@ Redbooks

bbbbbbbbbbbbbbb

Building Cognitive Applications with
IBM Watson Services: Volume 3
Visual Recognition

Dr. Azeddine Elhassouny
Dr. Le Nhan Tam

Dina Sayed

Bjoern Steffens

Lak Sri

In partnership with
IBM Skills Academy Program

International Technical Support Organization

Building Cognitive Applications with IBM Watson
Services: Volume 3 Visual Recognition

May 2017

SG24-8393-00

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NotiCeS v
Trademarks e Vi
Preface Vi
AUNOIS . L e Vi
Now you can become a published author,too! ix
Comments WeICOME.t iX
Stay connected t0 IBM RedbOOKSttt e ix
Chapter 1. Basics of Watson Visual Recognition service. 1
1.1 USe Case eXampPles. . . .ot e 2
1.2 Creating a Watson Visual Recognition service instance and getting the APl key. 2
1.3 Image classification and face detectionexamples 4
1.3.1 Expected resUults 4
1.4 Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE. 6
1.4.1 Getting started with EclipseandJava. 7
1.4.2 Downloading the WatsonJava SDK. i 7
1.4.3 Classifying imagest 7
1.4.4 Detectingfaces i e 18
1.5 Classifying images and detecting faces: Use Watson Node.js SDK and Node.js
EXpress framework. 22
1.5.1 Installing the Watson Node.js SDKinto your project. 22
1.5.2 Classifying images e 22
1.5.3 Detectingfaces e e 24
1.6 References 27
Chapter 2. Classify images with a custom classifier........................... 29
2.1 Visual Recognition custom classifier overview 30
2.2 Train, create, and use a custom classifier., 31
2.21 Preparetrainingdata 31
2.2.2 Create and trainthe classifier. i 32
2.2.3 Classify an image with a customclassifier 33
2.3 ReferenCeso 34
Chapter 3. Image Content Description 35
3.1 Getting started. e 36
3.1.1 Objectives e 36
3.1.2 Prerequisites. 36
3.1.3 Expected results e 36
3.1.4 Creating, deploying, and running applications that use Bluemix services 39
3.2 Architecture. e 40
3.3 Implementation 40
3.3.1 Creating a Visual Recognition serviceinstance 41
3.3.2 Downloading the projectfrom Git 41
3.3.3 Importing the projectinto Eclipse 42
3.3.4 Importing WatsonJdava SDK. e 47
3.3.5 Exploring the sample code provided withtheusecase 59
3.3.6 Runningthe application i 65

© Copyright IBM Corp. 2017. All rights reserved. iii

iv

3.4 Deploy a Java applicationto Bluemix 74

3.4.1 Create a runnable JAR file to deploy the application to Bluemix 74
3.4.2 Deploy the Java applicationto Bluemix 78
3.5 Referenceso e 81
Chapter 4. Intelligent Video Content Analytics 83
4.1 Getting started. e e 84
411 ObJeCtiVES . . it e e 84
4.1.2 Prerequisitesot e 84
4.1.3 Expected resultso 84
4.2 Architecture. e 87
4.3 Implementation e 88
4.3.1 Creating a Visual Recognition serviceinstance 88
4.3.2 Downloading the project from Git 88
4.3.3 Importing the projectto Eclipse. 89
4.3.4 Importing Watson Java SDK and additional OpenCV libraries. 94
4.3.5 Exploring and completing the sample code provided with the use case. 112
4.3.6 Running the application 118
4.4 Changing your applicationto detectfaces 121
4.5 RefereNCES . . .o oo e 124
Appendix A. Additional material 125
Locating the web material 125
Related publications e 127
IBM RedbookKsS e 127
ONliNE rESOUICES ittt e e e e e e 127
Help from IBM e e e 128

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS I1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS 1S”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.

© Copyright IBM Corp. 2017. All rights reserved. \'

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/1egal/copytrade.shtmi

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Bluemix® IBM Watson loT™ Tivoli®
developerWorks® Redbooks® Watson loT™
IBM® Redbooks (logo) (@ ®

IBM Watson® Redpapers™

The following terms are trademarks of other companies:
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.

Vi Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/legal/copytrade.shtml

Preface

Authors

The Building Cognitive Applications with IBM Watson Services series is a seven-volume
collection that introduces IBM® Watson cognitive computing services. The series includes an
overview of specific Watson services with their associated architectures and simple code
examples. Each volume describes how you can use and implement these services in your
applications through practical use cases.

The series includes the following volumes:

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

YyVVyVYVYVYYVYY

Whether you are a beginner or an experienced developer, this collection provides the
information you need to start your research on Watson services. If your goal is to become
more familiar with Watson in relation to your current environment, or if you are evaluating
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 3, introduces the IBM Watson® Visual Recognition
service. The Watson Visual Recognition service uses deep learning algorithms to analyze
images for scenes, objects, faces, and other content. This book introduces concepts that you
need to understand in order to use this Watson service and provides simple code examples to
illustrate the use of the APIs. This book includes examples of applications that demonstrate
how to use the Watson Visual Recognition service in practical use cases. You can develop
and deploy the sample applications by following along in a step-by-step approach and using
provided code snippets. Alternatively, you can download an existing Git project to more
quickly deploy the application.

This book was produced by a team of specialists from around the world working in
collaboration with the IBM International Technical Support Organization.

Dr. Azeddine Elhassouny is a Professor at ENSIAS, IT College, Mohammed V University
in Rabat, Morocco. He teaches multimedia indexing and retrieval, data visualization, and data
science. His current research interests include deep learning in computer vision, multimedia
signal processing, and pattern recognition and classification. His research also explores the
connections between these areas and mathematical fields, such as neutrosophic field theory,
fusion theory, and multiple criteria decision making (MCDM). He has published a book and
several research papers about cognitive computing. Dr. Elhassouny holds a Ph.D. and M.S.
in mathematics, computer science, and applications. He is a certified IT Specialist in

IBM Big Data.

© Copyright IBM Corp. 2017. All rights reserved. vii

Dr. Le Nhan Tam is a Cloud Advisor in the IBM Cloud Advisor worldwide team and IBM
Vietnam. His areas of expertise include cloud computing, Internet of Things (loT), software
engineering, business analytics, and cognitive computing. He has over 15 years of
experience in the IT industry. Dr. Tam also is a visiting lecturer and a project advisor for
students in universities in Hanoi. He supervised students in several projects to design and
build cognitive applications that use IBM Bluemix® and IBM Watson Developer Cloud APIs,
such as visual recognition and personal insight. Tam holds a Master degree in Computer
Science from Asian Institute of Technology (AIT), Bangkok, Thailand, and a Ph.D degree in
Computer Science from University of Rennes 1 and French National Institute for Research in
Computer Science and Control (INRIA), France.

Dina Sayed is a Certified Expert IT Specialist in Watson Group, IBM Egypt. She joined IBM in
2004 as a software developer evolving to a technical lead role by leading the design and
development of end-to-end solutions. She currently works in leading and supporting Watson
multilingual cognitive solutions and services in the Middle East and North Africa (MENA)
region. Her responsibilities include implementing proof of concepts, customer
demonstrations, requirements analysis, solutions design, and development. She led Arabic
support in IBM Social Media Analytic (SMA), which includes capabilities such as sentiment
analysis, and demographic and behavioral analysis for telecommunication and government
sectors. Dina also led implementation of the Watson conversation mobile app for different
government entities in United Arab Emirates. Dina holds B.S. in Communication and
Electronics Engineering from Cairo University and M.Sc. degree in Natural Language
Processing from the University of Nottingham, UK Campus.

Bjoern Steffens is a certified IT Specialist in software services IBM Hybrid Cloud, IBM
Switzerland Ltd. Bjoern has over 25 years of experience in the IT consulting field where his
focus has been on data architectures, analytics, data science, and deriving insights,
leveraging business intelligence and business analytics tools. Bjoern enables his customers
to drive business decisions and strategy based on advanced statistics in combination with
carefully designed dashboards and reports adding precision to information. He is also an
expert in providing automated self-service information systems for audiences with varying
technical and business requirements. Bjoern recently began his journey of applying cognitive
tools and processes to his existing knowledge going forward as a Bluemix Developer.

Lak Sri currently serves as Program Director in IBM developerWorks® part of the IBM Digital
Business Group organization. Lak leads innovation in the developer activation space. He was
the Technical Leader for the Building Cognitive Applications with IBM Watson Services
Redbooks series. Lak led the development of the IBM Cloud Application Developer
Certification program and the associated course. Earlier he worked as Solution Architect for
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built
strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor
in several technology areas, and he volunteers to plan and support local community
programs.

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.
Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

Teja Tummalapalli
IBM Digital Business Group

viii Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

» Find us on Facebook:
http://www.facebook.com/IBMRedbooks

» Follow us on Twitter:
http://twitter.com/ibmredbooks

» Look for us on LinkedIn:
http://www.linkedin.com/groups?home=&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

X Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Basics of Watson Visual
Recognition service

This chapter gets you started with using the Watson Visual Recognition service.

The Watson Visual Recognition service uses deep learning algorithms to analyze images for
scenes, objects, faces, and other content. The response includes keywords that provide
information about the content. A set of built-in classes provides highly accurate results without
training. You can train custom classifiers to create specialized classes.

This chapter introduces the two main tasks that the IBM Watson Visual Recognition service
performs:

» Classify a picture and get image details. For example, you might have an image of any
entity, such as a cat, and use the Watson Visual Recognition cTassify method to get the
details for that image. For more information, see the Classify an image topic in Watson
Developer Cloud.

» Detect faces, gender, and age in a picture by using the Watson Visual Recognition
detectFaces method. For more information, see the Detect faces topic in Watson
Developer Cloud.

This chapter provides simple code examples in Java and Node.js that use the Watson SDKs
and Eclipse IDE and Node.js Express framework.

The following topics are covered in this chapter:

» Use case examples

» Creating a Watson Visual Recognition service instance and getting the API key

» Image classification and face detection examples

» Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE

» Classifying images and detecting faces: Use Watson Node.js SDK and Node.js
Express framework

» References

© Copyright IBM Corp. 2017. All rights reserved. 1

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces

1.1 Use case examples

IBM Watson Visual Recognition is a service that allows users to understand the content of
images and classify images into logical categories. In addition to classifying images, Visual
Recognition also offers facial detection.

The Visual Recognition service can be used for diverse applications and industries,
such as these:

»

Manufacturing: Use images from a manufacturing setting to make sure products are
being positioned correctly on an assembly line.

Visual Auditing: Look for visual compliance or deterioration in a fleet of trucks, planes, or
windmills in the field, train custom classifiers to understand what defects look like.

Insurance: Rapidly process claims by using images to classify claims into different
categories.

Social listening: Use images from your product line or your logo to track buzz about your
company on social media.

Social commerce: Use an image of a plated dish to find out which restaurant serves it
and find reviews, use a travel photo to find vacation suggestions based on similar
experiences, use a house image to find similar homes that are for sale.

Retail: Take a photo of a favorite oultfit to find stores with those clothes in stock or on sale,
use a travel image to find retail suggestions in that area, use the photo of an item to find
out its price in different stores.

Education: Create image-based applications to educate about taxonomies, use pictures
to find educational material on similar subjects.

Public safety: Automated, real-time video stream analysis to include targeted
observations such as facial recognition and automated licence-plate reading, identify a
suspect’s car with unknown whereabouts to locate instances of that model, parked or in
motion, in any surveilled part of the country.

1.2 Creating a Watson Visual Recognition service instance and
getting the API key

Bluemix provides resources to your applications through a service instance. Before you can
use the Watson APIs, you must create an instance of the corresponding service; you will
need to create a Watson Visual Recognition service instance for use in all the examples in
this book.

To create an instance of the Visual Recognition service, complete these steps:

1.

Create a Bluemix account.

You must have a Bluemix account to access the Watson APIs. You can create a trial
Bluemix account, valid for a specified number days.

2. Log in to Bluemix and click Catalog.

3. From the left menu, select Services — Watson.

4. Click Visual Recognition (Figure 1-1 on page 3).

2 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://console.ng.bluemix.net/

IBM Bluemix Catalog

All Categories

Infrastructure
Compute

Storage

Maobile

Services

q Search

Build cognitive apps that help enhance, scale, and accelerate human expertise.

AlchemyAP|

An AlchemyAP| service that analyzes your unstructured
text and image content

BM De

Document Conversion

Converts a HTML, PDF, or Microsoft

ord™ document
into & normalized HTML, plain tex as

IBM

Natural Language Understanding

Analyze text to extract meta-data from content such as
concepts, entities, emotion, relations, s&

I1BM

Speech to Text

Low-latency, streaming transcription

IBM

Tradeoff Analytics

Helps make better choices under multiple conflicting
goals. Combines smart visualizati nd

B

Conversation

Add a natural language interface to your application to
automate interactions with your end user

BM

Language Translator

Translate text from one language to another for specific
domains.

B

Personality Insights

The Watson Personality Insights derives insights from
transactional and social media data to ide

BM

Text to Speech

Synthesizes natural-sounding speech from text

B

Visual Recognition

Find meaning in visual content! As
scenes, objects, faces, and other c

ze images for

TIBNT

Figure 1-1 Create Visual Recognition service instance

5. Change the service and credential names or accept the default values. Confirm that the
pricing plan Free is selected and click Create.

Select the Service credentials tab and click View Credentials (Figure 1-2).

Copy the API key for later use.

Service Credentials

Credentials are provided in JSON format. The JSON
snippet lists credentials, such as the APl key and secret, as

well as connection information for the service.

Service Credentials
[[] keY nandy

[] Credentials-1

DATE CREATED

Jan 10, 2017 - 05:18:56

.
New Credential () O

ACTIONS

View Credentials a jof

"url": "https://gateway-a.watsonplatform.net/visual-recognition/api®,

“pota; "It may take up to S minute

key to become active”,

"api_key": "eefoe74aeatbh3e4829267440095954503169baef"

Figure 1-2 View Credential

Chapter 1. Basics of Watson Visual Recognition service

3

1.3 Image classification and face detection examples

The examples in this chapter do the following tasks by using the Watson Visual Recognition
service:

» Classify an image using the pre-trained classifier for general classification
For each image, the response, in JSON format, describes the image content.
» Detect faces in an image

Detect faces in image, analyze the detected faces, and get data about them, such as
estimated age, gender. If a celebrity’s face is detected, provide the names of celebrities.
Images must be in JPEG or PNG file format.

For more information, see the Visual Recognition getting started tutorials.

1.3.1 Expected results

By following the examples in this chapter, you should be able to submit images to the
application and obtain results after the image has been analyzed by the Watson Visual
Recognition services.

Image classification results
Figure 1-3 represents the image used as input to the classification.

Figure 1-3 A sample for image classification: Fruit dish image

Figure 1-4 on page 5 shows the response, in JSON format. It describes the image content
and for each image, the response includes a score for each class.

4 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html

workspace - Java - vrproject/src/com/vr/ClassifyImage.java - Eclipse
+ Edit Source Refactor Navigate Search Project Run Window Help

LR BT QOB O AP e : R
1! Problems @ Javadoc (£ Declaration B Console 2

<terminated > Classifylmage (1) [Java Application] C:\Program Files\Javaijrel.8.0 121\bin\javaw.exe (Feb 17, 2017, 1:50:51 PM)
[lassification Results:

{
"images_processed": 1,
"images": [
"classifiers": [
“"classifier_id": "default",
"name": "default",
"classes™: [
{
"class": "banana",
"score": ©0.81,
"type_hierarchy": "/fruit/banana"
e
{
"class™: "fruit”,
"score": 0.922
s
{
"class": "mango", I
"score": ©8.554,
"type_hierarchy": "/fruit/mango"
1s
{
"class": "olive color",
“score": 8.951
s
{
"class": "olive green color",
"score": 8.747
¥
]
H
1,
"source_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/fruitbowl.jpg",
"resolved url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/fruitbowl.jpg"
I
]
}

Figure 1-4 Image classification results

Face detection results
Figure 1-5 represents the image used as input in face detection.

Figure 1-5 Sample image for face detection: Barak Obama

Chapter 1. Basics of Watson Visual Recognition service

Figure 1-6 shows the response in JSON format; it shows that a face was detected and
recognized it as an image of a celebrity, former President Barak Obama. It also detected
gender as Male and the estimated age.

& workspace - Java - vrproject/src/com/vr/DetectFacesjava - Eclipse \ =ee @I
File Edit Source Refactor Navigate Search Project Run Window Help

- RiprQ Ry HE IO T = et il Quick Access |:| & | [@)

#Eyy= &

-g ! Problems @ Javadoc [= Declaration & Console &3 R % | Gkl
[2 | <terminated> DetectFaces [Java Application] C:\Program Files\Java\jre1.8.0_121\bin\javaw.exe (Feb 17, 2017, 2:22:31 PM) E
Detection Results: a|[=
{ El
"images_processed": 1, =
"images": [
{
"faces": [
{
“face_location": {
"width": 92,
"height": 159,
"left": 256,
“top": 64
I
"age": {
"max": 44,
"min": 35,
“score": 0.446989
IS
"gender”: {
"gender": "MALE",
"score": ©.99593

=}

11

1
"identity": {
"name": "Barack Obama",
"score": 6.970688,
"type_hierarchy": "/people/politicians/democrats/barack obama"
1
}

1, -~
"source_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/prez.jpg",

"resolved_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/prez.jpg"
}
]
} -

Figure 1-6 Results of running the face detection service

1.4 Classifying images and detecting faces: Use Watson Java
SDK and Eclipse IDE

By the end of this section, you should be able to accomplish these objectives:
» Use the Watson Java SDK to call Watson APIs for image classification.

» Use the Watson Java SDK to call Watson APIs to detect faces and get additional data
about them such as gender and estimated age.

Implementing this use case using the Watson Java SDK and Eclipse IDE involves the
following steps:

Creating a Bluemix account (see step 1 on page 2)

Creating a Watson Visual Recognition service instance and getting the API key
Getting started with Eclipse and Java

Downloading the Watson Java SDK

Classifying images

Detecting faces

ook wNd~

6 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

1.4.1 Getting started with Eclipse and Java

In this use case, Eclipse IDE is used to build the Java application. Install and become familiar
with Eclipse and Java before you follow the implementation steps:

>

Download Eclipse:

https://eclipse.org/downloads/

Getting Started with Eclipse:

https://eclipse.org/users/

Getting Started with Java Programming:
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html

1.4.2 Downloading the Watson Java SDK

IBM Watson services offer Software Development Kits (SDKs) that simplify application
development for a variety of programming languages and platforms.

In this chapter, the focus is on developing a Java sample application. Therefore, the Watson
Java SDK must be downloaded:

1.

2.

Go to GitHub:
https://github.com/watson-developer-cloud/java-sdk/releases

Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar
(Figure 1-7).

['-'I'TJjava—sdk—3.?.CI—jar—with—dependencies.jar

Downloads

B Source code (zip)

B Source code (tar.gz)

Figure 1-7 Download Watson Java SDK

1.4.3 Classifying images

In this section, you will use the Watson Java SDK to classify image content. It describes how
to call the Watson service and how to interpret the response.

Complete these steps:

1.

Launch Eclipse.

After you complete 1.4.1, “Getting started with Eclipse and Java” on page 7, you should
have Eclipse installed in your workstation. Launch Eclipse by double-clicking the
application icon.

Select a workspace directory and click OK (Figure 1-8 on page 8).

Chapter 1. Basics of Watson Visual Recognition service 7

https://eclipse.org/downloads/
https://eclipse.org/users/
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html
https://github.com/watson-developer-cloud/java-sdk/releases

=

23 Eclipse Launcher

Select a directory as workspace

Eclipse uses the workspace directory to store its preferences and development artifacts.
Workspace: C\VisualRecognition\workspace -

[] Use this as the default and do not ask again

* Recent Workspaces

[OK J l Cancel

Figure 1-8 Select an Eclipse workspace

The Eclipse Welcome page opens (Figure 1-9).

2 workspace - Java - Eclipse
File Edit Mavigate Search Project Run Window Help

5 | @ Welcome 2

%J

% eC|IpSE Welcome to the Eclipse IDE for Java Developers

Review the IDE's most fiercely contested preferences Get an overview of the feg

—] A guided walkthrough to create the famous Hello World in ' Go through tutorials
Eclipse

] i : Try out the samples
Create a new Java Eclipse project

g . . ’ Find out what is new
Checkout Eclipse projects hosted in a Git repository

Figure 1-9 Eclipse Welcome page

8 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3. Create a new Java project. Select File — New — Java Project (Figure 1-10).

& workspace - Java - Eclipse

Edit Navigate Search Project Run Window Help

New
Open File...
2 Open Projects from File System...

Close

Close All

Save

Save As..

Save A

Revert

Move...

Rename...

Refresh

Convert Line Delimiters To

Print...

Switch Workspace
Restart

ta Import...

&g Export.

Properties

1 Collection.class [com.ibm.watson.de...]
2 CollectionTestjava [visualrecproje..]
3 Detectface)ava [visualrecproject/..]
4 Classifylmage.java [visualrecprojec..]

Exit

Alt+5Shift+N »

Ctrl+W
Ctrl+Shift+W
Ctrl+S
Ctrl+Shift+S

Alt+Enter

Java Project
Project...

Package

Class

Interface

Enum
Annotation
Source Folder
Java Working Set
Folder

File

Untitled Text File
JUnit Test Case
Task

loDEmGRsiereee® A

L

Example...

3

Other...

pugh tutorials

Ctrl+N the samples

ository

isystem or

Find out what is new

overview of the features

=8B ==

& s xE= -

()

Workbench

m

¥ Aways show Welcome at start up

Figure 1-10 Create new Java project

Chapter 1. Basics of Watson Visual Recognition service 9

4. Enter the project name (vrproject in this example), accept the default values for other
fields, and click Finish (Figure 1-11).

< New Java Project o G

Create a Java Project = ! y
Create a Java project in the workspace or in an external location.

Project name: vrprojec‘d

[¥] Use defauI[;[slocation
C\VisualRecognition\workspace\wrproject Browse...
JRE
@) Use an execution environment JRE: JavaSE-1.8 A
() Use a project specific JRE: jrel8.0 121 hd
(") Use default JRE (currently 'jre1.8.0_121" Configure JREs...

Project layout

() Use project folder as root for sources and class files

(@ Create separate folders for sources and class files Configure default...

Working sets

[Add project to working sets New...
> Select
"?3 Back Next = ‘ [Finish] I Cancel

Figure 1-11 Setting your Java project name

5. Close the Welcome page in order to view your project in Package Explorer.

10 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

6. Import the Watson Java SDK so you can use it in your application. Right-click the
vrproject project and select Build Path — Configure Build Path (Figure 1-12).

2 workspace - Java - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help
S N B0 R FE-ES Iy v O
f# Package Explorer 2 BES|ls ¥
R a—ra—
MNew 3
Go Into
Open in New Window
Open Type Hierarchy F4
Show In Alt+Shift+W»
[E Copy Ctrl=C
55 Copy Qualified Name
[E Paste Ctrl+V
#& Delete Delete
Remove from Context Ctrl+Alt+5Shift+Down
Build Path » Im Link Source..
Source Alt+Shift+S » | &1 New Source Folder...
Refactor Alt+Shift+T» | 8 se as Source Folder
i Import. s Add External Archives...
9 Export.. =. Add Libraries..
" Refresh r5 | Configure Build Path..
Close Project
Assign Working Sets...
Figure 1-12 Go to your project build path

Chapter 1. Basics of Watson Visual Recognition service

11

12

7. Select the Libraries tab and click Add External JARs.

Browse to and select the Watson Java SDK (JAR file) that you downloaded in 1.4.2,
“Downloading the Watson Java SDK” on page 7. Click OK.

The Watson Java SDK is successfully added to your project (Figure 1-13).

-

& Properties for vr_project

type filter text

Resource

Builders

Java Build Path
Java Code Style
Java Compiler
Java Editor

Javadoc Location
Project References
Refactoring History
Run/Debug Settings

» Task Repository
Task Tags

» Validation
WikiText

@

= B[R]
Java Build Path Y T
|'uf‘? Source | .= Projects| E\ Libraries | %; Order and Export
JARs and class folders on the build path:
» s java-sdk-3.5.3-jar-with-dependencies.jar - C\Sources Add JARs...

» B JRE System Library [JavaSE-1.8]

Add External JARs...

Add Variable...

Add Class Folder...

l l
l |
l l
[Add Library.. |
l |
l J

Add External Class Folder..

Edit...
Remove

Migrate JAR File..

o

Apply

0K] I Cancel l

Figure 1-13 Import the Watson Java SDK to the Eclipse project

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

8. Create a Java class to classify your image. Right-click the vrproject project and select

New — Class (Figure 1-14).

= workspace - Java - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

O~ L N $~0- Q- #G-®C v~ v v v~
[Package Explorer & B%|s v=0O
=
— New ¥ |22 Java Project
Go Into 9 Project.
Open in New Window # Package
Open Type Hierarchy Fg | @ Class S
Show In Alt+Shiftaw» | & Interface
& Enum
& Copy Ctri+C | @ Annotation
&= Copy Qualified Name &9 Source Folder
B Paste CrlsV | 4% Java Working Set
& Delete Delete | % Folder
Remove from Context Ctrl+Alt+Shift+Down ¥ File
Build Path » | B Untitled Text File
SOITCE Alt+Shift+s » | El JUnit Test Case
: T Task
Refactar Alt+Shift+T *»
i | Import. ™ Example..
i Export.. ™ Other. Ctrl+N
<" Refresh F5
Close Project
Assign Working Sets...
Run As r
Debug As »
Validate
Restare from Local History...
PyDev 3
Team 3
Compare With r
Configure >
Properties Alt+Enter

Figure 1-14 Create a new Java class

Chapter 1. Basics of Watson Visual Recognition service

13

9. The New Java Class window opens (Figure 1-15). Provide the class details: Add a class
name (ClassifyImage in this example) and select the public static void main(String|[]

args) check box. Click Finish.

=3 New Java Class

Java Class

Source folder: vrproject/src

Package: Com.vr

[Enclosing type:

Name: Classifylmage

Modifiers: @ public) package private protected

[] abstract []final static
Superclass: ? java.lang.Objecti
Interfaces:

Which method stubs would you like to create?
[public static void main(String[] args)
["] Constructors from superclass
[#] Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

["] Generate comments

= T
@ Finish

o0

=]

]
]
gil

Cancel

Figure 1-15 Set your Java class name

14 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

The Classifylmage class is created (Figure 1-16).

= workspace - Java - vrproject/src/com/vr/Classifylmage.java - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help

& | O Classifylmagejava 2

4 package com.vr;
2
3 public class ClassifyImage {
vl
5E public static void main(String[] args) {
E 6 // TODO Auto-generated method stub
7
8
o}
10
1 }

v BT YRy HOyEIC vy Py FE NS yH v

Figure 1-16 Classifylmage Java class

10.Edit the ClassifyImage.java content by adding the code in Example 1-1. Spend several

minutes to read through the code snippet to understand it.

Example 1-1 Code snippet for image classification

package com.vr;

//Here you import Watson Java SDK to make it available in your code.
import com.ibm.watson.developer_cloud.visual_recognition.v3.*;
import com.ibm.watson.developer_cloud.visual_recognition.v3.model.*;

public class ClassifyImage {

public static void main(String[] args) {

VisualRecognition service = new VisualRecognition(VisualRecognition.VERSION DATE 2016 05 20);

service.setEndPoint("https://gateway-a.watsonplatform.net/visual-recognition/api");

//Here you replace "your_api_key here" by the API Key you created in "Creating //a Watson Visual

Recognition service instance and getting the API key"
service.setApiKey("your_api_key_here");

//Here you add the URL of your image. The image size should not exceed 2MB.
String imageURL = new

String("https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recog

nition/fruitbowl.jpg");

ClassifyImagesOptions options = new ClassifyImagesOptions.Builder().url(imageURL).build();

VisualClassification result = service.classify(options).execute();
System.out.printin("Classification Results:");
System.out.printin(result);

}

Chapter 1. Basics of Watson Visual Recognition service

15

16

11.Run the code and check results. Right-click Classlmage.java and then select
Run As — Java Application (Figure 1-17).

= workspace - Java - vrproject/src/com/vr/Classifylmage.java - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help

mil AR R R R YR R R R R RS CR R R
f# Package Explorer &2 E %S|« ¥ = 8 [Casifylmagejava 2
4 = yrproject 1 package com.vr;
a4 (B gre 2
4 # comwr 3 //Here you import Watson Java SDK
_’ 0o : 4= import com.ibm.watson.developer c]
'_ 3 MNew » | import com.ibm.watson.developer_cl
> 4l [Open F3
1 = JRE Sy Open With * | public class ClassifyImage {
+ B Refere Open Type Hierarchy F4
Show Il AltsShiftswr I public static void main(String
// TODO Auto-generated mef
[Copy Ctrl+C
B2 Copy Qualified Name VisualRecognition serwics
[Paste Ctrl+V service.setEndPoint("htty
% Delete Delete service.setApiKey("00190]
o i _ //Here you add the URL of
Remove from Context Ctrl+Alt+5hift+Down String imageURL = new St
Build Path K ClassifyImagesOptions opf
Source Alt+Shift+S » VisualClassification resy
Refactor Alt+Shift+T »
System.out.println("Class
3 Import.. System.out.println(resuld
iy Export..
References L3 }
Declarations L3)
" Refresh F5

Assign Working Sets...

Run As » | @ 1 Java Application % Alt+Shift+X,]
Debug As - Run Configurations...
Validate
Restore from Local History...
Team L4
Compare With L Il 1
Replace With L4

F s Declaration B Conso
Properties Alt+Enter

-onsoles to display at this time.

Figure 1-17 Run Classifylmage

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

12.View the results in the Console, which by default is under ClassifyImage. You can
double-click the Console tab to maximize the view and check the results (Figure 1-18).

workspace - Java - vrproject/src/com/vr/ClassifyImage.java - Eclipse

Edit Source Refactor Navigate Search Project Run Window Help
S SR R A0 B AU TSR S = L e e
1! Problems @ Javadoc (£ Declaration B Console 2

<terminated > Classifylmage (1) [Java Application] C:\Program Files\Java\jrel.8.0_121\bin\javaw.exe (Feb 17, 2017, 1:50:51 PM)
[lassification Results:

{
"images_processed": 1,
"images": [
"classifiers": [
{
“"classifier_id": "default",
"name": "default",
"classes™: [
{
"class": "banana",
"score": ©0.81,
"type_hierarchy": "/fruit/banana"
{
"class™: "fruit”,
"score": 0.922
s
{
"class": "mango", I
"score": ©8.554,
"type_hierarchy": "/fruit/mango"
s
{
"class": "olive color",
“score": 8.951
s
{
"class": "olive green color",
"score": 8.747
¥
]
H
1,
"source_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/fruitbowl.jpg",
"resolved url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/fruitbowl.jpg"
I
]
}

Figure 1-18 Console view displays classification results

The response, in JSON format, describes the image content. For each image, the
response includes a score for each class.

Chapter 1. Basics of Watson Visual Recognition service 17

Figure 1-19 represents the image used as input to the classification.

Figure 1-19 A sample for image classification: Fruit dish image

1.4.4 Detecting faces

In this section, you use the Watson Java SDK to detect faces in an image. The API also
provides data about the detected faces, such as estimated age, gender, and names of
celebrities.

1. Right-click Classifylmage.java (Figure 1-14 on page 13), click Copy and Paste in the
same directory.

2. The Name Conflict dialog opens (Figure 1-20). Enter DetectFaces as the new class name
and click OK.

£ Name Conflict

Enter a new name for 'Classifylmage"

DetectFaces|

| oK || cancel

Figure 1-20 Create DetectFaces class

18 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

The new class DetectFaces. java is listed in Package Explorer (Figure 1-21).

= workspace - Java - vrproject/src/com/vi
File Edit Source Refactor

Mavigate ¢

L. witE v Qv Qo8 (
H Package Explorer &2 = O
BES|e ¥

4 [vrproject
4 (B oore
4 M comuyr
» [Classifylmage.java
i 4] DetectFaces.java
- = JRE System Library [JavaSE-1.8]
- B\ Referenced Libraries

Figure 1-21 DetectFaces java class in Package Explorer

3. Update the code to call the face detection Watson API.
Double-click DetectFace.java to open the class.

Chapter 1. Basics of Watson Visual Recognition service 19

Apply the changes that are highlighted (outlined in red in Example 1-2).

Example 1-2 Code changes to perform face detection

package com.vr;

import com.ibm.watson.developer cloud.visual _recognition.v3.*;
import com.ibm.watson.developer cloud.visual recognition.v3.model.*;
public class ClassifyImage {

public static void main(String[] args) {

VisualRecognition service = new
VisualRecognition(VisualRecognition.VERSION_DATE_2016_05_20);

service.setEndPoint ("https://gateway-a.watsonplatform.net/visual-recognition/ap
i");

//Here you replace "your api_key here" by the API Key you created in "Creating
a //Watson Visual Recognition service instance and getting the API key"

service.setApiKey("your_api_key here");

//Here you add the URL of your image. The image size should not exceed 2MB.
String imageURL = new
String("https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-d
ownloads/master/visual-recognition/prez.jpg");

VisualRecognitionOptions options = new
VisualRecognitionOptions.Builder().url(1mageURL).build(); DetectedFaces result
= service.detectFaces(options).execute();

System.out.printin("Detections Results:");
System.out.printin(result);

}
}

4. Run code and check the results. Right-click DetectFaces.java and select Run As — Java
Application (see Figure 1-17 on page 16).

20 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

5. View the results on your Console, which by default is under DetectFaces. To maximize the
view and see the results (Figure 1-22), double-click the Console tab. It shows the
response is in JSON format and that a face was detected and recognized as an image of
former President Barak Obama. It also detected gender as Male and the estimated age.

S workspace - Java - vrproject/src/com/vr/DetectFacesjava - Eclipse E@
File Edit Source Refactor Navigate Search Project Run Window Help

o RirQ Ry HE IO TP @ E MR R W TR il Quick Access | 1 | [&)
X% GHEEE S -Or= 2 |

"= | !*l Problems @ Javadoc [E Declaration | & Console 53

[# | <terminated > DetectFaces [Java Application] C:\Program Files\Java\jre1.8.0_121\bin\javaw.exe (Feb 17, 2017, 2:22:31 PM) . E
Detection Results: A

{ =

"images_processed": 1, 5=
"images": [=

{ El

"faces": [jum

“face_location": {
"width": 92,
"height": 159,
"left": 256,
“top": 64

"max": 44,
"min": 35,
“score": 0.446989

m

1
"identity": {
"name": "Barack Obama",
"score": 6.970688,
"type_hierarchy": "/people/politicians/democrats/barack obama"
1
}

1, -~
"source_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/prez.jpg",
"resolved_url": "https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/prez.jpg"

¥
]
¥ =

4

Figure 1-22 Results of running the face detection service

Figure 1-23 represents the image used in face detection.

Figure 1-23 Sample image for face detection: Barak Obama

Chapter 1. Basics of Watson Visual Recognition service 21

1.5 Classifying images and detecting faces: Use Watson
Node.js SDK and Node.js Express framework

By the end of this section, you should be able to accomplish these objectives:

» Use the Watson Node.js SDK to call Watson APlIs for image classification.

» Use the Watson Node.js SDK to call Watson APlIs to detect faces, gender, and age in an
image.

Implementing this use case using the Watson Node.js SDK involves the following steps:

1. Creating a Watson Visual Recognition service instance and getting the APl key.
2. Installing the Watson Node.js SDK into your project.

3. Classifying images.

4. Detecting faces.

For more information about the Node.js client library to use the Watson services, see the
Watson Developer Cloud Node.js SDK web page.

You can find several Node.js usage examples of the Watson APIs on GitHub.

1.5.1 Installing the Watson Node.js SDK into your project

For Node.js you need to enable the Watson API by installing the SDK into your local Node.js
installation and the project you are currently working on:

1. You need a text editor to enter and edit the code. Use your favorite text editor or download
Brackets or Atom, which are two very popular code editors.

2. Install Node.js runtime and node package manager (npm) on your system from the
Node.js website.

3. After you initiate your Node.js project, install the Watson Node SDK into your local
installation and Node.js project:

npm install -g watson-developer-cloud
npm install --save watson-developer-cloud

1.5.2 Classifying images

The Node.js sample code in Example 1-3 does the following tasks:

1. Gets an image from a website URL

2. Sets the API key of the Visual Recognition service

3. Sends the image to the classify method of the Visual Recognition service for processing.
4. Returns the results in JSON format.

Example 1-3 Image classification: Node.js sample code

var parameters = {

Ilap.ikeyll : nn

Turl"
"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44 bara
ck_obama%5B1%5D. jpg"
}s

var watson = require('watson-developer-cloud');
var fs = require('fs');

22 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/watson-developer-cloud/node-sdk
https://www.npmjs.com/package/watson-developer-cloud
https://nodejs.org

var http = require('http');

var visual_recognition = new watson.VisualRecognitionV3({
api_key: parameters.api_key, //SET YOUR API KEY
version_date: '2016-05-20'

1

visual_recognition.classify(parameters, (err, response) => {
if (err) {
console.log('error:', err);
if (typeof callback !== 'undefined' && typeof callback=="function") return
callback(err);
}
else {
console.log(JSON.stringify(response, null, 2));
if (typeof callback !== 'undefined' && typeof callback=="function") return
callback(response);
}
s

Note the following important lines in the Node.js code snippet, shown in Figure 1-24:
» Line 3: The URL that supplies the image as input for processing.

» Line 11: Set your api_key of the Visual Recognition service created in 1.2, “Creating a
Watson Visual Recognition service instance and getting the APl key” on page 2.

» Line 15: Call the classify method passing the image url and api_key.

1 var parameters = {
2 napikey" ;o "m

: '
"url"™ : "https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44 barack obama%5B1%5D.Jjpg"

var watson = reguire('watson-developer-cloud');
wvar f3 = reguire('f=");
wvar http = reguire('http');

Elwvar visual recognition = new watson.VisualRecognitionV3({
api_key: parameters.api key, //SET YOUR API KEY

12 version date: "2016-05-20°

3 ~1):

visual recognition.classify(parameters, (err, response) => {
E if {err) {

console.log('error:', err);

if (typeof callback !'=— 'undefined' && typeof callback=="function") return callback(err):

13 Fol

20 [else {

21 console.log (JSCN.stringify(response, nunll, Yy

22 if (typeof callback !'=— 'undefined' && typeof callback=="function") return callback(response);
23 L}

24 }):

Figure 1-24 Classify object: JSON snippet highlights

Chapter 1. Basics of Watson Visual Recognition service 23

Figure 1-25 shows the response, in JSON format. It describes the image content and

includes a score for each class.

{
"custom_classes™: @,
"images": [

Figure 1-25 Results

i
"classifiers™: [
{
"classes™: [
{

"class™: "Treasury”,
"score”: @.641,
"type_hierarchy™: "/person/Treasury™

}’

{
"class™: "person”,
"score™: @.862
}’
{
"class™: "official”,
"score”: 8.589,
"type_hierarchy™: "/person/official™

}’

{
"class™: "president”,
"score™: 8.583,
"type_hierarchy™: "/person/president”
}’
{
"class™: "President of the United States”,
"score”: @8.557,
"type_hierarchy™: "/person/President of the United

}’
{
"class™: "politiciam”™,
"score™:

1.5.3 Detecting faces

In this section, you use the Watson Node.js SDK to detect faces in an image. The API also
provides data about the detected faces, such as estimated age, gender, and names of
celebrities.

The Node.js sample code in Example 1-4 on page 25 performs the following tasks:

1.
2.
3.

Gets an image from a website URL.
Sets the API key of the Visual Recognition service.

Sends the image to the detectFaces method of the Visual Recognition service for
processing.

Returns the results in JSON format.

24 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Example 1-4 Face detection: Node.js sample code

var parameters = {

Ilap.ikeyll . n II’

Ilur'l n .
"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44 bara
ck_obama%5B1%5D. jpg"

}s

var watson = require('watson-developer-cloud');
var fs = require('fs');
var http = require('http');

var visual _recognition = new watson.VisualRecognitionV3({
api_key: parameters.api_key, //SET YOUR API KEY
version_date: '2016-05-20'

1

visual recognition. detectFaces (parameters, (err, response) => {
if (err) {
console.log('error:', err);
if (typeof callback !== 'undefined' && typeof callback=="function") return
callback(err);
}
else {
console.log(JSON.stringify(response, null, 2));
if (typeof callback !== 'undefined' && typeof callback=="function") return
callback(response);
}
1)

Note the following important lines in the Node.js code snippet, shown in Figure 1-26:
» Line 3: The URL that supplies the image as input for processing.

» Line 11: Setyour api_key of Visual Recognition service created in 1.2, “Creating a Watson
Visual Recognition service instance and getting the API key” on page 2.

» Line 15: Call the detectFaces method passing the image url and api_key.

1 var parameters = {
2 napikey" ;o "m

'
"url"™ : "https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44 barack obama%5B1%5D.Jjpg"

var watson = reguire('watson-developer-cloud');
wvar f3 = reguire('f=");
wvar http = reguire('http');

Flwar visual recognition = new watson.VisualRecognitionVs({
api_key: parameters.api_key, //SET YOUR API KEY

L2 version date: "2016-05-20°

3 ~1):

visual recognition.detectFaces(parameters, (err, response) => {
= if {err) {

console.log('error:', err);
if (typeof callback !'=— 'undefined' && typeof callback=="function") return callback(err):
Fol
E else {
21 console.log (JSCN.stringify(response, nunll, Yy
22 if (typeof callback !'=— 'undefined' && typeof callback=="function") return callback(response);

Fol
by :

Figure 1-26 Face detection: JSON snippet highlights

Chapter 1. Basics of Watson Visual Recognition service 25

26

Figure 1-27 shows the results in JSON format. The face of a celebrity, former President Barak
Obama, was detected and data about the face is provided (gender, estimated age).

1
"images™: [
{
"faces™: [
{

"age™: {
"max": 64,
"min™: 55,
"score”: 0.447987

}J

"face_location™: {
"height™: 438,
"left™: 375,
"top": 49,

"identity": {
"name": "Barack Obama",
"score™: @.982814,
"type_hierarchy™: "/people/politicians/democrats/barack

1
b

].'l

"resolved_url™:
"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-
family/44 barack_obama%581%5D.jpg",

"source_url™:
"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-
family/44 barack_obama%581%5D.jpg"

H
] ¥

"images_processed”: 1

Figure 1-27 Expected output

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

1.6 References

See the following resources:

>

Overview of the IBM Watson Visual Recognition service:
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
Watson Developer Cloud: Visual Recognition:
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
Classify an image:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify a
n_image

Detect faces:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect fac
es

Visual Recognition getting started tutorials:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-starte
d.html

Watson Developer Cloud Node.js SDK:
https://www.npmjs.com/package/watson-developer-cloud
Node.js usage examples of the Watson APls:

https://github.com/watson-developer-cloud/node-sdk

Chapter 1. Basics of Watson Visual Recognition service 27

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html
https://www.npmjs.com/package/watson-developer-cloud
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
https://github.com/watson-developer-cloud/node-sdk

28 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Classify images with a custom
classifier

The examples in Chapter 1, “Basics of Watson Visual Recognition service” on page 1, use
the pre-trained classifier to classify images.

You can also train and create a custom classifier. With a custom classifier, you can train the
Visual Recognition service to classify images to suit your business needs. By creating a
custom classifier, you can use the Visual Recognition service to recognize images that are
not available with pre-trained classification.

This chapter shows you how to create and train a custom classifier and use it to classify a
new image.
The following topics are covered in this chapter:

» Visual Recognition custom classifier overview
» Train, create, and use a custom classifier
» References

© Copyright IBM Corp. 2017. All rights reserved. 29

2.1 Visual Recognition custom classifier overview

The Watson Visual Recognition service can learn from example images that you upload to
create a new classifier. Each exampile file is trained against the other files uploaded when you
create the classifier and positive examples are stored as classes. These classes are grouped
to define a single classifier, but return their own scores.

Figure 2-1 shows an overview of the process to use the Watson Visual Recognition service
with a custom classifier.

i

Prepare images

* Gather image files J
ot URLs to analyze ‘
Classify, View results
Detect faces,

Recognize text * The service returns
—» scores for classes,

apl . Up.load irr:JaHg f fitles faces, text, or
-l: :I :: or image sto custom classifiers
||

the APl in batches that meet the

Prepare training Train and create or individually to be minimurn threshold
data new classifier analyzed
* Sortimages into * Upload the training
positive and data to the API

negative examples

Figure 2-1 Visual Recognition process with custom classifier

A new custom classifier can be trained by several compressed (.zip) files, including files
containing positive or negative examples of images (.jpg or .png). You must supply at least
two compressed files, either two positive example files or one positive and one negative
example file.

Compressed files containing positive examples are used to create classes that define what
the new classifier is. The prefix that you specify for each positive example parameter is used
as the class name within the new classifier. The _positive_examples suffix is required. There
is no limit on the number of positive example files that you can upload in a single call.

The compressed file containing negative examples is not used to create a class within the
created classifier, but does define what the new classifier is not. Negative example files
should contain images that do not depict the subject of any of the positive examples. You can
specify only one negative example file in a single call. For more information, see these web
pages:

» Overview of the IBM Watson Visual Recognition service
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
» Guidelines for training classifiers

https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html

30 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html

2.2 Train, create, and use a custom classifier

By the end of this chapter, you should be able to accomplish these objectives:
» Create a custom classifier and upload positive and negative image files examples.
» Get the custom classifier ID.

v

Classify a new image using a newly trained custom classifier.

v

Get results in JSON format containing class, score, and type hierarchy.

To accomplish these objectives, you will do the following steps:

v

Prepare training data.

v

Create a Watson Visual Recognition service instance and getting the API key as
described in 1.2, “Creating a Watson Visual Recognition service instance and getting the
API key” on page 2.

Create and train the classifier.

v

v

Classify an image with a custom classifier.

2.2.1 Prepare training data

Gather image files to use as positive and negative example training data. Download the
following ZIP files:

» beagle.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/beagle.zip

» husky.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/husky.zip

» golden-retriever.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
jon/golden-retriever.zip

» cats.zip (negative example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/cats.zip

Chapter 2. Classify images with a custom classifier 31

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/beagle.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/husky.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip

2.2.2 Create and train the classifier

32

The sample code in Example 2-1 specifies the location of the training images and creates the
custom classifier. Positive example file names require the suffix _positive_examples; the
prefix (beagle, golden_retriever, and husky) is returned as the name of the class. Notice that
a negative example file is also provided.

Example 2-1 Specify location of training images and create classifier

var watson = require('watson-developer-cloud');
var fs = require('fs');

var visual _recognition = watson.visual recognition({
api_key: '{api_key}',
version: 'v3',
version_date: '2016-05-19'

1)

var params = {
name: 'dog',
beagle positive examples: fs.createReadStream('./ public/resource/beagle.zip'),
husky positive_examples: fs.createReadStream('./ public/resource/husky.zip'),
golden retriever positive_examples: fs.createReadStream('./
public/resource/golden-retriever.zip'),
negative_examples: fs.createReadStream('./ public/resource/cats.zip')

}s

visual recognition.createClassifier(params,
function(err, response) {
if (err)
console.log(err);
else
console.log(JSON.stringify(response, null, 2));
1

The sample output in Figure 2-2 shows that the classifier_id is returned.

“classifier id": “"dogs 1941945966",
"name”: “"dogs”,
"oWner” T TR - X - N - XK,
"status™: "training”,
"created”: "2016-85-18T21:32:27.7527",
"classes": [
{"class™: "husky"},
{"class™: "goldenretriever"},
{"class™: "beagle"}
]
}

Figure 2-2 Returned classifier_id

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

2.2.3 Classify an image with a custom classifier

The code snippet shown in Example 2-2 is used to classify a new image with the custom
classifier. Compare this example to Example 1-3 on page 22. The difference is that in
Example 2-2 you specify the classifier_id of the the custom classifier created in 2.2.2,
“Create and train the classifier” on page 32.

1.

Download the following image file to use as the input image to classify:

https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads
/master/visual-recognition/dogs.jpg

Enter the code from Example 2-2 to classify the image. Make these changes:

— Replace api_key with the key that you obtained when creating the Visual Recognition
service, as described in 1.2, “Creating a Watson Visual Recognition service instance
and getting the API key” on page 2.

— Replace custom classifer_id with the ID that you obtained when you created the
custom classifier in 2.2.2, “Create and train the classifier” on page 32.

Example 2-2 Code snippet to classify a new image with a custom classifier

var watson = require('watson-developer-cloud');
var fs = require('fs');

var visual_recognition = watson.visual recognition({
api_key: '<api_key>',
version: 'v3',
version_date: '2016-05-20'

s

var params = {
images_file: fs.createReadStream('./public/resource/dogs.jpg'),
classifier_ids: ["<custom_classifer_id", "default"]

}s

visual _recognition.classify(params, function(err, res) {
if (err)
console.log(err);
else
console.log(JSON.stringify(res, null, 2));
1

Chapter 2. Classify images with a custom classifier 33

https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/dogs.jpg

The sample output is shown in Figure 2-3.

{
"images": [
{
"classifiers”: [
{
"classes": [
{
"class": "animal”,
"score”: 1.8,
"type_hierarchy”: "/animals"
1.
{
"class": "mammal”,
"score”: 1.0,
"type_hierarchy": "/animals/mammal”
g
{
"class": "dog",
"score": 9.888797,
"type_hierarchy”: “/animals/pets/dog”
I
1
"classifier_id": "default”,
"name”: "default”
"classes": [
{
"class": "goldenretriever”,
"score”: @.618581
}
1
"classifier_id": "dogs 20884575858",
"nama": "dogs"
3
L.

Figure 2-3 Sample output

2.3 References

See the following resources:

» Overview of the IBM Watson Visual Recognition service:
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html

» Guidelines for training classifiers:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.ht
ml

34 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html

Image Content Description

This chapter focuses on the development of Java programs using the Watson Visual
Recognition service, which uses deep learning algorithms to analyze images, to generate
image content description.

In this chapter, you review the source code for a sample application, Image Content
Description, which is a program written in Java and uses the Watson Visual Recognition
services. You can also run the program in Eclipse on Linux or Windows. The majority of steps
are similar for both systems.

The following topics are covered in this chapter:

» Getting started

Architecture

Implementation

Deploy a Java application to Bluemix

»
»
»
» References

© Copyright IBM Corp. 2017. All rights reserved. 35

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

By the end of this chapter, you should be able to write a Java program that uses the Java
classes that are provided with the Watson Visual Recognition service:

» To access the service:
— VisualRecognition
» To classify and describe objects in an image:

— ClassifylmagesOptions
— VisualClassification

» To recognize celebrity faces in images, analyze them, and get data about the person:

— DetectedFaces
— VisualRecognitionOptions

3.1.2 Prerequisites

You must have the following accounts, resources, knowledge, and experiences:

» An IBM Bluemix account (register for a new account or log in to Bluemix if you already
have an account)

» Eclipse IDE Luna
» Java 8

» The Cloud Foundry command-line interface (CLI)

3.1.3 Expected results

36

By following the steps in this chapter, you should be able to submit images to the application
and obtain results after the image is analyzed by the Watson Visual Recognition services:

1. Input the image shown in Figure 3-1 on page 37.
The program results are shown in Figure 3-2 on page 37 and Figure 3-3 on page 38.

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.eclipse.org/
https://console.ng.bluemix.net/
http://www.eclipse.org/luna

Figure 3-1 The input image to be described

2. Maximize the console window to show the details (Figure 3-2).

'5; *! Problems @ Javadoc (&, Declaration B Console 2
2 Classifyobject [Java Application] /usr/lib/jvm/java-8-oracle/bin/java (Jan 28, 2017, 1:39:08 PM)
P persons
-1:Person can't be identified, but is
-A FEMALE

-And between 45 and 54 years old
-2:Person can't be identified, but is

-A FEMALE

-And between 18 and 24 years old

11 objects
-Boy Scout

-person

-Mountie (RCMP/Canadian soldier)
-protector (person)

-tourist

-traveler

-shorts

-trouser

-garment

-azure color

-pale yellow color

To display percentage of confidence of these infrmation press any key on keyboard

Figure 3-2 Expected results for input image (part 1 of 2)

Chapter 3. Image Content Description 37

3. To display JSON files with more details, press any key (Figure 3-3).

. Problems @ Javadoc [Declaration & console 2

<terminated> Classifyobject [Java Application] /usr/lib/jvm/java-8-oracle/bin/java (Jan 28, 2017, 1:39:08 PM)
To display percentage of confidence of these infrmation press any key on keyboard

0

I,
"images processed": 1,
"images": [

“faces": [
{

"face location": {
"width": 88,
"height": 183,
"left": 218,
"top": 321

+

"age": {

"max": 54,

"min": 45,

"score": @.373452
+H

"gender”: {
“gender”: "FEMALE",
"score": B8.989613

}

5
{

"face location": {
"width": 142,
"height": 133,
"left": 312,
"top™: 227

+H

"age": {

"max": 24,
"min": 18,
"score": 0.365901

Figure 3-3 Expected results for input image (part 2 of 2)

Another function is the capability to recognize celebrity faces demonstrated by using an
image of former President Obama (Figure 3-4).

Figure 3-4 Photograph to analyze

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

The result of analyzing the photograph with the Watson Visual Recognition service is shown
in Figure 3-5.

=

=]

& console 2

Classifyobject [Java Application] /usr/lib/jvm/java-8-oracle/bin/java (Jan 28, 2017, 4:23:29 PM)
[L persons :

-Is Barack Obama

-Area of work :/people/politicians/democrats/barack obama

-A MALE

-And between 35 and 44 years old

18 objects
-official

-person
-computer scientist
-computer user
-radiologist
-medical specialist
-orator

-affiliate

-people

-blue color

To display percentage of confidence of these infrmation press any key on keyboard

Figure 3-5 Expected result of photograph

3.1.4 Creating, deploying, and running applications that use Bluemix services

To create, deploy, and run an application that uses Bluemix services, you have the following
options:

» Create, deploy, and run the application in the Bluemix cloud environment.

» Create and run the application locally by using Bluemix services on the cloud. For
example, create a Java application with Eclipse or download the code from GitHub, add

the API key and URL endpoint of a Bluemix service instance and run the application as a

Java application, after deploying it to Bluemix. This chapter uses this scenario.

Use the hybrid scenario (Bluemix cloud and local). In this scenario, create the application
on Bluemix (cloud) and import it to the local system, modify it, and then deploy to Bluemix.

Chapter 3. Image Content Description

39

3.2 Architecture

The flow chart shown in Figure 3-6 summarizes the main activities of the Image Content
Description sample program.

Service.classify(ClassifylmagesOptions)

VisualClassification
JSON object

Processing

TEGE Generate main Generate
9 keywords meaningful text

DetectedFaces
JSON object

Service.detectFaces(VisualRecognitionOptions)

Figure 3-6 Flow diagram of the Image Content Description program

The program reads an input image and displays text that describes the image content.
Figure 3-6 shows the following flow:

1. Input an image.
2. This step has two activities on the image:

a. Call the Watson service to classify objects in an image.
b. Call the Watson service to detect faces in an image.

3. This step has two activities:

a. VisualClassification contains the JSON representation of the classified objects.
b. DetectedFaces contains the JSON representation of the faces detected in the image.

4. Generate main keywords, to produce a summary of the image such as number of persons,
number of objects, and so on.

5. Process the two obtained JSON objects (DetectedFaces and VisualClassification) to
display meaningful text that describes the image content.

3.3 Implementation

Implementing this use case involves the following steps:

Creating a Visual Recognition service instance.
Downloading the project from Git.

Importing the project into Eclipse.

Importing Watson Java SDK.

Exploring the sample code provided with the use case.
Running the application.

o0k N =

40 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3.3.1 Creating a Visual Recognition service instance

Before you can use the Watson services, you must create an instance of the service in
Bluemix. For this use case, create a Visual Recognition service instance as described in 1.2,
“Creating a Watson Visual Recognition service instance and getting the API key” on page 2.

After creating the service instance, view the credentials (Figure 3-7). Copy and save the
following values for later use:

» url, which is the APl endpoint
» api-key, which is the API key

L
Service Credentials New Credential (&) s

[] KEY NAME DATE CREATED ACTIONS
[] Credentials-1 Jan 24, 2017 - 02:40:24 View Credentials |
{
"url”: "https://gateway-a.watsonplatform.net/visual-recognition/api”,
"note": "This is your previous free key. If you want a different one, please wait 24 hou

rs after unbinding the key and try again.”,
"api_key": "57dee@529bc9ec®l13b1412481114e3d7c72f4cat”

}

Figure 3-7 Credentials of Visual Recognition service instance

3.3.2 Downloading the project from Git

For this use case, a Git repository is provided, which includes the code to implement the
ImageContentDescription application with comments to help you more easily understand.
Complete these steps:

1. Download the repository from the GitHub location:
https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription

2. Download the ImageContentDescription_full.zip file.

3. Extract the file, which then creates a Java Eclipse Project folder.

Chapter 3. Image Content Description 41

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription

3.3.3 Importing the project into Eclipse

In this section, you import the ImageContentDescription project into the Eclipse workspace
as an existing project.
After you extract the project, complete these steps:

1. Launch the Eclipse IDE. When prompted for a workspace, keep the existing workspace or
change the workspace if you want, and click OK.

2. In the Eclipse environment, select File — Import (Figure 3-8).

Edit Source Refactor MNavigate Search Project Run W
Mew Alt+Shift+M »
Open File...

Cloze Chrl+W
Close All Ctrl+Shift+W
Save Ctrl+5
lsl SaveAs..
Save All Ctrl+Shift+5
Revert
Move...
Rename... F2
Refresh F5
Convert Line Delimiters To 3
Print... Ctrl+P
Switch Workspace 3
Restart
sy Impo
Oy Export..
Properties Alt+Enter
1 VideoD01.java [videoD01/src/videoDO1]
2 ImageContentDescription.java [Image...]
3 ImageDescription.java [ImageDescrip...]
4 Celebrity003.java [Clelebrity003/src]
Exit

Figure 3-8 Import project menu

42 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3. Select General — Existing Projects into Workspace (Figure 3-9) and click Next. The
import process has three pages.

Select \

-
Create new projects from an archive file or directory. H

Select animport source:

i @|

¥ (= General
B Archive File
[File System
[C1 Preferences

» = CVS

> &= Git

» (= Install

* = Maven

» (= Run/Debug

> (= Tasks

* = Team -

@ < Back . NexE= | | Cancel | Finish

Figure 3-9 Type imported project dialog

Chapter 3. Image Content Description 43

4. Select a root directory. Click Browse to navigate to your project’s directory (Figure 3-10).

Import Projects

Select a directory to search for existing Eclipse projects. B‘
@ selectroot directory: [| | Browse...
" Select archive File: Browse
Projects:
Select all
Deselect All
Refresh
Options

["] search For nested projects
["] Copy projects into workspace

[] Hide projects that already exist in the workspace
Working sets

["] Add project to working sets

Select

@

<Back

Cancel Finish

Figure 3-10 Select root directory

44 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

5. Find and select the ImageContentDescription folder (Figure 3-11), and then click OK.

I_f: | 4 iii[ﬂ azeddine I annlnad5| | Create Folder;
Places Name - Size Modified

Q search [Classify001 Tuesday

@ Recently Used [ElhassounyTP 01/21/2017

B Desktop

L File system

1 Réservé au syst...
1106 GB Volume
£1325GB Volume
[Documents

il Music

im) Pictures

@ videos

|3 Downloads

Select root directory of the projects to import

Cancel || OK J

Figure 3-11 Navigation window to import project

Chapter 3. Image Content Description 45

Under Projects, select the ImageContentDescription check box, deselect any other
check boxes, and click Finish (Figure 3-12).

Import Projects

Select a directory to search for existing Eclipse projects. B‘

@® select root directory: | fhome/azeddine/Downloads/ImagesCor

Browse...
" Select archive File:

Projects:

& ImageContentDescription (/home/azeddine/Downloads/ImagesCo Select All

Deselect All

Refresh

Options
["] search For nested projects
["] Copy projects into workspace

[] Hide projects that already exist in the workspace

Working sets

["] Add project to working sets

Select

@ <Back

Cancel Finish J

Figure 3-12 Last import project dialog

46 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

7. Verify that the ImageContentDescription project folder is imported to Eclipse Package
Explorer (Figure 3-13) and explore its structure (for more details, see the README. txt file).

My m v R v QG ®E v i || ® |&Javal %% Debug
[£ Package Explorer 52 = B [J ImageContentDescription.java &2 = 0 T& = 0
B & - 1 o =] §
ES 2 //package name i iq
» (= celebrity001 3 package visualRecognition; -
> @ celebrityonz :} //input output package for manage files
2 ! 5 not utot r mar @ »r Al
» (= Classify001 6® import java.io.File;
> [clebrity 21
¥ = ImageContentDescription %:’ .
23=
v §@src 24 * The ImageContentDescription class implements an application that
visualRecog 25 * displays image content description of an image.
26 | x
27
> =i JRE System Library [JavaSE-1. 28 public class ImageContentDescription {
» = Referenced Libraries 29 //file to 5{0"399 mag%
. . 30 private File image=null; ox = O
=, fruitbowd.jpg 31 //DetectesFaces object used to storage faces description
kg, images.jpg 32 private DetectedFaces faces=null; B 1% %
&, obamafamaly.jpg 33 //VisualClassification object used to storage faces description
: 34 private VisualClassification classification=null; b
i, prez.jpg 35 -
B, rename_2015082929_ 093239, 36 Hashtable<String, String> content=null; 8 visualRe:
» (= ImageDescription 37 ¥ P ImageCo
N 38 //Class constructor o image
> v g ipti :
o 39¢ public ImageContentDescription(){
20 o faces:
41 } s classifi
42 //5et .T'-J.“\E‘Eltlﬂ = conten
43= public veid setImage(){ °
a4 - @ Image(|-
B console 52 By =0
Mo consoles to display at this time.
v
visualRecognition.ImageContentDescription.java - ImageContentDescription/src

Figure 3-13 Eclipse Package Explorer dialog

3.3.4 Importing Watson Java SDK

You might notice some errors when you import the source code. Correcting those errors
requires adding an extra dependency and libraries.

Fix Java problems
Figure 3-14 shows Java problems that you might see.

[2! Markers 3% | =] Properties 4l Servers [Data Source Explorer [B5 Snippets
2 errors, 0 warnings, 0 others
Description
4 @ Java Build Path Preblems (1 item)
£ Unbound classpath container: 'JRE System Library [JavaSE-1.8]" in project 'IntelligentVidecContentAnalytics_student'

4 @ Java Problems (1 item)
3 The project cannot be built until build path errors are resolved

Figure 3-14 Java problems

Chapter 3. Image Content Description 47

To correct the problems, complete these steps:

1. Right-click the ImageContentDescription project, and select Build Path — Configure
Build Path (Figure 3-15).
[T V=S —— 1~ IMporT JEVA WL
leEa= Mew y | import java.awk.image.Buffe
4 (B import jawva.ig.File;
4 { GoInto import jaya.ig.IOException;
import javax.imageio.Imagel
Show In Alt+Shift+\W » import javax.swing.*;
e /%
> 20) 5 Copy Ctrl+C * import of needed gpency
B E= Copy Qualified Name =
b= e import grg.opencv.core.Corg
r=ERE Paste Ctrl+V :Empor‘t Qrg-opencv.core.Mat;
=K ¥ Delete Delete 1.mpor“t er;g.opencv.c.ore.s.ue
: y import grg.opencv.imgcodecs
Remove from Context Ctrl+Alt+Shift+Down | sppps org prency smonear 1
| Build Path | 8 ‘L@g‘, Configure Build Path...
Refactor Alt+Shift+T ¥ | .
T * import of visual recogni
Figure 3-15 Configure Build Path
2. Select the Libraries tab, click the library showing the error, and click Edit (Figure 3-16).
::.} Properties for IntelligentVideoContentAnalytics_student — - GSNECL X
type filter text /1, Build path entry is missing: org.eclipse.jdt.launchingJRE_CONTAINER/org.eclipse jdt.internal. debug.ui.launcher.StandardVMType/JavaSE-1.8 v v w
> R
B:’:’:’r‘;e ‘ (% Source ' = Projects |Iﬂ Libraries | %; Orderand Expnrtl
Java Build Path JARs and class folders on the build path:
> Java Code ?tyle =) java-sdk-3.5.3-jar-with-dependencies.jar - C:\Users\IBM_ADMIN\Desktop Add JARs...
b Java CoAmprIEr - [7 JRE System Library [JavaSE-1.8] (unbound) |
I| > Java Editor - - T - Add External JARs...

Javadoc Location
Project Facets
Project References
Run/Debug Settings
Server

i Task Repository

Task Tags

> Validation

WikiText

Add Variable...
Add Library...
Add Class Folder...

Add External Class Folder...

Edit...

i

Migrate JAR File...

©)

Cancel

Lok Jf

Figure 3-16 Select the library showing an error to edit

48

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3. Do one of the following steps:

— If no default JRE was previously defined: Skip to step 4 on page 50.

— If a default JRE was previously defined: Select Workspace default JRE, and click
Finish (Figure 3-17). You can now skip to “Add Watson Java SDK with dependencies

to your project” on page 54.

i8] Edit Library

JRE System Library
Select JRE for the project build path,

Systern library

() Execution environment:

() Alternate JRE:

@ Workspace default JRE (jdk1.8.0_65)

©

[E=ECE X
=

Installed JREs...

Finigh ||[Cancel

Figure 3-17 Select Workspace default JRE, if one was previously defined

Chapter 3. Image Content Description

49

50

4. This step through step 9 on page 54 are needed only if no default JRE was installed

previously. Click Installed JREs (Figure 3-18).

i@} Edit Library

JRE System Library
Select JRE for the project build path.

System library

() Execution environment:

(") Alternate JRE:
@ Workspace default JRE (jdkl.8.0_65)

@

Environments...

Inctalled JREs...

I i

Finish

|| cancel

Figure 3-18 Installed JREs

5. Click Add (Figure 3-19).

-l

[.] Preferences (Filterad)

type filter text Installed JREs

4 lava

> | Installed JREs newly created Java projects.

Installed JREs:

Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path of

MName Location Type I Add... I
(V] = Java70 C\Program Files (x86)\IBM\Java7l Standard VM Edit
Duplicate...
Remove

Figure 3-19 Add a JRE definition

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

6. Select Standard VM and click Next (Figure 3-20).

| {8} Add JRE o — - — — |-)

JRE Type
Select the type of JRE to add to the workspace.

Installed JRE Types:

Execution Environment Description

SmdraW

@ | <Back | _Net>]| Finsh |[Cancel

Figure 3-20 Standard VM installed JRE type

Chapter 3. Image Content Description

51

7. Click Directory, select a JDK installation path, and click OK (Figure 3-21).

Fva -
: Install [& Add IRE =

o »
JRE Definition
/1y Enter the home directery of the JRE,

— Directary...
Browse For Folder ﬂ i
Select the root directory of the JRE installation: :
8 Cloufmty § Add External JARs...
[.. Common Files
» | DVD Maker Javadoc Location...
> | FileZilla FTP Client |:| Source Attachment...
1 HeidiSQL |5
B IBM Remove
[. Intel Up
l= 1. Internet Explorer
Down
4 . lava
P jdk1.7.0_79 Restore Default
4| | jdk1.8.0.65| "
Folder: Jjdk1.8.0_85
B [l

Figure 3-21 Select root directory of JRE installation

52 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

8. Your panel should look similar to the one shown in Figure 3-22. Click Finish.

EMdJRE -—-‘-—‘—----@ﬂu

JRE Definition

Specify attributes for a JRE
JRE home: .C:\Program Files\Java'jdkl.8.0_65
JRE name: jdk1.8.0_65

Default VM arguments: .

JRE system libraries:

E C\Program Files\Java'jdkl B.0_65Yjre\lib\resources.jar |- Add External JARs...
Ef-t C\Program Files\Java'jdkl B.0_65%jre\lib\rt.jar I
5% C:\Program Files\Java\jdk1.8.0_65\jre\lib\jsse jar Javadoc Location..
; E‘E C:\Program Files\Java\jdkl 8.0_65\jre\lib\jcejar F T,
e CAProgram Files\Java\jdkl.8.0_65\jre\lib\charsets.jar
Ef-t C\Program Files\Java'jdkl 8.0_65% re\lib'jfr.jar 7 Remaove
@ C\Program Files\Java'jdkl .B.0_65Yjret\lib\ext\access-brid
- [we CA\Program Files\Java\jdkl.8.0_65\jretlib\ext\cldrdata.jar Up
[m3 C:\Program Files\Java\jdk1.8.0_55\jre\lib\ext\dnsns.jar e
s C:\Program Files\Java\jdk1.8.0_65\jre\lib\ext\jaccess.jar | =
f|_- i | P Restore Default

@ Net> | [Enish][Cancel

Figure 3-22 Sample JRE system libraries

Chapter 3. Image Content Description

53

9. Select Workspace default JRE, and click Finish (Figure 3-23).

i8] Edit Library

JRE System Library
Select JRE for the project build path,

Systern library

() Execution environment: Environments...

() Alternate JRE: Installed JREs...

o)

@ Workspace default JRE (jdk1.8.0_65)

@ I Finigh ||[Cancel

Figure 3-23 Select Workspace default JRE

Add Watson Java SDK with dependencies to your project
Complete the following steps:

1. Download the Watson Java SDK dependencies JAR (with dependencies) files:
https://github.com/watson-developer-cloud/java-sdk/releases

2. Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar
(Figure 3-24).

Downloads
["fJjava—sdk—3.?‘.G—jar—with—dependencies,jar
B Source code (zip)

B Source code (tar.gz)

Figure 3-24 Download Watson Java SDK

54 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/watson-developer-cloud/java-sdk/releases

3. After the JAR file is downloaded, open Eclipse, right-click the project name, and select
Build Path — Configure Build Path (Figure 3-25).

New ’
Go Into

Openin New Window
Open Type Hierarchy

Show In ¢ v
Copy
Copy Qualified Name
Paste
Delete

1 Link Source...
Source - S b New Source Folder...
Refactor " Useas Source Folder
Import... Add External Archives...
Export... Add Libraries...
Refresh

Close Project
Close Unrelated Projects
Assign Working Sets...

Debug As ’
Run As ’
Validate

Team v
Compare With v
Restore from Local History...

Configure

Properties

Figure 3-25 Configure Build Path

Chapter 3. Image Content Description 55

56

4. Open the Libraries tab, and then click Add External JARs (Figure 3-26).

¥

vy v

v

v

v

Properties For ImageContentDescription

|

Resource

Builders

Java Build Path
Java Code Style
Java Compiler
Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Repository
Task Tags
Validation
WikiText

@

Java Build Path

#source | [=Projects | EhLibraries | %;0rder and Export
JARs and class folders on the build path:

> @ java-sdk-3.5.2-jar-with-dependencies.jar - /home/aze
> =) JRE System Library [JavaSE-1.8]

l

Add JARs...

Add External JARs... |

Add Variable...

Add Library...

Add Class Folder...

Add External Class Folder...

Cancel || OK

Figure 3-26 Java Built Path dialog

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

5. Navigate to the JAR file (java-sdk-3.5.2-jar-with-dependencies. jar), selectit, and then
click OK (Figure 3-27).

Note: The JAR file name (java-sdk-x.x.x-jar-with-dependencies.jar) will vary

depending on the version available when you download it.

JAR Selection

| £ | 4 LE azeddine | Downloads|

Places

Q, search

& Recently Used
[azeddine

@ Desktop

1 File system

21106 GB Volume
1325 GB Volume

|7l Documents
[Music

[Pictures

IH videos

[£ Downloads

1 Réservé au syst...

Name

| /& Classify001

| ElhassounyTP

| ImagesContentDescription

[l Classifyoo1.zip

[cognitive-devoxx-videosearch-master.zip

[Elhassounyv1.zip

[l image-resize-servlet-master.zip
[l javaplays-eclipse-master.zip

java-sdk-3.5.2-jar-with-dependencies.jar
[node-red-labs-master.zip
(& openwhisk-visionapp-master.zip

- | Size

2.8 MB

391.1kB 01/16/2017
264.8 kB Tuesday
280.9kB 01/21/2017

38.3MB

21.7MB
1.9 MB

Modified
.Tuesday
01/21/2017
Yesterday at 22:43
Tuesday

01/16/2017
Yesterday at 23:37
01/16/2017
01/16/2017

| *jar*zip 2

Cancel | OK _|

Figure 3-27 Select the Java SDK JAR file

Chapter 3. Image Content Description 57

6. Check that the JAR file is added to your project and click OK (Figure 3-28).

Properties For ImageContentDescription

@| Java Build Path - S
> Resource ro—
. #source | [=Projects | EhLibraries | %;0rder and Export
Builders
Java Build Path JARs and class folders on the build path:
» Java Code Style @ java-sdk-3.5.2jar-with-dependencies.jar - /home/aze | Add JARs...
» Java Compil > =\ JRE System Library [JavaSE-1.8
. per ? vl ! Add External JARs...
> Java Editor
Javadoc Location | Add Variable...
Project Referen.ces Skt
Run/Debug Settings
> Task Repository | Add Class Folder...
Teelcns Add External Class Folder...
> Validation
Remove
Migrate JARFile...
@ | cancel | [0K J

Figure 3-28 Window to check the addition of Java SDK

7. Now that you added the required library, verify that no Java errors exist in the imported
project.

58 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3.3.5 Exploring the sample code provided with the use case

Now that you imported the project and resolved the import errors, you can use the Java editor
to explore and understand the code.

Figure 3-29 shows an overview of the ImageContentDescription program.

= GiniH 0~ QU i@ dc PP BEHIEH oo ! B [&!ava| % Debug

2 1J] iImageContentDescription.java & T, =
30 s

] 31 public class ImageContentDescription { =

* file to load image [] —

private File image=null; =

* DetectesFaces object used to storage faces description[]

private DetectedFaces faces=null; =
* VisualClassification object used to storage faces description[]
private VisualClassification classification=null;

* Empty Class constructor])
public ImageContentDescription(){[] B
* function set image to attribute image [] @
public void setImage(File image){l]

* Function to get classification object(] &
public visualClassification getvisualClassification() { return classification;} =

* Function to get VisualClassification object[]
public DetectedFaces getDetectedFaces() {return faces;}

* generateJsonDescription function uses the both routines of VisualRecognition service to generate []
public void generatelsonDescription(String filename){[]

* generate Information of faces detected and Identify faces celebrityl]

public StringBuffer facesContentDescription(JsonObject faces, int numberfaces){[]

* generate Information of Objects detected []
public StringBuffer objectContentDescription(JsonObject objects, int numbercbjects){l]

* Function to generate image description using the two functions facesContentDescription and objectContentDescription[]
public StringBuffer imageDescription(){[]

* main function []
public static void main(String[] args){[]

Writable SmartInsert 69:1

Figure 3-29 ImageContentDescription sample program snippet overview

As you know, the starting point of execution of a stand-alone Java program is the main method
(Figure 3-30).

* main function []
public static void main(5tring[] args){
//Path of image to analyze
String imagepath="prez.jpg";

//Instantiate ImageContentDescription content object
ImageContentDescription content=new ImageContentDescription();

//Call generatelsonDescription to generate VisualCalssification and DetectedFaces
content.generatelsonDescription(imagepath);

//Call imageDescription function that process VisualCalssification and DetectedFaces object
// and return a String describing image content
System.out.println({content.imageDescription());

Figure 3-30 The main method source code snippet

Chapter 3. Image Content Description 59

The main method shows the instantiation of the ImageContentDescription class, which is the
only class in this project (Figure 3-31). This class declares three attributes:

» An image variable: Holds the image (file object) that will be analyzed.
» A faces variable: Holds the Watson DetectedFaces object.
» Aclassification variable: Holds the Watson VisualCalssification object.

36

31 public class ImageContentDescription {

338 * file to load image []

35 private File image=null;

37e * DetectesFaces object used to storage faces description[]

39 private DetectedFaces faces=null;

41® * VisualClassification object used to storage faces description[]
43 private VisualClassification classification=null;

Figure 3-31 Class ImageContentDescription

The generateJsonDescription method

After the content variable is initialized with the instantiated ImageContentDescription object,
the generateJsonDescription(imagepath) method is called (Figure 3-30 on page 59).

The generatedsonDescription(imagepath) method accepts the image path as an argument
and it does the following steps:

1. Instantiates a Watson VisualRecognition service with the credentials you obtained in
3.3.1, “Creating a Visual Recognition service instance” on page 41.

2. Creates the VisualClassification object.
3. Creates the DetectedFaces object.

The source code for generatedsonDescription is shown in Figure 3-32. The next sections
describe this code. The highlighted code (lines 90 and 91) are described later.

1] ImageContentDescription.java 2

76
i

)
@

~d =

oo o
(=]

00 CO 0D 0O 0O GO 0D 00
S W

w
[=RT-N-)

91
92
93
94
95
96
97
98
99
leg
181
le2
103
104
185
106
1a7
log
100

70

17e

+ generatelsonDescription function uses the both routines of VisualRecognition service to generate []

public void generatelsonDescription(String filename){

3

i Image file will be processed

imgge = new File(filename);

f’.l. Instantiate VisualRecognition service

ViéualRecognition service = new VisualRecognition({VisualRecognition.VERSION_DATE 2616 65 26);

f' Below you should add your Api-key obtained by creation of visualRecognition service on Bluemix
* Something like 5e6ab7ec53fa58caB592T6691ba760c18fT895e5

service.setEndPoint("https://gateway-a.watsonplatform.net/visual-recognition/api®);
service.setApikKey("57deed529bc9ec013b1412401114e3d7c72T4caf");

f’ 2.1 Instantiate ClassifyImageOptions argument that will be used as argument of classify function of VisualRecogniton class
clgssifyImagesnptinns classifyImagesOptions = new ClassifyImagesOptions.Builder().images(image).build();

f’ 2.2 Instantiate VisualRecognitionOptions that will be used as argument of detectFaces function of VisualRecogniton class
VigualRecngnitinnnptinns recognitionOptions = new VisualRecognitionOptions.Builder().images(image).build();

f’ 3.1 Call function classify to generate classification object

this.classification = service.classify(classifyImagesOptions).execute();
F¥x

* 3.2| call function detectFaces to DetectedFaces object

*/
this.faces = service.detectFaces(recognitionOptions).execute();

Figure 3-32 The generateJsonDescription source code

60

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Instantiate the VisualRecognition service

As Figure 3-32 on page 60 shows, the first instruction uses VisualRecognition to instantiate
a new Visual Recognition V3 service with an API key:

(VisualRecognition service = New VisualRecognition(String versionDate))
It also sets the API key (setApiKey) and the endpoint (setEndPoint) to the service created.

Now, you provide the values of EndPoint and APIkey with the information you copied
previously; paste them in the selected places, as shown in lines 90 and 91 of the source code
in Figure 3-32 on page 60.

Create the VisualClassification object

Consider this information about image classification code (instructions 2.1 and 3.1 in
Figure 3-32 on page 60).

» To classify an object, call the classify() method
(service.classify(ClassifyImagesOptions)) that accepts options
(ClassifyImagesOptions) as arguments and returns a VisualClassification object. The
classify() method of the VisualRecognition class analyzes the image and detects
details of the objects within the image.

» To create the new options for the new image, you instantiate a builder
(ClassifyImagesOptions.Builder()), call the images() method to set the new image you
want to classify; this method accepts an image file as a parameter and returns the builder.

» By the end, you call the build () method which returns the profile options
(ClassifyImagesOptions).

» The execute() method, is used to execute the service which returns the
VisualClasification object.

Create the DetectedFaces object

Consider this information about face detection code (instructions 2.2 and 3.2 in Figure 3-32
on page 60):

» To detect faces, call the detectFaces() method
(service.detectFaces(VisualRecognitionOptions)) that accepts options
(VisualRecognitionOptions) as argument and returns a DetectedFaces object. The
detectFaces() method of the VisualRecognition class analyzes faces in images and gets
data about them.

» To create the new options for the new image, instantiate a builder
(VisualRecognitionOptions.Builder()), call the images() method to set the new image
you want to analyze; this method accepts an image file as a parameter, and returns the
builder.

» By the end, you call the build () method, which returns the profile options
(VisualRecognitionOptions).

» The execute() method is used to execute the service which returns the DetectedFaces
object.

Chapter 3. Image Content Description 61

The imageDescription method

The imageDescription() method processes the classification and faces attributes that were
generated as described in “The generateJsonDescription method” on page 60. The
imageDescription() method returns a string describing image content. Figure 3-33 shows
the source code of the imageDescription() method.

1 ImageContentDescription.java &2 = &
109 =
156 * generate Information of Objects detected []

163@ public StringBuffer objectContentDescription{JsonObject objects, int numberobjects){[]
189

| * Function to generate image description using the two functions facesContentDescription and objectContentDescription]]

public StringBuffer imageDescription(){
StringBuffer imageContentDescription=new StringBuffer();

e
* to convert classification and faces to JsonObjects
L7

JsonParser parser = new JsonParser();

JsonObject faces=parser.parse(this.getDetectedFaces().toString()).getAsJsonObject();

JsonObject objects=parser.parse(this.getvisualClassification().toString()).getAsJsonObject();

int numberfaces=faces.get("images").getAs]sonArray().get(0).getAsIsonObject().get("faces").getAsIsonArray().size();

int numberobjects=objects.get("images").getAsJIsonArray().get(@).getAsJsonObject().get("classifiers").getAsIsonArray().get(0).getAsIsor

JE%
* call facesContentDescription function if image contains a persons
*/
if (numberfaces!=0){
imageContentDescription.append(numberfaces+ " persons :");
imageContentDescription.append(this.facesContentDescription{faces,numberfaces));
imageContentDescription.append("\n");

}

if(numberobjects!=0){
imageContentDescription.append(numbercbjects).append(" objects");
imageContentDescription.append(this.objectContentDescription{objects,numberobjects));

return imageContentDescription;

% moin Function [

Figure 3-33 The imageDescription method source code

This method converts classification and faces attributes to JSON objects using the JSON
Parser, processes its contents and does the following operations:

» Calls objectContentDescription() if one or more objects are in the image.
» Calls facesContentDescription() if one or more faces are in the image.

62 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

The objectContentDescription method

The objectContentDescription() method accepts detected objects in JSON format and the
number of objects to process as arguments and returns a string describing the objects from
the image. Figure 3-34 shows more details of this method source code.

Il ImageContentDescription.java 2

PP PULLLL DL LIYOU T L] TGN LU LU 3L AP LAV 3V AL P UL, AN U § e 3 L
154 |
1564 * generate Information of Objects detected []
163= public StringBuffer objectContentDescription({JsonObject objects, int numberobjects){
164
185
166 Y e
167 * objectdes a text image description
168 */
169 StringBuffer objectdes=new StringBuffer("");
170
171 Pl
172 get number of images processed
173 xf
174 int numberimage=objects.get("images").getAslsonArray().size();
175
176 for(int j=0; j<numberimage;j++){
177 for{int i=0; i<numberobjects;i++){
178 try {
179 objectdes.append(" \n\t -").append(objects.get("images").getAsIsonArray().get(0).getAsIsonObject().get("classifiers").
lse
181 }catch (Exception e) {
182 objectdes.append(e.getMessage());
183 }
184 objectdes.append(“\n");
185
186 1
187 return objectdes;
188 i
189
191& * Function to generate image description using the two functions facesContentDescription and objectContentDescription[]
194
195& public StringBuffer imageDescription(){(]
226@ * main function []

w229% public static void main(String[] args){]
242 }

Figure 3-34 The objectContentDescription source code

Chapter 3. Image Content Description 63

The facesContentDescription method

The facesContentDescription() method (Figure 3-35) accepts detected faces as a JSON
object and the number of faces to process as arguments and returns a string that describes
the faces.

) ImageContentDescription.java &2

112@ * generate Information of faces detected and Identify faces celebrityl]

1198 public StringBuffer facesContentDescription(JsonObject faces, int numberfaces){

120 int n;

121 //persons a StringBuffer image description

122 StringBuffer persons=new StringBuffer("");

123 //get number of images processed

124 int numberimage=faces.get("images").getAsJsonArray().size();

125 for(int j=8; j<numberimage;j++){

126 for(int i=0; i<numberfaces;i++){

127 JsonObject face = faces.get("images").getAsJsonArray().get(j).getAsIsonObject().get("faces").getAslsonArray().get(i).get
128 try {

129 if(!face.has("identity")}{

138 n=i+1;

131 persons.append("\n -"+ n +":"});

132 persons.append("Person can't be identified, but is ");

133 }

134 else{

135 persons.append("\n\t -Is ");

136 persons.append(face.get("identity").getAsJsonObject().get("name").getAsString());
137

138 persons.append("\n\t -Area of work :");

139 persons.append(face.get("identity").getAs]sonObject().get("type_hierarchy").getAsString());
140 }

141 persons.append(" \nm\t -A "};

142 persons.append(face.get("gender").getAs]sonObject().get("gender").getAsString(}};
143 persons.append("\n\t -And between ");

144 persons.append(face.get("age").getAsJsonObject().get("min").getAsString());

145 persons.append(” and ");

146 persons.append(face.get("age").getAsIsonObject().get("max").getAsstring());

147 persons.append(" years old");

148 } catch (Exception e) {persons.append(e.getMessage());}

149 persons.append("\n"};

156 }

151 }

152 return persons;

153 1

Figure 3-35 The facesContentDescription source code

After exploring the source code, you can run the application (3.3.6, “Running the application”
on page 65).

64 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3.3.6 Running the application

To display a description of your image, first set the path of your image, as shown in
Figure 3-36. Then, test the program:

1. Copy the path of your image or use the paths of images (loaded with project).

1 ImageContentDescription.java &3

JsonObject objects=parser.parse(this.getVisualClassification().toString()).getAsJson0Object(};
int numberfaces=faces.get("images").getAsJsonArray().get(0).getAsIsonObject().get("faces").getAsIsonArray().size();
int numberobjects=cbjects.get("images").getAsIsonArray().get(0).getAsIsonObject().get("classifiers").getAs]sonArray().get(@).get

// call facesContentDescription function if image contains a persons
if(numberfaces!=0){
imageContentDescription.append(numberfaces+ " persons");
imageContentDescription.append(this.facesContentDescription(faces,numberfaces});
imageContentDescription.append("\n"};

}
if (numberobjects!=0){
imageContentDescription.append(numberobjects).append(" objects");
imageContentDescription.append(this.objectContentDescription(objects,numberobjects));
}

return imageContentDescription;

ublic static void main(String[] args){
String imagepath="rename 2015082929 ©93239.jpg";
ImageContentDescription content=new ImageContentDescription();
content.generatelsonDescription({imagepath);
System.out.println(content.imageDescription(}};

System.out.println("To display percentage of confidence of these infrmation press any key on keyboard");
Scanner sc = new Scanner{System.in);

int str = sc.nextInt();

System.out.println(content.getDetectedFaces());

System.out.println(content.getVisualClassification(});

}

Figure 3-36 Specify the image path

Chapter 3. Image Content Description 65

2. Run the project. Right-clicking the project and select Run As — Run Configurations
(Figure 3-37).

New L
Go Into

Openin New Window
Open Type Hierarchy
Show In + '

Copy

Copy Qualified Name
Paste

Delete

Build Path »
Source +AlE+S
Refactor

Import...
Export...

Refresh

Close Project

Close Unrelated Projects
Assign Working Sets...

Debug As ’

/ 1 Java Applet
Validate 2 Java Application
Team ’

Compare With ’
Restore from Local History...
Configure '

Properties

Figure 3-37 Run Configurations

66 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3. Select Java Application and click the New button to create a configuration (Figure 3-38).

ﬂ Run Configurations

Run a Java application

Te
- type filter text

B Apache Tomcat
& Eclipse Application
E3 Eclipse Data Tools
B Generic Server
 Generic Server(External |
B HTTP Preview

{5 J2EE Preview

Java Applet

Ju JUnit

i JUnit Plug-in Test
4 0SGi Framework
Juy Task Context Test
3 X5L

ar
E, &
o

L

Create, manage, and run configurations

Configure launch settings from this dialog:

| - Press the 'New' butten to create a configuration of the selected type.
5| - Press the 'Duplicate’ button to copy the selected configuration.

3 - Press the 'Delete’ button to remove the selected configuration.

:{=:l> - Press the 'Filter button to configure filtering options.

- Edit or view an existing configuration by selecting it.

. Configure launch perspective settings from the 'Perspectives’ preference page.

Figure 3-38 The New button

Chapter 3. Image Content Description

67

4. On the Main page (Figure 3-39), click Browse to find and select the
ImageContentDescription project, click Search to find and select the main class, and
then click Run.

8 Run Configurations

Create, manage, and run configurations
Run a Java application @
CE2EX B -« Name: | Classifyobject
@|||[® Main " &= Arguments| = JRE| % Classpath| & Source | B Environment| 5] Common|
Java Applet Rroject
v 3 Java Application ImageContentDescription Browse...
51 celebrityoo2 M
71 Classifyobject
i fyobi visualRecognition.ImageContentDescription [search...
Ju Junit
m2 Maven Build ["] Include system libraries when searching for a main class
Juj Task Context Test [] Include inherited mains when searching For a main class
["] Stop inmain
Appl Revert
Filter matched 7 of 7 items P,
@ Close Run

Figure 3-39 Select the project and main class

The input image is shown in Figure 3-40; the result is shown in Figure 3-41 on page 69 and
Figure 3-42 on page 70.

Figure 3-40 Input image for first test (recognize that a person is in the image)

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Figure 3-41 shows the result.

= @i BFprO0 Q[B SR S B @Y E | || B | |&Java| 45 Debug
[# package Explorer & = B) ImageContentDescription.java & = 0 Tz = 0O
& - 1 = | @
B 5 2 //package name . () 9
v (= celebrityoo1 3 package visualRecognition; =
» = celebrity002 4
Ji:) H 5 //input output package for manage files @ »al
* & Classifyo01 6% import java.io.File;[]
» & clebrity 21
¥ (=) ImageContentDescription éi_ e
Y §Bsrc 24 * The ImageContentDescription class implements an application that ox = @8
¥ i visualRecognition 25 * displays image content description of an image.
* a5
» 1f] ImageContentDescription. g_ﬁf B % E
* =\ JRE System Library [JavaSE-1. 28 public class ImageContentDescription { =
* =i Referenced Libraries 29 //file to storage image ; :
B, Fruitbowl 30 private File image=null; 8 visualRe
P9 31 //DetectesFaces object used to storage faces description ¥ @, ImageCo
I8, images.jpg 32 private DetectedFaces faces=null: v n_imana T
[, obamafamaly.jpg :
i@, prez.jpg 7. Problems @ Javadoc [@ Declaration 'B Console 5 B LB | &&= o o0~ =8
& rename_2015082929_093239. Classifyobject [Java Application] fusr/lib/jvm/java-8-oracle/bin/java (Jan 28, 2017, 1:35:08 PM)
» (=) ImageDescription 2 persons
= -1:Person can't be identified, but is
Lg'=a'r
-A FEMALE

-And between 45 and 54 years old
-2:Person can't be identified, but is

-A FEMALE

-And between 18 and 24 years old

11 objects
-Boy Scout

-person

writable

Smart Insert 153

Figure 3-41 Results

Chapter 3. Image Content Description 69

Maximize the console window to show all results (Figure 3-42).

[2i Markers [Properties 4L Servers [Data Source Explorer 1 Snippets | & Console 53

<terminated> ImageContentDescription [Java Application] C:\Program Files\Java\jdkl 8.0_65'\bin'ja
-garment

-azure color
-pale yellow color
--------- JSON Format ------------

"images_processed”: 1,
"images": [

"faces": [

"face_ location™: {
"width": 88,
"height": 163,
"left™: 218,
"top”: 321

"min™: 45,
"score™: @.373452
}J
"gender™: {
"gender™: "FEMALE",
"score™: ©.989813

h
}’r
{

"face_location™: {
"width": 142,
“"height™: 133,
"left": 312,
“top”: 227

}J

"age™: {

"max": 24,
"min™: 18,
"score": @.365981

}’r

"gender™: {
"gander". "EEMAIE™

Figure 3-42 JSON object results

70 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Another test of the program uses the image of former President Obama to show how the
program can recognize a celebrity face. Change the path to the image path (Figure 3-43).

DB -ERe& 2w %0~ Q~ H G~ &5 &

[PackageExplorer 8 = O
B % i
» (= celebrity001
» (& celebrity002
» (& Classify001
> [clebrity
¥ = ImageContentDescription
¥ G8src
¥ [visualRecognition
» 1f] ImageContentDescription.
» m) JRE System Library [JavaSE-1.
» @i Referenced Libraries
kg, Fruitbowl.jpg
g, images.jpg
B obamafamaly.jpg
kg, prez.jpg

@, rename_2015082929_093239. !

» (= ImageDescription
r @2

Il *iImageContentDescription.java &2

1o
185
186
187
188
189
198
191
192
193
194
195
196

Liynumuct taLes -1
imageContentDescri
imageContentDescri
imageContentDescri

}

if (numberocbjects!=0){
imageContentDescri
imageContentDescri

return imageContentDescrip

= public static void main(St

String imagepathz"prez|

ImageContentDescriptio
content.generateJsonDe
System.out.println(con

System.out.println("To
Scanner sc = new Scann
Sstring w=sc.next();

System.out.println(con
System.out.println(con

}

No consoles to display at this time.

viRlge B@MIHE e ® | & Java| s Debug
= 0 Ta& = 0O
ption.append(numberfaces+ " persons"); 2 g - 1% S
ption.append(this.facesContentDescription(faces,numberfaces)); o
ption.append("\n"); e
| »roall
ption.append(numberobjects).append(" objects");
ption.append(this.objectContentDescription(objects,numberobjects));
tion;
ring[] args){
-jpg"; ’ o® = @8
n content=new ImageContentDescription();
scription({imagepath); =N
tent.imageDescription()); -
display percentage of confidence of these infrmation press any key on key @ getima .
er(System.in}; @ genera
tent.getDetectedFaces()); @ fa(_ESC
tent.getVisualClassification()); @ objectt
@ imagel
= 1 S main(s
v v
Bl console &2 e =8
Writable Smart Insert 198:31

Figure 3-43 Another image test

Chapter 3. Image Content Description

71

The input image is shown in Figure 3-44; the result is shown in Figure 3-45 and Figure 3-46
on page 73.

Figure 3-44 Input image for second test (recognize that the image is of a celebrity person)

Moe e it r ORI H G @O P § oo | ® [&Java| 45 Debug
[# Package Explorer 2 = B [J] ImageContentDescription.java = B8 T|@x = OB
. - 194 } - = . [
(== 195 u 5] §
¥ (& celebrity001 196 -
» csre 197= public static void main(String[] args){
)) 198 String imagepath="prez.jpg"; @ » all
* =i JRE System Library [JavaSE-1. 199 ImageContentDescription content=new ImageContentDescription(}; =
» mi Referenced Libraries 200 content.generatelsonDescription(imagepath);
- 201 System.out.println(content.imageDescription :
8, prez.jpg e Y p (g p 0 e
> & celebrity002 203 System.out.println("To display percentage of confidence of these infrmation press any key on key)
» & Classify001 1204 Scanner sc = new Scanner(System.in); B 1% R
AT w205 Sstring w=sc.next();
N clebrity — 206 System.out.println(content.getDetectedFaces()); =
¥ i ImageContentDescription 207 System.out.println(content.getVisualClassification()); o FacesC =
v @i 208 ;
E ~nn) = @ ohiecht'™
¥ 5 visualRecognition L £
> [Jl ImageContentDescription. |« Problems & Javadoc [sn B Console & LEE®E 2B ~Hy =8
» i I B ==
. IRE System Ll.brar%' LIS Classifyobject [Java Application] fusr/lib/jvm/java-8-oracle/binfjava (Jan 28, 2017, 4:23:29 PM)
¥ mi Referenced Libraries [L persons :
> [java-sdk-3.5.2-jar-with-depel -Is Barack Obama
@, Fruitbowl jpa ::rﬁiL:f work :/people/politicians/democrats/barack obama
& images.jpg -And between 35 and 44 years old
&, obamafamaly.jpg
. 16 objects
% prezjpg P otaeim
@.rename_:!m5052929_093239._
» (= ImageDescription -person
=
vz -computer scientist
-computer user
-radiologist =

Figure 3-45 Image description for Barack Obama image

72 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Maximize the console window to show all results (Figure 3-46).

[£i Markers [Properties il Servers [Data Source Explorer |7 Snippets B Conscle &2
<terminated> ImageContentDescription [Java Application] C\Pregram Files\Java'jdkl 8.0_65\bin\javaw.exe (Mar 3, 2(

"LUIIII_IULI:I usecl
-radiclogist
-medical specialist
-orator

-affiliate

-people

-blue color

"images_processed”: 1,
"images": [

"faces™: [
1

"face_ location™: {
"width": 92,
"height": 159,
"left™: 256,
"top": 64

}’r

"age": {
"max”: 44,
"min™: 35,
"score™: @.446989

gender™: {
"gender™: "MALE",
"score”: ©.99593
}J
"identity™: {
"name": "Barack Obama",
"score”: @.97@688,
"type_hierarchy”: "/people/politicians/demccrats/barack obama™

t

Figure 3-46 Image description

Chapter 3. Image Content Description

73

3.4 Deploy a Java application to Bluemix

To deploy the project to Bluemix, first create a runnable JAR file and then use the Cloud
Foundry command-line interface (CLlI) to deploy the application.

3.4.1 Create a runnable JAR file to deploy the application to Bluemix

Complete these steps to create a runnable JAR file:

1. Select File — Export. In the Export window, make sure that you export it as a Runnable
JAR file, not as a standard JAR file, and then click Next (Figure 3-47).

Select

Export all resources required to run an application into a JAR file on the local H
file system.

Select an export destination:

> (= General
* & Install
¥ (= Java
L0 JAR file
21 Javadoc
® (= Run/Debug
» (= Tasks
> (= Team
k= XML

@ <Back |NSRESS| | Cancel | Finish

Figure 3-47 Select type of export file

74 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

2. In the Launch configuration field, select ImageContentDescription. In the Export
destination field, click Browse (Figure 3-48).

Runnable JAR File Export

Runnable JAR File Specification =
Select a "Java Application' launch configuration to use to create a runnable JAR. 1'- 7‘»

Launch configuration:

| Classifyobject -ImageContentDescription =

Export destination:

/media/azeddine/D2CECD87CECDE6477/MBI/ImageContentDescription.jar | v || Browse.. |
Library handling:

() Extract required libraries into generated JAR

@® Package required libraries into generated JAR

) Copy required libraries into a sub-folder next to the generated JAR

[] Save as ANT script

@ | <Back Next > | cancel | [Finish J

Figure 3-48 ImageContentDescription runnable JAR specification

Chapter 3. Image Content Description 75

76

3. Browse to the folder where you will export your launch configuration, enter the name of
your JAR file, and click OK (Figure 3-49).

MName: ImageContentDescription.jar

Saveinfolder: || media | azeddine | D2CECD87CECD6477 || MBI | MBI_26_jan_2017| Create Folder
Places Name 4 Size Modified
Q, search [l capture-ecran_26 12:27

@ Recently Used [Classify001 01:00

& azeddine [Clelebrity002 01:00

@ Desktop | Clelebrity003 01:00

L File system [l ImageDescription 01:00

[Réservé ausyst... | [ImageDescription002 01:00

1106 GB Volume
£1325GBVolume
I[¥ Documents

il Music

@ Pictures

i@ videos

&4 Downloads

jar;.zip -

Figure 3-49 Specify name of JAR file

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

4. You are returned to the previous window (Figure 3-50). Select Package required libraries
into generated JAR, and click Finish. This creates the runnable JAR file.

Runnable JAR File Export

Runnable JAR File Specification

Select a Java Application’ launch configuration to use to create a runnable JAR. 1 -;_-}

Launch configuration:
(Classifyobject - ImageContentDescription
Export destination:
/media/azeddine/D2CECD87CECD6477/MBI/ImageContentDescription.jar > Browse...
Library handling:
) Extract required libraries into generated JAR
® Package required libraries into generated JAR

) Copy required libraries into a sub-folder next to the generated JAR

Save as ANT script

S

< Back Next > Cancel Finish

¢

Figure 3-50 Runnable JAR File Export

Chapter 3. Image Content Description 77

3.4.2 Deploy the Java application to Bluemix

This section explains how to make a stand-alone Java program, with a main() method, run in
Bluemix.

For more information, see Move your Java application into a hybrid cloud using Bluemix,
which is in IBM developerWorks.

Complete these steps:

1. Download and install the Cloud Foundry command-line interface.

2. Open a Command Prompt session and run the c¢f legin command (Figure 3-51).

. W Command Promp

Microsoft Windows [Uersion 6.1.76801
Copyright <c?> 20@? Microsoft Corporation. All rights reserved.

C:sUserssElhassouny*cf login
API endpoint: https:- 7api-ng.bhluemix.net

EmailX>

o = L] 3,

Figure 3-51 Authentication to Cloud Foundry

3. Enter your IBMid (the email address that you use to sign in to Bluemix) and your password
(Figure 3-52).

Microsoft Windows [Uersion 6.1.76081
Copyright <(c?> 2807 Microsoft Corporation. All rights reserved.

IC:\USEPS\Elhassuuny)cf login
AP]I endpoint: https:-7api.ng_bluemix.net

Email* azeddine.elhassounyBumb.ac.ma

Password>
Authenticating...
0K

Targeted org azeddine.elhassounyBunS.ac_ma

Targeted space Boltzmann

https:s7api.ng.bluemix.net ¢API verszion: 2_.54.8>
azeddine .elhassounyBumb _ac .ma

azeddine .elhassounyBumb . ac.ma

Boltzmann

C:sUserssElhassouny>

Figure 3-52 Authentication result

78 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
https://console.ng.bluemix.net/docs/starters/install_cli.html

4. Use one of the following commands to deploy your Java stand-alone application to
Bluemix (Figure 3-53). The cf command is in this format:

— cf push <ANY_APP_NAME> -p <JAR _NAME>.jar -b java_buildpack -no-route
For example:

cf push ImageContenteDescription-ABC -p ImageContentDescription.jar -b
java_buildpack -no-route

— cf push ImageContentDescription-ABC -p ImageContentDescription.jar -b
liberty-for-java -no-route

Microsoft Windows [Uersion 6.1.76081
Copyright (c? 280? Microsoft Corporation. All rights reserved.

|C:\Users\E1hassuuny)cf login
AP]I endpoint: httpsz:-sapi.ng_bluemix.net

Email> azmeddine.elhassounyfumb.ac.ma

Password>
fiuthenticating...
0K

Targeted org azeddine.elhaszounyBunb.ac._ma

Targeted space Boltzmann

httpz:is7api.ng.bluemix.net ¢API version: 2_.54_.82>
azeddine .elhassounyPumb . ac .ma

azeddine _elhazszounyBum _ac.ma

Boltzmann

C:~Users~Elhazszouny’cf push ImageContentDescription-ABC —p ImageContentDescripti
on.jar —b java buildpack —no—route

Figure 3-53 Commands to deploy your Java stand-alone application

Chapter 3. Image Content Description 79

80

The result is shown in Figure 3-54.

&8 Command Prompt v . !E il

C:“Users“Elhaszouny>cf puzh ImageContentDescription—-ABC -p ImageContentDescript il
on.jar —b liberty—for—java —no—route

Creating app ImageContentDescription—ABC in org azeddine.elhassounygBunS.ac.ma ~
space Boltzmann as azeddine.elhassounylfumS.ac.ma... I
0K

App ImageContentDescription—ABC is a worker. zkipping route creation

Uploading ImageContentDescription—ABC.

Uploading app files from: C: \UFEPF\ELHHSS“i\ﬂppData\anal\Temp\un*1pped appdhl24
2451

Uploading 11.2K,. 15 files
Done uploading
0K

Btarting app ImageContentDescription—ABC in org azeddine.elhassounyglfunmb.ac.ma ~
pace Boltzmann as azeddine.elhassounylumS.ac.ma...

Buccessfully created container
Downloading app package. ..
Btaging...
————— » Liberty Buildpack Uersion: v3.7-20178118-2846
————— » Retrieving IBM 1.8.8_208161213 JRE <ibm—java-jre-8_0-3.22-pxabc488=spr3fp22-2
A161213_@A2-cloud.tg=> ... <A.8s)
Expanding JRE to _java ... (1_8s3>
————— » Retrieving App Management 1_.24.8_ 2016120616821 Cappmgmt_vl 24-2801612806-1
A21 .zip> ... (B_Bs>
Expanding App Management to .app—management (@_1s)
————— » Liberty buildpack iz done creating the droplet
Exit status B
Uploadlng droplet hulld artifacts cache...

m

Destroying container

Buccessfully destroyed container
A starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
crashed

instances running,
instances punning.
instances vrunning.
instances running,
instances punning.
instances running.,
instances punning,
instances punning,
instances running.,
instances punning,
instances punning,
instances running.,

T o o o ok ok sk
N e Y = oY Y S

|5}
|5}
|5}
|5}
Al
|5}
5}
\al
|5}
|5}
Al

Error restarting application: Start unsuccessful

TIF: use 'cf logs ImageContentDescription—ABC —recent’ for more information

C:~Users~Elhassouny> i

Figure 3-54 Deployment process result

5. If the deployment is successful, switch to your Bluemix space to check the deployment of
your application to Bluemix. Click the Logs tab to see the execution of your application.

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

3.5 References

See the following resources:

>

OpenCV 3.0.0-dev documentation (Using OpenCV Java with Eclipse):

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.htm]

Watson Developer Cloud: Java SDK Downloads:
https://github.com/watson-developer-cloud/java-sdk/releases

Move your Java application into a hybrid cloud using Bluemix, Part 3 web page in IBM
developerWorks:

http://www.ibm.com/developerworks/cloud/Tibrary/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

Watson Developer Cloud:
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/

For source code comments, explore documentation with Javadoc in the following file
(download the javadoc.rar file and extract the contents):

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/m
aster/javadoc.rar

Chapter 3. Image Content Description 81

https://github.com/watson-developer-cloud/java-sdk/releases
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/master/javadoc.rar
https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/master/javadoc.rar

82 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Intelligent Video Content
Analytics

This chapter focuses on the development of Java programs using the Watson Visual
Recognition service to analyze video files and generate video content description.

The Intelligent Video Content Analytics sample application in this chapter performs object
classification and face detection on videos instead of images.

In addition, VideoCapture and some other classes of the OpenCYV library permit reading a
video file and getting frames from it. See the OpenCV website.

This chapter focuses on the development of Java programs using the Watson Visual
Recognition service and OpenCV classes to analyze video content.

The program can be run in Eclipse on Linux or Windows.

The following topics are covered in this chapter:

Getting started

Architecture

Implementation

Changing your application to detect faces
References

vyvyVvyyy

© Copyright IBM Corp. 2017. All rights reserved.

83

http://www.opencv.org

4.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1 Objectives

After completing this chapter, you should be able to accomplish these objectives:

» Investigate the set of built-in classes of Watson Visual Recognition and OpenCV to
perform object classification and face detection on video files instead of a photographic
image.

» Use Watson Visual Recognition service and OpenCV for your own projects using video
captured from any source (file, camera, or others).

4.1.2 Prerequisites

You must have the following accounts, resources, knowledge, and experiences:

» An IBM Bluemix account (register for a new account or log in to Bluemix if you already
have an account)

» Eclipse IDE Luna
» Java 8
» OpenCV 3.x.x for Java, installed

4.1.3 Expected results

The video file you analyze in this chapter contains various scenes that IBM created. It
summarizes a diversity of objects and people in different but real daily situations and will
serve as a real test of the program.

The following images illustrate a subset of sample output results that are displayed when
running the sample program:

» Figure 4-1 on page 85: Result obtained for a control center scene in video input

» Figure 4-2 on page 85: Result obtained for road scene in input video

» Figure 4-3 on page 86: Result obtained for surveillance system scene in input video
» Figure 4-4 on page 86: Result obtained for person in scene in input video

84 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://opencv-java-tutorials.readthedocs.io/en/latest/01-installing-opencv-for-java.html
https://console.ng.bluemix.net/
http://www.eclipse.org/
http://www.eclipse.org/luna

Intelligent video content analytics

IBM Watson Visual Recognition service [“mages pocessecs 1. B
"images™: |
{
"classifiers" [

“classifier_id": "default”,
"name"; "default”,
"classes": [

"class" "stock trader",
"score" 0,783,
"type_hierarchy": "/person/stock trader"

{

"class™ "person’,
"score™ 0.793
L
{

"class": "control room®,
"score™ 0.664

"class" "room’,
"score" 0.664

"class™ "control center”,

"score"; 0.554,

"type_hierarchy": */building/control center"
L

{

"class" "building",

"score" 0.554

"class" "greenish blue color",
"score™ 0.969

IBM Watson Video Analytics .) =
Figure 4-1 Result obtained for a control center scene in video input

Intelligent video content analytics

"images_processed": 1,
"images”: [

14

“classifiers™ [

"class™ "carriageway”,
"score™ 0.782,
“type_hierarchy": "/roadfcarriageway”

*class™ "road",
"score"; 0.937

"class" "divided highway",
"score" 0.622,
"type_hierarchy": */road/divided highway"

1

"class™ "superhighway",
"score"; 0.574,
“type_hierarchy": "/system/superhighway"

{
"class™ "system".
"score™ 0.574
h
{
“class": "autobahn (highway)",
"score"; 0.554,
“type_hierarchy": "/roadfautobahn (highway)"

e

"class™ "gray color",
"score" 0.976

IBM Watson Video Analytics 1} -

Figure 4-2 Result obtained for road scene in input video

Chapter 4. Intelligent Video Content Analytics 85

Intelligent video content analytics

IBM Watson Visual Recognition service [“mages pocessecs 1.
"images™: |

{

"classifiers" [

“classifier_id": "default”,
"name"; "default”,
"classes": [

"class™ "surveillance system",
"score"; 0,894,
"type_hierarchy": "ftelecommunication system/television/surveillance system”

“class™ "television”,
"score™ 0.921
L
{
"class™ "telecommunication system",
“score™ 0.921

"class™ "communication system",
"score”: 0.921

"class" "system”,
"score™ 0.921
h
af
"class" "security system",
"score": 0.562,
"type_hierarchy" "felectrical device/security system"

"class™ "electrical device",
"score™ 0.563

I
{

IBM Watson Video Analytics rscoren 03¢

Figure 4-3 Result obtained for surveillance system scene in input video

Intelligent video content analysis

IBM Watson Visual Recognition service ‘mees processea 1.

“images": [
"faces™ [

"face_location": {
“width": 99,
"height": 104,
"left™: 227,
"top": 58

"age" {
24
"min®: 18,
"score": 0.487448
h
"gender"; {
"gender": "MALE",
"score": 0.0109869

H
1

“;mage“: “image.jpg”

IBM Watson Video Analytics

Figure 4-4 Result obtained for person in scene in input video

86 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

4.2 Architecture

Figure 4-5 summarizes the main steps of the program:

1.
2.
3.

First, the video is loaded using VideoCapture (an OpenCV class).
The video is divided into individual frames that are processed sequentially.

Each frame is passed to the Watson Visual Recognition service, which detects faces and
classifies objects contained in the frame.

The results are sent to the display method which displays the video frame, the detected
objects (or faces), and additional descriptive information.

1. VideoCapture (video)

2. VideoCapture.read(frame) 3. Service.classify(ClassifylmagesOptions) 4. display(video, JSON object)

VisualClassification
JSON object

Frame (Mat)

DetectedFaces
JSON object

3. Service.detectFaces(VisualRecognitionOptions)

Figure 4-5 Flow chart of the Intelligent Video Content Analytics program

Before starting, you will need an input video file and credentials of a Watson Visual
Recognition service instance. The program reads the input video file and displays a JSON
object describing its content:

1.

VideoCapture (an OpenCV class) captures video from the input video file.
Steps 2, 3, and 4 are repeated until the video ends.

2. The video is read frame by frame.

3. The current frame is used to create an options object (either the ClassifyImagesOptions

class or the VisualRecognitionOptions class).

This options object is used as an argument when accessing the Watson Visual
Recognition service (either the classify or detectFaces method on the
VisualRecognition class) depending if you want to classify objects or detect faces.

The result of both methods is a JSON object that describes the frame content. An internal
display method is called to display the current frame and the description.

Chapter 4. Intelligent Video Content Analytics 87

4.3 Implementation

Implementing this use case involves the following steps:

Creating a Visual Recognition service instance.

Downloading the project from Git.

Importing the project to Eclipse.

Importing Watson Java SDK and additional OpenCYV libraries.
Exploring and completing the sample code provided with the use case.
Running the application.

vyvVvyVvYyvYyYyvyy

4.3.1 Creating a Visual Recognition service instance

Before you can use the Watson services, you must create an instance of the service in
Bluemix. For this use case, create a Visual Recognition service instance as described in 1.2,
“Creating a Watson Visual Recognition service instance and getting the API key” on page 2.

After creating the service instance, view the credentials (Figure 4-6). Copy and save the
following values for later use:

» url, which is the APl endpoint
» api-key, which is the API key

-
Service Credentials New Credential (& .

| KEY NAME DATE CREATED ACTIONS
| Gredentials-1 Jan 24, 2017 - 02:40:24 View Credentials = m|
{
"url": "https://gateway-a.watsonplatform.net/visual-recognition/api”,
"note": "This is your previous free key. If you want a different one, please wait 24 hou

rs after unbinding the key and try again.”,
"api key": "57dee@529bc9ec@13b1412401114e3d7c72f4caf™

}

Figure 4-6 Credentials of Visual Recognition service instance

4.3.2 Downloading the project from Git

A Git repository is provided for this use case which includes the code to implement the
IntelligentVideoContentAnalytics application with comments to make it easier to understand.

1. Download the repository from the following GitHub location:

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalyti
cs

2. Download IntelligentVideoContentAnalytics student.zip file.
3. Extract the file, which then creates a Java Eclipse Project folder.

88 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalytics

4.3.3 Importing the project to Eclipse

In this section you will import the InteTligentContentVideoAnalytics project into the Eclipse

workspace as an existing project.

After you extract the project, complete these steps:

1.

2.

In the Eclipse environment, select File — Import (Figure 4-7).

Edit Source Refactor MNavigate Search Project Run W

Mew

Open File...

Cloze

Cloze All

Save
Save As...
Sawve All

Revert

Move...
Rename...
Refresh

Convert Line Delimiters To
Print...

Switch Workspace
Restart

Impo

Export...

Properties

1 VideoD01.java [videoD01/src/videoDO1]
2 ImageContentDescription.java [Image...]
3 ImageDescription.java [ImageDescrip...]

4 Celebrity003.java [Clelebrity003/src]

Exit

Alt+Shift+MN b

Ctrl+W

Ctrl+Shift+W

Ctrl+5

Ctrl+Shift+5

E5

Ctrl+P

Alt+Enter

Figure 4-7 Import project menu

Chapter 4. Intelligent Video Content Analytics

Launch the Eclipse IDE. When prompted for a workspace, keep the existing workspace or
change the workspace as desired, and click OK.

89

3. Select General — Existing Projects into Workspace (Figure 4-8) and click Next. The
import process has three pages.

Select \

-
Create new projects from an archive file or directory. H

Select animport source:

| @|

¥ (= General
B Archive File
[File System
[C1 Preferences

» = CVS

> &= Git

» (= Install

* = Maven

» (= Run/Debug

> (= Tasks

* = Team -

@ < Back ~ Next> J | cancel | Finish

Figure 4-8 Type imported project dialog

90 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

4. Select a root directory. Click Browse to navigate to your project’s directory (Figure 4-9).

Import Projects

Select a directory to search for existing Eclipse projects. B‘
@ selectroot directory: [| | Browse...
" Select archive File: Browse
Projects:
Select all

Deselect All

Refresh

Options
["] search For nested projects
["] Copy projects into workspace

[] Hide projects that already exist in the workspace
Working sets

["] Add project to working sets
Select

@

<Back

Cancel Finish

Figure 4-9 Select root directory

Chapter 4. Intelligent Video Content Analytics 91

5. Find the IntelligentVideoContentAnalytics folder (Figure 4-10), and then click OK.

.-ia | 4 ”!ﬁ azeddine || wnrkspace] | Create Folder |
Places Name Size Modified
& Recently Used [vs Saturday
[azeddine I v4 Friday

i Desktop [v3 Thursday
1 File System [videoFacesDetection Thursday
[£1 Réservé ausyst... | |l VideoContentDescription Thursday
1106 GBVolume | |l v2 Wednesday
[1325GBVolume | & ImageDescription 01/27/2017
i@ Documents [classifyo01 01/27/2017
——— IE celebrity002 01/25/2017
[Pictures |£_'ﬂ_ celebrity001 01/25/2017
il Videos [clebrity 01/24/2017

|3 Downloads

Select root directory of the projects to import

Cancel | OK

Figure 4-10 Navigation window to import project

92 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

6. Under Projects, select the IntelligentVideoContentAnalytics check box and click Finish
(Figure 4-11).

Import Projects

Select a directory to search for existing Eclipse projects. EZ
@® select root directory: |/home/azeddine/Downloads/Intelligent\ v || Browse...
" Select archive File: Browse
Projects:
& v6 (/home/azeddine/Downloads/IntelligentVideoContentAnalytics | select All
Deselect All
Refresh

Options

["] search For nested projects

["] Copy projects into workspace

[] Hide projects that already exist in the workspace

Working sets

["] Add project to working sets

® i <Back Next -

. lext > cancel [Finish _J

Figure 4-11 Last import project dialog

Chapter 4. Intelligent Video Content Analytics 93

7. Verify that the IntelligentVideoContentAnalytics project folder is imported to Eclipse
Package Explorer (Figure 4-12) and explore its structure (for more details, see the
README. txt file).

[=
L1

=l

S v

[£ Package Explorer 52

m

==

» (= celebrity001

» i celebrity002

» (& Classify001

> [clebrity

» (' ImageContentDescription
» (= ImageDescription

» (= Intellig

* i VideoContentDescription
» =/ videoFacesDetection

IntelligentVideoContentAnalytics_student

o

-

fwits v O Qe @)

[=R

& VideoAnalytics.java 52

EEFFEFEE

&

* import of Java classes[]

import java.awt.*;

import java.awt.image.BufferedImage;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

import javax.swing.*;

P

/

* import of needed opencv classes
/

import org.opencv.core.Core;

import org.opencv.core.Mat;

import org.opencv.core.Size;

import org.opency.imgcodecs.Imgcodecs;

import org.opency.imgproc.Imgproc;

8 import org.opencv.videoio.VideoCapture;

/*

* import of visual recognition classes

)

v

import com.ibm.watson.developer cloud.visual recognition.v3.=;

import com,ibm.watson.developer_cloud.visual_recognition.v3.model.*;

[
/

* Class to analyze video content using classify and detectFaces function of visual recognit

/

public class videoAnalytics {
e

* window :

* Label on :

* label left :

Main Jframe

to display video

& console 2

to display text on top of window

X %

w5 ?;’ Java 1% Debug

& iEE o

<terminated> VideoAnalytics (3) [Java Application] /usr/lib/jvm/java-8-oracle/bin/java (Feb 16, 2017, 10:42:05 PM)
v

]
-

E

og o

mesd = 0O
d - %
<

@ »r e

i = 0O
B %

¥ P, Video/
a windi

a label

a label

a label

& texta

a pane
4 pane -

D

7+ = 0O

Figure 4-12 Eclipse Package Explorer dialog

4.3.4 Importing Watson Java SDK and additional OpenCYV libraries

You might notice some errors when you import the source code. Correcting those errors
requires adding an extra dependency and libraries.

Fix Java problems

Figure 4-13 shows Java problems that you might see.

Description
4 @ Java Build Path Preblems (1 item)
£ Unbound classpath container: 'JRE System Library [JavaSE-1.8]" in project 'IntelligentVidecContentAnalytics_student'
4 @ Java Problems (1 item)
3 The project cannot be built until build path errors are resolved

[£ Markers 22 | I Properties 4l Servers [Data Source Explorer [Snippets

2 errors, 0 warnings, 0 others

Figure 4-13 Java problems

94

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

To correct the problem, complete these steps:

1. Right-click the IntelligentVideoContentAnalytics project, and select Build Path —

Configure Build Path (Figure 4-14).

L o T ——— £ T ImMporT JavA.awt. "
+ ST Nein y | import java.awk.image.Buffg
a (B import java.ig.File;
Fi Go Into import java.io.IOException;
import jayax.imageio.Imagel
Show In Alt+Shift+W ¥ | Smport javax.swing.*;
¥ ;J E Copy Ctrl+C ‘ import of needed gpency
E2 Copy Qualified Name =
P E import grg.opencv.core.Core
=ERE! Paste Ctrl+V import grg.opencv.core.Mat;
=i ® Delete Delete import grg.opencv.core.Size
= ’ y import grg.opencv.imgcodecs
Remove from Context Ctrl+Alt+5hift+ Down f e e e
| BuildPath | v ‘ £ Configure Build Path..
Refactor AleShift=T» | .
e = * import of visual recogni

Figure 4-14 Configure Build Path

2. Select the Libraries tab, click the library that shows errors, and click Edit (Figure 4-15).

= = = — =
E Properties for IntelligentVidecContentAnalytics_student =,
type filter text /1, Build path entry is missing: org.eclipse.jdt.launching JRE_CONTAIMER/org.eclipse.jdt.internal.debug.uilauncher.StandardVMType/JavaSE-1.8 - v -
» Resource T
Builders [# Source | I Projects |!ﬁ lerarlesl 4 Order and Export

Java Build Path

> Java Code Style

> Java Compiler

J| - Java Editor
Javadoc Location
Project Facets
Project References
Run/Debug Settings
Server

» Task Repository
Task Tags

> Validation
WikiText

JARs and class folders on the build path:

I’ | JRE System Library [JavaSE-1 8] (unbound) | I

> (o java-sdk-3.5.3-jar-with-dependencies jar - C:\Users\IBM_ADMIN\Desktop

Add JARs...
Add External JARs...
Add Variable...
Add Library...
Add Class Folder...

Add External Class Folder...

Edit.

Remove

il

Migrate JAR File...

®

OK] [Cancel

Figure 4-15 Select the library in error

Chapter 4. Intelligent Video Content Analytics

95

3. Do one of the following steps:
— If no default JRE was previously defined: Skip to step 4 on page 97.

— If a default JRE was previously defined: Select Workspace default JRE, and click
Finish (Figure 4-16). You can now skip to “Add Watson Java SDK with dependencies

to your project” on page 101.

i8] Edit Library

JRE System Library
Select JRE for the project build path,

Systern library

() Execution environment: Environments...

() Alternate JRE: Installed JREs...

o)

@ Workspace default JRE (jdk1.8.0_65)

@ I Finigh ||[Cancel

Figure 4-16 Select Workspace default JRE, if one was previously defined

96 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

4. This step through step 9 on page 101 are needed only if no default JRE was installed
previously. Click Installed JREs (Figure 4-17).

i@} Edit Library

JRE System Library

Select JRE for the project build path.

e

System library

() Execution envirenment:

() Alternate JRE:

(@ Workspace default JRE (jdil.8.0_65)

I ey

Installed JREs...

@

| Finish

L S—

Cancel

Figure 4-17 Installed JREs

5. Click Add (Figure 4-18).

E Preferences (Filtered)

&

-
]
(0]

type filter text

Installed JREs

4 lava
[» Installed JREs

Installed JREs:

Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path of
newly created Java projects.

MName Location Type I Add...
(V| =il Javal0 C\Program Files (x86)\BM\Java70 Standard VM Edit
Duplicate...
Remove

Figure 4-18 Add a JRE definition

Chapter 4. Intelligent Video Content Analytics

97

98

6. Select Standard VM and click Next (Figure 4-19).

%] Add JRE R I . e~
\ e

JRE Type
Select the type of JRE to add to the workspace.

Installed JRE Types:

Execution Envirenment Description

b

@ | <Back [Newr J[Fnsh |[Cancel

Figure 4-19 Standard VM installed JRE type

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

7. Click Directory, select a JDK installation path, and click OK (Figure 4-20).

gva

| STy

JRE Definition
,1‘, Enter the home directory of the JRE.

|

IO L

-

Browse For Folder

. Directory...

Select the root directory of the JRE installation:

Variables...

- 4 - =

=4

1Y - -

[

CloudFoundry

, Common Files

; DVD Maker

, FileZilla FTP Client
J HeidisqL

, IBM

| Intel

Internet Explorer

lava

L jdil.7.0_79

4 | jdk1.8.0.65|

Add External JARs...

i

Javadoc Location...

Source Attachment...

[

Remove
Up

Down

Restore Default

Make Mew Folder 1

Folder: jdk1.8.0_65

[o]4 l[Cancel] Eini:h | Cancel

; I

Figure 4-20 Select root directory of JRE installation

Chapter 4. Intelligent Video Content Analytics

99

8. Your panel should look similar to the one shown in Figure 4-21. Click Finish.

EML‘!JF‘.E - — D B E— . — _--El&lg

e s e em

JRE Definition

Specify attributes for a JRE
JRE home: C\Program Files\Java'jdkl.8.0_65
JRE name: jdk1.8.0_65

Default VM arguments:

JRE system libraries:

E e CAProgram Files\Java\jdkl.8.0_65\jre\lib\resourcesjar |+ Add External JARs...

D?‘- C\Program Files\Java'jdkl B.0_65%jre\lib\rt.jar

e C\Pragram Files\Javaljdk1 8.0_65\jre\lib\jsse jar Javadoc Location...
= . E S e | S

s El;'_‘: C\Program Ff|ES\JEVE\J.dkl.&ﬂ_ﬁS\J.rE\”b\JCE.JEr . e PR
e CAProgram Files\Java\jdkl.8.0_65\jre\lib\charsets.jar

D?‘- C\Program Files\Java'jdkl 8.0_65% re\lib'jfr.jar 7 Remaove
@ C\Program Files\Java'jdkl .B.0_65Yjret\lib\ext\access-brid
wg ChProgram Files\Java'jdkl.8.0_65%jretlib\ext' cldrdata.jar Up
@ C\Program Files\Java'jdkl B.0_65\jre\lib\ext\dnsns,jar

(o C\Program Files\Java'jdkl B.0_65Yjre\lib\ext!jaccess.jar |-
i | P Restore Default

Down

@ Net> | [Enish][Cancel

Figure 4-21 Sample valid Java library

100 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

9. Now you can select Workspace default JRE, and click Finish (Figure 4-22).

I8} Edit Library

JRE System Library
Select JRE for the project build path.

System library

() Execution envirenment:

() Alternate JRE:

@ Workspace default JRE (jdk1.8.0_55]

©

Environments...

Installed JREs...

Y

I Finish ||[Cancel

Figure 4-22 Select Workspace default JRE

Add Watson Java SDK with dependencies to your project
Complete the following steps:

1.

Download the Watson Java SDK dependencies JAR (with dependencies) files:

https://github.com/watson-developer-cloud/java-sdk/releases

Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar

(Figure 4-23).

Downloads
[TJjava—sdk-3.?.G-jar-with—dependencies.jar
[E] source code (zip)

[Source code (tar.gz)

Figure 4-23 Download Watson Java SDK

Chapter 4. Intelligent Video Content Analytics

101

https://github.com/watson-developer-cloud/java-sdk/releases

3. After the JAR file is downloaded, open Eclipse, right-click the project name, and then
select Build Path — Configure Build Path (Figure 4-24).

New L
Go Into

Openin New Window
Open Type Hierarchy

Show In ¢ v
Copy
Copy Qualified Name
Paste
Delete

1 Link Source...
Source - +S New Source Folder...
Refactor T ' useasSource Folder
Import... Add External Archives...
Export... Add Libraries...
Refresh

Close Project
Close Unrelated Projects
Assign Working Sets...

Debug As v
Run As ’
Validate

Team ,
Compare With v
Restore from Local History...

Configure

Properties

Figure 4-24 Configure Build Path

102 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Open the Libraries tab, and then click Add External JARs (Figure 4-25).

Properties For IntelligentVideoContentAnalytics

[| @| Java Build Path -
» Resource - -
Bisilders #source | [=Projects | EhLibraries | %;0rder and Export
Java Build Path JARs and class folders on the build path:
» Java Code Style » @5 java-sdk-3.5.2-jar-with-dependencies.jar - /home/aze Add JARs...
» Java Compiler » =i JRE System Library [JavaSE-1.8
" P : "l] Add External JARs...
» Java Editor * =i opencv3
Javadoc Location Add Variable...
Project Ref :
rojec .e en?nces P
Refactoring History
Run/Debug Settings Add Class Folder...
. :
Tk PepEatia Add External Class Folder...
Task Tags
» Validation Edit
WikiText
Remove
q e JAR File
13
@ Cancel | [OK J

Figure 4-25 Configure Java Build Path

Chapter 4. Intelligent Video Content Analytics

103

104

5. Navigate to the JAR file (java-sdk-3.5.2-jar-with-dependencies. jar), selectit, and then
click OK (Figure 4-26).

Note: The JAR file name (java-sdk-x.x.x-jar-with-dependencies.jar) will vary
depending on the version available when you download it.

JAR Selection

__i | 4 “E[ﬁ azeddine I Downloads|

Places Name - Size Modified

Q search | |l Classifyoo1 Tuesday

@ Recently Used | ElhassounyTP 01/21/2017

[@ azeddine [ImagesContentDescription Yesterday at 22:43
B Desktop [l classifyo01.zip 2.8MB Tuesday

1 File System [cognitive-devoxx-videosearch-master.zip 391.1kB 01/16/2017

2 Réservé ausyst... | b ElhassounyV1.zip 264.8 kB Tuesday

1106 GBVolume (& image-resize-servlet-master.zip 280.9kB 01/21/2017

1 325GBVolume [javaplays-eclipse-master.zip 38.3MB 01/16/2017

[Documents # java-sdk-3.5.2-jar-with-dependencies.jar Yesterday at 23:37
il Music [node-red-labs-master.zip 21.7MB 01/16/2017

il Pictures [openwhisk-visionapp-master.zip 1.9MB 01/16/2017

@ videos

[£ Downloads

EjanEzipa:

Cancel | [T_l

Figure 4-26 Select the Java SDK JAR file

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

6. Check that the JAR file is added to your project and click OK (Figure 4-27).

Properties For IntelligentVideoContentAnalytics

i @| Java Build Path =

* Resource

Builders
Java Build Path JARs and class folders on the build path:

@source Projects ®iLibraries %y0rder and Export

» Java Code Style b = java-sdk-3.5.2jar-with-dependencies. jar - fhome/aze Add JARS...

* Java Compiler » =\ JRE System Library [JavaSE-1.8]

» Java Editor * =) opencv3
Javadoc Location Add Variable...
Project References
Refactoring History
Run/Debug Settings Add Class Folder...

* Task Repository
Task Tags

* validation
WikiText

Add External JARs...

Add Library...

Add External Class Folder...

@ Cancel | OK

Figure 4-27 Window to check the addition of Java SDK

7. After the Watson Java SDK is imported to the project, verify that the Java errors
concerning Visual Recognition are resolved (as shown in lines 23 and 24 of Figure 4-28).

2& * import of Java classes[]

4= import java.awt.¥*;

5 import java.awt.image.BufferedImage;
6 import java.io.File;

7 import java.io.IOException;

& import javax.imageio.ImagelO;

9 import javax.swing.*;

18 /*
11 * import of needed opencv classes
12|

13 import org.opencv.core.Core;

14 import org.opency.core.Mat;

15 import org.opencv.core.Size;

16 import org.opency.imgcodecs.Imgcodecs;
17 import org.opencv.imgproc.Imgproc;

18 import org.opencv.videoio.VideoCapture;

19

28 f*

21 * import of visual recognition classes
22 | =

23 import com.ibm.watson.developer cloud.visual recognition.v3.*;
24 import com.ibm.watson.developer cloud.visual recognition.v3.model.*;

Figure 4-28 Import of Visual Recognition classes

Chapter 4. Intelligent Video Content Analytics 105

Create OpenCV3.x.x Java as a user library to Eclipse

To resolve import errors of OpenCV, define OpenCV as a user library in Eclipse. Complete the
following steps:

Note: These steps are from the Using OpenCV Java with Eclipse web page.

1. After the OpenCV3.x.x Java library is installed, return to Eclipse and select Window —
Preferences (Figure 4-29).

New Window
Editor
Hide Toolbar

Open Perspective

Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Navigation

Figure 4-29 Select Preferences

2. Expand Java — Build Path — User Libraries and click New (Figure 4-30 on page 107).

106 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html

x Preferences

I User Libraries & o =
> General User libraries can be added to a Java Build path and bundle a number of
> Ant external archives. System libraries will be added to the boot class path when
> Code Recommendei launched.
» Help Defined user libraries:
* Install/Update > =\ opencv3 Mila. b7
¥ Java > =i opencv3.1.1

b Appearance
¥ Build Path Add JARs
Classpath variat T

Code Style Remove
Compiler
Debug up
Editor
Installed JREs
Junit Import...
Properties Files Ec —
® Maven .

¥y ¥ ¥V ¥ V¥

@ | Cancel | oK

Figure 4-30 Add new user library

. Provide a name for your new user library, for example opencv3.x.x (Figure 4-31), and then
click OK.

™ New User Library

User library name:

[opencv3.1.1|]

] system library (added to the boot class path)

@ : Cancel [OK .

Figure 4-31 Fill user library name dialog

. Select your new user library (opencv3.x.x) and click Add External JARs. A dialog opens
where you can navigate folders (Figure 4-32 on page 108) to find the opencv-3xx. jar file.

Select the opencv-3xx. jar file that is in the installation folder of OpenCYV library.The
location of the JAR file depends on the operating system you use:

— For Linux: /opencv3.x.x/build/bin/
— For Windows: C:\0penCV-3.x.x\build\java\x64 (or x86 if you have a 32-bit OS)

After you select the opencv-3xx. jar, click OK.

Chapter 4. Intelligent Video Content Analytics 107

T e
» General Use| - class path when launched.
> Ant Def ﬁ & [@ azeddine | opencv-3.2.0 I‘bu_ilcll‘ﬂj
» Code Recommenders .,'i ; = W i
> Help Places . Name Size Modified + || [e |
v Java Q?RecentlyUsed .
» Appearance i azeddine —————
¥ Build Path B Desktop
Classpath variable 3 File System Remove
User Libraries 3 Réservé au syst... —_—
> Code Style 1 106 GB Volume Up
» Compiler £1325GB Volume -
> Debug il Documents DowT)
» Editor I i
* Installed JREs :; :':::Cres e Jmport)
Junit @ videos | Export... |
Properties Files Editi [Downloads
» Maven
» Mylyn
® Run/Debug
» Team
Vvalidation
» WindowBuilder
XML
- =3 | *jar*zip % | E
@ P Cancel || OK

Figure 4-32 Navigate folders dialog

5. Select Native library location and click Edit. The Native Library Folder Configuration
dialog opens (Figure 4-33).

i @| User Libraries ooy -
> General User libraries can be added to a Java Build path and bundle a number of external archives. System libraries will be added to the boot class path when launched.
> Ant Defined user libraries:
» Code Recommenders » B openc3
S

HEIDI ¥ Bl opencv3.1.1
»

Instal,/Update ¥ i opencv-320.jar - fhomefazeddinefopencv-3.2.0/build/bin
v

s {1 source attachment: (None)

>

Appasrancsl @) Javadoc location: (None)
¥ Build Path

% Native library location: (None)

Classpath variable & Access rules: (No restrictions)

User Libraries
» Compiler |
» Debug Enter the location of a folder containing the native libraries used by 'opencv-320.jar'": Down
>
>

Editor Location path: |

Installed JREs

Junit

Properties Files Edit:
* Maven
» Mylyn
» Run/Debug
» Team

validation T —"

» windowBuilder
> XML

| cancel |

OK

® | Cancel | OK

Figure 4-33 Native Library Folder Configuration dialog

108 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

6. Click External Folder and browse to select the folder of the Native Library Location:
— For Linux: /opencv3.x.x/build/Tib

— For Windows: C:\0OpenCV-3.x.x\build\java\x64 (if you have a 32-bit OS, select the
x86 folder instead x64).

After the OpenCV Native Library Location is determined, click OK on the Native Library
Folder Configuration dialog and then click OK on the User Libraries page (Figure 4-34).

> General
> Ant
* Code Recommenders
» Help
» Install/Update
¥ Java
» Appearance
¥ Build Path
Classpath variable
User Libraries
Code Style
Compiler
Debug
Editor
Installed JREs
Junit
Properties Files Editi
* Maven
» Mylyn
* Run/Debug
* Team
Validation
* WindowBuilder
P XML

vy VYV VYew

User Libraries = -

User libraries can be added to a Java Build path and bundle a number of external archives. System libraries will be added to the boot class path when launched.
Defined user libraries:

> =i opencv3

New...
¥ El opencv3. i1 = ™
¥ i opencv-320.jar - fhomefazeddinefopencv-3.2.0/build/bin {#

{1 source attachment: (None)
@) Javadoc location: (None)

% Native library location: (None)
& Access rules: (No restrictions)

% Native Library Folder Configuration

Enter the location of a folder containing the native libraries used by 'opencv-320.jar":

Location path: | fhome/azeddine/opencyv-3.2.0/build/lib | External Folder... I

Import...
Workspace...
. Export...
cancel oK
Cancel oK

Figure 4-34 Native library folder configuration dialog

7. After you add the OpenCYV library, right-click the project name and select Build Path —
Configure Build Path (Figure 4-35 on page 110).

Chapter 4. Intelligent Video Content Analytics 109

New
Go Into
Open in New Window
Open Type Hierarchy]
Show In shift+altsw »
Copy Ctri+C
Copy Qualified Name
Paste cerl+v
Delete Delete
Build Path . Link Source...
Source Shift+albss » Mew Source Folder...
Refactor Shift+AlbsT » Use as Source Folder
Import... Add External Archiyes...
Export... Add Libraries...
Refresh F5 Configure Build Path...
Close Project
Close Unrelated Projects
Assign Working Sets...
Debug As ’
Run As .
validate
Team
Compare With .
Restore from Local History...
Configure
Properties Alt+Enter

Figure 4-35 Configure Build Path

8. Click the Libraries tab and click Add Library to open the Add Library wizard
(Figure 4-36).

| @| Java Build Path - =
> Resource e

Builders @Source | (E-Projects ‘ EiLibraries | “;Order and Export

Java Build Path JARs and class Folders on the build path:
> Java CodeStyle > [java-sdk-3.5.2-jar-with-dependencies.jar - /home/azeddine/Downloads/Classify001/src | Add JARs... |
» Java C il > =k JRE System Library [JavaSE-1.8 ;
. Java EZTPI i ¥ el 1 | Add External JARs... |

ava Editor T

Javadoc Location Add Library | Add Variable... |

Project References Add Library [—r e —"

Refactoring History ect thelib i é E) w

Run/Debug Settings selectthelibrary typeto add. ‘ | Add Class Folder... |
b i ; :

I:zt TR:S:SIWW JRE System Library | Add External Class Folder... |

Junit

» Validation . Edit

WikiTexE Maven Managed Dependencies

User Library Remove
Migrate JARFile...
@ <Back l*] | Ccancel | Finish
@ | Cancel || OK

Figure 4-36 Add Library window

110 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

9. Select User Library and click Next (Figure 4-37).

Add Library
Add Library

Select the library type to add. éej

JRE System Library
Junit

Maven Managed Dependencies

User Library

@ < Back

| | Cancel Finish

Figure 4-37 Add Library dialog
10.Select the opencv3.x.x check box and click Finish (Figure 4-38).

Add Library
User Library

Seleck a library to add to the classpath. évj

User libraries:

=i opencv3
v’ = opencv3.1.1

| User Libraries... |

@ | =<Back | Next > | cancel | [&J

Figure 4-38 Add Library dialog

Chapter 4. Intelligent Video Content Analytics

111

11.Now that all required libraries are added, verify that no import errors exist (Figure 4-39).

!
* import of Java classes
- import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.Imagel0;
import javax.swing.*;
!
* import of needed opencv classes
!
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Size;
16 import org.opencv.imgcodecs.Imgcodecs;
17 import org.opencv.imgproc.Imgproc;
g dimport org.opencv.videoio.VideoCapture;
19
28 j*

21 #* import of visual recognition classes

WD 00 = Oh U0 s W R

[
[I Y I N S]

¥
23 import com.ibm.watson.developer cloud.visual recognition.v3.#;
24 import com.ibm.watson.developer cloud.visual recognition.v3.model.*;

25

Figure 4-39 No errors

4.3.5 Exploring and completing the sample code provided with the use case

You imported the project and resolved the import errors. Now you can use the Java editor in
Eclipse to explore and understand the code and make a few changes to the source code in
order to complete it. These steps focus mainly on removing comments around several key
instructions and customizing the program with your Watson Visual Recognition service
credentials.

1. The starting point of the execution of a stand-alone Java program is the main method.
Figure 4-40 shows a snippet of the main method.

Update the code: Remove the block comment around the three first instructions (lines
121, 122, and 123 in Figure 4-40).

On line 121 the VisualRecognition class is instantiated. This Java class is used to access
the Watson Visual Recognition service.

117 I*

118 * 1-Instantiation of visual recognition service

119 *J

120 P

121 VisualRecognition service = new VisualRecognition(VisualRecognition.VERSION DATE 2016 05 20);
122 service.setEndPoint('lhitps://oateway-a.watsonplatform.net/visual-recognition/api");

123 service.setApiKey("B7deef590c9ec@I3DT4T 0TI Tde3d7c72T4can") ;

§124 ¥/

Figure 4-40 Instantiation of Visual Recognition service code

2. The first instruction in Figure 4-41 on page 113 instantiates a new VisualRecognition
object to access the Watson Visual Recognition V3 service.

112 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Update the code: In the next two lines of code (121 and 122), replace the values of the
ApiKey and EndPoint with your values that you copied previously in 4.3.1, “Creating a
Visual Recognition service instance” on page 88.

Your code should now appear similar to Figure 4-41.

112€ i

113 * main function

114 i)

115

116= public static void main(String[] args) {

117 I

118 * 1-Instantiation of visual recognition service

119 xf

128 VisualRecognition service = new VisualRecognition(VisualRecognition.VERSION_DATE_2016_85_26);
121 service.setEndPoint("https://gateway-a.watsonplatform.net/visual-recognition/api");
122 service.setApiKey("57dee0529bc9ecf13b1412481114e3d7c72f4caf");

Figure 4-41 Code overview after removing comments and setting ApiKey and EndPoint URL

3. Copy a video file, for example ibmvideo.mp4, to the project file directory (Figure 4-42). You
can download the video file from this location:

https://www.youtube.com/watch?v=fUKpGLkIM18&cm mc_uid=11487496984514811404484&c
m_mc_sid_50200000=1487265686

4 =4 IntelligentVideoContentAnalytics_student
s B src
> B JRE Systern Library [jdid 8.0_65]
. (g java-sdk-3.5.3-jar-with-dependencies.jar - C:\ Users\ 1BV
> B, opencv3ll
» = doc
= fruitbowl,jpg

=/ image.jpg

Figure 4-42 A video file in the project directory
4. Now, load the input video file using VideoCapture (an OpenCV class).

Update the code: This simple step involves removing the comment characters in
line 135. Figure 4-43 shows how the code looks before and after the change.

132 i

133 * 2- Load video file ibmvideo.mp4 using VideoCapture
134 ulf |

135 //||videoCapture video = new VideoCapture("ibmvideo.mp4");
136

132 /*

1133 * 2- Load video file ibmvideo.mp4 using VideoCapture
1134 *f

i

1135 VideoCapture video = new VideoCapture("ibmvideo.mp4");
136

Figure 4-43 Load video line code

Chapter 4. Intelligent Video Content Analytics 113

https://www.youtube.com/watch?v=fUKpGLk9Ml8&cm_mc_uid=11487496984514811404484&cm_mc_sid_50200000=1487265686

5. Awhile loop reads the video frame by frame (Figure 4-44) and analyzes the video
content. Note that the program does not analyze every frame, the main reason being that
there is a lot of redundancy in consecutive frames. This sample program analyzes one out
of every 40 frames. You can change this by simply updating the frequency variable.

//3-Read looply frame one by one from video,
while (true) {

D00~ o U

[« T R T

// Check if frame is no empty and we analyzing just one frame from frequency of frames due to redundancy
//pf information in video
if (video.read(frame)&&{Index % freguency = 0)) {

Imgproc.resize(frame, frame, size);

Mmoo o
(="

J

Figure 4-44 while loop to read frames from video

6. Figure 4-45 shows the code that classifies the objects in the video frame.

I73

174 //4- To classify objects we using two instructions below

175 /*

176 | ClassifyImagesOptions options = new ClassifyImagesOptions.Builder().images(image).build();
177 VisualClassification result = service.classify(options).execute()

178 .

179

Figure 4-45 Classify objects code with comments

Update the code: Remove the block comments so your code looks identical to

Figure 4-46.
TP
173 //4- To classify objects we using two instructions below
174 ClassifyImagesOptions options = new ClassifyImagesOptions.Builder().images(image).build();
175 VisualClassification result = service.classify(options).execute();
176

Figure 4-46 Classify objects code

About the code:

— The first line of code shows how to create a ClassifyImagesOptions object based on
the current video frame image. Consider this information:

¢ To create the new options for the new image, instantiate a new builder
(ClassifyImagesOptions.Builder()), call the images() method to set the new
image to classify. This function accepts an image file as the parameter and returns
the builder.

e At the end, call the build() method with any argument that builds and returns the
profile options (ClassifyImagesOptions).

— The second line of code shows how to call the Watson Visual Recognition service that
performs the actual classification of objects within the current video frame image. The
result of the classification is saved in the result variable. Consider this information:

* To classify an object, call the classify() method,
service.classify(ClassifyImagesOptions).

* [t accepts options (ClassifyImagesOptions) as argument and returns a
VisualClassification JSON object. The classify() method of the Visual
Recognition service analyzes images and detects details of objects.

* The execute() function is used to run the service.

114 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

7. Figure 4-47 shows how the sample program calls the display() method to display the
video frame and the result of the classification, before moving on to the next frame. This
method receives two arguments:

— Frame
— Frame description (str = result.toString())

191

192 // 5- Display video and result (VisualClassification or DetectedFaces json object) as a string
193 //WFrame.display(imagetodisplay, str);

194 }// end of while

185

196 }//end of main

197

198 }//end of class

Figure 4-47 Display frame and description objects code

Update the code: As before, remove the comment from line 193. Your code should
now look like the code in Figure 4-48.

// 5- Display video and result (VisualClassification or DetectedFaces json object) as a string
VFrame.display(imagetodisplay, str);
}// end of while

Figure 4-48 Result

The code of the display () method is shown in Figure 4-49.

958 Vi

96 * display : function display the video's frames and its text description (objects or faces detected)
97 * @frame a BufferedImage to display

98 * @str a String object: text description of objects or faces detected
59 *f

180= public void display(BufferedImage frame, String str){

101

182 Imagelcon imageicon = new Imagelcon(frame);

103 label_left.setIcon(imageicon);

164 label left.repaint();

105

186 textarea wright.setText(str);

107 textarea wright.repaint();

108 window.setVisible(true);

109

118 i

111

Figure 4-49 The display method code

8. To enhance this application, a graphical interface (GUI) is created to display the video and
the description of the content (Figure 4-50).

146

147 /Create graphic interface by instantiate VideoAnalytics class
148 VideoAnalytics VFrame=new VideoAnalytics();

149

Figure 4-50 instantiate VideoAnalytics class to create graphical interface

Chapter 4. Intelligent Video Content Analytics 115

9. Declare all graphic components as class attributes (Figure 4-51).

278 /*

28 * (lass to analyze video content using classify and detectFaces function of wvisual recognition service
29 L

360 public class VideoAnalytics {

31s /*

32 * window : Main Jframe

33 * Label on : to display text on top of window
34 * label left : to display video

35 * label underleft : to display text on bottom
36 * textarea wright : to display objects or faces description
37 * panel left : in which we make Label on,label left and label underleft
38 * panel : contains all above components

39 il

40 JFrame window ;

41 JLabel label on;

42 JLabel label left ;

43 JLabel label underleft;

44 JTextArea textarea wright ;

45 JPanel panel left;

46 JPanel panel;

47

48 JscrollPane bar;

49

582 ? i

51 * Necessary instruction to use opencv

52 i

53& static {

54 System. loadLibrary(Core.NATIVE_LIBRARY NAME);
55 }

Figure 4-51 Graphic components declaration

116 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Figure 4-52 shows the code in the class constructor that builds the graphical interface.
The graphical interface is used to display video and its content description.

58 * Constructor that create the Graphic interface

59 *f

6= public VideoAnalytics(){

61

62 window = new JFrame("Intelligent video content analytics");
63 window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

64

65 label left = new JLabel();

66 label underleft=new JLabel("IBM Watson Visual Recognition service", JlLabel.CENTER);
67 label underleft.setFont(new Font("Serif", Font.PLAIN, 30));
68

69 label on=new JLabel("IBM Watson Video Analytics", JlLabel.CENTER);
78 label on.setFont(new Font("Serif", Font.PLAIN, 30));

b |

T2 textarea wright = new JTextArea("");

73

74 label left.setSize(640,480);

75 label underleft.setSize(640,160);

76 textarea wright.setSize(640,640);

T

78 panel left=new JPanel(new BorderLayout());

79 panel left.add(label underleft,BorderLayout.NORTH);

80 panel left.add(label left,BorderLayout.CENTER);

81 panel left.add(label on,BorderLayout.50UTH);

82

83 JscrollPane bar = new JScrollPane (textarea wright);

84 bar.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLEAR_ALWAYS);
85

86 panel = new JPanel(new GridLayout(1,2));

87 panel.add(panel left);

88 panel.add(bar);

89

98 window.setContentPane(panel);

a1l window.setSize (1280, 640);

92 window.setVisible(true);

93 }

Figure 4-52 Creation of graphic interface

10.Save the project (File — Save) and run the application as described in the next section.

Chapter 4. Intelligent Video Content Analytics 117

4.3.6 Running the application

118

To run the Intelligent Video Content Analytics application, complete these steps:

1. Copy the path of your video or use the paths described in this project. You can get the
video (IBM Intelligent Video Analytics Overview) at either of the following locations:

— https://www.ibm.com/us-en/marketplace/video-analytics-for-security
— https://youtu.be/fUKpGLkIM18

2. Run the project: Right-click the project and select Run As — Run Configurations
(Figure 4-53).

New
Go Into

Openin New Window
Open Type Hierarchy
Show In

Copy

Copy Qualified Name
Paste

Delete

Build Path
Source
Refactor

Import...
Export...

Refresh

Close Project

Close Unrelated Projects
Assign Working Sets...

Debug As

/ 1.Java Applet
Validate 2 Java Application
Team '

Compare With
Restore from Local History...
Configure

Properties

Figure 4-53 Run Configurations

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/us-en/marketplace/video-analytics-for-security
https://youtu.be/fUKpGLk9Ml8

3. Select Java Application and click the New button (Figure 4-54) to create a configuration.

E Run Configurations

Create, manage, and run configurations

Run a Java application

. | = & Configure launch settings from this dialog:
| type filter text _<> - Press the 'Mew' button to create a configuration of the selected type.
B Apache Tomcat 5| - Press the 'Duplicate’ button to copy the selected configuration.
Eclipse Application
- .p e 3 - Press the 'Delete’ button to remove the selected configuration.
E3 Eclipse Data Tools
5 Generic Server & - Press the Filter' button to configure filtering options,
E Generic Server{BExternal | Edit . ok f T e
B HTTP Preview - Edit or view an existing configuration by selecting it.
B J2EE Preview |
Java Applet | Configure launch perspective settings from the 'Perspectives’ preference page.

Ju JUnit
i JUnit Plug-in Test
4 0SGi Framework
Juy Task Context Test
¢ MSL

Figure 4-54 The New button

Chapter 4. Intelligent Video Content Analytics 119

120

4. On the Main page (Figure 4-55), click Browse to find and select the project
(IntelligentVideoContentAnalytics), click Search to find and select the main class,
and then click Run.

* Run Configurations

Create, manage, and run configurations
Runa Java application @

OB X B3~ Name: |New_configuration (8)

[i | ||[© Main"_&- Arguments| Bk JRE| % Classpath| % Source| Environment| E Common|

Java Applet HiaE

v I3 Java Application IntelligentVideoContentAnalytics Browse...
3 celebrityoo2 R e
[Classifyobject

New_configuration
I New_configuration (1 ["] Include system libraries when searching for a main class

VideoAnalytics | Search...

Mew_configuration (z ["1 Include inherited mains when searching for a main class
] New_configuration (2
T New_configuration (¢
New_configuration (=

[C] stop inmain

31 New_configuration (¢

MNew_configuration (7

51 New_configuration (£

Fwv3

V3(1)

V3 (2)

T v3(3)

videoAnalytics

7 videoAnalytics (1)

VideoAnalytics (2) |-
v

Filter matched 25 of 25 items

@ Close [Run

Figure 4-55 Select the project and main class

The program runs and displays the results shown in 4.1.3, “Expected results” on page 84.

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

4.4 Changing your application to detect faces

You can change the application to detect faces instead of performing object classification.
Complete these steps:

1. To detect faces, use the detectFaces() method instead of the classify() method of
VisualRecognition class.

Update the code: Comment out the first two lines of code (lines 174 and 175) and
remove the comments for the next two (lines 180 and 181). Figure 4-56 shows what
your code should look like after you update the code.

173 classify objects we using two instructions below
174 ssifyImagesOptions options = new ClassifyImagesOptions.Builder().images(image).build()
75 VisualClassification result = service.classify(options).execute();
176 */
177
178
179 f/4- To detect faces we using both instructions below instead the two above
180 VisualRecognitionOptions detectFaces = new VisualRecognitionOptions.Builder().images(image).build(};
181 DetectedFaces result = service.detectFaces(detectFaces).execute();

Figure 4-56 Change to detectFaces instead classify

2. Understand the code. Figure 4-56 shows the code that detects faces in the video frame:

— The first line of code shows how to create a VisualRecognitionOptions object based
on the current video frame image.

¢ To create the new options for the new image, instantiate a new builder
(VisualRecognitionOptions.Builder()), call the images() method to set the new
image to analyze. This function accepts an image file as the parameter and returns
the builder.

¢ Atthe end, call the build() method with any argument that builds the profile options
and returns the profile options (VisualRecognitionOptions).

— The second line of code shows how to call the Watson Visual Recognition service
which performs the actual detection of faces within the current video frame image. The
result of the face detection is saved in the result variable.

* To detect faces, call the detectFaces () method:
service.detectFaces(VisualRecognitionOptions)

* It accepts options (VisualRecognitionOptions) as argument and returns a
DetectedFaces JSON object. The detectFaces() method of the Visual Recognition
service analyzes images and detects faces.

* The execute() function is used to run the service.

Chapter 4. Intelligent Video Content Analytics 121

3. After you change your code to detect faces instead of classifying objects, save the change
and rerun the program. The results for the same input video but if no faces are detected in
the video frame are shown in Figure 4-57.

Intelligent video content analytics

IBM Watson Visual Recognition service |“mages processea 1.

"images": [

‘faces": [].
"image": "image.jpg"

A

IBM Intelligent Video Analytics

IBM Watson Video Analytics

Figure 4-57 Result if no person is in the scene

122 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

If a person appears in the video, the results differ, as shown in Figure 4-58.

Intelligent video content analytics

IBM Watson Visual Recognition service

i
"images_processed”: 1,
"images": [

“faces": |

{

‘face_location": {
"width": 79,
"height": 75,
"left"; 334,
"topf: 52

e

"age" {

"max"; 24,

"min™: 18,

"score™ 0.394433
e
"gender": {

"gender": "FEMALE",

"score™ 0.0

¥
i
{

“face_location": {
"width": 47,
"height": 60,

"left": 53,

"top™ 229

H
“age™ {

"max" 24,

"min": 18,

"score™ 0.444701
H
"gender": {

"gender": "FEMALE",

"score™ 0.0

3
]

"image": "image.jpg"

IBM Watson Video Analytics 3

Figure 4-58 Result if a person appears in the scene

Using video from the camera: You can extend this program to use video from the
camera:

1. Find this instruction:
VideoCapture camera = new VideoCapture("path of video file ")
2. Change that instruction as follows:

VideoCapture camera = new VideoCapture()

This program can be extended to other use cases.

Chapter 4. Intelligent Video Content Analytics

123

4.5 References

See the following resources:
» OpenCV 3.0.0-dev documentation (Using OpenCV Java with Eclipse):

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.htm]

» Move your Java application into a hybrid cloud using Bluemix, Part 3
(IBM developerWorks):

http://www.ibm.com/developerworks/cloud/1ibrary/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

» Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/

124 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/

Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The following Git repositories are available to help you with the examples in this book:
» For Chapter 3, “Image Content Description” on page 35:

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription
» For Chapter 4, “Intelligent Video Content Analytics” on page 83:

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalyti
cs

© Copyright IBM Corp. 2017. All rights reserved. 125

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription
https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalytics

126 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

The volumes in the Building Cognitive Applications with IBM Watson APIs series:

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

vVVvyVvYyVvYyYVvYYyvYyyYy

You can search for, view, download or order these documents and other Redbooks,
Redpapers™, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:
» Classify an image topic in Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify a
n_image

» Detect faces topic in Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect fac
es

» Create or log in to IBM Bluemix account:
https://console.ng.bluemix.net/
» Visual Recognition getting started tutorials:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-starte
d.html

» Download Eclipse:
https://eclipse.org/downloads/

» Getting Started with Eclipse:
https://eclipse.org/users/

© Copyright IBM Corp. 2017. All rights reserved. 127

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://console.ng.bluemix.net/
https://eclipse.org/downloads/
https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html
https://eclipse.org/users/

» Getting Started with Java Programming:
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.htmi

» Watson Developer Cloud Node.js SDK:
https://www.npmjs.com/package/watson-developer-cloud

» Node.js usage examples of the Watson APIs:
https://github.com/watson-developer-cloud/node-sdk

» Eclipse IDE Luna:
http://www.eclipse.org/luna

» Move your Java application into a hybrid cloud using Bluemix:

http://www.ibm.com/developerworks/cloud/Tibrary/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

» Download and install the Cloud Foundry command-line interface (CLI).
https://console.ng.bluemix.net/docs/starters/install_cli.html
» OpenCV 3.x.x for Java:

http://opencv-java-tutorials.readthedocs.io/en/Tatest/0l-installing-opencv-for-
java.html

» Using OpenCV Java with Eclipse
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.htm]

Also see the list of online resources for the following chapters in this book:

v

Basics of Watson Visual Recognition API:1.6, “References” on page 27
Classify images with a custom classifier: 2.3, “References” on page 34
Image Content Description: 3.5, “References” on page 81

Intelligent Video Content Analytics: 4.5, “References” on page 124

vvyy

Help from IBM

128

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://console.ng.bluemix.net/docs/starters/install_cli.html
http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html
https://www.npmjs.com/package/watson-developer-cloud
https://github.com/watson-developer-cloud/node-sdk
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
http://www.eclipse.org/
http://www.eclipse.org/luna
http://opencv-java-tutorials.readthedocs.io/en/latest/01-installing-opencv-for-java.html

Redhooks Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition H

(0.2"spine)
0.17"<->0.473"
90<->249 pages

“llil

SG24-8393-00
ISBN 0738442577

Printed in U.S.A.

flsjolvlinlail @® Redbooks,

ibm.com/redbooks

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Watson Visual Recognition service
	1.1 Use case examples
	1.2 Creating a Watson Visual Recognition service instance and getting the API key
	1.3 Image classification and face detection examples
	1.3.1 Expected results

	1.4 Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE
	1.4.1 Getting started with Eclipse and Java
	1.4.2 Downloading the Watson Java SDK
	1.4.3 Classifying images
	1.4.4 Detecting faces

	1.5 Classifying images and detecting faces: Use Watson Node.js SDK and Node.js Express framework
	1.5.1 Installing the Watson Node.js SDK into your project
	1.5.2 Classifying images
	1.5.3 Detecting faces

	1.6 References

	Chapter 2. Classify images with a custom classifier
	2.1 Visual Recognition custom classifier overview
	2.2 Train, create, and use a custom classifier
	2.2.1 Prepare training data
	2.2.2 Create and train the classifier
	2.2.3 Classify an image with a custom classifier

	2.3 References

	Chapter 3. Image Content Description
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results
	3.1.4 Creating, deploying, and running applications that use Bluemix services

	3.2 Architecture
	3.3 Implementation
	3.3.1 Creating a Visual Recognition service instance
	3.3.2 Downloading the project from Git
	3.3.3 Importing the project into Eclipse
	3.3.4 Importing Watson Java SDK
	3.3.5 Exploring the sample code provided with the use case
	3.3.6 Running the application

	3.4 Deploy a Java application to Bluemix
	3.4.1 Create a runnable JAR file to deploy the application to Bluemix
	3.4.2 Deploy the Java application to Bluemix

	3.5 References

	Chapter 4. Intelligent Video Content Analytics
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.3 Implementation
	4.3.1 Creating a Visual Recognition service instance
	4.3.2 Downloading the project from Git
	4.3.3 Importing the project to Eclipse
	4.3.4 Importing Watson Java SDK and additional OpenCV libraries
	4.3.5 Exploring and completing the sample code provided with the use case
	4.3.6 Running the application

	4.4 Changing your application to detect faces
	4.5 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

