
ibm.com/redbooks

Front cover

Integration Throughout
and Beyond the
Enterprise

Ian Heritage
Claus T. Jensen

Tamjit Kumar
Maria Luisa Lopez de Silanes Ruiz

Sambasivarao Nanduri
Juan Carlos Pineda

Abhinav Priyadarshi
Katherine Sanders

David Shute
Jaime Martin Talavera

Mark Taylor
John M. Zoltek, Jr.

Change the enterprise with integration
patterns

Learn the recipe for business
integration

Discover the topology of an
engaging enterprise

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Integration Throughout and Beyond the Enterprise

April 2014

SG24-8188-00

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2014)

This edition applies to IBM Integration Bus Version 9, IBM WebSphere Registry and Repository Version 8,
IBM WebSphere MQ Version 7.5, IBM WebSphere DataPower Integration Appliance XI52, and IBM
MessageSight.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. viii
Now you can become a published author, too . xi
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Part 1. Topology of an integrated enterprise . 1

Chapter 1. Business integration in 2014 . 3
1.1 The confluence of forces. 4
1.2 Growing the ecosystem beyond the enterprise. 4
1.3 The API and Service Economy . 6

Chapter 2. The composable business . 7
2.1 The recipe for a differentiating experience . 9
2.2 SOA design principles and their importance . 10
2.3 API management as the SOA renaissance. 12

Chapter 3. Middleware topology of an engaging enterprise . 15
3.1 Messaging. 17
3.2 Integration bus . 17
3.3 Gateway . 18

Part 2. Integration patterns . 19

Chapter 4. Enterprise Application Integration pattern. 21
4.1 Characteristics and capabilities of the pattern . 22

4.1.1 Level of operational control and insight . 23
4.1.2 When to use the Enterprise Application Integration pattern 24
4.1.3 Retail business example . 24

4.2 Ways to implement the pattern with IBM products . 24
4.2.1 IBM WebSphere MQ messaging software . 25
4.2.2 Mapping WebSphere MQ to the EAI pattern. 26
4.2.3 Implementing the retail example . 27

Chapter 5. Service Integration pattern . 31
5.1 Characteristics and capabilities of the pattern . 32

5.1.1 Benefits of adopting the Service Integration pattern . 34
5.1.2 Level of operational control and insight . 35
5.1.3 When to use the Service Integration pattern. 35
5.1.4 Retail example . 36

5.2 Ways to implement the pattern with IBM products . 36
5.2.1 IBM Integration Bus . 37
5.2.2 Mapping the IBM Integration Bus to the Service Integration pattern. 42
5.2.3 Operational capabilities. 48
5.2.4 Implementing the retail example . 50

© Copyright IBM Corp. 2014. All rights reserved. iii

Chapter 6. Gateway pattern . 53
6.1 Gateway functions and configuration . 54
6.2 Characteristics and capabilities of the pattern . 55

6.2.1 Level of operational control and insight . 56
6.2.2 When to use the Gateway pattern . 56
6.2.3 Retail example . 57

6.3 Ways to implement the pattern with IBM products . 57
6.3.1 Security . 58
6.3.2 Interconnection . 59
6.3.3 Routing . 59
6.3.4 Caching. 60
6.3.5 Management . 60

Chapter 7. Mobile Integration pattern . 63
7.1 Characteristics and capabilities of the pattern . 64

7.1.1 Defining a request-response pattern. 64
7.1.2 Defining a Push Notification pattern . 65
7.1.3 Level of operational control and insight . 66
7.1.4 When to use these patterns . 66
7.1.5 A mobile banking example . 67

7.2 Ways to implement these patterns with IBM products . 67
7.2.1 IBM Worklight mobile application development platform 68
7.2.2 IBM Integration Bus software . 69

7.3 Implementing the mobile banking example. 70

Chapter 8. API Management pattern . 77
8.1 The value of an application programming interface . 78
8.2 Characteristics and capabilities of the pattern . 78

8.2.1 Business pricing models for APIs . 79
8.2.2 Components of an API Management pattern . 80
8.2.3 Level of operational control and insight . 81
8.2.4 When to use the API Management pattern . 81
8.2.5 Retail example . 82

8.3 Ways to implement the pattern with IBM products . 82
8.3.1 IBM API Management benefits . 83
8.3.2 Mapping an IBM API Management portal to the API Management pattern 83
8.3.3 Implementing the retail example . 84

Related publications . 87
IBM Redbooks . 87
Online resources . 87
Help from IBM . 88

iv Integration Throughout and Beyond the Enterprise

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2014. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web: http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Cast Iron®
CICS®
ClearCase®
DataPower®
DB2®
developerWorks®
IBM®

Informix®
MQSeries®
PowerHA®
PureApplication®
RACF®
Rational®
Redbooks®
Redpaper™

Redbooks (logo) ®
System x®
System z®
Tivoli®
WebSphere®
Worklight®
z/OS®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Worklight is trademark or registered trademark of Worklight, an IBM Company.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

vi Integration Throughout and Beyond the Enterprise

http://www.ibm.com/legal/copytrade.shtml

Preface

Throughout the history of the IT industry, integration has been an important part of most
projects. Whether it is integration of transactions, data, or processes, each has challenges
and associated patterns and antipatterns. In an age of mobile devices, social networks, and
cloud services, and big data analytics, integration is more important than ever, but the scope
of the challenge for IT projects has changed.

Partner APIs, social networks, physical sensors and devices, all of these and more are
important sources of capability or insight. It is no longer sufficient to integrate resources under
control of the enterprise, because many important resources are in the ecosystem beyond
enterprise boundaries.

With this as the basic tenet, we address these questions:

� What are the current integration patterns that help enterprises become and remain
competitive?

� How do you choose when to use which pattern?

� What is the topology for a “composable business”?

� And how do you accelerate the process of implementation through intelligent choice of
supporting integration middleware?

This IBM® Redbooks® publication guides integration practitioners and architects in choosing
integration patterns and technologies. The book includes two parts:

� Part 1, “Topology of an integrated enterprise”, focuses on the enterprise ecosystem and
the different types of integration tasks within and beyond the enterprise.

� Part 2, “Integration patterns”, defines the most common integration patterns and shows
how to map these patterns to IBM integration technologies.

© Copyright IBM Corp. 2014. All rights reserved. vii

Authors

This book was produced by a team of specialists from around the world while working for the
International Technical Support Organization, Raleigh Center.

Ian Heritage is an API management and SOA governance
subject-matter expert who specializes in IBM API
Management, IBM WebSphere® Service Registry and
Repository, and IBM WebSphere DataPower®. Ian is based in
Rochester, Minnesota, and works in the Worldwide WebSphere
Technical Sales organization. He has helped customers in
various industries plan and implement their API management
and SOA governance strategies. Ian worked in IBM
development for the first 10 years of his career, where he held
several positions including, WebSphere Service Registry and
Repository Integration Lead, Level 3 Service Lead, and Test
Architect. He joined IBM in 2000 after graduating from the
University of Hertfordshire, in the UK, with an MSC in
Computer Science.

Claus T. Jensen is a Senior Technical Staff Member and Chief
Architect for the SOA and WebSphere Foundation portfolio.
The Foundation Architecture team has architectural
responsibility for all IBM foundation software products to
ensure that they are appropriately integrated and support the
key design principles of SOA from a client perspective. Before
joining IBM in March 2008, Claus was Group Chief Architect,
VP of Architecture and Business Development, in Danske
Bank, a regional European bank. He was responsible for
guiding Danske Bank’s SOA initiative and SOA Center of
Excellence from its inception in 1999, and he is known as an
SOA expert and evangelist. Claus is a member of the IBM
Academy of Technology and holds a PhD in Computer Science
from Aarhus University, Denmark.

Tamjit Kumar is a WebSphere consultant at Miracle Software
Systems, Inc. in Novi, Michigan. Tamjit has more than eight
years of experience in the IT field, including application design,
development, and consulting. He holds a BE degree from the
University of Delhi, in India. His areas of expertise are IBM
WebSphere MQ, IBM Integration Bus, service-oriented
architecture, and enterprise application integration. He has
worked extensively on SAP integration with WebSphere
Message Broker and migrating technologies such as Neon and
DataGate to WebSphere Message Broker.

viii Integration Throughout and Beyond the Enterprise

Maria Luisa Lopez de Silanes Ruiz has worked for IBM for 15
years, primarily as a lab-based consultant specializing in
connectivity, integration, and business process management.
Maria Luisa joined the IBM Integration Bus development team
in 2012 to apply her client experience to improving the product
documentation. Marisa has a Master’s degree in physics, with a
specialty in computer science, from La Universidad
Complutense de Madrid.

Sambasivarao Nanduri is a certified IT specialist who has
been working with IBM for more than 10 years. He started as
an infrastructure administrator, overseeing the IBM AIX®
system and network administration with SAN storage and IBM
High Availability Cluster Multi-Processing for AIX clustering
(now IBM PowerHA®), IBM WebSphere middleware stack, and
IBM DB2® databases. Then he moved to the IBM Advanced
Information Management (AIM) support team, where he
focused on WebSphere Message Broker, WebSphere business
events, and DataPower product support. He co-authored an
IBM Redpaper™ publication about new of Message Broker
features in Version 6.1, in 2009, and has participated in several
WebSphere Technical Exchange webcasts and blogged on
various topics, including security, performance, monitoring, and
new Message Broker technologies, such as multi-instance
brokers and eXtreme Scale.

Juan Carlos Pineda started working at IBM in February 2004
as a Java developer for the IBM System x® series inventory
and management tools. He has more than 10 years of
experience in the IT field, working with Java, Java 2 Enterprise
Edition, and integration tools with IBM clients in Mexico and the
US. In 2007, he became an integration developer with
WebSphere Message Broker, WebSphere Transformation
Extender, and WebSphere Partner Gateway. His articles about
WebSphere MQ, MQ Link, and MQ Telemetry Transport have
been published by IBM developerWorks®. He holds
certifications as a Java developer and architect, as well as an
IBM IT Architect, Experienced Level.

Abhinav Priyadarshi works for the IBM Integration Bus
Development team at IBM India, in Bangalore. He has 13 years
of experience with IBM. Abhinav develops new features, nodes,
and hypervisors for IBM Integration Bus new releases. He also
consults on WebSphere Message Broker and IBM Integration
Bus EAI design and implementation for IBM clients in India and
the Asia-Pacific region. He has worked in various client
engagements and performed the implementation, using
WebSphere Message Broker and related WebSphere
products, including IBM WebSphere Transformation Extender
and IBM Worklight®, in various integration solutions.

 Preface ix

Katherine Sanders is a Level One Certified Senior IT
Specialist based in the IBM Hursley Lab in the United Kingdom.
She has been working as an IBM Software Services for
WebSphere Consultant since May 2011. Before that, she spent
seven years working in a variety of Software Engineering roles,
including WebSphere MQ testing and WebSphere Application
Server Development. She is currently specializing in IBM
WebSphere Cast Iron® Cloud integration, IBM API
Management, and WebSphere DataPower. She has published
numerous articles through IBM developerWorks, IBM
Redbooks and IBM Redpaper publications, and IBM blogs and
has presented at a variety of conferences. She holds a
Bachelor of Science degree in Computer Science from the
University of Nottingham, in England.

David Shute is the Technical Enablement Program Manager
for IBM WebSphere DataPower software. He has eight years of
experience with DataPower and more than 20 years of
experience producing and delivering educational materials
about technology subjects. Mr. Shute has written several other
IBM Redbooks publications, developerWorks articles, and
numerous classroom and online courses. He has taught
classes in SOA, XML, security, and application-level firewalls,
worldwide.

Jaime Martin Talavera is part of the IBM Software Group’s
WebSphere Services team, based in Spain. He holds a
Bachelor’s degree in Computer Science from Comillas
Pontifical University (ICAI) in Madrid, Spain. Jaime has more
than five years of experience in the IT field, specializing mainly
in integration technologies, such as IBM WebSphere
DataPower, with IBM clients worldwide. He joined IBM in 2008
and has since written developerWorks articles and filed an IBM
patent.

Mark Taylor has worked for IBM at the IBM Hursley laboratory
in England for nearly 30 years, in various development and
services roles. He wrote code for the early versions of IBM
MQSeries®, porting it to numerous UNIX operating systems.
He now works on product strategy and is responsible for
defining functions that are included in new releases of
WebSphere MQ and also develops some of the code for
security features.

x Integration Throughout and Beyond the Enterprise

Additional contributors

Margaret Ticknor is an IBM Redbooks Project Leader for the International Technical Support
Organization (ITSO) Raleigh Center, in North Carolina, US. She primarily leads projects
about WebSphere products and IBM PureApplication® System. Before joining the ITSO,
Margaret worked as an IT specialist in Endicott, New York. She attended the Computer
Science program at the State University of New York at Binghamton.

Thanks to the following people for their contributions to this project:

� Bharat Bhushan
� Vivek Grover
� Fermin Luna
� Tanmayee Potluri
� Ozair Sheikh

Thanks to the following people for supporting this project:

� Judith Broadhurst, IBM Redbooks Editor
� Ella Buslovich, IBM Redbooks Graphics Editor
� Deana Coble, IBM Redbooks Technical Writer
� Richard Conway, IBM Redbooks IT Support
� Tamikia Lee, IBM Redbooks Residency Administrator
� Debbie Willmschen, Redbooks Process and Production Lead
� Redbooks Global Content Services Graphics Support Team, Bangalore, India

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

John M. Zoltek, Jr. is a Staff Software Engineer with the IBM
Software Group in Research Triangle Park, in Raleigh, North
Carolina, in the United States. He has 13 years of experience
in Level 2 support and has worked on the Level 2 support
teams for WebSphere MQ, WebSphere Embedded Messaging,
the Service Integration Bus, WebSphere Service Registry and
Repository, WebSphere Message Broker, and the IBM
Integration Bus. He is active in IBM social media channels,
writing blogs and tweets. He received a BS degree in Computer
Science from Coastal Carolina University in South Carolina, in
the US.

 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us form:

ibm.com/redbooks

� Send your comments in an email message:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS feeds:

http://www.redbooks.ibm.com/rss.html

xii Integration Throughout and Beyond the Enterprise

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Part 1 Topology of an
integrated enterprise

This part of the book focuses on the enterprise ecosystem and the different types of
integration tasks within and beyond the enterprise. It covers the following topics:

� Chapter 1, “Business integration in 2014” on page 3
� Chapter 2, “The composable business” on page 7
� Chapter 3, “Middleware topology of an engaging enterprise” on page 15

Part 1

© Copyright IBM Corp. 2014. All rights reserved. 1

2 Integration Throughout and Beyond the Enterprise

Chapter 1. Business integration in 2014

Young professionals check their bank balances while they are on trains, commuting to or from
the cities where they work. The savvy shopper uses a price comparison service while in the
supermarket. The child purchases movie-maker software for an iPad while visiting a friend.
These scenes and many more have become everyday occurrences in modern society.

Terms such as mashups and apps have made their way into the English language. The
volume of on-the-move information retrieval and other activities is growing exponentially. In
10 years, it might overtake the volume of more traditional electronic transactions. All of this
tells you that modern technology changes the business model, not just the channel.

This chapter covers the following related topics:

� The confluence of forces
� Growing the ecosystem beyond the enterprise
� The API and Service Economy

1

© Copyright IBM Corp. 2014. All rights reserved. 3

1.1 The confluence of forces

What Gartner called the nexus of forces in the article cited by the following link is the
confluence of mobile devices, social networks, cloud services, and big data analytics:

http://www.gartner.com/technology/research/nexus-of-forces/

This confluence implies an experience where context is key and important interactions might
not be directly related to business transactions but rather focused on building social
relationships and ecosystems. Furthermore, social interactions that are of interest to the
business can and will happen between third-party connections. Just think about the potential
impact, positive or negative, of a video gone viral.

Obviously, technologies such as mobile devices do change the channel, but more importantly
mobile interactions happen in a real-time context. Consider the fact that you bring the device
with you, always at hand. You can access any information or contact any friend, even if the
interaction is asynchronous. Messages can be pushed, not just pulled, including traditional
types of information, such as account balances. The growth of social media has created
consumers who expect their opinions to matter and who choose mobile devices as the way of
interacting with the world.

These characteristics change the ways that interactions need to be planned, managed, and
monitored. More fundamentally, they change the scope of what is considered relevant to
business success.

1.2 Growing the ecosystem beyond the enterprise

This confluence of forces several key questions and challenges for defining a business model
and engineering the business solutions to support it:

� Q: Where do transactions happen?

A: Anywhere and anytime. This is the essence of mobile and cloud technologies.

� Q: Who can influence your business?

A: Anyone who publishes an opinion, positive or negative. That is the essence of social
media.

� Q: Who can access your information?

A: Anyone you can legally provide it to, whether in exchange for money, influence, or
improved relationships. Applying big data analytics to vast amounts of available
information sources lets you provide unique value and insight, particularly in the context of
the Internet of Things, which is described in this video:

http://www.ibm.com/smarterplanet/us/en/overview/article/iot_video.html

� Q: What is an application?

A: Any piece of software that provides value (including mobile apps, software embedded in
appliances or cars, cloud services, and so on).

� Q: Who is your developer?

A: Anyone who builds business solutions by using your information or services. In an open
ecosystem, it is often someone who is not employed within your own company.

4 Integration Throughout and Beyond the Enterprise

http://www.ibm.com/smarterplanet/us/en/overview/article/iot_video.html
http://www.gartner.com/technology/research/nexus-of-forces/

Figure 1-1 Shows examples of these questions and challenges.

Figure 1-1 Opportunities for business transformation

Taken together, the elements in Figure 1-1 represent a profound change in the way that we
deliver solutions, as well as in what we deliver and what the business needs us to deliver.

A popular online store and a popular social networking service, although they use different
business models, are both examples of early adopters of a computing model that is open by
design and where the product is based on APIs and services that are projected into an
extended ecosystem. Without its open merchant platform, the online store would not be the
one stop shop for all kinds of goods and would probably not have become one of the dominant
Internet retail portals. Without the open interface to its communication servers, the social
networking service could not rely on various open source communities providing a myriad of
smart clients, at no cost, and would probably not have achieved the popularity that it enjoys.

These are just two examples of a trend across all industries where solutions are, first and
foremost, designed for an open ecosystem, whether those solutions are deployed internally,
externally, or in a hybrid fashion. It is no coincidence that mobile first and cloud first are two
of the mantras of this new age of computing. This age is marked by designing for a different
experience and environment, yet allowing solutions to still run within the enterprise, where
appropriate, or by using traditional channels.

Opportunity or threat?

Chapter 1. Business integration in 2014 5

1.3 The API and Service Economy

Embracing an open ecosystem, delivering APIs as part of a business product, and carefully
promoting and managing your external business image all require more than integration
middleware, as Figure 1-2 shows.

Figure 1-2 The API and service economy

Although the integration-centric elements of the original IBM SOA reference model remain
important, those elements are not sufficient to address the needs that are arising from the
API and service economy.

Classic SOA middleware is focused on creating and managing software services, but the
other three middleware ingredients of the API and service economy are centered on the
following concepts:

� Designing and optimizing a business persona through the definition and management of
easy-to-use APIs.

� Providing developer portals and marketplace participants to make potential consumers
aware of your APIs and the support of onboarding and self-service in a controlled fashion.

� Making the use of APIs as easy as possible, including supporting uniform hybrid
composition across multiple providers, environments, and technologies.

Many of these capabilities are well-known in isolation but need to be integrated in new ways.
Other elements require fundamental innovation and a different approach to delivery.

Note: The elements of the original IBM SOA are rendered (in compressed form) as the
bottom layer in Figure 1-2. Also, see the following white paper for more information about
the IBM service-oriented architecture (SOA) reference model:

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

Capabilities for API and Service Providers

Capabilities for API and Service Consumers

Social Feedback and Communities

Marketplaces

Self-Service Portal: Registration • Documentation • Sandbox

Security and Platform Man.

API & Service Design & Integ.

Analytics and Metering

API & Service DevOps

Composition

Industry Accelerators

App Management
and DevOps

Mobile Accelerators

Internal
Developers

Partner
Developers

External
Developers

Services: Data • Processes • Applications • Cloud & 3rd party integration

Channels: Smartphones • Tablets • Desktops • Cars • TVs • Others

Business Support Systems

Cloud / On-prem / Hybrid Hosting

Reference Model - API and Service Economy

g

Services: Data • Processes • Applications • Cloud & 3rd party integration

Cloud / On-prem / Hybrid Hosting

Main
focus of

2005
SOA

reference
model

6 Integration Throughout and Beyond the Enterprise

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf
ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

Chapter 2. The composable business

In this time of rapid change, your business needs to be composable so that capabilities can be
projected and combined as they are needed for any internal or external ecosystem. A
composable business drives more engaging applications and processes by seamlessly and
intelligently integrating systems of engagement with systems of record, reaching all the way
from the mobile device to the corporate back end.

For more information, see Systems of Engagement and the Enterprise:

http://www.ibm.com/software/ebusiness/jstart/systemsofengagement/

More engaging applications and processes intelligently use the context of a business
interaction to optimize the experience. Context is crucial not only to optimize the offers that
are given to a particular customer, but importantly context is a necessity for making that
customer feel like they are being treated as a person rather than just a general business
opportunity. Human society is used to people taking into account everything they know about
us as a factor in how they choose to interact. A simple example is implied by Figure 2-1 on
page 8.

2

© Copyright IBM Corp. 2014. All rights reserved. 7

http://www.ibm.com/software/ebusiness/jstart/systemsofengagement/

Figure 2-1 Engaging applications and processes

You generally do not interact in the same way with a person who is bald by style choice, a
person who is a soldier, and a person who is a cancer survivor who recently had
chemotherapy. Just knowing their physical appearance is not sufficient; you need to know
who they really are to make the optimal choice of how to interact. In the world of software and
processes, the confluence of forces changes the way that business operates by allowing you
to apply the same type of contextual reasoning that you have always been able to apply in the
physical world.

To address how to handle these concepts in practice, this chapter covers the following topics:

� The recipe for a differentiating experience
� SOA design principles and their importance
� API management as the SOA renaissance

Context enables more engaging applications and processes

8 Integration Throughout and Beyond the Enterprise

2.1 The recipe for a differentiating experience

As part of the concept of a composable business, IBM experts have suggested a recipe for
more engaging and innovative business processes (see Figure 2-2).

Figure 2-2 Business process innovation

To cover the four ingredients in the recipe that is shown in Figure 2-2, consider them from a
retail perspective:

� Detect: A customer is detected walking down the street close to one of your stores.

� Enrich: Deepen the understanding of the situation through knowledge of that customer’s
previous buying behavior.

� Perceive: Last night, this customer tweeted about going on a beach vacation soon.

� Act: Send an SMS message with a promotion on swim wear.

In the span of a few seconds, you have created a unique and personalized experience. This
more personal experience for the customer has improved your chance of generating business
and might also have strengthened the long-term relationship with the customer.

As illustrated by this example, the mobile use case deserves special mention. Partially
because of the obvious operational challenges in areas, such as security and latency, but
even more importantly, because of the business characteristics that are imbued in a
differentiating mobile experience. Mobile device users tend to be impatient and always on the
move. In fact, the average mobile user spends around 60 seconds using a mobile app before
moving on to something else. This means that mobile interactions must be personal (to be
relevant) and they must be here and now. Gone are the days where customer segmentation
was sufficient to provide so-called personalization. The modern user expects you to know
who they are and what they need at this moment. These characteristics are a challenge for
modern business systems. However, these characteristics also represent a significant
opportunity for enterprises that understand how to embrace them and provide a distinctive
customer experience.

Composable business driving process innovation

opportunities to
engage customers
(and employees)

interaction context
with historical data
and trends

in-the-now dynamic
interaction context from
location, time, social
media and other events

on the insight gained
through enrichment and
perception to enable
positive business outcomes

Perceive ActEnrichDetect

Chapter 2. The composable business 9

2.2 SOA design principles and their importance

As discussed in Chapter 1, “Business integration in 2014” on page 3, the confluence of forces
influences new business agendas and information needs. However, what drives the design to
support such business innovation? SOA design principles are a key ingredient in building
composable business systems that are flexible, robust, and extensible.

Three fundamental aspects are part of and integral to SOA:

� Service: A repeatable business task (such as checking customer credit or opening a new
account)

� Service orientation: A way of thinking about your business through linked services and
the outcomes they provide

� Service-oriented architecture (SOA): A business-centric architectural approach that is
based on service-oriented principles

Figure 2-3 shows a brief outline of these three aspects of SOA.

Figure 2-3 Understanding SOA

Historically, a lot of focus within SOA has been on service reuse from a software perspective.
However, in a business context, the more important notion is that a service is an abstract
representation of a repeatable business task.

See the Open Group SOA Ontology for the formal standard definition of service:

https://www2.opengroup.org/ogsys/catalog/C144

A service being an abstract representation is important; this allows the service to be projected
and accessed beyond the boundary of a physically controlled environment. A service being a
representation of a business task is important for designing collaborative business systems
above and beyond pure software integration. Finally, the mediation, which is an intrinsic part

Three views on SOA

A repeatable
business task –
e.g., check customer
credit; open new
account

A Service
A way of thinking about
your business through
linked services and the
outcomes that they
bring

Service Orientation

Service Oriented
Architecture (SOA)
An business-centric architectural
approach based on service
oriented principles

10 Integration Throughout and Beyond the Enterprise

https://www2.opengroup.org/ogsys/catalog/C144

of the enterprise service bus pattern and a fundamental building block of SOA, supports
intelligent pairing of consumers and providers of services. This mediation functions whether
those consumers and providers are software or people. This latter point is important. In 2005,
service mediation was mostly about format and protocol transformation in the context of IT
transactions. However, in 2014, business mediation connects people, devices, and processes
in an ecosystem that reaches outside the walls of the enterprise (Figure 2-4).

Figure 2-4 Intelligent mediation between consumers and providers

The design principles that aid in building such collaborative systems must be broader than the
criteria for what constitutes a good service. We believe that the following SOA design
principles are fundamental to building composable business systems:

� Service orientation at the core. Thinking about business solutions in terms of interacting
processes and services is fundamental.

� Process integration at an Internet scale. Ensuring integrity of interactions and information
across time and location is essential.

� Integration with enterprise capabilities and back-end systems. Providing a unified
experience across channels and systems and maximizing existing capabilities are
essential to drive new innovative processes.

� A basis in industry standards. No single player or vendor can dictate protocols or
information standards.

� Providing the platform for a growing ecosystem. As the business ecosystem grows beyond
the walls of the enterprise, so does the ecosystem that delivers and manages business
solutions.

The last point is what the excitement around web APIs is about: Growing the development
ecosystem beyond the enterprise as a way to extend business outreach.

Partners Suppliers

DevelopersCustomers

APIs

Apps Patterns

Cloud
Services

SOA mediates between consumers and providers (ESB pattern)

� 2005: Connecting and mediating in an IT
transactional context

� 2010: Connecting and mediating e2e processes

� 2015: Connecting and mediating people,
devices, Cloud, ….6

Chapter 2. The composable business 11

You can find a more detailed analysis of these SOA design principles and their importance in
the ebook titled SOA Design Principles for Dummies, which you can download:

http://www.ibm.com/software/solutions/soa/

2.3 API management as the SOA renaissance

When innovation is required, it is tempting to start over with a blank piece of paper. Yet we
cannot afford to do this. Although it is true that business models are fundamentally changing,
implementation continues to require robust integration of people, processes, and software.
But now, it must be at a much grander scale and an even higher speed.

SOA and API management are like yin and yang, in that neither is whole without the other.
API management delivers the business centricity and business model that many SOA
initiatives historically lacked, and SOA delivers the experience and engineering discipline that
drives good API design and provides robust integration to systems of record. All APIs are
services, but not all APIs are good services.

IBM experts believe that API management is the SOA renaissance. Far from being an
alternative to SOA, API management builds upon and extends the reach of the fundamental
principles of SOA. There are many myths about SOA and API management. Chances are
good that you have heard people say things such as “SOA is yesterday’s news. APIs are the
future,” or “API management is completely different from SOA, and SOA will bog you down.”

From our perspective, this is a classical case of myth-making in the wake of a cool new
industry trend. Rarely is a new concept so disruptive that it does not build on the principles
and technologies that came before it. With that in mind, consider some of the myths that are
specifically related to SOA and API management:

� Myth: “API management is completely different from SOA, and SOA will bog you down.”

At a technical level, there are more similarities than differences. In fact, at the foundation
of most good APIs is a well-designed service. Some of the most important parts of an API
are its interface, the business task that it represents, and the associated business
contract. Each of these parts is a key element of a service definition.

� Myth: “SOAP is dead. APIs are always REST.”

It is true that most modern APIs are based on REST and JSON, rather than SOAP.
However, this does not mean that there is no use for the formalism of SOAP, merely that
such formalism is not necessary for human based consumption of APIs and services. In
machine-to-machine communication, or simply when you are using formalized
composition tools, there are still plenty of uses for SOAP. Choose the correct binding for
the purpose, There are good reasons that people in the IT industry have invented more
than one option.

� Myth: “API management is SOA governance rebranded.”

No, not really. APIs have the nature of products, so they need to be managed as products.
SOA governance is less concerned with the treating assets as products than it is with
determining and governing the process of creating a good portfolio of reusable assets. In
that way, API management and classical SOA governance are highly synergistic.

12 Integration Throughout and Beyond the Enterprise

http://www.ibm.com/software/solutions/soa/
http://www.ibm.com/software/solutions/soa/

� Myth: “No governance is needed with API management, so this allows companies to
innovate faster.”

It might enable you to create things faster, but it also means that you can lose control a lot
faster. The APIs that make up your company’s external persona are an important part of
your product portfolio and should be managed as such. That said, governance should be
lighter for an API than for the typical lifecycle of a back-end software service.

� Myth: “APIs are not versioned.”

That is like saying that you do not need to change a baby’s diaper. Obviously, disruptive
changes do happen, and when they do, you have to handle them. Claiming that versioning
is not needed merely means leaving it to API users to figure out the versioning
themselves. However, because APIs, in many ways, are business products, we should
reduce version churn by coining only a new, official version when an update is not
compatible with earlier versions. Therefore, versioning is still necessary, but we must
version wisely.

So as we see it, API management is a natural extension of SOA.

API management appropriately refocuses on the business aspects of human and software
interactions. Though this was always part and parcel of the idea behind SOA, the business
angle, in practice, often got lost in technology. The advent of APIs allows you to separate the
business concerns of making an API a successful product, from the IT concerns of providing
the service that implements the API. The journey from IT-centric web services to
business-centric API management is not merely appropriate; it is necessary for enterprises
that build composable business systems that extend beyond the walls of their enterprises.

Good API management solutions provide both the ability to define an API and, more
importantly, the ability to project that API into an ecosystem that the enterprise cannot
effectively reach through its own end user solutions. Consequently, API management has
more focus on the developer experience and the business model, beyond the portfolio of
reusable (service) assets.

Chapter 2. The composable business 13

14 Integration Throughout and Beyond the Enterprise

Chapter 3. Middleware topology of an
engaging enterprise

As described in Chapter 2, a composable business drives more engaging applications and
processes by seamlessly and intelligently integrating systems of engagement with systems of
record. This is an integration that crosses the boundary between the controlled enterprise
environment and the uncontrollable “Internet of Things.” It reaches all the way from the mobile
device to the corporate back end. It is important to realize that direct connections across that
boundary are not only inappropriate, they are dangerous. Not only is personal information
typically involved, which requires a secure and managed connection, but the traffic that
originates outside of the boundary is, by definition, Internet scale, in terms of both volume and
spikes. Therefore, traffic needs to be controlled and optimized to prevent bringing down the
enterprise IT infrastructure.

In the context of integration throughout and beyond the enterprise, this implies an important
distinction among the following topology fundamentals:

� Messaging: Moving information payloads from A to B in a reliable fashion

� Integration bus: Creating well-structured assets and services that are based on existing
data and functions

� Gateway: Exposing application programming interfaces (APIs) and services across a
boundary in a controlled and optimized fashion

Figure 3-1 on page 16 illustrates the concepts of this integration.

3

© Copyright IBM Corp. 2014. All rights reserved. 15

Figure 3-1 Integrated enterprise

It is important to realize that the boundary between the enterprise and an external ecosystem
is not the only boundary of interest. There are many types of boundaries across which traffic
must be controlled and optimized, including but not limited to the following list:

� Different owner

� Different security zone (including a DMZ firewall configuration versus the internal one)

� Different operational characteristics (wanted or actual)

� Need for clear and specific boundary traffic management control, caching, and so on
(often, but not always, rooted in different operational characteristics)

� Different form factor (such as on-premises versus cloud or private versus public cloud)

� Different consumer audience (for example, turning services into API products for use by a
foreign developer community, and developers can be internal or external)

� Different network topology

� Traffic consolidation across a boundary (consolidation in terms of consumers, messages,
or any other kind of traffic characteristic)

The separation of capabilities into messaging, integration, and gateway forms a fundamental
topology that aids in understanding the different roles and purposes of integration middleware
products. This topology is also fundamental to the definition of the integration patterns and
concepts in Part 2 of this IBM Redbooks publication.

This chapter outlines the formal definitions for these three basic integration topology
components and illustrates why each is quite different from the other two.

���������	
���
��	��	
���	����	������	
�������	����������	
�������	���	�������	�	
��
	��������

�����	�����	���	�����	�������	
���� ��!	���	��
"��

#�����	
����������	
���
��	
��������	
������	�	
$���������	
��������	

%�����	#�����	
������!

&������ ��!	�	
�����������	��	���	
��
���	����	���
���	
$����������	�	�� �����	
�	���	����	���'!

%�()�	&���	����������

*�
���	
&���

*�� ���	
&���

$����������	�����	�	
����� �	+'��	����	����,	

!	
�����	'�������	-.	
��������	��	������� ��

%�()�	+/�	��'���,	���	
+0���	���	���,

-�������

�
���

#�����

%�()�	-�������	�	.����� %�()�	�*-	'�����'���

&����	�����	���	�������	
�������	�'�� �	�����	���	
�����'����	�	�����������	
���	��� ����

-���������	1��	����������		
�����	�����	��� ����	���	��������	
�����	���������	���	���'�2���	
�����������

#����	���	�
�3���!	�	
'
���	���	�����4����	
�� ���'����	���	
�������	��3����'����	�	
���	����������

The topology of an Integrated Enterprise
%�����	#�� ���	�������

%�����	/���'�2�	
������
������

#����	���	�
�3���!	�	
'
���	���	�����4����	
�� ���'����	���	
�������	��3����'����	�	
���	����������

$���������

5�6 $�������	
$��!���'

*�7������	
����
�������	���	��	
���	���!���'	��	
��������	�������	
���	��� ��� �	

�������	'����

16 Integration Throughout and Beyond the Enterprise

3.1 Messaging

At the heart of messaging is the ability to move an information payload from origin to
destination in a controlled and reliable fashion. Messaging is the most fundamental of the
three topology components, although it is not usually categorized as an integration capability.
The reason for this is that integration requires messaging, but messaging capabilities can be
used for other purposes.

The following list notes some of the key functions of a messaging system from different
perspectives:

� Development perspective:

– Defining the payload structure
– Creating or consuming payloads

� Runtime perspective:

– Delivery according to defined quality of service (for example, guaranteed delivery
or pub-sub)

– Optimized routing across the messaging network

� Management and configuration perspective:

– Defining sender and recipient topologies
– Defining the quality of service that you want or need

3.2 Integration bus

The core of the integration bus is the ability to create new reusable assets. It is the topology
component that is closest to the classical notion of an enterprise service bus. The enterprise
service bus (ESB) is, in reality, a general pattern that embodies the service-oriented
architecture (SOA) concepts of consumers and providers that are mediated in a loosely
coupled fashion. An integration bus is a particular embodiment of the ESB pattern that is
centered around integrating resources within a zone of control. Although an integration bus
provides mediation and composition of any conceivable type of resource, it does not provide
the advanced security and traffic controls that are necessary for a gateway.

The following list notes some key functions of an integration bus from different perspectives:

� Development perspective:

– Pre-defined connectors, adapters, and so on
– Predefined and user-defined integration patterns
– A composition model and associated tools
– Code generation
– Lifecycle and source code management

� Runtime perspective:

– Continuous availability
– Near-linear scalability
– Support for multiple concurrent versions
– Operational monitoring and insight
– Workload separation that allows operational reconfiguration without redeployment
– Routing policy (including support for automatically dealing with environment-specific

endpoint addresses)

Chapter 3. Middleware topology of an engaging enterprise 17

� Management and configuration perspective:

– Dynamic configuration of endpoints
– Managed promotion between environments
– Cluster-based workload management

3.3 Gateway

The concept of a gateway represents the topology component that is on the boundary
between systems of engagement and systems of record or any other boundary of interest (see
Chapter 2, “The composable business” on page 7). Even though a gateway, by its nature,
supports some amount of mediation, it is very different from an integration bus. The difference
stems from the fact that the gateway architecture is optimized for control and throughput
rather than for aggregation of data and function (which are the focuses of an integration bus).

Technically, a gateway is also an embodiment of the ESB pattern, but gateways have a
specialized topology function that is fundamentally different from an integration bus and
requires a fundamentally different architecture. Gateways have advanced security and traffic
control (a smart and efficient pipe) but no composition and only limited mediation. Gateways
are typically limited to a few standard protocols, such as SOAP and REST.

The following list notes some key functions of a gateway from different perspectives:

� Development perspective:

– Serialized (multiprotocol) transformations
– API definition and design by proxy or simple assembly (no full-fledged composition)
– Portal for onboarding, collaboration, developer outreach, and so on (particularly

relevant in an API management context)

� Runtime perspective:

– Continuous availability
– Near-linear scalability
– Support for multiple concurrent versions
– Operational monitoring and insight
– Workload separation that allows operational reconfiguration without redeployment
– Automated traffic optimization, including automated caching
– Opaque proxies (front-side address managed separate from back-side address and no

requirements for one-to-one relationships)
– Machine-to-machine communication (Internet of Things function)
– Metering
– Security and traffic management policy

� Management and configuration perspective:

– Dynamic configuration of endpoints
– Security management (including the ability to integrate with LDAP, crypto key

management, and so on)
– Traffic policy management
– Caching policy management

18 Integration Throughout and Beyond the Enterprise

Part 2 Integration patterns

This part of the book defines the most common integration patterns and shows how to map
these patterns to IBM integration technologies. It covers the following integration patterns:

� Chapter 4, “Enterprise Application Integration pattern” on page 21
� Chapter 5, “Service Integration pattern” on page 31
� Chapter 6, “Gateway pattern” on page 53
� Chapter 7, “Mobile Integration pattern” on page 63
� Chapter 8, “API Management pattern” on page 77

Part 2

© Copyright IBM Corp. 2014. All rights reserved. 19

20 Integration Throughout and Beyond the Enterprise

Chapter 4. Enterprise Application
Integration pattern

This chapter describes the Enterprise Application Integration (EAI) pattern. The EAI pattern is
the most classical of the integration patterns that are addressed in this IBM Redbooks
publication, and it does exactly what its name says: integrates specific applications. The
integration is always directional, in that one application provides a function or data and other
applications use it, or consume it in service-oriented architecture (SOA) terms. This does not
necessarily mean one-way traffic between the applications, because the consumers might
need to request responses from the provider.

In all cases, independently of a detailed integration mechanism, the consuming applications
are explicitly aware of the providing application.

This chapter covers the following topics:

� Characteristics and capabilities of the pattern
� Ways to implement the pattern with IBM products

4

© Copyright IBM Corp. 2014. All rights reserved. 21

4.1 Characteristics and capabilities of the pattern

The EAI pattern is classically associated with the innermost zone of the topology of the
enterprise (Figure 4-1), which is the zone of the back-end applications. The pattern is a direct
application-to-application integration approach, and, usually, each end of the integration is
aware of the other part. There can be more than one consuming application for a single
provider.

Figure 4-1 General integration patterns, application-to-application communication

Historically, there have been various mechanisms to implement this pattern:

� Remote procedure-based implementations (such as CORBA):

The consuming part of the patterns call the providing part directly. This subpattern can be
used only if the two sides of the patterns have a shared procedural interaction form. The
transaction function is maintained (or not) according to the characteristics of the
procedure call. There is no guaranteed delivery. If the remote procedure call fails, it is up
to the caller to figure out how to recover and how to deal with the fact that the receiving
end might have only partially processed the procedural call before failing.

� File-based implementations:

The producer part of the pattern creates a data-centric file that the consumer part of the
pattern picks up asynchronously. This is especially handy when the applications need to
transfer large amounts of data as part of the integration. File-based integration also
supports restart in case of operational or data issues. The choice of file format and
intermediate storage is part of the proprietary implementation of any particular file-based
integration.

� Message-based implementations:

Integration is done through message passing, synchronously or asynchronously. With
synchronous communication, both ends of the interaction must be running at the same
time. With asynchronous communication, messages are stored outside of the applications
until they can be processed. The messaging channels and the formats of the messages
are agreed upon by the two parties in the integration. Message-based integration is more
immediate than file-based and more reliable than Remote Procedure Invocation. In the
context of the EAI pattern, a messaging system plays the role of a universal translator that

���������	
��	����������	
��	�
�����	

Application B

����	
��
�������

�������

Application BApplication A

Application A

22 Integration Throughout and Beyond the Enterprise

allows communication between any type of applications that are developed in different
languages by using multiple technologies and platforms over a period of time. A
messaging system also supports different types of transactions, such as fire and forget,
guaranteed delivery, and so on.

In general, the Remote Procedure subpattern is the most brittle of the three, so it is rarely
used outside of a single-platform environment. This fragility is what led to the development
and success of messaging-based solutions.

The other two subpatterns can be chosen based on the characteristics that you want, as
illustrated by Figure 4-2.

Figure 4-2 Message-based and file-based EAI patterns

The message and file-based subpatterns benefit significantly from middleware in the form of
a messaging infrastructure or managed file transfer capabilities. Without such middleware,
the two applications that are being integrated need to provide support for transactionality,
guaranteed delivery, and so on.

4.1.1 Level of operational control and insight

As described in Part 1: “Topology of an integrated enterprise” of this IBM Redbooks
publication, important aspects of building composable business systems are policy-based
operational control and the ability to collect insight through sensing of operational
interactions. Implementations of the EAI patterns that use messaging or managed file-transfer
middleware provide basic monitoring and insight capabilities but little support for policy-based
operational control or sense-and-respond style business insight. These more advanced
capabilities are usually provided as part of an integration bus or gateway implementation.

File-based
Integration

Application Application

Files
Application Application

Message-based
Integration

messaging
channel

File-based
Integration

Application Application

Files

File-based
Integration

Application Application

Files
Application Application

Message-based
Integration

messaging
channel

Application Application

Message-based
Integration

messaging
channel

Chapter 4. Enterprise Application Integration pattern 23

4.1.2 When to use the Enterprise Application Integration pattern

The EAI pattern, when based on middleware, is generally easy to implement. Use this pattern
when there are no requirements on operational insight or policy-based operational control
and when the applications that are being integrated are known in advance and rarely change.
The pattern is useful for integrating different applications that are running within the same
back-end environment, but it can be used across a more complex topology if that topology is
static. Thinking about the EAI pattern as either messaging or managed file transfer provides a
good guideline for when to use it and when not to use it.

In complex topologies that change often, EAI pattern implementations can be expensive to
maintain as the number of proprietary point-to-point integrations grows exponentially with the
number of applications. Although middleware for messaging and managed file transfer largely
mitigate that cost, the EAI pattern does not support the operational characteristics required of
many modern systems.

However, many existing integrations are based on the EAI pattern, so and it will continue to be
used for a long time. Consequently, it is important to keep its characteristics in mind and
choose wisely when to replace an existing EAI integration with something more flexible and
when to keep the pattern in place, as-is. Furthermore, newer integration patterns, such as the
Service Integration pattern or the Gateway integration pattern, often have messaging
capabilities at the heart of their implementations; they are simply adding another layer of
higher-level capability on top.

Generally, consider replacing an existing EAI pattern implementation only when there is a
need for improved operational control or insight. Beyond that, change the existing
implementation only if there are other tangible benefits or needs, such as using the same
capability for many different (and possibly unpredictable) consumers.

4.1.3 Retail business example

A typical requirement that a retail appliance store might have is for stock management.
Whenever any branch of the store sells an appliance, that information needs to be sent to a
central distribution warehouse so that stock levels can be monitored and replacement
systems sent to the store.

Although it is desirable that information about the sale is reported quickly, it is much more
important that it be reported reliably. So, when everything is working normally, the report gets
to the distribution center in real time. But if the network that links the store to the center fails,
the report must be held safely and then automatically sent when the network has been
repaired.

4.2 Ways to implement the pattern with IBM products

One of the key features of any solution is to remove complexity from application code.
Ensuring reliability or recovery is the job of the middleware product or component, such as
the messaging provider, so that developers can focus on writing the business logic.

The following list covers some of the factors that should be dealt with by middleware and
hidden from application developers, regardless of the business application:

24 Integration Throughout and Beyond the Enterprise

� Once-only processing:

Business transactions normally happen only once. Middleware needs to ensure that all of
the systems that are involved in that transaction do their jobs exactly once. There must be
no loss or duplication. Applications must not write complex code for recovery or reverse
partially completed operations code (compensation code) if individual systems fail.

� Ubiquity:

Run your applications on the platform where it makes most sense. Be able to integrate
applications seamlessly on a wide range of operating systems and hardware
environments.

� Easy to change:

Using industry standards can help you become more responsive as skills can be
maintained and reused across projects. New applications can be rapidly written and
deployed.

� Easy to extend:

Scale your applications rapidly to any volume without downtime. Add more processing
without application change. Roll out new applications and features quickly and safely
without downtime.

� Compliance:

Meet enterprise, industry, and regulatory requirements easily, especially as those
requirements evolve. A middleware implementation should assist with auditing and other
compliance objectives to provide a consistent interface for all applications.

� Performance and availability:

Make the best use of the systems. Provide services for high and continuous availability.

� Security:

Provide a secure environment. Data is protected from loss, modification, and reading.
Losing sensitive data or failing to comply with regulations costs time, money, and
reputation.

These factors are required for many integration patterns. That is why integration solutions are
often layered, relying on features of lower levels of the stack to reduce their own complexity.

4.2.1 IBM WebSphere MQ messaging software

IBM WebSphere MQ messaging integration middleware was introduced in 1993 (under the
IBM MQSeries name). It has always been focused on providing an available, reliable,
scalable, secure, and high-performance transport mechanism to address all of the
requirements.

WebSphere MQ has also always connected systems and applications, regardless of platform
or environment. It is essential to be able to communicate between a GUI desktop application
that is running on Microsoft Windows and an IBM CICS® transaction that is running on an
IBM z/OS® system. That value of universality is a core value of the product, and that has not
changed. What has changed is the range of environments in which WebSphere MQ is used.
As newer platforms, environments, requirements for qualities of service, and messaging
patterns arise, WebSphere MQ evolves to meet the needs.

For example, security has become more important as systems are made accessible to more
users across an enterprise and beyond. Performance and scalability requirements have
increased. Regulators and auditors have imposed more controls on what can or must be
done. Systems, which need access to enterprise data, have become both more powerful

Chapter 4. Enterprise Application Integration pattern 25

(faster, more processors, and so on) and much less powerful (sensors, tablets, and mobile
phones). All of these have been addressed during the existence of WebSphere MQ.

There are now more ways for applications to reach a WebSphere MQ queue manager and
get access to any existing applications that were already enabled for WebSphere MQ. New
applications can be written that use alternative interfaces and still maximize the reliability and
performance of WebSphere MQ. Those new applications do not need a complete
replacement of existing infrastructure. The applications work with what you already have and
know how to manage.

At the same time as adding new interfaces, protocols, and environments, a large amount of
WebSphere MQ workload continues to be run in mainframe-based data centers. Efficient use
of the capabilities and integration with the IBM System z® hardware and operating system is
critical.

In addition to providing programming interfaces for user-written applications to use, the
ubiquity of WebSphere MQ means that there are many prebuilt integration mechanisms and
solutions that use its capabilities. For example, the WebSphere adapters make it easy to
connect many commonly used enterprise resource planning (ERP) or customer relationship
management (CRM) products to other applications that are enabled to use WebSphere MQ.

Other integration patterns in this book also provide links through WebSphere MQ. For
example, IBM Integration Bus uses WebSphere MQ internally for several critical operations,
as well as exposing endpoints in WebSphere MQ.

For a more complete introduction to messaging concepts and WebSphere MQ, see the
WebSphere MQ Primer:

http://www.redbooks.ibm.com/abstracts/redp0021.html?Open

4.2.2 Mapping WebSphere MQ to the EAI pattern

For application developers, IBM WebSphere MQ messaging implements the EAI messaging
subpattern by providing simple programming interfaces that isolate the applications from
many of the detailed aspects of integration. Data is transferred between applications in
messages, where a message includes both control information and arbitrary application data.
The structure of the data is defined by the applications, and WebSphere MQ is largely
unconcerned with its format or content. The applications communicate through queues or
topics, with names that are known to the interacting participants.

For system administrators, WebSphere MQ gives a consistent model for defining and
administering resources and their connectivity. The administrator sets up paths so that
messages put in a queue that is used by a producing application on one system are made
available to consuming applications that can be running on a different system (see Figure 4-3
on page 27).

26 Integration Throughout and Beyond the Enterprise

http://www.redbooks.ibm.com/abstracts/redp0021.html?Open
http://www.redbooks.ibm.com/abstracts/redp0021.html?Open

Figure 4-3 Basic WebSphere MQ components to connect applications

Current versions of WebSphere MQ also include a Managed File Transfer (MFT) component
to enable the file-based integration subpattern. This MFT capability provides a reliable
managed file transfer solution for moving files, regardless of size, between IT systems, which
reduces the risk of errors in business data being incorrectly transferred. It offers a reliable,
flexible, and cost-effective solution for organizations of all sizes. It uses WebSphere MQ
messaging as its reliable transport mechanism for moving files, which enables consolidation
of messaging and file transfer infrastructure into a single backbone.

4.2.3 Implementing the retail example

In 4.1.3, “Retail business example” on page 24, the requirement for safe reporting of stock
changes was outlined. To implement this with WebSphere MQ, a typical architecture is to
have one queue manager at each branch and another queue manager at the distribution
center, as Figure 4-4 on page 28 illustrates.

Queue
Manager

Message

Queue

Channels
Queue

Manager

Application A Application Z

Chapter 4. Enterprise Application Integration pattern 27

Figure 4-4 A hub and spoke configuration

Each branch has a dedicated channel pair that connects it to the center. There is no need for
branches to communicate directly with each other. This topology, which is shown in
Figure 4-4, is commonly known as a hub and spoke design.

An application that is running at each branch creates a persistent message that describes the
item that was sold, and PUTs it into a queue. The application can then immediately return to
other work, perhaps creating more messages, without needing to follow the status of the
message. If the network is available and the distribution center’s queue manager can be
contacted, WebSphere MQ immediately transmits the message to the center so that it can be
processed by another application. If the network is unavailable, the message is stored reliably
for future transmission. This means that even in the event of a power failure that affects the
branch store, the message is still available when the queue manager is restarted, so the
application does not need to remember that the item was sold.

The application’s queue is created so that it points at another queue on the distribution
center’s queue manager. This is usually done with a QREMOTE definition. All that the sending
application needs to know is the name of this queue. The path to the target system is handled
by an administrator.

The administrator of the branch queue manager needs to define a transmission queue, where
messages are temporarily held until they can be sent to the recipient system, and a channel
to deal with the network communication. An administrator needs to understand these
WebSphere MQ concepts but can then use more advanced features, such as WebSphere
MQ clusters, to significantly reduce the number of manual definitions that need to be made as
the number of branches grow. WebSphere MQ can automatically define much of what is
needed for large-scale topologies.

At the distribution center, another application GETs the message from its local queue. This
application can be a long-running program that waits until new messages arrive or it can be
automatically started (triggered) only when there is a message ready.

Distribution
Center

Branch A Branch B

Branch C Branch D

Channels

Queue Managers

28 Integration Throughout and Beyond the Enterprise

For this scenario, it is likely that the central application also needs to update a database, such
as an IBM DB2 repository, to hold the stock information. WebSphere MQ makes it easy to
write applications that can reliably process both messages and database operations. It
supports the use of transactional controls to ensure that, if the application fails part-way
through processing, both the WebSphere MQ message and the database updates are kept in
sync and restored to a consistent state when the application restarts.

Chapter 4. Enterprise Application Integration pattern 29

30 Integration Throughout and Beyond the Enterprise

Chapter 5. Service Integration pattern

With the convergence of mobile communication, social media, cloud services, and big data
analytics, the adoption of a business-centric architectural approach that is based on
service-oriented principles is important for several reasons:

� Business functionality is externalized through services. Services are logical
representations of self-contained and repeatable business tasks that seamlessly integrate
systems of engagement with systems of record.

� The interaction between service consumers and service providers is loosely coupled.

� An integration bus provides capabilities to transform, route, or enrich messages between
consumers and providers, independent of the platform, data format, and transport
protocol.

The Service Integration pattern decouples the interaction between a consumer application
and a service provider. It allows multiple consumers to use the services that are offered by
one provider even though they know almost nothing about the provider.

By applying service-oriented architecture (SOA) principles and adopting the Service
Integration pattern, an enterprise can manage and govern business and IT transformations.

This chapter explains the Service Integration pattern and how the IBM Integration Bus
provides the routing, connectivity, and transformation capabilities that are required to
decouple service consumers from service providers. It covers the following topics:

� Characteristics and capabilities of the pattern
� Ways to implement the pattern with IBM products

5

© Copyright IBM Corp. 2014. All rights reserved. 31

5.1 Characteristics and capabilities of the pattern

The Service Integration pattern is classically associated with service-oriented architecture,
where consumer applications and provider applications are decoupled, with these results:

� Provider applications encapsulate functions that they make available through an interface.
� Consumers start services by using open protocols.

Consumers no longer need connectors (adapters) to communicate with the hub because of
the high use of standardized SOA protocols. New requesters can be added at will (although
they must be suitably governed).

Traditionally, these services use XML to code and decode data and SOAP to transport it.
However, you can use other application and transport protocols, such as JavaScript Object
Notation (JSON) to code and decode data and Representational State Transfer (REST) for
transport.

There can be more than one consumer application for a single provider. Figure 5-1 shows the
main components and how they interact.

Figure 5-1 Service Integration pattern main components

The service definition provides controlled access to enterprise services over standardized
protocols and provides operational and business metrics.

The integration bus provides the capabilities to make the service available (exposed). In
addition, it performs traditional integration, such as data mapping, data formatting, and
aggregation. It can be used to deliver higher qualities of service by using store-and-forward,
retry, error handling, and so on to ensure compliance with the service level agreement (SLA).

Mediation is an intrinsic part of the Service Integration pattern and a fundamental building
block of SOA. It supports intelligent pairing of consumers and providers of services.

Consumer
Consumer

Consumer
Consumer

Consumer
Consumer

Consumer
Consumer

Interface

Mediation

Connector

Service Provider

Integration
Bus

32 Integration Throughout and Beyond the Enterprise

Service providers create services and, in some cases, publish their interfaces and access
information to a service registry. Optionally, implementers of services can publish service
interface definitions to a registry. Consumers retrieve the details for use at development time.

Each provider must decide which services to make available, evaluate trade-offs between
security and easy availability, and determine how to price the services or determine how to
use the value of the services if they are free. The provider must also decide which category to
list the service in and what kinds of trading partner agreements are required to use the
service.

Over time, more service providers will make standardized protocols available. But there will
always be some older systems that require deeper integration and, therefore, need
connectors (also known as adapters).

The integration between consumers and providers is always directional. However, the
transport protocol and the data format might not be. One application, which is known as the
provider, provides functions or data. Other applications, known as consumers, use the
function or data. Provider applications can also act as consumers of other provider
applications.

A service is an abstract representation of a business task that can be accessed through a
collection of related endpoints. A consumer application connects to a service through an
endpoint, or port. This endpoint describes the contract between the consumer application
and the service provider. An endpoint specifies the operations that can be started by a
consumer and the binding information (how a consumer can connect to a service). It also
provides the network details about where to locate the endpoint. Operations describe
supported actions by the service. They require an input message, an output message, and
optionally, a fault message. The binding information provides the protocol name, the
invocation style, a service ID, and the encoding for each operation. Bindings are concrete
protocol and data format specifications.

There are different styles of interaction between a consumer and a provider:

Synchronous interaction The consumer requests a response from the provider before it
can complete a task. This is also known as a request-response
interaction.

Synchronous interaction The consumer requests a response from the provider before it
can complete a task. This is also known as a request-response
interaction.

Asynchronous interaction The consumer sends data to a provider but does not require a
response to complete a task.

In applying the Service Integration pattern, there are different approaches to security:

� End-to-end trust:

The integration bus trusts the consumer application to authenticate and authorize end
users. Service providers consider the hub an authenticated and authorized user. This
scenario is frequently used when all components are internal, under the same security
management, and part of the trusted zone.

� Enforce security on application identity:

The integration hub does not trust any consumers and requires credentials to validate the
identity of any consumer. Provider applications consider the hub as a trusted user. All
requests to a provider are made under the identity of the integration hub.

Chapter 5. Service Integration pattern 33

� Enforce security on end-user identity:

The integration hub applies authentication and authorization. The identity of the end user
is required. The provider application considers the hub a trusted user, but it needs the
identity of the end user and requires the hub to assert the user’s identity. This model is
used where provider services require a secure assertion of the end user identity to provide
fine-grained authorization, based on business logic within the provider, or to ensure
accountability by securely auditing actions in the provider against the initiating user.

� Trusted authentication by the consumer application:

The consumer application is known and trusted by the integration hub. The consumer
application needs to authenticate and assert the identity of the user to the integration hub,
which then authorizes the access and asserts the end user identity to the provider
application. This model supports single sign-on by users to trusted applications, which can
make service requests on their behalf. Identity assertion can be as simple as a user name
token but might involve the acquisition of tokens by the requesting application on behalf of
a user and subsequent validation of such tokens by the hub.

� End-to-end authentication, confidentiality, and integrity required:

The service provider grants limited trust to the integration hub. The provider requires
credentials to authenticate the initiator of the request directly.

In this model, there is only limited trust on the integration hub by a provider service, which
requires credentials that allow the provider to authenticate the initiator of the request
directly. In this model, confidentiality and integrity might also be required. This is not a
model that assumes no trust in the hub, which is almost certainly trusted to deliver
requests to the appropriate provider in accordance with expected service level
agreements and to act as a first filter on attempts to access such sensitive services.

However, the additional levels of end-to-end security, such as digital signatures, are used
to identify the initiating user in a way that enables non-repudiation. End-to-end encryption
can be used to prevent access by operational staff to highly sensitive information, which
might be necessary if exceptions occur in normal processing or when auditing or logging
is performed in the hub.

5.1.1 Benefits of adopting the Service Integration pattern

Adoption of the Service Integration pattern provides several benefits:

� You decouple the interaction between consumer applications and service providers. When
a service implementation changes, the consumers can continue using the service without
modifications. When operational requirements change, you do not need to modify your
consumer or your provider applications. However, if the available service interface
changes, consumers and the service provider need to be updated to reflect the changes.

� You can write a service once and then reuse it with many applications. Maintenance and
testing of the service is reduced.

� You improve interoperability between applications. The integration bus communicates
applications regardless of the technology that was used to build it, the transport protocol,
or the data format.

� You can make functions available that are hosted in existing applications as services
through the integration bus.

� Core integration capabilities, such as routing, message parsing, message transformation,
and aggregation, and operational capabilities are provided by the integration bus. Service
providers are not required to implement these capabilities within the service. Services
deliver business functionality.

34 Integration Throughout and Beyond the Enterprise

5.1.2 Level of operational control and insight

Operational requirements such as validation, logging, error handling, and others can be
implemented by using the integration bus. Consumer applications trust the bus to handle the
service’s operational requirements. Provider applications focus on the implementation of their
functions and delegate operational control tasks to the integration bus.

In the integration bus, you validate the request message before calling a service. Normally,
you validate a message against an XML schema. If the message is valid, the service is
started; otherwise, the bus returns a data validation error to the consumer application. In
adopting the Service Integration pattern, you remove data validation code from your service
implementation, which prevents service calls with wrong data. The provider application
focuses on service implementation while the bus handles message validation before calling a
service.

You might also have requirements to audit data between a consumer and a provider
application. Depending on the audit level, you must log different data records. The integration
bus offers can log information, which removes the complexity of adding auditing code in your
service.

There are different types of errors between a consumer and a provider application that need
to be dealt with, such as handling timeout notification errors, message validation errors,
security errors, and others. The integration bus offers functions to handle those so that the
service focuses on the implementation of what is offered, not on operational aspects.

5.1.3 When to use the Service Integration pattern

The Service Integration pattern is foundational to service-oriented architecture. It is based on
a set of architectural principles, patterns, and criteria that address characteristics such as
modularity, encapsulation, loose coupling, separation of concerns, reuse, and composability.
The Service Integration pattern is centered on integrating resources within a zone of control
where advanced security and traffic controls that connect consumers and providers are not
required.

Use the Service Integration pattern when you require any of the following architectural
capabilities:

� Reuse business functionality inside and outside of your organization to minimize
implementation effort and maintenance costs.

� Decouple service implementation from service operational requirements. Consumers
have different operational requirements. By using the capabilities of the integration bus,
you can implement ad hoc operational requirements that are based on the service level
agreements between consumers and the service provider without affecting the service
provider implementation.

� Decouple service implementation from binding requirements. Consumers can be hosted
on different platforms. They can have different data format requirements and transport
protocol requirements. By using the capabilities of the integration bus, you can connect
consumers to a service provider without affecting the service provider implementation.

� Provide interoperability between different consumers and providers. You need to add new
consumers quickly, regardless of the technology that is used to implement them and their
platforms.

� Provide the any-to-any connectivity between consumers and providers within your own
company, and beyond your business to connect to your trading partners, by using
operational and integration capabilities available through the integration bus.

Chapter 5. Service Integration pattern 35

� Allow consumers to access functionality that is provided by applications that cannot
expose their functionality as a service. You can use the integration bus to expose
application functionality in a service-oriented way through mediations.

� Use a programming model complete with standards, tools, and technologies that support
web services, REST services, or other kinds of services.

It is best to use the Service Integration pattern whenever you are connecting services and
service consumers to achieve decoupling, operational control, and insight.

5.1.4 Retail example

A retail company offers different access channels to customers to buy their products. They
provide access on the web, in company stores, and at other stores. Any product that a
customer buys can be sent directly from the warehouse or picked up from a store, if it is
available. Whenever a product is sold, local stores’ stock levels must be updated. The
information needs to be sent to a central distribution warehouse so that stock levels can be
monitored and kept up-to-date.

Customers who want to buy a product through a web application need up-to-date product
availability information from the warehouse. Other vendors need local stock information and, if
the product is out of stock, warehouse availability information.

Although it is desirable that information about the sale is reported quickly, it is much more
important that it be reported reliably. So, when everything is working normally, the report gets
to the distribution center in real time. But if the network that links the store to the center fails,
the report must be held safely and then automatically sent when the network has been
repaired.

5.2 Ways to implement the pattern with IBM products

The Service Integration pattern embodies the SOA concept of consumers and providers that
are mediated in a loosely coupled fashion. The following list covers some of the factors that
should be dealt with by the middleware, regardless of the business application:

� Once-only processing:

Business transactions normally happen exactly once. Middleware needs to ensure that all
of the systems that are involved in that transaction do their jobs exactly once. There must
be no loss or duplication. Applications must not write complex code for recovery or to
reverse partially completed operations (compensation code) if individual systems fail.

� Ubiquity:

Run your applications on the platform where it makes most sense. Be able to integrate
applications seamlessly on a wide range of operating systems and hardware
environments.

� Easy to change:

Using industry standards can help you become more responsive as skills can be
maintained and reused across projects. New applications can be rapidly written and
deployed.

36 Integration Throughout and Beyond the Enterprise

� Easy to extend:

Scale your applications rapidly to any volume without downtime. Add more processing
without application change. Roll out new applications and features quickly and safely
without downtime.

� Compliance:

Meet enterprise, industry, and regulatory requirements easily, especially as those
requirements evolve. A middleware implementation should assist with auditing and other
compliance objectives to provide a consistent interface for all applications.

� Performance and availability:

Make the best use of the systems. Provide services for high and continuous availability.

� Security:

Provide a secure environment. Data is protected from loss, modification, and reading.
Losing sensitive data or failing to comply with regulations costs time, money, and
reputation.

5.2.1 IBM Integration Bus

IBM Integration Bus, formerly known as WebSphere Message Broker, is an enterprise service
bus that provides connectivity and universal data transformation for service-oriented
architecture (SOA) and non-SOA environments. As one of the core IBM strategic integration
products, it is a single-engineered product for Microsoft .NET, Oracle’s Java, and fully
heterogeneous integration.

Functions and functionality
The integration bus provides key functions to help you in the adoption of a full, functional
enterprise service bus. It is optimized for the integration bus role in the integration topology
and enables information that is packaged as messages to flow between different business
applications, ranging from large, traditional systems to devices such as sensors on pipelines.
It provides a universal integration capability that addresses a wide range of integration
scenarios, including web services, such as SOAP and REST, messaging, database, file, ERP
systems, mobile and physical devices, email, custom systems, and more (see Figure 5-2).

Figure 5-2 IBM Integration Bus

Integration Bus

Chapter 5. Service Integration pattern 37

With IBM Integration Bus, organizations of any size can eliminate point-to-point connections
and batch processing, which increases business flexibility and interoperability of systems,
regardless of platform, protocol, or data format. Their diverse applications can interact and
exchange data with other applications in a flexible, dynamic, and extensible infrastructure.

The IBM Integration Bus supports the following protocols, data formats, and operations:

� Protocols:

IBM WebSphere MQ, Java Message Service 1.1, HTTP and HTTPS, web services (SOAP
and REST), file, enterprise information systems (including SAP and Siebel), and TCP/IP.

� Data formats:

Binary formats (C and COBOL), XML, and industry standards (including SWIFT, EDI, and
HIPAA). You can also define your own data formats.

� Operations:

Routing, transforming, filtering, enriching, monitoring, distribution, collection, correlation,
and detection. You can route, transform, and enrich messages from one location to any
other location.

IBM Integration Bus patterns
IBM Integration Bus provides patterns (sometimes called IIB patterns) that are reusable
solutions. They encapsulate a tested approach to solving a common architecture, design, or
deployment task in a particular context. A developer can use a pattern to generate
customized solutions to a recurring problem in an efficient way. IBM Integration Bus patterns
encourage the adoption of preferred techniques in message flow design to produce efficient
and reliable flows. These patterns provide the following benefits:

� Guidance for the implementation of common ways to solve similar problems that follow
best practices

� Increases development efficiency, because resources are generated from a set of
predefined templates

� Results in higher-quality solutions through reuse of assets and common implementation of
programming approaches, such as error handling and logging

38 Integration Throughout and Beyond the Enterprise

For example, you can use the IBM Worklight Mobile Service pattern to integrate a mobile
application that was written with the Worklight mobile application development platform with a
service provider through the IBM Integration Bus (Figure 5-3).

Figure 5-3 Worklight platform to a service provider through the IBM Integration Bus

In another example, you can use the Service Facade to Microsoft .NET: request-response
pattern to integrate an application that is written for the Microsoft .NET platform by using the
IBM Integration Bus. You can also use the pattern to make a .NET class available as a web
service by using IBM Integration Bus.

Other supported software and technology
The IBM Integration Bus can interact with a wide range of external systems and resources. It
interfaces with these other IBM products and products from other software vendors to provide
integration solutions that decouple consumer applications from service providers:

� IBM Tivoli® License Manager
� IBM WebSphere Business Monitor
� IBM WebSphere Integration Developer
� IBM WebSphere MQ File Transfer Edition
� IBM WebSphere Process Server
� IBM WebSphere Service Registry and Repository
� IBM WebSphere Transformation Extender
� Cirtrix Presentation Server
� Enterprise information Systems

– SAP
– Siebel
– PeopleSoft

� Security
– IBM Tivoli Federated Identity Manager
– Lightweight Directory Access Protocol (LDAP)
– IBM Resource Access Control Facility (RACF®) and external security managers

(on IBM z/OS systems only)

REST
(JSON/HTTP)

WSDL

Message
Flows

IBM Integration Bus

Integration Service

Worklight

Mobile Application

Javascript
Procedures

Integration
Adapter

Web Services
(HTTP/SOAP)

Mobile Application
(JavaScript/HTML/CSS)

Chapter 5. Service Integration pattern 39

IBM Integration Bus also interfaces with these other IBM resources and resources from other
software vendors to provide extensions to message processing:

� Databases and Open Database Connectivity (ODBC) support:
– IBM DB2 database software
– IBM Informix®
– Oracle
– Sybase
– Microsoft SQL Server

� Databases and JDBC support
– IBM DB2 Driver for JDBC and SQLJ
– IBM Informix JDBC
– Microsoft SQL Server JDBC driver
– Oracle JDBC Drivers
– Sybase jConnect JDBC driver

� File systems
– FTP
– SFTP

� Version-control systems
– IBM Rational® ClearCase® development repositories
– Concurrent Versions System (CVS)
– Other repositories that are supported by Eclipse

� Compilers (C and Java)
� Browsers

– Google Chrome
– Microsoft Internet Explorer
– Mozilla Firefox

� Adobe Acrobat, for reading PDF files

The following products and applications that adhere to certain specifications can also interact
with the IBM Integration Bus:

� Java and JMS providers
� SOAP
� WS-Addressing
� WSDL
� WS_Security
� XSD
� XSLT

For more information, see General industry standards supported by IBM Integration Bus:

http://bit.ly/1g7Wk4O

IBM Integration Bus includes predefined resources that you can configure during the
development phase to specify runtime behavior. For example, you can use a TimeoutControl
node and a TimeoutNotification node in an application that requires events to occur at a
particular time or at regular intervals, such as when you want a batch job to run every day at
midnight or you want information about currency exchange rates to be sent to banks at hourly
intervals.

40 Integration Throughout and Beyond the Enterprise

http://bit.ly/1g7Wk4O

Integrate Bus capabilities
In addition to these resources, IBM Integration Bus provides the following capabilities:

� Workload management

System administrators can monitor and adjust the operational behavior of a solution. For
example, system administrators can control the rate at which messages are processed
through manual activities or through policies.

� Timeout notifications

System administrators can specify and monitor the maximum amount of time that any
solution is allowed to wait to process a message and specify an action to be taken if the
timeout is exceeded. These can be done through manual processes or through policies.

� Error handling

Basic error handling is available by default. If basic processing is not sufficient and you
want to take specific actions in response to certain error conditions and situations, you can
enhance your solutions to customize error handling (see “Error handling options” on
page 49).

� Activity logs

These logs contain information about your integration and how it interacts with external
resources, including databases, applications such as SAP and others.

You can get more mediation and operational functions by adding industry packs. For example,
the IBM Integration Bus Healthcare Pack, which builds on the IBM Integration Bus, provides
support for applications in healthcare environments. This pack includes Audit Trail and Node
Authentication (ATNA) audit nodes to create and send audit messages to an ATNA audit
repository.

Security management
An important aspect of securing an enterprise system is the ability to protect the information
that is passed from external parties. IBM Integration Bus provides key functionality to protect
the information that is exchanged between a consumer application and a service provider:

� Secure the transport. For example, you can secure the messaging transport with SSL
connections, restrict access to queues, apply WS-Security to web services, and secure
access to message flows.

� Secure individual messages, based on their identities.

The security functions that are associated with a mediation are controlled by using security
profiles, which are created by the system administrator and accessed by the security
manager at run time.

A security profile defines the security operations that are to be performed in a mediation at
SecurityPEP nodes and security-enabled input and output nodes. A security profile allows the
system administrator to specify whether identity and security token propagation,
authentication, authorization, and mapping are performed on the identity or security tokens
that are associated with messages in the mediation and, if so, which external security
provider is used (an external security profile is also known as a policy decision point, or
PDP).

Chapter 5. Service Integration pattern 41

The following external security providers (policy decision points or PDPs) are supported:

� WS-Trust V1.3-compliant security token servers (including IBM Tivoli Federated Identity
Manager V6.2) for authentication, mapping, and authorization

� Tivoli Federated Identity Manager 6.1 for authentication, mapping, and authorization

� Lightweight Directory Access Protocol (LDAP) for authentication and authorization (use
the Security Manger, see “Security manager” on page 49)

You can start security in a mediation by configuring either a security-enabled input node or a
SecurityPEP node. The SecurityPEP node enables you to start the security manager at any
point in the mediation between an input node and an output (or request) node.

Policy sets and bindings define and configure WS-Security requirements that are supported
by the IBM Integration Bus for the SOAPInput, SOAPReply, SOAPRequest,
SOAPAsyncRequest, and SOAPAsyncResponse nodes. A policy set is a container for the
WS-Security and WS-RM policy types. A policy set binding is associated with a policy set and
contains information that is specific to the environment and platform, such as information
about keys.

Use policy sets and bindings to define the following items for both request and response
SOAP messages:

� Authentication for the following tokens:

– User name tokens (requires a security profile to specify the external security provider)

– X.509 certificates (requires the broker keystore and truststore or a security profile to
specify the external security provider)

– Security Assertion Markup Language (SAML) assertions, using SAML 1.1 or 2.0
pass-through (requires a security profile to specify the external security provider)

– LTPA tokens, using LTPA pass-through (requires a security profile to specify the
external security provider)

� Asymmetric encryption (confidentiality) using X.509 certificates (requires the broker
keystore and truststore)

� Symmetric encryption (confidentiality) using Kerberos tokens (requires the host to be
configured for Kerberos)

� Asymmetric signature (integrity) (requires the broker keystore and truststore)

Either the entire SOAP message body or specific parts of the SOAP message header and
body can be encrypted and signed.

5.2.2 Mapping the IBM Integration Bus to the Service Integration pattern

In the IBM Integration Bus, developers can create integration solutions that act as mediations
between service providers and service consumers. These solutions can perform typical
integration tasks, such as data mapping, data formatting, and data aggregation. They can
route requests to different providers based on message content or route responses to
different consumers. They can enrich data between a consumer and a provider. They can
make functions available as services. They can also handle errors, retry requests, provide
logging and auditing capabilities, and more.

Integration solutions are implemented with message flows. These solutions are the building
blocks for adopting the Service Integration pattern. They support intelligent integration
between consumers and providers of services., and they allow the decoupling of consumers
from service providers.

42 Integration Throughout and Beyond the Enterprise

In the Service Integration pattern, data is transferred between consumer applications and
service providers in messages. IBM Integration Bus supports messages of many different
data formats over a great variety of transport protocols. A message includes both control
information and arbitrary application data. The structure of the data is determined by whether
it is a consumer application or a service provider. Consumer applications and service
providers can have the same data format, but if they do not, IBM Integration Bus provides
capability to receive different types of data over different transport protocols and then
transform the message format and transport protocol between consumers and service
providers, as needed.

The IBM Integration Bus supports direct connections from applications and can send direct
requests to other application endpoints. It can also connect to various subsystems, including
WebSphere MQ, files, and databases, to read and write existing application data. You can
connect the Integration Bus to your consumer applications or to your service providers by
adding the appropriate nodes to your message flow. The nodes that you use can be tailored
to support the protocols and subsystems that your applications already use. The Integration
Bus supplies nodes to support different protocols and subsystems. You can also create your
own nodes to support more protocols and subsystems, if required.

Input nodes
The integration bus provides a broad range of input nodes that a developer can use in a
message flow to define the transport protocol and data format for a consumer application.
Table 5-1 on page 43 lists some of the input nodes that are built into the IBM Integration Bus.

Table 5-1 input nodes built into the IBM Integration Bus

Input node Description

SOAP input node Use the SOAPInput node to process client SOAP messages and
to configure the message flow to behave like a SOAP web
services provider.

FileInput node Use a FileInput node if the data that is being processed is stored
in files.

FTEInput node Use the FTEInput node to receive files by using WebSphere MQ
File Transfer Edition.

HTTP input node Use an HTTPInput node if the messages are sent by a REST
client or any other type of HTTP client.

JMSInput node Use a JMSInput node if the messages are sent by a JMS
application.

MQInput node Use an MQInput node if the messages arrive at the broker on a
WebSphere MQ queue and the node is to be at the start of a
message flow.

.NETInput node Use the .NETInput node to create inputs for the .NETCompute
node by using C#, F#, and VB templates.

TCPIPClientInput or
TCPIPServerInput node

Use a TCPIPClientInput node or a TCPIPServerInput node to
create a TCP/IP connection when messages are sent through
raw TCP/IP sockets.

TCPIPClientReceive or
TCPIPServerReceive node

Use a TCPIPClientReceive node or a TCPIPServerReceive node
to read the messages that arrive in the message flow through a
TCP/IP connection.

Chapter 5. Service Integration pattern 43

If the consumer application is an enterprise information system (EIS), a developer can use
any of the built-in adapter nodes. The following input nodes are available:

� JDEdwardsInput
� PeopleSoftInput node
� SAPInput node
� SiebelInput node
� TwineballInput node

Nodes for interaction with external systems and resources
You can configure IBM Integration Bus resources to interact with external systems and
resources by defining additional resources in your integration solution or mediation. The
Integration Bus provides a wide range of nodes that a developer can use in a message flow to
define synchronous or asynchronous communications with a service provider. Built-in nodes
can also be added, if needed.

For example, the HTTPRequest node interacts with a service by using all or part of the input
message as the request that is sent to that service. You can also configure the node to create
an output message from the contents of the input message, augmented by the contents of the
service response, before you propagate the message to subsequent nodes in the message
flow. Depending on the configuration, this node constructs an HTTP or an HTTP over SSL
(HTTPS) request from the specified contents of the input message and sends this request to
the web service. The node receives the response from the service and parses the response
for inclusion in the output tree. The node generates HTTP headers if they are required by your
configuration.

The SOAPRequest node is a synchronous request and response node that blocks processing
after sending the request until the response is received. This node enables the HTTP 1.1
Keep-Alive method by default.

The SOAPAsyncRequest node can use HTTP or Java Message Service (JMS) transport. It is
used in conjunction with the SOAPAsyncresponse node. Both nodes use unique identifies
(and, optionally, WS-Addressing) to correlate response messages with the original request.
The SOAPAsyncRequest and SOAPAsyncResponse nodes cannot be used with one-way
operations. The SOAPAsyncRequest node sends a web service request, but the node does
not wait for the associated web service response to be received. This asynchronous
functionality enables multiple outbound requests to be made almost in parallel because the
outbound request is not blocked waiting for the response. The web service response is
received by the SOAPAsyncResponse node, which can be in a separate message flow. The
nodes are used as a pair, and correlate responses against the original requests.

The SOAPAsyncRequest node supports two methods of asynchronous requests when using
HTTP transport:

� Using WS-Addressing to direct the response to the paired SOAPAsyncResponse node.
The SOAPAsyncRequest node waits for the HTTP 202 acknowledgment before continuing
with the message flow, and the SOAPAsyncRequest node blocks if the acknowledgment is
not received. A new HTTP connection is made by the back-end server to reply to the
SOAPAsyncResponse node. This is the default behavior.

DatabaseInput node Use the DatabaseInput node to respond to events in a database.

EmailInput node Use the EmailInput node to retrieve email, with or without
attachments, from an email server that supports Post Office
Protocol 3 (POP3) or Internet Message Access Protocol (IMAP).

Input node Description

44 Integration Throughout and Beyond the Enterprise

� Using HTTP asynchronous request-response. When the SOAPAsyncRequest property
Use HTTP asynchronous request-response is selected, the SOAPAsyncRequest node
passes the HTTP socket to the paired SOAPAsyncResponse node to allow the back-end
server to reply by using the same socket. When this option is selected, WS-Addressing
headers are sent, but they are not required to be understood by the back-end server. The
WS-Addressing headers are not marked as must Understand, and the replyTo header is
set to anonymous. Therefore, the node uses asynchronous HTTP socket handling rather
than WS-Addressing to make HTTP requests and receive an asynchronous response.

Patterns provided by the IBM Integration Bus
IBM Integration Bus provides patterns, which are reusable solutions that encapsulate a tested
approach to solving a common architecture, design, or deployment task in a particular
context. A catalog of IBM Integration Bus patterns is provided in the IBM Integration Toolkit, in
the development environment. These patterns are divided into pattern categories. The
catalog of patterns can contain built-in patterns and might contain user-defined patterns.
Built-in patterns cover a set of commonly encountered message flow scenarios and are
packaged and released with the IBM Integration Bus. You can also create your own patterns.

Service Virtualization patterns
Developers can use the Service Virtualization patterns to provide decoupling between web
service consumers and service providers through an IBM Integration Bus mediation. The
following Service Virtualization patterns are available (Table 5-2 on page 45):

Table 5-2 Service Virtualization patterns

Service Enablement patterns
Developers can use the Service Enablement patterns to present consumers with service
facades that provide loose coupling between client applications and service providers in
timing, protocols, and transport through an IBM Integration Bus mediation. Table 5-3 lists the
Service Enablement patterns that are available.

Table 5-3 Service Enablement patterns

Pattern name Description

Service Proxy: static endpoint Use this pattern to provide decoupling between web service
requesters and web service providers by routing through a virtual
service that is bound directly to the target service provider.

Service Proxy: static endpoint
(web-based)

This is an updated version of the Service Proxy: static
endpoint pattern, which can be used in the IBM Integration
Toolkit and in the web user interface. Use this pattern to provide
decoupling between web service requesters and web service
providers by routing through a virtual service that is bound
directly to the target service provider.

Pattern Name Description

Service Facade to WebSphere
MQ: one-way with
acknowledgment

Use this pattern to present a web service interface to clients and to
fulfil the service requests by using a WebSphere MQ enabled
application.

Service Facade to WebSphere
MQ: request-response

Use this pattern to provide a web service facade to functions that
are accessible only through WebSphere MQ. This pattern creates
a bridge between the synchronous HTTP protocol, which is
typically used with web services, and existing applications with
WebSphere MQ interfaces that cannot be easily upgraded.

Chapter 5. Service Integration pattern 45

For example, a developer can use the Service Access pattern to provide loosely coupled
service access to services from applications that are not service-enabled. The Service
Access pattern provides the mediations to transform application input into standard web
service requests, and also a mediation point for the application of standard functions such as
logging (Figure 5-4 on page 46).

Figure 5-4 Service access

Mobile, file processing, and integration patterns
Table 5-4, Table 5-5, Table 5-6 on page 47,Table 5-7 on page 47, and Table 5-8 on page 48
list some of the integration patterns available in IBM Integration Bus by category. Developers
can use these patterns to develop mediations between consumers and service providers by
following suggested design approaches when adopting IBM Integration Bus.

Table 5-4 Mobile application patterns

Service Facade to Microsoft
.NET: request-response

Use this pattern to integrate an application that is written for the
Microsoft .NET platform with IBM Integration Bus. You can use the
pattern to make a .NET class available as a web service by using
IBM Integration Bus.

Service Access from
WebSphere MQ: one-way

Use this pattern to provide connectivity between a consumer
application that handles WebSphere MQ XML messages and a
web service provider.

Pattern name Description

Worklight to Microsoft .NET:
request-response

Use this pattern to integrate a mobile application that is written for
the Worklight platform with Microsoft .NET applications that are
running in IBM Integration Bus.

Worklight: mobile service Use this pattern to integrate a mobile application that is written for
the Worklight platform with a service that is running in IBM
Integration Bus.

Worklight: push notification
from WebSphere MQ

Use this pattern to send notifications to IBM Worklight mobile
applications from IBM WebSphere MQ.

Worklight: resource handler Use this pattern to provide services to mobile applications that use
the Worklight APIs. The services are made available to mobile
applications as Worklight adapter procedures that are started from
JavaScript in the application.

Pattern Name Description

#�� ���	������	�������

&�����4��������
���������

&�����4��������
���������

8�
	��� ���
�� ����

8�
	��� ���
��3����

$���
��������

9�3�������
����������

46 Integration Throughout and Beyond the Enterprise

Table 5-5 File processing patterns

Table 5-6 Application Integration patterns

Table 5-7 Message-based Integration patterns

IBM MessageSight: Inbound
event filter

Use this pattern to configure IBM Integration Bus to receive events
from mobile clients through IBM MessageSight messaging
appliance, filter the events according to specified criteria, and
forward the events that match the criteria to a back-end application.

IBM MessageSight: Outbound
event notification

Use this pattern to configure IBM Integration Bus to receive events
from a back-end system and dynamically publish those events to
mobile clients through MessageSight.

Pattern name Description

Record Distribution to
WebSphere MQ: one-way

Use this pattern to bridge between two styles of integration,
file-based and transaction-based.

Pattern name Description

Data distribution SAP to
WebSphere MQ: one way (for
IDoc)

Use this pattern to process various types of IDocs that have a
single program identifier. When using this pattern, you do not need
to redeploy or rediscover existing message sets and adapters,
even when you are adding different types of IDocs.

IBM BPM Integration Service Use this pattern to integrate IBM Business Process Manager
Integration services with IBM Integration Bus services. Import a
minimal Business Process Manager export.twx file into IBM
Integration Bus, update the pattern to implement the requested
services, and import it into Business Process Manager for final
integration.

Pattern name Description

Message Correlator for
WebSphere MQ:
request-response with
persistence

Use this pattern to accept requests from many client applications
on a single queue and to return responses to the correct client by
using transactional flows and persistent WebSphere MQ
messages.

Message Correlator for
WebSphere MQ:
request-response without
persistence

Use this pattern to accept requests from many client applications
on a single queue and to return responses to the correct client by
using non-transactional flows and nonpersistent WebSphere MQ
messages.

Message Splitter for
WebSphere MQ: one way (for
XML)

Use this pattern to split a large XML message into smaller
elements for processing by one or more targets by using
transactional flows and persistent WebSphere MQ messages.

Pattern name Description

Chapter 5. Service Integration pattern 47

Table 5-8 Microsoft .NET Integration patterns

5.2.3 Operational capabilities

IBM Integration Bus also provides operational capabilities such as transactionality, workload
management, logging, monitoring, error handling, support for policies and security.

Transaction handling
In IBM Integration Bus, developers can configure the transactional behavior of the mediation
between a consumer and a service provider. A mediation runs in a single transaction, which is
started when data is received by an input node, and can be committed or rolled back when all
processing is finished. A developer can configure the nodes in the mediation to determine
how the work taken by each node participates in the overall transaction.

� Most nodes for which transactionality is relevant have one or more properties that you can
configure to dictate behavior. Therefore, you can decide for each individual node whether
it participates in the transaction, or operates independently. Typically, these properties
include an option of Automatic so that subsequent nodes in the flow assume the
characteristics set by the input node.

� Nodes that support transports that cannot participate in transactions might have other
properties to determine how a failure is handled. For example, the FileInput node has a set
of Retry properties that you can set to determine failure behavior.

� Nodes that interact with external resources, for which a developer cannot provide
properties to configure the transactional behavior, are typically included within the
mediation transaction. However, some exceptions exist.

Workload management
The following workload management capabilities in IBM Integration Bus allow system
administrators to monitor and adjust the speed that messages are processed and to control
the actions that are taken on unresponsive flows and threads:

� Mediation notification

A common requirement is to be able to monitor the speed at which IBM Integration Bus
processes messages. Workload management allows the system administrator to set a
notification threshold for individual message flows deployed. An out-of-range notification
message is produced if the notification threshold is exceeded. A back-in-range notification
message is produced if the notification threshold drops back into range later.

Pattern name Description

Microsoft Dynamics CRM
Account Entity output: Static
BAPI input

Use this pattern when you want to integrate Microsoft .NET,
including Microsoft Dynamics CRM, with IBM Integration Bus. This
pattern processes SAP Business Application Programming
Interfaces (BAPIs) that are received by a synchronous remote
function call and maps them into Create, Retrieve Update, Delete
operations on standard Microsoft Dynamics CRM Account entities.

Microsoft Dynamics CRM
Account Entity output: Dynamic
transport input

Use this pattern when you want to integrate Microsoft .NET,
including Microsoft Dynamics CRM, with IBM Integration Bus. This
pattern processes user-defined WebSphere MQ, file, or HTTP
input messages and maps them into Create, Retrieve, Update, and
Delete operations on standard Microsoft Dynamics CRM Account
Entities.

48 Integration Throughout and Beyond the Enterprise

� Setting the maximum rate for a mediation

The system administrator can set the maximum run rate for an individual message flow.
The maximum rate is specified as the total number of input messages processed every
second. When set, the number of input messages that are processed across the flow is
measured. This measure is regardless of the number of additional instances in use, the
number of input nodes in the message flow, or the number of errors that occur. If
necessary, a processing delay is introduced to keep the input message processing rate
under the maximum flow rate setting.

� Unresponsive mediations

The system administrator can specify and monitor the maximum amount of time that any
message flow is allowed to process a message and specify an action to be taken if the
time is exceeded. Manual requests can be made to stop a message flow by restarting the
integration server.

The system administrator can also use policies that are defined within the Integration
Registry to configure the workload management capabilities of an integration solution or
mediation.

Error handling options
Basic error handling is available by default in any integration solution that is implemented in
IBM Integration Bus. If basic processing is not sufficient, and the mediation must take specific
actions in response to certain error conditions and situations, a developer can enhance the
solution to provide custom error handling. For example, the developer might design a
mediation that expects certain errors to be processed in a particular way, or perhaps the
mediation updates a database, and in case of error, database updates must be rolled back if
other processing does not complete successfully. A developer can adopt either of these
approaches:

� Failure checking

A developer can wire the Failure terminal of a node to explicitly check for any errors that
occur within that node. If errors occur, an exception list is propagated to the Failure
terminal. The in-flight message remains the same as it was before the node was invoked.
The developer can also introduce exit handlers for certain nodes.

� Catching exceptions

A developer may decide not to wire a Failure terminal. Then, a failure in the node is
converted into an exception that is thrown from the node. Any changes that were made to
the in-flight message before the exception was thrown are reversed. The exception might
cause the current transaction to be rolled back, which means that any updates to
transactional resources are reversed. A developer can prevent the transaction from being
rolled back, and control the extent to which message changes are reversed, by including a
TryCatch node in the mediation.

System administrators can use activity logs to obtain information on how a mediation interacts
with external resources, including databases, applications such as SAP, and others. They can
also use tags to enrich the log data. Tags are strings that represent significant categories of
data that can be used for filtering and for providing additional information.

Security manager
IBM Integration Bus provides a security manager, which controls access to individual
messages in a mediation by using the identity of the message. A system administrator can
configure IBM Integration Bus to process end-to-end an identity that is carried in a message
through a mediation by using a security profile. By creating a security profile, you can
configure security for a mediation to control access based on the identity that is associated

Chapter 5. Service Integration pattern 49

with the message and provide a security mechanism that is independent of both the transport
type and message format.

Only a subset of the connectors that are available in IBM Integration Bus use security profiles
to control and vary the identity that is used when the connector interacts with an external
system. For other connectors, a fixed identity can be specified, which is used to authorize
access to the external system. For those connectors, IBM Integration Bus has its own
repository of identities, which can be updated if needed.

By default, security capabilities in IBM Integration Bus are based on the security capabilities
that are provided by the transport mechanism. IBM Integration Bus processes all messages
that are delivered to it, using the service identity as a proxy identity for all message instances.
Any identity that is present in the incoming message is ignored.

The following input nodes support mediation security:

� MQInput
� HTTPInput
� SCAInput
� SCAAsyncResponse
� SOAPInput

However, the support for treating security exceptions as normal exceptions is provided by
only the MQInput, HTTPInput, SCAInput, and SCAAsyncResponse nodes; it is not available
in the SOAPInput node.

The following output nodes support identity propagation:

� MQOutput
� HTTPRequest
� SCARequest
� SCAAsyncRequest
� SOAPRequest
� SOAPAsyncRequest

If the mediation is a web service that is implemented by using the SOAP nodes, the identity
can be taken from the WS-Security header tokens that are defined through appropriate Policy
sets and bindings. For a SOAPRequest and SOAPAsyncRequest node, an appropriate policy
set and bindings can be defined to specify how the token is placed in the WS-Security header
(rather than the underlying transport headers).

Use the security manager for these tasks:

� Extract the identity from an inbound message

� Authenticate the identity (by using an external security provider)

� Map the identity to an alternative identity (by using an external security provider)

� Check that either the original identity or the alternative identity is authorized to access the
mediation (by using an external security provider)

� Propagate either the original identity or the alternative identity with an outbound message.

5.2.4 Implementing the retail example

In 5.1.4, “Retail example” on page 36, the requirement to support clients who buy products
through different channels was outlined. To implement this example with IBM Integration Bus,
a typical architecture is to implement one mediation that is used by different consumers. This
mediation requests information from a data ware house system. It decouples consumer

50 Integration Throughout and Beyond the Enterprise

applications from the service provider that is implemented by a data warehouse system, see
Figure 5-5.

Figure 5-5 A mediation that is used by different consumers

In this scenario, a customer wants to buy a product. He can use an online service or he can
go to a store to buy the product. If the product is not available in store, the store must check its
availability with the data warehouse system. Whether a customer uses the online service or a
shop, each channel requires to check product availability with the data warehouse system at
some point in time.

The data warehouse system provides the “Check product availability” service. The
implementation is independent of the consumers transport protocol and data formats.

The mediation is implemented as an integration solution in IBM Integration Bus. Multiple
consumers can reuse the same service that is provided by the data warehouse system
independent of transport and connectivity style. The mediation handles transport and data
transformations that are required to access the “Check product availability” service. The
mediation decouples consumers from the service provider. See Figure 5-6 on page 51.

Figure 5-6 Reusing the same service

Data and transport protocol transformation is done with Mapping nodes. A developer can use
a mapping to design data transformation graphically.

Chapter 5. Service Integration pattern 51

The mediation also provides logging capabilities. When the service provider does not
respond, the mediation logs information about the failure in an IBM Integration Bus activity log
(Figure 5-7).

Figure 5-7 Mediation logging process

52 Integration Throughout and Beyond the Enterprise

Chapter 6. Gateway pattern

This chapter presents an overview of the Gateway pattern from concept to implementation.
The following topics are covered:

� Gateway functions and configuration
� Level of operational control and insight
� When to use the Gateway pattern
� Retail example
� Ways to implement the pattern with IBM products

As the name suggests, a gateway is a path between two different areas or zones, just as the
gate in a fence allows people and things to pass from outside to inside of the fence, and vice
versa. In the context of this IBM Redbooks publication, a gateway is a way for information in
the form of requests, answers, or updates to pass across any boundary between zones, such
as the zone occupied by systems of record (inside the enterprise) and the zones that are
occupied by systems of engagement (outside the enterprise).

6

© Copyright IBM Corp. 2014. All rights reserved. 53

6.1 Gateway functions and configuration

The following list notes some of the key functions of a gateway from different perspectives:

� Development perspective:

– Serialized (multiprotocol) transformations

– API definition and design by proxy or simple assembly (no full-fledged composition)

– Portal for onboarding, collaboration, developer outreach

� Runtime perspective:

– Continuous availability

– Near-linear scalability

– Support for multiple concurrent versions

– Operational monitoring and insight

– Workload separation, which allows operational reconfiguration without redeployment

– Automated traffic optimization, including automated caching

– Opaque proxies (front-side address is managed separate from back side address, and
there is no requirements for one-to-one relationships)

– Machine-to-machine communication (Internet of Things function)

– Metering

� Management and configuration perspective:

– Dynamic configuration of endpoints

– Security management, including the ability to integrate with Lightweight Directory
Access Protocol (LDAP), crypto key management, and so on

– Traffic policy management

– Caching policy management

DMZ firewall configuration
The gateway provides control and security-oriented services to enable the retail business to
offer global customers access to the latest information and facilitates the purchase
transaction. The gateway can be used to cache frequently requested resources, which
improves performance and lowers compute demands.

The gateway can also serve as a B2B gateway to enable smooth exchanges with a system of
trading partners. The IBM DataPower XB62 B2B gateway can perform all of the functions that
are described here.

Inner gateway
The inner gateway provides routing, caching, and content translation services so that
necessary information flows between disparate systems. This gateway can also balance
traffic loads between back-end systems.

54 Integration Throughout and Beyond the Enterprise

6.2 Characteristics and capabilities of the pattern

The Gateway pattern provides a set of services with the following high-level capabilities:

� Provide secure transport of data (terminating and initiating secure transport layers)

� Interconnect disparate transports (HTTP to IBM WebSphere MQ, for example)

� Implement a service facade (obscure back-end resources, translate SOA-REST, for
example)

� Filter information flow (enforce API compliance)

� Improve performance (caching, offloading)

� Route and manage traffic (load balancing and policy-based routing)

� Authenticate and authorize requests (a fundamental gatekeeper function)

� Reflect and enforce service level agreements (SLAs), especially for policy-based
configuration and runtime behaviors

� Provide activity and performance management data (real-time insight)

Figure 6-1 is an illustration of a typical flow between clients and services through the gateway.

Figure 6-1 Gateway pattern workflow

Clients initiate requests at any time and from any location that can reach the gateway. The
gateway can be in the DMZ firewall configuration, or it can be on the boundary between two
zones, one of which might not be the Internet. The gateway provides the services that are
listed above and discussed further below. The gateway then forwards these requests to the
desired destinations, which are typically locations within the enterprise network. Responses,
if any, then flow back through the gateway to the requesting clients.

These capabilities offer several benefits:

� Increases ease of connection, which allows the following flexibility for clients:

– Use their existing transport protocols
– Use their existing data formats
– Use Web Services Description Language (WSDL) and other metadata to interpret

message exchange patterns

Client Request

Gateway

Corporate Networks

Chapter 6. Gateway pattern 55

� Improves performance of existing and new resources by using the following methods:

– Filters out incorrect or malicious data

– Offloads compute-intensive tasks, such as cryptography and validation

– Intelligently routes traffic to appropriate application resources

– Caches frequently requested data to free back-end resources

� Safeguards valuable internal resources in the following ways:

– Obscures location of internal resources

– Employs advanced cryptography for data privacy

– Enforces authentication and authorization of client requests

– Enforces SLAs to prevent overload attacks

� Monitors and responds to actual traffic flows with the following actions:

– Generates a real-time stream of measurement data

– Logs the chosen activity

– Accepts and act on SLA updates

– Routes around bottlenecks or unavailable resources

6.2.1 Level of operational control and insight

The Gateway pattern provides a high degree of operational control. It enables administrators
to determine what traffic is allowed to pass across a boundary, according to a wide and deep
range of conditions. As a boundary-oriented pattern, this degree of control is required.

The pattern also provides insight into the traffic that is passing through the gateway. Although
the gateway itself might not deliver aggregated metrics and reports, external programs that
can and do provide such information can easily get the necessary data from the gateway in
real time by using any of several different methods, such as Simple Network Management
Protocol (SNMP). These metrics can be used to establish or adjust service levels, which the
gateway can then enforce. Such enforcement also provides protection for the systems behind
the gateway.

6.2.2 When to use the Gateway pattern

The Gateway pattern is useful whenever and wherever you have a boundary that requires
security or traffic control. (See Chapter 2, “The composable business” on page 7.) Certainly,
security and traffic control are required at the boundary between the enterprise and the open
Internet, or even between the enterprise and trusted business partners. However, it is also
useful to institute some kind of traffic control between core systems of record and systems of
engagement, both of which might be within the boundaries of the enterprise, to protect those
systems of record from risky volumes of traffic.

Because the Gateway pattern can be used to increase performance through caching, this
pattern can be useful at many different kinds of boundaries, with or without a combination of
security or control-related functions.

56 Integration Throughout and Beyond the Enterprise

6.2.3 Retail example

Consider this retail business scenario: A retail business needs to use technology to increase
revenue but also needs to lower or contain costs. Therefore, that business is likely to have the
following requirements:

� Increase ease of access to product information and buying channels
� Report real-time availability of products
� Manage inventory and services
� Interconnect with suppliers and banks

The Gateway pattern can play a positive or even an enabling role in each of these
requirements. They are positioned in the solution architecture as illustrated in Figure 6-2 on
page 57.

Figure 6-2 Example architecture

6.3 Ways to implement the pattern with IBM products

The IBM WebSphere DataPower Integration Appliance XB62, XI52, and XG45 are
purpose-built hardware platforms for delivering rapid data transformations for cloud and
mobile applications, secured and scalable business integration, and an edge-of-network
security gateway in a single “drop-in” appliance.

Virtual editions of these appliances are also available for use in development and test
environments. The virtual appliances offer all of the same capabilities as the hardware
appliance but with the flexibility of virtual instantiation.

Internet DMZ Trusted Domain

Application or Service

System Z

IBM Integration
Bus

Application Service File

Consumer

Trading partners

Consumer

DataPowerDataPower

Chapter 6. Gateway pattern 57

The following subsections highlight the different capabilities of these appliances so that, when
you decide to implement a gateway in your enterprise, you can identify which one is most
suitable for your business.

6.3.1 Security

The DataPower service-oriented architecture (SOA) appliances implement security,
particularly in the hostile environment of a DMZ firewall. The hardware and firmware are
optimized to work together, so there is no separation between operating system and
applications. It is a single firmware image. The default behavior of the device is to disallow
access. Starting from this baseline, the IBM WebSphere DataPower device offers the
following security-oriented capabilities:

� Service facade:

After it is in place, the DataPower device stops all direct access to back-end application
resources. Clients connect to the gateway instead. The address, port numbers, and routes
to back-end services are all masked. If you prefer, the gateway can also change data
formats to eliminate any external detection of internal and proprietary data formats.

� Transport Layer Security:

DataPower can both initiate and terminate Transport Layer Security (TLS) connections, so
it off-loads the computationally expensive cryptography to the device. DataPower can use
SSL3, TLS1.0, TLS 1.1. and TLS 1.2 protocols and can bridge between them. A full set of
cryptographic algorithms is available.

� Validation:

DataPower can automatically validate data formats, such as XML, SOAP, and JavaScript
Object Notation (JSON). In addition, custom schema validation can be applied to any
message flows, effectively offloading error processing from the back-end applications.

� Privacy:

The hardware-accelerated cryptographic modules of the appliance can encrypt and
decrypt payload data at nearly wire speeds. Both existing and updated cryptographic
algorithms are supported. This includes full support for public key infrastructure (PKI)
encryption and symmetric key encryption. Even if the message payload is unwrapped
from the protection of Transport Layer Security, the payload still cannot be read because it
is encrypted.

� Integrity:

To ensure the integrity of payload data, DataPower can employ digital signature
technology to both create and verify digital signatures. DataPower offers several methods
for signing XML-formatted payloads (XML or SOAP) and can sign, verify, or sign and verify
binary data payloads.

� Authentication and authorization:

Using a highly flexible authentication and authorization subsystem known as
authentication, authorization, and auditing (AAA), DataPower can easily handle
fundamental gatekeeper functions. Also, the AAA system can act as a fluid token changer,
accepting one form of authentication and changing it to another to interoperate with
disparate or existing authentication systems. For example, clients can employ a Security
Assertion Markup Language (SAML) token to assert identity while the enterprise uses a
Lightweight Directory Access Protocol (LDAP) systems for authentication and
authorization. At the same time, back-end systems might require a Lightweight Third Party
Authentication (LTPA) token to grant service. The DataPower device can handle this
scenario with no custom coding.

58 Integration Throughout and Beyond the Enterprise

DataPower includes support for authentication systems that are used by modern
application programming interface (API) and mobile architectures, such as OAuth 2.0 and
Extensible Access Control Markup Language (XACML).

� Integration with enterprise systems:

As already mentioned, DataPower can act as a token changer, which enables integration
with various authentication systems, such as Kerberos, LDAP, Netegrity, SAML, OAuth,
and IBM Tivoli Federated Information Manager software.

6.3.2 Interconnection

The DataPower device can connect, or bridge, disparate systems in several different ways.
Serving as a gateway allows the device to accept inbound requests over a client’s preferred
transport protocol and then to send these requests over a different protocol to back-end
systems inside the enterprise. Similarly, the device can translate between data formats if you
want or need that translation.

Protocol bridging
DataPower can use HTTP or HTTPS, MQ, FTP or FTPS, EMS, or NFS transport protocols on
both the front and back sides of the device, which allows each side to be different if you prefer.
In addition to the significant flexibility that this offers, the device can offload the work that is
required to initiate and terminate secure transport connections to other systems (HTTPS
or FTPS).

Data format bridging
It is not unusual in modern architectures to encounter the need to bridge between
REST-based systems that send JSON documents and SOA-based systems that use XML
documents. DataPower can bridge these protocols and data formats easily. DataPower also
offers translation between XML and binary formats (such as COBOL Copybook) and the
reverse. Using the IBM WebSphere Transformation Extender module in DataPower allows
any-to-any data format translation.

6.3.3 Routing

The DataPower device can route traffic by using any of these mechanisms:

� Content-based routing:

DataPower can examine the transport headers, the content headers, or the content of
messages to make routing decisions. The device can also refer to external resources,
such as IBM WebSphere Service Registry and Repository, to get routing information. This
allows a gateway to dynamically route traffic to endpoints, for example, sending purchase
requests that are USD 10,000 or more to one application and all others elsewhere.

� Intelligent load distribution:

By using the Application Optimization feature, DataPower routes traffic to intelligently
distribute loads to back-end clusters and can balance loads among a set of DataPower
devices. This capability can potentially eliminate a tier in enterprise architectures.

� Versioning:

DataPower flexible routing capability eases the management of back-end application
versioning and front-end API-style versioning.

Chapter 6. Gateway pattern 59

6.3.4 Caching

The DataPower device implements data caching in two different ways: on-device caching and
off-device caching.

On-device caching
The device can dedicate a user-defined amount of memory for data caching. This caching
relies on the establishment of rules. When a response from a back-end application meets the
caching criteria, the response is cached. Any future requests processed by the gateway
return the cached response rather than forwarding the request to the back-end system. These
cache entries can time out, and they require a periodic request to the application. This keeps
cached entries sufficiently fresh and relevant.

Off-device caching
The device can use a side cache that is outside of the device, which is typically the
DataPower XC10 caching device. A set of rules that are applied to messages that are passing
through the gateway determines what responses are cached by the off-device XC10
appliance. Any future requests processed by the gateway return the cached response rather
than forwarding the request to the back-end system. As with on-device caching, these cache
entries can time out, and they require a periodic request to the application. This helps keep
cached entries sufficiently fresh and relevant.

6.3.5 Management

The DataPower device offers several methods of managing the gateway. The method that is
used depends on what you want to manage and how. In this area, DataPower can work
seamlessly with other IBM products, such as WebSphere Service Registry and Repository, or
with third-party products, such as SNMP monitors.

Configuration
Administrators can use any of the following methods for managing the configuration of the
device as a whole or for only selected parts, such as application domains that contain one or
more services or just individual services:

� Web GUI, the standard browser-based interface

� XML Management interface allows administrators to send XML-formatted files to the
device to get or set configurations

� WebSphere Appliance Management Center provides an off-device centralized
administration console for multiple devices

� WebSphere Service Registry and Repository and DataPower services can obtain
configuration data that is stored in this repository on bootup or during run time.
WebSphere Service Registry and Repository also provides an advanced governance
framework for managing DataPower devices

Service levels
DataPower includes built-in SLA and service level management (SLM) capabilities, which can
shape or throttle traffic, as needed. These settings can also be effectively managed from
WebSphere Service Registry and Repository by using the WS-MediationPolicy standard. This
allows DataPower to act as an enforcement point for service level agreements.

60 Integration Throughout and Beyond the Enterprise

Metrics
Administrators can get activity and performance data in real time from the DataPower device
by using SNMP, WS-Management, or Web Services Distributed Management (WSDM)
protocols or by polling the device through the XML Management interface. Integration with
IBM Tivoli Composite Application Manager management consoles is seamless. Any SNMP
monitor product can be used.

Logging
Logging information is critical to troubleshooting, and the DataPower device can be set to a
debug level of logging for deep inspection when needed. In production environments, the
device can simply log critical errors and send those logs from the device automatically. More
urgent failure notification is also available and easy to configure. Some use cases require
logging of actual messages, such as consumer credit banking, which the DataPower device
handles with a special action that captures and logs these payloads. The device integrates
with centralized logging systems by using HTTP, FTP, or syslog-based delivery.

Chapter 6. Gateway pattern 61

62 Integration Throughout and Beyond the Enterprise

Chapter 7. Mobile Integration pattern

This chapter describes the mobile application integration with enterprise back-end services.
The enterprise can be a bank, other financial institution, retail store, hospital, and so on that
provides services to people or the external businesses. In our fast-moving world, each of us
wants to connect to these businesses quickly, and mobile devices are one of the fastest
channels to connect with them.

We need a faster and dynamic way to integrate the enterprise services with the mobile
applications. The integration of these services might involve a request-response between a
mobile device and the enterprise or a push notification from the enterprise to the mobile
device users. We need a Mobile Integration pattern to reuse in such scenarios.

The following topics are covered:

� Characteristics and capabilities of the pattern
� Ways to implement these patterns with IBM products
� Implementing the mobile banking example

7

© Copyright IBM Corp. 2014. All rights reserved. 63

7.1 Characteristics and capabilities of the pattern

There are two main types of mobile application integration pattern scenarios, which are
shown in Figure 7-1:

� A mobile application sends a request to an enterprise system and gets a response.
� An enterprise pushes a notification message to a mobile application.

Figure 7-1 Mobile-to-enterprise system integration, Mobile Integration pattern

7.1.1 Defining a request-response pattern

To define a request-response pattern, mobile-ready interfaces are provided for the enterprise
services that are created in the enterprise service bus (ESB). The pattern provides the mobile
enablement of the integration services in enterprise service bus (ESB). The mobile
integration adapter helps to integrate the mobile application with the enterprise services that
are running in the enterprise service bus, as shown in Figure 7-2 on page 65. That process
involves these components and steps:

1. The mobile adapter sends the inbound request straight to the enterprise service.

2. The enterprise service in the ESB connects to the required back-end systems to process
the inbound request through the back-end system and gets the response from the back
end.

3. The mobile adapter sends the enterprise service back-end response to the mobile
application.

Optional: A gateway can be placed between the mobile application and the Mobile
Integration adapter.

64 Integration Throughout and Beyond the Enterprise

Figure 7-2 Request Response: Mobile Service Integration pattern

7.1.2 Defining a Push Notification pattern

In the push notification scenario, the enterprise application pushes the notification messages
to the mobile devices. It uses a mobile back-end service that is running on the mobile
integration server, although the notifications can be either polled from the back end or pushed
by the enterprise application.

The enterprise application pushes the device notification messages by using the put
notification service in the ESB, and then the ESB calls the mobile back-end service to push
notification messages to the mobile devices that are subscribed for that specific event source
notification. The notification is received by the mobile devices regardless of whether the
application is running. The notification can be an alert message, badge message, sound, and
so on.

The workflow diagram in Figure 7-3 on page 66 shows more detail about these basic steps for
creating the Push Notification pattern:

1. The enterprise application pushes a notification message to the mobile device, using the
ESB and mobile back-end service.

2. The ESB receives the notification and calls the mobile back-end service to push
messages to go to the mobile device.

3. Messages go through the mobile integration server (back-end service for push notification)
to the mobile application and the mobile device.

For more information about the mobile push notification implementation, see the link to “Using
Worklight API for push notifications in native iOS applications” at the end of this chapter.

Chapter 7. Mobile Integration pattern 65

Figure 7-3 Push notification: Mobile Service Integration pattern

7.1.3 Level of operational control and insight

The operational control and the insight views are important parts of a system. The operational
control allows you to dynamically change the system behavior when necessary, such as
dynamically enabling throttle control of message processing by using a policy. The solution
needs to allow monitoring of various operations and resources that are running in the system.
In case of failure (such as the message rate crossing the threshold message rate due to
heavy message processing through the system), an alert must be sent to the system
administrator for action.

7.1.4 When to use these patterns

The Mobile Integration pattern is when an enterprise wants to externalize their services to the
external world by using mobile channels. Other patterns described in this book are used for
specific business operations for different applications channels.

The Mobile Integration and Push Notification patterns are applicable when enterprises in
retail, banking, transport, healthcare, travel, and so on need to connect the people through
mobile interfaces. The mobile interface services are built by using these patterns, so they are
fast and dynamic. Several new interfaces can be added or removed easily and dynamically.

These patterns can be used to integrate heterogeneous back-end environments of the
enterprise with mobile applications. They help extend systems and applications that are
running in the enterprise to the mobile user. The messages are sent in synchronous and
asynchronous fashion, depending on whether the mobile application is active or not active.

66 Integration Throughout and Beyond the Enterprise

The following two patterns open a mobile channel for an enterprise to extend their business
and services:

� Request-response pattern:

This is used when there are two-way interactions between the mobile application user and
an enterprise. For example, a request-response interaction is involved when a mobile user
wants to do one of these tasks:

– Pay bills
– Make an appointment at a medical clinic
– Buy an item from a retail shop that offers a mobile application
– Book travel reservations by using a company mobile application that uses an

asynchronous request-response for the request and confirmation

� Push Notification pattern:

This pattern is used when there is one-way integration, such as when the mobile user
subscribes to a service provided by the enterprise. For example, the bank pushes
notification messages to their customers for any transaction in their account and the
accounts’ current balances. A transaction can be salary deposit credit or a debit for bill
payment, for example. The bank can push the information to the mobile device every time
that the balance changes. Mobile users can unsubscribe from these services at any time.

7.1.5 A mobile banking example

A mobile banking product can be personal banking, loan offers, credit card offers, and so on.
The services can be account balance inquiry, fund transfer, loan payment, credit card
payment, loan application and processing, and so on. These products and services are
provided by the core banking system. Integration is required between the core banking
system that is running in the bank and the mobile application. The mobile-to-core banking
system integration must be highly secure and provide the required quality of service.

Mobile device users log in to their bank accounts by using a mobile application that is
provided by the bank. They initiate account balance inquiry and credit card or other bill
payment by using the services that are provided in the mobile application. This is a typical
example, and mobile users want such services to be provided by the bank anywhere,
anytime, but the benefit is mutual. Banks extend their businesses and mobile users get the
ease of using the services provided by the bank.

7.2 Ways to implement these patterns with IBM products

The implementation of the Mobile Integration pattern is simple, easy, and fast when you use
IBM products. The developer does not need to write application code or complex logic to
implement the pattern. IBM products provide simple steps to build mobile services to
integrate with enterprise back-end applications or services.

IBM Worklight platform is used to develop the mobile applications and related tasks, and the
IBM Integration Bus is used to create the enterprise services and the Worklight integration
adapter to connect the mobile application to the enterprise. The required business logic is
written in enterprise services that are created in the IBM Integration Bus.

Chapter 7. Mobile Integration pattern 67

There are several implementation factors that must be considered when creating a mobile
integration using the middleware and mobile application development platform:

� Easy to build. The solution should be easy to build by using automated steps.

� Easy to configure. The implemented solution should be easy to configure and change.

� Easy to extend. It should allow new services to be added dynamically.

� Easy to maintain. The solution should be easy to maintain by provide the flexible
deployment model.

� Transactional. The requests that are sent by the mobile device must be transactional. In
case of any failure, the transaction must be able to roll back.

� Throughput. The integration solution should give the required high throughput.

� Availability. The solution must be highly available.

� Security. The transactions must be secure and integrity of the data must be maintained.

� Monitoring. It is preferable to have operational monitoring of the solution to check the
overall performance and to record transactional event data in a repository.

IBM Integration Bus and IBM Worklight software support all of these requirements.

7.2.1 IBM Worklight mobile application development platform

IBM Worklight software provides an advanced mobile application development platform and
tools to develop software for smartphones and tablets. Worklight software helps organizations
of all sizes develop, run, and manage HTML5, hybrid, and native applications by using a
powerful and flexible mobile integrated development environment (IDE), next-generation
mobile middleware, end-to-end security, and integrated management and analytics. It helps
businesses reduce the code to shorten time-to-market for their products, and it reduces
complex implementation and maintenance.

Worklight has five components:

� Worklight Studio provides a comprehensive environment for advanced, rich,
cross-platform mobile application development.

� Worklight Server is mobile-optimized middleware that serves as a gateway between
applications, back-end systems, and cloud-based services.

� Worklight device runtime components offer runtime client application programming
interfaces (APIs) that enhance security, governance, and usability.

� Worklight Application Center helps you set up an enterprise application store that
manages the distribution of production-ready mobile applications.

� Worklight console is an administrative graphical user interface (GUI) for the server,
adapters, applications, and push services to help you manage, monitor, and instrument
mobile applications.

Worklight supports mobile application development for multiple mobile platforms, including
Android, BlackBerry, and Apple iOS, with a single code base that is compiled on the
respective platforms.

In the Mobile Integration pattern that is shown in Figure 7-1 on page 64 and in Figure 7-2 on
page 65, the Worklight adapter is the mobile integration adapter. The Worklight adapter runs
on the server and connects to mobile applications.

68 Integration Throughout and Beyond the Enterprise

Worklight adapters are the server-side code of applications that are deployed on and serviced
by the IBM Worklight mobile application development platform. The adapters connect to the
enterprise services that are running in the IBM Integration Bus and deliver data to and from
mobile applications and perform any necessary server-side business logic on this data.

7.2.2 IBM Integration Bus software

The IBM Integration Bus is an enterprise service bus that provides universal connectivity for
service-oriented environments and non-service oriented environments. It connects to a range
of different systems and endpoints. It also does the universal transformation and routing of
messages to integrate various applications, services, and protocols.

An integration solution is easy to develop, deploy, and manage by using the Integration Bus. It
is independent of any programming language, so developers can write business logic in the
programming languages of their choice, including Java, Microsoft .NET, PHP, ESQL, and so
on. It allows non-programmers to do the necessary message transformation by using the
Mapping Editor.

The Integration Bus supports the following industry-specific formats and protocols:

� ACORD AL3
� CSV
� EDIFACT
� FIX
� HL7
� SWIFT
� TLOG
� X12

The IBM Integration Bus Hypervisor Edition optimizes the Integration Bus for virtual
environments. A range of heterogeneous platforms and databases are supported to connect
to the back-end systems.

The Integration Bus reacts quickly to the changing technical and business requirements by
using rule and policy-based configuration. IBM Integration Bus is also optimized for a high
performance throughput and linear scaling, so your mobile solution can scale easily by adding
more processor and memory capacity.

You can gain dynamic operational control by using policy-based workload management. The
Integration Bus has a web-based advanced monitoring tool that provides the message
processing details for flow and integration nodes, the processor and memory activities,
resource use activities, and policy-based workload management by defining message rate
control and threshold alert.

Figure 7-1 on page 64 and Figure 7-2 on page 65 show how you can use the IBM Integration
Bus to create enterprise services in the enterprise service bus.

The IBM Integration Bus provides four built-in Mobile Integration patterns to accelerate
development:

� Microsoft .NET request-response
� Mobile Service
� Push Notification from IBM WebSphere MQ
� Resource Handler

Chapter 7. Mobile Integration pattern 69

These patterns are used to implement various mobile integration scenarios. For more
information, see the “Built-in patterns” section of the IBM Integration Bus Information Center:

http://bit.ly/1lTPMhj

You can also use the IBM Integration Bus to create customized Mobile Integration patterns.

7.3 Implementing the mobile banking example

The scenario: A bank wants offer bill payment and account balance inquiry services to their
customers, but opening an account or loan applications or processing will be reserved for the
bank staff to handle. However, the bank staff sometimes goes to the customer’s location to
open an account or processes loan applications by using mobile devices. So getting these
services on mobile applications ensures these services are available to the end users quickly,
and processing those service requests is fast. A typical architecture to implement such a
mobile banking service is shown in Figure 7-4.

An optional external gateway between the mobile application and the IBM Worklight adapter
helps process high volumes of low-value traffic between the mobile application and the
enterprise. Gateway security can be applied between the mobile application and the
Worklight adapter.

Figure 7-4 Mobile banking pattern architecture

To implement the Mobile Integration pattern in IBM Integration Bus, a new integration service
can be created in the Integration Bus, and different enterprise service operations can be
added to connect to the back-end systems. Several integration nodes are provided in the
palette to connect to different back-end applications, databases, and services. Alternatively, a
new integration service can also be created by using Web Services Description Language
(WSDL).

70 Integration Throughout and Beyond the Enterprise

http://bit.ly/1lTPMhj

The Mobile Integration service pattern is created by just three simple steps in the IBM
Integration Bus:

1. Create a new integration service (called MobileIntegrationService in this example). This
creates the enterprise service to connect to the mobile applications (see Figure 7-5).

Figure 7-5 Create a new integration service in the IBM Integration Bus toolkit

Chapter 7. Mobile Integration pattern 71

2. Implement the business logic in the enterprise to connect to the back-end system and get
the response for the service operation. You can add multiple operations for different
enterprise services (see Figure 7-6).

Figure 7-6 Customize the service interface to connect to the database in IBM Integration Bus toolkit

72 Integration Throughout and Beyond the Enterprise

3. Using the steps that are shown in Figure 7-7 and explained in Substep a, create a mobile
service pattern for the IBM Integration Bus integration service that you implemented in
Step 2.

Figure 7-7 Create a mobile service Worklight pattern in the integration service in toolkit

a. Under Integration Service Project, select Integration Service, and right-click to open
the drop-down menu.

i. Select Patterns Create Mobile Service Worklight.
ii. Provide the pattern name as MobileIntegrationPattern.

Chapter 7. Mobile Integration pattern 73

This creates a Worklight pattern for the Integration Service project, as shown in
Figure 7-8.

b. Select Generate, as shown in Figure 7-8, to generate the Mobile Integration adapter
project in the IBM Integration Bus toolkit.

Figure 7-8 Mobile service Worklight pattern in Integration Service in Iib

74 Integration Throughout and Beyond the Enterprise

The project is used to integrate the mobile application with the ESB service operation1. The
Worklight adapter project is shown in Figure 7-9.

Figure 7-9 Adapter project that is generated by the Worklight pattern in the toolkit

c. Export the MobileIntegrationPattern_ServiceAdaptor project from the IBM
Integration Bus and import it into IBM Worklight Design Studio.

d. Deploy the Worklight adapter MobileIntegrationPattern on Worklight Server.

The mobile integration adapter is ready to use. You can call the Worklight adapter function,
operation1, in your mobile application, which eventually calls the ESB enterprise services
operation1.

For more information, see these web pages:

� IBM Worklight: Build, test, run and manage mobile apps:

http://www.ibm.com/software/mobile-solutions/worklight/

� Getting started with IBM Worklight:

http://www.ibm.com/developerworks/mobile/worklight/getting-started.html

For more information about creating a Push Notification pattern, download this presentation:

� Using Worklight API for push notifications in native iOS applications:

http://bit.ly/PVqpyp

Chapter 7. Mobile Integration pattern 75

http://www.ibm.com/developerworks/mobile/worklight/getting-started.html
http://bit.ly/PVqpyp
http://www.ibm.com/software/mobile-solutions/worklight/
http://www.ibm.com/developerworks/mobile/worklight/getting-started.html

76 Integration Throughout and Beyond the Enterprise

Chapter 8. API Management pattern

This chapter describes the Application Programming Interface (API) Management pattern,
which is the most recent of the integration patterns that are addressed in this IBM Redbooks
publication. The API Management pattern uses APIs to integrate applications with enterprise
systems and external cloud-based services.

This chapters covers the following topics:

� The value of an application programming interface
� Characteristics and capabilities of the pattern
� Ways to implement the pattern with IBM products

8

© Copyright IBM Corp. 2014. All rights reserved. 77

8.1 The value of an application programming interface

An AP is a way for services and products to communicate with each other through a
documented interface. This pattern allows companies to open up data to external third-party
developers, to business partners and internal departments within their company.

In the 1990’s, when the World Wide Web was still new, many companies focused their
business toward creating a web presence. As Internet access became more readily available,
speed limitations were lifted, and technology improved, many companies that are migrated
from a relatively flat and static web presence to a more dynamic, content-rich, interactive
approach. Today, we live in a data-centric world of connected devices where we expect data
to be readily available at our fingertips. These devices include, but are not limited to,
smartphones, tablets, games consoles, and even cars and refrigerators. As the number of
devices has increased, so has the complexity to manage and maintain the code for each of
these devices. This is where an “API first” approach has gained the most traction. If the data
is made available through a common API, this allows a single point of maintenance, security,
versioning, and control. In this way, data can be available consistently and across multiple
devices. Also, by making APIs available and sharing them through social media, companies
can outsource application development to third parties or business partners, which is
becoming increasingly important as the number of devices increase.

APIs can help companies make data available to the outside world or to selected business
partners. These APIs can be used to create applications to market a company’s products and
develop new markets and opportunities. After APIs are established, they can be used to
develop brand awareness and increase profit. Most importantly the APIs, which are a now a
core part of the business also need to be treated as a product. Whether you or your company
are considering using APIs, it is likely one of your competitors are. In our highly competitive
world, this is a significant reason to consider adopting an API strategy.

8.2 Characteristics and capabilities of the pattern

As we have established, it is important to treat an API as one of your products. Although you
can make APIs available by using the Gateway pattern, as discussed in Chapter 7, “Mobile
Integration pattern” on page 63, the API Management pattern is a superset of the Gateway
pattern and builds upon it by providing more functionality to help you do this. To treat your API
as a product, you need an API strategy, a business model, a way of socializing the API,
information about the API use, and so on. To fully address these concerns, the API
Management pattern must meet the requirements of the following roles:

� API Product Manager:

The API product manager establishes the API strategy and pricing models. They are
responsible for the marketing and socialization of the APIs and use the available analytics
to evaluate the existing APIs and make investment decisions.

� API Developer:

The API developer is responsible for creating, testing, versioning, applying security and
publishing the APIs.

� Application Developer:

The application developer subscribes to the publicized APIs, which they use to create
applications from, such as a smartphone application, a web page etc.

78 Integration Throughout and Beyond the Enterprise

� Operations Lead:

The operations lead is responsible for the initial installation and configuration of the API
Management portal, as well as the day-to-day running and maintenance of the
environment. In a software as a service (SaaS) cloud solution, it is worth noting that this
role is outsourced and included as part of the hosting cost.

8.2.1 Business pricing models for APIs

There are several common business models for API exposure. Which model is appropriate for
a particular API depends on the goals of the API provider, which might include monetization,
brand awareness, and so on. These include but are not limited to free APIs, developer pays,
developer gets paid, and indirect models:

� Free APIs:

Available for use at no charge, such as the APIs for popular social networks. Free APIs
can drive adoption of APIs and brand loyalty and help the API provider enter new
marketing channels. Examples of free APIs are limited. Although there is usually no direct
business benefit gained from making free APIs available, most of the examples have an
indirect business benefit (see what follows).

� Developer pays:

In most cases, developers pay for use to help their own business ventures, as a cost of
doing business. There are also significant subcategories within this business model:

– Pay as you go. Pricing is determined by metered use. For example, the price for using
a cloud computing might be determined by the operating system and the size of the
solution on an hourly basis.

– Tiered. Developers pay for use of a particular tier, based on the number API calls over
a fixed time period. Although the cost increases per tier, the cost per API call usually
drops. Vertical resources use the tiered business model. Prices drop with using more
volume (API calls), so after analyzing their use over time, users can adjust their tiers.
This works similarly to how cell phone voice plans have worked for the past 10 years,
where levels of phone calls determine the per-call charge.

– Use-based. Pricing is determined by use and based on units of measure, such as API
calls. For example, a cloud storage company might charge per gigabyte of use per
month.

– Transaction fee: Pricing is dependent upon the value of the transaction. An electronic
money transfer company might charge a percentage of the transaction as their fee for
providing payment services.

– Freemium. Companies offer developers some of their API capabilities for no charge
and then charge for additional functions. For example, a web mapping service might
allow a low number of calls to be made to the API for free and charge for any additional
calls to the API.

� Developer gets paid:

In this model, the developer receives payments for extending the business model of
others. There are two major categories for this model:

– Revenue sharing. Developers receive a small percentage of total revenue, based on a
business agreement with the provider. For example, a mobile application store might
charge developers a yearly subscription, and the developer receives a percentage of
sales revenue for their applications.

Chapter 8. API Management pattern 79

– Affiliate. Developers receive increasing revenue (percentage-based, fixed price, or
tiered scale), based on extending partner solutions. For example, a shopping
price-comparison service might pay developers a small portion of revenue that is
based on the volume of revenue that their APIs generate.

� Indirect:

This business model does not include direct monetary exchange, but the API providers
benefit significantly from making these types of APIs available by generating revenue in
other ways. For example, a streaming media company can use an API to make it easier for
many consumer devices to easily support them, which helps increase the number of
subscribers. An online auction company could offer an API to give developers access to
trading services, which extends the reach of listings and helps increase revenue.

8.2.2 Components of an API Management pattern

The API Management pattern consists of the API Management portal, the API user, and the
enterprise services that are made available. These enterprise services might or might not be
made available through an enterprise service bus (ESB), see Figure 8-1.

Figure 8-1 Components of the API Management pattern

Each API consumer sends a request to the API Management portal, which interacts with the
enterprise service before sending a response to the consumer. APIs use industry-standard
message formats and protocols, such as SOAP for web services and XML or JavaScript
Object Notation (JSON) for Representational State Transfer (REST). The API management
solution typically acts as a simple proxy that forwards the request and response messages
from the back end. In advanced cases, it might also aggregate or mash up responses from
multiple systems or perform transformations if the back-end systems use a different message
format or protocol.

ESB

SOAP Service

RESTful Service

Database

Cloud Services

80 Integration Throughout and Beyond the Enterprise

8.2.3 Level of operational control and insight

As illustrated in Part 1, “Topology of an integrated enterprise”, important aspects of building
composable business systems are policy-based operational control and the ability to collect
insight through sensing of operational interactions. The Gateway pattern already provides a
high degree of IT operational control.

What the API Management pattern adds is a set of business controls and related business
insight. For example, from an IT operations perspective, the policy authors are primarily
concerned with the amount of traffic that an API is capable of handling, so the authors create
policies to protect the services that they are making available. However, from the business
perspective, the policy authors are focused on the contracts between the API consumer and
provider and enforcing and monitoring such agreements.

Good implementations of the API Management patterns supports both types of operational
control and insight: The business product aspect that is driven by the business owner of the
API and the IT operational aspects that are driven by the person responsible for the
operational health of the system.

8.2.4 When to use the API Management pattern

There are four typical adoption patterns for the API Management pattern: Internal, Mobile,
Partner, and External.

� Internal:

API Management adopters want to easily control and manage the API consumption within
the enterprise (SOAP, REST). Typically, this is where different departments or lines of
business want to “socialize” their APIs by sharing them on developer portals for other lines
of business, monitor who is using their APIs, and add a level of security and runtime
control. In addition, it is desirable to use security and use policies to both simplify and add
consistency across all of their APIs.

� Mobile:

API Management adopters would like to make data available to be used by various mobile
devices, such as mobile phones, tablets, utility meters, refrigerators, and thermostats. The
enterprise often does not have the resources to do mobile development internally, so they
need to secure and control access to data for third-party development. In this case, they
require consistent reports of consumer data across all channels (mobile, web, traditional
applications), which can require them to re-evaluate their digital strategy to put APIs at the
foundation. This scenario is often associated with external consumers. However,
companies are often required to make their internal data available to their mobile
workforce in a secure, easy, and efficient manner. IBM is an example of a company that
does this.

� Partner:

API Management adopters want a faster, consistent way to connect with multiple partners.
In some cases, the partners are forcing them to produce the API.

� External:

API Management adopters are seeking to disrupt existing value chains, increase brand
loyalty, and open new channels. They are taking an API first approach to new products.

Chapter 8. API Management pattern 81

8.2.5 Retail example

A leading electronics retailer has a high cost of sale because of their reliance on retail stores.
They have no participation in external, web-based, or mobile markets and limited access to
customers in locations without storefronts.

They solved this problem by publishing APIs that target content aggregation providers, such
as price comparison websites and product review websites. The APIs show their product
catalog, price list, and inventory by store locations. They increase revenue through
participation in external markets, increase profitability by closing under-performing stores,
and differentiate their products in external markets, such as Amazon.com, by providing
same-day fulfilment through web storefronts.

8.3 Ways to implement the pattern with IBM products

The API Management portal is an enhanced gateway that provides the features summarized
in the “Marketplaces” and “Capabilities for Service Providers” sections of the IBM reference
architecture for API Management, as shown in Figure 8-2.

Figure 8-2 IBM reference architecture for API management

In the “Marketplaces” section, the API Management software provides a developer portal.
The portal should allow self-service registration and manage unique identifiers for
applications. Application developers should be able to browse a registry of available APIs,
read documentation to learn how to use the APIs, and use test tools to try the APIs.

In the “Capabilities for API Providers” section, the API Management portal should support the
API development lifecycle. API developers use it to create, secure, deploy, test, debug, and

© 2013 IBM Corpo

Capabilities for API Providers

Capabilities for API Consumers

Social Feedback and Communities

Marketplaces

Self-Service Portal: Registration • Documentation • Sandbox

Security and Management

API Design and Integration

Analytics and Metering

DevOps for API

Composition

Platform and Infrastructure
Services

DevOps and App
Management

Mobile/Client Accelerators

Internal
Developers

Partner
Developers

External
Developers

Services: Data • Processes • Applications • Cloud Code

A
P

I S
tra

te
gy

 C
on

su
lti

ng

A
P

I Technical C
onsulting

Channels: Smartphones • Tablets • Desktops • Cars • TVs • Others

Business Support Systems

Cloud / On-prem / Hybrid

82 Integration Throughout and Beyond the Enterprise

version APIs and monitor their use. The API product manager uses the analytics to evaluate
the performance of APIs and, potentially, bill developers for use.

At run time, the API Management portal should also perform the usual gateway tasks such as
policy enforcement, caching, routing, transformation, and monitoring. The Operations Lead
can monitor the health of the API Management portal and the environment in which it is
running. The Ops Lead will also be able to scale the environment to meet increased API
traffic and ensure high availability.

8.3.1 IBM API Management benefits

IBM API Management is a unified on-premises environment that provides an intuitive user
experience for managing the complete API lifecycle, from creation, publication, and adoption,
to support and monitoring. It provides companies with the tools for creating, using proxies,
assembling, securing, scaling, and making APIs available to developers through a
customizable developer portal. This software enables businesses to attract and engage with
application developers to foster increased use of the published APIs. The API Management
robust administration portal allows companies to easily establish policies for critical API
attributes, such as self-registration, quotas, key management, and security policies. The
robust analytics engine provides valuable role-based insight for both API owners, solution
administrators, and application developers.

API Management enables companies to realize the maximum value from their APIs by
providing the following key features and benefits:

� Secures, scales, and controls access to APIs to provide a resilient and flexible API runtime
infrastructure. API Management is powered by IBM WebSphere DataPower Gateway
appliances.

� Empowers companies with the insight to change and grow their business in the new API
economy with robust business analytics.

� Rapidly addresses business demands with the creation of new APIs from existing
business assets or simple configuration-based cloud services integration.

� Nurtures innovation by building a community that attracts developers, entrepreneurs, and
partners who will rapidly build new applications and extend the value of your core
enterprise assets.

8.3.2 Mapping an IBM API Management portal to the API Management pattern

The IBM API Management environment meets the requirements of all of the following roles in
a single solution:

� API product manager:

The API product manager can manage APIs with business control. The manager can
define entitlements to specify the number of API calls a specific application is allowed to
make, approve or reject requests for entitlements, contact application developers through
email, or block malicious API users from making further API calls. The manager can also
quickly define a branded developer portal to share APIs with the developer community,
easily generate documentation, and control the visibility of APIs. And the manager can
view business analytics for the APIs, search and filter analytics data, and export use data
for billing purposes.

Chapter 8. API Management pattern 83

� API developers:

API developers can iteratively develop, test, version, and deploy APIs, all from a single
interface. The developers can quickly assemble new APIs through a configuration-not
coding approach. Developers can secure and scale APIs with WebSphere DataPower
technology, which provides built-in caching, quota management, and flood control.

� Application developers:

Application developers can register their applications, browse API documentation,
subscribe, and request entitlement for an API and test the API, all from a single
self-service portal. This gives application developers access to APIs to learn how to use
them in minutes.

� Operations leads:

The operations leads can view monitoring information and logs for the environment. The
ops leads can react to current use data and scale the environment elastically by adding
and removing appliances in a few simple clicks. They can partition APIs for different
departments or stages of development into separate tenants. They can also have full
control of the environment and data with on-premises deployment.

8.3.3 Implementing the retail example

Figure 8-3 illustrates an IBM API Management implementation of this retail example.

Figure 8-3 IBM API Management patter retail store implementation

The white boxes in the lower right of the diagram are the internal systems that a typical
retailer uses to store their product and customer information, and to process orders. In this
case, all requests to them go through the enterprise service bus.

Each IBM API Management environment consists of three logical components: management,
gateway, and analytics, as shown in the blue boxes in the diagram. The management
component hosts the administrator and developer portals and stores the configuration that is
created with them. At design time, it can connect to internal systems to test connectivity or

DataPower
Gateway

Analytics

ESB

Commerce
System

Order
System

CRM
System

Management

Cloud Console

API Manager

Developer Portal

R
un tim

e

D
esign Tim

e

84 Integration Throughout and Beyond the Enterprise

query for the metadata that is required by the graphical mapping tool. At run time, all requests
are received by the gateway component, which enforces entitlements and other policies
before routing them to the internal systems. The gateway component also sends analytics
data to the analytics component asynchronously to prevent performance degradation under
heavy loads.

At design time, the operations lead uses the Cloud Console portal to set up the environment
and create a tenant for the API developer to use. The API developer uses the API Manager
portal to create, test, and secure the APIs to make available. The application developer uses
the Developer Portal to register to use the APIs before making requests to them at run time.

Chapter 8. API Management pattern 85

86 Integration Throughout and Beyond the Enterprise

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Exposing and Managing Enterprise Services with IBM API Management, SG24-8193

� IBM WebSphere Application Server V7.0 Web Services Guide, SG24-7758

� Service Lifecycle Governance with IBM WebSphere Service Registry and Repository,
SG24-7793

� Unleashing DB2 10 for Linux, UNIX, and Windows, SG24-8032

� Introduction to Networking Technologies, GG24-4338

� WebSphere MQ Primer: An Introduction to Messaging and WebSphere MQ, REDP-0021

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� The Nexus of Forces: Social, Mobile, Cloud and Information, a Gartner special report:

http://www.gartner.com/technology/research/nexus-of-forces/

� IBM API Management

http://www.ibm.com/software/products/en/api-management

� Systems of Interaction:

http://www.ibm.com/software/solutions/systems-of-interaction/

� Systems of Engagement and the Enterprise:

http://www.ibm.com/software/ebusiness/jstart/systemsofengagement/

� IBM SOA reference model, IBM SOA Foundation: Providing what you need to get started
with SOA (2005 white paper):

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

� Service-oriented architecture (SOA): Simply good design (includes link to download the
ebook titled SOA Design Principles for Dummies):

http://www.ibm.com/software/solutions/soa/

© Copyright IBM Corp. 2014. All rights reserved. 87

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf
http://www.ibm.com/software/solutions/systems-of-interaction/
http://www.gartner.com/technology/research/nexus-of-forces/
http://www-01.ibm.com/software/ebusiness/jstart/systemsofengagement/
http://www.ibm.com/software/solutions/soa/
http://www.ibm.com/software/ebusiness/jstart/systemsofengagement/
http://www.ibm.com/software/products/en/api-management
ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf
http://www.gartner.com/technology/research/nexus-of-forces/

� Open Group SOA ontology:

https://www2.opengroup.org/ogsys/catalog/C144

� CDInput node, IBM Integration Bus Information Center:

http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/b
c14020_.htm

� CDOutput node, IBM Integration Bus Information Center:

http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/b
c14015_.htm

� “Using WebSphere Service Registry and Repository V8 and DataPower V5 for service
level mediation policy enforcement,” an IBM developerWorks article:

http://www.ibm.com/developerworks/websphere/library/techarticles/1212_willoughb
y/1212_willoughby.html

� XML-based attacks, an IBM WebSphere Developer Technical Journal article:

http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col
_hines.html

� IBM Integration Bus: General industry standards supported

http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/index.jsp?topic=%2Fcom.ibm.eto
ols.mft.doc%2Fah36080_.htm

� IBM Worklight overview:

http://www.ibm.com/software/mobile-solutions/worklight/

� IBM Worklight, Get Started:

http://www.ibm.com/developerworks/mobile/worklight/getting-started.html

� IBM Integration Community:

https://www.ibm.com/developerworks/connect/integration

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

88 Integration Throughout and Beyond the Enterprise

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www2.opengroup.org/ogsys/catalog/C144
https://www.ibm.com/developerworks/connect/integration
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14020_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14015_.htm
http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html
https://www.ibm.com/developerworks/connect/integration
http://www.ibm.com/developerworks/websphere/library/techarticles/1212_willoughby/1212_willoughby.html
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.doc%2Fah36080_.htm
http://www.ibm.com/software/mobile-solutions/worklight/
http://www.ibm.com/developerworks/mobile/worklight/getting-started.html
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.doc%2Fah36080_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.doc%2Fah36080_.htm
http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html
http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1212_willoughby/1212_willoughby.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1212_willoughby/1212_willoughby.html
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14015_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14015_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14020_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/topic/com.ibm.etools.mft.doc/bc14020_.htm

®

SG24-8188-00 ISBN 0738439630

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Integration Throughout
and Beyond the
Enterprise

Change the enterprise
with integration
patterns

Learn the recipe for
business integration

Discover the topology
of an engaging
enterprise

Throughout the history of the IT industry, integration has
been an important part of most projects. Whether it is
integration of transactions, data, or processes, each has
challenges and associated patterns and antipatterns. In an
age of mobile devices, social networks, and cloud services,
and big data analytics, integration is more important than
ever, but the scope of the challenge for IT projects has
changed.

Partner APIs, social networks, physical sensors and
devices, all of these and more are important sources of
capability or insight. It is no longer sufficient to integrate
resources under control of the enterprise, because many
important resources are in the ecosystem beyond
enterprise boundaries. With this as the basic tenet, we
address these questions:

� What are the current integration patterns that help
enterprises become and remain competitive?

� How do you choose when to use which pattern?

� What is the topology for a “composable business”?

� And how do you accelerate the process of
implementation through intelligent choice of supporting
integration middleware?

This IBM Redbooks publication guides integration
practitioners and architects in choosing integration patterns
and technologies.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Integration Throughout and Beyond the Enterprise

Integration Throughout and Beyond
the Enterprise

Integration Throughout and Beyond
the Enterprise

Integration Throughout and Beyond the Enterprise

Integration Throughout and Beyond
the Enterprise

Integration Throughout and Beyond
the Enterprise

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Topology of an integrated enterprise
	Chapter 1. Business integration in 2014
	1.1 The confluence of forces
	1.2 Growing the ecosystem beyond the enterprise
	1.3 The API and Service Economy

	Chapter 2. The composable business
	2.1 The recipe for a differentiating experience
	2.2 SOA design principles and their importance
	2.3 API management as the SOA renaissance

	Chapter 3. Middleware topology of an engaging enterprise
	3.1 Messaging
	3.2 Integration bus
	3.3 Gateway

	Part 2 Integration patterns
	Chapter 4. Enterprise Application Integration pattern
	4.1 Characteristics and capabilities of the pattern
	4.1.1 Level of operational control and insight
	4.1.2 When to use the Enterprise Application Integration pattern
	4.1.3 Retail business example

	4.2 Ways to implement the pattern with IBM products
	4.2.1 IBM WebSphere MQ messaging software
	4.2.2 Mapping WebSphere MQ to the EAI pattern
	4.2.3 Implementing the retail example

	Chapter 5. Service Integration pattern
	5.1 Characteristics and capabilities of the pattern
	5.1.1 Benefits of adopting the Service Integration pattern
	5.1.2 Level of operational control and insight
	5.1.3 When to use the Service Integration pattern
	5.1.4 Retail example

	5.2 Ways to implement the pattern with IBM products
	5.2.1 IBM Integration Bus
	5.2.2 Mapping the IBM Integration Bus to the Service Integration pattern
	5.2.3 Operational capabilities
	5.2.4 Implementing the retail example

	Chapter 6. Gateway pattern
	6.1 Gateway functions and configuration
	6.2 Characteristics and capabilities of the pattern
	6.2.1 Level of operational control and insight
	6.2.2 When to use the Gateway pattern
	6.2.3 Retail example

	6.3 Ways to implement the pattern with IBM products
	6.3.1 Security
	6.3.2 Interconnection
	6.3.3 Routing
	6.3.4 Caching
	6.3.5 Management

	Chapter 7. Mobile Integration pattern
	7.1 Characteristics and capabilities of the pattern
	7.1.1 Defining a request-response pattern
	7.1.2 Defining a Push Notification pattern
	7.1.3 Level of operational control and insight
	7.1.4 When to use these patterns
	7.1.5 A mobile banking example

	7.2 Ways to implement these patterns with IBM products
	7.2.1 IBM Worklight mobile application development platform
	7.2.2 IBM Integration Bus software

	7.3 Implementing the mobile banking example

	Chapter 8. API Management pattern
	8.1 The value of an application programming interface
	8.2 Characteristics and capabilities of the pattern
	8.2.1 Business pricing models for APIs
	8.2.2 Components of an API Management pattern
	8.2.3 Level of operational control and insight
	8.2.4 When to use the API Management pattern
	8.2.5 Retail example

	8.3 Ways to implement the pattern with IBM products
	8.3.1 IBM API Management benefits
	8.3.2 Mapping an IBM API Management portal to the API Management pattern
	8.3.3 Implementing the retail example

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

