
Redbooks

In partnership with
IBM Skills Academy Program

Front cover

Building Cognitive Applications with 
IBM Watson Services: Volume 3 
Visual Recognition

Dr. Azeddine Elhassouny

Dr. Le Nhan Tam

Dina Sayed

Bjoern Steffens

Lak Sri





International Technical Support Organization

Building Cognitive Applications with IBM Watson 
Services: Volume 3 Visual Recognition

May 2017

SG24-8393-00



© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1.  Basics of Watson Visual Recognition service . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Use case examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  Creating a Watson Visual Recognition service instance and getting the API key. . . . . . 2
1.3  Image classification and face detection examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1  Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4  Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE. . . . . 6

1.4.1  Getting started with Eclipse and Java. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2  Downloading the Watson Java SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3  Classifying images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4  Detecting faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5  Classifying images and detecting faces: Use Watson Node.js SDK and Node.js 
Express framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1  Installing the Watson Node.js SDK into your project. . . . . . . . . . . . . . . . . . . . . . . 22
1.5.2  Classifying images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.3  Detecting faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2.  Classify images with a custom classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1  Visual Recognition custom classifier overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2  Train, create, and use a custom classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1  Prepare training data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2  Create and train the classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3  Classify an image with a custom classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3.  Image Content Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1  Getting started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1  Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3  Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4  Creating, deploying, and running applications that use Bluemix services  . . . . . . 39

3.2  Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3  Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1  Creating a Visual Recognition service instance . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2  Downloading the project from Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3  Importing the project into Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4  Importing Watson Java SDK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5  Exploring the sample code provided with the use case  . . . . . . . . . . . . . . . . . . . . 59
3.3.6  Running the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
© Copyright IBM Corp. 2017. All rights reserved. iii



3.4  Deploy a Java application to Bluemix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.1  Create a runnable JAR file to deploy the application to Bluemix  . . . . . . . . . . . . . 74
3.4.2  Deploy the Java application to Bluemix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 4.  Intelligent Video Content Analytics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1  Getting started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1  Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.2  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.3  Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2  Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3  Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1  Creating a Visual Recognition service instance . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2  Downloading the project from Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3  Importing the project to Eclipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4  Importing Watson Java SDK and additional OpenCV libraries . . . . . . . . . . . . . . . 94
4.3.5  Exploring and completing the sample code provided with the use case. . . . . . . 112
4.3.6  Running the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4  Changing your application to detect faces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix A.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Locating the web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
iv Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2017. All rights reserved. v



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

Bluemix®
developerWorks®
IBM®
IBM Watson®

IBM Watson IoT™
Redbooks®
Redbooks (logo) ®
Redpapers™

Tivoli®
Watson IoT™

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other 
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Other company, product, or service names may be trademarks or service marks of others. 
vi Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/legal/copytrade.shtml


Preface

The Building Cognitive Applications with IBM Watson Services series is a seven-volume 
collection that introduces IBM® Watson cognitive computing services. The series includes an 
overview of specific Watson services with their associated architectures and simple code 
examples. Each volume describes how you can use and implement these services in your 
applications through practical use cases.

The series includes the following volumes:

� Volume 1 Getting Started, SG24-8387
� Volume 2 Conversation, SG24-8394
� Volume 3 Visual Recognition, SG24-8393
� Volume 4 Natural Language Classifier, SG24-8391
� Volume 5 Language Translator, SG24-8392
� Volume 6 Speech to Text and Text to Speech, SG24-8388
� Volume 7 Natural Language Understanding, SG24-8398

Whether you are a beginner or an experienced developer, this collection provides the 
information you need to start your research on Watson services. If your goal is to become 
more familiar with Watson in relation to your current environment, or if you are evaluating 
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 3, introduces the IBM Watson® Visual Recognition 
service. The Watson Visual Recognition service uses deep learning algorithms to analyze 
images for scenes, objects, faces, and other content. This book introduces concepts that you 
need to understand in order to use this Watson service and provides simple code examples to 
illustrate the use of the APIs. This book includes examples of applications that demonstrate 
how to use the Watson Visual Recognition service in practical use cases. You can develop 
and deploy the sample applications by following along in a step-by-step approach and using 
provided code snippets. Alternatively, you can download an existing Git project to more 
quickly deploy the application.

Authors

This book was produced by a team of specialists from around the world working in 
collaboration with the IBM International Technical Support Organization.

Dr. Azeddine Elhassouny is a Professor at ENSIAS, IT College, Mohammed V University 
in Rabat, Morocco. He teaches multimedia indexing and retrieval, data visualization, and data 
science. His current research interests include deep learning in computer vision, multimedia 
signal processing, and pattern recognition and classification. His research also explores the 
connections between these areas and mathematical fields, such as neutrosophic field theory, 
fusion theory, and multiple criteria decision making (MCDM). He has published a book and 
several research papers about cognitive computing. Dr. Elhassouny holds a Ph.D. and M.S. 
in mathematics, computer science, and applications. He is a certified IT Specialist in 
IBM Big Data.
© Copyright IBM Corp. 2017. All rights reserved. vii



Dr. Le Nhan Tam is a Cloud Advisor in the IBM Cloud Advisor worldwide team and IBM 
Vietnam. His areas of expertise include cloud computing, Internet of Things (IoT), software 
engineering, business analytics, and cognitive computing. He has over 15 years of 
experience in the IT industry. Dr. Tam also is a visiting lecturer and a project advisor for 
students in universities in Hanoi. He supervised students in several projects to design and 
build cognitive applications that use IBM Bluemix® and IBM Watson Developer Cloud APIs, 
such as visual recognition and personal insight. Tam holds a Master degree in Computer 
Science from Asian Institute of Technology (AIT), Bangkok, Thailand, and a Ph.D degree in 
Computer Science from University of Rennes 1 and French National Institute for Research in 
Computer Science and Control (INRIA), France.

Dina Sayed is a Certified Expert IT Specialist in Watson Group, IBM Egypt. She joined IBM in 
2004 as a software developer evolving to a technical lead role by leading the design and 
development of end-to-end solutions. She currently works in leading and supporting Watson 
multilingual cognitive solutions and services in the Middle East and North Africa (MENA) 
region. Her responsibilities include implementing proof of concepts, customer 
demonstrations, requirements analysis, solutions design, and development. She led Arabic 
support in IBM Social Media Analytic (SMA), which includes capabilities such as sentiment 
analysis, and demographic and behavioral analysis for telecommunication and government 
sectors. Dina also led implementation of the Watson conversation mobile app for different 
government entities in United Arab Emirates. Dina holds B.S. in Communication and 
Electronics Engineering from Cairo University and M.Sc. degree in Natural Language 
Processing from the University of Nottingham, UK Campus.

Bjoern Steffens is a certified IT Specialist in software services IBM Hybrid Cloud, IBM 
Switzerland Ltd. Bjoern has over 25 years of experience in the IT consulting field where his 
focus has been on data architectures, analytics, data science, and deriving insights, 
leveraging business intelligence and business analytics tools. Bjoern enables his customers 
to drive business decisions and strategy based on advanced statistics in combination with 
carefully designed dashboards and reports adding precision to information. He is also an 
expert in providing automated self-service information systems for audiences with varying 
technical and business requirements. Bjoern recently began his journey of applying cognitive 
tools and processes to his existing knowledge going forward as a Bluemix Developer.

Lak Sri currently serves as Program Director in IBM developerWorks® part of the IBM Digital 
Business Group organization. Lak leads innovation in the developer activation space. He was 
the Technical Leader for the Building Cognitive Applications with IBM Watson Services 
Redbooks series. Lak led the development of the IBM Cloud Application Developer 
Certification program and the associated course. Earlier he worked as Solution Architect for 
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built 
strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor 
in several technology areas, and he volunteers to plan and support local community 
programs.

The project that produced this publication was managed by Marcela Adan, IBM Redbooks 
Project Leader, ITSO.

Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

Teja Tummalapalli
IBM Digital Business Group
viii Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an ITSO residency project and help write a book in your 
area of expertise, while honing your experience using leading-edge technologies. Your efforts 
will help to increase product acceptance and customer satisfaction, as you expand your 
network of technical contacts and relationships. Residencies run from two to six weeks in 
length, and you can participate either in person or as a remote resident working from your 
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


x Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Chapter 1. Basics of Watson Visual 
Recognition service

This chapter gets you started with using the Watson Visual Recognition service. 

The Watson Visual Recognition service uses deep learning algorithms to analyze images for 
scenes, objects, faces, and other content. The response includes keywords that provide 
information about the content. A set of built-in classes provides highly accurate results without 
training. You can train custom classifiers to create specialized classes.

This chapter introduces the two main tasks that the IBM Watson Visual Recognition service 
performs:

� Classify a picture and get image details. For example, you might have an image of any 
entity, such as a cat, and use the Watson Visual Recognition classify method to get the 
details for that image. For more information, see the Classify an image topic in Watson 
Developer Cloud.

� Detect faces, gender, and age in a picture by using the Watson Visual Recognition 
detectFaces method. For more information, see the Detect faces topic in Watson 
Developer Cloud.

This chapter provides simple code examples in Java and Node.js that use the Watson SDKs 
and Eclipse IDE and Node.js Express framework.

The following topics are covered in this chapter:

� Use case examples

� Creating a Watson Visual Recognition service instance and getting the API key

� Image classification and face detection examples

� Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE

� Classifying images and detecting faces: Use Watson Node.js SDK and Node.js 
Express framework

� References

1

© Copyright IBM Corp. 2017. All rights reserved. 1

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces


1.1  Use case examples

IBM Watson Visual Recognition is a service that allows users to understand the content of 
images and classify images into logical categories. In addition to classifying images, Visual 
Recognition also offers facial detection.

The Visual Recognition service can be used for diverse applications and industries, 
such as these:

� Manufacturing: Use images from a manufacturing setting to make sure products are 
being positioned correctly on an assembly line.

� Visual Auditing: Look for visual compliance or deterioration in a fleet of trucks, planes, or 
windmills in the field, train custom classifiers to understand what defects look like.

� Insurance: Rapidly process claims by using images to classify claims into different 
categories.

� Social listening: Use images from your product line or your logo to track buzz about your 
company on social media.

� Social commerce: Use an image of a plated dish to find out which restaurant serves it 
and find reviews, use a travel photo to find vacation suggestions based on similar 
experiences, use a house image to find similar homes that are for sale.

� Retail: Take a photo of a favorite outfit to find stores with those clothes in stock or on sale, 
use a travel image to find retail suggestions in that area, use the photo of an item to find 
out its price in different stores.

� Education: Create image-based applications to educate about taxonomies, use pictures 
to find educational material on similar subjects.

� Public safety: Automated, real-time video stream analysis to include targeted 
observations such as facial recognition and automated licence-plate reading, identify a 
suspect’s car with unknown whereabouts to locate instances of that model, parked or in 
motion, in any surveilled part of the country.

1.2  Creating a Watson Visual Recognition service instance and 
getting the API key

Bluemix provides resources to your applications through a service instance. Before you can 
use the Watson APIs, you must create an instance of the corresponding service; you will 
need to create a Watson Visual Recognition service instance for use in all the examples in 
this book.

To create an instance of the Visual Recognition service, complete these steps:

1. Create a Bluemix account.

You must have a Bluemix account to access the Watson APIs. You can create a trial 
Bluemix account, valid for a specified number days. 

2. Log in to Bluemix and click Catalog.

3. From the left menu, select Services → Watson.

4. Click Visual Recognition (Figure 1-1 on page 3).
2 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://console.ng.bluemix.net/


Figure 1-1   Create Visual Recognition service instance 

5. Change the service and credential names or accept the default values. Confirm that the 
pricing plan Free is selected and click Create.

6. Select the Service credentials tab and click View Credentials (Figure 1-2). 

7. Copy the API key for later use.

Figure 1-2   View Credential
Chapter 1. Basics of Watson Visual Recognition service 3



1.3  Image classification and face detection examples

The examples in this chapter do the following tasks by using the Watson Visual Recognition 
service:

� Classify an image using the pre-trained classifier for general classification 

For each image, the response, in JSON format, describes the image content. 

� Detect faces in an image

Detect faces in image, analyze the detected faces, and get data about them, such as 
estimated age, gender. If a celebrity’s face is detected, provide the names of celebrities. 
Images must be in JPEG or PNG file format.

For more information, see the Visual Recognition getting started tutorials.

1.3.1  Expected results

By following the examples in this chapter, you should be able to submit images to the 
application and obtain results after the image has been analyzed by the Watson Visual 
Recognition services.

Image classification results
Figure 1-3 represents the image used as input to the classification. 

Figure 1-3   A sample for image classification: Fruit dish image

Figure 1-4 on page 5 shows the response, in JSON format. It describes the image content 
and for each image, the response includes a score for each class.
4 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html


Figure 1-4   Image classification results

Face detection results
Figure 1-5 represents the image used as input in face detection.

Figure 1-5   Sample image for face detection: Barak Obama
Chapter 1. Basics of Watson Visual Recognition service 5



Figure 1-6 shows the response in JSON format; it shows that a face was detected and 
recognized it as an image of a celebrity, former President Barak Obama. It also detected 
gender as Male and the estimated age. 

Figure 1-6   Results of running the face detection service

1.4  Classifying images and detecting faces: Use Watson Java 
SDK and Eclipse IDE

By the end of this section, you should be able to accomplish these objectives:

� Use the Watson Java SDK to call Watson APIs for image classification.

� Use the Watson Java SDK to call Watson APIs to detect faces and get additional data 
about them such as gender and estimated age. 

Implementing this use case using the Watson Java SDK and Eclipse IDE involves the 
following steps:

1. Creating a Bluemix account (see step 1 on page 2)
2. Creating a Watson Visual Recognition service instance and getting the API key
3. Getting started with Eclipse and Java
4. Downloading the Watson Java SDK
5. Classifying images
6. Detecting faces
6 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



1.4.1  Getting started with Eclipse and Java 

In this use case, Eclipse IDE is used to build the Java application. Install and become familiar 
with Eclipse and Java before you follow the implementation steps:

� Download Eclipse:

https://eclipse.org/downloads/

� Getting Started with Eclipse:

https://eclipse.org/users/

� Getting Started with Java Programming:

http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html 

1.4.2  Downloading the Watson Java SDK

IBM Watson services offer Software Development Kits (SDKs) that simplify application 
development for a variety of programming languages and platforms.

In this chapter, the focus is on developing a Java sample application. Therefore, the Watson 
Java SDK must be downloaded: 

1. Go to GitHub:

https://github.com/watson-developer-cloud/java-sdk/releases

2. Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar 
(Figure 1-7).

Figure 1-7   Download Watson Java SDK

1.4.3  Classifying images 

In this section, you will use the Watson Java SDK to classify image content. It describes how 
to call the Watson service and how to interpret the response. 

Complete these steps:

1. Launch Eclipse.

After you complete 1.4.1, “Getting started with Eclipse and Java” on page 7, you should 
have Eclipse installed in your workstation. Launch Eclipse by double-clicking the 
application icon.

2. Select a workspace directory and click OK (Figure 1-8 on page 8).
Chapter 1. Basics of Watson Visual Recognition service 7

https://eclipse.org/downloads/
https://eclipse.org/users/
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html
https://github.com/watson-developer-cloud/java-sdk/releases


Figure 1-8   Select an Eclipse workspace

The Eclipse Welcome page opens (Figure 1-9). 

Figure 1-9   Eclipse Welcome page
8 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3. Create a new Java project. Select File → New → Java Project (Figure 1-10).

Figure 1-10   Create new Java project
Chapter 1. Basics of Watson Visual Recognition service 9



4. Enter the project name (vrproject in this example), accept the default values for other 
fields, and click Finish (Figure 1-11).

Figure 1-11   Setting your Java project name

5. Close the Welcome page in order to view your project in Package Explorer. 
10 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



6. Import the Watson Java SDK so you can use it in your application. Right-click the 
vrproject project and select Build Path → Configure Build Path (Figure 1-12). 

Figure 1-12   Go to your project build path
Chapter 1. Basics of Watson Visual Recognition service 11



7. Select the Libraries tab and click Add External JARs. 

Browse to and select the Watson Java SDK (JAR file) that you downloaded in 1.4.2, 
“Downloading the Watson Java SDK” on page 7. Click OK.

The Watson Java SDK is successfully added to your project (Figure 1-13).

Figure 1-13   Import the Watson Java SDK to the Eclipse project
12 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



8. Create a Java class to classify your image. Right-click the vrproject project and select 
New → Class (Figure 1-14). 

Figure 1-14   Create a new Java class
Chapter 1. Basics of Watson Visual Recognition service 13



9. The New Java Class window opens (Figure 1-15). Provide the class details: Add a class 
name (ClassifyImage in this example) and select the public static void main(String[] 
args) check box. Click Finish. 

Figure 1-15   Set your Java class name
14 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



The ClassifyImage class is created (Figure 1-16).

Figure 1-16   ClassifyImage Java class

10.Edit the ClassifyImage.java content by adding the code in Example 1-1. Spend several 
minutes to read through the code snippet to understand it.

Example 1-1   Code snippet for image classification

package com.vr;

//Here you import Watson Java SDK to make it available in your code.
import com.ibm.watson.developer_cloud.visual_recognition.v3.*;
import com.ibm.watson.developer_cloud.visual_recognition.v3.model.*;

public class ClassifyImage {

public static void main(String[] args) {

VisualRecognition service = new    VisualRecognition(VisualRecognition.VERSION_DATE_2016_05_20);
 service.setEndPoint("https://gateway-a.watsonplatform.net/visual-recognition/api");

//Here you replace "your_api_key_here" by the API Key you created in "Creating //a Watson Visual 
Recognition service instance and getting the API key" 
service.setApiKey("your_api_key_here");  

//Here you add the URL of your image. The image size should not exceed 2MB. 
 String imageURL = new 
String("https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recog
nition/fruitbowl.jpg");  

 ClassifyImagesOptions options = new   ClassifyImagesOptions.Builder().url(imageURL).build();
VisualClassification result = service.classify(options).execute();    
System.out.println("Classification Results:");    
System.out.println(result);

}

}

Chapter 1. Basics of Watson Visual Recognition service 15



11.Run the code and check results. Right-click ClassImage.java and then select 
Run As → Java Application (Figure 1-17).

Figure 1-17   Run ClassifyImage
16 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



12.View the results in the Console, which by default is under ClassifyImage. You can 
double-click the Console tab to maximize the view and check the results (Figure 1-18).

Figure 1-18   Console view displays classification results

The response, in JSON format, describes the image content. For each image, the 
response includes a score for each class. 
Chapter 1. Basics of Watson Visual Recognition service 17



Figure 1-19 represents the image used as input to the classification. 

Figure 1-19   A sample for image classification: Fruit dish image

1.4.4  Detecting faces

In this section, you use the Watson Java SDK to detect faces in an image. The API also 
provides data about the detected faces, such as estimated age, gender, and names of 
celebrities.

1. Right-click ClassifyImage.java (Figure 1-14 on page 13), click Copy and Paste in the 
same directory.

2. The Name Conflict dialog opens (Figure 1-20). Enter DetectFaces as the new class name 
and click OK. 

Figure 1-20   Create DetectFaces class
18 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



The new class DetectFaces.java is listed in Package Explorer (Figure 1-21).

Figure 1-21   DetectFaces java class in Package Explorer

3. Update the code to call the face detection Watson API.

Double-click DetectFace.java to open the class. 
Chapter 1. Basics of Watson Visual Recognition service 19



Apply the changes that are highlighted (outlined in red in Example 1-2). 

Example 1-2   Code changes to perform face detection 

package com.vr;

import com.ibm.watson.developer_cloud.visual_recognition.v3.*;
import com.ibm.watson.developer_cloud.visual_recognition.v3.model.*;

public class ClassifyImage {

public static void main(String[] args) {

VisualRecognition service = new    
VisualRecognition(VisualRecognition.VERSION_DATE_2016_05_20);

 
service.setEndPoint("https://gateway-a.watsonplatform.net/visual-recognition/ap
i");

//Here you replace "your_api_key_here" by the API Key you created in "Creating 
a //Watson Visual Recognition service instance and getting the API key" 

 service.setApiKey("your_api_key_here");  
//Here you add the URL of your image. The image size should not exceed 2MB. 
 String imageURL = new 
String("https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-d
ownloads/master/visual-recognition/prez.jpg");  

 VisualRecognitionOptions options = new 
VisualRecognitionOptions.Builder().url(imageURL).build(); DetectedFaces result 
= service.detectFaces(options).execute();
System.out.println("Detections Results:");    
System.out.println(result);
  }

}

4. Run code and check the results. Right-click DetectFaces.java and select Run As → Java 
Application (see Figure 1-17 on page 16).
20 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



5. View the results on your Console, which by default is under DetectFaces. To maximize the 
view and see the results (Figure 1-22), double-click the Console tab. It shows the 
response is in JSON format and that a face was detected and recognized as an image of 
former President Barak Obama. It also detected gender as Male and the estimated age.

Figure 1-22   Results of running the face detection service

Figure 1-23 represents the image used in face detection.

Figure 1-23   Sample image for face detection: Barak Obama
Chapter 1. Basics of Watson Visual Recognition service 21



1.5  Classifying images and detecting faces: Use Watson 
Node.js SDK and Node.js Express framework

By the end of this section, you should be able to accomplish these objectives:

� Use the Watson Node.js SDK to call Watson APIs for image classification.
� Use the Watson Node.js SDK to call Watson APIs to detect faces, gender, and age in an 

image. 

Implementing this use case using the Watson Node.js SDK involves the following steps:

1. Creating a Watson Visual Recognition service instance and getting the API key.
2. Installing the Watson Node.js SDK into your project. 
3. Classifying images.
4. Detecting faces.

For more information about the Node.js client library to use the Watson services, see the 
Watson Developer Cloud Node.js SDK web page.

You can find several Node.js usage examples of the Watson APIs on GitHub.

1.5.1  Installing the Watson Node.js SDK into your project

For Node.js you need to enable the Watson API by installing the SDK into your local Node.js 
installation and the project you are currently working on:

1. You need a text editor to enter and edit the code. Use your favorite text editor or download 
Brackets or Atom, which are two very popular code editors.

2. Install Node.js runtime and node package manager (npm) on your system from the 
Node.js website.

3. After you initiate your Node.js project, install the Watson Node SDK into your local 
installation and Node.js project: 

npm install -g watson-developer-cloud 
npm install --save watson-developer-cloud

1.5.2  Classifying images

The Node.js sample code in Example 1-3 does the following tasks:

1. Gets an image from a website URL 
2. Sets the API key of the Visual Recognition service 
3. Sends the image to the classify method of the Visual Recognition service for processing.
4. Returns the results in JSON format. 

Example 1-3   Image classification: Node.js sample code

var parameters = {
"apikey" : "",
"url" : 

"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44_bara
ck_obama%5B1%5D.jpg" 
};

var watson = require('watson-developer-cloud');
var fs = require('fs');
22 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/watson-developer-cloud/node-sdk
https://www.npmjs.com/package/watson-developer-cloud
https://nodejs.org


var http = require('http');

var visual_recognition = new watson.VisualRecognitionV3({
  api_key: parameters.api_key,  //SET YOUR API KEY
  version_date: '2016-05-20'
});

visual_recognition.classify(parameters, (err, response) => {
  if (err) {
    console.log('error:', err);
    if (typeof callback !== 'undefined' && typeof callback=="function") return 
callback(err);
  }
  else {
    console.log(JSON.stringify(response, null, 2));
    if (typeof callback !== 'undefined' && typeof callback=="function") return 
callback(response);
  }
});

Note the following important lines in the Node.js code snippet, shown in Figure 1-24: 

� Line 3: The URL that supplies the image as input for processing.

� Line 11: Set your api_key of the Visual Recognition service created in 1.2, “Creating a 
Watson Visual Recognition service instance and getting the API key” on page 2.

� Line 15: Call the classify method passing the image url and api_key.

Figure 1-24   Classify object: JSON snippet highlights
Chapter 1. Basics of Watson Visual Recognition service 23



Figure 1-25 shows the response, in JSON format. It describes the image content and 
includes a score for each class. 

Figure 1-25   Results 

1.5.3  Detecting faces

In this section, you use the Watson Node.js SDK to detect faces in an image. The API also 
provides data about the detected faces, such as estimated age, gender, and names of 
celebrities.

The Node.js sample code in Example 1-4 on page 25 performs the following tasks:

1. Gets an image from a website URL. 

2. Sets the API key of the Visual Recognition service. 

3. Sends the image to the detectFaces method of the Visual Recognition service for 
processing.

4. Returns the results in JSON format. 
24 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Example 1-4   Face detection: Node.js sample code 

var parameters = {
"apikey" : "",
"url" : 

"https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44_bara
ck_obama%5B1%5D.jpg" 
};

var watson = require('watson-developer-cloud');
var fs = require('fs');
var http = require('http');

var visual_recognition = new watson.VisualRecognitionV3({
  api_key: parameters.api_key,  //SET YOUR API KEY
  version_date: '2016-05-20'
});

visual_recognition. detectFaces (parameters, (err, response) => {
  if (err) {
    console.log('error:', err);
    if (typeof callback !== 'undefined' && typeof callback=="function") return 
callback(err);
  }
  else {
    console.log(JSON.stringify(response, null, 2));
    if (typeof callback !== 'undefined' && typeof callback=="function") return 
callback(response);
  }
});

Note the following important lines in the Node.js code snippet, shown in Figure 1-26:

� Line 3: The URL that supplies the image as input for processing.

� Line 11: Set your api_key of Visual Recognition service created in 1.2, “Creating a Watson 
Visual Recognition service instance and getting the API key” on page 2.

� Line 15: Call the detectFaces method passing the image url and api_key.

Figure 1-26   Face detection: JSON snippet highlights
Chapter 1. Basics of Watson Visual Recognition service 25



Figure 1-27 shows the results in JSON format. The face of a celebrity, former President Barak 
Obama, was detected and data about the face is provided (gender, estimated age).

Figure 1-27   Expected output
26 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



1.6  References

See the following resources:

� Overview of the IBM Watson Visual Recognition service:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html

� Watson Developer Cloud: Visual Recognition:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/ 

� Classify an image:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_a
n_image

� Detect faces:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_fac
es

� Visual Recognition getting started tutorials:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-starte
d.html

� Watson Developer Cloud Node.js SDK:

https://www.npmjs.com/package/watson-developer-cloud

� Node.js usage examples of the Watson APIs:

https://github.com/watson-developer-cloud/node-sdk
Chapter 1. Basics of Watson Visual Recognition service 27

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html
https://www.npmjs.com/package/watson-developer-cloud
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
https://github.com/watson-developer-cloud/node-sdk


28 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Chapter 2. Classify images with a custom 
classifier

The examples in Chapter 1, “Basics of Watson Visual Recognition service” on page 1, use 
the pre-trained classifier to classify images.

You can also train and create a custom classifier. With a custom classifier, you can train the 
Visual Recognition service to classify images to suit your business needs. By creating a 
custom classifier, you can use the Visual Recognition service to recognize images that are 
not available with pre-trained classification.

This chapter shows you how to create and train a custom classifier and use it to classify a 
new image.

The following topics are covered in this chapter:

� Visual Recognition custom classifier overview
� Train, create, and use a custom classifier
� References

2

© Copyright IBM Corp. 2017. All rights reserved. 29



2.1  Visual Recognition custom classifier overview

The Watson Visual Recognition service can learn from example images that you upload to 
create a new classifier. Each example file is trained against the other files uploaded when you 
create the classifier and positive examples are stored as classes. These classes are grouped 
to define a single classifier, but return their own scores.

Figure 2-1 shows an overview of the process to use the Watson Visual Recognition service 
with a custom classifier. 

Figure 2-1   Visual Recognition process with custom classifier

A new custom classifier can be trained by several compressed (.zip) files, including files 
containing positive or negative examples of images (.jpg or .png). You must supply at least 
two compressed files, either two positive example files or one positive and one negative 
example file.

Compressed files containing positive examples are used to create classes that define what 
the new classifier is. The prefix that you specify for each positive example parameter is used 
as the class name within the new classifier. The _positive_examples suffix is required. There 
is no limit on the number of positive example files that you can upload in a single call.

The compressed file containing negative examples is not used to create a class within the 
created classifier, but does define what the new classifier is not. Negative example files 
should contain images that do not depict the subject of any of the positive examples. You can 
specify only one negative example file in a single call. For more information, see these web 
pages:

� Overview of the IBM Watson Visual Recognition service 

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html

� Guidelines for training classifiers

https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html
30 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html


2.2  Train, create, and use a custom classifier

By the end of this chapter, you should be able to accomplish these objectives:

� Create a custom classifier and upload positive and negative image files examples.

� Get the custom classifier ID.

� Classify a new image using a newly trained custom classifier.

� Get results in JSON format containing class, score, and type hierarchy.

To accomplish these objectives, you will do the following steps:

� Prepare training data.

� Create a Watson Visual Recognition service instance and getting the API key as 
described in 1.2, “Creating a Watson Visual Recognition service instance and getting the 
API key” on page 2.

� Create and train the classifier.

� Classify an image with a custom classifier.

2.2.1  Prepare training data 

Gather image files to use as positive and negative example training data. Download the 
following ZIP files:

� beagle.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/beagle.zip

� husky.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/husky.zip

� golden-retriever.zip (positive example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/golden-retriever.zip

� cats.zip (negative example)

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognit
ion/cats.zip
Chapter 2. Classify images with a custom classifier 31

https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/beagle.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/husky.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/golden-retriever.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip
https://watson-developer-cloud.github.io/doc-tutorial-downloads/visual-recognition/cats.zip


2.2.2  Create and train the classifier

The sample code in Example 2-1 specifies the location of the training images and creates the 
custom classifier. Positive example file names require the suffix _positive_examples; the 
prefix (beagle, golden_retriever, and husky) is returned as the name of the class. Notice that 
a negative example file is also provided.

Example 2-1   Specify location of training images and create classifier

var watson = require('watson-developer-cloud');
var fs = require('fs');

var visual_recognition = watson.visual_recognition({
  api_key: '{api_key}',
  version: 'v3',
  version_date: '2016-05-19'
});

var params = {
name: 'dog',
beagle_positive_examples: fs.createReadStream('./ public/resource/beagle.zip'),

    husky_positive_examples: fs.createReadStream('./ public/resource/husky.zip'),
    golden_retriever_positive_examples: fs.createReadStream('./ 
public/resource/golden-retriever.zip'),

negative_examples: fs.createReadStream('./ public/resource/cats.zip')
};

visual_recognition.createClassifier(params,
function(err, response) {

    if (err)
      console.log(err);
     else
   console.log(JSON.stringify(response, null, 2));
});

The sample output in Figure 2-2 shows that the classifier_id is returned.

Figure 2-2   Returned classifier_id 
32 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



2.2.3  Classify an image with a custom classifier

The code snippet shown in Example 2-2 is used to classify a new image with the custom 
classifier. Compare this example to Example 1-3 on page 22. The difference is that in 
Example 2-2 you specify the classifier_id of the the custom classifier created in 2.2.2, 
“Create and train the classifier” on page 32. 

1. Download the following image file to use as the input image to classify:

https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads
/master/visual-recognition/dogs.jpg

2. Enter the code from Example 2-2 to classify the image. Make these changes:

– Replace api_key with the key that you obtained when creating the Visual Recognition 
service, as described in 1.2, “Creating a Watson Visual Recognition service instance 
and getting the API key” on page 2.

– Replace custom_classifer_id with the ID that you obtained when you created the 
custom classifier in 2.2.2, “Create and train the classifier” on page 32.

Example 2-2   Code snippet to classify a new image with a custom classifier

var watson = require('watson-developer-cloud');
var fs = require('fs');

var visual_recognition = watson.visual_recognition({
  api_key: '<api_key>',
  version: 'v3',
  version_date: '2016-05-20'
});

var params = {
  images_file: fs.createReadStream('./public/resource/dogs.jpg'),
  classifier_ids: ["<custom_classifer_id", "default"]
};

visual_recognition.classify(params, function(err, res) {
  if (err)
    console.log(err);
  else
    console.log(JSON.stringify(res, null, 2));
});
Chapter 2. Classify images with a custom classifier 33

https://raw.githubusercontent.com/watson-developer-cloud/doc-tutorial-downloads/master/visual-recognition/dogs.jpg


The sample output is shown in Figure 2-3.

Figure 2-3   Sample output

2.3  References

See the following resources:

� Overview of the IBM Watson Visual Recognition service:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html

� Guidelines for training classifiers:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.ht
ml
34 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/index.html
https://www.ibm.com/watson/developercloud/doc/visual-recognition/customizing.html


Chapter 3. Image Content Description

This chapter focuses on the development of Java programs using the Watson Visual 
Recognition service, which uses deep learning algorithms to analyze images, to generate 
image content description.

In this chapter, you review the source code for a sample application, Image Content 
Description, which is a program written in Java and uses the Watson Visual Recognition 
services. You can also run the program in Eclipse on Linux or Windows. The majority of steps 
are similar for both systems.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Implementation
� Deploy a Java application to Bluemix
� References

3

© Copyright IBM Corp. 2017. All rights reserved. 35



3.1  Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1  Objectives

By the end of this chapter, you should be able to write a Java program that uses the Java 
classes that are provided with the Watson Visual Recognition service: 

� To access the service:

– VisualRecognition 

� To classify and describe objects in an image:

– ClassifyImagesOptions 
– VisualClassification 

� To recognize celebrity faces in images, analyze them, and get data about the person:

– DetectedFaces
– VisualRecognitionOptions

3.1.2  Prerequisites

You must have the following accounts, resources, knowledge, and experiences:

� An IBM Bluemix account (register for a new account or log in to Bluemix if you already 
have an account) 

� Eclipse IDE Luna 

� Java 8

� The Cloud Foundry command-line interface (CLI)

3.1.3  Expected results

By following the steps in this chapter, you should be able to submit images to the application 
and obtain results after the image is analyzed by the Watson Visual Recognition services:

1. Input the image shown in Figure 3-1 on page 37.

The program results are shown in Figure 3-2 on page 37 and Figure 3-3 on page 38.
36 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.eclipse.org/
https://console.ng.bluemix.net/
http://www.eclipse.org/luna


Figure 3-1   The input image to be described

2. Maximize the console window to show the details (Figure 3-2).

Figure 3-2   Expected results for input image (part 1 of 2)
Chapter 3. Image Content Description 37



3. To display JSON files with more details, press any key (Figure 3-3).

Figure 3-3   Expected results for input image (part 2 of 2) 

Another function is the capability to recognize celebrity faces demonstrated by using an 
image of former President Obama (Figure 3-4).

Figure 3-4   Photograph to analyze
38 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



The result of analyzing the photograph with the Watson Visual Recognition service is shown 
in Figure 3-5.

Figure 3-5   Expected result of photograph

3.1.4  Creating, deploying, and running applications that use Bluemix services

To create, deploy, and run an application that uses Bluemix services, you have the following 
options:

� Create, deploy, and run the application in the Bluemix cloud environment.

� Create and run the application locally by using Bluemix services on the cloud. For 
example, create a Java application with Eclipse or download the code from GitHub, add 
the API key and URL endpoint of a Bluemix service instance and run the application as a 
Java application, after deploying it to Bluemix. This chapter uses this scenario.

� Use the hybrid scenario (Bluemix cloud and local). In this scenario, create the application 
on Bluemix (cloud) and import it to the local system, modify it, and then deploy to Bluemix. 
Chapter 3. Image Content Description 39



3.2  Architecture

The flow chart shown in Figure 3-6 summarizes the main activities of the Image Content 
Description sample program.

Figure 3-6   Flow diagram of the Image Content Description program

The program reads an input image and displays text that describes the image content. 
Figure 3-6 shows the following flow:

1. Input an image.

2. This step has two activities on the image:

a. Call the Watson service to classify objects in an image.
b. Call the Watson service to detect faces in an image. 

3. This step has two activities:

a. VisualClassification contains the JSON representation of the classified objects.
b. DetectedFaces contains the JSON representation of the faces detected in the image.

4. Generate main keywords, to produce a summary of the image such as number of persons, 
number of objects, and so on.

5. Process the two obtained JSON objects (DetectedFaces and VisualClassification) to 
display meaningful text that describes the image content.

3.3  Implementation

Implementing this use case involves the following steps:

1. Creating a Visual Recognition service instance.
2. Downloading the project from Git.
3. Importing the project into Eclipse.
4. Importing Watson Java SDK.
5. Exploring the sample code provided with the use case.
6. Running the application.

Service.classify(ClassifyImagesOptions)

VisualClassification
JSON object

DetectedFaces
JSON object

Service.detectFaces(VisualRecognitionOptions)

Image Generate main 
keywords

Generate 
meaningful text

Processing

2.a

1

2.b

3.a

3.b

4

5

40 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3.3.1  Creating a Visual Recognition service instance

Before you can use the Watson services, you must create an instance of the service in 
Bluemix. For this use case, create a Visual Recognition service instance as described in 1.2, 
“Creating a Watson Visual Recognition service instance and getting the API key” on page 2. 

After creating the service instance, view the credentials (Figure 3-7). Copy and save the 
following values for later use:

� url, which is the API endpoint
� api-key, which is the API key

Figure 3-7   Credentials of Visual Recognition service instance 

3.3.2  Downloading the project from Git

For this use case, a Git repository is provided, which includes the code to implement the 
ImageContentDescription application with comments to help you more easily understand. 
Complete these steps:

1. Download the repository from the GitHub location:

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription

2. Download the ImageContentDescription_full.zip file.

3. Extract the file, which then creates a Java Eclipse Project folder.
Chapter 3. Image Content Description 41

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription


3.3.3  Importing the project into Eclipse

In this section, you import the ImageContentDescription project into the Eclipse workspace 
as an existing project.

After you extract the project, complete these steps:

1. Launch the Eclipse IDE. When prompted for a workspace, keep the existing workspace or 
change the workspace if you want, and click OK.

2. In the Eclipse environment, select File → Import (Figure 3-8).

Figure 3-8   Import project menu
42 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3. Select General → Existing Projects into Workspace (Figure 3-9) and click Next. The 
import process has three pages.

Figure 3-9   Type imported project dialog
Chapter 3. Image Content Description 43



4. Select a root directory. Click Browse to navigate to your project’s directory (Figure 3-10). 

Figure 3-10   Select root directory 
44 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



5. Find and select the ImageContentDescription folder (Figure 3-11), and then click OK.

Figure 3-11   Navigation window to import project
Chapter 3. Image Content Description 45



6. Under Projects, select the ImageContentDescription check box, deselect any other 
check boxes, and click Finish (Figure 3-12).

Figure 3-12   Last import project dialog
46 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



7. Verify that the ImageContentDescription project folder is imported to Eclipse Package 
Explorer (Figure 3-13) and explore its structure (for more details, see the README.txt file).

Figure 3-13   Eclipse Package Explorer dialog

3.3.4  Importing Watson Java SDK 

You might notice some errors when you import the source code. Correcting those errors 
requires adding an extra dependency and libraries.

Fix Java problems
Figure 3-14 shows Java problems that you might see.

Figure 3-14   Java problems
Chapter 3. Image Content Description 47



To correct the problems, complete these steps:

1. Right-click the ImageContentDescription project, and select Build Path → Configure 
Build Path (Figure 3-15).

Figure 3-15   Configure Build Path

2. Select the Libraries tab, click the library showing the error, and click Edit (Figure 3-16).

Figure 3-16   Select the library showing an error to edit
48 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3. Do one of the following steps:

– If no default JRE was previously defined: Skip to step 4 on page 50.

– If a default JRE was previously defined: Select Workspace default JRE, and click 
Finish (Figure 3-17). You can now skip to “Add Watson Java SDK with dependencies 
to your project” on page 54.

Figure 3-17   Select Workspace default JRE, if one was previously defined
Chapter 3. Image Content Description 49



4. This step through step 9 on page 54 are needed only if no default JRE was installed 
previously. Click Installed JREs (Figure 3-18).

Figure 3-18   Installed JREs

5. Click Add (Figure 3-19).

Figure 3-19   Add a JRE definition
50 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



6. Select Standard VM and click Next (Figure 3-20).

Figure 3-20   Standard VM installed JRE type
Chapter 3. Image Content Description 51



7. Click Directory, select a JDK installation path, and click OK (Figure 3-21).

Figure 3-21   Select root directory of JRE installation
52 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



8. Your panel should look similar to the one shown in Figure 3-22. Click Finish.

Figure 3-22   Sample JRE system libraries
Chapter 3. Image Content Description 53



9. Select Workspace default JRE, and click Finish (Figure 3-23).

Figure 3-23   Select Workspace default JRE

Add Watson Java SDK with dependencies to your project
Complete the following steps:

1. Download the Watson Java SDK dependencies JAR (with dependencies) files:

https://github.com/watson-developer-cloud/java-sdk/releases

2. Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar 
(Figure 3-24).

Figure 3-24   Download Watson Java SDK
54 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/watson-developer-cloud/java-sdk/releases


3. After the JAR file is downloaded, open Eclipse, right-click the project name, and select 
Build Path → Configure Build Path (Figure 3-25).

Figure 3-25   Configure Build Path 
Chapter 3. Image Content Description 55



4. Open the Libraries tab, and then click Add External JARs (Figure 3-26).

Figure 3-26   Java Built Path dialog
56 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



5. Navigate to the JAR file (java-sdk-3.5.2-jar-with-dependencies.jar), select it, and then 
click OK (Figure 3-27).

Figure 3-27   Select the Java SDK JAR file 

Note: The JAR file name (java-sdk-x.x.x-jar-with-dependencies.jar) will vary 
depending on the version available when you download it.
Chapter 3. Image Content Description 57



6. Check that the JAR file is added to your project and click OK (Figure 3-28).

Figure 3-28   Window to check the addition of Java SDK

7. Now that you added the required library, verify that no Java errors exist in the imported 
project.
58 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3.3.5  Exploring the sample code provided with the use case

Now that you imported the project and resolved the import errors, you can use the Java editor 
to explore and understand the code.

Figure 3-29 shows an overview of the ImageContentDescription program.

Figure 3-29   ImageContentDescription sample program snippet overview

As you know, the starting point of execution of a stand-alone Java program is the main method 
(Figure 3-30). 

Figure 3-30   The main method source code snippet
Chapter 3. Image Content Description 59



The main method shows the instantiation of the ImageContentDescription class, which is the 
only class in this project (Figure 3-31). This class declares three attributes:

� An image variable: Holds the image (file object) that will be analyzed.
� A faces variable: Holds the Watson DetectedFaces object.
� A classification variable: Holds the Watson VisualCalssification object. 

Figure 3-31   Class ImageContentDescription

The generateJsonDescription method
After the content variable is initialized with the instantiated ImageContentDescription object, 
the generateJsonDescription(imagepath) method is called (Figure 3-30 on page 59).

The generateJsonDescription(imagepath) method accepts the image path as an argument 
and it does the following steps:

1. Instantiates a Watson VisualRecognition service with the credentials you obtained in 
3.3.1, “Creating a Visual Recognition service instance” on page 41.

2. Creates the VisualClassification object.

3. Creates the DetectedFaces object.

The source code for generateJsonDescription is shown in Figure 3-32. The next sections 
describe this code. The highlighted code (lines 90 and 91) are described later.

Figure 3-32   The generateJsonDescription source code
60 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Instantiate the VisualRecognition service 
As Figure 3-32 on page 60 shows, the first instruction uses VisualRecognition to instantiate 
a new Visual Recognition V3 service with an API key:

(VisualRecognition service = New VisualRecognition(String versionDate)) 

It also sets the API key (setApiKey) and the endpoint (setEndPoint) to the service created.

Now, you provide the values of EndPoint and APIkey with the information you copied 
previously; paste them in the selected places, as shown in lines 90 and 91 of the source code 
in Figure 3-32 on page 60.

Create the VisualClassification object
Consider this information about image classification code (instructions 2.1 and 3.1 in 
Figure 3-32 on page 60).

� To classify an object, call the classify() method 
(service.classify(ClassifyImagesOptions)) that accepts options 
(ClassifyImagesOptions) as arguments and returns a VisualClassification object. The 
classify() method of the VisualRecognition class analyzes the image and detects 
details of the objects within the image.

� To create the new options for the new image, you instantiate a builder 
(ClassifyImagesOptions.Builder()), call the images() method to set the new image you 
want to classify; this method accepts an image file as a parameter and returns the builder.

� By the end, you call the build () method which returns the profile options 
(ClassifyImagesOptions).

� The execute() method, is used to execute the service which returns the 
VisualClasification object.

Create the DetectedFaces object
Consider this information about face detection code (instructions 2.2 and 3.2 in Figure 3-32 
on page 60):

� To detect faces, call the detectFaces() method 
(service.detectFaces(VisualRecognitionOptions)) that accepts options 
(VisualRecognitionOptions) as argument and returns a DetectedFaces object. The 
detectFaces() method of the VisualRecognition class analyzes faces in images and gets 
data about them.

� To create the new options for the new image, instantiate a builder 
(VisualRecognitionOptions.Builder()), call the images() method to set the new image 
you want to analyze; this method accepts an image file as a parameter, and returns the 
builder.

� By the end, you call the build () method, which returns the profile options 
(VisualRecognitionOptions).

� The execute() method is used to execute the service which returns the DetectedFaces 
object.
Chapter 3. Image Content Description 61



The imageDescription method
The imageDescription() method processes the classification and faces attributes that were 
generated as described in “The generateJsonDescription method” on page 60. The 
imageDescription() method returns a string describing image content. Figure 3-33 shows 
the source code of the imageDescription() method.

Figure 3-33   The imageDescription method source code

This method converts classification and faces attributes to JSON objects using the JSON 
Parser, processes its contents and does the following operations:

� Calls objectContentDescription() if one or more objects are in the image. 
� Calls facesContentDescription() if one or more faces are in the image.
62 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



The objectContentDescription method
The objectContentDescription() method accepts detected objects in JSON format and the 
number of objects to process as arguments and returns a string describing the objects from 
the image. Figure 3-34 shows more details of this method source code.

Figure 3-34   The objectContentDescription source code
Chapter 3. Image Content Description 63



The facesContentDescription method
The facesContentDescription() method (Figure 3-35) accepts detected faces as a JSON 
object and the number of faces to process as arguments and returns a string that describes 
the faces.

Figure 3-35   The facesContentDescription source code

After exploring the source code, you can run the application (3.3.6, “Running the application” 
on page 65).
64 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3.3.6  Running the application

To display a description of your image, first set the path of your image, as shown in 
Figure 3-36. Then, test the program:

1. Copy the path of your image or use the paths of images (loaded with project).

Figure 3-36   Specify the image path
Chapter 3. Image Content Description 65



2. Run the project. Right-clicking the project and select Run As → Run Configurations 
(Figure 3-37).

Figure 3-37   Run Configurations
66 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3. Select Java Application and click the New button to create a configuration (Figure 3-38).

Figure 3-38   The New button
Chapter 3. Image Content Description 67



4. On the Main page (Figure 3-39), click Browse to find and select the 
ImageContentDescription project, click Search to find and select the main class, and 
then click Run.

Figure 3-39   Select the project and main class

The input image is shown in Figure 3-40; the result is shown in Figure 3-41 on page 69 and 
Figure 3-42 on page 70.

Figure 3-40   Input image for first test (recognize that a person is in the image)
68 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Figure 3-41 shows the result.

Figure 3-41   Results 
Chapter 3. Image Content Description 69



Maximize the console window to show all results (Figure 3-42).

Figure 3-42   JSON object results
70 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Another test of the program uses the image of former President Obama to show how the 
program can recognize a celebrity face. Change the path to the image path (Figure 3-43).

Figure 3-43   Another image test
Chapter 3. Image Content Description 71



The input image is shown in Figure 3-44; the result is shown in Figure 3-45 and Figure 3-46 
on page 73.

Figure 3-44   Input image for second test (recognize that the image is of a celebrity person)

Figure 3-45   Image description for Barack Obama image
72 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Maximize the console window to show all results (Figure 3-46).

Figure 3-46   Image description 
Chapter 3. Image Content Description 73



3.4  Deploy a Java application to Bluemix

To deploy the project to Bluemix, first create a runnable JAR file and then use the Cloud 
Foundry command-line interface (CLI) to deploy the application.

3.4.1  Create a runnable JAR file to deploy the application to Bluemix

Complete these steps to create a runnable JAR file:

1. Select File → Export. In the Export window, make sure that you export it as a Runnable 
JAR file, not as a standard JAR file, and then click Next (Figure 3-47).

Figure 3-47   Select type of export file 
74 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



2. In the Launch configuration field, select ImageContentDescription. In the Export 
destination field, click Browse (Figure 3-48).

Figure 3-48   ImageContentDescription runnable JAR specification
Chapter 3. Image Content Description 75



3. Browse to the folder where you will export your launch configuration, enter the name of 
your JAR file, and click OK (Figure 3-49).

Figure 3-49   Specify name of JAR file
76 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4. You are returned to the previous window (Figure 3-50). Select Package required libraries 
into generated JAR, and click Finish. This creates the runnable JAR file.

Figure 3-50   Runnable JAR File Export 
Chapter 3. Image Content Description 77



3.4.2  Deploy the Java application to Bluemix

This section explains how to make a stand-alone Java program, with a main() method, run in 
Bluemix. 

For more information, see Move your Java application into a hybrid cloud using Bluemix, 
which is in IBM developerWorks.

Complete these steps:

1. Download and install the Cloud Foundry command-line interface.

2. Open a Command Prompt session and run the cf login command (Figure 3-51).

Figure 3-51   Authentication to Cloud Foundry

3. Enter your IBMid (the email address that you use to sign in to Bluemix) and your password 
(Figure 3-52).

Figure 3-52   Authentication result
78 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
https://console.ng.bluemix.net/docs/starters/install_cli.html


4. Use one of the following commands to deploy your Java stand-alone application to 
Bluemix (Figure 3-53). The cf command is in this format:

– cf push <ANY_APP_NAME> -p <JAR_NAME>.jar -b java_buildpack -no-route 

For example:

cf push ImageContenteDescription-ABC -p ImageContentDescription.jar -b 
java_buildpack -no-route

– cf push ImageContentDescription-ABC -p ImageContentDescription.jar -b 
liberty-for-java -no-route 

Figure 3-53   Commands to deploy your Java stand-alone application
Chapter 3. Image Content Description 79



The result is shown in Figure 3-54.

Figure 3-54   Deployment process result

5. If the deployment is successful, switch to your Bluemix space to check the deployment of 
your application to Bluemix. Click the Logs tab to see the execution of your application.
80 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



3.5  References

See the following resources:

� OpenCV 3.0.0-dev documentation (Using OpenCV Java with Eclipse):

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.html

� Watson Developer Cloud: Java SDK Downloads:

https://github.com/watson-developer-cloud/java-sdk/releases

� Move your Java application into a hybrid cloud using Bluemix, Part 3 web page in IBM 
developerWorks: 

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

� Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/

� For source code comments, explore documentation with Javadoc in the following file 
(download the javadoc.rar file and extract the contents):

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/m
aster/javadoc.rar 
Chapter 3. Image Content Description 81

https://github.com/watson-developer-cloud/java-sdk/releases
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/master/javadoc.rar
https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription/blob/master/javadoc.rar


82 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Chapter 4. Intelligent Video Content 
Analytics

This chapter focuses on the development of Java programs using the Watson Visual 
Recognition service to analyze video files and generate video content description.

The Intelligent Video Content Analytics sample application in this chapter performs object 
classification and face detection on videos instead of images.

In addition, VideoCapture and some other classes of the OpenCV library permit reading a 
video file and getting frames from it. See the OpenCV website.

This chapter focuses on the development of Java programs using the Watson Visual 
Recognition service and OpenCV classes to analyze video content.

The program can be run in Eclipse on Linux or Windows. 

The following topics are covered in this chapter:

� Getting started
� Architecture
� Implementation
� Changing your application to detect faces
� References

4

© Copyright IBM Corp. 2017. All rights reserved. 83

http://www.opencv.org


4.1  Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1  Objectives

After completing this chapter, you should be able to accomplish these objectives:

� Investigate the set of built-in classes of Watson Visual Recognition and OpenCV to 
perform object classification and face detection on video files instead of a photographic 
image.

� Use Watson Visual Recognition service and OpenCV for your own projects using video 
captured from any source (file, camera, or others).

4.1.2  Prerequisites

You must have the following accounts, resources, knowledge, and experiences:

� An IBM Bluemix account (register for a new account or log in to Bluemix if you already 
have an account) 

� Eclipse IDE Luna 

� Java 8

� OpenCV 3.x.x for Java, installed

4.1.3  Expected results

The video file you analyze in this chapter contains various scenes that IBM created. It 
summarizes a diversity of objects and people in different but real daily situations and will 
serve as a real test of the program. 

The following images illustrate a subset of sample output results that are displayed when 
running the sample program:

� Figure 4-1 on page 85: Result obtained for a control center scene in video input
� Figure 4-2 on page 85: Result obtained for road scene in input video
� Figure 4-3 on page 86: Result obtained for surveillance system scene in input video
� Figure 4-4 on page 86: Result obtained for person in scene in input video
84 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://opencv-java-tutorials.readthedocs.io/en/latest/01-installing-opencv-for-java.html
https://console.ng.bluemix.net/
http://www.eclipse.org/
http://www.eclipse.org/luna


Figure 4-1   Result obtained for a control center scene in video input

Figure 4-2   Result obtained for road scene in input video
Chapter 4. Intelligent Video Content Analytics 85



Figure 4-3   Result obtained for surveillance system scene in input video

Figure 4-4   Result obtained for person in scene in input video
86 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4.2  Architecture

Figure 4-5 summarizes the main steps of the program:

1. First, the video is loaded using VideoCapture (an OpenCV class). 

2. The video is divided into individual frames that are processed sequentially.

3. Each frame is passed to the Watson Visual Recognition service, which detects faces and 
classifies objects contained in the frame.

4. The results are sent to the display method which displays the video frame, the detected 
objects (or faces), and additional descriptive information.

Figure 4-5   Flow chart of the Intelligent Video Content Analytics program

Before starting, you will need an input video file and credentials of a Watson Visual 
Recognition service instance. The program reads the input video file and displays a JSON 
object describing its content:

1. VideoCapture (an OpenCV class) captures video from the input video file.

Steps 2, 3, and 4 are repeated until the video ends.

2. The video is read frame by frame. 

3. The current frame is used to create an options object (either the ClassifyImagesOptions 
class or the VisualRecognitionOptions class).

This options object is used as an argument when accessing the Watson Visual 
Recognition service (either the classify or detectFaces method on the 
VisualRecognition class) depending if you want to classify objects or detect faces. 

4. The result of both methods is a JSON object that describes the frame content. An internal 
display method is called to display the current frame and the description. 

3. Service.detectFaces(VisualRecognitionOptions)

3. Service.classify(ClassifyImagesOptions)1. VideoCapture (video)  2. VideoCapture.read(frame) 4. display(video, JSON object)

Frame (Mat)

VisualClassification
JSON object 

DetectedFaces
JSON object

Frames OrFile video
Chapter 4. Intelligent Video Content Analytics 87



4.3  Implementation

Implementing this use case involves the following steps:

� Creating a Visual Recognition service instance.
� Downloading the project from Git.
� Importing the project to Eclipse.
� Importing Watson Java SDK and additional OpenCV libraries.
� Exploring and completing the sample code provided with the use case.
� Running the application.

4.3.1  Creating a Visual Recognition service instance

Before you can use the Watson services, you must create an instance of the service in 
Bluemix. For this use case, create a Visual Recognition service instance as described in 1.2, 
“Creating a Watson Visual Recognition service instance and getting the API key” on page 2. 

After creating the service instance, view the credentials (Figure 4-6). Copy and save the 
following values for later use:

� url, which is the API endpoint
� api-key, which is the API key

Figure 4-6   Credentials of Visual Recognition service instance 

4.3.2  Downloading the project from Git

A Git repository is provided for this use case which includes the code to implement the 
IntelligentVideoContentAnalytics application with comments to make it easier to understand.

1. Download the repository from the following GitHub location:

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalyti
cs

2. Download IntelligentVideoContentAnalytics_student.zip file. 

3. Extract the file, which then creates a Java Eclipse Project folder.
88 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalytics


4.3.3  Importing the project to Eclipse

In this section you will import the IntelligentContentVideoAnalytics project into the Eclipse 
workspace as an existing project.

After you extract the project, complete these steps:

1. Launch the Eclipse IDE. When prompted for a workspace, keep the existing workspace or 
change the workspace as desired, and click OK.

2. In the Eclipse environment, select File → Import (Figure 4-7).

Figure 4-7   Import project menu
Chapter 4. Intelligent Video Content Analytics 89



3. Select General → Existing Projects into Workspace (Figure 4-8) and click Next. The 
import process has three pages.

Figure 4-8   Type imported project dialog
90 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4. Select a root directory. Click Browse to navigate to your project’s directory (Figure 4-9).

Figure 4-9   Select root directory
Chapter 4. Intelligent Video Content Analytics 91



5. Find the IntelligentVideoContentAnalytics folder (Figure 4-10), and then click OK. 

Figure 4-10   Navigation window to import project
92 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



6. Under Projects, select the IntelligentVideoContentAnalytics check box and click Finish 
(Figure 4-11).

Figure 4-11   Last import project dialog
Chapter 4. Intelligent Video Content Analytics 93



7. Verify that the IntelligentVideoContentAnalytics project folder is imported to Eclipse 
Package Explorer (Figure 4-12) and explore its structure (for more details, see the 
README.txt file).

Figure 4-12   Eclipse Package Explorer dialog

4.3.4  Importing Watson Java SDK and additional OpenCV libraries

You might notice some errors when you import the source code. Correcting those errors 
requires adding an extra dependency and libraries.

Fix Java problems
Figure 4-13 shows Java problems that you might see.

Figure 4-13   Java problems
94 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



To correct the problem, complete these steps:

1. Right-click the IntelligentVideoContentAnalytics project, and select Build Path → 
Configure Build Path (Figure 4-14).

Figure 4-14   Configure Build Path

2. Select the Libraries tab, click the library that shows errors, and click Edit (Figure 4-15).

Figure 4-15   Select the library in error
Chapter 4. Intelligent Video Content Analytics 95



3. Do one of the following steps:

– If no default JRE was previously defined: Skip to step 4 on page 97.

– If a default JRE was previously defined: Select Workspace default JRE, and click 
Finish (Figure 4-16). You can now skip to “Add Watson Java SDK with dependencies 
to your project” on page 101.

Figure 4-16   Select Workspace default JRE, if one was previously defined
96 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4. This step through step 9 on page 101 are needed only if no default JRE was installed 
previously. Click Installed JREs (Figure 4-17).

Figure 4-17   Installed JREs

5. Click Add (Figure 4-18).

Figure 4-18   Add a JRE definition
Chapter 4. Intelligent Video Content Analytics 97



6. Select Standard VM and click Next (Figure 4-19).

Figure 4-19   Standard VM installed JRE type
98 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



7. Click Directory, select a JDK installation path, and click OK (Figure 4-20).

Figure 4-20   Select root directory of JRE installation
Chapter 4. Intelligent Video Content Analytics 99



8. Your panel should look similar to the one shown in Figure 4-21. Click Finish.

Figure 4-21   Sample valid Java library
100 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



9. Now you can select Workspace default JRE, and click Finish (Figure 4-22).

Figure 4-22   Select Workspace default JRE

Add Watson Java SDK with dependencies to your project
Complete the following steps:

1. Download the Watson Java SDK dependencies JAR (with dependencies) files:

https://github.com/watson-developer-cloud/java-sdk/releases

2. Scroll to the Downloads section and click java-sdk-3.7.0-jar-with-dependencies.jar 
(Figure 4-23).

Figure 4-23   Download Watson Java SDK
Chapter 4. Intelligent Video Content Analytics 101

https://github.com/watson-developer-cloud/java-sdk/releases


3. After the JAR file is downloaded, open Eclipse, right-click the project name, and then 
select Build Path → Configure Build Path (Figure 4-24).

Figure 4-24   Configure Build Path
102 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4. Open the Libraries tab, and then click Add External JARs (Figure 4-25).

Figure 4-25   Configure Java Build Path
Chapter 4. Intelligent Video Content Analytics 103



5. Navigate to the JAR file (java-sdk-3.5.2-jar-with-dependencies.jar), select it, and then 
click OK (Figure 4-26).

Figure 4-26   Select the Java SDK JAR file

Note: The JAR file name (java-sdk-x.x.x-jar-with-dependencies.jar) will vary 
depending on the version available when you download it.
104 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



6. Check that the JAR file is added to your project and click OK (Figure 4-27).

Figure 4-27   Window to check the addition of Java SDK

7. After the Watson Java SDK is imported to the project, verify that the Java errors 
concerning Visual Recognition are resolved (as shown in lines 23 and 24 of Figure 4-28).

Figure 4-28   Import of Visual Recognition classes 
Chapter 4. Intelligent Video Content Analytics 105



Create OpenCV3.x.x Java as a user library to Eclipse
To resolve import errors of OpenCV, define OpenCV as a user library in Eclipse. Complete the 
following steps:

1. After the OpenCV3.x.x Java library is installed, return to Eclipse and select Window → 
Preferences (Figure 4-29).

Figure 4-29   Select Preferences

2. Expand Java → Build Path → User Libraries and click New (Figure 4-30 on page 107).

Note: These steps are from the Using OpenCV Java with Eclipse web page.
106 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html


Figure 4-30   Add new user library 

3. Provide a name for your new user library, for example opencv3.x.x (Figure 4-31), and then 
click OK.

Figure 4-31   Fill user library name dialog

4. Select your new user library (opencv3.x.x) and click Add External JARs. A dialog opens 
where you can navigate folders (Figure 4-32 on page 108) to find the opencv-3xx.jar file.

Select the opencv-3xx.jar file that is in the installation folder of OpenCV library.The 
location of the JAR file depends on the operating system you use:

– For Linux:  /opencv3.x.x/build/bin/
– For Windows: C:\OpenCV-3.x.x\build\java\x64 (or x86 if you have a 32-bit OS)

After you select the opencv-3xx.jar, click OK. 
Chapter 4. Intelligent Video Content Analytics 107



Figure 4-32   Navigate folders dialog

5. Select Native library location and click Edit. The Native Library Folder Configuration 
dialog opens (Figure 4-33).

Figure 4-33   Native Library Folder Configuration dialog
108 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



6. Click External Folder and browse to select the folder of the Native Library Location: 

– For Linux:  /opencv3.x.x/build/lib

– For Windows:  C:\OpenCV-3.x.x\build\java\x64 (if you have a 32-bit OS, select the 
x86 folder instead x64).

After the OpenCV Native Library Location is determined, click OK on the Native Library 
Folder Configuration dialog and then click OK on the User Libraries page (Figure 4-34).

Figure 4-34   Native library folder configuration dialog

7. After you add the OpenCV library, right-click the project name and select Build Path → 
Configure Build Path (Figure 4-35 on page 110).
Chapter 4. Intelligent Video Content Analytics 109



Figure 4-35   Configure Build Path 

8. Click the Libraries tab and click Add Library to open the Add Library wizard 
(Figure 4-36).

Figure 4-36   Add Library window
110 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



9. Select User Library and click Next (Figure 4-37).

Figure 4-37   Add Library dialog

10.Select the opencv3.x.x check box and click Finish (Figure 4-38).

Figure 4-38   Add Library dialog
Chapter 4. Intelligent Video Content Analytics 111



11.Now that all required libraries are added, verify that no import errors exist (Figure 4-39).

Figure 4-39   No errors

4.3.5  Exploring and completing the sample code provided with the use case

You imported the project and resolved the import errors. Now you can use the Java editor in 
Eclipse to explore and understand the code and make a few changes to the source code in 
order to complete it. These steps focus mainly on removing comments around several key 
instructions and customizing the program with your Watson Visual Recognition service 
credentials.

1. The starting point of the execution of a stand-alone Java program is the main method. 
Figure 4-40 shows a snippet of the main method. 

On line 121 the VisualRecognition class is instantiated. This Java class is used to access 
the Watson Visual Recognition service. 

Figure 4-40   Instantiation of Visual Recognition service code

2. The first instruction in Figure 4-41 on page 113 instantiates a new VisualRecognition 
object to access the Watson Visual Recognition V3 service. 

Update the code: Remove the block comment around the three first instructions (lines 
121, 122, and 123 in Figure 4-40).
112 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Your code should now appear similar to Figure 4-41.

Figure 4-41   Code overview after removing comments and setting ApiKey and EndPoint URL

3. Copy a video file, for example ibmvideo.mp4, to the project file directory (Figure 4-42). You 
can download the video file from this location:

https://www.youtube.com/watch?v=fUKpGLk9Ml8&cm_mc_uid=11487496984514811404484&c
m_mc_sid_50200000=1487265686

Figure 4-42   A video file in the project directory

4. Now, load the input video file using VideoCapture (an OpenCV class). 

Figure 4-43   Load video line code

Update the code: In the next two lines of code (121 and 122), replace the values of the 
ApiKey and EndPoint with your values that you copied previously in 4.3.1, “Creating a 
Visual Recognition service instance” on page 88.

Update the code: This simple step involves removing the comment characters in 
line 135. Figure 4-43 shows how the code looks before and after the change.
Chapter 4. Intelligent Video Content Analytics 113

https://www.youtube.com/watch?v=fUKpGLk9Ml8&cm_mc_uid=11487496984514811404484&cm_mc_sid_50200000=1487265686


5. A while loop reads the video frame by frame (Figure 4-44) and analyzes the video 
content. Note that the program does not analyze every frame, the main reason being that 
there is a lot of redundancy in consecutive frames. This sample program analyzes one out 
of every 40 frames. You can change this by simply updating the frequency variable.

Figure 4-44   while loop to read frames from video

6. Figure 4-45 shows the code that classifies the objects in the video frame.

Figure 4-45   Classify objects code with comments

Figure 4-46   Classify objects code

About the code:

– The first line of code shows how to create a ClassifyImagesOptions object based on 
the current video frame image. Consider this information:

• To create the new options for the new image, instantiate a new builder 
(ClassifyImagesOptions.Builder()), call the images() method to set the new 
image to classify. This function accepts an image file as the parameter and returns 
the builder.

• At the end, call the build() method with any argument that builds and returns the 
profile options (ClassifyImagesOptions).

– The second line of code shows how to call the Watson Visual Recognition service that 
performs the actual classification of objects within the current video frame image. The 
result of the classification is saved in the result variable. Consider this information:

• To classify an object, call the classify() method, 
service.classify(ClassifyImagesOptions).

• It accepts options (ClassifyImagesOptions) as argument and returns a 
VisualClassification JSON object. The classify() method of the Visual 
Recognition service analyzes images and detects details of objects.

• The execute() function is used to run the service.

Update the code: Remove the block comments so your code looks identical to 
Figure 4-46. 
114 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



7. Figure 4-47 shows how the sample program calls the display() method to display the 
video frame and the result of the classification, before moving on to the next frame. This 
method receives two arguments: 

– Frame 
– Frame description (str = result.toString()) 

Figure 4-47   Display frame and description objects code

Figure 4-48   Result

The code of the display() method is shown in Figure 4-49.

Figure 4-49   The display method code

8. To enhance this application, a graphical interface (GUI) is created to display the video and 
the description of the content (Figure 4-50).

Figure 4-50   instantiate VideoAnalytics class to create graphical interface

Update the code: As before, remove the comment from line 193. Your code should 
now look like the code in Figure 4-48.
Chapter 4. Intelligent Video Content Analytics 115



9. Declare all graphic components as class attributes (Figure 4-51).

Figure 4-51   Graphic components declaration
116 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Figure 4-52 shows the code in the class constructor that builds the graphical interface. 
The graphical interface is used to display video and its content description.

Figure 4-52   Creation of graphic interface

10.Save the project (File → Save) and run the application as described in the next section.
Chapter 4. Intelligent Video Content Analytics 117



4.3.6  Running the application

To run the Intelligent Video Content Analytics application, complete these steps:

1. Copy the path of your video or use the paths described in this project. You can get the 
video (IBM Intelligent Video Analytics Overview) at either of the following locations:

– https://www.ibm.com/us-en/marketplace/video-analytics-for-security 
– https://youtu.be/fUKpGLk9Ml8 

2. Run the project: Right-click the project and select Run As → Run Configurations 
(Figure 4-53).

Figure 4-53   Run Configurations
118 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

https://www.ibm.com/us-en/marketplace/video-analytics-for-security
https://youtu.be/fUKpGLk9Ml8


3. Select Java Application and click the New button (Figure 4-54) to create a configuration.

Figure 4-54   The New button
Chapter 4. Intelligent Video Content Analytics 119



4. On the Main page (Figure 4-55), click Browse to find and select the project 
(IntelligentVideoContentAnalytics), click Search to find and select the main class, 
and then click Run.

Figure 4-55   Select the project and main class 

The program runs and displays the results shown in 4.1.3, “Expected results” on page 84.
120 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



4.4  Changing your application to detect faces

You can change the application to detect faces instead of performing object classification. 
Complete these steps:

1. To detect faces, use the detectFaces() method instead of the classify() method of 
VisualRecognition class. 

Figure 4-56   Change to detectFaces instead classify 

2. Understand the code. Figure 4-56 shows the code that detects faces in the video frame:

– The first line of code shows how to create a VisualRecognitionOptions object based 
on the current video frame image.

• To create the new options for the new image, instantiate a new builder 
(VisualRecognitionOptions.Builder()), call the images() method to set the new 
image to analyze. This function accepts an image file as the parameter and returns 
the builder.

• At the end, call the build() method with any argument that builds the profile options 
and returns the profile options (VisualRecognitionOptions).

– The second line of code shows how to call the Watson Visual Recognition service 
which performs the actual detection of faces within the current video frame image. The 
result of the face detection is saved in the result variable.

• To detect faces, call the detectFaces() method:

service.detectFaces(VisualRecognitionOptions)

• It accepts options (VisualRecognitionOptions) as argument and returns a 
DetectedFaces JSON object. The detectFaces() method of the Visual Recognition 
service analyzes images and detects faces.

• The execute() function is used to run the service.

Update the code: Comment out the first two lines of code (lines 174 and 175) and 
remove the comments for the next two (lines 180 and 181). Figure 4-56 shows what 
your code should look like after you update the code.
Chapter 4. Intelligent Video Content Analytics 121



3. After you change your code to detect faces instead of classifying objects, save the change 
and rerun the program. The results for the same input video but if no faces are detected in 
the video frame are shown in Figure 4-57.

Figure 4-57   Result if no person is in the scene
122 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



If a person appears in the video, the results differ, as shown in Figure 4-58. 

Figure 4-58   Result if a person appears in the scene

Using video from the camera: You can extend this program to use video from the 
camera:

1. Find this instruction:

VideoCapture camera = new VideoCapture("path of video file ") 

2. Change that instruction as follows:

VideoCapture camera = new VideoCapture() 

This program can be extended to other use cases.
Chapter 4. Intelligent Video Content Analytics 123



4.5  References

See the following resources:

� OpenCV 3.0.0-dev documentation (Using OpenCV Java with Eclipse):

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.html

� Move your Java application into a hybrid cloud using Bluemix, Part 3 
(IBM developerWorks):

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

� Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/
124 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/


Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described 
in the following sections. 

Locating the web material

The following Git repositories are available to help you with the examples in this book:

� For Chapter 3, “Image Content Description” on page 35:

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription

� For Chapter 4, “Intelligent Video Content Analytics” on page 83:

https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalyti
cs

A

© Copyright IBM Corp. 2017. All rights reserved. 125

https://github.com/snippet-java/redbooks-vis-301-ImageContentDescription
https://github.com/snippet-java/redbooks-vis-301-IntelligentVideoContentAnalytics


126 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition



Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

The volumes in the Building Cognitive Applications with IBM Watson APIs series:

�  Volume 1 Getting Started, SG24-8387
�  Volume 2 Conversation, SG24-8394
�  Volume 3 Visual Recognition, SG24-8393
�  Volume 4 Natural Language Classifier, SG24-8391
�  Volume 5 Language Translator, SG24-8392
�  Volume 6 Speech to Text and Text to Speech, SG24-8388
�  Volume 7 Natural Language Understanding, SG24-8398

You can search for, view, download or order these documents and other Redbooks, 
Redpapers™, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Classify an image topic in Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_a
n_image

� Detect faces topic in Watson Developer Cloud:

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_fac
es

� Create or log in to IBM Bluemix account:

https://console.ng.bluemix.net/

� Visual Recognition getting started tutorials:

https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-starte
d.html

� Download Eclipse:

https://eclipse.org/downloads/

� Getting Started with Eclipse:

https://eclipse.org/users/
© Copyright IBM Corp. 2017. All rights reserved. 127

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#classify_an_image
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/#detect_faces
https://console.ng.bluemix.net/
https://eclipse.org/downloads/
https://www.ibm.com/watson/developercloud/doc/visual-recognition/getting-started.html
https://eclipse.org/users/


� Getting Started with Java Programming:

http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html 

� Watson Developer Cloud Node.js SDK:

https://www.npmjs.com/package/watson-developer-cloud

� Node.js usage examples of the Watson APIs:

https://github.com/watson-developer-cloud/node-sdk

� Eclipse IDE Luna:

http://www.eclipse.org/luna

� Move your Java application into a hybrid cloud using Bluemix:

http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-
bluemix-trs/

� Download and install the Cloud Foundry command-line interface (CLI).

https://console.ng.bluemix.net/docs/starters/install_cli.html

� OpenCV 3.x.x for Java: 

http://opencv-java-tutorials.readthedocs.io/en/latest/01-installing-opencv-for-
java.html

� Using OpenCV Java with Eclipse

http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_ec
lipse.html

Also see the list of online resources for the following chapters in this book:

� Basics of Watson Visual Recognition API:1.6, “References” on page 27
� Classify images with a custom classifier: 2.3, “References” on page 34
� Image Content Description: 3.5, “References” on page 81
� Intelligent Video Content Analytics: 4.5, “References” on page 124

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
128 Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://console.ng.bluemix.net/docs/starters/install_cli.html
http://www.ibm.com/developerworks/cloud/library/cl-move-java-app-hybrid-cloud3-bluemix-trs/
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html
https://www.npmjs.com/package/watson-developer-cloud
https://github.com/watson-developer-cloud/node-sdk
http://docs.opencv.org/3.0-beta/doc/tutorials/introduction/java_eclipse/java_eclipse.html
http://www.eclipse.org/
http://www.eclipse.org/luna
http://opencv-java-tutorials.readthedocs.io/en/latest/01-installing-opencv-for-java.html


(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Building Cognitive Applications w
ith IBM

 W
atson Services: Volum

e 3 Visual Recognition







ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442577

SG24-8393-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Watson Visual Recognition service
	1.1 Use case examples
	1.2 Creating a Watson Visual Recognition service instance and getting the API key
	1.3 Image classification and face detection examples
	1.3.1 Expected results

	1.4 Classifying images and detecting faces: Use Watson Java SDK and Eclipse IDE
	1.4.1 Getting started with Eclipse and Java
	1.4.2 Downloading the Watson Java SDK
	1.4.3 Classifying images
	1.4.4 Detecting faces

	1.5 Classifying images and detecting faces: Use Watson Node.js SDK and Node.js Express framework
	1.5.1 Installing the Watson Node.js SDK into your project
	1.5.2 Classifying images
	1.5.3 Detecting faces

	1.6 References

	Chapter 2. Classify images with a custom classifier
	2.1 Visual Recognition custom classifier overview
	2.2 Train, create, and use a custom classifier
	2.2.1 Prepare training data
	2.2.2 Create and train the classifier
	2.2.3 Classify an image with a custom classifier

	2.3 References

	Chapter 3. Image Content Description
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results
	3.1.4 Creating, deploying, and running applications that use Bluemix services

	3.2 Architecture
	3.3 Implementation
	3.3.1 Creating a Visual Recognition service instance
	3.3.2 Downloading the project from Git
	3.3.3 Importing the project into Eclipse
	3.3.4 Importing Watson Java SDK
	3.3.5 Exploring the sample code provided with the use case
	3.3.6 Running the application

	3.4 Deploy a Java application to Bluemix
	3.4.1 Create a runnable JAR file to deploy the application to Bluemix
	3.4.2 Deploy the Java application to Bluemix

	3.5 References

	Chapter 4. Intelligent Video Content Analytics
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.3 Implementation
	4.3.1 Creating a Visual Recognition service instance
	4.3.2 Downloading the project from Git
	4.3.3 Importing the project to Eclipse
	4.3.4 Importing Watson Java SDK and additional OpenCV libraries
	4.3.5 Exploring and completing the sample code provided with the use case
	4.3.6 Running the application

	4.4 Changing your application to detect faces
	4.5 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

