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Preface

This IBM® Redbooks® publication gives a broad understanding of several important 
concepts that are used when describing IBM CICS® Transaction Server (TS) for IBM z/OS® 
(CICS TS) performance. This publication also describes many of the significant performance 
improvements that can be realized by upgrading your environment to the most recent release 
of CICS TS.

This book targets the following audience:

� Systems Architects wanting to understand the performance characteristics and 
capabilities of a specific CICS TS release.

� Capacity Planners and Performance Analysts wanting to understand how an upgrade to 
the latest release of CICS TS affects their environment.

� Application Developers wanting to design and code highly optimized applications for 
deployment into a CICS TS environment.

This book covers the following topics:

� A description of the factors that are involved in the interaction between IBM z Systems® 
hardware and a z/OS software environment.

� A definition of key terminology that is used when describing the results of CICS TS 
performance benchmarks.

� A presentation of how to collect the required data (and the methodology used) when 
applying Large Scale Performance Reference (LSPR) capacity information to a CICS 
workload in your environment.

� An outline of the techniques that are applied by the CICS TS performance team to achieve 
consistent and accurate performance benchmark results.

� High-level descriptions of several key workloads that are used to determine the 
performance characteristics of a CICS TS release.

� An introduction to the open transaction environment and task control block (TCB) 
management logic in CICS TS, including a reference that describes how several 
configuration attributes combine to affect the behavior of the CICS TS dispatcher.

� Detailed information that relates to changes in performance characteristics between 
successive CICS TS releases, covering comparisons that relate to CICS TS V4.2, V5.1, 
V5.2, V5.3, V5.4, and V5.5.

� The results of several small performance studies to determine the cost of using a specific 
CICS functional area.
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Summary of changes

This section describes the technical changes made in this edition of the book and in previous 
editions. This edition might also include minor corrections and editorial changes that are not 
identified.

Summary of Changes for SG24-8298-02 for IBM CICS Performance Series: CICS TS for 
z/OS V5 Performance Report as created or updated on August 8, 2019.

August 2019, Third Edition

This edition was updated to reflect enhancements in Version 5, Release 5 of IBM CICS 
Transaction Server for z/OS (CICS TS) and includes the following new and changed 
information.

New information
� 3.7, “File control workload” on page 29
� Chapter 9, “CICS TS for z/OS V5.5” on page 197

Changed information
� Corrections to configuration parameters in 8.2.5, “The Java servlet that uses JDBC and 

VSAM” on page 156 and 8.2.6, “The Java OSGi workload” on page 159.
� Updated information in 8.8, “z/OS WLM Health API” on page 173 to include new function 

available via APAR.

March 2018, Second Edition

This edition was updated to reflect enhancements in Version 5, Release 4 of IBM CICS 
Transaction Server for z/OS (CICS TS) and includes the following new and changed 
information.

New information
� 2.3.1, “Repeatability for Java workloads” on page 14
� 2.6.1, “Collecting Java performance data” on page 19
� 3.5, “Java OSGi workload” on page 27
� 3.6, “Web services” on page 28
� 7.15, “WebSphere Liberty zIIP eligibility” on page 143
� 7.16, “Link to WebSphere Liberty” on page 144
� Chapter 8, “CICS TS for z/OS V5.4” on page 149

Changed information
Chapters 5, 6, and 7 are updated to reflect changes in IBM CICS TS V5.4 parameter limits 
and defaults.
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Part 1 CICS TS for z/OS 
performance concepts

This part describes the following important topics that are related to performance in CICS TS 
for z/OS:

� Definition of important terms that are used when describing performance benchmarks and 
their results.

� An overview of the methods and tools that are used when testing the performance of the 
CICS product.

� A description of several key benchmarks that are used when assessing the performance 
characteristics of a CICS release.

� An introduction to the open transaction environment within CICS, including reference 
tables for use when developing optimized CICS applications.

This part includes the following chapters:

� Chapter 1, “Performance terminology” on page 3
� Chapter 2, “Test methodology” on page 11
� Chapter 3, “Workload descriptions” on page 21
� Chapter 4, “Open transaction environment” on page 31

Part 1
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Chapter 1. Performance terminology

This chapter describes several important concepts and terms that are used to help you 
understand the performance of IBM z Systems hardware and software. These concepts and 
terms are referenced extensively in this publication when the performance of a CICS 
environment is described.

The IBM z Systems CPU Measurement Facility (CPU MF) provides information for use with 
the Large Scale Performance Reference (LSPR) charts. This chapter describes how CPU MF 
data is collected, how the LSPR charts are used, and how the figures that are obtained from 
the LSPR reference tables relate to CICS transaction cost and throughput.

This chapter includes the following topics:

� 1.1, “CPU Measurement Facility” on page 4
� 1.2, “Relative nest intensity” on page 4
� 1.3, “Large Systems Performance Reference” on page 6
� 1.4, “Relating LSPR values to a CICS workload” on page 9

1
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1.1  CPU Measurement Facility

This section provides background information about the CPU MF capability that is available in 
IBM z Systems z10™ (and later) hardware. Data from CPU MF is used alongside the LSPR 
tables as described in 1.3, “Large Systems Performance Reference” on page 6.

The CPU MF capability provides optional hardware-assisted collections of information about 
the logical CPUs work that is run over a specified interval in selected logical partitions (LPAR).

This powerful new capability was not available previously. However, CPU MF does not replace 
functions or capabilities; instead, it enriches the capabilities. CPU MF consists of the following 
important, but independent, functions:

� The collection of counters that maintain counts of certain activities.

� The collection of samples that provide information about what the CPU is doing at the time 
of the sample.

The collection of counters function is intended to be run constantly to collect long-term 
performance data, in a similar manner to how you collect other performance data.

The collection of samples function is a short duration, precise function that identifies where 
CPU resources are being used to help you improve application efficiency.

CPU MF runs at the LPAR level so that you can collect counter data in one LPAR, counter and 
sample data in another LPAR, and not use CPU MF at all on a third LPAR. The information 
that CPU MF gathers pertains to only the LPARs where you enable and start CPU MF.

The implementation of CPU MF is nondisruptive. If the prerequisite hardware and software 
are in place, you can start CPU MF data collection with no LPAR deactivations or activations. 
As a result, performing an initial program load (IPL) on the system that CPU MF is used with 
is not necessary.

CPU MF can run in multiple LPARs simultaneously and can be used with central processors 
(CPs), IBM z Systems Integrated Information Processor (zIIP), and IBM z Systems 
Application Assist Processor (zAAP).

For more information about the concepts, configuration, and use of CPU MF data, see Setting 
Up and Using the IBM System z CPU Measurement Facility with z/OS, REDP-4727, which is 
available at this website:

http://www.redbooks.ibm.com/abstracts/redp4727.html

1.2  Relative nest intensity

This section outlines several concepts that apply to IBM z Systems memory hierarchy and 
then defines the relative nest intensity (RNI) metric that quantifies the interactions between 
software and hardware.

Included in this book are extracts from Large Systems Performance Reference, SC28-1187. 
For more information about the IBM z Systems memory hierarchy and the LSPR workloads 
that were used, refer to the following LSPR for IBM z Systems resource link:

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex
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1.2.1  Memory hierarchy and nest

The memory hierarchy of a processor generally refers to the caches, data buses, and 
memory arrays that stage the instructions and data that must be executed on the 
micro-processor to complete a transaction or job. Many design alternatives affect this 
component, such as cache size, latencies (sensitive to distance from the micro-processor), 
number of levels, modified, exclusive, shared, invalid (MESI) protocol, controllers, switches, 
and number and bandwidth of data use. 

Some of the caches are private to the micro-processor, which means that only 
micro-processor can access them. Other caches are shared by multiple micro-processors. In 
this book, the term memory nest for a z Systems processor refers to the shared caches and 
memory along with the data buses that interconnect them.

Workload performance is sensitive to how deep into the memory hierarchy the processor 
must go to retrieve the instructions and data of the workload for execution. Best performance 
occurs when the instructions and data are found in the cache (or caches) that are nearest the 
processor so that little time is spent waiting before execution. Where instructions and data 
must be retrieved from farther out in the hierarchy, the processor spends more time waiting for 
their arrival.

As workloads are moved between processors with different memory hierarchy designs, 
performance varies because the average time to retrieve instructions and data from within the 
memory hierarchy varies. Also, when on a processor this component continues to vary 
significantly because the location of the instructions and data of a workload within the 
memory hierarchy is affected by many factors, including locality of reference, I/O rate, 
competition from other applications, and other LPARs.

The most performance-sensitive area of the memory hierarchy is the activity to the memory 
nest, namely, the distribution of activity to the shared caches and memory. The term, relative 
nest intensity (RNI) indicates the level of activity to this part of the memory hierarchy. By using 
data from CPU MF, the RNI of the workload running in an LPAR can be calculated. The higher 
the RNI, the deeper into the memory hierarchy the processor must go to retrieve the 
instructions and data for that workload.

Micro-processors do not execute instructions at a constant rate. When instructions and data 
must be retrieved from farther out into the memory hierarchy, the processor spends more time 
waiting for their arrival. Therefore, a high RNI infers that the instruction execution rate (usually 
measured as millions of instructions per second, or MIPS) of a processor is lower than that of 
a workload with a low RNI. Alternatively, a workload with a high RNI requires a higher number 
of cycles to complete each instruction (stated as cycles per instruction, or CPI).

1.2.2  Factors that can influence RNI

Many factors influence the performance of a workload. However, usually what these factors 
are influencing is the RNI of the workload. The interaction of all these factors is what results in 
a net RNI for the workload, which in turn directly relates to the performance of the workload.
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Figure 1-1 shows the traditional factors that were used to categorize workloads in the past, 
along with their RNI tendency.

Figure 1-1   Relative nest intensity tendencies

An important aspect to emphasize is that these factors are tendencies and not absolutes. 
For example, a workload might have a low I/O rate, intensive CPU use, and a high locality of 
reference, which are all factors that suggest a low RNI. But, what if it is competing with many 
other applications within the same LPAR and many other LPARs on the processor, which tend 
to push it toward a higher RNI? The net effect of the interaction of all these factors is what 
determines the RNI of the workload, which in turn greatly influences its performance.

You can do little to affect most of these factors. An application type is whatever is necessary 
to do the job. Data reference pattern and CPU usage tend to be inherent in the nature of the 
application. LPAR configuration and application mix are mostly a function of what must be 
supported on a system. I/O rate can be influenced somewhat through buffer pool tuning.

However, one factor that can be affected (software configuration tuning) is often overlooked 
but can have a direct effect on RNI. In the context of a CICS workload, software configuration 
tuning refers to the number of address spaces, such as CICS application-owning regions 
(AORs), that are needed to support a workload. This factor always existed but its sensitivity is 
higher with today’s high frequency micro-processors. Spreading the same workload over 
many address spaces than necessary can raise the RNI of a workload as the working set of 
instructions and data from each address space increases the competition for the processor 
caches. For more information, see 5.10, “Workload consolidation” on page 66.

Tuning to reduce the number of simultaneously active address spaces to the proper number 
needed to support a workload can reduce RNI and improve performance. To produce the 
LSPR reference tables, IBM tunes the number of address spaces for each processor type and 
count configuration to be consistent with what is needed to support the workload. Therefore, 
the LSPR workload capacity ratios reflect a presumed level of software configuration tuning. 
This sensitivity of RNI to the number of supporting address spaces suggests that retuning the 
software configuration of a production workload as it moves to a bigger or faster processor 
might be needed to achieve the published LSPR ratios.

1.3  Large Systems Performance Reference

The following important capacity metrics are defined in this section before the use of the 
LSPR tables is described:

� External throughput rate
� Internal throughput rate

Low Relative Nest Intensity High 

Batch Application type Transactional 
Low I/O rate High 
Single Application mix Many 
Intensive CPU usage Light 
High locality Data reference pattern Diverse 
Simple LPAR configuration Complex 
Extensive Software configuration tuning Limited 
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1.3.1  External throughput rate

The external throughput rate (ETR) is computed by using the following equation:

For a CICS workload, units of work are normally expressed as the number of CICS 
transactions completed. To be useful, the units of work that are measured must represent a 
large and repeatable sample of the total workload to best represent the average. Elapsed 
time is normally expressed in seconds.

ETR characterizes system capacity because it is an elapsed time measurement (system 
capacity encompasses the performance of the processor and all of its external resources, 
considered together). As such, ETR lends itself to the system comparison methodology. 
This methodology requires the data processing system to be configured with all intended 
resources, including the processor, with appropriate amounts of central storage, expanded 
storage, channels, control units, I/O devices, TP network, and so on.

After the system is configured, the goal is to determine how much work the system, as a 
whole, can process over time. To accomplish this goal, the system is loaded with the 
appropriate workload until it cannot absorb work at any greater rate. The highest ETR 
achieved is the processing capability of the system.

When you make a system measurement of this type, all resources on the system are potential 
capacity inhibitors. If a resource other than the processor is, in fact, a capacity inhibitor, the 
processor is likely to be running at something less than optimal utilization.

This system comparison methodology is a legitimate way to measure when the intent is to 
assess the capacity of the system as a whole. For online systems, response time also 
becomes an important system-related metric because poor response times inhibit the ability 
of users to work. Therefore, system measurements for online work usually involve some type 
of response time criteria. If the response time criteria is not met, what ETR can be realized 
does not matter.

1.3.2  Internal throughput rate

The internal throughput rate (ITR) is computed by using the following formula:

As with ETR, units of work are normally expressed as jobs (or job-steps) for batch workloads, 
and as transactions or commands for online workloads. System control programs (SCPs) and 
most major software products have facilities to provide this information. To be useful, the units 
of work that are measured must represent a large and repeatable sample of the total 
workload to best represent the average. Processor busy time is normally expressed in 
seconds.

ITR characterizes processor capacity because it is a CPU busytime measurement. As such, 
ITR lends itself to the processor comparison methodology. Because the focus of LSPR is on a 
single resource (the processor), you must modify the measurement approach from that used 
for a system comparison methodology.

ETR units of work
elapsed time--------------------------------=

ITR units of work
processor busy-----------------------------------=
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To ensure that the processor is the primary point of focus, you must configure it with all 
necessary external resources (including central storage, expanded storage, channels, control 
units, and I/O devices) in adequate quantities so that they do not become constraints. You 
must avoid the use of processor cycles to manage external resource constraints to assure 
consistent and comparable measurement data across the spectrum of processors being 
tested.

Many acceptance criteria for LSPR measurements can help assure that external resources 
are adequate. For example, internal response times should be subsecond; if they are not, 
some type of resource constraint must be resolved. For various DASD types, expected 
nominal service times are known. If the measured service times are high, some type of 
queuing is occurring, which indicates a constrained resource. When unexpected resource 
constraints are detected, they are fixed and the measurement is redone.

Because the processor is also a resource that must be managed by the SCP, steps must be 
taken to ensure that excess queuing on it does not occur. The way to avoid this type of 
constraint is to make the measurements at preselected utilization levels that are less than 
100%. Because the LSPR is designed to relate processor capacity, measurements must be 
made at reasonably high utilization, but without causing uncontrolled levels of processor 
queuing. Typically, LSPR measurements for online workloads are made at a utilization level of 
approximately 90%. Batch workloads are always measured with steady-state utilizations 
above 90%. Mixed workloads that contain an online and batch component are measured at 
utilizations near 99%.

One other point must be made about processor utilization. Whenever two processors are to 
be compared for capacity purposes, they should both be viewed at the same loading point, 
which means at equal utilization. Assessing relative capacity when one processor is running 
at low utilization and the other is running at high utilization is imprecise. The LSPR 
methodology mandates that processor comparisons be made at equivalent utilization levels.

1.3.3  ITR and ETR relationship

An ITR can be viewed as a special case ETR; that is, an ITR is the measured ETR 
normalized to full processor utilization. Therefore, an alternative way to compute an ITR is to 
use the following equation:

1.3.4  LSPR ITR ratios

LSPR capacity data is presented in the form of ITR ratios for IBM processors where each 
model is configured with multiple z/OS images that are based on an average LPAR profile of 
client systems. All capacity numbers are relative to the IBM 2094-701 running multi-image 
z/OS image.

Comparing ITR ratios for two processor configurations allows a capacity planner to predict the 
effects of modifying hardware configuration at a high level. However, the most accurate 
sizings require the use of the LPAR Configuration Capacity Planning function of the zPCR 
tool, which can be customized to match a specific multi-image configuration rather than the 
average configurations that are reflected in the multi-image LSPR table.

ITR ETR
processor utilization------------------------------------------------=
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1.4  Relating LSPR values to a CICS workload

By using data that is obtained from CPU MF and the reference information that is found in 
LSPR, you can understand how a CICS workload is expected to perform when moving 
between hardware configurations.

The example in this section outlines the steps to help you understand the effects of a 
hardware upgrade. For this example, assume that the workload has an “average” RNI as 
determined by the CPU MF.

This example examines the expected effects of adding CPs to an IBM z Systems z13®. 
Table 1-1 lists an extract of ITR ratios for the two processor configurations. This extract was 
taken from the z/OS V2.1 LSPR ITR ratios reference.

Table 1-1   Extract of LSPR table for selected processors

To calculate the potential throughput improvements that are obtained by upgrading the 
configuration from 3 CPs to 5 CPs, calculate the ratios of the relevant ITR columns. So, the 
average throughput scaling is equal to 13.21 ÷ 8.30 = 1.59.

Therefore, in the absence of software constraints, you might expect the throughput of the 
system to increase by 59%.

To calculate the change in CPU cost per transaction, first calculate the CPU cost of each 
LSPR transaction, as shown in the following formula:

Therefore, the LSPR Average RNI transaction for the 2964-703 processor costs 0.361s of the 
CPU, as shown in the following formula:

The same transaction on the 2964-705 processor costs 0.379s of the CPU, as shown in the 
following formula:

These values show that the CPU cost per transaction increases from 0.361s to 0.379s, which 
is an increase of 5%.

This increase in CPU per transaction is an expected result because increasing concurrency 
through the addition of CPUs increases contention for common cache lines. As described in 
1.2.2, “Factors that can influence RNI” on page 5, workload performance is sensitive to how 
deep into the memory hierarchy the processor must go to retrieve instructions and data. 

Processor # CP Low Average High

2964-703 3 9.08 8.30 7.28

2964-705 5 14.72 13.21 11.45

CPU cost number of CPs
ITR------------------------------------=

3
8.30---------- 0.361s=

5
13.21------------- 0.379s=
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Increasing concurrency decreases the probability of a cache line to be available for exclusive 
use by a processor at any specific time.

1.4.1  LSPR alternative

The LSPR shows relative capacity ratios that are sensitive to workload type. However, LPAR 
configuration is also a sensitive factor in capacity relationships. IBM offers the Processor 
Capacity Reference (zPCR) tool for customer use. The tool takes the LSPR to the next level 
by estimating capacity relationships that are sensitive to workload type and LPAR 
configuration, processor configuration, and specialty engine configuration. All of these factors 
can be customized to match your configuration. The LSPR data is contained in the tool.

For the most accurate capacity sizings, zPCR should be used. By using CPU-MF data that is 
collected in your environment, the zPCR tool can calculate the overall RNI value of a 
workload and determine the most appropriate LSPR workload to model the environment.

For more information about the zPCR tooling, see the IBM Techdoc Getting Started with 
zPCR, which is available at this website:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

Note: This increase in CPU per transaction is important for non-threadsafe CICS 
transactions. Non-threadsafe applications run on the CICS QR TCB; therefore, 
non-threadsafe applications in CICS are limited by the capacity of the single QR TCB 
within a CICS region.
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Chapter 2. Test methodology

This chapter provides an insight into the approach that was taken by the CICS performance 
team when producing performance benchmark results. The concept of a CICS workload is 
defined, along with a description of how workloads are designed and coded.

Performance testing requires the combination of several techniques to provide accurate, 
repeatable measurements. These techniques are presented here, while demonstrating some 
of the tools that were used when collecting performance data.

This chapter includes the following topics:

� 2.1, “Workloads” on page 12
� 2.2, “Workload design” on page 12
� 2.3, “Repeatable measurements” on page 13
� 2.4, “Driving the workload” on page 16
� 2.5, “Summary of performance monitoring tools” on page 16
� 2.6, “Collecting performance data” on page 18
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2.1  Workloads

This book uses the term workload extensively. The term refers to the combination of the 
following key components of the environment that are used when producing performance 
figures for a specific CICS configuration:

� Application code

Application code can be written in any language that is supported by the CICS 
environment. The number, sequence, and ordering of EXEC CICS, EXEC SQL, or EXEC DLI 
commands dictate the flow of control between the application and the IBM CICS 
Transaction Server (TS) for IBM z/OS (CICS TS) environment under test and is known as 
the workload logic.

� Data that is required by the application

The data that is required by the application can be stored in VSAM files or in an IBM DB2® 
database, provided by the simulated clients, or supplied by some other external system. 
The data that is used corresponds to the data that is exchanged between components of 
CICS as part of a customer’s application.

� Topology of connected address spaces

The number of CICS regions, the methods that are used to connect these CICS regions, 
and the logical partition (LPAR) in which the CICS region is executed all form part of the 
workload.

� Configuration of the CICS region

There are many configuration parameters for CICS and the value for each can be modified 
to achieve a specific effect.

� Simulated clients

The number of simulated clients, their method of communication with the CICS regions 
under test, and the rate at which requests are sent to the CICS regions can be varied to 
affect the behavior of a workload.

2.2  Workload design

Performance test workloads that are developed by the CICS TS performance team are 
deliberately lightweight; that is, workloads have little business logic. The phrase business 
logic refers to language constructs that serve only to manipulate data according to business 
rules, rather than the workload logic that is used to control program flow between the 
application and the CICS TS environment.

The CICS TS performance team specifically target the discovery of performance problems in 
the CICS TS runtime code, and having lightweight applications maximizes the visibility of any 
potential problems at the time of development.

The use of a transaction from the data system workload (DSW) as described in 3.2, “Data 
Systems Workload” on page 22, helps you understand why minimizing business logic is 
important. Consider the following coding scenarios for the application:

� A minimal business logic case with a total transaction CPU cost of 0.337 ms and 
consisting of the following values:

– 0.322 ms of CPU for calls into CICS
– 0.015 ms of CPU for business logic
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� A more heavyweight business logic case with a total transaction CPU cost of 1.500 ms 
and consisting of the following values:

– 0.322 ms of CPU for calls into CICS
– 1.178 ms of CPU for business logic

In both cases, the amount of CPU consumed by the CICS TS code to complete the CICS 
operations that are required for the workload is equal to 0.322 ms.

Now consider the example where a change in the CICS TS product during the development 
phase inadvertently introduces a CPU overhead of 5 µs for each transaction. With the 
workload in the first scenario (which contains a minimal amount of business logic), the total 
transaction cost increased from 0.337 ms to 0.342 ms of CPU, an increase of 1.5%. With the 
workload in the second scenario (which contains significant business logic), the total 
transaction cost increased from 1.500 ms to 1.505 ms of CPU, an increase of 0.3%.

Although techniques that are used to minimize variability in performance test results are 
described in 2.3, “Repeatable measurements” on page 13 and 2.6, “Collecting performance 
data” on page 18, you should note that only a finite level of accuracy in terms of performance 
test results are achievable. By following leading practices in the CICS TS performance test 
environment, experience indicates that an accuracy of approximately ±1% can be achieved. 
The use of coding in the first scenario resulted in a relative performance change (1.5%), 
which is greater than the measurement accuracy. The small performance degradation was 
detected and the defect can be corrected.

Minimizing the amount of business logic in the test application maximizes the relative change 
in performance for the whole workload for any specific modification to the CICS TS runtime 
code. By using this worst-case test scenario approach, the performance test team can be 
confident that real-world applications do not observe any change in performance behavior.

2.3  Repeatable measurements

Before describing how performance data is collected, it is important to understand that unless 
you totally dedicate hardware for a benchmark, the CPU that is used can vary each time that 
the benchmark is run. Achieving repeatable results can be difficult. This statement is true for 
benchmark comparisons and also for CPU usage comparisons after a CICS upgrade.

For more information about how CPU time can be affected by other address spaces in the 
LPAR and other LPARs on the central processor complex (CPC), see IBM CICS Performance 
Series: Effective Monitoring for CICS Performance Benchmarks, REDP-5170, which is 
available at this website:

http://www.redbooks.ibm.com/abstracts/redp5170.html

The LPARs that support the CICS regions in all performance benchmarks that are described 
in this publication include dedicated CPs. Although the CPs are dedicated, the L3 and L4 
caches remain shared with other CPs that are used by other LPARs. So, this situation is not 
perfect; it can lead to CPU variation because those caches can have their data invalidated by 
those CPs that are used by the other LPARs. Clearly, minimizing the magnitude of these 
external influences is a high priority when producing reliable performance benchmark results.

Observation: For the DSW, an IBM zEnterprise® EC12 model HA1 executes at a rate of 
approximately 1,270 million instructions per second, per central processor (CP). An 
inadvertent change that added 5 µs to the total transaction cost represents approximately 
6,350 instructions.
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An automated measurement system is used to execute the benchmarks and collect the 
performance data. This automated system executes overnight during a period when no 
human users are permitted to access the LPAR. The use of an automation system reduces 
variation in results by ending unnecessary address spaces that can potentially disrupt the 
measurements. The use of overnight automation also minimizes disruption because that is 
the time frame during which other LPARs on the CPC are least busy.

2.3.1  Repeatability for Java workloads

Java programs consist of classes, which contain Java bytecode that is platform-neutral, 
meaning that it is not specific to any hardware or operating system platform. At run time, the 
Java virtual machine (JVM) compiles Java bytecode into IBM z/Architecture® instructions, 
using the just-in-time compiler (JIT) component.

Producing highly-optimized z/Architecture instructions from Java bytecode requires processor 
time and memory. If all Java methods were compiled to the most aggressive level of 
optimization on first execution, this process results in long application initialization times, 
along with wasting significant quantities of CPU time optimizing methods that are used only 
during startup.

To provide a balance between application startup times and long-term performance, the JIT 
compiler optimizes the bytecode using an iterative process. The JIT compiler maintains a 
count of the number of times each Java method is called. When the call count of a method 
exceeds a JIT recompilation threshold, the JIT recompiles the method to a more aggressive 
level of optimization and resets the method invocation count. This process is repeated until 
the maximum optimization level is reached. Therefore, often-used methods are compiled 
soon after the JVM has started, and less-used methods are compiled much later or not at all. 
The JIT compilation threshold helps the JVM start quickly and still have good long-term 
performance.

For more information about the operation of the JIT compiler on z/OS, see the topic “The JIT 
compiler” in IBM Knowledge Center at the following website:

https://ibm.biz/BdjxNR

This process of progressively optimizing Java methods leads to a change over time in the 
amount of CPU consumed by otherwise identical transactions. The first time a transaction is 
executed in Java, the z/Architecture instructions that are produced by the JIT compiler are at 
a low optimization level, which results in a relatively high CPU cost to execute the Java 
methods.

As more transactions are executed, the Java method invocation counts are increased. 
Therefore, the JIT recompiles a Java method to a more aggressive level of optimization. This 
greater level of optimization results in a Java method requiring less CPU to execute than 
before the recompilation took place. As a result, the CPU that is required to execute the 
transaction reduces. This process is repeated several times during the lifetime of the JVM.
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Figure 2-1 illustrates this process for a complex servlet workload in the plot.

Figure 2-1   Plot of CPU cost per transaction over time for a Java workload

Noting that the vertical axis in Figure 2-1 is a logarithmic scale, the first few invocations of the 
transaction show a relatively high CPU usage. As the transaction is executed multiple times, 
the JIT compiler optimizes the workload more aggressively. Thus, the CPU cost per 
transaction reduces over time. Steps can be observed in the CPU cost per transaction value, 
which are events where high-use methods are further optimized. The frequent spikes in the 
CPU cost per transaction are due to garbage collection events.

When executing benchmarks that use JVMs, ensure that the JIT compiler has fully optimized 
the most important Java methods in the workload before starting CPU measurements. To 
minimize variability introduced by the JIT compiler, run the CICS Java workload at a constant 
transaction rate for a period of time, known as the warm-up time. After the workload is 
running in a steady-state for the warm-up period, it is assumed that the JIT compiler will not 
optimize the workload further, and CPU measurements can be taken.

The warm-up period for a workload is determined by producing a chart, such as the one in 
Figure 2-1. The warm-up time is the point at which the CPU cost per transaction ceases to 
show any improvements.

Shutting down a JVM discards the JIT-compiled native code; therefore, the iterative process 
of optimization begins again when the JVM is restarted. The ahead-of-time (AOT) compiler 
provides the ability to persist generated native code across subsequent executions of the 
same program, with the primary goal of improving startup times. The AOT compiler generates 
native code dynamically while an application runs and caches any generated AOT code in the 
shared data cache. Subsequent JVMs that execute the method can load and use the AOT 
code from the shared data cache without incurring the performance decrease experienced 
with JIT-compiled native code.

Because AOT code must persist over different program executions, AOT-generated code 
does not perform as well as JIT-generated code. AOT code usually performs better than 
interpreted code. For more information about the AOT compiler, see the topic “The AOT 
compiler” in IBM Knowledge Center at the following website:

https://ibm.biz/BdjxNX
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2.4  Driving the workload

The IBM Workload Simulator for z/OS (Workload Simulator) tool is used to send work into the 
CICS regions from multiple simulated clients concurrently. For more information about 
Workload Simulator, refer to the following product web page:

http://www.ibm.com/software/products/en/workloadsimulator

The process of sending work into the CICS regions is commonly referred to as driving the 
workload. The system under test is on a separate LPAR in the same sysplex. All network 
traffic is routed by way of a coupling facility from one LPAR to the other. 

2.5  Summary of performance monitoring tools

During the benchmark measurement periods, the following tools are used:

� RMF Monitor I
� RMF Monitor III
� CICS TS statistics
� CICS TS performance class monitoring
� Hardware instrumentation counters and samples

2.5.1  RMF Monitor I

IBM RMF™ Monitor I records system resource usage, including CPU, DASD, and storage. It 
is also used with the workload manager (WLM) configuration to record the CPU, transaction 
rates, and response times for CICS service classes and report classes.

SMF records 70 - 79 are written on an interval basis. They can be post-processed by using 
the ERBRMFPP RMF utility program.

2.5.2  RMF Monitor III

RMF Monitor III records the coupling facility activity for the logger and temporary storage 
structures. 

SMF records 70 - 79 are written on an interval basis. Also, the records can be post-processed 
by using the ERBRMFPP RMF utility program. RMF Monitor III can be used on an interactive 
basis and the data can be written to VSAM data sets for later review.

2.5.3  CICS TS statistics

CICS statistics are used to monitor and report CICS resource usage, including CPU, storage, 
file accesses, and the number of requests that were transaction-routed.

With CICS interval statistics, most of the counters are reset at the start of the interval so that 
any resource consumption that is reported relates only to the observed measurement period. 
Interval statistics can be activated by using the CEMT SET STATISTICS command. However, 
when you set this interval, the first interval can be adjusted to a shorter time so that all the 
intervals are synchronized to the STATEOD parameter. For example, if you use CEMT to set the 
interval to 15 minutes at 10 past the hour, the first interval expires in 5 minutes so that all 
future intervals line up on 15-minute wall clock boundaries. The values in this first report also 
can be associated with a much longer period, depending on the time of the last reset.
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Another alternative to the use of interval statistics is to use CEMT to reset the counters and 
then at the end of the measurement period, use CEMT to record all the statistics. Resetting the 
statistics requires a change of state from ON to OFF or from OFF to ON. To ensure that this 
change happens, the following commands provide an example of resetting the statistics in 
one CICS region:

F CICSA001,CEMT SET STAT OFF RESET

F CICSA001,CEMT SET STAT ON RESET

The measurement period is between the RESET and the RECORD, as shown in the following 
example:

F CICSA001,CEMT PERFORM STAT ALL RECORD

Regardless of whether the statistics are ON or OFF, when a PERFORM STAT ALL RECORD 
command is issued, a statistics record is written.

CICS statistics are written as SMF 110 subtype 2 records. They can be post-processed by 
using the CICS statistics utility program, DFHSTUP, or CICS Performance Analyzer (CICS PA).

2.5.4  CICS TS performance class monitoring

When CICS Performance Class Monitoring is turned on by using MNPER=ON in the 
CICS startup parameters or CEMT or CEMN transactions to turn it on dynamically, a Performance 
Class Monitoring record is generated for every executed transaction when the transaction 
ends.

The following command is an example of turning on CICS Performance Class Monitoring and 
Resource Class Monitoring in one CICS region:

F CICSA001,CEMT SET MON ON PER RESRCE

Monitoring can then be turned off by using the following command:

F CICSA001,CEMT SET MON ON NOPER NORESRCE

The performance class record of each transaction contains information about the resources 
that were used by that transaction, how much CPU was used on all the various task control 
blocks (TCBs), and information about how long it waited for different resources. Resource 
Class Monitoring records contain information about the individual files, temporary storage 
queues, and distributed program links (DPLs) that were used by transactions.

Monitoring records are written as SMF 110 subtype 1 records that can be analyzed by using 
CICS PA.

2.5.5  Hardware instrumentation counters and samples

The CPU Measurement Facility (CPU MF) is described in 1.1, “CPU Measurement Facility” 
on page 4. The CPU MF capability is built into the hardware, and a z/OS component called 
hardware instrumentation services (HIS) sets up buffers that the hardware then uses to store 
the sampling data. When a number of buffers are filled, the hardware generates an interrupt. 
This interrupt enables HIS to asynchronously collect the sampling information and save it to a 
file in the z/OS UNIX file system. It also provides the ability for the samples to be gathered 
without the software responsible for collecting the data, having to run at the highest Workload 
Manager priority level.
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HIS can be used to collect the following types of data:

� Counters
� Instruction samples

HIS counters are written as System Management Facilities (SMF) 113 records and to the 
z/OS UNIX file system. These counters contain information about key hardware events, such 
as the number of instructions that are executed, the number of cycles that were used, and the 
amount of instruction cache and data cache misses. Counters are used to provide a 
high-level understanding of how the address spaces interact with the hardware.

HIS instruction samples are written only to the z/OS UNIX file system. The samples are used 
to provide a view of CPU activity for individual instructions or groups of instructions. Tooling 
enables the inspection of this data to help the CICS performance team understand where hot 
spots exist in the CICS runtime code. Hot spots are short sequences of one or two machine 
instructions that consume a disproportionately large fraction of the total CPU cost. These hot 
spots are frequently caused by data access patterns that do not make optimal use of the 
hardware cache subsystem. Tooling that is written to consume HIS instruction samples also 
permits the comparison of two benchmark runs, where differences in performance can be 
analyzed at the instruction level.

For more information about configuring and the use of HIS, refer to Setting Up and Using the 
IBM System z CPU Measurement Facility with z/OS, REDP-4727, which is available at this 
website:

http://www.redbooks.ibm.com/abstracts/redp4727.html

2.6  Collecting performance data

Performance data often is collected for five measurement intervals. The rate at which work is 
driven into CICS is varied by adjusting the Workload Simulator user think time interval (UTI). 
The UTI value represents the delay between a simulated client that is receiving a response, 
and then sending the next request into CICS. A large think time results in a low rate of 
transactions in CICS. Reducing the UTI increases the rate at which work is driven into the 
CICS environment.

The initial measurement period begins by adjusting the UTI to achieve the required 
transaction rate in the CICS regions. The workload can run for a period to ensure that all 
programs were loaded and the local shared resource (LSR) pools are populated. After the 
stabilization period is complete, the performance data collection is started.

No specific changes to any default CICS parameters are needed to support the data that is 
collected during performance benchmarks. Data is collected for a 5-minute period, which is 
relatively short but adequate in our environment when running in a steady-state.

RMF, CICS Performance Class Monitoring, CICS statistics, and HIS are all synchronized and 
started and ended together. An automation tool is used that enters commands on the IBM 
MVS™ console on a time-based interval.

To generate the RMF interval, start and stop RMF at the appropriate times, which creates an 
interval report for that period rather than trying to synchronize on a time basis.

When the workload is running at its stabilized state, the CICS statistics are reset by using the 
commands that are described in 2.5.3, “CICS TS statistics” on page 16. CICS Performance 
Class Monitoring is turned on by using the commands that are shown in 2.5.4, “CICS TS 
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performance class monitoring” on page 17. RMF Monitor I was started by using the following 
MVS command:

S RMF.R

Monitor III is then started by using the following command:

F R,START III

HIS is also started to collect counter data only.

After 5 minutes elapses, RMF and HIS are stopped, and the command that is shown in 2.5.3, 
“CICS TS statistics” on page 16 is issued to request that CICS statistics are recorded.

After the performance data collection period ends, the UTI is reduced, which increases the 
transaction rate in CICS. Again, the workload is allowed to run for a period to ensure that the 
system reaches a steady-state. After this stabilization period is complete, the performance 
data collection is restarted.

After five cycles of UTI adjustment and data collection, a set of data is produced which 
represents the performance of the CICS regions at several transaction rates. The SMF data 
set that contains the collected RMF, CICS, and HIS performance data is copied for later 
post-processing and analysis to examine the performance characteristics of the workload.

2.6.1  Collecting Java performance data

CICS performance class monitoring data does not account for all the CPU time that is 
consumed by a CICS region. Areas where the time spent is not included in the monitoring 
data can include the following examples:

� Non-CICS TCBs
� Service request blocks (SRBs) for networking or system calls
� Request initialization (that is, before a CICS task is established)
� Request termination (that is, after the CICS task monitoring data is written)

When running a Java workload, this uncaptured time is larger than that observed for more 
traditional workloads. This increased discrepancy happens for the following reasons:

� A running JVM has several non-CICS TCBs executing to perform critical functions. The 
most significant of these functions are garbage collection (GC) and JIT compilation. GC 
and JIT TCBs can use non-trivial amounts of CPU in the JVM.

� For applications using an IBM WebSphere Application Server Liberty (WebSphere Liberty) 
JVM server, the initial HTTP or HTTPS request is accepted in Java code. Therefore, a 
non-trivial amount of Java code is executed before CICS is notified of the request and, 
thus, before a CICS task is established.

For Java applications running in an OSGi JVM server, the discrepancy is lower than a 
WebSphere Liberty JVM server, because a CICS task is always established before invoking 
the OSGi JVM. The uncaptured time, therefore, is mostly due to the GC and JIT TCBs 
identified previously. This discrepancy is studied for two Java workloads in 7.16.4, 
“Comparison of CICS monitoring and RMF data” on page 147.

Given the potential for large amounts of uncaptured CPU time, it is important to use CPU time 
information measured at an address space level when analyzing the performance of CICS 
applications that use Java.
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Chapter 3. Workload descriptions

As described in 2.1, “Workloads” on page 12, a workload is a collection of application 
programs (started by a simulated operator) where the application accesses data from one or 
more data stores.

This chapter describes several general-purpose workloads that are used by IBM to report 
performance results in every release of CICS TS for z/OS. It also highlights some of the 
functional areas that are covered by the test cases.

This chapter includes the following topics:

� 3.1, “Regression testing” on page 22
� 3.2, “Data Systems Workload” on page 22
� 3.3, “Relational Transactional Workload” on page 25
� 3.4, “WebSphere Liberty servlet with JDBC and JCICS access” on page 26
� 3.5, “Java OSGi workload” on page 27
� 3.6, “Web services” on page 28
� 3.7, “File control workload” on page 29

3
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3.1  Regression testing

One of the primary objectives of testing the performance of the CICS TS product is to ensure 
that customer workloads do not observe a degradation in performance when upgrading to a 
new release. The process of comparing one release of CICS TS with another by using 
identical workloads and identical configurations is known as regression testing.

Each chapter in Part 2, “CICS TS performance information” on page 39 provides information 
that relates to a specific CICS TS release. A significant component of all the release-specific 
chapters are the results of running regression test workloads. For more information about the 
details of workload results, see Chapter 5, “CICS TS for z/OS V5.1” on page 41, Chapter 6, 
“CICS TS for z/OS V5.2” on page 77, and Chapter 7, “CICS TS for z/OS V5.3” on page 109.

Many workloads are used during regression test. The remainder of this chapter outlines some 
of the workloads that are available to the CICS TS performance team in the IBM development 
organization.

3.2  Data Systems Workload

The Data Systems Workload (DSW) is a non-threadsafe COBOL application that accesses 
VSAM files. Transactions use Basic Mapping Support (BMS) maps to interface with 3270 
terminals. The amount of files in use varies depending on configuration, but can be in the 
range of 16 - 320.

The DSW workload is composed of a number of transactions, where 50% of CICS 
transactions issue at least one file control (FC) request. On average, six FC requests are 
issued per CICS task. FC requests are distributed in the following percentages:

� 69% read
� 10% read for update
� 9% update
� 11% add
� 1% delete

To simulate users of the application in a controlled manner, IBM Workload Simulator for z/OS 
is configured to emulate many 3270 terminals. Depending on the configuration, the amount of 
simulated users can be in the range of 1,000 - 4,000.

Several configuration options are available for DSW. Some of these variants are described in 
the following sections.

3.2.1  DSW static routing

Five CICS regions are configured for the workload. Two terminal-owning regions (TOR) 
connect to two application-owning regions (AOR). These two AORs then connect to a 
file-owning region (FOR). Files are accessed in the FOR by using VSAM local shared 
resources (LSR).

Note: Not all results of every workload that is executed during the development phase of a 
CICS TS release are presented in the performance report.
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Work enters the system in a TOR and is then transaction-routed to the corresponding AOR. 
The business logic of the workload then accesses the VSAM data by using CICS function 
shipping to the FOR. Temporary storage (TS) requests are fulfilled by using local, 
unrecoverable, auxiliary temporary storage.

All connections use the multi-region operation and cross-memory (MRO/XM) protocol. 
CICSplex System Manager is not used to provide dynamic workload routing in this scenario. 
Figure 3-1 shows the topology of DSW in a static routing configuration.

Figure 3-1   Topology of the DSW performance workload in static routing configuration

3.2.2  DSW dynamic routing

By using the same business logic and file structure as the static routing variant of the DSW, 
the application is extended to include the use of VSAM record-level sharing (RLS) and 
CICSplex System Manager (CICSPlex SM) dynamic transaction routing. The use of CICSplex 
SM introduces the requirement for the following two CICS regions:

� CICSPlex SM address space (CMAS) region

The CMAS region is the component of the CICSplex SM topology responsible for most of 
the work that is involved in managing and reporting on CICS regions and their resources. 
Each CICSplex must have at least one CMAS.

� Web user interface (WUI) server

The WUI server is a CICS region that acts as a CICSPlex SM application, which uses the 
API to view and manage objects in the data repositories of CICSPlex SM address spaces.

To remove application affinities and enable dynamic workload distribution, temporary storage 
requests are fulfilled by using shared temporary storage, which is held in the coupling facility 
(CF).

As with the static routing configuration, all connections between CICS regions use the 
MRO/XM protocol.
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Transactions enter the system through TORs by using the BMS maps interface, and are then 
transaction-routed to an AOR. Although the static routing variant that is described in 3.2.1, 
“DSW static routing” on page 22 is connected to a single AOR only, all TORs are connected 
to all AORs in this scenario. A CICSPlex SM workload is defined and installed to route 
transactions dynamically from the routing regions (the TORs) into the target regions (the 
AORs). File commands from the business logic use the support for VSAM RLS in CICS TS to 
access the required data.

Typically, a dynamic routing configuration uses four TORs and 30 AORs, although not all 
regions are highlighted in topology diagrams. Figure 3-2 shows the topology of the DSW 
workload when it is configured to use dynamic routing with CICSPlex System Manager.

Figure 3-2   Topology of the DSW performance workload in dynamic routing configuration

3.2.3  DSW dynamic routing by using IPIC

The topology of this workload is the same as described in 3.2.2, “DSW dynamic routing” on 
page 23. The only difference between these variants is that IP interconnectivity (IPIC) is used 
to facilitate communication between CICS regions, rather than the MRO/XM protocol.

As described in 2.2, “Workload design” on page 12, workloads are designed to minimize any 
unnecessary overhead or variations in runtime performance. The DSW IPIC workload uses 
the TCP/IP home address (127.0.0.1) to avoid testing physical networking hardware.
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3.3  Relational Transactional Workload

The Relational Transactional Workload (RTW) is a COBOL application that accesses a DB2 
database. Transactions use BMS maps to interface with 3270 terminals.

Seven transaction types access 16 DB2 tables by using EXEC SQL commands. In total, slightly 
more than 30 million rows of data are defined in the database. On average, each CICS task 
issues 200 DB2 SQL calls. These SQL requests are distributed in the following percentages:

� 54% SELECT
� 1% INSERT
� 1% UPDATE
� 1% DELETE
� 8% OPEN CURSOR
� 27% FETCH CURSOR
� 8% CLOSE CURSOR

The two main variants of the RTW workload are non-threadsafe and threadsafe.

The non-threadsafe variant of RTW includes all PROGRAM resources defined with the 
CONCURRENCY attribute set to the value of QUASIRENT. 

The threadsafe variant specifies the value of REQUIRED. For more information about the effects 
of this variation, see Chapter 4, “Open transaction environment” on page 31.

Typically, the RTW workload is executed as a stand-alone CICS region, but some test 
scenarios require many transactions. To achieve high transaction rates, a variant of the RTW 
workload is available and uses TORs and AORs in a similar manner that was described for 
DSW in 3.2.2, “DSW dynamic routing” on page 23. Figure 3-3 shows the topology of the RTW 
workload in a high-volume configuration.

Figure 3-3   Topology of high-volume RTW configuration
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3.4  WebSphere Liberty servlet with JDBC and JCICS access

The workload that is presented in this section is a pure Java application, based on the 
CICS-supplied JDBC sample application. For more information about the sample JDBC 
servlet application, see the “About the servlet examples” topic in IBM Knowledge Center, 
which is available at this website:

https://ibm.biz/Bdi6nd

The sample application is composed of a Java servlet, which accesses an SQL database by 
using the Java JDBC API and the IBM Data Server Driver for JDBC with type 2 connectivity. 
The values that are retrieved from the database are then rendered as an HTML page and 
sent to the client as the response. For this workload, the sample application was expanded to 
also access a VSAM file by using the JCICS interface. The VSAM file contains a copy of the 
data that is held in the sample database.

The supplied sample application uses the CICSDB2DynamicSQLExample.getData(String) 
method to read 42 rows from the sample DB2 table EMP. This method was modified to also 
read 42 records from a VSAM file by using JCICS KeyedFileBrowse.next() calls and display 
the data as extra entries in the HTML table that is returned to the client.

The application is deployed into a WebSphere Liberty environment inside a CICS JVM server. 
Simulated browser requests are made to the HTTP port that is specified in the server.xml 
configuration file. Figure 3-4 shows an overview of the application topology.

Figure 3-4   Topology of JDBC and VSAM servlet workload

The WebSphere Liberty server configuration file server.xml was automatically generated by 
specifying the following options in the JVM profile file for the JVM server:

� -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
� -Dcom.ibm.cics.jvmserver.wlp.server.host=hostname
� -Dcom.ibm.cics.jvmserver.wlp.server.name=serverName
� -Dcom.ibm.cics.jvmserver.wlp.server.http.port=httpPort
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The following entry was also added to the JVM profile configuration file to optimize retrieval of 
static resources from the web application:

-Dcom.ibm.cics.jvmserver.wlp.optimize.static.resources=true

By using IBM Workload Simulator for z/OS, 200 HTTP clients were simulated to provide a 
controlled rate of transactions in the CICS region under test. The workload measured overall 
central processor usage and zIIP usage of the address space.

3.5  Java OSGi workload

The Java OSGi workload is composed of several applications. This mixture includes some of 
the JCICS sample applications as described in the “The JCICS example programs” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bd4zcX

The CICS BUNDLE JDBC example, “Hello World,” and temporary storage queue (TSQ) 
example were modified to include Java programming to simulate extra business logic, such as 
creating and manipulating strings, generating random numbers, and performing mathematical 
operations on these numbers.

The workload is driven by running CICS transactions at a simulated console by using IBM 
Workload Simulator for z/OS, as described in 2.4, “Driving the workload” on page 16.

Figure 3-5 shows an overview of the workload.

Figure 3-5   Overview of OSGi Java workload
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3.6  Web services

The web services set of workloads measure the performance of CICS as a SOAP web 
service provider. These workloads contain a range of configuration options for testing, 
including variations of:

� Connection persistence
� SSL usage
� SSL provider
� SSL handshake type (none, partial, or full)

All variations follow the same application topology, as shown in Figure 3-6. Notice that other 
resources are required to configure CICS to use web services, but these have been omitted 
for clarity. For a detailed setup guide, see the “Configuring web services in CICS” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/BdZYwd

Figure 3-6   Topology of CICS web services workload

The DFHLS2WS utility is used to produce a CICS wsbind file. This file is installed into the CICS 
provider region and configures CICS to invoke a COBOL application using a channel 
interface.

Two copybooks are used as input to the utility:

� The first copybook defines the input data to the SOAP web service.
� The second copybook defines the output data from the SOAP web service.

Both copybooks are similar, with the input data copybook shown in Example 3-1. This 
configuration results in a web service that accepts a SOAP message that contains 10 80-byte 
fields as an input and returns a SOAP message that contains 10 80-byte fields as an output.

Example 3-1   Copybook used for input data to SOAP web service

01 RECEIVED-DATASTRUCTURE.            
02 JB1 PIC X(80).
02 JB2 PIC X(80).
02 JB3 PIC X(80).
02 JB4 PIC X(80).
02 JB5 PIC X(80).
02 JB6 PIC X(80).
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02 JB7 PIC X(80).
02 JB8 PIC X(80).
02 JB9 PIC X(80).
02 JB10 PIC X(80).

The workload is driven using a second CICS region (the requester region) using a URIMAP 
resource to send web service requests into the CICS provider region under test. The 
requester region runs on a separate LPAR and is driven by running CICS transactions at a 
simulated console by using IBM Workload Simulator for z/OS, as described in 2.4, “Driving 
the workload” on page 16.

The CPU consumption of the CICS provider region is measured during execution of the 
benchmark. When combined with the known arrival rate of the SOAP messages, a CPU per 
request value can be obtained.

3.6.1  Web services variations

Test variations are achieved by modification of resources in both the provider and requester 
regions, with the following available options:

� Connection persistence

The choice between persistent and non-persistent connections is configured by modifying 
the SOCKETCLOSE attribute in the URIMAP of the requester region. When set to zero, the 
connection closes after the response message arrives.

� Use of SSL

SSL is enabled by specifying the SCHEME(HTTPS) parameter in the URIMAP of the requester 
region.

� Use of CICS SSL or AT-TLS

The use of CICS SSL is configured by specifying SSL(YES) for the TCPIPSERVICE 
parameter in the provider region. The use of Application Transparent Transport Layer 
Security (AT-TLS) is achieved by specifying SSL(NO) for the TCPIPSERVICE parameter in the 
provider region and configuring AT-TLS in IBM Communication Server.

� SSL handshake type

No SSL handshakes are performed during the measurement period when persistent 
connections are used; the configuration of this is described previously. When 
non-persistent connections are used, the CICS SSLDELAY SIT parameter in the requester 
region controls whether a full or a partial SSL handshake is performed.

A setting of zero for SSLDELAY specifies that the provider region will not cache SSL session 
tokens, and therefore a full SSL handshake will take place for every new connection.

A non-zero setting for SSLDELAY specifies the amount of time in seconds for which the 
provider region will cache the SSL session token. A value of 600 is used to guarantee the 
session token is always cached between successive requests, regardless of the 
transaction rate used.

3.7  File control workload

The DSW application described in 3.2, “Data Systems Workload” on page 22 predominantly 
exercises the CICS File Control interface, however the application is not threadsafe. As 
described in 9.3, “Improvements in threadsafety” on page 206 the CICS TS V5.5 release 
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introduced the ability to access Coupling Facility Data Tables (CFDTs) from an Open TCB. 
Testing this functionality required a new threadsafe workload to exercise the CICS File 
Control API. This section describes the generic threadsafe File Control workload that can be 
configured for several different scenarios.

All programs in the application are written using threadsafe programming practices. Three 
main programs are used, with the following purpose:

� Terminal handling program

This program reads and validates input from the 3270 terminal. The input is used to 
specify several configuration options. These configuration options are stored in a channel 
and passed to the TCB switch program using EXEC CICS LINK.

Specifies QUASIRENT for the CONCURRENCY attribute.

� TCB switch program

This program accepts configuration from the terminal handling program and then passes 
this configuration unchanged to the main application logic program using EXEC CICS 
LINK. The TCB switch program is used only to ensure the main application logic program 
begins execution on the correct TCB.

When binding the TCB switch program, the binder produces two aliases and both aliases 
are defined as PROGRAM resources in the CICS region. Each program definition specifies a 
different value for the CONCURRENCY attribute. The terminal handling program can select 
which TCB that the main application program should use, simply by selecting the correct 
program alias. For more details on TCB switching in CICS, see Chapter 4, “Open 
transaction environment” on page 31.

Specifies QUASIRENT (non-threadsafe configuration) or REQUIRED (threadsafe configuration) 
for the CONCURRENCY attribute.

� Main application logic program

This program accepts the supplied configuration and translates this into the requested 
combination of CICS File Control calls.

Specifies THREADSAFE for the CONCURRENCY attribute.

A minimum of two and a maximum of 1,000 VSAM KSDS files can be defined in the 
application. Each file can be defined to have one of three record lengths: 64 bytes, 100 bytes, 
or 256 bytes.

Each transaction accesses a number of records, which is specified by the data supplied at the 
terminal. A read-only transaction performs one EXEC CICS READ command per record. An 
update transaction performs one EXEC CICS READ UPDATE and one EXEC CICS REWRITE 
command per record. All file reads compute a hash value to validate data integrity.
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Chapter 4. Open transaction environment

This chapter introduces the open transaction environment and provides a reference for the 
task control block (TCB) modes that are used when an application is dispatched within CICS.

This chapter includes the following topics:

� 4.1, “Introduction to the open transaction environment” on page 32
� 4.2, “TCB modes” on page 32
� 4.3, “Changing TCB modes” on page 33
� 4.4, “Understanding the effect of change mode operations” on page 36
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4.1  Introduction to the open transaction environment

The open transaction environment (OTE) is an environment where threadsafe application 
code can run on its own TCB inside the CICS address space without interference from other 
transactions. Applications that use the OTE can run on a class of TCB called an open TCB, or 
on the quasi-reentrant TCB (QR TCB).

The use of an open TCB provides the following advantages over the use of the QR TCB:

� No dispatching of other CICS tasks occurs on an open TCB.

� Multiple open TCBs can run concurrently.

� An application that runs under an open TCB can issue non CICS API requests that can 
involve the TCB being blocked. If blocking occurs, only this open TCB is halted, and not 
the whole of CICS.

� When the CICS task ends, the open TCB can be reused by another CICS task.

CICS manages open TCBs in separate pools, with each pool containing a different type (or 
mode) of open TCB. When applications are dispatched onto a TCB, the type of TCB depends 
on the combination of several CICS and resource configuration parameters:

� The storage protection setting for the CICS region

� Whether the application executes in a JVM server

� The parameters that are used during the compilation and binding process of the 
application

� The value of the following PROGRAM resource attributes:

– API
– CONCURRENCY
– EXECKEY

For more information about the open transaction environment, see the “Threadsafe learning 
path” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6G7

4.2  TCB modes

CICS manages open TCBs in separate pools, with each pool containing a different type (or 
mode) of open TCB. Each mode has a two-character identifier to indicate its specific purpose, 
and is handled by CICS in a different way. The following open TCB modes are used by CICS 
when running user applications:

� L8 and L9 mode TCBs

These TCBs are used to run threadsafe programs; that is, programs that are defined as 
CONCURRENCY(THREADSAFE) or CONCURRENCY(REQUIRED) in the PROGRAM resource definition. 
Consider the following points:

– L8 mode TCBs are used by CONCURRENCY(THREADSAFE) and CONCURRENCY(REQUIRED) 
application programs that specify API(CICSAPI) because CICS services do not require 
TCB key matching.

L8 mode TCBs are used for application programs that specify API(OPENAPI) with 
EXECKEY(CICSKEY).
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– L9 mode TCBs are used for application programs that specify API(OPENAPI) with 
EXECKEY(USERKEY).

� T8 mode TCBs

These TCBs are used to run Java programs in a JVMSERVER resource.

� X8 and X9 mode TCBs

These TCBs are used to run C and C++ programs compiled with the XPLINK option. 
Consider the following points:

– X8 mode TCBs are used for XPLink application programs that specify 
EXECKEY(CICSKEY).

– X9 mode TCBs are used for XPLink application programs that specify 
EXECKEY(USERKEY).

4.3  Changing TCB modes

A CICS task is not restricted to execution on a single TCB. During the lifetime of a task, the 
CICS dispatcher can perform multiple TCB change mode operations to provide the user 
application with the correct environment.

Although the change mode operation is not apparent to the user application at run time, it 
incurs a small performance penalty. A change mode operation has a path length of 
approximately 3,000 instructions, which equates to a small CPU overhead. The application 
can also be suspended if a suitable TCB is not available immediately. An excessive number of 
change mode operations can result in poor application performance. Minimizing TCB change 
modes can reduce the CPU used by an application, while improving throughput.

The remainder of this section provides a reference to the type of TCB that is used when 
executing application code and the required change mode operations based on the 
combination of CICS region and resource parameter values. The following categories of 
applications are described:

� Java programs
� Programs specifying JVM(NO) and API(CICSAPI)
� Programs specifying JVM(NO) and API(OPENAPI)
� Programs compiled with the XPLINK option

4.3.1  Java programs

CICS programs that reference a Java application must specify the following attribute values 
on the resource definition:

� JVM(YES)
� EXECKEY(CICS)
� CONCURRENCY(REQUIRED)

Java applications run on a T8 mode open TCB and never on the QR TCB.

Note: Task termination occurs on the QR TCB. A switch from an open TCB to the QR TCB 
is always necessary.

Note: For compatibility with previous releases, CONCURRENCY(THREADSAFE) is the default 
value for Java programs, but the preferred option to use is CONCURRENCY(REQUIRED).
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4.3.2  Programs specifying JVM(NO) and API(CICSAPI)

Where a CICS PROGRAM definition specifies the attribute values JVM(NO) and API(CICSAPI), the 
application was written in a non Java language and the program is restricted to the use of only 
the CICS permitted application programming interfaces.

If the program is defined with CONCURRENCY(QUASIRENT), it always runs on the QR TCB. If the 
program is defined with CONCURRENCY(THREADSAFE), it runs on whichever TCB is in use by 
CICS at the time that is determined as suitable. If the program is defined with 
CONCURRENCY(REQUIRED), it always runs on an open TCB.

Table 4-1 lists the TCB modes that are used, depending on the value of the CONCURRENCY 
attribute.

Table 4-1   TCB mode switch table for programs specifying JVM(NO) and API(CICSAPI)

The following example uses a configuration that is listed in the last row of Table 4-1 and 
corresponds to a program that is defined with the attribute values:

� JVM(NO)
� API(CICSAPI)
� CONCURRENCY(REQUIRED)

When the program is run, the following sequence of TCB modes is used:

1. The program begins execution. The program is initially dispatched on an L8 TCB.

2. The program executes a threadsafe CICS command. No TCB change mode is required.

3. The program executes a DB2 command. No TCB change mode is required.

4. The program executes a non-threadsafe CICS command, which results in the following 
TCB change mode processing:

a. Execution switches from an L8 TCB to the QR TCB.
b. The CICS command is started and completes.
c. Execution switches from the QR TCB back to an L8 TCB.
d. Control is returned to the user program.

5. The program completes. A TCB change mode operation occurs, switching from an L8 TCB 
to the QR TCB for task termination processing.

This approach to understanding Table 4-1 can be applied to Table 4-2 on page 35 and 
Table 4-3 on page 36.

CONCURRENCY Initial TCB DB2 or IBM MQ 
command

Non-threadsafe
CICS command

QUASIRENT QR QR → L8 → QR No change

THREADSAFE QR L8 QR

REQUIRED L8 No change L8 → QR → L8

Note: Executing a threadsafe CICS API command does not cause a TCB switch for any 
value of the CONCURRENCY attribute.
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4.3.3  Programs specifying JVM(NO) and API(OPENAPI)

Where a CICS PROGRAM definition specifies the attribute values JVM(NO) and API(OPENAPI), the 
application was written in a non Java language and the program is not restricted to use only 
the CICS application programming interfaces. To specify the OPENAPI value, your program 
must be coded to threadsafe standards and defined with CONCURRENCY(REQUIRED).

Table 4-2 lists the TCB on which a CICS program runs when various combinations of the 
STGPROT SIT parameter and the EXECKEY attribute of the PROGRAM resource are used.

Table 4-2   TCB mode switch table for programs specifying JVM(NO) and API(OPENAPI)

4.3.4  Programs compiled with the XPLINK option

Programs that are compiled to use XPLink must be coded to threadsafe standards and be 
defined as API(OPENAPI) and CONCURRENCY(REQUIRED). The presence of the XPLink signature 
in a load module takes precedence over the API attribute on the PROGRAM resource definition.

Note: The combination of CONCURRENCY(THREADSAFE) with API(OPENAPI) that was 
supported in previous releases is deprecated but is kept for compatibility, and produces the 
same behavior as CONCURRENCY(REQUIRED) with API(OPENAPI).

STGPROT EXECKEY Initial TCB DB2 or IBM MQ
command

Non-threadsafe
CICS command

NO
CICS

L8 No change L8 → QR → L8
USER

YES
CICS L8 No change L8 → QR → L8

USER L9 L9 → L8 → L9 L9 → QR → L9

Note: Executing a threadsafe CICS API command does not cause a TCB switch for 
programs specifying OPENAPI.

Note: The combination of CONCURRENCY(THREADSAFE) with API(OPENAPI) that was 
supported in previous releases is deprecated but is kept for compatibility, and produces the 
same behavior as CONCURRENCY(REQUIRED) with API(OPENAPI).
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Table 4-3 lists the TCB on which an XPLink program runs when various combinations of the 
STGPROT SIT parameter and the EXECKEY attribute of the PROGRAM resource are used.

Table 4-3   TCB mode switch table for programs that use the XPLink feature

4.4  Understanding the effect of change mode operations

There are several tools available that can help you understand the effect of change mode 
operations.

4.4.1  CICS Monitoring Facility

CICS Monitoring Facility (CMF) data provides several fields that are related to the 
performance of applications and their interaction with the CICS dispatcher. The DSCHMDLY field 
in the DFHTASK group provides several change mode operations. It also provides and the total 
elapsed time the task was suspended awaiting redispatch following a change mode 
operation. For more information about the DFHTASK group, see “Performance data in group 
DFHTASK” in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6G5

4.4.2  IBM CICS Performance Analyzer for z/OS

IBM CICS Performance Analyzer for z/OS (CICS PA) is a powerful offline reporting tool to 
help you tune and manage your CICS systems. By using the CMF and CICS statistics data, 
CICS PA provides comprehensive performance reporting and analysis capabilities. CICS PA 
is supplied with many sample reports. Several of these sample reports enable the analysis of 
TCB change mode operations. For more information about the features and use of CICS PA, 
see the following website:

http://www.ibm.com/software/products/en/cics-panaly

STGPROT EXECKEY Initial TCB DB2 or IBM MQ
command

Non-threadsafe
CICS command

NO
CICS

X8 X8 → L8 → X8 X8 → QR → X8
USER

YES
CICS X8 X8 → L8 → X8 X8 → QR → X8

USER X9 X9 → L8 → X9 X9 → QR → X9

Note: Executing a threadsafe CICS API command does not cause a TCB switch for 
XPLink programs.
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4.4.3  IBM CICS Interdependency Analyzer for z/OS

IBM CICS Interdependency Analyzer for z/OS (CICS IBM IA®) is a dynamic discovery tool 
that helps you understand the relationships, dependencies, and flows of CICS applications. 
The CICS IA product provides threadsafe analysis tooling that enables application developers 
and systems programmers to optimize the execution of program code. For more information 
about the features and use of CICS IA, see IBM CICS Interdependency Analyzer, 
SG24-6458, and the following website:

http://www.ibm.com/software/products/en/cics-ianaly
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Part 2 CICS TS performance 
information

This part features one chapter per CICS release. Several topics are covered in each chapter, 
where each topic can follow one of the following themes:

� Performance results for regression workloads, comparing the documented release and its 
immediate predecessor.

� Improvements in threadsafe capabilities of the CICS runtime code.

� Changes to SIT parameters that can have a significant effect on CICS performance.

� Updates to CICS statistics and monitoring data.

� Improvements in the CICS release that provide virtual storage constraint relief.

� Special performance studies that document the performance implications of enabling 
specific CICS features.

� Other small performance studies that are created in response to client feedback.

This part includes the following chapters:

� Chapter 5, “CICS TS for z/OS V5.1” on page 41
� Chapter 6, “CICS TS for z/OS V5.2” on page 77
� Chapter 7, “CICS TS for z/OS V5.3” on page 109
� Chapter 8, “CICS TS for z/OS V5.4” on page 149
� Chapter 9, “CICS TS for z/OS V5.5” on page 197

Part 2
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Chapter 5. CICS TS for z/OS V5.1

The IBM CICS Transaction Server (TS) for IBM z/OS (CICS TS) V5.1 release introduces 
various technical and operational capabilities. Included in these updates are many 
improvements that provide performance benefits over previous CICS releases.

Included in the CICS V5.1 performance report are the following subject areas:

� Key performance benchmarks that are presented as a comparison with the CICS TS V4.2 
release.

� An outline of improvements made regarding the threadsafe characteristics of the CICS run 
time.

� Details of the changes made to performance-critical CICS initialization parameters, and 
the effect of these updates.

� Description of all the updated monitoring fields, including examples where necessary.

� The extent and effect of the reduction in 24-bit and 31-bit virtual storage usage.

� High-level views of new functions that were introduced in the CICS V5.1 release, including 
performance benchmark results where appropriate.

� A description of transaction isolation and how changes that were introduced in this release 
might affect workloads with this feature enabled.

This chapter includes the following topics:

� 5.1, “Introduction” on page 42
� 5.2, “Release-to-release comparisons” on page 42
� 5.3, “Improvements in threadsafety” on page 48
� 5.4, “Changes to system initialization parameters” on page 52
� 5.5, “Enhanced instrumentation” on page 54
� 5.6, “Virtual storage constraint relief” on page 60
� 5.7, “64-bit application support” on page 62
� 5.8, “Java 7 and zEnterprise EC12” on page 62
� 5.9, “CICSPlex System Manager dynamic routing” on page 64
� 5.10, “Workload consolidation” on page 66
� 5.11, “Effect of threadsafe transient data” on page 71
� 5.12, “Transaction isolation” on page 73

5
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5.1  Introduction

When compiling the results for this chapter, the workloads were run on an IBM zEnterprise 
196 model M80 (machine type 2817). A maximum of 16 dedicated central processors (CPs) 
were available on the measured logical partition (LPAR), with a maximum of four dedicated 
CPs available to the LPAR used to simulate users. These LPARs are configured as part of a 
IBM Parallel Sysplex®. An internal coupling facility (CF) was co-located on the same central 
processor complex (CPC) as the measurement and driving LPARs, connected through 
internal coupling peer (ICP) links. An IBM System Storage® DS8800 unit was used to provide 
external storage. 

This chapter presents the results of several performance benchmarks when run in a CICS TS 
for z/OS V5.1 environment. Unless otherwise stated in the results, the CICS V5.1 
environment was the code that was available on the general availability date of 14 December 
2012. Several of the performance benchmarks are presented in the context of a comparison 
with CICS TS V4.2. All LPARs used z/OS V1.13.

For more information about performance terms that are used in this chapter, see Chapter 1, 
“Performance terminology” on page 3. For more information about the test methodology that 
was used, see Chapter 2, “Test methodology” on page 11. For more information about the 
workloads that were used, see Chapter 3, “Workload descriptions” on page 21.

Where reference is made to an LSPR processor equivalent, the indicated machine type and 
model can be found in the large systems performance reference (LSPR) document. For more 
information about obtaining and using LSPR data, see 1.3, “Large Systems Performance 
Reference” on page 6.

5.2  Release-to-release comparisons

This section describes some of the results from a selection of regression workloads that are 
used to benchmark development releases of CICS TS. For more information about the use of 
regression workloads, see Chapter 3, “Workload descriptions” on page 21.

5.2.1  Data Systems Workload static routing

The static routing variant of the Data Systems Workload (DSW) is described in 3.2.1, “DSW 
static routing”. This section presents the performance figures that were obtained by running 
this workload. The LPAR used for measurement was configured with 16 CPs online, which 
resulted in an LSPR processor equivalent of 2817-716.
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Table 5-1 lists the results of the DSW static routing workload that used the CICS TS V4.2 
release. 

Table 5-1   CICS TS V4.2 results for DSW static routing workload

Table 5-2 lists the same figures for the CICS TS V5.1 release.

Table 5-2   CICS TS V5.1 results for DSW static routing workload

The average CPU per transaction figure for CICS TS V4.2 is calculated to be 0.295 ms, and 
the CICS TS V5.1 figure is also calculated to be 0.292 ms. The performance of this workload 
is considered to be equivalent across the two releases.

ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

2498.52 75.86% 0.304 6.78%

2928.69 88.35% 0.302 7.79%

3543.47 104.08% 0.294 9.09%

4428.34 129.16% 0.292 11.13%

5944.91 168.58% 0.284 14.34%

ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

2496.35 77.55% 0.311 6.89%

2939.62 87.18% 0.297 7.65%

3532.10 102.29% 0.290 8.86%

4425.48 126.17% 0.285 10.80%

5948.50 166.52% 0.280 14.07%
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These performance results are also shown in Figure 5-1.

Figure 5-1   Plot of CICS TS V4.2 and V5.1 performance figures for DSW static routing workload

The measured CPU cost for each transaction rate is similar for CICS TS V4.2 and V5.1, with 
the CICS TS V5.1 release showing a marginal improvement. CPU cost scales linearly in 
accordance with the transaction rate.

5.2.2  DSW dynamic routing

The dynamic routing variant of the DSW workload is described in 3.2.2, “DSW dynamic 
routing”. This section presents the performance figures that were obtained by running this 
workload. The workload was configured with four terminal-owning regions (TORs)  
dynamically routing transactions to 30 application-owning regions (AORs). The LPAR that 
was used for measurement was configured with eight CPs online, which resulted in an LSPR 
processor equivalent of 2817-708.

Table 5-3 lists the results of the DSW dynamic routing workload that used the CICS TS V4.2 
release. 

Table 5-3   CICS TS V4.2 results for DSW dynamic routing workload
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ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

2071.61 141.20% 0.682 21.05%

2842.02 189.11% 0.665 27.85%

4128.25 270.70% 0.656 39.41%

5047.36 326.08% 0.646 47.24%

6493.98 417.16% 0.642 60.21%
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Table 5-4 lists the same figures for the CICS TS V5.1 release.

Table 5-4   CICS TS V5.1 results for DSW dynamic routing workload

The average CPU per transaction figure for CICS TS V4.2 is calculated to be 0.658 ms, and 
the CICS TS V5.1 figure is also calculated to be 0.655 ms. The performance of this workload 
is considered to be equivalent across the two releases. Figure 5-2 shows the results from 
Table 5-3 on page 44 and Table 5-4.

Figure 5-2   Plot of CICS TS V4.2 and V5.1 performance figures for DSW dynamic routing workload

You can see the V4.2 and V5.1 lines are overlaid, which indicates near-identical CPU cost per 
transaction. The plot lines are also straight, which indicates linear scaling as transaction 
throughput increases.

5.2.3  Relational Transactional Workload threadsafe

This section presents the performance figures for the threadsafe variant of the Relational 
Transactional Workload (RTW), as described in 3.3, “Relational Transactional Workload” on 
page 25.

Table 5-5 on page 46 lists the results of the RTW threadsafe workload that used the CICS TS 
V4.2 release. 

ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

2074.87 139.91% 0.674 20.87%

2846.00 188.55% 0.663 27.78%

4133.39 269.54% 0.652 39.32%

5053.15 326.22% 0.646 47.33%

6501.18 416.92% 0.641 60.25%
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Table 5-5   CICS TS V4.2 results for the RTW threadsafe workload

Table 5-6 lists the same figures for the CICS TS V5.1 release.

Table 5-6   CICS TS V5.1 results for the RTW threadsafe workload

The average CPU per transaction figure for CICS TS V4.2 is calculated to be 2.131 ms, and 
the CICS TS V5.1 figure is also calculated to be 2.144 ms. The difference between these 
figures is less than 1%, so the performance of this workload is considered to be equivalent 
across the two releases. Figure 5-3 shows these performance results.

Figure 5-3   Plot of CICS TS V4.2 and V5.1 performance figures for RTW threadsafe workload

ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

249.69 53.59% 2.146 21.33%

361.55 77.65% 2.148 30.93%

474.66 101.46% 2.138 39.85%

592.37 125.40% 2.117 48.89%

730.20 153.82% 2.107 59.51%

ETR CICS CPU CPU per transaction 
(ms)

LPAR busy

249.98 54.19% 2.168 21.63%

361.88 78.35% 2.165 31.26%

474.86 101.42% 2.136 39.74%

592.74 126.14% 2.128 49.20%

729.98 155.06% 2.124 59.98%
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As previously observed, the straight line indicates linear scaling as throughput increases, and 
the overlaid lines demonstrate equivalent performance between the two CICS releases.

5.2.4  Java throughput

CICS TS V4.2 supports Java V6.0.1 only, whereas CICS TS V5.1 supports Java 7.0 only. This 
section compares the throughput of a Java workload that is running in CICS TS V4.2 that 
uses Java 6.0.1 with the same workload that is running in CICS TS V5.1 that uses Java 7.0.

The workload was an intensive Java application that performed some JCICS calls. The 
workload ran in a single CICS region that contained one JVMSERVER resource. A high 
transaction injection rate was maintained to drive a zEnterprise 196 model M80 with 
eight GCPs and one zIIP to maximum utilization. Data was collected in 1-minute intervals, 
and the THREADLIMIT attribute of the CICS JVM server was increased every 5 minutes. Each 
benchmark started with two JVM server threads.

The benchmarks used Java V6.0.1 SR3 and Java V7.0 SR3. The following configuration 
parameters were used in both cases:

� -Xms600M
� -Xmx600M
� -Xmns500M
� -Xmos100M
� -Xgcpolicy:gencon

The chart that is shown in Figure 5-4 plots the throughput in transactions per second as the 
THREADLIMIT attribute of the JVM server was increased.

Figure 5-4   Throughput comparison for a Java workload in CICS TS V4.2 and CICS TS V5.1

Note: APAR PI30532 enables support for Java 7.1 in CICS TS V5.1. APAR PI52819 
enables support for Java 8 in CICS TS V5.1.
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For both configurations, the CPU utilization reached 99.9% when the JVM server reached 
nine concurrent threads. It can be seen from Figure 5-4 on page 47 that similar performance 
is observed in both configurations, and both configurations scale well.

For more information about the benefits of Java 7.0 in CICS TS V5.1, see 5.8, “Java 7 and 
zEnterprise EC12” on page 62.

5.3  Improvements in threadsafety

Most new CICS API and SPI commands in CICS V5.1 are threadsafe. Also, some commands 
were made threadsafe in this release. Specific functional areas also were improved to reduce 
task control block (TCB) switches.

5.3.1  Threadsafe API and SPI commands

The following new CICS API commands are threadsafe:

� GETMAIN64
� FREEMAIN64
� GET64 CONTAINER
� PUT64 CONTAINER

The following CICS API transient data commands were made threadsafe:

� READQ TD
� WRITEQ TD
� DELETEQ TD

These transient data API commands are threadsafe when used with a queue in a local CICS 
region, and when the request is function shipped to a remote CICS region over an Internet 
Protocol interconnectivity (IPIC) connection only. For other types of connections to remote 
CICS regions, the command is not threadsafe.

For more information about CICS API commands, see the topic “CICS command summary” 
in IBM Knowledge Center at this website:

https://ibm.biz/Bdi68Q

The following new CICS system programming interface (SPI) commands are threadsafe:

� INQUIRE EPADAPTINSET

� EPADAPTERSET commands:

– INQUIRE EPADAPTERSET
– SET EPADAPTERSET

The following CICS SPI commands were made threadsafe:

� SET TASK

� TRACEDEST commands:

– INQUIRE TRACEDEST
– SET TRACEDEST

� TRACEFLAG commands:

– INQUIRE TRACEFLAG
– SET TRACEFLAG
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� TRACETYPE commands:

– INQUIRE TRACETYPE
– SET TRACETYPE

For more information about CICS SPI commands, see the topic “System commands” in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd4Yx3

5.3.2  Threadsafe program loading

When running on an open TCB and a CICS program load is requested, there is no longer a 
TCB change mode to the resource-owning (RO) TCB. The RO TCB is still used when an 
application is not running on an open TCB, or for CICS DFHRPL and LIBRARY data set 
management operations.

The ability to load programs on an open TCB can result in path length reductions for 
applications that frequently issue LOAD requests because of the removal of the TCB switch. 
The use of an open TCB can also result in reduced contention for the single RO TCB and 
potentially offers significantly increased CICS program LOAD capability. Reducing the effect 
of program load on the RO TCB also reduces any contention on the RO TCB that is caused 
by competing security calls that also share the RO TCB.

A simple threadsafe application was created that issued an EXEC CICS LOAD command while 
running on an open TCB. The chart that is shown in Figure 5-5 plots the response time 
against the program LOAD request rate.

Figure 5-5   Response time against program LOAD rate

With CICS TS V4.2, CICS must switch to the RO TCB to complete the physical load when the 
application issues an EXEC CICS LOAD command even though the application is running on an 
open TCB.
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In this environment, a load operation is taking an average of 5 ms elapsed time to complete. 
Although the command does not use 5 ms of CPU time during this period, it does mean that 
the RO TCB is dispatched for a total of 5 ms and so the LOAD operations are effectively run 
serially. At a rate of around 200 requests per second, the RO TCB reached its limit in terms of 
available dispatch time.

When the same application is run in CICS TS V5.1, the LOADs are run concurrently on open 
TCBs. The chart in Figure 5-5 on page 49 shows that the throughput capability increased 
approximately tenfold. The limiting factor for this application became the I/O subsystem in 
CICS TS V5.1 instead of the RO TCB.

Updates to the CICS monitoring and statistics data also are associated with the threadsafe 
program load enhancements. For more information about updates to CICS monitoring, see 
5.5.8, “The DFHTASK performance group” on page 57. For more information about for 
updates to CICS statistics, see 5.5.11, “Loader domain global statistics” on page 60.

5.3.3  Use of T8 TCB for JDBC calls

A JDBC call from a Java application that uses the type 2 JDBC driver in CICS no longer 
requires a TCB change mode operation. As described in Chapter 4, “Open transaction 
environment” on page 31, TCB change mode operations can add CPU overhead to an 
application. In a CICS JVM server, Java applications run on T8 TCBs. In CICS TS V4.2, DB2 
calls from a Java environment required a switch to an L8 TCB. In CICS TS V5.1, this switch is 
removed.

To demonstrate the improvement, a modified version of the CICS DB2 Dynamic SQL example 
was used. The application reads 43 rows from a DB2 table and writes the results to a CICS 
terminal. This combination of DB2 accesses and terminal writes ensures that the application 
has a mix of JDBC and JCICS calls.

The application was tested by using a single CICS region with one JVM server defined. Both 
configurations used DB2 V10. The JVM server was defined with a limit of 20 concurrent 
threads and the following JVM parameters:

� -Xgcpolicy:gencon
� -Xmx600M
� -Xms600M
� -Xmnx500M
� -Xmns500M
� -Xmox100M
� -Xmos100M

CICS TS V4.2 used Java V6.0.1 SR3, and CICS TS V5.1 used Java V7.0 SR3.
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By using the methodology that is described in 2.6, “Collecting performance data” on page 18, 
CPU usage was recorded by using RMF for five different transaction rates. Figure 5-6 shows 
the measured CPU utilization as the transaction rate is increased.

Figure 5-6   Plot of CPU utilization against transaction rate for a Java workload in CICS V4.2 and V5.1

The CICS TS V5.1 configuration uses slightly less CPU overall, which benefits from the 
reduction in TCB change mode operations. Both configurations scale well, as indicated by the 
linear increase in CPU utilization as the transaction rate increased.

By using the same JDBC application, a second benchmark was run and CICS monitoring 
facility (CMF) data was collected. Several key performance metrics were extracted from the 
CMF data and are listed in Table 5-7.

Table 5-7   Average CPU time and TCB breakdown for Java DB2 workload

Table 5-7 shows that the number of TCB change mode operations for each transaction 
decreased because the workload now completes JDBC calls into DB2 on a T8 TCB, rather 
than an L8 TCB. This reduction in TCB change modes has the following effects:

� The overall CPU per transaction is reduced from 4.374 ms to 4.230 ms.

� Where CPU time for DB2 calls was previously accumulated on the L8 TCB, this time is 
now accumulated on the T8 TCB. A small amount of CPU time is still accumulated on an 
L8 TCB for sync point processing at transaction completion.

CICS release
Average CPU time (ms) Average 

TCB change 
mode countTotal user QR TCB T8 TCB L8 TCB

V4.2 4.374 0.310 2.907 1.157 300

V5.1 4.230 0.322 3.844 0.064 202
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5.4  Changes to system initialization parameters

Several performance-related CICS system initialization table (SIT) parameters were changed 
in the CICS TS V5.1 release. This section describes changes to the SIT parameters that have 
the most affect on CICS performance. All comparisons to previous limits or default values 
refer to CICS TS V4.2.

5.4.1  Active keypoint frequency (AKPFREQ)

The minimum value for the AKPFREQ parameter was decreased from 200 to 50. This value 
means that completed log task records can be deleted more frequently, which reduces the 
DASD data space usage. The value that is specified for the AKPFREQ parameter can be zero, 
or 50 - 65535.

If you specify AKPFREQ=0, no activity keypoints are written. Therefore, replication support is 
affected because without activity keypointing, tie-up records are not written to replication logs.

For more information, see the topic “AKPFREQ” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDc

5.4.2  Extended dynamic storage area limit (EDSALIM)

The default value for the EDSALIM parameter was increased from 48 MB to 800 MB. This new 
default value enables a CICS region that was started with the default value to process a 
reasonable workload. The value that is specified for the EDSALIM parameter can be 48 MB - 
2047 MB in multiples of 1 MB.

For more information, see the topic “EDSALIM” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDx

5.4.3  Terminal scan delay (ICVTSD)

The default value for the ICVTSD parameter was decreased from 500 to 0. The value that is 
specified for the ICVTSD parameter can be 0 - 5000 milliseconds.

The terminal scan delay facility was used in earlier releases to limit how quickly CICS dealt 
with some types of terminal output requests that were made by applications to spread the 
overhead of dealing with the requests. Specifying a nonzero value was sometimes 
appropriate where the CICS system used non-SNA networks. However, with SNA and IPIC 
networks, setting ICVTSD to 0 is appropriate to provide a better response time and the best 
virtual storage usage.

For more information, see the topic “ICVTSD” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDD

Note: The minimum value for the EDSALIM parameter was increased to 64 MB in 
CICS TS V5.4.
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5.4.4  Maximum open TCBs (MAXOPENTCBS)

The MAXOPENTCBS parameter was used to specify the maximum number of open TCBs in the 
pool of L8 and L9 mode TCBs. These TCBs are used for OPENAPI application programs and 
task-related user exits that are enabled with the OPENAPI option.

CICS now manages the number of TCBs in this pool automatically by using the following 
formula based on the current value of the maximum tasks (MXT) system parameter:

MAXOPENTCBS = (2 x MXT) + 32

For more information about open TCBs, see Chapter 4, “Open transaction environment” on 
page 31.

5.4.5  Maximum XP TCBs (MAXXPTCBS)

MAXXPTCBS was used to specify the maximum number of open TCBs in the pool of X8 and X9 
mode TCBs. These TCBs are used for C and C++ programs compiled with the XPLINK option.

CICS now manages the number of TCBs in this pool automatically by using the following 
formula based on the current value of the maximum tasks (MXT) system parameter:

MAXXPTCBS = MXT

For more information about open TCBs, see Chapter 4, “Open transaction environment” on 
page 31.

5.4.6  Maximum tasks (MXT)

The maximum number of user tasks that can exist in a CICS region concurrently was 
increased in the CICS TS V5.1 release. The maximum value that can be specified for the MXT 
parameter was increased from 999 to 2000. The minimum value was increased from 1 to 10, 
and the default value was increased from 5 to 500.

The changes mean that a CICS region operates more efficiently with the default setting and 
can process more workload, so the need to increase the number of CICS regions is reduced.

These changes apply to the MXT system initialization parameter, the MAXTASKS option of the 
SET SYSTEM and CEMT SET SYSTEM commands, and the MAXTASKS value in CICSPlex SM.

You must ensure that enough storage is available to support the maximum number of tasks 
value. For more information about setting the maximum task specification, see the “Setting 
the maximum task specification (MXT)” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDM

Note: The MAXOPENTCBS parameter was reintroduced in CICS TS V5.2. The minimum value 
was increased to 32 in CICS TS V5.4.

Note: The MAXXPTCBS parameter was reintroduced in CICS TS V5.2.

Note: The default value for MXT was changed to 250 in CICS V5.2.
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When you increase the maximum number of tasks for a CICS region, measure performance 
to ensure that the response time and other time components (such as dispatch time and 
suspend time) for your transactions remain acceptable. In some systems, an increase in 
concurrent tasks might increase resource contention to a level that causes more delays for 
transactions.

In the performance class data for a transaction, the new MAXTASKS field records the current 
setting for the maximum number of tasks for the CICS region. The CURTASKS field records the 
current number of active user transactions in the system at the time the user task was 
attached. This data helps you to assess the relationship between the task load during the life 
of a transaction, and the performance of the transaction. For more information about these 
new performance class data fields, see 5.5, “Enhanced instrumentation” on page 54.

5.4.7  Priority aging interval (PRTYAGE)

The default value for the PRTYAGE parameter was decreased from 32768 (32.768 seconds) to 
1000 (1 second). This lower value means that the priority of long-running tasks that are on the 
ready queue increases more rapidly.

For more information, see the topic “PRTYAGE” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDa

5.4.8  Location of terminal user areas (TCTUALOC)

The default value of the TCTUALOC parameter was changed from BELOW to ANY. The 
specification of TCTUALOC=ANY means that terminal user areas can be stored in 24-bit or 31-bit 
storage, and CICS uses 31-bit storage to store them if possible.

If you require the terminal user area to be in 24-bit storage because you have application 
programs that are not capable of 31-bit addressing, specify the system initialization 
parameter TCTUALOC=BELOW for the CICS region.

For more information, see the topic “TCTUALOC” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDe

5.5  Enhanced instrumentation

Significant enhancements to monitoring and statistics were made in the CICS TS V5.1 
release. This section details the extra and changed fields that are now available in the CMF 
and statistics SMF records.

5.5.1  The DFHCHNL performance group

The following fields were updated to also include request counts from the new EXEC CICS 
GET64 CONTAINER and EXEC CICS PUT64 CONTAINER API commands:

� PGGETCCT
� PGPUTCCT
� PGMOVCCT
� PGGETCDL
� PGPUTCDL
� PGCRECCT
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For more information about counters that are available in the DFHCHNL performance group, see 
the topic “Performance data in group DFHCHNL” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDp

5.5.2  The DFHCICS performance group

One new field was added to the DFHCICS performance group.

� Managed Platform - policy rule thresholds exceeded (field MPPRTXCD)

The number of policy rule thresholds that this task exceeded.

For more information about counters that are available in the DFHCICS performance group, see 
the topic “Performance data in group DFHCICS” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDV

5.5.3  The DFHDEST performance group

The following new fields were added to the DFHDEST performance group:

� Transient Data intrapartition lock wait time (field TDILWTT)

The elapsed time for which the user task waited for an intrapartition transient data lock.

� Transient Data extrapartition lock wait time (field TDELWTT)

The elapsed time for which the user task waited for an extrapartition transient data lock.

For more information about counters that are available in the DFHDEST performance group, see 
the topic “Performance data in group DFHDEST” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDA

5.5.4  The DFHFILE performance group

The following new fields were added to the DFHFILE performance group:

� File control wait time for exclusive control of a VSAM control interval (field FCXCWTT)

The elapsed time in which the user task waited for exclusive control of a VSAM control 
interval.

� File control wait time for a VSAM string (field FCVSWTT)

The elapsed time in which the user task waited for a VSAM string.

For more information about counters that are available in the DFHFILE performance group, see 
the topic “Performance data in group DFHFILE” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDu

5.5.5  The DFHRMI performance group

The DFHRMI group is present in the performance class record only if RMI=YES is specified on 
the DFHMCT TYPE=INITIAL macro.

In CICS TS V5.1, the default value for the RMI parameter changed from NO to YES.
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5.5.6  The DFHSOCK performance group

The following new fields were added to the DFHSOCK performance group:

� IPIC session allocation wait time (field ISALWTT)

The elapsed time for which a user task waited for an allocate request for an IPIC session.

� Cipher selected (field SOCIPHER)

Identifies the code for the cipher suite that was selected during the SSL handshake for use 
on the inbound connection.

For more information about counters that are available in the DFHSOCK performance group, see 
the topic “Performance data in group DFHSOCK” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YD3

5.5.7  The DFHSTOR performance group

The following new fields were added to the DFHSTOR performance group:

� Number of GCDSA storage getmains (field SC64CGCT)

Number of user-storage GETMAIN requests that are issued by the user task for storage 
above the bar in the CICS dynamic storage area (GCDSA).

� GCDSA storage high water mark above 2 GB (field SC64CHWM)

Maximum amount (high-water mark) of user storage, rounded up to the next 4 KB, 
allocated to the user task above the bar in the CICS dynamic storage area (GCDSA).

� Number of GUDSA storage getmains (field SC64UGCT)

Number of user-storage GETMAIN requests that are issued by the user task for storage 
above the bar in the user dynamic storage area (GUDSA).

� GUDSA storage high water mark above 2 GB (field SC64UHWM)

Maximum amount (high-water mark) of user storage, rounded up to the next 4 KB, 
allocated to the user task above the bar in the user dynamic storage area (GUDSA).

� Number of shared storage getmains above 2 GB (field SC64SGCT)

Number of storage GETMAIN requests that are issued by the user task for shared storage 
above the bar in the GCDSA or GSDSA.

� Shared storage bytes obtained (field SC64GSHR)

Amount of shared storage obtained by the user task by using a GETMAIN request above 
the bar in the GCDSA or GSDSA. The total number of bytes that are obtained is rounded 
up to the next 4 KB and the resulting number of 4 KB pages is reported.

� Shared storage bytes released (field SC64FSHR)

Amount of shared storage that is released by the user task by using a FREEMAIN request 
above the bar in the GCDSA or GSDSA. The total number of bytes that are obtained is 
rounded up to the next 4 KB and the resulting number of 4 KB pages is displayed.

For more information about counters that are available in the DFHSTOR performance group, see 
the topic “Performance data in group DFHSTOR” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YDk
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5.5.8  The DFHTASK performance group

The following new fields were added to the DFHTASK performance group that are related to the 
CICS RO, SO, and T8 mode TCBs:

� User task RO TCB dispatch time (field RODISPT)

The elapsed time during which the user task was dispatched by the CICS dispatcher on 
the CICS RO mode TCB. 

� User task RO TCB CPU time (field ROCPUT)

The processor time during which the user task was dispatched by the CICS dispatcher on 
the CICS RO mode TCB.

� User task RO TCB wait-for-dispatch time (field ROMODDLY)

The elapsed time for which the user task waited for redispatch on the CICS RO TCB. This 
time is the aggregate of the wait times between each event completion and user-task 
redispatch.

� User task SO TCB wait-for-dispatch (field SOMODDLY)

The elapsed time for which the user task waited for redispatch on the CICS SO TCB. This 
time is the aggregate of the wait times between each event completion and user-task 
redispatch.

� JVM server thread TCB delay time (field MAXTTDLY)

The elapsed time for which the user task waited to obtain a T8 TCB because the CICS 
system reached the limit of available threads. 

The RO mode TCB is used for loading programs, unless the API command to load the 
program (EXEC CICS LOAD, EXEC CICS XCTL, or EXEC CICS LINK) is issued by an application 
that is running on an open TCB. In that situation, the open TCB is used to load the program 
instead of the RO TCB. The CICS RO mode TCB is also used for opening and closing CICS 
data sets, issuing IBM RACF® calls, and similar tasks.

The SO mode TCB is used to make calls to the socket interface of TCP/IP.

The T8 mode open TCBs are used by a JVM server to perform multi-threaded processing. 
Each T8 TCB runs under one thread. The thread limit is 2,000 for each CICS region, and 
each JVM server in a CICS region can have up to 256 threads. 

The following new fields were added to the DFHTASK performance group that are related to the 
hardware environment on which the CICS region is running:

� CEC machine type (field CECMCHTP)

The central electronics complex (CEC) machine type, in EBCDIC, for the physical 
hardware environment where the CICS region is running. CEC is a commonly used 
synonym for central processing complex (CPC).

� CEC model number (field CECMDLID)

The CEC model number, in EBCDIC, for the physical hardware environment where the 
CICS region is running.

The following new fields were added to the DFHTASK performance group that are related to 
region load status:

� Maximum tasks value (field MAXTASKS)

The maximum task limit (MXT), expressed as a number of tasks, for the CICS region at 
the time the user task was attached.
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� Current tasks in CICS region (field CURTASKS)

The current number of active user transactions in the system at the time the user task was 
attached.

The following new fields were added to the DFHTASK performance group that are related to 
specialty processor offload rates:

� Processor time on a standard processor (field CPUTONCP)

The total task processor time on a standard processor for which the user task was 
dispatched on each CICS TCB under which the task ran.

� Processor time eligible for offload to a specialty processor (field OFFLCPUT)

The total task processor time that was spent on a standard processor, but was eligible for 
offload to a specialty processor (zIIP or zAAP).

The following derived metrics can be obtained by combining the USRCPUT field with the 
CPUTONCP and OFFLCPUT fields:

� Total CPU time on specialty processor:

USRCPUT - CPUTONCP

� Total CPU time on standard processor that was not offload-eligible:

CPUTONCP - OFFLCPUT

� Total CPU time that was offload eligible:

OFFLCPUT + USRCPUT - CPUTONCP

The following new fields were added to the DFHTASK performance group that are related to 
CICS application context support:

� Application name (field ACAPPLNM)

The 64-character name of the application in the application context data.

� Platform name (field ACPLATNM)

The 64-character name of the platform in the application context data.

� Application major version (field ACMAJVER)

The major version of the application in the application context data, expressed as a 4-byte 
binary value.

� Application minor version (field ACMINVER)

The minor version of the application in the application context data, expressed as a 4-byte 
binary value.

� Application micro version (field ACMICVER)

The micro version of the application in the application context data, expressed as a 4-byte 
binary value.

� Operation name (field ACOPERNM)

The 64-character name of the operation in the application context data.

Note: The times that are shown in the CPUTONCP and OFFLCPUT fields are available only 
when running on a system that supports the Extract CPU Time instruction service that is 
available on IBM System z9® or later hardware. For z/OS V1R13, the PTF for APAR 
OA38409 must also be applied.
58 IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report



For more information about counters that are available in the DFHTASK performance group, see 
the topic “Performance data in group DFHTASK” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YRP

5.5.9  The DFHTERM performance group

The MRO, LU6.1, and LU6.2 session allocation wait time (field TCALWTT) field was added to 
the DFHTERM performance group. This field is the elapsed time for which a user task waited for 
an allocate request for a multiregion operation (MRO), LU6.1, or LU6.2 session.

For more information about counters that are available in the DFHTERM performance group, see 
the topic “Performance data in group DFHTERM” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YRm

5.5.10  Monitoring domain global statistics

The following new fields were added to the collected monitoring domain global statistics:

� CEC Machine Type and Model Number (fields MNGMCHTP and MNGMDLID)

The CEC machine type and model number for the physical hardware environment where 
the CICS region is running. 

� WLM Address Space Goal Management (field MNGWLMGM)

Whether z/OS Workload Manager manages the CICS address space by using region 
goals, transaction goals, or both.

A fragment of a sample DFHSTUP report containing the new fields is shown in Example 5-1.

Example 5-1   Fragment of a sample monitoring statistics report produced by CICS TS V5.1 DFHSTUP

CEC Machine Type and Model Number . . : 2817-779
Exception records . . . . . . . . . . :        0
Exception records suppressed. . . . . :        0
Performance records . . . . . . . . . :        0
Performance records suppressed. . . . :        0
...
MVS WLM Mode. . . . . . . . . . . . . : Goal
MVS WLM Server. . . . . . . . . . . . : Yes
MVS WLM Workload Name . . . . . . . . : CICSCPU
MVS WLM Service Class . . . . . . . . : CICSBTCH
MVS WLM Report Class. . . . . . . . . : CICS2A31
MVS WLM Resource Group. . . . . . . . :
WLM Manage Regions Using Goals of . . : Transaction
MVS WLM Goal Type . . . . . . . . . . : Velocity
MVS WLM Goal Value. . . . . . . . . . :       80
MVS WLM Goal Importance . . . . . . . :        1
MVS WLM CPU Critical. . . . . . . . . : No
MVS WLM Storage Critical. . . . . . . : No

For more information about monitoring domain statistics, see the topic “Monitoring domain: 
global statistics” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YRG
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5.5.11  Loader domain global statistics

The following new fields were added to the collected loader domain global statistics:

� Library load requests on the RO TCB (field LDGLLRRO)

The number of times that the loader issued a program load request that used the RO TCB. 
This value is a subset of the number of library loads shown by LDGLLR. To calculate the 
number of program load requests that ran on open TCBs, subtract this value from the 
value shown by LDGLLR.

� Total loading time on the RO TCB (field LDGLLTRO)

The time taken for the number of library loads shown by LDGLLRRO. This value is a subset 
of the time shown by LDGLLT. To calculate the time taken for program load requests that ran 
on open TCBs, subtract this value from the value shown by LDGLLT.

A fragment of a sample DFHSTUP report that contains the new fields is shown in 
Example 5-2. The Average loading time on the RO TCB field is calculated by the DFHSTUP 
program and is not included directly in the SMF data.

Example 5-2   Sample CICS TS V5.1 DFHSTUP loader domain global statistics report fragment

LIBRARY load requests . . . . . . . . . . . . . . :             0
LIBRARY load requests on the RO TCB . . . . . . . :             0
Total loading time. . . . . . . . . . . . . . . . : 00:00:00.0000
Total loading time on the RO TCB. . . . . . . . . : 00:00:00.0000
Average loading time. . . . . . . . . . . . . . . :  00:00.000000
Average loading time on the RO TCB. . . . . . . . :  00:00.000000

For more information about loader domain global statistics, see the topic “Loader domain: 
Global statistics” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YRb

5.6  Virtual storage constraint relief

Virtual storage constraint relief (VSCR) is the reduction of virtual storage usage, which helps 
avoid short-on-storage conditions and can reduce the need for more CICS regions. CICS TS 
V5.1 provides VSCR in a number of areas, which reduces pressure on 24-bit and 31-bit 
virtual storage.

This section describes virtual storage improvements for the following areas:

� 24-bit virtual (below the line)
� 31-bit virtual (above the line but below the bar)
� 64-bit virtual (above the bar)

5.6.1  24-bit storage

The following CICS infrastructure items now use 31-bit storage in place of all, or some, of the 
24-bit storage that was used in previous releases:

� Sync point and back out processing.

� Processing for transient data EXEC CICS application programming commands, wherever 
possible.
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� CICS execution diagnostic facility (CEDF).

� CICS command-language tables for command interpreter (CECI) and other functions.

� Processing for journaling EXEC CICS application programming commands.

� Processing for function-shipped DL/I calls.

� Mirror transactions. For more information, see 5.6.4, “Mirror transactions” on page 61.

� The COMMAREA on an EXEC CICS XCTL call. For more information, see 5.6.5, “XCTL with 
a communication area” on page 61.

For more information about items that are improved in the CICS TS V5.1, see the topic 
“Reduced use of 24-bit storage by CICS” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YRL

5.6.2  31-bit storage

The following CICS infrastructure items now use 64-bit storage in place of all, or some, of the 
31-bit storage that was used in previous releases:

� Console queue processing
� Storage allocation control blocks
� Loader control blocks

For more information about changes in the use of 31-bit storage, see the topic “Changes in 
CICS storage use from 31-bit to 64-bit storage” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YR9

5.6.3  64-bit storage

In CICS TS V5.1, the new managed platform and application context CICS facilities use 
64-bit virtual storage.

User applications can now directly access 64-bit storage. For more information, see 5.7, 
“64-bit application support” on page 62.

5.6.4  Mirror transactions

The mirror transactions (CEHP, CEHS, CPMI, CSHR, CSMI, CSM1, CSM2, CSM3, CSM5, and CVMI) are 
now defined as TASKDATALOC(ANY).

5.6.5  XCTL with a communication area

When a communication area (COMMAREA) is used with an EXEC CICS XCTL command, 
CICS can now create the COMMAREA in 31-bit storage, rather than 24-bit storage, where 
appropriate.

When EXEC CICS XCTL is used, CICS ensures that any COMMAREA is addressable by the 
program that receives it by creating the COMMAREA in an area that conforms to the 
addressing mode of the receiving program. If the receiver is AMODE(24), the COMMAREA is 
created in 24-bit storage. If the receiver is AMODE(31), the COMMAREA is created in 31-bit 
storage.

In earlier releases of CICS, the COMMAREA was always copied into 24-bit storage.
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5.6.6  User exit global work area

The EXEC CICS ENABLE PROGRAM system programming command has the new attribute 
GALOCATION that specifies the location of the storage that CICS provides as a global work area 
for this exit program. The GALOCATION attribute can have one of the following values:

� LOC24

The global work area is in 24-bit storage. This location is the default location.

� LOC31

The global work area is in 31-bit storage.

For more information about the EXEC CICS ENABLE PROGRAM system programming command, 
see the “ENABLE PROGRAM” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4zLc

5.6.7  Related APARs

The IBM Language Environment® APAR PM57053 reduces the amount of virtual storage that 
is consumed by applications in 24-bit storage. For more information, see “PM57053: 
CEECPINI GETS TOO MUCH BELOW-THE-LINE STORAGE IN CICS” in IBM Support Portal 
at this website:

http://www.ibm.com/support/docview.wss?uid=isg1PM57053

5.7  64-bit application support

CICS TS V5.1 supports non-Language Environment assembly language programs that run in 
64-bit addressing mode, which provides 64-bit application support to access large data 
objects.

New API commands, a new CICS-supplied procedure, and new CICS executable modules 
are supplied to provide 64-bit application support. CICS storage manager, program manager, 
loader domain, CICS-supplied macros, and the CECI and CEDF transactions are changed to 
provide 64-bit application support. New dynamic storage areas (DSAs) are available in 64-bit 
storage.

For more information about developing 64-bit assembly language programs, see the 
“Developing AMODE(64) assembler language programs” topic in IBM Knowledge Center at 
this website:

https://ibm.biz/Bd4YFy

5.8  Java 7 and zEnterprise EC12

As described in 5.2.4, “Java throughput” on page 47, CICS TS V4.2 supports Java V6.0.1 
only, and CICS TS V5.1 supports Java 7. The IBM Java 7 SDK for z/OS provides greater 
exploitation of the IBM zEnterprise EC12 hardware than previous releases of the SDK. The 
improved hardware exploitation by the Java virtual machine (JVM) can provide significant 
performance improvements for CICS workloads that use Java.
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This section compares the internal throughput rate (ITR) of a Java workload when running in 
various combinations of hardware and software configurations. For more information about 
ITR, see 1.3.2, “Internal throughput rate” on page 7. 

The workload was an intensive Java application that processes an inbound web service by 
using the Java pipeline implementation.

The IBM zEnterprise 196 (z196) was a model M80 that was running on an LPAR configured 
with four dedicated CPs, which resulted in an LSPR processor equivalent of 2817-704.

The IBM zEnterprise EC12 (zEC12) was a model HA1, running on an LPAR configured with 
four dedicated CPs, which resulted in an LSPR processor equivalent of 2827-704.

Both configurations used z/OS V1R13. The following hardware and software configuration 
combinations were studied:

� CICS TS V4.2 using Java V6.0.1 SR3 on a z196
� CICS TS V5.1 using Java V7.0 SR3 on an z196
� CICS TS V5.1 using Java V7.0 SR3 on a zEC12
� CICS TS V5.1 using Java V7.0 SR3 with aggressive hardware exploitation on a zEC12

Aggressive hardware exploitation was enabled in Java V7.0 by using the -Xaggressive and 
the -Xjit:noResumableTrapHandler runtime options.

Figure 5-7 shows the relative ITR values that was recorded for these configurations.

Figure 5-7   Comparison of hardware and software configurations for a Java workload

As shown in Figure 5-7, the use of Java V7.0 in CICS TS V5.1 provided equivalent throughput 
when compared with Java V6.0.1 in CICS TS V4.2.

Note: APAR PI30532 enables support for Java 7.1 in CICS TS V5.1. APAR PI52819 
enables support for Java 8 in CICS TS V5.1.
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Upgrading the hardware to a zEC12 improved ITR by 30% and enabled the -Xaggressive 
option that further increased this value to 39%.

Another Java workload was also tested that had only a small amount of Java logic. This 
simple workload demonstrated a 24% improvement when moving from a z196 to a zEC12. 
The use of the -Xaggressive JVM option increased this improvement slightly to 25%. This 
improvement of 25% when moving from a z196 to a zEC12 is in line with the LSPR 
expectations.

For more information about interpreting LSPR tables, see 1.3, “Large Systems Performance 
Reference” on page 6. The LSPR tables used can be found in IBM Resource Link® at this 
website:

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzOSv1r13

From the LSPR tables, the relative ITR values were seen when running a workload with an 
average relative nest intensity:

� 2817-704 = 7.72
� 2827-704 = 9.66

Therefore, the expected ITR improvement equals 9.66 ÷ 7.72 = 1.25, or an increase of 25%.

5.9  CICSPlex System Manager dynamic routing

By using a variant of the Data Systems Workflow (DSW) workload as described in 3.2, “Data 
Systems Workload” on page 22, the cost per transaction was measured to understand the 
overhead that was involved with the use of dynamic transaction routing by using CICSplex 
System Manager (CICSplex SM). The following scenarios were used to provide the 
performance results:

� Connections from 2500 simulated LU2 clients were processed directly by each of the 
AORs with no TORs involved.

� A single TOR routed transaction to the AORs by using a simple round robin routing 
algorithm.

� Transactions were routed to the AORs with CICSPlex SM dynamic routing by using the 
CICSPlex SM sysplex optimized routing algorithm.

In all cases, four AORs were used and accessed the data files by using VSAM RLS. TORs 
were connected to AORs through MRO/XM connections. Eight CPs were online during the 
measurements, which provided an LSPR processor equivalent of 2817-708. The results of 
the performance study are listed in Table 5-8, Table 5-9 on page 65, and Table 5-10 on 
page 65. Table 5-8 presents the scenario in which no TOR was used; therefore, the TOR ETR 
and TOR CPU columns are not applicable.

Table 5-8   Performance results with no transaction routing

TOR ETR TOR CPU AOR ETR AOR CPU CPU per 
transaction (ms)

n/a n/a 2072.61 178.94% 0.863

n/a n/a 2842.46 230.46% 0.810

n/a n/a 4120.62 324.47% 0.787

n/a n/a 5035.52 387.15% 0.768

n/a n/a 5617.90 427.88% 0.761
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For this scenario, the average CPU cost per transaction was 0.797 ms.

Table 5-9 presents the scenario where a simple round-robin routing algorithm is configured by 
specifying the SIT parameter DTRPGM. This table demonstrates the migration costs when 
moving from single local access to MRO transaction routing.

Table 5-9   Performance results with TOR using a roundrobin algorithm

The TOR and AOR transaction rates are shown separately because some of the transactions 
that are routed from the TOR to the AOR issue a local EXEC CICS START command for more 
transactions when running in the AORs. 

For this second scenario, the average CPU cost per transaction was 0.893 ms.

Table 5-10 presents the scenario in which dynamic transaction routing uses CICSplex SM 
sysplex that is optimized workload routing.

Table 5-10   Performance results with TOR using CICSplex SM dynamic transaction routing

As in Table 5-9 on page 65, the TOR and AOR transaction rates are shown separately to 
differentiate where local EXEC CICS START commands were issued.

For this final scenario, the average CPU cost per transaction was 0.916 ms.

Comparing scenarios one and two represents the CPU cost that was incurred by introducing 
transaction routing into the environment. The average CPU per transaction increased by 
approximately 0.1 ms.

By using CICSPlex SM Sysplex Optimized Routing, the average cost per transaction 
increases only slightly (0.026 ms). For this workload, the transaction rate and loading on 
individual regions is stable and does not frequently cross predefined thresholds. When a 
workload is running and is not crossing thresholds, updates to the Coupling Facility are made 
infrequently.

TOR ETR TOR CPU AOR ETR AOR CPU CPU per 
transaction (ms)

1982.71 21.71% 2072.91 179.85% 0.976

2716.34 28.32% 2841.31 229.76% 0.912

3947.17 40.11% 4127.12 320.02% 0.876

4782.32 49.27% 5002.40 380.17% 0.862

5357.32 56.98% 5602.40 414.15% 0.843

TOR ETR TOR CPU AOR ETR AOR CPU CPU per 
transaction (ms)

1982.55 26.31% 2071.68 178.87% 0.999

2716.04 34.55% 2840.08 229.68% 0.935

3946.17 48.99% 4125.28 321.11% 0.902

4813.04 59.46% 5033.92 380.43% 0.878

5394.49 67.92% 5640.63 418.77% 0.867
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For more information about CICSplex SM Sysplex Optimized Routing, see the “Sysplex 
optimized workload management learning path” topic in IBM Knowledge Center at this 
website:

https://ibm.biz/Bd4YFn

5.10  Workload consolidation

As described in 1.2.2, “Factors that can influence RNI” on page 5, tuning to reduce the 
number of simultaneously active address spaces to the proper number that are needed to 
support a workload can reduce relative nest intensity (RNI) and improve performance.

Combined with improvements in earlier releases, the following areas in CICS TS V5.1 enable 
you to run more work through fewer CICS regions than ever before:

� Increase in the concurrent task limit

Changes to the MXT system initialization parameter, which now permits a maximum of 
2,000 tasks in a CICS region concurrently, are described in 5.4.6, “Maximum tasks (MXT)” 
on page 53.

� Virtual storage constraint relief

The reduction in CICS 24-bit and 31-bit storage usage, as described in 5.6, “Virtual 
storage constraint relief” on page 60, for CICS TS V5.1 enables more concurrent tasks in 
a single CICS region.

� Threadsafe support

Changes in CICS, as described in 5.3, “Improvements in threadsafety” on page 48, can 
reduce contention for the QR TCB. Workloads that were formerly constrained by the single 
QR TCB can now be able to run concurrently on an open TCB.

The process of workload consolidation involves reducing the number of CICS regions while 
maintaining the same level of availability, reliability, and throughput. The remainder of this 
section describes two performance studies that demonstrate how workload consolidation can 
reduce CPU usage, real storage usage, and operational costs because of requiring 
management of fewer CICS address spaces while maintaining the same transaction 
throughput.

5.10.1  Consolidating a COBOL VSAM workload

The first consolidation scenario used a variant of the DSW workload, as described in 3.2, 
“Data Systems Workload” on page 22. Four TORs used CICSplex SM dynamic routing to 
distribute work to 30 AORs.

The benchmark followed the standard CICS performance test approach of collecting five 
measurement intervals at increasing transaction rates. For more information about the 
methodology used, see 2.6, “Collecting performance data” on page 18. Also, CPU 
measurement facility (CPU MF) data was collected for the final measurement interval to aid 
analysis of the workload.
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A measurement was created to determine the transaction cost and resource usage before the 
workload consolidation exercise. The results of this measurement are listed in Table 5-11.

Table 5-11   CPU cost and storage used for DSW workload with 30 AORs

The average CPU cost per transaction is calculated as 0.627 ms. During the highest 
transaction rate measurement interval, the real storage usage peaked at 740,917 frames, or 
2.87 GB.

The workload was then reconfigured to use only 10 AORs. This reconfiguration was starting 
10 CICS AOR address spaces, rather than 30 as in the original setup. No other configuration 
changes were made, with CICSplex SM dynamically recognizing only 10 AORs were 
available.

By using the same data collection methodology, the benchmark was run again and the results 
are listed in Table 5-12.

Table 5-12   CPU cost and storage used for DSW workload with 10 AORs

In this configuration, the average CPU cost per transaction is calculated as 0.560 ms. The 
peak real storage usage was recorded as 343,775 frames, or 1.31 GB.

Although both configurations sustained a throughput of over 15,800 transactions per second, 
the 10 AOR setup reduced the CPU cost per transaction by 11%. Real storage usage also 
decreased by over 50%.

It is clear that reducing the number of CICS regions reduces the overall real storage usage. 
By using the CPU MF data, it also can be seen how the 10 AOR configuration achieves the 
observed performance improvement.

Table 5-13 on page 68 presents some of the most significant metrics that were obtained from 
the CPU MF data that was recorded as part of the measurement process. This data was 
obtained through a sampling process. Therefore, all counters are not absolute, but are values 
that present a statistical view of the workload behavior when run for the workload over a 
sufficiently long time. 

ETR CICS CPU
(% of single CP)

CPU per transaction 
(ms)

Frames of real 
storage used

4983.60 253.74% 0.640 736,961

6385.12 325.48% 0.635 737,319

10135.28 510.46% 0.619 738,387

13969.74 704.09% 0.616 739,682

15898.14 821.69% 0.629 740,917

ETR CICS CPU
(% of single CP)

CPU per transaction 
(ms)

Frames of real 
storage used

4969.95 232.11% 0.582 342,299

6390.11 293.22% 0.568 342,460

10137.49 456.27% 0.551 342,893

13969.68 620.51% 0.540 343,470

15867.72 725.80% 0.557 343,775
Chapter 5. CICS TS for z/OS V5.1 67



Table 5-13   Comparison of 30 AOR and 10 AOR CPU MF data for DSW workload

The following data points are extracted from the CPU MF samples:

� Execution samples

Represents the number of CPU MF samples that were taken while code was run in a 
CICS address space used in the workload.

� Instruction first cycle (IFC)

Provides a relative indication as to the number of instructions run in the workload.

� Microseconds per transaction

Post-processing the CPU MF data requires the counter data and an input of the sustained 
transaction rate. The post-processing tools can calculate the total CPU that was used from 
the sample data. Therefore, the tools also can calculate a CPU cost per transaction value.

� Cycles per instruction (CPI)

This value represents the average number of CPU clock cycles an instruction took to run. 
Some instructions can be run in a single clock cycle (such as a register to register 
operation). Other instructions can take hundreds or thousands of cycles if the operation is 
moving data within real storage and must wait because data is not available in the cache.

� MIPS per CP

As described in 1.2.1, “Memory hierarchy and nest” on page 5, the instruction execution 
rate of a processor can vary. This metric uses the collected data to determine the millions 
of instructions per second (MIPS) that each CP managed to achieve during the sample 
period.

� Data cache misses

This counter represents the number of cycles for which a processor was waiting for data to 
become available from the cache.

� Instruction cache miss

This counter provides an indication of the number of cycles for which a processor was 
waiting for instructions to become available from the cache. It also includes time spent 
while the storage subsystem performs the translation from a virtual to a real storage 
address when the dynamic-address-translation (DAT) mechanism does not have an entry 
in the translation lookaside buffer (TLB). For more information about the DAT process and 
the hardware TLB, see Chapter 3, “Storage”, in z/Architecture Principles of Operation, 
SA22-7832. 

Performance metric 30 AORs 10 AORs Delta

Execution samples 2,487,298 2,201,099 -11%

Instruction first cycle (IFC) 379,000 371,470 -2%

Microseconds per transaction 628.34 556.43 -11%

Cycles per instruction (CPI) 6.53 5.90 -10%

MIPS per CP 797 882 +10%

Data cache misses 744,894 608,550 -18%

Instruction cache miss (includes TLB miss) 90,483 66,626 -26%

% cycles used by TLB misses 6.82% 5.94% -13%

Relative nest intensity 0.48 0.34
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� Percent of cycles used by TLB misses

Represents the fraction of cycles that were spent waiting for a TLB miss, where a TLB 
miss is defined in the Instruction cache miss metric.

� Relative nest intensity

RNI is defined in 1.2, “Relative nest intensity” on page 4. The RNI metric is calculated by 
the post-processing tools by using a formula that is specific to the hardware on which the 
workload is running. This formula uses a weighted count of cache misses from each of the 
cache levels in the memory hierarchy. For more information about the formulas that are 
used, see LSPR workload categories, which is available at this website:

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprwork

The microseconds per transaction value is reduced by approximately 11% in the second 
configuration. This delta matches the relative change as measured by RMF. The sampling 
data CPU cost per transaction does not exactly match the value as reported by RMF because 
of the manner in which CPU is accounted in instructions that operate across address spaces.

The number of instructions run (represented by IFC) for both environments changes only by 
approximately 2%, which is expected given that they are running the same number of CICS 
transactions. The reduction in CPU cost per transaction is because of the smaller number of 
data caches, instruction cache, and TLB misses. As predicted by 1.2.1, “Memory hierarchy 
and nest” on page 5, the MIPS rate increases because there are fewer cycles that are wasted 
while the processor is waiting for data to be retrieved from deep in the memory hierarchy.

As described in 1.2, “Relative nest intensity” on page 4, the RNI of the workload is also 
reduced because the processor does not need to go as deep into the memory hierarchy to 
find the required data.

5.10.2  Consolidating the GENAPP workload

The second consolidation scenario used a variant of the General Insurance Application 
(GENAPP). GENAPP is available for download as SupportPac CB12, which is available at 
this website:

http://www.ibm.com/support/docview.wss?uid=swg24031760

The workload was driven by using the web services extensions that are included in the 
SupportPac. For performance purposes, the supplied VSAM files and DB2 database 
definitions were extended to include a larger working set of data.

The baseline performance measurement that uses 30 AORs was run and the results are 
listed in Table 5-14.

Table 5-14   CPU cost and storage used for GENAPP workload with 30 AORs

ETR CICS CPU
(% of single CP)

CPU per transaction 
(ms)

Frames of real 
storage used

828.31 94.85% 1.145 862,739

992.14 114.24% 1.151 873,593

1237.67 139.43% 1.126 880,690

1633.98 185.24% 1.133 897,041

1883.25 233.38% 1.239 959,291
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The average CPU cost per transaction is calculated as 1.159 ms. During the highest 
transaction rate measurement interval, the real storage usage peaked at 959,291 frames, or 
3.66 GB.

As with the DSW scenario, the workload was then reconfigured to use only 10 AORs with no 
other changes to the workload. By using the same data collection methodology, the 
benchmark was run again and the results are listed in Table 5-15.

Table 5-15   CPU cost and storage used for GENAPP workload with 10 AORs

In this configuration, the average CPU cost per transaction is calculated as 1.054 ms. The 
peak real storage usage was recorded as 464,827 frames, or 1.77 GB.

The sustained transaction rate for each configuration was similar (approximately 1,900 
transactions per second), but the 10 AOR setup reduced the CPU cost per transaction by 
around 9%. Again, peak real storage usage decreased by over 50%.

By using the metrics as defined for Table 5-13 on page 68, the CPU MF data is listed for the 
GENAPP workload in Table 5-16.

Table 5-16   Comparison of 30 AOR and 10 AOR CPU MF data for GENAPP workload

The microseconds per transaction value is again reduced by approximately 11% in the 
second configuration. This reduction in CPU cost per transaction is the result of a drop in data 
cache, instruction cache, and TLB misses. The MIPS rate for each processor is increased for 
the same reasons described in the DSW scenario. The RNI metric also decreases because 
the formula used accounts for the number of cache misses for the workload.

ETR CICS CPU
(% of single CP)

CPU per transaction 
(ms)

Frames of real 
storage used

827.72 86.42% 1.044 381,422

986.51 104.35% 1.057 389,384

1231.89 129.67% 1.052 394,495

1629.05 166.94% 1.024 399,247

1916.36 209.88% 1.095 464,827

Performance metric 30 AORs 10 AORs Delta

Execution samples 3,517,830 3,188,565 -9%

Instruction first cycle (IFC) 589,236 590,667 +2%

Microseconds per transaction 1240 1095 -11%

Cycles per instruction (CPI) 5.97 5.39 -10%

MIPS per CP 898 1003 +12%

Data cache misses 1,145,876 932,896 -19%

Instruction cache miss (includes TLB miss) 149,468 115,015 -23%

% cycles used by TLB misses 9.95 9.23 -7%

Relative nest intensity 0.75 0.51
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5.11  Effect of threadsafe transient data

CICS TS V5.1 makes the transient data commands threadsafe when used with a queue in a 
local CICS region, or function shipped to a remote CICS region over an IPIC connection.

This section describes the benefits of threadsafe transient data commands when combined 
with other improvements in CICS threadsafe support.

5.11.1  Maximizing time on an open TCB

An example threadsafe application is defined to run in user key, make calls to DB2, and is 
required to maximize the amount of time spent running on an open TCB. Before 
CICS TS V4.2, the following possible changes are made to the PROGRAM definition:

� Specify API(CICSAPI)

As described in 4.3.2, “Programs specifying JVM(NO) and API(CICSAPI)” on page 34, the 
program begins execution on the QR TCB, and then switches to an L8 TCB when making 
a DB2 call. Execution continues on the L8 TCB until a non-threadsafe CICS command is 
run, at which time it switches back to the QR TCB and stays there until the next DB2 call.

� Specify API(OPENAPI)

As described in 4.3.3, “Programs specifying JVM(NO) and API(OPENAPI)” on page 35, 
the program begins execution on an L9 open TCB. The drawback of specifying OPENAPI 
is that execution switches to an L8 TCB for each DB2 call, and switches back to an 
L9 TCB on completion.

CICS TS V4.2 introduced the value REQUIRED for the CONCURRENCY attribute of a CICS PROGRAM 
definition as a method of maximizing time on an open TCB. As shown in Table 4-1 on 
page 34, execution begins on an L8 TCB and remains on the L8 TCB when running a DB2 
call. When a non-threadsafe CICS command is run, the application switches execution to the 
QR TCB, but then switches back to the L8 TCB on completion of the command.

5.11.2  Sample transient data and DB2 application

A test application was written that reads a row from a DB2 table and then writes a record to a 
transient data queue. This DB2 read and then TD write process was repeated 150 times. 
Three configurations were tested, with the following CICS releases and program attributes:

� CICS TS V4.1 - CONCURRENCY(THREADSAFE)
� CICS TS V4.2 - CONCURRENCY(REQUIRED)
� CICS TS V5.1 - CONCURRENCY(REQUIRED)

In all cases, the program was defined as API(CICSAPI).

In the CICS TS V4.1 configuration, the program starts on the QR TCB until it makes a DB2 
call, and then switches to an L8 TCB. The program stays on the L8 until it makes a 
non-threadsafe call, such as a transient data read. The non-threadsafe call causes execution 
to switch back to the QR. Program execution now stays on the QR until the next DB2 call 
when it switches back to the L8. This process continues until the end of the program. 
Although all of this application code is coded to threadsafe standards and can run on open 
TCBs, a large portion of it is running on the QR.
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In CICS TS V4.2, the program can be defined as CONCURRENCY(REQUIRED). Now the 
application starts on an L8 TCB and stays there until it makes a non-threadsafe call, such as 
the transient data write. When the transient data command completes, execution switches 
back to the L8 immediately and continues running on the open TCB. Now only a small portion 
of the application runs on the QR TCB and most of it runs on the L8 TCB reducing contention 
on the QR TCB.

When the application is moved to CICS TS V5.1, the transient data write, which caused TCB 
change mode operations in earlier releases, is now threadsafe. The entire application can 
now run on open TCBs with a reduction in CPU per transaction because of the removal of the 
switches.

5.11.3  CICS monitoring data results

By using the application as described in 5.11.2, “Sample transient data and DB2 application” 
on page 71, a workload was run and CMF data was collected.

The CMF data was post-processed by using the CICS Performance Analyzer tool. Extracts 
from key metrics are listed in Table 5-17.

Table 5-17   CICS monitoring data for transient data and DB2 application

The CICS V4.1 configuration shows an average QR CPU usage of 4.597 ms per transaction 
and an L8 TCB average of 2.370 ms per transaction. As described in 5.11.2, “Sample 
transient data and DB2 application” on page 71, the application is coded to threadsafe 
standards, but most of the application runs on the QR TCB. Average CPU per transaction is 
reported as 6.967 ms.

When moving the application to CICS V4.2 and CONCURRENCY(REQUIRED), most of the code 
now runs on an open TCB. The average QR CPU usage is reduced to 0.212 ms per 
transaction, while the L8 TCB average is increased to 6.663 ms per transaction. There are 
still a high number of TCB change mode operations because the transient data write 
command is non-threadsafe in CICS V4.2. Average CPU per transaction remains effectively 
unchanged at 6.875 ms.

Moving the application to CICS V5.1 introduces threadsafe transient data, which removes the 
requirement for most of the TCB change mode operations. The number of change modes is 
reduced from 306 to 8. Only start-of-task and end-of-task processing are now run on the 
QR TCB, which reduces the average QR CPU usage down to 0.026 ms per transaction. The 
reduction in change mode operations reduces the CPU usage overall, with the total CPU per 
transaction reduced from 6.967 ms to 6.195 ms, which is a reduction of over 10% for this 
application.

Moving to CONCURRENCY(REQUIRED) and CICS V5.1 also reduces the average response time 
significantly, from 11.942 ms to 6.805 ms.

CICS Average 
response 
time (ms)

Average 
user CPU 
time (ms)

Average 
QR CPU 
time (ms)

Average L8 
CPU time 

(ms)

Average 
change 
mode

Average 
TD cmd 
count

Average 
RMI DB2 
time (ms)

V4.1 11.942 6.967 4.597 2.370 302 150 1.626

V4.2 11.393 6.875 0.212 6.663 306 150 1.420

V5.1 6.805 6.195 0.026 6.169 8 150 1.147
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5.11.4  Throughput results

Figure 5-8 shows the CPU usage of the CICS region as the transaction rate increases for the 
workload, in all of the CICS TS V4.1, V4.2, and V5.1 configurations.

Figure 5-8   CPU comparison for TD and DB2 workload on CICS TS V4.1, V4.2, and V5.1

Figure 5-8 also shows that the CICS V4.1 configuration becomes constrained by the QR TCB 
at around 200 transactions per second. This result is in line with expectations based on the 
figures in Table 5-17 on page 72. In the CICS V4.1 results, each transaction required 
4.597 ms of CPU time on the QR TCB. Therefore, the QR TCB can sustain only a maximum 
of 1000 / 4.597 = 217 transactions per second.

Specifying a value of REQUIRED for the CONCURRENCY attribute in CICS V4.2, the constraint on 
the QR TCB is eliminated. In this configuration, the CPU cost per transaction is approximately 
the same as for CICS V4.1 (as shown by the overlapping lines) but the maximum throughput 
increases to around 570 transactions per second. In this configuration, the constraint is now 
the total CPU available on the LPAR.

The elimination of the TCB switching in CICS V5.1 reduces total CPU per transaction and 
enables even higher throughput to be achieved before being limited by the available CPU on 
the LPAR.

5.12  Transaction isolation

CICS transaction isolation builds on CICS storage protection, which enables user 
transactions to be protected from one another. Transaction isolation uses the MVS subspace 
group facility to offer protection between transactions. This configuration ensures that an 
application program that is associated with one transaction cannot accidentally overwrite the 
data of another transaction.
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Transaction isolation is enabled globally for a CICS region by specifying TRANISO=YES in the 
CICS SIT parameter at startup. Transaction isolation requires storage protection to be 
enabled, which is achieved by specifying STGPROT=YES as a CICS SIT parameter.

In addition to specifying the storage and execution key individually for each user transaction, 
you can specify that CICS is to isolate the user-key task-lifetime storage of a transaction to 
provide transaction-to-transaction protection. You complete this task by using the ISOLATE 
option of the TRANSACTION resource definition.

Transaction isolation does not apply to 64-bit storage.

For more information about the use of transaction isolation in a CICS environment, see the 
topic “CICS storage protection and transaction isolation” in IBM Knowledge Center at this 
website:

https://ibm.biz/Bd4YEH

Transaction isolation is not a new feature in CICS TS V5.1, although changes to default 
values in this release can affect how storage is allocated when compared to previous CICS 
TS releases. The remainder of this section meets the following goals:

� Describes the concepts of transaction isolation

� Provides a study that demonstrates the overhead of enabling transaction isolation

� Highlights how changes to default values in CICS TS V5.1 can affect your environment 
when running with transaction isolation enabled

5.12.1  Unique subspaces

In general, transaction isolation ensures that user-key programs are allocated to separate 
(unique) subspaces, and have the following characteristics:

� ISOLATE(YES) and KEY(USER) on the transaction definition

� Read and write access to the user-key task-lifetime storage of their own tasks, which is 
allocated from one of the user dynamic storage areas (UDSA or EUDSA)

� Read and write access to shared storage, which is storage obtained by GETMAIN 
commands with the SHARED option (SDSA or ESDSA)

� Read access to the CICS-key task-lifetime storage of other tasks (CDSA or ECDSA)

� Read access to CICS code

� Read access to CICS control blocks that are accessible by the CICS API

User-key programs do not have any access to user-key task-lifetime storage of other tasks.

You might have some transactions where the application programs access one another's 
storage in a valid way. One such case is when a task waits on one or more event control 
blocks (ECBs) that are later posted by an MVS POST or hand posting by another task.

For example, a task can pass the address of a piece of its own storage to another task (by a 
temporary storage queue or some other method) and then WAIT for the other task to post an 
ECB to say that it includes updated the storage. If the original task is running in a unique 
subspace, the posting task fails when attempting the update and to post the ECB, unless the 
posting task is running in CICS-key.
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CICS supports the following methods to ensure that transactions that must share storage can 
continue to work in the subspace group environment:

� Use of the common subspace
� Use of the base space
� Use of common storage by obtaining the storage with the SHARED option

5.12.2  Common subspace

You can specify that all the related transactions are to run in the common subspace. The 
common subspace allows tasks that must share storage to coexist, while isolating them from 
other transactions in the system. Transactions that are assigned to the common subspace 
have the following characteristics:

� They specify ISOLATE(NO) on the transaction definition.
� They have read and write access to each other's task-lifetime storage.
� They have no access of any kind to storage of transactions that run in unique subspaces.
� They have read only access to CICS storage.

5.12.3  Base space

Programs that are defined with EXECKEY(CICS) run in the base space.

You can ensure that the application programs of the transactions that are sharing storage are 
all defined with EXECKEY(CICS). This setting ensures that their programs run in base space, 
where they have read and write access to all storage. However, this method is not 
recommended because it does not give any storage protection.

5.12.4  Transaction isolation performance effect

The performance figures in this section were obtained when running the DSW static routing 
workload as described in 3.2.1, “DSW static routing” on page 22 by using CICS TS for z/OS 
V5.1. Table 5-18 lists the CPU cost per transaction and number of real frames of storage that 
is used by the workload when running with transaction isolation disabled.

Table 5-18   CPU cost per transaction and real storage frames used with transaction isolation disabled

The average CPU cost per transaction is calculated to be 0.600 ms.

ETR Real storage frames CPU per transaction (ms)

2072.30 163,292 0.618

2842.24 163,292 0.609

4130.87 163,335 0.594

5047.97 163,335 0.594

5681.45 163,487 0.586
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Table 5-19 lists the CPU cost per transaction and number of real frames of storage that are 
used by the same workload when running with transaction isolation enabled.

Table 5-19   CPU cost per transaction and real storage frames used with transaction isolation enabled

The average CPU cost per transaction is calculated to be 0.664 ms.

The data in Table 5-18 on page 75 and Table 5-19 shows that the use of transaction isolation 
does have a cost. In this workload, the increase in CPU was about 10% where all of the 
transactions ran in unique subspaces. There was also an increase in real storage usage.

5.12.5  Page and extent sizes

The transaction isolation facility increases the allocation of some 31-bit virtual storage for 
CICS regions that are running with transaction isolation active.

If you are running with transaction isolation active, CICS allocates storage for task-lifetime 
storage in multiples of 1 MB for user-key tasks that require 31-bit storage. The minimum unit 
of storage allocation in the EUDSA when transaction isolation is active is 1 MB.

Table 5-20 lists the page and extent sizes for the UDSA and EUDSA storage areas, where 
transaction isolation is disabled and transaction isolation is enabled.

Table 5-20   Page and extent sizes with transaction isolation disabled and enabled

As described in 5.6.4, “Mirror transactions” on page 61, CICS TS V5.1 changes the default 
value for the TASKDATALOC attribute on a TRANSACTION resource from BELOW to ANY. This 
change also affects the mirror transaction CSMI.

If running with transaction isolation enabled, the change to TASKDATALOC for the mirror 
transaction might cause higher peak usage in EUDSA because any GETMAIN request for user 
storage by this transaction is allocated in 31-bit storage, not 24-bit storage. As shown in 
Table 5-20, the minimum storage that is allocated is 1 MB, not 4 KB.

ETR Real storage frames CPU per transaction (ms)

2073.25 188,103 0.677

2842.38 188,103 0.670

4129.20 188,138 0.659

5044.09 185,032 0.658

5676.44 185,111 0.655

Transaction 
isolation

Page size Extent size

No Yes No Yes

UDSA 4 KB 4 KB 256 KB 1 MB

EUDSA 64 KB 1 MB 1 MB 1 MB
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Chapter 6. CICS TS for z/OS V5.2

This chapter describes many of the performance-related improvements that are found in the 
CICS TS for z/OS V5.2 release. The following subject areas are included in the CICS TS V5.2 
performance report:

� Key performance benchmarks that are presented as a comparison against the CICS TS 
V5.1 release.

� An outline of improvements that were made regarding the threadsafe characteristics of the 
CICS run time.

� Details of the changes that were made to performance-critical CICS initialization 
parameters and the affect of these updates.

� Description of all the new and updated monitoring fields, including examples where 
necessary.

� High-level views of new functions that were introduced in the CICS TS V5.2 release, 
including performance benchmark results where appropriate.

This chapter includes the following topics:

� 6.1, “Introduction” on page 78
� 6.2, “Release-to-release comparisons” on page 78
� 6.3, “Improvements in threadsafe API and SPI commands” on page 85
� 6.4, “Changes to system initialization parameters” on page 86
� 6.5, “Enhanced instrumentation” on page 87
� 6.6, “Kerberos” on page 91
� 6.7, “JSON support” on page 95
� 6.8, “Java applications and trace” on page 102
� 6.9, “Web services over HTTP improvements” on page 104
� 6.10, “Java 7.0 and Java 7.1” on page 106

6
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6.1  Introduction

When the results for this chapter were compiled, the workloads were run on an IBM 
zEnterprise EC12 model HA1 (machine type 2827). A maximum of 32 dedicated central 
processors (CPs) were available on the measured logical partition (LPAR), with a maximum of 
four dedicated CPs available to the LPAR used to simulate users. These LPARs are 
configured as part of a parallel sysplex. An internal coupling facility was co-located on the 
same central processor complex (CPC) as the measurement and driving LPARs, which were 
connected by using internal coupling peer (ICP) links. An IBM System Storage DS8870 
(machine type 2424) was used to provide external storage. 

This chapter presents the results of several performance benchmarks when run in a CICS TS 
for z/OS V5.2 environment. Unless otherwise stated in the results, the CICS V5.2 
environment was the code available at the general availability (GA) date of 13 June 2014. 
Several of the performance benchmarks are presented in the context of a comparison against 
CICS TS V5.1. The CICS TS V5.1 environment contained all PTFs issued before 18 February 
2014. All LPARs used z/OS V2.1.

For more information about performance terms that are used in this chapter, see Chapter 1, 
“Performance terminology” on page 3. A description of the test methodology that was used 
can be found in Chapter 2, “Test methodology” on page 11. For more information about the 
workloads that were used, see Chapter 3, “Workload descriptions” on page 21.

Where reference is made to an LSPR processor equivalent, the indicated machine type and 
model can be found in the large systems performance reference (LSPR) document. For more 
information about obtaining and the use of LSPR data, see 1.3, “Large Systems Performance 
Reference” on page 6.

6.2  Release-to-release comparisons

This section describes some of the results from a selection of regression workloads that are 
used to benchmark development releases of CICS TS. For more information about the use of 
regression workloads, see Chapter 3, “Workload descriptions” on page 21.

6.2.1  Data Systems Workload static routing

The static routing variant of the Data Systems Workload (DSW) is described in 3.2.1, “DSW 
static routing”. This section presents the performance figures that were obtained by running 
this workload. Table 6-1 lists the results of the DSW static routing workload that used the 
CICS TS V5.1 release. 

Table 6-1   CICS TS V5.1 results for DSW static routing workload

ETR CICS CPU CPU per transaction (ms)

2563.06 57.03% 0.223

3011.97 66.75% 0.222

3613.27 79.61% 0.220

4515.94 98.11% 0.217

6029.03 128.57% 0.213
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Table 6-2 lists the same figures for the CICS TS V5.2 release.

Table 6-2   CICS TS V5.2 results for DSW static routing workload

The average CPU per transaction value for CICS TS V5.1 is calculated to be 0.219 ms. The 
same value for CICS TS V5.2 is also calculated to be 0.219 ms. The performance of this 
workload is considered to be equivalent across the two releases.

These figures are shown in Figure 6-1.

Figure 6-1   Plot of CICS TS V5.1 and V5.2 performance figures for DSW static routing workload

The measured CPU cost for each transaction rate is similar for CICS TS V5.1 and V5.2, which 
is demonstrated by the two plot lines being almost identical. A final observation is that the 
CPU cost scales linearly in accordance with the transaction rate.

6.2.2  DSW dynamic routing

The dynamic routing variant of the DSW workload is described in 3.2.2, “DSW dynamic 
routing”. This section presents the performance figures that were obtained by running this 
workload.

ETR CICS CPU CPU per transaction (ms)

2562.81 57.00% 0.222

3011.61 66.74% 0.222

3613.01 79.61% 0.220

4515.30 98.47% 0.218

6028.32 129.29% 0.214
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Table 6-3 lists the results of the DSW dynamic routing workload that used the CICS TS V5.1 
release. 

Table 6-3   CICS TS V5.1 results for DSW dynamic routing workload

Table 6-4 lists the same figures for the CICS TS V5.2 release.

Table 6-4   CICS TS V5.2 results for DSW dynamic routing workload

The results from Table 6-3 and Table 6-4 are shown in Figure 6-2.

Figure 6-2   Plot of CICS TS V5.1 and V5.2 performance figures for DSW dynamic routing workload

As with the DSW static routing workload, the V5.1 and V5.2 lines are almost identical, which 
indicates near-identical CPU cost per transaction. The plot lines are also straight, which 
indicates linear scaling as transaction throughput increases.

ETR CICS CPU CPU per transaction (ms)

3006.60 158.00% 0.526

6118.61 308.48% 0.504

8830.54 440.00% 0.498

11962.02 599.67% 0.501

16238.38 815.93% 0.502

ETR CICS CPU CPU per transaction (ms)

3005.68 159.81% 0.532

6111.82 311.00% 0.509

8827.54 441.50% 0.500

11963.57 596.41% 0.499

16252.29 817.04% 0.503
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6.2.3  Relational Transactional Workload non-threadsafe

The Relational Transactional Workload (RTW) is described in 3.3, “Relational Transactional 
Workload” on page 25. This section presents the performance figures for the non-threadsafe 
variant when CICS TS V5.1 is compared with CICS TS V5.2.

Table 6-5 lists the performance results for the RTW non-threadsafe workload that used the 
CICS TS V5.1 release. 

Table 6-5   CICS TS V5.1 results for the RTW non-threadsafe workload

Table 6-6 lists the same figures for the CICS TS V5.2 release.

Table 6-6   CICS TS V5.2 results for the RTW non-threadsafe workload

For the V5.1 release, the average CPU cost per transaction is calculated to be 2.480 ms. The 
V5.2 release produces an average of 2.453 ms. This difference represents a reduction in 
CPU per transaction of approximately 1%.

ETR CICS CPU CPU per transaction (ms)

250.08 60.71% 2.428

332.92 80.40% 2.415

453.24 113.15% 2.496

585.73 147.30% 2.515

709.60 180.50% 2.544

ETR CICS CPU CPU per transaction (ms)

250.20 60.37% 2.413

332.92 79.88% 2.399

453.54 110.97% 2.447

586.15 145.72% 2.486

710.25 178.82% 2.518
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The results from Table 6-5 on page 81 and Table 6-6 on page 81 are shown in Figure 6-3.

Figure 6-3   Plot of CICS TS V5.1 and V5.2 performance figures for RTW non-threadsafe workload

The straight line represents linear scaling as throughput increases. The CICS TS V5.2 line 
shows a slight improvement when compared with CICS TS V5.1.

6.2.4  RTW threadsafe

This section presents the performance figures for the threadsafe variant of the RTW, as 
described in 3.3, “Relational Transactional Workload” on page 25.

Table 6-7 lists the results of the RTW threadsafe workload that used the CICS TS V5.1 
release. 

Table 6-7   CICS TS V5.1 results for the RTW threadsafe workload
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ETR CICS CPU CPU per transaction (ms)

333.14 53.86% 1.617

498.78 80.12% 1.606

711.30 114.03% 1.603

990.59 157.05% 1.585

1227.39 195.89% 1.596
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Table 6-8 lists the same figures for the CICS TS V5.2 release.

Table 6-8   CICS TS V5.2 results for the RTW threadsafe workload

These performance results are shown in Figure 6-4.

Figure 6-4   Plot of CICS TS V5.1 and V5.2 performance figures for RTW threadsafe workload

The straight line indicates linear scaling as throughput increases, while the almost identical 
lines demonstrate equivalent performance between the two CICS releases.

6.2.5  Java servlet that uses JDBC and VSAM

The JDBC and VSAM Java servlet benchmark was run in the environment as described in 
6.1, “Introduction” on page 78. The LPAR that was used for performance measurements was 
configured with three dedicated CPs and one dedicated IBM System z® Integrated 
Information Processor (zIIP). The LPAR that was used to drive workload into the measured 
system was configured with three dedicated CPs. Both of these LPARs represent an LSPR 
equivalent processor of 2827-703. All configurations used IBM DB2 for z/OS V10, with IBM 
Workload Simulator for z/OS V1.1.0.1 driving the workload as 200 simulated HTTP clients.

All tests used a CICS region that contained a single JVMSERVER resource with the THREADLIMIT 
attribute set to 100. The following garbage collection and memory management options were 
specified in the relevant JVM profile configuration file:

� -Xgcpolicy:gencon
� -Xcompressedrefs

ETR CICS CPU CPU per transaction (ms)

333.79 53.63% 1.607

499.18 79.72% 1.597

711.84 114.13% 1.603

991.11 157.43% 1.588

1228.72 196.47% 1.599
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� -XXnosuballoc32bitmem
� -Xmx200M
� -Xms200M
� -Xmnx60M
� -Xmns60M
� -Xmox140M
� -Xmos140M

For more information about these JVM tuning parameters, see the “Command-line options” 
topic in IBM Knowledge Center at the following website:

https://ibm.biz/Bd4YSB

To minimize variance in the performance results that might be introduced by the just-in-time 
(JIT) compiler, the workload was run at a constant transaction rate for 20 minutes to provide a 
warm-up period. The request rate was increased every 10 minutes, with the mean CPU 
usage per request calculated by using the final five minutes of data from the 10-minute 
interval.

As described for other workloads in 2.6, “Collecting performance data” on page 18, IBM 
Resource Measurement Facility™ (RMF) was used to record CPU consumption at an 
address space level.

CICS TS V5.1 and CICS TS V5.2 used Java 7.0 SR7 (64-bit). In addition to the software 
environment that is described in 6.1, “Introduction” on page 78, the following software 
versions were used:

� CICS TS V5.1 with IBM WebSphere Application Server Liberty V8.5.0.0
� CICS TS V5.2 with IBM WebSphere Application Server Liberty V8.5.0.1

Table 6-9 lists the performance measurements when running the workload in a CICS TS V5.1 
environment. 

Table 6-9   CICS TS V5.1 results for the Java servlet JDBC and VSAM workload

Table 6-10 lists the performance measurements when running the workload in a CICS TS 
V5.2 environment.

Table 6-10   CICS TS V5.2 results for the Java servlet JDBC and VSAM workload

ETR CICS CPU CPU per request 
(ms)

Not zIIP-eligible zIIP-eligible Total

200 20.87% 30.03% 50.90% 2.545

400 42.02% 60.81% 102.83% 2.571

800 86.61% 120.95% 207.55% 2.594

ETR CICS CPU CPU per request 
(ms)

Not zIIP-eligible zIIP-eligible Total

200 20.82% 29.42% 50.24% 2.512

400 42.34% 60.12% 102.46% 2.562

800 86.46% 120.38% 206.85% 2.586
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A subset of the performance measurements in Table 6-9 on page 84 and Table 6-10 on 
page 84 is shown Figure 6-5.

Figure 6-5   CICS TS V5.1 and CICS TS V5.2 performance results for JDBC and VSAM workload

The total CPU lines for CICS TS V5.1 and CICS TS V5.2 are almost identical and 
demonstrate similar performance when comparing the two CICS TS releases. The straight 
lines represent linear scaling as the transaction rate increases.

Also, the fraction of total workload that is eligible for offload features similar profiles between 
the CICS TS V5.1 and CICS TS V5.2 releases. Again, the straight line demonstrates the 
linear scaling nature of the environment.

For the sake of clarity, the non-zIIP-eligible performance results were omitted from Figure 6-5; 
however, it can be concluded that non-zIIP-eligible time must scale in a similar manner as 
shown in the following equation:

Total CPU time = non zIIP-eligible time + zIIP-eligible time

6.3  Improvements in threadsafe API and SPI commands

CICS V5.2 brings further improvements in threadsafe API and SPI commands. The following 
new CICS API commands are threadsafe:

� INVOKE APPLICATION
� VERIFY TOKEN

For more information about CICS API commands, see the “CICS command summary” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YSx
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The following CICS SPI commands were made threadsafe:

� INQUIRE MVSTCB

� DISPATCHER commands:

– INQUIRE DISPATCHER
– SET DISPATCHER

� MONITOR commands:

– INQUIRE MONITOR
– SET MONITOR

� PROGRAM commands:

– INQUIRE PROGRAM
– SET PROGRAM
– DISCARD PROGRAM

� STATISTICS commands:

– EXTRACT STATISTICS
– INQUIRE STATISTICS
– SET STATISTICS

� SYSTEM commands:

– INQUIRE SYSTEM
– SET SYSTEM

� TRANSACTION commands:

– INQUIRE TRANSACTION
– SET TRANSACTION
– DISCARD TRANSACTION

For more information about CICS SPI commands, see the “System commands” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd4YSD

6.4  Changes to system initialization parameters

Several performance-related CICS system initialization parameters were changed in the 
CICS TS V5.2 release.

6.4.1  Maximum tasks (MXT)

The default value for the maximum tasks (MXT) system initialization parameter was changed to 
250.

You must ensure that enough storage is available to support the maximum number of tasks 
value. For more information about setting the MXT value, see the “Setting the maximum task 
specification (MXT)” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YSi

Note: The default MXT value is provided as a starting point when tuning a CICS system and 
does not represent an optimal configuration for all workloads. The MXT parameter must be 
configured according to the expected transaction throughput for the system.
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CICS allocates several MVS workload manager (WLM) performance blocks (PBs) that are 
based on the current setting of the MXT parameter. Specifying an excessively large value for 
MXT can result in wasted use of local system queue area (LSQA) storage. Where many 
unused PBs exist, CPU cycles can be consumed unnecessarily by WLM because all blocks 
must be scanned to determine the status of the performance goal metrics.

6.4.2  Maximum open TCBs (MAXOPENTCBS)

The maximum open TCBs (MAXOPENTCBS) system initialization parameter was removed in 
CICS TS V5.1, but for tuning purposes is reinstated in the CICS TS V5.2 release. If the 
MAXOPENTCBS parameter is not specified, CICS sets the parameter automatically based on the 
current value of the MXT system initialization parameter. The value of MAXOPENTCBS is 
calculated by using the same algorithm implemented in CICS TS V5.1, as shown in the 
following example:

MAXOPENTCBS = (2 x MXT) + 32

For more information about the MAXOPENTCBS parameter, see the “MAXOPENTCBS” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bd4YvM

6.4.3  Maximum XP TCBs (MAXXPTCBS)

The maximum XP TCBs (MAXXPTCBS) system initialization parameter was removed in CICS TS 
V5.1. However, it is reinstated in the CICS TS V5.2 release for tuning purposes. If the 
MAXXPTCBS parameter is not specified, CICS sets it automatically based on the current value of 
the MXT system initialization parameter. The value of MAXXPTCBS is calculated by using the 
same algorithm implemented in CICS TS V5.1, as shown in the following example:

MAXXPTCBS = MXT

For more information about the MAXXPTCBS parameter, see the “MAXXPTCBS” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd4YvS

6.5  Enhanced instrumentation

The CICS TS V5.2 release continues the expansion of information that is reported by the 
CICS monitoring and statistics component. This section describes the extra fields that are 
now available in the CICS statistics SMF records.

6.5.1  Dispatcher global statistics

The following new fields were added to the collected dispatcher global statistics:

� Last excess TCB scan (field DSGLXSCN)

The date and time of the last CICS dispatcher excess MVS TCB scan.

Note: The minimum value for the MAXOPENTCBS parameter was increased to 32 in 
CICS TS V5.4.
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� Last excess TCB scan - no TCB detached (field DSGLXSND)

The date and time of the last CICS dispatcher excess MVS TCB scan that did not detach 
any TCBs.

A sample DFHSTUP report that contains the new fields is shown in Example 6-1.

Example 6-1   Sample dispatcher global statistics report produced by CICS TS V5.2 DFHSTUP

Dispatcher Start Date and Time. . . . . . . : 05/16/2014  04:04:34.9633
Address Space CPU Time. . . . . . . . . . . : 00:00:29.882586
Address Space SRB Time. . . . . . . . . . . : 00:00:16.516442
Current number of dispatcher tasks. . . . . : 30
Peak number of dispatcher tasks . . . . . . : 75
Current ICV time (msec) . . . . . . . . . . : 1000
Current ICVR time (msec). . . . . . . . . . : 5000
Current ICVTSD time (msec). . . . . . . . . : 100
Current PRTYAGE time (msec) . . . . . . . . : 1000
Current MRO (QR) Batching (MROBTCH) value . : 1
Last Excess TCB Scan. . . . . . . . . . . . : 05/16/2014  05:28:10.1478
Number of Excess TCB Scans. . . . . . . . . : 1
Last Excess TCB Scan - No TCB Detached. . . : 05/16/2014  05:28:10.1478
Excess TCB Scans - No TCB Detached. . . . . : 1
Number of Excess TCBs Detached. . . . . . . : 0
Average Excess TCBs Detached per Scan . . . : 0
Number of CICS TCB MODEs. . . . . . . . . . : 18
Number of CICS TCB POOLs. . . . . . . . . . : 4

For more information about dispatcher global statistics, see the “Dispatcher domain: Global 
statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Yvm

6.5.2  Dispatcher TCB mode statistics

The following new fields were added to the collected dispatcher TCB mode statistics:

� Dispatchable Queue – Current (field DSGTMCDQ)

The current number of dispatchable tasks that are queued for the TCB.

� Dispatchable Queue – Peak (field DSGTMPDQ)

The peak number of dispatchable tasks that were queued for the TCB.

� Dispatchable Queue – Average (field DSGTMADQ)

The average number of dispatchable tasks that were queued for the TCB.

A sample DFHSTUP report that contains the new fields is shown in Example 6-2. The new 
fields are presented in the final three columns for TCB modes where only one TCB exists.

Example 6-2   Sample dispatcher TCB mode statistics report produced by CICS TS V5.2 DFHSTUP

TCB         TCB    < TCBs Attached >   <- TCBs In Use ->     TCB     <-  Dispatchable Queue   ->
Mode  Open  Pool   Current      Peak   Current      Peak  Attaches   Current      Peak   Average
________________________________________________________________________________________________
 QR    No   N/A          1         1         1         1         0         1        27      1.12
 RO    No   N/A          1         1         1         1         0         1         1      1.00
 CO    Unk  N/A          0         0         0         0         0         0         0      0.00
 SZ    Unk  N/A          0         0         0         0         0         0         0      0.00
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 RP    Unk  N/A          0         0         0         0         0         0         0      0.00
 FO    No   N/A          1         1         1         1         0         0         0      0.00
 SL    No   N/A          1         1         1         1         0         0         0      0.00
 SO    No   N/A          1         1         1         1         0         0         0      0.00
 SP    No   N/A          1         1         1         1         0         0         0      0.00
 EP    No   N/A          2         2         2         2         0
 TP    Unk  N/A          0         0         0         0         0
 D2    Unk  N/A          0         0         0         0         0
 S8    Unk  N/A          0         0         0         0         0
 L8    Yes  Open         1         1         0         1         0
 L9    Unk  N/A          0         0         0         0         0
 X8    Unk  N/A          0         0         0         0         0
 X9    Unk  N/A          0         0         0         0         0
 T8    Unk  N/A          0         0         0         0         0
________________________________________________________________________________________________
Totals                   9                   8                   0

For more information about dispatcher TCB mode statistics, see the “Dispatcher domain: 
TCB Mode statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YvK

6.5.3  Dispatcher TCB pool statistics

The Time Max TCB Pool Limit last reached (field DSGLTCBL) field was added to the collected 
dispatcher TCB pool statistics. This field shows the time at which the pool reached the 
maximum TCB limit.

A sample fragment of DFHSTUP report that contains the new field is shown in Example 6-3.

Example 6-3   Sample dispatcher TCB pool statistics report produced by CICS TS V5.2 DFHSTUP

TCB Pool. . . . . . . . . . . . . . . . . . . . :          OPEN
Current TCBs attached in this TCB Pool. . . . . :           170  ...
Peak TCBs attached in this TCB Pool . . . . . . :           170  ...
Max TCB Pool limit (MAXOPENTCBS). . . . . . . . :           170  ...
Time Max TCB Pool Limit last reached. . . . . . : 15:47:39.2782  ...
Total Requests delayed by Max TCB Pool Limit. . :           819  ...
Total Max TCB Pool Limit delay time . . . . . . : 00:01:57.2105  ...
Current Requests delayed by Max TCB Pool Limit. :             0  ...
Current Max TCB Pool Limit delay time . . . . . : 00:00:00.0000  ...
Peak Requests delayed by Max TCB Pool Limit . . :            67  ...

For more information about dispatcher TCB pool statistics, see the “Dispatcher domain: TCB 
Pool statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YvG

6.5.4  Monitoring domain global statistics

The following fields were added to the collected monitoring domain statistics:

� User transactions ended (field MNGUTNUM)

The number of user transactions that ended.
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� System transactions ended (field MNGSTNUM)

The number of system transactions that ended.

� Time last user transaction attached (field MNGLUTAT)

The date and time of the last transaction attach processed by the monitoring domain.

� Time last user transaction ended (field MNGLUTCL)

The date and time at which the last transaction ended.

� MXT at last user transaction attach (field MNGMXUTA)

The current MXT value at the time of the last transaction attached.

� Current tasks at last attach (field MNGCAUTA)

The current number of user transactions that are attached in the region at the time of the 
last transaction attached.

� Average user transaction resp time (field MNGAUTRT)

The rolling average user transaction response time.

� Peak user transaction resp time (field MNGPUTRT)

The maximum user transaction response time.

� Peak user transaction resp time at (field MNGLUTRT)

The time stamp of the maximum user transaction response time.

A sample DFHSTUP report that shows the new statistics fields is shown in Example 6-4.

Example 6-4   Sample monitoring domain global statistics report produced by CICS TS V5.2 DFHSTUP

User transactions ended . . . . . . . :   905698
System transactions ended . . . . . . :       11
Time last user transaction attached . : 05/16/2014  05:28:43.5198    ...
Time last user transaction ended. . . : 05/16/2014  05:28:43.5215    ...
Average user transaction resp time. . :             00:00:00.001168
Peak user transaction resp time . . . :             00:00:00.104882
Peak user transaction resp time at. . : 05/16/2014  05:26:55.8512

... MXT at last user transaction attach . :      650

... Current tasks at last attach. . . . . :        8

For more information about monitoring domain statistics, see the topic “Monitoring domain: 
global statistics” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Yve

The rolling average transaction response time is computed using the following equation:

avg resp time current avg resp time num of completions×( ) this resp time+
num of completions 1+

-----------------------------------------------------------------------------------------------------------------------------------------------------=
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6.5.5  Transaction manager global statistics

The following new fields were added to the collected transaction manager statistics:

� Time MAXTASKS last changed (field XMGLSMXT)

The date and time when MXT was last set or changed dynamically.

� Time last transaction attached (field XMGLTAT)

The date and time when the last user transaction was attached.

� Time the MAXTASKS limit last reached (field XMGLAMXT)

The date and time when the number of active user transactions last equaled MXT.

� Currently at MAXTASKS limit (field XMGATMXT)

Indicates whether the CICS region is at MXT.

A sample DFHSTUP report that contains the new fields is shown in Example 6-5.

Example 6-5   Sample transaction manager global statistics report fragment produced by CICS TS V5.2 DFHSTUP

Total number of transactions (user + system)                      :                      19,274
Current MAXTASKS limit                                            :                         650
Time MAXTASKS last changed                                        :   05/15/2014  12:20:16.9640
Current number of active user transactions                        :                           1
Time last transaction attached                                    :   05/15/2014  12:40:24.6738
Current number of MAXTASK queued user transactions                :                           0
Times the MAXTASKS limit reached                                  :                           7
Time the MAXTASKS limit last reached                              :   05/15/2014  12:34:21.7237
Currently at MAXTASKS limit                                       :                          No
Peak number of MAXTASK queued user transactions                   :                         164
Peak number of active user transactions                           :                         650
Total number of active user transactions                          :                       19232
Total number of MAXTASK delayed user transactions                 :                         456
Total MAXTASK queuing time                                        :                000-00:00:13
Total MAXTASK queuing time of currently queued user transactions  :                    00:00:00

For more information about transaction manager statistics, see the topic “Transaction 
manager: Global statistics” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YvA

6.6  Kerberos

CICS TS V5.2 introduces support for Kerberos token validation. CICS TS supports Kerberos 
by using the external security manager (ESM). The level of support depends on the support 
that is provided by the ESM. If your ESM is RACF, support is based on Kerberos Version 5 
and Generic Security Services (GSS).
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CICS can verify a Kerberos token by configuring a service provider pipeline or by using the 
API command VERIFY TOKEN. An extract of a web service provider pipeline file that is 
configured to use Kerberos support is shown in Example 6-6.

Example 6-6   Extract of web services pipeline file configured for Kerberos support

<service_handler_list>
  <wsse_handler>
    <dfhwsse_configuration version="1">
      <authentication trust="basic" mode="basic-kerberos"/>
    </dfhwsse_configuration>
  </wsse_handler>
</service_handler_list>

A sample invocation of the VERIFY TOKEN command that uses COBOL is shown in 
Example 6-7.

Example 6-7   Sample COBOL invocation of the VERIFY TOKEN command

EXEC CICS VERIFY TOKEN(WS-KERBEROS-TOKEN)
TOKENLEN(WS-LENGTH)
KERBEROS
BASE64
ESMREASON(WS-ESMREAS)
ESMRESP(WS-ESMRESP) 
RESP(WS-RESP)

For more information about Kerberos support that is provided by CICS TS, see the topic 
“Kerberos support” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YvQ
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6.6.1  Kerberos test configuration

A high-level topology diagram of the test application is shown in Figure 6-6. 

Figure 6-6   Topology of Kerberos performance test application

A CICS requester region is used to create web services request messages. This requester 
region runs transactions that are started over LU2, where IBM Workload Simulator for z/OS 
(Workload Simulator) provides several simulated clients that can be configured to provide 
requests at a consistent, but adjustable transaction rate. 

The transactions run in the requester region issue web services requests that are directed to 
an IBM WebSphere DataPower® Integration Appliance XI50 for zEnterprise.

The DataPower appliance requests a Kerberos token from a Kerberos key distribution center 
(KDC), which is hosted in z/OS. The Kerberos token is obtained by using information that is 
retrieved from RACF.

After a Kerberos token is obtained, it is inserted into the received web service request and the 
modified request is forwarded to the CICS web services provider region under test.

The CICS web services pipeline handler logic is configured to validate the Kerberos token by 
using the configuration that is shown in Example 6-7 on page 92. This pipeline processing 
involves the CICS provider region passing the received Kerberos token to RACF for 
validation.

After the Kerberos token is validated, control is passed to the user application in the CICS 
provider region with the received data supplied by using the CICS channels interface.
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The user application performs a trivial processing operation and then returns the application 
response as binary data to the CICS web services pipeline in the DFHWS-DATA container. The 
web services pipeline converts the binary data response to a well-formed XML response that 
is returned to the DataPower appliance.

Finally, the DataPower appliance returns the web services response back to the CICS 
requester region.

6.6.2  Kerberos performance results

To verify the Kerberos token within the CICS provider pipeline, RACF calls the KDC to verify 
the token. Therefore, in addition to the CPU cycles that are consumed by the CICS provider 
address space, CPU cycles are consumed by the KDC address space. This publication 
focuses on the CICS overhead and does not account for this extra CPU overhead in the 
performance results.

Figure 6-7 plots the measured CPU consumption for a web service request rate, with and 
without a Kerberos token included in the message body.

Figure 6-7   Plot of CPU usage for web service workload with and without Kerberos token

6.6.3  Kerberos support conclusion

By using the data that is shown in Figure 6-7, you can see that processing a Kerberos token 
for each web service request added a burden of approximately 0.165 ms of CPU. This extra 
usage remained constant as the workload increased.

In this scenario, a maximum throughput of 410 web service requests per second was 
achieved with a Kerberos token, which is compared to over 500 requests per second without 
a token. This reduction in throughput was primarily due to usage involved with these 
processes:

� DataPower obtaining the Kerberos token
� CICS using RACF to verify the Kerberos token
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6.7  JSON support

CICS TS V5.2 includes support for JSON data mapping, originally released as the CICS 
Transaction Server Feature Pack for Mobile Extensions V1.0. This support can be used by 
configuring a web service to use a JSON data stream, or by invoking the JSON transformer 
linkable interface y using the correct CICS container data structures. The JSON data mapping 
support is implemented in Java and uses a CICS JVM server that is configured with Axis2 
services to provide the required runtime environment.

For more information about the use of the JSON support in a web services environment, see 
the topic “Getting started with JSON web services” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Ym2

For more information about the use of the JSON support as an API, see the topic “JSON 
transformer linkable interface containers” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Ymf

6.7.1  JSON support test configuration

The performance test application uses the pipeline interface to determine the cost per request 
of the JSON data mapping support.

A JSON request is accepted into the CICS provider region on a TCP/IP port by using the 
HTTP transport and is processed by the CICS pipeline handler mechanism. The pipeline 
handler transforms the received JSON payload into a binary data structure as defined by the 
COBOL copybook that is used when the bind files are created. The *.wsbind files are created 
by using the bottom-up approach of taking a language copybook and generating a JSON 
schema and wsbind file.

The pipeline transforms the JSON request payload into a binary data structure by using CICS 
supplied code that runs in a Java virtual machine (JVM). The converted binary data structure 
is passed to the user application as containers within a channel. When the user application is 
completed, the output binary data structure is converted back to a JSON response. The 
conversion process to a JSON data stream is again implemented as Java code that runs in a 
CICS JVM server. The use of this Java processing code is specified in the pipeline 
configuration file.

Example 6-8 shows sample input to the DFHCSDUP utility that is used to create the JVMSERVER 
CSD definition that is required for enabling JSON mapping services support.

Example 6-8   Sample JVMSERVER definition for JSON support

DEFINE JVMSERVER(JSONJVM)
GROUP(GJSON)
JVMPROFILE(DFHJVMAX)
THREADLIMIT(50)

The JVMSERVER name is referenced by the pipeline configuration XML file (see the sample 
XML configuration file in Example 6-13 on page 97). The definition references the JVM profile 
file named DFHJVMAX.jvmprofile. CICS determines the hierarchical file system (HFS) location 
of this file by using the JVMPROFILEDIR SIT parameter.
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For more information about the attributes that are available on a JVMSERVER resource 
definition, see the topic “JVMSERVER attributes” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YmM

The CICS supplied sample JVM profile file was amended to specify system-specific values for 
the JAVA_HOME and WORK_DIR parameters. The following parameters were also specified to fix 
the Java heap sizes to minimize variation in performance results:

� -Xmx400M
� -Xms400M
� -Xmnx120M
� -Xmns120M
� -Xmox280M
� -Xmos280M

A TCP/IP port was opened in CICS that was dedicated to the JSON endpoint. Example 6-9 
shows sample input to the DFHCSDUP utility that was used to create the TCPIPSERVICE CSD 
definition that is required for opening a port in CICS.

Example 6-9   Sample TCPIPSERVICE definition for JSON support

DEFINE TCPIPSERVICE(JSONTCP1)
GROUP(GJSON)
PORTNUMBER(6000)
TRANSACTION(CWXN)
PROTOCOL(HTTP)
URM(DFHWBAAX)
IP(1.2.3.4)
BACKLOG(250)

The CWXN value for the TRANSACTION attribute specifies the transaction to run when an HTTP 
request is received on the TCP/IP port that matches the URIMAP pattern as specified in the 
construction of the *.wsbind files. Example 6-14 on page 98 shows an example of creating a 
*.wsbind file. The URM value of DFHWBAAX specifies the default HTTP analyzer program.

For more information about attributes that are available on a TCPIPSERVICE resource 
definition, see the topic “TCPIPSERVICE attributes” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YmS

By default, work is accepted by the CSOL (socket listener) transaction, which starts a CWXN 
(web attach) transaction. The CWXN transaction then creates a CPIH (pipeline handler) 
transaction to process the request. For improved separation of work, you can use an 
alternative transaction ID rather than CPIH.

Example 6-10 shows an alternative transaction ID: JPIH. This alternative transaction ID 
provides the same functions as the CICS supplied CPIH transaction, but enables CPU cost 
from this JSON workload to be separated by filtering on transaction ID.

Example 6-10   Sample TRANSACTION definition for JSON support

DEFINE TRANSACTION(JPIH)
GROUP(GJSON)
PROGRAM(DFHPIDSH)
TRANCLASS(JSONTCLH)
SPURGE(YES)
TASKDATALOC(ANY)
DESCRIPTION(JSON HTTP inbound router)
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A transaction class value of JSONTCLH is specified in Example 6-10 that is used to restrict the 
number of JPIH transactions that are attached at any one time within the CICS region. 

Example 6-11 shows a sample definition for the JSONTCLH transaction class.

Example 6-11   Sample TRANCLASS definition for JSON support

DEFINE TRANCLASS(JSONTCLH)
GROUP(GJSON)
MAXACTIVE(100)
PURGETHRESH(NO)

A pipeline is configured in CICS by combining two definitions: The PIPELINE resource and an 
XML file in HFS.

Example 6-12 shows sample input to the DFHCSDUP utility that is used to create the PIPELINE 
CSD definition that is required to enable JSON mapping services support.

Example 6-12   Sample PIPELINE definition for JSON support

DEFINE PIPELINE(JSONPIP1)
GROUP(GJSON)
CONFIGFILE(/path/to/config/file/jsonjavaprovider.xml)
SHELF(/var/cicsts/myapplid/)
WSDIR(/wsdir_prefix/wsbind)

The CONFIGFILE attribute specifies a fully qualified HFS file name for the XML configuration 
file. The SHELF attribute indicates the HFS directory that contains the in-use wsbind files. The 
WSDIR attribute indicates the HFS directory that contains the *.wsbind files that are used to 
determine the mapping between JSON and the native data structures.

For more information about the attributes that are available on a PIPELINE resource definition, 
see the topic “PIPELINE attributes” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Ymm

Example 6-13 shows the pipeline XML configuration file that was used in the test application. 
By using the resource definition in Example 6-12, the following fully qualified XML 
configuration file name is available:

/path/to/config/file/jsonjavaprovider.xml

Example 6-13   Sample pipeline configuration file to use JSON data mapping support

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
  <service>
    <terminal_handler>
      <cics_json_handler_java>
        <jvmserver>JSONJVM</jvmserver>
      </cics_json_handler_java>
    </terminal_handler>
  </service>
  <apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>
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The JSON handler is configured to use the CICS JVMSERVER resource named JSONJVM as 
defined in Example 6-8 on page 95. A sample XML configuration file for the JSON pipeline 
handler is supplied in the following location relative to the CICS installation root directory:

./samples/pipelines/jsonjavaprovider.xml

As described in 6.7.1, “JSON support test configuration” on page 95, the wsbind files were 
generated by using a bottom-up approach. A copybook was used to generate the wsbind and 
JSON schema files.

Example 6-14 shows a snippet of the JCL that runs the DFHLS2JS utility to generate one of the 
wsbind files.

Example 6-14   Extract of JCL used to generate wsbind files

//CABASIC  EXEC DFHLS2JS,
//    JAVADIR='java6_31/J6.0',
//    USSDIR='cics690',
//    PATHPREF='',
//    TMPDIR='/tmp',
//    TMPFILE='LS2JS'
//INPUT.SYSUT1 DD *
 JSON-SCHEMA-REQUEST=/schema_path/CABASIC-req.schema
 JSON-SCHEMA-RESPONSE=/schema_path/CABASIC-resp.schema
 LANG=COBOL
 LOGFILE=/log_path/LS2JS_CABASIC.log
 MAPPING-LEVEL=3.0
 PDSLIB=hlq.COPY                      <- PDS containing COPY members
 PGMINT=COMMAREA                      <- Application interface
 PGMNAME=CABASIC                      <- Program name to invoke
 REQMEM=BASICQ                        <- COPY member for request structure
 RESPMEM=BASICP                       <- COPY member for response structure
 TRANSACTION=JPIH                     <- Pipeline transaction
 URI=JSON/CABASIC                     <- PATH attribute of generated URIMAP
 WSBIND=/wsbind_path/CABASIC.wsbind   <- Output wsbind file
/*

For more information about the use of the DFHLS2JS utility and the input parameters, see the 
topic “DFHLS2JS: High-level language to JSON schema conversion for request-response 
services” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4Ymn

The receiving CICS region used the channel interface to communicate with a COBOL 
back-end application. The application contained no business logic and generated only a trivial 
response. The use of a minimal back-end program enables you to understand the base cost 
of processing a JSON request in a CICS region.

The inbound request contains 32 bytes of application data, which corresponds to 180 bytes of 
JSON. 
98 IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report

https://ibm.biz/Bd4Ymn


Example 6-15 shows a sample JSON request. Formatting is added for clarity; the request as 
received by CICS does not contain white space.

Example 6-15   Sample JSON input for mobile workload

{
  "CABASICOperation" : {
    "count_in" : 32,
    "count_out": 1
  }
}

The request JSON is produced to populate the input fields that match with the COBOL 
copybook that is shown in Example 6-16.

Example 6-16   Sample COBOL copybook for mobile workload request

  05 COUNT-IN    PIC 9(8) COMP-4.
  05 COUNT-OUT   PIC 9(8) COMP-4.
  05 FILLER      PIC X(24).

The application request can result in one of the following four possible responses:

� 32 bytes of user data (103 bytes of JSON)
� 1,024 bytes of user data (1,638 bytes of JSON)
� 4,096 bytes of user data (6,342 bytes of JSON)
� 16,384 bytes of user data (25,159 bytes of JSON)

Multiple response sizes were achieved by creating multiple endpoints. The endpoints were 
defined by creating four different wsbind files: One for each of the possible response sizes. 
The four wsbind files were created by using multiple invocations of the DFHLS2JS utility, each 
specifying a different copybook for the RESPMEM parameter.

Example 6-17 shows a fragment of a sample JSON response. Formatting is added for 
readability; to reduce data transmission burden, the response that is generated by CICS does 
not contain white spaces.

Example 6-17   Sample fragment of JSON response

{
 "CABASICOperationResponse":{
  "recv_size":32,
  "send_size":1024,
  "taskid":44,
  "tranid":JPIH,
  "user_data":[
   {"user_data":"0001-ABCDEFGHIJKLMNOPQRSTUVWXYZ-"},
   {"user_data":"0002-ABCDEFGHIJKLMNOPQRSTUVWXYZ-"},
   …
   {"user_data":"0031-ABCDEFGHIJKLMNOPQRSTUVWXYZ-"}
  ]
 }
}
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The JSON response in Example 6-17 represents a response size of 1 KB of user data. 
Several lines of response were omitted for clarity. The corresponding copybook is shown in 
Example 6-18.

Example 6-18   Sample COBOL copybook for response

05 RECV-SIZE   PIC 9(8) COMP-4.
    05 SEND-SIZE   PIC 9(8) COMP-4.
    05 TASKID      PIC 9(8) COMP-4.
    05 TRANID      PIC X(4).
    05 FILLER      PIC X(16).
    05 USER-DATA   PIC X(32) OCCURS 31 TIMES.

The varying response size was achieved by having multiple copybooks, where the OCCURS 
clause for the USER-DATA field was updated to reflect the required size of response.

6.7.2  Scalability as a function of response size

To determine the scalability of the JSON pipeline handler as the payload increases, the 
workload was run by using a range of response sizes. As described in 6.7.1, “JSON support 
test configuration” on page 95, the input request message consisted of 32 bytes of user data, 
which corresponds to 180 bytes of JSON data.

The workload ran at a rate of approximately 290 requests per second, with the response size 
that varied from 32 bytes to 16 KB of user data. Overall CPU consumption figures are taken 
from RMF data and are listed in Table 6-11. The “GCP cost” values represent work that is not 
eligible for offload, and “zIIP cost” values represent workload that is eligible for offload to a 
specialty engine.

Table 6-11   Average CPU cost per request as response size increases

The data in Table 6-11 is plotted in Figure 6-8 on page 101.

Response size GCP cost (ms) zIIP cost (ms) Total (ms)

32 bytes 0.529 0.084 0.613

1 KB 0.627 0.245 0.872

4 KB 0.619 0.907 1.525

16 KB 0.643 3.988 4.630
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Figure 6-8   Plot of CP cost per request against response size

As the response size increases, the non-zIIP-eligible CP usage remains constant. It is also 
clear that as the response size increases, the zIIP-eligible CP usage increases linearly.

6.7.3  Scalability as a function of request rate

To determine the scalability of the JSON pipeline handler as throughput increases, the 
workload was run with a range of inbound request rates. As described in 6.7.1, “JSON 
support test configuration” on page 95, the input request consisted of 32 bytes of user data, 
which corresponds to 180 bytes of JSON data.

The workload used the 1 KB of user data response size configuration (a response of 1,638 
bytes of JSON), and the request rate varied from approximately 300 - 3,300 requests per 
second. Overall CPU consumption figures are taken from RMF data and are listed in 
Table 6-12. The “% of single general CP” values represent work that is not eligible for offload, 
and “% of single zIIP” values represent workload that is eligible for offload to a specialty 
engine.

Table 6-12   CP utilization as a function of request rate

The values in Table 6-12 are plotted Figure 6-9 on page 102.
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Figure 6-9   Plot of total GCP and zIIP usage against request rate

The straight lines for GCP and zIIP usage demonstrate linear scalability of CPU usage in the 
workload. The ratio of non-eligible to eligible CPU consumption remains constant as the 
transaction rate increases.

6.7.4  JSON support conclusion

Section 6.7.2, “Scalability as a function of response size” demonstrated good scalability of the 
JSON support functions as payload size increases. Section 6.7.3, “Scalability as a function of 
request rate” demonstrated good scalability as transaction rate increased.

The experience that was gained while performance testing the JSON support infrastructure 
showed that performance tuning and monitoring of the JSON support functions is a similar 
process to managing an HTTP XML web services workload within CICS. Many of the 
resources that are required serve the same purpose in SOAP over HTTP and JSON over 
HTTP configurations, with only minor differences in resource definitions observed.

One final observation is related to the situation where it is wanted to throttle work arriving in 
the JVM server. When measuring CPU consumption, adding the pipeline handler transaction 
(JPIH) to a transaction class was slightly more efficient than the use of the THREADLIMIT 
attribute of the JVMSERVER resource.

6.8  Java applications and trace

During the CICS V5.2 development cycle, a review of all the trace points in the direct to CICS 
domain resulted in many of these trace points moving from level 1 to level 2 trace. As a 
consequence of these changes, the performance of a Java application is improved when 
running CICS with default level 1 trace enabled.
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The first workload that was used to demonstrate the performance improvements is the CICS 
Hello World Java sample. This simple application is started at a console and echoes back a 
simple string to confirm that execution completed successfully.

For more information about the use of the Hello World Java sample application, see the topic 
“Running the Hello World examples” in IBM Knowledge Center at this website:

https://ibm.biz/Bd4YWr

The second workload that was used to demonstrate these performance improvements is a 
Java application that issues 120 file read operations by using the JCICS interface.

Figure 6-10 plots the CPU cost per transaction of the simple Hello World Java workload in the 
following configurations:

� CICS TS V5.1 with trace disabled
� CICS TS V5.1 with default level 1 trace enabled
� CICS TS V5.2 with default level 1 trace enabled

Figure 6-10   Plot of CPU per transaction for the Hello world Java workload

Figure 6-10 shows a clear reduction in CPU consumption in CICS TS V5.2 when compared to 
the same configuration that uses CICS TS V5.1. The same three configurations were studied 
for the file read Java workload, with the results shown in Figure 6-11 on page 104.
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Figure 6-11   Plot of CPU per transaction for the file read Java workload

As with the Hello World Java workload, there is a clear reduction in CPU consumption per 
transaction when CICS TS V5.2 is used. The results of both of these workloads are listed in 
Table 6-13.

Table 6-13   Summary of CPU cost per transaction with varying trace and release configurations

Most Java workloads that run with trace enabled in CICS TS V5.1 see a reduction in CPU 
when upgrading to CICS TS V5.2.

In CICS TS V5.2, enabling trace for a Java application results in a CPU overhead that is 
approximately equal to the CPU overhead that is incurred by enabling trace for an equivalent 
non Java application.

6.9  Web services over HTTP improvements

Performance improvements were delivered in CICS TS V5.2 for the scenario where CICS 
acts as a web services provider for HTTP requests. The improvements are a reduction in real 
storage usage and a reduction in CPU usage. This section quantifies the performance 
benefits by using sample workloads.

Workload V5.1 no trace V5.1 default trace V5.2 default trace

Hello world 0.19 ms 0.33 ms 0.23 ms

File read 1.05 ms 4.27 ms 1.43 ms
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6.9.1  Web services real storage usage

For every inbound web service request, the amount of real storage that is used was reduced 
significantly. This reduction in real storage is manifested as a reduction in 31-bit virtual 
storage usage. Increased efficiency in the code page conversion processing reduces the 
amount of storage that is required, which enables CICS regions to process many concurrent 
requests.

Figure 6-12 shows the amount of 31-bit virtual storage that is used by a 1 MB web service 
request into CICS.

Figure 6-12   Storage usage for a 1 MB web service request with CICS as a provider

This reduction in storage usage can enable a CICS region to process a higher request rate for 
a specific configuration, or it might allow a consolidation exercise that reduces the number of 
CICS regions that are required to satisfy a workload.

6.9.2  Web services CPU reduction

For inbound requests into CICS as an HTTP web services provider, the number of TCB 
change mode operations that are required to fulfil the request was reduced. This reduction in 
TCB change mode operations provides a small performance gain in CPU for most workloads.

Three XML web services were configured to accept requests that consisted of a single XML 
element of 8 bytes, 32 KB, or 256 KB. The provider application returned a single 8-byte XML 
element as a response.
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The total cost to process the web service request was calculated by using RMF data, which 
includes the CSOL, CWXN, and CPIH transactions.The results are shown in Figure 6-13.

Figure 6-13   CPU cost per request for varying request sizes

For the largest message sizes, a small reduction in CPU cost per request is observed. The 
CPU costs for smaller message sizes remain equivalent when comparing CICS TS V5.1 
with V5.2.

6.10  Java 7.0 and Java 7.1

By using the same workload and methodology that is described in 6.2.5, “Java servlet that 
uses JDBC and VSAM” on page 83, the performance of Java 7.0 and Java 7.1 was 
compared. For both scenarios, CICS TS V5.2 was used with Java 7.0 SR7 or Java 7.1 SR1.

Table 6-14 on page 107 lists the performance measurements when running the workload with 
Java 7.0 SR7.
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Table 6-14   Java 7.0 SR7 results for the Java servlet JDBC and VSAM workload

Table 6-15 lists the performance measurements when running the workload with Java SR1.

Table 6-15   Java 7.1 SR1 results for the Java servlet JDBC and VSAM workload

The performance measurements in Table 6-14 and Table 6-15 are shown in Figure 6-14.

Figure 6-14   Plot of Java 7.0 and Java 7.1 performance results for JDBC and VSAM workload

For this workload, Java 7.0 delivers slightly better performance than Java 7.1, which provides 
a decrease of approximately 2% in terms of CPU usage per transaction.

It can be observed that Java 7.1 provides the same linear scaling characteristics as 
demonstrated by the Java 7.0 run time.

ETR CICS CPU CPU per request 
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Not zIIP-eligible zIIP-eligible Total

200 20.82% 29.42% 50.24% 2.512

400 42.34% 60.12% 102.46% 2.562
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ETR CICS CPU CPU per request 
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Chapter 7. CICS TS for z/OS V5.3

The CICS Transaction Server for z/OS (CICS TS) V5.3 release introduces a significant 
number of performance improvements. Included in the CICS TS V5.3 performance report are 
the following subject areas:

� Key performance benchmarks that are presented as a comparison against the CICS TS 
V5.2 release.

� An outline of improvements made regarding the threadsafe characteristics of the CICS run 
time.

� Details of the changes that are made to performance-critical CICS initialization 
parameters, and the effect of these updates.

� Description of all the updated statistics and monitoring fields.

� Benchmarks that document improvements in XML and JavaScript Object Notation (JSON) 
web services.

� A description of how CICS can protect itself from unconstrained resource demand from 
inbound HTTP requests.

� High-level views of new functionality that was introduced in the CICS TS V5.3 release, 
including performance benchmark results where appropriate.

This chapter includes the following topics:

� 7.1, “Introduction” on page 110
� 7.2, “Release-to-release comparisons” on page 110
� 7.3, “Improvements in threadsafety” on page 112
� 7.4, “Changes to system initialization parameters” on page 114
� 7.5, “Enhanced instrumentation” on page 115
� 7.6, “Low-level CICS optimizations” on page 118
� 7.7, “Web support and web service optimization” on page 122
� 7.8, “Java workloads” on page 123
� 7.9, “Java 8 performance” on page 127
� 7.10, “Simultaneous multithreading with Java workloads” on page 130
� 7.11, “Reporting of CPU time to z/OS Workload Manager” on page 133
� 7.12, “z/OS Connect for CICS” on page 134
� 7.13, “HTTP flow control” on page 140
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� 7.14, “High transaction rate performance study” on page 143
� 7.15, “WebSphere Liberty zIIP eligibility” on page 143
� 7.16, “Link to WebSphere Liberty” on page 144

7.1  Introduction

When the results were compiled for this chapter, the workloads were run on an IBM z13® 
model NE1 (machine type 2964). A maximum of 32 dedicated central processors (CPs) were 
available on the measured logical partition (LPAR), with a maximum of 4 dedicated CPs 
available to the LPAR that was used to simulate users. These LPARs are configured as part of 
a Parallel Sysplex. An internal coupling facility was co-located on the same central processor 
complex (CPC) as the measurement and driving LPARs. They were connected by using 
internal coupling peer (ICP) links. An IBM System Storage DS8870 (machine type 2424) was 
used to provide external storage. 

This chapter presents the results of several performance benchmarks when run in a CICS TS 
for z/OS V5.3 environment. Unless otherwise stated in the results, the CICS V5.3 
environment was the code that was available at general availability (GA) time. Several of the 
performance benchmarks are presented in the context of a comparison against CICS TS 
V5.2. The CICS TS V5.2 environment contained all PTFs that were issued before 10 March 
2015. All LPARs used z/OS V2.1.

For more information about performance terms that are used in this chapter, see Chapter 1, 
“Performance terminology” on page 3. For more information about the test methodology that 
was used, see Chapter 2, “Test methodology” on page 11. For more information about the 
workloads that were used, see Chapter 3, “Workload descriptions” on page 21.

Where reference is made to an LSPR processor equivalent, the indicated machine type and 
model can be found in the large systems performance reference (LSPR) document. For more 
information about obtaining and the use of LSPR data, see 1.3, “Large Systems Performance 
Reference” on page 6.

7.2  Release-to-release comparisons

This section describes some of the results from a selection of regression workloads that are 
used to benchmark development releases of CICS TS. For more information about the use of 
regression workloads, see Chapter 3, “Workload descriptions” on page 21.

7.2.1  Data Systems Workload dynamic routing

The Data Systems Workload (DSW) dynamic routing workload is used in 7.6, “Low-level 
CICS optimizations” on page 118 to demonstrate several performance benefits that are 
combined to reduce the overall CPU cost per transaction. For more information about a 
comparison between CICS TS V5.2 and CICS TS V5.3 performance, see 7.6, “Low-level 
CICS optimizations” on page 118.

7.2.2  RTW threadsafe

This section presents the performance figures for the threadsafe variant of the IBM Rational® 
Transactional Workload (RTW), as described in 3.3, “Relational Transactional Workload” on 
page 25.
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Table 7-1 lists the results of the RTW threadsafe workload that uses the CICS TS V5.2 
release. Table 7-2 lists the same figures for the CICS TS V5.3 release.

Table 7-1   Performance results for CICS TS V5.2 with RTW threadsafe workload

Table 7-2   Performance results for CICS TS V5.3 with RTW threadsafe workload

The average CPU per transaction figure for CICS TS V5.2 is calculated to be 1.383 ms. The 
CICS TS V5.3 figure is calculated to be 1.392 ms. The difference between these two figures 
is 0.6%, which is within our measurement accuracy of ±1%; therefore, the performance of the 
two releases is considered to be equivalent.

These figures are shown in Figure 7-1.

Figure 7-1   Plot of CICS TS V5.2 and V5.3 performance results for RTW threadsafe workload
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As shown in Figure 7-1 on page 111, the lines are straight, which indicates linear scaling as 
transaction throughput increases. The lines also are overlaid, which indicates equivalent 
performance when the releases are compared.

7.3  Improvements in threadsafety

All new CICS API commands in CICS V5.3 are threadsafe. Also, some system programming 
interface (SPI) commands were made threadsafe in this release. There also were some 
specific functional areas that were improved to reduce task control block (TCB) switches.

7.3.1  Threadsafe API and SPI commands

The following new CICS API commands are threadsafe:

� REQUEST PASSTICKET

� CHANNEL commands:

– DELETE CHANNEL
– QUERY CHANNEL

The WRITE OPERATOR CICS API command was made threadsafe.

For more information about CICS API commands, see the “CICS command summary” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bd427B

The following CICS SPI commands were made threadsafe:

� INQUIRE RRMS

� INQUIRE STORAGE

� INQUIRE STREAMNAME

� INQUIRE SUBPOOL

� INQUIRE TASK LIST

� INQUIRE TSPOOL

� INQUIRE UOWENQ

� PERFORM SECURITY REBUILD

� PERFORM SSL REBUILD

� ENQMODEL commands:

– INQUIRE ENQMODEL
– SET ENQMODEL
– DISCARD ENQMODEL

� JOURNALMODEL commands:

– INQUIRE JOURNALMODEL
– DISCARD JOURNALMODEL

� JOURNALNAME commands:

– INQUIRE JOURNALNAME
– SET JOURNALNAME
– DISCARD JOURNALNAME
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� TCLASS commands:

– INQUIRE TCLASS
– SET TCLASS

� TCP/IP commands:

– INQUIRE TCPIP
– SET TCPIP

� TCPIPSERVICE commands:

– INQUIRE TCPIPSERVICE
– SET TCPIPSERVICE
– DISCARD TCPIPSERVICE

� TDQUEUE commands:

– INQUIRE TDQUEUE
– SET TDQUEUE
– DISCARD TDQUEUE

� TRANCLASS commands:

– INQUIRE TRANCLASS
– SET TRANCLASS
– DISCARD TRANCLASS

� TSMODEL commands:

– INQUIRE TSMODEL
– DISCARD TSMODEL

� TSQUEUE / TSQNAME commands:

– INQUIRE TSQUEUE / TSQNAME
– SET TSQUEUE / TSQNAME

� UOW commands:

– INQUIRE UOW
– SET UOW

� WEB commands:

– INQUIRE WEB
– SET WEB

For more information about CICS SPI commands, see the “System commands” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd427x

7.3.2  Optimizations for SSL support

Several TCB switches were removed for inbound requests that use SSL. For more information 
about this and other improvements in CICS web support, see IBM CICS Performance Series: 
Web Services Performance in CICS TS V5.3, REDP-5322, which is available at this website:

http://www.redbooks.ibm.com/abstracts/redp5322.html
Chapter 7. CICS TS for z/OS V5.3 113

https://ibm.biz/Bd427x
http://www.redbooks.ibm.com/abstracts/redp5322.html


7.3.3  Offloading authentication requests to open TCBs

RACF APAR OA43999 introduced the Enhanced Password Algorithm, which applies to z/OS 
V1.12, V1.13, and V2.1. This RACF APAR implements the following support:

� Accept more special characters within passwords
� Allow stronger encryption of passwords
� Define users with a password phrase and no password
� Expire a password without changing it
� Clean up password history

For more information about the new function APAR, see the following IBM support website:

http://www.ibm.com/support/docview.wss?uid=isg1OA43999

If the APARs are installed, CICS starts a new callable service IRRSPW00 for password 
authentication. This service is used for the following authentication operations:

� Basic authentication requests
� EXEC CICS VERIFY PASSWORD API command
� EXEC CICS VERIFY PHRASE API command
� EXEC CICS SIGNON API command

The IRRSPW00 service runs on open TCBs or switches to an L8 TCB, which reduces 
contention on the resource-owning (RO) TCB.

7.4  Changes to system initialization parameters

Several performance-related CICS system initialization (SIT) parameters were changed in the 
CICS TS V5.3 release. This section describes changes to the SIT parameters that have the 
most affect on CICS performance. All comparisons to previous limits or default values refer to 
CICS TS V5.2.

7.4.1  Storage protection (STGPROT)

Storage protection (SIT parameter STGPROT) is now enabled by default. For more information 
about storage protection, see the “The storage protection global option” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd427M

7.4.2  Internal trace table size (TRTABSZ)

The default size for the internal trace table (SIT parameter TRTABSZ) increased to 12 MB. For 
more information about the internal trace facility, see the “Internal trace table” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd427G

Storage for the internal trace table is allocated outside of any CICS DSA. In CICS releases 
since CICS TS V4.2, the internal trace table is allocated in 64-bit virtual storage.

Note: The ability to perform authentication requests on an open TCB was also made 
available to CICS TS V4.2 in APAR PI21865, and CICS TS V5.1 and V5.2 in APAR 
PI21866.
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7.5  Enhanced instrumentation

The CICS TS V5.3 release continues the expansion of information that is reported by the 
CICS monitoring and statistics component. This section describes the extra fields that are 
now available in the CICS statistics SMF records.

For more information about changes in monitoring fields across a range of CICS releases, 
see the “Changes to CICS monitoring” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd427b

7.5.1  The DFHCICS performance group

The number of named counter server GET requests (field NCGETCT) field was added to the 
DFHCICS performance group. This field shows the total number of requests to a named counter 
server to satisfy EXEC CICS GET COUNTER and EXEC CICS GET DCOUNTER API commands that 
are issued by the user task.

For more information about counters that are available in the DFHCICS performance group, see 
the “Performance data in group DFHCICS” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd427g

7.5.2  The DFHTASK performance group

The dispatcher allocate pthread wait time (field DSAPTHWT) field was added to the DFHTASK 
performance group. This field shows the dispatcher allocated pthread wait time. This time is 
the time that the transaction waited for a WebSphere Liberty pthread to be allocated during 
links to WebSphere Liberty programs.

For more information about counters that are available in the DFHTASK performance group, see 
the “Performance data in group DFHTASK” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4ZpL

7.5.3  The DFHTEMP performance group

The following fields were added to the DFHTEMP performance group:

� Number of shared temporary storage GET operations (field TSGETSCT)

Number of temporary storage GET requests from shared temporary storage that are 
issued by the user task.

� Number of shared temporary storage GET operations (field TSPUTSCT)

Number of temporary storage PUT requests to shared temporary storage that are issued 
by the user task.

The total temporary storage operations (field TSTOTCT) field in the DFHTEMP performance group 
was updated. This field is the sum of the temporary storage read queue (TSGETCT), read 
queue shared (TSGETSCT), write queue auxiliary (TSPUTACT), write queue main (TSPUTMCT), 
write queue shared (TSPUTSCT), and delete queue requests that are issued by the user task.

For more information about counters that are available in the DFHTEMP performance group, see 
the “Performance data in group DFHTEMP” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd427L
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7.5.4  The DFHWEBB performance group

The following fields were added to the DFHWEBB performance group:

� JSON request body length (field WBJSNRQL)

For JSON web service applications, the JSON message request length.

� JSON response body length (field WBJSNRPL)

For JSON web service applications, the JSON message response length.

For more information about counters that are available in the DFHWEBB performance group, see 
the “Performance data in group DFHWEBB” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd427T

7.5.5  Monitoring domain global statistics

The following fields were added to the collected monitoring domain statistics:

� Total transaction CPU time (field MNGCPUT)

The total transaction CPU time that is accumulated for the CICS dispatcher managed TCB 
modes that are used by the transactions that completed during the interval.

� Total transaction CPU time on CP (field MNGTONCP)

The total transaction CPU time on a standard processor that is accumulated by the CICS 
dispatcher managed TCB modes that are used by the transactions that completed during 
the interval.

� Total transaction CPU offload on CP (field MNGOFLCP)

The total transaction CPU time on a standard processor but was eligible for offload to a 
specialty processor (zIIP or zAAP) that was accumulated for the CICS dispatcher that was 
managed TCB modes used by the transactions that completed during the interval.

A sample DFHSTUP report that contains the new fields is shown in Example 7-1.

Example 7-1   Sample CICS TS V5.3 DFHSTUP monitoring domain global statistics report fragment

Average user transaction resp time. . :             00:00:00.001256
Peak user transaction resp time . . . :             00:00:00.061583
Peak user transaction resp time at. . : 11/24/2015  22:25:58.7568
Total transaction CPU time. . . . . . :             00:00:14.192698
Total transaction CPU time on CP. . . :             00:00:14.192698
Total transaction CPU offload on CP . :             00:00:00.000000

For more information about monitoring domain statistics, see the “Monitoring domain: global 
statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd42WH
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7.5.6  TCP/IP global statistics

The following fields were added to TCP/IP global statistics:

� Performance tuning for HTTP connections (field SOG_SOTUNING)

Indicates whether performance tuning for HTTP connections occurs.

� Socket listener has paused listening for HTTP connections (field 
SOG_PAUSING_HTTP_LISTENING)

Indicates whether the listener paused listening for HTTP connection requests because the 
number of tasks in the region reached the limit for accepting new HTTP connection 
requests.

� Number of times socket listener notified at task accept limit (field 
SOG_TIMES_AT_ACCEPT_LIMIT)

Is the number of times the listener was notified that the number of tasks in the region 
reached the limit for accepting new HTTP connection requests.

� Last time socket listener paused listening for HTTP connections (field 
SOG_TIME_LAST_PAUSED_HTTP_LISTENING)

The last time the socket listener paused listening for HTTP connection requests because 
the number of tasks in the region reached the limit for accepting new HTTP connection 
requests.

� Region stopping HTTP connection persistence (field SOG_STOPPING_PERSISTENCE)

Indicates whether the region is stopping HTTP connection persistence because the 
number of tasks in the region exceeded the limit.

� Number of times region stopped HTTP connection persistence (field 
SOG_TIMES_STOPPED_PERSISTENT)

The number of times the region took action to stop HTTP connection persistence because 
the number of tasks in the region exceeded the limit.

� Last time stopped HTTP connection persistence (field 
SOG_TIME_LAST_STOPPED_PERSISTENT)

The last time the region took action to stop HTTP connection persistence because the 
number of tasks in the region exceeded the limit.

� Number of persistent connections made non-persistent (field 
SOG_TIMES_MADE_NON_PERSISTENT)

The number of times a persistent HTTP connection was made non-persistent because the 
number of tasks in the region exceeded the limit.

� Number of times disconnected an HTTP connection at max uses (field 
SOG_TIMES_CONN_DISC_AT_MAX)

The number of times a persistent HTTP connection was disconnected because the 
number of uses exceeded the limit.

For more information about performance tuning for HTTP connections and a sample 
DFHSTUP report, see 7.13, “HTTP flow control” on page 140. For more information about 
TCP/IP global statistics, see the “TCP/IP: Global statistics” topic in IBM Knowledge Center at 
this website:

https://ibm.biz/Bd42WY
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7.5.7  URIMAP global statistics

The direct attach count (field WBG_URIMAP_DIRECT_ATTACH) field was added to URIMAP global 
statistics. This field shows the number of requests that are processed by a directly attached 
user task.

The direct attach count statistics field was added in support of the web optimizations, as 
described in 7.7, “Web support and web service optimization” on page 122. For more 
information about URIMAP global statistics, see the “URIMAP definitions: Global statistics” 
topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd42WP

7.6  Low-level CICS optimizations

The CICS TS V5.3 release includes the following low-level optimizations that can provide a 
performance benefit to many workloads:

� Use of the store clock fast (STCKF) hardware instruction that was introduced by the IBM 
System z9 processor.

� Storage alignment of some key CICS control blocks to improve the interaction between the 
CICS TS run time and the hardware cache subsystem.

� Use of hardware instructions to pre-fetch data into the processor cache, which reduces the 
number of CPU cycles that are wasted while waiting for data.

� A reduction in lock contention through tuning the CICS Monitoring Facility algorithms.

� More efficient algorithms that are used for multiregion operation (MRO) session 
management.

� More tuning of other internal procedures.

These improvements in efficiency have particular benefit for CICS trace, CICS monitoring, 
and for MRO connections that have high session counts.

The remainder of this section describes the results of performance benchmarks that use the 
DSW workload. For this performance benchmark, two TOR regions were configured to 
dynamically route transactions to four AOR regions that use CICSPlex System Manager. 
Each AOR function shipped file control requests to an FOR, where VSAM data is accessed in 
Local Shared Resources (LSR) mode. A more information about the workload, see 3.2, “Data 
Systems Workload” on page 22.

The following configurations were tested to show the relative benefits of the improvements in 
each of the monitoring, trace, and MRO session management components:

� Monitoring and trace enabled
� Monitoring disabled, trace enabled
� Monitoring enabled, trace disabled
� Monitoring and trace disabled
� Monitoring and trace disabled with low numbers of MRO sessions

Comparisons are made between CICS TS V5.2 and CICS TS V5.3.
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7.6.1  Monitoring and trace enabled

For this scenario, performance class monitoring was enabled by using MN=ON and MNPER=ON. 
Internal trace was enabled with INTTR=ON. All other trace-related SIT parameters used their 
default values. Figure 7-2 shows the benchmark results for this configuration that uses CICS 
TS V5.2 and V5.3.

Figure 7-2   DSW performance results with monitoring and trace enabled

The average CPU per transaction for CICS TS V5.2 was 0.702 ms, and the equivalent value 
for V5.3 was 0.643 ms. For this workload, a reduction of 0.059 ms per transaction represents 
a decrease of 8%.

The straight lines in the plot indicate that both configurations scale linearly as the transaction 
rate increases.

7.6.2  Monitoring disabled, trace enabled

This scenario extends the scenario that is described in 7.6.1, “Monitoring and trace enabled” 
on page 119 by disabling performance class monitoring. Performance class monitoring was 
disabled by using the SIT parameter MN=OFF. Internal trace was enabled by using INTTR=ON, 
and all other trace-related SIT parameters used their default values. Figure 7-3 on page 120 
shows the results of the benchmark for CICS TS V5.2 and V5.3.
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Figure 7-3   DSW performance results with monitoring disabled and trace enabled

Average CPU per transaction for CICS TS V5.2 was 0.625 ms, and the equivalent value for 
V5.3 was 0.593 ms. A reduction of 0.032 ms per transaction represents a decrease of 5% for 
this workload.

7.6.3  Monitoring enabled, trace disabled

In this scenario, the configuration is a mirror of the scenario that is described in 7.6.2, 
“Monitoring disabled, trace enabled” on page 119. In this scenario, performance class 
monitoring was enabled by using MN=ON and MNPER=ON. Internal trace was disabled with 
INTTR=OFF and all other trace-related SIT parameters used their default values. Figure 7-4 
shows the results of the benchmark results for CICS TS V5.2 and V5.3.

Figure 7-4   DSW performance results with monitoring enabled and trace disabled
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Average CPU per transaction for CICS TS V5.2 was 0.486 ms, and the equivalent value for 
V5.3 was 0.440 ms. A reduction of 0.046 ms per transaction represents a decrease of 9% for 
this workload.

7.6.4  Monitoring and trace disabled

In this scenario, performance class monitoring and trace were disabled. Performance class 
monitoring was disabled by using MN=OFF. Internal trace was disabled by setting INTTR=OFF 
and all other trace-related SIT parameters used their default values. Figure 7-5 shows the 
results of the benchmark results for CICS TS V5.2 and V5.3.

Figure 7-5   DSW performance results with monitoring and trace disabled

Average CPU per transaction for CICS TS V5.2 was 0.447 ms, and the equivalent value for 
V5.3 was 0.428 ms. A reduction of 0.019 ms per transaction represents a decrease of 4% for 
this workload.

7.6.5  Monitoring and trace disabled with low numbers of MRO sessions

The final scenario isolates the performance improvements in CICS that are not directly 
related to monitoring, trace, or MRO session management. Performance class monitoring 
was disabled by using MN=OFF. Internal trace was disabled with INTTR=OFF and all other 
trace-related SIT parameters used their default values. All MRO connections were configured 
to have a minimal number of sessions defined. Figure 7-6 on page 122 shows the benchmark 
results for CICS TS V5.2 and V5.3.
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Figure 7-6   DSW performance results with monitoring and trace disabled and low session count

Average CPU per transaction for CICS TS V5.2 was 0.438 ms, and the equivalent value for 
V5.3 was 0.431 ms. A reduction of 0.007 ms per transaction represents a decrease of 2% for 
this workload.

7.6.6  Low-level CICS optimizations conclusions

Each scenario demonstrated a reduction in CPU usage per transaction for this workload. 
Where a workload uses any combination of performance class monitoring, trace, or many 
MRO sessions, the benefits that are realized in CICS V5.3 can be significant.

Even workloads that do not use these facilities can achieve a reduction in CPU use, as 
described in 7.6.5, “Monitoring and trace disabled with low numbers of MRO sessions” on 
page 121.

7.7  Web support and web service optimization

In CICS TS V5.3, the pipeline processing of HTTP requests is streamlined so that an 
intermediate web attach task (CWXN transaction) is no longer required in most situations. 
Removing the intermediate web attach task reduces CPU and memory overheads for most 
types of SOAP and JSON-based HTTP CICS web services.

The socket listener task (CSOL transaction) is optimized to attach user transactions directly for 
fast-arriving HTTP requests. The web attach task is bypassed, which reduces the CPU time 
that is required to process each request.

There also is a benefit for inbound HTTPS requests, where SSL support is provided by the 
Application Transparent Transport Layer Security (AT-TLS) feature of IBM z/OS 
Communications Server. In CICS, TCPIPSERVICE resources define the association between 
ports and CICS services, including CICS web support. These resources can be configured as 
AT-TLS aware and obtain security information from AT-TLS.
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Performance is also improved for HTTPS requests where SSL support is provided by CICS. 
Although these requests still require the CWXN transaction, the number of TCB change mode 
operations was reduced.

For more information about the CPU savings that were achieved for an HTTP web services 
workload in several configuration scenarios, see IBM CICS Performance Series: Web 
Services Performance in CICS TS V5.3, REDP-5322, which is available at this website:

http://www.redbooks.ibm.com/abstracts/redp5322.html

7.8  Java workloads

Optimizations to the thread and TCB management mechanisms in CICS TS V5.3 provide a 
benefit to Java applications that are hosted in OSGi JVM servers and WebSphere Liberty 
JVM servers.

This section presents a comparison between CICS TS V5.2 and V5.3 when Java workloads 
are run.

7.8.1  Java workload configuration

The hardware and software that was used for the benchmarks is described in 7.1, 
“Introduction” on page 110. The measurement LPAR was configured with three GCPs and 
one zIIP, which resulted in an LSPR equivalent processor of 2964-704. The driving LPAR was 
configured with three GCPs, which resulted in an LSPR equivalent processor of 2964-703.

To minimize variance in the performance results that might be introduced by the Just-In-Time 
compiler (JIT), the workload was run at a constant transaction rate for 20 minutes to provide a 
warm-up period. The request rate was increased every 5 minutes, with the mean CPU usage 
per request calculated by using the final minute of data from the 5-minute interval. CPU 
usage data was collected by using IBM z/OS Resource Measurement Facility (RMF).

All configurations used a single CICS region with one installed JVMSERVER resource with a 
configured maximum of 25 threads. CICS TS V5.2 and CICS TS V5.3 used Java 7.1 SR3 
(64-bit) and IBM WebSphere Application Server Liberty V8.5.5.7.

For database access, all workload configurations accessed DB2 V10 by using the JDBC type 
2 driver.

7.8.2  Java servlet workload

The Java servlet application is hosted in a CICS JVM server that uses the embedded 
WebSphere Liberty server. The workload is driven through HTTP requests by using IBM 
Workload Simulator for z/OS, as described in section 2.4, “Driving the workload” on page 16. 
The servlet application accesses VSAM data by using the JCICS API and accesses DB2 by 
using the JDBC API. For more information about the workload, see 3.4, “WebSphere Liberty 
servlet with JDBC and JCICS access” on page 26.

Note: IBM WebSphere Application Server Liberty V8.5.5.7 support for CICS V5.1 and 
V5.2 is provided by CICS APAR PI50345.
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Both configurations used the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedheap
� -XXnosuballoc32bitmem
� -Xmx200M
� -Xms200M
� -Xmnx60M
� -Xmns60M
� -Xmox140M
� -Xmos140M

The results of the benchmark are shown in Figure 7-7.

Figure 7-7   Comparing overall CPU utilization for Java servlet workload with CICS TS V5.2 and V5.3

As shown in Figure 7-7, the new thread management mechanism in CICS WebSphere 
Liberty provides reduced CPU costs and improved scalability characteristics, with V5.3 
maintaining cost per request to higher request rates than V5.2.
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The chart in Figure 7-8 presents the same data as Figure 7-7 on page 124, but broken into 
usage that is non-eligible for offload and usage that is eligible for offload to a zIIP engine.

Figure 7-8   Comparing offload-eligible CPU utilization for Java workload with CICS TS V5.2 and V5.3

The chart in Figure 7-8 shows better scalability for the non-eligible component of the CPU 
usage. The chart also shows that the overall reduction in CPU usage that is shown in 
Figure 7-7 on page 124 is achieved by reducing the amount of zIIP-eligible CPU.

7.8.3  Java OSGi workload

The Java OSGi workload is composed of several applications and is described in 3.5, “Java 
OSGi workload” on page 27. The CICS TS V5.2 and CICS TS V5.3 configurations both used 
the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedheap
� -XXnosuballoc32bitmem
� -Xmx100M
� -Xms100M
� -Xmnx70M
� -Xmns70M
� -Xmox30M
� -Xmos30M
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The benchmark results are shown in Figure 7-9.

Figure 7-9   Comparing overall CPU utilization for Java OSGi workload with CICS TS V5.2 and V5.3

The chart in Figure 7-9 shows a slight reduction in overall CPU usage per transaction 
because of the improved TCB management.

The chart in Figure 7-10 shows the same data as Figure 7-9, but broken into usage that is 
non-eligible for offload and usage that is eligible for offload to a zIIP engine.

Figure 7-10   Comparing offload-eligible CPU utilization for OSGi workload with CICS TS V5.2 and V5.3

Both configurations scale well, with the ratio of eligible to non-eligible work remaining 
consistent between the V5.2 and V5.3 releases.
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7.9  Java 8 performance

Every new release of Java provides more scope for performance improvements, the 
magnitude of which depends on the application. This section describes the effects of varying 
the Java release within a CICS environment for various workloads.

A JVM server in CICS TS for z/OS V5.3 can use Java 7.0, Java 7.1, or Java 8 as the runtime 
environment. A single CICS region can host multiple JVM server instances, with a different 
Java runtime version used in each instance.

7.9.1  Improvements in Java 7.0, Java 7.1, and Java 8

Java 7.0 uses hardware instructions that were introduced in the IBM zEnterprise 196 (z196) 
and the IBM zEnterprise EC12 (zEC12) machines. When running on a zEC12, the JVM also 
uses the new transactional memory capabilities of the hardware.

Java 7.1 extends the zEC12 exploitation by using technologies, such as IBM z Systems Data 
Compression (zEDC) for zip acceleration. Java 7.1 SR3 introduces improved zIIP-offload 
characteristics, which can reduce cost for Java applications in CICS.

Java 8 introduces the use of hardware instructions that were introduced in the IBM z13 
machine. Also used are technologies, such as single instruction multiple data (SIMD) 
instructions and improved cryptographic performance that uses Crypto Express5S and CP 
Assist for Cryptographic Function (CPACF).

The IBM Java Crypto Engine (JCE) in Java 8 SR1 automatically detects and uses an on-core 
hardware cryptographic accelerator that is available through the CPACF. It also uses the 
SIMD vector engine that is available in the IBM z13 to provide industry-leading security 
performance. CPACF instructions are used to accelerate the following cryptographic 
functions:

� Symmetric key algorithms (AES, 3DES and DES with CBC, CFB and OBF modes)
� Hashing (SHA1 and SHA2)

Optimized routines accelerate the popular P256 NIST Elliptic Curve (ECC) Public Key 
Agreement. SIMD instructions are used in these routines to further enhance performance.

Java 8 SR2 also introduces the same improved zIIP-offload characteristics as seen in 
Java 7.1 SR3.

7.9.2  Java performance benchmarks in CICS

The following workloads were used to examine the behavior of Java applications in a CICS 
environment:

� A OSGi JVM server with a mixture of applications that use JDBC and JCICS calls to 
access DB2, VSAM data, and CICS temporary storage

� A WebSphere Liberty servlet application that uses JDBC and JCICS calls to access DB2 
and VSAM data

� A WebSphere Liberty JSON-based web service that uses z/OS Connect
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For performance testing, the following Java runtime environment levels were used:

� Java 7.0 SR9
� Java 7.1 SR3
� Java 8 SR2

7.9.3  Java 8 and OSGi applications

This workload uses the configuration as described in 7.8.3, “Java OSGi workload” on 
page 125. Several applications provide a mixture of operations, including JDBC access, 
VSAM access, string manipulation, and mathematical operations.

Figure 7-11 shows the average cost per transaction for each of the Java versions under test 
when the mixed OSGi application workload is run.

Figure 7-11   Comparing Java versions for OSGi JVM server workload

The chart shows a slight improvement in zIIP eligibility in Java 7.1 when compared to Java 
7.0, but with no reduction in overall CPU per transaction.

Java 8 improves the Java 7.1 benchmark result by reducing the overall cost per transaction 
(from 1.40 ms to 1.29 ms) and reducing the amount of non-eligible CPU (from 0.73 ms to 
0.68 ms). The improvements in the Java 8 environment are achieved by improvements to the 
JIT compiler and Java class library changes.

7.9.4  Java 8 and WebSphere Liberty servlet applications

This workload uses the configuration as described in 3.4, “WebSphere Liberty servlet with 
JDBC and JCICS access” on page 26. In all, 200 simulated web clients accessed the Java 
application at a rate of approximately 2,500 requests per second.

Figure 7-12 on page 129 shows the cost per request for each of the Java 7.0, Java 7.1, and 
Java 8 run times when the CICS WebSphere Liberty servlet application is run.
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Figure 7-12   Comparing Java versions for JDBC and JCICS servlet workload

No significant differences in total CPU per request are observed for this workload when 
comparing Java 7.0, Java 7.1, and Java 8. zIIP eligibility is slightly improved when Java 8 is 
used.

7.9.5  Java 8 and z/OS Connect applications

The z/OS Connect application that is described in 7.12, “z/OS Connect for CICS” on 
page 134 was used to compare the effects of the supported Java versions. A small JSON 
request and response was used, which contained 32 bytes of user data for each HTTP flow. 
The data was transmitted by using SSL with persistent connections.

The results of the benchmark comparing the three Java versions are shown in Figure 7-13.

Figure 7-13   Comparison of Java versions for a z/OS Connect workload

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

Java 7.0 Java 7.1 Java 8 

CP
U 

co
st

 p
er

 re
qu

es
t (

m
s)

 

zIIP-eligible 

non-eligible 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

Java 7.0 Java 7.1 Java 8 

CP
U 

co
st

 p
er

 re
qu

es
t (

m
s)

 

zIIP-eligible 

non-eligible 
Chapter 7. CICS TS for z/OS V5.3 129



Java 7.1 provides a reduction in overall CPU per request by reducing the amount of 
non-eligible CPU that is used.

Java 8 further improves on the Java 7.1 result through a reduction in non-eligible and overall 
CPU cost for each request. The use of persistent SSL connections means that most of the 
performance improvements are achieved because of the increased AES performance.

As the transmitted document size increases, the SSL payload size increases. Increasing the 
size of the SSL payload allows an application to achieve greater performance benefits when 
compared to Java 7.0 or Java 7.1.

7.10  Simultaneous multithreading with Java workloads

The zIIP processors in a z13 system can run to two threads simultaneously in a single core 
while sharing certain processor resources, such as execution units and caches. This 
capability is known as simultaneous multithreading (SMT). The use of SMT for two threads 
concurrently is known as SMT mode 2.

This section describes SMT, the methods that are used to measure the effectiveness of the 
technology, and the results of a Java benchmark in CICS to demonstrate the increased 
capacity that is available when SMT is enabled.

7.10.1  Introduction to SMT

SMT technology allows instructions from more than one thread to run in any pipeline stage at 
a time. Each thread has its own unique state information, such as program status word (PSW) 
and registers. The simultaneous threads cannot necessarily run instructions instantly and at 
times must compete to use certain core resources that are shared between the threads. In 
some cases, threads can use shared resources that are not experiencing competition.

Generally, SMT mode 2 can run more threads over the same period on a single core. This 
increased core usage leads to greater core capacity and a higher throughput of work. 
Figure 7-14 shows how SMT increases the capacity of a single core by enabling the 
simultaneous running of two threads.

Figure 7-14   Demonstrating increased capacity by enabling SMT mode 2
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Although each of the threads that are shown in Figure 7-14 on page 130 can take longer to 
run, the capability of SMT to run both simultaneously means that more threads can complete 
during a specific period, which increases the overall thread execution rate of a single core. 
Running more threads in a specific time increases the system throughput.

For more information about SMT, see IBM z13 Technical Guide, SG24-8251, which is 
available at this website:

http://www.redbooks.ibm.com/abstracts/sg248251.html

7.10.2  Measuring SMT performance

IBM z/OS RMF fully supports the extra performance information that is available when 
operating in SMT mode 2.

The IIP service times that are found in an RMF Workload Activity report are normalized by an 
SMT capacity factor (CF) when zIIP processors are in SMT mode 2. The CF is the ratio of 
work performed with SMT mode 2 enabled, when compared to SMT disabled. The 
normalization process reflects the increased ability of a zIIP in SMT mode 2 to perform more 
work.

RMF provides key metrics in the Multi-threading Analysis section of a CPU Activity report 
when zIIP processors are in SMT mode 2. The following terms are used when describing the 
workload performance:

� MAX CF reports the maximum CF: The ratio of the maximum amount of work the zIIPs 
performed with multithreading enabled compared to disabled.

The MAX CF value can be 0.0 - 2.0, with typical values 1.1 - 1.4.

� CF reports the average capacity factor: The ratio of the average amount of work the zIIPs 
performed with multithreading enabled compared to disabled.

The CF value can be 0.0 - 2.0, with typical values 1.0 - 1.4.

� AVG TD reports the average thread density: The average number of running threads while 
the core is busy.

The AVG TD value can be 1.0 - 2.0.

Figure 7-15 shows an extract of an RMF CPU Activity report. The average CF for the zIIP 
processors is highlighted for use in a later calculation.

Figure 7-15   Extract of RMF CPU Activity report

In the IBM z13 hardware, SMT mode 2 is available for zIIP processors only; therefore, the 
MODE and CF values for general CPs is always 1.

------------ MULTI-THREADING ANALYSIS ---------------  
 CPU TYPE    MODE     MAX CF           CF      AVG TD  
      CP        1      1.000        1.000       1.000  
      IIP       2      1.303        1.303       1.996  
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Figure 7-16 shows an extract of an RMF Workload Activity report. The IIP service time and 
IIP APPL% figures are highlighted for use in a later calculation.

Figure 7-16   Extract of RMF Workload Activity report

The APPL% IIP value is the amount of actual zIIP resource used. The APPL% IIP value is not 
normalized and shows how busy the processors are. The LPAR that was used for this 
benchmark was configured with three dedicated CPs and two dedicated zIIPs. Therefore, the 
maximum value for APPL% CP is 300%, and the maximum value for APPL% IIP is 200%.

The SERVICE TIME IIP value is the normalized zIIP time, factored by the CF. Note the 
relationship between SERVICE TIME IIP and APPL% IIP in the following equation:

The reports that are shown in Figure 7-15 on page 131 and Figure 7-16 are extracted from an 
RMF report with an interval of 60 seconds; therefore, the highlighted values that are shown in 
Figure 7-15 on page 131 and Figure 7-16 can be used in the previous equation, as shown in 
the following equation:

The slight discrepancy between the calculated and reported APPL% IIP values is because 
other values in the report are rounded.

7.10.3  CICS throughput improvement

A z/OS Connect workload was used to demonstrate the change in CPU utilization when 
running Java in CICS with SMT mode 2 disabled and enabled. Figure 7-17 on page 133 
shows a comparison of a Java-based workload when running with the two SMT 
configurations.

-TRANSACTIONS-  TRANS-TIME HHH.MM.SS.TTT  --DASD I/O--  ---SERVICE---   SERVICE TIME  ---APPL% ---  
AVG       1.00  ACTUAL                31  SSCHRT   0.0  IOC     24160   CPU  268.334  CP    213.51 
MPL       1.00  EXECUTION              0  RESP     0.0  CPU     21360K  SRB    0.008  AAPCP   0.00 
ENDED    26121  QUEUED                 0  CONN     0.0  MSO         0   RCT    0.000  IIPCP 180.65 
END/S   435.36  R/S AFFIN              0  DISC     0.0  SRB       607   IIT    0.000 
#SWAPS       0  INELIGIBLE             0  Q+PEND   0.0  TOT     21385K  HST    0.000  AAP      N/A 
EXCTD        0  CONVERSION             0  IOSQ     0.0  /SEC   356418   AAP      N/A  IIP   179.42    
AVG ENC   0.00  STD DEV                6                                IIP  140.240                  
REM ENC   0.00                                          ABSRPTN   356K                                
MS ENC    0.00                                          TRX SERV  356K                                

APPL % IIP SERVICE TIME IIP
Interval CF×-------------------------------------------------- 100×=

APPL % IIP 140.240
60 1.303×-------------------------- 100× 179.38%= =
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Figure 7-17   Comparing a z/OS Connect workload with SMT mode disabled and SMT mode 2

The chart that is shown in Figure 7-17 plots the sum of the APPL% CP and APPL% IIP values 
from the RMF Workload Activity report.

Comparing the SMT-1 total and SMT-2 total lines, it can be seen that the total CPU cost is 
lower with SMT mode 2 enabled and the maximum throughput is increased.

The plot lines that show the amount of work that was not eligible to be offloaded to a System z 
Integrated Information Processor (zIIP) remains constant between the comparisons. The 
performance benefits are achieved through increased zIIP capacity.

7.11  Reporting of CPU time to z/OS Workload Manager

Mobile Workload Pricing is an IBM Software Pricing Option that was announced in May 2014. 
It offers a discount on MSUs consumed by transactions that originated on a mobile device. To 
use this discount, customers need a process that is agreed upon by IBM to identify (tag and 
track) their mobile-sourced transactions and their use. 

Before CICS TS V5.3, the identification and accumulation of CPU time for certain transaction 
types required CICS Performance class monitoring to be active. The collection of high-volume 
SMF data in a production environment can introduce significant overhead.

z/OS Workload Manager (WLM) APAR OA47042 introduces enhancements to simplify the 
identification and reporting of mobile-sourced transactions and their processor consumption. 
For more information about updates to WLM, see the following APAR website:

http://www.ibm.com/support/docview.wss?uid=isg1OA47042

The associated APAR OA48466 is available for IBM z/OS RMF, which provides support for 
the new WLM function that is provided by APAR OA47042. For more information about the 
updates to RMF, see the following APAR website:

http://www.ibm.com/support/docview.wss?uid=isg1OA48466
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The CICS TS V5.3 release introduces support for the new functions that were introduced by 
WLM APAR OA47042. CPU time is reported to WLM on a per-transaction basis, which 
enables a granular approach to transaction CPU tracking without the requirement for CMF 
data.

No configuration changes are required in CICS to use the WLM updates. CPU information is 
reported to WLM if CICS detects Mobile Workload Pricing support was installed, with no other 
CPU overhead in the CICS region.

7.12  z/OS Connect for CICS

IBM z/OS Connect is software that enables systems that run on z/OS to better participate in 
today’s mobile computing environment. z/OS Connect for CICS enables CICS programs to be 
called with a JSON interface.

z/OS Connect is distributed with CICS to enable connectivity, such as between mobile 
devices and CICS programs. The CICS embedded version of z/OS Connect is a set of 
capabilities that are used to enable CICS programs as JSON web services. z/OS Connect is 
an alternative to the JSON capabilities of the Java-based pipeline. The two technologies are 
broadly equivalent. Most JSON web services can be redeployed from one environment to the 
other without application or WSBind file changes. However, the URI and security 
configuration can be different in each environment.

7.12.1  CICS TS V5.3 performance enhancement

A significant performance enhancement in the CICS TS V5.3 release is the introduction of a 
JSON parser that is implemented in native (non-Java) code.

The parser implementation that is used by CICS is controlled by the java_parser attribute of 
the provider_pipeline_json XML element in the pipeline configuration file. For more 
information about the provider_pipeline_json element, see the “The 
<provider_pipeline_json> element” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4zBa

A sample XML configuration file for the z/OS Connect pipeline handler is supplied in the 
following location relative to the CICS installation root directory:

./samples/pipelines/jsonzosconnectprovider.xml

Example 7-2 shows a pipeline file that uses the CICS JVMSERVER resource that is named 
DFHWLP and specifies the use of the native parser.

Example 7-2   Sample pipeline configuration file that specifies the native parser implementation

<provider_pipeline_json java_parser="no">
    <jvmserver>DFHWLP</jvmserver>
  </provider_pipeline_json>

This section provides a performance comparison when various JSON request and response 
sizes for the Java and native parser implementations are used. In all configurations, SSL was 
used.
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The methodology and applications that were used to produce the performance test results for 
z/OS Connect in CICS were similar to the methodology and applications that were used when 
testing the JSON support in CICS TS V5.2. For more information, see 6.7, “JSON support” on 
page 95. To expand the workload, an extra request and response size of 64 KB was added.

7.12.2  Varying payload sizes by using Java parser

By using z/OS Connect for CICS with the default Java parser, CPU usage was measured for a 
range of payload sizes. The CPU cost per request is shown in Figure 7-18 for a range of 
request and response size combinations. Total CPU cost per request is broken into 
non-zIIP-eligible and zIIP-eligible components.

Figure 7-18   CPU comparison for various request and response payloads by using the Java parser

It is clear that the CPU cost per request depends on the size of the JSON documents that 
were received or transmitted. A significant fraction of the CPU cost incurred for larger JSON 
documents is zIIP-eligible.
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7.12.3  Comparing Java and native parsers

By using a medium-sized JSON request and response, the CPU usage was compared for the 
Java and native parsers. The scenario used a 4 KB request and 4 KB response. The result of 
this comparison is shown in Figure 7-19. As per Figure 7-18 on page 135, the CPU usage is 
broken into non-zIIP-eligible and zIIP-eligible components.

Figure 7-19   Comparing Java and native parsers for a medium-sized request and response

The chart in Figure 7-19 shows that for a medium-size request and response, the overall CPU 
cost per request is reduced with the native parser. Use of the native parser slightly increases 
the amount of non-zIIP-eligible CPU time from 0.33 ms to 0.39 ms per request.

7.12.4  Comparing Java and native parsers with varying request sizes

Extending the test scenario that is described in 7.12.3, “Comparing Java and native parsers” 
on page 136, various request sizes were used. Each request returns a response of 32 bytes. 
The following request sizes were tested:

� 32 bytes (as shown in Figure 7-20 on page 137)
� 4 KB (as shown in Figure 7-21 on page 137)
� 64 KB (as shown in Figure 7-22 on page 138)
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Figure 7-20   Comparing Java and native parsers for 32-byte request with 32-byte response

For the 32-bytes request with 32-bytes response scenario, there is no significant difference in 
CPU usage or zIIP-eligibility between the Java and native parsers.

Figure 7-21   Comparing Java and native parsers for 4 KB request with 32-byte response

For the 4 KB request with 32-bytes response scenario, the use of the native parser results in 
a reduction in total CPU per request, from 1.41 ms to 1.09 ms. However, the native parser 
uses more slightly non-zIIP-eligible CPU time, which increases from 0.29 ms to 0.33 ms.
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Figure 7-22   Comparing Java and native parsers for 64 KB request with 32-byte response

The 64 KB request with 32-byte response scenario shows a significant reduction in total CPU 
usage per request. Overall CPU usage per request reduces from 18.62 ms to 13.31 ms, but 
non-zIIP-eligible usage increases from 0.41 ms to 1.39 ms per request.

The charts that are shown in Figure 7-20 on page 137, Figure 7-21 on page 137, and 
Figure 7-22 show that the native parser reduces overall CPU usage for each JSON request. 
As expected, the largest performance gains are realized with large request sizes. The use of 
the native parser also has the expected effect of the use of more non-zIIP-eligible CPU than 
the Java parser.

7.12.5  Comparing Java and native parsers with varying response sizes

The benchmark was further modified such that various response sizes were used. Each 
request was 64 KB and the performance of the Java and native parsers were compared. The 
following response sizes were tested:

� 32 bytes (as shown in Figure 7-22 on page 138)
� 4 KB (as shown in Figure 7-23 on page 139)
� 64 KB (as shown in Figure 7-24 on page 139)

Unlike as described in 7.12.4, “Comparing Java and native parsers with varying request 
sizes” on page 136, this section describes scenarios in which the response sizes were 
modified. With an invariant request size, the benefit of the native parser is expected to remain 
constant across all scenarios because the parser operates on the incoming request only.

Performance results for a 64 KB request with 32-byte response are described in 7.12.4, 
“Comparing Java and native parsers with varying request sizes” on page 136. Figure 7-23 on 
page 139 shows the native parser reducing the overall CPU by 5.31 ms, but increasing the 
non-zIIP-eligible CPU by 0.98 ms per request.
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Figure 7-23   Comparing Java and native parsers for 64 KB request with a 4 KB response

With a 64 KB request and a 4 KB response, the native parser reduces overall CPU usage by 
5.34 ms (as shown in Figure 7-24). The native parser uses 0.98 ms more non-zIIP-eligible 
CPU.

Figure 7-24   Comparing Java and native parsers for 64 KB request with a 64 KB response

For the 64 KB request and 64 KB response scenario, the native parser again reduces overall 
CPU usage by 5.11 ms. The native parser again increases non-zIIP-eligible CPU usage by 
0.98 ms per request.
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7.12.6  Native parser conclusion

The native parser can provide a significant reduction in overall CPU usage per request. The 
potential reduction in CPU usage is determined by the size of the inbound request. The native 
parser is not implemented by using Java; therefore, CPU usage by the native parser cannot 
be offloaded to a specialty engine.

The performance improvements in CICS TS V5.3 apply to the JSON parser component only; 
therefore, it has no effect on the CPU costs that are involved in producing a JSON response.

7.13  HTTP flow control

CICS TS V5.3 introduces the ability to enable performance tuning for HTTP to protect CICS 
from unconstrained resource demand. TCP/IP flow control in CICS TS V5.3 is for HTTP 
connections only. If enabled, it addresses the following situations:

� A pacing mechanism to prevent HTTP requests from continuing to be accepted by a CICS 
region, when the region reached its throughput capacity.

� Gives an opportunity to rebalance persistent connections on a periodic basis.

If HTTP flow control is enabled and the region becomes overloaded, CICS temporarily stops 
listening for new HTTP connection requests. If overloading continues, CICS closes HTTP 
persistent connections and marks all new HTTP connections as non-persistent. These 
actions prevent oversupply of new HTTP work from being received and queued within CICS, 
which allows feedback to TCP/IP port sharing and Sysplex Distributor. This ability promotes a 
balanced sharing of workload with other regions that are sharing the IP endpoint and allowing 
the CICS region to recover more quickly.

7.13.1  Server accept efficiency fraction

CICS HTTP flow control is implemented by queuing new HTTP connection requests in the 
TCP/IP socket backlog. Queuing requests in the TCP/IP socket backlog affects the server 
accept efficiency fraction (SEF). 

SEF is a measure (calculated at intervals of approximately 1 minute) of the efficiency of the 
server application in accepting new connection setup requests and managing its backlog 
queue. The SEF value is reported as a percentage. A value of 100% indicates that the server 
application is successfully accepting all its new connection setup requests. A value of 0% 
indicates that the server application is not responding to new connection set up requests. The 
SEF field is only available for a connection that is in listen state.

Note: When ports that are managed by CICS are used, it is the CICS address space that 
is accepting connections; therefore, CICS is the server application (in IBM z/OS 
Communications Server terminology).
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The netstat command can display the SEF value for an IP socket. This command is available 
in the TSO and z/OS UNIX System Services environments. The following sample commands 
produce the same output when inquiring about the state of port 4025:

� TSO environment

NETSTAT ALL (PORT 4025

� z/OS UNIX System Services environment

netstat -A -P 4025

Example 7-3 shows a fragment of the output that is produced by the netstat command.

Example 7-3   Sample fragment of the output of the netstat command

ReceiveBufferSize:  0000065536       SendBufferSize:     0000065536 
ConnectionsIn:      0000008574       ConnectionsDropped: 0000000000 
MaximumBacklog:     0000001024       ConnectionFlood:    No         
CurrentBacklog:     0000000000                                      
  ServerBacklog:    0000000000       FRCABAcklog:        0000000000 
CurrentConnections: 0000001464       SEF:                100

When the SHAREPORTWLM option in a port definition is used, the SEF value is used to modify the 
IBM Workload Manager for z/OS server-specific weights, which influences how new 
connection setup requests are distributed to the servers sharing this port.

When the SHAREPORT option in a port definition is used, the SEF value is used to weight the 
distribution of new connection setup requests among the SHAREPORT servers.

Whether SHAREPORT or SHAREPORTWLM is specified, the SEF value is reported back to the 
sysplex distributor to be used as part of the target server responsiveness fraction calculation, 
which influences how new connection setup requests are distributed to the target servers.

For more information about the configuration of ports in IBM z/OS Communications Server, 
see the “PORT statement” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bd4zdY

7.13.2  Flow control configuration

The behavior of HTTP flow control is specified by using the new system initialization 
parameter SOTUNING, which can be set to one of the following values:

� YES

Performance tuning for HTTP connections occurs to protect CICS from unconstrained 
resource demand. YES is the default value.

� 520

No performance tuning occurs.

For more information about the SOTUNING SIT parameter, see the “SOTUNING” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bd4zd2

Note: If sharing IP endpoints, ensure that all regions have the same SOTUNING value or 
uneven loading might occur.
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7.13.3  Flow control operation

When a CICS region reaches the maximum task limit (MXT), it stops accepting new HTTP 
connections and incoming requests are queued in the backlog for the TCP/IP socket. When 
the MXT condition is relieved, CICS starts accepting new connections again.

In the case of persistent connections (that is, connections that were accepted and maintained 
their connection), work can continue to be received even after reaching MXT. In this situation, 
when the number of active transactions in CICS and the number of queued requests in the IP 
socket reaches 110% of the MXT value, client connections are actively disconnected to route 
work away from an overloaded CICS region.

When actively disconnecting clients, the current request is permitted to complete and then the 
connection is closed. New connection requests are made non-persistent until the region 
drops below 95% of the MXT value.

In addition to these mechanisms, CICS also disconnects a client connection every 1,000 
requests. This disconnection rate gives an opportunity for rebalancing the connection when 
the client reconnects.

7.13.4  CICS statistics enhancements

CICS TCP/IP global statistics was enhanced to provide information about how incoming work 
is being processed and the effect flow control is having on HTTP requests. Example 7-4 
shows an extract of a sample DFHSTUP report for an HTTP workload where flow control is 
enabled.

Example 7-4   Extract of sample TCP/IP global statistics report produced by CICS TS V5.3 DFHSTUP

Performance tuning for HTTP connections . . . . . . . . . . . . . :          Yes
Socket listener has paused listening for HTTP connections . . . . :          Yes
Number of times socket listener notified at task accept limit . . :        25672
Last time socket listener paused listening for HTTP connections . :   10/15/2015  11:13:26.3862
Region stopping HTTP connection persistence . . . . . . . . . . . :          Yes
Number of times region stopped HTTP connection persistence. . . . :            0
Last time stopped HTTP connection persistence. .  . . . . . . . . :   --/--/----  --:--:--:----
Number of persistent HTTP connections made non-persistent . . . . :        52554
Number of times disconnected an HTTP connection at max uses . . . :            0

For more information about available CICS statistics fields, see 7.5.6, “TCP/IP global 
statistics” on page 117.

7.13.5  Comparison of SOTUNING options

Table 7-3 lists CICS statistics reports, comparing a workload that is running in CICS with 
SOTUNING=YES to the same workload that is running in a CICS system with SOTUNING=520 for 
the same period. The workload in this case consisted of a simple HTTP web application 
where each inbound request made a new TCP/IP connection.

Table 7-3   Extract of CICS statistics reported values with SOTUNING=520 and SOTUNING=YES

CICS statistic SOTUNING=520 SOTUNING=YES

Number of completed transactions 101,538 105,117

Peak queued transactions 2,193 3
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Although this example is an extreme case, it does demonstrate that it is more effective to 
queue work outside of CICS by preventing new connections being accepted in terms of CPU 
and EDSA usage.

In the SOTUNING=520 case, MXT was reached and the CICS region did not drop below that 
value of concurrent tasks, which remained permanently at MXT for the measurement interval. 
In the SOTUNING=YES case, the CICS system kept dropping in and out of MXT as it stopped 
new work arriving and then started accepting work as it dropped below MXT.

7.14  High transaction rate performance study

To demonstrate many of the performance improvements that were introduced in the CICS 
V5.3 release, a performance study was undertaken to drive a high rate of transactions 
through a CICS configuration. The study consisted of the following workloads:

� The first workload runs on a single z13 LPAR with 18 CPs up to a rate of 174,000 CICS 
transactions per second.

� The second workload runs on a single z13 LPAR with 26 CPs up to a rate of 227,000 
CICS transactions per second.

For more information about the full results of this study, see IBM CICS Performance Series: 
CICS TS V5.3 Benchmark on IBM z13, REDP-5320, which is available at this website:

http://www.redbooks.ibm.com/abstracts/redp5320.html

7.15  WebSphere Liberty zIIP eligibility

As described in 7.8.2, “Java servlet workload” on page 123, a new thread management 
mechanism was introduced in CICS TS V5.3 for WebSphere Liberty workloads. As part of the 
CICS continuous delivery strategy this thread management support is further enhanced by 
APAR PI54263, increasing the zIIP eligibility of WebSphere Liberty workloads in CICS. This 
enhancement to CICS TS V5.3 can reduce the total general purpose (GP) CPU consumed 
for a given workload.

Prior to APAR PI54263, WebSphere Liberty assigned an HTTP request to a T8 TCB using a 
thread from its thread pool. Execution on the T8 TCB would then be suspended while the 
CICS transaction context was built for the task by executing on the QR TCB. On completion of 
the transaction initialization, the T8 TCB would resume, but it would resume in a state that 
was not eligible for execution on a zIIP, and even though regaining zIIP eligibility quickly the 
T8 would remain on a GP CPU until redispatched by z/OS.

Peak active transactions 150 150

Times stopped accepting new sockets n/a 26,674

Number of times at MXT limit 1 (continuously) 29,418

CPU used 62.11 s 60.86 s

CPU per transaction 0.611 ms 0.578 ms

EDSA used (MB) 121 MB 60 MB

CICS statistic SOTUNING=520 SOTUNING=YES
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APAR PI54263 improves the zIIP eligibility of WebSphere Liberty workloads by allowing the 
transaction context to be built on a T8 TCB. This improves performance by removing the 
overhead of two TCB switches, and also never suspending or resuming the T8 whilst not zIIP 
eligible.

For more information about the changes in APAR PI54263, see the following article in the 
CICS Developer Center:

https://developer.ibm.com/cics/2016/05/17/improving-ziip-eligibilty/

To measure the performance improvements introduced by this change, a WebSphere Liberty 
workload was executed. You can find details about the performance results in the CICS 
Developer Center article referenced previously, and Table 7-4 presents a summary.

Table 7-4   Summary of performance improvements introduced by APAR PI54263

Table 7-4 shows the total CPU consumed per request is reduced by 26% from 0.460 ms to 
0.340 ms. The amount of GP CPU time is also reduced: from 0.039 ms to 0.018 ms per 
request, or a 53% reduction. Overall zIIP-eligibility of the workload is increased from 91.6% to 
94.7%.

7.16  Link to WebSphere Liberty

A further continuous delivery enhancement to CICS TS V5.3 is provided by APAR PI63005, 
which enables any CICS program to link to a Java Platform, Enterprise Edition (Java EE) 
application, running in a WebSphere Liberty JVM server inside CICS.

To be invoked by a CICS program, the Java EE application is required to contain a plain old 
Java object (POJO), packaged as a web archive (WAR) or enterprise archive (EAR) file. A 
method in the Java EE application can be made a CICS program by use of the @CICSProgram 
annotation.

CICS creates the program resources defined by the @CICSProgram annotations when the 
application is started in a WebSphere Liberty JVM server. The WebSphere Liberty instance 
must be configured with the feature cicsts:link-1.0.

Data can be passed between non-Java and Java programs using the channels and 
containers interface; COMMAREA and INPUTMSG are not supported.

For more details about the Link to WebSphere Liberty functionality, see the topic “Invoking a 
Java EE application from a CICS program” in IBM Knowledge Center at this website:

https://ibm.biz/BdjUp5

GP per request
(ms)

zIIP per request
(ms)

CPU per request
(ms)

CICS TS V5.2 0.039 0.421 0.460

CICS TS V5.3 0.018 0.322 0.340
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7.16.1  Performance comparison

A benchmark was created to understand the relative CPU consumption of the following three 
scenarios, when linking from a COBOL application to a program that is written in one of the 
following languages:

� COBOL
� Java and hosted in a WebSphere Liberty JVM server
� Java and hosted in an OSGi JVM server

The benchmark consists of two programs, with the logic flow indicated:

1. PROGRAMA

– Create a CICS container (CONTAINER1) to pass data to.
– Use the EXEC CICS LINK command to PROGRAMB.
– Extract and validate contents of the CICS container, RESPONSE.
– Write a success message.
– End the transaction.

2. PROGRAMB

– Read the container, CONTAINER1.
– Build the container, RESPONSE.
– Return to the caller.

PROGRAMA was implemented using only COBOL. PROGRAMB was implemented using COBOL 
and Java, with two separate versions that are suitable for deployment in an OSGi JVM server 
and WebSphere Liberty JVM server environment. The COBOL version of PROGRAMB was 
defined as CONCURRENCY(REQUIRED) so that the program executed on an Open TCB.

The workload was executed on an IBM z13 with an LPAR configuration equivalent to a 
2964-703, with three dedicated general-purpose CPs, and one dedicated zIIP in SMT=1 
mode. The workload used z/OS V2.2, CICS TS V5.3 with APAR PI63005, and Java 8.0 SR3.

7.16.2  Link to WebSphere Liberty performance results

RMF was used to accurately measure the CPU cost per transaction. Response time 
information was obtained using CICS monitoring data. Table 7-5 lists the results of the 
workload when executed at a steady rate of approximately 5,000 transactions per second.

Table 7-5   CPU per transaction and response time comparison for COBOL and Java implementations

The results from Table 7-5 are summarized in the chart in Figure 7-25 on page 146.

Implementation language Total CPU (ms) zIIP-eligible CPU (ms) Response time (ms)

COBOL 0.0455 0.0000 1.3130

Java (WebSphere Liberty JVM server) 0.1014 0.0290 1.3810

Java (OSGi JVM server) 0.1491 0.0777 2.0310
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Figure 7-25   Plot of link to WebSphere Liberty benchmark results

7.16.3  Link to WebSphere Liberty performance conclusion

The programs used for this study are simple, with little application logic. They demonstrate 
the difference in CPU cost of the EXEC CICS LINK infrastructure within CICS that enables 
calls to COBOL or Java CICS programs.

Linking to COBOL is the lowest cost, both in terms of total and non-zIIP eligible CPU. Linking 
to the Java EE version of the application running in a WebSphere Liberty JVM server costs 
just over twice the total CPU cost of the COBOL version and about half of this extra time can 
be offloaded to run on a zIIP processor. Using either version of the Java program costs more 
total CPU than the COBOL version and also costs more general processor time too.

Much of the cost of running Java is zIIP-eligible but profiling analysis has shown that the 
management of the extra TCBs needed in the Java cases needs increased z/OS dispatcher 
time. The increased time spent in z/OS dispatching routines is not zIIP-eligible. Using JCICS 
also creates more calls to the CICS EXEC interface (with ASSIGN and CONTAINER 
management calls) which leads to a further increase in general processor time compared to 
the COBOL case.

Compared to the OSGi JVM server case, Java and UNIX threads are managed more 
efficiently in the WebSphere Liberty JVM server case by employing thread reuse techniques. 
This improved efficiency makes the WebSphere Liberty JVM server case significantly 
cheaper in terms of total CPU cost than using an OSGi JVM server.

The response times for the COBOL and WebSphere Liberty JVM server versions were similar 
and CICS suspend time was the main contributor to this time. At the transaction rate used, 
waiting for first CICS dispatch (recorded in the CICS monitor data field DSPDELAY) 
accounted for most of the time the transactions were suspended. A longer response time was 
observed for the OSGi JVM server version. This was due to a longer dispatch time caused by 
the T8 TCB being placed into an operating wait state for much longer times by the less 
efficient Java and UNIX thread management of the OSGi JVM server.
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For more details about the performance testing described previously, see the following article 
in the CICS Developer Center:

https://ibm.biz/BdjUpN

7.16.4  Comparison of CICS monitoring and RMF data

The CPU data presented in Table 7-5 on page 145 was obtained using RMF because CICS 
monitoring facility (CMF) data does not account for all the CPU time consumed by a CICS 
region. Time spent on non-CICS TCBs, the SRB time for networking, or the overhead to 
initialize and terminate a transaction is not included in monitoring data.

Figure 7-26 plots the CPU per transaction for the Link to WebSphere Liberty workload, 
obtained using both RMF and CMF data.

Figure 7-26   Comparison of RMF and CMF data for the Link to WebSphere Liberty workload

Comparing the total CPU cost obtained using the CMF and the RMF data, the COBOL 
example shows this difference is about 0.017ms.

For the OSGi JVM server example this difference is about 0.022ms. This difference includes 
the additional overhead of running in a JVM environment on non-CICS managed TCBs, such 
as JIT compilation and some garbage collection.

The WebSphere Liberty JVM server example shows a much greater difference of about 
0.034ms. This greater difference is attributed to the additional overhead of running a 
WebSphere Liberty server, with time spent on extra non-CICS managed TCBs (UNIX 
pthreads) used by WebSphere Liberty support functions. 
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In all these cases the percentage difference between RMF and CICS monitoring data is 
maximized by the trivial nature of the application. For a more complex application the relative 
difference would be smaller. When measuring the total cost for a workload, it is important to 
note this discrepancy between CICS monitoring data and RMF data for any application type. 
Java applications will typically show a greater delta between RMF and CMF data due to the 
non-CICS TCBs used for normal JVM operation.
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Chapter 8. CICS TS for z/OS V5.4

IBM CICS Transaction Server for z/OS (CICS TS) V5.4 release introduces various technical 
and operational capabilities. Included in these updates are improvements that provide 
performance benefits over previous CICS releases. Included in the CICS V5.4 performance 
report are the following subject areas:

� Key performance benchmarks that are presented as a comparison with the CICS TS V5.3 
release.

� An outline of improvements made regarding the threadsafe characteristics of the CICS TS 
run time.

� Details of the changes that are made to performance-critical CICS initialization 
parameters, and the effect of these updates.

� A description of all the updated statistics and monitoring fields.

� A description of the performance class monitoring field contents for various types of 
WebSphere Liberty requests.

� High-level views of new functionality that was introduced in the CICS TS V5.4 release, 
including performance benchmark results where appropriate.

This chapter includes the following topics:

� 8.1, “Introduction” on page 150
� 8.2, “Release-to-release comparisons” on page 150
� 8.3, “Improvements in threadsafety” on page 161
� 8.4, “Changes to system initialization parameters” on page 162
� 8.5, “Changes to resource definition attribute default values” on page 164
� 8.6, “Enhanced instrumentation” on page 165
� 8.7, “CICS tasks for WebSphere Liberty applications” on page 172
� 8.8, “z/OS WLM Health API” on page 173
� 8.9, “Asynchronous API” on page 173
� 8.10, “EXCI support for channels and containers” on page 182
� 8.11, “CICS support for IBM Health Checker for z/OS” on page 188
� 8.12, “Web services performance” on page 189

8
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8.1  Introduction

When compiling the results for this chapter, the workloads were executed on an IBM z13 
model NE1 (machine type 2964). A maximum of 32 dedicated CPs were available on the 
measured LPAR, with a maximum of six dedicated CPs available to the LPAR used to 
simulate users. These LPARs are configured as part of a parallel sysplex. An internal 
coupling facility was co-located on the same central processor complex (CPC) as the 
measurement and driving LPARs, connected using internal coupling peer (ICP) links. An IBM 
System Storage DS8870 (machine type 2424) was used to provide external storage.

This chapter presents the results of several performance benchmarks when executed in a 
CICS TS for z/OS V5.4 environment. Unless otherwise stated in the results, the CICS V5.4 
environment was the code available at GA time. Several of the performance benchmarks are 
presented in the context of a comparison against CICS TS V5.3. The CICS TS V5.3 
environment contained all PTFs issued before 24th February 2017. All LPARs used z/OS 
V2.2.

For a definition of performance terms used in this chapter, see Chapter 1, “Performance 
terminology” on page 3. A description of the test methodology used can be found in 
Chapter 2, “Test methodology” on page 11. For a full description of the workloads used, see 
Chapter 3, “Workload descriptions” on page 21.

Where reference is made to an LSPR processor equivalent, the indicated machine type and 
model can be found in the large systems performance reference (LSPR) document. For more 
information about obtaining and using LSPR data, see 1.3, “Large Systems Performance 
Reference” on page 6.

8.2  Release-to-release comparisons

This section describes some of the results from a selection of regression workloads that are 
used to benchmark development releases of CICS TS. For more information about the use of 
regression workloads, see Chapter 3, “Workload descriptions” on page 21.

8.2.1  Data Systems Workload static routing

The static routing variant of the Data Systems Workload (DSW) is described in 3.2.1, “DSW 
static routing” on page 22. This section presents the performance figures that were obtained 
by running this workload. Table 8-1 lists the results of the DSW static routing workload that 
used the CICS TS V5.3 release.

Table 8-1   CICS TS V5.3 results for DSW static routing workload

ETR CICS CPU CPU per transaction (ms)

1244.31 77.52% 0.623

1428.17 88.74% 0.621

1587.05 98.00% 0.617

1789.21 110.18% 0.616

2043.24 129.54% 0.634
150 IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report



Table 8-2 lists the same figures for the CICS TS V5.4 release.

Table 8-2   CICS TS V5.4 results for DSW static routing workload

The average CPU per transaction value for CICS TS V5.3 is calculated to be 0.622 ms. The 
same value for CICS TS V5.4 is calculated to be 0.617 ms. The performance of this workload 
is within 1% and, therefore, considered to be equivalent for the two releases.

The figures from Table 8-1 on page 150 and Table 8-2 are plotted in the chart in Figure 8-1.

Figure 8-1   Plot of CICS TS V5.3 and V5.4 performance figures for DSW static routing workload

The measured CPU cost for each transaction rate is similar for CICS TS V5.3 and V5.4, which 
is demonstrated by the two plot lines being almost identical.

8.2.2  Data Systems Workload dynamic routing

The dynamic routing variant of the Data Systems Workload (DSW) is described in 3.2.2, 
“DSW dynamic routing” on page 23. This section presents the performance figures that were 
obtained by running this workload.

ETR CICS CPU CPU per transaction (ms)

1240.69 76.90% 0.620

1425.05 87.84% 0.616

1582.76 96.98% 0.613

1784.61 108.81% 0.610

2038.77 128.18% 0.629
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Table 8-3 lists the performance results of the DSW dynamic routing workload that used the 
CICS TS V5.3 release.

Table 8-3   CICS TS V5.3 results for DSW dynamic routing workload

Table 8-4 lists the results of the DSW dynamic routing workload that used the CICS TS V5.4 
release.

Table 8-4   CICS TS V5.4 results for DSW dynamic routing workload

The average CPU per transaction value for CICS TS V5.3 is calculated to be 0.406 ms. The 
same value for CICS TS V5.4 is calculated to be 0.408 ms. The difference between the two 
values is less than 1% and within experimental error; therefore, the performance of this 
workload is considered to be equivalent for the two releases.

The results from Table 8-3 and Table 8-4 are shown in Figure 8-2 on page 153.

ETR CICS CPU CPU per transaction (ms)

6139.73 253.15% 0.412

8974.81 365.76% 0.408

12099.66 483.50% 0.400

16444.72 661.87% 0.402

21386.62 871.39% 0.407

ETR CICS CPU CPU per transaction (ms)

6140.75 252.93% 0.412

8968.03 366.44% 0.409

12119.32 491.94% 0.406

16433.46 667.78% 0.406

21282.97 871.85% 0.410
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Figure 8-2   Plot of CICS TS V5.3 and V5.4 performance figures for DSW dynamic routing workload

The measured CPU cost for each transaction rate is similar for CICS TS V5.3 and V5.4, which 
is demonstrated graphically by the two plot lines being almost identical. A final observation is 
that the total CPU consumed by the CICS regions scales linearly in accordance with the 
transaction rate.

8.2.3  The Data Systems Workload HTTP interface

The HTTP interface variant of the Data Systems Workload (DSW) uses the same application 
logic and topology as the DSW static routing workload as described in 3.2.1, “DSW static 
routing” on page 22. The HTTP interface variant uses HTTP flows to drive the workload in a 
manner similar to the 3270 terminals used in the static routing workload. This section 
presents the performance figures that were obtained by running this HTTP workload.

Table 8-5 lists the results of the DSW HTTP interface workload that used the CICS TS V5.3 
release.

Table 8-5   CICS TS V5.3 results for DSW HTTP interface workload

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

4,000 8,000 12,000 16,000 20,000 24,000

%
 o

f a
 s

in
gl

e 
CP

Transactions per second

CICS TS V5.3
CICS TS V5.4

ETR CICS CPU CPU per transaction (ms)

1181.82 143.19% 1.212

1358.17 163.20% 1.202

1508.77 180.73% 1.198

1694.42 203.45% 1.201

1933.20 241.80% 1.251
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Table 8-6 lists the same figures for the CICS TS V5.4 release.

Table 8-6   CICS TS V5.4 results for DSW HTTP interface workload

The average CPU per transaction value for CICS TS V5.3 is calculated to be 1.213 ms. The 
same value for CICS TS V5.4 is calculated to be 1.197 ms. The difference in performance is 
within measurable limits and, therefore, is considered to be equivalent for the two releases.

The figures from Table 8-5 on page 153 and Table 8-6 are plotted in the chart in Figure 8-3.

Figure 8-3   Plot of CICS TS V5.3 and V5.4 performance figures for DSW HTTP interface workload

The measured CPU cost for each transaction rate is similar for CICS TS V5.3 and V5.4, which 
is demonstrated by the two plot lines being almost identical.

8.2.4  The Relational Transactional Workload threadsafe

The Relational Transactional Workload (RTW) is described in 3.3, “Relational Transactional 
Workload” on page 25. This section presents the performance figures that were obtained by 
running this workload.

ETR CICS CPU CPU per transaction (ms)

1180.34 141.33% 1.197

1356.36 161.88% 1.193

1506.96 179.39% 1.190

1692.79 199.82% 1.180

1931.97 236.78% 1.226
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Table 8-7 lists the performance results for the RTW threadsafe workload that used the 
CICS TS V5.3 release.

Table 8-7   CICS TS V5.3 results for the RTW threadsafe workload

Table 8-8 lists the performance results for the RTW threadsafe workload that used the 
CICS TS V5.4 release.

Table 8-8   CICS TS V5.4 results for the RTW threadsafe workload

The average CPU per transaction figure for CICS TS V5.3 is calculated to be 1.321 ms. The 
CICS TS V5.4 figure is calculated to be 1.328 ms. The difference between these two figures 
is 0.5%, which is within our measurement accuracy of ±1%; therefore, the performance of the 
two releases is considered to be equivalent.

These figures are shown in Figure 8-4 on page 156.

ETR CICS CPU CPU per transaction (ms)

333.44 44.11% 1.323

499.59 66.11% 1.323

713.15 94.10% 1.319

996.18 131.52% 1.320

1241.70 163.99% 1.321

ETR CICS CPU CPU per transaction (ms)

333.47 44.47% 1.334

499.70 66.52% 1.331

713.23 94.15% 1.320

996.34 131.97% 1.325

1241.71 165.19% 1.330
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Figure 8-4   Plot of CICS TS V5.3 and V5.4 performance figures for RTW threadsafe workload

As shown in Figure 8-4, the lines are straight, which indicates linear scaling as transaction 
throughput increases. The lines also are overlaid, which indicates equivalent performance 
when the releases are compared.

8.2.5  The Java servlet that uses JDBC and VSAM

The Java servlet application is hosted in a CICS JVM server that uses the embedded 
WebSphere Liberty server. The workload is driven through HTTP requests by using IBM 
Workload Simulator for z/OS, as described in 2.4, “Driving the workload” on page 16. The 
servlet application accesses VSAM data by using the JCICS API and accesses DB2 by using 
the JDBC API. For more information about the workload, see 3.4, “WebSphere Liberty servlet 
with JDBC and JCICS access” on page 26.

The hardware used for the benchmarks is described in 8.1, “Introduction” on page 150. The 
measurement LPAR was configured with three GCPs and one zIIP, which resulted in an LSPR 
equivalent processor of 2964-704.

The CICS TS V5.3 and V5.4 releases were compared by using the software levels as 
described in 8.1, “Introduction” on page 150. Both configurations used a single CICS region 
and the following additional software levels and configuration options:

� DB2 V12
� Java 8 SR3 (64-bit)
� Single JVMSERVER resource with THREADLIMIT=256

Both JVM servers used the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedrefs
� -XXnosuballoc32bitmem
� -Xmx200M
� -Xms200M
� -Xmnx60M
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� -Xmns60M
� -Xmox140M
� -Xmos140M

As described in 2.3.1, “Repeatability for Java workloads” on page 14, this workload requires a 
warm-up period of 20 minutes. After this warm-up phase completed, the request injection rate 
was increased every 10 minutes. CPU usage data was collected using IBM z/OS Resource 
Measurement Facility (RMF). An average CPU per request value was calculated using the 
last 5 minutes of each 10-minute interval.

Table 8-9 lists the performance results of the Java servlet workload that used the 
CICS TS V5.3 release, with the following columns:

� ETR

The average External Throughput Rate (ETR) during the measurement interval. For more 
details, see 1.3.1, “External throughput rate” on page 7.

� CICS CPU not zIIP-eligible

The fraction of a single CPU consumed by the whole address space during the 
measurement interval that was not eligible for execution on a zIIP engine. Extracted from 
the CP field in an RMF “Workload Activity” report for a report class.

� CICS CPU zIIP-eligible

The fraction of a single CPU consumed by the whole address space that was eligible for 
execution on a zIIP engine. Calculated as the sum of the IIP and IIPCP fields in an RMF 
“Workload Activity” report for a report class.

� CICS CPU total

The fraction of a single CPU consumed by the whole address space during the 
measurement interval. Calculated as the sum of the CP and IIP fields in an RMF 
“Workload Activity” report for a report class. This value is equal to the sum of the CICS 
CPU not zIIP-eligible and CICS CPU zIIP-eligible columns.

Table 8-9   CICS TS V5.3 results for WebSphere Liberty JDBC and VSAM workload

Table 8-10 lists the performance results of the Java servlet workload that used the 
CICS TS V5.4 release in the same format as Table 8-9.

Table 8-10   CICS TS V5.4 results for WebSphere Liberty JDBC and VSAM workload

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

837.32 27.45% 52.26% 79.71%

1637.60 53.71% 83.67% 137.38%

2289.29 80.11% 93.30% 173.41%

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

837.28 25.13% 49.53% 74.65%

1646.47 53.57% 85.10% 138.67%

2288.08 79.89% 95.61% 175.49%
Chapter 8. CICS TS for z/OS V5.4 157



The CICS CPU total values from Table 8-9 on page 157 and Table 8-10 on page 157 are 
plotted in Figure 8-5.

Figure 8-5   Total CPU comparison for CICS TS V5.3 and CICS TS V5.4 JDBC and VSAM workload

The offload eligibility figures are presented as a chart in Figure 8-6.

Figure 8-6   Comparing offload-eligible CPU utilization for servlet workload with CICS TS V5.3 and V5.4

The average CPU per transaction value for the JDBC and VSAM workload using the 
CICS TS V5.3 release is calculated to be 0.849 ms. The same value for the CICS TS V5.4 
configuration is calculated to be 0.834 ms.
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Table 8-9 on page 157 and Table 8-10 on page 157 present CICS CPU zIIP-eligible and 
CICS CPU total data, both as utilization fractions of a single CPU. From these figures, an 
overall zIIP eligibility figure for the workload is calculated, which is defined as the fraction of 
the total CPU consumed that was eligible to execute on a zIIP engine.

This value expressed mathematically is as follows:

The CICS TS V5.3 workload had an average zIIP eligibility value of 60.1%, and the 
CICS TS V5.4 configuration average value was 60.7%.

The average CPU per transaction and the zIIP eligibility calculations show that the CICS TS 
V5.4 release demonstrates similar performance to the CICS TS V5.3 release for this 
workload. This calculation is true for both the total CPU consumed and the fraction, which is 
eligible for offload to a zIIP engine.

8.2.6  The Java OSGi workload

The Java OSGi workload is composed of several applications, as described in 3.5, “Java 
OSGi workload” on page 27.

The hardware used for the benchmarks is described in 8.1, “Introduction” on page 150. The 
measurement LPAR was configured with three GCPs and one zIIP, which resulted in an LSPR 
equivalent processor of 2964-704.

The CICS TS V5.3 and V5.4 releases were compared by using the software levels as 
described in 8.1, “Introduction” on page 150. Both configurations used a single CICS region 
and the following additional software levels and configuration options:

� DB2 V12
� Java 8 SR4 (64-bit)
� Single JVMSERVER resource with THREADLIMIT=25

Both JVM servers used the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedrefs
� -XXnosuballoc32bitmem
� -Xmx100M
� -Xms100M
� -Xmnx70M
� -Xmns70M
� -Xmox30M
� -Xmos30M

Note: A performance improvement for WebSphere Liberty workloads was delivered by 
APAR PI54263 in CICS TS V5.3. A summary of this improvement is described in 7.15, 
“WebSphere Liberty zIIP eligibility” on page 143.

This performance improvement included in CICS TS V5.4. APAR PI54263 is also included 
in the CICS TS V5.3 configuration that was used as baseline measurements for this 
section. Therefore, no performance improvements are observed in this section because 
both releases include the zIIP eligibility improvements introduced by APAR PI54263.

zIIP eligibility CICS CPU zIIP-eligible
CICS CPU total----------------------------------------------------------=
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As described in 2.3.1, “Repeatability for Java workloads” on page 14, this workload requires a 
warm-up period of 20 minutes. After this warm-up phase completed, the request injection rate 
was increased every 5 minutes. CPU usage data was collected using IBM z/OS Resource 
Measurement Facility (RMF). An average CPU per request value was calculated using the 
last minute of each 5-minute interval.

Table 8-11 lists the performance results of the Java OSGi workload that used the 
CICS TS V5.3 release.

Table 8-11   CICS TS V5.3 performance results for OSGi workload

The performance results for the CICS TS V5.4 release are shown in Table 8-12.

Table 8-12   CICS TS V5.4 performance results for OSGi workload

The CICS CPU total values from Table 8-11 and Table 8-12 are plotted in Figure 8-7.

Figure 8-7   Comparing overall CPU utilization for Java OSGi workload with CICS TS V5.3 and V5.4

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

233.98 22.27% 74.51% 96.78%

467.93 43.26% 148.27% 191.53%

780.13 78.72% 249.64% 328.36%

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

233.98 22.68% 72.18% 94.86%

467.97 44.32% 144.65% 188.97%

779.38 81.19% 242.10% 323.29%
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The offload eligibility figures are presented as a chart in Figure 8-8.

Figure 8-8   Comparing offload-eligible CPU utilization for OSGi workload with CICS TS V5.3 and V5.4

The average CPU per transaction value for this workload using the CICS TS V5.3 release is 
calculated to be 4.146 ms. The same value for the CICS TS V5.4 release is calculated to be 
4.080 ms.

Using the methodology to calculate the zIIP eligibility of the workload described in 8.2.5, “The 
Java servlet that uses JDBC and VSAM” on page 156, the CICS TS V5.3 release had an 
average zIIP eligibility of 76.8%. The CICS TS V5.4 release had an average zIIP eligibility of 
75.8%.

As observed with the Java servlet workload, the performance of Java OSGi applications is 
similar in CICS TS V5.4 when compared to CICS TS V5.3, both in terms of total CPU 
consumed and the fraction that is eligible for offload to a zIIP engine.

8.3  Improvements in threadsafety

All new CICS application programming interface (API) commands in CICS V5.4 are 
threadsafe. Also, an improvement for Java workloads running in an OSGi JVM server when 
accessing IBM MQ is implement.

8.3.1  Threadsafe API commands

The following new CICS API commands are threadsafe:

� FETCH ANY
� FETCH CHILD
� FREE CHILD
� RUN TRANSID
� TRANSFORM DATATOJSON
� TRANSFORM JSONTODATA
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For more information about CICS API commands, see the “CICS command summary” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6Gm

8.3.2  Use of T8 TCB for MQ calls from Java

Java applications running in an OSGi JVM server no longer requires a task control block 
(TCB) to change mode operation when accessing IBM MQ, using either the MQ classes for 
Java or the MQ classes for JMS. In a CICS JVM server, Java applications run on T8 TCBs. In 
CICS TS V5.3, MQ calls from a Java environment required a switch to an L8 TCB. In CICS TS 
V5.4, this switch is removed.

The change in TCB switch behavior affects the results you see in CICS monitoring and 
statistics. TCB use for Java MQ applications is changed so that MQ CPU time is now 
accumulated against a T8 TCB. End-of-task sync point processing is still accumulated on an 
L8 TCB.

In releases prior to CICS TS V5.4, Java applications running in a WebSphere Liberty JVM 
server do not use the CICS MQCONN resource and, therefore, do not require TCB change 
mode operation, using either the MQ classes for Java or the MQ classes for JMS.

8.4  Changes to system initialization parameters

Several performance-related CICS system initialization table (SIT) parameters are changed in 
the CICS TS V5.4 release. This section outlines changes to the SIT parameters that have the 
most impact on CICS performance. All comparisons to previous limits or default values refer 
to CICS TS V5.3.

For a detailed view of changes to SIT parameters in the CICS TS V5.4 release, see the 
“Changes to SIT parameters” section of the “Changes to externals in this release” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bdi6GK

8.4.1  The EDSA limit (EDSALIM) parameter

The minimum value for the EDSALIM parameter is increased from 48 MB to 64 MB. The value 
that is specified for the EDSALIM parameter can be a maximum of 2047 MB, specified in 
multiples of 1 MB.

For more information, see the “EDSALIM” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6Ge

8.4.2  Default runaway task time (ICVR)

The minimum value for the ICVR value is reduced from 500 ms to 250 ms. The default value is 
reduced from 5000 ms to 2000 ms. The value that is specified for the ICVR parameter can be 
a maximum of 2,700,000 ms in multiples of 250 ms.

For more information, see the “ICVR” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6G8
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8.4.3  Maximum open TCBs (MAXOPENTCBS)

The minimum value for the MAXOPENTCBS parameter is increased from 1 to 32. 

If the MAXOPENTCBS parameter is not specified, CICS sets the parameter automatically, based 
on the current value of the MXT system initialization parameter. The value of the MAXOPENTCBS 
parameter is calculated by using the same algorithm implemented in CICS TS V5.1, as 
shown in the following example:

MAXOPENTCBS = (2 x MXT) + 32

For more information about the MAXOPENTCBS parameter, see the “MAXOPENTCBS” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bdi6GJ

8.4.4  Maximum SSL TCBs (MAXSSLTCBS)

The default value for the MAXSSLTCBS parameter is increased from 8 to 32.

For more information about the MAXSSLTCBS parameter, see the “MAXSSLTCBS” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdi6GA

8.4.5  RACF synchronization (RACFSYNC)

The RACFSYNC system initialization parameter specifies whether CICS listens for type 71 Event 
Notification Facility (ENF) events.

RACF sends a type 71 ENF signal to listeners when a CONNECT, REMOVE, or REVOKE command 
changes a user’s resource authorization. If RACFSYNC=YES is specified in a CICS TS V5.4 
environment, when CICS receives a type 71 ENF event for a user ID, all cached user tokens 
for the user ID are invalidated, irrespective of the setting of the USRDELAY parameter.

Subsequent requests from that user ID force a full RACF RACROUTE VERIFY request, which 
results in a refresh of the user’s authorization level. User tokens for tasks that are currently 
running are not affected. In addition to the RACF RACROUTE VERIFY processing, a type 71 ENF 
signal will also make DB2 threads for the associated user ID issue a full sign on when they 
are next reused.

For more information about the RACFSYNC parameter, see the “RACFSYNC” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdi6G9

Note: In the configuration where type 71 signals are issued for large numbers of users 
simultaneously, combined with large numbers of connections to DB2, the temporary 
performance overhead can be significant while the full sign on processing across all 
affected DB2 threads is completed.

To reduce the impact of type 71 ENF processing, make updates to large numbers of RACF 
users during off-peak periods.
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8.4.6  Sign on for a preset user ID (SNPRESET)

The new SNPRESET parameter is provided to allow the sharing of access control environment 
element (ACEE) control blocks. This process can save 31-bit storage and CPU. The SNPRESET 
parameter takes one of the following values:

� UNIQUE

When signing on a preset user ID terminal, the ACEE is built with entry port information. 
Every preset terminal has a unique ACEE that is associated with the user ID and terminal. 
This is the default.

� SHARED

When signing on a preset user ID terminal, the ACEE is built without entry port 
information. All preset terminals with the same user ID use the same ACEE.

If you audit data that is based on the terminal of a preset user ID, use SNPRESET=UNIQUE.

If you do not need information that is based on the terminal of a preset user ID, you can save 
storage by selecting SNPRESET=SHARED.

For more information about the SNPRESET parameter, see the “SNPRESET” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdi6G3

8.4.7  z/OS Workload Manager Health API (WLMHEALTH)

CICS TS V5.4 introduces the new SIT parameter WLMHEALTH. For more details about the use 
of the z/OS Workload Manager Health API in CICS, see 8.8, “z/OS WLM Health API” on 
page 173.

For more information about the WLMHEALTH parameter, see the “WLMHEALTH” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdi55P

8.5  Changes to resource definition attribute default values

Several performance-related CICS resource definition attributes are changed in the CICS TS 
V5.4 release. This section outlines changes to the default attribute values that have the most 
impact on CICS performance. All comparisons to previous limits or default values refer to 
CICS TS V5.3.

For a detailed view of changes to SIT parameters in the CICS TS V5.4 release, see the 
“Changes to resource definitions” section of the “Changes to externals in this release” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bdi6GK

Note: In the event of a security violation with SNPRESET=SHARED, the netname of the terminal 
will not show in the DFHXS1111 message.
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8.5.1  The PROGRAM resource

The default value for the DATALOCATION attribute changed from BELOW to ANY. Commands that 
use the SET option can return a data address to an application program; this operand 
specifies the location of the data. For example, in the EXEC CICS RECEIVE SET(ptr-ref) 
command, ptr-ref is in 24-bit virtual storage if DATALOCATION(BELOW) is specified but might be 
in 31-bit virtual storage if DATALOCATION(ANY) is specified. DATALOCATION does not affect the 
operation of the GETMAIN command.

For more information about the DATALOCATION attribute, see the “PROGRAM attributes” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5zj

8.5.2  The TRANSACTION resource

The minimum value that can be specified for the RUNAWAY attribute is reduced from 500 ms to 
250 ms. The value that is specified for the RUNAWAY attribute can be a maximum of 2,700,000 
ms in multiples of 250 ms.

The default value for the TASKDATALOC attribute has changed from BELOW to ANY. A value of ANY 
indicates storage acquired by CICS for the duration of the transaction can be located in 31-bit 
virtual storage. These areas, which relate to specific CICS tasks, include the EXEC interface 
block (EIB) and the transaction work area (TWA).

The default value for the SPURGE attribute has changed from NO to YES. A value of YES indicates 
a transaction is initially system purgeable.

The default value for the TPURGE attribute has changed from NO to YES. A value of YES 
indicates, for non-z/OS Communications Server terminals only, that the transaction can be 
purged because of a terminal error.

For more information about the RUNAWAY, TASKDATALOC, SPURGE, and TPURGE attributes, see the 
“TRANSACTION attributes” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5zY

8.6  Enhanced instrumentation

The CICS TS V5.4 release enhances the information reported by the CICS monitoring and 
statistics components. This section describes the extra and changed fields that are now 
available in the CICS monitoring and statistics SMF records.

For more information about changes in monitoring fields across a range of CICS releases, 
see the “Changes to CICS monitoring” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5UZ

For more information about changes in statistics fields across a range of CICS releases, see 
the “Changes to CICS statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5UY
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8.6.1  The DFHCICS performance group

The following fields were added to the DFHCICS performance group to provide support for 
policy system rules:

� Policy system rules evaluation count (field MPSRECT)

The number of times that policy system rules have been evaluated for the task.

� Policy system rules trigger count (field MPSRACT)

The number of times that policy system rules that have evaluated to true and have 
triggered either a message or an event.

For more information about policy system rules, see the topic “Policy system rules” in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdi5U2

Several fields have been added to provide enhanced transaction tracking information when 
using the asynchronous services (AS) domain:

� PTSTART
� PTTRANNO
� PTTRAN
� PTCOUNT

For more information about monitoring enhancements for the AS domain, see 8.9, 
“Asynchronous API” on page 173.

For more information about counters that are available in the DFHCICS performance group, see 
the topic “Performance data in group DFHCICS” in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5Uz

8.6.2  The DFHPROG performance group

The ABCODEO and ABCODEC monitoring fields can now contain the following abend codes:

� ASPF
� ASPN
� ASPO
� ASPP
� ASPQ
� ASPR
� ASP1
� ASP2
� ASP3
� ASP7
� ASP8

Note: The previous transaction information is also available for any tasks that do not create 
a new point of origin.

Note: Due to the circumstances under which transactions are called, a transaction dump 
might not be taken when these abends occur.
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For more information about data fields that are available in the DFHPROG performance group, 
see the “Performance data in group DFHPROG” topic in IBM Knowledge Center at this 
website:

https://ibm.biz/Bdi5Uf

8.6.3  The DFHTASK performance group

The following field was added to the DFHTASK performance group to aid system identification:

� Logical partition name (field LPARNAME)

The name, in EBCDIC, of the logical partition (LPAR) on the processor where the CICS 
region is running.

The following fields are added to the DFHTASK performance group to support the 
asynchronous services (AS) domain:

� ASTOTCT
� ASRUNCT
� ASFTCHCT
� ASFREECT
� ASFTCHWT
� ASRNATWT

For more information about monitoring enhancements for the AS domain, see 8.9, 
“Asynchronous API” on page 173.

For more information about data fields that are available in the DFHTASK performance group, 
see the “Performance data in group DFHTASK” topic in IBM Knowledge Center at this 
website:

https://ibm.biz/Bdi6G5

8.6.4  Transaction resource class data

The following fields are added to the transaction resource class data to support the AS 
domain:

� MNR_PTD_ATTACH_TIME
� MNR_PTD_TRANNUM
� MNR_PTD_TRANID
� MNR_PTD_COUNT

For more information about monitoring enhancements for the AS domain, see 8.9, 
“Asynchronous API”.

For more information about fields that are available in the transaction resource class data, 
see the “Transaction resource class data: Listing of data fields” topic in IBM Knowledge 
Center at this website:

https://ibm.biz/Bdi5UP

8.6.5  Identity class data

The following fields are added to the identity class data to support the AS domain:

� MNI_PTD_ATTACH_TIME
� MNI_PTD_TRANNUM
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� MNI_PTD_TRANID
� MNI_PTD_COUNT

For more information about monitoring enhancements for the AS domain, see 8.9, 
“Asynchronous API” on page 173.

For more information about fields that are available in the identity class data, see the “Identity 
class data: Listing of data fields” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5Uy

8.6.6  Asynchronous services global statistics

A new statistics report is added to support the AS domain. This report contains the following 
fields:

� ASG_RUN_COUNT
� ASG_FETCH_COUNT
� ASG_FREE_COUNT
� ASG_RUN_DELAY_COUNT
� ASG_PARENTS_DELAYED_CUR
� ASG_PARENTS_DELAYED_PEAK
� ASG_CHILDREN_CUR
� ASG_CHILDREN_PEAK

For more information about statistics enhancements for the AS domain, see 8.9, 
“Asynchronous API”.

8.6.7  IBM MQ monitor statistics

New statistics are provided in the CICS TS V5.4 for the MQMONITOR resource. The following 
fields are available in the new IBM MQ monitor resource statistics report:

� Monitor name (field MQR_NAME)

The name of an installed MQMONITOR definition in the CICS region.

� Monitor start date and time (field MQR_START_TIME_LOCAL)

The local date and time when the most recent instance of the MQ monitor was started.

� Monitor stop date and time (field MQR_STOP_TIME_LOCAL)

The local date and time when the most recent instance of the MQ monitor was stopped.

� Queue name (field MQR_QNAME)

The name of the MQ queue monitored by the MQ monitor.

� Monitor status (field MQR_MONSTATUS)

The status of the MQ monitor, which can be one of the following states:

– STARTED
– STARTING
– STOPPED
– STOPPING

� Monitor user ID (field MQR_MONUSERID)

The user ID used by the transaction monitoring the MQ queue.
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� Task number (field MQR_TASKNUM)

Task number of the transaction monitoring the MQ queue.

� Transaction ID (field MQR_TRANID)

The ID of the CICS transaction used by the MQ monitor.

� User ID (field MQR_USERID)

The user ID to be used by the monitor transaction when issuing the start request for the 
application transaction if a suitable user ID is not available.

� Number of OPEN requests (field MQR_TOPEN)

The number of MQOPEN calls issued.

� Number of CLOSE requests (field MQR_TCLOSE)

The number of MQCLOSE calls issued.

� Number of GET requests (field MQR_TGET)

The number of MQGET calls issued.

� Number of GET with wait requests (field MQR_TGETWAIT)

The number of MQGET calls issued with the MQGMO_WAIT option.

� Number of PUT requests (field MQR_TPUT)

The number of MQPUT calls issued.

� Number of PUT1 requests (field MQR_TPUT1)

The number of MQPUT1 calls issued.

� Number of INQ requests (field MQR_TINQ)

The number of MQINQ calls issued.

� Number of INQL requests (field MQR_TINQL)

The number of MQINQL calls issued.

� Number of SET requests (field MQR_TSET)

The number of MQSET calls issued.

� Number of committed units of work (field MQR_TCOMMUOW)

The number of UOWs that were in doubt at adapter startup that are now resolved by 
committing.

� Number of backed-out units of work (field MQR_TBACKUOW)

The number of UOWs that were in doubt at adapter startup that are now resolved by 
backing out.

� Number of other requests (field MQR_TOTHER)

The number of other calls.

� Monitor GMT start date and time (field MQR_START_TIME_GMT)

The Greenwich mean time (GMT) when the most recent instance of the MQ monitor was 
started.

� Monitor GMT stop date and time (field MQR_STOP_TIME_GMT)

The Greenwich mean time (GMT) when the most recent instance of the MQ monitor was 
stopped.
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For more information about IBM MQ Monitor statistics, see the “IBM MQ Monitor statistics” 
topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5UM

8.6.8  TCP/IP global statistics

The following fields were added to the TCP/IP global statistics report:

� Current non-persistent inbound sockets (field SOG_CURR_NPERS_INB_SOCKETS)

The current number of non-persistent inbound sockets.

� Peak non-persistent inbound sockets (field SOG_PEAK_NPERS_INB_SOCKETS)

The peak number of non-persistent inbound sockets.

� Peak persistent inbound sockets (field SOG_PEAK_PERS_INB_SOCKETS)

The peak number persistent inbound sockets.

� Total non-persistent inbound sockets created (field SOG_NPERS_INB_SOCKETS_CREATED)

Total number of non-persistent inbound sockets created.

� Peak outbound sockets (field SOG_PEAK_BOTH_OUTB_SOCKETS)

Peak number of outbound sockets.

� Total outbound sockets reused (field SOG_TIMES_OUTB_REUSED)

Total number of times outbound sockets reused.

� Total persistent outbound sockets created (field SOG_PERS_OUTBOUND_CREATED)

Total number of persistent outbound sockets created.

Example 8-1 shows a sample DFHSTUP report that contains the new fields.

Example 8-1   Extract of sample TCP/IP global statistics report produced by CICS TS V5.4 DFHSTUP

Current number of inbound sockets . . . . . . . . . . . . . . . . :          109
Current number of non-persistent inbound sockets. . . . . . . . . :            0
Peak number of inbound sockets. . . . . . . . . . . . . . . . . . :          109
Peak number of non-persistent inbound sockets . . . . . . . . . . :            0
Peak number of persistent inbound sockets . . . . . . . . . . . . :          109
Total number of inbound sockets created . . . . . . . . . . . . . :            0
Total number of non-persistent inbound sockets created. . . . . . :            0
Current number of non-persistent outbound sockets . . . . . . . . :          500
Current number of persistent outbound sockets . . . . . . . . . . :            0
Peak number of outbound sockets . . . . . . . . . . . . . . . . . :          500
Peak number of non-persistent outbound sockets. . . . . . . . . . :          500
Peak number of persistent outbound sockets. . . . . . . . . . . . :            0
Total number of times outbound sockets reused . . . . . . . . . . :       301381
Total number of outbound sockets created. . . . . . . . . . . . . :            0
Total number of persistent outbound sockets created . . . . . . . :            0
Total number of outbound sockets closed . . . . . . . . . . . . . :            0
Total number of inbound and outbound sockets created. . . . . . . :            0

For more information about TCP/IP global statistics, see the “TCP/IP: Global statistics” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5US
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8.6.9  TCP/IP services resource statistics

The following fields were added to the statistics for each installed TCP/IP service:

� Current Maximum Backlog (field SOR_CURR_MAX_BACKLOG)

The maximum number of connection requests that the TCP/IP service currently allows in 
its backlog queue, summed over all appropriate stacks if the TCP/IP service is listening on 
multiple stacks.

� TCPIPSERVICE Backlog Setting (field SOR_BACKLOG)

The initial backlog setting for the TCP/IP service. The setting controls the maximum 
number of connection requests that are allowed to queue in the backlog queue for the 
TCP/IP service before it starts to reject incoming connections. This is per stack if the 
TCP/IP service is listening on multiple stacks.

� Total connections (field SOR_TOTAL_CONNS)

The total number of connections made for the TCP/IP service.

� Requests processed (field SOR_REQUESTS)

The number of requests processed by the TCP/IP service.

� Made non-persistent at MAXPERSIST (field SOR_NONP_AT_MAXPERSIST)

The number of times a new persistent connection was made non-persistent because 
MAXPERSIST was reached.

� Disconnected after maximum uses (field SOR_DISC_AT_MAX_USES)

The number of times a persistent HTTP connection was disconnected because its number 
of uses had exceeded the limit.

� Made non-persistent at task limit (field SOR_NONP_AT_TASK_LIMIT)

The number of times a new persistent HTTP connection was made non-persistent 
because the number of tasks in the region has exceeded the limit.

� Disconnected at task limit (field SOR_DISC_AT_TASK_LIMIT)

The number of times an existing persistent HTTP connection was closed because the 
number of tasks in the region has exceeded the limit.

� Current backlog (field SOR_CURR_BACKLOG)

The current number of connection requests waiting in the backlog queue, summed over all 
appropriate stacks if the TCP/IP service is listening on multiple stacks.

� Connections dropped (field SOR_CONNS_DROPPED)

The total number of connections that were dropped because the backlog queue was full.

� Time connection last dropped (field SOR_CONN_LAST_DROPPED)

The time that a connection was last rejected because the backlog queue of the TCP/IP 
service was full.

For more information about TCP/IP resource statistics, see the “TCP/IP services: Resource 
statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5UG

8.6.10  z/OS Communications Server global statistics

CICS TS V5.4 introduces the BMS 3270 Intrusion Detection Service that allows CICS to 
detect if a 3270 emulator has invalidly modified a protected field generated by a BMS map. 
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For more details about the functionality, see the “BMS 3270 Intrusion Detection Service” topic 
in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5Uv

The following fields were added to the z/OS Communications Server collected statistics to 
report the status of BMS 3270 validation:

� BMS 3270 validation status (field A03BMVL)

Indicates whether the BMS 3270 validation User Replaceable Module (URM) is ON or OFF.

� Number of BMS 3270 validation failures abended (field A03BMAB)

Number of times the BMS 3270 validation URM has detected invalid 3270 data, issued a 
DFHTF0200 message to log the event, and terminated the transaction with an ABMX abend 
code.

� Number of BMS 3270 validation failures ignored (field A03BMIG)

Number of times the BMS 3270 validation URM has detected invalid 3270 data but 
ignored the detection in response.

� Number of BMS 3270 Validation Failures Logged (field A03BMLG)

Number of times the BMS 3270 validation URM has detected invalid 3270 data and issued 
a DFHTF0200 message to log the event.

For more information about z/OS Communication Server global statistics, see the “z/OS 
Communications Server: Global statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi5Um

8.7  CICS tasks for WebSphere Liberty applications

For a WebSphere Liberty application to use the JCICS API and other CICS resources, such 
as a JDBC data source with type 2 connectivity, requests must run under a CICS task. The 
point at which this task is created is optimized, is dependent upon the type of request, as 
follows:

� HTTP requests

A CICS task is created before the WebSphere Liberty application is invoked

� Non-HTTP requests, such as message-driven beans (MDBs), inbound Java Connector 
Architecture (JCA) requests, or remote Enterprise Java Beans (EJBs)

A CICS task is created on first use of a CICS resource

As described in 2.6.1, “Collecting Java performance data” on page 19, CPU time spent on a 
TCB before the CICS task is created will not be captured in the CICS monitoring data. When 
analyzing CICS performance class monitoring data for non-HTTP tasks, it is important to be 
aware that all monitoring data (including CPU and response time) start only at the point in the 
application that first accessed a CICS resource.

For more information about the processing of CICS tasks for WebSphere Liberty workloads, 
see the “CICS tasks for Liberty applications” section of the “Java applications in a Liberty JVM 
server” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6ni
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8.8  z/OS WLM Health API

CICS TS V5.4 uses the z/OS Workload Manager (WLM) health API (IWM4HLTH) as a means of 
controlling the flow of work into a CICS region. This service is used to inform z/OS WLM 
about the state of health of a server, in this context a CICS region. The health indicator is a 
number that shows, in percentage terms, how well the server is performing. It can be an 
integer value between 0 and 100. A value of 100 means the server is fully capable to do work 
without any health problems, whereas a value of 0 means it is not able to do any work.

As described in 8.4.7, “z/OS Workload Manager Health API (WLMHEALTH)” on page 164, 
CICS TS V5.4 introduces the new SIT parameter WLMHEALTH. This SIT parameter controls how 
a CICS region reports health to z/OS WLM both during and just after the startup period.

For more information about how CICS TS V5.4 uses the z/OS WLM Health API to control the 
flow of work into a CICS region, see the following article in the CICS Developer Center:

https://developer.ibm.com/cics/2017/05/16/controlling-flow-work-cics/

8.9  Asynchronous API

The CICS TS V5.4 release introduces a set of CICS commands which can be used to 
develop applications that start one or more child tasks. These child tasks execute 
asynchronously to the parent task and the new commands provide the ability for the parent 
task to fetch responses from the child tasks. The following API commands now support this 
programming model:

� EXEC CICS RUN TRANSID

Initiates a local child transaction that runs asynchronously with the parent transaction.

� EXEC CICS FETCH CHILD

Used by a parent task to inquire on the status of a specific child task.

� EXEC CICS FETCH ANY

Used by a parent task to inquire on the status of any completed child task which has not 
yet been fetched.

� EXEC CICS FREE CHILD

Used by a parent task which no longer requires the response of a child task, freeing 
resources associated with that child when it completes.

All of the new API commands are threadsafe. For more information about using the new API 
commands, see the “Developing for asynchronous requests” topic in IBM Knowledge Center 
at this website:

https://ibm.biz/Bdi6nZ

For an in-depth look at the Asynchronous API, refer to IBM CICS Asynchronous API: 
Concurrent Processing Made Simple, SG24-8411.

Note: The improvements to CICSPlex SM workload routing introduced in CICS TS V5.5 
was also made available in CICS TS V5.4 with APAR PI90147. See 9.7.1, “CICSPlex SM 
workload routing” on page 211 for more details.
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8.9.1  Enhanced transaction tracking information

The transaction tracking information in the CICS monitoring facility records is enhanced to 
provide greater insight into the relationship between parent and child tasks. Existing origin 
and previous hop data is extended with the concept of previous transaction data.

When work first enters the CICSplex, for example in a web service request or an MQ 
message, details of its point of origin is placed into task context information called “origin 
data,” part of its task association data, for the first task that is created to process it. This data, 
the origin data, flows with the work as it moves around the CICSplex.

As work moves from one CICS region to another, either through a distributed program link 
(DPL) or through a function ship (FS) request, the previous hop data in the target region is 
updated to reference the CICS task in the previous CICS region.

Using the EXEC CICS RUN TRANSID command and some EXEC CICS START commands, child 
tasks are created which have the parent task in the previous transaction data. Previous 
transaction data is created for a task when a new point of origin is not created. A task that is a 
new point of origin will not contain previous transaction data. 
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Figure 8-9 demonstrates the relationship between origin data, previous hop data, and 
previous transaction data.

Figure 8-9   Relationship between origin data, previous hop data, and previous transaction data

Several fields have been added to the CICS monitoring fields to record the previous 
transaction information, and these are discussed in more depth in 8.9.3, “CICS monitoring 
enhancements” on page 176.

For more information about the previous transaction information, see the “Previous 
transaction data characteristics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6n2

8.9.2  Workload management

The asynchronous API can result in a large number of concurrent tasks within a CICS 
system. CICS will automatically begin workload management should a region reach the 
maximum tasks (MXT) limit, and you can regulate performance yourself using transaction 
classes.
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By specifying a TRANCLASS for parent transactions, you can control the maximum number of 
parent tasks that will run in a system at any given time, and by extension the number of child 
tasks that will be created by those parents. Use the MAXACTIVE attribute of a TRANCLASS to 
ensure that the combined number of parent and child transactions is less than the MXT value 
for your system.

If using a TRANCLASS for child transactions, the MAXACTIVE value for your child tasks should be 
higher than the MAXACTIVE value for parent tasks, assuming that a given parent task will create 
multiple children.

The workload initiated by EXEC CICS RUN TRANSID commands is managed automatically by 
CICS when a region is under stress. If there are too many child tasks in the system, the 
parent tasks which are issuing EXEC CICS RUN TRANSID commands is suspended and 
resumed as necessary, limiting the number of new child tasks being created.

For more information about how CICS regulates workflow with asynchronous API commands, 
see the “Managing performance with the asynchronous API” topic in IBM Knowledge Center 
at this website:

https://ibm.biz/Bdi6nz

8.9.3  CICS monitoring enhancements

The CICS monitoring facility (CMF) data is enhanced to support the new commands that are 
provided by the asynchronous API.

The DFHCICS performance group
To provide the enhanced transaction tracking information described in 8.9.1, “Enhanced 
transaction tracking information” on page 174, the following fields are added to the DFHCICS 
performance group:

� Previous transaction start time (field PTSTART)

The start time of the immediately previous or parent task in the same CICS system with 
which the task is associated.

� Previous transaction number (field PTTRANNO)

The task number of the immediately previous or parent task in the same CICS system with 
which the task is associated.

� Previous transaction (field PTTRAN)

The transaction ID of the immediately previous or parent task in the same CICS system 
with which the task is associated.

� Previous transaction count (field PTCOUNT)

The number of times there has been a request from one task to initiate another task in the 
same CICS system with which this task is associated, such as by an EXEC CICS RUN 
TRANSID or EXEC CICS START command. This is effectively the task depth in the local region 
when using the EXEC CICS RUN TRANSID command, or the EXEC CICS START command 
when a new point of origin is not created.

The OTRANFLG field has a new transaction origin type for asynchronous transactions.

Note: If using a TRANCLASS for child transactions, don’t use the same TRANCLASS for child 
transactions and parent transactions. Otherwise, you can end up with a system full of 
parent tasks and no space for child tasks to attach.
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The DFHTASK performance group
The following fields are added to DFHTASK performance group to provide task-level information 
when using the asynchronous API commands.

� Total asynchronous API commands count (field ASTOTCT)

The total number of EXEC CICS asynchronous API commands that were issued by the user 
task. 

� EXEC CICS RUN TRANSID command count (field ASRUNCT)

The number of EXEC CICS RUN TRANSID commands that were issued by the user task.

� EXEC CICS FETCH command count (field ASFTCHCT)

The number of EXEC CICS FETCH CHILD and EXEC CICS FETCH ANY commands that were 
issued by the user task.

� EXEC CICS FREE CHILD command count (field ASFREECT)

The number of EXEC CICS FREE CHILD commands that were issued by the user task.

� Asynchronous API fetch wait time (field ASFTCHWT)

The elapsed time for which the user task waited as the result of an EXEC CICS FETCH CHILD 
or EXEC CICS FETCH ANY command.

� Asynchronous API delay time (field ASRNATWT)

The elapsed time that the user task was delayed as a result of asynchronous child task 
limits managed by the asynchronous services domain.

The TRANFLAG field has a new transaction origin type for asynchronous API transactions.

Transaction resource class data
To provide the enhanced transaction tracking information described in 8.9.1, “Enhanced 
transaction tracking information” on page 174, the following fields are added to the 
transaction resource class data:

� Previous task attach time (field MNR_PTD_ATTACH_TIME)

The start time of the immediately previous or parent task in the same CICS system with 
which this task is associated.

� Task number of previous task (field MNR_PTD_TRANNUM)

The task number of the immediately previous or parent task in the same CICS system with 
which this task is associated.

� Transaction ID of previous task (field MNR_PTD_TRANID)

The transaction ID of the immediately previous or parent task in the same CICS system 
with which this task is associated.

� Previous transaction depth count (field MNR_PTD_COUNT)

The number of times there has been a request from one task to initiate another task in the 
same CICS system with which this task is associated, such as by an EXEC CICS RUN 
TRANSID or EXEC CICS START command when a new point of origin is not created.
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Identity class data
To provide the enhanced transaction tracking information described in 8.9.1, “Enhanced 
transaction tracking information” on page 174, the following fields are added to the identity 
class data:

� Previous task attach time (field MNI_PTD_ATTACH_TIME)

The start time of the immediately previous or parent task in the same CICS system with 
which this task is associated.

� Task number of previous task (field MNI_PTD_TRANNUM)

The task number of the immediately previous or parent task in the same CICS system with 
which this task is associated.

� Transaction ID of previous task (field MNI_PTD_TRANID)

The transaction ID of the immediately previous or parent task in the same CICS system 
with which this task is associated.

� Previous transaction depth count (field MNI_PTD_COUNT)

The number of times there has been a request from one task to initiate another task in the 
same CICS system with which this task is associated, such as by an EXEC CICS RUN 
TRANSID or EXEC CICS START command when a new point of origin is not created.

8.9.4  CICS statistics enhancements

A new statistics report is added to provide information about how work is processed by the AS 
domain and the effect the AS workload management has on parent and child tasks.

The following fields are available in the new asynchronous services global statistics report:

� RUN command count (field ASG_RUN_COUNT)

The total number of EXEC CICS RUN TRANSID API commands issued.

� FETCH command count (field ASG_FETCH_COUNT)

The total number of EXEC CICS FETCH CHILD and EXEC CICS FETCH ANY API commands 
issued.

� FREE command count (field ASG_FREE_COUNT)

The total number of EXEC CICS FREE CHILD API commands issued.

� Times EXEC CICS RUN command being delayed (field ASG_RUN_DELAY_COUNT)

The total number of times that EXEC CICS RUN TRANSID API commands delayed by flow 
control.

� Current parents being delayed (field ASG_PARENTS_DELAYED_CUR)

The current number of tasks that are delayed by flow control when issuing an EXEC CICS 
RUN TRANSID API command.

� Peak parents being delayed (field ASG_PARENTS_DELAYED_PEAK)

The peak number of tasks that were delayed by flow control when issuing an EXEC CICS 
RUN TRANSID API command.

� Current number of child tasks (field ASG_CHILDREN_CUR)

The current number of active tasks that were started by EXEC CICS RUN TRANSID API 
commands.
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� Peak number of child tasks (field ASG_CHILDREN_PEAK)

The peak number of active tasks that were started by EXEC CICS RUN TRANSID API 
commands.

Example 8-2 shows an extract of a sample DFHSTUP report for a workload that uses the 
asynchronous API.

Example 8-2   Asynchronous services global statistics report produced by CICS TS V5.4 DFHSTUP

RUN commands                           :         40587368
FETCH commands                         :         40587290
FREE commands                          :                0
Current active children                :                1
Peak active children                   :              120
Times RUN commands being delayed       :              823
Current parents being delayed          :                0
Peak parents being delayed             :                5

For more information about asynchronous services domain statistics, see the “Asynchronous 
services domain: Global statistics” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdi6nf

8.9.5  Asynchronous service domain performance comparison

To understand the overhead of the new API commands, a simple workload was created. This 
workload compared the new EXEC CICS RUN TRANSID command with another common method 
of executing child tasks in CICS: EXEC CICS START.

Two transactions were created, each of which have an initial program that performs the 
following sequence of CICS commands:

1. EXEC CICS RECEIVE

Receives control data from the terminal.

2. EXEC CICS PUT CONTAINER

Configures a container to be passed to the child task, indicating the length of time for 
which the child task will suspend.

3. EXEC CICS PUT CONTAINER

Configures a container in the channel to pass dummy data to the child task.

4. EXEC CICS START (transaction ASGS) or EXEC CICS RUN TRANSID (transaction ASGX)

Creates a new child task using the selected CICS command. This step is repeated 
multiple times, based on input received from the terminal.

5. EXEC CICS SEND

Sends a completion message to the terminal.

6. EXEC CICS RETURN

Returns control to CICS.

Steps 2 to 4 are repeated multiple times to create the required number of child tasks. Both 
programs create the same child transaction, ACHL, passing 4 KB of data as input. Neither 
transaction performs any other business logic, nor is any logic used to return information from 
the child tasks to the parent task. The suspend time configured in step 2 is used to simulate 
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CICS waiting for an external service, without introducing unnecessary dependencies on 
non-CICS resources.

The transactions were initiated from a terminal using the methodology described in 2.4, 
“Driving the workload” on page 16. The transactions were executed approximately 270 times 
with CICS performance class monitoring enabled, and averages of the resulting data points 
recorded. Table 8-13 shows the CICS performance class monitoring data collected for each 
of the transactions in the workload.

Table 8-13   CICS monitoring data for the asynchronous API command comparison

As shown in the table, the average CPU time for the ASGS transaction was 0.184 ms, 
compared to 0.140 ms for the ASGX transaction. Both the ASGS and ASGX transactions create 
ten ACHL transactions, with the remainder of the application logic identical. We can therefore 
conclude that the EXEC CICS START command costs approximately 0.004 ms of CPU more per 
request than the EXEC CICS RUN TRANSID command.

The “Average TCB change mode operations” column shows an average of 30 change mode 
operations for the ASGS transaction (EXEC CICS START), with the ASGX transaction (EXEC CICS 
RUN TRANSID) requiring only 10 change mode operations.

The programs used in the ASGS and ASGX transactions are both defined with the CONCURRENCY 
attribute of REQUIRED. As described in 4.3.2, “Programs specifying JVM(NO) and 
API(CICSAPI)” on page 34, specifying the value of REQUIRED will cause the program to always 
run on an Open TCB. 

The ASGX transaction has a baseline of 10 TCB switch operations, which are accumulated as 
follows:

� Initial program invocation

1 TCB change mode (QR  L8)

� EXEC CICS RECEIVE (a non-threadsafe command)

2 TCB change modes (L8  QR  L8)

� EXEC CICS PUT CONTAINER (a threadsafe command)

0 TCB change modes

� EXEC CICS RUN TRANSID (a threadsafe command)

0 TCB change modes

� EXEC CICS SEND (a non-threadsafe command)

2 TCB change modes (L8  QR  L8)

� End of task sync point and task-related user exit (TRUE) processing

4 TCB change modes

� Transaction termination

1 TCB change mode (L8  QR)

Transaction Average 
response time 
(ms)

Average user 
CPU time
(ms)

Average QR 
CPU time
(ms)

Average QR 
dispatch time
(ms)

Average TCB 
change mode 
operations

ASGS 0.631 0.184 0.125 0.137 30

ASGX 0.284 0.140 0.030 0.038 10

ACHL 0.163 0.036 0.036 0.037 0
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The ASGS transaction follows a similar pattern as the ASGX baseline, but the EXEC CICS START 
command is not threadsafe. Therefore, invoking the program switches from an L8 TCB to the 
QR TCB and back for each of the 10 EXEC CICS START commands that are executed. The ASGS 
transaction has 20 TCB change mode operations more than the ASGX baseline. Table 8-13 on 
page 180 also shows the extra QR TCB dispatch and CPU time when using the EXEC CICS 
START command.

Table 8-13 on page 180 also shows a response time improvement when using EXEC CICS RUN 
TRANSID and this is due primarily to the removal of time spent waiting for dispatch on the QR 
TCB.

8.9.6  Asynchronous API performance summary

The results in 8.9.5, “Asynchronous service domain performance comparison” on page 179 
show that initiating child tasks using the EXEC CICS RUN TRANSID command is approximately 
the same CPU cost as using an EXEC CICS START command. The results show a slight 
overhead for EXEC CICS START due to TCB change mode processing, but if the user 
application were not defined with the CONCURRENCY attribute of REQUIRED, then this overhead 
would disappear.

Using the asynchronous API can provide modern applications with a method of initiating child 
tasks and retrieving their results using an API provided by CICS. Alternative implementations 
of managing communication between parent and child tasks include:

� Using event control blocks (ECBs) or the EXEC CICS ENQ and EXEC CICS DEQ commands to 
synchronize access to common storage. This can be error-prone and places the 
responsibility of task management with application code, rather than the system. It is 
particularly difficult to gracefully handle timeout processing in all cases. Child tasks and 
common storage can easily become orphaned in the event of application abends.

� Polling of CICS services (such as temporary storage). Polling a resource to check for a 
response can have two undesired consequences:

– It can waste CPU when the polling time is short and the average response time is long

– It can cause unnecessary delays in response when the polling time is long and the 
average response time is short

� Using CICS services (such as intrapartition transient data trigger queues) to notify of child 
task completion. This has a lower overhead than the polling approach and maintains 
application responsiveness, but still requires some application management of tasks. 
Handling timeouts can also be problematic.

� Using external resource manager (such as IBM MQ). A common application pattern is for 
a parent task to start a child task and then use an MQ GET command to wait for notification 
of completion. Calling an external resource manager in another address space adds 
additional overhead in terms of CPU time. Use of external products also adds to 
application complexity, increasing management and monitoring overhead.

All of these implementation alternatives require either an explicit or an implicit EXEC CICS 
START command to initiate the child task. The performance results discussed previously 
demonstrate that the EXEC CICS RUN TRANSID is no more expensive to execute than a simple 
EXEC CICS START command yet provides access to the full range of advantages of the CICS 
asynchronous API:

� A fully-supported API, removing the need for complex infrastructure code in the 
application.

� Automated workflow management which allows transactions to complete, even during 
periods when CICS is under stress.
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� Communication between parent and child tasks is via the channels and containers API, 
which uses 64-bit virtual storage for data. This reduces pressure on virtual storage in the 
UDSA and EUDSA dynamic storage areas.

� Advanced task-level and system-level information provided alongside the existing CICS 
statistical and performance monitoring data.

The CICS asynchronous API provides a simple, supported method of coordinating parent and 
child tasks, and remains no more expensive than alternative, application-specific 
implementations.

8.10  EXCI support for channels and containers

The CICS TS V5.4 release introduces the ability to pass data in channels and containers 
when invoking CICS applications using the external CICS interface (EXCI). The use of 
channels and containers provides two main benefits:

� Multiple, named data areas can be passed in a single call
� Each container can hold significantly a larger data area than possible with a COMMAREA

For more information about EXCI, see the “Introduction to the external CICS interface” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/Bdi6nM

A common use-case for EXCI applications is to send data into a CICS program, but the data 
to be transmitted is larger than the COMMAREA limit of 32 KB. For these cases, the 
application chunks the data into areas less than 32 KB in size. Multiple requests are used to 
send the data into CICS, and logic in the CICS program reassembles the data into a 
contiguous block.

The channels and containers support for EXCI allows applications to send large areas of data 
into CICS, removing the complexity of this chunking logic and the overhead of multiple calls to 
the server. This section presents a comparison between two applications, one that uses the 
chunking method with COMMAREAs, and another that uses channels and containers.

The client EXCI application was implemented using the C language, and the CICS 
applications were implemented using COBOL.

8.10.1  Application design (COMMAREA)

The COMMAREA test case used the following logic in the client application:

1. Allocate storage and initialize data to be sent to the server. Note that the storage is 
initialized to random values to remove any potential optimizations achieved with large data 
areas consisting solely of zeros.

2. Open the EXCI pipe to the server using the Initialize_User, Allocate_Pipe, and 
Open_Pipe commands.

3. Start the timers for recording elapsed time in the client application.

4. Send the data to the server in chunks:

Note: Only the client (EXCI) application needs to use CICS TS V5.4 libraries to take 
advantage of this function. Any release of CICS that supports channels and containers can 
receive data from a client application using the channels and containers interface.
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a. Initialize the current offset pointer to zero.

b. Send a maximum of 32,763 bytes of data using the DPL_Request command.

c. Advance the current offset pointer.

d. Repeat from step b until no data remains.

5. Stop the timers for recording elapsed time in the client application.

6. Shut down the EXCI pipe using calls to the Close_Pipe and Deallocate_Pipe commands.

The COMMAREA test case used long-running mirrors in the server to allow the receiving 
transaction to utilize task-related storage for reassembly of the chunked data. The following 
logic was used in the server application:

1. For the first chunk of data received:

a. Issue EXEC CICS GETMAIN to obtain storage for the total data length required, supplied 
as the first four bytes of the COMMAREA.

b. Save the obtained storage address and the current offset pointer in the transaction 
work area (TWA).

c. Copy received chunk of data to the obtained storage.

d. Advance current offset pointer.

2. For subsequent chunks of data received:

a. Copy received chunk of data to the obtained storage.

b. Advance the current offset pointer.

3. For the final chunk of data received:

a. Copy received chunk of data to the obtained storage.

b. Application would normally perform business logic at this point.

c. Issue EXEC CICS FREEMAIN to release allocated storage.

In both the client and server application code, to minimize overheads no data was copied 
unnecessarily. As described in 2.2, “Workload design” on page 12, the application was 
designed to include as little business logic as possible, to more clearly determine the costs of 
the CICS infrastructure.

8.10.2  Application design (channels)

The channels test case used the following logic in the client application:

1. Allocate storage and initialize data to be sent to the server. Note that the storage is 
initialized to random values to remove any potential optimizations achieved with large data 
areas consisting solely of zeros.

2. Open the EXCI pipe to the server using the Initialize_User, Allocate_Pipe, and 
Open_Pipe commands.

3. Start the timers for recording elapsed time in the client application.

4. Issue EXEC CICS PUT CONTAINER to store the data in a container.

5. Invoke the CICS program using the DPL_Request command, passing the channel name 
specified in the previous step.

6. Issue EXEC CICS DELETE CONTAINER to free storage in the client application.

7. Stop the timers for recording elapsed time in the client application.
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8. Shut down the EXCI pipe using calls to the Close_Pipe and Deallocate_Pipe commands.

The channels test case also used long-running mirrors in the server to simplify application 
configuration, although this was not a functional requirement. The following logic was used in 
the server application:

1. Issue EXEC CICS GET CONTAINER(...) SET(...) to obtain a reference to the received data.

2. Application would normally perform business logic at this point.

The server application logic is considerably simplified when using channels and containers. 
As described in the COMMAREA test case, no data was copied unnecessarily to minimize 
overheads. As described in 2.2, “Workload design” on page 12, the application was designed 
to include as little business logic as possible, to more clearly determine the costs of the CICS 
infrastructure.

8.10.3  Payload comparisons

The performance benchmark compared response time and CPU consumption for several 
sizes of payload. Table 8-14 lists the payload sizes used, along with the number of 
COMMAREAs required to transmit the payload in its entirety.

Table 8-14   List of payload sizes compared

8.10.4  CPU time comparison

Client application CPU was measured using the z/OS TIMEUSED service. CPU consumed by 
the server application was measured using CICS performance class monitoring data. Total 
CPU measurements include CPU consumed by both the client application and the receiving 
CICS task.

Table 8-15 lists the total CPU time consumed by the client and server application for both the 
COMMAREA and channel scenarios.

Table 8-15   CPU time comparison for various payloads

Payload size label Bytes transmitted  COMMAREAs required

32 32 1

1,024 1,024 1

32,760 32,760 1

32 KB 32,768 2

512 KB 524,288 17

1 MB 1,048,576 33

2 MB 2,097,152 65

Payload COMMAREA
total CPU time (ms)

Channel
total CPU time (ms)

32 0.016 0.057

1,024 0.016 0.057

32,760 0.035 0.079
184 IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report



The results in Table 8-15 can be plotted on a chart to demonstrate the behavior of the two 
scenarios as the payload size increases. Figure 8-10 plots the results for payloads of size 
32 bytes to 32 KB.

Figure 8-10   Plot of total CPU time comparing COMMAREA and channel scenarios for small payloads

Note the increase in CPU time when increasing the payload from 32,760 bytes to 
32,768 bytes in the COMMAREA scenario. This sudden increase is the overhead of requiring 
a second send request, because the data no longer fits within a single COMMAREA.

32 KB 0.053 0.080

512 KB 0.589 0.351

1 MB 1.171 0.655

2 MB 2.323 1.251
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Figure 8-11 plots the results for payloads of size 32 KB to 2 MB.

Figure 8-11   Plot of total CPU time comparing COMMAREA and channel scenarios for large payloads

Both scenarios scale linearly as the payload size increases, but the channel implementation 
is more efficient from a relatively low payload size.

8.10.5  Response time comparison

Overall application response time was measured in the client using the z/Architecture STCK 
instruction. Table 8-16 lists the application response times for both the COMMAREA and 
channel scenarios.

Table 8-16   Response time comparison for various payloads

The results in Table 8-16 can be plotted on a chart to demonstrate the behavior of the two 
scenarios as the payload size increases. Figure 8-12 on page 187 plots the response times 
for payloads of size 32 bytes to 32 KB.
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32 0.024 0.072
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32,760 0.084 0.141

32 KB 0.108 0.144

512 KB 1.365 1.113

1 MB 2.711 2.154

2 MB 5.390 4.230
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Figure 8-12   Plot of response time comparing COMMAREA and channel scenarios for small payloads

As observed for CPU time in Figure 8-10 on page 185, there is relatively large increase in 
response time when the payload requires a second send request.

Figure 8-13 plots the response times for payloads of size 32 KB to 2 MB.

Figure 8-13   Plot of response time comparing COMMAREA and channel scenarios for large payloads

As observed for the CPU time comparisons, both scenarios scale linearly as the payload size 
increases, but again the channel implementation produces lower response times from a 
relatively low payload size.
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8.10.6  EXCI support for channels and containers performance summary

For smaller payloads, the channels and containers implementation can be shown to have a 
minor overhead when compared to the COMMAREA implementation in terms of both CPU 
consumption and response time. As the payload size increases, this CPU and response time 
overhead is reduced dramatically when the payload requires more than one send operation.

Using linear regression analysis shows that channels and containers are the most efficient 
approach for payloads larger than 64 KB (that is, those that require three or more 
DPL_Request operations).

As payload sizes increase, CPU and response time increase linearly for both scenarios.

The overhead of channels and containers for this test case was at most 40 µs of CPU time 
and 50 µs in response time, even for the smallest of payloads. This is a small value in the 
context of a real-world application with business logic. The advantages of the channels and 
containers implementation over a COMMAREA approach are:

� Reduced client and server code complexity when sending more than 32 KB of data.
� Increased flexibility, due to the ability to send multiple data areas in one call.
� Potential for future expansion without redesigning the application.

The code maintenance advantages listed here are significant, and these offset the small CPU 
benefits of a COMMAREA solution. Therefore, any new EXCI applications invoking CICS 
should use the channels and containers interface.

8.11  CICS support for IBM Health Checker for z/OS

IBM Health Checker for z/OS (Health Checker) is a z/OS component that helps simplify and 
automate the identification of potential configuration problems before they impact availability 
or cause outages. CICS TS supports Health Checker rules that define preferred practices for 
CICS system configuration.

Each CICS region providing support for Health Checker executes the system transaction CHCK 
as a long-running task. This task wakes up every 30 minutes to check and report on 
compliance to preferred practices. To ensure this task does not consume unnecessary CPU, 
two idle CICS regions were compared.

One CICS region had the Health Checker reporting enabled and the other had the Health 
Checker reporting disabled. Both CICS regions had security enabled (SIT parameter 
SEC=YES), and 25 transient data queues were installed. To ensure the most accurate reporting 
of CPU consumption, the CHCK transaction was specially modified to wake up every 
5 seconds.

Using the overnight automation environment as described in 2.3, “Repeatable 
measurements” on page 13, performance of the two CICS regions were measured while idle 
for a 5-minute measurement period. CPU consumption data was extracted from the CICS 
statistics report and is presented in Table 8-17 on page 189. All data is presented in CPU 
seconds.
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Table 8-17   Summary of CICS statistics for Health Checker CPU measurement

The CICS statistics interval was 305 seconds; therefore, we can conclude the CHCK task woke 
up around 60 times during that time period. Also, we can calculate that the CHCK task cost 
approximately 540 µs of CPU per iteration.

When using the CICS support for Health Checker configuration with the standard checking 
frequency of 30 minutes, this functionality consumes approximately 1 ms of CPU per hour for 
a completely idle CICS region. In contrast, the results presented in Table 8-17 for the CICS 
region with Health Checker support disabled show a CPU consumption of approximately 50 
ms per hour for other CICS background processing. Thus, we can conclude that CICS 
support for the IBM Health Checker for z/OS adds no significant overhead to a CICS region.

For more information about the CICS support for the Health Checker, see the topic “Checking 
CICS configuration with IBM Health Checker for z/OS” in IBM Knowledge Center:

https://ibm.biz/BdjdQk

8.12  Web services performance

This section examines the performance of the CICS TS V5.4 web services support, using 
several variants of the web services workload detailed in 3.6, “Web services” on page 28. All 
sections present the data in a similar tabular format:

� Request rate

The number of SOAP requests per second

� CICS CPU %

The amount of CPU consumed by the CICS provider region, expressed as a percentage of 
a single CP

� TCP/IP CPU %

The amount of CPU consumed by the TCP/IP address space, expressed as a percentage 
of a single CP

� CPU per request

A calculation of the total CPU consumed per request, which includes the CICS provider 
region and the TCP/IP address space, expressed as milliseconds

� Response time

Where applicable, the response time is obtained from RMF monitoring data, expressed in 
milliseconds

CHCK disabled CHCK enabled Difference

Address space TCB time 0.003888 0.035986 0.032098

Address space SRB time 0.000349 0.000538 0.000189

Total CPU time 0.004237 0.036524 0.032287

Note: CICS support for the IBM Health Checker for z/OS is also available for releases prior 
to CICS TS V5.4. See APAR PI76963 for CICS TS V4.2 and APAR PI76965 for CICS TS 
V5 releases.
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8.12.1  Persistent and non-persistent connections

This section looks at the performance of the web services workload when running with 
non-persistent and persistent connections. Neither scenario used SSL.

The data in Table 8-18 shows the performance characteristics of CICS web services support 
when using persistent connections. 

Table 8-18   Web services workload with persistent connections and no SSL

Table 8-19 shows the performance characteristics of the same workload when using 
non-persistent connections.

Table 8-19   Web services workload with non-persistent connections and no SSL

For both configurations and at all measured transaction rates, the response times were less 
than 1 ms therefore the response time columns have been omitted.

Request rate CICS CPU % TCP/IP CPU % CPU per request (ms)

417 12.58% 0.48% 0.313

500 15.14% 0.58% 0.314

555 16.99% 0.69% 0.319

714 22.10% 0.79% 0.321

999 31.20% 0.98% 0.322

Request rate CICS CPU % TCP/IP CPU % CPU per request (ms)

417 14.66% 0.85% 0.372

500 17.62% 1.03% 0.373

556 19.63% 1.16% 0.374

714 25.29% 1.45% 0.375

1000 36.19% 1.94% 0.381
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These results are summarized by the chart in Figure 8-14.

Figure 8-14   Comparison of persistent and non-persistent connections without SSL

On average the CICS provider region and TCP/IP address space consumed 0.318 ms of 
CPU per request with persistent sessions, and 0.375 ms of CPU per request with 
non-persistent sessions. This overhead is the result of the small extra processing required by 
the CICS provider region and network layer when creating and destroying an HTTP session.

8.12.2  Overhead of using SSL with persistent connections

As described in 3.6.1, “Web services variations” on page 29 the workload can use SSL to 
encrypt request and response data. To determine the overhead of this encryption, CICS SSL 
support was enabled to use the TLS_RSA_WITH_AES_256_CBC_SHA cipher suite and persistent 
sessions.

The results of this configuration are presented in Table 8-20 and can be compared with the 
performance data presented in Table 8-18 on page 190.

Table 8-20   Web services workload using SSL with persistent connections

In both configurations and at all transaction rates, the response time was 1 ms or less and 
therefore the response time column has been omitted for clarity. These measurements are 
summarized by the chart in Figure 8-15 on page 192.
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Request rate CICS CPU % TCP/IP CPU % CPU per request (ms)

417 13.85% 0.38% 0.341

500 16.51% 0.44% 0.339

555 18.05% 0.46% 0.334

714 23.45% 0.57% 0.336

1000 33.95% 0.75% 0.347
Chapter 8. CICS TS for z/OS V5.4 191



Figure 8-15   Comparison of non-SSL and SSL connections using persistent sessions

As documented in 8.12.1, “Persistent and non-persistent connections” on page 190 the 
average CPU per request figure for non-SSL communications was 0.318 ms. When using 
CICS SSL support, this figure rises by 0.057 ms per request to 0.375 ms.

8.12.3  SSL handshake overhead

Section 8.12.2, “Overhead of using SSL with persistent connections” on page 191 documents 
the overhead of using encryption when no SSL handshakes are required. This section looks 
in more detail at the handshake options available.

A full SSL handshake occurs when SSL partners negotiate an SSL session without the 
benefit of any previously-agreed information. A partial SSL handshake occurs when SSL 
partners establish an SSL connection using a token cached from a previously-negotiated 
connection. This partial handshake allows SSL partners to avoid the overhead of a full SSL 
session negotiation while retaining the integrity of SSL.

The first scenario obtained performance data in a steady-state situation where no SSL 
handshakes were taking place by enabling persistent sessions. This data was presented in 
section 8.12.2, “Overhead of using SSL with persistent connections” on page 191 and is 
available in Table 8-20 on page 191.

The second scenario measured performance when SSL partial handshakes were being used 
and the performance data is presented in Table 8-21.

Table 8-21   Web services workload using SSL with partial handshakes
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Request rate CICS CPU % TCP/IP CPU % CPU per request 
(ms)

Response time 
(ms)

417 20.13% 1.12% 0.510 2

500 23.87% 1.33% 0.504 2

556 26.35% 1.43% 0.500 2
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The third scenario measured performance of SSL full handshakes, and the data is presented 
in Table 8-22.

Table 8-22   Web services workload using SSL with full handshake

The results of these three scenarios are summarized in Figure 8-16.

Figure 8-16   Comparison of web services performance using SSL with various handshake options

The average CPU per request for persistent sessions, partial handshakes, and full 
handshakes is 0.339 ms, 0.505 ms, and 0.652 ms respectively. This data shows that the CPU 
overhead of a partial handshake is therefore around 0.165 ms of CPU, which includes the 
cost of establishing a new connection and the renegotiation of a previously-established 
session. The CPU overhead of a full handshake is approximately 0.150 ms in addition to the 
cost of a partial handshake.
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The CPU overhead for SSL full and partial handshakes is dependant on several factors, 
including:

� The key exchange algorithm
� The size of the and complexity of the public keys
� Use of client authentication

8.12.4  CICS SSL and AT-TLS

Table 8-23 presents the performance results of the web services workload using AT-TLS with 
persistent sessions. By comparing the data in Table 8-20 on page 191 with the data in 
Table 8-23 we can determine the relative difference in performance between using the CICS 
SSL support and the AT-TLS support provided by IBM Communications Server for z/OS.

Table 8-23   Web services workload using AT-TLS with persistent sessions

When using the SSL support provided by CICS the average CPU per transaction was 
0.339 ms. When using the AT-TLS support the same value was 0.311 ms. This difference in 
CPU per request can be attributed to two key factors:

� The removal of the requirement for the CWXN transaction. When using CICS SSL support 
the CXWN transaction is required, but using AT-TLS this is no longer required. See 7.7, “Web 
support and web service optimization” on page 122 for more details.

� A reduction in the number of TCB switches in the user transaction. CICS SSL support 
requires several task switches to and from S8 TCBs, but AT-TLS does not have this 
requirement.

The chart in Figure 8-17 on page 195 presents the data from the two scenarios for 
comparison.

Request rate CICS CPU % TCP/IP CPU % CPU per request 
(ms)

Response time 
(ms)

417 12.59% 0.39% 0.311 1

500 15.15% 0.46% 0.312 1

556 16.63% 0.50% 0.308 1

714 21.62% 0.64% 0.312 1

1000 30.12% 0.89% 0.310 1
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Figure 8-17   Web services workload comparing CICS SSL and AT-TLS with persistent sessions
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Chapter 9. CICS TS for z/OS V5.5

IBM CICS Transaction Server for z/OS (CICS TS) V5.5 release introduces various technical 
and operational capabilities. Included in these updates are improvements that provide 
performance benefits over previous CICS releases. The performance report CICS TS V5.5 
includes the following subject areas:

� Key performance benchmarks that are presented as a comparison with the CICS TS V5.4 
release.

� An outline of improvements made regarding the threadsafe characteristics of the CICS TS 
run time.

� Details of the changes that are made to performance-critical CICS initialization 
parameters, and the effect of these updates.

� A description of all the updated statistics and monitoring fields.

� High-level views of new functionality that was introduced in the CICS TS V5.5 release, 
including performance benchmark results where appropriate.

� Studies of several areas that have received frequent performance questions from 
customers, including the use of:

– CICS policies
– encrypted zFS file systems with CICS
– multiple JVM servers in a single CICS region
– shared class cache to improve JVM server startup performance

This chapter includes the following topics:

� 9.1, “Introduction” on page 198
� 9.2, “Release-to-release comparisons” on page 198
� 9.3, “Improvements in threadsafety” on page 206
� 9.4, “Changes to system initialization parameters” on page 207
� 9.5, “Enhanced instrumentation” on page 208
� 9.6, “Virtual storage constraint relief” on page 210
� 9.7, “z/OS WLM Health API” on page 211
� 9.8, “Disabling of VSAM dynamic buffer addition” on page 212
� 9.9, “USS processes associated with L8, L9, X8, and X9 TCBs” on page 212
� 9.10, “Channels performance improvement” on page 212

9

© Copyright IBM Corp. 2016, 2019. All rights reserved. 197



� 9.11, “Threadsafe Coupling Facility Data Tables” on page 217
� 9.12, “CICS policy rules” on page 221
� 9.13, “Encrypted zFS file systems” on page 224
� 9.14, “Multiple Liberty JVM servers in a single CICS region” on page 226
� 9.15, “Liberty JVM server and application startup times” on page 233

9.1  Introduction

When we compiled the results for this chapter, the workloads were executed an on IBM z14™ 
model M04 (machine type 3906). A maximum of 32 dedicated CPs were available on the 
measured LPAR, with a maximum of six dedicated CPs available to the LPAR used to 
simulate users. These LPARs are configured as part of a parallel sysplex. An internal 
coupling facility was co-located on the same central processor complex (CPC) as the 
measurement and driving LPARs, connected by using internal coupling peer (ICP) links. An 
IBM System Storage DS8870 (machine type 2424) was used to provide external storage.

This chapter presents the results of several performance benchmarks when executed in a 
CICS TS for z/OS V5.5 environment. Unless otherwise stated in the results, the 
CICS TS V5.5 environment was the code available at GA time. Several of the performance 
benchmarks are presented in the context of a comparison against CICS TS V5.4. The 
CICS TS V5.4 environment contained all PTFs issued before 20 November 2017. All LPARs 
used z/OS V2.3.

For a definition of performance terms used in this chapter, see Chapter 1, “Performance 
terminology” on page 3. A description of the test methodology that is used can be found in 
Chapter 2, “Test methodology” on page 11. For a full description of the workloads used, see 
Chapter 3, “Workload descriptions” on page 21.

Where reference is made to an LSPR processor equivalent, the indicated machine type and 
model can be found in the large systems performance reference (LSPR) document. For more 
information about obtaining and using LSPR data, see 1.3, “Large Systems Performance 
Reference” on page 6.

9.2  Release-to-release comparisons

This section describes some of the results from a selection of regression workloads that are 
used to benchmark development releases of CICS TS. For more information about the use of 
regression workloads, see Chapter 3, “Workload descriptions” on page 21.

9.2.1  Data Systems Workload static routing

The static routing variant of the Data Systems Workload (DSW) is described in 9.2.1, “Data 
Systems Workload static routing”. This section presents the performance figures that were 
obtained by running this workload. Table 9-1 lists the results of the DSW static routing 
workload that used the CICS TS V5.4 release.

Table 9-1   CICS TS V5.4 results for DSW static routing workload

ETR CICS CPU CPU per transaction (ms)

4180.81 76.37% 0.183

4938.15 89.21% 0.181
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Table 9-2 on page 199 lists the same figures for the CICS TS V5.5 release.

Table 9-2   CICS TS V5.5 results for DSW static routing workload

The average CPU per transaction value for CICS TS V5.4 is calculated to be 0.179 ms. The 
same value for CICS TS V5.5 is calculated to be 0.172 ms. This is a relative performance 
improvement of 4% for this workload. However, this is only an absolute improvement of 
around 7 µs. Such a small change in CPU consumption is unlikely to be measurable outside 
of lab conditions. However, we can conclude that the performance between CICS TS V5.4 
and CICS TS V5.5 is not degraded for this workload.

The figures from Table 9-1 and Table 9-2 are plotted in the chart in Figure 9-1.

Figure 9-1   Plot of CICS TS V5.4 and V5.5 performance figures for DSW static routing workload

The measured CPU cost for each transaction rate scales linearly in both cases, with 
CICS TS V5.5 showing a slight improvement as described above.
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9.2.2  Java servlet that uses JDBC and VSAM

The Java servlet application is hosted in a CICS JVM server that uses the embedded 
WebSphere Liberty server. The workload is driven through HTTP requests by using IBM 
Workload Simulator for z/OS, as described in 2.4, “Driving the workload” on page 16. The 
servlet application accesses VSAM data by using the JCICS API and accesses IBM Db2® by 
using the JDBC API. For more information about the workload, see 3.4, “WebSphere Liberty 
servlet with JDBC and JCICS access” on page 26.

The hardware that is used for the benchmarks is described in 9.1, “Introduction” on page 198. 
The measurement LPAR was configured with three GCPs and one zIIP, which resulted in an 
LSPR equivalent processor of 3906-704.

The CICS TS V5.4 and CICS TS V5.5 releases were compared by using the software levels 
as described in 9.1, “Introduction” on page 198. The CICS TS V5.4 configuration also had the 
PTF applied for APAR PI99650 to ensure that both configurations used WebSphere Liberty 
V18.0.0.2. Both configurations used a single CICS region and the following additional 
software levels and configuration options:

� IBM Db2 V12
� Java 8 SR5 FP25 (64-bit)
� Single JVMSERVER resource with THREADLIMIT=256

Both JVM servers used the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedrefs
� -XXnosuballoc32bitmem
� -Xmx200M
� -Xms200M
� -Xmnx60M
� -Xmns60M
� -Xmox140M
� -Xmos140M

As described in 2.3.1, “Repeatability for Java workloads” on page 14, this workload requires a 
warm-up period of 20 minutes. After this warm-up phase completed, the request injection rate 
was increased every 10 minutes. CPU usage data was collected by using IBM z/OS 
Resource Measurement Facility (RMF). An average CPU per request value was calculated by 
using the last 5 minutes of each 10-minute interval.

Table 9-3 lists the performance results of the Java servlet workload that used the 
CICS TS V5.4 release. This data is presented in the same format as described in 8.2.5, “The 
Java servlet that uses JDBC and VSAM” on page 156.

Table 9-3   CICS TS V5.4 results for WebSphere Liberty JDBC and VSAM workload

Table 9-4 lists the performance results of the JDBC and VSAM workload that used the 
CICS TS V5.5 release, presented in the same format as Table 9-3.

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

837.63 20.56% 27.55% 48.11%

1664.88 42.38% 55.29% 97.67%

3002.68 85.17% 94.56% 179.73%
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Table 9-4   CICS TS V5.5 results for WebSphere Liberty JDBC and VSAM workload

The CICS CPU total values from Table 9-3 and Table 9-4 are plotted in Figure 9-2 on 
page 201.

Figure 9-2   Total CPU comparison for CICS TS V5.4 and V5.5 JDBC and VSAM workload

The zIIP-eligibility figures are presented as a chart in Figure 9-3.

ETR CICS CPU
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CICS CPU
zIIP-eligible

CICS CPU
total

838.90 20.95% 28.66% 49.61%

1662.18 42.82% 55.07% 97.89%

2980.13 85.66% 95.07% 180.73%
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Figure 9-3   zIIP-eligibility comparison for JDBC and VSAM workload with CICS TS V5.4 and V5.5

The average CPU per transaction value for the JDBC and VSAM workload using the 
CICS TS V5.4 release is calculated to be 0.587 ms. The same value for the CICS TS V5.5 
configuration is calculated to be 0.596 ms. The method used to calculate of zIIP-eligibility is 
described in 8.2.5, “The Java servlet that uses JDBC and VSAM” on page 156. The average 
zIIP-eligibility for both the CICS TS V5.4 and CICS TS V5.5 workloads was 55.5%.

The average CPU per transaction and the zIIP eligibility calculations show that the 
performance for the CICS TS V5.4 and CICS TS V5.5 releases is equivalent within 
measurable limits. This is true for both the total CPU consumed and the fraction that is 
eligible for offload to a zIIP engine.

9.2.3  The Java OSGi workload

The Java OSGi workload is composed of several applications, as described in 3.5, “Java 
OSGi workload” on page 27.

The hardware that is used for the benchmarks is described in 9.1, “Introduction” on page 198. 
The measurement LPAR was configured with three GCPs and one zIIP, which resulted in an 
LSPR equivalent processor of 3906-704.

The CICS TS V5.4 and CICS TS V5.5 releases were compared by using the software levels 
as described in 9.1, “Introduction” on page 198. Both configurations used a single CICS 
region and the following additional software levels and configuration options:

� IBM Db2 V12
� Java 8 SR5 FP25 (64-bit)
� Single JVMSERVER resource with THREADLIMIT=25

Both JVM servers used the following JVM options:

� -Xgcpolicy:gencon
� -Xcompressedrefs
� -XXnosuballoc32bitmem
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� -Xmx100M
� -Xms100M
� -Xmnx70M
� -Xmns70M
� -Xmox30M
� -Xmos30M

As described in 2.3.1, “Repeatability for Java workloads” on page 14, this workload requires a 
warm-up period of 20 minutes. After this warm-up phase completed, the request injection rate 
was increased every 5 minutes. CPU usage data was collected by using IBM z/OS Resource 
Measurement Facility (RMF). An average CPU per request value was calculated using the 
last minute of each 5-minute interval.

Table 9-5 lists the performance results of the Java OSGi workload that used the 
CICS TS V5.4 release.

Table 9-5   CICS TS V5.4 performance results for OSGi workload

The performance results for the CICS TS V5.5 release are shown in Table 9-6 on page 203.

Table 9-6   CICS TS V5.5 performance results for OSGi workload

The CICS CPU total values from Table 9-5 and Table 9-6 are plotted in Figure 9-4 on 
page 204.

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

233.98 20.07% 69.89% 89.96%

467.98 39.29% 139.95% 179.24%

831.07 74.65% 249.21% 323.86%

ETR CICS CPU
not zIIP-eligible

CICS CPU
zIIP-eligible

CICS CPU
total

233.98 20.42% 70.22% 90.64%

467.93 39.61% 140.40% 180.01%

822.57 75.10% 247.61% 322.71%
Chapter 9. CICS TS for z/OS V5.5 203



Figure 9-4   Comparing overall CPU utilization for Java OSGi workload with CICS TS V5.4 and V5.5

The offload eligibility figures are presented as a chart in Figure 9-5 on page 204.

Figure 9-5   Comparing offload-eligible CPU utilization for OSGi workload with CICS TS V5.4 and V5.5

The average CPU per transaction value for this workload using the CICS TS V5.4 release is 
calculated to be 3.857 ms. The same value for the CICS TS V5.5 release is calculated to be 
3.881 ms.

Using the methodology to calculate the zIIP eligibility of the workload described in Chapter 8, 
the CICS TS V5.4 release had an average zIIP eligibility of 77.6%. See 8.2.5, “The Java 
servlet that uses JDBC and VSAM” on page 156. The CICS TS V5.5 release had an average 
zIIP eligibility of 77.4%.
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As observed with the Java servlet workload, the performance of Java OSGi applications is 
similar in CICS TS V5.5 when compared to CICS TS V5.4. This similarity includes both total 
CPU consumed and the fraction that is eligible for offload to a zIIP engine.

9.2.4  Relational Transactional Workload threadsafe

The Relational Transactional Workload (RTW) is described in 3.3, “Relational Transactional 
Workload” on page 25. This section presents the performance figures that were obtained by 
running this workload.

Table 9-7 on page 205 lists the performance results for the RTW threadsafe workload that 
used the CICS TS V5.4 release.

Table 9-7   CICS TS V5.4 results for the RTW threadsafe workload

Table 9-4 lists the performance results for the RTW threadsafe workload that used the 
CICS TS V5.5 release.

Table 9-8   CICS TS V5.5 results for the RTW threadsafe workload

The figures from Table 9-7 and Table 9-8 are shown in Figure 9-6.

ETR CICS CPU CPU per transaction (ms)

713.33 89.25% 1.251

996.88 124.43% 1.248

1417.03 177.47% 1.252

1959.66 248.73% 1.269

2401.43 309.99% 1.291

ETR CICS CPU CPU per transaction (ms)

713.41 88.59% 1.242

997.00 123.74% 1.241

1417.54 176.81% 1.247

1960.32 248.39% 1.267

2402.72 309.49% 1.288
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Figure 9-6   Plot of CICS TS V5.4 and V5.5 performance figures for RTW threadsafe workload

The average CPU per transaction value for CICS TS V5.4 is calculated to be 1.262 ms. The 
same value for CICS TS V5.5 is calculated to be 1.257 ms. Notice that this very small 
absolute performance improvement is in line with that observed with the DSW static routing 
workload in 9.2.1, “Data Systems Workload static routing” on page 198. The overall effect to 
the total CPU cost of the workload is negligible. And we can conclude that the performance 
between CICS TS V5.4 and CICS TS V5.5 has not degraded for this workload.

9.3  Improvements in threadsafety

There are three areas in CICS TS V5.5 that have improved performance by reducing the 
number of TCB switches required for API commands.

9.3.1  QUERY SECURITY API command

The EXEC CICS QUERY SECURITY command has been enhanced such that the number of TCB 
switches has been reduced if more than one access level is specified on the command.

For more information on the EXEC CICS QUERY SECURITY command, see the “QUERY 
SECURITY” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzyuQ

9.3.2  Coupling Facility Data Tables

Access to coupling facility data tables (CFDTs) is now threadsafe, so CFDTs can be 
accessed by applications that are running on open TCBs without incurring a TCB switch. 
Syncpoint processing of CFDTs can also run on an open TCB. However, note that the open 
and loading of a CFDT still occurs on the QR TCB. See 9.11, “Threadsafe Coupling Facility 
Data Tables” on page 217 for performance study relating to CFDTs.
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For more information on CFDTs, see the “Using coupling facility data tables” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/BdzMRb

9.3.3  System subtasking and auxiliary temporary storage

The SUBTSKS SIT parameter controls the use of the CO TCB when performing I/O. 
APAR PH05298 was released after the general availability of CICS TS V5.5. It removes the 
switch to the CO TCB if the application is executing on an open TCB when it uses CICS 
auxiliary temporary storage. If the application is currently executing on the QR TCB, then 
subtasking is performed as normal.

This removal of TCB switches provides a small performance benefit for applications the 
execute on an open TCB. The threadsafe characteristics of the relevant API commands are 
unaffected.

For more information on the SUBTSKS SIT parameter, see the “SUBTSKS” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdzyuu

9.4  Changes to system initialization parameters

Two CICS system initialization table (SIT) parameters that might have a performance impact 
have been modified in CICS TS V5.5.

For a detailed view of changes to SIT parameters in the CICS TS V5.5 release, see the 
“Changes to SIT parameters” section of the “Changes to externals in this release” topic in 
IBM Knowledge Center at this website:

https://ibm.biz/BdzyrR

9.4.1  High Performance Option (HPO)

The HPO parameter can now be specified in the PARM parameter on an EXEC PGM=DFHSIP 
statement or in the SYSIN data set.

For more information, see the “HPO” topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdzyrs

9.4.2  Minimum TLS level (MINTLSLEVEL)

The default value for the MINTLSLEVEL parameter has changed from TLS10 to TLS12.

For more information, see the “MINTLSLEVEL” topic in IBM Knowledge Center at this 
website:

https://ibm.biz/Bdzyrf

Note: APAR PH05298 also provides this optimization to all CICS V5 releases.
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9.5  Enhanced instrumentation

The CICS TS V5.5 release continues the expansion of information that is reported by the 
CICS monitoring and statistics component. This section describes the extra data that is now 
available in the CICS statistics and monitoring SMF records.

9.5.1  The DFHSOCK performance group

The following new field was added to the DFHSOCK performance group:

� New connection indicator (field SOCONMSG)

Indicates whether the task processed the first message for establishing a new connection 
for a client.

For more information about counters that are available in the DFHSOCK performance group, see 
the “Performance data in group DFHSOCK” topic in IBM Knowledge Center at the following 
website:

https://ibm.biz/BdzyLf

9.5.2  The DFHWEBB performance group

The following fields were added to the DFHWEBB performance group:

� WEB OPEN URIMAP request elapsed time (field WBURIOPN)

The total elapsed time that the user task was processing WEB OPEN URIMAP requests that 
are issued by the user task.

� WEB RECEIVE and WEB CONVERSE receive portion elapsed time (field WBURIRCV)

The total elapsed time that the user task was processing WEB RECEIVE requests and the 
receiving side of WEB CONVERSE requests that are issued by the user task. The sessions 
these requests target to are opened by the WEB OPEN URIMAP command.

� WEB SEND and WEB CONVERSE send portion elapsed time (field WBURISND)

The total elapsed time that the user task was processing WEB SEND requests and the 
sending side of WEB CONVERSE requests that are issued by the user task. The sessions 
these requests target to are opened by the WEB OPEN URIMAP command. 

� Node.js application name (field NJSAPPNM)

Node.js application name from which the task was started.

For more information about counters that are available in the DFHWEBB performance group, see 
the “Performance data in group DFHWEBB” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzyLq

9.5.3  The DFHWEBC performance group

A new performance group has been created with the following field:

� INVOKE SERVICE request elapsed time (field WBSVINVK)

The total elapsed time that the user task was processing INVOKE SERVICE requests for 
WEBSERVICEs.
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For more information about counters that are available in the DFHWEBC performance group, see 
the “Performance data in group DFHWEBC” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzyLz

9.5.4  ISC/IRC system entry resource statistics

The following new field was added to the collected ISC/IRC system entry resource statistics:

� Peak aids in chain (field A14EAHWM)

The peak number of automatic initiate descriptors (AID) that were present in the AID chain 
at any one time.

A fragment of a sample DFHSTUP report that shows the new statistics field is shown in 
Example 9-1.

Example 9-1   Fragment of ISC/IRC system entry resource statistics report produced by CICS TS V5.5 
DFHSTUP

Connection name. . . . . . . . . . . . . . . . . :     FOR
Connection netname . . . . . . . . . . . . . . . : IYCUZC27
Access Method / Protocol . . . . . . . . . . . . :   XM /
Autoinstalled Connection Create Time . . . . . . :
Send session count . . . . . . . . . . . . . . . :      400
Aids in chain. . . . . . . . . . . . . . . . . . :        0
Peak aids in chain . . . . . . . . . . . . . . . :       74
ATIs satisfied by contention losers. . . . . . . :        0
Current contention losers. . . . . . . . . . . . :        0

For more information about ISC/IRC system entry statistics, see the topic “ISC/IRC system 
and mode entry statistics” in IBM Knowledge Center at this website:

https://ibm.biz/BdzyZJ

9.5.5  Policy statistics

Statistics are now available for CICS policy rules. CICS collects resource statistics for each 
rule that is defined in a policy, and supplies a summary report.

Example 9-2 shows a sample DFHSTUP report for an installed policy.

Example 9-2   Extract of sample policy statistics report produced by CICS TS V5.5 DFHSTUP

Policy name. . . . . . . . . . . . :  file_v51
Policy user tag. . . . . . . . . . :
Bundle name. . . . . . . . . . . . :  PLCY51FC
Bundle directory . . . . . . . . . : /u/iburnet/git/cics-perf-workload-dsw-lsr/bu

: ndles/com.ibm.cics.perf.workload.dsw.lsr.pol
: icy.V51.file/

Rule name. . . . . . . . . . . . . :  READ
Rule type. . . . . . . . . . . . . :  filerequest
Rule subtype . . . . . . . . . . . :  read
Action type. . . . . . . . . . . . :  abend
Action count . . . . . . . . . . . :         0
Action time. . . . . . . . . . . . :
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For more information about CICS policy statistics, see the “Policy statistics” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/BdzyLP

9.5.6  Transaction resource statistics

The following field was added to the collected transaction resource statistics:

� Abend count (field XMRAENDC)

The number of times that this transaction has abended.

For more information about transaction resource statistics, see the topic “Transaction 
statistics” in IBM Knowledge Center at this website:

https://ibm.biz/BdzyMq

9.5.7  Transaction resource class data

CICS monitoring is enhanced with new monitoring records URIMAP and WEBSERVICE in the 
resource monitoring class. Multiple URIMAP or WEBSERVICE records can be monitored for one 
task.

The following fields are now available for each URIMAP entry in a transaction resource 
monitoring record:

� MNR_URIMAP_NAME
� MNR_URIMAP_CIPHER
� MNR_URIMAP_WEBOPEN
� MNR_URIMAP_WEBRECV
� MNR_URIMAP_WEBSEND

The following fields are now available for each WEBSERVICE entry in a transaction resource 
monitoring record:

� MNR_WEBSVC_NAME
� MNR_WEBSVC_PIPE
� MNR_WEBSVC_INVK

For more information about fields that are available in the transaction resource class data, 
see the “Transaction resource class data: Listing of data fields” topic in IBM Knowledge 
Center at this website:

https://ibm.biz/BdzyLM

9.6  Virtual storage constraint relief

The Web domain (WB) now uses internal 64-bit buffer storage when it sends and receives 
HTTP outbound messages. This change relieves constraint on 31-bit virtual storage and 
enables more 31-bit application use in a CICS region.

Minor improvements in 24-bit storage usage were also introduced in CICS TS V5.5. The 
amount of 24-bit storage that is used by the CICS auxiliary trace mechanism was reduced. 
This changes provided a small performance improvement for both the DSW static routing and 
the RTW single region workloads when running with auxiliary trace enabled.
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9.7  z/OS WLM Health API

As described in 8.8, “z/OS WLM Health API” on page 173, CICS TS V5.4 uses the z/OS 
Workload Manager (WLM) Health API as a means of controlling the flow of work into a CICS 
region. This awareness of the z/OS WLM health value has been enhanced in CICS TS V5.5.

For more information about how CICS TS V5.5 uses the z/OS WLM Health API to control the 
flow of work into a CICS region, see the following article in the CICS Developer Center:

https://developer.ibm.com/cics/2017/05/16/controlling-flow-work-cics/

9.7.1  CICSPlex SM workload routing

The z/OS WLM health value of a region is now a more effective factor in CICSPlex SM 
workload routing decisions. When it determines the target region to route workload to, 
CICSPlex SM workload management assigns penalizing weights in the routing algorithm 
based on the actual health value of each region. The higher the health value, the lower the 
penalizing weight that is assigned, so a region with a greater health value becomes more 
favorable as a target. In addition, a region with a health value of zero is now deemed as 
ineligible to receive work.

With this enhancement to CICSPlex SM workload routing, you can have better control of flow 
of work into regions that are in warm-up or cool-down.

For more information on how the z/OS WLM health value affects CICSPlex SM routing 
decisions, see the “Effect of the z/OS WLM health service on CICSPlex SM workload routing” 
topic in IBM Knowledge Center at this website:

https://ibm.biz/Bdzyie

9.7.2  Throttle on number of MQGET calls issued by an MQMONITOR

In CICS TS V5.4 when the region's z/OS WLM health value is less than 100%, there is a 
throttle on the number of MQGET calls that an MQMONITOR can issue per second. In this way, the 
number of trigger tasks that are started is controlled. The throttle affects all started 
MQMONITORs in the region. When the region's health value reaches 100%, the throttle on MQGET 
calls is removed. This behavior has been enhanced in CICS TS V5.5 by also reacting to the 
maximum tasks (MXT) condition.

If CICS encounters an MXT condition, the CICS-MQ Alert Monitor (CKAM) calculates the 
maximum number of MQGET calls that an MQMONITOR can issue per second when this condition 
exists. In effect, this action imposes a restriction on the number of tasks being started by 
MQMONITOR resources while CICS is at the MXT limit. While CICS is at the MXT limit the 
number of MQGET calls an MQMONITOR resource can issue per second is given by the calculation 
MXT + 10%.

Note: The refined use of z/OS WLM Health when making routing decisions was also made 
available in CICS TS V5.4 with APAR PI90147.

Note: The limit applied is a per-MQMONITOR resource limit and not a global limit. Tasks that 
are not associated with MQMONITOR resources will not be subject to any throttling.
Chapter 9. CICS TS for z/OS V5.5 211

https://ibm.biz/Bdzyie
https://developer.ibm.com/cics/2017/05/16/controlling-flow-work-cics/


For more information about how the z/OS WLM Health service affects IBM MQ resources in 
CICS TS V5.5, see the topic “Effect of z/OS Workload Manager health service on 
MQMONITORs” in IBM Knowledge Center at this website:

https://ibm.biz/BdzMRG

9.8  Disabling of VSAM dynamic buffer addition 

From z/OS V2.2, VSAM provides a dynamic buffer addition capability that allows for the 
addition of extra buffers for an LSR pool if no buffer is available for a given VSAM request. For 
CICS, it is preferable to retry the request rather than allow uncontrolled expansion of an LSR 
pool, so dynamic buffer addition is not enabled for CICS LSR pools.

9.9  USS processes associated with L8, L9, X8, and X9 TCBs

CICS TS V5.5 now manages the release of USS (UNIX System Services) processes from 
X8, X9, L8, and L9 TCBs when the TCB is released from the CICS task and returned to the 
relevant CICS dispatcher pool of open TCBs.

The performance overhead of this additional USS process management was measured by 
using a development build of CICS TS V5.5. For each task that uses USS APIs, this 
overhead was measured to be approximately 410 µs of CPU. Approximately half of the CPU 
overhead occurs in the CICS address space, and the remainder occurs in the OMVS address 
space. Of the CPU overhead measured in the CICS address space, approximately half of that 
is observed in the CICS performance class monitoring records.

A summary of the use of USS processes can be found in the topic “The 
SYS1.PARMLIB(BPXPRMxx) parameters” in IBM Knowledge Center at this website:

https://ibm.biz/BdzMRe

9.10  Channels performance improvement

Containers are named blocks of data that are designed for passing information between 
programs. Programs can pass any number of containers between each other. Containers are 
grouped in sets that are called channels. A channel is analogous to a parameter list. The 
CICS TS V5.5 release introduces a performance improvement that benefits applications 
where many containers are stored in a single channel.

CICS TS V5.5 improves performance by using a hash table to access containers, rather than 
searching a list. The performance improvement changes the order in which containers are 
returned when browsing a channel. Therefore, applications should not rely on the order in 
which containers are returned from calls to EXEC CICS GETNEXT CONTAINER (CHANNEL) 
commands. The CICS feature toggle com.ibm.cics.container.hash can be set to false to 
restore CICS to the previous behavior. For more information see the “Upgrading applications” 
topic in IBM Knowledge Center at this website:

Note: The disabling of VSAM dynamic buffer addition was provided in all CICS V5 releases 
by APAR PI92486.
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This section presents a performance comparison of the two containers implementation 
options.

For more information about developing CICS applications by using channels, see the 
“Transferring data between programs using channels” topic in IBM Knowledge Center at this 
website:

https://ibm.biz/Bdzysf

9.10.1  Containers performance comparison

The application takes a value as input and creates the specified number of containers in a 
single channel. These are BIT containers 8 bytes in length. Next, the application reads each 
of these containers in reverse order and then the transaction completes. The overall response 
time and CPU per transaction is measured by using RMF. Several scenarios were tested, 
varying the number of containers from 10 to 750 per transaction.

The application was tested in both non-threadsafe and threadsafe configurations. The 
application was executed by using a development build of CICS TS V5.5 with the feature 
toggle com.ibm.cics.container.hash set to false and then set to true (the default). The use 
of the feature toggle provides the ability to directly compare CICS TS V5.4 and CICS TS V5.5 
performance without other differences between the releases affecting the results.

The transactions were initiated from a terminal by using the methodology described in 2.4, 
“Driving the workload” on page 16 using 500 simulated clients. Where possible, the 
transaction rate was sustained at around 570 transactions per second.

Table 9-9 details the performance results obtained when running the workload in a 
non-threadsafe configuration with the com.ibm.cics.container.hash feature toggle set to 
false. This has the effect of using the CICS TS V5.4 channels and containers 
implementation.

Table 9-9   Performance data for a non-threadsafe configuration using V5.4 implementation

The data in Table 9-9 shows a significantly lower transaction rate and significantly higher 
response time for the scenario with 750 containers. During this test scenario, the QR TCB 
was fully utilized and became the primary bottleneck for the workload. From the 750 
containers scenario in Table 9-9, we can make the observation that 327.19 × 0.302 = 98.8% 
utilization for the QR TCB.

Table 9-10 details the performance results when running the workload in a non-threadsafe 
configuration with the com.ibm.cics.container.hash feature toggle set to true. This is the 
default in CICS TS V5.5 and allows the use of the improved containers implementation.

Number of 
containers

ETR CPU per transaction
(ms)

Response time
(ms)

10 570.53 0.002 0.397

100 570.52 0.014 2.140

250 570.27 0.048 2.751

500 566.51 0.146 8.027

750 327.19 0.302 498.886
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Table 9-10   Performance data for a non-threadsafe configuration using V5.5 default implementation

The results of the non-threadsafe configuration are summarized for CPU time in Figure 9-7. 
The scenario using 750 containers has been omitted from the charts as this produces an 
unnecessarily large maximum value for the y-axes when measuring both CPU and response 
time.

Figure 9-7   Summary of CPU per transaction for non-threadsafe configuration

The results of the non-threadsafe configuration are summarized for response time in 
Figure 9-8, again omitting the 750 containers scenario.

Number of 
containers

ETR CPU per transaction
(ms)

Response time
(ms)

10 570.54 0.002 0.448

100 570.54 0.011 1.659

250 570.55 0.027 2.687

500 570.28 0.057 2.828

750 570.21 0.093 3.093
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Figure 9-8   Summary of response time for non-threadsafe configuration

The application was next configured to execute using open TCBs and remove the QR TCB 
constraint. Table 9-11 on page 215 details the performance results when running the 
workload in a threadsafe configuration with the com.ibm.cics.container.hash feature toggle 
set to false — the equivalent of using the CICS TS V5.4 implementation.

Table 9-11   Performance data for a threadsafe configuration using V5.4 implementation

Finally, the test was repeated in a threadsafe configuration with the feature toggle set to true 
in order to use the improved CICS TS V5.5 implementation. The performance data for this 
test is detailed in Table 9-12.

Table 9-12   Performance data for a threadsafe configuration using V5.5 default implementation

Number of 
containers

ETR CPU per transaction
(ms)

Response time
(ms)

10 570.60 0.002 0.500

100 570.58 0.023 1.432

250 570.27 0.079 2.549

500 569.87 0.236 4.322

750 517.43 0.696 69.239

Number of 
containers

ETR CPU per transaction
(ms)

Response time
(ms)

10 570.54 0.002 0.523

100 570.50 0.018 1.144

250 570.19 0.055 2.248

500 569.97 0.113 3.207

750 565.04 0.244 10.917
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The results of the threadsafe configuration are summarized for CPU time in Figure 9-9.

Figure 9-9   Summary of CPU per transaction for threadsafe configuration

The results of the threadsafe configuration are summarized for response time in Figure 9-10.

Figure 9-10   Summary of response time for threadsafe configuration

9.10.2  Containers performance summary

When using very small numbers of containers per transaction, the CPU consumed was 
equivalent regardless of internal implementation for both non-threadsafe and threadsafe 
configurations. Response times increased by a very small amount using the CICS TS V5.5 
implementation. However, this increase is not expected to be significant in a real-world 
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application. In all test scenarios with more than 10 containers, both CPU and response times 
were improved when using the CICS TS V5.5 default implementation.

Scenarios with more than 750 containers were tested. However, for clarity their results are not 
included in this document. A maximum of 9,000 containers per transaction were tested and 
their results continued the trend that is demonstrated by the data in the tables above.

9.11  Threadsafe Coupling Facility Data Tables

As described in 9.3.2, “Coupling Facility Data Tables” on page 206, access to Coupling 
Facility Data Tables (CFDTs) is now threadsafe. Performance tests were executed comparing 
CICS TS V5.4 and CICS TS V5.5. The primary goal was to ensure that performance did not 
degrade when upgrading to the newest release, with the secondary goal to demonstrate the 
improved throughput available when using the threadsafe APIs.

9.11.1  CFDT performance test configuration

The threadsafe VSAM workload described in 3.7, “File control workload” on page 29 was 
used to validate the performance of CFDTs. Two files with record lengths of 64 bytes were 
defined as CFDTs and each specified the value of the UPDATEMODEL attribute to LOCKING. One 
CICS region was used and the workload was driven as described in 2.4, “Driving the 
workload” on page 16 using 1,000 simulated terminals.

The ratio of transactions used was as follows:

� 70% read only
� 30% update

Two files were defined, each with a record length of 64 bytes. Every transaction accessed 50 
records in one of the defined files and this produced an average of 65 File Control requests 
per transaction with the following mix:

� EXEC CICS READ - 54%
� EXEC CICS READ UPDATE - 23%
� EXEC CICS REWRITE - 23%

Eight dedicated CPs were configured on the performance measurement LPAR, plus two 
dedicated CPs were configured in the Coupling Facility (CF). The LPAR and the CF were 
connected by using ICP links.

9.11.2  Non-threadsafe CFDT application performance results

The application was configured to run only on the QR TCB. Table 9-13 on page 217 presents 
the performance results when running the non-threadsafe application in a CICS TS V5.4 
environment.

Table 9-13   CICS TS V5.4 results for non-threadsafe CFDT workload

ETR CICS CPU CPU per transaction 
(ms)

Response time
(ms)

798.12 36.11% 0.452 1.312

1597.61 71.95% 0.450 2.963

2204.22 99.20% 0.450 131.748
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The same non-threadsafe application test was executed using CICS TS V5.5 and the results 
are presented in Table 9-14.

Table 9-14   CICS TS V5.5 results for non-threadsafe CFDT workload

The CPU results for each CICS release are summarized in Figure 9-11.

Figure 9-11   Plot of CICS TS V5.4 and V5.5 results for CFDT workload in non-threadsafe configuration

When running the benchmark in a non-threadsafe configuration, the throughput of the CICS 
region was limited by the capacity of the QR TCB. At peak throughput, during the 5-minute 
measurement interval the QR TCB was dispatched for more than 4 minutes 59.95 seconds 
(> 99.9%). From the data, it can be seen that the CPU per transaction for both the 
CICS TS V5.4 and the CICS TS V5.5 releases are equivalent, with the total CPU scaling 
linearly up to the throughput limit of approximately 2,200 transactions per second. Response 
times in both configurations increased dramatically as the transaction rate and hence the QR 
TCB utilization increased.

9.11.3  Threadsafe CFDT application performance results

The application program was configured with the CONCURRENCY attribute set to the value 
THREADSAFE. In both releases, the application started on an L8 TCB. In CICS TS V5.4 CFDT 
access is not threadsafe. Therefore, execution switches to the QR TCB at the time of first 
CFDT access and remains there until task termination. In CICS TS V5.5 CFDT access is 
threadsafe. Therefore, execution continues on the L8 TCB until the application writes a 

ETR CICS CPU CPU per transaction 
(ms)

Response time
(ms)

798.09 36.21% 0.454 1.281
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completion message to the terminal. See Chapter 4, “Open transaction environment” on 
page 31 for a description of the TCB switching process.

Table 9-15 presents the performance results when running the application in a threadsafe 
configuration in CICS TS V5.4.

Table 9-15   CICS TS V5.4 results for threadsafe CFDT workload

The performance results for the CICS TS V5.5 release with a threadsafe configuration are 
presented in Table 9-16.

Table 9-16   CICS TS V5.5 results for threadsafe CFDT workload

The total CPU performance results are plotted in Figure 9-12 on page 220.

ETR CICS CPU CPU per transaction 
(ms)

Response time
(ms)

798.09 36.92% 0.463 1.474

1597.80 73.63% 0.461 2.440

2399.82 110.10% 0.459 93.556

2399.14 110.14% 0.459 243.851

2398.59 110.16% 0.459 293.903

ETR CICS CPU CPU per transaction 
(ms)

Response time
(ms)

798.14 45.73% 0.573 0.883

1598.78 104.65% 0.655 1.295

3079.04 217.79% 0.707 1.881

5708.62 443.08% 0.776 3.285

7936.61 624.47% 0.787 4.641
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Figure 9-12   Plot of CICS TS V5.4 and V5.5 results for CFDT workload in threadsafe configuration

The response time data is plotted in Figure 9-13 on page 220.

Figure 9-13   CICS TS V5.4 and V5.5 response time results for threadsafe CFDT workload

9.11.4  CFDT performance results summary

From the chart in Figure 9-12 on page 220 the following can be observed:

� As noted in the non-threadsafe configuration, the requirement to switch to the QR TCB for 
CFDT requests in the CICS TS V5.4 release causes a peak throughput of around 2,400 
transactions per second. This QR TCB contention is removed in the CICS TS V5.5 
release.
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� Total CPU consumed by the CICS region scales linearly in CICS TS V5.4 up to the 
throughput limit.

� Total CPU consumed by the CICS region scales linearly in CICS TS V5.5 up to the tested 
throughput limit. Note that this testing limit was arbitrary: no CICS constraint existed at this 
point and could have increased further. Using this workload, a rate of 8,000 transactions 
per second correlates to over 500,000 CICS File Control requests per second in a single 
CICS region.

� The CPU cost per transaction in the CICS TS V5.5 release is greater than in the 
CICS TS V5.4 release. This is due to the significantly increased number of concurrent 
TCBs executing within the z/OS LPAR. Therefore, the CPU per transaction results cannot 
be directly compared. Section 9.11.2, “Non-threadsafe CFDT application performance 
results” on page 217 demonstrated that on a like-for-like per-API call basis, the two CICS 
releases provided equivalent performance.

The chart in Figure 9-13 on page 220 demonstrates the significant response time 
improvements that CICS TS V5.5 can provide for threadsafe workloads that access CFDTs. 
Non-threadsafe CFDT access in CICS TS V5.4 causes QR TCB saturation and extended 
response times. But the removal of the QR TCB constraint in CICS TS V5.5 provides better 
response times with greater scalability.

9.12  CICS policy rules

The behavior of CICS can be controlled during run time, based on predefined policies. CICS 
performs the action that is defined for a policy rule when all the conditions that are specified 
by the rule are met.

Policies define the action that CICS is to take when one of the following conditions is met:

� A CICS user task makes excessive use of system resources; for example, a user task 
consumes too much storage.

� A CICS system or user task changes the state of a system resource; for example, a FILE 
resource is closed.

� The overall system health changes; for example, the number of active tasks exceeds the 
maximum user tasks in the CICS system (the MXT value).

A condition and action pair make up a policy rule, and one or more policy rules can be defined 
within a policy. A policy is defined in a CICS bundle and a CICS bundle can consist of one or 
more policies. For more information on CICS policies, see the “CICS policies” topic in IBM 
Knowledge Center at this website:

https://ibm.biz/Bdzy6A

This section looks at the performance overhead of enabling policy task rules when running a 
standard performance benchmark application.

9.12.1  Policy task rules overhead performance study

The standard DSW static routing workload described in 3.2.1, “DSW static routing” on 
page 22 was used for the performance study. The benchmark was executed twice: one time 
with no policies installed and then again with a set of 19 policies installed. When combining all 
installed policies, this applied a task rule for every threshold supported by CICS TS V5.5.
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The aim of this performance study is to measure the overhead of enabling task rules — not to 
measure the overhead executing the action. To ensure that no actions were invoked, all rules 
were coded with threshold values that would never be exceeded by the application. The 
implementation of the benchmark is such that not all rules can be triggered. For example, the 
DSW application does not use IBM Db2, therefore the task rules for EXEC SQL commands will 
never be used. The DSW application touches at least the following rules:

� EXEC CICS requests

– Total number of EXEC CICS requests issued by the application

� File requests

– DELETE
– READ
– READNEXT
– READ UPDATE
– REWRITE
– STARTBR
– WRITE

� Program requests

– LINK commands

� Start requests

– START commands

� Storage allocation

– Task 24-bit storage
– Task 31-bit storage
– Shared 24-bit storage
– Shared 31-bit storage

� Storage requests

– Task 24-bit storage
– Task 31-bit storage
– Shared 24-bit storage
– Shared 31-bit storage

� TD queue requests

– READQ
– WRITEQ

� Time

– CPU time
– Elapsed time

� TS queue bytes

– WRITEQ all TS queue bytes
– WRITEQ auxiliary TS queue bytes

� TS queue requests

– WRITEQ all TS queue requests
– WRITEQ auxiliary TS queue requests

RMF was used to obtain the transaction rate and CPU cost for the whole CICS region. Using 
this data, the average CPU per transaction value can be calculated. Table 9-17 lists the 
performance results for the configuration where no policies were installed.
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Table 9-17   Results for DSW static routing workload with no policies installed

The performance results for the configuration where all policies were installed are shown in 
Table 9-18.

Table 9-18   Results for DSW static routing workload with all 19 policies installed

The results from Table 9-17 on page 223 and Table 9-18 on page 223 are shown in 
Figure 9-14.

Figure 9-14   Plot of CICS TS V5.5 performance data with and without policy task rules installed

ETR CICS CPU CPU per transaction (ms)

4181.98 75.48% 0.180

4948.22 88.90% 0.180

6063.40 107.03% 0.177

6610.11 116.12% 0.176

7165.88 125.24% 0.175

ETR CICS CPU CPU per transaction (ms)

4176.96 75.36% 0.180

4932.58 88.96% 0.180

6057.89 107.33% 0.177

6602.11 115.99% 0.176

7176.31 126.33% 0.176
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9.12.2  Policy task rules overhead performance summary

The performance data shows that there is no measurable overhead when using policy task 
rules to monitor user tasks. The data that is presented in Table 9-17 on page 223 and 
Table 9-18 on page 223 demonstrates that the CPU per transaction is equivalent within 
measurable limits. The data also shows that CICS continues to scale linearly as the 
transaction rate increases.

9.13  Encrypted zFS file systems

In z/OS V2.3 zFS added support for encrypting file system data using DFSMS access method 
encryption. This section presents the results of a performance test that investigated the 
overhead of using an encrypted zFS file system for a CICS workload. A development build of 
CICS TS V5.5 was used when testing encrypted zFS file system support. However, any 
release of CICS that uses the zFS file system can use this functionality.

For more information on encrypting zFS file system data, see the “Encrypting and 
compressing zFS file system data” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzyJK

9.13.1  zFS file system encryption performance comparison

The WebSphere Liberty workload described in 3.4, “WebSphere Liberty servlet with JDBC 
and JCICS access” on page 26 was used as the benchmark application. To generate 
significant quantities of zFS data, CICS tracing was enabled specifying the value of ALL for the 
SJ domain. For both the encryption disabled and the encryption enabled configurations, the 
transaction rate was sustained at approximately 1,650 requests per second. Enabling this 
level of trace at the given workload request rate resulted in approximately 30 MB of data that 
is written to zFS per second. Where enabled, the zFS file system used AES-256 encryption.

The performance data that is obtained during the test is listed in Table 9-19. The CPU per 
request is separated into that consumed by the CICS address space and that consumed by 
the ZFS address space. The overall zIIP eligibility is also presented for comparison.

Table 9-19   CPU cost comparison when enabling encryption for a zFS file system

The CPU per request data that is presented in Table 9-19 is summarized in the chart in 
Figure 9-15.

Encryption CICS CPU per 
request (µs)

ZFS CPU per request 
(µs)

zIIP eligibility

Disabled 2913.44 17.28 72.1%

Enabled 2933.98 20.18 72.4%
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Figure 9-15   Summary of performance data for encrypted zFS

The chart in Figure 9-15 demonstrates that the CPU consumed by the ZFS address space is 
a very small fraction of the overall CPU consumption per request. To more clearly 
demonstrate the difference in CPU attributed to the ZFS address space when enabling zFS 
encryption, only the ZFS address space data is plotted in Figure 9-16 on page 225.

Figure 9-16   Summary of performance data for the ZFS address space when enabling zFS encryption

9.13.2  zFS file system encryption performance summary

The total CPU overhead for this workload when writing encrypted data to zFS is very small: 
approximately 23 µs per request. Although the ZFS address space showed a significant 
relative increase in CPU cost per request (+17%), the overall total cost to the workload was 
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negligible. As observed in Table 9-19 on page 224, the overall zIIP eligibility of the workload 
remained unchanged.

The use of zFS encrypted file systems is fully supported in a CICS environment and the CPU 
overhead is expected to be negligible in a full production workload.

9.14  Multiple Liberty JVM servers in a single CICS region

CICS TS V5.5 introduced the ability to run multiple Liberty JVM servers in a single CICS 
region. It is no longer necessarily to disable angel process security with the (deprecated) JVM 
server option WLP_ZOS_PLATFORM=FALSE to achieve multi-tenancy of JVM servers in a single 
region.

This section examines the performance and storage characteristics of running multiple 
Liberty JVM servers within a single CICS region when compared with JVM servers across 
multiple CICS regions.

9.14.1  Shared libraries support

The shared library region is a z/OS USS feature that enables address spaces to share 
dynamic link library (DLL) files. This feature enables CICS regions to share the DLLs that are 
needed for JVMs, rather than each region loading them individually. A CICS address space 
utilizes shared library support if any of the USS processes or JVM servers within the CICS 
region enable shared library support. In CICS TS V5.4 and earlier this feature was enabled by 
default, but in CICS TS V5.5 (with APAR PH09400) it must be enabled using the 
_BPXK_DISABLE_SHLIB=NO parameter in the JVM profile.

Using shared libraries support can reduce the amount of real storage that is used by z/OS 
and the time it takes for the regions to load the DLL files. The disadvantage of using shared 
libraries is that any address space that uses this feature reserves an area of 31-bit virtual 
storage that is equal in size to the value of the z/OS SHRLIBRGNSIZE parameter, which is likely 
to increase the virtual storage footprint of each region.

For more information on the use of the shared library region in JVM servers within a CICS 
environment, see the “Tuning the z/OS shared library region” topic in IBM Knowledge Center 
at this website:

https://ibm.biz/Bdzv37

9.14.2  Multiple Liberty JVM servers performance workload configuration

The hardware that is used for the benchmarks is described in 9.1, “Introduction” on page 198. 
The measurement LPAR was configured with three GCPs and three zIIPs running in SMT 

Note: APAR PI98174 enables the ability to run multiple Liberty JVM servers in a single 
CICS region for CICS TS V5.4.

Note: When shared libraries are enabled, the full size of the 31-bit area will be allocated, 
regardless of the utilization achieved by an individual address space. Therefore, it is 
important to adjust the SHRLIBRGNSIZE parameter to accommodate all the libraries, but 
avoid over-allocation and waste 31-bit virtual storage.
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mode 1, which resulted in an LSPR equivalent processor of 3906-706. The measurement 
LPAR had 16 GB of real storage allocated.

The measurement LPAR was running z/OS V2.3 and a development build of CICS TS V5.5. 
Java 8.0 SR5 was used with the following options:

� RMODE64 enabled

From z/OS V2.3, 64-bit residency mode for applications (RMODE64) is enabled by default. 
This feature allows the JIT to allocate executable code caches above the 2 GB memory 
bar.

� Compressed references enabled

The IBM Java SDK for z/OS can use compressed references on 64-bit platforms to 
decrease the size of Java objects and make more effective use of the available space. The 
result is less frequent garbage collection and improved memory cache utilization.

� Shared libraries disabled

See section 9.14.1, “Shared libraries support” on page 226 for a discussion of shared 
libraries.

All CICS regions set the MXT parameter to 150 and all JVM servers specified the value of 64 
for the THREADLIMIT parameter.

The application used was the standard servlet workload as described in 3.4, “WebSphere 
Liberty servlet with JDBC and JCICS access” on page 26. CICS Liberty security was enabled 
and all Liberty JVM servers were connected to the same WebSphere Liberty angel 
process. The workload was driven through HTTP requests by using IBM Workload Simulator 
for z/OS, as described in 2.4, “Driving the workload” on page 16. The workload used 1,000 
simulated web browsers, each supplying a username and password via HTTP basic 
authentication.

The application was cloned to produce five versions that can be deployed in separate Liberty 
JVM servers that used different TCP/IP ports. The configurations tested were:

1. One CICS region with one Liberty JVM server

2. One CICS region with three Liberty JVM servers

3. Three CICS regions each with one Liberty JVM server

4. One CICS region with five Liberty JVM servers

5. Five CICS regions each with one Liberty JVM server

9.14.3  Comparing CPU costs per request and maximum throughput

The workload was run in all five configurations. The total CPU cost and number of 
transactions completed was obtained by using IBM Resource Measurement Facility (RMF). 
Using this data, the CPU per request and the throughput rate was calculated. z/OS storage 
information was obtained using CICS MVS TCB statistics data.

Table 9-20 on page 228 presents the CPU per request and total throughput data for each of 
the five configurations.
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Table 9-20   CPU per request comparison for multiple JVM server configurations

The CPU per request data from Table 9-20 is presented in Figure 9-17, separated into 
non-zIIP-eligible and zIIP-eligible components.

Figure 9-17   Chart showing CPU per request comparison for multiple JVM server configurations

It can be seen from the Figure 9-17 that the lowest CPU cost per request was provided by 
single JVM server in a single CICS region (configuration 1). This lower cost is because the 
JVM in configuration 1 will process more requests than each individual JVM used in 
configurations 2 through 5. The more requests that are processed by a JVM, the more 
effectively the JIT compiler can optimize the code path, resulting in a lower CPU per request.

When running at very high CPU utilization with multiple JVM servers in a single CICS region, 
there are a large number of TCBs active in the CICS address space. This causes increased 
z/OS dispatcher activity, which slightly reduces the zIIP eligibility by reducing the zIIP lazy 
switching benefit. At lower throughput rates with lower CPU utilization — which is more likely 
in a customer production system — the zIIP eligibility was seen to be similar for all 
configurations investigated.

zIIP lazy switching is described in the IBM Systems Magazine article Understanding zIIP 
Usage in CICS:

http://archive.ibmsystemsmag.com/mainframe/administrator/cics/ziip-usage/
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As an example of the additional JIT optimization, at the end of the test the JVM in 
configuration 1 (one CICS region with one Liberty JVM server) had optimized a total of 7,079 
Java methods. Conversely, one of the JVMs in configuration 5 (five CICS regions each with 
one Liberty JVM server) had optimized only 1,362 Java methods.

The total throughput data from Table 9-20 is presented in Figure 9-18 on page 229.

Figure 9-18   Chart showing total throughput comparison for multiple JVM server configurations

During all test scenarios, the LPAR was 97% busy and therefore the throughput was limited 
by the CPU cost per request.

9.14.4  Comparing 31-bit memory usage

The amount of 31-bit storage used was collected from the CICS MVS TCB statistics data and 
is summarized in Figure 9-19. Where a configuration used multiple CICS regions, the chart 
presents the average amount of 31-bit storage that was used per CICS region.
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Figure 9-19   Summary of 31-bit storage used per CICS region for multiple JVM server configurations

The amount of CICS TCB storage per CICS region is related to the number of concurrent 
tasks and TCBs used. To restrict the number of concurrent TCBs in a CICS region for a Java 
workload, use the THREADLIMIT attribute of the JVMSERVER resource definition.

The amount of non-CICS TCB storage that is used per CICS region is related to the number 
of JVM servers. As documented in 9.14.2, “Multiple Liberty JVM servers performance 
workload configuration” on page 226, this test used compressed references. Disabling of 
compressed references reduces the amount of 31-bit storage that is used, at the expense of 
some CPU and 64-bit storage usage.

Each configuration that only had one JVM per CICS region shows very similar 31-bit storage 
usage. Where multiple JVM servers are configured per CICS region, the increased storage 
use is a result of each JVM having its own private copy of runtime data. These copies are 
mostly held in non-CICS TCB storage.

In contrast to Figure 9-19 on page 230 that presented the storage that is used per CICS 
region, the chart in Figure 9-20 summarizes the total 31-bit storage that is used across all 
CICS regions in a given configuration.
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Figure 9-20   Summary of total 31-bit storage used for multiple JVM server configurations

The data in Figure 9-20 demonstrates the storage savings that are achieved by using multiple 
JVM servers in a single CICS region, compared to using one JVM server in multiple CICS 
regions.

9.14.5  Comparing 64-bit memory usage

To achieve the required concurrency, the JVM used in configuration 1 (one CICS region with 
one Liberty JVM server) specified a heap size of 1000 MB. All other JVMs specified a heap 
size of 200 MB.

The amount of 64-bit storage that was used was collected from the CICS storage statistics 
data and is summarized in Figure 9-21 on page 232. Where a configuration used multiple 
CICS regions, the chart presents the average amount of 64-bit storage that is used per CICS 
region. The shared class cache is held in a z/OS shared memory object. A shared class 
cache will be included in the ‘Bytes Allocated Shared Memory Objects’ data that is reported in 
the CICS storage overview statistics report, but does not count toward the MEMLIMIT of the 
CICS region.
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Figure 9-21   Summary of 64-bit storage used per CICS region for multiple JVM server configurations

As expected, the amount of 64-bit storage that is used per CICS region is related to the 
number of JVM servers configured. Each JVM server requires its own copy of 64-bit runtime 
data areas including heap and JIT caches.

The total 31-bit storage used was presented in Figure 9-20 on page 231 and Figure 9-22 
presents a similar view of total 64-bit storage usage across all CICS regions.

Figure 9-22   Summary of total 64-bit storage used for multiple JVM server configurations

Section 9.14.4, “Comparing 31-bit memory usage” on page 229 demonstrated how multiple 
JVMs in a single CICS region gives a reduction in overall 31-bit storage that is used and 
Figure 9-22 shows this is also true for 64-bit storage usage.
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9.14.6  Multiple Liberty JVM servers performance conclusion

The most efficient configuration is a single large JVM server when you consider the following:

� CPU costs

Multiple JVM servers may not JIT methods to the same level of optimization as a more 
frequently used single JVM server.

Multiple JVM servers will probably use more CICS T8 TCBs and will each have their own 
set of JVM-related TCBs (such as JIT and GC helpers). Management of these additional 
TCBs introduces an extra CPU overhead.

� Throughput

The increased cost per request of using multiple JVM servers means that the maximum 
throughput, when all CPU resource is consumed, is lower than for a single JVM server 
configuration.

� Memory

The 31-bit memory usage per CICS region significantly increased when using multiple 
JVM servers.

The use of 31-bit memory can be minimized by using Java 8.0 SR5 with z/OS v2.3 to 
place JIT code caches in 64-bit memory. JIT data caches are always in 64-bit memory.

Restricting the number of CICS T8 TCBs by specifying low values for the JVMSERVER 
THREADLIMIT attribute reduces ECDSA use (each CICS TCBs requires 28 KB of kernel 
stack storage).

Using uncompressed references with the JVM profile setting -Xnocompressedrefs moves 
all Java class data to 64-bit memory.

As described in 9.14.1, “Shared libraries support” on page 226 the use of shared libraries 
has an impact on the amount of 31-bit storage allocated. The size of the shared library 
area is controlled by the z/OS SHRLIBRGNSIZE parameter.

This study does not report on response times. However, no significant difference was 
observed across all of the configurations measured.

Although a single large JVM server can provide the best performance, this does not provide 
high availability or application separation. When you deploy applications, consideration 
should also be given to the following requirements:

� Protection against the failure of an individual JVM server
� Protection against the failure of an individual CICS region
� Protection against the failure of a z/OS LPAR
� The ability to apply maintenance to the application, CICS or z/OS

9.15  Liberty JVM server and application startup times

After enabling a JVMSERVER resource, the Liberty environment and hosted applications require 
a finite amount of time to start. This section looks at minimizing this startup time by using 
shared class cache. This section also examines the time that is taken to start multiple Liberty 
JVM servers in a single CICS region.

The time taken for a CICS Liberty JVM server to start is measured from enabling the 
JVMSERVER resource until the CWWKF0011I message is emitted. The time taken for a Liberty 
application to start is reported in the CWWKZ0001I message.
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9.15.1  Startup times with shared class cache

The class sharing feature offers the transparent and dynamic sharing of data between 
multiple JVMs. When enabled, JVMs use shared memory to obtain and store data, including 
information about: loaded classes, Ahead-Of-Time (AOT) compiled code, commonly used 
UTF-8 strings, and Java Archive (JAR) file indexes. For more information, see the “Class data 
sharing” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzSkf

Using class data sharing, the time that is required to start a CICS Liberty JVM server and 
Liberty applications within this server can be reduced. The use of the -Xtune:virtualized 
JVM option further improves JVM and application startup time. For more information, see the 
“-Xtune:virtualized” topic in IBM Knowledge Center at this website:

https://ibm.biz/BdzSkv

These timings are presented for each of four configurations in Table 9-21.

Table 9-21   Summary of startup timings with varying shared cache class configurations

The time taken for the Liberty JVM server to start is plotted in Figure 9-23.

Figure 9-23   Summary of Liberty JVM server startup time with varying class cache configurations

The time taken for the application to start is plotted in Figure 9-24 on page 235.
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Liberty

startup time (s)
Application

startup time (s)

No class cache 9.726 0.973

Class cache (first use) 10.427 1.147

Class cache (second use) 3.939 0.414

Class cache (second use) with -Xtune:virtualized 3.603 0.378

0

2

4

6

8

10

12

No cache First cache use Cache reuse Cache reuse
+ Xtune

Li
be

rt
y 

JV
M

 s
er

ve
r s

ta
rt

 ti
m

e 
(s

)

234 IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report

https://ibm.biz/BdzSkf
https://ibm.biz/BdzSkv


Figure 9-24   Summary of application startup time with varying class cache configurations

It can be seen that the first use of a shared class cache slightly increases startup times for 
both the Liberty JVM server and any applications. However, subsequent starts are 
significantly improved with shared class cache enabled. The use of the -Xtune:virtualized 
option slightly reduces startup times in addition to the benefits of a shared class cache.

9.15.2  Application startup times with multiple JVM servers

This section looks at application startup times along with section 9.14, “Multiple Liberty JVM 
servers in a single CICS region” on page 226. The time taken to start each application was 
recorded, firstly when running five JVMs in one CICS region, then when running one JVM in 
each of five CICS regions.

For all JVM configurations shared class cache was enabled and was already been populated 
before the test. The -Xtune:virtualized option was also specified. The time taken to start an 
application in each instance of a JVM is plotted in the chart in Figure 9-25 on page 236.
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Figure 9-25   Summary of application startup times with single and multiple CICS regions

The results plotted in Figure 9-25 show that there is no significant difference in application 
startup time using one JVM server in multiple CICS regions, when compared to using multiple 
JVM servers in a single CICS region.
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Related publications

The publications that are listed in this section are considered particularly suitable for a more 
detailed discussion of the topics that are covered in this book.

CICS performance series

This book is one in a series that is focused on CICS performance. The following IBM 
Redbooks publications are also part of this CICS performance series. Some publications that 
are referenced in this list might be available in softcopy only:

� IBM CICS Performance Series: A CPU Utilization Study of Java EE applications running in 
CICS TS V5.3, REDP-5361

� IBM CICS Performance Series: Web Services Performance in CICS TS V5.3, REDP-5322

� IBM CICS Performance Series: CICS TS V5.3 Benchmark on IBM z13, REDP-5320

� IBM CICS Performance Series: Comparing Type 2 and Type 4 JDBC Driver Performance 
with IBM CICS Transaction Server for z/OS V5.2 Liberty JVM server, REDP-5208

� IBM CICS Performance Series: Effective Monitoring for CICS Performance Benchmarks, 
REDP-5170

� IBM CICS Performance Series: FiTeq Authenticator Benchmark, REDP-5114

� IBM CICS Performance Series: A Processor Usage Study of Ways into CICS, REDP-4906

� IBM CICS Performance Series: CICS and VSAM RLS, REDP-4905

� IBM CICS Performance Series: CICS, DB2, and Thread Safety, REDP-4860

� IBM CICS Performance Series: CICS TS V4.2 and Java Performance, REDP-4850

Other IBM Redbooks publications

The IBM Redbooks publication Setting Up and Using the IBM System z CPU Measurement 
Facility with z/OS, REDP-4727, provides more information about the topic in this document. 

You can search for, view, download or order this documents and other Redbooks, Redpapers, 
Web Docs, draft and other materials, at the following website:

http://www.redbooks.ibm.com/

Other publications

The publication z/Architecture Principles of Operation, SA22-7832, is also relevant as a 
further information source and is available at this website: 

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
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The article Understanding zIIP Usage in CICS provides background on how zIIP processors 
interact with CICS and z/OS and is available on the IBM Systems Magazine website:

http://archive.ibmsystemsmag.com/mainframe/administrator/cics/ziip-usage/

Online resources

The following websites are also relevant as further information sources:

� IBM CICS Family home page:

https://www.ibm.com/it-infrastructure/z/cics

� Developer Center for CICS:

https://developer.ibm.com/cics/

� CICS performance resources

https://developer.ibm.com/cics/cics-performance-resources/

� CICS Transaction Server for z/OS V5.1 in IBM Knowledge Center:

https://ibm.biz/Bd4zFv

� CICS Transaction Server for z/OS V5.2 in IBM Knowledge Center:

https://ibm.biz/BdXUWA

� CICS Transaction Server for z/OS V5.3 in IBM Knowledge Center:

https://ibm.biz/Bd4zFm

� CICS Transaction Server for z/OS V5.4 in IBM Knowledge Center:

https://ibm.biz/BdiuGX

� CICS Transaction Server for z/OS V5.5 in IBM Knowledge Center:

https://ibm.biz/BdznLZ

� Large Systems Performance Reference for IBM z Systems:

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex

Help from IBM

IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
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