node fallback

Move the goodbye node to the bottom
Complete the following steps to move the goodbye node to the bottom of the weather node:

1. On the goodbye node, click the Move button (Figure 2-52).

Figure 2-52 Move dialog node
Chapter 2. Conversation service workspace 47

2. Select the weather node, then click the Move icon below it (Figure 2-53).

Figure 2-53 Moving goodbye node to the bottom of weather node
48 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The complete car chatbot dialog
This section acts as a checkpoint to make sure the dialog is created as it should be. The
following sections show the first level dialog nodes and the traffic and weather child nodes.

Base nodes
Figure 2-54 shows the base nodes created with the child nodes collapsed.

Figure 2-54 Base nodes in the dialog
Chapter 2. Conversation service workspace 49

The traffic child nodes
Figure 2-55 shows the traffic child nodes created with the fallback nodes collapsed.

Figure 2-55 The traffic child nodes

The weather child nodes
Figure 2-56 shows the weather child nodes created with the fallback nodes collapsed.

Figure 2-56 The weather child nodes
50 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Test the dialog
After creating the nodes of the dialog, test it to determine how it responds to user inputs:

1. From the Dialog tab, click the icon at the upper right corner of the page (Figure 2-57).

Figure 2-57 Test Dialog icon

2. Wait until the system finishes training your most recent changes before you start testing
the dialog. If the system is still training, a message appears at the top of the chat pane
(Figure 2-58).

Figure 2-58 Watson is training message

3. Start testing the dialog after the system finishes the training. Check the response to see if
the dialog correctly interpreted your input and chose the correct response.

The chat window indicates what intents and entities were recognized in the input.
Chapter 2. Conversation service workspace 51

Figure 2-59 shows the Car chatbot conversation dialog to get the traffic information.

Figure 2-59 Testing traffic conversation dialog

Figure 2-60 on page 53 shows the Car chatbot conversation dialog to get the weather
data.

Note: The weather response is now [REPLACE WITH WEATHER DATA]. In Chapter 6,
“Chatting about the weather: Integrating Weather Company Data with the Conversation
service” on page 157, the response will be replaced with the real-time weather after
integrating the Conversation service with the Weather Data Company service to
provide real-time weather data for the selected city.
52 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 2-60 Testing weather conversation dialog

As you continue to interact with the dialog, you can see how the conversation flows through
the dialog.

If you determine that the wrong intents or entities are being recognized, you might need to
modify your intent or entity definitions. If the correct intents and entities are being recognized,
but the wrong nodes are being triggered in your dialog, make sure your conditions are written
correctly.
Chapter 2. Conversation service workspace 53

2.2 Exporting the workspace

You created intents, entities, and the dialog in the previous sections of this chapter.

Now you can export the workspace to a JSON file with all intents, entities, and dialog. To do
this, click the Actions button (vertical dots) at the top right of the Workspaces box, and then
select Download as JSON (Figure 2-61).

Figure 2-61 Export workspace

A JSON file will be downloaded automatically.

2.3 References

Watch the following videos about the Watson Conversation service:

� Watson Conversation Service Overview:

https://www.youtube.com/watch?v=1rTl1WEbg5U

� IBM Watson Conversation: Working with intents:

https://www.youtube.com/watch?v=DmvN6ZJrZE4

� IBM Watson Conversation: Working with entities:

https://www.youtube.com/watch?v=oSNF-QCbuDc

� IBM Watson Conversation: Working with dialog:

https://www.youtube.com/watch?v=3HSaVfr3ty0

� IBM Watson Conversation: Working with Conditional Responses:

https://www.youtube.com/watch?v=KcvVQAsnhLM
54 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.youtube.com/watch?v=1rTl1WEbg5U
https://www.youtube.com/watch?v=DmvN6ZJrZE4
https://www.youtube.com/watch?v=oSNF-QCbuDc
https://www.youtube.com/watch?v=3HSaVfr3ty0
https://www.youtube.com/watch?v=KcvVQAsnhLM

Chapter 3. Cognitive Calculator chatbot

This chapter guides you through building the Cognitive Calculator chatbot sample application.
The app demonstrates the use of Watson Conversation service in creating a calculator
chatbot. The chatbot chats with the user in natural language, the Conversation service
determines the user request and the application performs simple calculations to respond to
the user.

The sample application demonstrates the integration of the Conversation service with a
Node.js application.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

3

© Copyright IBM Corp. 2017. All rights reserved. 55

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Create a Conversation service instance in IBM Bluemix.

� Create a Conversation workspace, add intents, entities, system entities, and a dialog for
the Cognitive Calculator chatbot application.

� Integrate the Watson Conversation service in a Node.js application to perform the
calculation functionality.

3.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

� Review Chapter 1, “Basics of Conversation service” on page 1, and Chapter 2,
“Conversation service workspace” on page 13

� Access to a web browser (Chrome, Firefox, or Internet Explorer)

� Basic JavaScript skills

� Understand Bluemix DevOps basics

� Understand Git basics

� Have a Bluemix account

� Have an account on GitHub

3.1.3 Expected results

Figure 3-1 on page 57 shows the simple Cognitive Calculator chatbot application:

1. The user starts the conversation with the addition operation.

2. The user tries to add two numbers but specifies only one number without specifying the
other number.

3. The chatbot application prompts the user to specify two numbers to be able to perform the
addition operation.

4. The user specifies the two numbers to add.

5. The application adds the two numbers and returns the result to the user.

6. The user then wants to multiply two numbers.

7. The chatbot prompts the user to enter the numbers to multiply.

8. The user requests a subtraction operation which the chatbot application does not
understand.
56 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 3-1 Cognitive Calculator chatbot
Chapter 3. Cognitive Calculator chatbot 57

3.2 Architecture

Figure 3-2 shows the components and runtime flow of the application.

Figure 3-2 Architecture

The figure describes these steps:

1. In a web browser, the user engages in a conversation with the Cognitive Calculator
chatbot application, requesting a simple calculation operation, such as I'd like to
calculate the addition of 3 and 5.

2. The request is passed from the web browser to the chatbot application that runs on
Node.js.

3. The application passes the request to the Conversation service.

4. The Conversation service understands the intent and entities passed by the application.
For the user request I'd like to calculate the addition of 3 and 5, the intent is
addition and the entities are 3 and 5. Then, it returns a response to the application based
on the dialog built in the workspace associated with Conversation service instance. It
returns a response (The result of calculating the two numbers is _result_. What
else would you like to do (addition or multiplication)?) and the entities to the
calling chatbot application.

5. The chatbot Node.js application adds the two entities returned from the Conversation
service, replaces the _result_ with the calculation results and sends the response to the
web browser.

6. The user sees the response on the web browser: The result of calculating the two
numbers is _result_. What else would you like to do (addition or
multiplication)?
58 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 3.4, “Step-by-step implementation” on page 59. This version takes you through
the key steps to integrate the IBM Watson APIs with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 3.5,
“Quick deployment of application” on page 107.

3.4 Step-by-step implementation

Implementing this use case involves the following steps:

1. Downloading the project from the Git repository.

2. Configuring the Conversation workspace for the Cognitive Calculator chatbot.

3. Developing the Cognitive Calculator chatbot application.

4. Testing the application.

3.4.1 Downloading the project from the Git repository

The version of the repository that you use in these steps includes the incomplete version of
the application code. You will follow the steps to complete the code.

Download the code from GitHub:

https://github.com/watson-developer-cloud/conversation-simple

3.4.2 Configuring the Conversation workspace for the Cognitive Calculator
chatbot

This section guides you through creating the Calculator Conversation workspace for the
Cognitive Calculator chatbot, and developing the relevant intents, entities, and dialog that are
specific to the application. It also shows you how to test the conversation flow.

Complete these steps:

1. Log in to Bluemix.

2. On the Bluemix Dashboard, click the Conversation service instance that you created in
2.1.1, “Creating a Watson Conversation service instance” on page 14, which is listed
under Services (Figure 3-3 on page 60).
Chapter 3. Cognitive Calculator chatbot 59

https://github.com/watson-developer-cloud/conversation-simple

Figure 3-3 Conversation service instance

3. Click Launch tool (Figure 3-4) to open the Conversation tool.

Figure 3-4 Launch Conversation tool
60 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4. On the Watson Conversation dashboard, click Create to create a workspace (Figure 3-5).

Figure 3-5 Watson Conversation Dashboard

5. In the Create a workspace window (Figure 3-6 on page 62), enter the following information
and then click Create:

– Name: Calculator

– Description: Calculator Conversation workspace that allows addition and
multiplication operations using Natural Language.

– Language: English (U.S.)
Chapter 3. Cognitive Calculator chatbot 61

Figure 3-6 Create the Calculator workspace

6. Get the Workspace ID so that you can configure your application to point to this
workspace in step 1 on page 91:

a. Click the three horizontal bars at the top-left corner (Figure 3-7).

Figure 3-7 Calculator workspace
62 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

b. Click Back to workspaces (Figure 3-8).

Figure 3-8 Calculator Conversation workspace

c. Click the three vertical dots at the top right of the Calculator box and then select View
details (Figure 3-9).

Figure 3-9 Calculator workspace menu
Chapter 3. Cognitive Calculator chatbot 63

d. Copy the Workspace ID value and save it in a local text file (Figure 3-10). You will use
the value of the Workspace ID in step 1 on page 91.

Figure 3-10 Workspace ID

Add intents
For the Conversation service to be able to understand the goal or purpose of the user’s input
in natural language, you must train the workspace with some examples for each intent. You
will create an intent for the addition operation functionality and another intent for the
multiplication operation functionality. Although you are required to train the workspace by
providing a minimum of five examples of user input for each intent, to improve the accuracy,
you should provide more than five examples.

The steps in this section describe how you create the intents that are listed in Table 3-1.

Table 3-1 Intents to be created for the Calculator chatbot use case

Intent Description

#add_operation Identifies that the user wants to perform an addition operation.
User examples:
� Add
� Addition
� Add Operation
� Sum
� Summation

#multiply_operation Identifies that the user wants to perform a multiplication operation.
User examples:
� Multiply
� Multiplication
� Multiply Operation
� I have two numbers and I'd like to multiply them
� Please help me multiply two numbers.
64 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

#add Identifies that the user provided two operands and wants to calculate
the result of adding them.
User examples:
� 3+2
� 42534+52
� calculate 4+6
� five plus six equals?
� I’d like to add 3 and 4
� tell me the results of adding eight and two
� three plus eleven
� what's the result of adding ten to fifteen?
� what's the sum of 1 and 5?

#add_missing_number Identifies that the user provided only one operand for the addition.
User examples:
� 3+
� calculate 4+
� calculate adding 76
� I'd like to add 8
� what's the sum of 2?
� would you please calculate adding six to the result?

#multiply Identifies that the user provided two operands and wants to calculate
the result of multiplying them.
User examples:
� 2 * 6
� 2 X 5
� 3*5
� 3x1
� 5*53
� 5 multiply 7 equals?
� 6*8
� 9X2
� 9 x 5
� calculate 69*54
� tell me the results of multiplying four and seven
� twenty multiply thirty

#multiply_missing_number Identifies that the user provided only one operand for the
multiplication.
User examples:
� 2X
� 3*
� 5x
� 9 x
� multiply 6

Intent Description
Chapter 3. Cognitive Calculator chatbot 65

Figure 3-11 shows a conversation between the user and the Calculator chatbot application,
and shows how the Conversation service maps the user input in natural language to the
corresponding intent configured in the Conversation workspace.

Figure 3-11 Cognitive Calculator chatbot showing intents extracted from the user input
66 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

To add the intents that are listed in Table 3-1 on page 64 to the Calculator workspace, follow
these steps:

1. Open the Calculator workspace (Figure 3-12).

Figure 3-12 Conversation Workspaces

2. At the start of the conversation, the user specifies the mathematical operation to be
performed, addition or multiplication, (Figure 3-13).

Figure 3-13 Calculator chatbot

Create the intents that will enable the Conversation service to interpret the user input:

a. Create an intent for the addition operation capability:

i. Click Create new to create new intent (Figure 3-14 on page 68).
Chapter 3. Cognitive Calculator chatbot 67

Figure 3-14 Create #add_operation intent (1 of 3)

i. Type add_operation in the Intent name field (Figure 3-15).

Figure 3-15 Create #add_operation intent (2 of 3)
68 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

ii. Add a minimum of five user examples for this intent (Figure 3-16), then click Create.

Figure 3-16 Create #add_operation intent: user examples (3 of 3)
Chapter 3. Cognitive Calculator chatbot 69

b. Create a multiply_operation intent for the multiplication operation capability and
provide user examples (Figure 3-17).

Figure 3-17 Create #multiply_operation intent with user examples

3. After the user requests the operation to be performed, the user specifies the actual
addition or multiplication calculation. The Conversation service must be able to identify the
intent of the user for addition or multiplication. The service must also be able to identify
whether the user provides only one operand and respond accordingly.
70 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

So that the Conversation service can understand user inputs, create add, multiply,
add_missing_number, and multiply_missing_number intents:

a. Create the add intent with the user examples (Figure 3-18).

Figure 3-18 Create #add intent and user examples
Chapter 3. Cognitive Calculator chatbot 71

b. Create add_missing_number intent with the user examples (Figure 3-19).

Figure 3-19 Create #add_missing_number intent with user examples
72 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

c. Create the multiply intent with the user examples (Figure 3-20).

Figure 3-20 Create #multiply intent with user examples

d. Create the multiply_missing_number intent with the user examples (Figure 3-21).

Figure 3-21 Create #multiply_missing_number intent with user examples
Chapter 3. Cognitive Calculator chatbot 73

Now, you have all the intents needed for the Cognitive Calculator chatbot (Figure 3-22).

Figure 3-22 Calculator workspace intents
74 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Add entities
You want the service to identify the operands of the addition and multiplication operations.
The operands are numbers written as either digits (3, 64, 873, and so on) or text (one, two,
eighty-seven, and so on). Use an available system entity that identifies the numbers:

1. Click Entities on the top toolbar (Figure 3-23).

Figure 3-23 Calculator workspace: Adding entities
Chapter 3. Cognitive Calculator chatbot 75

2. Click System entities (Figure 3-24).

Figure 3-24 System entities
76 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Switch the off toggle to the on position beside @sys-number to enable this system entity
(Figure 3-25).

Figure 3-25 System entities: Enable @sys-number
Chapter 3. Cognitive Calculator chatbot 77

Create the dialog
Follow these steps:

1. Click Dialog in the top toolbar and click Create to create the dialog (Figure 3-26).

Figure 3-26 Dialog
78 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

A default node is created (Figure 3-27).

Figure 3-27 Dialog default base node
Chapter 3. Cognitive Calculator chatbot 79

2. Under Triggered by, begin typing conversation_start and then select
conversation_start (create_new condition), as shown in Figure 3-28.

Figure 3-28 The conversation_start condition
80 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Write the response that you want the chatbot to provide and then press Enter
(Figure 3-29). In this case, you might want the chatbot to respond with this greeting:
Hi, Welcome to Watson Calculator. What would like to calculate today (addition
or multiplication)?.

Figure 3-29 The conversation_start response
Chapter 3. Cognitive Calculator chatbot 81

4. Click the plus sign (+) to create a new node (Figure 3-30).

Figure 3-30 Create a new node
82 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. This node will be triggered when the user input is recognized as the #add_operation intent
(Figure 3-31).

Specify this information and then press Enter:

a. Under Triggered by, start typing #add_operation and then select it from the
autocomplete text box.

b. Under Add response condition, type What would you like to add?

Figure 3-31 The add_operation node

6. Click the plus sign (+) on the right side of the node that you just created (see
#add_operation Figure 3-31) to continue building the flow of the conversation.

7. This node will be triggered when the user input is recognized as an #add intent
(Figure 3-32 on page 84).

Specify this information and then press Enter:

a. Under Triggered by, type #add.

b. You can let the Conversation service return various responses. Under Add response
condition, provide the following responses. The _result_ text is a placeholder that you
will replace with the actual result after developing the application logic in the Node.js
application.

i. The result of calculating the two numbers is _result_. What else would you
like to do (addition or multiplication)?

ii. The result is _result_. What else would you like to do (addition or
multiplication)?

iii. I've added the two numbers for you;) The result is _result_. What else
would you like to do (addition or multiplication)?
Chapter 3. Cognitive Calculator chatbot 83

Figure 3-32 The add node

8. Click the plus sign (+) at the bottom of the node that you just created to create an
alternative conversation.

9. This node will be triggered when the user input is recognized as an #add_missing_number
intent (Figure 3-33).

Specify this information and then press Enter:

a. Under Triggered by, type #add_missing_number.

b. Under Add response condition, enter Please specify the two numbers.

Figure 3-33 The add_missing_number node
84 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

10.In case of a missing number, the chatbot should return to the user the response What
would you like to add? Then, allow the user to try again. To accomplish this, click the
Jump to icon in the node (Figure 3-34).

Figure 3-34 Click Jump to icon

11.Click the #add_operation node and then click Go to response (Figure 3-35).

Figure 3-35 Go to another node response
Chapter 3. Cognitive Calculator chatbot 85

12.Similarly create the nodes to handle the multiplication conversation flow (Figure 3-36).

Figure 3-36 Multiplication conversation flow
86 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

13.Edit the response in the anything_else node (Figure 3-37) to be:

I can't understand what you say. You can say things like "addition" or
"multiplication".

Figure 3-37 The anything_else node
Chapter 3. Cognitive Calculator chatbot 87

Test the conversation flow
Follow these steps:

1. Click the Ask Watson icon at the top right (Figure 3-38).

Figure 3-38 Calculator Conversation workspace
88 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Test the dialog. For each user input, the Conversation service analyzes intents and entities
and responds according to the conversation flow in the dialog (Figure 3-39).

Figure 3-39 Testing the dialog
Chapter 3. Cognitive Calculator chatbot 89

3.4.3 Developing the Cognitive Calculator chatbot application

This section shows how to develop the Cognitive Calculator chatbot application that
integrates with the Conversation service in Node.js.

Create a Node.js application on Bluemix
Follow these steps:

1. From the Bluemix dashboard, click Create App.

2. From the Cloud Foundry Apps section, click SDK for Node.js.

3. In the Create a Cloud Foundry App window (Figure 3-40) enter the following information,
and then click Create:

– App name: conv-201-xxx-calc
– Host name: conv-201-xxx-calc

Replace xxx with a random value; the host name of the application must be unique.

Figure 3-40 Create Node.js application

Stop: Wait until the application is started to proceed. The application status should
indicate Running, as shown in Figure 3-41 on page 91.
90 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Configure the application
Follow these steps:

1. Configure the application environment variables. Add the WORKSPACE_ID environment
variable with the Workspace ID of your Calculator Conversation workspace (Figure 3-41):

a. Click Runtime on the left navigation bar.
b. Click the Environment variables tab.
c. Click Add.
d. For the name, specify WORKSPACE_ID.
e. For the value, specify the Workspace ID value that you copied in step 6 on page 62.
f. Click Save.

Figure 3-41 Adding WORKSPACE_ID as environment variable

2. Bind the Conversation service to your application (Figure 3-42 on page 92):

a. Click Connections from the left toolbar.
b. Click Connect existing.
c. Click Conversation.
d. Click Connect.

Stop: Wait until the application is restaged before you continue.
Chapter 3. Cognitive Calculator chatbot 91

Figure 3-42 Connect existing service

e. Click Restage to make the service available for use by the application (Figure 3-43).

Figure 3-43 Restage application

Stop: Wait until the restaging is completed and the application is in a running state before
you continue.
92 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Clone the Conversation sample application
In the next steps, you clone a sample Node.js application, which is a simple chatbot, to your
Bluemix workspace.

1. Click Overview in the left navigation toolbar (Figure 3-44).

2. Scroll to the Continuous delivery panel, on the right, and click Enable.

This enables the continuous delivery toolchain. With it, you can automate builds, tests, and
deployments through the Delivery Pipeline, GitHub, and more.

Figure 3-44 Application overview
Chapter 3. Cognitive Calculator chatbot 93

3. A new tab opens (Figure 3-45):

a. Scroll to Configurable Integrations and click GitHub.

b. Keep the repository type as Clone.

c. Keep the default new repository name.

d. For the Source repository URL, specify this GitHub repository URL:

https://github.com/watson-developer-cloud/conversation-simple

e. Click Create.

Figure 3-45 GitHub configurations
94 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple

Edit the application code
In this section, you edit the code to implement the calculation functionality:

1. In the Toolchains window, click Eclipse Orion Web IDE (Figure 3-46).

Figure 3-46 Toolchains window: Click Eclipse Orion Web IDE
Chapter 3. Cognitive Calculator chatbot 95

2. Update the manifest.yml file with the host name and service name (Figure 3-47):

a. In the list of files on the left, click the manifest.yml file.

Figure 3-47 The manifest.yml file before update
96 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

b. In the manifest.yml file shown in Figure 3-48, update this information:

• Update the Conversation service to match the name of the Conversation service
instance created in 2.1.1, “Creating a Watson Conversation service instance” on
page 14. To do this, replace my-conversation-service in line 3 and line 13 by
Conversation.

• Update the application name to match the name of your application. To do this,
update line 7 to conv-201-xxx-calc (where xxx is the value that you used to make
your application and host names unique in step 3 on page 90).

• Increase the memory to 512M, by updating line 10.

Figure 3-48 The manifest.yml file after the update
Chapter 3. Cognitive Calculator chatbot 97

3. Edit app.js to perform the calculation and update the response received from the
Conversation service with the calculation results based on the intents and entities:

a. From the list of files on the left, click the app.js file.

b. Add function getCalculationResult (Example 3-1) before the last line in the code,
which is (module.exports = app) as shown in Figure 3-49 on page 99. This function
performs the calculation and updates the response text.

Example 3-1 Get calculation result function

/**
 * Get the operands, perform the calculation and update the response text based on the
* calculation.

 * @param {Object} response The response from the Conversation service
 * @return {Object} The response with the updated message
 */
function getCalculationResult(response){

//An array holding the operands
var numbersArr = [];

//Fill the content of the array with the entities of type 'sys-number'
for (var i = 0; i < response.entities.length; i++) {

if (response.entities[i].entity === 'sys-number') {
numbersArr.push(response.entities[i].value);

}
}

// In case the user intent is add, perform the addition
// In case the intent is multiply, perform the multiplication
var result = 0;
if (response.intents[0].intent === 'add') {

result = parseInt(numbersArr[0]) + parseInt(numbersArr[1]);
} else if (response.intents[0].intent === 'multiply') {

result = parseInt(numbersArr[0]) * parseInt(numbersArr[1]);
}

// Replace _result_ in Conversation Service response, with the actual calculated result
var output = response.output.text[0];
output = output.replace('_result_', result);
response.output.text[0] = output;

// Return the updated response text based on the calculation
return response;

}

98 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 3-49 shows the result of adding the getCalculationResult function to the app.js file.

Figure 3-49 The app.js file after adding the getCalculationResult function

c. Call the getCalculationResult function (Example 3-2) on line 76 (Figure 3-50 on
page 100).

Example 3-2 Check intent

// Check if the intent returned from Conversation service is add or multiply,
// perform the calculation and update the response
if (response.intents.length > 0 && (response.intents[0].intent === 'add' ||
response.intents[0].intent === 'multiply')) {

response = getCalculationResult(response);
}

Chapter 3. Cognitive Calculator chatbot 99

Figure 3-50 shows calling getCalculationResult on line 76.

Figure 3-50 Calling getCalculationResult

Push the changes to Git
Follow these steps:

1. Click the Git icon on the left toolbar (Figure 3-51).

Figure 3-51 Click the Git icon in the IBM Bluemix DevOps page

2. Enter any descriptive commit message (such as Edit the application logic to perform
the calculation functionality), and click Commit (Figure 3-52 on page 101).
100 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 3-52 DevOps Git: Commit changes

3. Click Push to push your committed changes to the remote branch (Figure 3-53).

Figure 3-53 DevOps Git: Push changes to remote branch
Chapter 3. Cognitive Calculator chatbot 101

4. Return to the Toolchains tab, and click on Delivery Pipeline (Figure 3-54).

Figure 3-54 Toolchains: Select Delivery Pipeline
102 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Wait until the build and deploy stages are completed (Figure 3-55). When they are
completed, and with no errors, your application is ready to be tested.

Figure 3-55 Delivery Pipeline: Build Stage and Deploy Stage

Stop: Wait until the build and deploy stages are completed before testing.
Chapter 3. Cognitive Calculator chatbot 103

3.4.4 Testing the application

Follow these steps:

1. Open your application route (the URL to access your application) in a web browser with
the following address, where xxx is the value that you added in step 3 on page 90 to make
your application name unique (Figure 3-56):

http://conv-201-xxx-calc.mybluemix.net/

Figure 3-56 Calculator chatbot application
104 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Test the addition and multiplication functionalities by chatting with the application
(Figure 3-57).

Figure 3-57 Multiplication test on the Cognitive Calculator chatbot
Chapter 3. Cognitive Calculator chatbot 105

3. Try various scenarios and identify those for which the application fails to respond
appropriately. Failing to respond correctly means that more training is needed. Training is
performed by adding more user examples to the intents in the Calculator Conversation
workspace (Figure 3-58).

Figure 3-58 Various scenarios in the Cognitive Calculator chatbot shows that the intents need more training
106 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3.5 Quick deployment of application

A second GIT repository is provided so that you can build and deploy the full Cognitive
Calculator chatbot even if you did not perform the steps described in 3.4, “Step-by-step
implementation” on page 59. This section is independent from the rest of the chapter and it
contains instructions to run the application more quickly.

You can find the full version of the application in the following Git repository:

https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

The file calculator_workspace.json includes the Calculator workspace created in this
chapter and is at this GitHub location:

https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training
/calculator_workspace.json

Use the following steps to quickly deploy the full application:

1. Click Deploy this application to Bluemix at the following web page:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-calc-nodejs

2. Import the Calculator workspace into your Conversation service. For information on
importing a Conversation workspace see “Import a workspace” on page 20.

3. Follow the steps in “Configure the application” on page 91 to configure your application to
point to the Calculator workspace.

4. Test the application as described in 3.4.4, “Testing the application” on page 104.

3.6 References

For helpful information, see the following resources:

� Explore other sample applications to understand the types of apps you can develop with
the Conversation service:

https://www.ibm.com/watson/developercloud/doc/conversation/sample-applications.
html

� See the README.md file in the incomplete GitHub repository of the application:

https://github.com/watson-developer-cloud/conversation-simple
Chapter 3. Cognitive Calculator chatbot 107

https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-calc-nodejs
https://www.ibm.com/watson/developercloud/doc/conversation/sample-applications.html
https://github.com/watson-developer-cloud/conversation-simple
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

108 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Chapter 4. Help Desk Assistant chatbot

This chapter describes how to create a chatbot application quickly without coding and
integrate it with the Watson Conversation service. For this use case example, you create a
Help Desk Assistant chatbot, however you can customize the chatbot to take any other role
such as delivery service, Q&A, student assistant, and more.

To create the chatbot application, you use the Node-RED programming tool. With this
powerful tool you can create, edit, and deploy applications quickly. Node-RED is a
programming tool for wiring together hardware devices, APIs and online services in new and
interesting ways. It provides a browser-based editor that makes it easy to wire together flows
using the wide range of nodes in the palette that can be deployed to its runtime in a
single-click.

Node-RED, created by IBM but now part of JS Foundation, provides full integration with
Watson APIs, allowing you to make great applications quickly and easy.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� Next steps
� References

4

© Copyright IBM Corp. 2017. All rights reserved. 109

https://js.foundation/
https://nodered.org/

4.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Understand the basics of Node-RED.
� Configure a conversation workspace with intents, entities and dialog.
� Create a Node-RED application and integrate the Watson Conversation service in the

application.
� Configure a Slack chatbot to call your Node-RED application.

4.1.2 Prerequisites

To complete the steps in this chapter, be sure you have these prerequisites:

� Access to a Bluemix account
� Basic knowledge of Bluemix
� Basic knowledge of the IBM Watson Conversation service
� Access to a Slack account (you can create a free account at www.slack.com)

Also be sure you completed the previous chapters in this book.

4.1.3 Expected results

Figure 4-1 shows the Help Desk Assistant chatbot application interface during a conversation
in Slack. Although this chatbot uses Slack, consider that the chatbot can be also integrated
with other chat services such as Facebook Messenger.

Figure 4-1 Help Desk Assistant chatbot interface
110 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.2 Architecture

Figure 4-2 shows the components of the application.

Figure 4-2 Architecture

Notice that the flow shown in the figure represents one loop of a conversation, therefore this
cycle repeats several times during a conversation:

1. The user sends a message to the web front-end (chat service).

2. The chat service (for example, Slack, Facebook Messenger, web app) determines whether
the message is for the Help Desk Assistant chatbot application. If the message is for the
chatbot, then the chat service sends the message to your chatbot application
(Node-RED).

3. Your application parses the message and sends the filtered message to the Watson
Conversation service for processing.

4. The Watson Conversation service processes the message and provides a response.

5. The response is received and filtered by your application, which then sends the response
to the chat service.

6. The chat service identifies that the inputs are from the Help Desk Assistant chatbot and
presents the message as a response from the chatbot to the user.

Public network Bluemix network

User

2

5

Request to Node-RED chatbot app

Response to chat service

1

6

User input to web front-end

Present response on user web front-end

Chat service
Chatbot application

R
eq

ue
st

 to
C

on
ve

rs
at

io
n

se
rv

ic
e

R
es

po
ns

e
to

 N
od

e-
R

ED
 c

ha
tb

ot
ap

p

4 3

Watson
Conversation service
Chapter 4. Help Desk Assistant chatbot 111

4.2.1 Project structure

These are the components you use in this use case:

� A Node-RED instance that is created in Bluemix, which is cloud-based, so installing
software is not necessary

� A Watson Conversation service instance

� A team space in Slack, which is the cloud collaboration tool that provides the chat service
in this use case

4.3 Two ways to deploy the application: Step-by-step and quick
deploy

These are the two ways to experience this use case:

� Step-by-step implementation

This approach takes you through the key steps to integrate the IBM Watson Conversation
service with the application logic. All sections of 4.4, “Step-by-step implementation” on
page 112 take you through step-by-step deployment.

� Quick deployment

A Git repository is provided with a version of the Node-RED application. You only need to
perform the required steps to customize the application for your specific Conversation
service instance and Slack team. This approach is explained in 4.5, “Quick deployment of
application” on page 136.

4.4 Step-by-step implementation

Implementing this use case involves the following steps:

1. Creating a new Conversation workspace
2. Adding intents
3. Adding entities
4. Creating the dialog
5. Testing the dialog
6. Creating the Help Desk Assistant chatbot application in Node-RED
7. Setting up the chat service (Slack)
112 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.1 Creating a new Conversation workspace

Complete the following steps:

1. Log in to Bluemix and open the Dashboard.

2. Find the Watson service instance created in 2.1.1, “Creating a Watson Conversation
service instance” on page 14 and click to open it (Figure 4-3).

Figure 4-3 Access the Conversation service instance

3. Click Launch tool to access your Conversation workspaces (Figure 4-4).

Figure 4-4 Launch Conversation service tool

4. Previously created workspaces are listed (Figure 4-5). However, for this app you need a
new workspace, so click Create.

Figure 4-5 Watson Conversation workspaces
Chapter 4. Help Desk Assistant chatbot 113

5. Add a name and description and click Create (Figure 4-6).

Figure 4-6 Create a workspace

The new Conversation workspace is created (Figure 4-7).

Figure 4-7 Watson Conversation workspace

For more information about creating Conversation workspaces, see 2.1.1, “Creating a Watson
Conversation service instance” on page 14.
114 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.2 Adding intents

In this section, you add intents to the Chatbot workspace. The intents should be appropriate
for the Help Desk Assistant chatbot. For more information about adding intents to a
Conversation workspace, see 2.1.4, “Adding intents” on page 23.

Add the four intents that are shown in Figure 4-8 through Figure 4-11 on page 116.

Figure 4-8 Add #Software-Issues intent (part 1 of 4)

Figure 4-9 Add #Hardware-Issues intent (part 2 of 4)
Chapter 4. Help Desk Assistant chatbot 115

Figure 4-10 Add #Hello intent (part 3 of 4)

Figure 4-11 Add #Affirmative intents (part 4 of 4)

Those intents are enough for this example; however, you can create as many as you want.
Some examples include OutOfScope (for incomprehensible user input), Bye (to close the
conversation), and others.
116 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.3 Adding entities

In this section, you add entities to the Chatbot workspace. The entities should be appropriate
for the Help Desk Assistant chatbot. For more information about adding entities to a
Conversation workspace, see 2.1.5, “Adding entities” on page 27.

Select Entities and create the four entities that are shown in Figure 4-12 through Figure 4-15
on page 118.

Figure 4-12 Add @Security entity (part 1 of 4)

Figure 4-13 Add @OS entity (part 2 of 4)
Chapter 4. Help Desk Assistant chatbot 117

Figure 4-14 Add @Printers entity (part 3 of 4)

Figure 4-15 Add @Brands entity (part 4 of 4)
118 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4.4.4 Creating the dialog

In this section, you build the Conversation dialog for the Help Desk Assistant chatbot by using
the intents and entities created in the previous sections. For more information about building a
dialog, see 2.1.6, “Building a dialog” on page 30.

Complete the following steps:

1. Select Dialog and create the base node Hello as shown in Figure 4-16.

Figure 4-16 Create the dialog: base node Hello (part 1 of 4)

2. Create the dialog branch shown in Figure 4-17 with the following nodes:

– Hardware Issues (parent)
– Affirmative HW (child of Hardware Issues)
– HW Brands (child of Affirmative HW)

Figure 4-17 Adding Hardware Issues, Affirmative HW, and HW Brands nodes (part 2 of 4)
Chapter 4. Help Desk Assistant chatbot 119

3. In the HW Brands node, create a response for each example in the @Brands entity (Acer,
Asus, HP, Toshiba, Apple, Lenovo, and so on):

a. Click the HW Brands node and then click Add response condition (Figure 4-18).

Figure 4-18 Add response condition (part 3 of 4)

b. Enter the appropriate response for each example in the @Brands entity (Figure 4-19).

Figure 4-19 Adding a response if brand is Acer part 4 of 4)
120 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 4-20 shows the dialog branch built in this example for hardware issues.

Figure 4-20 Dialog branch for hardware issues

4. Repeat the process described in step 2 on page 119 and step 3 on page 120 for software
issues. In the OS node, create a response for each example in the @OS entity (HPUX,
Red Hat, Linux, Windows, UNIX, and so on).

Figure 4-21 Dialog branch for software issues
Chapter 4. Help Desk Assistant chatbot 121

4.4.5 Testing the dialog

To test the dialog, first click the Ask Watson icon (upper right corner).

The Chatbot panel opens (Figure 4-22). Interact with the chatbot by asking questions to test
the responses.

Figure 4-22 Test the dialog

4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED

Node-RED is a useful tool to create applications without having to write code. Instead, it uses
simple visual components that you configure and connect.

To make this task even easier, you do not need to install Node-RED, because it is available in
Bluemix. In this section, you create a Node-RED application and configure the flow:

� Create the Node-RED application in Bluemix
� Create the Help Desk Assistant chatbot application flow with the Node-RED flow editor
� Configure the Help Desk Assistant chatbot application in Node-RED
122 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create the Node-RED application in Bluemix
Complete the following steps:

1. Go to the Bluemix catalog.

2. In the catalog, go to Apps → Boilerplates and click Node-RED Starter (Figure 4-23).

Figure 4-23 Node-RED Starter app in Bluemix

3. Enter the name of your application and host as conv-201-xxx-nodered. Replace xxx with
any random key because the host name of the application must be unique (Figure 4-24).
Accept the default values for the remaining fields and click Create.

Figure 4-24 Creating a Node-RED application instance

Note: Wait until the application is created and it is started. The application status
should be Running before you can proceed.
Chapter 4. Help Desk Assistant chatbot 123

4. While you are waiting for the status to change to Running (with a green dot as shown
Figure 4-26), read through the Start coding with Node-RED information displayed on the
page. Also, be sure to record the link to your application (Figure 4-25) because you will
need it during the Slack configuration.

Figure 4-25 The link to your Bluemix application

5. After the application starts, click the route URL (highlighted in Figure 4-26).

Figure 4-26 Launch your Node-RED instance

The window shown in Figure 4-27 on page 125 opens. The Node-RED starter application
is created.
124 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Create the Help Desk Assistant chatbot application flow with the
Node-RED flow editor
Now you can start to create flows. You use the Node-RED flow editor to add nodes and
values and create and wire (connect) the flows:

1. Click Go to your Node-RED flow editor (Figure 4-27).

Figure 4-27 Open the Node-RED flow editor

Note: When you first run this application you are presented with some options to
secure the Node-RED flow editor with a username and password. Securing the editor is
optional but it is a good practice to do so. Skip through optional windows for this
example until you get to the window shown in Figure 4-27.
Chapter 4. Help Desk Assistant chatbot 125

The Node-RED flow editor opens (Figure 4-28). The panel on the left shows a palette of
nodes. You can drag nodes to the workspace and connect them together (wire them) to
create an application. After dragging a node to a workspace, you can double-click the
node to open the Edit (configuration) dialog to provide values for the node.

Figure 4-28 Node-RED flow editor workspace

2. In the next steps, drag the following nodes to the workspace, add values as shown in the
figures of each step, and then click Done:

a. http input node (Figure 4-29 on page 127): This node will receive the text that the user
submits to the Help Desk Assistant chatbot. Edit the node and add these values:

• Method is the method used to receive the data, POST in this example.

• URL is the last part of the URL (the first part is the route to the Node-RED application
as shown in Figure 4-25 on page 124). Enter /watson-chatbot for this example. You
can customize this value as desired. Just remember that it should always start with
a forward slash character (/).

• Name is the node name (optional)

Remember: You will use this value later in step 8 on page 134, so remember it
or keep a record of it.
126 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 4-29 Edit http in node

b. debug node (Figure 4-30): This node displays the message info (for example, Slack
user_id, token, and text) received from Slack. You configure and integrate Slack
components later in the chapter. In fact, every time that a user submits text to the Help
Desk Assistant chatbot, you can see the information received on the debug panel (at
the right of the window). This data is important for troubleshooting and analysis of the
flow.

Figure 4-30 Edit debug node

c. switch node (Figure 4-31 on page 128): This node is a filter to avoid unauthorized
users from using the chatbot.

Add two rules as shown in Figure 4-31 on page 128 which will create two outputs on
the node. The token to be pasted in the rule will be created and copied in steps 15 on
page 136 and 16 on page 136.

This node routes messages based on the value of the payload. When a message
arrives, this node checks the value of the Slack token (contained in payload.token)
against the values configured in this node. If a match is found then the flow goes to the
first output (to continue the flow), otherwise the flow goes to the second output (to exit
the flow).
Chapter 4. Help Desk Assistant chatbot 127

Figure 4-31 Edit switch node

d. function node (Figure 4-32): This is the first function node you use. Every time a user
sends a question to the Help Desk Assistant chatbot, some metadata will be submitted
with the text, so this function filters the data to send only the user text to the
Conversation service. This example queries just the text from the payload. Be sure you
enter the same information as shown in the figure.

Figure 4-32 Edit function node, 1
128 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

e. conversation node (Figure 4-33): Here you add the Conversation service and
interconnect it to your chatbot application. Before you can edit the conversation node,
you must gather the credentials and workspace ID as described in the steps after
Figure 4-33 (steps i through vi on page 130).

Figure 4-33 Edit conversation node

Gather the information needed to fill out the values in the conversation node:

i. In another window, open the Bluemix Dashboard, find the Conversation service
instance you created in 2.1.1, “Creating a Watson Conversation service instance”
on page 14 and click to open it (shown in Figure 4-3 on page 113).

ii. Select Service Credentials and click View Credentials (Figure 4-34). If you do not
yet have any listed credentials, click New Credential to create one.

Figure 4-34 Watson Conversation credentials

iii. Copy the Username and Password values and paste them in the Node-RED
conversation node, as shown in the Edit conversation node window (Figure 4-33).

iv. Click the Manage tab and click Launch tool to open the Conversation workspace.

v. Find the Chatbot workspace, click the three vertical dots icon (upper right corner as
shown in Figure 4-35 on page 130) and select View details.
Chapter 4. Help Desk Assistant chatbot 129

Figure 4-35 Click View details to find the Watson Conversation workspace ID

vi. From the details, copy the Workspace ID and paste it in the Node-RED
conversation node, as shown in the Edit conversation node window (Figure 4-33 on
page 129).

f. function node (Figure 4-36): This is the second function. It will filter all the output from
the Conversation service and send only the response in the format needed.

Add the values shown in Figure 4-36 (the end of line 1 (+ " ") was added for formatting
purposes).

Figure 4-36 Edit function node, 2
130 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

g. http response node (Figure 4-37): This node takes the response from the Conversion
service and sends it back to the chat service (Slack). Add two instances of this node
(one for each flow). The configuration for both nodes is the same as shown in
Figure 4-37.

Figure 4-37 Edit http response node

Configure the Help Desk Assistant chatbot application in Node-RED
Now you can connect and configure all the nodes that you dragged to the Node-RED
workspace.

Connect the modules (Figure 4-38). To connect each module, click the small grey connector
on the edge of the node and drag it to the desired node.

Figure 4-38 Connecting the required nodes for the application

To run your Node-RED application, click Deploy at the top right of the window.

4.4.7 Setting up the chat service (Slack)

As described in the architecture of this use case (4.2, “Architecture” on page 111), the chat
service (for example, Slack, Facebook Messenger, web app) determines whether the input
message from the user is for the Help Desk Assistant chatbot application. If the message is
for the chatbot, then the chat service sends the message to your Node-RED application.
Chapter 4. Help Desk Assistant chatbot 131

This use case uses Slack as an example of a front-end chat service. To configure Slack to
work with your Node-RED application, complete the following steps:

1. Sign in to Slack and create a new Slack team if you do not have a team.

2. After you sign in, go to the top of the left panel and click under your room name, and then
click Apps & integrations (Figure 4-39).

Figure 4-39 The Apps & integrations link

3. At the upper right corner, click Build (Figure 4-40).

Figure 4-40 Access to build the integration

4. Click Start Building to start building the Slack app (Figure 4-41).

Figure 4-41 Click Start Building
132 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

http://slack.com
https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team

5. The Create an App window opens (Figure 4-42). Enter an app name, select your Slack
team, and click Create App.

Figure 4-42 Create an App in Slack

6. Click Slash Commands (Figure 4-43).

Figure 4-43 Add features in Slack integration

7. In the next window, click Create New Command.
Chapter 4. Help Desk Assistant chatbot 133

8. In the Create New Command window (Figure 4-44), enter the following information, and
then click Save:

– Command: /watson

This is the trigger to call Watson-chatbot when you type text in Slack.

– Request URL: https://conv-201-xxx-nodered.mybluemix.net/watson-chatbot

This is the URL of the Node-RED application (/watson-chatbot) that you configured in
the http input node in step a on page 126 and Figure 4-29 on page 127.

– Short Description: Any text

Figure 4-44 Create New Command: Add Slack command

9. Click Install App, and then click Install App to Team (Figure 4-45).

Figure 4-45 Install the app to the Slack team
134 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

10.Click Authorize (Figure 4-46).

Figure 4-46 Authorize the Slack application

11.Return to the Slack room:

http://<room-name>.slack.com

12.At any channel (for example the #general channel), in the send message text column,
type the text /watson, and notice the pop-up message (Figure 4-47).

Figure 4-47 Test application

13.Continue typing any message, such as /watson hi. For now, the response is only the echo
back of the message you send.

14.Go to the Node-RED flow editor:

http://<node_red_appname>.mybluemix.net/red
Chapter 4. Help Desk Assistant chatbot 135

15.Click the debug tab (Figure 4-48). Notice the msg.payload message that contains Slack
information including token, command, text, user_name, and others under object.

Figure 4-48 Object information in the msg.payload

16.Copy the token value (copy only the text inside double quotation marks).

17.Open switch node (named Authentication). Paste the token you just copied in the first rule
(input box) replacing the text Paste Token Here in Figure 4-31 on page 128.

18.Click Done, then click Deploy (located at the top right).

19.Return to the Slack room:

http://<room-name>.slack.com

20.Now type the text /watson hi. Notice that this time, the response is coming from the
Conversation service.

4.5 Quick deployment of application

This section provides a quicker way to create the chatbot application in Node-RED if you want
to skip many of the steps described in 4.4, “Step-by-step implementation” on page 112:

1. Access the Node-RED Bluemix Starter Application, which is at this GitHub location:

https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-14873
32833126

2. Scroll to and click Deploy to Bluemix (Figure 4-49); then follow the prompts.

Figure 4-49 Click Deploy to Bluemix
136 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

3. Open the Node-RED flow editor for your application by entering the following URL in your
browser; replace <HOSTNAME> with the host name of your application:

https://<HOSTNAME>.mybluemix.net/red/

4. Import the additional nodes developed in this chapter, which are at this GitHub location:

https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-
201-iot-nodered-flow.json

Copy the content of this file to your clipboard.

5. To import the nodes, click the menu at the top-right and select Import → Clipboard
(Figure 4-50).

Figure 4-50 Import Node-RED nodes from the clipboard

6. Follow the steps described in these sections:

– 4.4.1, “Creating a new Conversation workspace” on page 113
– 4.4.2, “Adding intents” on page 115
– 4.4.3, “Adding entities” on page 117
– 4.4.4, “Creating the dialog” on page 119
– 4.4.7, “Setting up the chat service (Slack)” on page 131

7. Edit the nodes and add the authentication values based on your Conversation service
instance credentials, workspace ID (edit conversation node as shown in Figure 4-33 on
page 129) and Slack token (edit switch node as shown in Figure 4-31 on page 128).
Chapter 4. Help Desk Assistant chatbot 137

https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json

4.6 Next steps

You can enhance your chatbot. For example, you can add intents, entities, and dialogs.

Also if you identify any unexpected responses, you can make the corrections to improve
the answers.

4.7 References

For more information, see the following resources:

� Node-RED:

https://nodered.org/

� Creating apps with Node-RED Starter:

https://console.ng.bluemix.net/docs/starters/Node-RED/nodered.html#nodered
138 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net/docs/starters/Node-RED/nodered.html#nodered
https://nodered.org/

Chapter 5. Using a cognitive chatbot to
manage IoT devices

A cognitive chatbot understands natural language. In Chapter 4, “Help Desk Assistant
chatbot” on page 109, you learn how to create a cognitive chatbot to answer questions from
users requesting help with software and hardware problems.

In this chapter, you learn to expand the cognitive chatbot capabilities so it can interact with
IoT devices and send commands to them in response to user’s requests.

In this use case the Node-RED sample application created in Chapter 4, “Help Desk
Assistant chatbot” on page 109 is modified to connect to the Watson Internet of Things
Platform service in order to manage a device. The application also integrates the Watson
Conversation service to understand the user’s request in natural language.

This example considers a mobile smartphone as an IoT device because getting access to an
Android phone for testing purposes is fairly easy. This example can be applied to other IoT
devices such as street light sensors, smart meters, sensors to manage household
appliances, and so on.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Step-by-step deployment of application
� References

5

© Copyright IBM Corp. 2017. All rights reserved. 139

5.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

5.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Create a Watson IoT Platform service instance and connect devices to be managed.

� Integrate the Watson IoT Platform service with the cognitive chatbot application to handle
the user’s requests and respond to the user.

� Train the Chatbot Conversation workspace with the appropriate intents for understand
user’s request in natural language to manage IoT devices.

� Add capabilities to the chatbot Node-RED application to send commands to the IoT
device.

5.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

� You implement the use case in Chapter 4, “Help Desk Assistant chatbot” on page 109.
� You have an Android smartphone.

5.1.3 Expected results

In this chapter, the cognitive chatbot that you developed in Chapter 4, “Help Desk Assistant
chatbot” on page 109 is enhanced to understand user’s request to change the background
color of a smart phone by sending commands to the device in response to the user’s request.

The approach used in this simple example can be used to send other commands and send
and receive information to and from IoT devices.

Figure 5-1 on page 141 shows the final chatbot application. It receives a request from the
user to change the background color of the smart phone from gray to green. By integrating
with the Watson Conversation service the chatbot is able to understand the user’s request in
natural language and respond in the user’s language. By integrating with the Watson IoT
Platform service the chatbot application sends commands to the smart phone to change the
background color.
140 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 5-1 Using the chatbot to change the background color of a smart phone

5.2 Architecture

Figure 5-2 shows the components of the application and how the components interact with
each other.

Figure 5-2 Architecture

The numbers in the diagram represent the following steps:

1. The user sends a message to the chatbot through the chat service (Slack in this example).

2. The chat service checks whether the message is for the chatbot. If it is, the service sends
the message to the chatbot application (Node-RED).

Public network Bluemix network

User

5

Request to Watson IoT Platform service

2

7

Message to Node-RED chatbot app

Send Conversation
service response
to the chat service

1

8

Send message to chat service

Receive message
Se

nd
 c

om
m

an
ds

 to

th
e

sm
ar

t p
ho

ne

6

Chat service Watson IoT PlatformChatbot application

Smartphone

Se
nd

 m
es

sa
ge

 to

C
on

ve
rs

at
io

n
se

rv
ic

e

Se
nd

 C
on

ve
rs

at
io

n
se

rv
ic

e
re

sp
on

se
 t

o
ch

at
bo

ta
pp

4 3

Watson
Conversation service
Chapter 5. Using a cognitive chatbot to manage IoT devices 141

3. The application parses the message and sends the filtered message to the Watson
Conversation service for processing.

4. The Watson Conversation service processes the message and provides a response.

5. The Node-RED application determines whether an action is required. If an action is
required, the application sends a command to the Watson IoT platform to perform the
requested action.

6. The Watson IoT service sends a request to the smartphone to perform the action
requested.

7. The Node-RED application sends the response from the Conversation service to the
chatbot service (Slack).

8. The chatbot service receives the message and displays the message to the user.

5.3 Step-by-step deployment of application

Implementing this use case involves the following steps:

1. Creating the Watson IoT Platform service.
2. Configuring the Android mobile device as an IoT device.
3. Modifying the Chatbot Conversation workspace.
4. Connecting the chatbot application to the IoT platform.
5. Testing the application.

5.3.1 Creating the Watson IoT Platform service

To create the Watson IoT Platform service instance, follow these steps:

1. Go to your Bluemix Dashboard and click Create Service.

2. Select the Internet of Things Platform service (Figure 5-3).

Figure 5-3 Internet of Things Platform service
142 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Enter a unique name in the Service name field, and click Create (Figure 5-4).

Figure 5-4 create IoT Platform service

4. On the Welcome page, click Launch to access the service dashboard.

The IoT dashboard includes much useful information. For example, you can launch the
Watson IoT Platform documentation and Quickstart from the dashboard (Figure 5-5).

Figure 5-5 IoT dashboard
Chapter 5. Using a cognitive chatbot to manage IoT devices 143

5. From the menu on the right, click the devices icon. Then, in the Devices window, click
Add Device (Figure 5-6).

).

Figure 5-6 Watson IoT Platform dashboard: Add Device

6. Each device must have a device type associated, which is a way to categorize similar
devices. So, before creating a device, you must create a device type.

Click Create device type (twice), Enter Android as the device type name, add a
description, and then click Next. If you want, you can use the same information as shown
in Figure 5-7.

The remainder of the information is optional, so you can click Next until you see the option
to click Create.

Figure 5-7 Create Device Type

7. The Add Device window is displayed again, but this time a device type is available to
choose (Android). Make sure the device type is selected, and then click Next at the lower
right corner.

Important: The device type name must be Android because this is the value that is
hardcoded in the mobile app example that is used in 5.3.2, “Configuring the Android
mobile device as an IoT device” on page 147.
144 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8. Add an ID for the device. The device ID should be unique within your organization. The
suggestion is to use something that will identify the device (such as the MAC Address, a
phone number, and so on). Enter a device ID value (Figure 5-8), and then click Next.

Figure 5-8 Adding the device ID

9. The metadata is optional; click Next.

10.Next, you add security. You can generate your own token or allow the system to generate
one for you. For this example, click Next so that the system automatically generates the
token.

11.A summary of all submitted information is displayed. Click Add to complete the process.

12.Note all the information on the page (Figure 5-9 on page 146), including the following
items, because you will use this information later:

– Organization ID
– Device type
– Device ID
– Authentication method
– Authentication token

Remember: The authentication token is non-recoverable; therefore, if you miss it,
you must register the device again.
Chapter 5. Using a cognitive chatbot to manage IoT devices 145

Figure 5-9 IoT device credentials

The device is now added to the Watson IoT Platform service instance.

13.Go to the Bluemix Dashboard and find the IoT Platform service instance that you just
created. Select it by clicking it. This action opens the Bluemix IoT Service landing window.
In this window, go to the Connections tab and click Create Connection (Figure 5-10).

Figure 5-10 Create connection

14.Find the Node-RED application (conv-201-xxx-nodered) that you created in 4.4.6,
“Creating the Help Desk Assistant chatbot application in Node-RED” on page 122. Click
Connect.

15.To apply the changes, the application must be restaged. So, click Restage. Keep in mind
that if you make any mistake while staging, you can stop the application and restage.

16.After these steps are complete, you will be able to see the Node-RED application under
the Connections tab of the IoT Platform service instance, which means that both are
successfully connected.
146 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5.3.2 Configuring the Android mobile device as an IoT device

To establish the communication between the Watson IoT platform and a smartphone, you
need to install an application.

If you are an Android developer, the code is on the IoT starter for Android page in GitHub:

https://github.com/ibm-watson-iot/iot-starter-for-android

This section describes the options to configure and install the application for an Android
device. However, if you want to run the application on iOS, see the IoT starter application for
IBM Watson IoT on iOS in GitHub:

https://github.com/ibm-watson-iot/iot-starter-for-ios

Use these steps to complete the installation:

1. Set up the phone to enable the installation of applications (.apk) outside of the Google Play
Store. Go to Settings/Security, and under Device Administration, enable Unknown
Sources.

The instructions to enable this setting vary in different Android versions. Refer to your
device documentation as needed.

2. On your phone, open a browser and go to the following address:

http://ibm.biz/mobile-app

3. Click Open binary file. Accept any warning notifications and click Download.

After the download is complete, click over the file to install it. If you missed this option, find
the downloads folder using any file manager for Android, and then click to install it.

Important: Remember to revert this setting after you install the application.

Case-sensitive: This URL is case-sensitive.

Note: Depending on your Android phone model and operating system level, warning
messages can differ.
Chapter 5. Using a cognitive chatbot to manage IoT devices 147

https://github.com/ibm-watson-iot/iot-starter-for-android
https://github.com/ibm-watson-iot/iot-starter-for-ios
http://ibm.biz/mobile-app

4. After the app is installed, open it. Add the values from step 12 on page 145 (Organization
ID, device ID, and authentication token) and click Activate Sensor at the bottom of the
screen (Figure 5-11).

Figure 5-11 Adding the Watson IoT Platform service values to the smartphone app
148 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. If nothing happens, you probably miss-typed a value. Otherwise, it displays the
accelerometer data that is being read by the device (Figure 5-12).

Figure 5-12 Reading from the accelerometer sensor

The smartphone is now connected to the Watson IoT Platform service instance that you
created in 5.3.1, “Creating the Watson IoT Platform service” on page 142.

5.3.3 Modifying the Chatbot Conversation workspace

In this section, you modify the Chatbot Conversation workspace created in 4.4.1, “Creating a
new Conversation workspace” on page 113. You will add the intents, entities, and dialog to
handle a chat with a user submitting requests through the chatbot to change the color of the
phone background. The steps in this section assume you start with the previously created
Chatbot workspace. Alternatively, you can create a new Conversation workspace for this use
case. For information about creating Conversation workspaces, see Chapter 2, “Conversation
service workspace” on page 13.
Chapter 5. Using a cognitive chatbot to manage IoT devices 149

Complete the following steps:

1. Find the Conversation service instance created in 2.1.1, “Creating a Watson Conversation
service instance” on page 14 and click to open it.

2. Click Launch tool to open Conversation tooling. Previously created workspaces are
listed.

3. Find the Chatbot workspace created in 4.4.1, “Creating a new Conversation workspace”
on page 113.

4. Add the intent #Change-color and the examples shown in Figure 5-13.

Figure 5-13 Adding the new intent

5. Add the @colors entity shown in Figure 5-14. Notice that you can add synonyms to
describe colors that are not available.

Figure 5-14 Adding the new entity
150 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6. Add the dialog as shown in Figure 5-15.

Figure 5-15 Adding the new dialog

7. Test the dialog. Click the Ask Watson icon (green bubble on the upper right corner) to test
the dialog. Type change color and then green to get the results shown in Figure 5-16 on
page 152. If you have different results, make the corrections by selecting the correct intent
or entity.

Notice that in this step you are only testing the conversation with the user, not sending
commands to the device to change the color of the background of the cellphone.
Chapter 5. Using a cognitive chatbot to manage IoT devices 151

Figure 5-16 Testing the dialog

5.3.4 Connecting the chatbot application to the IoT platform

Next, open the Node-RED application created in 4.4.6, “Creating the Help Desk Assistant
chatbot application in Node-RED” on page 122. Modify the application by making the
following changes:

1. Add a function node (named Color change) and one IBM IoT output node and then
connect them to the conversation node (Figure 5-17).

Figure 5-17 New nodes
152 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Edit the Color change function node. Add lines of code to specify the codes of the colors to
use. To do that, add the lines of code shown in Example 5-1 to the function node
(Figure 5-18 on page 154). The code in the example creates three variables (one for each
color), and then depending on the message received by the chatbot, it will pass the color
data to the IBM IoT node to send it to the smartphone. You can change the code of the
colors (Example 5-1) to display different backgrounds on your smartphone.

Example 5-1 Code for the function node

var r = 0.0;
var b = 0.0;
var g = 0.0;

if (typeof (msg.payload.output.text) == "string"){
msg.payload = msg.payload.output.text + "";

} else {
msg.payload = msg.payload.output.text[0] + "";

}

if (msg.payload == "green") {
g = 255;

} else if (msg.payload == "blue") {
b = 200.0;

} else {
r = 100;
g = 100;
b = 100;

}
a = 1.0;

msg.eventOrCommandType = "color";
msg.payload = JSON.stringify({"d":{"r":r,"b":b,"g":g,"alpha":a}});

return msg;
Chapter 5. Using a cognitive chatbot to manage IoT devices 153

Figure 5-18 Testing the responses; lines of code added
154 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Edit the IBM IoT out node: enter the values of your IBM IoT Platform service to finish the
setup (Figure 5-19).

Figure 5-19 Configuring the IBM IoT node

4. Click DEPLOY (upper right corner) and then close the Node-RED workspace.
Chapter 5. Using a cognitive chatbot to manage IoT devices 155

5.3.5 Testing the application

Return to the chat service (Slack) that you set up in 4.4.7, “Setting up the chat service
(Slack)” on page 131. Enter a request for the chatbot to change the background color of the
smartphone. Remember that for this example to work, the application that you installed in
5.3.2, “Configuring the Android mobile device as an IoT device” on page 147 must be open in
the smartphone. Figure 5-20 shows the result.

Figure 5-20 Testing the application

5.4 References

For more information, see the following resources:

� Watson IoT Platform documentation:

https://console.ng.bluemix.net/docs/services/IoT/index.html

� Watson IoT Platform Quickstart:

https://quickstart.internetofthings.ibmcloud.com
156 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://console.ng.bluemix.net/docs/services/IoT/index.html
https://quickstart.internetofthings.ibmcloud.com

Chapter 6. Chatting about the weather:
Integrating Weather Company
Data with the Conversation
service

The Weather Company® Data for Bluemix service lets you integrate weather data from The
Weather Company into your IBM Bluemix application. You can retrieve weather data for an
area specified by a geolocation.

This chapter guides you through the creation of a sample chatbot application, the Cognitive
Weather Forecast chatbot, that integrates with the Watson Conversation and Weather
Company Data services. The application demonstrates the use of both services to get the
forecasted weather for a city through chatting with the user.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

6

© Copyright IBM Corp. 2017. All rights reserved. 157

6.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

6.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Integrate the Watson Conversation service and Weather Company Data service with your
application.

� Develop a cognitive conversation application to retrieve the weather forecast for a specific
city.

6.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

� Review Chapter 1, “Basics of Conversation service” on page 1.

� Review Chapter 2, “Conversation service workspace” on page 13 and create a
conversation service instance and a Conversation workspace as described in this chapter.

� Use any web browser (Chrome, Firefox, or Internet Explorer).

� Have basic JavaScript skills.

� Have basic knowledge of Git.

� Install Cloud Foundry tool on your workstation.

� Install Git tool on your workstation.

6.1.3 Expected results

Figure 6-1 on page 159 shows the application. The user requests tomorrow’s weather
forecast, and the application asks for the name of a city. The user responds with a name, in
this case London, and the application responds that only Cairo and NYC are supported. The
user chooses a supported city and the application responds with the weather forecast that it
receives from Weather Company Data.
158 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 6-1 Cognitive Weather Forecast chatbot

6.2 Architecture

Figure 6-2 shows the components involved in this use case and the runtime flow.

Figure 6-2 Architecture

Public Network Bluemix Network

User Cognitive Weather Forecast chatbot
Node.js runtime

Web
Browser

Respond with weather data

Send user request

2

7

Request weather conditions for a city

Respond with with weather data

1

8 Watson
Conversation service

Send user request

Respond with intent and entity

3

4

Weather Company
Data service

Q
ue

ry
 w

ea
th

er
 d

at
a

fo
r

a
lo

ng
itu

de
 a

nd
 la

tit
ud

e

R
es

po
nd

 w
ith

w

ea
th

er
 c

on
di

tio
n

56
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 159

The flow for this use case is as follows:

1. The user engages in a conversation with the application, requesting the weather forecast
for a city; for example, Cairo.

2. The request is passed from the web browser to the Cognitive Weather Forecast
application that runs on Node.js.

3. The application passes the user’s request in natural language to the Conversation service.

4. The Conversation service understands the intent and entities in the user’s message
passed by the application. Then it returns a response to the application based on the
dialog configured in the Conversation workspace. It returns '[REPLACE WITH WEATHER
DATA]' and the entities to the calling application (for example: Cairo).

5. The Node.js application queries the Weather Company Data service for the weather
forecast for the requested city, passing to it the latitude and longitude of the entity.

6. The Weather Company Data service responds with the weather forecast.

7. The Node.js application replaces '[REPLACE WITH WEATHER DATA]' with the result received
from the Weather Company Data service and sends it to the web browser.

8. The user sees the response on the web browser. For example Sunny. Highs in the low
70s and lows in the low 50s.

6.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 6.4, “Step-by-step implementation” on page 160. This version takes you
through the key steps to integrate the IBM Watson service with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 6.5,
“Quick deployment of application” on page 182.

6.4 Step-by-step implementation

Implementing this use case involves the following steps:

1. Configuring Conversation workspace for Cognitive Weather Forecast chatbot.

2. Creating the Weather Company Data service instance.

3. Developing the Cognitive Weather Forecast chatbot application.

4. Testing the application.
160 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast
chatbot

In this section, you create the Conversation workspace that will be used by the Cognitive
Weather Forecast chatbot to understand the user’s request regarding to weather conditions in
a city. This workspace includes entities, intents, and dialog specific to the application.

To simplify the creation of the Conversation workspace for this use case, import the
workspace from the GitHub location:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/train
ing/1.4-conv-101-createservice.json

To import the workspace, follow these steps:

1. Log in to Bluemix.

2. In the Services section of the dashboard, click Conversation which is the Conversation
service instance that you created in Chapter 2, “Conversation service workspace” on
page 13 (Figure 6-3).

Figure 6-3 Conversation service instance for this use case in the Bluemix dashboard

Note: If you created a Conversation workspace by following the instructions in Chapter 2,
“Conversation service workspace” on page 13, skip to “Get the Workspace ID” on
page 163.
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 161

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json

3. Click Launch tool to open the Conversation tool (Figure 6-4).

Figure 6-4 Launching the Conversation tool

4. Click the Import workspace icon to import the workspace (Figure 6-5).

Figure 6-5 Importing a workspace
162 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Click Choose a file and select the 1.4-conv-101-createservice.json file that you
downloaded at the start of this section. You should choose to import everything (intents,
entities and dialog).

6. Click Import.

The Car Chat-bot workspace is imported. It will be used for this use case.

Get the Workspace ID
Get the Workspace ID that you will need in order to configure the application to point to the
workspace:

1. Click the Menu icon, which is the three horizontal bars at the upper left corner (Figure 6-6).

Figure 6-6 Car Chat-bot workspace: Menu
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 163

2. Click Back to workspaces (Figure 6-7).

Figure 6-7 Car Chat-bot Conversation workspace: Back to workspaces

3. Click the Actions icon (three vertical dots on the top-right corner of the Car Chat-bot
workspace) then choose View Details.

4. Copy the Workspace ID value and save it in any local text file (Figure 6-8). You will need
this value in step 5 on page 179.

Figure 6-8 Workspace ID
164 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6.4.2 Creating the Weather Company Data service instance

To create a Weather Company Data service instance, follow these steps:

1. Open the Bluemix Catalog by clicking Catalog at the top bar.

2. Scroll to Services and select Data & Analytics → Weather Company Data (Figure 6-9).

Figure 6-9 Bluemix Catalog: Weather Company Data

3. For the Service name, use weather-company-data, and then click Create (Figure 6-10).

Figure 6-10 Create Weather Company Data service instance
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 165

4. Click the Service Credentials tab (Figure 6-11).

Figure 6-11 Weather Company Data: Service Credentials tab

5. Under ACTIONS column and in the Credentials-1 row, click View Credentials
(Figure 6-12) to display the username and password for the service instance. You use this
information to test Weather Company Data API in step e on page 170.

Figure 6-12 Weather Company Data: Service Credentials details
166 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Try the Weather Company Data APIs before you use them
Browse through the API documentation and try the APIs before you use them. Complete
these steps:

1. Click the Manage tab, scroll to Get Started, and click APIs (Figure 6-13).

Figure 6-13 Weather Company Data service: Get started
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 167

A new tab opens. The Weather Company Data For IBM Bluemix APIs for Bluemix APIs is
listed (Figure 6-14).

Figure 6-14 Weather Company Data APIs
168 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. In these steps, use Daily Forecast for 3 days to get the forecast of the weather for
tomorrow:

a. Click Daily Forecast.
b. Click GET /v1/geocode/{latitude}/{longitude}/forecast/daily/3day.json

(Figure 6-15).

Figure 6-15 Three-day forecast Weather Company Data API

c. In the latitude, and longitude text boxes, type the latitude and longitude of any city. For
example, Cairo’s latitude is 30.0444, and longitude is 31.2357.
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 169

d. Scroll to the bottom and click on Try it out (Figure 6-16).

Figure 6-16 Testing three-day forecast Weather Company Data API

e. Authentication is required; you are prompted for the user name and password of the
Weather Company Data service instance credentials that you obtained in step 5 on
page 166. Provide your service credentials to log in (Figure 6-17).

Figure 6-17 Testing three-day forecast Weather Company Data API - Authentication

f. The three-day forecast API returns the geocode weather forecasts for the current day
and up to three days. The response of the service call is displayed in Response Body
section (Figure 6-18).

Figure 6-18 Weather Company Data Response
170 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Example 6-1 shows the weather forecast for tomorrow is under forecasts[1].narrative.

Example 6-1 Response body snippet

"forecasts": [
 {
 "class": "fod_long_range_daily",
 "expire_time_gmt": 1492289627,
 "fcst_valid": 1492232400,
 "fcst_valid_local": "2017-04-15T07:00:00+0200",
 "num": 1,
 "max_temp": null,
 "min_temp": 54,
 "torcon": null,
 "stormcon": null,
 "blurb": null,
 "blurb_author": null,
 "lunar_phase_day": 18,
 "dow": "Saturday",
 "lunar_phase": "Waning Gibbous",
 "lunar_phase_code": "WNG",
 "sunrise": "2017-04-15T05:32:08+0200",
 "sunset": "2017-04-15T18:28:06+0200",
 "moonrise": "2017-04-15T22:13:12+0200",
 "moonset": "2017-04-15T08:17:53+0200",
 "qualifier_code": null,
 "qualifier": null,
 "narrative": "Partly cloudy. Lows overnight in the mid 50s.",
 "qpf": 0,
 "snow_qpf": 0,
 "snow_range": "",
 "snow_phrase": "",
 "snow_code": "",
 "night": {

6.4.3 Developing the Cognitive Weather Forecast chatbot application

This section describes how to develop the application logic by creating a Node.js application
that integrates with the Conversation service and the Weather Company Data service. You
start by cloning a sample Node.js app, which is a simple chatbot, and deploy it to your
Bluemix workspace.

The steps are summarized in the following list:

1. “Clone the Conversation sample app” on page 172

2. “Integrate the application with the Conversation and Weather Company Data services” on
page 173

3. “Push the application to Bluemix” on page 177
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 171

Clone the Conversation sample app
Clone the incomplete repository:

1. Create a new C:\redbook directory.
2. Open a command prompt (cmd.exe).
3. Open that directory by using the cd C:\redbook command (Figure 6-19).

Figure 6-19 Command to open the directory

4. Clone the incomplete repository (Figure 6-20). Run the following Git command:

git clone https://github.com/watson-developer-cloud/conversation-simple

Figure 6-20 Clone the repository with the incomplete code
172 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple

Integrate the application with the Conversation and Weather Company
Data services
Modify the code to integrate the application with the Conversation and Weather Company
Data services:

1. Update the manifest.yml file with the host name and the details of the Conversation
service and the Weather Company Data service:

a. Open C:\redbook\conversation-simple\manifest.yml (Figure 6-21) with your favorite
text editor (Figure 6-21).

Figure 6-21 The manifest.yml file before the update

b. Update declared-services section (Example 6-4 on page 174). In this section,
replace lines with the name and details of your Conversation and Weather Company
Data service instances (Example 6-2).

Example 6-2 Name and details

Conversation:
 label: conversation
 plan: free
 weather-company-data:
 label: weather
 plan: free

c. In the applications section, change the application name to conv-201-xxx-weather.
Replace xxx by a random number because this name will also be used as the
hostname for your application so it needs to be unique.

d. In the services section, add an application dependency on the declared services
(Example 6-3).

Example 6-3 Add application dependency

- Conversation
- weather-company-data

e. For memory, increase the memory to 512M.

f. Save the file. It should look like Example 6-4 on page 174.
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 173

Example 6-4 The manifest.yml file after the update with the values for this use case

declared-services:
 Conversation:
 label: conversation
 plan: free
 weather-company-data:
 label: weather
 plan: free
applications:
- name: conv-201-xxx-weather
 command: npm start
 path: .
 memory: 512M
 instances: 1
 services:
 - Conversation
 - weather-company-data
 env:
 NPM_CONFIG_PRODUCTION: false

2. Add the request module to package.json. The request module is a third-party module that
allows making HTTP calls. Here it is used for interaction with REST APIs exposed by the
Weather Company Data service.

a. Open C:\redbook\conversation-simple\package.json (Figure 6-22).

Figure 6-22 The package.json file

b. Add the latest version of the "is-property" and "request" modules (Example 6-5) as
a dependency on the dependencies tag (Figure 6-23 on page 175).

Example 6-5 Add request and is-property

"is-property":"*",
"request":"*"
174 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 6-23 shows dependencies.

Figure 6-23 The package.json: dependencies

c. Save the file.

3. Edit the application logic to integrate with the Conversation and Weather Company Data
services:

a. Open the C:\redbook\conversation-simple\app.js file.

b. After the updateMessage function, add the function getLocationCoordinatesForCity
(Example 6-6) to get the latitude and longitude for cities.

Example 6-6 Get latitude and longitude for cities

/**
 * Get the latitude and longitude of city
 * @param {Object} city The target city
 * @return {Object} The latitude and longitude of the city
 */
function getLocationCoordinatesForCity(city) {
 var location = {};
 if (city === 'Cairo') {
 location.latitude = '30.0444';
 location.longitude = '31.2357';
 } else if (city === 'NYC') {
 location.latitude = '40.7128';
 location.longitude = '74.0059';
 }
 return location;
}

c. After the last function, add the functiongetWeatherForecastForCity (Example 6-7) that
gets tomorrow's weather forecast for a city by calling a Weather Company Data API.

Example 6-7 Get tomorrows weather

var request = require('request'); // request module
//Weather Company Endpoint
var vcap = JSON.parse(process.env.VCAP_SERVICES);
var weatherCompanyEndpoint = vcap.weatherinsights[0].credentials.url;
/**
 * Get the weather forecast for a city through calling Weather Company Data
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 175

 * @param {Object} city The target city
 * @return {Object} Weather Forecast for the specified city.
 */
function getWeatherForecastForCity(location, callback) {

 var options = {
 url: weatherCompanyEndpoint + '/api/weather/v1/geocode/' +
location.latitude + '/' + location.longitude + '/forecast/daily/3day.json'
 };
 request(
 options,
 function(error, response, body) {
 try {
 var json = JSON.parse(body);
 var weatherOutput = json.forecasts[1].narrative;
 callback(null, weatherOutput);
 } catch (e) {
 callback(e, null);
 }
 }
);
};

d. Replace the updateMessage function with the function in Example 6-8. If the entity is
city, then get the location coordinates for the city and call a Weather Company Data
API to get the forecast for this city.

Example 6-8 Replacement for updateMessage function

/**
 * Updates the response text using the intent confidence
 * @param {Object} input The request to the Conversation service
 * @param {Object} response The response from the Conversation service
 * @param {Object} callback The response from Weather Company Data
 * @return {Object} The response with the updated message
 */
function updateMessage(input, response, callback) {
 var responseText = null;
 if (!response.output) {
 response.output = {};
 callback(response);
 }
 // In case the entity is city, then get the location coordinates for the city and call

// Weather Company Data to get the forecast for this city.
 else if (response.entities.length > 0 && response.entities[0].entity === 'city') {
 var location = getLocationCoordinatesForCity(response.entities[0].value);
 getWeatherForecastForCity(location, function(e, weatherOutput) {
 response.output.text[0] = weatherOutput;
 callback(response);

 });
 } else {
 callback(response);
 }
}

176 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

e. Call the updated updateMessage function. In line 61, replace the message call as in
Example 6-9.

Example 6-9 Replace message call

updateMessage(payload, data, function(response) {
return res.json(response);

});

f. Save the file.

Push the application to Bluemix
Push the modified code to Bluemix:

1. At the command prompt, change to the C:\redbook\conversation-simple directory:

cd C:\redbook\conversation-simple

2. Log in to Cloud Foundry by using the cf login command (Figure 6-24). When prompted
enter the email and password that you use to log in to your Bluemix account.

Figure 6-24 Log in to Cloud Foundry (cf login)

Note: You can find the full listing of the app.js code at this GitHub location:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/ap
p.js
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 177

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/app.js

3. Push the application to Bluemix by using the cf push command (Figure 6-25).

Figure 6-25 Pushing the application to Bluemix

4. Wait until the build and deployment are completed (Figure 6-26).

Figure 6-26 Pushing application completed
178 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

5. Set the WORKSPACE_ID environment variable to point to the Weather Forecast Conversation
Workspace ID that you obtained in “Get the Workspace ID” on page 163 (Figure 6-27):

cf set-env conv-201-<xxx>-weather WORKSPACE_ID <WORKSPACE_ID>

Figure 6-27 Set the environment variable

6. Restage the application so that your environment variable changes take effect
(Figure 6-28):

cf restage conv-201-<xxx>-weather

Figure 6-28 Restage the application

7. Wait until the application is running (Figure 6-29).

Figure 6-29 Restaging completed
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 179

6.4.4 Testing the application

To test the application, follow these steps:

1. Open your application route (URL to access your application) in a web browser; xxx is the
number you use to make your application name unique:

http://conv-201-xxx-weather.mybluemix.net/

Your application opens in the browser (Figure 6-30).

Figure 6-30 Cognitive Weather Forecast chatbot

2. Get the weather for one of the two supported cities (Figure 6-31 on page 181).
180 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 6-31 Getting the weather for Cairo on the Cognitive Weather Forecast chatbot

3. Try different scenarios (Figure 6-32). If the chatbot fails, more training is necessary. To
provide more training, add more user examples to the intents in the Car Chat-bot
Workspace, or edit the entities. Also you can add support for more cities.

Figure 6-32 Scenarios for Cognitive Weather Forecast chatbot; more training is needed
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 181

6.5 Quick deployment of application

A second Git repository is provided so that you can build and deploy the full Cognitive
Weather Forecast chatbot even if you did not perform the steps described in 6.4,
“Step-by-step implementation” on page 160. This section is independent from the rest of
the chapter and it contains instructions to run the app more quickly.

The full version of the code is in the Git repository:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

The workspace that was created for this chapter is in the following GitHub location:

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/train
ing/1.4-conv-101-createservice.json

To deploy the full application directly and more quickly, use these steps:

1. Open this location:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-weather-nodejs

2. Log in with your Bluemix ID and password.

3. Enter the application name conv-201-xxx-weather where xxx is any random number to
make your application and host name unique.

4. Click Deploy (Figure 6-33).

Figure 6-33 Quick deployment of the application
182 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs
https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

5. Follow the steps in 6.4.1, “Configuring Conversation workspace for Cognitive Weather
Forecast chatbot” on page 161, to import the Car Chat-bot Workspace into your
Conversation service. Record the workspace ID.

6. Configure your application to point to the Calculator Workspace by following these
three steps:

– 5 on page 179
– 6 on page 179
– 7 on page 179

7. Test the application as described in 6.4.4, “Testing the application” on page 180.

6.6 References

For helpful information, see the following resources:

� Explore Weather Company Data documentation and learn from examples:

https://console.ng.bluemix.net/docs/services/Weather/index.html

� Explore the REST API documentation for Weather Company Data:

https://twcservice.mybluemix.net/rest-api/
Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service 183

https://console.ng.bluemix.net/docs/services/Weather/index.html
https://twcservice.mybluemix.net/rest-api/

184 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Chapter 7. Improving chatbot
understanding

One of the major challenges in developing a conversational interface is anticipating every
possible way in which your users will try to communicate with your chatbot.

The Improve component of the Conversation service provides a history of conversations with
users. You can use this history to improve your chatbot’s understanding of user input.

This chapter has an example of how to use the Improve interface to access user conversation
logs and identify intents and entities that are not recognized by the sample workspace. The
example in this chapter shows how you can improve the workspace understanding.

The following topics are covered in this chapter:

� Getting started
� Use case implementation
� References

7

© Copyright IBM Corp. 2017. All rights reserved. 185

7.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

7.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Review past interactions and train the Conversation service with intent examples.
� Review past interactions and train the Conversation service with new entity synonyms.

7.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

� Have basic knowledge of Watson Conversation service concepts: intents, entities and
dialog. Review Chapter 1, “Basics of Conversation service” on page 1.

� Complete the use case by following the example in Chapter 6, “Chatting about the
weather: Integrating Weather Company Data with the Conversation service” on page 157.
In this chapter you will use the Conversation workspace and application created in
Chapter 6.

7.1.3 Expected results

In this chapter, you modify the Car Chat-bot workspace to recognize these items:

� The Big Apple entity synonym for Manhattan, NYC
� The Will it rain? intent as a weather-related question

Before this modification, your workspace does not recognize this intent and the entity
synonym (Figure 7-1 on page 187).
186 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 7-1 Before modification: The workspace does not understand some user’s terms

After modification, the workspace can recognize both user inputs (Figure 7-2).

Figure 7-2 After modification: The workspace recognizes the user’s terms
Chapter 7. Improving chatbot understanding 187

7.2 Use case implementation

Implementing this use case involves the following steps:

� Identifying the additional training that the Conversation workspace requires.
� Using the Improve component to train the Conversation workspace.
� Testing the improved Conversation workspace.

7.2.1 Identifying the additional training that the Conversation workspace
requires

When the user tries to get the weather information by asking Will it rain? (as shown in
Figure 7-3 on page 189), the workspace does not understand this question. Next, try again by
changing your question to Is it going to be rainy? When the chatbot asks for the city, the
user replies The Big Apple (another name for Manhattan). The workspace is not trained to
recognize this entity.

Complete these steps:

1. In a web browser, open the application URL. If you followed the naming convention in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157, the URL is as follows, where xxx is a random
number you selected to make the hostname unique:

http://conv-201-xxx-weather.mybluemix.net/

2. Invoke the service by chatting with the application. In this example, you will input the
following intents and entities to the application (Figure 7-3 on page 189):

– Will it rain?

The Conversation service does not understand this intent.

– Is it going to be rainy?

The Conversation service understands this intent and asks which city you are
interested in, to get your entity.

– The Big Apple

The Conversation service doe not understand this entity.

– NYC

After training, the Conversation service understands this entity and completes the flow
with the #weather_inquiry intent and the @NYC entity.
188 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 7-3 Trying out user interactions

7.2.2 Using the Improve component to train the Conversation workspace

The Improve component of the Conversation service provides a history of conversations with
users. You can use this history to improve your chatbot’s understanding of user inputs.

While you develop your workspace, you use the Try it out panel to verify that it recognizes the
correct intents and entities in test inputs, and make corrections as needed. In the Improve
panel, you can view actual conversations with your users and make similar corrections to
improve the accuracy with which intents and entities are recognized.

In this example, you use the sample Car Chat-bot workspace to conduct a simple dialog with
the user, and try to get information by communicating your intents and entities in unexpected
ways.
Chapter 7. Improving chatbot understanding 189

Access the Improve component and open the chat logs
To access the Improve component and open the chat logs for the Car Chat-bot workspace:

1. Open the Car Chat-bot workspace.

2. Click the Menu icon (three horizontal lines). Then, select Improve → User
conversations (Figure 7-4).

Figure 7-4 Improve component

The chat logs saved represent the user interactions through the API (not the interactions
through the Try it out panel in the workspace). The Improve feature shows you the most
recent user interactions. The top intent and any entities used in the message, the message
text, and the chatbot's reply are available.
190 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

You see each user interaction, starting with the most recent (Figure 7-5).

Figure 7-5 User conversations history
Chapter 7. Improving chatbot understanding 191

Find the unrecognized entity synonym and train the workspace to
recognize it
You will edit the input where you referred to Manhattan as The Big Apple (Figure 7-6). You will
see that no entities are found, and the #greeting intent is identified. You correct both of these
issues by first disassociating the phrase with the #greeting intent. Then, you train the
workspace to recognize that NYC and Big Apple are synonyms. Complete these steps:

1. Click the Edit icon (pencil).

Figure 7-6 Editing an interaction
192 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The window now looks like the one in Figure 7-7.

Figure 7-7 Editing the user interaction
Chapter 7. Improving chatbot understanding 193

2. Select the intent from the drop-down menu, and replace #greeting with Mark as
irrelevant (Figure 7-8). This ensures that next time The Big Apple will not be recognized
as a greeting.

Figure 7-8 Marking the phrase as not matching any intent.
194 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

3. Select the part of the phrase that is a synonym of your entity. In this case, use the mouse
to highlight Big Apple (Figure 7-9). A pull-down menu opens under Entity values (where
you will select the matching entity value).

Figure 7-9 Menu opens so you can select a matching entity value
Chapter 7. Improving chatbot understanding 195

4. Select the entity value that corresponds to Big Apple: @city:NYC (Figure 7-10). Then,
click Save.

Figure 7-10 Selecting the corresponding entity and value
196 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

The result is shown in Figure 7-11.

Figure 7-11 After saving your changes

A phrase that includes Big Apple can now be recognized as a synonym of the NYC value for
the entity @city.
Chapter 7. Improving chatbot understanding 197

Find the unrecognized intent and train the workspace to recognize it
Complete the following steps:

1. Edit this interaction: Will it rain? (Figure 7-12).

Figure 7-12 Editing intent interaction: will it rain?
198 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Add an intent for this interaction. Select the correct #weather_inquiry intent (Figure 7-13).

Figure 7-13 Selecting the correct intent
Chapter 7. Improving chatbot understanding 199

3. Click Save to save your intent changes (Figure 7-14).

Figure 7-14 Saving intent changes

The interaction (will it rain?) is added as another example for the #weather_inquiry
intent.

The result is shown in Figure 7-15 on page 201.
200 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 7-15 After saving intent changes

7.2.3 Testing the improved Conversation workspace

To test the improved Car Chat-bot workspace, complete these steps:

1. Open the application URL again in order to test the newly trained intents and entities. If
you followed the naming convention in Chapter 6, “Chatting about the weather: Integrating
Weather Company Data with the Conversation service” on page 157, the URL is as
follows, where xxx is a random number you selected to make the hostname unique:

http://conv-201-xxx-weather.mybluemix.net/

2. Inquire about the weather forecast by using the following lines:

– Will it rain?
– The Big Apple
Chapter 7. Improving chatbot understanding 201

You can see that it works correctly now (Figure 7-16).

Figure 7-16 The application now recognizes intent and entity

7.3 References

For more information, see the following resource:

� Improving understanding:

https://www.ibm.com/watson/developercloud/doc/conversation/logs.html
202 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://www.ibm.com/watson/developercloud/doc/conversation/logs.html

Chapter 8. Talking about the weather:
Integrating Speech to Text and
Text to Speech with the
Conversation service

This chapter guides you through the process of updating the Cognitive Weather chatbot
application created Chapter 6, “Chatting about the weather: Integrating Weather Company
Data with the Conversation service” on page 157 to integrate it with the Watson Speech to
Text (STT) and Text to Speech (TTS) services.

The scenario in this chapter enables the user to send speech queries about weather forecast
to the application by integrating with the Speech-to-Text service. The application responds to
the user by integrating with the Text to Speech service.

The application demonstrates the use of Text to Speech, Speech to Text, Conversation and
Weather Company Data services to get the forecasted weather for a city through talking with
the user.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

8

© Copyright IBM Corp. 2017. All rights reserved. 203

8.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

8.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Create Speech to Text (STT) and Text to Speech (TTS) services in Bluemix.

� Integrate a Conversation service with STT and TTS services in a Node.js application to
provide weather information responding to spoken requests from the user.

8.1.2 Prerequisites

To complete the steps in this chapter, be sure these prerequisites are met:

� Finish the Cognitive Weather Forecast chatbot application implementation as described in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157.

� Use only Chrome or Firefox web browser; these browsers are required for Speech to Text
and Text to Speech to work correctly.

� Understand basic JavaScript concepts.

� Have the Git command line installed on local workstation.

� Have the Cloud Foundry (CF) command line installed on the local workstation.

� Ensure that the microphone and speaker are working correctly on the local workstation.

In addition, if you see the word snippet before example code, then use the example to
complete the code.

8.1.3 Expected results

Figure 8-1 on page 205 shows the expected results of the running application. It illustrates
how the user can talk to the application to request information about tomorrow’s temperature.
In addition, it illustrates how the application responds in speech to specify the city to get the
weather information about. Then, the user specifies the city as Cairo, and the application
replies with the specific weather information for that city.
204 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 8-1 Cognitive Weather Forecast Application

8.2 Architecture

Figure 8-2 shows the components involved in this use case and the runtime flow.

Figure 8-2 Architecture

Public Network Bluemix Network

User Web
Browser

Speech to Text
service

Watson Conversation
service

Weather Company
Data service

Send the user speech3

Respond with speech
converted to text4

Send the text 5

Respond with intent
and entity6

Query weather data for
a longitude and latitude7

Respond with weather
condition as text8

Send the text
of the weather condition9

Respond with weather
condition as speech10

Respond with speech

Send the user speech

2

11

Request weather conditions
for a city using speech

Respond with speech

1

12

Text to Speech
service

Cognitive Weather Forecast
chatbot

Node.js runtime
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 205

The flow for this use case is as follows:

1. The user speaks to the application to ask for weather information for a city.

2. The request is passed from the web browser to the Node.js application on Bluemix.

3. The Node.js application passes the speech request to the Speech to Text service.

4. The Speech to Text service converts the speech request to text and sends it back to the
Node.js application.

5. The Node.js application passes the text to the Conversation service.

6. The Conversation service understands the intent and entities passed by the application.
Then it returns a response to the application based on the dialog configuration in the
workspace of the Conversation service.

7. The Node.js application receives the response from the Conversation service and passes
it to the Weather Company Data service to query the city weather.

8. The Weather Company Data service responds to the Node.js application with the weather
information in text.

9. The Node.js application passes the response text to the Text to Speech service.

10.The Text to Speech service converts the text into audio and returns the audio to the
Node.js application.

11.The Node.js application passes the audio to the web browser to play it to the user.

12.The user listens to the weather information for the city requested.

8.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 8.4, “Step-by-step implementation” on page 207. This version takes you
through the key steps to integrate the IBM Watson APIs with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 8.5,
“Quick deployment of application” on page 219.
206 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8.4 Step-by-step implementation

This section shows how to integrate the Cognitive Weather Forecast chatbot application
(created in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157) with the Speech-to-Text and Text-to-Speech
services.

Implementing this use case involves the following steps:

1. Creating the Speech to Text service
2. Creating the Text to Speech service
3. Developing the Cognitive Weather Forecast chatbot application
4. Testing the application

8.4.1 Creating the Speech to Text service

To create the Speech to Text service, complete these steps:

1. In IBM Bluemix Catalog, scroll to Services select Watson, and then click Speech to Text.

2. In the Service name field, enter speech-to-text-student (Figure 8-3), then click Create.

Figure 8-3 Create STT service
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 207

8.4.2 Creating the Text to Speech service

To create the TTS service, follow these steps:

1. In IBM Bluemix Catalog, scroll to Services select Watson, and then click Text to Speech.

2. In the Service name field enter text-to-speech-student (Figure 8-4), then click Create.

Figure 8-4 Create TTS service

8.4.3 Developing the Cognitive Weather Forecast chatbot application

In this section, you modify the application to add integration with the Speech to Text and Text
to Speech services.

Clone the application code from the Git repository to your local
workstation
Clone the incomplete code for the Cognitive Weather Forecast application to your local
workstation by using the Git command line. You will then add the integration code to STT and
TTS services to it.

Use the following steps:

1. Create a new folder under the C:\ directory and name it Bluemix.

2. Open a command prompt (cmd.exe), and change the working directory to the new folder
that you created:

cd C:\Bluemix

3. Type the following command to clone the incomplete repository to your local workstation:

git clone https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

Figure 8-5 shows the command prompt result messages when cloning the code.

Figure 8-5 Git clone result in command prompt
208 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

Complete the code
To modify the code so it is ready to be deployed, you update these files as follows:

1. Complete the manifest.yml file.
2. Complete the app.js file.
3. Complete the index.html file.

The sections that follow explain these steps in detail.

Complete the manifest.yml file
Completing the manifest.yml file involves renaming the application and renaming the
services to match your Conversation, Weather Company Data, Speech to Text, and Text to
Speech services instances in Bluemix:

1. Open the manifest.yml file in a text editor. The file is in the following path:

C:\BlueMix\conv-201-stt-tts-nodejs-student\manifest.yml

The file opens as shown in Figure 8-6.

Figure 8-6 The manifest.yml file before the update

2. Change the application name and names of the services in the file to match those on
Bluemix:

– Line 3: Change my conversation to Conversation.
– Line 6: Change my weather company data to weather-company-data.
– Line 9: Change my speech to text to speech-to-text-student.
– Line 12: Change my text to speech to text-to-speech-student.
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 209

– Line 22: Add the following lines:

• Conversation
• weather-company-data
• speech-to-text-student
• text-to-speech-student

– Line 16: Add a suffix to the application name to ensure uniqueness (for example,
weather-conv-stt-tts-XXX, where XXX is your favorite word).

The completed manifest.yml file is shown in Figure 8-7.

Figure 8-7 The manifest.yml file after the update

Complete the app.js file
Completing the app.js file involves adding the integration code to the Speech to Text and Text
to Speech services:

1. Open the app.js file in a text editor. The file is in the following path:

C:\BlueMix\conv-201-stt-tts-nodejs-student\app.js

The app.js file contains the application logic and integrations.
210 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

2. Add the STT and TTS integration code to the file:

a. Replace the "// ADD SPEECH TO TEXT INTEGRATION CODE HERE" comment with the code
snippet (Example 8-1) to integrate the STT service with the application logic.

Example 8-1 Code snippet - STT integration code

// Speech to Text Integration Code
var sttEndpoint = vcap.speech_to_text[0].credentials.url;
var stt_credentials = Object.assign({
 username: process.env.SPEECH_TO_TEXT_USERNAME || '<username>',
 password: process.env.SPEECH_TO_TEXT_PASSWORD || '<password>',
 url: process.env.SPEECH_TO_TEXT_URL ||
'https://stream.watsonplatform.net/speech-to-text/api',
 version: 'v1',},vcap.speech_to_text[0].credentials);

b. Replace the "// ADD TEXT TO SPEECH INTEGRATION CODE HERE" comment with the code
snippet (Example 8-2) to integrate the TTS service with the application logic.

Example 8-2 Code snippet - TTS integration code

// Text to Speech Integration Code
var ttsEndpoint = vcap.text_to_speech[0].credentials.url;
var tts_credentials = Object.assign({
 username: process.env.TEXT_TO_SPEECH_USERNAME || '<username>',
 password: process.env.TEXT_TO_SPEECH_PASSWORD || '<password>',
 url: process.env.TEXT_TO_SPEECH_URL ||
'https://stream.watsonplatform.net/text-to-speech/api',
 version: 'v1',
},vcap.text_to_speech[0].credentials);

Figure 8-8 shows the app.js file after adding the previous integration code.

Figure 8-8 The app.js file after adding integration code
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 211

c. Replace the "//ADD TEXT TO SPEECH GET TOKEN ENDPOINT HERE" comment with the
code snippet (Example 8-3) to add the TTS get token endpoint. This endpoint is used
to get the authorization token of the service that is needed to access the service’s
APIs.

Example 8-3 Code snippet - TTS get token endpoint

// Text-to-Speech Get Token Endpoint
app.get('/api/text-to-speech/token', function(req, res, next){
 watson.authorization(tts_credentials).getToken({ url:
tts_credentials.url }, function(error, token){
 if (error) {
 if (error.code !== 401)
 return next(error);
 } else {
 res.send(token);
 }
 });
});

d. Replace the "//ADD SPEECH TO TEXT GET TOKEN ENDPOINT HERE" comment with the
code snippet (Example 8-4) to add the STT get token endpoint. This endpoint is used
to get the authorization token of the service that is needed in order to access the
service’s APIs.

Example 8-4 Code snippet - STT get token endpoint

//Speech-to_text Get Token Endpoint
app.get('/api/speech-to-text/token', function(req, res, next){
 watson.authorization(stt_credentials).getToken({ url:
stt_credentials.url }, function(error, token){
 if (error) {
 if (error.code !== 401)
 return next(error);
 } else {
 res.send(token);
 }
 });
});
212 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 8-9 shows the app.js file after adding the endpoint code for the STT and TTS.

Figure 8-9 The app.js file after adding the endpoints

Complete the index.html file
Completing the index.html file involves adding the user interface changes needed in order to
integrate the STT and TTS features:

1. Open the index.html file in a text editor. The file is in the following path:

C:\BlueMix\conv-201-stt-tts-nodejs-student\public\index.html

The index.html file contains the user interface of the application.

2. Add the STT and TTS features to the user interface:

a. Replace the "<!-- ADD AUDIO ELEMENT HERE -->" comment with the code snippet
(Example 8-5) to integrate the Audio Element to show the user the TTS feature.

Example 8-5 Code snippet - Integrate the Audio Element

<div id="output-audio" class="audio-on" onclick="TTSModule.toggle()" value="ON"></div>

b. Replace the "<!-- ADD MIC ELEMENT HERE -->" comment with the code snippet
(Example 8-6) to integrate the Microphone Element to show the STT feature.

Example 8-6 Code snippet - Integrate the Microphone Element

<div id="input-mic-holder">
<div id="input-mic" class="inactive-mic" onclick="STTModule.micON()">
</div>
</div>
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 213

Figure 8-10 shows the index.html file after adding user interface HTML elements for
integrating the STT and TTS features.

Figure 8-10 The completed index.html file

Deploy the application to Bluemix
After completing the code as described in the previous section, deploy the application to
Bluemix, using the CF command line, by completing the following steps:

1. Log in to the Bluemix region, organization and space.
2. Push the application.
3. Set the WORKSPACE_ID environment variable.
4. Restage the application.

The sections that follow explain these steps in detail.

Log in to the Bluemix region, organization and space
To log in to the Bluemix organization and space:

1. At the command prompt (cmd.exe), change from the working directory to the directory that
contains the application code:

cd C:\Bluemix\conv-201-stt-tts-nodejs-student

2. Type the following command to log in to the Bluemix region:

cf api https://api.ng.bluemix.net

In this example, you log in to the US South Region.

3. Connect to your organization and space by using the following command:

cf login -u <USERNAME> -o <ORG_NAME> -s <SPACE_NAME>

The command has the following values:

– <USERNAME> is your Bluemix user name.
– <ORG_NAME> is the organization name that you want to push the application to.
– <SPACE_NAME> is the space name that you want to push the application to.

4. When prompted, enter your password.
214 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Push the application
To push the application:

1. Type the following command:

cf push

2. Wait until the application deploys and a message indicating that the application is running
is logged on the command line, as shown in Figure 8-11.

Figure 8-11 Successful application deployment message

Set the WORKSPACE_ID environment variable
To set the WORKSPACE_ID environment variable:

1. Copy the Workspace ID of the Car Chat-bot workspace, as described in “Copy the Car
Chat-bot workspace ID” on page 223.

2. To set the WORKSPACE_ID environment variable to the application to use the Car
Chat-bot workspace in the Conversation service, use the following command:

cf set-env weather-conv-stt-tts-XXX WORKSPACE_ID $WORKSPACE_ID

The command has the following values:

– XXX is a suffix that you added to the application name to make the name unique.

– $WORKSPACE_ID is the Car Chat-bot Workspace ID that you copy as describe in “Copy
the Car Chat-bot workspace ID” on page 223.

Note: Deploying the application to Bluemix and starting it might take some time.
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 215

Figure 8-12 illustrates how to set the environment variable using the command line.

Figure 8-12 Set the environment variable using CF command line

Restage the application
For the setting of the environment to take effect, restage the application by using this
command:

cf restage weather-conv-stt-tts-XXX

Wait for the application to restage and for the message indicating that the application is
running in the log. After you deploy the application, proceed to the next section for information
about how to use the application and test it.
216 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

8.4.4 Testing the application

After deploying the application, using either the full version (from 8.5, “Quick deployment of
application” on page 219) or the incomplete code (which you just completed in 8.4.1,
“Creating the Speech to Text service” on page 207), you must run the application and test it.

The following steps describe how the application works:

1. Open the application’s URL in your web browser:

https://weather-conv-sst-tts-XXX.mybluemix.net/

The application opens (Figure 8-13); the audio greeting starts by saying:

Welcome to Car chat bot!

Figure 8-13 Cognitive Weather Forecast application opens

Speaker and microphone: Make sure that the speaker and microphone are turned on for
the workstation.

Support: Only Chrome and Firefox are supported for testing the application.
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 217

2. Click the microphone at the bottom of the page to enable the browser microphone so that
you can talk to the application. As shown in Figure 8-14, a message displays to Accept
the microphone prompt in your browser. Watson will listen soon. The audio greeting
says, Welcome to Car Chat bot!

Figure 8-14 Enable the microphone on the application

3. Speak into the microphone. Try saying, “Hi.” The application responds in voice and text by
saying, Hi! What can I do for you?

4. You can speak to the application by asking for the temperature. For example, ask What is
the temperature tomorrow, please? The application prompts you with both voice and
text: What’s the city that you’d like to forecast the weather?

5. Choose a city. For example, you can choose New York.

6. The application responds with the expected weather for tomorrow for that city. For
example, the application responds with both voice and text: A few clouds. Highs in the
low teens and lows -12 to -8F.
218 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Figure 8-15 shows the complete exchange between the application and the user.

Figure 8-15 Complete exchange asking for the temperature of New York

8.5 Quick deployment of application

A second GitHub repository is provided so that you can run the application in this use case
even if you did not perform the steps described in 8.4, “Step-by-step implementation” on
page 207. This section is independent from those steps, and it includes instructions to run the
application more quickly.

Use the GitHub repository that contains the complete code:

https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

8.5.1 Deploy the application to Bluemix

To deploy the completed code, follow these steps:

1. Click the following link to begin deployment of the application to Bluemix:

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-
conv-201-stt-tts-nodejs

2. Log in with your account on Bluemix (Figure 8-16 on page 220).

Note: Try different scenarios to test the application. If the application fails to respond to
some scenarios, it needs more training by adding more user examples to the intents in the
Car Chat-bot Workspace or by editing the entities.
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 219

https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

Figure 8-16 Log in for click to deploy

3. You can leave the default APP NAME, or change it. Change the REGION,
ORGANIZATION, and SPACE to match the one used in Chapter 6, “Chatting about the
weather: Integrating Weather Company Data with the Conversation service” on page 157
to use the same Conversation Service and Weather Company Data service, as shown in
Figure 8-17.

Figure 8-17 Click to deploy application details
220 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

4. Click DEPLOY.

5. The application begins to deploy as it goes through the following actions:

– Creates a private DevOps Service project for the app.

– Clones the code from the GitHub URL to the new project created.

– Configures the pipeline to build and deploy automatically.

– Creates the Node.js application.

– Binds the Conversation and Weather Company Data service instances created in
Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157 to the new application.

– Creates new Speech to Text and Text to Speech instances and binds them to the new
application.

6. The status of the deployment is shown in Figure 8-18.

Figure 8-18 Click to deploy status

Note: The deployment can take some time.
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 221

When deployment is finished, a deployment success message displays (Figure 8-19).

Figure 8-19 Click to deploy success message

Important: Do not view the application now.
222 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Copy the Car Chat-bot workspace ID
To copy the Car Chat-bot workspace ID, follow these steps:

1. Open your Bluemix Dashboard.

2. Click the Conversation service created in Chapter 6, “Chatting about the weather:
Integrating Weather Company Data with the Conversation service” on page 157.

3. Launch Conversation Tooling by clicking Launch tool.

4. The Workspaces page opens. On the Car Chat-bot workspace, click the Actions icon (top
left of the Workspaces box) and select View details (Figure 8-20).

Figure 8-20 Car Chat-bot workspace view details

5. Copy the Workspace ID, as shown in Figure 8-21.

Figure 8-21 Workspace ID example
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 223

Add the WORKSPACE_ID environment variable
To add the WORKSPACE_ID environment variable, follow these steps:

1. Return to Bluemix Dashboard.

2. Click the application deployed previously. (in this example it is named
conv-201-stt-tts-nodejs-1138). The application details are displayed.

3. Click Runtime from the navigation bar (Figure 8-22).

Figure 8-22 Application Runtime details

4. Select the Environment variables tab (Figure 8-23).

Figure 8-23 Environment variables tab

5. Scroll to the user-defined section, and click Add.
224 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

6. Enter WORKSPACE_ID as the NAME, and paste the Workspace ID copied from “Copy the Car
Chat-bot workspace ID” on page 223) as the VALUE (Figure 8-24).

Figure 8-24 WORKSPACE_ID environment variable

7. Click Save. Wait for the application to restart and the status to show as Running
(Figure 8-25).

Figure 8-25 Application running status

8. Click the View app button to run the application.

For more information about the expected behavior of the application, see 8.4.4, “Testing the
application” on page 217.

8.6 References

For more information about this topic, see the following resources:

� IBM Watson Conversation service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/conversation/index.html

� Speech to Text service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/speech-to-text/index.html

� Text to Speech service documentation and tutorial:

https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html
Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service 225

https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html
https://www.ibm.com/watson/developercloud/doc/speech-to-text/index.html
https://www.ibm.com/watson/developercloud/doc/conversation/index.html

226 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet.

Locating the web material

The following Git repositories and files are available to help you with examples in this book:

� Chapter 2, “Conversation service workspace” on page 13

– https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/
training/1.4-conv-101-createservice-incomplete.json

� Chapter 3, “Cognitive Calculator chatbot” on page 55

– https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

– https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/tra
ining/calculator_workspace.json

– https://github.com/watson-developer-cloud/conversation-simple

� Chapter 4, “Help Desk Assistant chatbot” on page 109

– https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-148
7332833126

– https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/con
v-201-iot-nodered-flow.json

� Chapter 5, “Using a cognitive chatbot to manage IoT devices” on page 139

– https://github.com/ibm-watson-iot/iot-starter-for-android

– https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-148
7332833126

– https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/con
v-201-iot-nodered-flow.json

A

© Copyright IBM Corp. 2017. All rights reserved. 227

https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/ibm-watson-iot/iot-starter-for-android
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json
https://github.com/watson-developer-cloud/conversation-simple

� Chapter 6, “Chatting about the weather: Integrating Weather Company Data with
the Conversation service” on page 157

– https://github.com/watson-developer-cloud/conversation-simple

– https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/
training/1.4-conv-101-createservice.json

– https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

� Chapter 8, “Talking about the weather: Integrating Speech to Text and Text to Speech with
the Conversation service” on page 203

– https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

– https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs
228 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://github.com/watson-developer-cloud/conversation-simple
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json
https://github.com/snippet-java/redbooks-conv-201-weather-nodejs
https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

The volumes in the Building Cognitive Applications with IBM Watson Services series:

� Volume 1 Getting Started, SG24-8387
� Volume 2 Conversation, SG24-8394
� Volume 3 Visual Recognition, SG24-8393
� Volume 4 Natural Language Classifier, SG24-8391
� Volume 5 Language Translator, SG24-8392
� Volume 6 Speech to Text and Text to Speech, SG24-8388
� Volume 7 Natural Language Understanding, SG24-8398

You can search for, view, download or order these documents and other Redbooks, IBM
Redpapers™, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Spring Expression Language (SpEL):

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expre
ssions.html

� IBM Bluemix, log in or create an account:

https://console.ng.bluemix.net

� Node-RED programming tool:

https://nodered.org/

� JS Foundation:

https://js.foundation/

� Slack:

http://slack.com

� Create a new Slack team:

https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team
© Copyright IBM Corp. 2017. All rights reserved. 229

http://slack.com
https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team
https://js.foundation/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://nodered.org/
https://console.ng.bluemix.net
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

� Node-RED Bluemix Starter Application:

https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-14873
32833126

� IoT starter app for Android phone:

https://ibm.ent.box.com/v/iotstarterapp

Also see the list of online resources for the following chapters in this book:

� Basics of Conversation service: 1.5, “References” on page 12

� Conversation service workspace: 2.3, “References” on page 54

� Cognitive Calculator chatbot: 3.6, “References” on page 107

� Help Desk Assistant chatbot: 4.7, “References” on page 138

� Using a cognitive chatbot to manage IoT devices: 5.4, “References” on page 156

� Chatting about the weather: Integrating Weather Company Data with the Conversation
service: 6.6, “References” on page 183

� Improving chatbot understanding: 7.3, “References” on page 202

� Talking about the weather: Integrating Speech to Text and Text to Speech with the
Conversation service: 8.6, “References” on page 225

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
230 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

https://ibm.ent.box.com/v/iotstarterapp
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Building Cognitive Applications w
ith IBM

 W
atson Services: Volum

e 2 Conversation

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442569

SG24-8394-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Conversation service
	1.1 Introduction to Watson Conversation service
	1.1.1 Supported languages
	1.1.2 Innovative ways to use the Watson Conversation service

	1.2 How to use the Conversation service
	1.3 Conversation concepts
	1.3.1 Intents and entities
	1.3.2 An example of intents and entities in a conversation
	1.3.3 Dialog
	1.3.4 Dialog node
	1.3.5 Context
	1.3.6 Condition and responses
	1.3.7 Conversation turn
	1.3.8 Typical conversation flow

	1.4 Conclusion
	1.5 References

	Chapter 2. Conversation service workspace
	2.1 How to use the Conversation service
	2.1.1 Creating a Watson Conversation service instance
	2.1.2 Launching the Conversation tool
	2.1.3 Working with a workspace
	2.1.4 Adding intents
	2.1.5 Adding entities
	2.1.6 Building a dialog

	2.2 Exporting the workspace
	2.3 References

	Chapter 3. Cognitive Calculator chatbot
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results

	3.2 Architecture
	3.3 Two ways to deploy the application: Step-by-step and quick deploy
	3.4 Step-by-step implementation
	3.4.1 Downloading the project from the Git repository
	3.4.2 Configuring the Conversation workspace for the Cognitive Calculator chatbot
	3.4.3 Developing the Cognitive Calculator chatbot application
	3.4.4 Testing the application

	3.5 Quick deployment of application
	3.6 References

	Chapter 4. Help Desk Assistant chatbot
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.2.1 Project structure

	4.3 Two ways to deploy the application: Step-by-step and quick deploy
	4.4 Step-by-step implementation
	4.4.1 Creating a new Conversation workspace
	4.4.2 Adding intents
	4.4.3 Adding entities
	4.4.4 Creating the dialog
	4.4.5 Testing the dialog
	4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED
	4.4.7 Setting up the chat service (Slack)

	4.5 Quick deployment of application
	4.6 Next steps
	4.7 References

	Chapter 5. Using a cognitive chatbot to manage IoT devices
	5.1 Getting started
	5.1.1 Objectives
	5.1.2 Prerequisites
	5.1.3 Expected results

	5.2 Architecture
	5.3 Step-by-step deployment of application
	5.3.1 Creating the Watson IoT Platform service
	5.3.2 Configuring the Android mobile device as an IoT device
	5.3.3 Modifying the Chatbot Conversation workspace
	5.3.4 Connecting the chatbot application to the IoT platform
	5.3.5 Testing the application

	5.4 References

	Chapter 6. Chatting about the weather: Integrating Weather Company Data with the Conversation service
	6.1 Getting started
	6.1.1 Objectives
	6.1.2 Prerequisites
	6.1.3 Expected results

	6.2 Architecture
	6.3 Two ways to deploy the application: Step-by-step and quick deploy
	6.4 Step-by-step implementation
	6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast chatbot
	6.4.2 Creating the Weather Company Data service instance
	6.4.3 Developing the Cognitive Weather Forecast chatbot application
	6.4.4 Testing the application

	6.5 Quick deployment of application
	6.6 References

	Chapter 7. Improving chatbot understanding
	7.1 Getting started
	7.1.1 Objectives
	7.1.2 Prerequisites
	7.1.3 Expected results

	7.2 Use case implementation
	7.2.1 Identifying the additional training that the Conversation workspace requires
	7.2.2 Using the Improve component to train the Conversation workspace
	7.2.3 Testing the improved Conversation workspace

	7.3 References

	Chapter 8. Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service
	8.1 Getting started
	8.1.1 Objectives
	8.1.2 Prerequisites
	8.1.3 Expected results

	8.2 Architecture
	8.3 Two ways to deploy the application: Step-by-step and quick deploy
	8.4 Step-by-step implementation
	8.4.1 Creating the Speech to Text service
	8.4.2 Creating the Text to Speech service
	8.4.3 Developing the Cognitive Weather Forecast chatbot application
	8.4.4 Testing the application

	8.5 Quick deployment of application
	8.5.1 Deploy the application to Bluemix

	8.6 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

