
ibm.com/redbooks

Front cover

New Ways of Running Batch
Applications on z/OS
Volume 4 IBM IMS

Denis Gaebler
Alex Louwe Kooijmans

Elsie Ramos

Technology overview

Modernization options

Samples

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

New Ways of Running Batch Applications on z/OS:
Volume 4 IBM IMS

May 2014

SG24-8119-00

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2014)

This edition applies to the following software levels:
� z/OS Version 1 Release 12 and Release 13
� IBM 64-bit SDK for z/OS, Java Technology Edition, V6

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . viii
Comments welcome. viii
Stay connected to IBM Redbooks . viii

Chapter 1. Modernizing IMS batch. 1
1.1 Introduction . 2
1.2 IMS defined . 2
1.3 Modern view of IMS batch processing . 3

Chapter 2. Implementation of IBM IMS batch applications in Java 7
2.1 Software prerequisites . 8

2.1.1 Minimum software levels. 8
2.2 Use of development environment . 8
2.3 How to write and test IMS Java applications outside IMS. 9
2.4 Java frameworks used with IMS Java. 9

2.4.1 Using Hibernate as Object Relational mapper with IMS DB 10
2.4.2 Java Persistence API . 10
2.4.3 Using Spring in Java parts of IMS applications. 10

2.5 Access of IMS Java batch applications with pureQuery . 11
2.6 JVM tuning considerations . 12
2.7 Debugging Java applications in IMS . 12

2.7.1 Debugging a Java BMP region . 12
2.8 Diagnostics and monitoring of Java in an IMS environment . 17

2.8.1 IBM Monitoring and Diagnostic Tools for Java - Health Center 17
2.8.2 Rational Agent Controller, Rational profiling, and Healthcenter Plug-in 18
2.8.3 JConsole . 19
2.8.4 IBM HeapAnalyzer . 20
2.8.5 Profiling applications . 23
2.8.6 Monitoring JVMs in IMS regions . 23

2.9 Java interoperability with COBOL in IMS batch applications . 24
2.9.1 How Java can call COBOL and vice versa . 24
2.9.2 JNI calls using COBOL INVOKE. 27
2.9.3 COBOL code evolution . 27
2.9.4 Latest COBOL INVOKE versus JNI API measurements. 34
2.9.5 JNI programming considerations . 35
2.9.6 Options to pass data items between COBOL and Java . 35

2.10 Generating Java classes. 35
2.10.1 J2C wizards . 35
2.10.2 JZOS Record Generator . 36

2.11 Restrictions for COBOL Java interoperability . 37
2.12 Abend and error handling . 37

2.12.1 Alternate options . 38
2.13 z/OS considerations . 38
© Copyright IBM Corp. 2014. All rights reserved. iii

Chapter 3. Mixed language applications. 41
3.1 Accessing DB2 from mixed language applications . 42
3.2 Accessing WebSphere MQ from mixed language applications. 43
3.3 Debugging mixed language applications . 44

3.3.1 Tools to debug mixed language applications . 45
3.4 IMS preload in a mixed environment. 48

Chapter 4. Alternate processing options . 51
4.1 IMS callout to external services . 52

4.1.1 Synchronous calls . 52
4.1.2 Asynchronous calls . 53
4.1.3 Both synchronous and asynchronous callout . 53
4.1.4 Call DB2 Stored Procedures from the application. 54
4.1.5 WebSphere Transformation Extender. 54
4.1.6 WebSphere z/OS Optimized Local Adapters . 54

4.2 Calling IMS transactions from traditional batch. 57
4.2.1 Writing a COBOL client . 58
4.2.2 The OTMA Callable Interface . 58
4.2.3 Use of DB2 stored procedures . 60
4.2.4 WebSphere Transformation Extender. 60
4.2.5 WebSphere MQ with its IMS OTMA Bridge . 61

4.3 Accessing IMS data as result sets from traditional batch . 61
4.3.1 Using Business Rules Engines from batch . 61
4.3.2 Speeding up long running DB2 queries . 62
4.3.3 Speeding up calls to SQL-only DB2 stored procedures . 63
4.3.4 Using data transformations in batch . 63

4.4 Best practices for small batches . 66
4.4.1 Reduce the overhead of JVM startup . 66

4.5 Summary. 67

Chapter 5. IMS batch samples . 69
5.1 Sample IMS Java batch program . 70

5.1.1 Software used in our environment . 70
5.1.2 Procedures used in our environment . 70
5.1.3 Configuration used in our environment . 71

5.2 Sample Java configuration and IMS BMP calls . 73
5.2.1 Sample Java configuration for an IMS Batch Message Program 73
5.2.2 Sample application IMS BMP COBOL calls Java . 74
5.2.3 Sample application IMS BMP PL/I calls a Java method . 77
5.2.4 Sample application IMS Java Batch Program Java calls COBOL 78

5.3 Sample Java frameworks used with IMS Java . 82
5.3.1 How to install all required plug-ins into Rational Developer for System z 83
5.3.2 Download the Hibernate JARs into the sample workspace 83
5.3.3 Hibernate as Object Relational mapper with IMS DB . 84
5.3.4 Using JPA as OR mapper with DB2 . 98

5.4 Summary. 102

Related publications . 103
IBM Redbooks . 103
Online resources . 103
Help from IBM . 104
iv New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS Explorer®
CICS®
DB2®
developerWorks®
IBM®
IMS™

Language Environment®
Optim™
pureQuery®
Rational Team Concert™
Rational®
Redbooks®

Redbooks (logo) ®
System z®
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Netezza, and N logo are trademarks or registered trademarks of IBM International Group B.V., an IBM
Company.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
vi New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www.ibm.com/legal/copytrade.shtml

Preface

Mainframe computers play a central role in the daily operations of many of the world’s largest
corporations. Batch processing is still a fundamental, mission-critical component of the
workloads that run on the mainframe. A large portion of the workload on IBM® z/OS®
systems is processed in batch mode.

This IBM Redbooks® publication is the fourth volume in a series of four. They address new
technologies introduced by IBM to facilitate the use of hybrid batch applications that combine
the best aspects of Java and procedural programming languages such as COBOL. This volume
focuses on the latest enhancements in IBM Information Management System (IMS™) batch
support. IMS has been available to clients for 45 years as IMS Transaction Manager, IMS
Database Manager, or both.

The audience for this book includes IT architects and application developers with a focus on
batch processing on the z/OS platform.

Authors

This book was produced by a team of specialists from around the world working at the IBM
International Technical Support Organization (ITSO), Poughkeepsie Center.

Denis Gaebler is a Technical Sales Specialist at IBM in Germany. He holds a degree in
business with a specialization in computer science from Staatliche Studienakademie
Dresden. He has been working in the areas of IBM IMS and IMS Web Enablement since
1997. His areas of expertise include IBM WebSphere® on z/OS, IMS DB and TM,
Service-Oriented Architectures, and Enterprise Application Integration. Currently, he is
working with IMS Java, IMS connectivity solutions, COBOL and Java Integration, application
servers, and Eclipse-based application development tools.

Alex Louwe Kooijmans is a Senior Architect at the Financial Services Center of Excellence
at IBM Systems and Technology Group. Before this position, he spent almost 10 years in the
International Technical Support Organization leading IBM Redbooks projects, teaching
workshops, and running technical events with a focus on using the IBM mainframe in new
ways. Alex also worked as Client Technical Advisor to various banks in the Netherlands and
performed various job roles in application development. His current focus is on modernizing
core banking systems and the role of the IBM current mainframe technology.

Elsie Ramos is a Project Leader at the ITSO, Poughkeepsie Center. She has over 30 years
of experience in IT, supporting various platforms including IBM System z® servers.

Thanks to the following people for their contributions to this project:

Rich Conway
Michael Schwartz
IBM International Technical Support Organization, Poughkeepsie Center

Gary Puchkoff
Software Architect, IBM Systems and Technology Group, z/OS New Technology
Poughkeepsie, US
© Copyright IBM Corp. 2014. All rights reserved. vii

Gary Wicks
IBM Canada

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:
viii New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.redbooks.ibm.com/rss.html

x New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Chapter 1. Modernizing IMS batch

In this chapter, we describe new modernization options as a result of the changes in the
architecture of existing and new Information Management System (IMS) based batch
applications. There is a brief review of IMS as a batch container followed by a description of
why it is a good idea to modernize within the IMS container.

1

© Copyright IBM Corp. 2014. All rights reserved. 1

1.1 Introduction

There are many ways to modernize IMS batch while still running existing workloads
uninterrupted.

� Some clients rewrite their applications in existing languages using new agile development
techniques.

� Others implement new ways of performing interactions using rules engines or initiating a
callout to external services.

� To avoid large migrations, a continuous modernization can be performed while still running
the applications in the IMS container.

� Many clients already have batch applications that are based on IMS and they use the key
feature of checkpoint restart functionality for advanced control over their applications.

1.2 IMS defined

IMS consists of a transaction manager and a database manager:

� Transaction manager

– Ensures that a transactional or batch unit of work conforms to the ACID properties
(atomicity, consistency, isolation, and durability). Includes commit and rollback with
Resource Managers such as IMS databases, IBM DB2® databases, and
WebSphere MQ.

– Provides checkpoint restart support for batch applications in order to be able to
continue later from a point of error (in most cases full output data sets, and so on) and
provides the ability to save a piece of storage (workarea) that saves the variables at
checkpoint time and presents it to the application at restart time, so it can continue, as
if it was running uninterrupted.

– Provides sync point management for external resources like IBM DB2 for z/OS
databases and WebSphere MQ for z/OS and allows these external subsystems to be
part of the IMS managed unit of work. This includes the ability to commit or rollback
changes of resources by using a two-phase commit capable protocol.

– Provides Queue Manager functionality, through the use of message queuing through a
dedicated set of message queue buffers and data sets aligned with a single IMS or
Shared Queues between members of an IMSplex.

– Allows access to IMS Transactions from many types of environments running on z/OS
like DB2 Stored Procedures, Resource Recovery Services (RRS) controlled Batch
Jobs, IBM CICS® and WebSphere Application Server and from distributed applications
through IMS Connect and WebSphere MQ.

� Database manager

– Manages hierarchical IMS databases and ensures integrity while IMS applications
access the data in parallel.

– Allows access to IMS databases from many types of environment running on z/OS like
DB2 Stored Procedures, RRS controlled Batch Jobs, CICS and WebSphere
Application Server, and from distributed applications through IMS Connect.

– Provides a batch container in stand-alone mode (known as Database Control
environment—DBCTL) like the one included in IMS Transaction Manager. Therefore, it
benefits from the same checkpoint and restart support.
2 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Historically, IMS has been providing for 45 years a stand-alone batch container running the
IMS subsystem entirely in the batch address space without the need to connect to an IMS
control region. The DL/I or DBB Batch regions do not share IMS databases with online IMS
subsystems unless IMS sysplex data sharing is implemented.

Today, most of the users run “online batch” jobs as privileged for application workloads due to
operational and business requirements. “Offline batch” jobs are still used for utilities and for
application workload that were not able to be changed to implement intermediary
checkpoint/restart logic to accept parallel processing. Therefore, when we mention “batch” in
this chapter, it refers to online batch variations, such as IMS batch message processing
(BMP) programs, IMS message-driven BMPs, and IMS Java batch programs (JBPs).

1.3 Modern view of IMS batch processing

IMS batch processing has been available for 45 years. Batch is clearly one of the main
features of IMS. It offers checkpoint restart capabilities so that applications do not have to be
restarted from the beginning after failures. The programmer has very little to do to implement
it because the IMS subsystem manages everything under the covers. In a failure, applications
are automatically restarted to the latest checkpoint. The modernization of batch in IMS might
be the best option when there is a requirement to call services that are off-platform or Java
based.

To update IMS based batch to use COBOL and Java interoperability, the following points need
to be considered:

� Should the current JCL be changed or is the current tooling capable of generating
something different to describe the batch work?

� Should the current static specification of input and output data sets by JCL be changed?

� Should the current way of checkpoint writing (considering tools that allow the specification
of the checkpoint frequency dynamically or at job/step start) be changed?

� Should the current way of checkpoint restart control (IMS based writing of checkpoints) be
changed?

� Should the batch modernization platform be a different one from the current online
transaction processing (OLTP) and batch processing in use?

� Should the current accounting based on SMF30 records be changed to use some other
SMF records? SMF30 records also contain reporting about the System z Integrated
Information Processor (zIIP) and System z Application Assist Processor (zAAP) usage.

� Should there be an incremental conversion of COBOL to Java?

� Should there be different tooling to monitor, debug, and report runtime errors as being
introduced with heterogeneous batch environments that allows for a simple choice for
running batch on other platforms?

� Should the current security solutions and procedures to authorize batch in the z/OS
environment be changed?

� Should the same tools for auditing and review (IMS logs) be used?

� Should the same tools for coordinated recovery be used?

� Should deadlock behavior when online and batch workload compete for the same
resources be replaced with a new solution? This includes deadlock detection, reports, and
analysis sources.
Chapter 1. Modernizing IMS batch 3

When the answer to most of these questions is “no”, then staying with IMS for batch
modernization is likely the better alternative.

The following solutions are possible with little overhead for IMS based solutions:

� Consolidation of batch or Java based platform programs can be started as IMS Java batch
by having a main method that is started by IMS. The mapping is between the Java class
name and the program specification block (PSB).

� Tight integration with IBM Tivoli® Workload Scheduler. This is workload automation
software that uses business policies to support business goals.

� All JVM functions

Includes but is not limited to JZOS Record Generator, JZOS Record IO, calling remote
Enterprise JavaBeans (EJB beans) through RMI/IIOP, and rules engines such as IBM
Operational Decision Manager.

� Frameworks such as Hibernate, Spring, and Java Persistence API (JPA) can be used in
IMS applications and in Java methods that are parts of traditional IMS applications.

� Basically everything that can run as Java main or plain old Java object (POJO) or Java 2
Platform, Standard Edition (J2SE) applications can run easily with few or no code changes
as an IMS Java application or can be called from within an existing IMS application.

� With COBOL Java interoperability, the same COBOL/Java modules/methods and call
sequences can be easily reused between IMS online and batch.

� When running in traditional IMS regions (not Java dependent regions) the entire
application uses the IMS preload and preinit functionality, which is not available with other
solutions.

� DB2 quiesce and IMS DB quiesce allow the creation of coordinated consistency points for
database recovery without the need to stop or abend the batch work.

� IMS uses the same JCL patterns that have been in place. This includes the generation of
JCL and data definition (DD) statements by tooling on the mainframe.

� IMS does not require additional software to run Java batch or batch that mixes COBOL
and Java. Keep in mind that access to IMS DB and DB2 is always transactional, local, and
within the same unit of work.

� Batch with IMS allows you to stay with the existing job network, monitoring, debug, and
problem determination tooling. This includes the same tooling for both online and batch
workloads.

� Java workload running in IMS is eligible to run on zAAPs or zIIPs, depending on the
configuration: zAAPs available or zAAP on zIIP enabled, to the same extent as all other
Java workloads on z/OS.

� Deadlocks are usually a design problem or a timing/scheduling problem. If they occur
frequently for the same workload, the application should be investigated. In the case of
deadlocks between online and batch workloads, IMS allows for the IMS transaction to be
rolled back, requeued, and executed later, when there is a better chance that the batch job
has already checkpointed and the competing resources have been freed up:

– While a batch job can also abend with a U777 abend, automation can be set up to
restart the job with the latest checkpoint.

– There are also tools on the market that can adjust the checkpoint frequency based on
transaction rate, time, CPU usage, or other criteria to allow the batch workloads to
continue without user interaction.

– Again, deadlocks that occur frequently in the same workload should be investigated.
4 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

� The IMS queues can be used as intermediate storage for messages to drive other
message-driven batch applications, or to drive IMS online applications as part of the
overall data and application workflow. There are clients who are using IMS queues for that
purpose, and clients that use WebSphere MQ or DB tables as queued storage.

The overall consideration of which function, software, or architectures to use is not trivial.
There are so many capabilities in IMS that the decision to “rip and replace” or “reuse and
extend” IMS batch logic should be implemented while keeping operational and performance
constraints in mind. Let the business, operational, and performance constraints influence the
decision. This book can help to reuse and extend existing IMS batch applications and
scenarios.
Chapter 1. Modernizing IMS batch 5

6 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Chapter 2. Implementation of IBM IMS batch
applications in Java

In this chapter, we describe the option to replace existing COBOL batch applications with a
pure Java implementation. The Information Management System (IMS) container for this
purpose offers the Java Batch Programs (JBPs). These applications run in IMS regions that
are configured to start a Java virtual machine (JVM) and start the Java program’s main
method.

Topics covered in this chapter include:

� Software requirements and the use of the development environment

� Running Java applications in IMS and how to interface traditional languages with Java

– How to use persistence frameworks like Hibernate and Java Persistence API (JPA)
– How to use the IBM pureQuery® function for Java access

� Error handling and z/OS considerations

2

© Copyright IBM Corp. 2014. All rights reserved. 7

2.1 Software prerequisites

Java language interoperability works with IMS Version 10 and higher. However, there are
some options that are only available in IMS V11 or IMS V12. Unless otherwise noted, all
samples and configurations in this book work with IMS V11. At the time of writing this book,
no dependencies were found where the solutions could not be implemented with an earlier
supported release or version of z/OS software.

2.1.1 Minimum software levels

The minimum software levels for interoperability with Java are as follows:

� All supported levels of z/OS

� All supported levels of IMS

� All supported levels of DB2 for z/OS

APAR PQ74629 for Java application programs that access DB2 for z/OS subsystems from
JMP or for JBP regions that must be applied to the DB2 for z/OS subsystem

� All supported levels of JDK for z/OS

� All supported level of WebSphere MQ for z/OS

� Enterprise COBOL for z/OS V4.2 (minimum for JDK 5 for z/OS or higher)

� Enterprise PL/I for z/OS V3.4

� IBM Rational® Developer for System z V8.0.3

� IBM Debug Tool V12

Some features that are described in this chapter require higher levels of software. For
example, certain JDK options are only available on JDK 6 or JDK 6.0.1 for z/OS. Also,
additional functions for handling the loading and unloading of modules in IMS regions are only
available in maintenance for IMS V11 and IMS V12; they will not be retrofitted to IMS V10.

Make sure that you apply the latest program temporary fix (PTF) levels to the software stack.

2.2 Use of development environment

In many cases, the development and versioning for Java applications is different from what is
used, for example, in mainframe COBOL applications.

There are different approaches that can be used when developing Java applications:

� Some mainframe vendors have already improved or enhanced their products so that they
can also be used from the Eclipse environment.

� Support of the development, build, and deployment of Java based applications either by
integration with the existing infrastructure or separate and running in parallel to the
existing non Java build infrastructure.

� Use of the existing Java development environments and its build and versioning
infrastructure. For example, the IBM Rational Team Concert™ can be used from Rational
Developer for System z. At client sites, Eclipse-based development environments with
Maven builds have been used in addition to Concurrent Versions System (CVS) or
subversion as versioning and team infrastructure.
8 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

In summary, there are software products from IBM, vendors, and open source, plus tools that
can suit the needs of development, team, versioning, and building the infrastructure for
enterprise use. The approach, requirements, and features should be carefully evaluated for
your specific environment.

2.3 How to write and test IMS Java applications outside IMS

Today, Java application programmers prefer to do programming and testing in an integrated
environment. In this section, we discuss some hints and tips about how to write IMS
applications in an environment, such as Eclipse, which allows for testing without the need to
run on z/OS in an IMS region and includes database access to IMS DB and DB2.

The simplest approach is to treat the future IMS Java application as a Java main program or
plain old Java object (POJO). If the application is runnable outside a Java Platform,
Enterprise Edition 2 (Java EE 2) application server, and IMS with no message queue access
and no system calls, you can set up remote connections to IMS DB using IMS Open
Database Manager or you can use the Java Database Connectivity (JDBC) drivers on DB2 on
z/OS. For further details, refer to IMS 11 Open Database, SG24-7856.

With this approach, programming and testing can be done in Eclipse, and the integration
tests are usually done on the mainframe. When finished, the connection URL for IMS DB and
DB2 changes from running inside an IMS region and the code to access the IMS message
queue (getUnique + loop around getNext + insert). This approach might not fit all scenarios,
but data access and data manipulation services can be developed and tested without the
need to write and deploy to z/OS and to run as an IMS region on z/OS.

Integration testing, such as the interaction with other batch workloads or with the IMS
message queue (queuing messages or triggering transactions), still needs to be done on the
mainframe with z/OS and IMS.

2.4 Java frameworks used with IMS Java

When programming only in Java, most clients plan to use Java frameworks that have special
implementations, for example object relational mappers. Here is a list of some frameworks
that have worked well at client sites:

� Hibernate with DB2 and IMS DB (IMS JDBC Drivers)
� Java Persistence API (JPA) with DB2
� Spring
� IBM Operational Decision Manager JRules J2SE Rule Execution Server
� JavaMail packages
� RMI-IIOP Client to call remote EJB beans
� ISV Software with J2SE interfaces
� External WebServices by using generated Web Service Client code (for example, Apache

AXIS)

In this section, we review how to use some of the Java frameworks: Hibernate, JPA, and
Spring in the Java part of IMS applications.

Refer to samples for 5.3.3, “Hibernate as Object Relational mapper with IMS DB” on page 84
and 5.3.4, “Using JPA as OR mapper with DB2” on page 98.

Note: We do not show samples for every possible implementation.
Chapter 2. Implementation of IBM IMS batch applications in Java 9

2.4.1 Using Hibernate as Object Relational mapper with IMS DB

Hibernate is a Java Persistence tool that allows you to map objects against databases. You
can use the IMS Open Database feature to leverage your existing databases with Hibernate.

IMS environment features for Hibernate
IMS is a transaction manager and IMS transactions are committed implicitly upon successful
execution. IMS does not support user transactions or multiple commits within an IMS unit of
work. IMS maintains the connections to IMS and DB2.

The configuration used for Hibernate should use Java Transaction API (JTA), which is
configured to wrap the IMS transaction manager functionality. Hibernate caching can be
turned on. It might also help to reduce access to frequently used objects. There is a
distinction between cache for a single JVM and cache for a cluster. The use of Hibernate
connection pooling and transaction management can produce unpredictable results.

Because the Hibernate session can be configured as static, it is possible for the Hibernate
cache to persist for the whole lifetime of the JVM. Hibernate caching is not similar to IMS DB
or DB2 database caches. The invalidation in the Hibernate cache is based on Time to Live
specified in the configuration, so for the application the object from the cache might be
outdated. It is possible to define certain objects so that they are always reloaded from the
database during access.

The use of Hibernate built-in cache with EhCache as the Hibernate second-level cache works
on z/OS. EhCache also provides a feature, where a separate JVM can be configured as a
cache server. The IMS batch jobs using Hibernate can then connect to this JVM.
Performance tests have been done, but they vary depending on the access patterns, so it is
best to test the specific application access patterns that will be used.

2.4.2 Java Persistence API

Java Persistence API (JPA) is a simplified programming model that is used for object
relational mapping and data persistence. Data persistence makes sure that applications that
retrieve and update data are kept in sync with the current state of the back-end database.
Traditionally, this was done using Java Database Connectivity (JDBC) APIs and other data
frameworks. However, this usually involved writing complex query statements to add or
modify data.

JPA simplifies this process by using Java representations of the database tables and
providing a set of APIs to persist and query your data.

2.4.3 Using Spring in Java parts of IMS applications

Clients have also successfully used Spring in the Java parts of IMS applications.

Restriction: There is little or no tooling available that can assist in the creation of Java
class objects that adhere to Hibernate conventions (class names, method names, and so
on) besides the IMS Enterprise Suite Explorer. It is used to map inputs from the database
description (DBD), program specification block (PSB), and copybooks into Java metadata,

Therefore, much of the work that we describe to map an existing IMS DB to an object
hierarchy must be done manually.
10 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

There is a Rational Developer for System z project, where a Java main method is used to
execute the sample. An Ant script can be used to build and upload the required JAR file to run
the sample. Then, put in a class path and change the DFSJVMAP member.

2.5 Access of IMS Java batch applications with pureQuery

IMS applications can connect to DB2 on z/OS for database access. For Java access, there is
the pureQuery function for DB2 on z/OS. This has the benefit of allowing the capture of
dynamic JDBC calls that can be turned into a package with static SQL. pureQuery also works
when running Java in any IMS region. From the IMS side, the pureQuery JAR files need to be
in the class path of the JVM running in the IMS region.

pureQuery allows dynamic JDBC applications to use statically bound packages. This has the
benefit that the DB2 admin can use a single authorization environment where static SQL is
authorized for the package and dynamic SQL is authorized for the object. Requiring only one
authorization for a single application is a benefit when using mixed language applications that
interoperate with Java.

It is possible to capture the dynamic JDBC calls along with most parts of the application, then
run it static. Then, define the additional dynamic JDBC statements that have not been
recorded during the capture phase and should be executed, rejected, or recorded and later
bound to the static package, the incremental recording.

pureQuery can also perform the following functions:

� Fix dirty programming, for example, to not use parameter markers for Where clauses,
which cause the optimizer to calculate the path for every SQL statement.

� Allow you to bind a WHERE abc=? SQL to the package and execute all WHERE=value
statements that have been created in Java as the result of string concatenations as if it
were prepared statements with parameter markers.

� Together with IBM Optim™ Development Studio it allows for some impact analysis. For
example, what happens when the name of a column in table xyz is changed or which
SQLs run against column abc.

To use pureQuery in an IMS environment, install either of the following:

� IBM Data Studio: An integrated, modular environment for database development. It can be
downloaded at no charge from the following site:

http://www-142.ibm.com/software/products/us/en/data-studio

� Optim Development Studio: An integrated database development environment that is now
included in Data Studio.

Both of these products can be installed stand-alone or in an existing Eclipse/Rational
Developer for System z/Rational Application Developer. The client makes the decision on
what to use.

Details on pureQuery, its configuration, and how to make it work are discussed in Using
Integrated Data Management To Meet Service Level Objectives, SG24-7769.
Chapter 2. Implementation of IBM IMS batch applications in Java 11

http://www-142.ibm.com/software/products/us/en/data-studio
http://www-142.ibm.com/software/products/us/en/data-studio
http://www-01.ibm.com/software/data/optim/development-studio
http://www-01.ibm.com/software/data/optim/development-studio

2.6 JVM tuning considerations

The tuning in the JVM environment has to be carefully done with regard to the planned
workload. The storage tuning is especially important because the JVM is a memory-managed
environment.

An untuned JVM has impact on memory usage, can significantly increase the CPU usage,
and can result in higher costs. As soon as the speciality engines, such as System z
Application Assist Processor (zAAP) or System z Integrated Information Processor (zIIP), do
not have enough capacity, the workload floats to the expensive general-purpose processors.
There have been client cases that resulted in critical situations because they went into
production without tuning the JVM environment.

JVM tuning in this context consists of carefully adjusting the IBM Language Environment®
storage parameters plus the adjustment of JVM storage parameters. The Language
Environment runtime options for the storage report and diagnostic tools such as IBM Health
Center can provide a good indicator if the storage options were chosen well.

2.7 Debugging Java applications in IMS

Rational Developer for System z, and Rational Application Developer, have an integrated
Java debugging perspective that allows a developer to connect to a remote JVM and do
interactive debugging of the application.

The IMS Batch Terminal Simulator tool also supports IMS Java batch processing applications
(JBPs). Therefore, the debugging of DL/I calls is possible with the same tooling that has
existed for traditional IMS batch applications. The new version of IMS Batch Terminal
Simulator has a new Eclipse-based GUI, which allows for more integration, for example when
the Java code is developed by using an Eclipse-based GUI.

For further details about IBM IMS Batch Terminal Simulator for z/OS, see the following site:

http://www-01.ibm.com/software/data/db2imstools/imstools/imsbts

2.7.1 Debugging a Java BMP region

In this section, we provide an example about how to debug an IMS Java batch application
running on the mainframe. The debugging of an IMS online application is similar.

To enable debugging, two additional Java configuration switches are required for JVM:

� Turn on the debug option and tell the JVM to be the server for the debug session
� Suspend execution of JVM until after a debug connection socket from the client is

attached

Use the following steps to debug a Java batch message processing (BMP) region:

1. Issue the -Xdebug option to tell JVM to turn on debug mode and then issue the -X runjdwp
option with the parameters: server=y, suspend=y, address=7778, as shown in Example 2-1.

Example 2-1 JVM option for JVM wait

-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7778
12 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www-01.ibm.com/software/data/db2imstools/imstools/imsbts
http://www-01.ibm.com/software/data/db2imstools/imstools/imsbts

These parameters tell the JVM that there is a server waiting for an incoming socket
connection on port 7778 for a debugging session. It should suspend any work until the
debugging session with the Eclipse client (can also be Rational Application Developer or
Rational Developer for System z for Java debugging) is established. This means that
without a connection, the JVM will not do any work. Depending on the Eclipse version, it is
possible that the JVM is initially suspended and will not start executing until resume has
been clicked.

2. After the configuration change, start the IMS BMP. It produces the following output:

Listening for transport dt_socket at address: 7778

We used a PSB that points to a program called SimpleRuleEngineRunner. Then, it is
required to select the Java class source in the Rational Developer for System z
workspace.

3. Select Debug As  Debug Configurations. The Debug Configurations window opens,
as shown in Figure 2-1.

Figure 2-1 Debug configurations window

4. Complete the server host name or IP address and the port number. Select Socket Attach
as the connection type and check Allow termination of the remote VM to avoid hanging
IMS BMPs at the end of program execution or if the debug session socket breaks.

Click Apply to save the values and then click Debug to connect to the waiting JVM on
z/OS. See Figure 2-2 on page 14.
Chapter 2. Implementation of IBM IMS batch applications in Java 13

Figure 2-2 Remote Java application properties

Figure 2-3 Remote debug connection

5. Initially, because there is no breakpoint specified, the Java program starts running as soon
as the debug client has connected to the JVM. If the network connection is slow enough or
the suspend icon is clicked fast enough, the execution will be suspended and it can be
determined where in the source code the execution has been suspended. See the list of
suspended tasks in Figure 2-4 on page 15.

Note: If there is no automatic switch to the debug perspective within Rational Developer for
System z, switch the perspective manually. The debug session shows up, as shown in
Figure 2-3.
14 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 2-4 Suspended remote JVM execution

6. Scroll down to the most upper level class. It can be seen where in the program source
code the execution has been suspended. It also displays the current state/values of
variables/objects as shown in Figure 2-5.

Figure 2-5 Suspended remote Java program with source code position and variable/object values

7. When the execution is suspended or stopped at a breakpoint, the values of objects and
variables can also be seen by moving the mouse over variables/objects. See Figure 2-6 on
page 16.
Chapter 2. Implementation of IBM IMS batch applications in Java 15

Figure 2-6 Context-sensitive source code view of current variable/object values at suspend/breakpoint time

8. When breakpoints are set and reached, the execution stops at the breakpoint and the line
of code is displayed in the source view, as shown in Figure 2-7 on page 17.
16 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 2-7 Debug session suspended at breakpoint with source code view

9. When the step-through ends, the JVM and the BMP on z/OS terminates and the debug
session ends.

2.8 Diagnostics and monitoring of Java in an IMS environment

The IBM Monitoring and Diagnostic Tools for Java - Health Center (Health Center) or Java
Monitoring and Management Console (JConsole) can be used for monitoring and diagnostics
for Java applications running in IMS. IBM HeapAnalyzer can be used to analyze heap dumps.

The standard z/OS JDK is used for Java in IMS. All tools that work with a standard JDK
should also work with IMS.

2.8.1 IBM Monitoring and Diagnostic Tools for Java - Health Center

The Health Center can be used as a diagnostic tool for applications running in the JVM. You
can also use the Health Center to monitor the JVM. See the following site:

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter

The configuration is simple. A port is defined in the JVM configuration, which is then used by
the Windows based tool to connect to the JVM.

One drawback is the need for a different port for every IMS region. There is no management
console or variable support to achieve this, so the best way is for every IMS Java region to
have a separate configuration member that has a specific port number hardcoded:

� The z/OS JVM parameter -Xhealthcenter is used to configure the port
Chapter 2. Implementation of IBM IMS batch applications in Java 17

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter

� Select a port of choice and add this parameter to the Java configuration:
-Xhealthcenter:port=1982

� The IMS region job log should then print this message: UTE115: Trace buffer discarded.
The count of discarded buffers is printed at VM shutdown

At the time of writing this book, the Health Center port online became active after calling the
first Java method.

To connect from the Health Center to the port, the following steps are required:

1. Install IBM Support Assistant Workbench
2. Install and enable IBM Health Center plug-in
3. Start IBM Support Assistant (ISA)
4. Launch activity: Analyze problem
5. Select IBM Health Center
6. Connect to the JVM of a specific IMS region

The first two steps can be skipped when the Health Center is already installed. The Health
Center profiling view as part of IBM Support Assistant is shown in Figure 2-8.

Figure 2-8 Health Center profiling view

2.8.2 Rational Agent Controller, Rational profiling, and Healthcenter Plug-in

Starting with Rational Application Developer V9, both trace-based profiling and sample-based
profiling are available. Both require the activation of JVMTI-based libraries on z/OS plus using
the Rational Agent Controller address space on z/OS. The benefit is that not every IMS region
requires its own port (as with using the -Xhealthcenter parameter). Instead Rational Agent

Note: The Health Center is not a monitoring tool. It can only connect to and analyze data
from one JVM or one IMS region. There is no aggregation functionality available.
18 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Controller only has one port and allows you to select the JVMs based on the process ID. The
process ID of the JVM is printed in the IMS job log after the program is started).

For information about how to download and install the Rational V9 based program, see the
following site:

http://www-01.ibm.com/support/docview.wss?uid=swg24035191

There is also an IBM developerWorks® article about how to profile Java applications using
Rational Application Developer. See the following PDF:

http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusin
grad/profilingjavaapplicationsusingrad-pdf.pdf

It is required to start the Java class in the IMS region by running the program as either a batch
or an online program. It is not possible to start the program or the Java class execution from
the Rational Application Developer wizards.

The profiling is also available from Rational Developer for System z, but it requires the license
and the installation version, which includes Rational Application Developer.

2.8.3 JConsole

Another way to perform diagnostics is to use JConsole. It is a tool (no charge) that is available
with JDK and provides the functionality to allow JConsole to connect to it.

JConsole is a utility that is part of the standard JDKs on distributed platforms. However, the
server part that delivers the information is also implemented in the JDK for z/OS.

Use the following steps to start and run JConsole:

1. JConsole can be activated by adding the JVM options to the JVM configuration in the IMS
region, as shown in Example 2-2.

Example 2-2 JVM options required to activate JConsole

-Djavax.management.builder.initial=
-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=1099

The port will not open until the JVM is fully initialized.

2. When JVM is active, switch to the workstation, look for the Java home directory and go to
<JAVA_HOME>/bin. In that directory, locate an executable file called jconsole.exe or
jconsole for UNIX platforms. It can be started by double-clicking it or it can be started from
the command line.

After it is started, a window opens for a New Connection.

3. You need to enter the host name or IP address and the port number that was defined in
the IMS regions JVM properties. The port should not be shared between multiple IMS

Note: The JVM in an IMS region is not active until after the first call to a Java method.
Therefore, it might be required to first run a program that calls a Java method or a Java
program if running in a Java dependent region.
Chapter 2. Implementation of IBM IMS batch applications in Java 19

http://www-01.ibm.com/support/docview.wss?uid=swg24035191
http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/profilingjavaapplicationsusingrad-pdf.pdf
http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/profilingjavaapplicationsusingrad-pdf.pdf

regions. Each region requires its own port. User name and password are not required here
because the security has been disabled with the configuration settings mentioned earlier.

4. After the connect has finished, the GUI opens. You can look at certain things in the JVM,
such as heap, threads, and so on.

Initially, the Overview display opens.

For more information about what diagnostics are possible with JConsole, refer to the
documentation at the following site:

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.
java.aix.70.doc%2Fdiag%2Ftools%2FJConsole.html

2.8.4 IBM HeapAnalyzer

You can use IBM HeapAnalyzer to analyze Heap memory leaks when running Java
applications. Possible failures in that situation could be either S0D4 abends or
java.lang.OutOfMemoryError exceptions.

IBM HeapAnalyzer is described and can be downloaded from the following website:

https://www.ibm.com/developerworks/community/groups/service/html/communityview?com
munityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091

A Heap dump in an IMS JVM-enabled environment can be created with the standard
procedures for creating heapdumps in UNIX or z/OS environments as described in several
IBM documents and post on IBM web pages.

To do an analysis, it is required to create a Heap Dump of the JVM while running the workload
that is causing the problem.

An example of the steps to create a heap dump in an IMS JVM-enabled environment is as
follows:

1. Set the -Xdump option as shown in Example 2-3.

Example 2-3 Option to let create a heap dump in phd format by a user event

-Xdump:heap:events=user,opts=phd

2. In the environment member add the option shown in Example 2-4.

Example 2-4 Environment variable to be put into DFSJVMEV to enable Java Heap Dumps

IBM_HEAPDUMP=true

3. Use the kill -3 or kill -QUIT command followed by the process ID of the JVM and a
heap dump can be produced.

The PTF for APAR PM50971 prints the process ID (PID) for the JVM in the IMS job log, as
shown in the sample in Example 2-5.

Example 2-5 Sample output from the IMS job log printing the JVM PID

DFSJVM00: -Xmaxf0.8
DFSJVM00: -Xminf0.3
DFSJVM00: -Xmx64M

Restriction: Not all functions that the JConsole provides can be used while connected to a
JVM that was written by IBM and runs on z/OS.
20 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.aix.70.doc%2Fdiag%2Ftools%2FJConsole.html

DFSJVM00: -Xmso512k
DFSJVM00: -Xss256k
DFSJVM00: -Xms32M
DFSJVM00: -Xcodecache10M
DFSJVM00: -Xshareclasses:name=cobolims1
DFSJVM00: -Xscmx64M
DFSJVM00: -Xscminaot16M
DFSJVM00: +++
DFSJVM00: ++ End Contents of -Xoptionsfile ++
DFSJVM00: +++
DFSJVM00: JVM initialization started: Fri Apr 20 17:22:59.793 2012
DFSJVM00: JVM initialization complete: Fri Apr 20 17:23:00.118 2012
DFSJVM00: Process ID:::::::: PID =2175
DFSJVM00: Parent Process ID: PPID=1
DFSJVM00: Process Group ID:: PGID=2175

This makes it easy to send signals to the JVM with the kill command in order to create
Heap dumps in the format required for the IBM Heap Analyzer.

4. Issue the kill -QUIT or kill -3 command with the PID from the IMS joblog. The
messages shown in Example 2-6 will display in the IMS job log. It indicates the successful
creation of the PHD Heapdump file and other diagnostic information.

Example 2-6 Output indicating the creation of a successful heap dump

JVMDUMP039I Processing dump event "user", detail "" at 2012/07/03 15:35:58 -
please wait.
JVMDUMP032I JVM requested System dump using
'GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558' in response to an event
IEATDUMP in progress with options
SDATA=(LPA,GRSQ,LSQA,NUC,PSA,RGN,SQA,SUM,SWA,TRT)
IEATDUMP success for DSN='GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558'
JVMDUMP010I System dump written to GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558
JVMDUMP032I JVM requested Heap dump using
'/u/gaebler/heapdump.20120703.153558..50334771.0003.phd' in response to an
event
JVMDUMP010I Heap dump written to
/u/gaebler/heapdump.20120703.153558.50334771.0003.phd
JVMDUMP032I JVM requested Java dump using
'/u/gaebler/javacore.20120703.153558.50334771.0004.txt' in response to an
event
JVMDUMP010I Java dump written to
/u/gaebler/javacore.20120703.153558.50334771.0004.txt' in response to an
JVMDUMP013I Processed dump event "user", detail "".

5. The .phd file can now be downloaded in binary format and loaded into the IBM Heap
Analyzer.

6. Start the IBM Support Assistant, and click Launch Activity  Analyze Problem, select
Heap Analyzer and click Launch.

7. Select a heap dump file in the local file system by clicking Browse and choose the file
under the Remote Artifact Browse tab as shown in Figure 2-9 on page 22.
Chapter 2. Implementation of IBM IMS batch applications in Java 21

Figure 2-9 Select the Heap Dump phd file location

8. Select the heap dump file from the directory where the binary download of the .phd file
was stored, as shown in Figure 2-10.

Figure 2-10 Select the phd file

9. Click Next and the analysis starts. The IBM HeapAnalyzer starts and displays a summary
view of the data gathered, as shown in Figure 2-11 on page 23.
22 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 2-11 Summary view of IBM Support Assistants Heap Analyzer

This example shows how a JVM running attached to IMS can be analyzed with standard
tooling just like any other JVM.

2.8.5 Profiling applications

For profiling Java applications or the Java part of an application that run in an IMS region, use
the profiling functionality of IBM Health Center or Rational Agent Controller based profiling,
which are described in 2.8, “Diagnostics and monitoring of Java in an IMS environment” on
page 17. This also applies to message processing programs (MPPs) running a JVM.

The profiling of a Java application can also be done as part of the development cycle. When
the Java code has no dependencies for running in IMS, the development environments
profiling tools can be used. For example, Eclipse has an integrated profiling infrastructure
called JVM monitor.

2.8.6 Monitoring JVMs in IMS regions

Currently, there are no JVM monitoring tools available specifically for IMS environments for
the monitoring of the JVM. However, for transaction rate, total region memory usage, and so
on, the standard IMS monitoring tools can be used.
Chapter 2. Implementation of IBM IMS batch applications in Java 23

For JVM specifics such as garbage collection, heap usage, and total JVM memory
monitoring, there are tools currently available on the market that can be used that exploit the
JVMs JVMTI interface. If these can connect to multiple JVMs, multiple ports and aggregate
data, or provide a dashboard, they should be suitable for this purpose. In addition, ISV
software can be checked to determine if it meets the requirements.

2.9 Java interoperability with COBOL in IMS batch applications

In this section, we review COBOL calls to Java and vice versa, and how a new IMS Java
batch application can interface with existing COBOL modules. The description and samples
we have included are IMS based but can be used with minimal changes in the configuration
outside IMS because language interoperability is a z/OS Language Environment functionality.

While the JVM in a batch application always persists over the lifetime of the application
region, it is not required for batch. This allows the configuration of the JVM parameters with
IMS PROCLIB configuration members, which are easier to use and to manage, instead of
pointing to the HFS files as was required for the old implementation.

2.9.1 How Java can call COBOL and vice versa

In this section, we describe and provide an example on how a batch application can use
COBOL Java interoperability. Most of the statements also apply to other languages, such as
PL/I or Assembler, but the INVOKE syntax to call Java methods is unique to COBOL. Java
has the option to call and to be called from other languages by providing APIs and an
interface called Java Native Interface (JNI). JNI was developed for the C/C++ languages, but
on z/OS it is available for all Language Environment compliant languages.

Java calls to COBOL and vice versa are the two possible execution environments.

Java calls COBOL
A Java main method starts the application and calls COBOL. Cascading calls
Java-COBOL-Java-COBOL are possible. The runtime environment is an IMS Java region for
example, Java Batch Program (JBP).

� Due to Language Environment requirements, the COBOL code that is called from Java is
required to be OO COBOL classes, but has the option of implementing CALL statements
to procedural COBOL modules. It can be static or dynamic, whereas dynamic calls can
only be made to DLL-compiled COBOL modules, a statically linked Wrapper module for a
NODLL module also meets this requirement.

� Due to Language Environment requirements, the COBOL code that calls Java is required
to be mixed case, long name support, and DLL compiled COBOL code. If the caller is
NODLL compiled, a statically linked wrapper module for a DLL module is required.

Figure 2-12 on page 25 depicts Java calls to the Language Environment languages
through the JNI.
24 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 2-12 Java calls Language Environment languages through the JNI

COBOL calls Java
A COBOL main application starts and calls one or more Java methods. Cascading calls
COBOL-Java-COBOL-Java are possible. The runtime environment can be an MPP or BMP.

� Due to Language Environment requirements, the COBOL code that calls Java is required
to be mixed case with long name support and DLL compiled COBOL code. If the caller is
NODLL compiled, a statically linked Wrapper module for a DLL module is required.

� Due to Language Environment requirements, the COBOL code that is called from Java is
required to be OO COBOL classes, but has the option of implementing CALL statements
to procedural COBOL modules. It can be static or dynamic, whereas dynamic calls can
only be made to DLL compiled COBOL modules. A statically linked Wrapper module for a
NODLL module also meets this requirement.

Figure 2-13 on page 26 depicts the Java method of COBOL main calls.

IMS Application Server

Server-Side
Presentation
Management

Server-Side
Business Logic

TCP/IP or
SNA

IMS
TM

IMS JMP
Region

Control
Region

IMS
Connect

IMS JBP
Region

Java Applicat ion

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where
Close

Java Applicat ion

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where
Close

DLI

/
DB2

JDBC DriversJDBC Drivers

JNI

IMS z/OS Platform

OO COBOL
Class or

PL/I Module
…

Chapter 2. Implementation of IBM IMS batch applications in Java 25

Figure 2-13 COBOL main calling a Java method

This example shows that:

� APAJAVA is traditionally NODLL compiled.
� CJTSTJA5 needs to be DLL compiled in order to call Java.
� To be able to call CJTSTJA5 dynamically from APAJAVA, it needs to have a wrapper.
� DLL modules cannot dynamically call NODLL modules and vice versa.
� But DLL and NODLL modules can be statically linked together.

Solution depicted:

� CJTSTKP5 is NODLL compiled and statically linked together with DLL compiled module
CJTSTJA5.

� APAJAVA is NODLL compiled and can then dynamically call CJTSTKP5.

The sample program listed in this figure is also used as basis for the code evolution
description in 2.9.3, “COBOL code evolution” on page 27.

These options also apply to other languages, for example, for the Language Environment
conform assembler (DLLs) and Enterprise PL/I applications. The difference to COBOL is that
the JNI calls and its function pointers are more difficult to implement because there is no
built-in support for interfacing with Java. For example, a DLL can also be created with
Language Environment Assembler Macros and with PL/I, but the Java wrapper stub source is
only generated by the COBOL compiler and must be manually created for the PL/I and
Assembler-based DLLs.

The CEEENTRY macro allows it to create Language Environment-compliant DLLs written in
assembler. By manually creating a Java class as the JNI wrapper, it is possible to call an

CJTSTJAS5
LIB, DLL

byte[]
executeWithData (byte[])

APAJAVA
NODLL, Read
Sequential File
Loop around
subroutine

Trancode: CJTSTTRN DB2 Plan: CJTSTPSB

CJTSTKP5
NODLL

SimpleRuleEngineRunner.java
invokes

J2SE Rule Execution Server
in FlotteAutoRESRunner.jar
26 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Assembler DLL from Java. For an example, refer to 5.2.2, “Sample application IMS BMP
COBOL calls Java” on page 74.

2.9.2 JNI calls using COBOL INVOKE

COBOL has the option to use a simple programming construct to call a Java class using
INVOKE. The syntax for the COBOL INVOKE statement and examples can be found in the
Enterprise COBOL for z/OS Programming Guide at the following web page:

http://pic.dhe.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=%2Fcom.ibm.entcobol
.doc_4.2%2FPGandLR%2Fref%2Frlpsinvo.htm

Measurements for a client sample showed there is significant overhead with the use of the
INVOKE statement when calling Java. Therefore, it is a good practice to implement JNI calls
for COBOL. For PL/I the only option is to use JNI calls.

A sample COBOL main application that does loop processing records from a sequential file
and calls a COBOL subroutine that then calls a Java method took approximately five days
using the COBOL INVOKE statement and 35 seconds of elapsed time with optimized JNI
calls. This does not take into account the CPU time used for both cases.

These differences are discussed in more detail in 2.9.3, “COBOL code evolution” on page 27.

2.9.3 COBOL code evolution

In this section, we discuss COBOL code evolution and review the syntax that is used in the
enterprise for z/OS COBOL compiler. The samples in this section show the most efficient way
of interfacing with Java by using JNI calls from COBOL. For this discussion, it is assumed that
there is a subroutine that implements the calls to the Java method and a possible loop around
to the calls to Java is implemented in the calling routine.

Basically, the calling routine of the application reads input records from a file, writes the output
record, and calls a subroutine to process every record. The subroutine passes the information
to an J2SE (or POJO) type of Java class that executes WebSphere IBM Operational Decision
Manager rules with the IBM Operational Decision Manager execution engine being executed
as part of the Java piece executed inside the IMS batch address space.

We provide some performance numbers based on a client sample.

Use Invoke COBOL Syntax and NewStringPlatform function to convert
the data to a Java String
The COBOL Java interoperability samples in the Enterprise COBOL for z/OS Programming
Guide, SC14-7382, provide a convenient and code-friendly way of calling Java methods.

The COBOL INVOKE statement is used with the NewStringPlatform conversion routine that
allows the conversion of a PIC X string into a Java string object (java.lang.String). See
Example 2-7.

Example 2-7 COBOL calls Java using Invoke syntax code snippet

* Put CHAR we got from caller to helper variable
 Move JAVAIN to stringBuf
 * Convert helper variable to jstring Object instance
 Call "NewStringPlatform"
 using by value JNIEnvPtr
Chapter 2. Implementation of IBM IMS batch applications in Java 27

http://pic.dhe.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=%2Fcom.ibm.entcobol.doc_4.2%2FPGandLR%2Fref%2Frlpsinvo.htm

 address of stringBuf
 address of jstring1
 0
 returning rc
 * Otherwise pass jstring to Hello class using its init method
 Invoke Hello "simpleCall" using by value jstring1
 * returning jint1

The sample workload of 10 billion calls to the subroutine produced the SMF30 accounting
summary that is shown in Example 2-8.

Example 2-8 SMF30 accounting for 10 billion calls with COBOL calls Java invoke syntax

S t e p E n d S t a t i s t i c s

Step Name: G Cond Code: 0000 Start: 30-Jan-2012 02:11:08 PM
Step Num: 1 PGM Name: DFSRRC00 End: 03-Feb-2012 05:50:02 PM
CPU (TCB): 02:34:59.09 Storage below 16M: 260k
CPU (SRB): 00:00:23.55 Storage above 16M: 277,368k
CPU (ZIE): 00:00:00.00 64bit prv Storage: 0k
CPU (ZIP): 00:00:00.00
CPU (IFE): 02:34:59.00
CPU (IFA): 96:48:39.27
CPU (ALL): 99:24:01.91
Trans Act:403:38:54.71 Service Units: 520,579,178
Tape Mnts: 0 Total EXCPs: 25,510

Unit-- DDName-- EXCP Count-- Blksize Unit-- DDName-- EXCP Count-- Blksize
B021 D STEPLIB 56 32,760 B023 D STEPLIB 38 32,760
B123 D STEPLIB 50 32,760 B023 D DFSESL 4 32,760
B022 D DFSESL 1 32,760 B020 D PROCLIB 16 8,800
B021 D DFSCTL 2 3,200 B121 D SYS00002 2 6,160
B121 D SYS00005 4 256

Total DASD EXCPs: 173 Total Tape EXCPs: 0

The elapsed time is slightly more than five days.

Using JNI calls as in JDK C samples and passing byte arrays
The next iteration of the code is to use JNI functions and pass the string as a byte array to
Java and use Java methods to convert the byte array into a Java string object. The call
sequence required in COBOL is as follows:

� Use NewByteArray to create a Bytearray
� Use SetByteArrayRegion to move the COBOL structure/PIC X into the ByteArray
� Use Findclass to create a class reference for the Java Class method invocation
� Use GetStaticMethodID to get the MethodID for the next call
� Use CallStaticObjectMethod to invoke the Java method
� Use GetByteArrayRegion to retrieve the results Byte Array from Java
� Use DeleteLocalReference to remove the Input and Output Byte Arrays

The sample workload of 10 billion calls to the subroutine produced the SMF30 accounting
summary that is shown in Example 2-9 on page 29.
28 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Example 2-9 SMF30 accounting for 10 billion calls with JNI functions and Byte Array

S t e p E n d S t a t i s t i c s

Step Name: G Cond Code: 0000 Start: 25-Jan-2012 06:53:04 PM
Step Num: 1 PGM Name: DFSRRC00 End: 26-Jan-2012 04:34:04 AM
CPU (TCB): 06:10:30.84 Storage below 16M: 260k
CPU (SRB): 00:00:03.66 Storage above 16M: 422,780k
CPU (ZIE): 00:00:00.00 64bit prv Storage: 0k
CPU (ZIP): 00:00:00.00
CPU (IFE): 06:10:30.80
CPU (IFA): 03:27:50.40
CPU (ALL): 09:38:24.90
Trans Act: 09:40:59.33 Service Units: 935,248,976
Tape Mnts: 0 Total EXCPs: 17,154

Unit-- DDName-- EXCP Count-- Blksize Unit-- DDName-- EXCP Count-- Blksize
B021 D STEPLIB 54 32,760 B023 D STEPLIB 32 32,760
B123 D STEPLIB 50 32,760 B023 D DFSESL 4 32,760
B022 D DFSESL 1 32,760 B020 D PROCLIB 16 8,800
B021 D DFSCTL 2 3,200 B121 D SYS00002 2 6,160
B121 D SYS00005 4 256

Total DASD EXCPs: 165 Total Tape EXCPs: 0

The elapsed time (and CPU usage) decreased significantly but was still almost 10 hours.

Put the loop inside the subroutine
Putting the loop inside the subroutine to obtain the number of looping cycles is one of the
most efficient ways of performing the calls.

The code was changed to have no JNI overhead as the ideal reference case to call Java. The
loop was moved from the calling routine into the subroutine for test purposes. But this might
not be possible for all client situations or applications, because sometimes the existing call
sequences have to be preserved:

1. The following calls are done once:

a. Use NewByteArray to create a Bytearray

b. Use SetByteArrayRegion to move the COBOL structure/PIC X into the ByteArray

c. Use Findclass to create a class reference for the Java Class method invocation

d. Use GetStaticMethodID to get the MethodID for the next call

2. The loop was built around the following calls:

a. Use CallStaticObjectMethod to invoke the Java method
perform CALLMETHOD THRU CALLMETHOD-END DURCHLAEUFE TIMES

b. Use GetByteArrayRegion to retrieve the results Byte Array from Java

c. Use DeleteLocalReference to remove the Output Byte Array

3. After the loop ends cleanup is required:

Use DeleteLocalReference to remove the Input Byte Array

A sample workload of 10 billion calls to the subroutine produced the SMF30 accounting
summary that is shown in Example 2-10 on page 30.
Chapter 2. Implementation of IBM IMS batch applications in Java 29

Example 2-10 SMF30 accounting for 10 billion calls with the loop inside the subroutine

S t e p E n d S t a t i s t i c s

Step Name: G Cond Code: 0000 Start: 25-Jan-2012 06:25:18 PM
Step Num: 1 PGM Name: DFSRRC00 End: 25-Jan-2012 06:25:29 PM
CPU (TCB): 00:00:03.51 Storage below 16M: 260k
CPU (SRB): 00:00:00.00 Storage above 16M: 352,320k
CPU (ZIE): 00:00:00.00 64bit prv Storage: 0k
CPU (ZIP): 00:00:00.00
CPU (IFE): 00:00:03.45
CPU (IFA): 00:00:07.79
CPU (ALL): 00:00:11.30
Trans Act: 00:00:11.43 Service Units: 642,768
Tape Mnts: 0 Total EXCPs: 25,331

Unit-- DDName-- EXCP Count-- Blksize Unit-- DDName-- EXCP Count-- Blksize
B021 D STEPLIB 56 32,760 B023 D STEPLIB 38 32,760
B123 D STEPLIB 50 32,760 B023 D DFSESL 4 32,760
B022 D DFSESL 1 32,760 B020 D PROCLIB 16 8,800
B021 D DFSCTL 2 3,200 B121 D SYS00002 2 6,160
B121 D SYS00005 4 256

Total DASD EXCPs: 173 Total Tape EXCPs: 0

No test case was found where the elapsed time could have been sped up more and where
the CPU usage could have been reduced any further. The 11 seconds was the best result
when testing this given workload.

Use object caching and WORKING STORAGE with loop outside the
subroutine

The sample in this section reviews what needs to be done when designing a solution to call a
Java method through a subroutine:

� The sample in “Put the loop inside the subroutine” on page 29 is changed to put the items
for JNI one time setup into WORKING STORAGE. This persists for the lifetime of the
COBOL module in the Language Environment enclave storage.

� The input byte array reference was created as a global Java object reference, put into
WORKING STORAGE, and reused for all inputs.

� All other data items were put into LOCAL STORAGE.

� The loop was moved back to the calling routine. Byte arrays were still passed to Java and
Java methods were used to do the conversion to String objects.

� The Working-storage section is used to save the Input Byte Array and Java object
reference plus the STATIC-METHOD-ID, see Example 2-11.

Example 2-11 Definition in Working-storage section to limit the JNI overhead

Data division.
 Working-storage section.
 01 cached-class-reference object reference Hello value null.
 01 STATIC-METHOD-ID PIC S9(9) BINARY VALUE 0.
 01 cachedDataByteArray object reference jbyteArray value null.
30 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Make sure that the items in the working-storage section are initialized. Otherwise, infrequent
0C4 abends can occur when driving the workload.

Even though the loop is outside the subroutine, the following calls are executed only once:

� Use NewByteArray to create a Bytearray

� Use Findclass to create a class reference for the Java Class method invocation

� Use GetStaticMethodID to get the MethodID for the next call

The StaticMethodID is always the same for the lifetime of the JVM and it can be reused
when the JVM persists during the COBOL subroutine calls.

This sample performs best with the loop in the main COBOL routine. It needs approximately
two times more CPU than the loop inside subroutine reference sample, which is unbeaten in
terms of elapsed time and CPU usage.

A sample workload of 10 billion calls to the subroutine produced the SMF30 accounting
summary that is shown in Example 2-12.

Example 2-12 SMF30 accounting for 10 billion calls

S t e p E n d S t a t i s t i c s

Step Name: G Cond Code: 0000 Start: 25-Jan-2012 06:35:05 PM
Step Num: 1 PGM Name: DFSRRC00 End: 25-Jan-2012 06:35:28 PM
CPU (TCB): 00:00:07.24 Storage below 16M: 260k
CPU (SRB): 00:00:00.00 Storage above 16M: 444,600k
CPU (ZIE): 00:00:00.00 64bit prv Storage: 0k
CPU (ZIP): 00:00:00.00
CPU (IFE): 00:00:07.18
CPU (IFA): 00:00:15.57
CPU (ALL): 00:00:22.81
Trans Act: 00:00:22.93 Service Units: 1,284,776
Tape Mnts: 0 Total EXCPs: 25,380

Unit-- DDName-- EXCP Count-- Blksize Unit-- DDName-- EXCP Count-- Blksize
B021 D STEPLIB 54 32,760 B023 D STEPLIB 32 32,760
B123 D STEPLIB 50 32,760 B023 D DFSESL 4 32,760
B022 D DFSESL 1 32,760 B020 D PROCLIB 16 8,800
B021 D DFSCTL 2 3,200 B121 D SYS00002 2 6,160
B121 D SYS00005 4 256

Total DASD EXCPs: 165 Total Tape EXCPs: 0

The elapsed time is 23 seconds, which is slightly more than two times the best optimized
version of code driving the workload. A COBOL coding sample for an optimized JNI sample
with an outer loop to call a Java method is shown in Example 2-13 on page 32.

Note: The objects in working storage are never garbage collected for reuse optimization.
Chapter 2. Implementation of IBM IMS batch applications in Java 31

Example 2-13 COBOL coding sample for optimized JNI sample

cbl lib,pgmname(longmixed),noexp
 Identification Division.
 Program-id. "CJTSTJA5" recursive.
 Environment Division.
 Configuration section.
 Repository.
 Class Base is "java.lang.Object"
 Class Integer is "java.lang.Integer"
 Class Hello is "SimpleRuleEngineRunner"
 Class JavaException is "java.lang.Exception"
 Class jstring is "jstring"
 Class jbytearray is "jbytearray"
 Class jint is "jint".
 Data division.
 Working-storage section.
 01 cached-class-reference object reference Hello value null.
 01 STATIC-METHOD-ID PIC S9(9) BINARY VALUE 0.
 01 cachedDataByteArray object reference jbyteArray value null.
 Local-storage section.
 01 ex object reference JavaException.
 01 DataByteArray object reference jbyteArray value null.
 01 OutputByteArray object reference jbyteArray value null.
 01 class-reference object reference Hello value null.
 01 rc pic s9(9) comp-5.
 01 laenge pic s9(9) comp-5 value 50.
 01 offset pic s9(9) comp-5 value 0.
 01 len pic 9(9) binary.
 01 testjava.
 02 javainin PIC X occurs 50.
 01 method-name pic x(50).
 01 class-name pic x(50).
 01 method-parm-description pic x(50).
 Linkage section.
 01 JAVARC PICTURE S9(3) COMP.
 01 JAVAIN PIC X(50).
 01 JAVAOUT PIC X(50).
 * Copybook for JNI copybooks and function pointer definitions
 Copy JNI.
 Procedure Division USING JAVARC, JAVAIN, JAVAOUT.
 * Required JNI setup
 Set address of JNIenv to JNIEnvPtr
 Set address of JNINativeInterface to JNIenv
 * Set up the Input Byte Array when not there, create it
 If cachedDataByteArray = null
 Call NewByteArray
 using by value JNIEnvPtr
 by value laenge
 returning DataByteArray
 Call NewGlobalRef
 using by value JNIEnvPtr
 by value DataByteArray
 returning cachedDataByteArray
 Else
 Call NewLocalRef
32 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 using by value JNIEnvPtr
 by value cachedDataByteArray
 returning DataByteArray
 End-if
 move javain to testjava
 Call SetByteArrayRegion
 using by value JNIEnvPtr, DataByteArray, offset,
 laenge, address of testjava
 * Findclass only if class reference not in working storage
 If cached-class-reference = null
 Move 0 to STATIC-METHOD-ID
 Move z"SimpleRuleEngineRunner" to class-name
 Call "__etoa" using by value address of class-name
 returning len
 Call FindClass using by value JNIEnvPtr
 address of class-name returning class-reference
 If class-reference = null
 Display "Error occurred locating TestClass class"
 Goback
 End-if
 Call NewGlobalRef
 using by value JNIEnvPtr
 by value class-reference
 returning cached-class-reference
 Else
 Call NewLocalRef
 using by value JNIEnvPtr
 by value cached-class-reference
 returning class-reference
 End-if
 * Get the static method id if not in working storage
 If STATIC-METHOD-ID = 0
 Move z"executeWithData" to method-name
 Call "__etoa" using by value address of method-name
 returning len
 Move z"([B)[B" to method-parm-description
 Call "__etoa" using by value address of
 method-parm-description
 returning len
 call GetStaticMethodID using
 by value JNIEnvPtr
 by value class-reference
 address of method-name
 address of method-parm-description
 returning STATIC-METHOD-ID
 If STATIC-METHOD-ID = 0
 Display "Error occurred while getting STATIC-METHOD-ID"
 Stop run
 End-if
 End-if
 * Execute the java method by passing and receiving a byte array
 call CallStaticObjectMethod using
 by value JNIEnvPtr
 by value class-reference
 by value STATIC-METHOD-ID
Chapter 2. Implementation of IBM IMS batch applications in Java 33

 by value DataByteArray
 returning OutputByteArray
 * Check for Error
 Perform JavaExceptionCheck
 * Get Data Back
 Call GetByteArrayRegion
 using by value JNIEnvPtr, OutputByteArray, offset,
 laenge, address of testjava
 Move testjava to javaout
 * Delete Object Reference of the output byte array
 Call DeleteGlobalRef
 using by value JNIEnvPtr
 by value OutputByteArray
 * Delete Weak Object Reference of the output byte array
 Call DeleteGlobalRef
 using by value JNIEnvPtr
 by value OutputByteArray
 * We're done and return to caller
 Goback
 .
 * Check for an Exception occured in Java
 JavaExceptionCheck.
 * ExceptionOccured JNI function returns Exception object
 Call ExceptionOccurred using by value JNIEnvPtr
 returning ex
 * If its not null then something went wrong
 * If you don't catch the Exceptions in the Java code you will
 * land here and to go back to Java you need to call another
 * method, so better handle all Exceptions in Java try catch
 * blocks
 If ex not = null then
 * Clear the Exception
 Call ExceptionClear using by value JNIEnvPtr
 * Display a message to the Job output
 Display "Caught an unexpected exception"
 * Print the Exception Stack Trace to get a clue what went wrong
 * Invoke ex "PrintStackTrace"
 * Set error code to 100
 MOVE 100 TO JAVARC
 * Return to caller
 MOVE 0 TO RETURN-CODE
 Goback
 End-if
 .
 End program "CJTSTJA5".

2.9.4 Latest COBOL INVOKE versus JNI API measurements

In the latest enhancements to the Enterprise COBOL for z/OS compiler, the performance of
COBOL INVOKE has greatly improved. Therefore, the use of COBOL INVOKE does not need
to be discouraged. COBOL INVOKE is easier to use in version JNI API programming, giving
the developer more control with the JNI calls and the opportunity to save some CPU cycles in
comparison to using the COBOL INVOKE syntax.
34 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

2.9.5 JNI programming considerations

When programming JNI, there are rules that should be followed, especially to allow objects
created in COBOL to be eligible for the JVMs garbage collections. If Java objects are not
needed anymore in Java, they need to be marked as being eligible for garbage collection by
using the JNI call DeleteLocalReference and, for objects made global, the
DeleteGlobalReference needs to be used.

It can become bothersome if there are many Java objects created. In this situation, there are
JNI calls that create a buffer for all Java objects. Then, without the need to free all references,
the buffer can be deleted and all Java object references are gone. This is done by using the
PushLocalFrame JNI call at the beginning of the application/module/IMS transaction and
using the PopLocalFrame JNI call at the end of the application/module/IMS transaction.

In general, JNI programming is not simple and requires much knowledge. There are few
COBOL-based samples, but it is possible to look up all the C-based samples on the web to
get the idea about how the JNI calls should be used.

2.9.6 Options to pass data items between COBOL and Java

It is best to pass byte arrays that represent the byte-compatible data in the COBOL
application between COBOL and Java. The reason is that usually not all data can be passed
as a string or simple types. In addition, since Java methods can only return one data item, it is
not possible to return more than one string, byte array, or simple types.

Therefore, use the JNI functions such a GetByteArrayRegion and SetByteArrayRegion to
transform a COBOL structure into a byte array and vice versa. The called Java method then is
defined as accepting a byte array and returning a byte array. The marshalling, transformation
from COBOL to Java type and back, is then done when accessing the data using a getter or
setter method from within Java. This has been proven successful in several client cases and
performance tests as an efficient way of passing data back and forth between Java and
traditional Language Environment languages.

2.10 Generating Java classes

There are two ways to generate the Java classes that represent the traditional language data
structures: J2C wizards and JZOS Record Generator.

Rational Tooling has a wizard to generate byte-compatible Java classes with getter and setter
methods for accessing the data fields out of COBOL, PL/I, and C copybooks and structures.

2.10.1 J2C wizards

The J2C wizards for creating a CICS/IMS Data Binding are part of either Rational Application
Developer for Java or Rational Developer for System z with Java. The stand-alone Rational
Developer for System z does not have the wizards packaged. The two no-cost Rational
Developer for System z licenses that come with any IMS version and are downloadable only
as stand-alone versions from the IMS website do not have these wizards packaged.

The following steps review how to start the J2C wizard and generate the Java classes:

� The J2C wizard is started with the menu option: File  New  Other. Then, select
J2C  CICS/IMS Java Data Binding.
Chapter 2. Implementation of IBM IMS batch applications in Java 35

� A screen capture of the CICS/IMS Java Data Binding wizard starting with the source Data
Import is shown in Figure 2-14.

Figure 2-14 Screen capture of the CICS/IMS Java Data Binding wizard

� Go through the wizard to create:

– CICS/IMS data binding
– Import, such as the COBOL 01 record type
– Generate the Java class

� Then, the Java class needs to be populated with the byte array that was passed to the
Java method from COBOL. For other languages, such as C or PL/I, the process is
identical.

2.10.2 JZOS Record Generator

JZOS Record Generator is the most common way of passing data between COBOL and
Java, where copybooks are treated as byte arrays and passed to Java. The unmarshalling
into Java fields and data types is done in Java. The JZOS solution can be used from IMS and
exploits built-in native JVM functions, which are faster than pure Java data conversions.
Although other solutions use the new z/OS batch container, they still do marshalling and
unmarshalling when passing data between COBOL and Java.

The JZOS Record Generator uses the ADATA output from the COBOL compiler.

A step-by-step guide for using both JZOS and the J2C approaches is included in the JZOS for
z/OS SDKs Cookbook, which can be found at the following site:

https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook

The JZOS Record Generator also allows conversion of Assembler CSECTs into Java
records, and as such, can be quite useful to process data that is defined in the z/OS as
Assembler source only. It uses the ADATA output from the Assembler.
36 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook

2.11 Restrictions for COBOL Java interoperability

There are some known restrictions for COBOL Java interoperability. One is that it requires
the IBM Language Environment setting XPLINK(ON). But AMODE24 and VS COBOL
modules will not work with XPLINK(ON). They result in a runtime exception including a
message.

An example of the message for a call to VS COBOL module with XPLINK(ON) is shown in
Example 2-14.

Example 2-14 Error message when trying to run VS COBOL programs with XPLINK(ON)

IGZ0186S An attempt was made to run a VS COBOL II program with the run-time option
XPLINK(ON). The program name is...

At one client, the conversion of the remaining 30 AMODE24 assembler modules to
AMODE31 took about two weeks. They did no separate testing, since testing of the
AMODE31 assembler routines was part of the tests for COBOL and Java interoperability.

To support languages other than COBOL, such as PL/I or Assembler, it is required to have an
Language Environment-compatible version of PL/I or a Language Environment
compatible/enabled assembler routine as the caller. IMS has added a new diagnostic
message in case there are non Language Environment-compliant routines:

DFS650E NON-LE COMPLIANT PROGRAM IN PERSISTENT JVM ENVIRONMENT, NAME=program_name

This should help to find the module that is not Language Environment-compliant. It can be
very difficult to find occurrences of old modules still used in production, especially if the
modules are object code only and the source is not available in the shop. Some modules have
been used for decades. An easy way is to enable the JVM in the IMS regions in the test
environment and wait for abends.

2.12 Abend and error handling

If JVM is present in an IMS region, by default it registers a number of signal handlers. You
need to make sure that all variables or structures are initialized in subroutines that are called
multiple times during the lifetime of the IMS region containing the JVM. The Language
Environment enclave in JVM enabled environments is persistent and only destroyed at
abends or exceptions. At client sites poorly initialized routines have resulted in rare0C4
abends without a trace of what caused them.

If there is a 0C9 (numeric exception) in the COBOL code, by default there is no 0C9 abend.
Rather there is a Language Environment abend such as U4038 or an IMS user abend such
as a U101. When an error like this occurs, in order to turn that behavior off and produce a
0C9 abend message, the JVM requires a switch that disables the registration of POSIX
handlers by the JVM.

This implementation also ensures that IMS abends, such as 0476 and 0711, make it to the
user without the Language Environment and JVM handlers catching it. This allows the
continued use of the abend and error handler mechanisms that are in place or used without
the JVM being present.
Chapter 2. Implementation of IBM IMS batch applications in Java 37

Tools such as IBM Fault Analyzer can be used to display the root cause of the error, which is
not easy for some Language Environment abends.

Some clients have registered custom Language Environment abend handlers, and if the use
in mixed mode environments needs to be continued, turning off the POSIX handler
registration by the JVM is preferred. A recent IMS PTF that handles these types of errors was
changed to better suit the needs of a production environment. Therefore, make sure to have
the latest IMS maintenance applied.

Refer to the manuals for IBM 31-bit SDK for z/OS, Java Technology Edition, V6.0.1, and the
SDK Guide at this link:

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html#j6content

2.12.1 Alternate options

What if Language Environment Java interoperability is not considered, or is not the preferred
option, for mixing existing applications with Java code? A list of possible implementations is
discussed in 4.1, “IMS callout to external services” on page 52. Some message-based
options, such as IMS callout or WebSphere MQ, are not the preferred options for calling Java
methods from batch that should run on the mainframe.

A couple of alternatives that use cross address space calls within the same z/OS image are:

� WebSphere z/OS Optimized Local Adapters. For more information, refer to “WebSphere
z/OS Optimized Local Adapters” on page 54

� Calling DB2 Java Stored Procedures

2.13 z/OS considerations

In this section, we describe z/OS considerations for JVM-enabled IMS regions. During
testing, when clients ran the JVM in production, there were situations where JNI programming
errors led to out-of-storage conditions in the JVM-enabled IMS regions. These regions then
failed during normal region termination (Memterm) and entered a state where they could not
be stopped using IMS or z/OS commands, including FORCE. The main reason for this was
that the modules required for doing the region termination could not be loaded into private
storage.

A PMR that was opened to address this issue suggested implementing an IEFUSI exit to
reserve 512 k storage below 16 M to allow the region termination modules to be loaded.
While this increases the chances for the successful region termination, it is not a guarantee
for region termination.

The recommendations from the PMR are shown in Example 2-15 on page 39. It is suggested
to use as a base the sample IEFUSI exit provided in member IEEUSI in SYS1.SAMPLIB and
replace the statements.

Important: To get an abend with the real abend cause, for example 0C9, it is required to
turn on the JVMs standard registration of POSIX handlers. This is done by using the
-Xsignal:userConditionHandler=percolate JVM command-line option.
38 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html#j6content

Example 2-15 Sample IEFUSI exit

FROM: USING REGION,R07 ADDRESSABILITY FOR REGION DSECT

OI REGFLAGS,X'80' SET THAT IEFUSI CONTROLS REGIONS
TM 0(R08),X'80' V=R JOB?
BO EXIT YES USE DEFAULT VALUES
L R10,REGSZREQ GET REQUESTED REGION SIZE
LTR R10,R10 IS IT ZERO
BZ EXIT YES USE DEFAULT VALUES
AL R10,N64K ADD N64K TO REGION SIZE BELOW
ST R10,REGLIMB SET IT AS REGION LIMIT BELOW
MVC REGSIZB,REGSZREQ SET REGION BELOW
MVC REGSIZA,REG32MB SET REGION SIZE ABOVE TO 32MB

TO: MVC REGLIMA,REG32MB SET REGION LIMIT ABOVE TO 32MB, via the sample
below:

USING REGION,R07 ADDRESSABILITY FOR REGION DSECT
OI REGFLAGS,X'80' SET THAT IEFUSI CONTROLS REGIONS
TM 0(R08),X'80' V=R JOB?
BO EXIT YES USE DEFAULT VALUES
L R09,16(R0) Obtain CVT Pointer
L R11,560(R09) Obtain GDA Pointer
L R09,164(R11) Obtain Region Size below
L R11,REDUCLIM Load subtract value
SR R09,R11 Subtract by 512KB
L R10,REGSZREQ GET REQUESTED REGION SIZE
CR R09,R10 Is Requested size bigger
BNH CHNGLIM Yes do the change
LTR R10,R10 IS IT ZERO
BZ CHNGLIM Yes do the change
B EXIT Go to exit no change to req
CHNGLIM ST R9,REGLIMB Store REGLIMB to Parmlist
SR R09,R11 Subtract another 512KB
ST R09,REGSIZB Store REGSIZB to Parmlist
*

and add in the constants section the 512KB subtraction value:

REDUCLIM DC X'00080000'

There is also a change of the REGION SIZE BELOW value because this value is being used
for programs that do a variable GETMAIN and tend to use all available storage. For an
example, you can refer to the informational APAR II05315 with the title:

ABEND878 OR ABEND40D DURING SMP/E WITH REGION=0M OR REGION=0K OR REGION=32M WITH
NO IEFUSI

Disclaimer: Because only some basic function testing has been performed for the code
sample in Example 2-15, extensive testing should be done to the complete EXIT functionality
before it is used in a production environment.
Chapter 2. Implementation of IBM IMS batch applications in Java 39

40 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Chapter 3. Mixed language applications

In this chapter, we review how mixed language applications can access Information
Management System (IMS) DB, DB2, and WebSphere MQ and how to debug mixed
language applications.

The major topic covered in this chapter is language interoperability:

� How COBOL can call Java and vice versa

� How a new IMS Java batch application can interface with existing COBOL modules

� How a mixed language application can access IMS DB, DB2, and WebSphere MQ

3

© Copyright IBM Corp. 2014. All rights reserved. 41

3.1 Accessing DB2 from mixed language applications

IMS applications can access IMS DB and DB2 data. For mixed language applications each of
the languages (Java and COBOL) can access DB2. IMS makes sure that the updates from all
languages are within the same unit of work or transaction boundary. Furthermore, static and
dynamic SQL can be mixed as required. In addition to SQL queries, it is also possible to call
DB2 stored procedures.

Modernization is usually started with existing COBOL or PL/I applications that use static SQL
and the traditional EXEC SQL calls that must be processed by a matching precompiler.
Moving to dynamic SQL requires the users/callers authorization against the database object.
This is different for static SQL, where the authorization is against the package.

For Java to use the DB2 Universal Java Database Connectivity (JDBC) Driver, the following
three JAR files are required in the IMS regions class path:

� db2jcc.jar
� db2jcc_javax.jar
� db2jcc_license_cisuz.jar

and the use of a compatible connection URL, such as:

String url = “jdbc:db2os390sqlj:”;

The connection to the DB2 subsystem for the DB2 JDBC Driver is configured as Resource
Recovery Services (RRS) connectivity type for Java Dependent IMS regions (JMP, JBP), and
as External Subsystem Attach Facility (ESAF) connectivity type for all other Java capable IMS
regions (message processing program (MPP), batch message processing (BMP)).

The connection definition for an IMS application is done by using subsystem member (SSM)
definitions, which in the sample case in Example 3-1 contains two entries, one for ESAF and
one for RRS.

Example 3-1 Sample IMS subsystem definition for DB2 with both ESAF and RRS

SST=DB2,SSN=DSNA,LIT=SYS1,ESMT=DSNMIN10,REO=R,CRC=-
SST=DB2,SSN=DSNA,COORD=RRS

If there is a requirement to allow the Java programmers to use dynamic SQL with JDBC but to
use the authorization schema of static SQL, pureQuery using DB2 can be considered as a
solution. Dynamic JDBC calls can be recorded and turned into a static package and the
pureQuery runtime executes those calls as though the source code had static SQL.

For more information, refer to 2.5, “Access of IMS Java batch applications with pureQuery” on
page 11.

Note: Due to restrictions in the usage, the DB2 stub linkage needs to be different for Java
and non Java IMS regions.

Currently, modules that have the DB2 stub statically linked can either be used in ESAF or
Resource Recovery Services attachment facility (RRSAF) environments, but not in both.
Modules serving the same purpose or implementing the same functionality must have
different names, one for the ESAF and one for the RRSAF environment.
42 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

3.2 Accessing WebSphere MQ from mixed language
applications

When accessing WebSphere MQ in traditional languages both with the ESAF for MPP and
BMP and with RRS for JMP and JBP, it is a matter of the definition in the IMS SSM member.
The use of the WebSphere MQ Java classes currently is not supported. The WebSphere MQ
Java classes lack the support for ESAF because it is not implemented. But with the use of
RRS in Java Dependent IMS regions (JMP, JBP), the WebSphere MQ Java classes can be
configured to work and be part of the IMS unit of work.

See Example 3-2 for a sample code that worked in a JMP. It is required to use the option
MQPMO_SYNCPOINT for the WebSphere MQ calls to belong to the IMS unit of work.

Example 3-2 Making the WebSphere MQ Java classes work in IMS Java dependent regions with RRS

 private static final String qManager = "QM01";
 private static final String qName = "TEST.QL1";

private static MQQueueManager qMgr = null;

 int openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF |
MQConstants.MQOO_OUTPUT;

 MQQueue queue = qMgr.accessQueue(qName, openOptions);

 MQMessage msg = new MQMessage();
 msg.writeUTF("Hello, World!");

 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = MQConstants.MQPMO_SYNCPOINT;

 queue.put(msg, pmo);

 MQMessage rcvMessage = new MQMessage();

 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = MQConstants.MQGMO_ACCEPT_TRUNCATED_MSG
 + MQConstants.MQGMO_SYNCPOINT;
 gmo.matchOptions = MQConstants.MQMO_NONE;

 queue.get(rcvMessage, gmo);

 String msgText = rcvMessage.readLine();
 System.out.println("The message is: " + msgText);

 queue.close();

 qMgr.disconnect();
 }
 catch (MQException ex) {
 System.out.println("A WebSphere MQ Error occured : Completion Code " +

ex.completionCode
 + " Reason Code " + ex.reasonCode);
 ex.printStackTrace();
 for (Throwable t = ex.getCause(); t != null; t = t.getCause()) {
 System.out.println("... Caused by ");
Chapter 3. Mixed language applications 43

 t.printStackTrace();
 }

 }
 catch (java.io.IOException ex) {
 System.out.println("An IOException occured whilst writing to the

message buffer: " + ex);
 ex.printStackTrace();
 }
 return;

See Example 3-3 for the subsystem member definition that is required to access WebSphere
MQ when using RRS.

Example 3-3 Subsystem member definition to use the WebSphere MQ Java classes with RRS

SST=DB2,SSN=WMQA,COORD=RRS

In addition to the classes required for IMS Java based applications and for access to DB2, the
following JAR files need to be in the IMS region’s class path to make Example 3-3 work:

� com.ibm.mq.headers.jar
� com.ibm.mq.pcf.jar
� jta.jar
� connector.jar
� com.ibm.mq.commonservices.jar
� com.ibm.mq.jar
� com.ibm.mq.jmqi.jar
� com.ibm.ffdc.jar

3.3 Debugging mixed language applications

Currently, when an application starts with COBOL, the debugging for the COBOL code can be
done as usual. When using the debug tool on z/OS or the GUI Eclipse plug-in, you can use
the supported options to inform the debug tool about the port where the debug session is
waiting.

When Java is called from COBOL to debug the Java code, there is an option that lets the JVM
wait for a connected debug GUI, as is done in Eclipse or Rational Tools. When the connection
is established, step-by-step execution or working with breakpoints is supported.

The JVM option to let JVM wait for a debug session from Eclipse before continuing is shown
in Example 3-4.

Example 3-4 JVM option for JVM wait

-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7777

This option tells JVM to turn on debug mode. That JVM is a server waiting for incoming socket
connections waiting on port 7777 for a debugging session and to suspend any work until the
debugging session with the Eclipse client (could also be Rational Application Developer or
Rational Developer for System z for Java debugging) is established. This means that without
clicking, continue in the Eclipse debug session; the JVM will not do any work.
44 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Currently, there is no integrated view for both COBOL and Java. However, when the debug
tool GUI is installed in the same Eclipse installation and the connections have been
established, the Java debug view comes to the front as soon as there is a switch from COBOL
to Java.

3.3.1 Tools to debug mixed language applications

If it is required to debug a mixed language application, two different tools are required, one to
debug Java and another to debug COBOL. In this section, we review the scenario where
COBOL calls Java.

To debug COBOL, we used the Debug Tool for z/OS V12 (Debug Tool) and the Eclipse-based
GUI component for the IBM Debug Tool Plug-in for Eclipse. A stand-alone configuration (no
charge) along with IBM IMS Enterprise Suite Version 2.1.1.3 Explorer for Development (IMS
Explorer) can be used for GUI-based debugging for clients that have Rational Developer for
System z licensed.

To configure the Debug Tool, we did the following steps. Clients that prefer to use Rational
Developer for System z can skip the first two steps:

1. Download the IBM Debug Tool Plug-in for Eclipse. Instructions can be found at:

http://www-01.ibm.com/support/docview.wss?uid=swg24026610

2. Install the IBM Debug Tool Plug-in for Eclipse. Instructions for V12 can be found at:

ftp://public.dhe.ibm.com/software/htp/pdtools/plugins/DT_plugin_V12100_readme.pdf

3. IMS Explorer starts and following the instructions in the link in step 2, the IBM Debug Tool
Plug-in for Eclipse was installed.

4. Either restart IMS Explorer or use Rational Developer for System z directly. The latest
Rational Developer for System z version usually also supports the latest version of the
Debug Tool.

5. Check the remote debug port in the Preferences:

– Open with Window  Preferences

– Select Run/Debug  Debug Daemon

6. Switch to the debug perspective.

7. To start the Debug UI daemon on the local machine, click the small icon that looks like a
red network cable, in the upper left corner (see Figure 3-1). The icon should turn green
when started.

Figure 3-1 Debug UI daemon icon: Click to start the daemon

Restriction: When COBOL is called by Java, the debug tool is not notified. So if there are
cascading chains like COBOL  Java  COBOL, it is not possible to debug COBOL that
is called by Java. This includes IMS Java Dependent Regions where Java is the first
language that gets control.
Chapter 3. Mixed language applications 45

http://www-01.ibm.com/support/docview.wss?uid=swg24026610
ftp://public.dhe.ibm.com/software/htp/pdtools/plugins/DT_plugin_V12100_readme.pdf

8. Prepare the COBOL application for debugging. This is documented in the Debug Tool
manuals. The COBOL program needs to be compiled with specific options (for example
TEST(NOSEP)) to have the debug information as part of the executable file.

9. Create the options file for debugging. See Example 3-5.

Example 3-5 Generated Debug Tool Options file

<PGL>CJTST*
<TST>TEST(ALL,*,PROMPT,TCPIP&172.17.36.87%8001:*)

For this sample, the Debug Tool panels (Option 6  Debug Tool User Exit Dataset) was
used. It specifies the programs and modules with wildcards for which debugging should be
enabled as well as the TCPIP address and port of the Rational Developer for System z
debug daemon.

10.A custom version of the EQAD3CXT module needs to be created. It should contain the
assembler code for the initialization and termination of Language Environment enclaves
and the preparation that this Language Environment enclave is enabled for debugging. It
creates custom versions of CEEPIPI and CEEBINIT. This is required to support
CEEPIPI-enabled execution environments for debugging with debug tool such as a JVM
enabled IMS region.

In addition to the code, the EAQAD3CXT also contains settings, such as:

– Naming conventions for the Debug Tool Options file (for example,
&USERID.DBGTOOL.EQAUOPTS)

– Option for writing detailed trace output (MSGS_SW DC X'02' message level)

– The required registration for a callback routine in a CEEPIPI environment (RRTN_SW
DC X'01' register or no register rtn)

For the assembly and the required rebinds of CEEPIPI and CEEBINIT, refer to the Debug
Tool manuals at the following location:

http://www-01.ibm.com/software/awdtools/debugtool/library

11.To be able to use the Debug Tool for debugging IMS programs, the library with the
modules from step 10 needs to be placed in the IMS region steplib concatenation and the
Debug Tool load library. Refer to the Debug Tool manuals for more information about how
to tailor the environment.

12.Finally, start the IMS region and start the IMS transaction. The debugging session should
now start, as shown in Figure 3-2 on page 47.

Because everything is generic in the preceding definitions, the debug session starts within the
JVM execution. However, this is not the debug session of the JVM. The JVM debug session
needs to be started manually before the COBOL application is resumed.

Note: A direct connection is required. Port forwarding is required for networks that are
separated with Network Address Translation [NAT]. If the TCP/IP address of the client is
not routable from z/OS, the remote debugging will not work with the described procedure.
In our test environment, VPN sessions with TCP/IP addresses accessible by z/OS were
successfully used.
46 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www-01.ibm.com/software/awdtools/debugtool/library

Figure 3-2 Start and suspend debug session from the IMS region

To do mixed language debugging for a COBOL application that calls Java, assuming Debug
Tool, the JVM and Rational Developer for System z are configured for debugging. The
following steps are required:

1. Start the IMS region.

2. Start the COBOL application.

3. The JVM stops during initialization and waits for the debug session. The job log prints this
message:
DFSJVM00: JVM initialization started: Tue Jul 10 08:51:02.879 2012
Listening for transport dt_socket at address: 7778

4. Click the highest level that is first called Java class that is to be debugged when called
from COBOL (the one that contains the breakpoints), then do the following steps:

– Select Debug As  Debug Configurations

– Choose Remote Java Application, which has the configuration for the remote JVM
(zoshostname port 7778)

– Click Debug to connect to the JVM

5. Switch to the Debug perspective. After the JVM has been initialized, the COBOL debug
session will start and suspend.

The Rational Developer for System z debug view, with both debug sessions (JVM and the
Debug Tool) active but waiting at a breakpoint in COBOL, will look as shown in Figure 3-3 on
page 48.
Chapter 3. Mixed language applications 47

Figure 3-3 Rational Developer for System z debug perspective with both the Java and COBOL debug
session active

In summary, using the latest version of the Debug Tool allows traditional language debugging
in a JVM enabled IMS region and in CEEPIPI-enabled environments. The Rational Developer
for System z built-in GUI can be used for remote debugging and the no-cost version based on
IBM CICS Explorer® or IMS Explorer.

Java debugging is done by the Eclipse-built-in Java remote debugger.

3.4 IMS preload in a mixed environment

Preload is a performance feature that allows for the loading of modules at the time of region
initialization rather than when they are first used. At the time of writing of this book, in IMS
Java regions there is no preload available that would be beneficial for mixed language
applications.

In IMS MPPs where a JVM can be configured to start, there is a choice to create the DLLs to
be called from Java as PDSE members. One or more PGMLIB data sets are supported to be
PDSEs. If the name of the DLL member is included in the DFSMPLxx member, it will be
preloaded on region initialization, unlike HFS files or in IMS Java dependent regions where it
is already loaded on the first use. In this way, the penalty of the first caller encountering a
longer schedule to first call time can be significantly reduced, especially for larger
implementations.
48 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

However, this feature is not natively available. It requires the JCL of the OO COBOL module
to be configured to create a PDSE member, and it requires a manual change of the
generated Java source stub file. See Example 3-6.

Example 3-6 Sample generated Java source stub file

// PP 5655-S71 IBM Enterprise COBOL for z/OS 4.2.0
//
// Generated Java class definition for COBOL class com.ibm.cjlab.JC00Cob
//
// Date generated: 03/09/2011
// Time generated: 07:01:26
//
// ** Do not edit or modify this file! **
// ** It is (and must be) regenerated whenever the **
// ** COBOL class is compiled. **
//
package com.ibm.cjlab;
public class JC01Cob
 extends java.lang.Object {
 public native void callExecute(
 java.lang.Object JAVAINTEXTO,
 java.lang.Object JAVAOUTTEXTO);
 private native static void _classInit();
 private java.nio.ByteBuffer JC01Cob_instanceData;
 private native void _instanceDataInit();
 public JC01Cob(){
 JC01Cob_instanceData=java.nio.ByteBuffer.allocateDirect(263);
 _instanceDataInit();
 }
 static {
 System.loadLibrary("JC01Cob");
 com.ibm.cjlab.JC01Cob._classInit();
 }
}

The System.loadLibrary call must be replaced with System.load and the // prefixed name of
the PDSE member DLL that has been created by the linker instead of a .so binary file DLL
that is usually placed in a hierarchic path of z/OS UNIX.

The changed Java stub file source looks like Example 3-7.

Example 3-7 Changed Java stub file source for accessing a DLL in a PDSE member

// PP 5655-S71 IBM Enterprise COBOL for z/OS 4.2.0
//
// Generated Java class definition for COBOL class com.ibm.cjlab.JC00Cob
//
// Date generated: 03/09/2011
// Time generated: 07:01:26
//
// ** Do not edit or modify this file! **
// ** It is (and must be) regenerated whenever the **
// ** COBOL class is compiled. **
//
package com.ibm.cjlab;
Chapter 3. Mixed language applications 49

public class JC01Cob
 extends java.lang.Object {
 public native void callExecute(
 java.lang.Object JAVAINTEXTO,
 java.lang.Object JAVAOUTTEXTO);
 private native static void _classInit();
 private java.nio.ByteBuffer JC01Cob_instanceData;
 private native void _instanceDataInit();
 public JC01Cob(){
 JC01Cob_instanceData=java.nio.ByteBuffer.allocateDirect(263);
 _instanceDataInit();
 }
 static {
 //System.loadLibrary("JC01Cob");
 System.load("//JC01COB");
 com.ibm.cjlab.JC01Cob._classInit();
 }
}

The COBOL compiler manuals and the Enterprise COBOL for z/OS developers do not
recommend changing the generated Java stubs.

Currently, there is no option that allows the COBOL compiler to generate the loading of the
DLL. By default, it only produces the System.loadLibrary version.

Note: The Java stubs are generated code. If a stub is manually changed, it needs to be
changed every time after it has been regenerated or recompiled.
50 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Chapter 4. Alternate processing options

In this chapter, we describe the need for alternate processing options driven either by external
applications or by the service concept of existing Information Management System (IMS)
based and external applications. We review some options that provide clients with the ability
to implement their business needs with solutions that are IMS-based.

The following major topics are covered in this chapter:

� Pros and cons of using IMS Callout and WebSphere Optimized Local Adapters

� Use of WebSphere Transformation Extender within IMS

� Additional IMS options

Any solution that uses options other than subroutine calling (for example, outbound
communications) might be unsuitable for large batch workloads because it might take longer
than expected or what the business allows.

4

© Copyright IBM Corp. 2014. All rights reserved. 51

4.1 IMS callout to external services

If there is a requirement to call external services (for example web services or Java Platform,
Enterprise Edition 2 (Java EE 2) components such as Enterprise JavaBeans (EJB beans) or
message-driven beans (MDBs) from existing IMS batch applications, there are the following
options:

� Synchronous calls
� Asynchronous calls
� Both synchronous and asynchronous callout
� Call DB2 stored procedures from the application
� WebSphere Transformation Extender

4.1.1 Synchronous calls

For synchronous calls, the ICAL DLI call introduced with IMS V10 can be used. It allows an
IMS Callout client to wait for messages and reply to IMS (see Figure 4-1). This access pattern
is synchronous, so the batch application waits for the result. The next request can only be
sent after receiving the reply.

Figure 4-1 Synchronous Callout using ICAL for IMS applications

This implementation requires IMS Connect as IP Gateway for the Callout Client. Client
implementations have been implemented as IMS SOAP Gateway (for SOAP requests to
external Web Services), MDBs, or EJB beans deployed to a Java EE 2 application server and
pure Java clients (J2SE) as plug-ins to ISV software.

For samples on IMS callout, refer to the IMS Version 11 information at the following web page:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.
ims11.doc%2Fimshome_v11.htm

7

GU IOPCB

ICALICAL
Send Message> 32K> 32K

IMS 10 Callout Synchronous via OTMA IMS Connect

TCP/IP
Resume_TPIPE
READ_DATA
IMSIMS--tokentoken|Message
ACK
Send
SEND_DATA
IMSIMS--tokentoken|Message

CLIENT

Receive Message>32K>32K

ISRT IOPCB

MSG-Q

Buffer Buffer

Buffer Buffer

IMSIMS--tokentoken|Message

WAIT-Callout

IMS-token(CORTKN) - correlate responseresponse message to callout requestrequest message

IMSIMS--tokentoken|Message

OTMA Descriptor
TMEMBER
TPIPE

IMS Connect

IMS-Appl
52 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.ims11.doc%2Fimshome_v11.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.ims11.doc%2Fimshome_v11.htm

4.1.2 Asynchronous calls

For asynchronous calls, queuing to the alternate PCB can be used. An IMS Callout client
needs to wait for the messages; the reply to IMS is optional. See Figure 4-2.

Figure 4-2 Asynchronous callout using alternate PCB for IMS applications

This pattern can also be used to queue multiple requests (for example, 1000) one after the
other, and then process the replies from a callout client one after the other.

This significantly reduces the elapsed time, because the send-wait-receive-send-wait-receive
processing pattern is transformed into a send-send-receive-receive processing pattern. If a
link between request and response is required, the data sent back and forth should contain
something like a token or correlator to correlate the request with the response.

4.1.3 Both synchronous and asynchronous callout

WebSphere MQ can implement both synchronous and asynchronous callout. The patterns
are similar to ICAL and Alternate PCB-based solutions. Some clients prefer the
WebSphere MQ programming interface. Figure 4-3 shows the possible use of WebSphere
MQ for z/OS from IMS applications.

Figure 4-3 WebSphere MQ for z/OS from IMS applications

5

GU IOPCB

ISRT ALTPCB
Msg|appl-token=32K

ISRT IOPCB

OTMA Descriptor
TMEM BER
TPIPE

Msg|appl-token

TCP/IP
Resume_TPIPE
READ_DATA
Msg|appl-token
ACK
Send
SEND_DATA Msg|appl-token

CLIENT

GU IOPCB
Msg|appl-token=32K

Msg|appl-token

MSG-Q

MSG-Q

MSG-Q

IMS-Appl

IMS-Appl

IMS Connect

IMS 10 Callout Asynchronous via OTMA IMS Connect

z/OS Sysplex
IMS ApplIMS TMWebSphere MQ for

z/OS
Network

GU IOPCB

MQGET
MQPUT

ISRT IOPCB
Chapter 4. Alternate processing options 53

This requires the registration of WebSphere MQ as an ESAF capable subsystem in IMS and
the use of the WebSphere MQ API (such as MQOPEN, MQPUT, MQGET, and MQCLOSE)
within the IMS application and a local WebSphere MQ for z/OS queue manager on the z/OS
image that the IMS application is running.

The patterns are implemented by using WebSphere MQ. For samples, refer to the
WebSphere MQ for z/OS manuals in the IBM WebSphere MQ Information Center:

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r5/index.jsp

4.1.4 Call DB2 Stored Procedures from the application

Calling DB2 Java stored procedures is an option that some clients have used to call Java
methods. Basically, in DB2 for z/OS, a Java stored procedure is set up and can then easily be
called from any Language Environment language caller. The calls to the DB2 Stored
Procedure is always synchronous and the application waits for the result and returns from the
DB2 Java Stored Procedure. The code that executes in a DB2 Java Stored procedure is part
of the IMS unit of work if it does not do any outbound calls using a non-two-phase commit
capable protocol.

4.1.5 WebSphere Transformation Extender

The IBM WebSphere Transformation Extender has a lot of options for calling external
services. For instance, it can create a map that uses any possible target for the mapping,
such as Web Service calls, or calls to external systems through J2C Resource Adapters.

For more information about WebSphere Transformation Extender calls, refer to 4.3.4, “Using
data transformations in batch” on page 63. If the execution of a map that belongs to the
caller’s unit of work depends on the target of the map, it is required to check if the
transformation that is about to be used has transactional capabilities in all the components.

4.1.6 WebSphere z/OS Optimized Local Adapters

IBM WebSphere Optimized Local Adapters (OLA) for z/OS is an option when IMS access to
services or Java programs hosted on the mainframe is required. It can also be used if the
Java runtime is not implemented in IMS. See Figure 4-4 on page 55 for an overview about
how WebSphere OLA for z/OS can be used from IMS applications.
54 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r5/index.jsp

Figure 4-4 Overview of how WebSphere OLA for z/OS can be used from IMS applications

With this interface, you can implement all previously described application patterns.

Using WebSphere OLA for z/OS has the advantage of being transactional. The disadvantage
is that every call to a Java method is a transaction and crosses address space boundaries,
whereas COBOL/Java interoperability works more like a subroutine call.

A sample workload to call a Java method 10,000 times took 4 seconds with COBOL/Java
interoperability. It took 160 seconds using WebSphere OLA for z/OS and running the Java
part of the application in WebSphere z/OS on the same LPAR.

Example 4-1 is a sample subroutine that uses WebSphere OLA for z/OS to access Java and
is used in IMS batch.

Example 4-1 Sample subroutine that uses WebSphere OLA for z/OS to access Java

IDENTIFICATION DIVISION.
 PROGRAM-ID. CALLWOLV.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *
 01 FILLER PIC X(32) VALUE
 '** Working storage starts here**'.
 01 daemongroupname PIC X(8) VALUE LOW-VALUES.
 01 daemonname PIC X(8) VALUE LOW-VALUES.
 01 reqtype PIC 9(8) COMP VALUE 0.
 01 rqst-area PIC X(100) VALUE SPACES.

Enterprise
Java Bean

(Or Servlet)

Enterprise
Java Bean

WOLA Execute()
ExecuteHome()
WOLA Execute()
ExecuteHome()

WOLA
JCA Adapter

WOLA
JCA Adapter

WOLA
WOLA

BBO$/BBO#
WOLA

BBO$/BBO#

WebSphere Environment

CICS EnvironmentBatch Environment

EJBs that initiate a call to WOLA do
so through a supplied JCA adapter.

Several WOLA-specific methods
used to invoke services over WOLA

EJBs that will be the target of inbound calls need
to implement the WOLA-supplied Execute() and
ExecuteHome() classes.

Calls into CICS come across WOLA-supplied
BBO$/BBO# task and transaction. Target CICS
program unchanged if able to be invoked over
COMMAREA or Channel/Container

A CICS program that
wishes to initiate an
outbound connection
must write to the WOLA
APIs

A Batch program that wishes to
initiate an outbound connection

must write to the WOLA APIs

You make modules/classes available: STEPLIB, DFHRPL, DFSESL, ola.rar and ola_apis.jar
Batch CICS WAS Development ToolIMS

You make modules/classes available: STEPLIB, DFHRPL, DFSESL, ola.rar and ola_apis.jar
Batch CICS WAS Development ToolIMS

WOLA
IMS

ESAF

WOLA
IMS

ESAF

IMS Dependent regions
WOLA
OTMA
WOLA
OTMA

A WAS application
can call an existing
unchanged IMS
transaction using
OLA over OTMA

The WOLA Interface with IMS

Batch
Program

WOLA
Modules/APIs

BMP/MPP/ IFP

CICS Program

CICS ProgramWOLA
Modules/APIs
Chapter 4. Alternate processing options 55

 01 rqst-area-addr USAGE POINTER.
 01 resp-area PIC X(2048) VALUE SPACES.
 01 resp-area-addr USAGE POINTER.
 01 nodename PIC X(8) VALUE 'W12N01 '.
 01 servername PIC X(8) VALUE 'W12S01N '.
 01 registername PIC X(12) VALUE SPACES.
 01 servicename PIC X(255).
 01 minconn PIC 9(8) COMP VALUE 1.
 01 maxconn PIC 9(8) COMP VALUE 10.
 01 regopts PIC 9(8) COMP VALUE 0.
 01 urgopts PIC 9(8) COMP VALUE 0.
 01 servicenamel PIC 9(8) COMP.
 01 waittime PIC 9(8) USAGE BINARY.
 01 async PIC 9(8) USAGE BINARY.
 01 tmp-len PIC 9(8) COMP VALUE 0.
 01 con-handle-addr PIC X(12) VALUE LOW-VALUES.
 01 rqst-len PIC 9(8) COMP VALUE 100.
 01 resp-len PIC 9(8) COMP VALUE 100.
 01 rc PIC 9(8) COMP VALUE 0.
 01 rsn PIC 9(8) COMP VALUE 0.
 01 rv PIC 9(8) COMP VALUE 0.
 01 rc-urg PIC 9(8) COMP VALUE 0.
 01 rsn-urg PIC 9(8) COMP VALUE 0.
 *
 LINKAGE SECTION.
 *
 01 DURCHLAEUFE PIC S9(9) COMP VALUE +1000.
 PROCEDURE DIVISION using DURCHLAEUFE.
 Main Section.
 MOVE 'CALLWOLV ' TO registername
 MOVE 'W12TMP ' TO daemongroupname
 MOVE 'W12TMP ' TO daemonname
 INSPECT daemonname CONVERTING ' ' TO LOW-VALUES
 MOVE 1000000 TO DURCHLAEUFE
 PERFORM INVOKEREQ THRU INVOKEREQ-END
 PERFORM BBOA1INV THRU
 BBOA1INV-END DURCHLAEUFE TIMES
 PERFORM BBOA1URG THRU BBOA1URG-END
 .
 LEAVE-CALLWOLV section.
 GOBACK
 .
 BBOA1REG Section.
 CALL 'BBOA1REG' USING daemonname, nodename, servername,
 registername, minconn, maxconn,
 regopts, rc, rsn.
 IF rc > 0 THEN
 DISPLAY "CALLWOLV: Bad RC/RSN from BBOA1REG: " rc "/" rsn
 PERFORM BBOA1URG THRU BBOA1URG-END
 GOBACK
 ELSE
 PERFORM BBOA1INV THRU BBOA1INV-END
 END-IF
 .
 BBOA1REG-END Section.
56 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 INVOKEREQ Section.
 MOVE 0 To waittime.
 MOVE 1 TO reqtype.
 MOVE 'ejb/voidCall' TO servicename.
 INSPECT servicename CONVERTING ' ' TO LOW-VALUES.
 MOVE 0 TO servicenamel.
 MOVE 'Hello from testcase CALLWOLV!!' TO rqst-area.
 SET rqst-area-addr TO ADDRESS OF rqst-area.
 * Calculate rqst-area length
 INSPECT FUNCTION REVERSE(rqst-area)
 - TALLYING tmp-len FOR LEADING SPACES.
 COMPUTE rqst-len = LENGTH OF rqst-area - tmp-len.
 MOVE 0 TO async.
 INVOKEREQ-END Section
 .
 BBOA1INV section.
 CALL 'BBOA1INV' USING registername, reqtype,
 servicename,
 servicenamel,
 rqst-area-addr, rqst-len,
 resp-area-addr, resp-len,
 waittime,
 rc, rsn,
 rv
 IF rc > 0 THEN
 DISPLAY "CALLWOLV: Bad RC/RSN from BBOA1INV: " rc "/" rsn
 PERFORM BBOA1REG
 END-IF
 .
 BBOA1INV-END.

 BBOA1URG section.
 CALL 'BBOA1URG' USING registername, urgopts, rc-urg, rsn-urg.
 BBOA1URG-END.
 End program CALLWOLV.

4.2 Calling IMS transactions from traditional batch

Some clients require multiple calls to existing IMS transactions from traditional batch. The
implementations discussed in this section are based on non Java solutions running on z/OS.

The following implementations have been done at client sites:

� Writing a COBOL client
� The OTMA Callable Interface (OTMA CI)
� Use DB2 Stored Procedures
� WebSphere Transformation Extender
� WebSphere MQ with its IMS OTMA Bridge

The specific order of the options is neither a recommendation nor does it represent the
number of clients that used a specific solution.
Chapter 4. Alternate processing options 57

4.2.1 Writing a COBOL client

Write a COBOL client (such as by modifying the old COBOL sample for IMS Connect) and
perform synchronous transaction calls using that client.

Although IMS Connect is two phase commit capable, there is no way to include the IMS
transaction in the batch program’s unit of work.

Direct exploitation of IMS Connect SEND_ONLY and RESUME_TPIPE programming
patterns also allows asynchronous (multiple sends followed by multiple receives) calling
sequences. The synchronous send-wait-receive is also available.

4.2.2 The OTMA Callable Interface

The OTMA Callable Interface (OTMA CI) is a low-level interface that is similar to using
WebSphere MQ or APPC calls. See Figure 4-5.

Figure 4-5 Overview of the OTMA Callable Interface Design

IMS transaction can be implemented with a simple otma_create, otma_open, otma_alloc,
otma_send_receive, otma_free, and otma_close call sequence a call to one or multiple (by
using multiple otma_receive calls in between). The use of an RRS token is supported, so the
IMS transactions can be made part of the batch applications unit of work.

Calling multiple IMS transactions per unit of work requires as many available IMS regions as
IMS transactions that should be called. The IMS regions remain occupied by the called IMS
transactions until the batch applications unit of work is committed or backed out.

The OTMA Callable Interface also allows the previously described synchronous and
asynchronous call patterns.

A COBOL sample that starts an IMS command through OTMA CI is shown in Example 4-2 on
page 59.

Application Program
OTMA CI C, C++ Program

 z/OS Environment

DFSYOUSE

DFSYORPC

DFSYOFRE

DFSYOCLS

API Calls are used to:
Join the IMS/OTMA XCF Group
To connect to IMS
To allocate communication
sessions
To Send IMS
Transactions/Commands
To Receive Output from IMS
To close communication sessions
To leave the XCF Group

Supports Synclevel Syncpoint
Supports RRS context ID

Process
OPEN

Function

Process
ALLOC

Function

XCF

IMS

O
T
M
A

Process
SEND &

RECEIVE
Function

Process
FREE

Function

Process
CLOSE
Function

SVC
Service
Routine

O
B
J
E
C
T

S
T
U
B

OTMA_CREATE
OTMA_OPEN
OTMA_ALLOC

OTMA_SEND_RE
OTMA_FREE

OTMA_CLOSE
58 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Example 4-2 Excerpt from a COBOL sample

MAIN-RTN.
 * OTMA_CREATE
 MOVE -1 TO RET.
 MOVE -1 TO RSN1.
 MOVE -1 TO RSN2.
 MOVE -1 TO RSN3.
 MOVE -1 TO RSN4.
 MOVE 10 TO SESSIONS.
 MOVE 'COBTEST' TO OTMA-CLT-NAME.
 MOVE 'IMSA' TO OTMA-SRV-NAME.
 MOVE 'IMS12XCF' TO OTMA-GRP-NAME.
 MOVE 'TEST' TO TPIPE-PREFIX.
 CALL 'DFSYCRET' USING
 OTMA-ANCHOR,
 OTMA-RETRSN,
 ECB2,
 OTMA-GRP-NAME,
 OTMA-CLT-NAME,
 OTMA-SRV-NAME,
 SESSIONS,
 TPIPE-PREFIX.
 * OTMA_OPEN
 CALL 'DFSYOPN1' USING
 OTMA-ANCHOR,
 OTMA-RETRSN,
 ECB2,
 OTMA-GRP-NAME,
 OTMA-CLT-NAME,
 OTMA-SRV-NAME,
 SESSIONS,
 TPIPE-PREFIX.
 * WAIT FOR ECB
 CALL 'DFSYCWAT' USING BY REFERENCE ECB2.
 * OTMA_ALLOC
 MOVE 'GAEBLER' TO RACF-UID.
 CALL 'DFSYALOC' USING
 OTMA-ANCHOR,
 OTMA-RETRSN,
 SESS-HANDLE,
 TEMP-ECB,
 TRAN-NAME,
 RACF-UID,
 RACF-GID.
 * OTMA_SEND_RECEIVE
 MOVE 0 TO ECB21.
 MOVE 0 TO CTX1.
 MOVE 0 TO CTX2.
 MOVE 0 TO CTX3.
 MOVE 0 TO CTX4.
 MOVE 'LTERM' TO LTERM.
 MOVE 'MODNAME' TO MODNAME.
 MOVE LENGTH OF SEND-BUFF TO SEND-BUFF-LEN.
 MOVE LENGTH OF REC-BUFF TO REC-BUFF-LEN.
 MOVE '/DIS A ' TO SEND-BUFF.
Chapter 4. Alternate processing options 59

 CALL 'DFSYSEND' USING
 OTMA-ANCHOR,
 OTMA-RETRSN,
 ECB2,
 SESS-HANDLE,
 LTERM,
 MODNAME,
 SEND-BUFF,
 SEND-BUFF-LEN,
 BY VALUE 0,
 BY REFERENCE REC-BUFF,
 REC-BUFF-LEN,
 REC-DATA-LEN,
 BY VALUE 0,
 BY REFERENCE CONTEXT,
 ERROR-MESSAGE-TEXT.
 * WAIT FOR ECB
 CALL 'DFSYCWAT' USING BY REFERENCE ECB2.
 * OTMA_FREE
 CALL 'DFSYFREE' USING
 OTMA-ANCHOR,
 OTMA-RETRSN,
 SESS-HANDLE.
 * OTMA_CLOSE
 CALL 'DFSYCLSE' USING
 OTMA-ANCHOR,
 OTMA-RETRSN.
 GOBACK.
 PROG-END.
 EXIT.

4.2.3 Use of DB2 stored procedures

There are methods to call IMS transactions, for example, by using the DB2 supplied
DSNAIMS and DSNAIMS2 stored procedures. Under the covers, they use the OTMA Callable
Interface but, in comparison, to write an OTMA CI application, the caller just supplies the
required parameters to the stored procedure and calls it with the EXEC SQL CALL
procedurename statement.

The use of DB2 stored procedures with a two phase commit capable DB2 attach allows the
IMS transactions to be part of the batch programs unit of work. The same rule, requiring as
many available IMS regions as calls to be made to IMS transactions per unit of work, applies
here.

4.2.4 WebSphere Transformation Extender

The WebSphere Transformation Extender has interfaces for J2C compliant Resource
Adapters. This includes the IMS TM Resource Adapter. Simply create a map that uses an
IMS transaction as target for the mapping. For more information about WebSphere
Transformation Extender calls, refer to 4.3.4, “Using data transformations in batch” on
page 63.
60 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

4.2.5 WebSphere MQ with its IMS OTMA Bridge

The WebSphere MQ with its IMS OTMA Bridge can also be used to start IMS transactions.
This interface does not allow the IMS transaction to be part of the batch application’s unit of
work, but all previously described synchronous and asynchronous call patterns can be
implemented.

Figure 4-6 shows that the network part can be on the same or another z/OS image.

Figure 4-6 Overview of the MQ-IMS-Bridge for starting IMS transactions

For the decision on what technology, software, or architecture to use, consider operational,
skills, and business needs. The options that are listed are possible implementations that
some clients have used.

4.3 Accessing IMS data as result sets from traditional batch

Sometimes there is a requirement to either access IMS data from non IMS attached batch
applications or to access IMS data using result sets.

However, currently there are only two options, write a DB2 stored procedure that uses the
IMS Open Database Access interface (ODBA) or write some Java code. Both are then called
from the batch application. The ODBA interface allows it to issue DL/I calls against IMS
databases without the need of having an IMS transaction running.

There is a possibility that SQL access, which is currently available for Java methods only,
could be available in a future IMS release.

ODBA applications have been implemented at client sites using COBOL, PL/I, or Java. How
to write ODBA application is discussed in IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity, SG24-6794. The ODBA caller (such as a DB2 stored
procedure) needs to be at the same LPAR as the IMS system. ODBA can be used together
with the Open Database Manager (ODBM) feature that was introduced with IMS V11. The
use of ODBM lowers the chance of producing U113 IMS abends.

Further details about configuration are described in IMS 11 Open Database, SG24-7856, and
in the IMS product manuals.

4.3.1 Using Business Rules Engines from batch

The IBM WebSphere IBM Operational Decision Manager Business Rules for z/OS is
available for Java, and it is possible to generate rules implemented in COBOL. This solution
can be a good choice for many clients.

z/OS Sysplex

OTMA

IMS ApplIMS TM

XCF

z/OSWebSphere MQ for
z/OS

OTMA
Client

Network
GU IOPCB

ISRT
IOPCB
Chapter 4. Alternate processing options 61

However, some disadvantages exist:

� The rules implemented in COBOL modules must be regenerated and recompiled when a
rule changes

� The rule projects for COBOL and Java cannot be shared

� Only with Java is it possible to deploy rules to the DB2 database for dynamic updating

Some clients did not want to have WebSphere for z/OS on the same LPAR as their IMS or
other workloads so there is a new runtime for z/OS called zRES. This is a new feature for the
WebSphere IBM Operational Decision Manager Business Rules for z/OS. It is implemented
as a Java address space on z/OS with an API for invocation from traditional languages. A
stub will be generated by the IBM Operational Decision Manager tooling that allows the
traditional language to start the rules being executed in the zRES server; see Figure 4-7.

Figure 4-7 WebSphere IBM Operational Decision Manager for z/OS runtime options

In addition, there are many other Java based business rules engines on the market that can
be integrated with existing batch applications by using Java interoperability and starting the
rules engines as a subroutine call from the traditional languages into Java. It simply requires
the rules engine to have an access pattern from a non-Java EE2 program, usually referred to
as plain old Java object (POJO) or J2SE application.

4.3.2 Speeding up long running DB2 queries

Some clients have long running batch workloads that just consist of the DB2 queries. Long
running in this context is a query that runs at least 10 minutes long, up to several hours.

COBOL
Application

zRES Server

Rule Execution Server

zRES Server

Generated COBOL

COBOL
Application

COBOL
Application

Java
Application

COBOL
Application

Workstation

Rule Designer
 With COBOL

XCM Management

Distributed or System z

Decis ion Center

Deploy

Generate

System z

COBOL

CICS

Call

Call

COBOL

WOLA

Java call

WAS for zOS

NEW

NEW

NEW
62 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

The IBM solution to speed up those queries is DB2 Analytics Accelerator for z/OS, which is
powered by IBM Netezza® technology. See the following website:

http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator

This solution hooks into the DB2 optimizer and therefore is transparent to any batch workload
using DB2 including IMS. There is nothing on the IMS side or in the application that must be
changed that can be used to speed it up. When it is ready to work with DB2 on z/OS, IMS
batch can benefit from it.

OLTP types of queries have minimal benefit from the solution because it is for long running
queries. Jobs that do many updates will not benefit either. However, a possible target for the
solution is batch jobs that do reporting by executing long running queries and write their
output to files.

4.3.3 Speeding up calls to SQL-only DB2 stored procedures

DB2 for z/OS V9 comes with a new function called DB2 native stored procedures. These are
SQL-only stored procedures running as threads in the DBM address space of DB2 for z/OS.
That way, the application does not use the WLM scheduling, thus reducing overhead
especially for many different small or short running stored procedures.

In addition, there are other benefits that might speed up a batch application. For more details,
refer to DB2 9 for z/OS Stored Procedures: The CALL and Beyond, SG24-7604.

4.3.4 Using data transformations in batch

Today, systems interoperate with a wide variety of systems that include different data types
and protocols. If there is a need to convert one format into another, there is more than one
available solution.

There are IBM products on the market, such as the WebSphere Transformation Extender
family, which allows you to use an Eclipse-based GUI to map one format to another.
WebSphere Transformation Extender also has the ability to execute under control of an IMS
region (batch and online). This allows you to execute the mapping implementations, called
MAPS, from within IMS programs.

Refer to documentation about the IMS/DC Execution Option at the following web page:

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.
doc/topics/g_imsdc_exec_Introduction.htm

Because WebSphere Transformation Extender is written in C and uses XPLINK(ON), it has
the same restrictions on dynamic calls to subroutines as those that apply to COBOL Java
interoperability.

A sample piece of COBOL code that executes a WebSphere Transformation Extender map is
shown in Example 4-3 on page 64. This sample requires a map to be created and compiled
with the Eclipse-based development environment that is part of the WebSphere
Transformation Extender product.
Chapter 4. Alternate processing options 63

http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.doc/topics/g_imsdc_exec_Introduction.htm

Example 4-3 Sample program that calls a WTX map

CBL APOST,XREF,MAP,LIST,LIB,DLL,RENT,PGMNAME(M),TEST(SYM)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. 'WTXCALL'.
 *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-370.
 OBJECT-COMPUTER. IBM-370.
 *
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 77 HIGH-MAP-RET-CODE PIC 9(9) USAGE IS BINARY VALUE ZERO.
 77 MERI-RET-CODE PIC S9(9) USAGE IS BINARY VALUE ZERO.

 * RUNMECBL is supplied with the IBM WS TX OS/390 SDK.
 COPY DTXRMCOB.

 *
 01 FC.
 05 FILLER PIC X(8).
 COPY CEEIGZCT.
 05 FILLER PIC X(4).
 *
 01 DSTX-CALL-Parameters.
 05 WC-Map-Name Picture x(17) value spaces.
 05 Filler Picture x value spaces.
 05 WC-Call-Parm1 Picture x(4) value ' -NL'.
 05 WC-Call-Parm2 Picture x(5) value ' -OE1'.
 05 WC-Call-Parm3 Picture x(6) value ' -IE1S'.
 05 WC-Data-Len Picture x(2) value spaces.
 05 Filler Picture x(1) value spaces.
 05 WC-Data Picture x(30) value spaces.
 05 Filler Picture x value spaces.
 05 Null-Terminator Picture xx value low-values.

 LINKAGE SECTION.

 01 WTXRC PIC S9(3) COMP.
 01 WTXMAP PIC X(17).
 01 WTXIN PIC X(30).
 01 WTXOUT PIC X(30).

 77 Data-From-App Pic x(1000).

 PROCEDURE DIVISION USING WTXRC, WTXMAP, WTXIN, WTXOUT.

 * ON ENTRY CALLER PASSES ADDRESSES FOR WTXINPUT AND OUTPUT

 MAIN-RTN.
 * Initialize the IBM Websphere Transformation Extender API
 Display 'Hallo' UPON SYSOUT.
 Call 'MercInitAPI' returning MERI-RET-CODE.
64 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 If MERI-RET-CODE not equal 0
 then perform Init-DSTX-API-Failed.

 * Now call the IBM Websphere Transformation Extender API.

 * Call InitEp to initialize the ExitParm, and store the address of
 * DSTX-Parameters into the ExitParm block.
 Move low-values to ExitParm.
 Move length of ExitParm to DWSIZE.
 * Set address of the Map and run time options
 SET LPDATATOAPP TO ADDRESS OF DSTX-CALL-Parameters.
 Move WTXMAP to WC-Map-Name.
 Move WTXIN to WC-Data.
 Move '30' to WC-Data-Len.

 * Run the "GET" map
 Call 'RunMap' using by reference EXITPARM.
 If NRETURN greater than HIGH-MAP-RET-CODE
 then perform Map-Failed.

 * If data was returned by the map, copy it to the old data area.
 If DWFROMLEN not equal zeroes
 then
 Set address of DATA-FROM-APP TO LPDATAFROMAPP
 Move DATA-FROM-APP to WTXOUT
 else
 Perform Map-Failed.

 * expunge the null terminator if there is one.
 Inspect WTXOUT replacing all low-values by spaces.

 * Free output memory passed from DSTX
 CALL "CEEFRST" USING LPDATAFROMAPP, FC.
 *
 IF CEE000 THEN
 NEXT SENTENCE
 ELSE
 DISPLAY "ERROR FREEING STORAGE FROM HEAP"
 END-IF.
 *
 SET LPDATAFROMAPP TO NULL.
 *
 * expunge the null terminator if there is one.
 Inspect WTXOUT replacing all low-values by spaces.

 * Bail Out
 GOBACK.

 Init-DSTX-API-Failed.
 * IBM WS TX API initialization failed. Write error message and
 * bail out.
 Display 'IBM WS TX API initialization Failed' upon SYSOUT.
 Exit.

 Map-Failed.
Chapter 4. Alternate processing options 65

 * Couldn't load map? Write error message and bail out.
 Display 'Map ' WTXMAP '.' upon SYSOUT.
 Display 'Return code was ' NRETURN upon SYSOUT.
 Exit.

To research which parameters to use, refer to the WebSphere Transformation Extender
documentation at the following web page:

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp

The sample code required to call the subroutine and pass the execution parameters from the
calling program is shown in Example 4-4.

Example 4-4 Sample code used to call the WebSphere Transformation Extender map executing
subroutine sample

MOVE 'WTXMAPS(DENISTR) ' TO WTXMAP.
 CALL CALLMOD USING WTXRC, WTXMAP, WTXIN, WTXOUT.

Refer to the WebSphere Transformation Extender manuals to get an idea about which
parameters and how they are required to be specified for working in IMS. In addition, there is
a possibility to preinstall the maps on IMS region start. For more information about the IMS
execution option for WebSphere Transformation Extender, refer to the following document:

ftp://ftp.boulder.ibm.com/software/websphere/integration/wdatastagetx/1103.pdf

4.4 Best practices for small batches

Small batches that include Java have the impact of starting the JVM or the initialization of the
batch region, which includes loading and initializing the programs. Most of the initialization of
the JVM is eligible for running on a System z Application Assist Processor (zAAP) or System
z Integrated Information Processor (zIIP), so there is no higher cost associated with the
initialization. However, when running 1000 small batches per day, this can introduce a
significant elapsed time and cost overhead plus higher CPU usage. Nevertheless, if some
vital part or module is changed to use Java and is used by hundreds of batch jobs, it can
make a big difference in the total runtime of sequential job networks.

4.4.1 Reduce the overhead of JVM startup

To reduce the overhead for JVM startup, it is possible to exploit the use of the JDKs Shared
Classloader cache. The shared classloader cache is not only for saving I/Os when multiple
JVMs load the same Java class for execution, it is also for sharing compiled versions of
already executed Java classes and for the so called AOT work, which is part of the
initialization of a JVM.

Batch environments based on WebSphere infrastructure use prestarted JVMs/threads, which
are reused, so for this environment there are solutions to limit the overhead for small batches.

A similar infrastructure can be built with message-driven batch message processing (BMP) in
IMS. Create a batch launcher infrastructure, which starts (for example) 10 IMS regions with a
JVM. The BMP then waits for a message on the IMS queue about which batch program

Note: At the time of writing of this book, there is no solution available for integrating
WebSphere batch with IMS.
66 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp
ftp://ftp.boulder.ibm.com/software/websphere/integration/wdatastagetx/1103.pdf

should be started and the parameters, such as data set names for input and output files that
need to be delivered. This infrastructure requires the use of dynamic allocation because it is
not known in advance in what IMS region the batch workload will execute. A launcher BMP
will then put a message on the IMS queue and one of the BMPs will start executing the
workload. When it finishes, it puts a message on the IMS queue. The launcher can set the
return code and end. That way it should be possible to integrate such batches in job networks
(such as Tivoli Workload Scheduler for z/OS (TWSz)). The WebSphere infrastructure
basically works the same way, but it uses xJCL to define input and output data sets, job-step
sequences, return codes, selective execution, and so forth.

With the preceding approach at the expense of memory usage (prestarted BMPs or JBPs),
the CPU overhead of small batches can be significantly reduced, taking advantage of the
JVM shared cache functionality. However, this would be a roll-your-own (RYO)
implementation not based on tooling, which at some client sites is not in policy. In most cases,
standard middleware and tools should be purchased and used.

A z/OS system can have multiple JVM shared caches with different names and for different
workloads. As an example, one might have two shared caches for batch workloads, two for
online work (such as pure IMS Java and COBOL/Java), and one for Java workloads running
outside IMS. The shared caches use common storage so that is basically one limit of the
number and amount of shared JVM caches.

4.5 Summary

Most customers modernize their IMS applications as a result of business requirements and
do not implement from scratch. In addition, there is a strong demand in the market to replace
traditional languages in IMS applications with Java. This chapter has shown ways about how
to do a migration while continuing to run the applications in IMS. The benefit is that the Java
code implemented as POJO can be easily reused in other environments.

This chapter also listed some options on how to do integration (Callout) with external or non
IMS based services. We also reviewed the demand of some business requirements to use
transformation services such as messaging.
Chapter 4. Alternate processing options 67

68 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Chapter 5. IMS batch samples

In this chapter, we provide some sample Java configurations:

� Information Management System (IMS) Java batch program

� Java configuration and IMS batch message processing (BMP) calls

� Java frameworks used with IMS Java

Software prerequisites for the solutions and samples are provided as part of this book. The
solutions and samples that are described in this chapter can be easily implemented.

5

© Copyright IBM Corp. 2014. All rights reserved. 69

5.1 Sample IMS Java batch program

It is easy to run an IMS Java batch application. A sample is included with the IMS installation
verification process (IVP) that can be used to get started. In this section we review the
software, procedures, and configuration we used in our environment.

5.1.1 Software used in our environment

The following software was used in the test environment:

� z/OS V1R12 (initially, then migrated to z/OS V1R13)
� IMS Version 12
� DB2 for z/OS Version 10
� WebSphere MQ for z/OS Version 7.0.1
� JDK 6.0.1 for z/OS Service Release 1 (SR1)
� Enterprise COBOL for z/OS V4.2
� Enterprise PL/I for z/OS V3.6

5.1.2 Procedures used in our environment

To run an IMS Java batch sample program, we used the procedure listed in Example 5-1.

Example 5-1 Procedure to run IMS Java batch sample program

// PROC MBR=TEMPNAME,PSB=,JVMOPMAS=,OUT=,
// OPT=N,SPIE=0,TEST=0,DIRCA=000,
// STIMER=,CKPTID=,PARDLI=,
// CPUTIME=,NBA=,OBA=,IMSID=,AGN=,
// PREINIT=,RGN=512K,SOUT=A,XPLINK=Y,
// SYS2=,ALTID=,APARM=,ENVIRON=,LOCKMAX=
//*
//*
//JBPRGN EXEC PGM=DFSRRC00,REGION=&RGN,
// PARM=(JBP,&MBR,&PSB,&JVMOPMAS,&OUT,
// &OPT&SPIE&TEST&DIRCA,
// &STIMER,&CKPTID,&PARDLI,&CPUTIME,
// &NBA,&OBA,&IMSID,&AGN,
// &PREINIT,&ALTID,
// '&APARM',&ENVIRON,&LOCKMAX,&XPLINK)
//*
//STEPLIB DD DSN=IMS12A.&SYS2.PGMLIB,DISP=SHR
// DD DSN=IMS12A.&SYS2.SDFSJLIB,DISP=SHR
// DD DSN=IMS12A.&SYS2.DYNALLOC,DISP=SHR
// DD DSN=IMS12A.&SYS2.SDFSRESL,DISP=SHR
// DD DSN=SYS1.SCEERUN,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//DFSDB2AF DD DSN=IMS12A.&SYS2.SDFSRESL,DISP=SHR
// DD DISP=SHR,DSN=DSN910.SDSNEXIT

Note: Some Java Development Kit (JDK) options are only supported with JDK 6.0.1 SR1
or later. When an older JDK is used, make sure that only supported options are used,
otherwise IMS U0101 abends will occur. This means that the JVM could not be started and
the error message is printed in the job log. In the case of unsupported options, it displays a
message about the use of an unknown option.
70 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

// DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOD2
// DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//PROCLIB DD DSN=GAEBLER.CJLAB.PROCLIB,DISP=SHR
// DD DSN=IMS12A.&SYS2.PROCLIB,DISP=SHR

To run the COBOL calls for the Java sample and invoke a sample IMS Java BMP, we used the
JCL listed in Example 5-2.

Example 5-2 JCL to run the COBOL calls Java sample

//RUNJBP EXEC PROC=DFSJBP,
// MBR=DFSSAM09,PSB=DFSSAM09,RGN=0M,
// IMSID=IMSA,ENVIRON=DFSJVMEV,JVMOPMAS=DFSJVMMC
//JAVAOUT DD PATH='/u/gaebler/JVM.OUT',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//JAVAERR DD PATH='/u/gaebler/JVM.ERR',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//SYSPRINT DD SYSOUT=A
//DFSSTAT DD SYSOUT=*

The ENVIRON parameter for the environment variable settings points to the DFSJVMEV proclib
member and the JVMOPMAS parameter for the JVM settings points to the DFSJVMMC proclib
member.

5.1.3 Configuration used in our environment

The configuration and sample environment member for JVM (DFSJVMEV) that we used in
our environment is shown in Example 5-3.

Example 5-3 Sample environment member for JVM (DFSJVMEV)

PATH=/bin:/usr/lpp/java/J601SR1/bin:.
LIBPATH=/u/gaebler:/lib:/usr/lib:/usr/lpp/java/J601SR1/bin:>
/usr/lpp/java/J601SR1/bin/j9vm:/local/db2/db2910_jdbc/lib:>
/local/ims/ims12/imsjava/classic/lib:/u/gaebler

There are two ways to specify the JVM options:

� Directly in the configuration member for the JVM options

� Pointing to a JVM file using the -Xoptionsfile= parameter as shown in Example 5-4.

Example 5-4 Sample JVM configuration member (DFSJVMMC)

How to point to a XOptionsFile
#-Xoptionsfile=/u/gaebler/dfsjvmoptions
#
-Djava.class.path= >
/u/gaebler/CJ01imsdb2.jar:/local/db2/db2910_jdbc:>
/local/db2/db2910_jdbc/classes/db2jcc.jar:>
/local/db2/db2910_jdbc/classes/db2jcc_javax.jar:>
/local/db2/db2910_jdbc/classes/db2jcc_license_cisuz.jar:>
Chapter 5. IMS batch samples 71

/local/ims/ims12/imsjava/classic/imsjavaBase.jar:>
/local/ims/ims12/imsjava/classic/imsjavaTM.jar:>
/local/ims/ims12/imsjava/classic/imsJDBC.jar
#
-Xmaxf0.8
-Xminf0.3
-Xmx96M
-Xmso512k
-Xss256k
-Xms64M
#Xdebug
#Xnoagent
#Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7777
#** Other JVM Settings
-Xcodecache10M
-Xshareclasses:name=cobolims3
#-Xshareclasses
#-Xshareclasses:printAllStats
#-Xshareclasses:verboseIO
-Xscmx64M
-Xscminaot16M
#verbose:gc
#-Xjit:verbose={compile*},verbose={options},vlog=vlog.txt
#-Xint
#-verbose:jni
-Xhealthcenter:port=1982
-Xdump:heap:events=user

The member contains a list of options that were used during testing. For more information
and a description of possible options, refer to the Java Standard Editions website at:

http://www-03.ibm.com/systems/z/os/zos/tools/java

For mapping between the PSB and the Java class name, the DFSJVMAP member is used.
The package and the class name with the main() method are specified for a given PSB as
shown in Example 5-5.

Example 5-5 Sample DFSJVMAP member

JC01TRAN=com/ibm/cjlab/JC01JavaCobol
JPAPSB=com/ibm/ims/hibernate/sample/TestExample
DFSSAM09=sample/imsjpa/TestBMP

With the JCL and PROCLIB members we have listed in this section, it is possible to execute
all of the Java samples by changing the DFSJVMAP member to the correct package and
class name. It is also possible to test multiple Java applications with the same PSB because
the PSB contains all the required PCBs. There is also a plan with the PSB name in DB2,
which has the authority to do everything in DB2 that the program is written to do.

Note: It is possible to select the JDK level, however, IMS applications only work with 31-bit.
For more information and a description of possible options, refer to the SDK Guide at:

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.us
er.aix32.60/pdf/sdkguide.aix32.pdf
72 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www-03.ibm.com/systems/z/os/zos/tools/java
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.aix32.60/pdf/sdkguide.aix32.pdf

5.2 Sample Java configuration and IMS BMP calls

In this section we provide the following samples:

� Java configuration for an IMS BMP
� IMS BMP COBOL calls Java
� IMS BMP PL/I calls a Java method

5.2.1 Sample Java configuration for an IMS Batch Message Program

IMS BMPs are the way to execute a program that starts with a traditional language such as
COBOL, PL/I, or Assembler. Starting with IMS V10, they can be configured to start a JVM
and allow traditional programs to invoke Java methods. A sample configuration required to
start the JVM in a traditional IMS BMP is shown in Example 5-6.

Example 5-6 Sample environment member for the JVM (DFSJVMEV)

PATH=/bin:/usr/lpp/java/J601SR1/bin:.
LIBPATH=/u/gaebler:/lib:/usr/lib:/usr/lpp/java/J601SR1/bin:>
/usr/lpp/java/J601SR1/bin/j9vm:/local/db2/db2910_jdbc/lib:>
/local/ims/ims12/imsjava/classic/lib:/u/gaebler

There are two ways to specify the JVM options:

� Directly in the configuration member for the JVM options
� Pointing to a JVM file using the -Xoptionsfile= parameter

A sample JVM configuration member (DFSJVMMC) member is shown in Example 5-7.

Example 5-7 Sample JVM configuration member

How to point to a XOptionsFile
#-Xoptionsfile=/u/gaebler/dfsjvmoptions
#
-Djava.class.path= >
/u/gaebler/CJ01imsdb2.jar:/local/db2/db2910_jdbc:>
/local/db2/db2910_jdbc/classes/db2jcc.jar:>
/local/db2/db2910_jdbc/classes/db2jcc_javax.jar:>
/local/db2/db2910_jdbc/classes/db2jcc_license_cisuz.jar:>
/local/ims/ims12/imsjava/classic/imsjavaBase.jar:>
/local/ims/ims12/imsjava/classic/imsjavaTM.jar:>
/local/ims/ims12/imsjava/classic/imsJDBC.jar
#
-Xmaxf0.8
-Xminf0.3
-Xmx96M
-Xmso512k
-Xss256k
-Xms64M
#Xdebug
#Xnoagent
#Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7777
#** Other JVM Settings
-Xcodecache10M
-Xshareclasses:name=cobolims3
#-Xshareclasses
Chapter 5. IMS batch samples 73

#-Xshareclasses:printAllStats
#-Xshareclasses:verboseIO
-Xscmx64M
-Xscminaot16M
#verbose:gc
#-Xjit:verbose={compile*},verbose={options},vlog=vlog.txt
#-Xint
#-verbose:jni
-Xhealthcenter:port=1982
-Xdump:heap:events=user

The member contains a list of options that were used during testing. For more information
about these options and a description of all the possible options, refer to Java Standard
Editions website at the following link:

http://www-03.ibm.com/systems/z/os/zos/tools/java

It is possible to pick and choose the JDK level that is used; 31-bit only works with IMS
applications. The SDK Guide reviews all the possible options.

The only other change to existing IMS BMP JCL is to add the ENVIRON= parameter with the
member containing the environment settings and the JVMOPMAS= parameter pointing to the
name of the member containing the JVM settings.

5.2.2 Sample application IMS BMP COBOL calls Java

A sample BMP that calls two Java methods is provided as an IMS sample in this book.

The structure of the sample program where COBOL calls Java is illustrated in Figure 5-1 on
page 75.

Restriction: In the sample JVM settings member, a continued line cannot exceed 255
characters. If that happens, the -Xoptionsfile parameter together with a file in the UNIX
file system of z/OS needs to be used.
74 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www-03.ibm.com/systems/z/os/zos/tools/java

Figure 5-1 Illustration of sample program where COBOL calls Java

This sample program shows that:

� CJ01MAIN is traditionally NODLL compiled.
� CJ01JAVA needs to be DLL compiled to call Java.
� To be able to call CJ01JAVA dynamically from CJ01MAIN, it needs to have a wrapper.
� DLL modules cannot dynamically call NODLL modules and vice versa.
� But DLL and NODLL modules can be statically linked together.

Solution that is depicted in the sample program:

� CJ01KAPS is NODLL compiled and statically linked together with DLL compiled module
CJ01JAVA.

� CJ01MAIN is NODLL compiled and can then dynamically call CJ01KAPS.

The JCL in Example 5-8 was used to run the sample.

Example 5-8 JCL to run the COBOL calls Java sample

//RUNJBP EXEC PROC=IMSBATCH,
// MBR=CJ01MAIN,PSB=CJ01BMP,RGN=0M,SSM=SSM,PRLD=DC,
// IMSID=IMSA,ENVIRON=DFSJVMEV,JVMOPMAS=DFSJVMMC
//JAVAOUT DD PATH='/u/gaebler/JVM.OUT',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//JAVAERR DD PATH='/u/gaebler/JVM.ERR',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//SYSPRINT DD SYSOUT=A

CJ01MAIN
NODLL, DB2:

SYSDATABASES,
IMS: IVPDB2

PGM: CJ01MAIN DB2 Plan: CJ01MAIN

CJ01KAPS
NODLL

CJ01JAVA
LIB, DLL

init(String)
display()

CJ01Hello.java
in CJ01imsdb2.jar
Chapter 5. IMS batch samples 75

//DFSSTAT DD SYSOUT=*

The ENVIRON parm pointed to member DFSJVMEV, which is listed in Example 5-9.

Example 5-9 Environment member used to run the COBOL calls Java sample

PATH=/bin:/usr/lpp/java/J6.0.1/bin:.
LIBPATH=/lib:/usr/lib:/usr/lpp/java/J6.0.1/bin:>
/usr/lpp/java/J6.0.1/bin/j9vm:/local/db2/db2910_jdbc/lib:>
/local/ims/ims12/imsjava/lib:/u/gaebler

The JVM configuration member parameter JVMOPMAS points to member DFSJVMMC. The
JVM configuration member that is used to run the COBOL calls Java sample is listed in
Example 5-10.

Example 5-10 JVM configuration member used to run the COBOL calls Java sample

-Xoptionsfile=/u/gaebler/dfsjvmoptions

It points to a file in the hierarchical file system managed by z/OS, which allows class paths
longer than 255 bytes. The actual JVM options file to run the COBOL calls Java sample is
listed in Example 5-11.

Example 5-11 JVM configuration file used to run the COBOL calls Java sample

-Djava.class.path=/u/gaebler/CJ01imsdb2.jar:/local/db2/db2910_jdbc:/local/db2/db29
10_jdbc/classes/db2jcc.jar:/local/db2/db2910_jdbc/classes/db2jcc_javax.jar:/local/
db2/db2910_jdbc/classes/db2jcc_license_cisuz.jar:/local/ims/ims12/imsjava/imsudb.j
ar:/local/ims/ims12/imsjava/imsutm.jar
#
-Xmaxf0.8
-Xminf0.3
-Xmx64M
-Xmso512k
-Xss256k
-Xms32M
-Xcodecache10M
-Xshareclasses:name=cobolims1
-Xscmx64M
-Xscminaot16M

The NODLL main IMS application is compiled by using the JCL in Example 5-12.

Example 5-12 Sample JCL to compile and link the main IMS transaction

//CJ01MAIN EXEC DSNHICOB,MEM=CJ01MAIN,USER=&SYSUID,
// PARM.COB=RENT,REGION=1400K,
// PARM.LKED='RENT,LIST,XREF,LET,MAP'
//PC.SYSIN DD DSN=&SRCHLQ..SOURCE(CJ01MAIN),DISP=SHR
//PC.SYSLIB DD DUMMY
//LKED.SYSLMOD DD DSN=&IMSHLQ..PGMLIB(CJ01TRAN),DISP=SHR
//LKED.SYSLIB DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR
// DD DSN=&DSNHLQ..SDSNLOAD,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKED,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKEX,DISP=SHR
// DD DSN=&SYS1HLQ..CSSLIB,DISP=SHR
//LKED.SYSIN DD *
76 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 INCLUDE SYSLIB(DSNTIAR)
 INCLUDE SYSLIB(DFSLI000)
 ENTRY CJ01MAIN
 NAME CJ01TRAN(R)
//*

It produces the main routine. The COBOL application that does the JNI calls and actually
invokes the Java method is compiled with the JCL shown in Example 5-13.

Example 5-13 Sample JCL to compile and link the Java method invoking routine

//CJ01JAVA EXEC IGYWCPL,PARM.COBOL='RENT',REGION=1400K,
// PARM.LKED='LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)'
//COBOL.SYSIN DD DSN=&SRCHLQ..SOURCE(CJ01JAVA),
// DISP=SHR
//* Dataset containing JNI.cpy
//COBOL.SYSLIB DD DISP=SHR,DSN=&SRCHLQ..SOURCE
//LKED.SYSLMOD DD DSNAME=&&MODULES(CJ01JAVA),UNIT=SYSALLDA,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3,5)),
// DCB=(BLKSIZE=3200)
//LKED.SYSLIB DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKED,DISP=SHR
//PLKED.SYSIN DD
// DD PATH='/usr/lpp/java/J6.0/bin/j9vm/libjvm.x'
// DD PATH='/usr/lpp/cobol/lib/igzcjava.x'
//LKED.SYSIN DD *
 INCLUDE '/usr/lpp/java/J6.0/bin/j9vm/libjvm.x'
 INCLUDE '/usr/lpp/cobol/lib/igzcjava.x'
 ENTRY CJ01JAVA
 NAME CJ01JAVA(R)
/*

The wrapper to call the DLL subroutine, which is required to invoke Java, the JVM is DLL
compiled is shown in Example 5-14.

Example 5-14 Sample JCL to compile and link the DLL wrapper routine

//CJ01KAPS EXEC IGYWCL,PARM.COBOL='RENT,NODLL,NODYNAM',REGION=1400K,
// PARM.LKED='LIST,XREF,LET,MAP'
//COBOL.SYSIN DD DSN=&SRCHLQ..SOURCE(CJ01KAPS),
// DISP=SHR
//LKED.SYSLMOD DD DSN=&IMSHLQ..PGMLIB(CJ01KAPS),DISP=SHR
//LKED.SYSLIB DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKED,DISP=SHR
// DD DSNAME=&&MODULES,DISP=(OLD,DELETE)
//LKED.SYSIN DD *
 NAME CJ01KAPS(R)
/*

A PSB (CJ01MAIN in case of the sample used here) is required to run the sample and a DB2
Plan with the name of the PSB.

5.2.3 Sample application IMS BMP PL/I calls a Java method

This book provides a sample PL/I program and JCL showing how to invoke a Java method.
Chapter 5. IMS batch samples 77

The main difference for PL/I in comparison to COBOL is that PL/I distinguishes between main
and sub modules. Since the JVM in IMS regions is brought up as part of a CEEPIPI
environment, only PL/I subs are allowed in JVM-enabled IMS dependent regions. This applies
also to the “main” program.

This means that current PL/I mains will fail to execute in an IMS region that is configured to
include a JVM. Alternatively, “main” PL/I programs that are compiled as subroutine modules
will fail to execute in an IMS region without the JVM. The Language Environment enclave will
be built by the application and therefore is required to be a PL/I main.

In our test environment, we created the same PL/I module that is the starting point to execute
a PL/I program and two different versions of the module:

� As a sub stored in load library IMS.PGMLIB.PLISUB
� As a PL/I main stored in load library IMS.PGMLIB.PLIMAIN

Now, all non-JVM IMS regions point to IMS.PGMLIB.PLIMAIN and all JVM-enabled IMS
regions point to IMS.PGMLIB.PLISUB. In IMS online environments, this allows workloads to
move between different IMS regions and to enable a transaction class with IMS enabled
regions to process transactions that do not need the JVM, which could be necessary in case
of peak workloads.

The sample code included in this book, which can run in an IMS JVM enabled region and
invokes a Java method, contains a readme file.

5.2.4 Sample application IMS Java Batch Program Java calls COBOL

Part of the IMS samples that are provided for download as part of the book is a sample Java
Batch Program (JBP) that calls a COBOL routine. The structure of the sample program where
Java calls COBOL is illustrated in Figure 5-2 on page 79.
78 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 5-2 Illustration of a sample program where Java calls COBOL

This sample program shows that:

� JCJavaCobol.java is Java Main program that can run as JBP or JMP.

� JC01COB needs to be DLL compiled and an OO COBOL object to be called from Java
and in order for the COBOL compiler to generate JC01Cob.java and the JC01Cob.so DLL
for use from the Java JNI.

� JC01MAIN is traditionally NODLL compiled and used to run as a subroutine for an IMS
transaction.

� To be able to call JC01MAIN dynamically from JC01COB, it needs to have a wrapper.

� JC01KPM is a NODLL compiled module and statically linked with JC01MAIN.

� DLL modules cannot dynamically call NODLL modules and vice versa.

� But DLL and NODLL modules can be statically linked together.

Solution depicted in sample:

� JC01COB is DLL compiled and dynamically calls JC01KPM, which is also DLL compiled.

� JC01MAIN is NODLL compiled and statically linked together with DLL compiled module
JC01KPM.

JCJavaCobol.java
in JC01imsdb2.jar

JC01Cob.java
in JC01imsdb2.jar

PGM: JC01PGM DB2 Plan: JC01PGM

JC01COB
DLL, Cobol

Class
JC01COB.so

JC01KPM
DLL

JC01MAIN
NODLL, DB2

SYSDATBASES,
IMS: IVPDB2
Chapter 5. IMS batch samples 79

The JCL in Example 5-15 was used to run the sample.

Example 5-15 JCL to run the IMS Java Batch Program

//JC01JMP JOB ,'',
// MSGCLASS=A,TIME=1440,
// MSGLEVEL=(1),REGION=0M
//IMSPROC JCLLIB ORDER=IMS.PROCLIB
//RUNJMP EXEC PROC=DFSJMP,
// AGN=IVP, AGN NAME
// NBA=40,
// OBA=20,
// TLIM=10, MPR TERMINATION LIMIT
// SOD=, SPIN-OFF DUMP CLASS
// IMSID=IMSD,
// CL1=001,
// ENVIRON=DFSJVMEV, JMP ENVIRON MEMBER
// JVMOPMAS=DFSJVMMC JMP MASTER MEMBER
//JAVAOUT DD PATH='/u/gaebler/JJVM.OUT',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//JAVAERR DD PATH='/u/gaebler/JJVM.ERR',
// PATHDISP=(KEEP,KEEP),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//SYSPRINT DD SYSOUT=A
/*

Similar to running Java only applications, the environment and JVM configuration settings as
well as the mapping configuration to map a PSB name to a Java package and class is
required. See Example 5-16 for a sample environment member for the JVM (DFSJVMEV).

Example 5-16 Sample environment member for the JVM

PATH=/bin:/usr/lpp/java/J601SR1/bin:.
LIBPATH=/u/gaebler:/lib:/usr/lib:/usr/lpp/java/J601SR1/bin:>
/usr/lpp/java/J601SR1/bin/j9vm:/local/db2/db2910_jdbc/lib:>
/local/ims/ims12/imsjava/classic/lib:/u/gaebler

There are two ways of specifying the JVM options:

� Directly in the configuration member for the JVM options
� Pointing to a JVM file using the -Xoptionsfile= parameter.

A sample JVM configuration member (DFSJVMMC) is shown in the comment in
Example 5-17.

Example 5-17 Sample JVM configuration member (DFSJVMMC)

How to point to a XOptionsFile
#-Xoptionsfile=/u/gaebler/dfsjvmoptions
#
-Djava.class.path= >
/u/gaebler/CJ01imsdb2.jar:/local/db2/db2910_jdbc:>
/local/db2/db2910_jdbc/classes/db2jcc.jar:>
/local/db2/db2910_jdbc/classes/db2jcc_javax.jar:>
80 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

/local/db2/db2910_jdbc/classes/db2jcc_license_cisuz.jar:>
/local/ims/ims12/imsjava/classic/imsjavaBase.jar:>
/local/ims/ims12/imsjava/classic/imsjavaTM.jar:>
/local/ims/ims12/imsjava/classic/imsJDBC.jar
#
-Xmaxf0.8
-Xminf0.3
-Xmx96M
-Xmso512k
-Xss256k
-Xms64M
#Xdebug
#Xnoagent
#Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7777
#** Other JVM Settings
-Xcodecache10M
-Xshareclasses:name=cobolims3
#-Xshareclasses
#-Xshareclasses:printAllStats
#-Xshareclasses:verboseIO
-Xscmx64M
-Xscminaot16M
#verbose:gc
#-Xjit:verbose={compile*},verbose={options},vlog=vlog.txt
#-Xint
#-verbose:jni
-Xhealthcenter:port=1982
-Xdump:heap:events=user

The member contains a list of options that were used during testing. For more information
about these options and a description of all the possible options, refer to the Java Standard
Editions website at the following link:

http://www-03.ibm.com/systems/z/os/zos/tools/java

It is possible to pick and choose the JDK level that is used; 31-bit only works with IMS
applications. The SDK Guide contains and describes all the possible options.

For the mapping between the PSB and the Java class name, the DFSJVMAP member is
used, where the package and the class name with the main() method are being specified for
a given PSB. See Example 5-18.

Example 5-18 Sample DFSJVMAP member

JC01TRAN=com/ibm/cjlab/JC01JavaCobol
JPAPSB=com/ibm/ims/hibernate/sample/TestExample
DFSSAM09=sample/imsjpa/TestBMP

To execute the native library through the JNI, a wrapper class is required. With Enterprise
COBOL for z/OS, the COBOL compiler will generate the class at compile time.

Restriction: In the sample JVM settings member, a continued line cannot exceed 255
characters. If that applies, the -XOptionsfile parameter together with a file in the UNIX file
system of z/OS needs to be used.
Chapter 5. IMS batch samples 81

http://www-03.ibm.com/systems/z/os/zos/tools/java

The JCL used to compile the OO COBOL class into a DLL residing in the z/OS UNIX file
system and generate the JNI stub Java source is shown in Example 5-19. The generated JNI
stub is also shown in this example.

Example 5-19 JCL to compile and link the OO COBOL class with the generation of the JNI stub

//JC01COB EXEC IGYWCL,
// PARM.COBOL='RENT,PGMN(LM),DLL,EXPORTALL',REGION=1400K,
// PARM.LKED='RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)'
//COBOL.SYSIN DD DSN=&SRCHLQ..SOURCE(JC01COB),
// DISP=SHR
//* Dataset containing JNI.cpy
//COBOL.SYSLIB DD DISP=SHR,DSN=&SRCHLQ..SOURCE
//LKED.SYSLIB DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR
// DD DSN=&DSNHLQ..SDSNLOAD,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKED,DISP=SHR
// DD DSN=&CEEHLQ..SCEELKEX,DISP=SHR
// DD DSN=&SYS1HLQ..CSSLIB,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE '/usr/lpp/java/J6.0/bin/j9vm/libjvm.x'
 INCLUDE '/usr/lpp/cobol/lib/igzcjava.x'
/*
//COBOL.SYSJAVA DD PATH='/u/gaebler/JC01Cob.java',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXO,SIRWXG,SIRWXU),
// FILEDATA=TEXT
//LKED.SYSLMOD DD PATH='/u/gaebler/libJC01Cob.so',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXO,SIRWXG,SIRWXU)
//LKED.SYSDEFSD DD PATH='/u/gaebler/libJC01Cob.x',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXO,SIRWXG,SIRWXU)

Refer to Example 5-20 on page 86 for a description about how to use a DLL that is not in the
UNIX file system of z/OS. This might be allowed with a possible future IMS function to
preinstall the DLL modules into the IMS region.

In the sample application, it is also shown how to call an existing NODLL-compiled COBOL
module. As for COBOL calls to Java, a wrapper module is required. The wrapper module
JC01KPM is DLL compiled and statically linked with the JC01MAIN subroutine which
represents the existing NODLL routine in the example scenario. With this approach,
JC01KPM can be called dynamically and changed without recompile of JC01COB. This
would also result in a regeneration of the JNI stub Java source and lead to a complete rebuilt
of the JAR file for the Java part of the application. The JBP can then be executed.

5.3 Sample Java frameworks used with IMS Java

In this section we review how to install the required plug-ins into Rational Developer for
System z. We also provide a detailed sample for using Hibernate as Object Relational (OR)
mapper with IMS DB.

As part of this book we provide the most significant samples delivered in a single Rational
Developer for System z workspace.
82 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

5.3.1 How to install all required plug-ins into Rational Developer for System z

It is now possible to install many of the required components for interaction with IMS
resources into the same Rational Developer for System z installation. This provides the ability
to do almost everything from within the same Eclipse installation.

Prerequisite for an installation of Rational Developer for System z V8.0, the following
components were used:

� Enterprise Suite IMS Explorer for developers V2.1
� Enterprise Suite IMS DL/I Model Utility plug-in V2.1
� Debug Tool Plug-in for Eclipse V11.1.0.0

The Enterprise Suite components can be downloaded from the IMS home page:
http://www.ibm.com/ims. There are links pointing to the Enterprise Suite and downloads.

If Rational Developer for System z is already installed, the much smaller installation files for
installation on top of Rational Developer for System z can be used.

The instructions for downloading and installing the IBM Debug Tool Plug-in for Eclipse can be
found at the following link:

http://www-01.ibm.com/support/docview.wss?uid=swg24026610

The IMS Enterprise Suite V2.1 components are installed using IBM Installation Manager:

� Add the compressed files as a repository and then click install.

� During the installation process, Installation Manager searches the repository to find the
IMS Enterprise Suite Explorer for Development and the IMS Enterprise Suite DLIModel
utility plug-in.

� Check these two components and continue the installation process. If older versions are
already installed, they must be removed first.

� Both components were installed in the same package group as Rational Developer for
System z. The default is to install them in a different package group.

Per the instructions, the Debug Tool Plug-in for Eclipse V11.1.0.0 must be installed from
within the started Rational Developer for System z workspace. Go through the instructions
that start with the menu option Help  Software Updates and finish the installation process.

In the end, all the perspectives offered by these components will be seamlessly integrated
with the existing Rational Developer for System z installation. Currently, it is not possible to
update them over the network. Updates must be applied manually.

5.3.2 Download the Hibernate JARs into the sample workspace

Currently, the workspace with the Hibernate samples does not contain all the JAR files that
are required by Hibernate.

The following list of projects and JAR files are required to make the Hibernate_pure and the
Hibernate_local_cache workspaces work. After download, they must be added to the class
path of every Hibernate related project:

� Hibernate 3.6.8.FINAL from Hibernate.org, extract the following:

– Executable JAR files from the hibernate-distribution-3.6.8
Chapter 5. IMS batch samples 83

http://www-01.ibm.com/support/docview.wss?uid=swg24026610
http://www.ibm.com/ims

– Final directory: antlr-2.7.6.jar, cglib-2.2.jar, commons-collections-3.1.jar,
dom4j-1.6.1.jar, hibernate3.jar, hibernate-jpa-2.0-api-1.0.1.Final.jar,
javassist3.12.0.GA.jar, jta-1.1.jar, slf4j-api-1.6.1.jar

� SLF4J 1.6.1 from slf4j.org go to previous versions

– Select 1.6.1

– Extract the following Executable JAR file: slf4j-log4j12-1.6.1.jar

� Apache Log4J 1.2 from logging.apache.org/log4j,

– Extract the following Executable JAR file: log4j-1.2.16.jar

In addition to the preceding JAR files, the Hibernate_distributed_cache requires the
downloads for EHCache.

5.3.3 Hibernate as Object Relational mapper with IMS DB

In this section, we describe an example about how to map an existing IMS Database against
an object hierarchy using Hibernate. Because Hibernate only supports SQL, the use of the
IMS JDBC Driver is required.

Scenario with Parts Order database
In our scenario, we use the Parts Order sample database that is provided in the IMS
installation verification program (IVP).

A chart of the DI21PART IMS sample database that comes with IMS is depicted in Figure 5-3
on page 85. It can be installed and used by any IMS installation.

The chart depicts:

� The hierarchical structure of the segments in the Parts Order database.

� Each rectangle represents a database segment.

� PARTROOT is the root segment of this database, and STANINFO and STOKSTAT are its
child segments.

� CYCCOUNT and BACKORDR are the child segments for STOKSTAT.

� Each segment contains one or more fields that contain data. For example, PARTKEY is a
field in the PARTROOT segment.

Note: IMS DB does not support the CREATE TABLE or ALTER TABLE statements.
84 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Figure 5-3 Structure of the sample part database

Only the IMS DB key fields were defined in the DBDs, so copybooks were imported to create
a complete mapping that also contains the application defined database fields.

It is assumed that there is a working copy of either Rational Developer for System z, or
Eclipse with IMS Enterprise Suite Explorer is installed. For information about how to install
and use the plug-in, refer to IMS 11 Open Database, SG24-7856.

When the process of the mapping with the IMS Enterprise Suite Explorer is finished, a Java
source file called the DLIDatabaseView is created. It contains the metadata for any Java based
access to an IMS database. This DLIDatabaseview class later is required to be in the class
path of the IMS Java JDBC driver as well as in the connection URL for use with the IMS
Universal JDBC Driver for either Type 2 or Type 4 JDBC access to IMS data.

As of the writing of this book, IMS V12 provides only the ability to store IMS metadata in a
catalog. It is not possible to use the IMS catalog as the metadata source for the IMS Universal
JDBC driver.

The best process to map the IMS DB to an object hierarchy is when the current IMS DB is
used as the source to create the mapping of the Java objects. This process includes the
following steps:

1. Create the IMS DB metadata Java source class, DLIDatabaseView, using the IMS
Enterprise Suite Explorer.

The keys need to be in separate Java objects and it inherits the parent level keys in order
to preserve the hierarchical levels for well performing access to IMS data. Hibernate then
Chapter 5. IMS batch samples 85

builds WHERE clauses for SQL that contain the higher-level keys in the WHERE clauses
and avoids IMS database scans when the higher-level keys are known.

2. Write down the key field names, data types, and lengths for all segments and their
hierarchical structure. This can be obtained from the generated Java code DLI Database.

The DLIDatabaseView generated Java code for the PART and STOKSTAT segments is
shown in Example 5-20.

Example 5-20 DLIDatabaseView generated Java code for PART and STOKSTAT segments

// The following describes Segment: PARTROOT ("PARTROOT") in PCB: PCB01 ("PCB01")
 static DLITypeInfo[] PCB01PARTROOTArray= {
 new DLITypeInfo("PARTKEY", DLITypeInfo.CHAR, 1, 17, "PARTKEY",
DLITypeInfo.UNIQUE_KEY),
 new DLITypeInfo("PART", DLITypeInfo.CHAR, 3, 15),
 new DLITypeInfo("PARTDESC", DLITypeInfo.CHAR, 27, 20)
 };
 static DLISegment PCB01PARTROOTSegment= new DLISegment
 ("PARTROOT","PARTROOT",PCB01PARTROOTArray,50);

// The following describes Segment: STOKSTAT ("STOKSTAT") in PCB: PCB01 ("PCB01")
 static DLITypeInfo[] PCB01STOKSTATArray= {
 new DLITypeInfo("STOCKEY", DLITypeInfo.CHAR, 1, 16, "STOCKEY",
DLITypeInfo.UNIQUE_KEY),
 new DLITypeInfo("AREA", DLITypeInfo.CHAR, 3, 1),
 new DLITypeInfo("DEPT", DLITypeInfo.CHAR, 4, 2),
 new DLITypeInfo("PROJ", DLITypeInfo.CHAR, 6, 3),
 new DLITypeInfo("DIV", DLITypeInfo.CHAR, 9, 2),
 new DLITypeInfo("UNITPRICE", "S99999V999", DLITypeInfo.ZONEDDECIMAL, 21, 8),
 new DLITypeInfo("UNIT", DLITypeInfo.CHAR, 35, 4),
 new DLITypeInfo("STKCTDATE", DLITypeInfo.CHAR, 72, 3),
 new DLITypeInfo("CURRENTREQMTS", "S9999999", DLITypeInfo.ZONEDDECIMAL, 90, 7),
 new DLITypeInfo("UNPLREQMTS", "S9999999", DLITypeInfo.ZONEDDECIMAL, 98, 7),
 new DLITypeInfo("ONORDER", "S9999999", DLITypeInfo.ZONEDDECIMAL, 106, 7),
 new DLITypeInfo("INSTOCK", "S9999999", DLITypeInfo.ZONEDDECIMAL, 114, 7),
 new DLITypeInfo("PLANDISB", "S9999999", DLITypeInfo.ZONEDDECIMAL, 122, 7),
 new DLITypeInfo("UNPLDISB", "S9999999", DLITypeInfo.ZONEDDECIMAL, 130, 7)
 };
 static DLISegment PCB01STOKSTATSegment= new DLISegment
 ("STOKSTAT","STOKSTAT",PCB01STOKSTATArray,160);

The data required for the PART and STOKSTAT segments is listed in Table 5-1.

Table 5-1 Metadata required to create the Java objects for the keys and segment hierarchy

3. Create the Java object for the key of the root segment:

– Class is named PartKey with only one data item partKey of Java type String

Parent segment Segment name Key name Key data type Key length

None PARTROOT PARTKEY java.lang.String 17 bytes

PARTROOT STOKSTAT STOCKEY java.lang.String 16 bytes

PARTROOT STANINFO STANKEY java.lang.String 2 bytes

STOKSTAT CYCCOUNT CYCLKEY java.lang.String 2 bytes

STOKSTAT BACKORDR BACKKEY java.lang.String 10 bytes
86 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

– The serialVersionUID is required to avoid Java warnings
– The getter and setter method for the data item partKey with an optional self

implemented toString method

The Java object class PartKey that reflects the key of the root segment named partKey is
shown in Example 5-21.

Example 5-21 Java object class PartKey

public class PartKey {
private static final long serialVersionUID = 1L;
private String partKey;

public PartKey(){
}

public String getPartKey() {
return partKey;

}

public void setPartKey(String partKey) {
this.partKey = partKey;

}

public String toString() {
return "Partkey: "+getPartKey();

}
}

4. Create the Java object for the key of the STOKSTAT segment.

The Class is named StocKey and it inherits PartKey. Hibernate requires that it is
serializable because StocKey has only one data item. The serialVersionUID is required to
avoid Java warnings. Use the getter and setter method for the data item StocKey with an
optional self implemented toString method. The Java object class StocKey is shown in
Example 5-22. It shows the key of the STOKSTAT segment named StocKey as well as the
hierarchical parentage to the PART segment by inheriting the PartKey class.

Example 5-22 Java object class StocKey

import java.io.Serializable;

public class StocKey extends PartKey implements Serializable{

private static final long serialVersionUID = 1L;
private String stocKey;

public StocKey(){
}

public void setStocKey(String stanKey) {
this.stocKey = stanKey;

}

Tip: All Eclipse-based development environments have the ability to generate the getter
and setter methods for a given Java data item. Right-click the data item and select the
menu Source  Generate getters and setters... The wizard allows you to select
multiple data items as well as where to insert the code.
Chapter 5. IMS batch samples 87

public String getStocKey() {
return stocKey;

}

public String toString() {
return "Stockkey: "+getStocKey();

}
}

5. Create the Java object for the key of the STANINFO segment.

The Class is named StanKey that inherits PartKey and it is serializable as required by
Hibernate. It has only one data item stanKey (the serialVersionUID is required to avoid
Java warnings) as well as the getter and setter method for the data item stanKey with an
optional self implemented toString method.

6. Create the Java object for the key of the CYCCOUNT segment.

Class is named CyclKey that inherits StocKey (serializable is required by Hibernate) with
only one data item cyclKey (the serialVersionUID is required to avoid Java warnings) as
well as the getter and setter method for the data item cyclKey with an optional self
implemented toString method.

7. Create the Java object for the key of the BACKORDR segment.

Class is named BackKey that inherits StocKey (serializable is required by Hibernate) with
only one data item backKey (the serialVersionUID is required to avoid Java warnings) as
well as the getter and setter method for the data item backKey with an optional self
implemented toString method.

The key objects have been created successfully.

8. From the DLIDatabaseView (see Example 5-20 on page 86), it is required to make a list of
the data items to create the mapping objects for the complete segments.

The list of data items in Table 5-2 are also required to create the Hibernate mapping file.

Table 5-2 List of data items for segment PARTROOT

The PARTROOT segment has two child segments STANINFO and STOKSTAT. To have a
relationship to the lower-level segments, Java Sets are used to reflect a possible 1:n
relationship between PARTROOT and its child segments.

Arrays and maps can only be used with segments that have integer type keys.

9. Create the Java object for the PARTROOT segment.

Class is named Part and contains the key and data items for the segments as well as its
getter and setter methods plus the two Set data items reflecting the 1:n relationships to the
two child segments STANINFO and STOKSTAT with an optional self implemented
toString method, as shown in Example 5-23 on page 89.

Data item name Data item type Data item length

partKey PartKey (created earlier) -

part java.lang.String 15 bytes

partDesc java.lang.String 20 bytes

stokStat StokStat (to be created) -

stanInfo StanInfo (to be created) -
88 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Example 5-23 Java object class part reflecting the PARTROOT segment

import java.util.Set;

public class Part {
private static final long serialVersionUID = 1L;
private String partKey;
private String part;
private String partDesc;

//Array and Map should be used with Integer keys only
private Set<?> stokStat;
private Set<?> stanInfo;

public Part(){
}

public String getPartKey() {
return partKey;

}

public void setPartKey(String partKey) {
this.partKey = partKey;

}

public String getPart() {
return part;

}

public void setPart(String part) {
this.part = part;

}

public String getPartDesc() {
return partDesc;

}

public void setPartDesc(String partDesc) {
this.partDesc = partDesc;

}

public void setStokStat(Set<?> stokStat) {
this.stokStat = stokStat;

}

public Set<?> getStokStat() {
return stokStat;

}

public void setStanInfo(Set<?> stanInfo) {
this.stanInfo = stanInfo;

}

public Set<?> getStanInfo() {
return stanInfo;

}

Chapter 5. IMS batch samples 89

public String toString() {
return "Partkey: "+getPartKey()+" Part: "+getPart()+" PartDesc:

"+getPartDesc();
}

}

10.Create the mapping Java class for the STANINFO segment.

From the DLIDatabaseView (refer to Example 5-20 on page 86), it is required to make a
list of the data items to create the mapping objects for the complete segments.

The list of data items in Table 5-3 is also required to create the Hibernate mapping file.

Table 5-3 List of data items for the STOKSTAT segment

The STOKSTAT segment has two child segments: CYCCOUNT and BACKORDR.

To have a relationship to the lower-level segments, Java Sets are used to reflect a possible
1:n relationship between STOKSTAT and its child. Arrays and Maps can only be used with
segments that have Integer type keys. In addition to reflect the n:1 relationship for each
STOKSTAT segment to its parent PARTROOT, a single data item part also needs to be
added to the STOKSTAT Java class object.

11.Create the Java object for the STOKSTAT segment.

Class is named StokStat and contains the key and data items for the segments as well as
its getter and setter methods plus the part data item to point to the parent PARTROOT
segment and the two Set<?> data items reflecting the 1:n relationships to the two child
segments STANINFO and STOKSTAT with an optional self implemented toString method.
See Example 5-24 on page 91, which has been shortened for readability.

Data item name Data item type Data item length

stocKey StocKey (created earlier) -

area java.lang.String 1 byte

dept java.lang.String 2 bytes

proj java.lang.String 3 bytes

div java.lang.String 2 bytes

unitPrice java.math.BigDecimal 8 bytes

unit java.lang.String 4 bytes

stkctDate java.lang.String 3 bytes

currentReqmts java.math.BigDecimal 7 bytes

unplReqmts java.math.BigDecimal 7 bytes

onOrder java.math.BigDecimal 7 bytes

inStock java.math.BigDecimal 7 bytes

planDisb java.math.BigDecimal 7 bytes

unplDisb java.math.BigDecimal 7 bytes

cyclCount CyclCount (to be created) -

backOrdr BackOrdr (to be created) -
90 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Example 5-24 Java object class part reflecting the StokStat segment

import java.math.BigDecimal;
import java.util.Set;

public class StokStat {
private StocKey stocKey;
private String area;
private String dept;
private String proj;
private String div;
private BigDecimal unitPrice;
private String unit;
private String stkctDate;
private BigDecimal currentReqmts;
private BigDecimal unplReqmts;
private BigDecimal onOrder;
private BigDecimal inStock;
private BigDecimal planDisb;
private BigDecimal unplDisb;

private Set<?> cyclCount;
private Set<?> backOrdr;

private Part part;

public StokStat(){
}

public void setStocKey(StocKey stocKey) {
this.stocKey = stocKey;

}

public StocKey getStocKey() {
return stocKey;

}

...

12.Create the Java class file mappings for all other segments, if required.

Note: It is possible to work with a subset of the IMS DB segments and it might not be
required to map all the segments against Java objects. If a segment between two
hierarchical levels (for example, STOKSTAT) is omitted for access to the PARTROOT
and CYCCOUNT segments, data access might be limited. For inserts and updates the
key of the higher-level segment is required, but it is not possible if the STOKSTAT
segment is omitted.

One example is to map PARTROOT and STANINFO segments and access them
because all others are not required from a business perspective. Another example is to
only map PARTROOT, STOKSTAT, and CYCCOUNT, because they are in the same
hierarchical path.

When the path from the root segment to any lower-level segment is completely
mapped, there are no restrictions to Select, Update, or Insert processing.
Chapter 5. IMS batch samples 91

13.Create the Hibernate mapping when all the mappings are done. This can be done by
annotations, which requires the annotation components of Hibernate to be in the class
path, or to achieve XML-based (.hbm.xml file) mapping, which is the easier approach.

To create the Hibernate mapping requires the information that is listed in Table 5-1 on
page 86 and in Table 5-2 on page 88. The key definitions are the ID for the root segment
and the composite IDs. The 1:n relationships for the child or dependent segments are
implemented as sets with concatenated keys (except for the root segment) and
one-to-many relationship type.

The on-delete noaction parameter reflects the fact that when a segment is deleted, all its
dependent segments are automatically deleted as well or deleted on cascade. The same
applies that if the key of a segment is changed, all the dependent segments will
automatically have that higher-level key changed.

In IMS, there is no need to change the reference of the key in the dependent segments
because it is implemented as a foreign key field that is automatically derived from the
parent segments.

The complete class mapping for the PARTROOT segment according to the Part Java
class created earlier is displayed in Example 5-25.

Example 5-25 Class tag representing the Hibernate mapping for the PARTROOT segment

<class name="com.ibm.ims.hibernate.sample.Part" table="PARTROOT">
 <id name="partKey" column="PARTKEY" type="java.lang.String" length="17">
 <generator class="assigned"/>
 </id>
 <property name="part" column="PART" type="java.lang.String" length="15"/>
 <property name="partDesc" column="PARTDESC" type="java.lang.String"
length="20"/>
 <set name="stokStat" cascade="none">
 <key column="PARTROOT_PARTKEY" on-delete="noaction" update="false"/>
 <one-to-many class="com.ibm.ims.hibernate.sample.StokStat"/>
 </set>
 <set name="stanInfo" cascade="none">
 <key column="PARTROOT_PARTKEY" on-delete="noaction" update="false"/>
 <one-to-many class="com.ibm.ims.hibernate.sample.StanInfo"/>
 </set>
 </class>

The lower-level segments have composite IDs and concatenated keys. They use the
foreign key definitions that come automatically from the IMS JDBC Driver and the name is
concatenated SEGMENT_KEYFIELD. The n:1 relationship to the parent segment is
implemented as a many-to-one mapping for Hibernate.

The complete class mapping for the STOKSTAT segment according to the StokStat Java
class created earlier is shown in Example 5-26.

Example 5-26 Class tag representing the Hibernate mapping for the STOKSTAT segment

<class name="com.ibm.ims.hibernate.sample.StokStat" table="STOKSTAT">
 <composite-id name="stocKey">
 <key-property name="partKey" column="PARTROOT_PARTKEY"
type="java.lang.String" length="17"/>
 <key-property name="stocKey" column="STOCKEY" type="java.lang.String"
length="10"/>
 <generator class="assigned"/>
 </composite-id>
 <property name="area" column="AREA" type="java.lang.String" length="1"/>
92 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 <property name="dept" column="DEPT" type="java.lang.String" length="2"/>
 <property name="proj" column="PROJ" type="java.lang.String" length="3"/>
 <property name="div" column="DIV" type="java.lang.String" length="2"/>
 <property name="unit" column="UNIT" type="java.lang.String" length="4"/>
 <property name="stkctDate" column="stkctDate" type="java.lang.String"
length="3"/>
 <set name="cyclCount" cascade="none">
 <key>
 <column name="PARTROOT_PARTKEY" length="17"></column>
 <column name="STOKSTAT_STOCKEY" length="16"></column>
 </key>
 <one-to-many class="com.ibm.ims.hibernate.sample.CyclCount"/>
 </set>
 <set name="backOrdr" cascade="none">
 <key>
 <column name="PARTROOT_PARTKEY" length="17"></column>
 <column name="STOKSTAT_STOCKEY" length="16"></column>
 </key>
 <one-to-many class="com.ibm.ims.hibernate.sample.BackOrdr"/>
 </set>

<many-to-one name="part" class="com.ibm.ims.hibernate.sample.Part"
insert="false" update="false" cascade="none">

<column name="PARTROOT_PARTKEY" length="17"></column>
</many-to-one>

 </class>

The generator class for the keys is assigned because the IMS database does not support
automatic key generation like auto increment and in order to add a new non-root segment,
the parentage to one or more parent segments needs to be established for the insert to
work.

For example, to add a STOKSTAT segment using Hibernate, the key of the PARTROOT
segment where the STOKSTAT segment should be placed needs to be specified. This is
also the reason that composite IDs and concatenated keys were used for the Hibernate
key mapping of all non-root segments, such that the specification of all keys in the
hierarchic sequence up to the root segment is enforced by the Hibernate layer.

To create the Hibernate configuration consists of some naming conventions and the
configuration of the IMS Universal JDBC driver to be used for accessing the IMS database.
See Example 5-27.

Example 5-27 IMS Universal JDBC driver remote usage configuration as part of the hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>

Note: The complete Hibernate mapping is part of the sample, which is part of the
Rational Developer for System z workspace that contains the IMS samples. Since the
workspace is a compressed file, it should be possible to extract it and import it into
other Eclipse and non-Eclipse-based development environments.
Chapter 5. IMS batch samples 93

 <property
name="connection.url">jdbc:ims://zserveros.dfw.ibm.com:7001/class://samples.ivp.op
endb.DFSSAM09DatabaseView:user=USERID;password=PASSWORD;</property>

<property name="connection.driver_class">com.ibm.ims.jdbc.IMSDriver</property>
<property name="dialect">org.hibernate.dialect.DB2Dialect</property>

 <property
name="transaction.factory_class">org.hibernate.transaction.JDBCTransactionFactory<
/property>
 <!-- thread is the short name for
 org.hibernate.context.ThreadLocalSessionContext
 and let Hibernate bind the session automatically to the thread
 -->
 <property name="current_session_context_class">thread</property>
 <!-- this will show us all sql statements -->
 <property name="hibernate.show_sql">true</property>

<!-- mapping files -->
<mapping resource="com/ibm/ims/hibernate/sample/part.hbm.xml" />

</session-factory>
</hibernate-configuration>

Hibernate requires log4j properties and depending on the Hibernate version or function level
(annotations require additional classes), a certain number of JAR files are required in the
class path. The JAR files come either directly from the Hibernate website or are references to
other open source projects, such as Apache Commons and Log4J.

For the Hibernate tests that do not use caching, the following JAR files are required to be in
the class path:

� antldr-2.7.6.jar
� commons-collections-3.1.jar
� dom4j-1.6.1.jar
� hibernate3.jar, imsudb.jar
� javaassist-3.9.0.jar
� jta-1.1.jar
� log4j-1.2.15.jar
� slf4j-api-1.5.11.jar
� slf4j-log4j12-1.5.11.jar
� slf4j-log4j12-1.5.11.jar

An application based on the Hibernate API needs to be written to be able to load an object
based on the data in the IMS DB. The easiest way is to encapsulate the Hibernate access
using, for example getObject method, and have a simple application; see Example 5-28.

Example 5-28 getObject method implementation to hide the Hibernate access from the application

//method to load a segment according to the key specified
 private static Object getObject(Class<?> clazz, Serializable id) {
 Transaction tx = null;
 Session session = SessionFactoryUtil.getInstance().getCurrentSession();
 Object object = null;
 try {
 tx = session.beginTransaction();
 object = session.get(clazz, id);
 if (object == null) {
 System.out.println("Object loaded from Session.");
 object = session.load(clazz, id);
94 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 } else {
 System.out.println("Object loaded from Database");
 }
 tx.commit();
 return object;
 } catch (RuntimeException e) {
 if (tx != null && tx.isActive()) {
 try {
// Second try catch as the rollback could fail as well
 tx.rollback();
 } catch (HibernateException e1) {
 logger.debug("Error rolling back transaction");
 }
 e.printStackTrace();
// throw again the first exception
 throw e;
 }
 }
 return null;
 }

The sample code in Example 5-29 is used to access the Part Object with key 02AN960C10.

Example 5-29 Load a Part Object from the PARTROOT segment using the getObject method

Part testpart = (Part)getObject(Part.class, new String("02AN960C10"));
System.out.println(testpart.getPartKey());

Example 5-30 depicts the createObject method implemented to create a new object.

Example 5-30 createObject method to hide the Hibernate access from the application

//method to create a segment according to the object specified
 private static void createObject(Object object) {
 Transaction tx = null;
 Session session = SessionFactoryUtil.getInstance().getCurrentSession();
 try {
 tx = session.beginTransaction();
 session.save(object);
 tx.commit();
 } catch (RuntimeException e) {
 if (tx != null && tx.isActive()) {
 try {
// Second try catch as the rollback could fail as well
 tx.rollback();
 } catch (HibernateException e1) {
 logger.debug("Error rolling back transaction");
 }
// throw again the first exception
 throw e;
 }
 }
 }
Chapter 5. IMS batch samples 95

The sample code for creating a new object is shown in Example 5-31.

Example 5-31 Create a Part Object using the createObject method

//create a new part
 Part denisPart = new Part();
 denisPart.setPartKey("02This is partXX");
 denisPart.setPart("This is partXX");
 denisPart.setPartDesc("very sweet");
 denisPart.setStokStat(null);
 //make persistent if its not there
 System.out.println(denisPart.getPartKey());
 try {
 createObject(denisPart);
 } catch (Exception e) {
 System.out.println("Guess the part already exists.");
 e.printStackTrace();
 }
 // our instance has a primary key now:
 logger.debug("{}", denisPart);

The updateObject method implementation to update an object is shown in Example 5-32.

Example 5-32 updateObject method implementation to hide the Hibernate access from the application

//method to update a segment according to the object specified
 private static void updateObject(Object object) {
 Transaction tx = null;
 Session session = SessionFactoryUtil.getInstance().getCurrentSession();
 try {
 tx = session.beginTransaction();
 session.update(object);
 tx.commit();
 } catch (RuntimeException e) {
 if (tx != null && tx.isActive()) {
 try {
// Second try catch as the rollback could fail as well
 tx.rollback();
 } catch (HibernateException e1) {
 logger.debug("Error rolling back transaction");
 }
// throw again the first exception
 throw e;
 }
 }
 }

Example 5-33 shows the sample code to update an object.

Example 5-33 Update a Part Object using the updateObject method

//Change a value of the object
 System.out.println(denisPart.getPartKey());
 denisPart.setPartDesc("Norther Forest Honey");
 //make persistent
 updateObject(denisPart);
96 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 System.out.println(denisPart.getPartKey());

The method implementation to delete an object is shown in Example 5-34.

Example 5-34 deleteObject method implementation to hide the Hibernate access from the application

//method to delete a segment according to the object specified
 private static void deleteObject(Object object) {
 Transaction tx = null;
 Session session = SessionFactoryUtil.getInstance().getCurrentSession();
 try {
 tx = session.beginTransaction();
 session.delete(object);
 tx.commit();
 } catch (RuntimeException e) {
 if (tx != null && tx.isActive()) {
 try {
// Second try catch as the rollback could fail as well
 tx.rollback();
 } catch (HibernateException e1) {
 logger.debug("Error rolling back transaction");
 }
// throw again the first exception
 throw e;
 }
 }
 }

The sample code to delete an object is shown in Example 5-35.

Example 5-35 Delete a Part Object using the deleteObject method

//delete the Part
 deleteObject(denisPart);

Example 5-36 shows the Hibernate configuration that is required to run with IMS.

Example 5-36 Hibernate properties used for running in IMS (hibernate.cfg.xml)

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>

<property name="connection.url"
>jdbc:ims:class://samples.ivp.opendb.DFSSAM09DatabaseView</property>

<property name="connection.driver_class">com.ibm.ims.jdbc.IMSDriver</property>
<property name="dialect">org.hibernate.dialect.DB2Dialect</property>

 <property name="hibernate.connection.pool_size">0</property>

Note: Saving or updating an object in a Hibernate session does not mean that it is
immediately persisted into the database. This can happen later. Therefore, in any batch
that uses Hibernate, it is required to have a session.flush() as the last statement. Running
the preceding example without session.flush() did not always result in writing changes to
the IMS DB.
Chapter 5. IMS batch samples 97

<property
name="transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</
property>
 <property name="current_session_context_class">jta</property>
 <property
name="hibernate.transaction.manager_lookup_class">org.hibernate.transaction.IMSTra
nsactionManagerLookup</property>
 <!-- this will show us all sql statements -->
 <property name="hibernate.show_sql">yes</property>

<!-- mapping files -->
<mapping resource="com/ibm/ims/hibernate/sample/part.hbm.xml" />

</session-factory>
</hibernate-configuration>

The IMSTransactionManagerLookup class points to the Java Naming and Directory Interface
(JNDI) names that are provided by the container. IMS does currently not provide JNDI
services (there is a possible future function, that limited support as IMSNamingFactory and
IMSNamingContextImpl will be provided). Therefore, it is required to store the name of the
IMS implementation for UserTransactionManager and UserTransaction in the JNDI
namespace that Hibernate loads from the class in the
hibernate.transaction.manager_lookup_class property.

In the sample Hibernate properties shown in Example 5-36 on page 97, the simple
javaURLContextFactory provider was used, which is basically a piece of code that uses a flat
file as storage.

However, currently it is required to store the JNDI properties before entering a
Hibernate-based IMS application. The Java code to store the JNDI properties in this case
looks like the display in Example 5-37. This currently is done in the user application.

Example 5-37 Sample Java code to store JNDI properties with the javaURLContextFactory provider

IMSUserTransactionManager dummy = new IMSUserTransactionManager();
 System.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.naming.java.javaURLContextFactory");
 System.setProperty(Context.URL_PKG_PREFIXES, "org.apache.naming");
 InitialContext ctx = new InitialContext();

 ctx.createSubcontext("java:");
 ctx.createSubcontext("java:comp");

ctx.bind("java:comp/UserTransactionManager", dummy);
ctx.bind("java:comp/UserTransaction", dummy.getTransaction());

Now the Hibernate program can be executed. A sample workspace is provided as part of the
downloads. There is a Java class with a main method, which can be easily executed. The
PSB used for the preceding sample is DFSSAM09, which should have been generated and
installed in the IMS system that is to be used.

5.3.4 Using JPA as OR mapper with DB2

To use JPA in IMS batch there is not much work required. A working sample that runs with a
Type 4 JDBC Driver against an existing DB2 for z/OS installation can be used. The following
items also need to be addressed:

� Switch to use JTATransaction as the transaction type.
98 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

� Ensure that all required classes are in the class path of the IMS Batch application
configuration definitions.

� Change the Connection URL for the DB2 JDBC Driver to be compatible with the
requirements of the DB2 Universal JDBC Driver running in an IMS dependent region. This
applies to JMP, JBP, message processing program (MPP), or BMP.

If in batch there is a requirement for consistency points, use the Java methods for issuing IMS
checkpoint calls.

JPA sample
In this section we review a JPA sample:

1. For the JPA sample, the following JAR files are required to be in the project class path:

– imsutm.jar for the IMS Transaction Manager services
– openjpa-all-2.1.1.jar for the OpenJPA classes

The class representing Stock used for the JPA sample is shown in Example 5-38.

Example 5-38 Class Stock for the JPA sample

package model;

import javax.persistence.Basic;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;
import javax.persistence.SequenceGenerator;

import org.apache.openjpa.persistence.jdbc.VersionColumn;

@Entity
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
@VersionColumn
public class Stock {

@Id
@GeneratedValue(strategy=GenerationType.SEQUENCE, generator="StockSeq")
@SequenceGenerator(name="StockSeq", sequenceName="STOCK_SEQ")
private long id;

@Basic
private double course;

@Basic(fetch=FetchType.LAZY)
private String name;

@Basic
private String descr;

public String getDescr() {

Note: Any commit() calls are ignored because IMS manages the unit of work.
Chapter 5. IMS batch samples 99

return descr;
}

public void setDescr(String descr) {
this.descr = descr;

}

public Stock(){
super();

}

public Stock(double course, String name){
this.course = course;
this.name = name;

}

public void setId(long id) {
this.id = id;

}

public long getId() {
return id;

}

public void setCourse(double course) {
this.course = course;

}

public double getCourse() {
return course;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

public String toString(){
return "ID: " + id + " Course: " + course + " Name: " + name;

}
}

Similar to Hibernate, the IMS Java classes do not set up the JNDI properties that are
required to run JPA, so the JNDI setup needs to be done at the start of the program.

2. The sample code uses the javaURLContextFactory, as shown in Example 5-39.

Example 5-39 JNDI setup currently required for JPA in IMS Java enabled regions

IMSUserTransactionManager dummy = new IMSUserTransactionManager();
 System.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.naming.java.javaURLContextFactory");
 System.setProperty(Context.URL_PKG_PREFIXES, "org.apache.naming");
 InitialContext ctx = new InitialContext();
100 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

 ctx.createSubcontext("java:");
 ctx.createSubcontext("java:comp");

ctx.bind("java:comp/UserTransactionManager", dummy);
ctx.bind("java:comp/UserTransaction", dummy.getTransaction());

3. Example 5-40 shows sample code used to persist random instances of Stock data.

Example 5-40 Sample code to persist random instances of Stock data

public static void fillDatabase()
 {
 EntityManager em = factory.createEntityManager();
 try
 {
 for(int i = 0; i < 5; i++)
 {
 Stock s = new Stock((new Random()).nextDouble() * 100D, (new
StringBuilder("STOCK")).append(i).toString());
 s.setDescr("d");
 em.persist(((Object) (s)));
 //em.lock(((Object) (s)), LockModeType.OPTIMISTIC);
 em.lock(((Object) (s)), LockModeType.PESSIMISTIC_READ);
 }
 em.flush();
 }
 catch(Exception e)
 {
 System.out.println("---------------EXCEPTION--------------");
 e.printStackTrace();
 }
 em.close();
 }

4. The persistence.xml is required to run JPA in IMS JVM enabled regions, as shown in
Example 5-41.

Example 5-41 persistence.xml required for JPA in IMS Java enabled regions

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="Stock" transaction-type="JTA">
<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider>
<mapping-file>META-INF/orm.xml</mapping-file>
<class>model.Stock</class>
<class>model.StockDate</class>
<class>model.Trader</class>
<properties>

<property name="openjpa.jdbc.DBDictionary"
value="org.apache.openjpa.jdbc.sql.DB2Dictionary"/>

<property name="openjpa.ConnectionDriverName"
value="COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver" />
Chapter 5. IMS batch samples 101

<property name="openjpa.ConnectionURL"value="jdbc:db2os390sqlj:" />
<property name="openjpa.TransactionMode" value="managed"/>

 <property name="openjpa.ConnectionFactoryMode" value="managed"/>
 <property name="openjpa.ManagedRuntime"

value="jndi(TransactionManagerName=java:comp/UserTransactionManager)"/>
 <property name="openjpa.jdbc.Schema" value="GAEBLER"/>

<property name="openjpa.Log" value="DefaultLevel=TRACE" />
</properties>

</persistence-unit>
</persistence>

The connection URL and the JDBC Driver Class name are those that are supported in
IMS JVM enabled environments as type 2 JDBC Connectivity. However, in the sample
workspace there are comments with the Type 4 connection properties that were used to
test the sample program locally. After a successful test, they are changed to Type 2,
packaged to a JAR file, uploaded to z/OS, and executed as IMS BMP.

5. The orm.xml that is required to run JPA with DB2 in IMS JVM enabled regions is shown in
Example 5-42.

Example 5-42 orm.xml required for JPA in IMS Java enabled regions

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings version="1.0" xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd">
<persistence-unit-metadata>
<persistence-unit-defaults>
<schema>GAEBLER</schema>
</persistence-unit-defaults>
</persistence-unit-metadata>
</entity-mappings>

The sample can now be executed in IMS JVM enabled environments.

5.4 Summary

This chapter has provided some samples for IMS Java batch program, samples for Java
configuration, and IMS BMP calls and Java frameworks used with IMS Java.
102 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document.

� IMS 11 Open Database, SG24-7856

� IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity,
SG24-6794

� Using Integrated Data Management To Meet Service Level Objectives, SG24-7769

� DB2 9 for z/OS Stored Procedures: The CALL and Beyond, SG24-7604

You can search for, view, download or order these documents and other IBM Redbooks,
Redpapers, Web Docs, drafts, and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IMS homepage

http://www.ibm.com/ims

� IMS Version 11 information

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.i
bm.ims11.doc%2Fimshome_v11.htm

� Debug Tool plug-in

http://www-01.ibm.com/support/docview.wss?uid=swg24026610

� IMS/DC Execution Option

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.ims
dc.doc/topics/g_imsdc_exec_Introduction.htm

� IBM Monitoring and Diagnostic Tools for Java - Health Center

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter

� Java Standard Editions website

http://www-03.ibm.com/systems/z/os/zos/tools/java

� JVM technical articles

http://www.oracle.com/technetwork/articles/java/index.html
© Copyright IBM Corp. 2014. All rights reserved. 103

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/ims
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.ims11.doc%2Fimshome_v11.htm
http://www-01.ibm.com/support/docview.wss?uid=swg24026610
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.doc/topics/g_imsdc_exec_Introduction.htm
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.doc/topics/g_imsdc_exec_Introduction.htm
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter
http://www-03.ibm.com/systems/z/os/zos/tools/java
http://www.oracle.com/technetwork/articles/java/index.html
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.doc/topics/g_imsdc_exec_Introduction.htm
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/topic/com.ibm.websphere.dtx.imsdc.doc/topics/g_imsdc_exec_Introduction.htm

� IBM HeapAnalyzer

https://www.ibm.com/developerworks/community/groups/service/html/communityview?
communityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091

� JConsole

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.i
bm.java.aix.70.doc%2Fdiag%2Ftools%2FJConsole.html

� IBM Data Studio

http://www-142.ibm.com/software/products/us/en/data-studio

� Optim Development Studio

http://www-01.ibm.com/software/data/optim/development-studio

� IBM IMS Batch Terminal Simulator

http://www-01.ibm.com/software/data/db2imstools/imstools/imsbts

� IBM Debug Tool Plug-in for Eclipse

http://www-01.ibm.com/support/docview.wss?uid=swg24026610

� IBM Debug Tool Plug-in for Eclipse, instructions for V12

ftp://public.dhe.ibm.com/software/htp/pdtools/plugins/DT_plugin_V12100_readme.pdf

� Debug Tool manuals

http://www-01.ibm.com/software/awdtools/debugtool/library

� DB2 Analytics Accelerator for z/OS powered by Netezza technology

http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator

� WebSphere MQ for z/OS Information center

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r5/index.jsp

� Enterprise COBOL for z/OS Programming Guide

http://pic.dhe.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=%2Fcom.ibm.entco
bol.doc_4.2%2FPGandLR%2Fref%2Frlpsinvo.htm

� JZOS for z/OS SDKs Cookbook

https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook

� Manuals for IBM 31-bit SDK for z/OS, Java Technology Edition, V6.0.1, and the SDK
Guide

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html#j6con
tent

� WebSphere Transformation Extender documentation

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
104 New Ways of Running Batch Applications on z/OS: Volume 4 IBM IMS

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.aix.70.doc%2Fdiag%2Ftools%2FJConsole.html
http://www-142.ibm.com/software/products/us/en/data-studio
http://www-01.ibm.com/software/data/optim/development-studio
http://www-01.ibm.com/software/data/db2imstools/imstools/imsbts
http://www-01.ibm.com/support/docview.wss?uid=swg24026610
ftp://public.dhe.ibm.com/software/htp/pdtools/plugins/DT_plugin_V12100_readme.pdf
http://www-01.ibm.com/software/awdtools/debugtool/library
http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator
http://pic.dhe.ibm.com/infocenter/wmqv7/v7r5/index.jsp
http://pic.dhe.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=%2Fcom.ibm.entcobol.doc_4.2%2FPGandLR%2Fref%2Frlpsinvo.htm
https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html#j6content
http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

New
 W

ays of Running Batch Applications on z/OS: Volum
e 4 IBM

 IM
S

New
 W

ays of Running Batch
Applications on z/OS: Volum

e 4 IBM

New
 W

ays of Running Batch
Applications on z/OS: Volum

e 4 IBM

IM
S

New
 W

ays of Running Batch Applications on z/OS: Volum
e 4 IBM

 IM
S

New
 W

ays of Running Batch
Applications on z/OS: Volum

e 4 IBM

IM
S

New
 W

ays of Running Batch
Applications on z/OS: Volum

e 4 IBM

IM
S

®

SG24-8119-00 ISBN 0738439398

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

New Ways of Running Batch
Applications on z/OS
Volume 4 IBM IMS

Technology overview

Modernization
options

Samples

Mainframe computers play a central role in the daily operations of
many of the world’s largest corporations. Batch processing is still a
fundamental, mission-critical component of the workloads that run on
the mainframe. A large portion of the workload on IBM z/OS systems is
processed in batch mode.

This IBM Redbooks publication is the fourth volume in a series of four.
They address new technologies introduced by IBM to facilitate the use
of hybrid batch applications that combine the best aspects of Java and
procedural programming languages such as COBOL. This volume
focuses on the latest enhancements in IBM IMS batch support. IMS has
been available to clients for 45 years as IMS Transaction Manager, IMS
Database Manager, or both.

The audience for this book includes IT architects and application
developers with a focus on batch processing on the z/OS platform.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Modernizing IMS batch
	1.1 Introduction
	1.2 IMS defined
	1.3 Modern view of IMS batch processing

	Chapter 2. Implementation of IBM IMS batch applications in Java
	2.1 Software prerequisites
	2.1.1 Minimum software levels

	2.2 Use of development environment
	2.3 How to write and test IMS Java applications outside IMS
	2.4 Java frameworks used with IMS Java
	2.4.1 Using Hibernate as Object Relational mapper with IMS DB
	2.4.2 Java Persistence API
	2.4.3 Using Spring in Java parts of IMS applications

	2.5 Access of IMS Java batch applications with pureQuery
	2.6 JVM tuning considerations
	2.7 Debugging Java applications in IMS
	2.7.1 Debugging a Java BMP region

	2.8 Diagnostics and monitoring of Java in an IMS environment
	2.8.1 IBM Monitoring and Diagnostic Tools for Java - Health Center
	2.8.2 Rational Agent Controller, Rational profiling, and Healthcenter Plug-in
	2.8.3 JConsole
	2.8.4 IBM HeapAnalyzer
	2.8.5 Profiling applications
	2.8.6 Monitoring JVMs in IMS regions

	2.9 Java interoperability with COBOL in IMS batch applications
	2.9.1 How Java can call COBOL and vice versa
	2.9.2 JNI calls using COBOL INVOKE
	2.9.3 COBOL code evolution
	2.9.4 Latest COBOL INVOKE versus JNI API measurements
	2.9.5 JNI programming considerations
	2.9.6 Options to pass data items between COBOL and Java

	2.10 Generating Java classes
	2.10.1 J2C wizards
	2.10.2 JZOS Record Generator

	2.11 Restrictions for COBOL Java interoperability
	2.12 Abend and error handling
	2.12.1 Alternate options

	2.13 z/OS considerations

	Chapter 3. Mixed language applications
	3.1 Accessing DB2 from mixed language applications
	3.2 Accessing WebSphere MQ from mixed language applications
	3.3 Debugging mixed language applications
	3.3.1 Tools to debug mixed language applications

	3.4 IMS preload in a mixed environment

	Chapter 4. Alternate processing options
	4.1 IMS callout to external services
	4.1.1 Synchronous calls
	4.1.2 Asynchronous calls
	4.1.3 Both synchronous and asynchronous callout
	4.1.4 Call DB2 Stored Procedures from the application
	4.1.5 WebSphere Transformation Extender
	4.1.6 WebSphere z/OS Optimized Local Adapters

	4.2 Calling IMS transactions from traditional batch
	4.2.1 Writing a COBOL client
	4.2.2 The OTMA Callable Interface
	4.2.3 Use of DB2 stored procedures
	4.2.4 WebSphere Transformation Extender
	4.2.5 WebSphere MQ with its IMS OTMA Bridge

	4.3 Accessing IMS data as result sets from traditional batch
	4.3.1 Using Business Rules Engines from batch
	4.3.2 Speeding up long running DB2 queries
	4.3.3 Speeding up calls to SQL-only DB2 stored procedures
	4.3.4 Using data transformations in batch

	4.4 Best practices for small batches
	4.4.1 Reduce the overhead of JVM startup

	4.5 Summary

	Chapter 5. IMS batch samples
	5.1 Sample IMS Java batch program
	5.1.1 Software used in our environment
	5.1.2 Procedures used in our environment
	5.1.3 Configuration used in our environment

	5.2 Sample Java configuration and IMS BMP calls
	5.2.1 Sample Java configuration for an IMS Batch Message Program
	5.2.2 Sample application IMS BMP COBOL calls Java
	5.2.3 Sample application IMS BMP PL/I calls a Java method
	5.2.4 Sample application IMS Java Batch Program Java calls COBOL

	5.3 Sample Java frameworks used with IMS Java
	5.3.1 How to install all required plug-ins into Rational Developer for System z
	5.3.2 Download the Hibernate JARs into the sample workspace
	5.3.3 Hibernate as Object Relational mapper with IMS DB
	5.3.4 Using JPA as OR mapper with DB2

	5.4 Summary

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

