
ibm.com/redbooks

Front cover

Securing Your Mobile
Business with IBM
Worklight

Scott Andrews
Juarez Barbosa Junior

Virginijus Kaminas
Jia Lei Ma

Dale Sue Ping
Madlin Seidel

Apply Worklight security features to
your mobile applications

Integrate Worklight with IBM
Security Access Manager

Learn by example with
practical scenarios

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Securing Your Mobile Business with IBM Worklight

October 2013

SG24-8179-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2013)

This edition applies to Version 6 of IBM Worklight.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Chapter 1. Overview of IBM MobileFirst and its security offerings 1
1.1 Business value of mobile technologies . 2
1.2 IBM MobileFirst solution overview. 2

1.2.1 Mobile application development with IBM MobileFirst Platform 3
1.2.2 Bring your own device with IBM MobileFirst Management 4
1.2.3 Device and data protection with IBM MobileFirst Security 5
1.2.4 Optimization of mobile experiences with IBM MobileFirst Analytics 6
1.2.5 Putting it all together . 6

1.3 Mobile security threats . 9
1.3.1 Loss and theft . 10
1.3.2 Malware . 10
1.3.3 Spam. 10
1.3.4 Phishing . 11
1.3.5 Bluetooth and WiFi . 11

1.4 Mobile application landscape . 11
1.4.1 Mobile application platform . 12
1.4.2 Mobile application types . 12
1.4.3 Putting it all together . 14

1.5 IBM MobileFirst Security solution outline . 14
1.5.1 IBM Worklight platform as the basis for mobile security . 14
1.5.2 User protection with IBM Security Access Manager . 16
1.5.3 Application security testing with IBM Security AppScan . 16
1.5.4 Delivery of services and applications with IBM WebSphere DataPower 17
1.5.5 Security intelligence with IBM Security QRadar SIEM . 17
1.5.6 VPN software with IBM Mobile Connect . 17

Chapter 2. Business scenario used in this book . 19
2.1 Mobile strategy business drivers. 20

2.1.1 A secure platform foundation . 20
2.1.2 Increased staff productivity . 22
2.1.3 Secure and easy access for customers . 23
2.1.4 Rapid development and deployment . 25

2.2 Conclusion . 26

Chapter 3. IBM Worklight security overview. 27
3.1 Security principles and concepts. 28

3.1.1 Authentication and authorization. 28
3.1.2 Confidentiality, integrity, and nonrepudiation . 29
3.1.3 Other security concepts . 29

3.2 IBM Worklight security capabilities . 30
© Copyright IBM Corp. 2013. All rights reserved. iii

3.2.1 Protect the data on the device . 30
3.2.2 Protect the application . 31
3.2.3 Ensure security updates . 32
3.2.4 Streamline corporate security processes . 32
3.2.5 Provide robust authentication and authorization. 33

3.3 IBM Worklight security framework. 34
3.3.1 Realms and security tests . 36
3.3.2 Worklight protocol and client challenge handlers . 36
3.3.3 Integration with web container security . 37
3.3.4 Integration with web gateways . 38

3.4 Conclusion . 38

Chapter 4. Integrating Worklight with enterprise security . 41
4.1 IBM Worklight security framework. 42

4.1.1 Challenge handlers . 44
4.1.2 Authentication configuration file . 44
4.1.3 Authentication realms . 49
4.1.4 Login modules. 61
4.1.5 Security tests . 68
4.1.6 User registries . 70

4.2 Restricting access to resources with authentication realms . 71
4.2.1 Protecting Worklight applications . 71
4.2.2 Protecting Worklight adapter procedures . 71
4.2.3 Protecting static Worklight web applications. 72
4.2.4 Protecting event sources . 72

4.3 Configuring Worklight for LTPA authentication . 73

Chapter 5. Applying Worklight security features . 77
5.1 Client-side authentication concepts and entities . 78

5.1.1 Challenge handler . 78
5.1.2 Device single sign-on . 79

5.2 Encrypted offline cache and JSONStore. 81
5.2.1 EOC overview . 81
5.2.2 EOC APIs . 82
5.2.3 JSONStore overview. 83
5.2.4 The JSONStore API . 86
5.2.5 JSONStore integration with Worklight adapters . 88
5.2.6 JSONStore encryption using FIPS 140-2 . 89

5.3 Client-side device provisioning and application authenticity . 90
5.3.1 Device provisioning . 90
5.3.2 Device ID on Android and iOS . 92
5.3.3 Implementing device provisioning. 92
5.3.4 Control and confirm application authenticity . 96

5.4 Direct Update . 97
5.4.1 Using Direct Update . 97

5.5 Remote Disable. 98

Chapter 6. Integration with IBM Security Access Manager. 101
6.1 IBM Security Access Manager introduction . 102

6.1.1 IBM Security Access Manager components . 102
6.2 Enabling identity aware applications . 103

6.2.1 IBM Security Access Manager for web login form single sign-on 104
6.2.2 Tivoli Federated Identity Manager OAuth single sign-on 111
6.2.3 Other authentication types . 120
iv Securing Your Mobile Business with IBM Worklight

6.3 Risk-based access . 121
6.3.1 Risk-based access overview. 121
6.3.2 Securing Worklight adapters with risk-based access . 122
6.3.3 Authorization process flow . 124
6.3.4 Policy authoring . 125
6.3.5 Policy attachment . 127
6.3.6 Policy evaluation . 128
6.3.7 Step-up authentication . 130

6.4 Worklight adapter single sign-on. 132
6.5 Integrated security solution . 135

6.5.1 Solution architecture . 135
6.5.2 Conclusion . 137

Chapter 7. Integration with IBM WebSphere DataPower . 139
7.1 Introduction to the DataPower Appliances . 140
7.2 DataPower Integration Appliance XI52 overview . 140
7.3 Integrating WebSphere DataPower with Worklight . 142

7.3.1 Patterns for integration . 142
7.3.2 Reverse Proxy Pattern . 143
7.3.3 Configuring the Worklight Server . 145
7.3.4 Configuring the mobile application . 146
7.3.5 Configuring the multi-protocol gateway on the DataPower Appliance 148
7.3.6 Conclusion . 158

Appendix A. Additional material . 159
Locating the web material . 159
Downloading and extracting the web material . 159

Related publications . 161
IBM Redbooks . 161
Help from IBM . 161
 Contents v

vi Securing Your Mobile Business with IBM Worklight

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AppScan®
Cast Iron®
DataPower®
developerWorks®
Extreme Blue®
Global Business Services®

i5/OS™
IBM®
Lotus®
RACF®
Rational®
Redbooks®

Redbooks (logo) ®
Tealeaf®
Tivoli®
WebSphere®
X-Force®
z/OS®

The following terms are trademarks of other companies:

Evolution, and Kenexa device are trademarks or registered trademarks of Kenexa, an IBM Company.

QRadar, and the Q1 logo are trademarks or registered trademarks of Q1 Labs, an IBM Company.

Worklight is trademark or registered trademark of Worklight, an IBM Company.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
viii Securing Your Mobile Business with IBM Worklight

http://www.ibm.com/legal/copytrade.shtml

Preface

The IBM® Worklight® mobile application platform helps you to develop, deploy, host, and
manage mobile enterprise applications. It also enables companies to integrate security into
their overall mobile application lifecycle.

This IBM Redbooks® publication describes the security capabilities offered by Worklight to
address mobile application security objectives.

The book begins with an overview of IBM MobileFirst and its security offerings. The book also
describes a business scenario illustrating where security is needed in mobile solutions, and
how Worklight can help you achieve it.

This publication then provides specific, hands-on guidance about how to integrate Worklight
with enterprise security. It also provides step-by-step guidance to implementing mobile
security features, including direct update, remote disable, and encrypted offline cache.
Integration between Worklight and other IBM security technologies is also covered, including
integration with IBM Security Access Manager and IBM WebSphere® DataPower®.

This Redbooks publication is of interest to anyone looking to better understand mobile
security, and to learn how to enhance mobile security with Worklight.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Scott Andrews is an Advisory Software Engineer in the
Australia Development Lab in Gold Coast, Australia. He is the
Team Lead for the IBM Security Access Manager Integration
Factory, specializing in IBM Security Access Manager, IBM
Tivoli® Federated Identity Manager, and IBM Tivoli Security
Policy Manager.

Scott has designed and delivered security integrations for
many third-party products, including Worklight, JBoss, and
Microsoft SharePoint. He has assisted clients with the
architecture and deployment of these security integrations. He
joined IBM in 2002 after graduating from Bond University,
Australia with a Bachelor of Information Technology degree,
and remains active today as an IBM University Ambassador.
© Copyright IBM Corp. 2013. All rights reserved. ix

Juarez Barbosa Junior is a Mobile Application Developer and
Architect currently playing a role as IT Specialist for the
worldwide Development Support Team with IBM Global
Business Services®. He is a technology enthusiast who is
passionate about Java and mobile computing, and he started
working with mobile back in 2003.

He has 19 years of experience in IT, with 15 years using Java
platforms and 10 years working with mobile projects including
application development, software architecture, and systems
integration. He is a former Nokia Developer Champion and an
IBM Redbooks Thought Leader for IBM Mobile.

Virginijus Kaminas is a Software Engineer based in Ireland,
and works for the Mobile Center of Competency for Industry
Solutions. He joined IBM in 2012, was part of the Extreme
Blue® program, and helped to develop Android and iOS
applications for browsing IBM WebSphere Portal content.

His focus is on mobile solutions using Worklight, and he has
contributed numerous articles regarding leading practices
associated with mobile development. He holds a BSc degree in
Computer Applications from Dublin City University, and is an
IBM Redbooks Thought Leader.

Jia Lei Ma is an Information Developer at the Shanghai site of
the China Development Lab. She joined IBM in 2005, and has
worked as an element planner and quality assurance (QA) lead
on various writing projects. These projects cover topics
including IBM z/OS®, IBM i5/OS™, and IBM Rational®
compilers.

She holds a BA degree in English from Fudan University, and is
a certified Project Management Professional.

Dale Sue Ping is a WebSphere Technical Sales professional in
Canada. He has 35 years of experience in the IT industry
(technical and managerial), mostly with z/OS systems. For the
past 12 years, he has specialized in the WebSphere product
portfolio, such as Worklight and IBM WebSphere Application
Server.

He works with technologies in the areas of connectivity,
including service-oriented architecture (SOA) and enterprise
service bus (ESB), in addition to business process
management. He holds a BSc degree in Computer Science
from the University of Toronto.
x Securing Your Mobile Business with IBM Worklight

This project was managed by the following IBM Redbooks team members:

� Martin Keen

IBM Redbooks Project Leader

� Elise Hines

IBM Redbooks Technical Writer

Thanks to the following people for their contributions to this project:

� Miku Jha

IBM Product Manager for IBM Mobile

� Raj Balasubramanian

IBM Product Design and Development, IBM MobileFirst

� Tom Mulvehill

IBM Security Product Management

� Patrick Wardrop

IBM Product Architect, IBM Security Access Manager

� Shane Weeden

IBM Product Architect, IBM Security Systems

� Keisha McKenzie

IBM Software Group Worldwide Market Segment Manager

� Tracy Clark

IBM Software Group Worldwide Manager of Content and Messaging, Mobile Enterprise
Marketing

� Michael Ortman

IBM Software Engineer, Worklight Research and Development

� Ozair Sheikh

Senior Managing Consultant, Software Services for WebSphere

� Shiu Fun Poon

DataPower Security Architect, WebSphere DataPower Appliance Development

Madlin Seidel is an IBM employee with the corporate
alternative work arrangement in Germany. She joined IBM in
2011, and has gained insight into various IBM divisions since
then.

Madlin is currently studying International Business
Administration in the corporate integrated degree program. She
is going to graduate in 2014, and will hold a bachelor’s degree
from the Berlin School of Economics and Law.
 Preface xi

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies.

Your efforts will help to increase product acceptance and customer satisfaction, as you
expand your network of technical contacts and relationships. Residencies run from two to six
weeks in length, and you can participate either in person or as a remote resident working
from your home base.

Obtain more information about the residency program, browse the residency index, and apply
online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii Securing Your Mobile Business with IBM Worklight

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Overview of IBM MobileFirst and
its security offerings

Innovative enterprises gain opportunities by bringing all of their resources together to
strengthen client engagement, whenever and wherever the client wants. IBM MobileFirst
offers a complete solution for mobile products and services. Enterprises can use it to achieve
efficiency and gain a competitive advantage.

This chapter introduces the IBM MobileFirst portfolio, including its application development
platform, which integrates management, security, governance, and analytics capabilities.

Due to the increasing importance of security and risk mitigation in mobile enterprises, this
chapter also describes common security challenges, and provides an overview of IBM
Worklight and enterprise security products, including IBM Security Access Manager and IBM
WebSphere DataPower.

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 Business value of mobile technologies

As technology advances, usage patterns change. In addition, new business tools, such as
smartphones and tablets, emerge. BlackBerry was the de facto standard mobile device for
enterprises for many years. However, iOS and Android smartphones have superseded the
BlackBerry market share. Mobile applications (apps) are no longer side effects of the social
media empire, but have become an essential tool for business productivity.

Every day, countless confidential transactions with financial institutions, online merchants,
airlines, and various other retailers are performed on mobile devices. These transactional
trends have been analyzed, and help to formulate innovative mobile-based advertising
strategies, such as location-based advertising campaigns.

These strategies have paid off: 75% of mobile shoppers take action after receiving
location-based messages1. There is increasing use of mobile devices as the primary means
of interaction and communication with employers, customers, family, and friends. According to
recent studies, 91% of mobile users keep their devices within reach 100 percent of the time2.

Therefore, providing a highly available, innovative, and customer-focused mobile presence
has become crucial to enterprise success and growth.

1.2 IBM MobileFirst solution overview

Whether your aim is to transform your customer acquisition strategies, to rationalize your
business processes, or to boost your product and service innovations, IBM MobileFirst offers
a broad mobile solution portfolio that fits your business needs. IBM MobileFirst enables you to
encourage customer-building touch points, and deepen relationships with your customers,
employees, and partners in real time.

IBM MobileFirst provides dedicated industry strategies, solutions, and services that can be
designed, integrated, and delivered by IBM and its partners. These solutions are delivered
using a common application and data platform with robust management, security, and
analytics.

Furthermore, the IBM MobileFirst portfolio facilitates rapid integration between social media,
cloud services, and back-end technologies that secure and manage strategic business
processes. Figure 1-1 on page 3 depicts IBM MobileFirst’s holistic approach to providing an
end-to-end solution portfolio.

1 IBM Mobile First, http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF
2 http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF

Take advantage of mobile technologies to achieve the following business benefits:

� Attract new customers, transform your value chain, and increase productivity.

� Engage users by delivering apps that are created with simplified multichannel
development solutions.

� Turn interactions into an opportunity for return on engagement (ROE) and return on
investment (ROI).

� Provide a consistent brand experience.

� Deliver innovation by using cloud technologies to meet increased IT demands, lower
costs, and to gain insight, visibility, and control.
2 Securing Your Mobile Business with IBM Worklight

http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF

Figure 1-1 IBM MobileFirst overview

This section explores how the IBM MobileFirst offerings can contribute to your business
success.

1.2.1 Mobile application development with IBM MobileFirst Platform

IBM MobileFirst Platform has key capabilities designed to build and deliver mobile solutions
rapidly, with increased quality and lower cost, spanning multiple platforms.

The key offerings for developing and deploying mobile apps are IBM Worklight and IBM
Rational Test Workbench.

IBM Worklight
IBM Worklight offers enterprises a secure platform and different tools to develop, test, and
manage mobile apps (See 1.5.1, “IBM Worklight platform as the basis for mobile security” on
page 14).

Application & Data Platform

Cloud & Managed Services

D
evelo

p
m

en
t &

 In
teg

ratio
n
 S

ervices

S
trateg

y &
 D

esig
n
 S

ervices

Management Security Analytics

Devices Network Services

IBM MobileFirst Platform provides the following highlights:

� Native, web, or hybrid application development
� Tools for building and testing high-quality applications for several devices
� Management, security, delivery, and distribution of applications
� Simplified connectivity to existing data and services
� On-premise or managed service delivery
Chapter 1. Overview of IBM MobileFirst and its security offerings 3

IBM Rational Test Workbench
IBM Rational Test Workbench is a comprehensive test automation solution that facilitates
regression, performance, and scalability testing and integration technologies. IBM Rational
Test Workbench enables your enterprise to build intelligent and interconnected applications,
which can either be deployed in a traditional infrastructure or a cloud infrastructure.

IBM Rational Test Workbench provides enterprises with the following functionality:

� Significant reduction of test cycle times

� Test automation for all types of applications, using a physical device or a mobile emulator

� Simplification of test creation, with storyboard testing and code-free test authoring

� Rapid development of complex performance tests, with script-less, visual, and workload
models

� Earlier end-to-end integration testing throughout hardware, software, and cloud-based
dependencies

� Extensibility

For more information about IBM Rational Test Workbench, see the following website:

http://www-03.ibm.com/software/products/us/en/rtw/

1.2.2 Bring your own device with IBM MobileFirst Management

IBM MobileFirst Management deals with the challenges of mobile devices and applications,
which have become increasingly valuable as enterprises continue to develop and implement
bring your own device (BYOD) policies. For enterprises whose focus is on managing
sensitive data, tracking and optimizing mobile expenses, and handling multi-platform
complexities, IBM MobileFirst Management is a viable option.

The following capabilities are new in IBM Worklight V6.0:

� Embedded functional testing. Worklight V6.0 replaces time-consuming manual test
processes with the industry’s first integrated mobile app testing capability.

� Embedded customer experience analytics. Developers can instrument their mobile
apps with an analytics framework that collects data as the app is being used by the
customer. The instrumentation framework can be easily extended with IBM Tealeaf®
CX Mobile to analyze mobile apps for greater marketing insight.

� Geo-location toolkit. Geo-location data is one of the most powerful differentiators of
mobile apps. The goal is to avoid exhausting resources, such as battery life and
network bandwidth, by constantly polling the current location. The Worklight V6.0 toolkit
enables developers to set policies for acquiring geo data, and to send it in batches only
when it is needed to trigger business actions.
4 Securing Your Mobile Business with IBM Worklight

http://www-03.ibm.com/software/products/us/en/rtw/

As the key offering in this domain, IBM Endpoint Manager for Mobile Devices provides a
single platform with complete integration. You can use this platform to manage, secure, and
report on notebooks, desktops, servers, smartphones, tablets, and even point-of-sale
terminals. The unprecedented benefit to the enterprise is visibility and control over all
devices, cost reduction, productivity increases, and compliance improvements.

For more information about IBM Endpoint Manager for Mobile Devices, see the following
website:

http://www-03.ibm.com/software/products/us/en/ibmendpmanaformobidevi/

1.2.3 Device and data protection with IBM MobileFirst Security

As day-to-day business becomes increasingly global, the topic of mobile security gains
importance. Due to the existence of many threats and opportunities for hacking, companies
must increasingly focus on security and prevention. IBM MobileFirst Security serves
companies that aim to protect devices and data, ensuring secure network access and mobile
apps.

IBM MobileFirst Security consists of the following products, which are discussed in more
detail in the referenced sections:

� IBM Security Access Manager

See 1.5.2, “User protection with IBM Security Access Manager” on page 16.

� IBM Security AppScan®

See 1.5.3, “Application security testing with IBM Security AppScan” on page 16.

� IBM WebSphere DataPower

See 1.5.4, “Delivery of services and applications with IBM WebSphere DataPower” on
page 17.

� IBM Security QRadar® security information and event management (SIEM)

See 1.5.5, “Security intelligence with IBM Security QRadar SIEM” on page 17.

� IBM Mobile Connect

See 1.5.6, “VPN software with IBM Mobile Connect” on page 17.

This Redbooks publication also shows individual use cases with IBM security offerings in the
following chapters:

� Chapter 6, “Integration with IBM Security Access Manager” on page 101
� Chapter 7, “Integration with IBM WebSphere DataPower” on page 139

IBM MobileFirst Management offers the following functionality:

� Unified management across devices

� Selective destruction of corporate data

� Configuration and enforcement of password policies, encryption, virtual private network
(VPN) access, and camera use

� An integrated enterprise app store to streamline workflow between development and
operations

� Detailed usage analysis for optimization of telecommunication expenses

� A user portal for management of mobile equipment, carrier plans, and usage tracking
Chapter 1. Overview of IBM MobileFirst and its security offerings 5

http://www-03.ibm.com/software/products/us/en/ibmendpmanaformobidevi/

1.2.4 Optimization of mobile experiences with IBM MobileFirst Analytics

The goal of IBM MobileFirst Analytics is to provide a qualitative experience for your clients. It
analyzes mobile behaviors and quantifies the business impact of usage patterns. IBM
MobileFirst Analytics can also improve customer service and satisfaction, which consequently
drives customer loyalty.

In the domain of analytics, the key offering is IBM Tealeaf CX Mobile. Organizations can use it
to achieve the following benefits:

� Optimize customer experiences for all users with mobile web, HTML5 sites, hybrid apps,
and native applications.

� Gain complete mobile visibility by capturing user information for mobile websites, including
network and client interactions, and touchscreen gestures, such as pinching, zooming,
scrolling, and device rotation.

� Build and manage early warning systems to detect mobile user problems. Provide
proactive awareness about mobile app failures, usability issues, or other obstacles that
lead to failed transactions, abandonment, poor application store rankings, and negative
feedback.

� Quantify revenue impact and segmentation with real-time, drag-and-drop analysis of
specific mobile user behaviors or device attributes.

� Quickly find and isolate problems within mobile customer sessions, with powerful ad hoc
discovery and segmentation without predefining tags or beacons.

For more information, see the following website:

http://www-03.ibm.com/software/products/us/en/cx-mobile

1.2.5 Putting it all together

IBM MobileFirst offerings follow the eight stages of the mobile development lifecycle
(Figure 1-2 on page 8):

1. Design and develop

In the first stage of the mobile development lifecycle, the mobile architecture has to be
designed and developed. This can be performed using IBM Worklight. Making use of
open, flexible, and standardized cross-platform (iOS, Android, Windows Phone, and
BlackBerry) development methodologies, Worklight provides a rich development
environment maximizing code reuse.

IBM Worklight helps you to develop mobile apps, but also to deploy, host, and manage
mobile enterprise apps. With IBM Worklight Studio, organizations can push developed
mobile apps straight to the IBM Worklight Server and to IBM Worklight Application Center
for fast distribution.

IBM MobileFirst Analytics offers the following functionality:

� Automatic detection of client issues through user and mobile device data
� User ability to drill down with high fidelity replay and reporting of the user experience
� Correlation of client behavior through network and application data
� High conversion and retention rates with quantifiable business impact analysis
6 Securing Your Mobile Business with IBM Worklight

http://www-03.ibm.com/software/products/us/en/cx-mobile

2. Instrument

In the next step, customized applications can get instrumented in favor of analytics,
security, and management control. IBM Tealeaf collects, analyzes, and streamlines
application usage, responsiveness, and device information, such as device or app IDs.
This provides full client experience management (see 1.2.4, “Optimization of mobile
experiences with IBM MobileFirst Analytics” on page 6).

3. Integrate

Mobile cloud services can be integrated. Mobile cloud services are high-value middleware
capabilities that are designed to be used by mobile apps. As an example, consumers
increasingly purchase clothing on their mobile devices. A pass service enables companies
to engage with those customers easily by sending them loyalty coupons, discounts, and so
on. Worklight and IBM WebSphere Cast Iron® can process such an integration with
back-end data, systems, and cloud services.

For cloud services, a firewall controls inbound and outbound connections. To secure these
connections, an enterprise’s internal IT infrastructure can be protected with a proxy or a
security gateway, such as IBM Security Access Manager or WebSphere DataPower.

Using a security gateway, such as IBM WebSphere DataPower, enables companies to
control the parts of infrastructure that are shown to consumers. This functionality is
especially relevant for push notifications (see 1.5.2, “User protection with IBM Security
Access Manager” on page 16 and 1.5.4, “Delivery of services and applications with IBM
WebSphere DataPower” on page 17).

For more information about IBM Worklight, WebSphere Cast Iron, and WebSphere
DataPower, see Extending your business to mobile devices with IBM Worklight,
SG24-8117:

http://www.redbooks.ibm.com/redpieces/abstracts/sg248117.html

4. Test

To test the configured, enterprise-specific app, your company can use IBM Rational Test
Workbench. It is a comprehensive test automation solution, which enables regression,
performance, and scalability testing (see 1.2.1, “Mobile application development with IBM
MobileFirst Platform” on page 3).

5. Scan and certify

In addition to the customized app testing run by Rational Test Workbench, IBM Security
App Scan is able to scan, evaluate, and certify an organization’s apps. It provides the user
with enhanced vulnerability testing, scanning, and reporting for mobile web apps and web
elements (such as JavaScript and HTML5), or for hybrid mobile apps (see 1.5.3,
“Application security testing with IBM Security AppScan” on page 16).

6. Deploy

The app is distributed to various channels, such as Worklight Application Center, devices
managed by IBM Endpoint Manager for Mobile Devices, and external app stores. IBM
Worklight Application Center distributes mobile apps inside of a company, and IBM
Endpoint Manager for Mobile Devices addresses mobile device management.

7. Manage

Using the application management functionality of the Worklight Application Console
helps enterprises to manage mobile app releases based on pre-established rules, such as
rules concerning all apps deployed, adapters, and push notification. The Worklight
Application Console helps companies to manage authentication, unified push and Short
Message Service (SMS) notifications, operational analytics, and app versions.
Chapter 1. Overview of IBM MobileFirst and its security offerings 7

http://www.redbooks.ibm.com/redpieces/abstracts/sg248117.html

For more information about Worklight components, see 1.5.1, “IBM Worklight platform as
the basis for mobile security” on page 14, and Extending your business to mobile devices
with IBM Worklight, SG24-8117.

8. Obtain insight

At the end of the cycle, insights can be derived from Tealeaf usage pattern analysis, which
improves the effectiveness of your application. Consequently, this understanding will not
just close the iterative mobile development circle, but can even influence the next iteration
of the product design.

Figure 1-2 shows the eight stages of the mobile development lifecycle.

Figure 1-2 IBM mobile development lifecycle

So far, this chapter has shown that your organization can use IBM MobileFirst throughout the
mobile app development lifecycle, making it a true end-to-end solution.

Because this book focuses on security issues, the next sections focus on the security aspects
of IBM MobileFirst.

Design & Develop

Integrate

Instrument

Test

Scan & CertifyDeploy

Manage

Obtain Insight
8 Securing Your Mobile Business with IBM Worklight

1.3 Mobile security threats

This section provides information about the various security threats that many enterprises
face when operating a mobile business.

In a mobile world, there can often be little or no control over the device:

� When it is used
� Where it is used
� Who is using it
� What it is used for

The latest mobile devices are designed to offer abilities beyond voice and email, and to
provide broad internet and network connectivity:

� 3G and 4G
� Long-term evolution (LTE)
� WiFi
� Bluetooth
� A wired connection to a personal computer

However, the increasing number of ways to transmit data also creates a number of potential
ways that the device can be exploited.

When a device downloads a new mobile app from an online application store, there is the
hazard that the software contains malware able to damage private and corporate data on the
device. A device connected through WiFi or Bluetooth can be exploited and used in
man-in-the-middle attacks. As shown in Figure 1-3, security threats can occur in multiple
places along the varying paths of data transmission.

Figure 1-3 Flow of data transmission and potential locations of exploitation

A threat can occur

Mobile device Corporate VPN
Gateway

Corporate intranet

Web site

App store

Internet

Wi-Fi device

(Bluethooth enabled)
Mobile device

Telco service
provider

(Bluetooth enabled)
Mobile device
Chapter 1. Overview of IBM MobileFirst and its security offerings 9

The following hazards are among the most frequently seen mobile device security threats:

� Loss and theft
� Malware
� Spam
� Phishing
� Bluetooth and WiFi exploits

1.3.1 Loss and theft

Due to the small size and high portability of mobile devices, and the practice of BYOD
encouraging the mix of private and business use, loss and theft are the most obvious security
concerns for devices containing enterprise data or connecting to enterprise networks.
According to a mobile threat study by Juniper Networks, 1 in 20 mobile devices has been
stolen or lost in 20103, which reinforces the severity of this security threat.

So, what do you do if your device gets stolen? If the access to the device or the data is not
effectively controlled, the data stored on the device can be compromised. The following
techniques can reduce this risk:

� Using a complex password
� Locating the device remotely on a map using global positioning services (GPS)
� Locking the device to render it useless
� Wiping data remotely

1.3.2 Malware

Mobile device malware, such as viruses, worms, trojans, and spyware, has been on the rise,
because most mobile platforms do not have native mechanisms to prevent or detect malware.
Among others, malware can perform the following actions:

� Cause the loss of personal or confidential data.

� Incur additional service charges by sending premium SMS messages or initiating phone
calls in the background.

� Render the device unusable.

No mobile platform available today is immune to malware. Primarily due to its recent
popularity and open distribution model, Android is the leading platform exploited by new
malware development. According to the research report from Juniper Networks, malware on
Android has increased by 400 percent from June 2010 to January 20114.

Companies can significantly reduce the malware risk by adopting a mobile device security
policy that is similar to the desktop and notebook environment. Furthermore, enterprises
must run anti-malware software on each employee’s device to detect malware in real time,
and scan the entire device periodically.

1.3.3 Spam

With the growth of SMS, spam is also on the rise. Spam is a challenge for service providers,
because it uses a significant amount of bandwidth, which reduces throughput for legitimate
network traffic. It is also a growing security issue for mobile device users, because by clicking

3 Securing mobile devices in the business environment,
http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF

4 Securing mobile devices in the business environment,
http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF
10 Securing Your Mobile Business with IBM Worklight

http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF

a spam link, the user can be sent to a website hosting malware. According to the pilot of the
Global System for Mobile communications Association (GSMA) Spam Reporting Services, 70
percent of reports of spam were for fraudulent financial services rather than the traditional
advertising scenarios found in email5.

The most effective way to deal with spam is to define blacklists to block spam messages,
either by using the functions of an anti-spam solution, or by using an anti-spam feature on
your device.

1.3.4 Phishing

Phishing attacks can include email or SMS messages sent to trick users into accessing a fake
website, sending a text message, or making a phone call to reveal sensitive personal
information. This information is often their Social Security Number, or credentials that enable
the hacker to access financial or business accounts. Because of their small screen size,
mobile devices often hide or collapse protection features, such as web address bars.
Therefore, phishing attempts are likely to be more successful on mobile browsers.

An effective anti-phishing approach is to use two-factor authentication. First, a user enters a
static password, then they enter a second authentication factor, such as a one-time password
or a fingerprint, which is dynamically generated to further authenticate the user. Therefore,
even if the user’s static password is stolen, the hacker cannot log in to the genuine site.

1.3.5 Bluetooth and WiFi

Bluetooth and WiFi offer the convenience of increased connectivity for mobile devices within
limited ranges, however both can be easily exploited to infect a mobile device with malware.
For example, a mobile device can be lured to accept a Bluetooth connection request from a
malicious device.

When mobile devices connect, the hacker is able to intercept and compromise all data sent to
or from the connected devices. Therefore, setting the device to an undiscoverable mode and
turning off the device’s automatic Wi-Fi connection capability can reduce those risks. If you
want to block incoming connection requests completely, install a local firewall.

1.4 Mobile application landscape

As a result of increased access and decreased control, security must be incorporated into the
mobile app itself, the mobile app infrastructure, and the traditional network and server security
infrastructure.

A mobile app strategy includes a complex landscape of technologies and devices, with no
single perfect fit for every industry or enterprise. Companies must examine a number of key
requirements to ensure the deployed applications, in addition to providing features and
functions to make them useful, also offer secure access, targeted strategic platforms, and
mobile app-type offerings to support the enterprise needs.

As such, security requirements and features must be incorporated directly into the entire
mobile app solution, and not just on the server. Designing and building a robust, reusable
security capability for the matrix of platforms and application types is a challenging and
complex task. IBM Worklight provides a secure, reusable, and platform-neutral solution. Its
5 Securing mobile devices in the business environment,
http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF
Chapter 1. Overview of IBM MobileFirst and its security offerings 11

http://public.dhe.ibm.com/common/ssi/ecm/en/sew03027usen/SEW03027USEN.PDF

architectural composition is described in detail in Chapter 3, “IBM Worklight security
overview” on page 27.

1.4.1 Mobile application platform

Security for mobile is not simply a virus scanner or firewall, and there is a range of mobile
device platforms, such as BlackBerry, Symbian, iOS, Android, and Windows Phone, which all
need to be supported. Each platform brings with it a unique security model, and other than the
BlackBerry platform, most started as consumer platforms, and lack enterprise-strength
security controls.

BlackBerry has been the de facto mobile device for business for many years, but the
availability of other smartphones and tablets with broader consumer appeal, such as iOS and
Android devices, is fundamentally changing the strategic platform for mobile app
development.

Companies that provide mobile hardware to their employees are able to dictate the targeted
platform to reduce the scope of application development and support. However, employees
are now bringing their own mobile devices to the workplace, and asking companies to support
them. These new devices offer improved hardware performance, a more robust platform
feature set, and increased communication bandwidth, expanding their capabilities beyond
voicemail and email.

In providing services and mobile apps to their customers, companies must consider the most
popular platform usage pattern for their target demographic, which is not necessarily the one
with the best integration or security features.

Companies can no longer rely on a single platform to deliver mobile apps. Worklight provides
a rich development environment to develop mobile apps for a range of mobile operating
systems using the Worklight security framework.

1.4.2 Mobile application types

Another key decision for mobile app development is what type of app to build. Traditionally,
companies have provided corporate websites and pages designed to be viewed on a device
with a large screen, keyboard, and mouse. With trends moving toward apps for on-the-go and
mobile access, companies need to understand how their apps will be used, and what features
and functions of the device are meaningful in the mobile app context.

The type of mobile app to deploy is often a topic of debate, and relies upon the type of
functions that the app needs to perform. For example, LinkedIn was initially developed and
deployed as a hybrid application, but has followed suit with Facebook, which moved to a
native application approach.

The main mobile app types developed and distributed today are summarized in Table 1-1 on
page 13.

Mobile web applications
A company providing a simple Contact Us page using a traditional web platform can opt for a
mobile web app, customized web pages accessed through a web browser on a mobile device.
There are no components deployed or installed on the device, and usability is limited to
mostly viewing options, with restrictions on user input and resolution as a mobile device and
not a traditional personal computer (PC).
12 Securing Your Mobile Business with IBM Worklight

These apps are optimized to display traditional web pages on mobile devices, and generally
lack integration with device features, such as cameras with direct upload capability, GPS,
near field communication (NFC), and other device capabilities.

They can be cost-effective to develop and deploy. However, they offer a limited user
experience for starting the app and interacting with the device features.

Native applications
This type of mobile app is considered a custom app written for a specific device and platform.
They provide full device capabilities and interaction, but require specialist app developers with
skill sets for each intended hardware and software platform.

These apps are started from a list or home screen on the device itself, and are generally
installed from trusted app stores or centers. Updating native apps requires a complete
removal of the old version and installation of the new version.

Although this type of mobile app provides full control for the application, almost all of the app
needs to be developed in-house, and typically is not portable or reusable across platforms.
These apps represent a trade-off: full control and integration set against the cost to develop
and maintain.

Hybrid applications
A popular intermediate approach is creating hybrid apps, which are mostly developed using
HTML5 and JavaScript with toolkits embedded in the app. These toolkits can include Apache
Cordova (PhoneGap), Dojo, JQuery, and so on.

This type of application provides a common platform to author apps for portability across
platforms and devices, but does not include full device capabilities. Where a device
integration feature is not provided by a toolkit, you need to write platform-specific native code.

Hybrid applications are started from a list on the home screen of the device, and are generally
installed from trusted application stores or centers. Depending on the update required for a
hybrid app, device-based HTML5, JavaScript, Cascading Style Sheets (CSS), and images
can be updated in isolation. However, any native components require a removal of the old
version and installation of the new version. Typically, most of the app capabilities use web
technologies, making the update process quicker and more efficient.

The overall cost to develop can be lower, and the return on investment higher, than for native
apps, because you do not require app developers for each hardware and software platform.

Table 1-1 provides a summary of the main mobile app types developed and distributed today.

Table 1-1 Mobile app type considerations

Mobile web apps Native apps Hybrid apps

Development skills
required, including
languages and toolkits

Web technologies,
such as HTML,
JavaScript, and CSS

Device-specific and
platform-specific
languages, such as
Java and Objective C

Web technologies,
such as HTML and
JavaScript

Device integration
capability, such as
camera, GPS, and
NFC

Limited � Complete
� Custom code

� Most
� Apache Cordova

or Native

Code portability and
reuse

Not applicable Limited High
Chapter 1. Overview of IBM MobileFirst and its security offerings 13

1.4.3 Putting it all together

No single mobile app platform and type will meet all business expectations for requirements
and cost, and often a combination or staged approach is used. Each mobile app platform will
appeal to different demographics or enterprises. Each mobile app type also has its own
advantages and disadvantages, ranging from user experience, control, integration, and
device capabilities.

Worklight can be used in all of these mobile app types to build apps for a range of platforms,
which extends the security capabilities to the greatest number of mobile app use cases.

1.5 IBM MobileFirst Security solution outline

To understand how IBM Worklight helps organizations to integrate security into the overall
mobile app lifecycle, this section provides details about the different components of IBM
Worklight. Additionally, this section introduces the IBM security products that ensure security
on mobile devices, over the network, in the enterprise, and within the mobile app itself.

1.5.1 IBM Worklight platform as the basis for mobile security

As shown in Figure 1-4 on page 15, the platform consists of five main components, providing
a robust solution for mobile app security:

� IBM Worklight Studio is an Eclipse-based integrated development environment (IDE) that
enables you to perform the coding and integration that is required to develop apps for
various mobile operating systems.

� IBM Worklight Application Center is a web-based, internal enterprise application store for
centralized application distribution, installation, and feedback. Using the application
catalog service and application install service, internal users can download apps, track
installed apps, and provide feedback by rating the app versions. During the development
lifecycle, Worklight Application Center can also be used to streamline new app versions
from development to test.

� IBM Worklight device runtime components consist of runtime customer application
programming interfaces (APIs). These are essential libraries complementing the server by
exposing APIs to access server functionality, implement customer-side portions of security
features, use JavaScript and HTML for cross-platform development, and facilitate the
interaction between, for example, JavaScript and native code.

� IBM Worklight server is a Java-based server that works as a security-rich and scalable
gateway between applications, external services, and the enterprise back-end
infrastructure. This server facilitates secure connectivity, multi-source data extraction and
manipulation, authentication, direct updates of web and hybrid applications, analytics, and
operational management functions.

Offline mode usage
capability

No Yes Yes

Cost to implement and
maintain

Low High Low

Mobile web apps Native apps Hybrid apps
14 Securing Your Mobile Business with IBM Worklight

� IBM Worklight console is a web-based administrative console supporting the ongoing
monitoring and administration of the Worklight Server and its deployed apps, adapters,
and push notifications. Additionally, based on configurable preset rules of the app version
and device type, it helps to control and manage the access of apps to the enterprise
network.

In a typical Worklight platform setup, the Worklight Server is installed behind a firewall or web
reverse proxy, such as IBM Security Access Manager or WebSphere DataPower, and the
mobile apps are installed and run on mobile devices, which at least partly exist outside the
enterprise network. The Worklight Server acts as a gateway, mediating the communication
and access of mobile apps to back-end systems. It can be further secured using IBM Security
Access Manager or WebSphere DataPower.

Figure 1-4 shows the five main components of the IBM Worklight platform.

Figure 1-4 IBM Worklight platform components

To provide secure transactions with employees using their own mobile devices, accessing
corporate resources from around the world, your IT team needs to gain close control over
those devices to keep your networks safe and efficient. In the following sections, you can see
an overview of what the IBM security products and appliances are able to accomplish.
Chapter 1. Overview of IBM MobileFirst and its security offerings 15

1.5.2 User protection with IBM Security Access Manager

IBM Security Access Manager for Cloud and Mobile extends user access protection to mobile
and cloud environments using federated single sign-on (SSO), user authentication, and risk
scoring. IBM Security Access Manager includes the following features:

� Context-based access management for mobile end points, such as smartphones and
tablets, to avoid inadvertent exposure of sensitive IT assets in an insecure environment

� Authentication and authorization of mobile app users and devices, with advanced session
management and supported integration with IBM Worklight

� Centralized user access management to private and public cloud applications and
services

� Risk-based access as a pluggable and configurable component

� Advanced web application protection from mobile devices

� A fast time-to-value and low total cost of ownership solution that makes minimal demands
on the organization's IT staff

� Enhanced user productivity, better user experience, and reduced administration costs

For more information, see the following website:

http://www-03.ibm.com/software/products/us/en/samcm

Chapter 6, “Integration with IBM Security Access Manager” on page 101, provides
information about IBM Security Access Manager and its integration with IBM Worklight.

1.5.3 Application security testing with IBM Security AppScan

IBM Security AppScan is designed to manage vulnerability testing throughout your
company’s software development lifecycle. It scans and tests all common web application
vulnerabilities:

� SQL-injection
� Cross-site scripting
� Buffer overflow
� New flash and flex applications
� Web 2.0 exposure scans.

In addition, IBM Security AppScan V8.7 features a next-generation dynamic application
security scanning engine and the innovative, all-new XSS-Analyzer. It provides the ability to
identify and remediate code vulnerabilities by taking advantage of security insights from over
40,000 analyzed iOS and Android APIs.

IBM Security AppScan Enterprise provides the following functionality:

� A strategic approach to web application security

� Broad scanning capabilities to scan and test hundreds of applications simultaneously, and
then retest them frequently

� Enterprise-level reporting that facilitates communication of security status and issues

� Remediation features that issue advisories to help guide developers in effective
remediation

For more information, see the following website:

ftp://public.dhe.ibm.com/common/ssi/ecm/en/rab14001usen/RAB14001USEN.PDF
16 Securing Your Mobile Business with IBM Worklight

ftp://public.dhe.ibm.com/common/ssi/ecm/en/rab14001usen/RAB14001USEN.PDF
http://www-03.ibm.com/software/products/us/en/samcm

1.5.4 Delivery of services and applications with IBM WebSphere DataPower

WebSphere DataPower Appliances simplify, govern, and optimize the delivery of services
and applications, and to enhance the security of XML and IT services. They extend the
capabilities of an infrastructure by providing a multitude of functions.

As IBM has grown its line of WebSphere DataPower Appliances, the capabilities have
expanded from the core business of service-oriented architecture (SOA) connectivity.
WebSphere DataPower Appliances now serve areas of business-to-business (B2B)
connectivity and web application proxying.

These appliances also support Web 2.0 integration with JavaScript Object Notation (JSON)
and Representational State Transfer (REST), advanced application caching, rapid integration
with cloud-based systems, and more.

For more information about the WebSphere DataPower Appliances including core functions
and add-ons see IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting
Started, REDP-4327.

Chapter 7, “Integration with IBM WebSphere DataPower” on page 139, provides information
about the integration of WebSphere DataPower with IBM Worklight.

1.5.5 Security intelligence with IBM Security QRadar SIEM

IBM Security QRadar security information and event management (SIEM) consolidates log
source event data from thousands of devices, endpoints, and applications distributed
throughout a network. It performs immediate normalization and correlation activities on raw
data to distinguish real threats from false positives.

As an option, this software incorporates IBM Security X-Force® Threat Intelligence, which
supplies a list of potentially malicious IP addresses, including malware hosts, spam sources,
and other threats. IBM Security QRadar SIEM can also correlate system vulnerabilities with
event and network data, helping to prioritize security incidents.

IBM Security QRadar SIEM performs the following functions:

� Provides near real-time visibility for threat detection and prioritization, delivering
surveillance throughout the entire IT infrastructure

� Reduces and prioritizes alerts to focus investigations on a list of suspected incidents on
which you can act

� Enables more effective threat management while producing detailed data access and user
activity reports

� Supports easier, faster installation, and includes time-saving tools and features

� Produces detailed data access and user activity reports to help manage compliance

For more information, see the following website:

http://public.dhe.ibm.com/common/ssi/ecm/en/wgd03021usen/WGD03021USEN.PDF

1.5.6 VPN software with IBM Mobile Connect

IBM Mobile Connect provides a full-featured, wireless virtual private network (VPN). This
software employs data encryption to deliver security-rich access to enterprise applications
over wireless and wired networks. IBM Mobile Connect enables access to enterprise
Chapter 1. Overview of IBM MobileFirst and its security offerings 17

http://public.dhe.ibm.com/common/ssi/ecm/en/wgd03021usen/WGD03021USEN.PDF

applications and data from virtually any location, while protecting an organization's sensitive
information.

IBM Mobile Connect (formerly IBM Lotus® Mobile Connect) provides the following features:

� Rich security features to protect transmission of sensitive data delivered through customer
or customer-less access

� Fast, continuous network connectivity for uninterrupted access to enterprise information
and applications

� Built-in controls that can help reduce costs through lower connection charges and
transmission fees

� Simple maintenance for administrative ease and control

� Support for a variety of operating systems, mobile devices, and networks to help satisfy
the varying needs of remote users

For more information, see the following website:

http://www-03.ibm.com/software/products/us/en/mobile-connect/
18 Securing Your Mobile Business with IBM Worklight

http://www-03.ibm.com/software/products/us/en/mobile-connect/

Chapter 2. Business scenario used in this
book

This chapter describes the mobile application (app) strategy and business requirements of a
fictitious financial institution, Banking Company A. The fictitious company used in this
scenario employed an enterprise mobile app lifecycle process to design, develop, and deploy
secure mobile apps for their employees and clients.

Throughout this book, information about individual lifecycle phases is provided. These phases
are demonstrated in the context of IBM Worklight, focusing on security concepts and
integration.

This chapter explores the initial requirements-gathering and decision-making phases of the
lifecycle that led to the adoption of Worklight and security integration.

After reading this chapter, you will have an overview of the decisions and strategy adopted by
Banking Company A, and an understanding of how the security features of Worklight address
their requirements.

2

© Copyright IBM Corp. 2013. All rights reserved. 19

2.1 Mobile strategy business drivers

Banking Company A is a progressive financial institution that embraces technology to
streamline their business processes and provide enhanced customer service. As a financial
institution, security across all areas of their business is paramount, with no exceptions made
for ease of use or enablement.

Having completed an enterprise mobile app lifecycle review as shown in 1.2.5, “Putting it all
together” on page 6, four key business drivers emerged for Banking Company A:

� A secure platform foundation
� Increased staff productivity
� Secure and easy access for customers
� Rapid development and deployment

By selecting IBM Worklight as their mobile app platform, Banking Company A is able to
achieve accelerated deployment by taking advantage of its development and deployment
tools, which are built on a secure and scalable infrastructure.

They chose to implement a hybrid mobile app, allowing them to best meet the varying
platform matrix of their customers, provide dedicated support for enterprise-owned mobile
devices, and (where approved) facilitate a bring your own device (BYOD) policy for their
employees.

2.1.1 A secure platform foundation

Building on a stable and secure foundation is essential for any development project, whether
it is physical construction and development or software development and engineering.

The existing infrastructure of Banking Company A is already highly secured, and exceeds the
minimum industry and government regulations. When considering their mobile app strategy,
taking advantage of the existing secure platform is key to ensuring that no new exploitable
systems are introduced.

Integration with existing directories and data stores
Banking Company A maintains staff user accounts in a separate and isolated infrastructure
from their customer user accounts and data. Employees do need access to customer account
data to view transactions, create and approve apps, and perform day to day financial
institution activities.

Banking Company A developed their identity management and authentication infrastructure,
and are taking advantage of a web reverse proxy to reduce the complexity of authenticating to
these systems. Because of this, they are able to configure Worklight to work with these
security components using its flexible authentication integration framework.

Using Worklight, Banking Company A is able to do all of the following:

� Authenticate employees using their enterprise Lightweight Directory Access Protocol
(LDAP) directory server logon.

� Authenticate customers from their database.

� Provide single sign-on (SSO) using their web reverse proxy.

The supported directory and data store authentication mechanisms are explored in detail in
4.1.5, “Security tests” on page 68.
20 Securing Your Mobile Business with IBM Worklight

Take advantage of existing authentication mechanisms
Limiting the number of new system deployments, and reducing change requests for existing
systems, is highly desirable when you want to provide mobile connectivity while reusing as
much of the existing capabilities as possible.

By not having to modify existing authentication mechanisms and protocols where existing
secure access is established, enterprises reduce costs and maintain their security posture.
Using existing access limits vulnerabilities introduced in making those changes.

Detailed information about supported authentication integration mechanisms is provided in
4.1.4, “Login modules” on page 61.

Banking Company A enabled further security enhancements by integrating with IBM Security
Access Manager for Cloud and Mobile. Using this product, Banking Company A takes
advantage of a single robust and scalable infrastructure to deliver centralized management of
user privileges for all of their Worklight mobile apps.

IBM Security Access Manager's reverse proxy, deployed in the DMZ (a firewall configuration
for securing local area networks), is used as a security enforcement point to validate a user's
credentials on behalf of the Worklight Server before access is granted to the app's data or
back-end systems.

Further details about the integration capabilities with IBM Security Access Manager are
provided in Chapter 6, “Integration with IBM Security Access Manager” on page 101.

Banking Company A can also achieve directory integration and user propagation for SSO
using IBM WebSphere DataPower, which is shown in Chapter 7, “Integration with IBM
WebSphere DataPower” on page 139. The WebSphere DataPower Appliance can act as a
powerful enterprise service bus (ESB) gateway, application firewall, and content accelerator
when deployed as an intermediary between Worklight adapters and back-end systems.

In this scenario, IBM Security Access Manager is deployed to provide risk-based access and
OAuth enablement to provide identity-aware mobile apps.

Application updates and authenticity testing
When providing a mobile app installed on employee and customer devices, Banking
Company A must ensure their app is secure:

� It is not tampered with or modified in any way.

� It is not used to access restricted areas of their systems.

� It has not been modified and redistributed containing malware or exploits that can
potentially compromise systems or capture confidential customer data.

The application authenticity feature of Worklight is used for this assurance, and is described
in 5.3.4, “Control and confirm application authenticity” on page 96.

Further, if Banking Company A needs to add additional capabilities to their apps, or needs to
resolve a critical flaw or vulnerability immediately (without relying on their users to download
the latest version from the public or enterprise app store), they can take advantage of the
Direct Update feature using the Worklight Console. This feature is described and
demonstrated in 5.4, “Direct Update” on page 97.

Data integrity and encryption
All of the data accessed, transferred, and stored within the mobile app for Banking Company
A requires encryption to comply with government and industry regulatory standards.
Chapter 2. Business scenario used in this book 21

Using Worklight, Banking Company A is able to protect sensitive information from malware
attacks and device theft. Using AES256 and PCKS#5 encryption for secure on device storage
of app-generated information including random server-generated numbers for high security
enables user authentication even when the Worklight server is offline.

Data encryption and integrity is demonstrated and described in 5.2, “Encrypted offline cache
and JSONStore” on page 81.

To protect integrity and non-repudiation during the transmission of data, Secure Sockets
Layer (SSL) with server identity verification is used. Worklight enables security-rich client and
server communication over Hypertext Transfer Protocol Secure (HTTPS) to prevent data
leakage, and uses automatic server certificate verification to thwart known attacks, such as
man-in-the-middle attacks. Used in conjunction with their web reverse proxy, all data
communications are always tightly secured using SSL.

Access control and notifications
Banking Company A can update their apps without relying on their users to update via an app
store for JavaScript or Hypertext Markup Language V5 (HTML5) changes. They can also
disable the old version of their app. This is for situations in which the distribution of a security
fix requires that users obtain a complete, new version of the app from the app store.

Worklight Server can be configured to restrict the access of certain apps, based on their
version and the device type, providing a targeted upgrade. Worklight Sever can also be used
to disable a rogue or compromised device that is detected.

In both these security-related events, or for routine maintenance such as network or
infrastructure outages, a notification can be displayed directly to the user by the Notification
Messaging feature when the mobile app is started. The notification contains information about
the outage so that users are informed, and are not faced with an unknown error that results in
multiple calls to the help desk.

The Remote Disable feature is described in more detail in 5.5, “Remote Disable” on page 98.

2.1.2 Increased staff productivity

In an increasingly networked world, employees now require mobile connectivity, not just
access from the office. In-home mobile lenders of Banking Company A can perform the
following tasks directly while visiting their client:

� Evaluate loan requests.
� Complete transfer authorizations.
� Issue approvals.

The in-home lenders require access to critical business systems, but their access must not
compromise corporate governance and security controls.

Accelerating daily tasks
When an employee is on site, all actions within their job function are allowed without
necessarily needing to be accessed from a traditional desktop PC.

Routine tasks, such as balance inquiries, transactions, and loan approval, do not necessarily
need to be done in front of a PC at a desk in the branch, and can instead be done on mobile
devices while assisting customers in a comfortable waiting area or satellite desk.

Exceptional tasks, such as approving a loan after hours or from outside the office, require a
second authority to verify the transaction approval.
22 Securing Your Mobile Business with IBM Worklight

Using the features described in “Integration with existing directories and data stores” on
page 20, and “Data integrity and encryption” on page 21, Banking Company A is able to
provide secure, location-aware, and step up (validation) access to their infrastructure for
employees.

Customer service enhancements
A review of in-branch customer service inquiries revealed that, during peak times, branch
employees can assist many customers waiting in the teller queue on the spot, and the
customers did not actually need teller assistance.

By empowering employees with corporate-owned mobile devices and a subset of the branch
teller capabilities, Banking Company A was able to reduce the workload on teller staff and
decrease wait time for customers, driving a higher level of customer satisfaction.

To achieve this, Banking Company A used the capabilities described in “Take advantage of
existing authentication mechanisms” on page 21.

Bring your own device
Banking Company A reviewed the strategic need for BYOD, and although there are benefits
with mobile connectivity for employees to access corporate email and internal websites, a
security review governed that private devices cannot be granted permission to access
corporate systems for branch-related tasks.

To enforce this protocol, the Device Registration and Remote Disable features are used, as
shown in “Access control and notifications” on page 22.

Branch Managers and Senior Executive staff are able to access corporate email and internal
websites on their mobile devices remotely using IBM Mobile Connect. Information about this
virtual private network (VPN) and access capability is provided in 1.5.6, “VPN software with
IBM Mobile Connect” on page 17.

2.1.3 Secure and easy access for customers

A key feature that customers look for when choosing a financial institution is convenient
access to their money where and when they need it. They take for granted that the system is
inherently secure; however, users are becoming more savvy and security conscious, and
expect their bank to provide additional security features.

Mobile apps are designed to be accessible from anywhere at any time, which introduces new
security scenarios, because you can no longer rely on physical device ownership and
location. The mobile apps themselves, along with their supporting infrastructure, must provide
additional security controls to overcome the mobile challenges.

Secure transactions
All connectivity and transactional data and storage on the device must be secured, as shown
in “Data integrity and encryption” on page 21.

Depending on the type of transaction being performed with Banking Company A, customers
require an additional authentication validation for high-value transactions. For example, when
customers simply want to check their balance, they open the mobile app and provide their
credentials:

� User names and passwords
� Personal identification numbers (PINs)
� Indiscernible authentication tokens that are stored on the devices
Chapter 2. Business scenario used in this book 23

Successfully starting the mobile app does not prove that the owner of the device is the person
using the device, because the device can be misplaced or the account details can be
compromised. As a safeguard, any high-value transactions, such as a transfer of funds
greater than $200, require an additional authentication to validate the identity.

Banking Company A implemented the additional authentication challenge using risk-based
access (RBA), as described in 6.3, “Risk-based access” on page 121.

Without requiring changes to the app, Banking Company A can seamlessly add additional
fraud detection systems to validate the location of the device in relation to the customer’s
listed home and postal address, and the use the time that the transaction is occurring. This is
achieved by implementing additional policies in the RBA system, and can be applied and
updated without disruption to the online services.

These security measures provide additional assurances for customers, and increased fraud
prevention for the bank, to protect unusual transactions from different locations and
nonstandard hours.

Ease of access
While most customers enjoy the convenience of the mobile banking app from Banking
Company A, many customers also use the stock trading app.

When customers start the banking app on their mobile devices and check their balance for
available funds to invest, they then typically open the trading app to begin watching, buying,
and selling.

If no other apps from Banking Company A are running or authenticated, users must log in to
their trading app to start using it. However, suppose they have logged in to the mobile banking
app, checked their balances, and then completed a high-value transaction that required a
step up authentication to validate their identity.

In that case, they can start the mobile trading app without reauthenticating. This is achieved
using the techniques shown in 5.1.2, “Device single sign-on” on page 79.

Reassurance and convenience
When reviewing their mobile strategy, Banking Company A found that many of their mobile
clients have two or more devices, including a smartphone and a tablet. In some instances,
they also access their account details from their partner’s devices.

Customers are provisioned for mobile banking access, and their device is registered. Later, if
that device is temporarily misplaced, lost, or stolen, access for that one device can be revoked
without needing to change their password or affect access on their other devices.

In this instance, the customers are not normally at home, and do not have access to their PC,
so this can be completed by these simple actions:

� Phoning the bank
� Validating their identity
� Advising which of their devices needs to be disabled:

– Temporarily
– Permanently

For additional convenience, a device can be temporarily disabled using their traditional
desktop internet banking. For example, a customer can temporarily disable a device when
going on an overseas holiday, or permanently disable device access before giving the device
to a child or disposing of it.
24 Securing Your Mobile Business with IBM Worklight

The device registration feature is described in 5.3, “Client-side device provisioning and
application authenticity” on page 90, and the temporary or permanent disabling of the device
is demonstrated in the authentication process flow of 6.2.2, “Tivoli Federated Identity
Manager OAuth single sign-on” on page 111.

2.1.4 Rapid development and deployment

To deliver mobile apps to their employees and customers, Banking Company A first needs to
build their apps. Later, they will need to maintain, update, and enhance their existing apps,
and provide new apps in the future.

Using Worklight Studio, they are able to take advantage of the features and capabilities of the
Worklight customer, and also build and reuse Worklight shell components for common
content in their apps.

The Worklight Console and the Worklight Application Center can then be used to rapidly
distribute, update, control, and gather feedback on their apps.

Common toolkits
Worklight Studio enables the development of rich multiplatform apps using HTML5 and
JavaScript for hybrid and native application types. It provides access to device application
programming interfaces (APIs) using native code, or standard web languages, over a uniform
Apache Cordova (PhoneGap) bridge for portability.

Worklight Studio also easily integrates third-party tools, libraries, and frameworks, such as
JQuery Mobile, Sencha Touch, and Dojo Mobile. Therefore, Banking Company A can deploy
mobile apps that most of their customers can use.

The Worklight Studio can also be used to design, develop, and test Worklight adapters for
back-end data source connectivity and data retrieval.

Secure applications and endpoints
As part of end-to-end security and vulnerability testing, Banking Company A employs the
capabilities of the IBM Security AppScan suite to ensure endpoint security for their
web-based systems, and to perform static analysis on their mobile app source code.

AppScan Source provides support for native code written for Android and iOS apps, to detect
and correct errors such as data leakage. It includes language support for Objective-C,
JavaScript, and Java, providing the ability to perform call and data-flow analysis that will
generate trace information to help isolate mobile-specific security risks.

AppScan Standard provides broad coverage of emerging threats, including for Web 2.0
application vulnerabilities, Cross-Site Scripting (XSS) Analyzer for cutting-edge XSS
detection and exploitation, and JavaScript Security Analyzer for static analysis of client-side
security issues.

The use of these tools as part of both the development phase and ongoing monitoring
ensures that Banking Company A provides secure apps connecting to secure systems.

Feedback and usability analytics
The Worklight Console is used by Banking Company A to collect and analyze user statistics.
In addition to the Remote Disable and Notification Messaging capabilities illustrated in
“Access control and notifications” on page 22, it can also be used to perform other tasks.
Chapter 2. Business scenario used in this book 25

They can use the Worklight Console to complete these actions:

� Monitor all deployed apps, adapters, and push notification rules.
� Collect user statistics from all running apps.
� Generate built-in, pre-configured user adoption and usage reports.
� Configure data collection rules for application-specific events.

Integrating with Worklight Application Center, IBM Endpoint Manager for Mobile Devices, and
IBM Tealeaf CX Mobile, Banking Company A can collect and analyze security-related data:

� Determine actual usage patterns.
� Identify compromised or jailbroken (rooted) devices.
� Rapidly deploy new apps for testing.
� Solicit and map feedback on their apps.

These technologies and products are shown in 1.2.4, “Optimization of mobile experiences
with IBM MobileFirst Analytics” on page 6.

2.2 Conclusion

Having completed an enterprise mobile app lifecycle, taking advantage of Worklight for their
mobile app development, testing, and deployment, Banking Company A delivered secure
mobile apps for their employees and customers.

The security features of Worklight ensured a successful integration with their already highly
secure infrastructure:

� Enabled the rapid development, distribution, and adoption of their mobile apps
� Reduced costs
� Enhanced employee productivity
� Created increased customer satisfaction

Throughout this book, each chapter explores one or more of the business drivers for Banking
Company A, and describes in more detail the relevant Worklight security features.
26 Securing Your Mobile Business with IBM Worklight

Chapter 3. IBM Worklight security overview

This chapter provides an architectural overview of the security capabilities of IBM Worklight. It
also introduces the general security principles, concepts, and terminology with which
Worklight is compliant.

This is your starting point for understanding these security capabilities. Subsequent chapters
in this book delve deeper into each Worklight security feature, and provide details about how
it can be used to secure your mobile application (app), its data, and access to your enterprise
resources.

3

© Copyright IBM Corp. 2013. All rights reserved. 27

3.1 Security principles and concepts

This section uses the fictitious scenario of Banking Company A to illustrate the need for
mobile security. This scenario is described in Chapter 2, “Business scenario used in this
book” on page 19.

Enterprises, including the fictitious Banking Company A, need to overcome various security
threats to take advantage of mobile technologies. To stay competitive in the industry and
satisfy customer needs, Banking Company A needs to achieve information security through
compliance with the following principles and concepts:

Authentication Ensures that the identities of both the sender and the receiver of a
network transaction are true. Authentication processes can be
interactive or noninteractive.

Authorization Grants a user, system, or process either complete or restricted access
to an object, resource, or function.

Confidentiality Protects sensitive data from unauthorized disclosure. Common
techniques of achieving confidentiality include access control and
cryptographic encryption of data.

Integrity Assures that information that arrives at a destination is the same as
the information that was sent. You can use message digests or
checksums that are computed at two different times to detect whether
the data has been inappropriately modified.

Nonrepudiation Proves that a transaction occurred, or that a message was sent or
received. Nonrepudiation is supported by the use of digital certificates
and public key cryptography to digitally sign transactions, messages,
and documents.

3.1.1 Authentication and authorization

What do authentication and authorization mean for Banking Company A and its mobile
users? For Banking Company A, authentication means verifying the identity of mobile
customers, and allowing customers to identify the company. In addition, customers of Banking
Company A need to obtain user authorization for mobile banking and payment transactions.

Users of Banking Company A’s mobile banking apps, including the company’s customers and
employees, want to protect their important and sensitive information from malware attacks
and device theft. They also want to authenticate one time to access multiple protected
resources.

Consider the following possibilities if Banking Company A does not meet authentication and
authorization requirements:

� With stolen devices, thieves can retrieve user credentials that are stored on memory
cards.

� Cyber criminals can bypass authentication controls.

� Malware can intercept text messages that are sent from the bank to the customers to
authenticate transactions.

� The authentication process for each transaction is not continuous, so invalid transactions
are possible.
28 Securing Your Mobile Business with IBM Worklight

To address these challenges, Banking Company A is looking for a multifactor authentication
that integrates with their existing authentication infrastructure. By using multi-factor
authentication, Banking Company A can perform multiple checks to control access to any
protected resources. For instance, the company can verify the devices, the users, and the
apps.

Developers at Banking Company A are searching for ways to encrypt the data that is stored
on user devices. They also think it is necessary to provide a mechanism that can authenticate
offline users.

3.1.2 Confidentiality, integrity, and nonrepudiation

What do confidentiality, integrity, and nonrepudiation mean for Banking Company A?

Banking Company A needs to keep its customer, company, and employee data safe, prevent
the data from being maliciously altered, and be able to track the actions that employees and
customers perform.

Users of Banking Company A’s mobile banking app want their accounts and transactions to
be secure. They also want the updates of their mobile apps to require only minimum user
involvement.

Here are some possible consequences if Banking Company A fails to maintain data
confidentiality, integrity, and nonrepudiation:

� Confidential information, such as details about transactions, can be sniffed.

� During a fund transfer, cyber criminals can modify the account details and the amount of
money that is being transferred.

� The servers of Banking Company A are vulnerable to man-in-the-middle attacks.

� It is possible for the mobile banking users of Banking Company A to deny that they sent
messages or performed transactions.

To address these challenges, Banking Company A wants to prevent data leakage. It is also
thinking of striking a balance between the security measures it takes and the convenience
and user experience it brings to its employees and customers.

Developers at Banking Company A are looking into adopting Secure Sockets Layer (SSL), the
underpinning of Hypertext Transfer Protocol Secure (HTTPS). In the meantime, they still need
to ensure that many of the traditional security pitfalls do not affect the security environment of
the mobile apps that they develop. They also want to integrate that security environment with
other enterprise security solutions.

3.1.3 Other security concepts

Here are some other important security concepts that you need to understand when reading
this book:

Auditing The act of confirming compliance with a standard or set of
guidelines, comparing actual measurements to targets, or verifying
the accuracy of recorded information.

Encryption The process of transforming data into an unintelligible form in such
a way that the original data either cannot be obtained or can be
obtained only by using a decryption process.
Chapter 3. IBM Worklight security overview 29

Single sign-on (SSO) An authentication process in which a user can access more than
one system or app by entering a single credential (for example, a
user ID and password).

3.2 IBM Worklight security capabilities

IBM Worklight provides a set of security capabilities that address the following mobile app
security objectives (see Figure 3-1).

Figure 3-1 Worklight security capability mapping to mobile app security objectives

3.2.1 Protect the data on the device

It is common for the mobile app user to have access to sensitive data that can be stored on
the mobile device. However, this data stored on-device can potentially be stolen or tampered
with by malware existing on the device. In the event that the device is lost or stolen, this
sensitive data can be extracted by unauthorized third parties.

In addition, the mobile app can be required to function in an offline context (without any
back-end connectivity), and at the same time require that only authenticated users be allowed
access to the data stored on the mobile device.

Worklight provides capabilities that help protect the data on the device:

Encrypted on-device storage

Provides security for the data stored on the device by encrypting the data using the
advanced encryption standard (AES) algorithm with 256-bit keys generated using the
public-key cryptography standards #5 (PKCS5) algorithm based on a user-supplied
password and Worklight internal mechanisms.

The data (encrypted or not) can be stored on the device, either as HTML5 local storage,
known in Worklight as a cache, or in a Worklight-supplied mobile storage feature known
as JSONStore.

Encrypted
offl ine ca che

Offline
authentication

Secure
challenge-

response on
startup

App/device
authentici ty

Containers
and

w rapping

Remote
d isable

Direct
update

Mobi le
p latform as a
trust factor

Auth
integration
fr amew ork

Data
protection

realms

Device
provisioning

Proven
platform
securi ty

SSL w ith
server
identi ty

veri fication

Code
protection

Protecting data
on the device

Enforcing
securi ty
updates

Streaml ining
corporate securi ty

processes

Provid ing robust
authentication and

authorization

Application
secur ity
30 Securing Your Mobile Business with IBM Worklight

Offline authentication

Is needed when the mobile app does not have network connectivity, but user verification is
still needed to access the on-device data. In these scenarios, the encrypted storage itself
can be used to authenticate the user, because the encrypted data can only be unlocked
using the correct password supplied by the user.

Therefore, the encrypted storage can be used to achieve more secure offline
authentication.

3.2.2 Protect the application

In addition to protecting the on-device data, it is also important to protect the mobile app itself
on the device. This prevents hackers from unpackaging a legitimate mobile app, and then
repackaging it with malicious code. These tampered apps present a significant risk to
enterprise data, and to the company brand. You can use Worklight to reduce these risks:

� Worklight provides capabilities to obfuscate and encrypt the app code and web resources,
to prevent tampering with the app.

� In certain scenarios, there is also a requirement to ensure that the mobile app is only
accessible from authorized mobile devices, to protect access to sensitive data. This
requirement helps support the bring your own device (BYOD) trend, allowing employees to
use their personal devices for work purposes. At the same time, it is important to maintain
and enforce security protocols on those devices.

Worklight also provides application and device authenticity, testing to ensure that only
valid (Worklight Server runtime-aware) apps running on authorized mobile devices can be
used.

Worklight generates a unique identification for the devices, and protects them from
tampering by signing the request. The application authenticity is enforced as part of the
Worklight platform, using an application signature and the application properties of the
iOS and Android operating system.

Whenever the app tries to access back-end systems through the Worklight server, the
server verifies the app’s authenticity (and device authenticity, if activated) and only enables
access from legitimate apps.

� In addition to ensuring that the app and the device on which the app is running are both
authentic and valid, Worklight also supports the traditional methods of authenticating the
user before allowing access to the app. This includes a supplied user name and password
(for example, credential validation), or even more sophisticated methods, such as
multi-factor authentication.

By combining multiple authenticity tests (multi-factor authentication), Worklight can
enforce more stringent levels of security for the app, device, and user. For example, by
requiring app, device, and user authenticity tests, it is possible to allow access only to this
legitimate app running on that authorized device for this authenticated user.

An important component of Worklight’s authentication capability is the challenge-response
mechanism provided by Worklight to ensure that only an authenticated user can access
the mobile app or its functions. This challenge-response mechanism is a key part of
Worklight’s security framework. For more information, see 3.3, “IBM Worklight security
framework” on page 34.

� Worklight also extends the concept of SSO to the apps on the mobile device, so that
authenticating to one app means that the user does not have to authenticate to other apps
on that device if these apps share the same authentication context. This feature is known
in Worklight as Device SSO.
Chapter 3. IBM Worklight security overview 31

� Worklight enables a security-rich client and server communication over HTTPS to prevent
data leakage, and automatic server certificate verification to thwart known attacks, such
as man-in-the-middle attacks.

� Worklight is also flexible enough to work with other third-party mobile security and device
management platforms, which provide different levels of security for mobile apps, such as
containers, app wrapping, and so on.

3.2.3 Ensure security updates

In today’s mobile world, users are free to choose whether to download and install the latest
release of a mobile app from an app store. In addition, the mobile app store distribution
mechanisms, and contractual restrictions placed by some mobile operating system vendors,
make it challenging to maintain an app versioning strategy.

It is difficult to ensure that users are downloading and running the correct version of the app in
a timely manner. In the event that a fix is needed to correct a security flaw in the app, a timely
propagation of security updates is essential to mitigate the possibility of critical problems.

Worklight provides the Direct Update and Remote Disable features to help administrators
ensure that critical updates are delivered to the apps on the mobile devices:

� The Direct Update feature enables developers to drive updates of the web content of their
deployed HTML5 and hybrid apps directly from the Worklight Server upon app launch.
This mechanism helps developers ensure that critical updates to JavaScript code reach
the user in a timely manner, silently or by user confirmation, while it maintains compliance
with mobile operating system (OS) terms of service.

� The Remote Disable feature provides administrators with the ability to disable the old
version of the app for situations in which the distribution of a security fix requires that users
get the new app version from the app store. The Worklight Server can be configured to
restrict the access of certain apps, based on their version and the device type on which
they are installed.

The Remote Disable feature can also be used to prevent apps from accessing back-end
systems temporarily, perhaps in the event that the back-end systems are offline for
maintenance. This remote disabling of the app provides a graceful way of restricting
access, as opposed to a system error message indicating a back-end system connectivity
problem.

3.2.4 Streamline corporate security processes

A Worklight hybrid mobile app consists of web resources (HTLM5, JavaScript, and CSS3)
surrounded by a Worklight-provided native mobile platform shell. This shell provides access
to the native mobile device capabilities, such as the camera, a common user interface, the
Worklight authentication framework, and security configuration.

Worklight apps can use customized shells that provide common components used by all apps
in your enterprise, allowing access to only specific features of mobile devices, and enforcing
the security requirements of the mobile apps in your organization. This helps companies
ensure that apps using Worklight are trusted entities that adhere to corporate security
policies, and therefore speed up the approval process.

Worklight also supports the concept of using the mobile device as a trust factor, where
certificates provisioned to the device by a trusted third party (for example, a mobile device
management (MDM) solution) are accepted as part of the authentication process.
32 Securing Your Mobile Business with IBM Worklight

3.2.5 Provide robust authentication and authorization

Many companies have developed identity and authentication infrastructure today that is
sophisticated and complex due to their business’s stringent security requirements, such as
two-factor authentication and non-trivial management of tokens and credentials.

Worklight’s authentication integration framework has been designed to simplify the task of
connecting mobile apps with the enterprise back-end authentication infrastructure. The
Worklight framework provides both server-side and client-side mechanisms for assisting with
this task.

On the Worklight server side, components define the collection and handling of credentials
(Authenticator) and mechanisms to validate or verify the credentials (Login module). These
server-side components interact with the client side (mobile app and adapters) security
framework in a challenge-response process to ensure that only authenticated identities are
used to access protected resources.

This framework can be extended or customized on both the client and server sides.

Worklight also supports a number of commonly used mechanisms for authentication, such as
forms-based, cookie-based, or header-based, and other methods. For a complete list of the
authentication mechanisms supported by Worklight, see Chapter 4, “Integrating Worklight
with enterprise security” on page 41.

In addition to providing its own security framework, Worklight also integrates with the
underlying Java Platform, Enterprise Edition app server’s own security mechanisms. For
example, when running in a WebSphere Application Server or a WebSphere Liberty Profile
environment, Worklight security is further strengthened by integration with the following
components:

� The application server-supported user registries (for example, operating system,
Lightweight Directory Access Protocol (LDAP), federated repositories, and so on)

� Single sign-on tokens, such as Lightweight Third Party Authentication (LTPA)

� Security interceptors, such as the trust association interceptor (TAI)

� The propagation of security credentials through to back-end systems

Resources are protected by authentication realms that define the process to be used to
authenticate users, and consists of a mechanism to collect the user credentials
(authenticator) and verifying the user credentials (login module) against a user registry (for
example, a database or LDAP directory).

When a user attempts to access a protected resource, Worklight checks whether the user is
already authenticated according to the process defined for the resource’s realm. If the user
has not yet been authenticated, Worklight triggers the challenge-response process of
obtaining the client credentials and verifying them as defined in the realm.

Worklight differentiates between realms that are used for personalization, such as user
preferences, and those that are used for authentication. There are different kinds of realms:

Environment realms Are used for personalization. In such realms, a user can be identified
by a persistent cookie or by user identity in the hosting environment
(for example, a Google account or a Facebook account).

Resource realms Are used for authentication. Such realms will typically use
mechanisms, such as form-based authentication or SSO, to collect
user credentials, and an authentication service to validate them.
Chapter 3. IBM Worklight security overview 33

Worklight’s flexible security framework enables mobile apps to integrate with reverse proxies
and security gateways, such as IBM Security Access Manager and IBM WebSphere
DataPower, by taking advantage of the header-based authentication mechanism
(Authenticator and Login module) provided by Worklight.

In this scenario, the reverse proxy validates the user’s credentials and forwards a custom
HTTP header with the user identity to Worklight. If Worklight is configured to trust the header
(and, by extension, the reverse proxy), Worklight authenticates the session based on the user
identity in the header.

In addition to using a custom HTTP header to establish trust with Worklight, IBM Security
Access Manager and IBM WebSphere DataPower can also use the IBM proprietary LTPA
token as a more secure means of establishing the user identity with Worklight. This LTPA
token is sent to Worklight as an HTTP cookie.

3.3 IBM Worklight security framework

The IBM Worklight security framework serves two main goals. It controls access to protected
resources and it propagates the user (or server) identity to the back-end systems through the
adapter framework.

The key to the Worklight security framework is that it does not include its own user registry,
credentials storage or access control management. Instead, it delegates all those functions to
the existing enterprise security infrastructure. This delegation enables the Worklight Server to
integrate smoothly as a presentation tier into the existing enterprise landscape. Integration
with the existing security infrastructure is an important feature of the Worklight security
framework and supports custom extensions that allow integration with virtually any security
mechanism.

The Worklight security framework requires security checks before allowing access to any
protected resources and provides support for multi-factor authentication. Therefore, any
protected resource can require multiple security checks before allowing access. A typical
example of multi-factor authentication is the combination of device, app, and user
authentication.

A protected resource can be any of the following items:

Application Any request to the app requires successful authentication in all realms
of the security test that is defined in the app descriptor
(application-descriptor.xml).

Adapter procedure Procedure invocation requires successful authentication in all realms
of the security test that is defined in the adapter descriptor. The user
identity and credentials that are obtained during such authentication
can be propagated downstream to the enterprise information system
represented by this adapter.

Event source Subscription to push notifications requires successful authentication in
all realms of the security test that are defined in the event source
definition (in the corresponding adapter JavaScript code).

Adapters: An adapter uses JavaScript code running in the Worklight Server to access
back-end systems on behalf of the mobile app. This JavaScript code can also be extended
by using Java code, meaning an adapter can be developed as a combination of server-side
JavaScript and Java code.
34 Securing Your Mobile Business with IBM Worklight

Static resource Static resources are defined as URL patterns in the authentication
configuration file (authenticationConfig.xml). They allow protection
of static web apps such as the Worklight Console.

Each protected resource is defined as being protected by a named entity called a Security
Test which is a collection of security checks that needs to be done before access is allowed to
the protected resource. Each security check is defined as a Realm which defines how the
user credentials are collected (Authenticator) and how those credentials are validated (Login
module).

All of these security configuration entities are defined in a single configuration file
(authenticationConfig.xml) per Worklight application project so that these definitions can be
reused across different protected resources related to that app. For an example of the
security configuration file, see Chapter 4, “Integrating Worklight with enterprise security” on
page 41.

An implementation of security checks usually includes a client part and a server part. The two
parts interact with each other according to their private protocol which is usually a sequence
of challenges that are sent by the server and responses that are returned by the client.

The Worklight security framework provides a wire protocol which enables for the combination
of challenges and responses for multiple security checks to be included in a single
request-and-response round trip. The protocol serves two important purposes: it enables the
number of extra round trips between the client and server to be minimized and it separates
the app business logic from the security checks implementation.

During a session, an app can access different protected resources. The results of the
authentication in different realms are stored in the single session authentication context.
These results are then shared among all of the protected resources in the scope of the
current session (see Figure 3-2).

Figure 3-2 Worklight authentication architecture

authenticationConfig.xml

Client securi ty framework

Chal lenge Handler
for Realm A

Chal lenge Handler
for Realm B

Protected r esour ce
(protected by SecurityTest1)

Authen ticator

Login module

SecurityTest1

Realm A

Authen ticator

Login module

Realm B

Clien t Worklight Server
Chapter 3. IBM Worklight security overview 35

3.3.1 Realms and security tests

A realm represents a fully configured security check that must be completed before it can
allow access to a protected resource. The semantics of the checks are not limited to
authentication, but can implement any logic that can serve as protection for the server-side
app resources:

� User authentication
� Device authentication and provisioning
� Application authenticity check
� Remote application disable
� Direct update
� Anti-cross-site request forgery (XSRF) check

The realms are defined in the authentication configuration file on the Worklight project level. A
realm consists of the authenticator and the login module. The authenticator obtains the
credentials from the client, and the login module validates those credentials and builds the
user identity.

Worklight provides a set of built-in authenticators and login modules, but it also provides the
ability to develop and deploy custom authenticators and login modules in custom realms to
handle any special security checks that are required, for example, handling special security
tokens.

The realms are grouped into security tests which are defined in the same authentication
configuration file. The security test defines the group of realms, in addition to the order in
which they must be checked. For example, it often makes sense not to ask for the user
credentials until it is certain that the app itself is authentic.

Some of realms are relevant only to mobile or to web environments and Worklight provides
predefined security test configurations for the mobile (mobileSecurityTest) and web
(webSecurityTest) environments. These security test configurations can be modified to suit
different security requirements. It is also possible to create a custom security test from
scratch with custom realms and custom authenticators and login modules.

3.3.2 Worklight protocol and client challenge handlers

Each security check defines its own protocol, which is a sequence of challenges that are sent
by the server and responses that are sent by the client. On the server side, the component
that implements this private protocol is the authenticator. On the client side, the
corresponding component is called the challenge handler.

When the client request tries to access to a protected resource, the Worklight Server checks
all the appropriate realms specified in the defined security test. One or more realms can
decide to send a challenge to the client. Challenges from multiple realms are composed into a
single response and sent back to the client.

The Worklight client security framework extracts the individual challenges from the response
and routes them to the appropriate challenge handlers defined in the mobile app code. When
a challenge handler finishes the processing, it submits its response to the Worklight client
security framework. As an example, this occurs when it obtains the user name and password
from a login user interface. When all the responses are received, the Worklight client security
framework resends the original request with all the challenge responses.

The Worklight Server extracts those responses from the request and passes them to the
appropriate authenticators. If an authenticator is satisfied, it reports a success and the
36 Securing Your Mobile Business with IBM Worklight

Worklight Server calls the login module. If the login module succeeds in validating all of the
credentials, the realm is considered successfully authenticated. If all the realms of the
security test are successfully authenticated, the Worklight Server enables the request
processing to proceed.

If a realm check fails, its authenticator sends another (or the same) challenge to the client and
the whole security challenge-response process repeats itself.

Combining multiple challenges and responses into a single response and request maximizes
security efficiency by reducing the number of extra round trips. For example, the checks for
device authentication, app authenticity, and direct update can be done in a single round trip.

The Worklight client security framework automatically resends the original request with the
challenge responses allowing for separation between the app business logic and the security
handling aspects. Though any app request can result in a security challenge, the app
business logic must not include any special processing for that security challenge. The
challenge handlers are not related to the app context and can therefore focus on the
security-related logic.

3.3.3 Integration with web container security

The Worklight Server is technically a web app hosted by an app server (such as WebSphere
Application Server). Therefore, it is often desirable to reuse the authentication capabilities of
the app server for Worklight Server and vice versa. To do this, one must understand the
differences between the Worklight and the web Container authentication models.

The Java Platform, Enterprise Edition model enables only one authentication scheme for a
web app, with multiple resource collections that are defined by URL patterns with
authentication constraints defined by a list of role names.

The Worklight model enables protection of each resource by multiple authentication checks
and the resources are not necessarily identified by the URL pattern. In some cases
authentication can be triggered dynamically during the request processing.

As a result, the authentication integration between Worklight Server and the Java Platform
Enterprise Edition container is implemented as a custom Worklight realm. This realm can
interact with the container and obtain and set the container’s authenticated principal as the
Worklight user identity.

Worklight Server includes a set of login modules and authenticators for WebSphere
Application Server Full Profile and WebSphere Application Server Liberty Profile that
implement this integration with LTPA tokens. The integration works using the following rules:

� If the caller principal (an entity that can be authenticated) of the incoming HTTP request to
the Worklight server is already set, then the container authentication was previously
successful, and therefore the same principal is set as the Worklight user identity.

� If the incoming request contains an LTPA token, the login module validates it and creates
the Worklight user identity.

� If the request does not contain an LTPA token, the authenticator requests the user name
and password from the client. The login module validates them and creates the Worklight
user identity. In addition, it creates the LTPA token, which it returns back to the client as a
cookie. In this case, the authentication capabilities of WebSphere Application Server are
reused by the Worklight realms in the validation and building of an LTPA token.
Chapter 3. IBM Worklight security overview 37

3.3.4 Integration with web gateways

Web gateways, such as IBM WebSphere DataPower and IBM Security Access Manager,
provide user authentication, so that only authenticated requests can reach downstream apps.
These downstream apps can obtain the result of the authentication performed by the gateway
from a special header (for example, an LTPA token cookie.) This is an example of SSO.

When the Worklight server is protected by a web gateway, the client request is first routed
through to the web gateway. The gateway requests the user credentials from the user or
mobile app (perhaps through a login form), and then validates the credentials. If the validation
is successful, the gateway forwards the request to the Worklight Server, along with the
appropriate gateway-issued SSO token and header. This sequence implies the following
requirements on the Worklight security elements:

� The client-side challenge handler must be able to present the gateway's login form, collect
and submit the credentials to the gateway, and also handle the login failure or success.

� The authentication configuration must include the realm that can obtain and validate the
specific token or header that is provided by the gateway.

� The security test configuration must take into account that the user authentication is
always done first in this case. For example, there is no point in using the Device SSO
feature, because the user credentials are always requested by the gateway for each
mobile app on the device.

3.4 Conclusion

In summary, Worklight helps organizations to integrate security into the overall mobile app
lifecycle related to development, delivery, and execution. Using Worklight, developers in your
organization can help create and deliver security-rich mobile apps to an ever-growing number
of stakeholders who are using mobile devices, such as smartphones and tablets.

With security features available to the app on the mobile device and on the Worklight server,
Worklight offers a robust framework to secure your mobile apps and their data. See
Figure 3-3 on page 39 for an overview of the Worklight security components.

Device SSO: Device SSO is a Worklight feature that provides the ability to authenticate
with one app on the mobile device, and then access other apps on that same mobile
device, without having to re-authenticate with each app if the apps share the same realm.
38 Securing Your Mobile Business with IBM Worklight

Figure 3-3 Worklight security components

The following chapters present a more detailed look at these Worklight security features.

Worklight Server

User Authentication and
Mobile Trust

Mashups and Service
Composition

JSON Translation

Geolocation Services

Adapter Library for
Backend Connectivity

E
n

te
rp

rise
 B

a
ck

e
n

d
 S

y
ste

m
s a

n
d

C

lo
u

d
 S

e
rv

ice
s

S
ta

ts a
n

d
 L

o
g

s A
g

g
re

g
a
tio

n

Client- Side App
Resources

Direct Update

Remote Disable
App Versioning

Unified Push
Notifications

Device Runtime

Cross-Platform
Compatibility Layer

Server Integration
Framework

Encrypted and
Syncable Storage

Runtime Skins

Location-based event
handling

A
p

p
lica

tio
n

 C
o

d
e

IBM Security Access Manager
IBM DataPower

Authentication Reverse
Proxy/Gateway

Security
Registry

Security
Registry

Shell Wrapper
Code Obfuscation/

Encryption

Challenge Handler
Application Authenticity

Device Authenticity
Device SSO

Encrypted Cache
JSON StoreSecurity Test

Realm
Authenticator
Login Module

Device Provisioning

Platform Security
Chapter 3. IBM Worklight security overview 39

40 Securing Your Mobile Business with IBM Worklight

Chapter 4. Integrating Worklight with
enterprise security

This chapter provides information about the IBM Worklight security framework, and how it
addresses and supports the most common non-functional security requirements of enterprise
use cases.

The Worklight security framework components are presented, described, and explored in
detail, providing a deep understanding of each component, and how to configure and use
those components.

4

© Copyright IBM Corp. 2013. All rights reserved. 41

4.1 IBM Worklight security framework

The IBM Worklight security framework has a robust yet flexible set of components that
address the most common security requirements, such as authentication, authorization, and
auditing (the so-called “triple-a non-functional security requirements”).

The Worklight security framework supports controlled access to protected resources, and
appropriate identification and propagation of a given user or device identity through all of the
components encompassed by the framework, from the client-side to the server-side, and
integrated back-end components.

The authentication is based on the provided credentials (typically a user ID or name and a
password), and the process involves the retrieval and encapsulation of the identity information
of a given user or device, which is then used as the primary identity regarding further
requests.

Worklight authentication flow is shown in the activity diagram in Figure 4-1 on page 43.
42 Securing Your Mobile Business with IBM Worklight

Figure 4-1 Activity diagram for Worklight authentication

The authentication and authorization steps are addressed and supported by Worklight
framework components:

� The authentication realms

� A client-side challenge handler

� One or multiple login modules

� Security tests that effectively protect the resources

� The target user registry used as a repository for authentication to retrieve the information
used to build the user identity object

All of the aforementioned components are described in detail in this chapter.
Chapter 4. Integrating Worklight with enterprise security 43

4.1.1 Challenge handlers

A challenge handler is a client-side component that collects and sends the user credentials
for authentication. It recognizes and handles the authentication challenges sent by the
server-side authenticator and acts accordingly.

A full explanation of how a client-side challenge handler works is detailed in 5.1.1, “Challenge
handler” on page 78.

4.1.2 Authentication configuration file

The authentication configuration file, authenticationConfig.xml, is in the /server/conf
directory of a Worklight project. It is the main file used to configure the Worklight framework
security components.

Static web resources, security tests, authentication realms, login modules, and authenticators
are properly configured using the authenticationConfig.xml file, which consists of several
Worklight security components, as shown in Example 4-1.

Example 4-1 The authenticationConfig.xml file and its XML elements

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <staticResources>
 <resource> … </resource>
 <resource> … </resource>
 </staticResources>
 <securityTests>
 <customSecurityTest> … </customSecurityTest>
 <customSecurityTest> … </customSecurityTest>
 </securityTests>
 <realms>
 <realm> … </realm>
 <realm> … </realm>
 </realms>
 <loginModules>
 <loginModule> … </loginModule>
 <loginModule> … </loginModule>
 </loginModules>
</tns:loginConfiguration>

Configure the Worklight framework security components in the
server/conf/authenticationConfig.xml file:

� You can modify them by editing the Extensible Markup Language (XML) file directly.

� You can modify them by using the graphical user interface (GUI)-based Authentication
Configuration Editor in Worklight Studio, as shown in Figure 4-2 on page 45.
44 Securing Your Mobile Business with IBM Worklight

Figure 4-2 Authentication Configuration Editor

A file named authenticationConfig.xsd has all of the definitions for each XML element, and
the possible parameters allowed when configuring them.

References to those XML element definitions are included in the forthcoming explanations,
when applicable, to clarify how to configure them.

The <staticResources> and <resource> XML elements
Use the parent <staticResources> and child <resource> XML elements to restrict access to a
web resource.

You must provide an ID for each resource, in addition to the securityTest name that is used
to protect the resource.

The child <urlPatterns> element is used to inform the Uniform Resource Locator (URL)
pattern that it will be matched against, as shown in Example 4-2.

Example 4-2 The <staticResources> and <resource> XML elements

<staticResources>
 <resource id="subscribeServlet" securityTest="SubscribeServlet">
 <urlPatterns>/subscribeSMS*</urlPatterns>
 </resource>
...
</staticResources>
Chapter 4. Integrating Worklight with enterprise security 45

For a complete reference about how to configure these elements, see the XML excerpt from
authenticationConfig.xsd, as shown in Example 4-3.

Example 4-3 XML element definitions from authenticationConfig.xsd

<complexType name="ResourceList">
 <sequence>
 <element name="resource" type="tns:ResourceType" maxOccurs="unbounded" />
 </sequence>
</complexType>
...
<complexType name="ResourceType">
 <sequence>
 <element name="urlPatterns" type="string" />
 <element name="accessList" type="string" minOccurs="0" />
 </sequence>
 <attribute name="id" type="string" use="required" />
 <attribute name="securityTest" use="required" />
</complexType>

The <securityTests> and <customSecurityTest> XML elements
Use the parent <securityTests> and child <customSecurityTest> XML elements to configure
the security tests that will be used to restrict access to protected resources.

You can use the predefined tests that are supplied ready for use for standard web and mobile
security requirements, or you can write your own custom security tests and define the
sequence in which they are run.

Example 4-4 provides sample configurations for web, mobile, and custom security tests.
Security tests are explained in detail in 4.1.5, “Security tests” on page 68.

Example 4-4 Web, mobile, and custom security tests

<webSecurityTest name="SampleWebSecurityTest">
 <testUser realm="SampleReal"/>
</webSecurityTest>
...
<mobileSecurityTest name="sampleMobileSecurityTest">
 <testUser realm="SampleRealm"/>
</mobileSecurityTest>
...
<customSecurityTest name="SampleCustomSecurityTest">
 <test realm="SampleRealm1" step="1"/>
 <test realm="SampleRealm2" step="2"/>
 <test realm="SampleRealm2" isInternalUserID="true" step="3"/>
</customSecurityTest>

For a complete reference about how to configure these elements, see the XML excerpt from
authenticationConfig.xsd, as shown in Example 4-5.

Example 4-5 XML element definitions from authenticationConfig.xsd

<complexType name="SecurityTestsList">
<choice minOccurs="0" maxOccurs="unbounded">

<element name="mobileSecurityTest" type="tns:MobileSecurityTestType" />
<element name="webSecurityTest" type="tns:WebSecurityTestType" />
46 Securing Your Mobile Business with IBM Worklight

<element name="customSecurityTest" type="tns:CustomSecurityTestType" />
</choice>

</complexType>
...
<complexType name="SecurityTestType">

<attribute name="name" type="tns:NonEmptyString" use="required" />
</complexType>
...
<complexType name="CustomSecurityTestType">

<complexContent>
<extension base="tns:SecurityTestType">

<sequence>
<element name="test" type="tns:TestType" minOccurs="0"

maxOccurs="unbounded" />
</sequence>

</extension>
</complexContent>

</complexType>
...
<complexType name="MobileSecurityTestType">

<complexContent>
<extension base="tns:SecurityTestType">

<all>
<element name="testUser" type="tns:TestUserType" minOccurs="0

"maxOccurs="1" />
<element name="testDeviceId" type="tns:TestDeviceIdType" minOccurs="0"

maxOccurs="1" />
<element name="testAppAuthenticity" type="tns:TestAppAuthenticityType

"minOccurs="0" maxOccurs="1" />
</all>

</extension>
</complexContent>

</complexType>
...
<complexType name="WebSecurityTestType">

<complexContent>
<extension base="tns:SecurityTestType">

<sequence>
<element name="testUser" type="tns:TestUserType" minOccurs="1"

maxOccurs="1" />
</sequence>

</extension>
</complexContent>

</complexType>

The <realms> and <realm> XML elements
Use the parent <realms> and child <realm> XML elements to configure the authentication
realms that will be used to authenticate users.

The <realm> element requires a unique name and a loginModule name as arguments to its
parameters.
Chapter 4. Integrating Worklight with enterprise security 47

The child <className> element is used to inform the fully qualified Java class name (Java
package name plus class name) for the authenticator component that is used by the target
authentication realm, as shown in Example 4-6.

Example 4-6 The <realms> and <realm> XML elements

<realms>
 <realm name="SubscribeServlet" loginModule="headerLogin">
 <className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
 </realm>
 ...
</realms>

For a complete reference about how to configure these elements, see the XML excerpt from
authenticationConfig.xsd, as shown in Example 4-7.

Example 4-7 XML element definitions from authenticationConfig.xsd

<complexType name="RealmList">
 <sequence>
 <element name="realm" type="tns:RealmType" maxOccurs="unbounded" />
 </sequence>
</complexType>
...
<complexType name="RealmType">

<sequence>
<element name="className" type="string" />
<element name="parameter" type="tns:ParameterType" minOccurs="0"

maxOccurs="unbounded" />
<element name="onLoginUrl" type="string" minOccurs="0" />

</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="alias" use="optional" type="string">

<annotation>
<documentation>

Defines an alias for this realm, used by the client
JS library.

</documentation>
</annotation>

</attribute>
<attribute name="loginModule" type="string" use="required" />

</complexType>

The <loginModules> and <loginModule> XML elements
Use the parent <loginModules> and the child <loginModule> XML elements to configure the
Java Authorization and Authentication Service (JAAS) login modules that are responsible for
verifying the user credentials, and for creating a user identity object that will hold all of the
data about the authenticated user or device.

The <loginModule> element requires a unique name. The child <className> element is
used to inform the fully qualified Java class name (Java package name plus the class name)
for the LoginModule implementation class, as shown in Example 4-8 on page 49.
48 Securing Your Mobile Business with IBM Worklight

Example 4-8 The <loginModules> and <loginModule> XML elements

<loginModules>
 <loginModule name="headerLogin">
 <className>com.worklight.core.auth.ext.HeaderLoginModule</className>
 <parameter name="user-name-header" value="username"/>
 </loginModule>
 ...
</loginModules>

For a complete reference about how to configure them, see the XML excerpt from
authenticationConfig.xsd, as shown in Example 4-9.

Example 4-9 XML element definitions from authenticationConfig.xsd

<complexType name="LoginModuleList">
<sequence>

<element name="loginModule" type="tns:LoginModuleType"
maxOccurs="unbounded" />

</sequence>
</complexType>
...
<complexType name="LoginModuleType">

<sequence>
<element name="className" type="string" />
<element name="parameter" type="tns:ParameterType" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="audit" type="boolean" default="false" use="optional" />
<attribute name="ssoDeviceLoginModule" type="string" use="optional"/>

</complexType>

4.1.3 Authentication realms

An authentication realm defines the process used to authenticate users. The realm is always
composed of one authenticator and one JAAS login module, as shown in Figure 4-3.

Figure 4-3 Realm, authentication, and login module relationships
Chapter 4. Integrating Worklight with enterprise security 49

The authentication and the user identity object creation processes are supported by
authentication realms.

Resources are protected by authentication realms, in addition to security tests, and the same
realm can be used by several security tests. There is a one-to-many relationship between a
given realm and the associated security tests, as shown in Figure 4-4.

Figure 4-4 Realm and security tests relationships

Note that in the aforementioned relationship, the security test encompasses the realm, and
also has a relationship. In these cases, the application (app) clients must undergo the
authentication process that is defined for the realm only one time.

Worklight provides several predefined authentication realms ready for use, as shown in
Table 4-1.

Table 4-1 Predefined realms: properties of the <test realm> XML element

Each authentication realm that is defined in the authenticationConfig.xml configuration file
must have a corresponding challenge handler in the client side application.

The authentication realms determine how the user credentials will be collected and validated,
and how the user identity object that holds the data specific to a given user will be
instantiated.

Each authentication realm defines its authentication flow, consisting of the following logic:

� What happens after the authentication process is triggered?
� What is the form of challenge that is sent to the client application?

Authenticator class name Login module reference Description

wl_antiXSRFRealm WLAntiXSRFLoginModule Implements
anti-cross-site request
forgery (XSRF) header
check

wl_deviceNoProvisioningRealm WLDeviceNoProvisioningLogin
Module

Implements device
authentication without
provisioning

wl_deviceAutoProvisioningRealm WLDeviceAutoProvisioningLogin
Module

Implements device
authentication with
auto-provisioning

wl_authenticityRealm wl_authenticityLoginModule Implements application
authenticity check
50 Securing Your Mobile Business with IBM Worklight

� Which credentials are collected?
� How and when are credentials collected?
� How are credentials sent to server?
� How are credentials validated by the server?
� What is the result of the credential validation?
� What are the properties of the user identity object?

It is important to emphasize that the authentication process can be interactive or
non-interactive.

A good example of interactive authentication is a login form that is presented when a user
attempts to access a protected resource. The authentication process involves verifying the
user credentials that must be provided, and requires user interaction.

Regarding non-interactive authentication, a good example is when you have a user cookie
that the authentication process looks for in the HTTP request when that user attempts to
access a protected resource. If the cookie is available, it is used to authenticate the user,
requiring no further interaction (user input) by the user.

The authenticator, login module, and user identity instances are stored in a session scope
that exists while the session is valid.

User identity realms and device identity realms
When using a customSecurityTest to protect a resource, it is possible to specify if the realm
being informed is related to a user or device identity.

For a customSecurityTest, no predefined realms are added, so you must use the
customSecurityTest to define your custom security requirements, and the sequence and
grouping in which you want them to be processed. Security tests are explained in more detail
in 4.1.5, “Security tests” on page 68. For now it is just important to understand that there is a
difference between a device identity realm and a user identity realm.

To specify a realm as a user identity realm, add the isInternalUserId property with a value
equal to true to the security test. The isInternalUserID attribute is used to inform that this
realm is used for user identification for reporting and push subscription procedures.

Likewise, to specify a realm as a device identity realm, add the isInternalDeviceID property
with a value equal to true to the security test. The isInternalDeviceID attribute is used to
inform that this realm is used for device identification for reporting, push subscription, and
device single sign-on (SSO) features.

There must be exactly one such realm for every security configuration that is applied to a
mobile resource.

Single-realm and multiple-realm authentication
It is possible to have multiple user realms that a user or device must authenticate against. For
example, a requirements scenario can exist that requires one user to authenticate against two
different user registries.

If you define two user realms in a custom security test without specifying the step attribute,
both requests for authentication are sent simultaneously in one request.

If you specify the step attribute following a sequence such as one and two, authentication
follows this sequence. If the SampleAuthenticationRealm1 realm is set as step=1, and
SampleAuthenticationRealm2 is set as step=2, SampleAuthenticationRealm1 authenticates
first, and a separate request to authenticate SampleAuthenticationRealm2 is sent.
Chapter 4. Integrating Worklight with enterprise security 51

More details about authentication sequence configuration are provided in 4.1.6, “User
registries” on page 70.

HTTP basic authenticator
The basic authenticator implements basic HTTP authentication as defined in HTTP Request
for Comments (RFC), presenting an authentication box to the user. It is available only for web
applications. Mobile apps cannot use it.

The basic authenticator fully qualified Java class name is
com.worklight.core.auth.ext.BasicAuthenticator, and it has a mandatory parameter
called basic-realm-name that indicates which authentication realm is to be used. An
illustration of its configuration is shown in Example 4-10.

Example 4-10 HTTP basic authenticator

<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
 <className> com.worklight.core.auth.ext.BasicAuthenticator </className>
 <parameter name="basic-realm-name" value="My App" />
</realm>

Form-based authenticator
The form-based authenticator presents a login form to the user that is returned in the HTTP
response from the server when the client application tries to access a protected resource.
Although it is most suitable for web applications, there are no restrictions when it is used in
mobile apps, so you can use the form-based authentication in mobile apps as well.

The login form must contain fields named j_username and j_password, and the submit action
must be j_security_check. These are the same field and action names used by standard
Java Platform, Enterprise Edition (Java EE) security.

The configuration uses a login form page and an error page. If the login fails, the user is
redirected to the error page. If an authentication error occurs, the authenticator will pass an
error message to the login page. To display the error message, use the placeholder
${errorMessage} on your login page.

The form-based authenticator fully qualified Java class name is
com.worklight.core.auth.ext.FormBasedAuthenticator, and it requires a mandatory
parameter called login-page that is used to inform the path to the login page being used. It is
a relative path to the web application context under the /conf directory.

There is an optional parameter called auth-redirect that you can use in case you are
planning to host your login page somewhere other than in the local web application. This
parameter can be used to provide a URL that points to a remote login page. The Worklight
Server will redirect to that external login page in another domain.

Note that the auth-redirect and login-page parameters are exclusive, which means you
cannot use them together in the same configuration. A sample login.html file is always
generated when creating a new Worklight project in Worklight Studio.

An illustration of a form-based authenticator configuration is shown in Example 4-11.

Example 4-11 Form-based authenticator

<realm name="AppAuthRealm" loginModule="DatabaseLoginModule">
 <className> com.worklight.core.auth.ext.FormBasedAuthenticator </className>
52 Securing Your Mobile Business with IBM Worklight

 <parameter name="login-page" value="login.html" />
</realm

You can download a project with a sample of form-based authentication from the following
website:

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/FormBasedA
uthenticationProject.zip

Persistent cookie-based authenticator
The persistent cookie-based authenticator checks to see if there is a specific cookie included
in the HTTP request. If the cookie is not available in the request, the authenticator creates the
cookie and sends it back in the response.

Note that this is a non-interactive authentication so, as explained earlier, it does not require
any user interaction to provide the credentials for authentication.

The persistent cookie-based authenticator fully qualified Java class name is
com.worklight.core.auth.ext.PersistentCookieAuthenticator.

The persistent cookie-based authenticator has only one option parameter, cookie-name, and
as the parameter name suggests it is used to define a custom name for the persistent cookie.
In case the parameter is not used, the default name will be assigned, which is
WL_PERSISTENT_COOKIE.

An illustration of its configuration is shown in Example 4-12.

Example 4-12 Persistent cookie-based authenticator

<realm name="PersistentCookie" loginModule="dummy">
 <className> com.worklight.core.auth.ext.PersistentCookieAuthenticator
</className>
</realm>

Worklight adapter-based authenticator
The adapter authenticator enables you to develop custom authentication logic in JavaScript.
Worklight adapter-based authentication is the most flexible type of authentication to
implement, and it includes all of the benefits of the Worklight Server authentication
framework.

When you use adapter-based authentication, the entire authentication logic (including the
credential validation) can be implemented in an adapter by using plain JavaScript. Any login
module can be used in the adapter-based authentication as an extra authentication layer.

Depending on the security requirements, it can be useful to support the development of
additional authentication steps in a multi-step login process that cannot be implemented by
just configuring another type of authenticator to achieve the additional required steps.

It is important to mention that you can use an adapter authentication to only protect adapter
procedures. The adapter authenticator code performs all of the validation, and the creation of
the user identity. A mandatory requirement for adapter-based authentication is the use of a
NonValidatingLoginModule, because all authentication-related implementation is done in the
adapter's code.
Chapter 4. Integrating Worklight with enterprise security 53

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/FormBasedAuthenticationProject.zip

The adapter authenticator fully qualified Java class name is
com.worklight.integration.auth.AdapterAuthenticator, and it has a mandatory
parameter, login-function, and an optional parameter, logout-function:

� The login-function parameter specifies the name of the JavaScript function in the format
<adapter-name.function-name>, which is started when the login process is triggered. The
triggering can happen when either the client application explicitly invokes the
WL.Client.login function, or when it tries to access a protected resource.

The function also receives the HTTP request headers as an input parameter so that it can
access the user agent and any other header available in the request. Note that this
function cannot be shown as a procedure by the adapter.

� The logout-function parameter specifies the name of the JavaScript function that is
started when the session is invalidated. The session termination can be triggered by
having the client application start the WL.Client.logout function explicitly, or when the
Worklight Server invalidates the session. The logout-function receives no other
parameters.

Note that this function cannot be exposed as a procedure by the adapter. An illustration of
its configuration is shown in Example 4-13.

Example 4-13 Worklight adapter-based authenticator

<realm name="ACMERealm" loginModule="ACMELoginModule">
 <className> com.worklight.integration.auth.AdapterAuthenticator </className>
 <parameter name="login-function" value="ACMEAuthAdapter.triggerLogin" />
 <parameter name="logout-function" value="ACMEAuthAdapter.logout" />
</realm>

In Example 4-14, you have an instance of the NonValidatingLoginModule configuration.
Remember that using a NonValidatingLoginModule class name means that no additional
validation is performed by the Worklight platform. The developer takes responsibility for
the credential validation within the adapter implementation logic.

Example 4-14 NonValidatingLoginModule

<loginModules>
 <loginModule name="ACMELoginModule">
 <className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
 </loginModule>
...
</loginModules>

You can download a project with a sample of adapter-based authentication from the
following website:

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/Adapter
BasedAuthenticationProject.zip

Custom Java-based authenticator
The com.worklight.server.auth.api.WorklightAuthenticator Java interface contains the
methods necessary to write a custom authenticator in Java. A custom authenticator class
must implement this interface and provide concrete implementation for its defined methods.

The interface contract has many methods that you must implement. The first method defined
is called init, and its signature is shown in Example 4-15 on page 55.
54 Securing Your Mobile Business with IBM Worklight

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/AdapterBasedAuthenticationProject.zip

Example 4-15 The init method

void init(java.util.Map options)
 throws com.worklight.server.auth.api.MissingConfigurationOptionExceptio

This method is called when the authenticator object instance is created, and then it receives
the options that are specified in the realm definition in the authenticationConfig.xml
configuration file as its argument. This assumes that you have provided the realm definition
shown in Example 4-16 in the authenticationConfig.xml file.

Example 4-16 Options argument result from parameter definitions

<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
 <className> com.worklight.core.auth.ext.BasicAuthenticator </className>
 <parameter name="basic-realm-name" value="My App" >
</realm>

The init method will be called with the options map that is populated with the entry:

"basic-realm-name"="My App"

Next, you have the processRequest that is called for each request from an unauthenticated
session. Its signature is shown in Example 4-17.

Example 4-17 The processRequest method

com.worklight.server.auth.api.AuthenticationResult
processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response, boolean
isAccessToProtectedResource) throws java.io.IOException,
javax.servlet.ServletException

The request and response parameters are normal HTTP servlet objects. The
isAccessToProtectedResource defines whether this is a request to access a protected
resource.

A value of true means that the request is for a resource protected by this authenticator, and it
cannot be ignored. A value of false means that the request is for a non-recognized resource,
and it can be ignored by returning
AuthenticationResult.createFrom(AuthenticationStatus) with
AuthenticationStatus.REQUEST_NOT_RECOGNIZED.

The possible return values are shown in Table 4-2.

Table 4-2 Possible return values for com.worklight.server.auth.api.AuthenticationResult

Return value Outcome

AuthenticationStatus.SUCCESS All of the login data was received and processed
properly.

AuthenticationStatus.FAILURE The client cannot provide the login data properly.

AuthenticationStatus.REQUEST_NOT_RECOGNIZED The request does not belong to the login
process.

AuthenticationStatus.CLIENT_INTERACTION_
REQUIRED

 The response was modified (for example, by
HTTP forward), and can be returned to the client
immediately.
Chapter 4. Integrating Worklight with enterprise security 55

The next method is processAuthenticationFailure, which is called if the associated login
module returns a credential validation failure. Its signature is shown in Example 4-18.

Example 4-18 The processAuthenticationFailure method

com.worklight.server.auth.api.AuthenticationResult
processAuthenticationFailure(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response, java.lang.String errorMessage)
throws java.io.IOException, javax.servlet.ServletException

In Example 4-18, the request and response arguments are normal HTTP servlet objects, and
the method also receives an error message as a string.

The possible return values are shown in Table 4-3.

Table 4-3 Possible return values for com.worklight.server.auth.api.AuthenticationResult

The processRequestAlreadyAuthenticated method is called for each request from an already
authenticated session. Its signature is shown in Example 4-19.

Example 4-19 processRequestAlreadyAuthenticated method

com.worklight.server.auth.api.AuthenticationResult
processRequestAlreadyAuthenticated(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws java.io.IOException,
javax.servlet.ServletException

The request and response arguments are normal HTTP servlet objects. The possible return
values are shown in Table 4-4.

Table 4-4 Possible return values for com.worklight.server.auth.api.AuthenticationResult

The getAuthenticationData method is used by the login module to get the credentials
collected by an authenticator. It has no parameters, and returns the authentication data
collected from the client as a Map. Its signature is shown in Example 4-20.

Example 4-20 The getAuthenticationData method

java.util.Map getAuthenticationData()

Return value Outcome

AuthenticationStatus.FAILURE A failure occurred, and there is no second
chance.

AuthenticationStatus.CLIENT_INTERACTION_
REQUIRED

A failure occurred, and the authenticator has
stared the login process again (forwarded to
login-error page).

Return value Outcome

AuthenticationStatus.FAILURE A failure occurred, and there is no second
chance at all.

AuthenticationStatus.CLIENT_INTERACTION_
REQUIRED

A failure occurred, but the authenticator has
started the login process again, forwarding to a
login-error page first.
56 Securing Your Mobile Business with IBM Worklight

The changeResponseOnSuccess method is called after authentication succeeds. It is used to
add data to the response after the authentication is successful. Its signature is shown in
Example 4-21.

Example 4-21 The changeResponseOnSuccess method

boolean changeResponseOnSuccess(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws java.io.IOException

The request and response parameters are normal HTTP servlet objects. It returns true only if
the method actually changed the response. Lastly, you have the getRequestToProceed
method that is already defined in this interface. This method is started after the login module
successfully validates the credentials that are collected by an authenticator. Note that

The method signature is shown in Example 4-22.

Example 4-22 The getRequestToProceed deprecated method

javax.servlet.http.HttpServletRequest
getRequestToProceed(javax.servlet.http.HttpServletRequest currentRequest,
javax.servlet.http.HttpServletResponse currentResponse,
com.worklight.server.auth.api.UserIdentity user) throws java.io.IOException

You can download a project with a sample of Custom Authenticator and Login Module from
the following website:

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/CustomLogi
nModuleProject.zip

HTTP header-based authenticator
The HTTP header authenticator is a non-interactive authenticator, and it must be used with
the header login module. It checks HTTP request headers to see if specific headers are
available to perform the authentication. Its fully qualified Java class name is
com.worklight.core.auth.ext.HeaderAuthenticator, and it has no parameters.

An HTTP header-based authenticator configuration is shown in Example 4-23.

Example 4-23 HTTP header-based authenticator

<realm name="RealmHeader" loginModule="HeaderLoginModule">
 <className> com.worklight.core.auth.ext.HeaderAuthenticator </className>
</realm>

WebSphere LTPA authenticator
The WebSphere Lightweight Third-Party Authentication (LTPA) authenticator is used to
integrate with the WebSphere Application Server LTPA authentication mechanisms. It is
supported only when deploying the server side to a WebSphere Application Server instance.

To avoid unnecessary errors when deploying to other Java EE application servers, the
authenticator is commented out in the authenticationConfig.xml file that is created by
default with an empty Worklight project.

Note: This method is deprecated in Worklight V5.0.0.3 and later.
Chapter 4. Integrating Worklight with enterprise security 57

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/CustomLoginModuleProject.zip

When using WebSphere LTPA-based authentication, a secure token is used in an LTPA
cookie to verify the authenticated users, taking advantage of the mechanism to trust users
across a secure WebSphere Application Server domain.

When you run Worklight on a WebSphere Application Server along with LTPA authentication,
you must use the WebSphereFormBasedAuthenticator and the WebSphereLoginModule to
authenticate to the Worklight application by the LTPA token.

The authentication process flow is shown in Figure 4-5.

Figure 4-5 LTPA authentication flow

This scheme offers the following options as an approach to support WebSphere LTPA-based
authentication for Worklight apps:

� Option 1: Authentication is enforced by WebSphere Application Server

This option can be used when the enterprise policy requires web archive (WAR) files to be
protected on a secured WebSphere Application Server. Using this approach, you can
secure the web resources in the Worklight project WAR file by specifying the resource and
the user role.

The authenticator and login module that are defined as part of this configuration scheme
will authenticate the user based on the provided credentials by using the underlying
WebSphere Application Server security application programming interface (API), as
shown in Figure 4-6 on page 59.
58 Securing Your Mobile Business with IBM Worklight

Figure 4-6 Authentication is enforced by WebSphere Application Server

� Option 2: Worklight Server enforces authentication using the WebSphere
Application Server configuration

This option can be used when the Worklight security configuration will handle user
authentication at the Worklight platform level by using the security configuration of the
underlying WebSphere Application Server, as shown in Figure 4-7.

The Worklight project that is deployed as a WAR file on WebSphere Application Server is
not secured. Therefore, the Java EE deployment descriptor web.xml file that is part of the
WAR file does not reference any security constraints that protect the web resources.

The authenticator and login module that are defined as part of this configuration
authenticate the user based on the provided credentials, by using the underlying
WebSphere Application Server security API.

If the user provides a user name and password on initial login, this data is used to
authenticate the user against the underlying registry that WebSphere Application Server is
configured against. Otherwise, if a valid LTPA token is provided on subsequent access,
then this LTPA credential is used.

Figure 4-7 Worklight Server enforces authentication using the WebSphere Application Server
configuration
Chapter 4. Integrating Worklight with enterprise security 59

Both options present benefits and have different usages, as shown in Table 4-5.

Table 4-5 Comparison between option 1 and option 2

Based on the aforementioned characteristics, if your business requirements do not mandate
the use of option 1, use option 2.

The fully qualified Java class name for the LTPA authenticator is
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator. The LTPA authenticator
has two mandatory parameters, login-page and error-page, and three optional parameters,
cookie-domain, httponly-cookie, and cookie-name:

� The login-page parameter specifies the login page URL relative to the web application
context.

� The error-page parameter specifies the error page URL relative to the web application
context as well.

� The cookie-domain parameter is a string such as ibm.com that specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no domain attribute is set
on the cookie. The SSO is then restricted to the application server host name (localhost),
and does not work with other hosts in the same domain.

� The httponly-cookie is also a string, with a value of either true or false, that specifies
whether the cookie has the HttpOnly attribute set. This attribute is used to prevent
cross-site scripting attacks.

Option 1: WebSphere
Application Server

Option 2: Worklight Server

Benefits This option uses the traditional
WebSphere Application Server
authentication and trust model.
The container enforces all
security, and can reuse existing
investments in securing the
Java EE container by using
third-party SSO products.

This option uses the traditional
WebSphere Application Server
authentication and trust model
without the impact of modifying
the Worklight project WAR file.
The container enforces all
security, therefore can reuse
existing investments in securing
the Java EE container by using
third-party SSO product. The
layered authentication of
device, application, application
instance, and user works as
intended. Flexibility in
configuring specific security
settings that are Worklight
runtime-specific without being
hindered by the underlying
container security.

Usage This option is suitable for
scenarios where the devices
can be trusted, and access for
rogue applications is restricted.

This option is suitable for
scenarios where the devices or
the apps on the devices cannot
be trusted. The multi-step
authenticity checking that is
built into Worklight platform
ensures denial of services to
jailbroken devices, rogue
applications, and unauthorized
users.
60 Securing Your Mobile Business with IBM Worklight

� The cookie-name parameter is a string that specifies a custom name for the LTPA SSO
cookie. If this parameter is not set, the default cookie name, LtpaToken, is used.

An LTPA authenticator configuration is shown in Example 4-24.

Example 4-24 WebSphere LTPA authenticator

<realm name="WASLTPARealm" loginModule="WASLTPAModule">
 <className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator

</className>
 <parameter name="login-page" value="/login.html"/>
 <parameter name="error-page" value="/loginError.html"/>
 <parameter name="cookie-domain" value="example.com"/>
 <parameter name="httponly-cookie" value="true"/>
 <parameter name="cookie-name" value="LtpaToken"/>
</realm>

4.1.4 Login modules

This section provides information about the various login modules.

Non-validating login module
The non-validating login module accepts any choice of user name and password passed by
the authenticator. Its fully qualified Java class name is
com.worklight.core.auth.ext.NonValidatingLoginModule. This login module has no
parameters. An illustration of its configuration is shown in Example 4-25.

Example 4-25 Non-validating login module

<loginModule name="dummy" canBeResourceLogin="false"
isIdentityAssociationKey="true">
 <className> com.worklight.core.auth.ext.NonValidatingLoginModule </className>
</loginModule>

Database login module
The database login module verifies the user name and password by running a Structured
Query Language (SQL) query against a relational database. Its fully qualified Java class
name is com.worklight.core.auth.ext.RDBMSLoginModule.

The database login module has two mandatory parameters: dsJndiName and
principalsQuery. The dsJndiName parameter specifies the Java Naming and Directory
Interface (JNDI) name of the data source that defines the database.

The data retrieved from the database is used to authenticate the user, and to retrieve the user
information to compose the user identity. The principalsQuery parameter specifies the SQL
query used to select the information about the specific user.

The query has the standard structure shown in Example 4-26.

Example 4-26 Principals SQL query

SELECT UserID, Password, DisplayName FROM UsersTable WHERE UserID=?

It is important to remember that the database table used for authentication must have the
columns as specified in the SELECT query.
Chapter 4. Integrating Worklight with enterprise security 61

UserTable is the database table name, and UserID, Password, and DisplayName are the
names of the columns that contain user login names, passwords, and display names.

An illustration of a database login module configuration is shown in Example 4-27.

Example 4-27 Database login module

<loginModule name="MyDatabase" canBeResourceLogin="true"
isIdentityAssociationKey="true">
 <className> com.worklight.core.auth.ext.RDBMSLoginModule </className>
 <parameter name="dsJndiName" value="java:/MyDS"/>
 <parameter name="principalsQuery">
 SELECT userid, password, concat(firstName, ' ', lastName) as display_name FROM
users WHERE userid=?
 </parameter>
</loginModule>

LDAP login module
The Lightweight Directory Access Protocol (LDAP) login module is used to authenticate users
against LDAP servers, for example Active Directory, OpenLDAP, or IBM Tivoli Directory
Server.

This login module implements the
com.worklight.core.auth.ext.UserNamePasswordLoginModule Java interface, so you must
use it with an authenticator that implements the UsernamePasswordAuthenticator Java
interface. Its fully qualified Java class name is
com.worklight.core.auth.ext.LdapLoginModule.

It has five mandatory parameters: ldapProviderUrl, ldapTimeoutMs,
ldapSecurityAuthentication, validationType, and ldapSecurityPrincipalPattern. It also
has two optional parameters: ldapSearchFilterPattern and ldapSearchBase. The following
parameters are mandatory:

� The ldapProviderUrl parameter specifies the Internet Protocol (IP) address or Domain
Name System (DNS) name of the target LDAP server. It uses the LDAP protocol as the
URL scheme. The URL starts with ldap://. Examples of the possible values for this
parameter are ldap://10.0.1.2 and ldaps://10.0.1.3.

� The ldapTimeoutMs parameter specifies the connection timeout regarding connections to
the LDAP server in milliseconds. A sample value for this parameter is 2000 (Integer).

� The ldapSecurityAuthentication parameter specifies the LDAP security authentication
type. The value is usually simple. However, it is important to use the correct value for this
parameter, which is aligned with what the remote LDAP server is expecting to receive.

As a leading practice, consult your LDAP administrator to obtain the correct authentication
type. Possible values (String) are none, simple, and strong.

� The validationType parameter is a mandatory one. It specifies the type of validation to be
used against the LDAP server. Possible values are exists, searchPattern, or custom, as
detailed in Table 4-6.

Table 4-6 LDAP validation types

Value Description

exists The login module tries to establish the LDAP binding with the supplied
credentials. The credential validation is successful if the binding is
successfully established.
62 Securing Your Mobile Business with IBM Worklight

� The last mandatory parameter is the ldapSecurityPrincipalPattern. This parameter is
specified depending on the target LDAP server type, because it can require security
credentials that you must supply, and it can vary according to several input formats. This
property is used to define the pattern to create your user name-based credentials.

You can use the {username} as the placeholder for the user name or ID. Examples of
values for this parameter are {username}, {username}@myserver.com, and the longer
standard LDAP Data Interchange Format (LDIF) form, such as CN={username},
DC=myserver, DC=com.

The remaining parameters are optional:

� The ldapSearchFilterPattern parameter will be required only if the value of the
validationType parameter is searchPattern. You use this parameter to define a search
filter pattern that will be run when the LDAP binding is successfully established. The user
credentials validation against the LDAP is considered successful when the search returns
one (or more) entries as the result.

You can use the {username} as the placeholder for this parameter. It is important to note
that the syntax can change, depending on the LDAP server type that you are
authenticating against.

Examples of possible values for this parameter are (sAMAccountName={username}) and the
longer standard LDIF form such as
(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,
OU=MyCompany, DC=myserver, DC=com.

� The last parameter is ldapSearchBase. It is required only if the validationType parameter
has a value equal to searchPattern. You must use this parameter to specify the LDAP
search base in the LDAP tree. An example of a possible value is dc=myserver, dc=com.

A sample configuration is shown in Example 4-28.

Example 4-28 LDAP Login Module

<loginModule name="LDAPLoginModule">
 <className>com.worklight.core.auth.ext.LdapLoginModule</className>
 <parameter name="ldapProviderUrl" value="ldap://10.0.1.2"/>
 <parameter name="ldapTimeoutMs" value="2000"/>
 <parameter name="ldapSecurityAuthentication" value="simple"/>
 <parameter name="validationType" value="searchPattern"/>
 <parameter name="ldapSecurityPrincipalPattern"
value="{username}@myserver.com"/>
 <parameter name="ldapSearchFilterPattern"
value="(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,

OU=Groups,OU=MyCompany,DC=myserver,DC=com))"/>

searchPattern The login module tries to perform the exists validation. When the
validation succeeds, the login module issues a search query to the LDAP
server context according to the ldapSearchFilterPattern and
ldapSearchBase parameters. The credentials validation is successful if the
search query returns one or more entries.

custom With this value, you can implement custom validation logic. The login
module tries to do the existing validation. When the validation succeeds,
the login module calls a public Boolean doCustomValidation(LdapContext
ldapCtx, String username) method. To override this method, you must
create a custom Java class in your Worklight project, and extend from
com.worklight.core.auth.ext.UserNamePasswordLoginModule.

Value Description
Chapter 4. Integrating Worklight with enterprise security 63

 <parameter name="ldapSearchBase" value="dc=myserver,dc=com"/>
</loginModule>

You can download a project with a sample showing how to use the LDAP Login Module to
authenticate users with LDAP server here:

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/LDAPLog
inModuleProject.zip

Header login module
The header login module validates the authentication by checking the request for specific
headers. It must always be used with the HTTP header authenticator. Its fully qualified Java
class name is com.worklight.core.auth.ext.HeaderLoginModule. It has two parameters: one
mandatory parameter called user-name-header, and one optional parameter called
display-name-header.

The user-name-header parameter specifies the name of the header that contains the user
name. In case the request does not contain the specified header, authentication fails. The
display-name-header parameter specifies a different display name other than the value
obtained from the user-name-header parameter. In case this parameter is not specified, the
user name is then used as the display name as well.

An example of their configuration is shown in Example 4-29.

Example 4-29 Header login module

<loginModule name="HeaderLoginModule" canBeResourceLogin="true"
isIdentityAssociationKey="true" audit="true">
 <className>com.worklight.core.auth.ext.HeaderLoginModule</className>
 <parameter name="user-name-header" value="userid"/>
 <parameter name="display-name-header" value="username"/>
</loginModule>

Single identity login module
The single identity login module is used to grant access to the Worklight Console to a single
user. The credentials for this single user are defined in the worklight.properties
configuration file.

Normally this login module is used only for testing purposes, because of its simplicity and
ease of use. Its fully qualified Java class name is
com.worklight.core.auth.ext.SingleIdentityLoginModule, and it has no additional
configuration parameters.

In addition to the authenticationConfig.xml configurations used by all login modules, the
worklight.properties file must also include extra configuration properties.

The console.username property specifies the name of the user who will be given access to
the Worklight Console. The console.password property specifies the password of the user
who will be given access to the Worklight Console. Note that the password can also be
informed in an encrypted format for this property.

A sample configuration is shown in Example 4-30.

Example 4-30 Single identity login module

<loginModule name="Console" canBeResourceLogin="false"
isIdentityAssociationKey="false">
64 Securing Your Mobile Business with IBM Worklight

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/LDAPLoginModuleProject.zip

 <className> com.worklight.core.auth.ext.SingleIdentityLoginModule </className>
</loginModule>

WebSphere LTPA login module
The WebSphere LTPA login module is used to integrate with WebSphere Application Server,
and to take advantage of its LTPA authentication mechanisms. This login module is only
supported on WebSphere Application Server.

To avoid unnecessary errors when Worklight is run on other application servers, the login
module configuration sample for this login module is commented out in the default
authenticationConfig.xml file that is created with an empty Worklight project.

Its fully qualified Java class name is com.worklight.core.auth.ext.WebSphereLoginModule.

A sample configuration is shown in Example 4-31.

Example 4-31 WebSphere LTPA login module

<loginModule name="WASLTPAModule" canBeResourceLogin="true"
isIdentityAssociationKey="false">
 <className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

Provisioning login modules
Provisioning is the process of obtaining a security certificate. There are three modes of the
provisioning process:

� No provisioning
� Auto-provisioning
� Custom provisioning

It is important to emphasize that auto-provisioning and custom provisioning are supported
only on iOS and Android devices.

Worklight provides login modules that are related to provisioning:

� There is a login module called WLDeviceAutoProvisioningLoginModule that must be used
with an authenticator whose Java class name is wl_deviceAutoProvisioningRealm. They
are used to implement device authentication with auto-provisioning scenarios.

� There is also a login module called WLDeviceNoProvisioningLoginModule that must be
used with an authenticator whose Java class name is wl_deviceNoProvisioningRealm.
They are used to implement device authentication without provisioning.

A full explanation about provisioning is beyond the scope of this publication, but more
information can be found in the IBM Worklight V6.0.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/devref/c_mobile_device_provisioning.html

Regarding custom provisioning, more information can be found on the following website:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/devref/t_configuring_and_implementing_d.html

There is also more information in 5.3, “Client-side device provisioning and application
authenticity” on page 90.
Chapter 4. Integrating Worklight with enterprise security 65

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/devref/c_mobile_device_provisioning.html
http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/devref/t_configuring_and_implementing_d.html

You can download a project with an example of custom device provisioning from the following
website:

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/CustomDevi
ceProvisioningProject.zip

Custom login module implementation
There are some security scenarios where your authentication and user identity object
creation requirements are specific.

One example is to build a custom login module that enables you to use an existing mainframe
deployment as the provider for the user registry that you authenticate against, and from
where you need to retrieve the user data used to build the user identity object. If this target
mainframe platform does not have a ready-for-use login module component, you will need to
develop a custom login module to meet your non-functional security requirements.

Worklight provides a well-defined set of interfaces that you can use to build a custom login
module. As of Worklight V5.0.6, the WorkLightLoginModule Java interface that was used to
implement a custom login module has been deprecated. It has been replaced by the
WorkLightAuthLoginModule Java interface instead, so this is the interface that your custom
Java class must implement to develop a custom login module in Worklight V6.0.0 and later.

This interface inherits from the com.worklight.server.auth.api.WorkLightLoginModuleBase
Java interface, where you have all the common JAAS method definitions as per the Java EE
specification for the JAAS API, including the abort, clone, equals, hashCode, init, login, and
logout methods.

The interface defines only one method that must be overridden, called createIdentity. It
receives a string argument specifying the login module name, and then returns a user identity
object as shown in Example 4-32.

Example 4-32 Full method signature for createIdentity method

com.worklight.server.auth.api.UserIdentity createIdentity(java.lang.String
loginModule)

This method is used to create an authenticated UserIdentity object after the credential
validation succeeds. The fully qualified Java class name for the object is
com.worklight.server.auth.api.UserIdentity.

It is important to emphasize that you must use this createIdentity method, as defined in the
WorkLightAuthLoginModule interface as a replacement of the deprecated createIdenity
method that is defined in the deprecated WorkLightLoginModule interface. Both components
are deprecated as of IBM Worklight V5.0.6.

The Java class and interface relationships for a custom login implementation in Worklight
V6.0.0 are shown in Figure 4-8 on page 67.
66 Securing Your Mobile Business with IBM Worklight

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v600/CustomDeviceProvisioningProject.zip

Figure 4-8 Class and interface relationships for a custom login implementation in Worklight V6.0.0

To use your custom login module, you just need to declare it using the
authenticationConfig.xml file in the same way as for the other predefined login modules, as
shown in Example 4-33.

Example 4-33 Defining a custom login module

<loginModules>
 <loginModule name="CustomLoginModule">
 <className>com.mypackage.MyCustomLoginModule</className>
</loginModule>
...
</loginModules>

Make sure the compiled Java class (.class, bytecode) is included in the server-side package
to ensure that it is available in the class path of your application (WAR file), and for the target
application server classloader.

For a full explanation of JAAS and how it works, see the JAAS-related specifications as
defined by the Java Community Process (JCP), related Java Specification Requests (JSRs),
and the JAAS references included in Figure 4-9 on page 68.

For more information about the JCP, see the following website:

http://www.jcp.org/en/home/index

You can find the Introduction to JAAS and Java GSS-API tutorials on the following website:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/inde
x.html

You can find the Java Authentication and Authorization Service (JAAS) Reference Guide on
the following website:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.h
tml
Chapter 4. Integrating Worklight with enterprise security 67

http://www.jcp.org/en/home/index
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

4.1.5 Security tests

A security test defines a security configuration for a protected resource, so it is the security
test that really enforces the protection of a given resource. A security test specifies one or
more authentication realms, and an authentication realm can be used by any number of
security tests.

A protected resource is protected by a security test, and can be protected by any number of
realms. Therefore, when you define your security tests, it is also important to define the
security realms that are used by the security tests, because this is a strict requirement.

Worklight has some predefined tests that comprise tests for a range of standard web and
mobile security requirements. However it is a flexible mechanism, and you can also write your
own custom security tests.

When a client application attempts to access a protected resource, Worklight checks whether
the client is already authenticated according to all of the realms of the corresponding security
test. In case the client is not authenticated yet, Worklight triggers the process of
authentication for all unauthenticated realms.

The security tests are defined in the application-descriptor.xml configuration file by using
the securityTest="test_name" property.

If no security test is defined, Worklight will perform only a minimal set of default platform tests.

Authentication sequence
Worklight is flexible regarding the possibility of defining the sequence in which the security
tests will be performed. You can define the order in which the authentication sequence
happens. For example, the request for authentication in Realm2, as shown in Figure 4-9, is
issued only after the Realm1 authentication succeeds.

A resource can be protected by either of the following security tests:

� Using SecurityTest1, the user will have to authenticate in both Realm1 and Realm2, each
one with its own set of rules.

� Using SecurityTest2, the user needs to authenticate in Realm3 only.

Figure 4-9 Security tests example

Realms, authenticators, and login modules are reusable components. Therefore, you can
reuse their definitions as per your security requirements. The example in Figure 4-10 on
page 69 shows that Realm2 is being reused.

Securi tyTest2

Authenticato r1

LoginModule1

SecurityTest1

Realm1 Realm2

Authenticator2

LoginModu le2

Realm3

Authenticator3

Log inModule3
68 Securing Your Mobile Business with IBM Worklight

Figure 4-10 Sample security test reusing Realm2

It is important to emphasize the interplay between the security tests and the comprised
realms:

� Protecting a resource with SecurityTest1 means a need to authenticate in both Realm1
and Realm2.

� Protecting a resource with SecurityTest2 means a need to authenticate in Realm2 only.

You can create elaborate and strict security test combinations and test sequences, allowing
you to run several tests before access is granted to a given protected resource.

To specify the sequence in which a client must authenticate in the different realms, add the
step="n" property to each test, where n indicates the sequence. If a sequence is not
specified, all tests are done in a single step.

The webSecurityTest
The webSecurityTest is a test that is predefined to contain realms that are related to web
security, so it is used to protect web applications. It must contain one testUser element with a
realm definition for user authentication, and the identity that is obtained from this realm and is
considered to be the user identity.

By default, a webSecurityTest includes protection against XSRF attacks.

A sample configuration is shown in Example 4-34.

Example 4-34 webSecurityTest configuration

<webSecurityTest name="SampleWebSecurityTest">
 <testUser realm="SampleReal"/>
</webSecurityTest>

The mobileSecurityTest
The mobileSecurityTest is a test that is predefined to contain realms that are related to mobile
security, so you can use a mobileSecurityTest to protect mobile apps.

If working with user realms, a mobileSecurityTest must contain one testUser element with a
realm definition for user authentication, and the identity that is obtained from this realm is
considered to be the user identity.

On the contrary, if you are working with device realms, a mobileSecurityTest must contain one
testDevice element with a realm definition for device authentication. The identity that is
obtained from this realm is considered to be a device identity.

Securi tyTest2

Authenticato r1

LoginModule1

SecurityTest1

Realm1 Realm2

Authenticator2

LoginModu le2

Realm2

Authenticator2

Log inModule2
Chapter 4. Integrating Worklight with enterprise security 69

By default, a mobileSecurityTest includes protection against XSRF attacks, and the ability to
remotely disable the mobile app from the Worklight Console.

A sample configuration is shown in Example 4-35.

Example 4-35 mobileSecurityTest configuration

<mobileSecurityTest name="sampleMobileSecurityTest">
 <testUser realm="SampleRealm"/>
</mobileSecurityTest>

The customSecurityTest
The customSecurityTest defines a custom security test with no predefined realm tests. You
can use a customSecurityTest to define your own security requirements, and the sequence
and grouping in which they occur. It is possible to define any number of tests within a
customSecurityTest, and each test must specify one realm.

A sample configuration is shown in Example 4-36.

Example 4-36 customSecurityTest configuration

<customSecurityTest name="SampleCustomSecurityTest">
 <test realm="SampleRealm1" step="1"/>
 <test realm="SampleRealm2" step="2"/>
 <test realm="SampleRealm2" isInternalUserID="true" step="3"/>
</customSecurityTest>

A specific requirement is that when you use device auto provisioning in customSecurityTests,
an authenticity realm must also be present within the tests, otherwise provisioning will not
succeed.

To define a realm as a device auto provisioning realm, use the isInternalDeviceID attribute
to specify that this realm is used for device identification for reporting, push subscriptions, and
device SSO features. There must be exactly one such realm for every security configuration
that is applied to a mobile resource.

Finally, to define a realm as a user identity realm, add the isInternalUserId="true" property
to the test. The isInternalUserID attribute means that this realm is used for user
identification for reporting and push subscriptions. There must be exactly one such realm for
every security configuration that is applied to a mobile or web resource.

4.1.6 User registries

Worklight enables you to use several remote user registries as the target repository for both
authentication and authorization. You can use relational databases, LDAP servers,
Java-friendly property files, and many other choices. You can even develop your custom
JAAS login module or adapter to support your security needs. There is also an HTTP
header-based login module that enables you to get user credentials from HTTP requests.

With this design approach, Worklight ensures that any enterprise security requirements can
be fully met, offering a robust yet flexible security framework that can be reused or adapted as
required.
70 Securing Your Mobile Business with IBM Worklight

4.2 Restricting access to resources with authentication realms

As already discussed, Worklight components, such as applications, adapter procedures, and
static web resources, can be protected from an unauthorized access.

The protection rules are defined by security tests that contain one or more authentication
realms, and one authentication realm can be used to protect several resources. The
authentication realm defines the process to be used to authenticate users or devices.

Each authentication realm consists of an authenticator and a login module on the server side.
The authentication realm also requires a challenge handler component to be present on the
client side.

This section explores the options supported by Worklight to protect resources from
unauthorized access.

4.2.1 Protecting Worklight applications

When you protect an application, authentication will be required immediately after the
application tries to connect to the Worklight server. A separate securityTest can be defined for
each application environment on the application-descriptor.xml file. If no securityTest is
defined for a specific environment, only a minimal set of default platform tests will be
performed.

Several security test usages are shown in Example 4-37.

Example 4-37 Protecting applications using securityTest in the application-descriptor.xml file

<common securityTest="SampleWebSecurityTest"/>

<android version="1.0" securityTest="SampleMobileSecurityTest">
 <worklightSettings include="true"/>
 <pushSender key="a" senderId="b"/>
 <security>
 <encryptWebResources enabled="true"/>
 <testWebResourcesChecksum enabled="true"/>
 </security>
</android>

4.2.2 Protecting Worklight adapter procedures

When you protect an adapter procedure, authentication is required when this adapter
procedure is started by a client application.

A separate securityTest can be defined for each adapter procedure in the adapter XML file, as
shown in Example 4-38.

Example 4-38 Protecting adapter procedures using securityTest in the adapter XML file

<wl:adapter xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xsi:schemaLocation="http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd">

<displayName>DummyAdapter</displayName>
Chapter 4. Integrating Worklight with enterprise security 71

<description>DummyAdapter</description>
<connectivity>
 <connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
 <protocol>http</protocol>
 <domain>rss.cnn.com</domain>
 <port>80</port>
 </connectionPolicy>
 <loadConstraints maxConcurrentConnectionsPerNode="2"/>
</connectivity>

<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

</wl:adapter>

4.2.3 Protecting static Worklight web applications

A static resource is a URL loaded from the Worklight server that is, for example, the Worklight
console URL or a mobile web application.

When you protect a static resource, the Worklight server will require authentication when an
attempt to request the protected URL is sent.

The static resources and their protection can be defined in the authenticationConfig.xml file
as usual. A sample is shown in Example 4-39.

Example 4-39 Protecting static resources

<staticResource>
 <resource id="worklightConsole" securityTest="WorklightConsoleSecurityTest">
 <urlPatterns>/console*</urlPatterns>
 </resource>
</staticResources>

4.2.4 Protecting event sources

In Worklight V6.0.0, it is possible to specify and use event sources. A mobile security test is
mandatory for creating event sources using the
WL.Server.createEventSource(JSON-parameter-block) function. The security test is used to
reference the user identity against the unique push token sent by the push service, which is
either Apple Push Notification Service (APNS) or Google Cloud Messaging (GCM).

When you want to send a notification, you must reference the user's identity, which is looked
up in the database to obtain the associated push token. If you want to subscribe to an event
source, it must be authenticated against that security test.

This function creates an event source according to the parameters in the JSON parameter
block. The JSON parameter block contains the two mandatory properties that are called name
and security test, and five optional ones called onUserSubscribe, onUserUnsubscribe,
onDeviceUnsubscribe, onUserChange, and poll.
72 Securing Your Mobile Business with IBM Worklight

The mandatory parameters perform the following actions:

� The name parameter specifies a string that contains the name of the event source.

� The securityTest parameter specifies the appropriate securityTest from the
authenticationConfig.xml file to be used for this event source.

All of the other remaining parameters are optional:

� The onUserSubscribe parameter specifies the name of the JavaScript function in the
adapter file that is called when the user subscribes to this event source for the first time,
on first device subscription. The callback function receives the user subscription object as
an input parameter.

� The onUserUnsubscribe parameter specifies the name of the JavaScript function in the
adapter file that is called when the user unsubscribes from this event source for the first
time, on first device subscription. The callback function receives the user subscription
object as an input parameter.

� The onDeviceUnsubscribe parameter specifies the name of the JavaScript function that is
called when the device subscription is removed by a client request, or by the cleanup task.
The callback function receives the device subscription as an input parameter.

� The onUserChange parameter specifies the name of the JavaScript function that is called
when a subscription from this device exists for a different user. The callback function
receives the options sent to the createEventSource function.

� The callback function in each case must return a JSON block that must contain at least an
isSuccessful property, indicating whether the subscription is created. The returned JSON
block can contain other custom properties as well, and it is transferred back to the client
application.

� Finally, the poll parameter specifies if the method of getting the notification data from the
back-end uses the polling approach. If so you must provide a couple of additional
properties, and an integer that specifies the interval in seconds between the polls and
onPoll, that is the name of JavaScript function which is called on each poll.

An illustration of how to use the WL.Server.createEventSource function is shown in
Example 4-40.

Example 4-40 WL.Server.createEventSource function usage

WL.Server.createEventSource({
name: 'newCoupons',
onUserSubscribe: 'subscribeUser',
onUserUnsubscribe: 'unsubscribeUser',
onUserChange: 'onUserChange',
poll : {
interval: 2,
onPoll: 'produceNotifications'
}
});

4.3 Configuring Worklight for LTPA authentication

There are different approaches you can take when configuring Worklight for LTPA
authentication:

� Authentication is enforced by WebSphere Application Server.
Chapter 4. Integrating Worklight with enterprise security 73

� Worklight Server enforces the authentication by relying on WebSphere Application Server
configuration.

The following section describes how to enable both options, and the differences in their
configurations:

1. Enable WebSphere Application Server security by selecting the appropriate options, as
shown in Figure 4-11:

a. For option one, select Enable administrative security and Enable application
security.

b. For option two, select Enable administrative security.

Figure 4-11 Enabling administrative security and application security in WebSphere Application Server

2. Configure realm and authentication in the authenticationConfig.xml file.

3. Uncomment the realm under the \u201cFor websphere\u201d comment in the
authenticationConfig.xml file found in
{WAS_HOME}/profiles/{yourprofile}/installedApps/{your node}/{worklight
EAR}/{worklight WAR}/WEBINF/classes/conf. This should result in the following XML
configuration, as shown in Example 4-41.

Example 4-41 WebSphere Application Server configuration in authenticationConfig.xml

<!-- For websphere -->
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</classNa
me>
 <parameter name="login-page" value="/login.html"/>
 <parameter name="error-page" value="/loginError.html"/>
</realm>

Optionally, you can include the cookie-domain, cookie-name, and httponly-cookie
parameters.

4. Uncomment the loginModule under the For websphere comment in the
authenticationConfig.xml configuration file, as shown in Example 4-42 on page 75.
74 Securing Your Mobile Business with IBM Worklight

Example 4-42 WebSphere Application Server LTPA login module

<!-- For websphere -->
<loginModule name="WASLTPAModule">
 <className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

5. Configure the related security tests in authenticationConfig.xml, as shown in
Example 4-43:

a. Add webSecurityTest if you plan to develop for web environments.
b. Add mobileSecurityTest if you plan to develop for mobile environments.

Example 4-43 WebSphere Application Server security tests

<securityTests>
 <webSecurityTest name="wasWebSecurity">
 <testUser realm="WASLTPARealm"/>
 </webSecurityTest>
 <mobileSecurityTest name="wasMobileSecurity">
 <testAppAuthenticity/>
 <testDeviceId provisioningType="none"/>
 <testUser realm="WASLTPARealm"/>
 </mobileSecurityTest>
</securityTests>

If authentication is enforced by WebSphere Application Server, there are a few additional
steps required:

6. First you must create a login page. An example of a login.html file is shown in
Example 4-44.

7. Create a new file named login.html and save it to the root of your WAR file at
{WAS_HOME}/profiles/{your profile}/installedApps/{your
node}/{worklightEAR}/{worklight WAR}.

Example 4-44 Login page: login.html

<html>
<head></head>
<body>
 <form action="j_security_check" method="post">
 Username: <input type="text" name="j_username" size="20">

 Password: <input type="password" name="j_password" size="20">

 <input type="submit" value="Login">
 </form>
</body>
</html>

8. The next step is similar, you must create a login error page.

Create the loginError.html error page and place it in the root of your WAR file at
{WAS_HOME}/profiles/{your profile}/installedApps/{your
node}/{worklightEAR}/{worklight WAR}.

Note: it is a standard Java EE login page file using the same standard Java EE names
for form action, Username, and Password.
Chapter 4. Integrating Worklight with enterprise security 75

Its content can be as simple as shown in Example 4-45.

Example 4-45 Login error page - loginError.html

<html>
<head></head>
<body>
 Login invalid.
</body>
</html>

9. Configure the standard Java EE web Deployment Descriptor, web.xml.

10.Locate the web.xml file at
{WAS_HOME}/profiles/{yourprofile}/installedApps/{yournode}/{worklight
EAR}/{worklightWAR}/WEB-INF/web.xml, and configure it as shown in Example 4-46. The
server will now know what configuration the WAR will be expecting.

Example 4-46 web.xml configuration

<security-constraint id="SecurityConstraint_1">
 <web-resource-collection id="WebResourceCollection_1">
 <web-resource-name>Snoop Servlet</web-resource-name>
 <description>Protection area for Snoop Servlet.</description>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
</web-resource-collection>

<auth-constraint id="AuthConstraint_1">
 <description>Snoop Servlet Security:+:All Authenticated users for Snoop
Servlet.</description>
 <role-name>Role 3</role-name>
</auth-constraint>

<user-data-constraint id="UserDataConstraint_1">
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>

<security-role id="SecurityRole_1">
 <description>All Authenticated Users Role.</description>
 <role-name>Role 3</role-name>
</security-role>

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/loginError.html</form-error-page>
 </form-login-config>
</login-config>
76 Securing Your Mobile Business with IBM Worklight

Chapter 5. Applying Worklight security
features

IBM Worklight provides various security features that can be used by managing and
configuring the client side and server side. This chapter provides information about all of
these features:

� Use Worklight to secure sensitive personal data through the use of the encrypted offline
cache. You can also use JavaScript Object Notation Store (JSONStore) to maintain a local
secure copy of the application (app) data.

� Worklight provides strong authentication mechanisms, and ensures that only authorized
users have access to protected resources. This is supported by the challenge handler,
which is located on the client side and helps to verify whether the current session is
already authenticated.

� To ensure that applications can only be installed on sanctioned devices, Worklight
provides device provisioning capabilities that help to obtain and determine device identity.

� Worklight can be used to ensure timely propagation of important security updates, which
reduces the risk of possible security flaws being discovered. It also helps to reduce the
time between the necessary updates, because the whole process is simple to learn and
replicate.

� To ensure that the user is forced to update an application, or to disable a specific version,
the Remote Disable feature can be used to further enhance security and application
management capabilities.

5

© Copyright IBM Corp. 2013. All rights reserved. 77

5.1 Client-side authentication concepts and entities

The main client-side component involved in the authentication process is a challenge handler.
This section provides an overview and usage details associated with this component.

The client-side involvement regarding device single sign-on (SSO) is also detailed in this
section.

5.1.1 Challenge handler

The challenge handler is located on the client side, and is responsible for the management of
the authentication process. Its main purpose is to detect and handle the authentication
challenges that are sent as Worklight server responses.

A challenge handler is able to process challenges sent by the Worklight server, in addition to
external authentication services, such as security gateways and proxies.

Worklight Server checks all of the appropriate realms associated with a protected resource for
which a client request has been issued. It is possible that several realms can send
challenges, which are then composed into a single response and sent back to the client.

The challenge handler is responsible for collecting the required credentials after it has
received an authentication challenge from the server. It will then resend the original request
with all of the challenge responses.

If an authenticator on the server side is satisfied with the extracted responses, the
authenticator will report it as a success and call a login module. If the credentials are
validated by the login module, and if validation succeeds, the realm is authenticated. This
indicates the final stages of the authentication flow, and the challenge handler sends a
notification to the Worklight framework indicating success or failure.

If the realm verification fails, the associated authenticator will send the same challenge back
to the client and repeat the cycle.

The challenge handler is highly customizable, and Worklight enables the creation of the
challenge handler with a set of predefined methods associated with handling the challenge
and submitting credentials to the server.

To ensure security and efficiency, Worklight combines multiple challenges and responses into
a single message, which reduces the necessary interaction between the client and server,
avoiding unnecessary network round trips. Worklight is capable of grouping the checks for
direct update, device authentication, and application authenticity into a single round trip.

A more in-depth overview of the server-side authentication concepts and entities can be
found in 4.1, “IBM Worklight security framework” on page 42.

Authentication concepts
The challenge handler is an important client-side component responsible for managing
requests associated with access to protected resources. Figure 5-1 on page 79 clearly
indicates the authentication process and the role of the challenge handler.
78 Securing Your Mobile Business with IBM Worklight

Figure 5-1 Activity diagram for Worklight authentication

Challenge handler API
Worklight enables the creation of custom challenge handlers for hybrid (JavaScript) and
native applications. This provides the user with the ability to customize the authentication
process based on the application requirements.

For a detailed list of all of the available challenge handler application programming interfaces
(APIs) for native Android and iOS applications, see the IBM Worklight V6.0.0 Information
Center sections on Java client-side API for native Android apps and Objective-C client-side
API for native iOS apps:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/apiref/c_client_api.html

For an implementation of a challenge handler, review “Worklight client challenge handler” on
page 130.

5.1.2 Device single sign-on

Device SSO provides the user with the ability to access multiple protected resources
(applications and adapter procedures) in different security domains by only authenticating
Chapter 5. Applying Worklight security features 79

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/apiref/c_client_api.html

one time. For example, a user can access multiple applications installed on a device by
authenticating one time through an SSO login module that is used by the applications. It is
supported on Android and iOS devices.

The SSO login module provides the user with access to all resources that are using the same
login module. The user must first successfully log in through the SSO login module to ensure
only authorized users have access. This concept has been embraced by many businesses
looking to provide its users with the best experience possible.

If requests relating to resources protected by the login module are still being issued within the
timeout period, the authentication state will remain active and access is granted. The timeout
period is usually the same as the session timeout period.

Device SSO requirements
To enable SSO capabilities, device authentication is also required. The device authentication
realm must be included within the security test that is protecting the resource that will be
protected with SSO. The required changes are reflected in the authenticationConfig.xml
file.

Enable device SSO
To enable SSO, you must modify the mobile security test or custom security test based on
your requirements. A common identifier must also be assigned for each application that is
going to incorporate device SSO:

1. For Android, assign the same sharedUserId for each application by editing the
application-descriptor.xml file, as shown in Example 5-1. The sample value is
test.sso. For iOS you must use the same AppID prefix for each application that is
accessed by device SSO. The Apple Developer Provisioning Portal is used to create a
new AppID, and an AppID prefix is defined during this process.

Example 5-1 Assigning a shared user ID

<android version="1.0" sharedUserId="test.sso">
<worklightSettings include="true"/>

<security>
...

</security>
</android>

2. Modify the test element in the authenticationConfig.xml file.

3. If you are using the predefined mobileSecurityTest element, to enable SSO you have to
provide an additional value (sso="true"), as shown in Example 5-2.

Example 5-2 Enable SSO for mobile security test

<mobileSecurityTest name="mobileTests">
 <testDeviceId provisioningType="none"/>
 <testUser realm="mobileUserRealm" sso="true"/>
</mobileSecurityTest>

4. If you are using a custom security test, you must include the ssoDeviceLoginModule
property for a user login module, as shown in Example 5-3 on page 81. The example
provides sample login modules that have provisioning enabled and disabled.
80 Securing Your Mobile Business with IBM Worklight

Example 5-3 SSO login modules

<!-- For enabling SSO with no-provisioning device authentication -->
<loginModule name="MySSO"
ssoDeviceLoginModule="WLDeviceNoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

<!-- For enabling SSO with auto-provisioning device authentication -->
<loginModule name="MySSO"
ssoDeviceLoginModule="WLDeviceAutoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

5. When using a custom security test, you are also required to configure the device
authentication realm at least one step before the user authentication realm to ensure
correct SSO functionality (see Example 5-4).

6. In Example 5-4, non-provisioning device authentication is used. The process of obtaining
and attaching a certificate to the device identity is referred to as device provisioning.
Device provisioning and identity are explained in 5.3.1, “Device provisioning” on page 90.

Example 5-4 AuthenticationConfig.xml file for a custom security test.

<securityTests>
<customSecurityTest name="DummyAdapter">

<test realm="wl_antiXSRFRealm" step="1"/>
<test realm="wl_authenticityRealm" step="1"/>
<test realm="wl_remoteDisableRealm" step="1"/>
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true"

step="1"/>
<test realm="SampleAppRealm" isInternalUserID="true" step="2"/>

</customSecurityTest>
</securityTests>

5.2 Encrypted offline cache and JSONStore

Worklight provides two methods for on-device storage that facilitate the encryption of user
data, provide security, and provide enhanced data management capabilities:

� Encrypted offline cache (EOC)
� JSONStore

5.2.1 EOC overview

Worklight provides EOC that is based on the Hypertext Markup Language 5 (HTML5) local
storage technology. There is a limit on the amount of information that can be stored within
HTML5 local storage, which is 5 megabytes (MB). If that limit is exceeded, the behavior can
be unpredictable, and possibly lead to data loss.

By increasing cache size, the performance will degrade due to increased processing times.
You must consider the limitations of HTML storage before deciding to integrate EOC. The
EOC limitations and features are shown in Table 5-2 on page 83.
Chapter 5. Applying Worklight security features 81

EOC is available for all technologies that support HTML5 local storage, which includes
mobile, desktop, and web environments. Before developing with Worklight, you must consider
mobile browser support for HTML5 storage, as shown in Table 5-1.

Table 5-1 HTML5 web storage support for iOS, Android, and BlackBerry

Data encryption is achieved through the use of a user-provided password and a
server-retrieved randomly generated token. The data is stored in the key-value pairs, and is
encrypted using a 256-bit encryption key. The key itself is encrypted using a different 256-bit
encryption key generated from a user-supplied password using the Public Key Cryptography
Standards #5 (PKCS#5) Password-Based Key Derivation Function 2 (PBKDF2) function.

This type of encryption enables secure on-device data storage. The HTML5 local storage
approach helps to ensure strong encryption standards, and facilitates data retrieval during
application start and use.

5.2.2 EOC APIs

To create, open, manipulate, and delete EOC, you must use the following APIs:

WL.EncryptedCache.open Creates or opens an existing EOC.
WL.EncryptedCache.write Stores a key-value pair within the EOC.
WL.EncryptedCache.read Based on the provided key, decrypts the value.
WL.EncryptedCache.remove Removes a key-value pair from the EOC.
WL.EncryptedCache.close Closes the EOC.
WL.EncryptedCache.destroy Deletes the EOC.

To create a new EOC, an application must be able to connect to the Worklight server. A
random number, which is used in the encryption process, is obtained from the Worklight
server. When a new EOC is created, the connection is no longer required, and the EOC can
be accessed without it.

For more information, see the section about EOC APIs in the IBM Worklight V6.0.0
Information Center:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/apiref/r_encrypted_offline_cache.html

Versions iOS Safari Android Browser BlackBerry Browser

Previous 5.0 - 5.1 4.1 7.0

Current 6.0 - 6.1 4.2 10.0

Next

Supported Versions No information available

Hybrid applications: If you are developing Worklight hybrid applications targeted for the
Android and iOS platforms, use JSONStore instead of EOC. Apple cannot guarantee that
HTML5 local storage is going to be persistent in future iOS versions.
82 Securing Your Mobile Business with IBM Worklight

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/apiref/r_encrypted_offline_cache.html
http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/apiref/r_encrypted_offline_cache.html

5.2.3 JSONStore overview

JSONStore provides a persistent storage of JSON documents. It provides different types of
data encryption, such as 256-bit Advanced Encryption Standard (AES) and PBKDF2.
Documents within JSONStore can be accessed within an application even when the device is
offline and has no access to the Worklight server.

JSONStore supports the management of multiple users by providing password protection in
case there is more than one user sharing a single device.

JSONStore provides the following functionality:

� JavaScript API for data manipulation
� File-based storage that is persistent
� Security and confidentiality by using AES256 encryption
� Integration with Worklight adapters
� Worklight Studio wizard to aid in the creation and integration with JSONStore

A single JSONStore can consist of multiple collections, which can contain many documents.
Worklight also enables multiple stores within a single application. Figure 5-2 highlights the
flow between the device and server when using JSONStore within the Worklight application

Figure 5-2 JSONStore flow

Comparison between JSONStore and EOC
JSONStore is a JavaScript API that enables data storage inside hybrid Worklight applications.
JSONStore is similar to EOC, and the information in Table 5-2 helps to differentiate between
the two on-device storage technologies.

Table 5-2 Comparison of JSONStore and EOC

Device

Worklight App

WLJSONStore API

Encryption/
Security Layer

JSON
Store

Worklight
Server

System of
Record

(RDBMS/
ERP/Backend)

wl adapter

Information
Service
Layer

HTTP/S

JSONStore EOC

Type of storage JSON document HTML5 local storage

Android support Full support Full support

iOS Support Full support Full support

Web Only development support Full support

Data encryption AES256, PBKDF2, and Federal
Information Processing
Standard (FIPS) 140-2

AES256 and PBKDF2
Chapter 5. Applying Worklight security features 83

Both JSONStore and EOC make use of the same encryption and security functions, with
additional support for FIPS provided with JSONStore.

EOC is supported as a cross-platform data storage technology, with no major technical
updates planned in the future. It is highly suggested to use JSONStore as an alternative to
EOC.

Enable JSONStore
JSONStore can be enabled by modifying the application-descriptor.xml file.

To use JSONStore capabilities, you must perform the following actions:

1. Open the application-descriptor.xml file.

2. Select the Design Tab.

3. Highlight Features and click Add.

4. The Add Item dialog opens:

a. Select JSONStore.
b. Click OK, as shown in Figure 5-3 on page 85.

Storage limit Limited by device space only ~5 MB

Reliability Full support Possible data loss

Adapter integration Full support No support

Multi-user capabilities Full support Only single-user support

Indexing Full support No support

Mobile Browser Simulator feature: It is important to note that JSONStore is not
supported in the Worklight-supplied Mobile Browser Simulator. The Android emulator can
be used to test JSONStore capabilities.

JSONStore EOC
84 Securing Your Mobile Business with IBM Worklight

Figure 5-3 Enable JSONStore on Android

5. Verify that the new features have been added to the application-descriptor.xml file, as
shown in Example 5-5.

Example 5-5 Enable JSONStore inside application-descriptor.xml.

<features>
<JSONStore/>

</features>

Documents, collections, and a store
JSONStore uses the same database objects as Not only Structured Query Language
(NoSQL) databases: documents and collections.

For JSONStore, a document is the basic building block. It is a JavaScript object with an
associated ID and JSON data. A collection is a grouping of related documents. A collection
also stores a unique integer ID that is automatically generated by a document. A file that
contains one or more collections is referred to as a store.

Search fields and queries
A search field is a JavaScript object with a key and a data type. Search fields are indexed to
maximize lookup times. It is not possible to index the object itself, but only the keys inside that
object. Keys that are indexed but are not part of the JSON data are known as additional
search fields.
Chapter 5. Applying Worklight security features 85

A sample search field is shown in Example 5-6.

Example 5-6 Search field.

var searchField = {name: 'string value', age: 'integer value'};

A JavaScript object that uses search fields to look for documents is referred to as a query.

Behavior
JSONStore behaves in the following ways:

� JSONStore data cannot be accessed from the native code, therefore it is only available in
hybrid environments.

� JSONStore does not impose a limit on data storage size, which is only controlled by the
device memory constraints. Cordova provides APIs to check the size of the store, if
needed.

� JSONStore data is persistent, unless the application is removed or the JSONStore APIs
are used.

� An error will be returned if the collection name begins with a digit or symbol.

Performance
To improve performance, follow these suggestions:

� Improve memory and data retrieval performance:

– Only get a subset of documents.
– Implement pagination when calling WL.JSONStore.find.

� Avoid using fuzzy searching that is capable of returning partial results.

� Use short key names to improve the serialization and deserialization process.

� Consider performing retrieval calls using small groups of documents, because adding and
loading data from an adapter can cause memory issues.

� Encryption naturally adds additional processing demands to JSONStore operations, and
you should consider if it is a defined non-functional requirement before securing the store.

Support
To debug an application that enables JSONStore, ensure that you are using a supported
production environment that meets the following minimum requirements:

� Android V2.3 or later ARM/x86 device and emulator
� iOS V5.0 or later device and simulator
� No support for the Mobile Browser Simulator feature

On Android-supported environments, to verify the created files, you can navigate to the
JSONStore data folder via the Dalvik Debug Monitor Server (DDMS) perspective:

1. Open the DDMS perspective inside Worklight studio.
2. Select the File Explorer tab.
3. Navigate to data/data/com.[application-name]/database/wljsonstore/.

5.2.4 The JSONStore API

This section covers some of the features that are provided by JSONStore, and the
implementation details regarding the major functions.
86 Securing Your Mobile Business with IBM Worklight

Encrypt store
To initialize one or more JSONStore collections, use WL.JSONStore.init. It provides
additional functionality:

� Encrypting data
� Multiple user support
� Integration with Worklight adapters

If you initialize a JSONStore collection with a password for the first time, JSONStore will need
a random token to encrypt the data inside. The token can either be obtained from the client,
or from the Worklight server.

It is possible to enforce data encryption locally, without the need to connect to the server, as
shown in Example 5-7. In order for the client to encrypt the data offline, set localKeyGen =
true. This method is less secure, but it does not require connectivity.

It is also possible to generate the random token on the server side, which can be sent to the
client with an Asynchronous JavaScript and XML (Ajax) call. This method provides more
security but requires connectivity.

A 256-bit AES key that is strengthened with PBKDF2 is used to encrypt the store.

Example 5-7 Random token generation options and initialization

//Optional options object
var options = {};

//Optional local key generation flag
options.localKeyGen = boolean value;

WL.JSONStore.init(collections, options)

.then(function () {
 //handle success
})

Search
To query the location of documents inside a collection, you must use WL.JSONStore.find.

There are additional APIs available for finding all of the documents, and providing the ability to
search by a document’s unique ID:

� WL.JSONStore.findAll
� WL.JSONStore.findByld

To improve performance, you can set a limit for the maximum number of returned results. To
configure the search behavior, you can specify two different searching mechanisms: fuzzy or
exact. With fuzzy search, the queries are capable of returning partial results. With exact
search, the matches must be exact but not case-sensitive.

Fuzzy searching is the default behavior. Example 5-8 shows how to use fuzzy search with a
maximum limit of five results returned. Change the value of {exact: true} to enable exact
searching.

Example 5-8 Search options

var options = {
 exact: false,
Chapter 5. Applying Worklight security features 87

 limit: 5 //returns a maximum of 5 documents
};

Multi-user support
With Worklight, you have the ability to create multiple stores. The stores can contain different
collections, and they all can be stored within a single Worklight application.

JSONStore provides the capability to add username and password parameters to ensure that
separate stores are encrypted with different passwords, as shown in Example 5-9. This
feature enables users to share their physical devices, and to feel assured that their data will
not be compromised.

Example 5-9 Multiple user support

var options = {};

//Optional username
options.username = 'username';

//Optional password
options.password = 'password';

WL.JSONStore.init(collections, options)

.then(function () {
 //handle success
})

See the section about WL.JSONStore APIs in the IBM Worklight V6.0.0 Information Center
for additional information:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/devref/c_wl_jsonstore_core_api.html

5.2.5 JSONStore integration with Worklight adapters

JSONStore data synchronization is enabled by linking a collection to a Worklight adapter. The
implementation of this concept involves a local copy of data that is maintained by a Worklight
application. The local changes can then be pushed to a back-end service to synchronize the
content.

JSONStore is capable of tracking data changes made locally and by linking a collection to an
adapter JSONStore can send and retrieve data to and from a collection.

To integrate JSONStore with an adapter, you can use either of the following functions, which
are used to transmit and receive data:

� WL.Client.invokeProcedure
� jQuery.ajax

Worklight Studio facilitates the creation of adapters, and can be used to define the basic
procedures for JSONStore, as shown in Figure 5-4 on page 89.
88 Securing Your Mobile Business with IBM Worklight

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/devref/c_wl_jsonstore_core_api.html

Figure 5-4 JSONStore adapter

Here is an example use case involving a bank employee who has installed and started to use
a financial application:

1. The employee downloads a set of financial documents while at work. Optimally this is
achieved using a wireless fidelity (WiFi) network.

2. The data is securely stored on the device, because the employee is prompted to provide a
password to store the content inside JSONStore.

3. The employee can access the information and edit the content offline.

4. When the employee connects to the network, possibly a corporate WiFi network, the
employee synchronizes the locally made JSONStore updates with the adapter. The
Worklight adapter propagates the changes to the back-end system.

5.2.6 JSONStore encryption using FIPS 140-2

FIPS are the standards and guidelines that are provided by the United States National
Institute of Standards and Technology (NIST) for federal government computer systems.

Android and iOS devices both enable the use of FIPS 140-2 validated libraries for the
encryption and decryption of locally stored data. By default, JSONStore uses non-FIPS 140-2
validated libraries. Because JSONStore uses an open source library called Open Secure
Sockets Layer (OpenSSL) to encrypt data, the FIPS-compliant version of this library can be
used. This will ensure that JSONStore will operate in FIPS-compliant mode.

The following architectures are supported for iOS and Android that will ensure JSONStore is
FIPS-compliant, as shown in Table 5-3.

Table 5-3 FIPS 140-2 supported architectures.

Android iOS

armv7 armv7
Chapter 5. Applying Worklight security features 89

See the section about FIPS 140-2 support found in the IBM Worklight V6.0.0 Information
Center for additional guidance:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/admin/c_using_FIPS_140-2_support.html

5.3 Client-side device provisioning and application authenticity

Worklight provides secure methods of identifying devices that have the necessary privileges
to run and install Worklight applications. The main purpose of device provisioning is to
achieve device identity validation.

Application authenticity is used to obtain and validate an application’s identity. It is based on
the same concept of identity validation that is used by Worklight to validate authorized users.
It enhances Worklight security and incorporates a check for application integrity. See 4.1.3,
“Authentication realms” on page 49 for additional information.

5.3.1 Device provisioning

Device identity is obtained and validated through device provisioning. The device ID that
represents the device identity is used to uniquely identify multiple devices with the Worklight
server. The client side is responsible for the generation of the device ID. This security
mechanism is important, because it enables various other Worklight features, such as push
notifications and reports.

The concept of device identity is vital for the development of secure Worklight applications, as
it enables for device filtering regarding the connection to the Worklight server.

A pair of Public Key Infrastructure (PKI)-based keys are created when a Worklight
application is run for the first time on a mobile device. The keys are then used to sign the
device and application public characteristics which are then sent to the Worklight Server and
used for authentication processing.

The generated keys alone do not provide enough security as it is possible for any application
to generate a key pair. A certificate must be created, which is handled by an external trusted
authority that enhances security by signing the key pair. The external trusted authority can
either be the Worklight server or a custom provisioning service. The process of obtaining the
certificate is called provisioning. More information regarding provisioning implementation can
be found in 5.3.3, “Implementing device provisioning” on page 92.

The application is able to store the key pair within the device keystore when a certificate has
been obtained. The access to the device keystore is protected by the operating system.

The Worklight platform provides support for several types of device provisioning:

� No provisioning
� Auto provisioning
� Custom provisioning

The key pair is capable of representing a single application, a group of applications, or an
entire device. For the single application provisioning process, each application that is located

x86 i386

Android iOS
90 Securing Your Mobile Business with IBM Worklight

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc/admin/c_using_FIPS_140-2_support.html

on the device must generate its own key pair. It is also possible to allocate the same key pair
for a group of applications. The key pair can also be used to represent the whole device. This
enables the use of the same key pair for all of the applications that are installed on the device.

Client-side device provisioning flow
This section demonstrates the process interaction involved on the client side during the
device provisioning cycle.

During the device provisioning process, the client performs the following actions:

1. The client issues a data request to the server.

2. The client generates a device ID, and obtains a certificate from an external trusted
authority.

3. The client sends the certificate to the server with the client-side generated device ID.

4. If the certificate is valid, the client issues another data request which also includes the
certificate, and the server responds with the requested data.

No provisioning
The provisioning process is not enabled and does not occur. You should only use this type of
provisioning during the development stages of the application.

The client application does not initiate the provisioning process.

If you want to disable provisioning for a custom security test that requires device identity, you
must include an additional realm as shown in Example 5-10.

Example 5-10 Disable provisioning for a custom security test

<customSecurityTest name="customTests">
...
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true"/>

</customSecurityTest>

The default option for mobile apps is no provisioning.

Auto provisioning
In this mode, a certificate for the device and application data is automatically issued by the
Worklight server. The server is now responsible for the provisioning services.

The client is responsible for obtaining the device ID, and initiating the auto provisioning cycle,
by utilizing the Worklight server as a provisioning service. The client application on the device
stores the certificate, and it is then used to sign the payload that is sent to the Worklight
server. The client certificate is validated by the server regardless of how it is obtained.

The client responds with a certificate-signed payload when the Worklight server issues a
device identity challenge. In case the client does not have a certificate, a certificate signing
request is issued by the client to the server. Worklight server responds by sending a
certificate to the client. The client automatically responds by sending a signed payload that is
deemed valid by the server, and the provisioning process is a success.

The client issues the original data request, which is processed by the server when the
necessary authentication and provisioning services have been completed successfully.
Chapter 5. Applying Worklight security features 91

It is advisable to use auto provisioning after authenticity checks have been validated, because
the certificate is issued to any device that requests it. Therefore application authenticity
features should be enabled before using auto provisioning.

Custom provisioning
With custom provisioning, you are provided with the option of using custom provisioning
services other than the Worklight server. In this mode, an external trusted system can be
used to issue a certificate. This type of provisioning is an extension of auto-device
provisioning that facilitates the definition of custom provisioning rules.

5.3.2 Device ID on Android and iOS

A device ID is generated using the Worklight framework to provide unique identification for
devices that are connected to the Worklight server. The calculation of the unique device ID
involves the generation of a Globally Unique Identifier (GUID). The device authentication
process is responsible for generating the GUID.

The device and Worklight server can be used to store the device ID. On iOS, the device
keychain is used to store the device ID. On Android, the application keystore, which is located
in the application sandbox folder, is used to store the device ID. Worklight server can be used
to store the device ID when enabling push notification subscription services.

The device operating system determines the availability of the device ID. On Android and iOS,
the same device ID can be used for single or multiple applications from the same vendor. The
device ID allocated for a specific device is persistent, so if you decide to remove and then
reinstall an application, the device ID remains the same.

Worklight stores the device ID in the raw data reports that do not provide any special access
controls, because the device ID is not considered sensitive information.

5.3.3 Implementing device provisioning

You are able to configure and change the type of device provisioning that can be
implemented, and the keystore that is going to issue a certificate. This section provides an
overview of the implementation steps that are associated with device provisioning, and are
supported by Worklight.

Configure the keystore
The default behavior of the Worklight server is to use its internal keystore to issue a
certificate. To use your own keystore, and to avoid using the default internal Worklight
keystore, you must modify the worklight.properties file that is located in the server
directory, as shown in Figure 5-5 on page 93.

Support: Only Android and iOS devices support auto provisioning and custom
provisioning.
92 Securing Your Mobile Business with IBM Worklight

Figure 5-5 Worklight studio server directory

The default values are shown in Example 5-11.

Example 5-11 Custom keystore

###################################
Worklight Default Certificate
###################################
#wl.ca.keystore.path=
#wl.ca.keystore.type=
#wl.ca.keystore.password=
#wl.ca.key.alias=
#wl.ca.key.alias.password=

Provide the following values:

� wl.ca.keystore.path=conf/default.keystore

This value represents the path to the keystore that is relative to the server folder within the
Worklight project.

� wl.ca.keystore.type=jks or pkcs12

This value represents the type of the keystore file, Java keystore, or Personal Information
Exchange Syntax Standard.

� wl.ca.keystore.password=worklight

This value represents the password to the keystore file.

� wl.ca.key.alias=customkeypair

This value represents the alias of the entry where the key pair and certificate are stored.

� wl.ca.key.alias.password=worklight

This value represents the password to the alias.

Enable auto provisioning and application authenticity on Android
For additional information, refer to “Auto provisioning” on page 91. To enable auto
provisioning when using mobile security test, see Example 5-12.

Example 5-12 Auto provisioning for mobile security test

<mobileSecurityTest name="mobileTests">
<testAppAuthenticity/>
<testDeviceId provisioningType="auto" />
<testUser realm="myMobileLoginForm" />

</mobileSecurityTest>
Chapter 5. Applying Worklight security features 93

For the mobile security test, the <testAppAuthenticity/> child element ensures that
application authenticity is performed. Similarly, for a custom security test, <test
realm=”wl_authenticityRealm”/> can be used.

You have the option of defining a new realm, or using one that is already provided by
Worklight (for example, a form-based authenticator with a non-validating login module). A
non-validating login module does not validate user credentials, and any combination of user
name and password are accepted. The sample security tests can be found in the
authenticationConfig.xml file.

Use the application authenticity check with this type of provisioning. To validate the
authenticity of an Android application, you must first follow these steps:

1. Set up a public signing key value in the application-description.xml file. The value of
the certificate that is used to sign Android applications is held by this key.

2. Extract the public key using the provided Worklight studio wizard, or perform this action
manually. This section uses the Worklight wizard to obtain the public signing key.

3. Create a Worklight hybrid application with an Android environment. Locate an Android
folder, as shown in Figure 5-6.

Figure 5-6 Android environment

4. Right-click your Android environment and select Extract public signing key. A new
wizard will start, as shown in Figure 5-7.

Figure 5-7 Worklight wizard for extracting public signing key
94 Securing Your Mobile Business with IBM Worklight

5. Provide the keystore file location. This file is located in
{Users}/.android/debug.keystore. This is the default location for the development
environment.

6. In the keystore password field, enter android. This is the default password.

7. Select Load Keystore. You are now provided with an additional field for Key alias.

8. Select the predefined key alias from the provided list. The alias available in Figure 5-7 on
page 94 is androiddebugkey.

9. Click Next. A new wizard will open, as seen in Figure 5-8.

Figure 5-8 Android public signing key

10.Click Finish. This will augment the application-descriptor.xml file by including the
newly generated public signing key, as seen in Example 5-13.

Example 5-13 Public signing key in application-descriptor.xml

<publicSigningKey>MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtX2u3XZ5u162Knd1h
wLKSh/LL+WV4bgZkgkDEaNrbXZSVUPUjmXxUAMRKOHvdG4J+0nRlXSrzjOQaAHMwQ9VxavGa3CEUshH
FQj+J9r99EBpPf6K1ocVU0lg2ZyXHsBGMv+rFEx1F41eAxdfDVZ0eTh90uy9B9/o/pZFsu54XWCIVn6
rSeVrnKwwjx84VD8pAFg64p2m1VbpHYDXCTA/csgj4GIoMGCSYxysMVLEsXRb/ZkiWniv8ZdfXrZG9d
/zhFonQsn7PnAEcg4Gu3ubBvl1OOeD1zCtAx6BLcRmi3uflVBxNQyg1Zuyc0gN+6HxHieSNQcJ5jP2l
NZTu47T2wIDAQAB</publicSigningKey>

It is also possible to implement custom provisioning when you need to change the
provisioning process or modify the scope (device, group, or application). To implement
custom provisioning, you must create your own custom challenge handler, login module, and
authenticator.
Chapter 5. Applying Worklight security features 95

5.3.4 Control and confirm application authenticity

The steps mentioned in the previous section, “Enable auto provisioning and application
authenticity on Android” on page 93, illustrate the process required to enable application
authentication.

There are additional steps that help confirm and test application authenticity. First, you must
ensure that the application connects to the Worklight server when it starts. This enables you
to test if the application is able to successfully connect to the server. Edit the initOption.js
file located in the js folder, as shown in Example 5-14.

Example 5-14 Worklight connection options

var wlInitOptions = {

// # Should application automatically attempt to connect to Worklight Server on
//application start up
// # The default value is true, we are overriding it to false here.

 connectOnStartup : true,

The Worklight console also provides additional runtime functionality related to application
management and authentication. It is possible to disable and enable the application
authenticity realm in run time. The following modes, which can be enabled, are shown in
Figure 5-9:

Disabled The check for application authenticity is disabled.

Enabled, servicing The application authenticity check is enabled but, if the authentication
fails, the application is still processed and served by the Worklight
server.

Enabled, blocking The application authenticity check is enabled but, if the authentication
fails, the application is not processed and served by the Worklight
server.

Figure 5-9 Application authenticity control as provided by Worklight console

Editions: It is important to note that only the Consumer or the Enterprise edition of
Worklight Studio provides the capability for application authentication.
96 Securing Your Mobile Business with IBM Worklight

You are able to define separate security tests for specific application environments. These
security tests can be used to protect application environments. If you want to use a security
test other than the default Worklight security test, you must modify the
application-descriptor.xml file. In Example 5-15, a mobile test called mobileTests is being
used to protect an Android environment that is also shown in Figure 5-9 on page 96.

Example 5-15 Protect Android environment with a security test.

<android securityTest="mobileTests" version="1.0">
<worklightSettings include="true"/>

 <security>
...

 </security>
</android>

5.4 Direct Update

The Worklight server provides the capability to automatically update hybrid iOS and Android
applications with new versions of their web resources (HTML, JavaScript, and CSS). This is
achieved without the user having to get these updates from an app store.

The Worklight console can be used to manage your applications. It enables you to view all of
the applications that are installed, and groups them by the platform. Direct Update is capable
of providing great advantages for a business:

� It is now possible to ensure that all of the users are using the latest version of the
application.

� It provides security enhancements relating to the response time of issuing security
updates, because the whole process is fast and simple to perform.

� A better management of application functionality is now possible with Direct Update.

Direct Update is only available for Android and iOS, and it is not possible to update an
application’s native resources, because only the web resources are updated during the
process.

Direct Update based on application versions
Direct Update is initiated when an application is redeployed to the Worklight server, without
changing its version, and an application with older versions of these resources connects to
the server. An application checks for updates at startup, and on returning to foreground.

Worklight enables Direct Update by default. You must ensure that the version of the Worklight
studio and server that are used to deliver the Direct Updates aligns with the version that was
used to build the application.

5.4.1 Using Direct Update

To initiate a Direct Update, modify the web resources of an application and redeploy it to the
Worklight server. For example, if a critical security problem has been detected in a banking
application, the developers are able to issue a security update that will get propagated to user
devices when they first start the application and connect to the Worklight server.
Chapter 5. Applying Worklight security features 97

It is also possible to disable an application with Remote Disable, covered in 5.5, “Remote
Disable” on page 98. The user will be presented with a dialog indicating a new update is
available, as shown in Figure 5-10.

Figure 5-10 Direct Update

The only option provided is to update the application. If the user initiates the update, a
progress indicator launches, and the download of the web resources commences. When the
download is complete, the application reloads, and the necessary updates are applied.

5.5 Remote Disable

The Remote Disable feature enables you to disable access from a user to a specific version of
an application, to prevent security flaws and prepare for a Direct Update. Direct Update and
Remote Disable features can be used to greatly enhance security.

Lock an application
Worklight console enables you to lock an application to prevent further updating, as shown in
Figure 5-11.

Figure 5-11 Lock an application using Worklight console

Application version control
If an older version of your application contains security issues, or if it is required to disable the
current application to enhance security, the Worklight console can be used to perform the
necessary actions, as shown in Figure 5-12 on page 99.
98 Securing Your Mobile Business with IBM Worklight

Figure 5-12 Remote Disable feature

You are also provided with a field for the Uniform Resource Locator (URL) for the new version
of the application, which can be acquired from an appropriate application market.

The user will get notified that a new version of the application is available, and they will have
the choice of either exiting the application or acquiring a new version. This ensures that all of
the users will have the same version of the application, and that the problematic application
versions can be eliminated.
Chapter 5. Applying Worklight security features 99

100 Securing Your Mobile Business with IBM Worklight

Chapter 6. Integration with IBM Security
Access Manager

This chapter explores the integration options achievable with IBM Security Access Manager
to provide user authentication, identity attributes, and fine-grained authorization using
risk-based access decisions to protect Worklight adapters.

An overview of the IBM Security Access Manager for Cloud and Mobile identifies the key
components of the solution offering, and describes the capabilities and roles that each
component offers.

This chapter examines options for providing user authentication and single sign-on (SSO),
using one of the following methods:

� IBM Security Access Manager for web login form single sign-on
� Tivoli Federated Identity Manager OAuth single sign-on
� Worklight adapter single sign-on

6.3, “Risk-based access” on page 121 is introduced and illustrated to show how
context-based access policies are defined, and how they are used to provide assurance and
strong authentication for adapter-based transactions in IBM Worklight.

Finally, this chapter reviews how to implement the complete IBM Security Access Manager
integration solution by using its individual capabilities.

6

© Copyright IBM Corp. 2013. All rights reserved. 101

6.1 IBM Security Access Manager introduction

IBM Security Access Manager for Cloud and Mobile extends user access protection to mobile
and cloud environments. It combines the features and strengths of IBM Security Access
Manager for Web, IBM Tivoli Federated Identity Manager, and IBM Tivoli Security Policy
Manager to provide enhanced threat detection and prevention capabilities for cloud and
mobile environments.

It offers user authentication, federated SSO, and risk scoring to help detect and prevent
security breaches and web fraud. It provides context-based access management for mobile
endpoints, such as smartphones and tablets, so that users do not inadvertently expose
sensitive information technology (IT) assets in an insecure environment. It enables you to set
up and run consistent security policies across multiple applications and for multiple users.

IBM Security Access Manager for Cloud and Mobile includes the following key features:

� Authentication and authorization of mobile application (app) users and devices, with
advanced session management and integration with IBM Worklight

� Federated SSO and identity mediation across different cloud service providers and web
services

� Risk-based access as a pluggable and configurable component

6.1.1 IBM Security Access Manager components

Each of the components can be used stand-alone to provide individual solutions and
capabilities. However, when integrated, they form a security solution that provides a holistic
approach to securing your Worklight applications and infrastructure, and reduces
complexities with user directory integration.

IBM Security Access Manager for web
Available as a hardware appliance, virtual appliance, or software, IBM Security Access
Manager for web (previously known as IBM Tivoli Access Manager for e-business), provides
integration ready for use with web applications, including Worklight.

This integration provides secure, unified, and personalized user experiences by using web
SSO and user identity attributes. The scalable web reverse proxy acts as an identity firewall
with the authentication, authorization, and administration interfaces, which simplifies
integration to help secure access to Worklight.

In addition to the web reverse proxy (IBM Security Access Manager for Web, or WebSEAL)
component, the IBM Security Web Gateway Appliances provide access control,
authentication, and session management for web applications. In addition, it provides
protection from external threats using the IBM X-Force Intrusion Protection Protocol Analysis
Module.

Using IBM Security Access Manager for web to provide SSO for Worklight applications is
demonstrated in 6.2.1, “IBM Security Access Manager for web login form single sign-on” on
page 104.

Tivoli Federated Identity Manager
IBM Tivoli Federated Identity Manager adds support for OAuth 1.0 and 2.0 to your
environment, and can also provide additional authorization capabilities that you can take
advantage of when integrating with Worklight. Using Tivoli Federated Identity Manager to
102 Securing Your Mobile Business with IBM Worklight

provide SSO for the Worklight application is demonstrated in 6.2.2, “Tivoli Federated Identity
Manager OAuth single sign-on” on page 111.

In addition to federated SSO, Tivoli Federated Identity Manager’s risk-based access (RBA)
enforcement features can take advantage of context-based attributes of the mobile device
and Worklight adapter properties to identify the risk associated with anytime, anywhere
mobile access to Worklight applications. RBA capabilities are demonstrated in 6.3,
“Risk-based access” on page 121.

Tivoli Security Policy Manager
IBM Tivoli Security Policy Manager centralizes security policy management and fine-grained
data access control for applications, databases, portals, and services. The runtime security
services (RTSS) component of Tivoli Security Policy Manager enables the engine to perform
RBA decisions for web-based transactions.

By integrating Tivoli Security Policy Manager with your Tivoli Federated Identity Manager and
IBM Security Access Manager for web, you can author, test, distribute, and govern rich,
attributes-based access policy constructs for your Worklight applications. You can also reuse
those policies across other enterprise applications, supporting delegated authorization.
Support for the deployment of raw Extensible Access Control Markup Language (XACML)
policy is also provided.

6.2 Enabling identity aware applications

When using IBM Security Access Manager for authentication, the authenticated user’s
identity is propagated to the Worklight server, without the need for directory synchronization
between the two systems. In addition to the user name, additional attributes for the user
contained in the IBM Security Access Manager user registry can be supplied as extended
attributes to Worklight. These attributes can then be used to provide personalization in the
mobile app or Worklight adapters.

All user details populated during SSO are available in the attributes of the realm that was
authenticated against by the Worklight login module and authenticator. These attributes can
be accessed in an adapter, as shown in Example 6-1, and can be passed back to the client
mobile app for additional processing.

Example 6-1 Retrieving user attributes

var attributes = WL.Server.getActiveUser().attributes;
var webSealExtendedAttribute = attributes.get('UserSurname');

In this section, sample code and configuration extracts are provided to demonstrate IBM
Security Access Manager authentication using Login forms and OAuth. The samples
provided here are adapted from the IBM Security Access Manager for IBM Worklight
integration offering available from the following website:

http://www-01.ibm.com/support/docview.wss?uid=swg24034222.

This book only provides the high-level steps of the IBM Security Access Manager
configuration, focusing on Worklight integration examples and settings.
Chapter 6. Integration with IBM Security Access Manager 103

http://www-01.ibm.com/support/docview.wss?uid=swg24034222

6.2.1 IBM Security Access Manager for web login form single sign-on

WebSEAL can provide SSO for Worklight mobile apps using existing authentication
mechanisms, which reduces provisioning of additional systems and directory integration. By
asserting the authenticated user’s identity to the Worklight server, directory integration is
simplified without the need to configure multiple user repositories and login modules in the
Worklight server.

Successful user authentication must be completed before access is granted to the Worklight
server, which provides a leading practice security strategy called defense in depth. This can
be extended to include session management and coarse-grained authorization decisions.

The authenticated user’s identity can be provided to Worklight using a variety of techniques,
including LTPA tokens, HTTP headers, mutually authenticated SSL, and custom login
modules. This provides flexibility for integration with existing security architectures.

To achieve SSO, the Worklight client challenge handler must be configured to accept a
pkmslogin.form challenge from WebSEAL, and to provide valid credentials for successful
authentication.

In addition, the Worklight client security test, realm, and the authentication data type inserted
by WebSEAL must exactly match the security test, realm, and login module configured in the
Worklight server.

Authentication process flow
The login sequence when using forms-based authentication with IBM Security Access
Manager is shown in Figure 6-1 on page 105.
104 Securing Your Mobile Business with IBM Worklight

Figure 6-1 IBM Security Access Manager forms-based authentication

Logging in consists of the following steps:

1. The client connects to Worklight server (for example, /reach).

2. WebSEAL, acting as the reverse proxy, caches the /reach request and responds to the
client with a 200 OK status response and the WebSEAL login form.

3. The client detects the login form as a custom response, and displays the login form on the
device to the user.

4. The user enters their user name and password, and clicks Login.

5. The client performs a POST operation to WebSEAL, providing the login form data.

6. WebSEAL authenticates the user.

7. If successful, WebSEAL forwards the original /reach request to the Worklight server and
the configured authentication data, either the Hypertext Transfer Protocol (HTTP) header
or Lightweight Third Party Authentication (LTPA).

8. The Worklight server, acting as the client, retrieves the authentication data, sets the user
data for the realm, and returns the successful 200 OK response to WebSEAL.

9. WebSEAL, acting as the reverse proxy, applies any path or host name filtering, and
returns the response to the client.

10.The client continues to run with subsequent requests through WebSEAL (for example,
/reach).

3

4

10

Tivoli Directory Server
(LDAP)

IBM Security Access Manager
WebSEAL or Web Gateway

Appliance

1

2

5

9

6

IBM Worklight Worklight Application

Worklight HTTP Adapter

IBM Security Access Manager
WebSEAL or Web Gateway

Appliance

7 8
Chapter 6. Integration with IBM Security Access Manager 105

Worklight client application challenge handler
The challenge handler of the Worklight application must detect a WebSEAL PKMS login form
challenge, and provide a mechanism for the user to enter credentials for the IBM Security
Access Manager server.

One solution is to display a simple login form on the device, allowing the user to enter a user
name and password, and submit these using a login button. When the login button is pressed,
the user name and password are submitted to the IBM Security Access Manager server for
validation.If successful, the original request is forwarded to Worklight.

A simple challenge handler for login form authentication is shown in Example 6-2.

Various events, such as authentication errors, password change notifications, and
authentication errors, can also be detected in the isCustomResponse function, and an
appropriate message or action returned to the user.

Example 6-2 Simple IBM Security Access Manager login form challenge handler

var REALM_HTTPHEADER = 'HeaderAuthRealm';
var LOGIN_FORM_TAM = 'pkmslogin.form';

function showLoginScreen() {
$("#index").hide();
$("#authPage").show();

}

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

}

var websealRealmChallengeHandler =
WL.Client.createChallengeHandler(REALM_HTTPHEADER);
var lastRequestURL;

websealRealmChallengeHandler.isCustomResponse = function(response) {
//A normal login form has been returned.
var findLoginForm = response.responseText.search("pkmslogin.form");
if (findLoginForm >= 0) {

lastRequestURL = response.request.url;
return true;

}

//Need to also check for errors and handle as appropriate

//This response is a worklight server response, handle it normally
return false;

};

websealRealmChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

};

websealRealmChallengeHandler.handleFailure = function(response) {
console.log("Error during WebSEAL authentication.");

};
106 Securing Your Mobile Business with IBM Worklight

websealRealmChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = websealRealmChallengeHandler.isCustomResponse(response);
if (isCustom) {

websealRealmChallengeHandler.handleChallenge(response);
}
else {

//hide the login screen, we are logged in
showMainScreen();
websealRealmChallengeHandler.submitSuccess();

}
};

$("#loginButton").click(function(){
var reqURL = "/../../../" + LOGIN_FORM_TAM;
var options = {method: "POST"};
options.parameters = {

User name : $("#username").val(),
password : $("#password").val(),
"login-form-type" : "pwd"

};
options.headers = {};
websealRealmChallengeHandler.submitLoginForm(reqURL, options,

websealRealmChallengeHandler.submitLoginFormCallback);
}

);

Worklight server login module
Authentication to the Worklight server is handled by a Worklight login module. You must
configure the appropriate login module corresponding to the required authentication
mechanism.

Login modules are responsible for validating credentials supplied by an authenticator, and are
configured in the <Worklight_WAR>/WEB-INF/classes/conf/authenticationConfig.xml file.
You can configure more than one login module in the Worklight server, and the realm
associated with the security test will determine which login module is called.

Both HTTP Header and LTPA Token login modules are available.

To use HTTP Header, add the com.worklight.core.auth.ext.HeaderLoginModule login
module, specifying iv-user as the user-name-header and display-name-header, as shown in
Example 6-3. These are WebSEAL-specific headers, and are sent by WebSEAL to the
Worklight server containing user authentication data.

Example 6-3 HTTP Header authentication login module

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<loginModules>

...
<loginModule name="HeaderAuthModule">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="iv-user"/>
<parameter name="display-name-header" value="iv-user"/>
Chapter 6. Integration with IBM Security Access Manager 107

</loginModule>
...

</loginModules>
...

</tns:loginConfiguration>

To use LTPA Token, add the com.worklight.core.auth.ext.WebSphereLoginModule login
module, as shown in Example 6-4.

Example 6-4 LTPA Token authentication login module

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<loginModules>

...
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>
...

</loginModules>
...

</tns:loginConfiguration>

Worklight server realm
Realms are configured to call an authenticator, which is responsible for collecting credentials
from the client. You must configure the appropriate authenticator corresponding to the
required authentication mechanism from IBM Security Access Manager.

Authentication modules are configured in the
<Worklight_WAR>/WEB-INF/classes/conf/authenticationConfig.xml file.

You can configure more than one realm, however the name must be unique, and the
loginModule value must exactly match one of the <loginModule> elements, the configuration
of which is detailed in “Worklight server login module” on page 107.

Both HTTP Header and LTPA Token realm authenticators are available.

To use HTTP Header, add the com.worklight.core.auth.ext.HeaderAuthenticator
authentication module, as shown in Example 6-5.

Example 6-5 HTTP Header authentication Realm

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<realms>

...
<realm name="HeaderAuthRealm" loginModule="HeaderAuthModule">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...

<realms>
...

</tns:loginConfiguration>
108 Securing Your Mobile Business with IBM Worklight

To use LTPA Token, add the
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator authentication module,
specifying the login-page and error-page as a fallback to forms-based authentication to
Worklight, as shown in Example 6-6.

Example 6-6 LTPA Token authentication realm

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<realms>

...
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>
...

<realms>
...

</tns:loginConfiguration>

Worklight server security test
Security tests require a Worklight user to pass the test before access is granted. The
Worklight client is configured to handle security tests for a Worklight server realm.

Security tests are configured in the
<Worklight_WAR>/WEB-INF/classes/conf/authenticationConfig.xml file. You can configure
more than one security test, and each test can handle challenges for one or more realms.

To use HTTP Header, add the HeaderAuthRealm to the security tests, as shown in
Example 6-7.

Example 6-7 HTTP Header authentication security test

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<securityTests>

...
<webSecurityTest name="ISAMAuthentication-web-securityTest">

<testUser realm="HeaderAuthRealm"/>
</webSecurityTest>
<mobileSecurityTest name="ISAMAuthentication-mobile-securityTest">

<testUser realm="HeaderAuthRealm"/>
<testDeviceId provisioningType="none"/>

</mobileSecurityTest>
...

</securityTests>
...

</tns:loginConfiguration>
Chapter 6. Integration with IBM Security Access Manager 109

To use LTPA Token, add the WASLTPARealm to the security tests, as shown in Example 6-8.

Example 6-8 LTPA Token authentication security test

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<securityTests>

...
<webSecurityTest name="ISAMAuthentication-web-securityTest">

<testUser realm="WASLTPARealm"/>
</webSecurityTest>
<mobileSecurityTest name="ISAMAuthentication-mobile-securityTest">

<testUser realm="WASLTPARealm"/>
<testDeviceId provisioningType="none"/>

</mobileSecurityTest>
...

<securityTests>
...

</tns:loginConfiguration>

Build and deploy the Worklight application
Having configured the Worklight server and the client application for IBM Security Access
Manager forms-based authentication challenges, you can now use the Build For Remote
Server function in the Worklight Studio.

You must update the Uniform Resource Locator (URL) to correspond to the protocol, the fully
qualified domain name, and the port (if nonstandard) of the IBM Security Access Manager
server. Also, you need to define a context path, which must be created as a corresponding
WebSEAL junction path.

When deploying the application, Worklight Studio uses the IBM Security Access Manager
address to publish, and is unable to authenticate to WebSEAL. Instead, you can log in to the
Worklight console directly, and manually upload the application.

IBM Security Access Manager junction
The pdadmin command-line utility can be used for both the software and web gateway
appliance versions of IBM Security Access Manager, or the local management interface (LMI)
for the web gateway appliance.

In both instances, create an indiscernible path junction with a name that exactly matches the
context path of the Worklight application, as described in “Build and deploy the Worklight
application”. To ensure that the Worklight device authentication challenge is not intercepted
by IBM Security Access Manager, specify the -b ignore parameter.

If you are using HTTP Header authentication, ensure that the iv-user HTTP Header for the
authenticated user is inserted, as shown in Example 6-9.

Example 6-9 HTTP Header authentication junction creation

pdadmin sec_master> server task <instance-name>-webseald-<webseal-hostname>
create -t tcp -h <worklight-server-fqdn> -p <worklight-serverport>
-c iv-user -x -b ignore /worklight
110 Securing Your Mobile Business with IBM Worklight

If you are using LTPA Token authentication, you must export the LTPA key file from the
Worklight server, and copy it locally to the IBM Security Access Manager server. Provide the
full file name and path to the key file during the junction creation, as shown in Example 6-10.

Example 6-10 LTPA Token authentication junction creation

pdadmin sec_master> server task <instance-name>-webseald-<webseal-hostname>
create -t tcp -h <worklight-server-fqdn> -p <worklight-serverport>
-A -F <exported-ltpa-key-path-and-filename> -Z <exported-ltpa-keypassword>
-x -b ignore /worklight

After you complete the required Worklight server configuration changes and client updates,
IBM Security Access Manager now provides the user authentication and identity assertion to
Worklight.

6.2.2 Tivoli Federated Identity Manager OAuth single sign-on

IBM Tivoli Federated Identity Manager adds support for OAuth 1.0 and 2.0 to your
environment, which you can use to provide identity-aware applications. Instead of users
supplying a user name and password, a defined OAuth registration process is followed, with
an enrollment step completed on a separate, trusted, and secure system. The user obtains a
time-sensitive registration code, called an authorization code, from this system.

The authorization code is valid for a single use only, is time-limited, and must be entered in
the device and validated before it expires. The code entry can be manual, using the device
keyboard, or it can take advantage of device integration, such as scanning a quick-response
(QR) code.

When users start the application, a registration screen opens, on which they submit their
registration code (the authorization code). If the validation is successful, they are
authenticated, and Tivoli Federated Identity Manager populates a defined list of attributes into
their Worklight session identity, including an access token and refresh token. The refresh token
is stored securely on the device using the encryption features of the Worklight client, as
described in 5.2, “Encrypted offline cache and JSONStore” on page 81.

Each time the application is started, authentication is seamless, with the device sending the
refresh token on the user’s behalf to authenticate and populate their Worklight session
identity. After successful authentication with the refresh token, Tivoli Federated Identity
Manager provides the Worklight application with the following tokens:

� A new refresh token, which is again stored on the device and overwrites the original

� A time-sensitive access token, which is used during additional requests in the same
session for authentication

Using the OAuth pattern, no personal information about the user is ever shown on the device,
and the tokens stored on the device can be invalidated, temporarily or permanently
preventing access for that device. You can also strengthen the security by adding an optional
personal identification number (PIN) during authentication with a refresh token.

The OAuth integration is a complex scenario, and it requires a thorough understanding of the
OAuth protocol and Tivoli Federated Identity Manager.

In this scenario, Tivoli Federated Identity Manager is the identity provider that the Worklight
adapter calls to validate user authentication. During the authentication, only the required
OAuth artifacts and user profile data are returned to the client, and no authentication is
performed against WebSEAL.
Chapter 6. Integration with IBM Security Access Manager 111

However, OAuth authentication can be provided to WebSEAL by using a custom external
authentication interface (EAI). This enables WebSEAL to accept OAuth tokens as an
authentication mechanism, which is validated using a custom trust module running on Tivoli
Federated Identity Manager. After successful validation, the provided access token (or refresh
token) is exchange for a valid WebSEAL session for that user.

In this scenario, we assume the Tivoli Federated Identity Manager system is already
configured for OAuth. See the section on configuring an OAuth federation in the IBM Tivoli
Federated Identity Manager Version 6.2.2 Configuration Guide for configuration instructions:
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/
config/concept/OAuthConfiguring.html

Authentication process flow
The following implementation demonstrates a Worklight adapter-based authentication
scenario. However, this can also be implemented as a custom login module and
authenticator.

By using an adapter-based authentication design for the OAuth implementation, the identity
provider can be updated or swapped entirely to a different provider without needing to deploy
a new version of the client application. The authentication changes are not apparent to users,
and no modifications are required on the Worklight server, which reduces change requests
and server administration.

The OAuth flow can also be implemented in the device client itself using JQuery, bet there are
limitations:

� The network request and response handling is non-trivial.

� The solution is not scalable.

� The solution requires the distribution of a new app to resolve errors or change details,
such as the endpoint URLs.

A high-level overview of the OAuth registration and authentication is shown in Figure 6-2 on
page 113.
112 Securing Your Mobile Business with IBM Worklight

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/config/concept/OAuthConfiguring.html

Figure 6-2 IBM Security Access Manager OAuth authentication

The following steps complete OAuth registration and authentication:

1. A client connects to the Worklight server, and accesses an adapter function that is
protected by a security challenge (for example, initOAuthAuthorizationCodeInit).

2. Worklight detects the authentication requirement, and returns the adapter login function
and response to the client.

3. The client detects the custom response for the OAuth challenge handler, and displays the
registration code entry screen on the device. The entry screen contains instructions for the
user about how to obtain a registration code.

4. The users provision themselves for mobile access in a separate, trusted web browser.
They then obtain a time-sensitive, single-use registration code, and enter it into the device.

5. The registration code is sent to the Worklight adapter, which calls the OAuth Java class to
validate the registration code.

6. The OAuth Java class calls the token endpoint URL, passing the registration code
supplied by the user.

7. The token endpoint validates the registration code and, if successful, sends an access
token and refresh token to the OAuth Java class. That class passes the tokens back to the
adapter.

8. The adapter extracts the access token and refresh token. It then calls the OAuth Java
class to retrieve the profile for the authenticated user, passing both tokens.

9. The OAuth Java class calls the endpoint profile URL, passing both tokens.

ISAM Proxy

OAuth EAS

Federated Identity
Manager

OAuth Server

Risk-based
access runtime

OAuth token to ISAM
session cookie (EAI)

Worklight Server

Administration

Users,

Token state,

devices

Worklight Application

OAuth registration &
token refresh

Device fingerprint
collection

Access token validation

Security flows
Chapter 6. Integration with IBM Security Access Manager 113

10.The profile endpoint validates the tokens and returns the user attributes to the OAuth Java
class, which passes the attributes back to the adapter.

11.The adapter validates the authentication and, if profile retrieval was successful, sets the
identity for the Worklight session, and then returns a success message to the client.

12.The client detects the success message, submits success to the challenge handler, and
stores the refresh token on the device.

13.The challenge handler satisfies the conditions for accessing the initial protected resource,
and the adapter function runs.

Worklight client application challenge handler
The challenge handler of the Worklight application detects a JavaScript Object Notation
(JSON) parameter called authRequired, which is provided to the client if the Worklight realm
starts the login function specified in the realm configuration.

If the device has not previously been through the initial registration process, and there is no
refresh token in the encrypted storage of the device, the user must be prompted to enter a
registration code and provided with details about where to get this registration code. After the
registration code is entered, the OAuth login can commence.

If a token is available on the device, this can be used for authentication, and the process is not
apparent to the user (no interaction is required).

A simple challenge handler for the OAuth adapter authentication is shown in Example 6-11,
which provides the main functional logic. However, it does not show the callback functions for
handling success and failure of the adapter invocation.

Various events, such as token expiration and authentication errors, can also be detected in
the isCustomResponse function, and an appropriate message or action returned to the user.

Example 6-11 Simple OAuth challenge handler for adapter based authentication

var REALM_TFIMOAUTH = 'TFIMOAuthAdapterRealm';

//During application startup, read the refresh_token from the cache.
//If there isn’t a refresh_token, show the registration screen.
function showRegisterScreen() {

$("#index").hide();
$("#regPage").show();

}

function showMainScreen() {
$("#regPage").hide();
$("#index").show();

}

var tfimOAuthAdapterRealmChallengeHandler =
WL.Client.createChallengeHandler(REALM_TFIMOAUTH);

tfimOAuthAdapterRealmChallengeHandler.isCustomResponse = function(response) {
if (!response || !response.responseJSON || response.responseText === null) {

return false;
}
//Detect the authentication trigger from onAuthRequired in the adapter
if (typeof(response.responseJSON.authRequired) !== 'undefined'){

return true;
114 Securing Your Mobile Business with IBM Worklight

} else {
return false;

}
};

tfimOAuthAdapterRealmChallengeHandler.handleChallenge = function(response){
var authRequired = response.responseJSON.authRequired;

if (authRequired == true) {
startOAuthLogin();

else if (authRequired == false){
showMainScreen();
tfimOAuthAdapterRealmChallengeHandler.submitSuccess();

}
};

function startOAuthLogin() {
bool isAuthorizationCode = false;

//Read the refresh_token from the cache.
var code = readRefreshTokenFromEOC();

//If no refresh_token is available use the the registration code.
//The regPage should already be visible
if (code == “”) {

code = $("#AuthorizationCode").val();
isAuthorizationCode = true;

}

if (code == null || code == "") {
tfimOAuthAdapterRealmChallengeHandler.submitFailure();

}
else {

//Determine which token we have. authorization_code is only used once.
var grantType = "refresh_token";
if (isAuthorizationCode) {

grantType = "authorization_code";
}

var invocationData = {
Adapter : "TFIMOAuthAdapter",
procedure : "submitAuthentication",
parameters : [grantType, code]

};

var options = {
onSuccess: onSubmitAuthenticationSuccess,
onFailure: onSubmitAuthenticationFailure

};
//Attempt authentication to the adapter. We should loop back to

isCustomResponse on the response.

tfimOAuthAdapterRealmChallengeHandler.submitAdapterAuthentication(invocationData,
options);
Chapter 6. Integration with IBM Security Access Manager 115

}
}

Worklight server adapter
To start the authentication process, the Worklight client must access a protected resource,
such as an adapter, to start a security test for a realm, which in turn starts the authentication
process on the Worklight server.

The function in the adapter used to submit authentication data must not require a security
test, or must use a security test for a realm that has already been successfully authenticated.
Otherwise, it will not be possible to submit authentication, and the user will enter an endless
invoke and authentication loop.

In Example 6-12, the Worklight client attempts to start the initOAuthAuthorizationCodeInit
function of an adapter that is secured by the TFIMOAuthAdapter-securityTest. This security
test is configured for the TFIMOAuthRelam, which starts the adapter-based authentication.

When the Worklight client attempts to authenticate, it provides the credentials using the
submitAuthentication function. After successful authentication, the
initOAuthAuthorizationCodeInit function is run, and the response is returned to the
Worklight client.

Example 6-12 Adapter-based authentication security test configuration

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wl:adapter xmlns:wl="http://www.worklight.com/integration" ...>

<procedure name="submitAuthentication"/>
<procedure name="initOAuthAuthorizationCodeInit"

securityTest="TFIMOAuthAdapter-securityTest"/>

</wl:adapter>

The protocol, host, and port configuration of the adapter can be left as the default values,
because the adapter does not perform a WL.Server.invokeHttp where the endpoint address
is controlled by those values.

A sample of code for the adapter is shown in Example 6-13. The onAuthRequired function is
called from the Worklight server to initiate the authentication process. The client challenge
handler, conversely, uses the submitAuthentication function to provide authentication data.

The submitAuthentication function references a Java class file that is responsible for
performing the network operations:

� Contacting the identity provider
� Parsing the response so that it is accessible in the adapter

Example 6-13 Adapter-based authentication function for OAuth single sign-on

//Authentication function triggered by the Worklight server realm indicating to
the client that authentication is required and is a custom response.
function onAuthRequired(errorMessage){

errorMessage = errorMessage ? errorMessage : null;
return {

authRequired: true,
errorMessage: errorMessage

};
}

116 Securing Your Mobile Business with IBM Worklight

//Main authentication function for validating an access_token or refresh_token as
the grantType when submitted by the client.
function submitAuthentication(grantType, accessCode){
...

//Define the parameters for the Java class that will perform the network
operaitons

var CLIENT_ID = 'mobileClient';
var APPNAME = 'BANK_CO_A';
//The token exchange URL
var OAUTH_TOKEN_ENDPOINT =

'https://tfim.ibm.com/FIM/sps/oauth20sp/oauth20/token';
//The profile URL to obtain user attributes after successful token validation
var OAUTH_PROFILE_ENDPOINT =

'https://tfim.ibm.com/FIM/demo/oauthprotected/profile.jsp';

//Initialize a new instance of the Java class for the network operations
var oauth = new com.ibm.security.worklight.oauth.TFIMOAuth();
oauth.setClientId(CLIENT_ID);
oauth.setAppName(APPNAME);
oauth.setOauthTokenEndpointURL(OAUTH_TOKEN_ENDPOINT);
oauth.setOauthProfileEndpointURL(OAUTH_PROFILE_ENDPOINT);

//Call the token endpoint to validate the token
var authenticateRequest = oauth.sendAuthenticateRequest(grantType, accessCode);

//If the authenticateRequest was successful parse the response
var authResponseJSON = JSON.parse(authenticateRequest);

//If the authenticateRequest was successful call the profile URL with the new
access_token

var profileRequest = oauth.getProfileRequest(authResponseJSON.access_token);

//If the profileRequest was successful parse the response
var profileRequestJSON = JSON.parse(profileRequest);

//Build the user identity with the attrubites from the authResponseJSON and
profileRequestJSON

var tfimIdentity = {
userId : profileRequestJSON.User name,
displayName : profileRequestJSON.User name,
attributes : {

pinprotected : authResponseJSON.pinprotected,
expires_in : authResponseJSON.expires_in,
scope : authResponseJSON.scope,
appInstance : authResponseJSON.appInstance,
access_token : authResponseJSON.access_token,
token_type : authResponseJSON.token_type,
refresh_token : authResponseJSON.refresh_token,
User name : profileRequestJSON.User name,
timestamp : profileRequestJSON.timestamp

}
};
Chapter 6. Integration with IBM Security Access Manager 117

//If authentication and profile retrieval was successful set the authenticated
user to the TFIM identity

WL.Server.setActiveUser("TFIMOAuthAdapterRealm", tfimIdentity);

//Send a callback to the Worklight client indicating success. The Worlight
client then must manually call the submitSuccess for the challenge handler.

return {
 authRequired: false
 };
...
}

Worklight server login module
When using adapter-based authentication, the Worklight server does not perform any
authentication itself. It is reliant on the submitSuccess function of the challenge handler and
the WL.Server.setActiveUser() call in the adapter to add a user identity for the configured
realm. The non-validating login module shown in Example 6-14 is used so that the Worklight
server does not perform any validation of the user authentication.

Example 6-14 Non-validating login module for adapter-based authentication

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<loginModules>

...
<loginModule name="TFIMOAuthAdapterLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>
...

</loginModules>
...

</tns:loginConfiguration>

Worklight server realm
The Worklight server realm is responsible for starting the required adapter functions for login
and logout events. The two functions do not need to be in the same adapter, but the adapter
name and the function specified in that adapter must exist.

In Example 6-15, the TFIMOAuthAdapter is called for both login and logout events.

Example 6-15 Adapter Based Authentication Realm

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<realms>

...
<realm name="TFIMOAuthAdapterRealm"

loginModule="TFIMOAuthAdapterLoginModule">

<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function"

value="TFIMOAuthAdapter.onAuthRequired"/>
118 Securing Your Mobile Business with IBM Worklight

<parameter name="logout-function" value="TFIMOAuthAdapter.onLogout"/>
</realm>
...

<realms>
...

</tns:loginConfiguration>

Worklight server security test
The authentication process commences when the Worklight client attempts to access the
Worklight server (for example, on a WL.Client.connect that has a security test defined for the
application at startup), or when it attempts to start an adapter protected by a security test.

In Example 6-16, the client attempts to access a protected adapter function,
initOAuthAuthorizationCodeInit, which is protected by TFIMOAuthAdapter-securityTest.

Example 6-16 Custom security test for adapter-based authentication

<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfigurationxmlns:tns="http://www.worklight.com/auth/config" ... >

...
<securityTests>

...
<customSecurityTest name="TFIMOAuthAdapter-securityTest">

<test isInternalUserID="true" realm="TFIMOAuthAdapterRealm"/>
</customSecurityTest>
...

<securityTests>
...

</tns:loginConfiguration>

Build and deploy the Worklight application
Having configured the Worklight server and the client application for IBM Security Access
Manager OAuth challenges, you can now use the Build For Remote Server function in the
Worklight Studio.

You must update the URL to correspond to the protocol, the fully qualified domain name, and
the port (if nonstandard) of the IBM Security Access Manager server. You also need to define
a context path, which must be created as a corresponding WebSEAL junction path.

When deploying the application, Worklight Studio will use the IBM Security Access Manager
address to publish, and is unable to authenticate to WebSEAL. Instead, you should log in to
the Worklight console directly, and manually upload the application.

IBM Security Access Manager junction
In this example, the Worklight server is accessed using a WebSEAL junction. However, the
custom EAI and trust module to enable OAuth authentication for WebSEAL has not been
reviewed or demonstrated.

The performance and threat capabilities of the IBM Security Web Gateway Appliance can still
be used by providing an unauthenticated access control list (ACL) on the junction path for
Worklight, and allowing easy migration after the EAI and trust module are deployed.
Chapter 6. Integration with IBM Security Access Manager 119

An example of creating an unauthenticated ACL and attaching it to the Worklight path of the
WebSEAL server is shown in Example 6-17.

The pdadmin command-line utility can be used for both the software and web gateway
appliance versions of IBM Security Access Manager, or the LMI for the web gateway
appliance. The object space path to where the ACL is attached must exactly match the
context path of the Worklight application, as described in “Build and deploy the Worklight
application” on page 119.

Example 6-17 Unauthenticated ACL creation

pdadmin sec_master> acl create unauth
pdadmin sec_master> acl modify unauth set unauthenticated Trx
pdadmin sec_master> acl modify unauth set any-other Trx
pdadmin sec_master> acl modify unauth set user sec_master TcmdbsvaBRrxl
pdadmin sec_master> acl attach /WebSEAL/localhost-default/worklight unauth

When adding an unauthenticated URL, access is then granted to all child paths. Therefore, an
ACL must be created and attached to protect the Worklight console, only allowing
authenticated administrators, as shown in Example 6-18.

Example 6-18 Protecting the Worklight Console using an ACL

pdadmin sec_master> acl create worklight_console
pdadmin sec_master> acl modify worklight_console set group <group_name> Trx
pdadmin sec_master> acl modify worklight_console set user sec_master TcmdbsvaBRrxl
pdadmin sec_master> acl attach /WebSEAL/localhost-default/worklight/console
worklight_console

You must create an indiscernible path junction with a name exactly matching that of the
Worklight application context path, as described in “Build and deploy the Worklight
application” on page 119. To ensure that the Worklight device authentication challenge is not
intercepted by IBM Security Access Manager, specify the -b ignore parameter. The sample
junction creation is shown in Example 6-19.

Example 6-19 Worklight junction creation

pdadmin sec_master> server task <instance-name>-webseald-<webseal-hostname>
create -t tcp -h <worklight-server-fqdn> -p <worklight-serverport>
-c iv-user -x -b ignore /worklight

Having completed the required Worklight server configuration changes and client updates,
Tivoli Federated Identity Manager now provides the user authentication and identity assertion
to Worklight using the OAuth pattern.

6.2.3 Other authentication types

Both IBM Security Access Manager and Tivoli Federated Identity Manager provide
ready-for-use, customizable authentication mechanisms for user authentication in the
Worklight client.These two security products can provide the following functions:

� Web and federated SSO to users across multiple applications, inside and outside their
network infrastructure

� Support for standards such as OAuth, Security Asset Markup Language (SAML), OpenID,
Liberty profile, Web Services (WS)-Federation, WS-Security, and WS-Trust
120 Securing Your Mobile Business with IBM Worklight

� Security token service supporting WS-Trust, user name, SAML, IBM Resource Access
Control Facility (RACF®), X590, and Kerberos tokens

By taking advantage of the Worklight authentication framework, and delegating authentication
and coarse-grained authorization to IBM Security Access Manager and Tivoli Federated
Identity Manager, the identity of authenticated users can be asserted to Worklight without
requiring custom Worklight components to integrate.

6.3 Risk-based access

IBM Security Access Manager for Cloud and Mobile provides context-based access
management for mobile endpoints, such as smartphones and tablets. It also identifies precise
risks that these devices can introduce with their anytime, anywhere access to enterprise
systems in both cloud and mobile scenarios. The solution enables organizations to enhance
traditional access control mechanisms that use static credential details with contexts that
include device, environment, identity, and behavior patterns.

When using RBA, each transaction is assessed using static and contextual attributes to
calculate the risk. This risk assessment provides a score that is based on configurable
weights, which are assigned to context attributes and behavior attributes. If the risk score is
high, further challenges are presented to the user, or access is denied. If the risk score is low,
the user is granted access.

6.3.1 Risk-based access overview

RBA provides an access decision and enforcement that is based on a dynamic risk
assessment, or a confidence level in the transaction, and uses behavioral and contextual data
analytics to calculate risk. It is a pluggable and configurable component for IBM Tivoli
Federated Identity Manager, which can also be integrated with IBM Security Access Manager
for Web to protect web-based transactions through the secure web reverse proxy.
Chapter 6. Integration with IBM Security Access Manager 121

The architecture of risk-based access is shown in Figure 6-3.

Figure 6-3 Risk-based access architecture

The attribute source, known as the attribute collector service, is a small JavaScript file that is
run locally on the device. The attribute collector service retrieves context attributes about the
device that is used for access, such as the device location, operating system, and a custom
attribute that can be retrieved using Apache Cordova (PhoneGap). These are made available
as attributes for the RBA policy, and can be combined with other environment attributes, such
as traditional network, time of day, and other attributes.

The RBA policy for managing risk-based access is configured using commands available
through the WebSphere Application Server AdminTask framework, which supports Java Tool
Command Language (Java TCL, or Jacl) scripting, Java Python (Jython) scripting, and
programmatic Java API. If your environment has deployed Tivoli Security Policy Manager, you
manage policies using the central, standardized interface.

Details about installing, configuring, and administering risk-based access are available in the
IBM Tivoli Federated Identity Manager, Version 6.2.2 information center:
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/
rba-home.html.

Configuration instructions for the runtime security services External Authorization Service
(EAS) are available in the IBM Security Access Manager for Web, Version 7.0 information
center:
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_80/ameb_web
seal_guide/concept/con_rba_eas.html.

6.3.2 Securing Worklight adapters with risk-based access

Using the Worklight security framework, adapter access can be controlled by configuring a
security test that corresponds to a Worklight server realm, and requires a challenge handler
122 Securing Your Mobile Business with IBM Worklight

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/rba-home.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/rba-home.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_80/ameb_webseal_guide/concept/con_rba_eas.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_80/ameb_webseal_guide/concept/con_rba_eas.html

in the Worklight client to provide the necessary authentication. With this approach, the
Worklight client has already accessed the endpoint URL of the adapter.

However, by integrating Worklight with RBA, access to the endpoint URLs can be restricted
until the Worklight client successfully passes an RBA challenge. In this way, the decision and
enforcement of context-based security is moved into the network perimeter (or DMZ) rather
than the secured zone.

The RBA policy for Worklight adapters can evaluate access decisions using the adapter
name, function, and parameters passed to the adapter, in addition to the standard attributes
provided by the attribute collector service and the RBA infrastructure. The Worklight mobile
app must be configured to handle the RBA challenge directly, because there is no interaction
with the Worklight server until the Worklight client successfully passes the RBA evaluation.

You can use RBA with either the authentication mechanism described in 6.2.1, “IBM Security
Access Manager for web login form single sign-on” on page 104, or that in 6.2.2, “Tivoli
Federated Identity Manager OAuth single sign-on” on page 111. This is because the
challenge handler for RBA is independent of any realms and security tests configured in
Worklight.

In Chapter 2, “Business scenario used in this book” on page 19, Banking Company A
required an additional authentication challenge for transactions of more than $200. The
following sections describe how RBA is used to achieve the additional level of assurance, to
prove the identity of the person requesting the transfer, which helps minimize fraud and
increase security.

Worklight server adapter
For Banking Company A, an adapter called BankingApprovals is used in their Worklight
mobile apps. In the adapter, two functions are provided, doTransfer and getBalance. Both
functions are protected using a Worklight security test that ensures that the user has been
authenticated by IBM Security Access Manager, as shown in Example 6-20.

Example 6-20 BankingApprovals adapter

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wl:adapter xmlns:wl="http://www.worklight.com/integration" ...>

<procedure name="doTransfer"
securityTest="ISAMAuthentication-mobile-securityTest"/>

<procedure name="getBalance"
securityTest="ISAMAuthentication-mobile-securityTest"/>
</wl:adapter>

The sample code extract in Example 6-21 shows the parameters passed to each of the
functions used in the adapter.

Example 6-21 Parameter signature of the BankingApprovals adapter

function doTransfer(amount, from_account, to_account) {
...
//Do the transfer between accounts
...

}
function getBalance(account) {

...
//Get the balance of the named account
...

}

Chapter 6. Integration with IBM Security Access Manager 123

6.3.3 Authorization process flow

When using risk-based access to protected resources, a number of interactions take place
before WebSEAL forwarding the client request to the protected resource, in this case a
Worklight adapter, as shown in Figure 6-4.

When a higher authentication level is required to access a protected resource, the client is
required to step up their authentication level using a one-time password (OTP). In a raw policy
context, this is referred to as permit with obligations.

Figure 6-4 Risk-based access transaction flow

The following steps take place in RBA:

1. A Worklight mobile app accesses the Worklight server using WebSEAL, and attempts to
start a Worklight adapter.

2. The adapter URL triggers a protected object policy (POP) in WebSEAL that is handled by
the WebSEAL runtime security services EAS.

User WebSEAL
Runtime
security

services EAS
EAI Protected

resource

Risk-based
access runtime

services

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
124 Securing Your Mobile Business with IBM Worklight

3. The runtime security services EAS calls the RBA runtime services to evaluate the request
using the current context attributes for the device against the defined policy.

4. The RBA runtime services evaluate the request, and return a result of permit with
obligations to the runtime security services EAS.

5. The runtime security services EAS returns the result to WebSEAL, requiring the user to
step up their authentication level.

6. WebSEAL sends a 302 redirect to the Worklight mobile app to the step-up authentication
page.

7. The Worklight mobile app follows the redirect to the step-up authentication page. This
page must be unprotected, so that the client can access the page without authentication.

8. The step-up authentication page is delivered to the client from the OTP EAI. Using an
out-of-band mechanism, a OTP is sent to the user.

9. The user receives the OTP, enters this into the device, and submits it to begin the step-up
authentication.

10.The OTP EAI evaluates the OTP and, if successful, raises the authentication level of the
user for the remainder of their WebSEAL session.

11.WebSEAL raises the user’s authentication level, and sends a 302 redirect to the
Worklight mobile app, to re-access the resource originally requested in step 1.

12.The Worklight mobile app follows the redirect to again request the protected resource.

13.The adapter URL triggers a POP in WebSEAL, which is handled by the WebSEAL runtime
security services EAS.

14.The runtime security services EAS calls the RBA runtime services, passing the new user
authentication level set by the successful OTP challenge.

15.The RBA runtime services evaluate the user authentication level with the risk score, and
returns a permit result to the runtime security services EAS.

16.The runtime security services EAS passes the permit result to WebSEAL.

17.WebSEAL forwards the original request from the Worklight client to the Worklight adapter.

Each time an adapter invocation is attempted, the runtime security services EAS are
triggered by the POP, and the RBA policy will be evaluated. Provided that the user has
stepped up to the required authentication level in the same session, they will not be prompted
to step up or provide a OTP until their session expires.

6.3.4 Policy authoring

RBA is driven through policy, which is authored using the Policy Generation Language, and
added to the RBA policy store using the manageRbaPolicy administration task in WebSphere
Application Server. When Tivoli Security Policy Manager is integrated with Tivoli Federated
Identity Manager and IBM Security Access Manager for web, eXtensible Access Control
Markup Language (XACML) policy can also be directly distributed.

The RBA policy does not bind business rules to application logic, which enables the creation
of context-based access policies rather than traditional user and group access permissions.
This is implemented using XACML. When a policy is authored using the Policy Generation
Language, it is converted to XACML. The converted or manually-authored XACML is then
stored in authorization service policy store.

Banking Company A defined the business rule requiring customers to provide an additional
level of authentication for transfers greater than $200.
Chapter 6. Integration with IBM Security Access Manager 125

The corresponding Worklight adapter POST request will contain the following post-data
elements:

Adapter The Worklight adapter name.
Procedure The function to be run in the adapter.
Parameters A URL-encoded JSON array of the input parameters for the function.

The policy, triggered by the POP, must match all of the following conditions:

� A Worklight URL is requested.

� The BankingApprovals adapter is invoked.

� The doTransfer function is called.

� The parameter passed is the transfer amount.

� If the parameter is greater than 200, permit with obligations, otherwise simply permit.

� If the authentication level of the user is 3, having already authenticated using a OTP, no
further step up is required.

An extract of the XACML RBA policy to support this business rule is shown in Example 6-22.

Example 6-22 Sample XACML policy for Worklight adapter invoke transactions

<?xml version="1.0" encoding="UTF-8"?>
<PolicySet:PolicySet
xmlns:PolicySet="urn:oasis:names:tc:xacml:2.0:policy:schema:os" ...>
...
...
 <ns5:PolicySet ... PolicySetId="RPS:RBA_WORKLIGHT99">

<ns5:Obligations>
<ns5:Obligation FulfillOn="Permit" ObligationId="otp"/>

</ns5:Obligations>
<ns5:Rule Effect="Permit" RuleId="RBA_WORKLIGHT99">

<ns5:Condition>
<ns5:Apply FunctionId="...function:and">

<ns5:Apply FunctionId="... :function:string-regexp-match">
<ns5:AttributeValue

DataType="...#string">/worklight/.*</ns5:AttributeValue>
</ns5:Apply>
<ns5:Apply FunctionId="... :function:string-equal">

<ns5:EnvironmentAttributeDesignator
AttributeId="post-data:adapter" ... />

<ns5:AttributeValue
DataType="...#string">BankingApprovals</ns5:AttributeValue>

</ns5:Apply>
<ns5:Apply FunctionId="... :function:string-equal">

<ns5:EnvironmentAttributeDesignator
AttributeId="post-data:procedure" ... />

<ns5:AttributeValue
DataType="...#string">doTransfer</ns5:AttributeValue>

</ns5:Apply>
<ns5:Apply FunctionId="... :function:integer-less-than">

<ns5:EnvironmentAttributeDesignator
AttributeId="urn:ibm:security:isam:authentication:level" ... />

<ns5:AttributeValue
DataType="...#integer">3</ns5:AttributeValue>

</ns5:Apply>
126 Securing Your Mobile Business with IBM Worklight

<ns5:Apply FunctionId="... :function:integer-greater-than">
<ns5:EnvironmentAttributeDesignator

AttributeId="urn:ibm:security:wl:parameter" ... />
<ns5:AttributeValue

DataType="...#integer">99</ns5:AttributeValue>
</ns5:Apply>

</ns5:Apply>
 </ns5:Condition>
 </ns5:Rule>
 </ns5:PolicySet>
 ...
...
</PolicySet:PolicySet>

By using RBA to manage context-based access to your Worklight adapters, you can rapidly
change your policy without requiring modifications to the Worklight mobile app. The logic to
provide multiple context-based access policies is more manageable and scalable than
requiring multiple and potentially overlapping security tests on Worklight adapter.

6.3.5 Policy attachment

In addition to configuring the RBA services for IBM Security Access Manager and Tivoli
Federated Identity Manager, the resource paths for the Worklight application must be
protected. A WebSEAL POP is used to trigger the runtime security services EAS and start
the RBA process.

The pdadmin command-line utility can be used for both software and web gateway appliance
versions of IBM Security Access Manager or the LMI for the web gateway appliance. In both
instances, a POP must be created and attached to the adapter URI.

Alternatively, the POP can be attached at the root level for all Worklight applications, services,
and requests. However, it is not necessary unless you also want to apply RBA policies to
requests in addition to adapters.

In Example 6-23 you create a new POP called RBA pop, accepting the default options of the
creation. However, additional coarse-grained authorization requirements can be added. The
POP is then attached to the WebSEAL object space, only for adapters run from the WLAppName
application on Android and iPhone devices.

The level of access enables us to control specific applications and devices without needing to
evaluate the RBA policy for all URLs. The adapter name, function, and parameters are
evaluated in the RBA policy itself.

Example 6-23 Sample POP to trigger risk-based access for Worklight applications

pdadmin sec_master> pop create rbapop
pdadmin sec_master> pop attach
/WebSEAL/localhost-default/worklight/apps/services/api/WLAppName/android/query
rbapop
pdadmin sec_master> pop attach
/WebSEAL/localhost-default/worklight/apps/services/api/WLAppName/iphone/query
rbapop
Chapter 6. Integration with IBM Security Access Manager 127

Alternatively, to protect all adapter requests across all Worklight applications, a single POP
attachment can be performed at the
/WebSEAL/localhost-default/worklight/apps/services/api/ level. To apply RBA policy for
all operations of all applications, the policy can instead be attached at the Worklight root
junction level of /WebSEAL/localhost-default/worklight.

6.3.6 Policy evaluation

During policy evaluation, context-based attributes provided during the request, or collected
previously, can be used to determine the risk score. In addition, at run time, you can
manipulate attribute data or query extended sources, such as databases or directories, to
enrich the context data. When the attributes have been collected, weighted, combined, and
evaluated, a risk score is determined, and a decision made against the policy.

Attribute collector service
The attribute collector service is a small JavaScript file that is run locally on the device to
retrieve context attributes about the device that is used for access, such as the device
location, operating system, and custom attributes that can be retrieved using Apache
Cordova (PhoneGap).

This JavaScript file can be included in the main HTML file of the Worklight application, and
either run from the device or loaded dynamically from the Tivoli Federated Identity Manager
server using a script include. The attribute collector service is found under the
https://isam.fqdn.com/FIM/sps/ac/js/info.js path. A sample of common device attributes
collected is shown in Example 6-24.

Example 6-24 Sample device and location attributes

if (typeof device === 'undefined') {
// Cordova is not present

} else {
jsonObj['deviceModel'] = String(device.model);
jsonObj['deviceCordova'] = String(device.cordova);
jsonObj['deviceUuid'] = String(device.uuid);
jsonObj['deviceVersion'] = String(device.version);
jsonObj['devicePlatform'] = String(device.platform);
jsonObj['geoCurrentPosition'] = String(geolocation.getCurrentPosition);
jsonObj['language'] = String(navigator.systemLanguage);

}

The device attributes and the default set of attributes provided by the attribute collector
service can also be used as parameters in the Policy Generation Language and XACML
policies.

Policy information point for Worklight adapters
A policy information point (PIP) can be run during the policy evaluation to manipulate
incoming or existing attributes and can also be used to retrieve additional data from other
sources to provide further context-based attributes.

When a Worklight adapter is started, an HTTP POST request is made by the Worklight client,
containing the following HTML Form elements:

Adapter The Worklight adapter name.
Procedure The function to be run in the adapter.
Parameters A URL-encoded JSON array of the input parameters for the function.
128 Securing Your Mobile Business with IBM Worklight

The adapter and procedure can easily be used in the RBA policy evaluation. However, the
URL-encoded JSON array needs to be decoded and extracted before the underlying values
can be evaluated against a policy.

To do this, a custom PIP for handling Worklight adapter requests is used. The segment of
sample code in Example 6-25 demonstrates the URL decode and retrieval of a specific
adapter parameter based on the index configuration.

For Banking Company A, the first parameter of their doTransfer function contains the transfer
amount, as shown in “Worklight server adapter” on page 123. Therefore, the configuration for
the PIP must extract the first parameter (zero indexed) to retrieve the transfer amount.

Example 6-25 Custom PIP to extract Worklight adapter parameters

...
//The attribute ID of WL Adapater parameters
static final String WL_PIP_ATTRIBUTE = "urn:ibm:security:wl:parameter";

//Config parameter for which WL Adapater attribute to retrieve
private int _parameterIndex;
...

private List<Attribute> getAttributes(RequestContext context, String attributeId,
String dataType, String issuer) {

...
List<Attribute> attrList = new LinkedList<Attribute>();
// URL decode, then separate as a JSON Array (e.g."[1,2,3]")
String decodedParameters = URLDecoder.decode(encodedParameters, "UTF-8");
JSONArray ja = new JSONArray(decodedParameters);

//Add the configured WL adapter parameter to the attribute list
attrList.add(AttributeFactory.createAttribute(WL_PIP_ATTRIBUTE, dataType,

ja.getString(_parameterIndex)));
}
...
return attrList;

}

Policy decision result
Upon evaluation of an RBA policy, a decision is returned to WebSEAL, which acts as the
policy enforcement point (PEP). The following RBA policy decisions are possible:

� Permit. Allow the request to continue with no additional authentication, and forward the
request to the protected resource.

� Deny. Do not allow the request to continue, and return an error to the client.

� Permit with Obligations. Allow the request to continue only when the obligations have been
satisfied.

Banking Company A uses OTP authentication in their obligations to step up the user
authentication level. The permit with obligations decision is returned to the client as a 302
redirect to the step-up authentication page. The Worklight mobile app must handle the
redirect and step-up request directly, because WebSEAL as the PEP will not forward the
request to Worklight until the step up is successful.
Chapter 6. Integration with IBM Security Access Manager 129

6.3.7 Step-up authentication

When a permit with obligations access decision is returned to the Worklight mobile app,
the app must handle the step-up authentication directly, because no requests are forwarded
to the Worklight server until the obligation has been fulfilled.

Depending on the Tivoli Federated Identity Manager configuration, a number of mechanisms
can be used to deliver the OTP to the user, such as SMS, email, Google Authenticator, and so
on. Ideally, the OTP should not be delivered to the same device that is being used to make the
transaction.

If the same device is the only option for OTP delivery, a two-factor or additional out-of-band
validation, such as requiring a user PIN that is also known to the server, is appended to the
OTP entered by the user and validated by the OTP EAI.

No Worklight server configuration is required, because the challenge handler in the Worklight
mobile app is responsible for all operations during the step-up authentication using OTP.

Worklight client challenge handler
A challenge handler is created for a custom realm. It can be combined with an existing IBM
Security Access Manager challenge handler and realm, or as a stand-alone challenge
handler only used for step up.

The sample code extract in Example 6-26 is combined with the existing HTTP header
authentication realm used in “Worklight server realm” on page 108. The challenge handler
detects a custom response from WebSEAL, representing a login page or a step-up
authentication in the isCustomResponse function.

If a step-up request is detected, the application opens a browser window inside the
application, showing the step-up authentication page. The page contains the form to input
and submit the OTP, which is hosted on the Tivoli Federated Identity Manager server.

When the OTP step up is successful, the browser detects the 302 redirect back to the
adapter start URL, and then closes itself, and the regular mobile app continues.

Example 6-26 Simple IBM Security Access Manager RBA Challenge Handler

var REALM_ISAM = ‘HeaderAuthRealm';
var RBA_STEPUP_ISAM = 'Access Manager for e-business Step Up Login';
var LOGIN_FORM_ISAM = 'pkmslogin.form';
var FIM_REDIRECT = '/FIM/demo/unprotected/generatelogin.jsp';
var ISAM_ADAPTER_QUERY_URL =
https://isam.fqdn.com/worklight/apps/services/api/WLAppName;

var RESPONSE_TYPE_NORMAL = 0;
var RESPONSE_TYPE_LOGIN = 1;
var RESPONSE_TYPE_STEPUP = 2;

var STEPUP_SUCCESS_DROID = ISAM_ADAPTER_QUERY_URL + '/android/query';
var STEPUP_SUCCESS_IOS = ISAM_ADAPTER_QUERY_URL + '/iphone/query';

var isamRealmChallengeHandler = WL.Client.createChallengeHandler(REALM_ISAM);

var lastRequestURL;

isamRealmChallengeHandler.isCustomResponse = function(response) {
130 Securing Your Mobile Business with IBM Worklight

if(isWebSealLoginPage(response.responseText)) {
isamRealmChallengeHandler.lastResponseDetails = {

type: RESPONSE_TYPE_LOGIN,
token: 'Unknown'

};
return true;

}
else if(isWebSealStepupPage(response.responseText)) {

isamRealmChallengeHandler.lastResponseDetails = {
type: RESPONSE_TYPE_STEPUP,
response:response.responseText

};
return true;

}
else if (isTFIMLoginRedirect(response.responseText)) {

isamRealmChallengeHandler.lastResponseDetails = {
type: RESPONSE_TYPE_LOGIN,
token: 'Unknown'

};
return true;

}

isamRealmChallengeHandler.lastResponseDetails = {
type: RESPONSE_TYPE_NORMAL

};

//Need to also check for errors and handle as appropriate

//This response is a worklight server response, handle it normally
return false;

};

isamRealmChallengeHandler.handleChallenge = function(response) {
if(isamRealmChallengeHandler.lastResponseDetails.type == RESPONSE_TYPE_LOGIN) {

showLoginScreen(isamRealmChallengeHandler.lastResponseDetails.token, false);
}
else if(isamRealmChallengeHandler.lastResponseDetails.type ==

RESPONSE_TYPE_STEPUP) {
handleStepupRequest(isamRealmChallengeHandler.lastResponseDetails.response);

}
else {

//Unknown last response. Display an error.
}

};

function isWebSealStepupPage(data) {
return data.indexOf(RBA_STEPUP_ISAM) >= 0;

}

function isTFIMLoginRedirect(data) {
return data.indexOf(FIM_REDIRECT) >= 0;

}

function isWebSealLoginPage(data) {
return data.indexOf(LOGIN_FORM_ISAM) >= 0;
Chapter 6. Integration with IBM Security Access Manager 131

}

function showLoginScreen() {
$("#index").hide();
$("#authPage").show();

}

function handleStepupRequest(response) {
//Use popup window in app.
//Could instead use custom div in the app.
var splitFront = response.split('window.location = "');
var splitBack = splitFront[1].split("\"");
var url = splitBack[0];

var ref = window.open(url, '_blank', 'location=yes');

ref.addEventListener('loadstop', function(event) {
if(event.url == STEPUP_SUCCESS_DROID || event.url == STEPUP_SUCCESS_IOS) {

ref.close();
isamRealmChallengeHandler.submitSuccess();

}
});

}

To maintain a consistent user interface within the Worklight mobile app, the same control logic
can be used to show and hide a custom div or page packaged with the application, to enable
input and posting of an OTP to complete the step-up authentication.

6.4 Worklight adapter single sign-on

In addition to providing user authentication and identity assertion to the Worklight server, IBM
Security Access Manager can also be used to propagate the authenticated user’s identity to
systems from which data is retrieved using Worklight adapters. When a Worklight adapter is
invoked to the target the back-end system, the request appears as any other client request
appears. The Worklight adapter must be able to provide the authenticated user’s identity
using a mechanism supported by the back-end system.

Products such as SAP, PeopleSoft, and Microsoft SharePoint do not support LTPA. Therefore,
this particular user identity assertion token cannot be used to retrieve data directly from these
systems as the Worklight authenticated user.

To achieve SSO for these systems, deploy IBM Security Access Manager as a web reverse
proxy to take advantage of existing integration solutions offered for those products. In this
way, the protected data can be accessed and made available to the Worklight adapter.

Authentication process flow
The Worklight server makes the request through the WebSEAL server, passing the session
cookie of the authenticated user on the appropriate junction for the back-end data source.

This can be the same WebSEAL server that is accessed by the client device, or a different
WebSEAL server inside the DMZ. The inside server must be configured to share sessions
with the external one using fail-over or Session Management Server, or configured for LTPA
authentication between WebSEAL servers.
132 Securing Your Mobile Business with IBM Worklight

In Figure 6-5, the same WebSEAL server instance used by the Worklight mobile app to
access the Worklight server is used for SSO to the back-end system.

Figure 6-5 Authentication process flow

Authentication includes the following steps:

1. A Worklight mobile app attempts to start a Worklight adapter, and has already passed all
of the required security tests. The connection is made using WebSEAL as the web reverse
proxy.

2. The user is authenticated, and the request is forwarded to the Worklight server.

3. The Worklight server checks the security test of the adapter and, if successful, enables the
invocation.

4. The adapter adds the session ID parameter from the invoke request as a cookie HTTP
header representing the WebSEAL session ID in the outgoing adapter request.

5. The WebSEAL server validates the passed session cookie, and forwards the request to
the back-end server, providing authentication data to achieve SSO as the Worklight user.

6. The back-end system returns the data for the authenticated user to WebSEAL.

7. WebSEAL applies any necessary filtering, and then forwards the response back to the
Worklight adapter.

Tivoli Directory Server
(LDAP)

IBM Security Access Manager
WebSEAL or Web Gateway

Appliance

1

10

IBM Worklight Worklight Application

Worklight HTTP Adapter

IBM Security Access Manager
WebSEAL or Web Gateway

Appliance

2

9

Backend Application
(Data Source)

5

6

7

4
8

3

Chapter 6. Integration with IBM Security Access Manager 133

8. The Worklight adapter parses the response, extracts the returned data, and returns the
JSON data elements to the Worklight server.

9. The Worklight server forwards the adapter invocation result to WebSEAL.

10.WebSEAL returns the invocation result of the adapter to the Worklight client, to parse and
process it as necessary.

Worklight Server adapter
The connection policy of the adapter must reference the WebSEAL server’s protocol, domain
(host), and port, because all connections are made using WebSEAL as the reverse proxy.
The junction path of the adapter request will determine to which back-end data source to
connect and authenticate.

A connection policy for WebSEAL is shown in Example 6-27.

Example 6-27 IBM Security Access Manager connection policy for a Worklight adapter

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wl:adapter xmlns:wl="http://www.worklight.com/integration" ...>

<connectivity>
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">

<protocol>https</protocol>
<domain>isam.fqdn.com</domain>
<port>443</port>

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="1"/>

</connectivity>
</wl:adapter>

The adapter running on the Worklight server will access the back-end system via WebSEAL.
Therefore, when the connections is opened, the adapter must provide authentication
information in a format that WebSEAL is configured to accept. The path can be provided by
the Worklight client as an input parameter, or defined in the adapter. The path represents the
junction path of the WebSEAL server, which corresponds to the target back-end system.

If the WebSEAL server has been configured to provide its session cookie to the Worklight
mobile app on every response, the cookie can be captured in the app, and passed to the
adapter as an input parameter for use in the adapter. In Example 6-28, the use of the
WebSEAL session ID is shown.

Example 6-28 HTTP adapter Single Sign On using WebSEAL session ID

function getBackendResource(webSEALSessionID, path) {

var webSEALCookieToSend = { "Cookie" : webSEALSessionID };

var input = {
method : 'get',
returnedContentType : 'html',
path : path,
headers: webSEALCookieToSend

};

return WL.Server.invokeHttp(input);
}

134 Securing Your Mobile Business with IBM Worklight

If LTPA authentication was used from WebSEAL to Worklight, or an additional security test
generated an LTPA token and added it to the authenticated user’s identity, the same LTPA
token can be used for authentication to WebSEAL when configured appropriately.

Example 6-29 shows how to retrieve the LTPA token from the user’s session attributes, and
then insert the token for authentication to WebSEAL.

Example 6-29 HTTP adapter SSO using an LTPA token

function getBackendResource(path) {

var attributes = WL.Server.getActiveUser().attributes;
var webSEALCookieToSend = "LtpaToken=" + attributes.get('LtpaToken');

var input = {
method : 'get',
returnedContentType : 'html',
headers: {"Cookie": webSEALCookieToSend},
path : path

};

return WL.Server.invokeHttp(input);
}

6.5 Integrated security solution

Chapter 2, “Business scenario used in this book” on page 19 examines the requirements of
Banking Company A, which needed to provide secure, convenient access to their employees
and customers using Worklight mobile apps.

By integrating their Worklight environment with IBM Security Access Manager, they were able
to meet the requirements using supported capabilities of both products, with little need for
custom development.

6.5.1 Solution architecture

The solution architecture implemented by Banking Company A takes advantage of IBM
Security Access Manager for Web and Tivoli Federated Identity Manager to provide the
integrated security solution for Worklight.
Chapter 6. Integration with IBM Security Access Manager 135

Figure 6-6 shows the solution architecture.

Figure 6-6 IBM Security Access Manager integration using OAuth authentication and RBA

IBM Security Access Manager authentication
By taking advantage of the integration options with IBM Security Access Manager, Banking
Company A was able to simplify directory integration, delegate user authentication, and
propagate user identity and attributes to the Worklight server.

Using an OAuth pattern as demonstrated in 6.2.2, “Tivoli Federated Identity Manager OAuth
single sign-on” on page 111, Banking Company A provided the capability for their customers
to add, suspend, restore, and delete mobile device access to their accounts without needing
to show user names and passwords. Customers can manage their mobile device access
through their traditional internet banking or, if necessary, have a bank employee disable
access on a per-device basis.

The following custom IBM Security Access Manager components are configured to use the
OAuth pattern:

� OAuth EAS provides an authorization policy enforcement point for sessionless OAuth
transactions, such as registration and token validation. The Worklight mobile app calls the
Worklight Server adapter to complete OAuth process flow.

� OAuth EAI performs token mediation, allowing the exchange of an OAuth access token for
a valid WebSEAL session for the corresponding user. This enables subsequent requests
to the Worklight server, to take advantage of the user identity and attributes for the user
authenticated to IBM Security Access Manager.

ISAM Proxy

OAuth EAS

Federated Identity
Manager

OAuth Server

Risk-based
access runtime

OAuth token to ISAM
session cookie (EAI)

Worklight Server

Administration

Worklight Application

OAuth registration &
token refresh

Device fingerprint
collection

Access token validation

Security flows

One-time-
password

Strong authentication

RBA EAS

Application traffic

Woklight invoke ()

OAuth login

invoke()

Browser Admin

Risk-based policy evaluation

Users,

Token state,

devices
136 Securing Your Mobile Business with IBM Worklight

In addition, Banking Company A was able to implement SSO to back-end data systems using
the identity of the Worklight mobile app user, as described in 6.4, “Worklight adapter single
sign-on” on page 132.

Risk-based access
Strong authentication using OTP support was implemented using the integration described in
6.3, “Risk-based access” on page 121. This provides reassurance and secure access with
identity validation, to detect and enforce transfer policies for banking transactions.

The following IBM Security Access Manager components are configured for the Strong
Authentication with OTP:

� WebSEAL acts as the PEP for authorization decisions, acts as the POP trigger for
fine-grained authorization, and provides the authentication and OTP framework. After
successful authentication, it then provides SSO to Worklight.

� RTSS EAS provides the runtime capability to check for fine-grained authorization access
policy for resources protected by WebSEAL, and delegates as required.

� RBA PIP for Worklight adapters extracts indexed values from an HTTP-encoded JSON
parameter set of Worklight adapters. These values can then be used in access policy for
evaluation.

� Tivoli Federated Identity Manager acts as the policy decision point (PDP), and hosts the
authorization service to evaluate context-based access policy, combining attributes
passed to it from the RTSS EAS, RBA PIP for Worklight adapters, and the attribute
collector service.

� OTP EAI adds the capability for challenging for and validating OTP which provides step up
authentication for high value transactions.

The RBA policies for Banking Company A are easily applied across all of the Worklight
adapters used in their mobile apps, and the context-based attribute decisions provide
fine-gained authorization and risk scoring to enforce policy decisions in the DMZ.

6.5.2 Conclusion

Banking Company A deployed an IBM Security Access Manager for Cloud and Mobile
solution, enabling them to achieve their mobile business drivers:

� Reusing their secure platform foundation
� Increasing staff productivity
� Providing secure and easy access for customers

They combined the features and strengths of IBM Security Access Manager for Web and IBM
Tivoli Federated Identity Manager to provide enhanced threat detection and prevention
capabilities, policy governance, and enforcement for the Worklight mobile environment.
Chapter 6. Integration with IBM Security Access Manager 137

138 Securing Your Mobile Business with IBM Worklight

Chapter 7. Integration with IBM WebSphere
DataPower

The IBM WebSphere DataPower Integration Appliance is a security and integration gateway
appliance, built for simplified deployment and hardened security, bridging multiple protocols
and performing conversions at wire speed.

The WebSphere DataPower Integration Appliance XI52 is part of the DataPower Appliance
family, which also includes service gateways, business-to-business (B2B) gateways and
caching technology.

The IBM WebSphere DataPower Service Gateway XG45 is a functional subset of the
DataPower Integration Appliance XI52. Therefore, from a security perspective, much of this
chapter can conceptually also be applied to the DataPower Service Gateway XG45.

This chapter demonstrates how the DataPower Integration Appliance XI52 can be used in the
DMZ (a firewall configuration for securing local area networks) of your enterprise to protect
Worklight mobile application (app) traffic.

7

Note: A sample Worklight application (simpleProject.zip) and a sample DataPower
configuration (DPMobile.zip) have been provided with this chapter.

See Appendix A, “Additional material” on page 159 for information about how to obtain
these sample modules.
© Copyright IBM Corp. 2013. All rights reserved. 139

7.1 Introduction to the DataPower Appliances

For service-oriented architecture (SOA), the IBM WebSphere DataPower SOA Appliances
help secure, integrate, and optimize access to web, mobile, and application programming
interface (API) workloads.

The main advantage of the DataPower Appliances is that they are easy to integrate into a
network architecture. In addition, you can use the virtual appliance to accomplish the same
basic functions of the hardware-based appliance. The only difference is that you will not have
the same level of security assurance as the hardware.

When used as the security layer provider, the DataPower Appliances can run many critical
security tasks by offloading them from the application server.

The DataPower SOA Appliances provide the following key features:

� Enable new workloads for securing mobile, web, and API management, consolidating and
simplifying enterprise infrastructure

� Provide authorization, authentication, and auditing (known as AAA) support

� Provide application-level security as an integral part of the user interaction

� Help customers meet compliance requirements, serving as a governance policy
enforcement point

� Can implement an enterprise single sign-on (SSO) functions using Lightweight Third Party
Authentication (LTPA) tokens

� Simplify integration to multiple back-end applications, supporting a wide array of protocols,
including protocol bridging

� Provide capabilities to enable Representational State Transfer (REST) access to back-end
SOA services

� Optimize back-end systems via robust and application-aware load balancing support

� Improve total cost of ownership (TCO), because it is configurable and no programming is
needed

� Unload Hypertext Transfer Protocol Secure (HTTPS) session handling from the web
server

� Act as a web service, mobile web service, and Extensible Markup Language (XML)
firewall

� Also available as a virtual appliance

For a complete listing of WebSphere DataPower SOA Appliance products, see the following
website:

http://www.ibm.com/software/products/us/en/datapower/

7.2 DataPower Integration Appliance XI52 overview

In the discussion of integrating the DataPower Appliances and Worklight, the DataPower
Integration Appliance XI52 is used as an example. However, because the DataPower Service
Gateway XG45 is a functional subset of the DataPower Integration Appliance XI52 relative to
security, all of the descriptions in this section also apply to the DataPower Service
Gateway XG45.
140 Securing Your Mobile Business with IBM Worklight

http://www.ibm.com/software/products/us/en/datapower/

The DataPower Integration Appliance XI52 is a network appliance that is built for web service
deployments, governance, quick integrations, and hardened security.

The XI52 protects against several vulnerabilities by acting as a proxy. It includes many
essential security functions:

� Web service access control authentication
� AAA
� XML encryption and digital signature
� Web Services Security (WS-Security)
� Content-based routing

As shown in Table 7-1, the DataPower Integration Appliance XI52 offers an advanced
approach to threat reduction and security for web and mobile access.

Table 7-1 The DataPower Integration Appliance XI52 security features

Banking Company A wants to connect its mobile apps to its enterprise data, and needs a
mobile gateway for security. Banking Company A can use the DataPower Appliances to
perform tasks including validation, authentication, and authorization.

Feature Description

Web application firewall and gateway � Protects against XSS, SQL injection, XML
vulnerabilities.

� Offers extended security functions beyond
those of an XML firewall. The extended
functions include web service access control
(AAA), XML encryption and digital signature,
WS-Security, and content-based routing.

� Supports JavaScript Object Notation (JSON)
schema validation and JSON payload
protection.

� Supports HTTP header (including cookie)
signature and encryption.

XML and JSON denial-of-service
protection

� Validates incoming requests and documents
malformed and malicious traffic (for example,
use the schema validation to make sure the
message is valid).

� Gain access to valuable post-attack forensics.
� Controls the low-byte XML and JSON

messages that can bypass your traditional
perimeter protection.

� Deploys service level monitor (SLM), service
level agreement (SLA) to regulate the incoming
messages.

Field-level message security Selectively shares information of entire messages
or of individual XML fields.

Access control for web services Enables secure access to web services-based
applications for your internal and external clients.

Fine-grained authorization Offers fine-grained authorization that interrogates
individual requests to determine whether they can
be allowed through.
Chapter 7. Integration with IBM WebSphere DataPower 141

For Banking Company A, which has a Worklight server, the DataPower Appliances can offer
the following functions:

� Provide enhanced form-based authentication support for easy and quick integration with
Worklight applications running on mobile devices

� Include a ready-to-use configuration pattern as a reverse proxy and security policy
enforcement point in front of the Worklight Server

� Provide fine-grained authorization and authentication with a centralized policy
enforcement

� Provide data transformation and enable connectivity

7.3 Integrating WebSphere DataPower with Worklight

In a typical business-to-consumer (B2C) scenario, security requirements are more
demanding, because you must expose your information technology (IT) infrastructure to
external devices that are located out of your intranet zone.

With mobile devices, there is a big variation regarding the device models, mobile operating
systems, and regions from where the requests come. In addition, your user base will be more
volatile, and it is not possible to control whether a device is rooted or not safe. In such
scenarios, it makes sense to have a component acting as the security gateway front-end to
your network and infrastructure, a first point of contact enforcing security regarding mobile
app access to your internal corporate systems.

Making the Worklight server accessible to external user-owned devices opens your IT
infrastructure to inbound connections that are potential security exposures if not controlled
properly. So a secure gateway must be introduced to protect the existing IT infrastructure, and
restrict access to only those back-end services that are required by your mobile app.

Although a B2C scenario exposes additional security risks, a business-to-employee (B2E)
scenario also exposes security risks. As you mobile-enable your enterprise, there are several
aspects of security to consider. When protecting mobile app traffic that is coming from your
customer and employee devices into your network, you want to protect the traffic from being
altered, authenticate these users, and authorize their access to applications.

This is where you can take advantage of the security features offered by the DataPower
Integration Appliance XI52 to protect access to your enterprise systems. Using this appliance
as the secure gateway creates what is essentially a self-contained security infrastructure for
the mobile apps.

7.3.1 Patterns for integration

Enterprise topologies generally include designating different zones of protection, so that
specific processing can be secured and optimized. There are several ways the DataPower
Integration Appliance can be used in the DMZ, or in other zones within your network, to
protect enterprise resources.

As you start to build out Worklight applications to be delivered to the devices of your
customers and employees, the following patterns can be applied to mobile traffic.
142 Securing Your Mobile Business with IBM Worklight

The DMZ
The following patterns can be used in the DMZ:

� Reverse Proxy Pattern. The DataPower Integration Appliance is a front-end reverse proxy
and security gateway for your mobile apps, built with and deployed on a Worklight Server.

� REST Service Façade Pattern. The DataPower Integration Appliance protects REST
endpoints in the DMZ without using Worklight adapters for integration.

Intranet
The following patterns can be used in the intranet zone:

� Mediation Pattern. The DataPower Integration Appliance provides protocol and message
transformation, and security for enterprise services that are integrated via Worklight
adapters, and that enable connectivity to your existing SOA infrastructure.

� Federated SSO with Authorization Pattern. The DataPower Integration Appliance
authorizes authenticated access to OAuth protected resources.

The rest of this chapter focuses on the Reverse Proxy Pattern to integrate the DataPower
Integration Appliance security capabilities with the Worklight server.

7.3.2 Reverse Proxy Pattern

The DataPower Integration Appliance functions as a network security gateway, ensuring only
authorized access from the mobile app to the internal corporate systems.

In the following sections, the DataPower Multi-Protocol Gateway (MPGW) service will be used
as a proxy and secure access for Worklight mobile apps. HTTP basic authentication or HTTP
form-based login will be used between the mobile client and the DataPower Integration
Appliance which, in turn, will authenticate the user and generate an LTPA SSO token to be
used by the back-end Worklight server running on a WebSphere Application Server run time.
Figure 7-1 illustrates a typical request flow.

Figure 7-1 DataPower Appliances authenticate the user and protect the communication to the Worklight Server

Backend System

WebSphere
Datapower

Worklight Server

WL App/ Adapter
Chapter 7. Integration with IBM WebSphere DataPower 143

When a user sends a request from the mobile app, the request is routed to the DataPower
Appliance, which is in the DMZ. If the request does not have user authentication credentials
associated with it, the appliance challenges the mobile app to supply the user credentials (for
example, user ID and password) and then authenticates the request against a user registry.

When the request is authenticated, the appliance injects an LTPA token or HTTP header
(identifying the user) into the request, and sends that request downstream to the Worklight
server that has been configured to trust that the DataPower Appliance can assert the user’s
identity. See Figure 7-2 for a a typical interaction between the user and application, and the
Worklight server.

Figure 7-2 A typical interaction between the user/application and the Worklight server

To establish this pattern, follow these steps:

1. Install and configure a Worklight environment.

2. Test the install with a simple application without the DataPower Integration Appliance
acting as the reverse proxy, to make sure your application logic works correctly.

3. Configure a MPGW on the DataPower Integration Appliance to act as a proxy for the
mobile app. The configuration of the gateway for the basic authentication or HTML
form-based login is described in the following sub-steps:

– Use basic authentication for user authentication with an AAA policy and, if the user is
successfully authenticated, generate an SSO LTPA token for the Worklight server
running on WebSphere Application Server.

User App WebSphere
DataPower

Worklight
Server

launch

POST / ini t

login form

display login

enter cr eds

POST creds

in it with LTPA
or header

response su ccess

Authenticate
set LTPA or
head er

response

App is launched
144 Securing Your Mobile Business with IBM Worklight

– Use HTML form-based login with an AAA policy and, if the user is successfully
authenticated, generate an SSO LTPA token for the Worklight server running on
WebSphere Application Server.

4. Testing with a reverse proxy involves the following actions on the Worklight server and the
mobile app:

– Updating the security configuration on the Worklight server to enable validation of the
LTPA token that will be sent by the DataPower Appliance.

– Updating the mobile app mobile security test configuration to use the LTPA
authentication method, as configured in the Worklight server. This configuration
requires the application to authenticate immediately upon startup.

In addition, the mobile app also has to be updated to handle the authentication
challenge that will be generated by the DataPower Appliance.

7.3.3 Configuring the Worklight Server

The Worklight server used by the mobile app(s) has to be configured to accept the LTPA
token that will be sent after the request has been authenticated by the DataPower Appliance.
The authenticationConfig.xml file on the server must be modified to include WASLTPARealm,
its login module, and security test. Use the WASLTPARealm to indicate that all of the applications
within this realm will use LTPA tokens for their SSO needs, as shown in Example 7-1.

Example 7-1 authenticationConfig.xml

<securityTests>
<mobileSecurityTest name="WASTest-securityTest">

<testDeviceId provisioningType="none"/>
<testUser realm="WASLTPARealm"/>

</mobileSecurityTest>
<webSecurityTest name="WASTest-web-securityTest">

<testUser realm="WASLTPARealm"/>
</webSecurityTest >

</securityTests>

<realms>
<!-- For WebSphere -->
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>
</realms>

<loginModules>
<!-- For WebSphere -->
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

</loginModules>
Chapter 7. Integration with IBM WebSphere DataPower 145

The Worklight server or enterprise console application must be restarted after the
configuration changes are made.

7.3.4 Configuring the mobile application

The mobile app has to be configured to accept and respond to the authentication challenge
from the DataPower Appliance. Worklight provides the mobile app with a challenge handler
mechanism that, in this case, will be used to ask the user for a user ID and password, and
then submit these user credentials to the DataPower Appliance for authentication.

On the mobile app, a set of JavaScript functions corresponding to the Worklight client-side
challenge handler APIs must be defined to handle challenges related to WASLTPARealm. See
Example 7-2 for a JavaScript challenge handler that can be used by the mobile app.

Example 7-2 JavaScript challenge handler used by the mobile app

function showLoginScreen() {
$("#index").hide();
$("#authPage").show();

}

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

}

var myChallengeHandler = WL.Client.createChallengeHandler("WASLTPARealm");
var lastRequestURL = '/worklight/apps/services/www/SimpleApp/mobilewebapp/';

myChallengeHandler.isCustomResponse = function(response) {
console.log(response.responseText);
// A normal login form has been returned
var findError = response.responseText.search("Form login authentication failure

| Login invalid.");
if (findError >= 0) {

return true;
}
// A normal login form has been returned
var findLoginForm = response.responseText.search("j_security_check");
if (findLoginForm >= 0) {

return true;
}
// This response is a worklight server response, handle it normally
return false;

};

Note: The login.html and loginError.html files should already exist in the root of the
Worklight server or console web archive (WAR) file. Furthermore, the login.html file
should contain the string j_security_check, because the challenge handler code will
search for that string upon initial initialization.

Optionally, you should include a “success” HTML file that is requested upon successful
authentication.
146 Securing Your Mobile Business with IBM Worklight

myChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

};

myChallengeHandler.handleFailure = function(response) {
console.log("Error during WL authentication.");

};

myChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = myChallengeHandler.isCustomResponse(response);

if (isCustom) {
myChallengeHandler.handleChallenge(response);

} else {
// hide the login screen, we are logged in
showMainScreen();
myChallengeHandler.submitSuccess();

}
};

// When the login button is pressed, submit a login form
$("#loginButton").click(function() {

var reqURL = "/j_security_check";

var options = {
method : "POST"

};
options.parameters = {

j_username : $("#username").val(),
j_password : $("#password").val(),
originalUrl : lastRequestURL,
login : "Login"

};
options.headers = {};
myChallengeHandler.submitLoginForm(reqURL, options,

myChallengeHandler.submitLoginFormCallback);
});

This JavaScript challenge handler example requires the mobile app to display a form to the
user so that the user ID and password information can be collected.

Note: This code can be placed in a separate JavaScript file (for example, auth.js) and
referenced from your main HTML file.

The form parameters submitted (j_username, j_password, and URL j_security_check)
must match the expected parameters in the DataPower HTML Forms Login policy object.

The lastRequestURL variable references an HTML file from the mobile web version of the
Worklight project (you will need to change it to match your environment). If you created a
“success” HTML file and deployed it into the Worklight WAR file, you could reference that
file instead. After successful authentication of the credential by the DataPower Integration
Appliance, it will re-issue the request based on the URL in the originalURL parameter.
Chapter 7. Integration with IBM WebSphere DataPower 147

Example 7-3 shows a simple example of a mobile app form.

Example 7-3 Mobile app Login form

<div id= "authPage">
You are not authenticated.
<div id= "loginForm">

Username:

<input type= "text" id= "username"autocorrect= "off"autocapitalize= "off"

value= "admin"/>

Password:

<input type= "password" id= "password"autocorrect= "off"autocapitalize=

"off" value= "admin"/>

<input type= "button" id= "loginButton" value= "Login" />

</div>
</div>

<div id= "index">
You are authenticated.

</div>

<script src="js/auth.js"></script>

In addition to the challenge handler and the login form, the mobile app has to be configured to
participate in the Worklight security mechanisms by indicating which Worklight security test
will govern this mobile app’s requests. After authentication by the DataPower Appliance, the
mobile app requests will have an LTPA token, created by the appliance, sent along with the
requests to the Worklight server. Therefore the mobile app must be configured to use the
Worklight security test that handles WASLTPARealm.

This is accomplished by adding a securityTest attribute to the application-descriptor.xml
file of the Worklight application project (using Worklight Studio) to use the
WASTest-securityTest security test that was created earlier in the authenticationConfig.xml
file on the Worklight server. Example 7-4 shows an iPad example.

Example 7-4 Securing an iPad application

<ipad bundleId= "com.Datapower" securityTest= "WASTest-securityTest" version=
"1.0">

<worklightSettings include= "true"/>
<security>

<encryptWebResources enabled= "false"/>
<testWebResourcesChecksum enabled= "false" ignoreFileExtensions= "png, jpg,

jpeg, gif, mp4, mp3"/>
</security>

</ipad>

7.3.5 Configuring the multiprotocol gateway on the DataPower Appliance

Next, configure a MPGW to end the secure network connection, and also to enforce the
authentication of an application. The steps and illustrations represent a subset of the
configuration screens found in the DataPower Integration Appliance GUI that are necessary
to configure the MPGW for a mobile app. To configure the MPGW service, the front-side and
the back-end URLs have to be configured.
148 Securing Your Mobile Business with IBM Worklight

General configuration and front-side handler
Start with the General Configuration tab. Figure 7-3 highlights the items that you will select.

Figure 7-3 General Configuration tab

These selections include the following details:

� Multi-Protocol Gateway Name. Provide a name for your gateway.

� Multi-Protocol Gateway Policy. The Policy tab enables additional configuration. In this
case, select the plus sign (+) to add a new processing policy (worklight-form), which will
also contain the AAA policy.

� Default Backend URL. Specify the address and port of the Worklight server hosted on
WebSphere Application Server. Given the user credentials, an LTPA token will be sent to
the back-end. Consider using a Secure Sockets Layer (SSL) port. However, for this
example, an HTTP port is used.

� Front Side Protocol. For the type of use case described, we use an HTTPS handler. For
this style of interaction, the user credential will be passed between the mobile app and the
Chapter 7. Integration with IBM WebSphere DataPower 149

DataPower Appliance. Therefore, the transport should be protected using the SSL
protocol.

� Set Response Type. Select Pass through. This enables all HTTP traffic to pass through
the appliance.

� Set Request Type. Select Non-XML. This enables all HTTP requests to be handled by
appliance.

When creating an HTTPS Front Side Handler, there are additional parameters to configure
(see Figure 7-4 and Figure 7-5 on page 151):

� Name. Provide a name for the handler (HTTPS).

� Port Number. Choose an available port (note: this port is shown in the DMZ).

� Allowed Methods and Versions. Enable Get Method. This enables support for HTTP Get.

� SSL Proxy. Specify an SSL Reverse Proxy profile. This provides the identity for the SSL
server on the DataPower Appliance.

Figure 7-4 Select HTTPS (SSL) Front Side Handler

Note: You will create the MPGW policy later in this section.
150 Securing Your Mobile Business with IBM Worklight

Figure 7-5 Configure HTTPS Front Side Handler

Before creating the MPGW service policy, you first need to create the AAA policy objects,
which will be referenced from the MPGW service policy.

AAA policy
Creating an AAA policy involves a series of actions that become part of the policy rules:

� Extract Identity
� Authenticate
� Map Identity
� Extract Resource
� Map Resource
� Authorize
� Audit and Post-Process.

Only the actions needed for a specific AAA policy are selected.
Chapter 7. Integration with IBM WebSphere DataPower 151

Figure 7-6 shows an overview of the AAA processing flow that is run by the DataPower
Appliance.

Figure 7-6 AAA processing flow

In this use case, several different AAA polices are created:

� BasicAuth2LTPA. Extract the user credentials from an HTTP basic authentication header
and create an LTPA token if the user credentials are authenticated.

� Form2LTPA. Extract the user credentials from a Login form and create an LTPA token if the
user credentials are authenticated.

� VerifyLTPA. Verify that the LTPA token is valid.

You can create these AAA policies by entering AAA Policy in the vertical navigation bar and
clicking the resulting entry (Figure 7-7).

Figure 7-7 AAA Policy

BasicAuth2LTPA
To extract the user credentials from an HTTP basic authentication header, and then create an
LTPA token if the user credentials are authenticated, follow these steps:

1. Extract Identity. For Method, select HTTP Authentication header (as shown in Figure 7-8
on page 153).
152 Securing Your Mobile Business with IBM Worklight

Figure 7-8 HTTP basic authentication

2. Authenticate. Choose the authentication method. If the Worklight server running on
WebSphere Application Server is using LDAP, configure the same LDAP here.

3. Extract Resource. For Resource Information, select URL Sent by Client.

4. Authorize. Allow any authenticated client.

5. Postprocess. Perform the following actions:

a. Generate an LTPA Token.

b. Specify LTPA Token Expiry, LTPA Key File, and LTPA Key File Password.

Form2LTPA
To extract the user credentials from a Login form, and then create an LTPA token if the user
credentials are authenticated, follow these steps:

1. Extract Identity. For Method, select HTML Form-based Authentication, and create an
HTML forms-based login policy (Figure 7-9).

Figure 7-9 Form-based authentication

2. Select Source for Form-processing. Select Custom.

3. Configure Custom Processing for Form. Choose store:///Form-Generate-HTML.xsl
(Figure 7-10).

Figure 7-10 Custom form-processing in the HTML form policy

Tip: For testing purposes, you can use the DataPower Appliance AAA security file
located at store:///AAAInfo.xml, or create a new AAA policy XML file. Make sure that
the <aaa:Output Credential> tag uses the appropriate format for WebSphere
Application Server, for example:
file-based registry: uid=<user>,o=defaultWIMFileBasedRealm

Tip: See the following IBM developerWorks® article for more detail on how to create an
HTML Form Policy:
http://www.ibm.com/developerworks/websphere/library/techarticles/1208_poon1/
1208_poon1.html#html

One difference between the process described in that article and this example is the
source for the login and error pages.
Chapter 7. Integration with IBM WebSphere DataPower 153

http://www.ibm.com/developerworks/websphere/library/techarticles/1208_poon1/1208_poon1.html#html
http://www.ibm.com/developerworks/websphere/library/techarticles/1208_poon1/1208_poon1.html#html

4. Authenticate. Choose the authentication method. If the Worklight server running on
WebSphere Application Server is using LDAP, configure the same LDAP here.

5. Extract Resource. For Resource Information, select URL Sent by Client.

6. Authorize. Allow any authenticated client.

7. Postprocess. Perform the following actions:

a. Generate an LTPA Token.

b. Specify LTPA Token Expiry, LTPA Key File, and LTPA Key File Password.

VerifyLTPA
To verify that the LTPA token is valid, follow these steps:

1. Extract Identity. For Method, select Accept LTPA token (Figure 7-11).

Figure 7-11 LTPA Token Authentication

2. Authenticate. Choose Accept an LTPA Token, and specify LTPA Token Versions, LTPA
Key File, and LTPA Key File Password (Figure 7-12).

Figure 7-12 Verify an LTPA token

Note: Leave the Login form properties at their default value of j_username, j_password,
and /j_security_match, which will match the parameters submitted by the mobile
HTML login form.

Tip: For testing purposes, you can use the DataPower AAA security file located at
store:///AAAInfo.xml, or create a new AAA policy XML file. Make sure that the
<aaa:Output Credential> tag uses the appropriate format for WebSphere Application
Server, for example:

file-based registry: uid=<user>,o=defaultWIMFileBasedRealm
154 Securing Your Mobile Business with IBM Worklight

3. Extract Resource. For Resource Information, select URL Sent by Client.

4. Authorize. Allow any authenticated client.

Processing policy
The next step is to configure the processing policies to be applied to the traffic. To do so,
follow these steps:

1. Select the General tab, and then click the plus sign (+) and select Multi-Protocol
Gateway Policy.

2. In the policy section, configure a set of rules to be applied based on what actions the
reverse proxy needs to enforce.

The DataPower Appliance enables the administrator to configure a policy, name it, and
then reuse it. This policy will handle both mobile web and mobile app traffic.

The following authentication options can be used in the processing policy:

– Option 1 is HTTP basic authentication.
– Option 2 is forms-based authentication.

Option 1: Use HTTP basic authentication
To use HTTP basic authentication, follow these steps:

1. Create a Policy Name. Enter a policy name (worklight-basicauth), and click Apply
Policy.

2. Click New Rule (see Figure 7-13 on page 156). Repeat this for the following rules, in
order:

a. Rule 1. Because the policy will be applied to each request, the order of the rules needs
to ensure that we first verify if an LTPA token exists in the HTTP request
(worklight-basicauth_rule_0). If there is no token, move to the next rule and
authenticate the user:

i. Direction: “Client to Server”
ii. Match: type = http, HTTP Header Tag = Cookie, HTTP Value Match=*LtpaToken*
iii. AAA: VerifyLTPA
iv. Input: INPUT
v. Output: OUTPUT

b. Rule 2. Handle the authentication of the user if the LTPA token does not exist
(worklight-basicauth_rule_1):

i. Direction: “Client to Server”
ii. Match: type = url, match pattern = *
iii. AAA: BasicAuth2LTPA
iv. Input: INPUT
v. Output: OUTPUT
Chapter 7. Integration with IBM WebSphere DataPower 155

Figure 7-13 shows the form for creating or editing a rule.

Figure 7-13 MPGW Style Policy for HTTP Basic Authentication Support

Option 2: Use HTML form-based login
To use HTML form-based login, follow these steps:

1. Create a Policy Name. Enter a policy name (worklight-form), and then click Apply
Policy.

2. Click New Rule (see Figure 7-14 on page 157). Repeat this for the following rules, in
order:

a. Rule 1. Verify if an LTPA Token exists in the HTTP request (worklight-form_rule_0):

i. Direction: “Client to Server”
ii. Match: type = http, HTTP Header Tag = Cookie, HTTP Value Match=*LtpaToken*
iii. AAA: VerifyLTPA
iv. Input: INPUT
v. Output:OUTPUT

b. Rule 2. Handle the authentication of the user if an LTPA token does not exist
(worklight-form_rule_2):

i. Direction: “Client to Server”
ii. Match: type = url, match pattern =*/j_security_check
iii. Advanced: “Convert Query Parameter to XML” (choose the defaults for other

selections)
iv. AAA: Form2LTPA
v. Input: INPUT
vi. Output:OUTPUT
156 Securing Your Mobile Business with IBM Worklight

c. Rule 3. Match all rule (worklight-form_rule_3):

i. Direction: “Client to Server”
ii. Match: type = url, match pattern = *
iii. Input: INPUT
iv. Output: OUTPUT

Figure 7-14 shows the MPGW-style policy.

Figure 7-14 MPGW-style policy for HTML form-based login support

Completing the MPGW configuration
After you have completed the options on the General tab, there are additional options to
select on the Advanced tab.

� Persistent Connections

� Allow Cache-Control Header

� Loop Detection

� Follow Redirects

In this instance, select off for this option. This prevents the DataPower Integration
Appliance back-end user agent from resolving redirects from the back-end. Web

Tip: This rule is shown here for this specific use case. However, you might want to
divide rule 3 to further protect requests (for example, jpg or css) that do not require
authentication (anonymous access) versus requests that require authentication. For
example, you might want to replace Rule 3 with two new rules:

� The first rule is for accessing resources that do not need protection (unauthenticated
or anonymous access).

� The second rule is for protecting resources that do require a valid credential.
However, if this rule ever gets invoked, it would mean that the LTPA token was
missing, and perhaps this rule should then reject the request.
Chapter 7. Integration with IBM WebSphere DataPower 157

applications typically require a client browser to resolve redirects, so that they can
maintain the context for directory, along with setting the LTPA cookie on the client.

Figure 7-15 shows these additional options on the Advanced tab.

Figure 7-15 Advanced tab

You are now ready to test the mobile app. Make sure that you create both a mobile
environment and device-specific environment (IPhone/IPad or Android) to test the
functionality.

7.3.6 Conclusion

In summary, Worklight mobile app traffic can be protected by using the DataPower
Appliance’s secure gateway functionality to enforce authentication on the DataPower
Appliance device. Next, forward the credentials (header or LTPA token) downstream to
Worklight Server to establish the user identity as part of the mobile traffic. This technique
uses the strength of the DataPower Appliance functionality to protect the enterprise systems
from unauthorized access.
158 Securing Your Mobile Business with IBM Worklight

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet, as described
in the following sections.

Locating the web material

The web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks web server:

ftp://www.redbooks.ibm.com/redbooks/SG248179

Alternatively, you can go to the IBM Redbooks website:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG24-8179.

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material .zip file into this folder.

A

© Copyright IBM Corp. 2013. All rights reserved. 159

ftp://www.redbooks.ibm.com/redbooks/SG248179
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

160 Securing Your Mobile Business with IBM Worklight

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Extending your business to mobile devices with IBM Worklight, SG24-8117

� Enabling Mobile Apps with IBM Worklight Application Center, REDP-5005

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, drafts, and additional materials, on the Redbooks website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2013. All rights reserved. 161

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

162 Securing Your Mobile Business with IBM Worklight

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Securing Your M
obile Business w

ith IBM
 W

orklight

Securing Your M
obile Business w

ith
IBM

 W
orklight

Securing Your M
obile Business

w
ith IBM

 W
orklight

Securing Your M
obile Business w

ith IBM
 W

orklight

Securing Your M
obile Business

w
ith IBM

 W
orklight

Securing Your M
obile Business

w
ith IBM

 W
orklight

®

SG24-8179-00 ISBN 073843888X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Securing Your Mobile
Business with IBM
Worklight

Apply Worklight
security features to
your mobile
applications

Integrate Worklight
with IBM Security
Access Manager

Learn by example
with practical
scenarios

The IBM Worklight mobile application platform helps you to develop,
deploy, host, and manage mobile enterprise applications. It also
enables companies to integrate security into their overall mobile
application lifecycle.

This IBM Redbooks publication describes the security capabilities
offered by Worklight to address mobile application security objectives.

The book begins with an overview of IBM MobileFirst and its security
offerings. The book also describes a business scenario illustrating
where security is needed in mobile solutions, and how Worklight can
help you achieve it.

This publication then provides specific, hands-on guidance about how
to integrate Worklight with enterprise security. It also provides
step-by-step guidance to implementing mobile security features,
including direct update, remote disable, and encrypted offline
cache. Integration between Worklight and other IBM security
technologies is also covered, including integration with IBM Security
Access Manager and IBM WebSphere DataPower.

This Redbooks publication is of interest to anyone looking to better
understand mobile security, and to learn how to enhance mobile
security with Worklight.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview of IBM MobileFirst and its security offerings
	1.1 Business value of mobile technologies
	1.2 IBM MobileFirst solution overview
	1.2.1 Mobile application development with IBM MobileFirst Platform
	1.2.2 Bring your own device with IBM MobileFirst Management
	1.2.3 Device and data protection with IBM MobileFirst Security
	1.2.4 Optimization of mobile experiences with IBM MobileFirst Analytics
	1.2.5 Putting it all together

	1.3 Mobile security threats
	1.3.1 Loss and theft
	1.3.2 Malware
	1.3.3 Spam
	1.3.4 Phishing
	1.3.5 Bluetooth and WiFi

	1.4 Mobile application landscape
	1.4.1 Mobile application platform
	1.4.2 Mobile application types
	1.4.3 Putting it all together

	1.5 IBM MobileFirst Security solution outline
	1.5.1 IBM Worklight platform as the basis for mobile security
	1.5.2 User protection with IBM Security Access Manager
	1.5.3 Application security testing with IBM Security AppScan
	1.5.4 Delivery of services and applications with IBM WebSphere DataPower
	1.5.5 Security intelligence with IBM Security QRadar SIEM
	1.5.6 VPN software with IBM Mobile Connect

	Chapter 2. Business scenario used in this book
	2.1 Mobile strategy business drivers
	2.1.1 A secure platform foundation
	2.1.2 Increased staff productivity
	2.1.3 Secure and easy access for customers
	2.1.4 Rapid development and deployment

	2.2 Conclusion

	Chapter 3. IBM Worklight security overview
	3.1 Security principles and concepts
	3.1.1 Authentication and authorization
	3.1.2 Confidentiality, integrity, and nonrepudiation
	3.1.3 Other security concepts

	3.2 IBM Worklight security capabilities
	3.2.1 Protect the data on the device
	3.2.2 Protect the application
	3.2.3 Ensure security updates
	3.2.4 Streamline corporate security processes
	3.2.5 Provide robust authentication and authorization

	3.3 IBM Worklight security framework
	3.3.1 Realms and security tests
	3.3.2 Worklight protocol and client challenge handlers
	3.3.3 Integration with web container security
	3.3.4 Integration with web gateways

	3.4 Conclusion

	Chapter 4. Integrating Worklight with enterprise security
	4.1 IBM Worklight security framework
	4.1.1 Challenge handlers
	4.1.2 Authentication configuration file
	4.1.3 Authentication realms
	4.1.4 Login modules
	4.1.5 Security tests
	4.1.6 User registries

	4.2 Restricting access to resources with authentication realms
	4.2.1 Protecting Worklight applications
	4.2.2 Protecting Worklight adapter procedures
	4.2.3 Protecting static Worklight web applications
	4.2.4 Protecting event sources

	4.3 Configuring Worklight for LTPA authentication

	Chapter 5. Applying Worklight security features
	5.1 Client-side authentication concepts and entities
	5.1.1 Challenge handler
	5.1.2 Device single sign-on

	5.2 Encrypted offline cache and JSONStore
	5.2.1 EOC overview
	5.2.2 EOC APIs
	5.2.3 JSONStore overview
	5.2.4 The JSONStore API
	5.2.5 JSONStore integration with Worklight adapters
	5.2.6 JSONStore encryption using FIPS 140-2

	5.3 Client-side device provisioning and application authenticity
	5.3.1 Device provisioning
	5.3.2 Device ID on Android and iOS
	5.3.3 Implementing device provisioning
	5.3.4 Control and confirm application authenticity

	5.4 Direct Update
	5.4.1 Using Direct Update

	5.5 Remote Disable

	Chapter 6. Integration with IBM Security Access Manager
	6.1 IBM Security Access Manager introduction
	6.1.1 IBM Security Access Manager components

	6.2 Enabling identity aware applications
	6.2.1 IBM Security Access Manager for web login form single sign-on
	6.2.2 Tivoli Federated Identity Manager OAuth single sign-on
	6.2.3 Other authentication types

	6.3 Risk-based access
	6.3.1 Risk-based access overview
	6.3.2 Securing Worklight adapters with risk-based access
	6.3.3 Authorization process flow
	6.3.4 Policy authoring
	6.3.5 Policy attachment
	6.3.6 Policy evaluation
	6.3.7 Step-up authentication

	6.4 Worklight adapter single sign-on
	6.5 Integrated security solution
	6.5.1 Solution architecture
	6.5.2 Conclusion

	Chapter 7. Integration with IBM WebSphere DataPower
	7.1 Introduction to the DataPower Appliances
	7.2 DataPower Integration Appliance XI52 overview
	7.3 Integrating WebSphere DataPower with Worklight
	7.3.1 Patterns for integration
	7.3.2 Reverse Proxy Pattern
	7.3.3 Configuring the Worklight Server
	7.3.4 Configuring the mobile application
	7.3.5 Configuring the multiprotocol gateway on the DataPower Appliance
	7.3.6 Conclusion

	Appendix A. Additional material
	Locating the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks
	Help from IBM

	Back cover

