
Redbooks

In partnership with
IBM Skills Academy Program

Front cover

Building Cognitive Applications with
IBM Watson Services: Volume 4
Natural Language Classifier

Marcelo Mota Manhaes

Taemin Ko

Abeer Selim

Omar Amer

Lak Sri

International Technical Support Organization

Building Cognitive Applications with IBM Watson
Services: Volume 4 Natural Language Classifier

May 2017

SG24-8391-00

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . ix
Comments welcome. ix
Stay connected to IBM Redbooks . ix

Chapter 1. Basics of Natural Language Classifier service . 1
1.1 Using the Natural Language Classifier service . 2

1.1.1 Prepare training data . 2
1.1.2 Create and train the classifier . 4
1.1.3 Query the trained classifier . 7
1.1.4 Evaluate results and update the data . 9

1.2 References . 10

Chapter 2. Creating a Natural Language Classifier service in Bluemix 11
2.1 Requirements . 12
2.2 Creating the Natural Language Classifier service instance. 12

2.2.1 Creating the Natural Language Classifier service instance from the
Bluemix website . 12

2.2.2 Creating the Natural Language Classifier service instance using Cloud Foundry
commands . 14

2.3 What to do next . 17

Chapter 3. Healthcare questions and answers. 19
3.1 Getting started. 20

3.1.1 Objectives . 20
3.1.2 Prerequisites . 20
3.1.3 Expected results . 20

3.2 Architecture . 22
3.3 Two ways to deploy the application: Step-by-step and quick deploy 23
3.4 Step-by-step implementation . 23

3.4.1 Downloading the project from Git . 23
3.4.2 Preparing training data . 24
3.4.3 Creating and training the classifier . 24
3.4.4 Creating the Node.js Express Healthcare Q and A application. 28
3.4.5 Deploying the Healthcare Q and A application on Bluemix. 35
3.4.6 Testing the application . 36

3.5 Quick deployment of application . 42
3.6 References . 42

Chapter 4. News Classification . 45
4.1 Getting started. 46

4.1.1 Objectives . 46
4.1.2 Prerequisites . 46
4.1.3 Expected results . 47

4.2 Architecture . 49
© Copyright IBM Corp. 2017. All rights reserved. iii

4.3 Two ways to deploy the application: Step-by-step and quick deploy 50
4.4 Step-by-step implementation . 50

4.4.1 Downloading the project from Git . 51
4.4.2 Reviewing the project structure. 56
4.4.3 Creating a Cloudant noSQL DB service instance . 56
4.4.4 Preparing training data . 59
4.4.5 Creating and training the classifier . 63
4.4.6 Querying the trained classifier. 68
4.4.7 Evaluating results and updating training data . 73
4.4.8 Deploying the application . 85
4.4.9 Testing the application . 94

4.5 Quick deployment of application . 97
4.6 References . 99

Chapter 5. SPAM Classifier . 101
5.1 Getting started. 102

5.1.1 Objectives . 102
5.1.2 Prerequisites . 102
5.1.3 Expected results . 102

5.2 Architecture . 104
5.2.1 Component perspective . 104
5.2.2 Role and activity perspective . 105

5.3 Two ways to deploy the application: Step-by-step and quick deploy 106
5.4 Step-by-step implementation . 106

5.4.1 Creating a Node-RED application. 106
5.4.2 Cloning the Git project . 109
5.4.3 Preparing training data . 109
5.4.4 Creating and training the classifier . 110
5.4.5 Querying the trained classifier. 111
5.4.6 Evaluating results and updating training data . 116

5.5 Quick deployment of application . 120
5.6 References . 122

Appendix A. Additional material . 123
Locating the web material . 123

Related publications . 125
IBM Redbooks . 125
Online resources . 125
Help from IBM . 126
iv Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Bluemix®
Cloudant®
developerWorks®
Global Business Services®
Global Technology Services®
IBM®

IBM Watson®
IBM Watson IoT™
Rational®
Redbooks®
Redpapers™
Redbooks (logo) ®

Tivoli®
Watson™
Watson IoT™
WebSphere®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
vi Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://www.ibm.com/legal/copytrade.shtml

Preface

The Building Cognitive Applications with IBM Watson Services series is a seven-volume
collection that introduces IBM® Watson™ cognitive computing services. The series includes
an overview of specific IBM Watson® services with their associated architectures and simple
code examples. Each volume describes how you can use and implement these services in
your applications through practical use cases.

The series includes the following volumes:

� Volume 1 Getting Started, SG24-8387
� Volume 2 Conversation, SG24-8394
� Volume 3 Visual Recognition, SG24-8393
� Volume 4 Natural Language Classifier, SG24-8391
� Volume 5 Language Translator, SG24-8392
� Volume 6 Speech to Text and Text to Speech, SG24-8388
� Volume 7 Natural Language Understanding, SG24-8398

Whether you are a beginner or an experienced developer, this collection provides the
information you need to start your research on Watson services. If your goal is to become
more familiar with Watson in relation to your current environment, or if you are evaluating
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 4, introduces the Watson Natural Language
Classifier service. This service applies cognitive computing techniques to return best
matching predefined classes for short text inputs such as a sentence or phrase. The book
describes concepts that you need to understand to create, use, and train the classifier. It
describes how to prepare training data and create and train the classifier to connect the
classes to example texts so that the service can apply the classes to new inputs. It also
provides examples of applications that demonstrate how to use the Watson Natural Language
Classifier service in practical use cases. You can develop and deploy the sample applications
by following a step-by-step approach and by using the provided code snippets. Alternatively,
you can download an existing Git project to more quickly deploy the application.

Authors

This book was produced by a team of specialists from around the world, working in
collaboration with the IBM International Technical Support Organization.

Marcelo Mota Manhaes is a Certified IT Specialist in IBM Global Technology Services®, IBM
Brazil. Marcelo is an IT Delivery Architect; his areas of expertise include cloud computing,
software automation tools, business analytics, and cognitive computing. Marcelo has over 20
years of experience in the IT industry. He led several projects to design and build cognitive
solutions such as an application that helps managers to evaluate the performance of their
employees and a question answering system that uses Watson Natural Language Classifier
(NLC), Retrieve and Rank, and Language Translator to enable IBM Knowledge Center users
to find technical information by asking questions in their native language. Marcelo teaches
cloud computing and cognitive systems at the Universidade Positivo. He is the author of
several IBM Redbooks publications. Marcelo holds a B.S. in Computer Science from
Universidade Federal do Paraná—UFPR and an M.S. in Computer Science from
Universidade Tecnológica Federal do Paraná—UTFPR.
© Copyright IBM Corp. 2017. All rights reserved. vii

Taemin Ko is an IT Architect in Software Lab Services, IBM Korea. His primary responsibility
is to help clients to accelerate software delivery. This includes Software Process Innovation,
mentoring and coaching of software engineering practices, such as Agile Transformation, and
IBM Rational® based Tool Chain Innovation. Taemin is also responsible for architecture
definition and implementation of Internet of Things (IoT) solutions using IBM Watson®. He
was in charge of Watson internalization and enablement for Lotte Group of Korea. He is
currently working on the design and implementation of a chatbot enabled by Watson
Conversation API for one of the major card companies in Korea.

Abeer Selim is a Certified IT Specialist Level 2 in IBM Global Business Services® and the
Integration Practice Lead at the Client Innovation Center (CIC), IBM Egypt. She has over 11
years of experience in the IT industry. Abeer co-authored several scientific papers such as
Machine Learning Methodologies in Brain-Computer Interface Systems, Machine learning
methodologies in P300 speller Brain-Computer Interface systems, and Electrode Reduction
Using ICA and PCA in P300 Visual Speller Brain-Computer Interface System. Abeer holds a
B.S. and M.S. in Biomedical and Systems Engineering from Cairo University in Egypt.

Omar Amer is a Package Solution Consultant in cognitive computing at IBM Egypt. He is a
subject matter expert (SME) for IBM Watson and IBM cloud technologies. Omar participated
in several projects implementing cognitive computing solutions with Watson APIs, Watson
Explorer, and Watson Knowledge Studio.

Lak Sri currently serves as a Program Director in the IBM developerWorks® part of the IBM
Digital Business Group organization. Lak leads innovation in the developer activation space.
He was the technical leader for the Building Cognitive Applications with IBM Watson Services
Redbooks series. Lak led the development of the IBM Cloud Application Developer
Certification program and the associated course. Earlier he worked as a Solution Architect for
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built
strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor
in several technology areas, and he volunteers to plan and support local community
programs.

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.

Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

Teja Tummalapalli
IBM Digital Business Group
viii Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

x Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Chapter 1. Basics of Natural Language
Classifier service

This chapter introduces the IBM Watson Natural Language Classifier service. The Natural
Language Classifier service applies cognitive computing techniques to return best matching
predefined classes for short text inputs, such as a sentence or phrase.

Unlike traditional APIs, many cognitive services require being trained first before they can be
used; the Watson Natural Language Classifier (NLC) service is one of those services that
must be trained before using.

This chapter provides an overview of the process for creating and using the classifier. It
includes snippets with code examples to perform some of the steps in the process.

The following topics are covered in this chapter:

� Using the Natural Language Classifier service
� References

1

© Copyright IBM Corp. 2017. All rights reserved. 1

1.1 Using the Natural Language Classifier service

Figure 1-1 provides an overview of the four steps that are included in the process of creating
and using the classifier.

Figure 1-1 Using the Natural Language Classifier service: Process steps

To use the Natural Language Classifier service in your application, you must train the
classifier following these steps:

1. Prepare training data
2. Create and train the classifier
3. Query the trained classifier
4. Evaluate results and update the data

The following sections take you through a simple example following these steps to train the
classifier.

1.1.1 Prepare training data

To prepare the training data, follow these steps:

1. Identify class labels. These are the classes that the classifier will output.

2. Collect representative text.

3. Match classes to text. That is, create the training data by matching text with their
respective classes.

Identify class labels
Class labels represent the result labels that describe the intent of the input text. Class labels
are the output of a trained classifier.

To train the classifier, you prepare a training CSV file that is used when the classifier is created.

For the simple example described in this chapter, two class labels are identified: Health and
VeterinaryHealth. In a real production scenario, usually a larger number of class labels are
identified.
2 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Collect representative texts
Gather representative texts for each class label for training purposes, These texts show the
classifier examples for each class and serve as training data. These examples should be
similar to the actual text input that will be provided to the classifier in production.

Representative text for Health class labels
The following text examples can be associated with the Health class labels:

� How much does it cost to get an occupational health card?
� What are steps required to get a health card?
� I want to be immune from Hepatitis B.

Representative text for VeterinaryHealth class labels
The following text examples can be associated with the VeterinaryHealth class labels:

� I need to know regulations for importing animals/veterinary products into the markets.
� Where can I adopt a pet from a shelter?
� Where can someone obtain health cards for veterinary?
� How to get a post mortem report for my pet?

Match classes to text
Now you create a file in CSV format with two columns:

� Column one is the input text
� Column two is the class label for that text

Table 1-1 shows the input text and corresponding class label for the example in this chapter.

Table 1-1 Training data to create a CSV file

Input text Class label

How much does it cost to get an occupational health card Health

What are steps required to get a health card Health

I want to be immune from Hepatitis B Health

I need to know regulations for importing animals/veterinary products into the
Markets

VeterinaryHealth

Where can I adopt a pet from a shelter VeterinaryHealth

Where can someone obtain health cards for veterinary VeterinaryHealth

How to get a post mortem report for my pet VeterinaryHealth
Chapter 1. Basics of Natural Language Classifier service 3

Example 1-1 shows the CSV file created from Table 1-1.

Example 1-1 Training data in CSV format

How much does it cost to get an Occupational health card,Health
What are steps required to get a health Card,Health
I want to be immune from Hepatitis B,Health
I need to know regulations for importing animals/veterinary products into the
Markets,VeterinaryHealth
Where Can I adopt a pet from a shelter,VeterinaryHealth
Where can someone obtain Health cards for veterinary,VeterinaryHealth
How to get a post mortem report for my pet,VeterinaryHealth

You can access the training CSV file at the GitHub web page:

https://gist.github.com/snippet-java/044c616801cea023930bed41efed6488

1.1.2 Create and train the classifier

Before you can create a classifier, the Natural Language Classifier service instance must be
created as described in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11.

After creating the Natural Language Classifier service instance, create a classifier that is
associated with the service instance. Specify the classifier name and training CSV file, and
then upload the training CSV file that you created in 1.1.1, “Prepare training data” on page 2 to
train the classifier. The classifier ID will be returned.

Figure 1-2 shows a simplified diagram representing the creation of the classifier.

Figure 1-2 Create the Natural Language Classifier service classifier

You can create the classifier and upload training data using one of the following methods:

� Using the toolkit in IBM Bluemix®
� Programmatically, with simple programs written in languages such as Java and Node.js
� Using command-line tools, such as cURL

The following examples show code snippets in different technologies to create the classifier
and upload the training data passing the following parameters:

� Credentials of the associated service instance
� Classifier name
� The CSV file with the training data to upload

Note: This simple example shows only two class labels and three and four text samples for
each. In a production scenario, many more class labels and text samples of training data
should be provided.

Input Output

1. Name
2. Training file Classifier ID

NLC
Classifier
4 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://gist.github.com/snippet-java/044c616801cea023930bed41efed6488

Example 1-2 shows a code snippet in Node.js to create the classifier and upload the training
data.

Example 1-2 Code snippet: NodeJS

var watson = require('watson-developer-cloud');
var fs = require('fs');
var natural_language_classifier = watson.natural_language_classifier({
 username: '{username}',
 password: '{password}',
 version: 'v1'
});
var params = {
 language: 'en',
 name: 'My Classifier',
 training_data: fs.createReadStream('./train.csv')
};
natural_language_classifier.create(params, function(err, response) {
 if (err) console.log(err);
 else
 console.log(JSON.stringify(response, null, 2));
});

Example 1-3 shows a code snippet in Java to create the classifier and upload the training
data.

Example 1-3 Code snippet: Java

import java.io.File;

import
com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClass
ifier;
import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

public class SimpleServlet {
public static void main(String[] arg) {

NaturalLanguageClassifier service = new NaturalLanguageClassifier();
service.setUsernameAndPassword("{username}", "{password}");
Classifier classifier = service.createClassifier("My Classifier", "en",

new File("./train.csv")).execute();
System.out.println(classifier);

}
}

Example 1-4 shows a code snippet in cURL to upload the training data.

Example 1-4 Code snippet: cURL

curl -u "{username}":"{password}" -F training_data=@train.csv -F
training_metadata="{\"language\":\"en\",\"name\":\"HealthClassifier\"}"
https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers
Chapter 1. Basics of Natural Language Classifier service 5

Response
Example 1-5 shows the response returned when running the code to upload the training data.

Example 1-5 Code snippet: Response

{
"classifier_id": "10D41B-nlc-1",
"name": "My Classifier",
"language": "en"
"created": "2015-05-28T18:01:57.393Z",
"url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers
/10D41B-nlc-1",
"status": "Training",
"status_description": "The classifier instance is in its training phase, not yet
ready to accept classify requests"
}

The classifier_id value shows a unique identifier for each classifier. Multiple classifiers can
be associated with the same Natural Language Classifier service instance.

The status shows the classifier status. When the classifier is ready to accept requests, the
status changes from Training to Available.

Check the classifier status
Before you can use the classifier, you must check the status. The following code snippets
provide examples of how to check the status.

Example 1-6 shows a code snippet in Node.js to check status of the classifier.

Example 1-6 Code snippet: NodeJS

var watson = require('watson-developer-cloud');
var fs = require('fs');
var natural_language_classifier = watson.natural_language_classifier({ username:
'{username}', password: '{password}', version: 'v1' });

natural_language_classifier.status({
 classifier_id: '{classifier}'
}, function(err, response) {
 if (err) console.log('error: ', err);
 else console.log(JSON.stringify(response, null, 2));
});

Note: In the following code snippets, replace "{classifier}" with the "classifier_id":
value obtained in the response (see Example 1-5).
6 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Example 1-7 shows a code snippet in Java to check status of the classifier.

Example 1-7 Code snippet: Java

import java.io.File;

import
com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClass
ifier;
import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

public class SimpleServlet {
public static void main(String[] arg) {

NaturalLanguageClassifier service = new NaturalLanguageClassifier();
service.setUsernameAndPassword("{username}", "{password}");
Classifier classifier = service.getClassifier("{classifier}").execute();
System.out.println(classifier);

}
}

Example 1-8 shows a code snippet in cURL to check status of the classifier.

Example 1-8 Code snippet: cURL

curl -u "{username}":"{password}"
https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/
{classifier}

Response
When the classifier is trained, the status changes to Available (see Example 1-9). You can
now use the classifier.

Example 1-9 Status response for a trained classifier

{ "classifier_id": "{classifier}",
 "name": "My Classifier",
 "language": "en",
 "created": "2015-05-28T18:01:57.393Z",
 "url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers
/10D41B-nlc-1",
 "status": "Available",
 "status_description": "The classifier instance is now available and is ready to
take classifier requests.",
}

1.1.3 Query the trained classifier

After the classifier is trained, you can query it. Figure 1-3 on page 8 represents querying the
classifier by providing the classifier ID and input text.

The API returns a response that includes the name of the class for which the classifier has
the highest confidence. Other class-confidence pairs are listed in descending order of
Chapter 1. Basics of Natural Language Classifier service 7

confidence. The confidence value represents a percentage, and higher values represent
higher confidences.

Figure 1-3 Querying the classifier

The classification process divides the value of 1 (100%) among all defined class labels and
outputs a value for each class label (percentage) that can be thought of as the confidence
level for each class label as shown Figure 1-3.

The following examples show code snippets to query the classifier.

Example 1-10 shows a snippet in Node.js to run a query on a classifier by specifying the
classifier ID.

Example 1-10 Code snippet: Node.js, querying the classifier

var watson = require('watson-developer-cloud');
var fs = require('fs');
var natural_language_classifier = watson.natural_language_classifier({ username:
'{username}', password: '{password}', version: 'v1' });

natural_language_classifier.classify({
 text: 'I want a health card',
 classifier_id: '{classifier}'
}, function(err, response) {
 if (err) console.log('error: ', err);
 else console.log(JSON.stringify(response, null, 2));
});

Example 1-11 shows a snippet in Java to run a query on the Natural Language Classifier
classifier.

Example 1-11 Code snippet: Java, querying the classifier

import java.io.File;

import
com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClassifie
r;
import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

public class SimpleServlet {
public static void main(String[] arg) {

NaturalLanguageClassifier service = new NaturalLanguageClassifier();
service.setUsernameAndPassword("{username}", "{password}");
Classification classifier = service.classify("{classifier}

","I want a health card").execute();
System.out.println(classifier);

Input Output

1. Classifier ID
2. Text

Classes:
Class name
Class confidence
……...

NLC
Classifier
8 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

}
}

Example 1-12 shows a snippet in cURL to run a query on the Natural Language Classifier
classifier.

Example 1-12 Code snippet: Querying the classifier, cURL

curl -u "'{username}":"{password}" -H "Content-Type:application/json" -d
"{\"text\":\"I want a health card\"}"
https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/
{classifier}/classify

Query response
Example 1-13 shows the response returned when querying the classifier.

Example 1-13 Query response

{
 "classes": [
 {
 "confidence": 0.9858005113688728,
 "class_name": "Health"
 },
 {
 "confidence": 0.014199488631127315,
 "class_name": "VeterinaryHealth"
 }
],
 "classifier_id": "f5b42ex171-nlc-2121",
 "text": "I want a health card",
 "top_class": "Health",
 "url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers
/f5b42ex171-nlc-2121"
}

In this code snippet:

� The "text" value shows the input text in the query request.

� The "classes" value is an array that contains the list of defined class labels and the
confidence for each. Confidence is a value between 0 (0%) and 1 (100%), indicating the
confidence for each class label for the query input text.

The sum of confidence for all classes is 1. The classes in the array are ordered in a
descending order of confidence. That is, the class label with the highest confidence is
always the first element in the classes array.

1.1.4 Evaluate results and update the data

The objective of this step in the process is to improve the results returned by the classifier:

1. Detect wrong or weak confidence cases for user input text.

2. Change or restructure user’s phrases into generic representative text.
Chapter 1. Basics of Natural Language Classifier service 9

3. Match text to their corresponding class label.

4. Add new text to the original training data and create a new classifier.

5. Repeat this cycle when quality of classification drops to a certain lower limit.

1.2 References

See the following resources:

� Overview of the IBM Watson Natural Language Classifier service:

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/index
.html

� Getting started with the Natural Language Classifier service:

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getti
ng-started.html
10 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getting-started.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getting-started.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/index.html

Chapter 2. Creating a Natural Language
Classifier service in Bluemix

IBM Watson Developer Cloud offers a variety of services for developing cognitive
applications. One of these services, which is the focus of this book, is the Watson Natural
Language Classifier (NLC) service.

This chapter explains how to create an instance of the Natural Language Classifier service in
Bluemix that is required for the use cases described in this book.

The following topics are covered in this chapter:

� Requirements
� Creating the Natural Language Classifier service instance
� What to do next

2

© Copyright IBM Corp. 2017. All rights reserved. 11

2.1 Requirements

To create a service and perform the use cases in this book, you must have a Bluemix
account. You can register to create an account and log in at IBM Bluemix. When you log in,
you are prompted to authenticate with your email or IBM ID and password.

2.2 Creating the Natural Language Classifier service instance

The two ways to create the Natural Language Classifier service instance are as follows:

� Creating the Natural Language Classifier service instance from the Bluemix website

� Creating the Natural Language Classifier service instance using Cloud Foundry
commands

2.2.1 Creating the Natural Language Classifier service instance from the
Bluemix website

To create the service, follow these steps:

1. Log in to the IBM Bluemix website.

2. When the home page opens, click Catalog.

3. On the IBM Bluemix Catalog page (Figure 2-1) scroll to the Services section, select
Watson, and then click Natural Language Classifier.

Figure 2-1 Natural Language Classifier in the Bluemix Catalog

4. On the Natural Language Classifier page (Figure 2-2 on page 13), create the service. You
can change the Service name and Credentials name fields by using your personal choices
or keep the default values. The important point is that for the instance of the service being
created, the credential name will have the username and password. Click Create.
12 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.bluemix.net
https://console.ng.bluemix.net

Figure 2-2 Creating Natural Language Classifier service instance

5. Get the credentials (username and password) from the service instance for later use.

Click the service instance and select the Service Credentials tab.

6. Click View Credentials and get the username and password values (Figure 2-3 on
page 14).

Important: The service instance credentials, username and password, are used in the
next chapters.
Chapter 2. Creating a Natural Language Classifier service in Bluemix 13

Figure 2-3 Get user name and password from Natural Language Classifier service instance

2.2.2 Creating the Natural Language Classifier service instance using Cloud
Foundry commands

To create the service, follow these steps:

1. Download the Cloud Foundry software Cloud Foundry software and install it on your
computer.

2. Open a command prompt.

3. Run the cf login command and insert the email and password for your Bluemix account
in the sequence shown in Example 2-1.

Example 2-1 Run login and provide email and password for the Bluemix account

cf login
 API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>
¢
Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
OK
Targeted org <YOUR_ORGANIZATION>

4. Select a Bluemix space to host the service (Example 2-2 on page 14).

Example 2-2 Select a Bluemix space

Select a space (or press enter to skip):
1. dev
2. qa
3. Prod
14 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry/cli/releases

Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)
User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

5. Run the following command to create an instance of the service:

cf create-service <service> <service_plan> <service_instance>

About the command:

cf create-service The Cloud Foundry command to create the service instance.

<service> The name of the service you want to create an instance of. For
Natural Language Classifier, use Natural_Language_Classifier.

<service_plan> The pricing plan.

<service_instance> The service instance name you want to use.

Example 2-3 shows the command.

Example 2-3 The cf create-service command

cf create-service Natural_Language_Classifier standard "ITSO-
 ED-6000-R01 - Natural Language Classifier"
Creating service instance ITSO-ED-6000-R01 - Natural Language Classifier in org
<YOUR_ORGANIZATION>/ space dev as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...
OK

6. List the service information by using the cf service <service_name> command to confirm
that it was successfully created (Example 2-4).

Example 2-4 The cf service command

cf service "ITSO-ED-6000-R01 - Natural Language Classifier"

Service instance: ITSO-ED-6000-R01 - Natural Language Classifier
Service: natural_language_classifier
Bound apps:
Tags:
Plan: standard
Description: Natural Language Classifier performs natural language classification
on question texts. A user would be able to train their data and the predict the
appropriate class for an input question.
Documentation url: https://www.ibm.com/watson/developercloud/nl-classifier.html
Dashboard:
https://www.ibm.com/watson/developercloud/dashboard/en/nl-classifier-dashboard.html

Last Operation
Status: create succeeded
Message:
Started: 2017-02-16T17:16:49Z
Updated:
Chapter 2. Creating a Natural Language Classifier service in Bluemix 15

7. Create user and password credentials to access the service by using this command:

cf create-service-key <service_instance> <service_key>.

About the command:

cf create-service-key The Cloud Foundry command to create the service key with
user and password.

<service_instance> The name of the Natural Language Classifier service instance.

<service_key> The name of the service key you want to create.

Example 2-5 shows this command.

Example 2-5 The cf create-service-key command

cf create-service-key "ITSO-ED-6000-R01 - Natural Language Classifier" myKeys
Creating service key myKeys for service instance ITSO-ED-6000-R01 - Natural
Language Classifier as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...
OK

8. Get the username and password in order to access the service later by running the
following command:

cf service-key <service_instance> <service_key>

About the command:

cf service-key The Cloud Foundry command to view the username and password
in the service key.

<service_instance> The name of the service instance.

<service_key> The name of the service key.

Example 2-6 shows this command.

Example 2-6 Use cf service-key to get username and password

cf service-key "ITSO-ED-6000-R01 - Natural Language Classifier" myKeys
Getting key myKeys for service instance ITSO-ED-6000-R01 - Natural Language
Classifier as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

{
 "password": "egDxZXXEoXJR",
"url": "https://gateway.watsonplatform.net/natural-language-classifier/api",
"username": "189db2d8-95e2-XXXX-9a3c-1fba7f991c41"
}

Important: The service instance credentials, username and password, are used in the
next chapters.
16 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

2.3 What to do next

Creating the service instance is a required step for the remaining chapters in this book. With
username and password collected from Natural Language Classifier service instance, you
can go through the next chapters:

� Chapter 3, “Healthcare questions and answers” on page 19.

� Chapter 4, “News Classification” on page 45.

� Chapter 5, “SPAM Classifier” on page 101.
Chapter 2. Creating a Natural Language Classifier service in Bluemix 17

18 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Chapter 3. Healthcare questions and
answers

This chapter introduces the use of the Watson Natural Language Classifier (NLC) service in
an application. The Watson Natural Language Classifier service applies deep learning
techniques to predict the best predefined classes for short sentences or phrases. The classes
prediction can be used for triggering a corresponding action in an application, such as
answering a question.

This chapter describes steps to create a simple Healthcare question and answer (Q and A)
application. The application is an example of a use case for a cognitive application using the
Watson Natural Language Classifier service. The main objective of the Healthcare Q and A
application is to provide answers to questions that are related to a healthcare community or
organization.

In this chapter, you work with code that is partially developed and therefore the chapter
provides code snippets for you to use.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

3

© Copyright IBM Corp. 2017. All rights reserved. 19

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Create a Healthcare Q and A application using Node.js and running in IBM Bluemix.
� Prepare training data in a CSV file.
� Implement the Watson Natural Language Classifier service using Node.js.
� Train the classifier using the prepared CSV file.
� Use the Bluemix web user interface to create and manage services.

3.1.2 Prerequisites

To complete the steps in this chapter, ensure that you meet the following prerequisites

� Bluemix account

� The instructions to create an Natural Language Classifier service, as described in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11

� An Internet browser such as Chrome, Firefox, Internet Explorer, or Safari

� Install Cloud Foundry

� Basic JavaScript skills

� Review the available Bluemix regions and select the most appropriate based on your
location

� Git basics

3.1.3 Expected results

By following the steps in this book, you should be able to use a browser to run the application.
The application works as follows:

1. In a web browser open the Healthcare Q and A Application to see a running version on
Bluemix (Figure 3-1 on page 21).
20 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://hcqanaturallanguageclassifier.mybluemix.net/

Figure 3-1 Healthcare Q and A application

2. Enter a question (such as “Where are clinics?”) and click Submit. A page opens to display
an answer (Figure 3-2).

Figure 3-2 Healthcare Q and A application results displayed
Chapter 3. Healthcare questions and answers 21

3.2 Architecture

The Healthcare Q and A application is composed of a web interface, application logic, Watson
Natural Language Classifier service, and Node.js run time. The application logic orchestrates
a classification service. The Watson Natural Language Classifier service classifies to which
category the specified question belongs. Node.js run time uses the Express framework as the
integration platform between the web interface and the Watson Natural Language Classifier
service.

Figure 3-3 shows the components of the application and flow:

1. User submits a healthcare related question through the web interface.

2. Web interface posts the received question to the application.

3. Application logic routes the question to Node.js Express as the application integration
platform.

4. Node.js in turn receives the question and sends it to the Watson Natural Language
Classifier service to be classified.

5. Watson Natural Language Classifier service returns the response, which includes the top
class representing the category of the question.

6. Node.js returns the Natural Language Classifier response to the application logic.

7. Application logic identifies the web interface page to be displayed as per the question
category returned from the Watson Natural Language Classifier service.

8. Web interface displays the page that includes the answer to the question.

Figure 3-3 Architecture overview diagram

Application logic

Sending
healthcare question

Receiving answer

Sending
healthcare question

Receiving answer

Sending
healthcare question

Receiving answer

NATURAL
LANGUAGE
CLASSIFIER

Se
nd

in
g

he
al

th
ca

re
 q

ue
st

io
n

R
ec

ei
vi

ng
 a

ns
w

er

Public network Bluemix network

1 2

5 4

8 7

3

6 NODE.JS RUNTIMEWeb browserUser
22 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 3.4, “Step-by-step implementation” on page 23. This version takes you through
the key steps to integrate the IBM Watson services with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 3.5,
“Quick deployment of application” on page 42.

3.4 Step-by-step implementation

Deploying this application involves the following steps:

1. Downloading the project from the Git repository.

2. Preparing the training data.

3. Creating and training the Natural Language Classifier service.

4. Creating the Node.js Express Healthcare Q and A application.

5. Deploying the application.

6. Testing the application.

3.4.1 Downloading the project from Git

Start by downloading the code. The code is basically the same as the quick-deployment
version, however it is missing some important parts to be developed by you.

� Download the incomplete code (step-by-step deployment version):

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

After downloading, explore the downloaded folder to become familiar with its structure so
you can more easily follow the step-by-step deployment.

� You can also download the complete code (quick deployment version) that you can use for
verification or as a code reference:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git
Chapter 3. Healthcare questions and answers 23

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

3.4.2 Preparing training data

This section focuses on preparing the training data CSV file for the Healthcare Q and A
application. The file should include a list of questions that are categorized into different
classes. After randomly listing some of the expected questions, most of the questions
seemed to fit into five main categories of questions representing five classes (Figure 3-4):

Policy: Questions about healthcare policy, contracts, and plans

Providers: Questions about service providers

Products: Questions about products and offers

About: Questions about the healthcare organization and contact information

Claim: Questions about claims and reimbursements

Figure 3-4 Sample questions for different categories

A bulk of related questions for each category are in the training file.

This training file is used as an input to the next step, 3.4.3, “Creating and training the
classifier” on page 24.

You can find the training data CSV file hcqa_training_data.csv in the
hcqaNaturalLanguageClassifier_Student folder that you downloaded as described in 3.4.1,
“Downloading the project from Git” on page 23.

3.4.3 Creating and training the classifier

After creating the Natural Language Classifier service instance, the next step is to create and
train a classifier associated with the service instance, by using the prepared training CSV file
from 3.4.2, “Preparing training data” on page 24:

1. Log in to your Bluemix account, open the Manage tab, and click Access the beta toolkit,
(Figure 3-5 on page 25).

Note: You must create a Natural Language Classifier service instance in Bluemix as
described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on
page 11 before performing the steps in this section.
24 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 3-5 Training process step 1: Access the toolkit

2. Click Sign in with Bluemix (Figure 3-6).

Figure 3-6 Training process step 2: Sign in with Bluemix

3. Click Confirm to grant the toolkit access to your previously created Natural Language
Classifier service instance (Figure 3-7).

Figure 3-7 Training process step 3: Confirm
Chapter 3. Healthcare questions and answers 25

4. Click Add training data (Figure 3-8).

Figure 3-8 Training process step 4: Add training data

5. Upload the prepared training CSV file by clicking the upload icon (Figure 3-9). Then click
Create classifier.

Figure 3-9 Training process step 5: Create classifier and upload training data

6. Specify the classifier name in the Name field, and then click Create (Figure 3-10).

Figure 3-10 Training process step 6: Provide a name for classifier
26 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

7. Reload the page to be sure that the classifier creation process is in progress (Figure 3-11).

Figure 3-11 Training process step 7: Progress bar

8. After the training process completes, the classifier is listed with a Classifier ID
(Figure 3-12). This value will be used later in the JSON configuration file, for the Node.js
Healthcare Q and A application.

Figure 3-12 Training process step 8: Training process completed
Chapter 3. Healthcare questions and answers 27

3.4.4 Creating the Node.js Express Healthcare Q and A application

To create the Healthcare Q and A application, complete these steps.

1. Download the project from the Git repository:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

2. Set the dependencies:

a. Navigate to the downloaded application folder, and open the package.json file:

../hcqaNaturalLanguageClassifier/package.json

The file has a list of required dependencies (Figure 3-13).

Figure 3-13 Snapshot from the package.json file: Dependencies

b. In the package.json file, add the following dependency to line number 16 (Figure 3-14
on page 29):

"watson-developer-cloud":"2.14.8"

The Watson module will provide access to the high-level wrappers for each of the
Watson cognitive services running on IBM Bluemix.
28 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

Figure 3-14 The package.json file after adding Watson-developer-cloud to dependency list

3. Set the service credentials and classifier ID.

a. Open the config.js configuration file /hcqaNaturalLanguageClassifier/config.js to
add the Natural Language Classifier service credentials and classifier ID.

b. Add the values for the username and password that you obtained when you created the
service as described in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11.

c. Add the classifier ID that you obtained when you created the classifier in step 8 on
page 27. See Figure 3-15.

Figure 3-15 Snapshot from the config.js file: Setting service credentials and classifier ID

d. Save the config.js file.

4. Configure the application route. This route specifies the URI that points to the file that
includes the required application actions.

a. Open the following file:

../hcqaNaturalLanguageClassifier/app.js

b. Add the following text to line number 10 (Figure 3-16 on page 30), and add an extra
new line after that:

var nlc = require('./routes/nlc');
Chapter 3. Healthcare questions and answers 29

This line of code specifies the route file (nlc in this example).

Figure 3-16 Snapshot from the app.js file highlighting the location of newly added code

c. Specify the URI that the application will use to load and access the file.

Add the following text to line number 28 in the app.js file (Figure 3-17 on page 31):

app.use('/nlc', nlc);
30 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 3-17 Snapshot from the app.js file highlighting the route file and URI

d. Review the added lines as shown in Figure 3-18, and then save and close the file.

Figure 3-18 Snapshot for the app.js file highlighting the updates
Chapter 3. Healthcare questions and answers 31

By adding these lines, the application will load the new route file any time the user
accesses the application using this URI:

http://server:port/nlc

5. Integrate the Healthcare application with the Watson Natural Language Classifier service
by creating the server-side code. In this step, create the file that includes the implemented
code to be run when the route is accessed:

a. Create the nlc.js file in the following path:

../hcqaNaturalLanguageClassifier/routes/nlc.js

b. Open the nlc.js file and add the code snippet shown in Example 3-1, which loads the
required node modules and the previously created config.js file.

Example 3-1 An nlc.js snippet: Loads the required node modules

var config = require('../config');
var express = require('express');
var bodyParser = require('body-parser');
var watson = require('watson-developer-cloud');

c. Set up the Express router:

var router = express.Router();

d. Create a body-parser instance for working with the URL that is encoded from data. The
body-parser middleware will be used to gain access to HTML form parameters.

var urlEncodedParser = bodyParser.urlencoded({extended:false});

e. Declare an instance of the Natural Language Classifier service and use the credentials
and classifier ID in JSON format in the configuration file, as shown in Example 3-2.

Example 3-2 Creating the Natural Language Classifier service instance: The nlc.js snippet

var urlEncodedParser = bodyParser.urlencoded({extended:false});
//Declare an instance of the NLC service; use the credentials and classifier
//id in JSON format in the configuration file
var natural_language_classifier =
watson.natural_language_classifier(config.watson.natural_language_classifier
);

f. Add a function to handle HTTP POST requests to URL /nlc. This function will perform
classification on the input text entered by the user. The data will be submitted through
an HTML form in a parameter named source. Example 3-3 shows these details:

i. Perform classification on the source form parameter.
ii. A function to be run when classification analysis is completed.
iii. Print the returned errors to the server console.
iv. Print the returned results data to the server console.
v. Send the returned JSON data to the client application.

Example 3-3 Classifying input text: nlc.js snippet

router.post('/', urlEncodedParser, function(req, res, next){
//Perform classification on the source form parameter.

natural_language_classifier.classify({
'text': req.body.source,
'classifier_id': config.watson.natural_language_classifier.id

},
//A function to be run when classification analysis is completed
32 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

function(err, response){
if(err){

//Print the returned errors to the server console.
console.log('error:', err);

}else{
//Print the returned results data to the server console

console.log(JSON.stringify(response, null, 2));
//Send the returned JSON data to the client application

res.json(response);
}

});
});

g. To the end of the file, add the following line, which will make the routes available to the
remainder of the application:

module.exports = router;

The complete file is shown in Figure 3-19.

Figure 3-19 Snapshot for the nlc.js file

The Node.js route, which is the nlc.js file that will run the specified cognitive services on
data submitted through an HTML form has been created.

6. Review the index.js file. This file is the application main page that includes the input field
and renders the results in a new page by using EJS templates.

a. Open the index.ejs file, which is in the following path:

../hcqaNaturalLanguageClassifier/views/index.ejs

b. Review the code, which has the following details:

• A function for sending data to the server through an AJAX request (Figure 3-20 on
page 34.
Chapter 3. Healthcare questions and answers 33

Figure 3-20 index.ejs: JavaScript classify function

• A simple function for resetting or clearing values in the page (Figure 3-21).

Figure 3-21 index.ejs: JavaScript clearData function

• A simple text area to accept input from the user (Figure 3-22).

Figure 3-22 index.ejs: textarea

• Buttons for invoking the JavaScript functions classify() and clearData()
(Figure 3-23).

Figure 3-23 index.ejs: Buttons for invoking JavaScript functions

• Modals for each class that displays the answers for different categories and classes
(Figure 3-24 on page 35).
34 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 3-24 index.ejs: Examples of Modals

c. Close the index.ejs file.

3.4.5 Deploying the Healthcare Q and A application on Bluemix

The steps in this section guide in pushing the final application to the Bluemix environment and
making it publicly accessible to consumers:

1. Open the manifest.yml file (Figure 3-25) and review its contents:

../hcqaNaturalLanguageClassifier/manifest.yml

Figure 3-25 The manifest.yml file

This is a helper file for identifying and pushing the application to the IBM Bluemix
environment. The file is used to declare resources and metadata required for your
application to run in Bluemix and also used to bind existing services to the application.

2. Each application hosted in IBM Bluemix must have a unique sub-domain. To distinguish
your application from others, make the host name unique by appending the initials of your
name to the host value.

host: hcqaNaturalLanguageClassifier-AS

Note: Replace AS by your initials

3. Save and close the file after updates.
Chapter 3. Healthcare questions and answers 35

4. Review the Bluemix regions (Table 3-1). A Bluemix region is a defined geographical
territory that you can deploy your applications to. Select the appropriate Bluemix region
closer to your location to reduce the application latency.

Table 3-1 Regions

5. Set the API endpoint for the Bluemix region you selected (from Table 3-1) and log in to
Bluemix using your Bluemix credentials.

Return to the command window and enter the commands shown in Example 3-4.

Example 3-4 Enter these commands in the command window

cf api https://api.ng.bluemix.net
cf login -u <<Your Bluemix username>>

6. When prompted enter your Bluemix password.

7. Push the health care application to be deployed in Bluemix.

In the command prompt window enter the commands shown in Example 3-5.

Example 3-5 Deploying the application to Bluemix

cd <<The project path username>>\hcqaNaturalLanguageClassifier
cf push 'hcqaNaturalLanguageClassifier'

The Cloud Foundry command-line tool will examine the contents of the manifest.yml and
package.json files and push the application to Bluemix.

8. Exit the CF tool:

cf logout

3.4.6 Testing the application

To test the Healthcare Q and A application, complete these steps:

1. In the web browser, enter the following URL to open the application. Replace _AS by your
initials as you entered them in step 2 on page 35 (Figure 3-26 on page 37):

http://hcqanaturallanguageclassifier-AS.mybluemix.net/

Region Location Prefix cf API endpoint UI console

US South Dallas, US ng api.ng.bluemix.net console.ng.bluemix.net

United
Kingdom

London, UK eu-gb api.eu-gb.bluemix.net console.eu-gb.bluemix.net

Sydney Sydney, Australia au-syd api.au-syd.bluemix.net console.au-syd.bluemix.net

Note: To assess the quality of the training, the test input questions should not be
exactly the same as the questions included in the training set.
36 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 3-26 Healthcare Q and A application

2. Enter a test question, such as “Where are clinics?” (which represents a Provider class
question) and click Submit (Figure 3-27). The figure shows that the question is classified
as Providers, as expected.

Figure 3-27 Healthcare Q and A application results displaying Providers class results

3. Check the logs by first opening the application from the dashboard (Figure 3-28). Click the
application.

Figure 3-28 Healthcare Q and A application
Chapter 3. Healthcare questions and answers 37

Then, on the left panel, click Logs to view the application logs (Figure 3-29).

Figure 3-29 Returned JSON results from the classifier

4. Back to the web application, enter a test question which represents an About class
question such as “I would like to know more about you?” and click Submit (Figure 3-30).
The figure shows that the question is classified as About, as expected.

Figure 3-30 Healthcare Q and A application results displaying About class results
38 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5. Review the logs (Figure 3-31).

Figure 3-31 Returned JSON results from the classifier

6. Enter a question, such as “What are the policies?” (which represents a Policy class
question) and click Submit. (Figure 3-32). The figure shows that the question is classified
as Policy, as expected.

Figure 3-32 Healthcare Q and A application results displaying Policy class results
Chapter 3. Healthcare questions and answers 39

7. Review the logs (Figure 3-33).

Figure 3-33 Returned JSON results from the classifier

8. Enter a test question, such as “How to claim?” (which represents a Claim class question)
and click Submit (Figure 3-34). The figure shows that the question is classified as Claim,
as expected.

Figure 3-34 Healthcare Q and A application results displaying Claim class results
40 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

9. Review the logs (Figure 3-35).

Figure 3-35 Returned JSON results from the classifier

10.Enter a test question, such as “Can you provide background about the products and
offers?” (which represents a Products class question) and click Submit (Figure 3-36). The
figure shows that the question is classified as Products, as expected.

Figure 3-36 Healthcare Q and A application results displaying Products class results
Chapter 3. Healthcare questions and answers 41

11.Review the logs (Figure 3-37).

Figure 3-37 Returned JSON results from the Natural Language Classifier classifier

3.5 Quick deployment of application

As described in 3.3, “Two ways to deploy the application: Step-by-step and quick deploy” on
page 23, a Git repository containing the full application code is provided so that you can run
the application with minimal steps.

Follow these steps:

1. Access the Git repository and download the complete application code from:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

2. Follow the steps in 3.4.5, “Deploying the Healthcare Q and A application on Bluemix” on
page 35.

3.6 References

See the following resources:

� Regions in Bluemix:

https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/re
gions_in_bluemix?lang=en

� What is Bluemix:

https://console.ng.bluemix.net/docs/overview/whatisbluemix.html

� Cloud Foundry and CLI:

https://github.com/cloudfoundry/cli/releases

� CLI and Dev Tools:

https://console.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
42 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/regions_in_bluemix?lang=en
https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/regions_in_bluemix?lang=en
https://console.ng.bluemix.net/docs/overview/whatisbluemix.html
https://github.com/cloudfoundry/cli/releases
https://console.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

� Node.js:

https://nodejs.org/en/

� Express and Node.js tutorial:

https://codeforgeek.com/2014/06/express-nodejs-tutorial/

� Natural Language Classifier; Authentication:

http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?no
de#authentication

� Getting Started with IBM Watson Node.js SDK:

http://www.slideshare.net/pgodby/getting-started-with-ibm-watson-apis-sdks
Chapter 3. Healthcare questions and answers 43

https://nodejs.org/en/
https://codeforgeek.com/2014/06/express-nodejs-tutorial/
http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?node#authentication
http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?node#authentication
http://www.slideshare.net/pgodby/getting-started-with-ibm-watson-apis-sdks

44 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Chapter 4. News Classification

Watson Natural Language Classifier (NLC) provides a machine-learning classifier that
combines complex convolutional neural networks with a sophisticated language model to
learn and understand language. Behind this complexity, the Watson Natural Language
Classifier service is easy to use.

This use case shows a web application, named News Classification, that calls a classifier that
is already trained in using public news data, and the classifier responds with the type of news
the text is related to.

This chapter describes how to use the Natural Language Classifier service to develop a
sample use case in Java that classifies news text into five types:

� Business
� Entertainment
� Politics
� Technology
� Sports

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

4

© Copyright IBM Corp. 2017. All rights reserved. 45

4.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Prepare training and test data
� Create and train a Natural Language Classifier instance
� Run test queries
� Evaluate the classifier with test data and check its accuracy
� Deploy a Java application that uses the classifier with Eclipse or with Git.

4.1.2 Prerequisites

Be sure the following prerequisites are met:

� Review Chapter 1, “Basics of Natural Language Classifier service” on page 1.

This chapter is important to help you understand the basics of Natural Language
Classifier.

� Create a Natural Language Classifier service instance as described in Chapter 2,
“Creating a Natural Language Classifier service in Bluemix” on page 11.

� Some Java programming language background

A basic Java programming background is important to understand the code.

� IBM Bluemix account

Bluemix is an open standard, cloud platform for building, running, and managing
applications and services. A Bluemix account is essential because the sample Java web
application is deployed into it.

For more information, see the Bluemix website.

These software requirements are also necessary:

� Access to a Windows desktop or Linux.

� IBM SDK, Java Technology Edition, Version 8, which you can download. This prerequisite
applies if you are using Eclipse.

� If you use Eclipse, then install and set up Eclipse Neon with Bluemix tools.

� If you are using Git client:

– Git download and installation

– Cloud Foundry download and installation
46 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.Bluemix.net
https://developer.ibm.com/javasdk/downloads/
https://git-scm.com/downloads
https://github.com/cloudfoundry/cli/releases
https://www.ibm.com/cloud-computing/bluemix/eclipse

4.1.3 Expected results

Figure 4-1 shows the home page of the News Classification web application that you can test.
Here the user inputs text.

Figure 4-1 News Classification home page

A user enters news information in the Text input field, and clicks Classify News (Figure 4-2).

Figure 4-2 Input text on news classification application
Chapter 4. News Classification 47

https://nlc-201-news-java.mybluemix.net/

Then, the application lists the classification type in the Top Class field (Figure 4-3). In this
case, Top Class indicates news input is sports.

Figure 4-3 News classification results

To see the classification details, click the double down-arrow icon to the right of the top class
to expand classification information.

Figure 4-4 shows the expanded details panel of the Top Class. It shows the confidence of the
response and the other classes and confidences from the most confidence to least
confidence.

Figure 4-4 Classification details for the sample input text
48 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The last function is the Feedback button for users who do not agree with the top class result.
It saves the feedback suggestion for analysis by subject matter experts (Figure 4-5).

Figure 4-5 Feedback function

4.2 Architecture

An overview of the application architecture is shown in Figure 4-6 and is described next.

Figure 4-6 News Classification architecture diagram

The steps in the diagram are as follows:

1. The user inserts news content, as text, into the web interface and requests that it be
classified (clicks the Classify Text button).

2. The news text is sent to the application (enterprise back end) for processing.

3. The enterprise application (web service) calls the Watson Natural Language Classifier
service to evaluate what type of news is the best match for input text.

4. The Natural Language Classifier service returns the response to the enterprise
application.

Public network Bluemix network

Enterprise
application

NATURAL LANGUAGE
CLASSIFIER

CLOUDANT
NOSQL DB

Web application
Front-end

1

6

7

12

2

5

8

11

43

109

User enters news content into web front-end

News content is sent to Web back-end

Web service calls NLC instance with news content

NLC instance classifies the news

Web service sends the response to front-end

News classification information is shown to user

1

2

3

4

5

6

User enters feedback if classification is wrong

Feedback is sent to Web back-end

Web service calls database to persist feedback

Persistence OK or Fail response

Web back-end returns response to front-end

Feedback persistence response is shown to user

7

8

9

10

11

12

User
data flow
Chapter 4. News Classification 49

5. The enterprise application forwards the response to the web application front-end.

6. The web interface manages the data information, performs some front-end processing,
and makes the response available for the user to view.

7. The other operation is user feedback provided if the news classification is incorrect. The
user clicks Feedback and submits the correct classification.

8. The web application front-end passes the user feedback request to the web application
back end.

9. The web application back-end calls the IBM Cloudant® noSQL DB service to persist the
feedback.

10.The database responds with the insert operation result to the enterprise application.

11.The enterprise application passes the response to the web front-end.

12.The user interface displays the results to the user.

Although in this use case, the web application is deployed to the IBM WebSphere® Liberty
profile, it could also be deployed to Tomcat.

For more information about application server hosting for enterprise applications, see About
WebSphere Liberty and Apache Tomcat.

4.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 4.4, “Step-by-step implementation” on page 50. This version takes you through
the key steps to integrate the IBM Watson services with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 4.5,
“Quick deployment of application” on page 97.

4.4 Step-by-step implementation

Implementing this use case involves the following steps:

1. Downloading the project from Git.
2. Creating a Cloudant noSQL DB service instance.
3. Reviewing the project structure.
4. Preparing training data.
5. Creating and training the classifier.
6. Querying the trained classifier.
7. Evaluating the results and updating the training data.
8. Deploying the application.
9. Testing the application.
50 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://developer.ibm.com/wasdev/websphere-liberty/
https://developer.ibm.com/wasdev/websphere-liberty/
http://tomcat.apache.org/

4.4.1 Downloading the project from Git

This section explains how to download the sample News Classification project (incomplete
version of the application), which is available at:

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

You can use either of the following options:

� Import the sample Git project to Eclipse
� Clone the sample Git project by using the Git command line

Import the sample Git project to Eclipse
Install and configure Eclipse Neon with Bluemix Tools and Java SDK 8. The information to
download and install the software is listed in 4.1.2, “Prerequisites” on page 46.

After setting up Eclipse in your workstation, complete these steps:

1. Import the Git project into Eclipse. Select File → Import. When the Import window opens
(Figure 4-7) select Git → Projects from Git and click Next.

Figure 4-7 Import a Git project to Eclipse
Chapter 4. News Classification 51

https://github.com/snippet-java/redbooks-nlc-201-news-java-student
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

2. In the next window (Figure 4-8), select Clone URI.

Figure 4-8 Import Projects from Git: Clone URI

3. In the next window (Figure 4-9), add the following URI, and click Next:

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

Figure 4-9 Select URI for Git repository in Eclipse
52 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4. The Git branches are listed (Figure 4-10). Select the master branch and click Next.

Figure 4-10 Master branch selected to import Git project

5. A local version of the Git project will be created. Specify the destination directory in your
local workstation and click Next (Figure 4-11).

Figure 4-11 Local storage location for Git project
Chapter 4. News Classification 53

6. The last steps are to configure the Eclipse project. In the next window (Figure 4-12) select
Import Existing Eclipse Project and click Next.

Figure 4-12 Import existing Eclipse project option

7. Confirm your settings (Figure 4-13) and click Finish.

Figure 4-13 Project selected confirmation
54 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The result shows that the Eclipse project is imported into the workspace (Figure 4-14). This
project will be the platform for other steps in this chapter.

Figure 4-14 Project imported with success from Git

Clone the sample Git project by using the Git command line
If you do not want to use Eclipse for this use case, you can use Git. The requirement for this
section is to install Git before you start. See 4.1.2, “Prerequisites” on page 46.

Complete the following steps:

1. Open a command prompt and set up Git by using the following command:

git config --global http.sslVerify false

2. Choose an empty directory to download the project code.

3. Run the command in the selected directory:

git clone
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

4. Change to the redbooks-nlc-201-news-java-student directory:

cd redbooks-nlc-201-news-java-student

5. Check the project content (Example 4-1):

Example 4-1 Project content

Directory of C:\Users\IBM_ADMIN\student\redbooks-nlc-201-news-java-student
1.031 .classpath
1.101 .project
<DIR> .settings
<DIR> lib
274 manifest.yml
1.755 pom.xml
2.493 README.md
<DIR> resources
<DIR> src
<DIR> target
<DIR> WebContent
Chapter 4. News Classification 55

4.4.2 Reviewing the project structure

Several project components are important to highlight:

� The com.ibm.itso.ed600r01.nlc.news package in the src folder contains the
PrepareData, CreateAndTrain, Query, and Evaluate Java classes required by the process
to use the Natural Language Classifier service that is described in 1.1, “Using the Natural
Language Classifier service” on page 2.

� The com.ibm.itso.ed600r01.nlc.news.beans package in the src folder contains beans
that are used to communicate the web front-end with web back-end by using Java to
JSON format.

� The com.ibm.itso.ed600r01.nlc.news.ws package includes the Java web service to
access the back-end application This code receives news text to classify and feedback
classification from users.

� The resource folder contains the training and test data set samples that are used in this
use case.

� The pom.xml file has all Java package dependencies for this project.

� The manifest.yml files contains the template to deploy the application in Bluemix.

4.4.3 Creating a Cloudant noSQL DB service instance

Another requirement for the web application is to be prepared for client feedback about the
quality of the classification. A database repository will be created to save client feedback that
can be used by the SMEs to improve the quality of the classification.

You can choose one of the following ways to create the Cloudant noSQL service:

� From Bluemix
� From the command line
56 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Create a Cloudant noSQL DB service instance from Bluemix
Complete the following steps:

1. Open the IBM Bluemix Catalog page (top menu on the right) and select Services → Data
& Analytics from the left menu and click Cloudant noSQL DB (Figure 4-15).

Figure 4-15 Cloudant noSQL service on Bluemix

2. Click Create to create the service instance (Figure 4-16).

Figure 4-16 Create Cloudant noSQL DB service

The service name will be used to configure the application when it is deployed.
Chapter 4. News Classification 57

Create a Cloudant noSQL DB service from command line
To create the service, follow these steps:

1. Download and install the Cloud Foundry software on your workstation.

2. Open a command prompt.

3. Run cf login and supply the email and password for you Bluemix account as shown in
Example 4-2.

Example 4-2 Run cf login

cf login
 API endpoint: https://api.ng.bluemix.net

Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
OK
Targeted org <YOUR_ORGANIZATION>

4. Select a Bluemix space on which to host the service as shown in Example 4-3.

Example 4-3 Select a space

Select a space (or press enter to skip):
1. dev
2. qa
3. Prod
Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)
User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

5. Run the following command to create a Cloudant noSQL DB service instance
(Example 4-4 on page 59):

cf create-service <service> <service_plan> <service_instance>

The command has these values:

cf create-service The Cloud Foundry command to create a service instance

<service> The name of the service you want to create an instance of;
Cloudant noSQL DB in this case.

<service_plan> The name of the plan, in this example the plan name is Lite.

<service_instance> The name you provide for your service instance. You use this name
to refer to your service instance in other commands when you
configure and deploy the News Classifier application. If your
service instance includes spaces, surround the service instance
name with double or single quotation marks depending on the
operating system where you run the command prompt. In this
example the service instance name is News Classifier Feedback.

Important: Take note of the space in which you are creating the service. The application
and the Cloudant noSQL DB service must be deployed in the same space.
58 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry/cli/releases

Example 4-4 The cf create-service command

cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"
Creating service instance News Classifier Feedback in org
<YOUR_ORGANIZATION>/ space dev as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...
OK

6. List the service information by running the cf service <service_name> command to
confirm that it was created successfully (Example 4-5).

Example 4-5 Confirm successful creation

cf service " News Classifier Feedback"

Service instance: News Classifier Feedback
Service: cloudantNoSQLDB
Bound apps:
Tags:
Plan: Lite
Description: Cloudant NoSQL DB is a fully managed data layer designed for
modern web and mobile applications that leverages a flexible JSON schema.
Cloudant is built upon and compatible with Apache CouchDB and accessible
through a secure HTTPS API, which scales as your application grows. Cloudant is
ISO27001 and SOC2 Type 1 certified, and all data is stored in triplicate across
separate physical nodes in a clus-ter for HA/DR within a data center.
Documentation url:
https://console.ng.bluemix.net/docs/#services/Cloudant/index.html#Cloudant
Dashboard:
https://cloudantbroker.ng.bluemix.net/dashboard/9e763bb2-c702-4bb6-8547-f30b34c
25b87

Last Operation
Status: create succeeded
Message:
Started: 2017-02-16T20:20:04Z
Updated:

4.4.4 Preparing training data

When preparing training data, an important place to start is by choosing a good data set. The
features of a good data set are explained in this section.

The raw data in some situations is already in the required comma-separated value (CSV) file
format, but in other situations you can find data in other formats. In this case, converting the
source format into CSV format needs some data preparation. Even if the file is a CSV file, it
might need some data preparation to be ready to use as input to the classifier. Those steps
are explained in this section.

The strategy here is to create two data sets:

� Training data to train the classifier.

� Test data to test the classifier. The test data set will be used in 4.4.7, “Evaluating results
and updating training data” on page 73.

Figure 4-17 on page 60 shows the general activities to prepare the training and test data sets.
Chapter 4. News Classification 59

Figure 4-17 Activities for preparing training and test data

Figure 4-18 shows a snapshot of the training data used in the News Classification use case.
Column “A” includes a list of news text. Column “B” has one of five classifications: business,
entertainment, politics, technology, and sports.

Figure 4-18 Training data for news classification

For this use case two CSV files were built manually, one for training the classifier and one for
testing the classifier. To obtain the CSV files for this use case, go to:

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

Verify data source

Build a program or manually
create a CSV file
from raw data.

Data must adhere to
NLC training data requirements

Generate training data set in
CSV format.

Build a program or manually
verify that data adheres to

NLC training data
requirements

Generate test data set in
CSV format

Data source is in raw format
(Text or database)

Data source is in CSV format
60 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

Find the following files in directory /redbooks-nlc-201-news-java-student/resources/:

� news-train.csv

Training set to be used for bootstrap classification when creating the classifier in 4.4.5,
“Creating and training the classifier” on page 63.

� news-test.csv

Test set to be used to evaluate the quality of the classification results in 4.4.7, “Evaluating
results and updating training data” on page 73.

To build a training data set with an acceptable syntax and good quality, consider these
guidelines:

� The training and test sets are prepared for UTF-8 format.

� If you have a comma (,) in the text, insert quotes around the text.

� The maximum length of a text value is 1024 characters.

� The training and test data have at least five records (rows) and no more than 15,000
records.

� Limit the length of input text to fewer than 60 words.

� Limit the number of classes to several hundred classes.

For more information about preparing the training data, see Using your own data to train the
Natural Language Classifier.

If you want to prepare your own data in CSV format, it must have two columns, the first one
with the text to classify and the second column with classification types (business,
entertainment, politics, technology, sports). You can validate the data by using the
PrepareData program, which is described later.

Data can be prepared in two ways:

� Prepare training data on Eclipse
� Prepare training data on the command line

Prepare training data on Eclipse
Complete these steps:

1. On Eclipse (see project in Figure 4-14 on page 55), right-click the PrepareData.class and
select Run As → Run Configurations (Figure 4-19).

Figure 4-19 Run as Java main program in Eclipse

2. On the Main tab, confirm that com.ibm.itso.ed600r01.nlc.news.PrepareData is selected
(Figure 4-20 on page 62).
Chapter 4. News Classification 61

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

Figure 4-20 PrepareData class selected class to run

3. In the Arguments tab, for Program arguments, enter the name of the CSV file to be
prepared and click Run (Figure 4-21).

Figure 4-21 Arguments to call PrepareData class

This program checks text constraints such as column size, special characters such as \n \r
and others. The output is shown in Figure 4-22.

Figure 4-22 PrepareData output on Eclipse
62 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Prepare training data on the command line
Complete these steps:

1. Open a command prompt on your computer.

2. Set up java.exe in your path.

3. Change to the resources directory of the project that was prepared in “Clone the sample
Git project by using the Git command line” on page 55:

cd redbooks-nlc-201-news-java-student/resources

4. Run the following scripts, which, in turn, run Java commands:

– For Windows: PrepareData.bat <csv file path>
– For Linux: ./PrepareData.sh <csv file path>

The output is shown in Example 4-6.

Example 4-6 Output

./PrepareData.sh news-train.csv
Preparing File news-train.csv to be ready for Natural Language Classifier input
Fixing 1024 chars for text length, handling special chars like line feed and form
at to UTF-8 format
Data prepared!

4.4.5 Creating and training the classifier

The news-train.csv (shown in the examples in 4.4.4, “Preparing training data” on page 59)
will be used to create and train the classifier. This step is called bootstrap classification. The
bootstrap classification (Figure 4-23), can be validated by subject matter experts (SMEs) for
accuracy using other data, called test data, and if necessary correct classification problems.

Figure 4-23 Bootstrap classification

This step is highly sensitive to good training data provided from the prepare data step and can
be continuously improved depending on the target accuracy level, using other data sets.

Note: The CSV file path can be the file name only if it is in the resources project folder.

Note: You must create an Natural Language Classifier service instance in Bluemix as
described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on
page 11 before performing the steps in this section.

New
data
set

NLC
Classifier

Initial
pass at
intent

classes

Bootstrap classification
Chapter 4. News Classification 63

The program to create and train the classifier is simple. Figure 4-24 shows the activities to
create and train the classifier.

Figure 4-24 Create and train activities

The figure shows the following activities:

1. The CSV file created from the training data set in 4.4.4, “Preparing training data” on
page 59 is used as input to create and train the classifier.

2. The service credentials (username and password) that you obtained when you created the
Natural Language Classifier service instance are needed when you create the classifier.

3. Choose a name for the classifier.

4. The classifier language must match the language that is used to train the classifier.

5. Run the program to create the classifier specifying the information listed in the previous
steps.

6. After the program runs successfully, get the classifier ID which will be used later.

For more information about creating a classifier, see the Watson Developer Cloud website.

For the use case in this chapter, a Java program is provided to create and train the classifier.
The Java class is CreateAndTrain.class. The next steps describe running it.

The program can be used in one of the following two ways to create and train the classifier:

� Create and train the classifier on Eclipse
� Create and train the classifier on the command line

Get the training CSV file ready
for classifier creation in the prepare

data step

Get the username and password
from the NLC service instance

Choose the classifier language to
match the training data language

Choose a name for the classifier
to be created

Run the program that creates and
trains the classifier

Get the classifier ID information
from the program output for the

next step
64 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier

Create and train the classifier on Eclipse
Complete the following steps:

1. On Eclipse, right-click the CreateAndTrain.class class and select Run As → Run
Configurations (Figure 4-19 on page 61).

2. On the Main tab, confirm that com.ibm.itso.ed600r01.nlc.news.CreateAndTrain is
selected (Figure 4-25).

Figure 4-25 CreatedAndTrain class is selected

3. In the Arguments tab, enter the following program arguments to create a classifier (see the
example in Figure 4-26 on page 66):

<csv file path> <user> <password> <classifier_name> <language>

The arguments have the following meanings:

csv file path The location in the local computer of the CSV file that will be
uploaded as a training set, for example news-train.csv. The CSV
file path can be just the file name if the file is currently in the
resources project folder.

user The username from the Natural Language Classifier service
instance.

password The password from the Natural Language Classifier service
instance.

classifier_name The name for the classifier.

language The language used to train the classifier.
Chapter 4. News Classification 65

Figure 4-26 Define arguments to call create and train program in Eclipse

4. After specifying the arguments, click Run.

The important point is that user and password arguments match the ones that were
obtained when the Natural Language service instance was created.

The program is executed as a Java application in Eclipse (Figure 4-27).

Figure 4-27 Create and training program output

The last activity (shown in Figure 4-24 on page 64) is to get the classifier ID to be used in the
next step described in 4.4.6, “Querying the trained classifier” on page 68.

The program output shows information about the classifier creation returned by the Watson
API. It includes classifier_id, the language for which the classifier was created, the name of
the classifier, the status of the classifier, and more.
66 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Important values shown in Figure 4-27 on page 66 are:

� The classifier_id parameter: This is the ID of the new trained classifier. It will be used in
4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application”
on page 85).

� The status parameter: Shows that the classifier is not ready for queries. It will be available
for the next step (query) only when status changes to Available.

Create and train the classifier on the command line
Complete the following steps:

1. Open a command prompt in your computer.

2. Set up java.exe in your path

3. Change to the resources directory of the project prepared in “Clone the sample Git project
by using the Git command line” on page 55. Example:

cd redbooks-nlc-201-news-java-student/resources

4. Run the following scripts:

– For Windows:

CreateAndTrain.bat <csv file path> <user> <password> <classifier_name>
<lan-guage>

– For Linux:

./CreateAndTrain.sh <csv file path> <user> <password> <classifier_name>
<lan-guage>

The command has the following information:

csv file path The location in the local computer of the CSV file that will be
uploaded as a training set, for example news-train.csv. The CSV file
path can be just the file name if it is currently in the resources project
folder.

user The user name obtained from Natural Language Classifier service
instance.

password The password obtained from the Natural Language Classifier service
instance.

classifier_name The name for the classifier.

language The language used to train the classifier.

The output is similar to Example 4-7.

Example 4-7 Output

CreateAndTrain.bat news-train.csv 53bf6841-xx4c-4812-9fe5-fc25af43876f
hJy62XXY7fot "Class News Simulator" en

java -cp
../target/redbooks-nlc-201-news-java-student.jar;../lib/opencsv-3.3.jar;../lib/
java-sdk-3.
5.3-jar-with-dependencies.jar com.ibm.itso.ed600r01.nlc.news.CreateAndTrain
news
-train.csv 53bf6841-b04c-4812-9fe5-fc25af43876f hJy62p0Y7fot "Class News
Simula-tor" en
{

Chapter 4. News Classification 67

 "classifier_id": "f5bbbbx174-nlc-3736",
 "language": "en",
 "name": "Class News Simulator",
 "status": "Training",
 "created": "2017-02-14T18:37:39.887",
 "status_description": "The classifier instance is in its training phase, not y
et ready to accept classify requests",
 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/
classifiers/f5bbbbx174-nlc-3736"
}

The program output shows information about the classifier creation returned by the Watson
API. It includes classifier_id, the language for which the classifier was created, the name of
the classifier, the status of the classifier, and more.

Important values shown in Example 4-7 on page 67 are:

� The classifier_id parameter: This is the ID of the new trained classifier. It is used in
4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application”
on page 85).

� The status parameter: Shows that the classifier is not ready for queries. It will be available
for the next step (query) only when status changes to Available.

4.4.6 Querying the trained classifier

After the classifier is trained, you can query it. In this step you use the Watson API to send
text to the trained classifier. The service returns the top matching class and other possible
matches with the associated confidence.

The flow of steps to query the classifier are shown Figure 4-28 on page 69.
68 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-28 Query the classifier flow

The figure shows the following steps implemented in the Java Query.class created for this
use case to query the classifier:

1. Get the classifier ID from the create and train classifier step described in 4.4.5,
“Creating and training the classifier” on page 63.

2. Get the username and password from the Natural Language Classifier service instance
created as described in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11.

3. Select the news text message that will be used as input to query the classifier for
classification.

4. Check the status of the classifier until it is Available.

5. Run the query. Input the parameters collected in the previous steps to a Java program to
query the classifier.

The Java class created for this step in the News Classification use case is Query.class.

The program can be used in one of the following two ways to query the trained classifier:

� Query the trained classifier with Eclipse
� Query the trained classifier with the command line

Get username and password
from create service step

Check if classifier is available

Check query results Query the classifier

Get the classifier id from create
and train classifier step

classifier not available

classifier available

Select news text to test
Chapter 4. News Classification 69

Query the trained classifier with Eclipse
Complete the following steps to run the Java Main program on Eclipse:

1. Right-click the Query.class. class and select Run As → Run Configurations.

2. On the Main tab confirm that com.ibm.itso.ed600r01.news.Query is selected
(Figure 4-29).

Figure 4-29 Query class execution on Eclipse

3. In the Arguments tab, enter the following parameters (see the example in Figure 4-30 on
page 71):

<classifier_id> <user> <password> <query_text>

The arguments have the following meanings:

classifier_id The classifier ID obtained in 4.4.5, “Creating and training the
classifier” on page 63.

user The username from the Natural Language Classifier service instance
credentials obtained when you created the service instance as
described in Chapter 2, “Creating a Natural Language Classifier
service in Bluemix” on page 11.

password The password from the Natural Language Classifier service instance
credentials obtained when you created the service instance.

query_text The news text to classify. If the text has more than one word, enclose
the text in double quotation marks. For example, use the following
query text as a parameter: “He supposedly died at the end of the
drama’s fourth season. But now Wentworth Miller is back as the
gritty Michael Scofield in the action-packed Prison Break
season five trailer.”
70 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-30 Query program execution on Eclipse

4. After specifying the arguments, click Run.

5. Check the results. Figure 4-31 shows an example of the API response when running a
query in this use case.

Figure 4-31 Query results output
Chapter 4. News Classification 71

Query the trained classifier with the command line
Complete these steps:

1. Open a command prompt in your computer.

2. Set up java.exe in your path.

3. Change to the resources directory of the project prepared in 4.4.1, “Downloading the
project from Git” on page 51:

cd redbooks-nlc-201-news-java-student/resources

4. Run the following scripts:

– For Windows:

Query.bat <classifier_id> <user> <password> <query_text>

– For Linux:

./Query.sh <classifier_id> <user> <password> <query_text>

The command has the following values:

classifier_id The classifier ID obtained in 4.4.5, “Creating and training the
classifier” on page 63.

user The username from the Natural Language Classifier service instance
credentials obtained when you created the service instance as
described in Chapter 2, “Creating a Natural Language Classifier
service in Bluemix” on page 11.

password The password from the Natural Language Classifier service instance
credentials obtained when you created the service instance.

query_text The news text to classify. If the text has more than one word, enclose
the text in double quotation marks.

The output is similar to Example 4-8.

Example 4-8 Output

$./Query.sh f5b432x172-nlc-3699 53bf6841-b04c-4812-9fe5-fc25af43876f hJy62p0Y7fot
"economic growth slowed sharply in the fourth quarter as a plunge in shipments of
soybeans weighed on exports, but steady consumer spending and rising business
investment pointed to sustained strength in domestic demand"
Status of Classifier f5b432x172-nlc-3699 - AVAILABLE
Results for query economic growth slowed sharply in the fourth quarter as a plunge
in shipments of soybeans weighed on exports, but steady consumer spending and
rising business investment pointed to sustained strength in domestic demand
{
 "classes": [
 {
 "confidence": 0.9906648553297829,
 "class_name": "business"
 },
 {
 "confidence": 0.004622361487155504,
 "class_name": "politics"
 },
 {
 "confidence": 0.0018452044719471966,
 "class_name": "technology"
 },
72 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

 {
 "confidence": 0.0016647389251637564,
 "class_name": "sports"
 },
 {
 "confidence": 0.0012028397859506108,
 "class_name": "entertainment"
 }
],
"classifier_id": "f5b432x172-nlc-3699",
"text": "economic growth slowed sharply in the fourth quarter as a plunge in
ship-ments of soybeans weighed on exports, but steady consumer spending and rising
business investment pointed to sustained strength in domestic demand",
"top_class": "business",
"url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers
/f5b432x172-nlc-3699"
}

Query classifier response
The following information in the query response is important:

� status shows the classifier status. When the classifier is ready to accept requests, the
status is changes from Training to Available. Before running the query you should check
the status of the classifier to confirm that it is available to accept queries. If the status is
not Available, the program ends.

� classes is an array that contains the list of defined class labels and the confidence for
each. This array represents the query results in JSON format. The classes in the array are
ordered in a descending order of confidence, that is, the class label with the highest
confidence is always the first element in the classes array.

� Other parameters in the query response are:

– classifier ID
– text: Shows the input text in the query request
– top_class: Class with the highest confidence
– url to reach the classifier.

4.4.7 Evaluating results and updating training data

The objective of this step in the process is to improve the results returned by the classifier. It
is a critical step to ensure that the classifier will perform successfully in a production
environment.

These are the main approaches you can follow for evaluating results:

� Evaluating results with the Natural Language Classifier toolkit interactive wizard

� Evaluating results programmatically

– Running the program with Eclipse

– Running the program with the command line
Chapter 4. News Classification 73

Evaluate results with the Natural Language Classifier toolkit interactive
wizard
The first approach to evaluation is validation by SMEs and adjusting the classifier if accuracy
is not aligned with the desired outcome. You can also include customer feedback providing a
way for users to input their feedback about the classification results.

Figure 4-32 provides an overview of the process.

Figure 4-32 Manual validation of classifier

Manual validation activities are shown in more detail in Figure 4-33.

Figure 4-33 Manual results evaluation activities

The figure shows the following activities:

1. Run query with a test data set to test an existing classifier. This step can be performed by
a system administrator or SME.

2. Get the query results. The results can be collected by a test program, for example by
running a single query in the classifier or a set of queries from a test data source and

SMEs

New
data
set

NLC
Classifier

Initial
pass at
intent

classes

Final
intent

classes

Run query with test data against
an existing classifier Get the result

SMEs analyze and evaluate the
results

Review text with incorrect or low
confidence classifications

Add them to training data

Create a new classifier with
new training data

Result is not satisfactory

Result is satisfactory
74 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

collecting responses. Another approach is to collect feedback from customers in a
production web application and save the feedback to a database.

3. SMEs analyze and evaluate the query results. For example, they determine if the top class
is correct or if the level of accuracy is satisfactory based on the required threshold, for
example 95% of precision.

4. If the results are satisfactory, the evaluation process ends.

5. If the results are not satisfactory, the SMEs make changes to adjust the training data for
the text that was incorrectly classify.

6. Create a new training data set with the new data and create a new classifier with the new
training data.

These steps can be executed using the Natural Language Classifier toolkit in Bluemix:

1. Log in to Bluemix and scroll down to the Services section.

2. Click the Natural Language Classifier service.

3. Click the Manage tab.

4. Click Access the beta toolkit (see Figure 4-34).

Figure 4-34 Accessing the Natural language Classifier toolkit
Chapter 4. News Classification 75

5. Select the News Classification classifier that was created in 4.4.5, “Creating and training
the classifier” on page 63 and click the (next) arrow (Figure 4-35).

Figure 4-35 News Classifier selection for evaluation

6. On the next page, click Use test data to load a test CSV file, or enter text in the input field
and click Classify (Figure 4-36).

Figure 4-36 Options for input test data

In this example, click Use test data and select the news-test-nlc-toolkit.csv file in the
resources folder of the sample project (Figure 4-37 on page 77).
76 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-37 Test data selection

You receive two messages indicating that the test CSV file was loaded successfully
(Figure 4-38).

Figure 4-38 Test data loading completion

Also, you receive information about how the classifier segmented the test data into news
categories. Figure 4-39 shows text that should have been classified as technology but
was incorrectly classified business as the top class. In this case, mark this classification as
incorrect.

Figure 4-39 Handing incorrect classification
Chapter 4. News Classification 77

Figure 4-40 shows the correct classification defined by SMEs. The classifier classified the
text correctly as sports type.

Figure 4-40 Handling correct classifications

7. SMEs evaluate each text classification from the test data set. Figure 4-41 shows the
results.

8. After all text classification results are evaluated, click Add to training data to create a new
training data set to improve the classifier performance. Note that a new classifier must be
created with the new training data.

Figure 4-41 Evaluation results
78 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

9. The training data window opens (Figure 4-42). Review the information. If text is marked by
the SME as wrongly classified, the toolkit provides a suggestion for a class.

Figure 4-42 Training page

10.Select incorrectly classified text and drag the correct class from the Classes section on the
left to the Texts section on the right.

Figure 4-42 shows that the politics class was dragged to the text that was classified as
business before.

11.Download the corrected CSV file by clicking the download icon and add the data to the
training data set.

12.Create a new classifier with the new and improved training data set. Click Create
classifier (Figure 4-42) to create the new classifier.

This process is continuous until the classifier reaches a good value for accuracy, aligned with
business needs, for example 80% correct classification.

Evaluate results programmatically
You can automate the process described in “Evaluate results with the Natural Language
Classifier toolkit interactive wizard” on page 74 by creating a program that queries an existing
classifier using a test data set.The test data set has the correct classes defined by the
previous work of the SMEs. If accuracy results are not satisfactory, the test data is added to
the training data set and used to train a new classifier. This approach is described in
Figure 4-43 on page 80.

Note: The classifier ID of the new classifier is not the same as the classifier ID of the
original classifier. The classifier ID must be updated in the programs that use it to
access the new classifier.
Chapter 4. News Classification 79

Figure 4-43 Automated validation of classifier

The activities are shown in Figure 4-44.

Figure 4-44 Evaluation automated

These are the activities:

1. A test data set was prepared and is available.

2. The SMEs defined the accuracy threshold, for example 70%, according to business
requirements.

3. Test data set and accuracy requirement are input to the evaluation program.

4. The evaluation program queries the classifier for each line in the test data set.

5. The results are evaluated and the accuracy calculated.

6. If the accuracy is below the threshold, create a new training data set and create and train
a new classifier.

New
training

set

NLC
classifier

Initial
pass at
intent

classes

Final
intent

classes

Use test data set to test
classifier accuracy

Define the accuracy requirement

Run evaluation program

Create a new classifier with
new training data

Accuracy is not ok

Accuracy is ok
80 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-45 shows a high-level flow of the Evaluate program.

Figure 4-45 Evaluate program flow

The figure shows the following steps in the Evaluate program:

1. Get classifier ID.

2. Get Natural Language Classifier service credentials (username and password).

3. Load the test CSV file.

4. For each text (row) in the test CSV file query the classifier.

5. Collect the classification results, that is, save the results in an ArrayList structure.

6. Compare results. The classifier results for each line of text in the test CSV file is compared
with the classification provided by SMEs for the same text. The number of correct
classifications is computed.

7. Calculate the accuracy with the following formula:

(Number of correct classifications) / (number of texts classified)

Get classifier ID Get NLC service instance
credentials

Load the test CSV file

For each news text in the CSV
file (row), query the classifier

Collect results

Display final accuracy result

Calculate
accuracy = Number of correct
classifications / total number of
texts classified

Compare results with
classification in CSV file

provided by SMEs
Chapter 4. News Classification 81

Two main methods are defined in the Evaluate.class program:

� batchClassify

Loads the test CSV file and classifies each line of text. It returns an ArrayList; each
element contains the classification by the classifier and by the SME for the same line of
text. Figure 4-46 provides a flow diagram for this class.

Figure 4-46 The batchClassify method of Evaluate class program

� generateAcuracy

This method receives the ArrayList from batchClassify, determines the correct and
incorrect classifications and calculates the accuracy. Figure 4-47 provides a flow diagram
for this class.

Figure 4-47 The generateAcuracy method of Evaluate class

Receive the classifier ID, user, password
and test CSV file to classify

Call query program to query the classifier.

Save each classification returned by the
classifier with the corresponding classification

provided by the SME in ArrayList

Return
ArrayList of classifications provided by

classifier and SME

Loop through CSV file rows

Load test CSV file

Receive ArrayList from the
batchClassify method

Return accuracy = number of correct
classifications / total number of classifications

Compare the first element of each item
(class defined by SME) with the second
element (news classified by classifier)

Loop through the ArrayList
82 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Run the Evaluate program with Eclipse
Complete the following steps to run the Evaluate program with Eclipse:

1. Right-click Evaluate.class and select Run As → Run Configurations.

2. On the Main tab confirm that com.ibm.itso.ed600r01.news.Evaluate is selected
(Figure 4-48).

Figure 4-48 Evaluate program configuration when running on Eclipse

3. In the Arguments tab, enter the following parameters and click Run (Figure 4-49 on
page 84):

<classifier_id> <user> <password> <csv_file_test>

The parameters have the following meanings:

classifier_id The classifier ID created in the create and train phase.

user The username from the Natural Language Classifier service instance.

password The password from the Natural Language Classifier service instance.

csv_file_test The location in the local computer of the test CSV file. For this example,
use the news-test-nlc-toolkit.csv file in the resource folder.
Chapter 4. News Classification 83

Figure 4-49 Evaluate arguments for execution on Eclipse

The final accuracy is output, as Figure 4-50 shows. In this case, the figure shows 71,43% of
correct classification from the test set.

Figure 4-50 Evaluate program output on Eclipse

Run the Evaluate program from the command line
Follow these steps:

1. Open a command prompt in your computer.

2. Set up java.exe in your path.

3. Change to the resources directory of the project.

cd redbooks-nlc-201-news-java-student/resources
84 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4. Run the Java command

– For Windows:

Evaluate.bat <classifier_id> <user> <password> <csv_file_test>

– For Linux:

./Evaluate.sh <classifier_id> <user> <password> <csv_file_test>

The command has these values:

classifier_id The classifier ID created in the create and train phase.

user The username from the Natural Language Classifier service instance.

password The password from the Natural Language Classifier service instance.

csv_file_test The location in the local computer of the test CSV file. For this example,
use the news-test-nlc-toolkit.csv file in the resource folder.

The output is as follows:

$./Evaluate.sh ff18c7x157-nlc-5650 53bf6841-XXXc-4812-9fe5-fc25af43876f
hJy62XXX7fot news-test-nlc-toolkit.csv
71,43 % of accuracy

This output shows 71,43% of correct classification from the test data set.

Manage evaluated results and update the training data
Using the output from the Evaluate program, the SMEs can decide, based on business
needs, whether they have to create a new classifier using the test data set to improve
performance.

The Evaluation of the classifier performance can be continuous depending on business
needs and user feedback.

Figure 4-51 shows an approach to evaluate the classifier performance by saving user
feedback with the information needed for analysis in a database. SMEs analyze the feedback
and decide whether the classifier must be improved.

Figure 4-51 Classifier Feedback process in the application program

4.4.8 Deploying the application

This section shows two options for deploying the application to Bluemix:

� Deploy the application from Eclipse
� Deploy the application from command line

Application program SMEs

User enters classification
feedback

Application saves feedback
with all information needed

for analysis

SMEs analyze feedback
data and decide whether to

improve the classifier

Database
Chapter 4. News Classification 85

Deploy the application from Eclipse
To deploy the application from Eclipse, the Bluemix tools must be installed as listed in 4.1.2,
“Prerequisites” on page 46. You will use the Bluemix Eclipse plug-in to deploy the application
to Bluemix.

Complete the following steps:

1. Right-click project nlc-201-new-java-student in Eclipse and select Run As → Run on
Server.

2. Under Select the server type, click IBM → IBM Bluemix and click Next (Figure 4-52).

Figure 4-52 Select Bluemix server to host application

3. Enter the Bluemix account information (email and password) and click Next (Figure 4-53
on page 87).
86 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-53 Username and password for Bluemix account

4. Select the Bluemix space that will host the application (Figure 4-54), By default, dev space
is available if no other is created by the user. Click Next.

Figure 4-54 Select space to deploy application
Chapter 4. News Classification 87

5. The application selected to be deployed to Bluemix is recognized. Click Finish
(Figure 4-55).

Figure 4-55 Application selected for deployment to Bluemix

6. The application details (Figure 4-56 on page 89) show the required configuration before
the plug-in starts the deployment on the Bluemix.

Buildpack URL defines the application server to which the application is deployed. If this
field is empty, the application will be hosted by IBM WebSphere Liberty profile.

If you want to deploy into Apache Tomcat you will need to use the Java Buildpack URL.
See the list of community build packs.

Select Save to manifest file and click Next.
88 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created

Figure 4-56 Buildpack selection to host application

7. The Launch deployment window (Figure 4-57) shows the deployment details. These
include memory to be used, URL to access the application which is built by default using
the application name plus the Bluemix domain.You can change this URL and verify that no
one is using this URL by clicking Validate. Click Next.

Figure 4-57 Launch deployment configuration on Bluemix
Chapter 4. News Classification 89

8. This step binds the news classification service instance created in Chapter 2, “Creating a
Natural Language Classifier service in Bluemix” on page 11.

The Cloudant noSQL DB service instance must also be bound to the application; it is used
by the application to save customer feedback. This service was created in 4.4.3, “Creating
a Cloudant noSQL DB service instance” on page 56.

Select the services as shown in Figure 4-58 and click Next.

Figure 4-58 Select services to bind to the application

9. Create a variable to store the classifier_id so it can be received by the application code.
In the Environment Variables window click New.

Name the variable CLASSIFIER ID and in the Value field enter the classifier ID of the
classifier created in 4.4.5, “Creating and training the classifier” on page 63.

Click OK and then click Finish (Figure 4-59 on page 91).
90 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-59 Classifier ID variable set up for News Application

If you lose the classifier ID, complete these steps:

a. Log in to Bluemix.
b. In the left menu. select Services → Dashboard.
c. Go to the Natural Language Classifier service.
d. Click Manage → Access Beta Toolkit.
e. Click the classifiers link (right top menu).
f. On the classifier page, the classifier ID is displayed (Figure 4-60).

Figure 4-60 Displaying the classifier ID

The web application is deployed on Bluemix and several deployment messages are displayed
on the Eclipse console, such as Liberty binaries download to host application, WebSphere
Liberty profile server start logs, and others. Look for the message indicating that the
application is running (Figure 4-61).

Figure 4-61 Application running on Bluemix
Chapter 4. News Classification 91

Deploy the application from the command line
This section assumes that you cloned the sample Git project as described in “Clone the
sample Git project by using the Git command line” on page 55.

Follow these steps:

1. Change to the redbooks-nlc-201-news-java-student directory:

cd redbooks-nlc-201-news-java-student

2. In the root application directory, run cf login and put the email and password account for
Bluemix in sequence (Example 4-9):

Example 4-9 The cf login command

cf login
 API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>
¢
Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
OK
Targeted org <YOUR_ORGANIZATION>

3. Select the Bluemix space to host the application (Example 4-10):

Example 4-10 Select a space

Select a space (or press enter to skip):
1. dev
2. qa
3. Prod
Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)
User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

4. Get the services names that will be bound to the application:

– The first service is the Natural Language Classifier service instance that was created in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

– The second service is the Cloudant NoSQL DB service instance to save client
feedback that was created in 4.4.3, “Creating a Cloudant noSQL DB service instance”
on page 56.

To get the name of services, run the cf services command and copy the name of the
services from the name column (Example 4-11):

Example 4-11 The cf services command

cf services
Getting services in org <YOUR_ORGANZATION> / space dev as
<YOUR_BLUEMIX_EMAILACCOUNT>...
OK

name service plan bound last
92 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

 apps operation
Cloudant NoSQL DB-gl cloudantNoSQLDB Lite create
 succeeded

ITSO - ED-6000-R01 - natural_language_ standard create
Natural Language classifier succeeded
Classifier

5. In another command prompt, edit the manifest.yml file (Example 4-12) in the root of
directory and change these items:

a. The host line: Insert your host name.

b. In the services section: Insert the names collected in step 4 on page 92.

c. The CLASSIFIER_ID line: Insert the value obtained in 4.4.5, “Creating and training the
classifier” on page 63.

Example 4-12 The manifest.yml file

applications:
- name: nlc-201-news-java-student
 memory: 512M
 host: <YOUR_HOST_NAME>
 domain: mybluemix.net
 services:
 - <YOUR_CLOUDANT_SERVICE_NAME>
 - <YOUR_NATURAL_CLASSIFIER_SERVICE_NAME>
 env:
 CLASSIFIER_ID: <YOUR_CLASSIFIER_ID>

If you lose the classifier ID, complete these steps:

i. Log in to Bluemix.
ii. In the left menu. select Services → Dashboard.
iii. Go to the Natural Language Classifier service.
iv. Click Manage → Access Beta Toolkit.
v. Click the classifiers link (right top menu).
vi. On the classifiers page, the classifier ID is displayed (Figure 4-62).

Figure 4-62 Classifier ID collected on Bluemix service

d. Save all the changes to the manifest.yml file.

6. At the prompt and from the root directory (redbooks-nlc-201-news-java-student) push
the application to Bluemix. The information to deploy is in the manifest.yml file (step 5):

cf push nlc-201-news-java-student -p target\nlc-201-news-java-student.war
Chapter 4. News Classification 93

7. See the results (Example 4-13). The results show the application state, number of
instances, memory usage, URL to access the application and other technical information.

Example 4-13 Results

requested state: started
instances: 1/1
usage: 512M x 1 instances
urls: nlc-201-news-java-student.mybluemix.net
last uploaded: Wed Feb 15 14:37:18 UTC 2017
stack: cflinuxfs2
buildpack: Liberty for Java(TM) (WAR, liberty-16.0.0_4,
buildpack-v3.7-20170118-
2046, ibmjdk-1.8.0_20161213, env)

4.4.9 Testing the application

To test the application enter the application URL in a browser to display the home page
(Figure 4-63).

Figure 4-63 News application home page

Enter news text in the Text input field and click Classify News.

Note: The urls value will match the host and domain you entered in step 5 on page 93.
94 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The result shows the Top Class suggested classification type (Figure 4-64). If the type is not
correct, select another classification from the Suggest other classification pull-down and click
Feedback.

Figure 4-64 News application results
Chapter 4. News Classification 95

Click the icon to the right of Top Class to see the classifier output details (Figure 4-65).

Figure 4-65 New application results in detail

If you do not agree with the classification and make a suggestion by using the feedback
feature, your suggestion is sent to the database. With this data, the SMEs can verify and
improve classifier accuracy (as explained in 4.4.7, “Evaluating results and updating training
data” on page 73). See Figure 4-66.

Figure 4-66 Feedback to change classification option
96 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4.5 Quick deployment of application

A second Git repository is provided so that you can run the News Classification application
even if you did not perform the steps described in 4.4, “Step-by-step implementation” on
page 50.

1. You need a Bluemix account. Experimental Watson Services can be used at no cost.

2. Follow the requirements in 4.1.2, “Prerequisites” on page 46 to install Git and Cloud
Foundry software on your local computer.

3. Open a command prompt and set up Git using the following command:

git config --global http.sslVerify false

4. Choose an empty directory to download the code.

5. Run the command in the selected directory:

git clone https://github.com/snippet-java/redbooks-nlc-201-news-java.git

6. Change to the redbooks-nlc-201-news-java directory:

cd redbooks-nlc-201-news-java

7. In the root application directory, run the cf login and provide the email and password
account for Bluemix in the sequence shown in Example 4-14.

Example 4-14 The cf login command

cf login
 API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>
¢
Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
OK
Targeted org <YOUR_ORGANIZATION>

8. Select the Bluemix space to host the application (Example 4-15).

Example 4-15 Select a space

Select a space (or press enter to skip):
1. dev
2. qa
3. Prod
Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)
User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

9. Create the Natural Language Classifier service:

cf create-service natural_language_classifier standard my-nlc-service

10.Create service keys (service credentials) to access the Natural Language Classifier
service:

cf create-service-key my-nlc-service myKey
Chapter 4. News Classification 97

https://console.ng.bluemix.net

11.Retrieve the service keys from the Natural Language Classifier service to use after:

cf service-key my-nlc-service myKey

12.Create a service for the database feedback function of this application:

cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"

13.The Natural Language Classifier service must be trained before you can successfully use
this application. The training data is provided in the resources/news-train.csv file from
the redbooks-nlc-201-news-java root directory. Open the resources directory:

cd redbooks-nlc-201-news-java/resources

14.Execute the Java command:

– For Windows:

CreateAndTrain.bat news-train.csv <user> <password> "News Classifier" en

– For Linux:

./CreateAndTrain.sh news-train.csv <user> <password> "News Classifier" en

The command has the following parameters:

user The user name from step 11.

password The password from step 11.

The information output from this command will show the classifier ID. Keep this
information.

15.At the command prompt, edit the manifest.yml in the root directory
(redbooks-nlc-201-news-java) and change the following information (Example 4-16):

a. host: Use a host name that is unique.

b. CLASSIFIER_ID: Insert the value you created in step 14 on page 98.

Example 4-16 The manifest.yml file

applications:
- name: nlc-201-news-java
 memory: 512M
 host: <YOUR_HOST_NAME>
 domain: mybluemix.net
 services:
 - News Classifier Feedback
 - News Classifier
 env:
 CLASSIFIER_ID: <YOUR_CLASSIFIER_ID>

16.Save all the changes to the manifest.yml file.

17.At the prompt and from the root directory (redbooks-nlc-201-news-java), push the
application to Bluemix:

cf push nlc-201-news-java -p target\nlc-201-news-java-student.war

18.After completing these steps, you are ready to test your application. Start a browser and
enter the URL of your application:

<YOUR_HOST_NAME>.mybluemix.net
98 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4.6 References

See the following resources:

� Create classifier:

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#c
reate_classifier

� Using your own data to train the Natural Language Classifier:

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using
-your-data.html
Chapter 4. News Classification 99

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

100 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Chapter 5. SPAM Classifier

The SPAM Classifier application in this use case reads mail subject or contents that the user
provides and classifies whether the mail is spam or not. The user provides feedback to the
classification results about whether it is correctly or incorrectly classified. User feedback is
saved for additional training of the Natural Language Classifier classifier.

SPAM Classifier uses Natural Language Classifier (NLC) service, one of the cognitive
capabilities that IBM Watson provides. It understands natural language and classifies text into
one of several predefined classes. The classifier is trained with training data, which is
prepared for each purpose but can be improved with additional training from new training data
to make the classifier smarter.

The following topics are covered in this chapter:

� Getting started
� Architecture
� Two ways to deploy the application: Step-by-step and quick deploy
� Step-by-step implementation
� Quick deployment of application
� References

5

© Copyright IBM Corp. 2017. All rights reserved. 101

5.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

5.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

� Understand practical applications of the Watson Natural Language Classifier service, such
as spam classification.

� Follow the procedure to use the Natural Language Classifier service.

� Implement and deploy the use case application in a Node-RED environment on Bluemix.

5.1.2 Prerequisites

To build Watson Natural Language Classifier service based on Watson Natural Language
Classifier on Bluemix and implement a controller in Node-RED, you must have the following
accounts, resources, knowledge, and experiences:

� Bluemix account
� Node-RED application on Bluemix
� cURL, a command-line tool for transferring data by URL syntax
� Internet browser such as Chrome, Firefox, Internet Explorer, Safari
� Basic implementation skill with JavaScript

5.1.3 Expected results

By following the steps in this book, you should be able to run the application in a browser by
interacting with the classifier through three web pages:

1. Request classification (Figure 5-1).

On the first page, the user enters mail subject or content, as one line, to be classified and
then submits the request.

Figure 5-1 Input page of mail subject or content
102 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

2. Display classification result (Figure 5-2).

User receives the classification results and is prompted to agree or disagree with the
results. Every time the user provides feedback about the classification results, the
feedback is saved to a Cloudant database in Bluemix for additional training.

Figure 5-2 Classification result is displayed

3. Review user feedback (Figure 5-3).

For the user’s request of feedback review, the SPAM Classifier displays the user feedback
from the Cloudant database.

Figure 5-3 User feedback is displayed
Chapter 5. SPAM Classifier 103

5.2 Architecture

The SPAM Classifier architecture is described from the following perspectives:

� Static perspective is described in a component perspective.
� Dynamic perspective is described in a role and activity perspective.

SPAM Classifier application is composed of an application controller, Watson Natural
Language Classifier Service, and data store. The application controller orchestrates the
classification service. Watson Natural Language Classifier service classifies whether the
subject or content of mail is spam or non-spam. The data store saves the user feedback
about the classification result.

5.2.1 Component perspective

Figure 5-4 shows the components and data flow.

Figure 5-4 Component diagram

Data flows as follows:

1. Mail subject or content, approve or reject.

2. Mail subject or content, approve or reject.

3. Mail subject or content.

4. Classification result: spam or non-spam.

5. Classification result: spam or non-spam.

6. Classification result: spam or non-spam.

7. User feedback regarding classification result.

1 2 7

6 5

3 4

User
Application
Data Store
Watson Service
Data Flow

Legend

User Application and Watson services
(in Bluemix)

Data Store (in Bluemix)

Application Controller
(Implemented
by Node-RED)

Application UI
(Implemented
by Node-RED)

User

NATURAL LANGUAGE
CLASSIFIER

(Trained and deployed)

CLOUDANT
NOSQL DB
104 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5.2.2 Role and activity perspective

Figure 5-5 shows the role and activity service flow.

Figure 5-5 Role and activity diagram

The flow from the role and activity perspective is as follows:

1. User accesses the SPAM Classifier application URL with a web browser.

2. Application controller displays the input page.

3. User enters mail subject or content on the input form and submits it.

4. Application controller reads mail subject or content and queries the Natural Language
Classifier classifier to classify whether it is spam or non-spam.

5. Application controller displays the classification result, from the Watson Natural Language
Classifier service, in a web response to the user.

6. User provides feedback by agreeing or disagreeing with the classification result.

7. Application controller saves user feedback into data store to update the training data.

Supply mail subject
or content

Display mail subject
or content input page

Classify

Display
classification result

Agree or disagree
with result

Save User Feedback

Read mail subject
or content

User Application and Watson services
Bluemix

Data store
Bluemix
Chapter 5. SPAM Classifier 105

5.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:

� Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 5.4, “Step-by-step implementation” on page 106. This version takes you
through the key steps to integrate the IBM Watson services with the application logic.

� Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 5.5,
“Quick deployment of application” on page 120.

5.4 Step-by-step implementation

Deploying this application involves the following steps:

1. Creating a Node-RED application
2. Cloning the Git project
3. Preparing training data
4. Creating and training the classifier
5. Querying the trained classifier
6. Evaluating results and updating training data

5.4.1 Creating a Node-RED application

For the deployment of this use case, the application UI and application controller to query the
classifier are developed in a Node-RED app and user feedback is saved to Cloudant noSQL
DB. You should create both, the Node-RED application and the Cloudant noSQL DB service
on Bluemix.

The web pages, controller, and Watson Natural Language Classifier service are implemented
in Node-RED. After you log in to Bluemix, create an app of Node-RED:

1. In IBM Bluemix, open the full catalog (Figure 5-6 on page 107). Under Apps, click
Boilerplates → Node-RED Starter.
106 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 5-6 IBM Bluemix Catalog: Node-RED Started

2. Provide an App name (Figure 5-7) and click Create.

Figure 5-7 Create Node-RED App

3. The App is now created. Click the URL link in the ROUTE column (Figure 5-8 on
page 108).
Chapter 5. SPAM Classifier 107

Figure 5-8 Node-RED App created

4. Node-RED in Bluemix opens (Figure 5-9). Click Go to your Node-RED flow editor.

Figure 5-9 Node-RED editor
108 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5. Now you have a Node-RED development environment available (Figure 5-10).

Figure 5-10 Node-RED editor

5.4.2 Cloning the Git project

A Git project was created for this use case. Clone the Git project:

1. Open a command prompt and set up Git by using the following command:

git config --global http.sslVerify false

2. Choose an empty directory to download the code.

3. Run the command in the selected directory:

git clone
https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git

4. Change to the nlc-201-spam-nodered-student directory:

cd nlc-201-spam-nodered-student

After cloning the project, you can find the exported Node-RED flow and training data for the
project:

� Node-RED flow: nlc-201-spam-nodered-student/defaults/flow.json
� Training data: nlc-201-spam-nodered-student /resources/spam_training_1.csv

5.4.3 Preparing training data

Training data should be prepared in advance because when you create the classifier, training
data should be provided at that point. The training data is in the form of a comma separated
value (CSV) file, which is composed of text and a label. A convenient approach is to create
data in Microsoft Excel and save it in CVS format, for example a spam_training_1.csv file.
Chapter 5. SPAM Classifier 109

Figure 5-11 shows example training data.

Figure 5-11 Training data

Watson Natural Language Classifier supports multiple classifications. In the SPAM Classifier
application, training data has only two classifications: SPAM or Non-SPAM. Each line of data
should be labelled with only one of them.

About the data
Training data used in this use case was compiled by Tiago Agostinho de Almeida and José
María Gómez Hidalgo. More information is in 5.6, “References” on page 122.

5.4.4 Creating and training the classifier

This section describes the steps to create and train the classifier.

Create a service of the Natural Language Classifier
You must create a Natural Language Classifier service instance in Bluemix as described in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11 before
performing the steps in this section.

When you develop an application in Node-RED, the classifier should run in the same space of
Bluemix where Node-RED runs. For this use case, the Natural Language Classifier service
was created in the same space with the following credential information:

url "https://gateway.watsonplatform.net/natural-language-classifier/api"

password "y1wcQL63akRX"

username "1b2749fe-7581-42e2-ad3e-115c022ef8cd"

Create a classifier with initial training data
Now you are ready to create a classifier with the curl command (Example 5-1).

Example 5-1 The curl command

curl -i -u "<username>":"<password>" -F training_data=@ <traing_data_file_path> -F
training_metadata="{\"language\":\"en\",\"name\":\"TutorialClassifier\"}"
"https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers"

In this example, replace the following information:

� Replace <username> and <password> with service credentials obtained when you created
the service as explained in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11, for example, "1b2749fe-7581-42e2-ad3e-115c022ef8cd" and
"y1wcQL63akRX" respectively.
110 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

� Replace <training_data_file_path> with the full path of the training data file, which
includes the folder and file name. If you execute a cRUL command in the folder where the
training data file is located, you can specify the file name without the full path (for example,
"spam_training_1.csv").

Figure 5-12 shows an example of curl command.

Figure 5-12 Sample curl command

The cURL response
After the cURL command runs successfully, it returns a response with classifier ID, for
example "f5b42fx173-nlc-3980", which you need to retrieve for later use. Training begins
immediately with the initial training data.

Figure 5-13 on page 111 shows an example of a cURL response.

Figure 5-13 Sample cURL response

5.4.5 Querying the trained classifier

As the component diagram shows (Figure 5-4 on page 104), the user interacts with the SPAM
Classifier application through a web user interface. The Watson Natural Language Classifier
service performs classification of the user input. The application controller orchestrates the
overall process.
Chapter 5. SPAM Classifier 111

Request classification
You create the request classification page in Node-RED for the user to access through a web
address. For this use case, pages were previously created by the authors. Follow these steps
to import the pages into the Node-RED environment:

1. In the Node-RED editor, click the top right menu and select Import → Clipboard
(Figure 5-14).

Figure 5-14 Import menu

2. The clipboard window opens. Copy the code (Example 5-2 is the code snippet to import).
Paste the code and click Import (Figure 5-15).

Figure 5-15 Paste sample code

Example 5-2 shows the sample code to import. This snippet is part of an exported
Node-RED flow file (flow.json), which is included in the project folder cloned by Git. After
you import the entire content of flow.json, you get all nodes and the links between them.

Example 5-2 Sample code to import (flow.json)

[{"id":"3a346689.6c13ca","type":"http
in","z":"f1d9f81c.fa7428","name":"/req_nlc","url":"/req_nlc","method":"get","sw
aggerDoc":"","x":95.89584350585938,"y":102,"wires":[["e225af86.0689e"]]},{"id":
"e225af86.0689e","type":"template","z":"f1d9f81c.fa7428","name":"Template: Req
NLC","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain"
,"template":"<html>\n<body>\nSPAM Classifier powered by Watson
NLC\n

\n\n<form action=\"/call_nlc\">\n\n<table>\n\n<tr>\n<td
align=right>\n\tMail Subject or Content to Classify:\n</td>\n<td>\n\t<input
type=text name=\"mail_subject\" size=80
112 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

maxlength=80>\n</td>\n</tr>\n\n<tr>\n<td></td>\n<td>\n\t
\n\t<input
type=submit
value=\"Submit\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html>\n","x"
:339.8958435058594,"y":102,"wires":[["d3537223.63a0f"]]},{"id":"d3537223.63a0f"
,"type":"http
response","z":"f1d9f81c.fa7428","name":"","x":570.8958435058594,"y":102,"wires"
:[]},{"id":"30ffbfdb.e0e7","type":"comment","z":"f1d9f81c.fa7428","name":"Displ
ay Input Page to User","info":"User load mail subject or content input
page","x":146.89584350585938,"y":55,"wires":[]}]

After the import, you have three nodes connected to one another (Figure 5-16).

Figure 5-16 Nodes imported

3. Click Deploy at the right top corner (Figure 5-17).

Figure 5-17 Deploy button

4. The user can access the request classification page with browser (Figure 5-18).

In this example, a Node-RED app is created with the name node-red-0116, and the
Req NLC node is created with the /req_nlc URL. In a browser, open the SPAM Classifier
application to see a running version on Bluemix.

Figure 5-18 Input page of mail subject or content

5. After the page loads, the user can input one sentence of the mail subject or content to be
classified and the click Submit.

Performing classification, displaying result, asking user feedback
For this use case, modules for performing classification, displaying results, and requesting
user’s feedback were previously created by the author.
Chapter 5. SPAM Classifier 113

https://node-red-0116.mybluemix.net/req_nlc
https://node-red-0116.mybluemix.net/req_nlc

To import these modules into the Node-RED environment, complete these steps:

1. In the Node-RED editor, click the top right menu and select Import → Clipboard.

2. The clipboard window opens. Copy the code (Example 5-3 is the code snippet to import).
Paste the code and click Import.

Example 5-3 is sample code to import. This snippet is part of the exported Node-RED flow
file (flow.json), which is included in the project folder cloned by Git. After you import the
entire content of flow.json, you get all nodes and the links between them.

Example 5-3 Sample code to import (flow.json)

[{"id":"3b41f3fb.1f941c","type":"http
in","z":"f1d9f81c.fa7428","name":"/call_nlc","url":"/call_nlc","method":"get","swaggerDo
c":"","x":92.89582824707031,"y":273,"wires":[["5f7cbce2.f278b4"]]},{"id":"28d7ff89.2d239
","type":"watson-natural-language-classifier","z":"f1d9f81c.fa7428","name":"NLC","mode":
"classify","language":"en","classifier":"f5b42fx173-nlc-3980","x":502.8958282470703,"y":
273,"wires":[["544d5bac.0ac034"]]},{"id":"5f7cbce2.f278b4","type":"function","z":"f1d9f8
1c.fa7428","name":"Parse mail_subject","func":"/**\n * Set msg.payload with mail_subject
user provided\n * Save mail_subject into global context for later use\n */\n\nvar
mail_subject = msg.req.query.mail_subject;\n\ncontext.global.mail_subject =
mail_subject;\nmsg.payload = mail_subject;\n\nreturn
msg;\n","outputs":1,"noerr":0,"x":293.8958282470703,"y":273,"wires":[["28d7ff89.2d239"]]
},{"id":"a3f5e89a.e214d8","type":"http response","z":"f1d9f81c.fa7428","name":"Display
NLC
Result","x":879.8958129882812,"y":384,"wires":[]},{"id":"2bd7fc4a.094154","type":"templa
te","z":"f1d9f81c.fa7428","name":"Template: NLC
Result","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","t
emplate":"<!--\npayload.mail_subject: mail_subject user provided\npayload.top_class:
classification result against mail_subject, either SPAM or
Non-SPAM\n-->\n\n<html>\n<head>\n<script>\n function clickYes() {\n
document.form1.user_feedback.value = \"Y\";\n document.form1.submit();\n }\n
function clickNo() {\n document.form1.user_feedback.value = \"N\";\n
document.form1.submit();\n }\n</script>\n</head>\n</head>\n<body>\nSPAM Classifier
powered by Watson NLC\n

\n\n<form name=form1
action=\"/update_feedback\">\n\n<input type=hidden name=\"user_feedback\">\n\n<table
border=0>\n\n<tr>\n<td align=right>\n\tMail Subject or Content to
Classify:\n</td>\n<td>\n\t{{payload.mail_subject}}\n\t<input
type=hidden name=\"mail_subject\"
value=\"{{payload.mail_subject}}\">\n</td>\n</tr>\n\n<tr>\n<td
align=right>\n\tClassification Result by NLC:\n</td>\n<td>\n\t<font
color=\"red\">{{payload.top_class}}\n\t<input type=hidden
name=\"classification_result\"
value=\"{{payload.top_class}}\">\n</td>\n</tr>\n\n<tr>\n<td colspan=2
align=center>\n
\nDo you agree with NLC Result?\n

\n<input type=button
value=\"Yes\" onClick=\"javascript:clickYes();\">\n<input type=button value=\"No\"
onClick=\"javascript:clickNo();\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html
>\n","x":640.8958129882812,"y":384,"wires":[["a3f5e89a.e214d8"]]},{"id":"2124dc51.d636c4
","type":"comment","z":"f1d9f81c.fa7428","name":"User Submit -> Call NLC to classify
SPAM / Non-SPAM","info":"When user submit \"mail subject or contents\", \nsystem ask NLC
to classify if it is SPAM or
Non-SPAM","x":231.8958282470703,"y":221,"wires":[]},{"id":"544d5bac.0ac034","type":"func
tion","z":"f1d9f81c.fa7428","name":"Deliver mail_subject","func":"/**\n * Get
mail_subject from global context and deliver to template generator\n
*/\n\nmsg.payload.mail_subject = context.global.mail_subject;\nreturn
msg;","outputs":1,"noerr":0,"x":376.72222900390625,"y":384.8055725097656,"wires":[["2bd7
fc4a.094154"]]}]
114 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3. After the import, you have nodes connected to one another (Figure 5-19).

Figure 5-19 Nodes imported

4. Update the configuration information of the Natural Language Classifier node.
Double-click the NLC node. When the editor opens (Figure 5-20), update the following
fields (with the service you created) as in the example and click Done.

Username 1b2749fe-7581-42e2-ad3e-115c022ef8cd
Password y1wcQL63akRX
Classifier ID f5b42fx173-nlc-3980

Figure 5-20 Configuration of Natural Language Classifier

5. Click Deploy to apply changes.

6. For the user’s request of classification, SPAM Classifier will classify the mail subject or
content into SPAM or Non-SPAM, display the result, and ask if the user agrees with the
results (Figure 5-21).

Figure 5-21 Classification result displayed

7. After the user clicks Yes or No, the user feedback is saved to the Cloudant noSQL DB.
Chapter 5. SPAM Classifier 115

5.4.6 Evaluating results and updating training data

Every time a user provides feedback to the classification result, the feedback is saved to the
Cloudant noSQL DB in Bluemix for additional training.

Save user feedback into Cloudant noSQL DB
To import feedback into the Node-RED environment, complete these steps:

1. In the Node-RED editor, click the top right menu and select Import → Clipboard.

2. The clipboard window opens. Copy the code (Example 5-4 is the code snippet to import).
Paste the code and click Import.

Example 5-4 is the sample code to import. This snippet is part of the exported Node-RED
flow file (flow.json), which is included in the project folder cloned by Git. After you import
the entire content of flow.json, you get all nodes and the links between them.

Example 5-4 Sample code to import (flow.json)

[{"id":"bc4b6594.b53508","type":"http
in","z":"f1d9f81c.fa7428","name":"/update_feedback","url":"/update_feedback","method":"g
et","swaggerDoc":"","x":116.79165649414062,"y":586.8889465332031,"wires":[["b6021075.bf4
ef"]]},{"id":"b6021075.bf4ef","type":"function","z":"f1d9f81c.fa7428","name":"Parse
user_feedback","func":"/**\n * Compose a string which is saved into cloudant\n * String
Format: mail_subject,classification_result,user_feedback\n * - mail_subject:
mail_subject user provided\n * - classification_result: either SPAM or Non-SPAM\n * -
user_feedback: either Y or N\n */\n\n// replace quotation with space to avoide error
while saving into cloudant\nvar mail_subject = msg.req.query.mail_subject.trim();\nif
(mail_subject.indexOf(\"\\\"\") > -1) {\n var arr = mail_subject.split(\"\\\"\");\n
mail_subject = \"\";\n for (var i=0; i<arr.length; i++) {\n if (mail_subject
!= \"\") {\n mail_subject + \" \";\n }\n mail_subject =
mail_subject + arr[i];\n }\n}\n\nmsg.payload = \n mail_subject\n + \",\"\n +
msg.req.query.classification_result\n + \",\"\n +
msg.req.query.user_feedback\n;\n\nreturn
msg;\n","outputs":1,"noerr":0,"x":385.7916564941406,"y":585.888916015625,"wires":[["d127
1eb8.a2cce","1092b881.601317"]]},{"id":"20b581e7.42c8fe","type":"comment","z":"f1d9f81c.
fa7428","name":"User click Yes or No -> Update User Feedback into
Cloudant","info":"Format: Mail Subject, Classification Result, User Feedback\nExample:
\"Hi world !\", SPAM,
Y","x":241.79165649414062,"y":534.888916015625,"wires":[]},{"id":"d1271eb8.a2cce","type"
:"template","z":"f1d9f81c.fa7428","name":"Alert and
Redirect","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain","te
mplate":"<html>\n<body>\n <script>\n alert(\"Your feedback was saved for later
training. Thank you.\")\n location.href = \"/req_nlc\"\n
</script>\n</body>\n</html>","x":643.7326812744141,"y":646.2326965332031,"wires":[["a6bd
45dd.c0e7f8"]]},{"id":"a6bd45dd.c0e7f8","type":"http
response","z":"f1d9f81c.fa7428","name":"Redirect to
/req_nlc","x":871.7916412353516,"y":646.0000915527344,"wires":[]},{"id":"1092b881.601317
","type":"cloudant out","z":"f1d9f81c.fa7428","name":"User
Feedback","cloudant":"","database":"my_database","service":"node-red-0116-cloudantNoSQLD
B","payonly":true,"operation":"insert","x":633.7916412353516,"y":585.8889770507812,"wire
s":[]}]
116 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3. After the import, you have nodes connected with one another (Figure 5-22).

Figure 5-22 Nodes imported for feedback

4. Update the configuration information of the Cloudant out node. To do this, double-click the
User Feedback node. When the editor opens (Figure 5-23), update the following fields as
in the example and click Done.

Service node-red-0116-cloudantNoSQLDB
Database my_database

Figure 5-23 Configuration of Cloudant out

5. Click Deploy to apply changes.

Feedback format
Each feedback is a one-line string composed of the following three items separated by a
comma.

� Mail subject or content that user provided
� Classification result, either SPAM or Non-SPAM
� User feedback, either Y or N (for Yes or No)

For example, if user provides the text Hi, World as mail subject or content, the classifier will
classify it as Non-SPAM, and if the user agrees with the classification result, the feedback
string would be:

Hi, World, Non-SPAM, Y

Review user feedback
As users keep providing feedback, The feedback data is store in the Cloudant DB. You should
review the Cloudant DB data periodically and create new training data to improve the
classifier performance.
Chapter 5. SPAM Classifier 117

Complete the following steps to import the code snippet for reviewing user feedback into the
Node-RED environment:

1. In the Node-RED editor, click the top right menu and select Import → Clipboard.

2. The clipboard window opens. Copy the code (Example 5-5 is the code snippet to import).
Paste the code and click Import.

Example 5-5 is the sample code to import. This snippet is part of the exported Node-RED
flow file (flow.json), which is included in the project folder cloned by Git. After you import
the entire content of flow.json, you get all nodes and the links between them.

Example 5-5 Sample code to import (flow.json)

[{"id":"4c877c19.f98864","type":"http
in","z":"f1d9f81c.fa7428","name":"/get_feedback","url":"/get_feedback","method":"get","s
waggerDoc":"","x":95.89579772949219,"y":838.000244140625,"wires":[["a49abc66.27aa4"]]},{
"id":"9fa9b6f4.e7e938","type":"template","z":"f1d9f81c.fa7428","name":"Template: User
Feedback","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache",
"template":"<html>\n<body>\nSPAM Classifier powered by Watson NLC\n

\n\n<table
border=0>\n\n<tr>\n<td valign=top>\n\tUser Feedback:\n</td>\n<td>\n<textarea cols=80
rows=20>\n{{payload}}\n</textarea>\n</td>\n</tr>\n\n</table>\n\n</body>\n</html>\n","x":
513.8957977294922,"y":939.000244140625,"wires":[["747d6044.05772"]]},{"id":"747d6044.057
72","type":"http
response","z":"f1d9f81c.fa7428","name":"","x":746.8957977294922,"y":938.000244140625,"wi
res":[]},{"id":"a49abc66.27aa4","type":"cloudant in","z":"f1d9f81c.fa7428","name":"User
Feedback","cloudant":"","database":"my_database","service":"node-red-0116-cloudantNoSQLD
B","search":"_all_","design":"","index":"","x":355.8957977294922,"y":837.000244140625,"w
ires":[["e33f4f6e.4da6f"]]},{"id":"e33f4f6e.4da6f","type":"function","z":"f1d9f81c.fa742
8","name":" Collect records","func":"/**\n * Collect user feedback records from
cloudant\n * Record format: mail_subject,classification_result,user_feedback\n * -
mail_subject: mail_subject user provided\n * - classification_result: either SPAM or
Non-SPAM\n * - user_feedback: either Y or N\n */\n\nvar len = msg.payload.length;\nvar
newPayload = \"\";\nfor (var i=0; i<len; i++) {\n if (newPayload != \"\") {\n
newPayload = newPayload + \"\\n\";\n }\n \n var str =
msg.payload[i].payload.toString();\n \n // Enclose mail_subject with quotation if
it contains comma (,)\n var arr = str.split(\",\");\n if (arr.length > 3) {\n
str = \n parse_mail_subject(arr)\n + \",\"\n +
arr[arr.length-2]\n + \",\"\n + arr[arr.length-1];\n }\n\n
newPayload = newPayload + str;\n}\n\nmsg.payload = newPayload;\nreturn
msg;\n\n\nfunction parse_mail_subject(arr) {\n \n var str = \"\";\n for (var
i=0; i<arr.length-2; i++) {\n if (str != \"\") {\n str = str +
\",\";\n }\n str = str + arr[i];\n }\n str = \"\\\"\" + str +
\"\\\"\";\n \n return
str;\n}","outputs":"1","noerr":0,"x":573.8957977294922,"y":837.000244140625,"wires":[["9
fa9b6f4.e7e938"]]},{"id":"4834bed2.bf2be","type":"comment","z":"f1d9f81c.fa7428","name":
"Get User Feedback from Cloudant","info":"For later
training","x":159.8957977294922,"y":789.000244140625,"wires":[]}]

3. After the import, now you have nodes connected with one another (Figure 5-24).

Figure 5-24 Nodes imported
118 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4. Update the configuration information of the Cloudant in node. To do this, double-click the
User Feedback node. When the editor opens (Figure 5-25), update the following fields as
in the example and click Done.

Service node-red-0116-cloudantNoSQLDB
Database my_database

Figure 5-25 Configuration of Cloudant in

5. Click Deploy to apply changes.

6. When the user requests to review the feedback, SPAM Classifier displays the user
feedback from the Cloudant DB (Figure 5-26).

.

Figure 5-26 User feedback displayed
Chapter 5. SPAM Classifier 119

5.5 Quick deployment of application

As described in 5.3, “Two ways to deploy the application: Step-by-step and quick deploy” on
page 106, a Git repository containing the full application code is provided so that you can run
the application with minimal steps and more quickly. Here you can create the necessary
Natural Language Classifier service, Cloudant noSQL DB service, and Node-RED
development environment instead of following the detailed described in 5.4, “Step-by-step
implementation” on page 106.

Complete these steps to deploy the application more quickly:

1. You need a Bluemix account. If you do not have one, create one.

2. Install Git and Cloud Foundry in your local computer.

3. Open a command prompt and set up Git using the following command:

git config --global http.sslVerify false

4. Choose an empty directory to download the code.

5. Run the command in the selected directory:

git clone https://github.com/snippet-java/redbooks-nlc-201-spam-nodered.git

6. Change to the nlc-201-spam-nodered directory:

cd nlc-201-spam-nodered

7. In the root application directory, run the cf login command and replace <BLUEMIX_EMAIL>
and <BLUEMIX_PASSWORD> with your Bluemix account information, and select an
organization (<ORG_NO>) to use (Example 5-6).

Example 5-6 Execute login and set email and password

cf login
API endpoint>: https://api.ng.bluemix.net
Email> <BLUEMIX_EMAIL>
Password> <BLUEMIX_PASSWORD>
Authenticating...
OK
Select an org (or press enter to skip)
1. sample_org1
2. sample_org2
org> <ORG_NO>

8. Select a Bluemix space to host the application (Example 5-7).

Example 5-7 Select Bluemix space

Select a space (or press enter to skip):
1. dev
2. qa
3. Prod
Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)
User: < BLUEMIX_EMAIL>
Org: < BLUEMIX_PASSWORD>
Space: dev

9. Create the Natural Language Classifier service:

cf create-service natural_language_classifier standard my-nlc-service
120 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.bluemix.net

10.Create service keys to access the Natural Language Classifier service:

cf create-service-key my-nlc-service myKey

11.Retrieve the service keys from the Natural Language Classifier service:

cf service-key my-nlc-service myKey

12.Create a Cloudant noSQL DB service for the feedback function of this application:

cf create-service CloudantNoSQLDB Lite "SPAM Feedback"

13.Create a classifier instance with initial training data. Follow the steps in 5.4.4, “Creating
and training the classifier” on page 110. Training data is available in the resources folder.

14.In the manifest.yml file, update <My_Name> and <My_Host> with your unique values
(Example 5-8).

Example 5-8 Update manifest.yml file

applications:
- path: .
 memory: 512M
 instances: 1
 domain: mybluemix.net
 name: <My_Name>
 host: <My_Host>
 disk_quota: 1024M
 services:
 - <My_Name>-cloudantNoSQLDB
 env:
 NODE_RED_STORAGE_NAME: <My_Name>-cloudantNoSQLDB
declared-services:
 <My_Name>-cloudantNoSQLDB:
 label: cloudantNoSQLDB
 plan: Lite

15.Node-RED needs a Service of Cloudant NoSQL DB for storage. Create a service before
you push the application to Bluemix:

cf create-service CloudantNoSQLDB Lite "<My_Name>-cloudantNoSQLDB"

16.Now, you can push the application to Bluemix:

cf push

17.In Bluemix, after you enter the Node-RED environment you created, you can review the
default flows developed in Node-RED. However, you should update the configuration
information of Natural Language Classifier node and Cloudant node with those you
created.
Chapter 5. SPAM Classifier 121

5.6 References

See the following resources:

� Carmine, DiMascio. Create a natural language classifier that identifies spam. IBM
developerWorks, 2016

https://www.ibm.com/developerworks/library/cc-spam-classification-service-watso
n-nlc-bluemix-trs/index.html

� Almeida, T.A., Gómez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS
Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium
on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
122 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/developerworks/library/cc-spam-classification-service-watson-nlc-bluemix-trs/index.html
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The following Git repositories are available to help you with the examples in these chapters:

� Chapter 3, “Healthcare questions and answers” on page 19:

– For the incomplete code (step-by-step implementation version):

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

– For the complete code (quick deployment version) that you can use for verification or as
a code reference:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

� Chapter 4, “News Classification” on page 45:

– For the incomplete code (step-by-step implementation version):

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

– For the complete code (quick deployment version):

https://github.com/snippet-java/redbooks-nlc-201-news-java.git

� Chapter 5, “SPAM Classifier” on page 101:

– For the incomplete code (step-by-step implementation version):

https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git

– For the complete code (quick deployment version):

https://github.com/snippet-java/redbooks-nlc-201-spam-nodered

A

© Copyright IBM Corp. 2017. All rights reserved. 123

https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git
https://github.com/snippet-java/redbooks-nlc-201-news-java.git
https://github.com/snippet-java/redbooks-nlc-201-spam-nodered

124 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

The volumes in the Building Cognitive Applications with IBM Watson APIs series:

� Volume 1 Getting Started, SG24-8387
� Volume 2 Conversation, SG24-8394
� Volume 3 Visual Recognition, SG24-8393
� Volume 4 Natural Language Classifier, SG24-8391
� Volume 5 Language Translator, SG24-8392
� Volume 6 Speech to Text and Text to Speech, SG24-8388
� Volume 7 Natural Language Understanding, SG24-8398

You can search for, view, download or order these documents and other Redbooks,
Redpapers™, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Bluemix; create an account or log in:

https://console.ng.bluemix.net

� Cloud Foundry software download and install:

https://github.com/cloudfoundry/cli/releases

� Healthcare Q and A Application to see a running version:

http://hcqanaturallanguageclassifier.mybluemix.net/

� IBM SDK, Java Technology Edition, Version 8 download:

https://developer.ibm.com/javasdk/downloads/

� Git client downloads and installation:

https://git-scm.com/downloads

� News Classification web application to see a running version:

https://nlc-201-news-java.mybluemix.net/

� Eclipse Neon with Bluemix tools; install and set up:

https://www.ibm.com/cloud-computing/bluemix/eclipse
© Copyright IBM Corp. 2017. All rights reserved. 125

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://console.ng.bluemix.net
https://github.com/cloudfoundry/cli/releases
http://hcqanaturallanguageclassifier.mybluemix.net/
https://developer.ibm.com/javasdk/downloads/
https://git-scm.com/downloads
https://nlc-201-news-java.mybluemix.net/
https://www.ibm.com/cloud-computing/bluemix/eclipse

� Application server hosting for enterprise apps:

– WebSphere Liberty:

https://developer.ibm.com/wasdev/websphere-liberty/

– Apache Tomcat:

http://tomcat.apache.org/

� Using your own data to train the Natural Language Classifier (Watson Developer Cloud):

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using
-your-data.html

� Creating a classifier (Watson Developer Cloud):

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#c
reate_classifier

� Community buildpacks list:

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#commu
nity-created

� SPAM Classifier application to see a running version:

https://node-red-0116.mybluemix.net/req_nlc

Also see the list of online resources for the following chapters in this book:

� Basics of Natural Language Classifier API: 1.2, “References” on page 10
� Healthcare Questions and Answers: 3.6, “References” on page 42
� News Classification: 4.6, “References” on page 99
� SPAM Classifier: 5.6, “References” on page 122

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
126 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://developer.ibm.com/wasdev/websphere-liberty/
http://tomcat.apache.org/
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier
https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created
https://node-red-0116.mybluemix.net/req_nlc

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Building Cognitive Applications w
ith IBM

 W
atson Services: Volum

e 4 Natural Language Classifier

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442593

SG24-8391-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Natural Language Classifier service
	1.1 Using the Natural Language Classifier service
	1.1.1 Prepare training data
	1.1.2 Create and train the classifier
	1.1.3 Query the trained classifier
	1.1.4 Evaluate results and update the data

	1.2 References

	Chapter 2. Creating a Natural Language Classifier service in Bluemix
	2.1 Requirements
	2.2 Creating the Natural Language Classifier service instance
	2.2.1 Creating the Natural Language Classifier service instance from the Bluemix website
	2.2.2 Creating the Natural Language Classifier service instance using Cloud Foundry commands

	2.3 What to do next

	Chapter 3. Healthcare questions and answers
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results

	3.2 Architecture
	3.3 Two ways to deploy the application: Step-by-step and quick deploy
	3.4 Step-by-step implementation
	3.4.1 Downloading the project from Git
	3.4.2 Preparing training data
	3.4.3 Creating and training the classifier
	3.4.4 Creating the Node.js Express Healthcare Q and A application
	3.4.5 Deploying the Healthcare Q and A application on Bluemix
	3.4.6 Testing the application

	3.5 Quick deployment of application
	3.6 References

	Chapter 4. News Classification
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.3 Two ways to deploy the application: Step-by-step and quick deploy
	4.4 Step-by-step implementation
	4.4.1 Downloading the project from Git
	4.4.2 Reviewing the project structure
	4.4.3 Creating a Cloudant noSQL DB service instance
	4.4.4 Preparing training data
	4.4.5 Creating and training the classifier
	4.4.6 Querying the trained classifier
	4.4.7 Evaluating results and updating training data
	4.4.8 Deploying the application
	4.4.9 Testing the application

	4.5 Quick deployment of application
	4.6 References

	Chapter 5. SPAM Classifier
	5.1 Getting started
	5.1.1 Objectives
	5.1.2 Prerequisites
	5.1.3 Expected results

	5.2 Architecture
	5.2.1 Component perspective
	5.2.2 Role and activity perspective

	5.3 Two ways to deploy the application: Step-by-step and quick deploy
	5.4 Step-by-step implementation
	5.4.1 Creating a Node-RED application
	5.4.2 Cloning the Git project
	5.4.3 Preparing training data
	5.4.4 Creating and training the classifier
	5.4.5 Querying the trained classifier
	5.4.6 Evaluating results and updating training data

	5.5 Quick deployment of application
	5.6 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

