@ Redbooks

Building Cognitive Applications with

IBM Watson Services: Volume 4
Natural Language Classifier

Marcelo Mota Manhaes
Taemin Ko

Abeer Selim S —
Omar Amer
Lak Sri

In partnership with
IBM Skills Academy Program

International Technical Support Organization

Building Cognitive Applications with IBM Watson
Services: Volume 4 Natural Language Classifier

May 2017

SG24-8391-00

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

First Edition (May 2017)

This edition applies to IBM Watson services in IBM Bluemix.

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES e v
Trademarks e Vi
Preface Vi
AUNOIS . L e Vi
Now you can become a published author,too! ix
CommeENtS WEICOME. o e e iX
Stay connected t0 IBM RedbOOKSttt e ix
Chapter 1. Basics of Natural Language Classifier service 1
1.1 Using the Natural Language Classifier service 2
1.1.1 Preparetrainingdata 2
1.1.2 Create and trainthe classifier. 4
1.1.3 Query the trained classifier. i 7
1.1.4 Evaluate results and updatethedata......... 9
1.2 REfBreNCES . . .ot e e 10
Chapter 2. Creating a Natural Language Classifier service in Bluemix............ 11
2.1 Requirements 12
2.2 Creating the Natural Language Classifier service instance. 12
2.2.1 Creating the Natural Language Classifier service instance from the
Bluemix website 12
2.2.2 Creating the Natural Language Classifier service instance using Cloud Foundry
COMMANAS . . .ot et e e e 14
23 Whattodo next. e 17
Chapter 3. Healthcare questionsandanswers. 19
3.1 Getting started. e 20
3.1 ObJeCtiVES . . e e 20
B3.1.2 Prerequisites. . ..ot 20
3.1.3 Expected results 20
3.2 ArchiteCtUre. e 22
3.3 Two ways to deploy the application: Step-by-step and quick deploy 23
3.4 Step-by-step implementation 23
3.4.1 Downloading the projectfrom Git i 23
3.4.2 Preparing trainingdata 24
3.4.3 Creating and training the classifier i 24
3.4.4 Creating the Node.js Express Healthcare Q and A application. 28
3.4.5 Deploying the Healthcare Q and A application on Bluemix. 35
3.4.6 Testingthe application e 36
3.5 Quick deployment of application.c. i 42
3.6 References e 42
Chapter 4. News Classification 45
4.1 Getting started. 46
411 ObJeCtiVES . . it e e 46
4.1.2 Prerequisitesot 46
4.1.3 Expected results 47
4.2 Architecture. e 49

© Copyright IBM Corp. 2017. All rights reserved. iii

iv

4.3 Two ways to deploy the application: Step-by-step and quick deploy 50

4.4 Step-by-step implementation 50
4.4.1 Downloading the projectfrom Git 51
4.4.2 Reviewing the project structure. 56
4.4.3 Creating a Cloudant noSQL DB serviceinstance. 56
4.4.4 Preparingtrainingdata 59
4.4.5 Creating and training the classifier i 63
4.4.6 Querying the trained classifier. 68
4.4.7 Evaluating results and updating trainingdata. 73
4.4.8 Deploying the application e 85
4.49 Testingthe application e 94

4.5 Quick deployment of application. i 97

4.6 ReEfErenCeSo e e 99

Chapter 5. SPAM Classifier i i, 101

5.1 Getting started. e 102
5.1.1 Objectives e 102
5.1.2 Prerequisites. e 102
5.1.3 Expected results 102

5.2 ArChIteCtUrE . . . o o e 104
5.2.1 Component perspective it 104
5.2.2 Role and activity perspective 105

5.3 Two ways to deploy the application: Step-by-step and quick deploy 106

5.4 Step-by-step implementation 106
5.4.1 Creating a Node-RED application. 106
5.4.2 Cloningthe Gitproject e 109
5.4.3 Preparingtrainingdata 109
5.4.4 Creating and training the classifier 110
5.4.5 Querying the trained classifier. 111
5.4.6 Evaluating results and updating trainingdata........................... 116

5.5 Quick deployment of application. 120

5.6 References e 122

Appendix A. Additional material 123

Locating the web material e 123

Related publications e 125

IBM RedbOOKS e 125

ONliNE FrESOUICESt ottt e e e e 125

Help from IBM . ..o e e 126

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS I1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS 1S”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.

© Copyright IBM Corp. 2017. All rights reserved. \'

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/1egal/copytrade.shtmi

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Bluemix® IBM Watson® Tivoli®
Cloudant® IBM Watson loT™ Watson™
developerWorks® Rational® Watson loT™
Global Business Services® Redbooks® WebSphere®
Global Technology Services® Redpapers™

IBM® Redbooks (logo) (@@ ®

The following terms are trademarks of other companies:
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.

Vi Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://www.ibm.com/legal/copytrade.shtml

Preface

Authors

The Building Cognitive Applications with IBM Watson Services series is a seven-volume
collection that introduces IBM® Watson™ cognitive computing services. The series includes
an overview of specific IBM Watson® services with their associated architectures and simple
code examples. Each volume describes how you can use and implement these services in
your applications through practical use cases.

The series includes the following volumes:

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

YyVVyVYyVYVYYVYY

Whether you are a beginner or an experienced developer, this collection provides the
information you need to start your research on Watson services. If your goal is to become
more familiar with Watson in relation to your current environment, or if you are evaluating
cognitive computing, this collection can serve as a powerful learning tool.

This IBM Redbooks® publication, Volume 4, introduces the Watson Natural Language
Classifier service. This service applies cognitive computing techniques to return best
matching predefined classes for short text inputs such as a sentence or phrase. The book
describes concepts that you need to understand to create, use, and train the classifier. It
describes how to prepare training data and create and train the classifier to connect the
classes to example texts so that the service can apply the classes to new inputs. It also
provides examples of applications that demonstrate how to use the Watson Natural Language
Classifier service in practical use cases. You can develop and deploy the sample applications
by following a step-by-step approach and by using the provided code snippets. Alternatively,
you can download an existing Git project to more quickly deploy the application.

This book was produced by a team of specialists from around the world, working in
collaboration with the IBM International Technical Support Organization.

Marcelo Mota Manhaes is a Certified IT Specialist in IBM Global Technology Services®, IBM
Brazil. Marcelo is an IT Delivery Architect; his areas of expertise include cloud computing,
software automation tools, business analytics, and cognitive computing. Marcelo has over 20
years of experience in the IT industry. He led several projects to design and build cognitive
solutions such as an application that helps managers to evaluate the performance of their
employees and a question answering system that uses Watson Natural Language Classifier
(NLC), Retrieve and Rank, and Language Translator to enable IBM Knowledge Center users
to find technical information by asking questions in their native language. Marcelo teaches
cloud computing and cognitive systems at the Universidade Positivo. He is the author of
several IBM Redbooks publications. Marcelo holds a B.S. in Computer Science from
Universidade Federal do Parana—UFPR and an M.S. in Computer Science from
Universidade Tecnoldgica Federal do Parana—UTFPR.

© Copyright IBM Corp. 2017. All rights reserved. vii

Taemin Ko is an IT Architect in Software Lab Services, IBM Korea. His primary responsibility
is to help clients to accelerate software delivery. This includes Software Process Innovation,
mentoring and coaching of software engineering practices, such as Agile Transformation, and
IBM Rational® based Tool Chain Innovation. Taemin is also responsible for architecture
definition and implementation of Internet of Things (IoT) solutions using IBM Watson®. He
was in charge of Watson internalization and enablement for Lotte Group of Korea. He is
currently working on the design and implementation of a chatbot enabled by Watson
Conversation API for one of the major card companies in Korea.

Abeer Selim is a Certified IT Specialist Level 2 in IBM Global Business Services® and the
Integration Practice Lead at the Client Innovation Center (CIC), IBM Egypt. She has over 11
years of experience in the IT industry. Abeer co-authored several scientific papers such as
Machine Learning Methodologies in Brain-Computer Interface Systems, Machine learning
methodologies in P300 speller Brain-Computer Interface systems, and Electrode Reduction
Using ICA and PCA in P300 Visual Speller Brain-Computer Interface System. Abeer holds a
B.S. and M.S. in Biomedical and Systems Engineering from Cairo University in Egypt.

Omar Amer is a Package Solution Consultant in cognitive computing at IBM Egypt. He is a
subject matter expert (SME) for IBM Watson and IBM cloud technologies. Omar participated
in several projects implementing cognitive computing solutions with Watson APls, Watson
Explorer, and Watson Knowledge Studio.

Lak Sri currently serves as a Program Director in the IBM developerWorks® part of the IBM
Digital Business Group organization. Lak leads innovation in the developer activation space.
He was the technical leader for the Building Cognitive Applications with IBM Watson Services
Redbooks series. Lak led the development of the IBM Cloud Application Developer
Certification program and the associated course. Earlier he worked as a Solution Architect for
Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built
strategic partnerships in education and IBM Watson loT™. Lak is an advocate and a mentor
in several technology areas, and he volunteers to plan and support local community
programs.

The project that produced this publication was managed by Marcela Adan, IBM Redbooks
Project Leader, ITSO.
Thanks to the following people for their contributions to this project:

Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

Teja Tummalapalli
IBM Digital Business Group

viii Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

» Find us on Facebook:
http://www.facebook.com/IBMRedbooks

» Follow us on Twitter:
http://twitter.com/ibmredbooks

» Look for us on LinkedIn:
http://www.linkedin.com/groups?home=&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

X Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Basics of Natural Language
Classifier service

This chapter introduces the IBM Watson Natural Language Classifier service. The Natural
Language Classifier service applies cognitive computing techniques to return best matching
predefined classes for short text inputs, such as a sentence or phrase.

Unlike traditional APls, many cognitive services require being trained first before they can be
used; the Watson Natural Language Classifier (NLC) service is one of those services that
must be trained before using.

This chapter provides an overview of the process for creating and using the classifier. It
includes snippets with code examples to perform some of the steps in the process.

The following topics are covered in this chapter:

» Using the Natural Language Classifier service
» References

© Copyright IBM Corp. 2017. All rights reserved.

1.1 Using the Natural Language Classifier service

Figure 1-1 provides an overview of the four steps that are included in the process of creating

and using the classifier.

training data the classifier

Prepare Create and train

Query the
trained classifier

® |dentify class labels
the training data
& Collect representative
texts
Training begins
» Match classes to texts immediately

» LJse the API to upload

» Uze the API to sand
text to the classifier

The service returns the
top matching class and
other possible matches

v

Evaluate results
and update
training data

* Lipdate your training
data based on the
classification results

* Create and train a
classifier using
updated training data

Figure 1-1 Using the Natural Language Classifier service: Process steps

To use the Natural Language Classifier service in your application, you must train the
classifier following these steps:

1. Prepare training data

2. Create and train the classifier

3. Query the trained classifier

4. Evaluate results and update the data

The following sections take you through a simple example following these steps to train the
classifier.

1.1.1 Prepare training data

To prepare the training data, follow these steps:
1. Identify class labels. These are the classes that the classifier will output.
2. Collect representative text.

3. Match classes to text. That is, create the training data by matching text with their
respective classes.

Identify class labels

Class labels represent the result labels that describe the intent of the input text. Class labels
are the output of a trained classifier.

To train the classifier, you prepare a training CSV file that is used when the classifier is created.

For the simple example described in this chapter, two class labels are identified: Health and
VeterinaryHealth. In a real production scenario, usually a larger number of class labels are
identified.

2 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Collect representative texts

Gather representative texts for each class label for training purposes, These texts show the
classifier examples for each class and serve as training data. These examples should be
similar to the actual text input that will be provided to the classifier in production.

Representative text for Health class labels
The following text examples can be associated with the Health class labels:
» How much does it cost to get an occupational health card?

» What are steps required to get a health card?
» | want to be immune from Hepatitis B.

Representative text for VeterinaryHealth class labels
The following text examples can be associated with the VeterinaryHealth class labels:

v

I need to know regulations for importing animals/veterinary products into the markets.
Where can | adopt a pet from a shelter?

Where can someone obtain health cards for veterinary?

How to get a post mortem report for my pet?

vyy

Match classes to text
Now you create a file in CSV format with two columns:

» Column one is the input text
» Column two is the class label for that text

Table 1-1 shows the input text and corresponding class label for the example in this chapter.

Table 1-1 Training data to create a CSV file

Input text Class label
How much does it cost to get an occupational health card Health
What are steps required to get a health card Health
| want to be immune from Hepatitis B Health

| need to know regulations for importing animals/veterinary products into the VeterinaryHealth
Markets

Where can | adopt a pet from a shelter VeterinaryHealth
Where can someone obtain health cards for veterinary VeterinaryHealth
How to get a post mortem report for my pet VeterinaryHealth

Chapter 1. Basics of Natural Language Classifier service

3

Example 1-1 shows the CSV file created from Table 1-1.

Example 1-1 Training data in CSV format

How much does it cost to get an Occupational health card,Health

What are steps required to get a health Card,Health

I want to be immune from Hepatitis B,Health

I need to know regulations for importing animals/veterinary products into the
Markets,VeterinaryHealth

Where Can I adopt a pet from a shelter,VeterinaryHealth

Where can someone obtain Health cards for veterinary,VeterinaryHealth

How to get a post mortem report for my pet,VeterinaryHealth

You can access the training CSV file at the GitHub web page:
https://gist.github.com/snippet-java/044c616801cea023930bed41efed6488

Note: This simple example shows only two class labels and three and four text samples for
each. In a production scenario, many more class labels and text samples of training data
should be provided.

1.1.2 Create and train the classifier

Before you can create a classifier, the Natural Language Classifier service instance must be
created as described in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11.

After creating the Natural Language Classifier service instance, create a classifier that is
associated with the service instance. Specify the classifier name and training CSV file, and
then upload the training CSV file that you created in 1.1.1, “Prepare training data” on page 2 to
train the classifier. The classifier ID will be returned.

Figure 1-2 shows a simplified diagram representing the creation of the classifier.

1. Name m R i
2. Training file '@ g Classifier ID

Input NLC Output
Classifier

Figure 1-2 Create the Natural Language Classifier service classifier

You can create the classifier and upload training data using one of the following methods:

» Using the toolkit in IBM Bluemix®
» Programmatically, with simple programs written in languages such as Java and Node.js
» Using command-line tools, such as cURL

The following examples show code snippets in different technologies to create the classifier
and upload the training data passing the following parameters:

» Credentials of the associated service instance
» Classifier name
» The CSV file with the training data to upload

4 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://gist.github.com/snippet-java/044c616801cea023930bed41efed6488

Example 1-2 shows a code snippet in Node.js to create the classifier and upload the training
data.

Example 1-2 Code snippet: NodeJS

var watson = require('watson-developer-cloud');
var fs = require('fs');
var natural_language classifier = watson.natural language classifier({
username: '{username}',
password: '{password}',
version: 'vl'
1
var params = {
language: 'en',
name: 'My Classifier',
training_data: fs.createReadStream('./train.csv')
}s
natural_language classifier.create(params, function(err, response) {
if (err) console.log(err);
else
console.l1og(JSON.stringify(response, null, 2));
1

Example 1-3 shows a code snippet in Java to create the classifier and upload the training
data.

Example 1-3 Code snippet: Java

import java.io.File;

import
com.ibm.watson.developer_cloud.natural language classifier.vl.NaturallanguageClass
ifier;

import com.ibm.watson.developer cloud.natural language classifier.vl.model.*;

public class SimpleServlet {
public static void main(String[] arg) {
NaturallLanguageClassifier service = new NaturallLanguageClassifier();
service.setUsernameAndPassword ("{username}", "{password}");
Classifier classifier = service.createClassifier("My Classifier", "en",
new File("./train.csv")).execute();
System.out.printin(classifier);

}

Example 1-4 shows a code snippet in cURL to upload the training data.

Example 1-4 Code snippet: cURL

curl -u "{username}":"{password}" -F training_data=@train.csv -F
training_metadata="{\"language\":\"en\",\"name\":\"HealthClassifier\"}
https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers

Chapter 1. Basics of Natural Language Classifier service 5

Response
Example 1-5 shows the response returned when running the code to upload the training data.

Example 1-5 Code snippet: Response

{

"classifier_id": "10D41B-nlc-1",

"name": "My Classifier",

"lTanguage": "en"

"created": "2015-05-28T18:01:57.3937",

url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers
/10D41B-nlc-1",

"status": "Training",

"status_description": "The classifier instance is in its training phase, not yet
ready to accept classify requests"

}

The classifier_id value shows a unique identifier for each classifier. Multiple classifiers can
be associated with the same Natural Language Classifier service instance.

The status shows the classifier status. When the classifier is ready to accept requests, the
status changes from Training to Available.

Check the classifier status

Before you can use the classifier, you must check the status. The following code snippets
provide examples of how to check the status.

Note: In the following code snippets, replace "{classifier}" with the "classifier_id":
value obtained in the response (see Example 1-5).

Example 1-6 shows a code snippet in Node.js to check status of the classifier.

Example 1-6 Code snippet: NodeJS

var watson = require('watson-developer-cloud');

var fs = require('fs');

var natural_language_classifier = watson.natural_language_classifier({ username:
'{username}', password: '{password}', version: 'vl' });

natural_language classifier.status({
classifier_id: '{classifier}’
}, function(err, response) {
if (err) console.log('error: ', err);
else console.log(JSON.stringify(response, null, 2));

1)

6 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Example 1-7 shows a code snippet in Java to check status of the classifier.

Example 1-7 Code snippet: Java

import java.io.File;

import

com.ibm.watson.developer_cloud.natural language classifier.vl.NaturallLanguageClass
ifier;

import com.ibm.watson.developer cloud.natural language classifier.vl.model.*;

public class SimpleServilet {
public static void main(String[] arg) {
NaturallLanguageClassifier service = new NaturallLanguageClassifier();
service.setUsernameAndPassword (" {username}", "{password}");
Classifier classifier = service.getClassifier("{classifier}").execute();
System.out.printin(classifier);

Example 1-8 shows a code snippet in cURL to check status of the classifier.

Example 1-8 Code snippet: cURL

curl -u "{username}":"{password}"
https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers/
{classifier}

Response

When the classifier is trained, the status changes to Available (see Example 1-9). You can
now use the classifier.

Example 1-9 Status response for a trained classifier

{ "classifier_id": "{classifier}",

"name": "My Classifier",

"lTanguage": "en",

"created": "2015-05-28T18:01:57.393Z",

"url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers
/10D41B-nlc-1",

"status": "Available",

"status_description": "The classifier instance is now available and is ready to
take classifier requests.",

}

1.1.3 Query the trained classifier

After the classifier is trained, you can query it. Figure 1-3 on page 8 represents querying the
classifier by providing the classifier ID and input text.

The API returns a response that includes the name of the class for which the classifier has
the highest confidence. Other class-confidence pairs are listed in descending order of

Chapter 1. Basics of Natural Language Classifier service 7

confidence. The confidence value represents a percentage, and higher values represent
higher confidences.

Classes:
1. Classifier ID N Class name
2. Text U Class confidence

NLC
Classifier

Input Qutput

Figure 1-3 Querying the classifier

The classification process divides the value of 1 (100%) among all defined class labels and
outputs a value for each class label (percentage) that can be thought of as the confidence
level for each class label as shown Figure 1-3.

The following examples show code snippets to query the classifier.

Example 1-10 shows a snippet in Node.js to run a query on a classifier by specifying the
classifier ID.

Example 1-10 Code snippet: Node.js, querying the classifier

var watson = require('watson-developer-cloud');

var fs = require('fs');

var natural_language_classifier = watson.natural_language_classifier({ username:
'{username}', password: '{password}', version: 'vl' });

natural _language classifier.classify({
text: 'I want a health card',
classifier_id: '{classifier}'
}, function(err, response) {
if (err) console.log('error: ', err);
else console.10g(JSON.stringify(response, null, 2));

1

Example 1-11 shows a snippet in Java to run a query on the Natural Language Classifier
classifier.

Example 1-11 Code snippet: Java, querying the classifier

import java.io.File;

import
com.ibm.watson.developer_cloud.natural_language_classifier.vl.NaturallLanguageClassifie
rs

import com.ibm.watson.developer_cloud.natural_language_classifier.vl.model.*;

public class SimpleServiet {
public static void main(String[] arg) {
NaturallLanguageClassifier service = new NaturallLanguageClassifier();
service.setUsernameAndPassword ("{username}", "{password}");
Classification classifier = service.classify("{classifier}
","I want a health card").execute();
System.out.printin(classifier);

8 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Example 1-12 shows a snippet in cURL to run a query on the Natural Language Classifier
classifier.

Example 1-12 Code snippet: Querying the classifier, cURL

curl -u "'{username}":"{password}" -H "Content-Type:application/json" -d
"{\"text\":\"I want a health card\"}"
https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers/
{classifier}/classify

Query response
Example 1-13 shows the response returned when querying the classifier.

Example 1-13 Query response

{

"classes": [
{
"confidence": 0.9858005113688728,
"class_name": "Health"
b,

{
"confidence": 0.014199488631127315,

"class_name": "VeterinaryHealth"
}

1,

"classifier_id": "fb5b42ex171-nlc-2121",

"text": "I want a health card",

"top_class": "Health",

"url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers
/f5b42ex171-n1c-2121"

}

In this code snippet:
» The "text" value shows the input text in the query request.

» The "classes" value is an array that contains the list of defined class labels and the
confidence for each. Confidence is a value between 0 (0%) and 1 (100%), indicating the
confidence for each class label for the query input text.

The sum of confidence for all classes is 1. The classes in the array are ordered in a
descending order of confidence. That is, the class label with the highest confidence is
always the first element in the classes array.

1.1.4 Evaluate results and update the data

The objective of this step in the process is to improve the results returned by the classifier:
1. Detect wrong or weak confidence cases for user input text.
2. Change or restructure user’s phrases into generic representative text.

Chapter 1. Basics of Natural Language Classifier service 9

3. Match text to their corresponding class label.
4. Add new text to the original training data and create a new classifier.

5. Repeat this cycle when quality of classification drops to a certain lower limit.

1.2 References

See the following resources:
» Overview of the IBM Watson Natural Language Classifier service:

https://www.ibm.com/watson/developercloud/doc/natural-Tanguage-classifier/index
.html

» Getting started with the Natural Language Classifier service:

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getti
ng-started.html

10 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getting-started.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getting-started.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/index.html

Creating a Natural Language
Classifier service in Bluemix

IBM Watson Developer Cloud offers a variety of services for developing cognitive
applications. One of these services, which is the focus of this book, is the Watson Natural
Language Classifier (NLC) service.

This chapter explains how to create an instance of the Natural Language Classifier service in
Bluemix that is required for the use cases described in this book.
The following topics are covered in this chapter:

» Requirements
» Creating the Natural Language Classifier service instance
» What to do next

© Copyright IBM Corp. 2017. All rights reserved. 11

2.1 Requirements

To create a service and perform the use cases in this book, you must have a Bluemix
account. You can register to create an account and log in at IBM Bluemix. When you log in,
you are prompted to authenticate with your email or IBM ID and password.

2.2 Creating the Natural Language Classifier service instance

The two ways to create the Natural Language Classifier service instance are as follows:
» Creating the Natural Language Classifier service instance from the Bluemix website

» Creating the Natural Language Classifier service instance using Cloud Foundry
commands

2.2.1 Creating the Natural Language Classifier service instance from the
Bluemix website

To create the service, follow these steps:
1. Log in to the IBM Bluemix website.
2. When the home page opens, click Catalog.

3. On the IBM Bluemix Catalog page (Figure 2-1) scroll to the Services section, select
Watson, and then click Natural Language Classifier.

@, IBM Bluemix Catalog Catalog Support Account
Network
Security
Q Search
Apps
Boilerplates

Build cognitive apps that help enhance, scale, and accelerate human expertise.

N . AlchemyAPI Conversation Discovery
- 4~ | An AlchemyAP! service that analyzes Add a natural language interface to your Add a cognitive search and content
Mobile your unstructured text and ir application to automnate interz analytics engine to applications.
5 IBM IBM IBM
Services
Data & Analytics
Document Conversion Language Translator :_E. .i. Natural Language Classifier
EE Converts a HTML, PDF, or Microsoft Translate text from one language to T Matural Language Classifier performs
Word™ document into a no another for specific domains natural language classificatio
IBM IEM IBM
Personality Insights gf Retrieve and Rank o Speech to Text
; The Watson Personality Insights derives IE Add machine learning enhanced search d Low-latency, streaming transcription

insights from transactional capabilities to your application

IBM IBM IBM

Integrate

Figure 2-1 Natural Language Classifier in the Bluemix Catalog

4. On the Natural Language Classifier page (Figure 2-2 on page 13), create the service. You
can change the Service name and Credentials name fields by using your personal choices
or keep the default values. The important point is that for the instance of the service being
created, the credential name will have the username and password. Click Create.

12 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.bluemix.net
https://console.ng.bluemix.net

IBM Bluemix Catalog Catalog Support Account

< View all

Natural Language Classifier

The Natural Language Classifier Service name:

service applies cognitive

ITSO-ED-6000-R01-Natural Language Classifier

computing techniques to return

the best matching classes for a
Credential name:
sentence or phrase. For
example, you submit a question :
o - Credentials-1
and the service returns keys to
the best matching answers or

next actions for your application.

You create a classifier instance F e atu res
by providing a set of
representative strings and a set

» SoftBank

of one or more correct classes
A localized version of this

i Watson service is available
the new classifier can accent o PP T

Need Help? Estimate Monthly Cost _
Create
Contact Bluemix Sales Cost Calculator

Figure 2-2 Creating Natural Language Classifier service instance

for each training. After training,

5. Get the credentials (username and password) from the service instance for later use.
Click the service instance and select the Service Credentials tab.

6. Click View Credentials and get the username and password values (Figure 2-3 on
page 14).

Important: The service instance credentials, username and password, are used in the
next chapters.

Chapter 2. Creating a Natural Language Classifier service in Bluemix 13

ITSO - ED-6000-R01 - Natural Language Classifier

Manage Service Credentials Connections

Service Credentials Service Credentials New Credential (3

Credentials are provided in JSON |:| KEY NAME DATE CREATED ACTIONS
format. The JSON snippet lists
credentials, such as the APl key and [] Credentials-1 Jan 28, 2017 - 01:45:41 View Credentials [

secret, as well as connection
information for the service.

{

"aurl™: "https://gateway.watsonplatform.net/natural-lan
guage-classifier/api”,
"password": "

3
&
"username " ; "_ i

}

Figure 2-3 Get user name and password from Natural Language Classifier service instance

2.2.2 Creating the Natural Language Classifier service instance using Cloud
Foundry commands

To create the service, follow these steps:

1.

Download the Cloud Foundry software Cloud Foundry software and install it on your
computer.

2. Open a command prompt.

3. Runthe c¢f 1ogin command and insert the email and password for your Bluemix account

in the sequence shown in Example 2-1.

Example 2-1 Run login and provide email and password for the Bluemix account

cf Togin

API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_ EMAIL_ACCOUNT>

¢
Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
0K
Targeted org <YOUR_ORGANIZATION>

Select a Bluemix space to host the service (Example 2-2 on page 14).

Example 2-2 Select a Bluemix space

Select a space (or press enter to skip):
1. dev

2. Qga

3. Prod

14 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry/cli/releases

Space> 1
Targeted space dev
API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

. Run the following command to create an instance of the service:

cf create-service <service> <service_plan> <service_instance>

About the command:

cf create-service The Cloud Foundry command to create the service instance.

<service> The name of the service you want to create an instance of. For

Natural Language Classifier, use Natural_Language_Classifier.

<service_plan> The pricing plan.

<service_instance> The service instance name you want to use.

Example 2-3 shows the command.

Example 2-3 The cf create-service command

cf create-service Natural_Language Classifier standard "ITSO-
ED-6000-R01 - Natural Language Classifier"
Creating service instance ITSO-ED-6000-RO1 - Natural Language Classifier in org
<YOUR_ORGANIZATION>/ space dev as <YOUR BLUEMIX EMAIL ACCOUNT>...
0K

. List the service information by using the cf service <service_name>command to confirm

that it was successfully created (Example 2-4).

Example 2-4 The cf service command

cf service "ITSO-ED-6000-R01 - Natural Language Classifier"

Service instance: ITS0-ED-6000-RO1 - Natural Language Classifier

Service: natural_language classifier

Bound apps:

Tags:

Plan: standard

Description: Natural Language Classifier performs natural language classification
on question texts. A user would be able to train their data and the predict the
appropriate class for an input question.

Documentation url: https://www.ibm.com/watson/developercloud/nl-classifier.html
Dashboard:

https://www.ibm.com/watson/developercloud/dashboard/en/n1-classifier-dashboard.html

Last Operation

Status: create succeeded
Message:

Started: 2017-02-16T17:16:497
Updated:

Chapter 2. Creating a Natural Language Classifier service in Bluemix

15

7. Create user and password credentials to access the service by using this command:
cf create-service-key <service instance> <service_key>.
About the command:

cf create-service-key The Cloud Foundry command to create the service key with
user and password.

<service_instance> The name of the Natural Language Classifier service instance.

<service_key> The name of the service key you want to create.

Example 2-5 shows this command.

Example 2-5 The cf create-service-key command

cf create-service-key "ITSO-ED-6000-R01 - Natural Language Classifier" myKeys
Creating service key myKeys for service instance ITSO-ED-6000-RO1 - Natural
Language Classifier as <YOUR _BLUEMIX EMAIL ACCOUNT=>...

0K

8. Get the username and password in order to access the service later by running the
following command:

cf service-key <service_instance> <service_ key>
About the command:

cf service-key The Cloud Foundry command to view the username and password
in the service key.

<service_instance> The name of the service instance.

<service_key> The name of the service key.

Example 2-6 shows this command.

Example 2-6 Use cf service-key to get username and password

cf service-key "ITSO-ED-6000-RO1 - Natural Language Classifier" myKeys
Getting key myKeys for service instance ITSO-ED-6000-RO1 - Natural Language
Classifier as <YOUR BLUEMIX EMAIL ACCOUNT>...

{
"password": "egDxZXXEoXJR",
"url": "https://gateway.watsonplatform.net/natural-Tanguage-classifier/api",
"username": "189db2d8-95e2-XXXX-9a3c-1fba7f991c41"
1

Important: The service instance credentials, username and password, are used in the
next chapters.

16 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

2.3 What to do next

Creating the service instance is a required step for the remaining chapters in this book. With
username and password collected from Natural Language Classifier service instance, you
can go through the next chapters:

» Chapter 3, “Healthcare questions and answers” on page 19.
» Chapter 4, “News Classification” on page 45.
» Chapter 5, “SPAM Classifier’ on page 101.

Chapter 2. Creating a Natural Language Classifier service in Bluemix 17

18 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Healthcare questions and
answers

This chapter introduces the use of the Watson Natural Language Classifier (NLC) service in
an application. The Watson Natural Language Classifier service applies deep learning
techniques to predict the best predefined classes for short sentences or phrases. The classes
prediction can be used for triggering a corresponding action in an application, such as
answering a question.

This chapter describes steps to create a simple Healthcare question and answer (Q and A)
application. The application is an example of a use case for a cognitive application using the
Watson Natural Language Classifier service. The main objective of the Healthcare Q and A
application is to provide answers to questions that are related to a healthcare community or
organization.

In this chapter, you work with code that is partially developed and therefore the chapter
provides code snippets for you to use.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

vyvyvyvYyyvyy

© Copyright IBM Corp. 2017. All rights reserved. 19

3.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

3.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

» Create a Healthcare Q and A application using Node.js and running in IBM Bluemix.
Prepare training data in a CSV file.

Implement the Watson Natural Language Classifier service using Node.js.

Train the classifier using the prepared CSV file.

S
S
S
» Use the Bluemix web user interface to create and manage services.

3.1.2 Prerequisites

To complete the steps in this chapter, ensure that you meet the following prerequisites
» Bluemix account

» The instructions to create an Natural Language Classifier service, as described in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11

» An Internet browser such as Chrome, Firefox, Internet Explorer, or Safari
» Install Cloud Foundry
» Basic JavaScript skills

» Review the available Bluemix regions and select the most appropriate based on your
location

» Git basics

3.1.3 Expected results

By following the steps in this book, you should be able to use a browser to run the application.
The application works as follows:

1. In a web browser open the Healthcare Q and A Application to see a running version on
Bluemix (Figure 3-1 on page 21).

20 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://hcqanaturallanguageclassifier.mybluemix.net/

Heatlthcare Q and A Application

Enter question to be answered.

Figure 3-1 Healthcare Q and A application

2. Enter a question (such as “Where are clinics?”) and click Submit. A page opens to display
an answer (Figure 3-2).

Medical Providers

List of approved medical providers

Here is our latest list of approved medical providers:

Catalog

Figure 3-2 Healthcare Q and A application results displayed

Chapter 3. Healthcare questions and answers 21

3.2 Architecture

22

The Healthcare Q and A application is composed of a web interface, application logic, Watson
Natural Language Classifier service, and Node.js run time. The application logic orchestrates
a classification service. The Watson Natural Language Classifier service classifies to which
category the specified question belongs. Node.js run time uses the Express framework as the
integration platform between the web interface and the Watson Natural Language Classifier
service.

Figure 3-3 shows the components of the application and flow:

1.
2.
3.

User submits a healthcare related question through the web interface.
Web interface posts the received question to the application.

Application logic routes the question to Node.js Express as the application integration
platform.

Node.js in turn receives the question and sends it to the Watson Natural Language
Classifier service to be classified.

Watson Natural Language Classifier service returns the response, which includes the top
class representing the category of the question.

6. Node.js returns the Natural Language Classifier response to the application logic.

7. Application logic identifies the web interface page to be displayed as per the question

category returned from the Watson Natural Language Classifier service.
Web interface displays the page that includes the answer to the question.

Public network Bluemix network
Sending Sending Sending
healthcare question healthcare question @ healthcare question
Receiving answer Receiving answer Receiving answer
User e Web browser a Application logic e NODE.JS RUNTIME

A

Receiving answer
Sending
healthcare question

A,

NATURAL
LANGUAGE
CLASSIFIER

Figure 3-3 Architecture overview diagram

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:
» Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 3.4, “Step-by-step implementation” on page 23. This version takes you through
the key steps to integrate the IBM Watson services with the application logic.

» Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 3.5,
“Quick deployment of application” on page 42.

3.4 Step-by-step implementation

Deploying this application involves the following steps:
Downloading the project from the Git repository.

Preparing the training data.

Creating and training the Natural Language Classifier service.
Creating the Node.js Express Healthcare Q and A application.
Deploying the application.

2B L T S

Testing the application.

3.4.1 Downloading the project from Git

Start by downloading the code. The code is basically the same as the quick-deployment
version, however it is missing some important parts to be developed by you.

» Download the incomplete code (step-by-step deployment version):
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

After downloading, explore the downloaded folder to become familiar with its structure so
you can more easily follow the step-by-step deployment.

» You can also download the complete code (quick deployment version) that you can use for
verification or as a code reference:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

Chapter 3. Healthcare questions and answers 23

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

3.4.2 Preparing training data

This section focuses on preparing the training data CSV file for the Healthcare Q and A
application. The file should include a list of questions that are categorized into different
classes. After randomly listing some of the expected questions, most of the questions
seemed to fit into five main categories of questions representing five classes (Figure 3-4):

Policy: Questions about healthcare policy, contracts, and plans
Providers: Questions about service providers
Products: Questions about products and offers

About: Questions about the healthcare organization and contact information
Claim: Questions about claims and reimbursements

Can you nominate good Pediatrics? Providers

What are the HealthCare insurance products proposed? Products

| would like to contact the support team? About

Is there any time limitation to submitting my claim? Claim

How do | manage my policy? Policy

Figure 3-4 Sample questions for different categories

A bulk of related questions for each category are in the training file.

This training file is used as an input to the next step, 3.4.3, “Creating and training the
classifier” on page 24.

You can find the training data CSV file hcqa_training_data.csv in the
hcgaNaturallanguageClassifier Student folder that you downloaded as described in 3.4.1,
“Downloading the project from Git” on page 23.

3.4.3 Creating and training the classifier

Note: You must create a Natural Language Classifier service instance in Bluemix as
described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on
page 11 before performing the steps in this section.

After creating the Natural Language Classifier service instance, the next step is to create and
train a classifier associated with the service instance, by using the prepared training CSV file
from 3.4.2, “Preparing training data” on page 24:

1. Log in to your Bluemix account, open the Manage tab, and click Access the beta toolkit,
(Figure 3-5 on page 25).

24 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

@, IBM Bluemix N Catalog Support Account

<~ Watson .
:
hcga_nlc
Manage Service Credentials Connections

Natural Language Classifier Toolkit (beta)

Manage your training data and classifiers through a web application. (Not available in Bluemix Dedicated

environments.)

Intended Use

Figure 3-5 Training process step 1: Access the toolkit

2. Click Sign in with Bluemix (Figure 3-6).

IBM Watson Natural Language Classifier Training data Classifers @ —

Login

L (D Sign in with Bluemix

Figure 3-6 Training process step 2: Sign in with Bluemix

3. Click Confirm to grant the toolkit access to your previously created Natural Language
Classifier service instance (Figure 3-7).

& IBMBluemix

Confirmation Authorization

Are you sure you want fo authorize nlctoolingclientid fo access heqa_nle in the organization WatsonAPlIs and space Blockchain_WatsonAPI?
nictoolingclientid will have:

Read and write access to hega_nlc

CONFIRM CANCEL

Figure 3-7 Training process step 3: Confirm

Chapter 3. Healthcare questions and answers 25

4. Click Add training data (Figure 3-8).

IBM Watson Natural Language Classifier Training data Classifiers @ -

Classifiers

These classifiers are connected to the service instance. You can test and improve the performance of a classifier that has a
status of Available.

®

Add training data

Add texts and classes to your training data to create a classifier.

Figure 3-8 Training process step 4: Add training data

5. Upload the prepared training CSV file by clicking the upload icon (Figure 3-9). Then click
Create classifier.

IBM Watson Natural Language Classifier Training data Classifiers
Watson needs your data. Begin by adding classes and texts, or import data from a file. ®
Classes 0o Texts | o
Q, MNewest first W' o, MNewest first W'
(@ Addclass (P Addtext

Figure 3-9 Training process step 5: Create classifier and upload training data

6. Specify the classifier name in the Name field, and then click Create (Figure 3-10).

Create Classifier

Create and train a classifier from the 8 classes and 134 texts on the Training
data page.

Name: HCQA_NLC

Training data language: English

The fime fo frain a classifier varies from minutes to hours and depends on the size of the training

#
agata

Figure 3-10 Training process step 6: Provide a name for classifier

26 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

7. Reload the page to be sure that the classifier creation process is in progress (Figure 3-11).

IBM Watson Natural Language Classifier

Classifiers

These classifiers are connected to the service instance. You can test and improve the performance of a classifier that has a

status of Available.

IBM Watson is creating and training a classifier

‘You don't need to walch this progress bar. You can leave and come back later

Cancel

Figure 3-11 Training process step 7: Progress bar

8. After the training process completes, the classifier is listed with a Classifier ID
(Figure 3-12). This value will be used later in the JSON configuration file, for the Node.js
Healthcare Q and A application.

IEM Watson Natural Language Classifier

Classifiers

These classifiers are connected to the service instance. You can test and improve the performance of a classifier that has a
status of Available.

HCQA_NLC S @ ‘

Created 11-13-48 AM
Classifier ID: NSRS

Figure 3-12 Training process step 8: Training process completed

Chapter 3. Healthcare questions and answers 27

3.4.4 Creating the Node.js Express Healthcare Q and A application

To create the Healthcare Q and A application, complete these steps.
1. Download the project from the Git repository:
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git
2. Set the dependencies:
a. Navigate to the downloaded application folder, and open the package. json file:
../hcqgaNaturalLanguageClassifier/package.json

The file has a list of required dependencies (Figure 3-13).

[&:] 1 an N s L R

o
(I O Y I R)

I
==

Figure 3-13 Snapshot from the package.json file: Dependencies

b. Inthe package. json file, add the following dependency to line number 16 (Figure 3-14
on page 29):

"watson-developer-cloud":"2.14.8"

The Watson module will provide access to the high-level wrappers for each of the
Watson cognitive services running on IBM Bluemix.

28 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

{
"name”: “"hcganaturallanguageclasaifier”,
"version™: T0.0.07,
"private™: true,
"scripta®: |
"start™: "node ./binSwww"
}I
"dependencies™: |
"body-parser™: "~1.15.27,

"cookie-parser”: "~1.4.3",

11 "debug~: "~2.2.07,

12 "aja™: "~2.5.2%,
"express”: "~4.14.0",

14 "morgan™: "~1.7.07,
"serve-favicon™: "~-2.3.0",

"watson-developer-cloud”: "~2.14.8"

17 }
18}

Figure 3-14 The package.json file after adding Watson-developer-cloud to dependency list

3. Set the service credentials and classifier ID.

a. Open the config.js configuration file /hcqaNaturallanguageClassifier/config.js to

d.

4. Configure the application route. This route specifies the URI that points to the file that

add the Natural Language Classifier service credentials and classifier ID.

Add the values for the username and password that you obtained when you created the
service as described in Chapter 2, “Creating a Natural Language Classifier service in

Bluemix” on page 11.

Add the classifier ID that you obtained when you created the classifier in step 8 on

page 27. See Figure 3-15.

var config = {
watson: {
—natural language classifier: {

username: "7,

password: "7,

1 & tn s Ld R

version: "wl",

id: ™"

Bl

S |}

10 el

11 module.exports = config;

Figure 3-15 Snapshot from the config.js file: Setting service credentials and classifier ID

Save the config.js file.

includes the required application actions.

a.

Open the following file:

../hcgaNaturallLanguageClassifier/app.js

Add the following text to line number 10 (Figure 3-16 on page 30), and add an extra

new line after that:

var nlc = require('./routes/nlc');

Chapter 3. Healthcare questions and answers

29

This line of code specifies the route file (n1c in this example).

1 var express = reguire('express'):;

2 var path = require('path'):

3 var favicon = require('serv

4 var logger = require('morgan');

5 var cookieParser }

6 var bodyParser =

g var index = require('./routes/index"):

9 var users = regquire(’'./routes/users"'):
10 var nlc = require('./routes/nlc'):; |
11

2 var app = express():;
13
14 // view engine setup
15 app.3et('views', path.join(_ dirname, 'wisws')):
16 app.get (' ¢ engine', 'ejs"}:
17

// uncomment after placing vwour fawicon in /public

//fapp.use (favicon (path.join(dirname, "public', '"favicon.ico'))):
app.use (logger ('dev')):

app.use (bodvParser.json()) ;

app.use (bodyParser.urlencoded ({ extended: false })):

app.use (coockieParser())

app.use (express.static(path.join(_ dirname, 'public'})}:

[T = R = -

=

[a%]

=

[= i)

app.use('/', index):
app.use('/users', users);

[T L I S T T S T S T S R VS LS I S I L
[¥1]

q
30 //f catch 404 and forward to error handler
31 app.use (function(req, res, next) [
2 var err = new Error('Not Found'):
33 err.status = 404;
34 next (err) ;
35 }:
36
37 // error handler
38 app.use (functiaon(err, req, res, next) |
39 £/ set locals, only providing error in development
40 res.locals.message = err.me3sage;
41 res.locals.error = reg.app.get('env') == 'dewelopment' ? err : {};
2
43 // render the error page
44 res.status (err.status || 500} ;

Figure 3-16 Snapshot from the app.js file highlighting the location of newly added code

c. Specify the URI that the application will use to load and access the file.
Add the following text to line number 28 in the app. js file (Figure 3-17 on page 31):

app.use('/nlc', nlc);

30 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

235

26 app.uze('/"', index):

27 app.use('/users', users):;

P-E app.use('/nlc', nlc): |

29

30 [/ catch 404 and forward to error handler
31 app.use (functian(req, res, next) |
32 var err = new Error('Not Found'):
33 err.status = 404;

34 next (err) ;

35 1

36

Figure 3-17 Snapshot from the app.js file highlighting the route file and URI

d. Review the added lines as shown in Figure 3-18, and then save and close the file.

1 Var expresas = require('sxpresa’):

2 var path = reguire('path");

3 var favicon = require('serve-favicon'):

4 var logger = require('morgan') :

5 var cookieParser = require('co EX)
i var bodyParaer = require ('body-parser'):;

g var index = require|'./routes/index');

g9 var users = require('./routes/users'):
10 var nle = reqguire('./routes/nlec'):
11
12 var app = expresa():
13
14 [/ view engine setup
15 app.get('views', path.join{ dirname, "viewsz'}}):
15 app.set{'view engine', 'eja'):
17

S/ uncomment after placing vour favicon in /public

//fapp.use (favicon (path.join{_ dirname, 'public®, "favicon.ico®)));
app.use (logger('dev'}):

app.use (bodyParser.json()) ;

app.use (bodyParser.urlencoded ({ extended: false })):

app.use (cookieParaer())

app.use (express. static(path.join(_ dirname, 'public'}}):

M PO W -

[¥L]

(=T !

app.use('/', index):
app.uge|'/users’, users):
app.uze('/nlc’,; nlec): ‘

3

=]

[/ catch 404 and forward to error handler

U LI S T o T o N S T o N S T % S T T i

1 app.use (function(req, res, next) |

32 var err = new Error('NHot Found'):

34 err.3tatus = 404;

34 next(err) ;

35 H:

36

37 f/ error handler

38 app.use (function(err, redq, res, next) [

35 // 3get locals, only providing error in development
40 res.locals.me3sage = err.me3sage;

41 res.locals.error = reqg.app.get('env') == 'development' ? err : {}:
42

43 // render the error page

44 res.status (err.status || 500);

Figure 3-18 Snapshot for the app.js file highlighting the updates

Chapter 3. Healthcare questions and answers

32

By adding these lines, the application will load the new route file any time the user
accesses the application using this URI:

http://server:port/nlc

5. Integrate the Healthcare application with the Watson Natural Language Classifier service
by creating the server-side code. In this step, create the file that includes the implemented
code to be run when the route is accessed:

a. Create the nlc. js file in the following path:
../hcgaNaturallanguageClassifier/routes/nlc.js

b. Open the nlc.js file and add the code snippet shown in Example 3-1, which loads the
required node modules and the previously created config. js file.

Example 3-1 An nlc.js snippet: Loads the required node modules

var config = require('../config');

var express = require('express');

var bodyParser = require('body-parser');

var watson = require('watson-developer-cloud');

c. Set up the Express router:
var router = express.Router();

d. Create a body-parser instance for working with the URL that is encoded from data. The
body-parser middleware will be used to gain access to HTML form parameters.

var urlEncodedParser = bodyParser.urlencoded({extended:false});
e. Declare an instance of the Natural Language Classifier service and use the credentials
and classifier ID in JSON format in the configuration file, as shown in Example 3-2.

Example 3-2 Creating the Natural Language Classifier service instance: The nlc.js snippet

var urlEncodedParser = bodyParser.urlencoded({extended:false});

//Declare an instance of the NLC service; use the credentials and classifier
//id in JSON format in the configuration file

var natural_language classifier =

watson.natural language classifier(config.watson.natural _language classifier

)s

f. Add a function to handle HTTP POST requests to URL /n1c. This function will perform
classification on the input text entered by the user. The data will be submitted through
an HTML form in a parameter named source. Example 3-3 shows these details:

i. Perform classification on the source form parameter.

ii. A function to be run when classification analysis is completed.
ii. Print the returned errors to the server console.

iv. Print the returned results data to the server console.

v. Send the returned JSON data to the client application.

Example 3-3 Classifying input text: nic.js snippet

router.post('/', urlEncodedParser, function(req, res, next){
//Perform classification on the source form parameter.
natural_language classifier.classify({
"text': req.body.source,
'classifier_id': config.watson.natural_Tlanguage_classifier.id

}

//A function to be run when classification analysis is completed

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

function(err, response){
if(err){
/[Print the returned errors to the server console.
console.log('error:', err);
telsef
//Print the returned results data to the server console
console.log(JSON.stringify(response, null, 2));
//Send the returned JSON data to the client application
res.json(response);

1
1

To the end of the file, add the following line, which will make the routes available to the
remainder of the application:

module.exports = router;

The complete file is shown in Figure 3-19.

var config = require('..
var express = reguire(
var bodyParser = require
var watson = require('wa

var router = express.Router();
var urlEncodedParser = bodyParser.urlencoded ([extended: false});

//Declare an instance of the NLC service by using the credentials and classifier id in J50N format in the configuration file
var natural language_classifier = watson.natural language_classifier(config.watson.natural language classifier):

router.post('/', urlEncodedParser, function(reqg, res, next){
E natural_language classifier.classifv({
' : req.body.source,
er_id': config.watson.natural language classifier.id

r I

//A function to be run when classification analysis is completed.

=] function{err, response){
E if(err){
//Print the returned errors into the server console.
console.log('error:', err):
telse|

//Print the returned results data into the server console.
console.log (J30N.stringify (response, mull, 2));
//Send the returned JSON data to the client application.
res.json(response) ;

r }

E h:

~H:

module.exports = router;

Figure 3-19 Snapshot for the nic.js file

The Node.js route, which is the n1c. js file that will run the specified cognitive services on
data submitted through an HTML form has been created.

Review the index. js file. This file is the application main page that includes the input field
and renders the results in a new page by using EJS templates.

a.

Open the index.ejs file, which is in the following path:
../hcqaNaturallanguageClassifier/views/index.ejs
Review the code, which has the following details:

¢ A function for sending data to the server through an AJAX request (Figure 3-20 on
page 34.

Chapter 3. Healthcare questions and answers 33

34

function classify () {
var xhr = new XMLHttpRequest() ;
¥hr.onreadystatechange = function() |
if (xhr.readyState — 4} |
if (xhr.status = 200} {
var json = JS0N.parse (xhr.responseText) ;
document.getElementById ("result”) .innerHIML = json.top class:
document.getElementById (" subm a-t ", "#" + json.top_class):
document.getElementById ("=
}

}

}

xhr.open("POST™, "./nlc", true):
xhr.setRequestHeader ("Content-type™, "applic
¥hr.send ("source=" + document.getElementById("scur
}

Figure 3-20 index.ejs: JavaScript classify function

* A simple function for resetting or clearing values in the page (Figure 3-21).

function clearData() {

document.getElementById ("= "8
document.getElementById {"result”) . innerHTML = "";
¥

Figure 3-21 index.ejs: JavaScript clearData function

¢ A simple text area to accept input from the user (Figure 3-22).

<piF
<divr<textarea id="source" name="source" rows="10" cols="73"x/textarea>< div>
<piF

Figure 3-22 index.ejs: textarea

¢ Buttons for invoking the JavaScript functions classify() and clearData()
(Figure 3-23).

<dive
<button id="submitButton" onclick="classify()" type="button" class="btn btn-info">Submit</button>
<button id="submitButton2" type="button" data-toggle="modal" style= "display:none"></button>
<button onclick="clearData()" type="button" class="btn btn-info" data-toggle="modal" >Clear</buttons>

</divy>

Figure 3-23 index.ejs: Buttons for invoking JavaScript functions

¢ Modals for each class that displays the answers for different categories and classes
(Figure 3-24 on page 35).

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

<!-- Mopdal -->
<div id="Policy" class="modal fade" role="dialog" style="z-index:999999999;">
<div clazs="modal-dialog">
<!-— Mpdal content—->
<div class="modal-content">
<div claszs="modal-header">
<button type="button" clazs="cleose" data-dismiss="modal">x</button>
<h3 class="modal-title">Policies and Plans</h3>
<fdiv>
<div clazs="modal-body">
<div clags="contalner-fluid">
<hi>1. Group Life & Medical Plans</hi>
<p>Like all well run companies, yours will rely on your people to succeed. It's therefore crucial to offer the best benefits package you can, to attract
alsc worth remembering that many employees today see these benefits as a Eey consideration when assessing the employment market</p>
<p clazs="callteaction">Learn more about our Group

<h4>2. Have your circumstances changed? <strongrsnbsp;</strong»</hdx
<p>We want to make sure that you always have the right protection for your circumstances. If things change sndash; for example, you may start a family, o
amount or type of protection you need.snbsp;</p>
<p>S0 1f anything changes, Just call us on <3trong>19798 (from cutside Egypt +202 2 461 5020) so we can make sSure yousrsguosre still receiving i
<h4>5. List of regquired documents for any change in your policy? snbsp:</hi>
<p>Here is our required document for any change in your policy.</p>
<p>sbull; Required documents for policy changes.</p>
</div>
</fdiv>
<div class="modal-f{ooter">
<button type="button" class="btn btn-info" data-dismiss="modal">Close</button>
<fdiv>
</fdiv>
</div>
</div>
<!-— Mpdal —-—>

Figure 3-24 index.ejs: Examples of Modals

c. Close the index.ejs file.

3.4.5 Deploying the Healthcare Q and A application on Bluemix
The steps in this section guide in pushing the final application to the Bluemix environment and
making it publicly accessible to consumers:
1. Open the manifest.yml file (Figure 3-25) and review its contents:

../hcqaNaturallanguageClassifier/manifest.yml

applications:

- path:
memory: 25&M
instances:
domain: mybluemix.net
name: hogaMaturalLanguagelClassifier
host: hcgaMaturalLanguageClassifier
bunildpack: sdk-for-nodejs

1 disk gmota: 1024M

N L RS

[SET=I]

Figure 3-25 The manifest.yml file

This is a helper file for identifying and pushing the application to the IBM Bluemix
environment. The file is used to declare resources and metadata required for your
application to run in Bluemix and also used to bind existing services to the application.

2. Each application hosted in IBM Bluemix must have a unique sub-domain. To distinguish
your application from others, make the host name unique by appending the initials of your
name to the host value.

host: hcgaNaturallanguageClassifier-AS
Note: Replace AS by your initials
3. Save and close the file after updates.

Chapter 3. Healthcare questions and answers 35

4. Review the Bluemix regions (Table 3-1). A Bluemix region is a defined geographical
territory that you can deploy your applications to. Select the appropriate Bluemix region
closer to your location to reduce the application latency.

Table 3-1 Regions

Region Location Prefix cf API endpoint Ul console

US South Dallas, US ng api.ng.bluemix.net console.ng.bluemix.net
United London, UK eu-gb api.eu-gb.bluemix.net console.eu-gbh.bTuemix.net
Kingdom

Sydney Sydney, Australia au-syd api.au-syd.bTuemix.net console.au-syd.bluemix.net

3.4.6 Testing the application

5. Set the API endpoint for the Bluemix region you selected (from Table 3-1) and log in to
Bluemix using your Bluemix credentials.

Return to the command window and enter the commands shown in Example 3-4.

Example 3-4 Enter these commands in the command window

cf api https://api.ng.bluemix.net
cf Togin -u <<Your Bluemix username>>

6. When prompted enter your Bluemix password.

7. Push the health care application to be deployed in Bluemix.

In the command prompt window enter the commands shown in Example 3-5.

Example 3-5 Deploying the application to Bluemix

cd <<The project path username>>\hcqaNaturallLanguageClassifier
cf push 'hcqaNaturallanguageClassifier'

The Cloud Foundry command-line tool will examine the contents of the manifest.yml and
package. json files and push the application to Bluemix.

8. Exit the CF tool:

cf Togout

To test the Healthcare Q and A application, complete these steps:

1. In the web browser, enter the following URL to open the application. Replace _AS by your
initials as you entered them in step 2 on page 35 (Figure 3-26 on page 37):

http://hcqanaturallanguageclassifier-AS.mybluemix.net/

Note: To assess the quality of the training, the test input questions should not be
exactly the same as the questions included in the training set.

36 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Heatlthcare Q and A Application

Enter question to be answered.

Figure 3-26 Healthcare Q and A application

2. Enter a test question, such as “Where are clinics?” (which represents a Provider class
question) and click Submit (Figure 3-27). The figure shows that the question is classified
as Providers, as expected.

Medical Providers

List of approved medical providers

Here is our latest list of approved medical providers:

Catalog

Figure 3-27 Healthcare Q and A application results displaying Providers class results

3. Check the logs by first opening the application from the dashboard (Figure 3-28). Click the
application.

IBM Bluemix Catalog Support Account

Q, Searchltems i

A Apps

Cloud Foundry Apps 256 MB/1 GB Used

NAME ROUTE MEMORY ... INSTANCES RUNNING STATE ACTIONS

hcgaNaturall anguageClassifier beaal anguageCl blue 256 1 1 @ PRuming RolbacktoDEA C [T

Figure 3-28 Healthcare Q and A application

Chapter 3. Healthcare questions and answers 37

38

Then, on the left panel, click Logs to view the application logs (Figure 3-29).

€ Dashboard

Getting started

QOverview

Runtime

Connections

Logs

Meonitoring

(is) hcgaNaturalLanguageClassifier setus: ® ruming

“E—J e)

APP/0 “confidence”: 0.0029279255454944205
APP/D "text": "l would like to know more about you?",
APPID |

APP/D "top_class": "About",

APPID]

APP/0 “class_name™ "Providers",

APPIO],

APP/0 "class_name™: "Policy”,

APP/D],

APP/0 “confidence™: 0.9510858440032649
APP/D “"confidence": 0.007728458171731318

APP/O]

Figure 3-29 Returned JSON results from the classifier

4. Back to the web application, enter a test question which represents an About class
question such as “l would like to know more about you?” and click Submit (Figure 3-30).
The figure shows that the question is classified as About, as expected.

About

Who We Are

A Healthcare insurance community.

Over the past years, our proved our in offering and distributing insurance plans & services for healthcare insurance

Have a question?

Call our hot line 19097 which is operating 24 hours 7 days a week for medical claims, medical network or medical pre-approvals
Or

Call our short number 19798 for individual policies, which is operating from 8:00am to 5:00pm from Sunday to Thursday

Or

Jjust fill up our "Contact us" form and we will call you
Need to find our offices?
Just click here

Need Support?

Check the Member's Guidebook to know more on "How to use our Medical Services™

 Arabic Version
« English Version

Figure 3-30 Healthcare Q and A application results displaying About class results

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5. Review the logs (Figure 3-31).

€ Dashboard

hcgaNaturalLanguageClassifier stts: ® Ruming

Getting started

Errors
Overview J

APP/0 “confidence": 0.0029279255454944205

Log type: all v

Runtime
APP/0 "text": "l would like to know more about you?"
Connections APPIO |
Logs APP/0 “top_class™: "About”,
APPIO |
Monitoring
APP/0 "class_name™: "Providers",
APPIO),

APP/0 “class_name": "Policy",
APPIO),
APP/0 “confidence": 0.9510858440032649

APP/0 “confidence": 0.007728458171731918

APP/O },
Figure 3-31 Returned JSON results from the classifier

6. Enter a question, such as “What are the policies?” (which represents a Policy class

question) and click Submit. (Figure 3-32). The figure shows that the question is classified
as Policy, as expected.

Policies and Plans

1. Group Life & Medical Plans
Like all well run companies, yours will rely on your people to succeed. It's therefore crucial to offer the best benefits package you can, to attract talented people and to retain a motivated workforce. It's also worth remembering that many
employees foday see these benefits as a key consideration when assessing the employment market

Learn more about our Group Life and Medical plans

2. Have your circumstances changed?

We want to make sure that you always have the right protection for your circumstances. If things change — for example, you may start a family, move jobs or emigrate — this could seriously affect the amount or type of protection you need
So if anything changes, just call us on 19798 (from outside Egypt +202 2 461 9020) so we can make sure you're still receiving the right leve! of protection.

5. List of required documents for any change in your policy?

Here is our required document for any change in your policy.

« Required documents for policy changes

Figure 3-32 Healthcare Q and A application results displaying Policy class results

Chapter 3. Healthcare questions and answers 39

40

7. Review the logs (Figure 3-33).

& Dashboard
hcgaNaturalLanguageClassifier stus: ® runing

Getting started

- e "
Qverview /

Runtime APP/0 “text": "What are the policies?”,

AFP/D |
Connections

APP/0 “classifier_id": "f5b432x172-nlc-1791",

Logs APP/D *url*: *https://gateway.watsonplatform.net/natural-language-classifier/apiAvi/classifiers/f5b432x172-nlc-1791"
APP/0 |
Monitoring
APP/0 “top_class™: "Policy”,
APP/0 |
APP/D [0mPOST /nic [32m200 [0m60.343 ms - 505[0m
APP/O “class_name"™: "Policy”,
AFP/O |
APP/0 “class_name™: "Claim",

APPID]

Figure 3-33 Returned JSON results from the classifier

Enter a test question, such as “How to claim?” (which represents a Claim class question)
and click Submit (Figure 3-34). The figure shows that the question is classified as Claim,
as expected.

Claiming

1. Pay your Premium easily
We often hear from our customers that they would like to have a choice on when and how to pay a premium. So, we have prepared a wide variety of aptions for you to choose from. You can decide whether you pay your premiums:

* quarterly
« semi-annually
« annually

You can also choose from a variety of dates on which your payment can be made. And finally, for even more flexibility. we offer several options of how to make your payment

+ Credit Card Payment — (On specific plans/policies)
+ Bank Transfer - Standing Order
« Bank Cheque

2. Missed a payment? Here’s how to reactivate your Policy
If you missed a payment and are worried about your policy being invalid contact us as soon as possible. In most cases we can simply re-activate your plan, with no loss of cover:

« Make a Claim
« Find a Form

Figure 3-34 Healthcare Q and A application results displaying Claim class results

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

9. Review the logs (Figure 3-35).

4 Dashboard

Getting started

Overview

Runtime

Connections

Logs

Monitoring

(s) hcgaNaturallLanguageClassifier sns: @ anming

“E—J o)

APP/O “classifier_id": "f5b432x172-nlc-1791",
APP/0 “"text": "How to claim?",

APP/0 "top_class™: "Claim",

APP/0 “confidence": 0.9865134935844221

APP/0 "confidence": 0.007207932250233586

APPIO 1,
APP/O "urf’: "https://gates latform.net/r language-classifier/apifvi/classifiers/fSb432x172-nlc-1781",
APPIO]
APPIO [

APP/0 “"class_name": "Policy”,

APPO],

Figure 3-35 Returned JSON results from the classifier

10.Enter a test question, such as “Can you provide background about the products and
offers?” (which represents a Products class question) and click Submit (Figure 3-36). The
figure shows that the question is classified as Products, as expected.

Products, Offers and Palns

Group Life and Disability

A menu of features to help you create the group life and disability solution that best suits your employees

. Cl for with over 10 emp
« Choose from a wide range of life and disability benefits to create a package that suits your organisation and employee's needs
* Offer additional facilities such as Supplementary Life Cover, Voluntary Life Cover & Dependant's Life Cover

Read More

Group Medical Plans

A competitively priced group medical plan delivered through a wide network of medical p easily to your emp

* Ci for with over 10
» Choose from a wide range of in-patient, out-patient and additional benefits to create a package that suits your organisaion and employee's needs
» Backed by MetLife's efficient claims process

Read More

Medium Package Plan
A pre-packaged group life and medical solution for medium sized organisations

» Best suited for small organisations with 21-200 employees
« Three pre-built packages confaining group life and group medical benefits
« Varying geographical coverage fo suit the needs of your organisation

Read More

Small Package Plan
A pre-packaged group life and medical solution for small organisations

« Best suited for small organisations with 5-21 employees
* Four pre-built packages containing group life and group medical benefits
» Varying geographical coverage to suit the needs of your organisation

Read More

Figure 3-36 Healthcare Q and A application results displaying Products class results

Chapter 3. Healthcare questions and answers 41

11.Review the logs (Figure 3-37).

& Dashboard
hcgaNaturalLanguageClassifier sttus: @ ruing

Getting started

- ot
Overview)

Runtime APP/0 “classes": [
APP/0 "classifier_id": *fob432x172-nlc-1791"
Connections
APPIO),
Logs APF/0
APP/0 "text": "Can you provide background about the products and offers?”,
Menitoring

APP/0 “confidence": 0.9740764506946465

APP/0 “top_class™ "Products"

APP/0 “confidence": 0.0H5856184516702276

APP/O],

APP/O {
{

APP/0

APP/O],

Figure 3-37 Returned JSON results from the Natural Language Classifier classifier

3.5 Quick deployment of application

As described in 3.3, “Two ways to deploy the application: Step-by-step and quick deploy” on

page 23, a Git repository containing the full application code is provided so that you can run

the application with minimal steps.

Follow these steps:

1. Access the Git repository and download the complete application code from:
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

2. Follow the steps in 3.4.5, “Deploying the Healthcare Q and A application on Bluemix” on
page 35.

3.6 References

See the following resources:
» Regions in Bluemix:

https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/re
gions_in_bluemix?Tang=en

» What is Bluemix:
https://console.ng.bluemix.net/docs/overview/whatisbluemix.html

» Cloud Foundry and CLI:
https://github.com/cloudfoundry/cli/releases

» CLI and Dev Tools:

https://console.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

42 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/regions_in_bluemix?lang=en
https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/regions_in_bluemix?lang=en
https://console.ng.bluemix.net/docs/overview/whatisbluemix.html
https://github.com/cloudfoundry/cli/releases
https://console.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

Node.js:

https://nodejs.org/en/

Express and Node.js tutorial:
https://codeforgeek.com/2014/06/express-nodejs-tutorial/
Natural Language Classifier; Authentication:

http://www.ibm.com/watson/developercloud/natural-Tanguage-classifier/api/vl/?no
de#authentication

Getting Started with IBM Watson Node.js SDK:
http://www.slideshare.net/pgodby/getting-started-with-ibm-watson-apis-sdks

Chapter 3. Healthcare questions and answers 43

https://nodejs.org/en/
https://codeforgeek.com/2014/06/express-nodejs-tutorial/
http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?node#authentication
http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?node#authentication
http://www.slideshare.net/pgodby/getting-started-with-ibm-watson-apis-sdks

44 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

News Classification

Watson Natural Language Classifier (NLC) provides a machine-learning classifier that
combines complex convolutional neural networks with a sophisticated language model to
learn and understand language. Behind this complexity, the Watson Natural Language
Classifier service is easy to use.

This use case shows a web application, named News Classification, that calls a classifier that
is already trained in using public news data, and the classifier responds with the type of news
the text is related to.

This chapter describes how to use the Natural Language Classifier service to develop a
sample use case in Java that classifies news text into five types:

>

vyvyyy

Business
Entertainment
Politics
Technology
Sports

The following topics are covered in this chapter:

vVvyyvyvyYYyy

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

© Copyright IBM Corp. 2017. All rights reserved. 45

4.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

4.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

» Prepare training and test data

Create and train a Natural Language Classifier instance
Run test queries

Evaluate the classifier with test data and check its accuracy

S
S
S
» Deploy a Java application that uses the classifier with Eclipse or with Git.

4.1.2 Prerequisites

Be sure the following prerequisites are met:
» Review Chapter 1, “Basics of Natural Language Classifier service” on page 1.

This chapter is important to help you understand the basics of Natural Language
Classifier.

» Create a Natural Language Classifier service instance as described in Chapter 2,
“Creating a Natural Language Classifier service in Bluemix” on page 11.

» Some Java programming language background
A basic Java programming background is important to understand the code.
» IBM Bluemix account

Bluemix is an open standard, cloud platform for building, running, and managing
applications and services. A Bluemix account is essential because the sample Java web
application is deployed into it.

For more information, see the Bluemix website.

These software requirements are also necessary:
» Access to a Windows desktop or Linux.

» IBM SDK, Java Technology Edition, Version 8, which you can download. This prerequisite
applies if you are using Eclipse.

» If you use Eclipse, then install and set up Eclipse Neon with Bluemix tools.
» If you are using Git client:

— Git download and installation

— Cloud Foundry download and installation

46 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.Bluemix.net
https://developer.ibm.com/javasdk/downloads/
https://git-scm.com/downloads
https://github.com/cloudfoundry/cli/releases
https://www.ibm.com/cloud-computing/bluemix/eclipse

4.1.3 Expected results

Figure 4-1 shows the home page of the News Classification web application that you can test.
Here the user inputs text.

Natural Language Classifier Documentation IBM Redbooks

Classify News

Enter the news you want to classify and click Classify News
The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

[Classify News |

Figure 4-1 News Classification home page

A user enters news information in the Text input field, and clicks Classify News (Figure 4-2).

Enter the news you want to classify and click Classify News
The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

Jose Mourinho refused to accept Manchester United's unbeaten run was over on Thursday night after struggling to contain his fury at
referee Jonathan Moss awarding Hull City a controversial penalty United booked their place in the EFL Cup final against Southampton
despite Hull ending their 17-game unbeaten streak with a 2-1 win at the KCOM Stadium. But Mouninho claimed his side did not lose after
being infuriated that Marcos Rojo was penalised for a push on Harry Maguire

Classify News

Figure 4-2 Input text on news classification application

Chapter 4. News Classification 47

https://nlc-201-news-java.mybluemix.net/

48

Then, the application lists the classification type in the Top Class field (Figure 4-3). In this
case, Top Class indicates news input is sports.

Text Input:

Jose Mourinho refused to accept Manchester United's unbeaten run was over on Thursday night after struggling to contain his fury at
referee Jonathan Moss awarding Hull City a controversial penalty. United booked their place in the EFL Cup final against Southampton
despite Hull ending their 17-game unbeaten streak with a 2-1 win at the KCOM Stadium. But Mourinho claimed his side did not lose after
being infuriated that Marcos Rojo was penalised for a push on Harry Maguire

Classify News

Watson Natural Language Classifier

Top Class : spozts

Suggest other classification © Business -

Figure 4-3 News classification results

To see the classification details, click the double down-arrow icon to the right of the top class
to expand classification information.

Figure 4-4 shows the expanded details panel of the Top Class. It shows the confidence of the
response and the other classes and confidences from the most confidence to least
confidence.

Top Class : sports ¥

=

"classes™: [-
4
-

"confidence”: 0.9864532252533781,

"class_name": "sports

"corfidence™: 0.00801902;

"class_name": °

"confidence”: 0.0028254913329835614,

"class_name": “emtertairment

"corfidence™: 0.0014045313912377656,

"class_pame": "technology”

L]

"confidence ": 0.0012977243000891 836,

"class_name": "Bustr

Figure 4-4 Classification details for the sample input text

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The last function is the Feedback button for users who do not agree with the top class result.

It saves the feedback suggestion for analysis by subject matter experts (Figure 4-5).

Watson Natural Language Classifier

Top Class : sports ¥%

Suggest other classification : Business -

Message
Response : Feedback saved with success |

Figure 4-5 Feedback function

4.2 Architecture

An overview of the application architecture is shown in Figure 4-6 and is described next.

Public network Bluemix network
NATURAL LANGUAGE
CLASSIFIER
User Web application Enterprise
data flow Front-end application
o User enters news content into web front-end a User enters feedback if classification is wrong
o News content is sent to Web back-end e Feedback is sent to Web back-end
o Web service calls NLC instance with news content e Web service calls database to persist feedback
. . . CLOUDANT
NLC inst; | fies th P t OK or Fail
o instance classifies the news @ ersistence OK or Fail response NOSQL DB
o Web service sends the response to front-end 0 Web back-end returns response to front-end
e News classification information is shown to user @ Feedback persistence response is shown to user
|

Figure 4-6 News Classification architecture diagram

The steps in the diagram are as follows:

1. The user inserts news content, as text, into the web interface and requests that it be
classified (clicks the Classify Text button).

2. The news text is sent to the application (enterprise back end) for processing.

3. The enterprise application (web service) calls the Watson Natural Language Classifier
service to evaluate what type of news is the best match for input text.

4. The Natural Language Classifier service returns the response to the enterprise
application.

Chapter 4. News Classification

49

5. The enterprise application forwards the response to the web application front-end.

6. The web interface manages the data information, performs some front-end processing,
and makes the response available for the user to view.

7. The other operation is user feedback provided if the news classification is incorrect. The
user clicks Feedback and submits the correct classification.

8. The web application front-end passes the user feedback request to the web application
back end.

9. The web application back-end calls the IBM Cloudant® noSQL DB service to persist the
feedback.

10.The database responds with the insert operation result to the enterprise application.
11.The enterprise application passes the response to the web front-end.
12.The user interface displays the results to the user.

Although in this use case, the web application is deployed to the IBM WebSphere® Liberty
profile, it could also be deployed to Tomcat.

For more information about application server hosting for enterprise applications, see About
WebSphere Liberty and Apache Tomcat.

4.3 Two ways to deploy the application: Step-by-step and quick
deploy

Two Git repositories are provided for this use case:
» Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 4.4, “Step-by-step implementation” on page 50. This version takes you through
the key steps to integrate the IBM Watson services with the application logic.

» Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 4.5,
“Quick deployment of application” on page 97.

4.4 Step-by-step implementation

Implementing this use case involves the following steps:

Downloading the project from Git.

Creating a Cloudant noSQL DB service instance.
Reviewing the project structure.

Preparing training data.

Creating and training the classifier.

Querying the trained classifier.

Evaluating the results and updating the training data.
Deploying the application.

Testing the application.

CONOO AN~

50 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://developer.ibm.com/wasdev/websphere-liberty/
https://developer.ibm.com/wasdev/websphere-liberty/
http://tomcat.apache.org/

4.4.1 Downloading the project from Git

This section explains how to download the sample News Classification project (incomplete
version of the application), which is available at:

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

You can use either of the following options:

» Import the sample Git project to Eclipse
» Clone the sample Git project by using the Git command line

Import the sample Git project to Eclipse
Install and configure Eclipse Neon with Bluemix Tools and Java SDK 8. The information to
download and install the software is listed in 4.1.2, “Prerequisites” on page 46.

After setting up Eclipse in your workstation, complete these steps:

1. Import the Git project into Eclipse. Select File — Import. When the Import window opens
(Figure 4-7) select Git — Projects from Git and click Next.

@ Import l o X

Select \
Impert ene or more projects from a Git Repository. I E = E]

Select an import wizard:

type filter text

s = General -
. (= EJB
4 (= Git

m

&+, Projects from Git
» = Install
s (= Java EE
> = Maven

> = Oomph -

(?) < Back Mext > Finizh Cancel

Figure 4-7 Import a Git project to Eclipse

Chapter 4. News Classification 51

https://github.com/snippet-java/redbooks-nlc-201-news-java-student
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

2. In the next window (Figure 4-8), select Clone URI.

e =
E Impaort Projects from Git = L=
Select Repository Source GIT
Select a location of Git Repositories et ".'_J
- |
type filter text
|1 Existing local repository
7] Clone Uk
?\ < Back ” Mext >] [Finish J ’ Cancel

Figure 4-8 Import Projects from Git: Clone URI

3. In the next window (Figure 4-9), add the following URI, and click Next:
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

E Import Projects from Git . |E] %
Source Git Repositol
S ALY
Enter the location of the source repository. =
-
Location
URL https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git | Local File...
Host: github.com

Repository path: /snippet-java/redbooks-nlc-201-news-java-student.git

Connection

Protocol:

Port:
Authentication
User:

Password:

[Store in Secure Store

@ [<Back [Net> [Finish

L

Figure 4-9 Select URI for Git repository in Eclipse

52 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4. The Git branches are listed (Figure 4-10). Select the master branch and click Next.

(" Y
I8} Import Projects from Git LIM

Branch Selection

be created to track updates for these branches in the remote repository.

Branches of hitps./igithub.com/isnippet-javairedbooks-nlc-201-news-java-student
type filter text

|Gl
Select branches to clone from remote repository, Remote tracking branches will - I"E

Y
—l

[¥] #2 master

Select All | | Deselect All

@) I <Back | Mea> |[Ensh [Cancel |

Figure 4-10 Master branch selected to import Git project

5. Alocal version of the Git project will be created. Specify the destination directory in your

local workstation and click Next (Figure 4-11).

@ Import Projects from Git

Local Destination

Configure the local storage location for redbooks-nlc-201-news-java-student.

Destination

Directory: CA\Users\IBM_ADMINgit\redbooks-nlc-201-news-java-student

Browse

Initial branch: | master

)

[Clene submodules

Configuration

Remote name: origin

@ [<Back [Net> [Finish

-

Figure 4-11 Local storage location for Git project

Chapter 4. News Classification

53

6. The last steps are to configure the Eclipse project. In the next window (Figure 4-12) select
Import Existing Eclipse Project and click Next.

™

@ Cloning from https://github.com/snippet-java/redbooks-nlc-201-news-java-st... |B] =
Select a wizard to use for importing projects I
ull
Depending on the wizard, you may select a directory to determine the wizard's scope l E |

-
Wizard for project import
@ Import existing Eclipse projects
() Import using the New Project wizard

() Import as general project

(= Working Tree - C:\Users\IBM_ADMIN\git\redbooks-nlc-201-news-java-student

@)]

b y

Figure 4-12 Import existing Eclipse project option

7. Confirm your settings (Figure 4-13) and click Finish.

[.] Cloning from https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git B = |
Import Projects
i . [Lil |
Import projects from a Git repository =
-
Projects:
type filter text to filter unselected projects Select All

(= nlc-201-news-java-student (C:\Users\IBM_ADMIN\git\redbooks-nlc-201-news-java-student) Deselect All

Search for nested projects

Working sets

[7] Add project to working sets

@ Next > [Finish [Cancel

b 4

Figure 4-13 Project selected confirmation

54 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The result shows that the Eclipse project is imported into the workspace (Figure 4-14). This
project will be the platform for other steps in this chapter.

4

"'—j > nlc-201-news-java-student [redbooks-nlc-201-news-java-student master]
4 [Ff src
4 f} com.ibm.itso.ed6001.nlc.news
. [} CreateAndTrain.java
- [} Evaluatejava
. [4} PrepareData.java
. [4} Query.java
a4} com.ibm.itso.eds00r1.nlc.news.beans
. [} ClassifyNews.java
- [4} QueryNews.java
4 f} com.ibm.itso.ed6001.nlc.news.ws
- [J} NewsServicejava
= configuration.properties
> Bk JRE System Library [JavaSE-1.8]
- B Maven Dependencies
> & lib
> [fy resources
> |y > target
» [WebContent
5y manifest.yml
i) pom.xml
[} README.md

Figure 4-14 Project imported with success from Git

Clone the sample Git project by using the Git command line
If you do not want to use Eclipse for this use case, you can use Git. The requirement for this

section is to install Git before you start. See 4.1.2, “Prerequisites” on page 46.

Complete the following steps:

1.

Open a command prompt and set up Git by using the following command:
git config --global http.ss1Verify false

2. Choose an empty directory to download the project code.
3. Run the command in the selected directory:

git clone
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

Change to the redbooks-nTc-201-news-java-student directory:
cd redbooks-nlc-201-news-java-student

Check the project content (Example 4-1):

Example 4-1 Project content

Directory of C:\Users\IBM ADMIN\student\redbooks-nl1c-201-news-java-student
1.031 .classpath

1.101 .project

<DIR> .settings

<DIR> 1ib

274 manifest.yml

1.755 pom.xml

2.493 README.md

<DIR> resources
<DIR> src

<DIR> target
<DIR> WebContent

Chapter 4. News Classification

55

4.4.2 Reviewing the project structure

Several project components are important to highlight:

>

The com.ibm.itso.ed600r0l.nlc.news package in the src folder contains the
PrepareData, CreateAndTrain, Query, and Evaluate Java classes required by the process
to use the Natural Language Classifier service that is described in 1.1, “Using the Natural
Language Classifier service” on page 2.

The com.ibm.itso.ed600r01.nl1c.news.beans package in the src folder contains beans
that are used to communicate the web front-end with web back-end by using Java to
JSON format.

The com.ibm.itso.ed600r01.nlc.news.ws package includes the Java web service to
access the back-end application This code receives news text to classify and feedback
classification from users.

The resource folder contains the training and test data set samples that are used in this
use case.

The pom.xm]1 file has all Java package dependencies for this project.
The manifest.yml files contains the template to deploy the application in Bluemix.

4.4.3 Creating a Cloudant noSQL DB service instance

56

Another requirement for the web application is to be prepared for client feedback about the
quality of the classification. A database repository will be created to save client feedback that
can be used by the SMEs to improve the quality of the classification.

You can choose one of the following ways to create the Cloudant noSQL service:

>
>

From Bluemix
From the command line

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Create a Cloudant noSQL DB service instance from Bluemix
Complete the following steps:

1. Open the IBM Bluemix Catalog page (top menu on the right) and select Services — Data
& Analytics from the left menu and click Cloudant noSQL DB (Figure 4-15).

= @, IBM Bluemix Catalog i Support Account
All Categories Q, search
Infrastructure

Essential data services; limitless possibilities.

Apache Spark Biginsights for Apache Hadoop Biglnsights for Apache Hadoop
T, FA, [Subscription)
* IBM Analytics for Apache Spark for Pravision managed Apache Hadoop and v R fptiony
Bluemix. Spark clusters within minutes. Provision managed bare metal Apache

Hadoop clusters for productio

1BM IBM

Apps IBM

Cloudant NoSQL DB Compose for Elasticsearch Compose for eted

- Cloudant NoSQL DB is a fully managed W | [iasticesarch combines the pawer of a e eted is a key/value store developers can

data layer designed for mode full text search engine with 1 use to hold the always-corre
Mabile 12M 1EM IBM Bela
Services

Compose for MongoDB Compose for MySQL Compose for PostgreSQL

Anahy [+ -
[Deta & Anaiytics | %% | MongoDB with its powerful indexing and MySQL is probably the most popular B | s s e e e

\ querying, aggregation and wic open source relational databa object-relational database
Internet of Things 1BM 1BM Beta 1IBM

Figure 4-15 Cloudant noSQL service on Bluemix

2. Click Create to create the service instance (Figure 4-16).

@, IBM Bluemix Catalog Catalog Support Account

< Viewall

Cloudant NoSQL DB

Cloudant NoSQL DB is a fully Service name:
managed data layer designed for
modern web and mobile Coudant NoSQL DB-n5
applications that leverages a

flexible JSOM schema. Cloudant Credentialname:
is built upon and compatible with
Apache CouchDB and
accessible through a secure

HTTPS API, which scales as your

Credentials-1

application grows. Cloudant is F e atU res

15027001 and SOC2 Type 1

certified, and all data is stored in :
triplicate across separate * Fully mevaged DRt : an:erf:ll 3ufﬁ a:lpaﬁi‘y"hcs,

Need Help? Estimate Monthly Cost “
Contact Bluemix Sales Cost Calculator

Figure 4-16 Create Cloudant noSQL DB service

The service name will be used to configure the application when it is deployed.

Chapter 4. News Classification 57

58

Important: Take note of the space in which you are creating the service. The application
and the Cloudant noSQL DB service must be deployed in the same space.

Create a Cloudant noSQL DB service from command line
To create the service, follow these steps:

1. Download and install the Cloud Foundry software on your workstation.

2. Open a command prompt.

3. Run cf login and supply the email and password for you Bluemix account as shown in
Example 4-2.

Example 4-2 Run cf login

cf login
API endpoint: https://api.ng.bluemix.net

Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>
Password> <PUT_YOUR_PASSWORD_ACCOUNT>
Authenticating...

0K
Targeted org <YOUR_ORGANIZATION>

4. Select a Bluemix space on which to host the service as shown in Example 4-3.

Example 4-3 Select a space

Select a space (or press enter to skip):

1. dev

2. qa

3. Prod

Space> 1

Targeted space dev

API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

User: <YOUR_BLUEMIX_ EMAIL_ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

5. Run the following command to create a Cloudant noSQL DB service instance
(Example 4-4 on page 59):

cf create-service <service> <service_plan> <service_instance>
The command has these values:
cf create-service The Cloud Foundry command to create a service instance

<service> The name of the service you want to create an instance of;
Cloudant noSQL DB in this case.

<service_plan> The name of the plan, in this example the plan name is Lite.

<service_instance> The name you provide for your service instance. You use this name
to refer to your service instance in other commands when you
configure and deploy the News Classifier application. If your
service instance includes spaces, surround the service instance
name with double or single quotation marks depending on the
operating system where you run the command prompt. In this
example the service instance name is News Classifier Feedback.

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry/cli/releases

Example 4-4 The cf create-service command

cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"
Creating service instance News Classifier Feedback in org
<YOUR_ORGANIZATION>/ space dev as <YOUR BLUEMIX EMAIL ACCOUNT>...
0K

6. List the service information by running the cf service <service_name> command to
confirm that it was created successfully (Example 4-5).

Example 4-5 Confirm successful creation

cf service " News Classifier Feedback"

Service instance: News Classifier Feedback

Service: cloudantNoSQLDB

Bound apps:

Tags:

Plan: Lite

Description: Cloudant NoSQL DB is a fully managed data Tayer designed for
modern web and mobile applications that leverages a flexible JSON schema.
Cloudant is built upon and compatible with Apache CouchDB and accessible
through a secure HTTPS API, which scales as your application grows. Cloudant is
1S027001 and SOC2 Type 1 certified, and all data is stored in triplicate across
separate physical nodes in a clus-ter for HA/DR within a data center.
Documentation url:
https://console.ng.bluemix.net/docs/#services/Cloudant/index.html#Cloudant
Dashboard:
https://cloudantbroker.ng.bluemix.net/dashboard/9e763bb2-c702-4bb6-8547-f30b34c
25b87

Last Operation

Status: create succeeded
Message:

Started: 2017-02-16T20:20:04Z
Updated:

4.4.4 Preparing training data

When preparing training data, an important place to start is by choosing a good data set. The
features of a good data set are explained in this section.

The raw data in some situations is already in the required comma-separated value (CSV) file

format, but in other situations you can find data in other formats. In this case, converting the

source format into CSV format needs some data preparation. Even if the file is a CSV file, it

might need some data preparation to be ready to use as input to the classifier. Those steps

are explained in this section.

The strategy here is to create two data sets:

» Training data to train the classifier.

» Test data to test the classifier. The test data set will be used in 4.4.7, “Evaluating results
and updating training data” on page 73.

Figure 4-17 on page 60 shows the general activities to prepare the training and test data sets.

Chapter 4. News Classification 59

Verify data source

Data source is in raw format Data source is in CSV format

(Text or database)

Build a program or manually)
create a CSV file Build a program or manually
from raw data. verify that data adheres to

Data must adhere to NLC training data
NLC training data requirements requirements

Generate training data set in Generate test data set in
CSV format. CSV format

@

Figure 4-17 Activities for preparing training and test data

Figure 4-18 shows a snapshot of the training data used in the News Classification use case.
Column “A” includes a list of news text. Column “B” has one of five classifications: business,
entertainment, politics, technology, and sports.

A B
The market for artificial intelligence (Al) technologies is flourishing. Beyond the hype and the heightened media attention the
numerous startups and the internet giants racing to acquire them there is a significant increase in investment and adoption by
enterprises. A Marrative Science survey found last year that 38% of enterprises are already using Al growing to 62% by 2018.
Forrester Research predicted a greater than 300% increase in investment in artificial intelligence in 2017 compared with 2016. IDC

estimated that the Al market will grow from 58 billion in 2016 to more than $47 billion in 2020. technology
economic growth slowed sharply in the fourth quarter as a plunge in shipments of soybeans weighed on exports but steady
consumer spending and rising business investment pointed to sustained strength in domestic demand. business

Half of Brazil's population cannot prove full legal ownership of their homes depriving authorities in the recession-hit country of a
major source of taxes and deterring local investment a senior government official said.An estimated 100 million people lack
property rights a senior Ministry of Cities official told the Thomson Reuters Foundation highlighting the need for Brazil to bring

its housing sector into the formal economy. Palitcs
Fluminense Football Club known simply as Fluminense is a Brazilian club best known for its football team that plays in the

Brazilian Championship A series sports

He supposedly died at the end of the Fox drama's fourth season. But now Wentworth Miller is back as the gritty Michael Scofield

in the action-packed Prison Break season five trailer. entertainment

Figure 4-18 Training data for news classification

For this use case two CSV files were built manually, one for training the classifier and one for
testing the classifier. To obtain the CSV files for this use case, go to:

https://github.com/snippet-java/redbooks-n1c-201-news-java-student.git

60 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

Find the following files in directory /redbooks-n1c-201-news-java-student/resources/:
> news-train.csv

Training set to be used for bootstrap classification when creating the classifier in 4.4.5,
“Creating and training the classifier” on page 63.

> news-test.csv
Test set to be used to evaluate the quality of the classification results in 4.4.7, “Evaluating
results and updating training data” on page 73.

To build a training data set with an acceptable syntax and good quality, consider these

guidelines:

» The training and test sets are prepared for UTF-8 format.

» If you have a comma (,) in the text, insert quotes around the text.

» The maximum length of a text value is 1024 characters.

» The training and test data have at least five records (rows) and no more than 15,000
records.

» Limit the length of input text to fewer than 60 words.
» Limit the number of classes to several hundred classes.

For more information about preparing the training data, see Using your own data to train the
Natural Language Classifier.

If you want to prepare your own data in CSV format, it must have two columns, the first one
with the text to classify and the second column with classification types (business,
entertainment, politics, technology, sports). You can validate the data by using the
PrepareData program, which is described later.

Data can be prepared in two ways:

» Prepare training data on Eclipse
» Prepare training data on the command line

Prepare training data on Eclipse
Complete these steps:

1. On Eclipse (see project in Figure 4-14 on page 55), right-click the PrepareData.class and
select Run As — Run Configurations (Figure 4-19).

Run As 4 p 1 Run on Server Alt+Shift+X, R
Debug As v | 3] 2Java Application Alt+Shift+X,
Fralie £ Run Cenfigurations...

Waliclat,

Figure 4-19 Run as Java main program in Eclipse

2. On the Main tab, confirm that com.ibm.itso.ed600r01.nlc.news.PrepareData is selected
(Figure 4-20 on page 62).

Chapter 4. News Classification 61

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

62

Mame: PrepareData

G Main “_(x)= Argument§ B\ JRE| “ Classpath. E Sourcé -] Environmenf_ = Commnn-
Project:

nlc-201-news-java-student Browse...

Main class:

com.ibm.itse.edd00r01.nlc.news.PrepareData

[T Include system libraries when searching for a main class

[T Include inherited mains when searching for a main class

|| Stop in main

Figure 4-20 PrepareData class selected class to run

3.

In the Arguments tab, for Program arguments, enter the name of the CSV file to be
prepared and click Run (Figure 4-21).

Mame: PrepareData

(@ Main 6= Arguments g, JRE| *%; Classpath| &~ Source| B Environment | [Common
Program arguments:

news-train.csv

VM arguments:

(o]

Variables...

aae u-

Apply I

Figure 4-21 Arguments to call PrepareData class

This program checks text constraints such as column size, special characters such as \n \r
and others. The output is shown in Figure 4-22.

<terminated> PrepareData [Java Application] C:\Program Files (:86)\eclipseDevelopmentPackage-6.3. 200 bm_sdkB0\bin'javaw.exe |
Preparing File news-train.cswv to be ready for Natural Language Classifier input

Fixing 1824 chars for text lengh, handling special chars like line feed and format to UTF-8 format
Data prepared !

Figure 4-22 PrepareData output on Eclipse

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Prepare training data on the command line
Complete these steps:

1. Open a command prompt on your computer.
2. Setup java.exe in your path.

3. Change to the resources directory of the project that was prepared in “Clone the sample
Git project by using the Git command line” on page 55:

cd redbooks-nlc-201-news-java-student/resources

4. Run the following scripts, which, in turn, run Java commands:
— For Windows: PrepareData.bat <csv file path>
— For Linux: ./PrepareData.sh <csv file path>

The output is shown in Example 4-6.

Example 4-6 Output

./PrepareData.sh news-train.csv

Preparing File news-train.csv to be ready for Natural Language Classifier input
Fixing 1024 chars for text length, handling special chars like line feed and form
at to UTF-8 format

Data prepared!

Note: The CSV file path can be the file name only if it is in the resources project folder.

4.4.5 Creating and training the classifier

Note: You must create an Natural Language Classifier service instance in Bluemix as
described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on
page 11 before performing the steps in this section.

The news-train.csv (shown in the examples in 4.4.4, “Preparing training data” on page 59)

will be used to create and train the classifier. This step is called bootstrap classification. The
bootstrap classification (Figure 4-23), can be validated by subject matter experts (SMEs) for
accuracy using other data, called test data, and if necessary correct classification problems.

Bootstrap classification

A
Initial
NE ‘ ‘ pass at
data intent
set classes

Figure 4-23 Bootstrap classification

This step is highly sensitive to good training data provided from the prepare data step and can
be continuously improved depending on the target accuracy level, using other data sets.

Chapter 4. News Classification ~ 63

The program to create and train the classifier is simple. Figure 4-24 shows the activities to

create and train the classifier.

Get the training CSV file ready
for classifier creation in the prepare
data step

Choose the classifier language to
match the training data language

Run the program that creates and
trains the classifier

Get the username and password
from the NLC service instance

Choose a name for the classifier
to be created

Get the classifier ID information
from the program output for the
next step

Figure 4-24 Create and train activities

The figure shows the following activities:

1. The CSV file created from the training data set in 4.4.4, “Preparing training data” on
page 59 is used as input to create and train the classifier.

2. The service credentials (username and password) that you obtained when you created the
Natural Language Classifier service instance are needed when you create the classifier.

3. Choose a name for the classifier.
4. The classifier language must match the language that is used to train the classifier.

5. Run the program to create the classifier specifying the information listed in the previous
steps.

6. After the program runs successfully, get the classifier ID which will be used later.
For more information about creating a classifier, see the Watson Developer Cloud website.

For the use case in this chapter, a Java program is provided to create and train the classifier.
The Java class is CreateAndTrain.class. The next steps describe running it.

The program can be used in one of the following two ways to create and train the classifier:

» Create and train the classifier on Eclipse
» Create and train the classifier on the command line

64 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier

Create and train the

classifier on Eclipse

Complete the following steps:

1. On Eclipse, right-click the CreateAndTrain.class class and select Run As — Run

Configurations (Figur

e 4-19 on page 61).

2. On the Main tab, confirm that com. ibm.itso.ed600r0l.nl1c.news.CreateAndTrain is
selected (Figure 4-25).
Mame: PrepareData
(© Main 9= Arguments| =, JRE| % Classpath E Source| 8 Environment |] Common
Project:
nlc-201-news-java-student Browse... |
Main class:
com.ibm.itse.ed600r1.nlc.news. CreateAndTrain
[T Include system libraries when searching for a main class
[T Include inherited mains when searching for a main class
[Stop in main
Figure 4-25 CreatedAndTrain class is selected
3. Inthe Arguments tab, enter the following program arguments to create a classifier (see the

example in Figure 4-26 on page 66):

<csv file path> <use

r> <password> <classifier_name> <language>

The arguments have the following meanings:

csv file path

user

password

classifier_name

language

The location in the local computer of the CSV file that will be
uploaded as a training set, for example news-train.csv. The CSV
file path can be just the file name if the file is currently in the
resources project folder.

The username from the Natural Language Classifier service
instance.

The password from the Natural Language Classifier service
instance.

The name for the classifier.
The language used to train the classifier.

Chapter 4. News Classification 65

Mame: CreatefAndTrain
© Main [09= Arguments), JRE| %, Classpath E Source| /& Environment

b
1

Program arguments:

CahUsers\AIBM_ADMINY Downloads\\bbc-train.csy "42b3ebba-795b-46bd-bba4 - -
9d0ade0245df" "rDujbb41lpyE” "News Classification” en

Wariables...

m

VM arguments:

Variables...

I 0

Working directory:

@ Default: Sworkspace_loc:nlc-201-news-java-student}

Run J [Close

Figure 4-26 Define arguments to call create and train program in Eclipse

4. After specifying the arguments, click Run.

The important point is that user and password arguments match the ones that were
obtained when the Natural Language service instance was created.

The program is executed as a Java application in Eclipse (Figure 4-27).

<terminated> Mews Classification - CreateAndTrain [Java Application] C:\Program Files (x86)\eclipseDevelopmentPackageibm_sdk80\bin\javaw.exe (23 de jan de 2017 17:24:26)

"classifier_id": "ffl8c7x157-nlc-5658",

"language”: "en",

"name": "News Classification”,

"status”: "Training”,

"created": "2817-81-23T19:24:47.221",

"status_description™: "The classifier instance iz in its training phase, not yet ready to accept classify requests”,
"url™: "https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers/ff18c7x157-nlc-5658"

}

Figure 4-27 Create and training program output

The last activity (shown in Figure 4-24 on page 64) is to get the classifier ID to be used in the
next step described in 4.4.6, “Querying the trained classifier” on page 68.

The program output shows information about the classifier creation returned by the Watson
API. ltincludes classifier_id, the language for which the classifier was created, the name of
the classifier, the status of the classifier, and more.

66 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Important values shown in Figure 4-27 on page 66 are:

| 2

The classifier_id parameter: This is the ID of the new trained classifier. It will be used in
4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application”
on page 85).

The status parameter: Shows that the classifier is not ready for queries. It will be available
for the next step (query) only when status changes to Available.

Create and train the classifier on the command line
Complete the following steps:

1.
2.

Open a command prompt in your computer.

Set up java.exe in your path

3. Change to the resources directory of the project prepared in “Clone the sample Git project

by using the Git command line” on page 55. Example:
cd redbooks-nlc-201-news-java-student/resources
Run the following scripts:

— For Windows:

CreateAndTrain.bat <csv file path> <user> <password> <classifier_name>
<lan-guage>

— For Linux:

./CreateAndTrain.sh <csv file path> <user> <password> <classifier_name>
<lan-guage>

The command has the following information:

csv file path The location in the local computer of the CSV file that will be

uploaded as a training set, for example news-train.csv. The CSV file
path can be just the file name if it is currently in the resources project

folder.

user The user name obtained from Natural Language Classifier service
instance.

password The password obtained from the Natural Language Classifier service
instance.

classifier_name The name for the classifier.

language The language used to train the classifier.

The output is similar to Example 4-7.

Example 4-7 Output

CreateAndTrain.bat news-train.csv 53bf6841-xx4c-4812-9fe5-fc25af43876f
hJy62XXY7fot "Class News Simulator" en

java -cp
../target/redbooks-n1c-201-news-java-student.jar;../1ib/opencsv-3.3.jar;../1ib/
java-sdk-3.

5.3-jar-with-dependencies.jar com.ibm.itso.ed600r0l.nlc.news.CreateAndTrain
news

-train.csv 53bf6841-b04c-4812-9fe5-fc25af43876f hdy62p0Y7fot "Class News
Simula-tor" en

{

Chapter 4. News Classification 67

"classifier_id": "fb5bbbbx174-n1c-3736",

"Tanguage": "en",
"name": "Class News Simulator",

"status": "Training",

"created": "2017-02-14T18:37:39.887",

"status_description": "The classifier instance is in its training phase, not y
et ready to accept classify requests",

"url": "https://gateway.watsonplatform.net/natural-language-classifier/api/vl/

classifiers/f5bbbbx174-n1c-3736"
}

The program output shows information about the classifier creation returned by the Watson
API. ltincludes classifier_id, the language for which the classifier was created, the name of
the classifier, the status of the classifier, and more.

Important values shown in Example 4-7 on page 67 are:

» Theclassifier_id parameter: This is the ID of the new trained classifier. It is used in
4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application”
on page 85).

» The status parameter: Shows that the classifier is not ready for queries. It will be available
for the next step (query) only when status changes to Available.

4.4.6 Querying the trained classifier

After the classifier is trained, you can query it. In this step you use the Watson API to send
text to the trained classifier. The service returns the top matching class and other possible
matches with the associated confidence.

The flow of steps to query the classifier are shown Figure 4-28 on page 69.

68 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

‘ Get the classifier id from create
and train classifier step

Get username and password
from create service step

Select news text to test

—_— Check if classifier is available

classifier not available

classifier available

Query the classifier

Check query results

Figure 4-28 Query the classifier flow

The figure shows the following steps implemented in the Java Query.class created for this
use case to query the classifier:

1. Getthe classifier ID from the create and train classifier step described in 4.4.5,
“Creating and training the classifier” on page 63.

2. Get the username and password from the Natural Language Classifier service instance
created as described in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11.

3. Select the news text message that will be used as input to query the classifier for
classification.

4. Check the status of the classifier until it is Available.

5. Run the query. Input the parameters collected in the previous steps to a Java program to
query the classifier.

The Java class created for this step in the News Classification use case is Query.class.

The program can be used in one of the following two ways to query the trained classifier:

» Query the trained classifier with Eclipse
» Query the trained classifier with the command line

Chapter 4. News Classification 69

Query the trained classifier with Eclipse
Complete the following steps to run the Java Main program on Eclipse:

1. Right-click the Query.class. class and select Run As — Run Configurations.

2. On the Main tab confirm that com.ibm.itso.ed600r01.news.Query is selected
(Figure 4-29).

Mame: Query
© Main 0= Arguments| B, JRE| %, Classpath 'E:'_. Source| & Envirenment| [=] Common

Project:

nlc-201-news-java-student Browse... |
Main class:

com.ibm.itso.ed800r01.nlc.news. Query | Search... |

|| Include system libraries when searching for a main class
|” | Include inherited mains when searching for a main class

|| Stop in main

Figure 4-29 Query class execution on Eclipse

3. In the Arguments tab, enter the following parameters (see the example in Figure 4-30 on
page 71):

<classifier_id> <user> <password> <query_ text>
The arguments have the following meanings:

classifier_id The classifier ID obtained in 4.4.5, “Creating and training the
classifier” on page 63.

user The username from the Natural Language Classifier service instance
credentials obtained when you created the service instance as
described in Chapter 2, “Creating a Natural Language Classifier
service in Bluemix” on page 11.

password The password from the Natural Language Classifier service instance
credentials obtained when you created the service instance.

query_text The news text to classify. If the text has more than one word, enclose
the text in double quotation marks. For example, use the following
query text as a parameter: “He supposedly died at the end of the
drama’s fourth season. But now Wentworth Miller is back as the
gritty Michael Scofield in the action-packed Prison Break
season five trailer.”

70 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

MName: Query
@ Main [09= Arguments B\ JRE| % Classpath | E - Source| B Environment| [Commeon |
Program arguments:

ff18c757-nlc-5650 53bf6841-b04 c-4812-9fe5-fc25af43876f hlyG2p0YTfot "He supposedly died at -«
the end of the Fox drama's fourth seasen. But now Wentwerth Miller is back as the gritty Michael
Scofield in the action-packed Prison Break season five trailer”

VM arguments:

Working directory:
@ Default: S{workspace_locinlc-201-news-java-student}

() Other:

Workspace... File System... Variables...

Revert Apph

Figure 4-30 Query program execution on Eclipse

4. After specifying the arguments, click Run.

5. Check the results. Figure 4-31 shows an example of the API response when running a
query in this use case.

<terminated> Query [Java Application] C:\Program Files (x86)\eclipseDevelopmentPackage-6.3.20% b _sdkB0\bin'javaw.exe (9 de fev de 2017 16:19:23)
Status of Classifier ff18c7x157-nlc-5658 - AVAILABLE
Results for query He supposedly died at the end of the Fox drama's fourth season. But now Wentworth Miller is back

"classes": [

"confidence™: @.8575665436245274,
"class_name”: "entertainment™

I8

"confidence™: ©.11319846B@26913388,
"class_name™: “"sport”

I8
{

"confidence™: ©.815873119271676537,
"class_name": "politics™

ks
1

"confidence™: ©.087139259284434174,
"class_name": "business"

b

"confidence™: @.886316477558227919,
"class_name": "technology"
}
1s
"classifier_id": "ff18c7x157-nlc-5658",
"text": "He supposedly died at the end of the Fox drama\u@@27s fourth season. But now Wentworth Miller is back :

"top_class": "entertainment”,
"url": "https://gateway.watscnplatform.net/natural-language-classifier/api/vl/classifiers/ff18c7x157-nlc-56508"

}

Figure 4-31 Query results output

Chapter 4. News Classification 71

Query the trained classifier with the command line
Complete these steps:

1. Open a command prompt in your computer.
2. Setup java.exe in your path.

3. Change to the resources directory of the project prepared in 4.4.1, “Downloading the
project from Git” on page 51:

cd redbooks-nlc-201-news-java-student/resources
4. Run the following scripts:
— For Windows:
Query.bat <classifier_id> <user> <password> <query_text>
— For Linux:
./Query.sh <classifier_id> <user> <password> <query_text>
The command has the following values:

classifier_id The classifier ID obtained in 4.4.5, “Creating and training the
classifier” on page 63.

user The username from the Natural Language Classifier service instance
credentials obtained when you created the service instance as
described in Chapter 2, “Creating a Natural Language Classifier
service in Bluemix” on page 11.

password The password from the Natural Language Classifier service instance
credentials obtained when you created the service instance.

query_text The news text to classify. If the text has more than one word, enclose
the text in double quotation marks.

The output is similar to Example 4-8.

Example 4-8 Output

$./Query.sh f5b432x172-n1c-3699 53bf6841-b04c-4812-9fe5-fc25af43876f hJy62p0Y7fot
"economic growth slowed sharply in the fourth quarter as a plunge in shipments of
soybeans weighed on exports, but steady consumer spending and rising business
investment pointed to sustained strength in domestic demand"
Status of Classifier f5b432x172-n1c-3699 - AVAILABLE
Results for query economic growth slowed sharply in the fourth quarter as a plunge
in shipments of soybeans weighed on exports, but steady consumer spending and
rising business investment pointed to sustained strength in domestic demand
{
"classes": [
{
"confidence": 0.9906648553297829,
"class_name": "business"

{
"confidence": 0.004622361487155504,
"class_name": "politics"

}’

{
"confidence": 0.0018452044719471966,
"class_name": "technology"

}’

72 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

"confidence": 0.0016647389251637564,
"class_name": "sports"

"confidence": 0.0012028397859506108,
"class_name": "entertainment"

}

1,
"classifier_id": "f5b432x172-n1c-3699",
"text": "economic growth slowed sharply in the fourth quarter as a plunge in

ship-ments of soybeans weighed on exports, but steady consumer spending and rising
business investment pointed to sustained strength in domestic demand",
"top_class": "business",

url":
"https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers
/f5b432x172-n1c-3699"

}

Query classifier response
The following information in the query response is important:

» status shows the classifier status. When the classifier is ready to accept requests, the
status is changes from Training to Available. Before running the query you should check
the status of the classifier to confirm that it is available to accept queries. If the status is
not Available, the program ends.

» classes is an array that contains the list of defined class labels and the confidence for
each. This array represents the query results in JSON format. The classes in the array are
ordered in a descending order of confidence, that is, the class label with the highest
confidence is always the first element in the classes array.

» Other parameters in the query response are:

— classifier ID

— text: Shows the input text in the query request
— top_class: Class with the highest confidence

— url to reach the classifier.

4.4.7 Evaluating results and updating training data

The objective of this step in the process is to improve the results returned by the classifier. It
is a critical step to ensure that the classifier will perform successfully in a production
environment.
These are the main approaches you can follow for evaluating results:
» Evaluating results with the Natural Language Classifier toolkit interactive wizard
» Evaluating results programmatically

— Running the program with Eclipse

— Running the program with the command line

Chapter 4. News Classification 73

Evaluate results with the Natural Language Classifier toolkit interactive
wizard

The first approach to evaluation is validation by SMEs and adjusting the classifier if accuracy
is not aligned with the desired outcome. You can also include customer feedback providing a
way for users to input their feedback about the classification results.

Figure 4-32 provides an overview of the process.

A
new [> _
defa intent cllgtsesr:s
set classes

Figure 4-32 Manual validation of classifier

Manual validation activities are shown in more detail in Figure 4-33.

. Run query vyith test da.ti.i against Get the result
an existing classifier

SMEs analyze and evaluate the
results

Result is satisfactory

Result is not satisfactory

Review text with incorrect or low
confidence classifications

Q Add them to training data

Create a new classifier with
new training data

Figure 4-33 Manual results evaluation activities

The figure shows the following activities:

1. Run query with a test data set to test an existing classifier. This step can be performed by
a system administrator or SME.

2. Get the query results. The results can be collected by a test program, for example by
running a single query in the classifier or a set of queries from a test data source and

74 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

collecting responses. Another approach is to collect feedback from customers in a
production web application and save the feedback to a database.

3. SMEs analyze and evaluate the query results. For example, they determine if the top class
is correct or if the level of accuracy is satisfactory based on the required threshold, for
example 95% of precision.

4. If the results are satisfactory, the evaluation process ends.

5. If the results are not satisfactory, the SMEs make changes to adjust the training data for
the text that was incorrectly classify.

6. Create a new training data set with the new data and create a new classifier with the new
training data.

These steps can be executed using the Natural Language Classifier toolkit in Bluemix:

1. Log in to Bluemix and scroll down to the Services section.

2. Click the Natural Language Classifier service.

3. Click the Manage tab.

4. Click Access the beta toolkit (see Figure 4-34).

ITSO - ED-6000-R01 - Natural Language Classifier

Manage Service Credentials Connections

Natural Language Classifier

Interpret natural language and classify it
with confidence Developer resources:

Figure 4-34 Accessing the Natural language Classifier toolkit

Chapter 4. News Classification 75

76

5. Select the News Classification classifier that was created in 4.4.5, “Creating and training
the classifier” on page 63 and click the (next) arrow (Figure 4-35).

Classifiers

These classifiers are connected to the service instance. You can test and improve the performance of a
classifier that has a status of Available.

News Classification & M|

Created Jan 23, 2017 5:24:47 PM
Classifier ID: ff18c7x157-nlc-5650

Figure 4-35 News Classifier selection for evaluation

6. On the next page, click Use test data to load a test CSV file, or enter text in the input field
and click Classify (Figure 4-36).

Classifiers /' ff18c7x157-nlc-5650

Improve performance Use test data

Review live system texts that have incorrect or low-confidence classifications and add them to
your training data. Then train a new classifier with the updated data.

Figure 4-36 Options for input test data

In this example, click Use test data and select the news-test-nlc-toolkit.csv file in the
resources folder of the sample project (Figure 4-37 on page 77).

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Classifiers /| ff18c7x157-nlc-5650

Improve performance Use test data
r
'. File Upload —— - N — — ﬂ
= S S ———— -
@uv| .. nlc-201-news-java-stud... » resources - | +4 | Search resources Pl
Organize Mew folder =~ 0 @
_ - _ :
o Faniee MName Date modified Type
Bl Desktop B news-test.csv 08/02/2017 11:04 Microsoft
4 Downloads |® news-test-nlc-toolkit.csv 09/02/2017 16:36 Microsoft]
| Recent Places ﬂ_l news-train.csv 08/02/2017 16:08 Microsoft]
& OneDrive
- Libraries
Lol Computer
&, Local Disk (C)
€ Netwnrk b i b
File name: news-test-nlc-toolkit.cov - ’*.r_w V]
E Open] [Cancel]

Figure 4-37 Test data selection

You receive two messages indicating that the test CSV file was loaded successfully
(Figure 4-38).

Classification Started File news-test-nlc-toolkit.csv has been submitted for classification.

Classification Complete news-test-nlc-toolkit.csv classification complete.

Figure 4-38 Test data loading completion

Also, you receive information about how the classifier segmented the test data into news
categories. Figure 4-39 shows text that should have been classified as technology but
was incorrectly classified business as the top class. In this case, mark this classification as
incorrect.

The market for artificial intelligence (Al) technologies is flourishing. Beyond the hype and the heightened media
attention the numerous startups and the internet giants racing to acquire them there is a significant increase in
investment and adoption by enterprises. A Narrative Science survey found last year that 38% of enterprises are

already using Al growing to 62% by 2018. Forrester Research predicted a greater than 300% increase in investment in

artificial intelligence in 2017 compared with 2016. IDC estimated that the Al market will grow from $8 billion in 2016 to
more than $47 billion in 2020.

business (0.97) technology (0.02) entertainment (0.00) poiitics (0.00) sports (0.00)

Figure 4-39 Handing incorrect classification

Chapter 4. News Classification 77

78

Figure 4-40 shows the correct classification defined by SMEs. The classifier classified the
text correctly as sports type.

Jose Mourinho refused to accept Manchester United's unbeaten run was over on
Thursday night after struggling to contain his fury at referee Jonathan Moss awarding
Hull City a controversial penalty.United booked their place in the EFL Cup final
against Southampton despite Hull ending their 17-game unbeaten streak with a 2-1
win at the KCOM Stadium.But Mourinho claimed his side did not lose after being
infuriated that Marcos Rojo was penalised for a push on Harry Maguire.

sports (0.99) politics {0.04) entertainment (0.00) technology (0.00)

Figure 4-40 Handling correct classifications

7. SMEs evaluate each text classification from the test data set. Figure 4-41 shows the
results.

8. After all text classification results are evaluated, click Add to training data to create a new
training data set to improve the classifier performance. Note that a new classifier must be
created with the new training data.

Live system progress

@ Approved 4

@ Flagged 2

Add to training data

Figure 4-41 Evaluation results

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

9. The training data window opens (Figure 4-42). Review the information. If text is marked by

the SME as wrongly classified, the toolkit provides a suggestion for a class.

Classes 4 Texts | 1of6selected Create classifier 1 ok

|

O, Newest first W P Assign classes j Delete o, Newest first W

® @ Add text

Half of Brazil's population cannot prove full legal ownership of their homes, depriving

ra

sports — ; : - .
i authorities in the recession-hit country of a major source of taxes and deterring local

politcs 1 investment, a senior government official said.An estimated 100 million people lack property
rights, a senior Ministry of Cities official told the Thomson Reuters Foundation, highlighting
business 1 the need for Brazil to bring its housing sector into the formal economy.

DOINCS

m

technology 1

Jose Mourinho refused to accept Manchester United's unbeaten run was over on Thursday
night after struggling to contain his fury at referee Jonathan Moss awarding Hull City a
controversial penalty.United booked their place in the EFL Cup final against Southampton,
despite Hull ending their 17-game unbeaten streak with a 2-1 win at the KCOM Stadium.But
Mourinho claimed his side did not lose after being infuriated that Marcos Rojo was
penalised for a push on Harry Maguire.

sports

Rafael Nadal will face Roger Federer in Sunday's Australian Open final after the Spaniard
- beat Grigor Dimitrov 6-3, 5-7, 7-6, (7/5), 6-7 (4/7), 6-4. In a pulsating match that lasted 4hr 56

Figure 4-42 Training page

10.Select incorrectly classified text and drag the correct class from the Classes section on the

left to the Texts section on the right.

Figure 4-42 shows that the politics class was dragged to the text that was classified as

business before.

11.Download the corrected CSYV file by clicking the download icon and add the data to the

training data set.

12.Create a new classifier with the new and improved training data set. Click Create
classifier (Figure 4-42) to create the new classifier.

Note: The classifier ID of the new classifier is not the same as the classifier ID of the

original classifier. The classifier ID must be updated in the programs that use it to
access the new classifier.

This process is continuous until the classifier reaches a good value for accuracy, aligned with

business needs, for example 80% correct classification.

Evaluate results programmatically

You can automate the process described in “Evaluate results with the Natural Language

Classifier toolkit interactive wizard” on page 74 by creating a program that queries an existing

classifier using a test data set.The test data set has the correct classes defined by the

previous work of the SMEs. If accuracy results are not satisfactory, the test data is added to

the training data set and used to train a new classifier. This approach is described in
Figure 4-43 on page 80.

Chapter 4. News Classification

79

Initial

Final
pass at

training intent
set classes

intent
classes

Figure 4-43 Automated validation of classifier

The activities are shown in Figure 4-44.

Use test data set to test
classifier accuracy

Create a new classifier with
new training data

Define the accuracy requirement

Accuracy is ok

Accuracy is not ok

Run evaluation program

Figure 4-44 Evaluation automated

These are the activities:
1. A test data set was prepared and is available.

2. The SMEs defined the accuracy threshold, for example 70%, according to business
requirements.

Test data set and accuracy requirement are input to the evaluation program.
The evaluation program queries the classifier for each line in the test data set.
The results are evaluated and the accuracy calculated.

o 0~ 0

If the accuracy is below the threshold, create a new training data set and create and train
a new classifier.

80 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Figure 4-45 shows a high-level flow of the Evaluate program.

Get NLC service instance

Get classifier ID .
credentials

Display final accuracy result Load the test CSV file

Calculate

accuracy = Number of correct For each news text in the CSV
classifications / total number of file (row), query the classifier
texts classified

Compare results with
classification in CSV file Collect results
provided by SMEs

Figure 4-45 Evaluate program flow

The figure shows the following steps in the Evaluate program:

Get classifier ID.

Get Natural Language Classifier service credentials (username and password).
Load the test CSYV file.

For each text (row) in the test CSV file query the classifier.

Collect the classification results, that is, save the results in an ArrayList structure.

o ok~ 0D~

Compare results. The classifier results for each line of text in the test CSV file is compared
with the classification provided by SMEs for the same text. The number of correct
classifications is computed.

7. Calculate the accuracy with the following formula:

(Number of correct classifications) / (number of texts classified)

Chapter 4. News Classification 81

Two main methods are defined in the Evaluate.class program:

» batchClassify
Loads the test CSV file and classifies each line of text. It returns an ArrayList; each
element contains the classification by the classifier and by the SME for the same line of
text. Figure 4-46 provides a flow diagram for this class.

Receive the classifier ID, user, password)
and test CSV file to classify Lol

Call query program to query the classifier. Loop through CSV file rows

Save each classification returned by the Return
classifier with the corresponding classification ArrayList of classifications provided by
provided by the SME in ArrayList classifier and SME

Figure 4-46 The batchClassify method of Evaluate class program

» generateAcuracy

This method receives the ArrayList from batchClassify, determines the correct and
incorrect classifications and calculates the accuracy. Figure 4-47 provides a flow diagram

for this class.

Receive ArrayList from the .
batchClassify method Loop through the ArrayList

Return accuracy = number of correct Compare the first element of each item
classifications / total number of classifications (EESHEEIMEL! 5y SME. .)Wlth 4K seppnd
element (news classified by classifier)

Figure 4-47 The generateAcuracy method of Evaluate class

82 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Run the Evaluate program with Eclipse
Complete the following steps to run the Evaluate program with Eclipse:

1. Right-click Evaluate.class and select Run As — Run Configurations.

2. On the Main tab confirm that com.ibm.itso.ed600r01.news.Evaluate is selected

(Figure 4-48).

Mame: Evaluate

Project:

Main class:

[] Stop in main

©® Main 0= Arguments| =), JRE| . Classpath E Source| B Envirenment| (=] Common

nlc-201-news-java-student | Browse... |

com.ibm.itso.edd00r01.nlc.news.Evaluate | Search...

| Include system libraries when searching for a main class

|| Include inherited mains when searching for a main class

Figure 4-48 Evaluate program configuration when running on Eclipse

3. In the Arguments tab, enter the following parameters and click Run (Figure 4-49 on

page 84):

<classifier_id> <user> <password> <csv_file test>

The parameters have the following meanings:

classifier_id
user
password

csv_file_test

The classifier ID created in the create and train phase.
The username from the Natural Language Classifier service instance.
The password from the Natural Language Classifier service instance.

The location in the local computer of the test CSV file. For this example,
use the news-test-nlc-toolkit.csv file in the resource folder.

Chapter 4. News Classification ~ 83

Mame: Evaluate
® Main [09= Arguments =), JRE| %, Classpath 'E:'_. Source| B Envirenment| (=] Common

Program arguments:

ffl8c7:57-nlc-5650 53bf6841-b04 c-4812-Ufed-fc25af43876f hlyb2p0¥Tfot C:\\Usersh =
NBM_ADMINY gith\nlc-201-news-java-student\resources\news-test-nlc-toolkit.csv

Wariables...

VM arguments:

Working directory:
@ Default: S{workspace_loc:nlc-201-news-java-student}

) Other:

Figure 4-49 Evaluate arguments for execution on Eclipse

The final accuracy is output, as Figure 4-50 shows. In this case, the figure shows 71,43% of
correct classification from the test set.

E) Console 332

<terminated> News Classification - Evaluate [Java Application]
71,43 ¥ of accuracy

Figure 4-50 Evaluate program output on Eclipse

Run the Evaluate program from the command line
Follow these steps:

1. Open a command prompt in your computer.
2. Set up java.exe in your path.
3. Change to the resources directory of the project.

cd redbooks-n1c-201-news-java-student/resources

84 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4. Run the Java command
— For Windows:
Evaluate.bat <classifier_id> <user> <password> <csv_file test>
— For Linux:
./Evaluate.sh <classifier_id> <user> <password> <csv_file_ test>
The command has these values:
classifier_id The classifier ID created in the create and train phase.
user The username from the Natural Language Classifier service instance.
password The password from the Natural Language Classifier service instance.
csv_file_test The location in the local computer of the test CSV file. For this example,
use the news-test-nlc-toolkit.csv file in the resource folder.
The output is as follows:

§ ./Evaluate.sh ff18c7x157-n1c-5650 53bf6841-XXXc-4812-9fe5-fc25af43876f
hJy62XXX7fot news-test-nlc-toolkit.csv
71,43 % of accuracy

This output shows 71,43% of correct classification from the test data set.

Manage evaluated results and update the training data
Using the output from the Evaluate program, the SMEs can decide, based on business

needs, whether they have to create a new classifier using the test data set to improve
performance.

The Evaluation of the classifier performance can be continuous depending on business
needs and user feedback.

Figure 4-51 shows an approach to evaluate the classifier performance by saving user
feedback with the information needed for analysis in a database. SMEs analyze the feedback
and decide whether the classifier must be improved.

Application saves feedback SMEs analyze feedback
User enters classification with all information needed data and decide whether to
feedback LJ'\-E for analysis improve the classifier
Application program Database SMEs

Figure 4-51 Classifier Feedback process in the application program

4.4.8 Deploying the application

This section shows two options for deploying the application to Bluemix:

» Deploy the application from Eclipse
» Deploy the application from command line

Chapter 4. News Classification 85

Deploy the application from Eclipse

To deploy the application from Eclipse, the Bluemix tools must be installed as listed in 4.1.2,
“Prerequisites” on page 46. You will use the Bluemix Eclipse plug-in to deploy the application
to Bluemix.

Complete the following steps:

1. Right-click project n1c-201-new-java-student in Eclipse and select Run As — Run on
Server.

2. Under Select the server type, click IBM — IBM Bluemix and click Next (Figure 4-52).

ﬂ Run On Server o

Run On Server

Select which server to use

How do you want to select the server?
Choose an existing server

@ Manually define a new server

Select the server type:
type filter text

+ = Basic -
» = Cloud Foundry
4 (= IBM
afl IBM Bluemix
E‘ IBM Bluernix Tools Server Adapter
WebSphere Application Server Liberty
» (= JBoss bv Red Hat

Publishes and runs Java EE modules, JavaScript modules and packaged servers of Liberty Profile to
IBM Bluemix,

|

-

Cloud

Server name: IEM Bluemix

[7] Always use this server when running this project

@ < Back Net> | Finish | | Cancel

—_—

Figure 4-52 Select Bluemix server to host application

3. Enter the Bluemix account information (email and password) and click Next (Figure 4-53
on page 87).

86 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

IBM Bluemix Account

Press 'Validate Account’, 'Mext', 'Finish’ to validate credentials.

Account Information |

[[] Use a one-time password to login (550)

Email: marcelo.mota.manhaes@gmail.com

Password: | ssessssssa

URL:

|IBM Bluemix (US South) - https://api.ng bluemicnet - | | Manage Cloud...

Validate Account | | Register Account... | | Sign Up

@ <Back || Net> |[Fnish || Cancel

Figure 4-53 Username and password for Bluemix account

4. Select the Bluemix space that will host the application (Figure 4-54), By default, dev space
is available if no other is created by the user. Click Next.

i8] Run On Server . E@u
Organizations and Spaces
Press 'Validate Account’, 'Next’, 'Finizh' to validate credentials.
Organizations and Spaces:
4 marcelo.mota.manhaes
dev
@ <Back || Net> || FEnish |[Cancel

Figure 4-54 Select space to deploy application

Chapter 4. News Classification 87

5. The application selected to be deployed to Bluemix is recognized. Click Finish
(Figure 4-55).

¥
[.}RunDnSewer l - Eﬂ

Add and Remove
Muadify the resources that are configured on the server —

Move resources to the right to configure them on the server

Available: Configured:

Ty nlc-201-news-java-student

Add All >> < | 1] | }

Mext > Finish J I Cancel

Figure 4-55 Application selected for deployment to Bluemix

6. The application details (Figure 4-56 on page 89) show the required configuration before
the plug-in starts the deployment on the Bluemix.

Buildpack URL defines the application server to which the application is deployed. If this
field is empty, the application will be hosted by IBM WebSphere Liberty profile.

If you want to deploy into Apache Tomcat you will need to use the Java Buildpack URL.
See the list of community build packs.

Select Save to manifest file and click Next.

88 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created

-

E Application

Application details
Specify application details,

MName: nlc-201-news-java-student

Buildpack URL (optional):

Save to manifest file

/j?\ < Back Mext =] [

Figure 4-56 Buildpack selection to host application

. The Launch deployment window (Figure 4-57) shows the deployment details. These
include memory to be used, URL to access the application which is built by default using
the application name plus the Bluemix domain.You can change this URL and verify that no

one is using this URL by clicking Validate. Click Next.

-

ﬂ Applicaticn

Launch deployment

Specify the deployment details

Memory Limit (MB): 512

Start application on deployment

Subdomain: nlc-201-news-java-student-1
Domain: mybluemix.net VI
Deployed URL: nlc-201-news-java-student-1mybluemix.net Validate

@ <Back | Net> ||

Finizh

|| cancel

Figure 4-57 Launch deployment configuration on Bluemix

Chapter 4. News Classification

89

8. This step binds the news classification service instance created in Chapter 2, “Creating a
Natural Language Classifier service in Bluemix” on page 11.

The Cloudant noSQL DB service instance must also be bound to the application; it is used
by the application to save customer feedback. This service was created in 4.4.3, “Creating
a Cloudant noSQL DB service instance” on page 56.

Select the services as shown in Figure 4-58 and click Next.

E‘j Application

Services selection

Bind or add new services

=3 ‘\%l)%

Select services to bind to the application:

Mame = Service Plan v

[¥] /& Cloudant NeSQL DB-gl cloudantMoSQLDB Lite

[¥] 5 ITSO - ED-6000-RO1 - MNatural Language Classifier natural_language_classif... standard

m_

@ <Back | MNea> |[Finish || Cancel

Figure 4-58 Select services to bind to the application

9. Create a variable to store the classifier_id so it can be received by the application code.
In the Environment Variables window click New.

Name the variable CLASSIFIER ID and in the Value field enter the classifier ID of the
classifier created in 4.4.5, “Creating and training the classifier” on page 63.

Click OK and then click Finish (Figure 4-59 on page 91).

90 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

@
&3

ﬂ Applicaticn ==

Environment Variables

Edit application envirenment variables

Variable Value

“ I
I8} New Variable Entry ﬁ Edit...

Remove

L.

Mame: CLASSIFIER_ID

Value: fflEc?xlS?-nIc-5650|

@ ' Ned> [Finish][Cancel

Figure 4-59 Classifier ID variable set up for News Application

If you lose the classifier ID, complete these steps:

Log in to Bluemix.

In the left menu. select Services — Dashboard.

Go to the Natural Language Classifier service.

Click Manage — Access Beta Toolkit.

Click the classifiers link (right top menu).

On the classifier page, the classifier ID is displayed (Figure 4-60).

~P 00T

News Classification oy @

Created Jan 23, 2017 5:24:47 PM
Classifier ID: ff18c7x157-nlc-5650

Figure 4-60 Displaying the classifier ID

The web application is deployed on Bluemix and several deployment messages are displayed
on the Eclipse console, such as Liberty binaries download to host application, WebSphere
Liberty profile server start logs, and others. Look for the message indicating that the
application is running (Figure 4-61).

[AUDIT] CWWKF@@llI: The server defaultServer is ready te run a smarter planet.

[INFO] CWwWKF@easI: Feature update completed in 12.824 seconds.

[INFO 1 CWwWK0e219I: TCP Channel defaultHttpEndpoint has been started and is now listening fo
Container became healthy

[Applicaticen Running Check] - Application appears to be running - nlc-2B8l-news-java-student.

Figure 4-61 Application running on Bluemix

Chapter 4. News Classification 91

Deploy the application from the command line
This section assumes that you cloned the sample Git project as described in “Clone the

sample Git project by using the Git command line” on page 55.

Follow these steps:

1. Change to the redbooks-nlc-201-news-java-student directory:
cd redbooks-nlc-201-news-java-student

2. In the root application directory, run cf login and put the email and password account for
Bluemix in sequence (Example 4-9):

Example 4-9 The cf login command

cf login
API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_ EMAIL_ACCOUNT>
¢

Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
0K
Targeted org <YOUR_ORGANIZATION>

3. Select the Bluemix space to host the application (Example 4-10):

Example 4-10 Select a space

Select a space (or press enter to skip):

1. dev

2. qa

3. Prod

Space> 1

Targeted space dev

API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

User: <YOUR_BLUEMIX EMAIL ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

4. Get the services names that will be bound to the application:

— The first service is the Natural Language Classifier service instance that was created in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

— The second service is the Cloudant NoSQL DB service instance to save client
feedback that was created in 4.4.3, “Creating a Cloudant noSQL DB service instance”
on page 56.

To get the name of services, run the cf services command and copy the name of the
services from the name column (Example 4-11):

Example 4-11 The cf services command

cf services

Getting services in org <YOUR ORGANZATION> / space dev as
<YOUR_BLUEMIX EMAILACCOUNT=>...

0K

name service plan bound Tast

92 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

apps operation

Cloudant NoSQL DB-g1 cloudantNoSQLDB Lite create

succeeded
ITSO - ED-6000-RO1 - natural_language_ standard create
Natural Language classifier succeeded

Classifier

5. In another command prompt, edit the manifest.yml file (Example 4-12) in the root of
directory and change these items:

a. The host line: Insert your host name.
b. Inthe services section: Insert the names collected in step 4 on page 92.

c. The CLASSIFIER ID line: Insert the value obtained in 4.4.5, “Creating and training the

classifier” on page 63.

Example 4-12 The manifest.yml file

applications:
- name: nlc-201-news-java-student
memory: 512M
host: <YOUR_HOST_NAME>
domain: mybluemix.net
services:
- <YOUR_CLOUDANT_SERVICE_NAME>
- <YOUR_NATURAL_CLASSIFIER_SERVICE_NAME>
env:
CLASSIFIER_ID: <YOUR_CLASSIFIER_ID>

If you lose the classifier ID, complete these steps:

i. Log in to Bluemix.

ii. Inthe left menu. select Services — Dashboard.

iii. Go to the Natural Language Classifier service.

iv. Click Manage — Access Beta Toolkit.

v. Click the classifiers link (right top menu).

vi. On the classifiers page, the classifier ID is displayed (Figure 4-62).

|_/
=¥

MNews Classification

Created Jan 23, 2017 5:24:47 PM
Classifier ID: ff18c7x157-nlc-5650

Fa ™
| Awailable)

Figure 4-62 Classifier ID collected on Bluemix service

d. Save all the changes to the manifest.yml file.

6. At the prompt and from the root directory (redbooks-n1c-201-news-java-student) push

the application to Bluemix. The information to deploy is in the manifest.yml file (step 5):

cf push nlc-201-news-java-student -p target\nlc-201-news-java-student.war

Chapter 4. News Classification

93

7. See the results (Example 4-13). The results show the application state, number of
instances, memory usage, URL to access the application and other technical information.

Example 4-13 Results

requested state: started

instances: 1/1

usage: 512M x 1 instances

urls: nlc-201-news-java-student.mybluemix.net

last uploaded: Wed Feb 15 14:37:18 UTC 2017

stack: cflinuxfs2

buildpack: Liberty for Java(TM) (WAR, Tiberty-16.0.0 4,
buildpack-v3.7-20170118-

2046, ibmjdk-1.8.0 20161213, env)

Note: The urls value will match the host and domain you entered in step 5 on page 93.

4.4.9 Testing the application

To test the application enter the application URL in a browser to display the home page
(Figure 4-63).

e ITSO News Classification X ‘

i C | & Secure | https://nlc-201-news-java.mybluemix.net

News Classification Natural Language Classifier Documentation IBM Redbooks

Classify News

Enter the news you want to classify and click Classify News
The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

| Classify News |

Figure 4-63 News application home page

Enter news text in the Text input field and click Classify News.

94 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

The result shows the Top Class suggested classification type (Figure 4-64). If the type is not

correct, select another classification from the Suggest other classification pull-down and click
Feedback.

Enter the news you want to classify and click Classify News

The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

Jose Mourinho refused to accept Manchester United's unbeaten run was over on Thursday night after
struggling to contain his fury at referee Jonathan Moss awarding Hull City a controversial penalty United
booked their place in the EFL Cup final against Southampton despite Hull ending their 17-game unbeaten
streak with a 2-1 win at the KCOM Stadium._But Mourinho claimed his side did not lose after being
infuriated that Marcos Rojo was penalised for a push on Harry Maguire.

Classify News

Watson Natural Language Classifier

Top Class : sports ¥

Suggest other classification : Business -

Figure 4-64 News application results

Chapter 4. News Classification =~ 95

96

Click the icon to the right of Top Class to see the classifier output details (Figure 4-65).

Top Class : spo

"classes™: [-
r

f-

"confidence": 0.9864532252599781,

"c Tass_name ":
},

o

"confidence": 0.008019027.

"class_name": "politics’
2,
=
e

"confidernce":

"class_name":
F 8
e
"confidence ": 0.0014045313912377656,
"cTass_name": "technology"
-
£

"confidernce": 0.

"class_name":

Figure 4-65 New application results in detail

If you do not agree with the classification and make a suggestion by using the feedback
feature, your suggestion is sent to the database. With this data, the SMEs can verify and
improve classifier accuracy (as explained in 4.4.7, “Evaluating results and updating training
data” on page 73). See Figure 4-66.

"classifier_id": "90e7b7xi?8-nlc-36405",

"top c lass"

mar T it

Suggest other classification © Business -

Feedback

Figure 4-66 Feedback to change classification option

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4.5 Quick deployment of application

A second Git repository is provided so that you can run the News Classification application

even if you did not perform the steps described in 4.4, “Step-by-step implementation” on
page 50.

1.
2.

You need a Bluemix account. Experimental Watson Services can be used at no cost.

Follow the requirements in 4.1.2, “Prerequisites” on page 46 to install Git and Cloud
Foundry software on your local computer.

. Open a command prompt and set up Git using the following command:

git config --global http.ss1Verify false

4. Choose an empty directory to download the code.

5. Run the command in the selected directory:

git clone https://github.com/snippet-java/redbooks-nlc-201-news-java.git
Change to the redbooks-n1c-201-news-java directory:

cd redbooks-nlc-201-news-java

In the root application directory, run the cf login and provide the email and password
account for Bluemix in the sequence shown in Example 4-14.

Example 4-14 The cf login command

cf Togin
API endpoint: https://api.ng.bluemix.net
¢
Email> <PUT_YOUR_BLUEMIX_ EMAIL_ACCOUNT>
¢

Password> <PUT_YOUR_PASSWORD_ACCOUNT>

Authenticating...
0K
Targeted org <YOUR_ORGANIZATION>

Select the Bluemix space to host the application (Example 4-15).

Example 4-15 Select a space

Select a space (or press enter to skip):

1. dev

2. qa

3. Prod

Space> 1

Targeted space dev

API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

User: <YOUR_BLUEMIX EMAIL ACCOUNT>
Org: <YOUR_ORGANIZATION>
Space: dev

. Create the Natural Language Classifier service:

cf create-service natural language classifier standard my-nlc-service

10.Create service keys (service credentials) to access the Natural Language Classifier

service:

cf create-service-key my-nlc-service myKey

Chapter 4. News Classification

97

https://console.ng.bluemix.net

11.Retrieve the service keys from the Natural Language Classifier service to use after:
cf service-key my-nlc-service myKey

12.Create a service for the database feedback function of this application:
cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"

13.The Natural Language Classifier service must be trained before you can successfully use
this application. The training data is provided in the resources/news-train.csv file from
the redbooks-n1c-201-news-java root directory. Open the resources directory:

cd redbooks-nlc-201-news-java/resources
14.Execute the Java command:
— For Windows:
CreateAndTrain.bat news-train.csv <user> <password> "News Classifier" en
— For Linux:
./CreateAndTrain.sh news-train.csv <user> <password> "News Classifier" en
The command has the following parameters:
user The user name from step 11.
password The password from step 11.

The information output from this command will show the classifier ID. Keep this
information.

15.At the command prompt, edit the manifest.yml in the root directory
(redbooks-nTc-201-news-java) and change the following information (Example 4-16):

a. host: Use a host name that is unique.

b. CLASSIFIER ID: Insertthe value you created in step 14 on page 98.

Example 4-16 The manifest.yml file

applications:
- name: nlc-201-news-java
memory: 512M
host: <YOUR_HOST_NAME>
domain: mybluemix.net
services:
- News Classifier Feedback
- News Classifier
env:
CLASSIFIER ID: <YOUR_CLASSIFIER_ID>

16.Save all the changes to the manifest.yml file.

17.At the prompt and from the root directory (redbooks-nTc-201-news-java), push the
application to Bluemix:

cf push nlc-201-news-java -p target\nlc-201-news-java-student.war

18.After completing these steps, you are ready to test your application. Start a browser and
enter the URL of your application:

<YOUR_HOST_NAME>.mybluemix.net

98 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

4.6 References

See the following resources:
» Create classifier:

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/vl/#c
reate_classifier

» Using your own data to train the Natural Language Classifier:

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using
-your-data.htm]l

Chapter 4. News Classification 99

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

100 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

SPAM Classifier

The SPAM Classifier application in this use case reads mail subject or contents that the user
provides and classifies whether the mail is spam or not. The user provides feedback to the
classification results about whether it is correctly or incorrectly classified. User feedback is
saved for additional training of the Natural Language Classifier classifier.

SPAM Classifier uses Natural Language Classifier (NLC) service, one of the cognitive
capabilities that IBM Watson provides. It understands natural language and classifies text into
one of several predefined classes. The classifier is trained with training data, which is
prepared for each purpose but can be improved with additional training from new training data
to make the classifier smarter.

The following topics are covered in this chapter:

Getting started

Architecture

Two ways to deploy the application: Step-by-step and quick deploy
Step-by-step implementation

Quick deployment of application

References

vyvyvyvyYyvyy

© Copyright IBM Corp. 2017. All rights reserved. 101

5.1 Getting started

To start, read through the objectives, prerequisites, and expected results of this use case.

5.1.1 Objectives

By the end of this chapter, you should be able to accomplish these objectives:

» Understand practical applications of the Watson Natural Language Classifier service, such
as spam classification.

» Follow the procedure to use the Natural Language Classifier service.
» Implement and deploy the use case application in a Node-RED environment on Bluemix.

5.1.2 Prerequisites

To build Watson Natural Language Classifier service based on Watson Natural Language
Classifier on Bluemix and implement a controller in Node-RED, you must have the following
accounts, resources, knowledge, and experiences:

Bluemix account

Node-RED application on Bluemix

cURL, a command-line tool for transferring data by URL syntax
Internet browser such as Chrome, Firefox, Internet Explorer, Safari
Basic implementation skill with JavaScript

vyvyyvyyvyy

5.1.3 Expected results

By following the steps in this book, you should be able to run the application in a browser by
interacting with the classifier through three web pages:

1. Request classification (Figure 5-1).

On the first page, the user enters mail subject or content, as one line, to be classified and
then submits the request.

&) bl B ez

[4 httpsy//node-red-01161 x
& —> C | & Secure | https;//node-red-0116.mybluemix.net/req_nlc a %
SPAM Classifier powered by Watson NLC
Mail Subject or Content to Classify:|Did you hear about the new ™Divaorce Barbie™? It comes with all of Ken's stufl

Submit

Figure 5-1 Input page of mail subject or content

102 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

2. Display classification result (Figure 5-2).

User receives the classification results and is prompted to agree or disagree with the
results. Every time the user provides feedback about the classification results, the
feedback is saved to a Cloudant database in Bluemix for additional training.

[(&) L | B [

[httpsy//node-red-0116.1 X

- C | & Secure | httpsy//node-red-0116.mybluemix.net/call_nlc?ma

SPAM Classifier powered by Watson NLC

Mail Subject or Content to Classify:Did you hear about the new ""Divorce Barbie™? It comes with all of Ken's stuff!
Classification Eesult by NLC:SPAM

Do vou agree with NLC Result?

Figure 5-2 Classification result is displayed

3. Review user feedback (Figure 5-3).

For the user’s request of feedback review, the SPAM Classifier displays the user feedback
from the Cloudant database.

(4 htips://node-red-0116.1 X

= C | & Secure | https://node-red-0116.mybluemix.net/get_feedback
SPAM Classifier powered by Watson NLC

User Feedback: |Wah lucky man... Then can save money... Hee...,Non-SPAM,N
"Well, i'm gonna finish my bath now. Have a good...fine night.",Non-SPAM,Y
Finished class where are you.,Non-SPAM,Y
Are you unique enough? Find out from 38th August. www.areyouunique.co.ulk,SPAM,Y
I plane to give on this month end.,Non-SPAM,Y
Did you hear about the new Divorce Barbie? It comes with all of Ken's stuff!,SPAM,N

Figure 5-3 User feedback is displayed

Chapter 5. SPAM Classifier 103

5.2 Architecture

The SPAM Classifier architecture is described from the following perspectives:

» Static perspective is described in a component perspective.
» Dynamic perspective is described in a role and activity perspective.

SPAM Classifier application is composed of an application controller, Watson Natural
Language Classifier Service, and data store. The application controller orchestrates the

classification service. Watson Natural Language Classifier service classifies whether the
subject or content of mail is spam or non-spam. The data store saves the user feedback

about the classification result.

5.2.1 Component perspective

Figure 5-4 shows the components and data flow.

User
(in Bluemix)

Application and Watson services

@ @ ;
0) @
User Application Ul Application Controller
(Implemented (Implemented
by Node-RED) by Node-RED)

NATURAL LANGUAGE
CLASSIFIER
(Trained and deployed)

vl

F—

Data Store (in Bluemix)

©

CLOUDANT
NOSQL DB

Legend

User
Application
Data Store
Watson Service
Data Flow

Figure 5-4 Component diagram

Data flows as follows:

Mail subject or content.

N o g~ Db~

104

Mail subject or content, approve or reject.
Mail subject or content, approve or reject.

Classification result: spam or non-spam.
Classification result: spam or non-spam.
Classification result: spam or non-spam.

User feedback regarding classification result.

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5.2.2 Role and activity perspective

Figure 5-5 shows the role and activity service flow.

User

Application and Watson services
Bluemix

Display mail subject

Supply mail subject
or content

Agreg or disagree
with result

Data store
Bluemix

or content input page

Read mail subject
or content

I

Display

classification result

> Save User Feedback

Figure 5-5 Role and activity diagram

The flow from the role and activity perspective is as follows:

1.

0D

User accesses the SPAM Classifier application URL with a web browser.

Application controller displays the input page.

User enters mail subject or content on the input form and submits it.

Application controller reads mail subject or content and queries the Natural Language
Classifier classifier to classify whether it is spam or non-spam.

Application controller displays the classification result, from the Watson Natural Language
Classifier service, in a web response to the user.

6. User provides feedback by agreeing or disagreeing with the classification result.

7. Application controller saves user feedback into data store to update the training data.

Chapter 5. SPAM Classifier

105

5.3 Two ways to deploy the application: Step-by-step and quick

deploy

Two Git repositories are provided for this use case:

>

Step-by-step deployment (incomplete) version of the application

This repository contains an incomplete version of the application and is used in all
sections of 5.4, “Step-by-step implementation” on page 106. This version takes you
through the key steps to integrate the IBM Watson services with the application logic.

Quick deployment (complete) version of the application

This repository contains the final version of the application. If you want to bypass the
implementation steps and instead run the application as a demonstration, download this
full version. Downloading and running this full version demonstration is explained in 5.5,
“Quick deployment of application” on page 120.

5.4 Step-by-step implementation

Deploying this application involves the following steps:

2 o

Creating a Node-RED application

Cloning the Git project

Preparing training data

Creating and training the classifier

Querying the trained classifier

Evaluating results and updating training data

5.4.1 Creating a Node-RED application

106

For the deployment of this use case, the application Ul and application controller to query the
classifier are developed in a Node-RED app and user feedback is saved to Cloudant noSQL
DB. You should create both, the Node-RED application and the Cloudant noSQL DB service
on Bluemix.

The web pages, controller, and Watson Natural Language Classifier service are implemented
in Node-RED. After you log in to Bluemix, create an app of Node-RED:

1.

In IBM Bluemix, open the full catalog (Figure 5-6 on page 107). Under Apps, click
Boilerplates — Node-RED Starter.

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

€, IBM Bluemix Catalog

w

All Categories

Infrastructure

Gompute

St

s}

Network

Security

Personality Insights
Java Web Starter

A simple Java app that
uses the Persona

IBM

StrongLoop Arc

This application is the
StronglLoop Arc

ty Insig
Node.js Web Starter

A simple Node.js app
that uses Personz

IEM

Mendix Rapid Apps

Model driven rapid app
platform that allc

IBM Community
Apps
Boilerplates Node-RED Starter py Python Flask
Cloud Foundry Apps This application i A simple Pythen Flask
= demonstrates ho application that v
Containers
Community Community
Figure 5-6 IBM Bluemix Catalog: Node-RED Started
2. Provide an App name (Figure 5-7) and click Create.
Create a Cloud Foundry App
Node-RED Starter App names
This application demonstrates how to run the Node-RED open- gt
source project within IBM Bluerris. T P
Community node-red-016 mybluemix.net
View Docs
o o Selected Plan:
TYPE t SDK for Node.js™ Gloudant NoSQL DB
REGION US South
Default Lite
SDK for Nodejs™
Need Help? Estimate Monthly Cost

Contact Bluemix Sales

Cost Calculator

Figure 5-7 Create Node-RED App

3. The App is now created. Click the URL link in the ROUTE column (Figure 5-8 on

page 108).

Chapter 5. SPAM Classifier

107

At Aops

Cloud Foundry Apps 1GB/8 GB Used

NAME ROUTE STATE ACTIONS

node-red-0116 node-red-0116.mybluemix.net @ Running c 3 :

Figure 5-8 Node-RED App created

4. Node-RED in Bluemix opens (Figure 5-9). Click Go to your Node-RED flow editor.

Node-RED in Bluemix

A wvisual tool for wiring the Internet of Things

Node-RED provides a browser-based editor
that makes it easy to wire together flows that Go to your Node-RED flow editor
can be deployed to the runtime in a single-

click.
Figure 5-9 Node-RED editor

108 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

5. Now you have a Node-RED development environment available (Figure 5-10).

] =l B]
&= Mode-RED : node-red-0 %
= C | & Secure | https://node-red-0116.mybluemix.net/red/#flow/3c5c0435.fc7f9c @ ¥r
@<= Node-RED
Q Flow 1 e
~ input
inject
catch
status
link
matt
hitp = s &
y,

Figure 5-10 Node-RED editor

5.4.2 Cloning the Git project

A Git project was created for this use case. Clone the Git project:

1. Open a command prompt and set up Git by using the following command:
git config --global http.ss1Verify false

2. Choose an empty directory to download the code.

3. Run the command in the selected directory:

git clone
https://github.com/snippet-java/redbooks-n1c-201-spam-nodered-student.git

4. Change to the n1c-201-spam-nodered-student directory:

cd nlc-201-spam-nodered-student
After cloning the project, you can find the exported Node-RED flow and training data for the
project:

» Node-RED flow: n1c-201-spam-nodered-student/defaults/flow.json
» Training data: n1c-201-spam-nodered-student /resources/spam_training_l.csv

5.4.3 Preparing training data

Training data should be prepared in advance because when you create the classifier, training
data should be provided at that point. The training data is in the form of a comma separated
value (CSV) file, which is composed of text and a label. A convenient approach is to create
data in Microsoft Excel and save it in CVS format, for example a spam_training_1.csv file.

Chapter 5. SPAM Classifier 109

Figure 5-11 shows example training data.

FreeMsg Hey there darling it's been 3 week's now and no word back SPAM
Even my brother is not like to speak with me. They treat me like aids Non-SPAM

A B

1 |Go until jurong point, crazy.. Available only in bugis n great world la Non-SPAM
2 Ok lar... Joking wif u oni.. Mon-SPAM
3 |Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. " SPAM

4 |U dun say so early hor.. U ¢ already then say.. Mon-SPAM
5 |Mah Idon't think he goes to usf, he lives around here though Mon-SPAM
6

Fi

Figure 5-11 Training data

Watson Natural Language Classifier supports multiple classifications. In the SPAM Classifier
application, training data has only two classifications: SPAM or Non-SPAM. Each line of data
should be labelled with only one of them.

About the data

Training data used in this use case was compiled by Tiago Agostinho de Almeida and José
Maria Goémez Hidalgo. More information is in 5.6, “References” on page 122.

5.4.4 Creating and training the classifier

110

This section describes the steps to create and train the classifier.

Create a service of the Natural Language Classifier

You must create a Natural Language Classifier service instance in Bluemix as described in
Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11 before
performing the steps in this section.

When you develop an application in Node-RED, the classifier should run in the same space of
Bluemix where Node-RED runs. For this use case, the Natural Language Classifier service
was created in the same space with the following credential information:

url "https://gateway.watsonplatform.net/natural-language-classifier/api"
password "ylwcQL63akRX"
username "1b2749fe-7581-42e2-ad3e-115c022ef8cd"

Create a classifier with initial training data
Now you are ready to create a classifier with the cur1 command (Example 5-1).

Example 5-1 The curl command

curl -i -u "<username>":"<password>" -F training_data=@ <traing_data_file_path> -F
training_metadata="{\"language\":\"en\",\"name\":\"TutorialClassifier\"}"
"https://gateway.watsonplatform.net/natural-language-classifier/api/vl/classifiers"

In this example, replace the following information:

» Replace <username> and <password> with service credentials obtained when you created
the service as explained in Chapter 2, “Creating a Natural Language Classifier service in
Bluemix” on page 11, for example, "1b2749fe-7581-42e2-ad3e-115c022ef8cd" and
"ylwcQL63akRX" respectively.

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

» Replace <training_data_file_path> with the full path of the training data file, which
includes the folder and file name. If you execute a cRUL command in the folder where the
training data file is located, you can specify the file name without the full path (for example,
"spam_training_l.csv").

Figure 5-12 shows an example of cur1 command.

C:Wlatson>curl —i —u "1h2749fe—7581—4 A22efBcd":"ylucQL63IakRE" —F tr
aining_data=Espam_training_1 traini ="{#"languaget :¥'ent’' . W'na

meW' ' TutorialClassif ier®'>" "htt sonplatform.net/natural-langual
ge—classifiersapirvisclassifie
Figure 5-12 Sample curl command

The cURL response

After the cURL command runs successfully, it returns a response with classifier 1D, for
example "f5b42fx173-n1c-3980", which you need to retrieve for later use. Training begins
immediately with the initial training data.

Figure 5-13 on page 111 shows an example of a cURL response.

"classgifier_id" :

"name' @ “"TutorialClassifier".
"language® = “en'.

“ereated' @ “"2017-B2-14T@7:5

"url" : “https:/sgateway.wat
classifiersF5h42fx17?3—nlc—

"status'" @ "Training".

"status_description” @ "The ifier imstance is in its training phase, not
yet ready to accept classify »
H
Figure 5-13 Sample cURL response

5.4.5 Querying the trained classifier

As the component diagram shows (Figure 5-4 on page 104), the user interacts with the SPAM
Classifier application through a web user interface. The Watson Natural Language Classifier
service performs classification of the user input. The application controller orchestrates the
overall process.

Chapter 5. SPAM Classifier 111

Request classification

You create the request classification page in Node-RED for the user to access through a web
address. For this use case, pages were previously created by the authors. Follow these steps
to import the pages into the Node-RED environment:

1. In the Node-RED editor, click the top right menu and select Import — Clipboard
(Figure 5-14).

=<2 Node-RED

Working (0119) Email SWC (N4

v input
Clipboard
inje-ct L] Librar‘;‘
Req NLC
catch

Figure 5-14 Import menu

2. The clipboard window opens. Copy the code (Example 5-2 is the code snippet to import).
Paste the code and click Import (Figure 5-15).

Import nodes

<ftd=\n<td>\n\t
\n\t<input type=submit val-
ue=\"Submit\">\n</td>\n</tr=\n\n</table=\n\n</form=>\n</body>\n</
htmi=\n","x"-362,"y":92 "wires".[["6817402e.T8cT7"]}.
{"id":"6817402e f8c 77", "type""hitp re-
sponse”,"z""f1d9f81c.fa7428" "name""" "x".593,"y" 92 "wires" []}]|

Import to

Figure 5-15 Paste sample code

Example 5-2 shows the sample code to import. This snippet is part of an exported
Node-RED flow file (f1ow. json), which is included in the project folder cloned by Git. After
you import the entire content of flow. json, you get all nodes and the links between them.

Example 5-2 Sample code to import (flow.json)

[{"id":"3a346689.6c13ca","type":"http
in","z":"f1d9f81c.fa7428","name":"/req_nlc","url":"/req nlc","method":"get","sw
aggerDoc":"","x":95.89584350585938,"y":102,"wires":[["e225af86.0689¢"]]},{"id":
"e225af86.0689%¢e","type":"template","z":"f1d9f81c.fa7428","name":"Template: Req
NLC","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain"
,"template":"<html>\n<body>\nSPAM Classifier powered by Watson
NLC\n<br=>
\n\n<form action=\"/call_nlc\">\n\n<table>\n\n<tr>\n<td
align=right>\n\tMail Subject or Content to Classify:\n</td>\n<td>\n\t<input
type=text name=\"mail subject\" size=80

112 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

max1ength=80>\n</td>\n</tr>\n\n<tr>\n<td></td>\n<td>\n\t
\n\t<input
type=submit
value=\"Submit\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html>\n","x"
:339.8958435058594,"y":102,"wires":[["d3537223.63a0f"]]},{"id":"d3537223.63a0f"
,'type":"http
response","z":"f1d9f81c.fa7428","name":"","x":570.8958435058594,"y":102,"wires"
:[1},{"id":"30ffbfdb.e0e7","type":"comment","z":"f1d9f81c.fa7428", " "name":"Disp]l
ay Input Page to User","info":"User load mail subject or content input
page","x":146.89584350585938,"y":55,"wires":[]}]

After the import, you have three nodes connected to one another (Figure 5-16).

Display Input Page to User

freq Nl [j— Template: Reg NLC e http

Figure 5-16 Nodes imported

3. Click Deploy at the right top corner (Figure 5-17).

Figure 5-17 Deploy button

4. The user can access the request classification page with browser (Figure 5-18).

In this example, a Node-RED app is created with the name node-red-0116, and the
Req NLC node is created with the /req_n1c URL. In a browser, open the SPAM Classifier
application to see a running version on Bluemix.

[=

[https//node-red-0116.1 x
& > (C | & Secure | httpsy//node-red-0116.mybluemix.net/req_nlc (SR ¢
SPAM Classifier powered by Watson NLC
| Mail Subject or Content to Classify:|Did you hear about the new ™Divorce Barbie™? It comes with all of Ken's stuffl

_Submit

Figure 5-18 Input page of mail subject or content

5. After the page loads, the user can input one sentence of the mail subject or content to be
classified and the click Submit.

Performing classification, displaying result, asking user feedback

For this use case, modules for performing classification, displaying results, and requesting
user’s feedback were previously created by the author.

Chapter 5. SPAM Classifier 113

https://node-red-0116.mybluemix.net/req_nlc
https://node-red-0116.mybluemix.net/req_nlc

To import these modules into the Node-RED environment, complete these steps:
1. In the Node-RED editor, click the top right menu and select Import — Clipboard.

2. The clipboard window opens. Copy the code (Example 5-3 is the code snippet to import).
Paste the code and click Import.

Example 5-3 is sample code to import. This snippet is part of the exported Node-RED flow
file (f1ow. json), which is included in the project folder cloned by Git. After you import the
entire content of flow.json, you get all nodes and the links between them.

Example 5-3 Sample code to import (flow.json)

[{"id":"3b41f3fb.1f941c","type":"http
in","z":"f1d9f81c.fa7428","name":"/call_nlc","url":"/call_nlc","method":"get","swaggerDo
c":"","x":92.89582824707031,"y":273,"wires": [["5f7cbce2.f278b4"]]},{"id":"28d7ff89.2d239
","type":"watson-natural-language-classifier","z":"f1d9f81c.fa7428","name": "NLC", "mode":
"classify","language":"en","classifier":"f5b42fx173-n1c-3980","x":502.8958282470703,"y":
273,"wires":[["544d5bac.0ac034"]]},{"id":"5f7chce2.f278b4","type" :"function","z":"f1d9f8
lc.fa7428","name":"Parse mail_subject","func":"/**\n * Set msg.payload with mail_subject
user provided\n * Save mail_subject into global context for Tater use\n */\n\nvar
mail_subject = msg.req.query.mail_subject;\n\ncontext.global.mail_subject =
mail_subject;\nmsg.payload = mail_subject;\n\nreturn

msg;\n", "outputs":1,"noerr":0,"x":293.8958282470703,"y":273,"wires": [["28d7ff89.2d239"]]
},{"id":"a3f5e89a.e214d8","type":"http response","z":"f1d9f81c.fa7428","name":"Display
NLC
Result","x":879.8958129882812,"y":384,"wires":[]1},{"id":"2bd7fc4a.094154","type":"templa
te","z":"f1d9f81c.fa7428","name":"Template: NLC
Result","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","t
emplate":"<!--\npayload.mail_subject: mail_subject user provided\npayload.top_class:
classification result against mail_subject, either SPAM or
Non-SPAM\n-->\n\n<html>\n<head>\n<script>\n function clickYes() {\n
document.forml.user_feedback.value = \"Y\";\n document. forml.submit();\n \n
function clickNo() {\n document.forml.user_feedback.value = \"N\";\n
document.forml.submit();\n }\n</script>\n</head>\n</head>\n<body>\nSPAM Classifier
powered by Watson NLC\n

\n\n<form name=forml
action=\"/update_feedback\">\n\n<input type=hidden name=\"user_feedback\">\n\n<table
border=0>\n\n<tr>\n<td align=right>\n\tMail Subject or Content to
Classify:\n</td>\n<td>\n\t{{payload.mail_subject}}\n\t<input
type=hidden name=\"mail_subject\"
value=\"{{payload.mail_subject}}\">\n</td>\n</tr>\n\n<tr>\n<td
align=right>\n\tClassification Result by NLC:\n</td>\n<td>\n\t{{payload.top_class}}\n\t<input type=hidden
name=\"classification_result\"
value=\"{{payload.top_class}}\">\n</td>\n</tr>\n\n<tr>\n<td colspan=2
align=center>\n
\nDo you agree with NLC Result?\n

\n<input type=button
value=\"Yes\" onClick=\"javascript:clickYes();\">\n<input type=button value=\"No\"
onClick=\"javascript:clickNo();\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html
>\n","x":640.8958129882812,"y":384,"wires":[["a3f5e89a.e214d8"]]},{"id":"2124dc51.d636c4
","type":"comment","z":"f1d9f81c.fa7428","name":"User Submit -> Call NLC to classify
SPAM / Non-SPAM","info":"When user submit \"mail subject or contents\", \nsystem ask NLC
to classify if it is SPAM or
Non-SPAM","x":231.8958282470703,"y":221,"wires":[]},{"id":"544d5bac.0ac034","type":"func
tion","z":"f1d9f81c.fa7428","name":"Deliver mail_subject","func":"/**\n * Get
mail_subject from global context and deliver to template generator\n
*/\n\nmsg.payload.mail_subject = context.global.mail_subject;\nreturn
msg;","outputs":1,"noerr":0,"x":376.72222900390625,"y" :384.8055725097656, "wires" : [["2bd7
fc4a.094154"]111}]

114 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3. After the import, you have nodes connected to one another (Figure 5-19).

User Submit -> Call NLC to classify SPAM / Non-SPAM

feall_nle — Parse mail_subject | e—— 5 NLC

Deliver mail_subject —_— Template: NLC Result et | Display NLC Result

Figure 5-19 Nodes imported

4. Update the configuration information of the Natural Language Classifier node.
Double-click the NLC node. When the editor opens (Figure 5-20), update the following
fields (with the service you created) as in the example and click Done.

Username 1b2749fe-7581-42e2-ad3e-115c022ef8cd
Password ylwcQL63akRX
Classifier ID f5b42fx173-n1c-3980

Edit natural language classifier node

W Name NLC|

& Usemame 1b2749fe-7581-42e2-ad3e-115c022ef8cd

@ Password | ssssees

? Mode Classify v

% Classifier ID | f5b42fx173-nlc-3980

Figure 5-20 Configuration of Natural Language Classifier

5. Click Deploy to apply changes.

6. For the user’s request of classification, SPAM Classifier will classify the mail subject or
content into SPAM or Non-SPAM, display the result, and ask if the user agrees with the
results (Figure 5-21).

&) o] B e

[httpsy/node-red-01161 x

e C | & Secure | https://node-red-0116.mybluemix.net/call_nlc?mail_subject=Did+you+hea @ ¢
SPAM Classifier powered by Watson NLC

Mail Subject or Content to Classify:Did vou hear about the new ""Divorce Barbie""? It comes with all of Ken's stuff!
Classification Result by NLC:5PAM

Do vou agree with NLC Result?

Figure 5-21 Classification result displayed

7. After the user clicks Yes or No, the user feedback is saved to the Cloudant noSQL DB.

Chapter 5. SPAM Classifier 115

5.4.6 Evaluating results and updating training data

116

Every time a user provides feedback to the classification result, the feedback is saved to the
Cloudant noSQL DB in Bluemix for additional training.

Save user feedback into Cloudant noSQL DB
To import feedback into the Node-RED environment, complete these steps:

1.

In the Node-RED editor, click the top right menu and select Import — Clipboard.

2. The clipboard window opens. Copy the code (Example 5-4 is the code snippet to import).

Paste the code and click Import.

Example 5-4 is the sample code to import. This snippet is part of the exported Node-RED
flow file (f1ow.json), which is included in the project folder cloned by Git. After you import
the entire content of flow. json, you get all nodes and the links between them.

Example 5-4 Sample code to import (flow.json)

[{"id":"bc4b6594.b53508","type": "http
in","z":"f1d9f81c.fa7428","name":"/update_feedback","ur1":"/update_feedback","method":"g
et","swaggerDoc":"","x":116.79165649414062,"y" :586.8889465332031, "wires": [["b6021075.bf4
ef"]1},{"id":"b6021075.bf4ef","type":"function","z":"f1d9f81c.fa7428","name": "Parse
user_feedback","func":"/**\n * Compose a string which is saved into cloudant\n * String
Format: mail_subject,classification_result,user_feedback\n * - mail_subject:
mail_subject user provided\n * - classification_result: either SPAM or Non-SPAM\n * -
user_feedback: either Y or N\n */\n\n// replace quotation with space to avoide error
while saving into cloudant\nvar mail_subject = msg.req.query.mail_subject.trim();\nif
(mail_subject.index0f (\"\\\"\") > -1) {\n var arr = mail_subject.split(\"\\\"\");\n
mail_subject = \"\";\n for (var i=0; i<arr.length; i++) {\n if (mail_subject
I=\"\") {\n mail_subject + \" \";\n \n mail_subject =
mail_subject + arr[i];\n }1\n}\n\nmsg.payload = \n mail_subject\n +\",\"\n +
msg.req.query.classification_result\n +\",\"\n +
msg.req.query.user_feedback\n;\n\nreturn
msg;\n","outputs":1,"noerr":0,"x":385.7916564941406,"y" :585.888916015625, "wires": [["d127
leb8.a2cce","1092b881.601317"]]},{"id":"20b581e7.42c8fe", "type": "comment","z":"f1d9f81c.
fa7428","name":"User click Yes or No -> Update User Feedback into
Cloudant","info":"Format: Mail Subject, Classification Result, User Feedback\nExample:
\"Hi world !\", SPAM,

Y","x":241.79165649414062,"y":534.888916015625, "wires":[]1},{"id":"d1271eb8.a2cce","type"
:"template","z":"f1d9f81c.fa7428","name": "Alert and
Redirect","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain","te
mplate":"<html>\n<body>\n <script>\n alert(\"Your feedback was saved for later
training. Thank you.\")\n Tocation.href = \"/req_nlc\"\n
</script>\n</body>\n</htm1>","x":643.7326812744141,"y":646.2326965332031, "wires": [["a6bd
45dd.c0e7f8"]]},{"id":"abbd45dd.c0e7f8","type":"http
response","z":"f1d9f81c.fa7428","name": "Redirect to
/req_nlc","x":871.7916412353516,"y":646.0000915527344,"wires":[]},{"id":"1092b881.601317
","type":"cloudant out","z":"f1d9f81c.fa7428","name":"User
Feedback","cToudant":"","database":"my_database","service":"node-red-0116-cToudantNoSQLD
B","payonly":true,"operation":"insert","x":633.7916412353516,"y":585.8889770507812,"wire
s":[11]

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

3. After the import, you have nodes connected with one another (Figure 5-22).

User dlick Yes or No -> Update User Feedback into Cloudant

Jupdate_feedback

Parse user_feedback _— User Feedback

l Alert and Redirect) Redirect to /req_nlc

4. Update the configuration information of the Cloudant out node. To do this, double-click the
User Feedback node. When the editor opens (Figure 5-23), update the following fields as
in the example and click Done.

Service node-red-0116-cToudantNoSQLDB
Database my_database

Figure 5-22 Nodes imported for feedback

Edit cloudant out node

==

Senvice node-red-0116-cloudantNoSQLDEB v
&= Database my_database
Operaticn insert T

¢ Only store msg.payload cbject?

W Name User Feedback

Figure 5-23 Configuration of Cloudant out

5. Click Deploy to apply changes.

Feedback format
Each feedback is a one-line string composed of the following three items separated by a
comma.

» Mail subject or content that user provided
» Classification result, either SPAM or Non-SPAM
» User feedback, either Y or N (for Yes or No)

For example, if user provides the text Hi, World as mail subject or content, the classifier will
classify it as Non-SPAM, and if the user agrees with the classification result, the feedback
string would be:

Hi, World, Non-SPAM, Y

Review user feedback

As users keep providing feedback, The feedback data is store in the Cloudant DB. You should
review the Cloudant DB data periodically and create new training data to improve the
classifier performance.

Chapter 5. SPAM Classifier 117

Complete the following steps to import the code snippet for reviewing user feedback into the
Node-RED environment:

1. In the Node-RED editor, click the top right menu and select Import — Clipboard.

2. The clipboard window opens. Copy the code (Example 5-5 is the code snippet to import).
Paste the code and click Import.

Example 5-5 is the sample code to import. This snippet is part of the exported Node-RED
flow file (fTow.json), which is included in the project folder cloned by Git. After you import
the entire content of flow.json, you get all nodes and the links between them.

Example 5-5 Sample code to import (flow.json)

[{"id":"4c877c19.98864","type": "http
in","z":"f1d9f81c.fa7428","name":"/get_feedback","ur1":"/get_feedback","method":"get","s
waggerDoc":"","x":95.89579772949219,"y" :838.000244140625,"wires": [["a49abc66.27aa4"]]}, {
"id":"9fa9b6f4.e7€938","type":"template","z":"f1d9f81c.fa7428","name":"Template: User
Feedback","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache",
"template":"<html>\n<body>\nSPAM Classifier powered by Watson NLC\n

\n\n<table
border=0>\n\n<tr>\n<td valign=top>\n\tUser Feedback:\n</td>\n<td>\n<textarea cols=80
rows=20>\n{{payload}}\n</textarea>\n</td>\n</tr>\n\n</table>\n\n</body>\n</html>\n","x":
513.8957977294922,"y":939.000244140625,"wires": [["747d6044.05772"]]},{"id":"747d6044.057
72", "type":"http
response","z":"f1d9f81c.fa7428","name":"","x":746.8957977294922,"y" :938.000244140625, "wi
res":[1},{"id":"a49abc66.27aa4","type":"cloudant in","z":"f1d9f81c.fa7428","name": "User
Feedback","cloudant":"","database":"my_database","service":"node-red-0116-cToudantNoSQLD
B","search":"_all_","design":"","index":"","x":355.8957977294922,"y" :837.000244140625, "w
ires":[["e33f4f6e.4dab6f"]]},{"id":"e33f4f6e.4dabf","type":"function","z":"f1d9f81c.fa742
8","name":" Collect records","func":"/**\n * Collect user feedback records from
cloudant\n * Record format: mail_subject,classification_result,user_feedback\n * -
mail_subject: mail_subject user provided\n * - classification_result: either SPAM or
Non-SPAM\n * - user_feedback: either Y or N\n */\n\nvar len = msg.payload.length;\nvar
newPayload = \"\";\nfor (var i=0; i<len; i++) {\n if (newPayload != \"\") {\n
newPayload = newPayload + \"\\n\";\n \n \n var str =
msg.payload[i].payload.toString();\n \n // Enclose mail_subject with quotation if
it contains comma (,)\n var arr = str.split(\",\");\n if (arr.length > 3) {\n

str = \n parse mail_subject(arr)\n +\",\"\n +
arr[arr.length-2]\n + \",\"\n + arr[arr.length-1];\n }\n\n
newPayload = newPayload + str;\n}\n\nmsg.payload = newPayload;\nreturn
msg;\n\n\nfunction parse mail_subject(arr) {\n \n var str = \"\";\n for (var
i=0; i<arr.length-2; i++) {\n if (str !=\"\") {\n str = str +

A\ "3\n Nn str = str + arr[i];\n \n stro= \"\\\"\" + str +

V5N \n return

str;\n}","outputs":"1","noerr":0,"x":573.8957977294922,"y" :837.000244140625,"wires": [["9
fadb6f4.e7€938"]]},{"id":"4834bed2.bf2be","type" : "comment","z":"f1d9f81c.fa7428", "name":
"Get User Feedback from Cloudant","info":"For Tater

training","x":159.8957977294922,"y" :789.000244140625,"wires":[1}]

3. After the import, now you have nodes connected with one another (Figure 5-24).

Get User Feedback from Cloudant

fget feedback [r——— User Feedback —_— Collect records .P

e Template: User Feedback — ——— http

Figure 5-24 Nodes imported

118 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Update the configuration information of the Cloudant in node. To do this, double-click the
User Feedback node. When the editor opens (Figure 5-25), update the following fields as
in the example and click Done.

Service node-red-0116-cToudantNoSQLDB
Database my_database

Edit cloudant in node

Service node-red-0116-cloudantNeSQLDB v
= Database my_database

Q, Search by all documents L
¥ Name User Feedback

Figure 5-25 Configuration of Cloudant in

Click Deploy to apply changes.

6. When the user requests to review the feedback, SPAM Classifier displays the user
feedback from the Cloudant DB (Figure 5-26).

==

[hitps//node-red-01161 X

e C | & Secure | https;//node-red-0116.mybluemix.net/get_feedba Q

SPAM Classifier powered by Watson NLC |

User Feedback: |Wah lucky man... Then can save money... Hee...,Non-SPAM,N
"Well, i'm gonna finish my bath now. Have a good...fine night.",Non-SPAM,Y
Finished class where are you.,Non-SPAM,Y
Are you unique enough? Find out from 38th August. www.areyouunique.co.ulk,SPAM,Y
I plane to give on this month end.,MNon-SPAM,Y
Did you hear sbout the new Divorce Barbie? It comes with all of Ken's stuff!,SPAM,N

Figure 5-26 User feedback displayed

Chapter 5. SPAM Classifier 119

5.5 Quick

deployment of application

As described in 5.3, “Two ways to deploy the application: Step-by-step and quick deploy” on
page 106, a Git repository containing the full application code is provided so that you can run
the application with minimal steps and more quickly. Here you can create the necessary
Natural Language Classifier service, Cloudant noSQL DB service, and Node-RED
development environment instead of following the detailed described in 5.4, “Step-by-step
implementation” on page 106.

Complete these steps to deploy the application more quickly:

1

2.
3.

. You need a Bluemix account. If you do not have one, create one.
Install Git and Cloud Foundry in your local computer.

Open a command prompt and set up Git using the following command:
git config --global http.sslVerify false

Choose an empty directory to download the code.

5. Run the command in the selected directory:

git clone https://github.com/snippet-java/redbooks-nlc-201-spam-nodered.git
. Change to the n1c-201-spam-nodered directory:
cd nlc-201-spam-nodered

. In the root application directory, run the cf Togin command and replace <BLUEMIX EMAIL>
and <BLUEMIX_PASSWORD> with your Bluemix account information, and select an
organization (<ORG_NO>) to use (Example 5-6).

Example 5-6 Execute login and set email and password

cf Togin

API endpoint>: https://api.ng.bluemix.net
Email> <BLUEMIX EMAIL>

Password> <BLUEMIX_PASSWORD>
Authenticating...

1]4

Select an org (or press enter to skip)

1. sample_orgl

2. sample_org2

org> <ORG_NO>

Select a Bluemix space to host the application (Example 5-7).

Example 5-7 Select Bluemix space

Select a space (or press enter to skip):

1. dev

2. qga

3. Prod

Space> 1

Targeted space dev

API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

User: < BLUEMIX EMAIL>
Org: < BLUEMIX_PASSWORD>
Space: dev

Create the Natural Language Classifier service:

cf create-service natural_language _classifier standard my-nlc-service

120 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://console.ng.bluemix.net

10.Create service keys to access the Natural Language Classifier service:
cf create-service-key my-nlc-service myKey

11.Retrieve the service keys from the Natural Language Classifier service:
cf service-key my-nlc-service myKey

12.Create a Cloudant noSQL DB service for the feedback function of this application:
cf create-service CloudantNoSQLDB Lite "SPAM Feedback"

13.Create a classifier instance with initial training data. Follow the steps in 5.4.4, “Creating
and training the classifier” on page 110. Training data is available in the resources folder.

14.In the manifest.yml file, update <My Name> and <My Host> with your unique values
(Example 5-8).

Example 5-8 Update manifest.yml file

applications:
- path: .
memory: 512M
instances: 1
domain: mybluemix.net
name: <My Name>
host: <My Host>
disk_quota: 1024M
services:
- <My_Name>-cloudantNoSQLDB
env:
NODE_RED_STORAGE_NAME: <My Name>-cloudantNoSQLDB
declared-services:
<My_Name>-cloudantNoSQLDB:
label: cloudantNoSQLDB
plan: Lite

15.Node-RED needs a Service of Cloudant NoSQL DB for storage. Create a service before
you push the application to Bluemix:

cf create-service CloudantNoSQLDB Lite "<My Name>-cloudantNoSQLDB"
16.Now, you can push the application to Bluemix:
cf push

17.1n Bluemix, after you enter the Node-RED environment you created, you can review the
default flows developed in Node-RED. However, you should update the configuration
information of Natural Language Classifier node and Cloudant node with those you
created.

Chapter 5. SPAM Classifier 121

5.6 References

See the following resources:

» Carmine, DiMascio. Create a natural language classifier that identifies spam. IBM
developerWorks, 2016

https://www.ibm.com/developerworks/library/cc-spam-classification-service-watso
n-nlc-bluemix-trs/index.html

» Almeida, T.A., Gémez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS
Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium
on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

122 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

https://www.ibm.com/developerworks/library/cc-spam-classification-service-watson-nlc-bluemix-trs/index.html
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The following Git repositories are available to help you with the examples in these chapters:
» Chapter 3, “Healthcare questions and answers” on page 19:
— For the incomplete code (step-by-step implementation version):
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

— Forthe complete code (quick deployment version) that you can use for verification or as
a code reference:

https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git
» Chapter 4, “News Classification” on page 45:
— For the incomplete code (step-by-step implementation version):
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git
— For the complete code (quick deployment version):
https://github.com/snippet-java/redbooks-nlc-201-news-java.git
» Chapter 5, “SPAM Classifier’” on page 101:
— For the incomplete code (step-by-step implementation version):
https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git
— For the complete code (quick deployment version):

https://github.com/snippet-java/redbooks-nlc-201-spam-nodered

© Copyright IBM Corp. 2017. All rights reserved. 123

https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git
https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git
https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git
https://github.com/snippet-java/redbooks-nlc-201-news-java.git
https://github.com/snippet-java/redbooks-nlc-201-spam-nodered

124 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

The volumes in the Building Cognitive Applications with IBM Watson APIs series:

vVVvyVvYyVvYyYVvYYvYyyYy

Volume 1 Getting Started, SG24-8387

Volume 2 Conversation, SG24-8394

Volume 3 Visual Recognition, SG24-8393

Volume 4 Natural Language Classifier, SG24-8391
Volume 5 Language Translator, SG24-8392

Volume 6 Speech to Text and Text to Speech, SG24-8388
Volume 7 Natural Language Understanding, SG24-8398

You can search for, view, download or order these documents and other Redbooks,
Redpapers™, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

»

IBM Bluemix; create an account or log in:
https://console.ng.bluemix.net

Cloud Foundry software download and install:
https://github.com/cloudfoundry/cli/releases
Healthcare Q and A Application to see a running version:
http://hcganaturallanguageclassifier.mybluemix.net/
IBM SDK, Java Technology Edition, Version 8 download:
https://developer.ibm.com/javasdk/downloads/

Git client downloads and installation:
https://git-scm.com/downloads

News Classification web application to see a running version:
https://n1c-201-news-java.mybluemix.net/

Eclipse Neon with Bluemix tools; install and set up:

https://www.ibm.com/cloud-computing/bluemix/eclipse

© Copyright IBM Corp. 2017. All rights reserved.

125

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://console.ng.bluemix.net
https://github.com/cloudfoundry/cli/releases
http://hcqanaturallanguageclassifier.mybluemix.net/
https://developer.ibm.com/javasdk/downloads/
https://git-scm.com/downloads
https://nlc-201-news-java.mybluemix.net/
https://www.ibm.com/cloud-computing/bluemix/eclipse

Application server hosting for enterprise apps:
— WebSphere Liberty:
https://developer.ibm.com/wasdev/websphere-1iberty/
— Apache Tomcat:
http://tomcat.apache.org/
Using your own data to train the Natural Language Classifier (Watson Developer Cloud):

https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using
-your-data.html

Creating a classifier (Watson Developer Cloud):

https://www.ibm.com/watson/developercloud/natural-language-classifier/api/vl/#c
reate classifier

Community buildpacks list:

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#commu
nity-created

SPAM Classifier application to see a running version:

https://node-red-0116.mybTuemix.net/req_nlc

Also see the list of online resources for the following chapters in this book:

vYyy

Basics of Natural Language Classifier API: 1.2, “References” on page 10
Healthcare Questions and Answers: 3.6, “References” on page 42

News Classification: 4.6, “References” on page 99

SPAM Classifier: 5.6, “References” on page 122

Help from IBM

126

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://developer.ibm.com/wasdev/websphere-liberty/
http://tomcat.apache.org/
https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html
https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier
https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created
https://node-red-0116.mybluemix.net/req_nlc

Redhooks Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier H

(0.2"spine)
0.17"<->0.473"
90<->249 pages

“llil

SG24-8391-00
ISBN 0738442593

Printed in U.S.A.

flsjolvlinlail @® Redbooks,

ibm.com/redbooks

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Basics of Natural Language Classifier service
	1.1 Using the Natural Language Classifier service
	1.1.1 Prepare training data
	1.1.2 Create and train the classifier
	1.1.3 Query the trained classifier
	1.1.4 Evaluate results and update the data

	1.2 References

	Chapter 2. Creating a Natural Language Classifier service in Bluemix
	2.1 Requirements
	2.2 Creating the Natural Language Classifier service instance
	2.2.1 Creating the Natural Language Classifier service instance from the Bluemix website
	2.2.2 Creating the Natural Language Classifier service instance using Cloud Foundry commands

	2.3 What to do next

	Chapter 3. Healthcare questions and answers
	3.1 Getting started
	3.1.1 Objectives
	3.1.2 Prerequisites
	3.1.3 Expected results

	3.2 Architecture
	3.3 Two ways to deploy the application: Step-by-step and quick deploy
	3.4 Step-by-step implementation
	3.4.1 Downloading the project from Git
	3.4.2 Preparing training data
	3.4.3 Creating and training the classifier
	3.4.4 Creating the Node.js Express Healthcare Q and A application
	3.4.5 Deploying the Healthcare Q and A application on Bluemix
	3.4.6 Testing the application

	3.5 Quick deployment of application
	3.6 References

	Chapter 4. News Classification
	4.1 Getting started
	4.1.1 Objectives
	4.1.2 Prerequisites
	4.1.3 Expected results

	4.2 Architecture
	4.3 Two ways to deploy the application: Step-by-step and quick deploy
	4.4 Step-by-step implementation
	4.4.1 Downloading the project from Git
	4.4.2 Reviewing the project structure
	4.4.3 Creating a Cloudant noSQL DB service instance
	4.4.4 Preparing training data
	4.4.5 Creating and training the classifier
	4.4.6 Querying the trained classifier
	4.4.7 Evaluating results and updating training data
	4.4.8 Deploying the application
	4.4.9 Testing the application

	4.5 Quick deployment of application
	4.6 References

	Chapter 5. SPAM Classifier
	5.1 Getting started
	5.1.1 Objectives
	5.1.2 Prerequisites
	5.1.3 Expected results

	5.2 Architecture
	5.2.1 Component perspective
	5.2.2 Role and activity perspective

	5.3 Two ways to deploy the application: Step-by-step and quick deploy
	5.4 Step-by-step implementation
	5.4.1 Creating a Node-RED application
	5.4.2 Cloning the Git project
	5.4.3 Preparing training data
	5.4.4 Creating and training the classifier
	5.4.5 Querying the trained classifier
	5.4.6 Evaluating results and updating training data

	5.5 Quick deployment of application
	5.6 References

	Appendix A. Additional material
	Locating the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

