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Preface

IBM® WebSphere® Application Server V8.5 includes a Liberty profile, which is a highly 
composable, dynamic application server profile. It is designed for two specific use cases: 
Developer with a smaller production run time, and production environments. For a developer, 
it focuses on the tasks that a developer does most frequently and makes it possible for the 
developer to complete those tasks as quickly and as simply as possible. For production 
environments, it provides a dynamic, small footprint run time to be able to maximize system 
resources.

This IBM Redbooks® publication provides you with information to effectively use the 
WebSphere Application Server V8.5 Liberty profile along with the WebSphere Application 
Server Developer Tools for Eclipse, for development and testing of web applications that do 
not require a full Java Platform. It provides a quick guide on getting started, providing a 
scenario-based approach to demonstrate the capabilities of the Liberty profile along with the 
developer tools. This provides a simplified, but comprehensive, application development and 
testing environment. 

The intended audience for this book is developers of web and Open Services Gateway 
initiative (OSGi) applications who are familiar with web and OSGi application concepts.

This book has been updated to reflect the new features in WebSphere Application Server.

Authors

This book was produced by a team of specialists from around the world working at the 
International Technical Support Organization (ITSO), Raleigh Center.
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Chapter 1. An introduction to the Liberty 
profile

The IBM WebSphere Application Server V8.5 Liberty Profile is a composable, dynamic 
application server environment that supports development and testing of web applications. 
Recent updates add not just Java EE Web Profile support, but also Java EE Full Platform 
support. The profile is fully supported for production use, but is designed to work alongside 
WebSphere Application Server Developer Tools for Eclipse to provide a simplified, but 
comprehensive, application development and testing environment. 

This guide is for developers of web and Open Services Gateway initiative (OSGi) applications. 
It assumes familiarity with web and OSGi application concepts, but does not assume 
familiarity with WebSphere Application Server resources or products. This guide refers to 
other IBM Redbooks publications and the WebSphere Application Server V8.5 IBM 
Knowledge Center for additional information.

The topics in this chapter provide an overview of Liberty profile characteristics that are useful 
for iterative and collaborative application development: 

� Liberty profile overview
� Simplified configuration
� Runtime composition with features and services
� Frictionless application development
� Product extensions
� Overview of Java EE 7

1
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1.1  Liberty profile overview

The Liberty profile is a simplified, lightweight development and application runtime 
environment that has the following characteristics: 

� Simple to configure. Configuration is read from an XML file with text-editor-friendly syntax.

� Dynamic and flexible. The run time loads only what your application needs and 
recomposes the run time in response to configuration changes.

� Fast. The server starts in under 5 seconds with a basic web application.

� Extensible. The Liberty profile provides support for user and product extensions, which 
can use System Programming Interfaces (SPIs) to extend the run time.

The Liberty profile is built by using OSGi technology and concepts. The fit-for-purpose nature 
of the run time relies on the dynamic behavior inherent in the OSGi Framework and Service 
Registry. As bundles are installed to or uninstalled from the framework, the services that each 
bundle provides are added or removed from the service registry. The addition and removal of 
services similarly cascades to other dependent services. The result is a dynamic, 
composable run time that can be provisioned with only what your application requires and 
responds dynamically to configuration changes as your application evolves.

1.1.1  Programming models

The Liberty profile supports a subset of the Java EE 6 and Java EE 7 stacks. The following list 
notes the supported technologies that are supported by all versions of the Liberty profile: 

� Java Servlet 3.1
� JavaServer Faces (JSF) 2.2
� JavaServer Pages (JSP) 2.3
� Java Expression Language 3.0
� Standard Tag Library for JavaServer Pages (JSTL) 1.2
� Bean Validation 1.1
� Java Persistence API (JPA) 2.1
� Common Annotations for the Java Platform 1.1
� Java Transaction API (JTA) 1.2
� Java Database Connectivity (JDBC) 4.1
� Java API for RESTful Web Services (JAX-RS) 2.0
� Java API for RESTful Web Service clients (JAX-RS Client) 2.0
� Java API for XML Processing (JAXP) 1.3
� Java Management Extensions (JMX) 2.0
� JavaBeans Activation Framework (JAF) 1.1
� Streaming API for XML (StAX) 1.0 
� Enterprise Java Beans Lite (EJB Lite) 3.2 
� Contexts and Dependency Injection 1.2 

The WebSphere Application Server Liberty Core edition is a separate offering that is available 
for production use that is based on the Liberty profile. The Liberty Core edition extends the 
technologies that were listed previously to support the following Java EE 6 Web Profile 
specifications: 

� EE Concurrency Utilities 1.0
� JavaMail 1.5
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In other editions, such as WebSphere Application Server and WebSphere Application Server 
Network Deployment, the Liberty profile supports the following technologies in addition to 
those contained in Liberty Core: 

� Java EE 7 Full Platform
� Java API for XML-based Web Services (JAX-WS) 2.2
� Java Architecture for XML Binding (JAXB) 2.2
� SOAP with Attachments API for Java (SAAJ) 1.3
� Java Message Service API (JMS) 2.0
� Enterprise JavaBeans 3.1 3.2 - Message-Driven beans

The Liberty profile supports OSGi applications in all editions. The following list shows 
supported technologies for OSGi applications (with a reference to the specification where 
appropriate): 

� Web Application Bundles (OSGi R4.2 Enterprise, Chapter 128)
� Blueprint Container (OSGi R4.2 Enterprise, Chapter 121)

– Blueprint Transactions
– Blueprint Managed JPA

� JNDI (OSGi R4.2 Enterprise, Chapter 126)
� OSGi application of Java EE technologies that are supported by the profile

A complete list of the technologies that are supported by the Liberty profile can be found at:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_prog_model_support.html

1.1.2  Supported development environments

Both Liberty and full profile WebSphere Application Server support a broad list of operating 
systems: IBM AIX®, HP, IBM i, Linux, Solaris, Windows, and z/OS. The Liberty profile is also 
supported, for development, on Mac OSX.

The Liberty profile server runs on Java Version 6 or later regardless of the vendor that 
provides it. 

The list of supported operating systems and requirements for the Liberty profile can be found 
at the following link:

http://www-01.ibm.com/support/docview.wss?uid=swg27038218

1.1.3  Application development and deployment tools

IBM provides two development tools that are designed for use with WebSphere Application 
Server applications and include tools that are specifically suited for use with the Liberty 
profile:

� IBM Rational® Application Developer for WebSphere Software V9

IBM Rational Application Developer for WebSphere Software V9 provides a development 
environment for building applications that run on WebSphere Application Server. This tool 
supports all Java EE artifacts that are supported by WebSphere Application Server, such 
as servlets, JavaServer Pages (JSP), JavaServer Faces (JSF), Enterprise JavaBeans 
(EJB), Extensible Markup Language (XML), SIP, Portlet, and web services. It also includes 
integration with the OSGi programming model. The workbench contains wizards and 
editors that help build standards-compliant, business-critical Java EE, Web 2.0, and 
service-oriented architecture (SOA) applications. Code quality tools help teams find and 
correct problems before they escalate into expensive problems. Rational Application 
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Developer for WebSphere Software can be used to develop applications for both the full 
profile and the Liberty profile. 

For more information about Rational Application Developer for WebSphere Software V9, 
see the following website:

http://www.ibm.com/software/awdtools/developer/application

� WebSphere Application Server Developer Tools for Eclipse

The IBM WebSphere developer tools V8.5.5 provides a development environment for 
developing, assembling, and deploying Java EE, OSGi, Web 2.0, and Mobile applications, 
and supports multiple versions of WebSphere Application Server. When combined with 
Eclipse SDK and Eclipse Web Tools Platform, WebSphere developer tools provides a 
lightweight environment for developing Java EE applications. 

WebSphere Application Server Developer Tools for Eclipse is a no additional charge 
edition for developer desktop and includes Eclipse adapters. With Version 8.5.5, 
WebSphere Application Server and WebSphere Application Server Developer Tools for 
Eclipse editions are provided at no additional charge for developer desktops and are 
supported under production runtime licenses.

Although not as rich in features as Rational Application Developer for WebSphere 
Software, this tool is an attractive option for developers using both the Liberty profile and 
the full profile.

For more information about WebSphere developer tools and access to the tool, see the 
following website:

https://www.ibm.com/developerworks/community/blogs/wasdev/entry/downloads_final
_releases?lang=en

1.1.4  Additional resources

There are additional resources available to support development with the Liberty profile. The 
following list notes developer-community focused resources: 

� WASdev community

http://wasdev.net

The WASdev community is a hub for information about developing applications for 
WebSphere Application Server, and using the Liberty profile in particular. Articles, 
podcasts, videos, and samples are refreshed regularly as new technology is made 
available through early access programs or new product releases.

� WASdev forum

https://developer.ibm.com/wasdev

The WASdev forum provides an opportunity for users of WebSphere Application Server 
and the Liberty profile to interact with each other and with the IBM developers working on 
the products. 

� Stack Overflow tags

http://stackoverflow.com/questions/tagged/websphere-liberty

WebSphere developer tools: In this book, the development and deployment 
processes that are described are applicable to either tool. We use the generic term 
WebSphere developer tools as an inclusive term for both WebSphere Application Server 
Developer Tools for Eclipse and Rational Application Developer for WebSphere 
Software. 
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Stack Overflow is a Q&A site that has no cost to use. It allows users to ask and answer 
questions with built-in incentives to reward high-quality answers. Use the websphere or 
websphere-liberty tags to ask or answer questions about WebSphere Application Server 
and the Liberty profile.

1.2  Simplified configuration

The Liberty profile runtime environment is composed of a set of OSGi bundles. Any bundle 
containing configurable resources also contains metadata describing the configuration that 
those resources accept or require using the OSGi Metatype service. A generic description of 
a metatype service is a bundle containing within it an XML schema describing each 
resource’s configuration attributes, types, and value bounds. The configuration metadata 
within each bundle will also assign appropriate default values, and can construct default 
instances where appropriate. With functional defaults already in place, you only need to 
specify the values you want to customize. 

1.2.1  Server definition

The Liberty profile supports multiple servers using the same installation. Each server is 
defined in its own directory, where the directory name is the server name. New servers are 
easily created using the command line or the WebSphere developer tools, but manual 
creation also works. Using the WebSphere developer tools to create a server is described in 
2.2, “Installing the Liberty profile” on page 43.

A server definition requires only one configuration file, server.xml, to define a server. The 
server.xml file must contain a server element. If there are no configuration changes, default 
values suffice. The server element can be empty, as shown in Example 1-1.

Example 1-1   Server.xml file

<server description=”optional description” />

The empty definition in Example 1-1 starts only the core kernel. Additional function is enabled 
using features. Features are described in 1.3.1, “Feature management” on page 26. 

1.2.2  Server configuration using the server.xml file

The server.xml file has a simple XML format that can be edited using your favorite text editor. 
Though there is no requirement to use a GUI to edit your server’s configuration, the 
WebSphere developer tools provide an enhanced editor for use in an Eclipse IDE. This editor 
has context-sensitive help, wizard-style value selection, and built-in configuration validation. 
The enhanced editor also allows direct viewing and editing of the XML source.
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Figure 1-1 on page 20 shows the design and source tabs of the enhanced server.xml editor in 
the WebSphere developer tools. 

Figure 1-1   The source and design tabs show different views of the server’s configuration

The subsequent chapters in this publication provide examples using the enhanced editor to 
make server configuration updates. If you follow the examples, you might find it interesting to 
switch to the source view. There, you can observe changes in the server.xml file after using 
the enhanced editor to modify the server’s configuration.

1.2.3  Bootstrap properties

There is another configuration file, which is used by the Liberty profile server when initializing 
the OSGi framework and platform core, called bootstrap.properties. The 
bootstrap.properties file is an optional peer of the server.xml file containing simple text 
properties as key=value pairs. Bootstrap properties are generally used to influence early 
server start behavior or to define machine-specific properties. The bootstrap properties file is 
not created by default.

1.2.4  Portable configuration using variables

The Liberty profile configuration manager resolves variables when processing configuration 
information. Using configuration variables allows environment-specific attributes to be 
removed from the bulk of the server’s configuration. This isolates general aspects of server or 
application configuration from environment-specific elements such as host names, port 
numbers, or file system locations.

The Liberty profile provides several predefined variables to help make server configurations 
portable. The following list demonstrates syntax and briefly summarizes the supported 
location variables:

wlp.install.dir This is the profile’s installation directory.
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wlp.user.dir This directory is the root of the tree containing user configuration. By 
default, this directory is a child of the installation directory, 
${wlp.install.dir}/usr. It can be configured to an alternative 
location using an environment variable when the server is started.

wlp.server.name This is the name of the server.

server.config.dir The server configuration directory contains the server.xml file and 
any other optional configuration files that are used to customize the 
server’s environment. The name of this directory is used as the 
server’s name. By default, this directory is a child of the user directory 
called ${wlp.user.dir}/servers/serverName. 

server.output.dir The server output directory contains resources that are generated by 
the server, such as logs. The Liberty profile supports shared 
configurations, for example, multiple running server instances sharing 
the configuration files. Shared configurations are supported by 
allowing the instance-specific output directory to be moved using an 
environment variable when the server is started. By default, the server 
output directory is the same as the server’s configuration directory.

shared.app.dir Shared user applications directory, ${wlp.user.dir}/shared/apps.

shared.config.dir Shared user configuration directory, ${wlp.user.dir}/shared/config.

shared.resource.dir Shared user resources directory, 
${wlp.user.dir}/shared/resources.

When specifying file or resource locations, use the most specific location variable that 
applies. Being specific helps to ensure that your server configuration can be propagated to 
other environments (a fellow developer’s notebook, a dedicated test automation framework, a 
distributed production environment) without requiring changes to the server.xml file.

Example 1-2 shows a simple bootstrap.properties file that defines custom variables for 
machine-specific host and ports, and a common file location that is based on one of the 
built-in location variables.

Example 1-2   A simple bootstrap.properties file

appCacheFile=${server.output.dir}/application/cache
hostName=*
httpPort=9080
httpsPort=9443
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Figure 1-2 on page 22 shows an example of replacing values in a server.xml file with 
variables defined in the bootstrap.properties file from Example 1-2.

Figure 1-2   Using variables in the enhanced editor

The enhanced editor provides content assist for variables that are defined in either the 
bootstrap.properties or server.xml files. Variables are filtered based on the field being 
configured. If the field is for a number (integer, long, and so on), the content assist list will 
show variables only with numeric values. This context-sensitive variable filtering is shown in 
Figure 1-3.

Figure 1-3   Content assist will filter-defined variables
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1.2.5  New configuration types and validation

The simple XML format that is used in server.xml uses intuitive, natural types to make 
configuring the server more natural. For example, durations and timeouts can be specified 
using strings containing units of time (specify 1m30s for 1 minute and 30 seconds). 

The server is tolerant of configuration mistakes where possible. If the initial configuration for 
the server is malformed, the server will not start, but indicates where the syntax error 
occurred to help with correcting the problem. If the configuration for a running server is 
updated with invalid syntax, the change is not applied, and the server continues to run. It also 
displays a message indicating where the configuration problem was so it can be corrected. 
Subsequent updates to correct the error are applied to the server without requiring a server 
restart. A configuration that is provided for unknown or inactive elements is ignored. You do 
not have to remove configuration for features that are disabled. 

The following website provides an index describing all configurable attributes of the run time:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F1-0-2-1-0

1.2.6  Encoding passwords

Passwords can be specified as encoded strings to alleviate concerns about using plain text 
passwords in configuration files. There are two ways to create and specify an encoded 
password: 

� The command line. You can use the securityUtility script in the 
${wlp.install.dir}/bin directory:

securityUtility encode myPassword

This returns an encoded string, starting with “{xor}...”, to be copied verbatim into your 
server.xml file. 

� The enhanced editor. When the editor is used to configure passwords, a standard 
password dialog box performs the same encoding step and sets the attribute value to the 
resulting encoded string.

Tip: The securityUtility script can be used to produce passwords that are 
XOR-encoded, hash-encoded, or aes-encrypted. Run the following help command 
for more information about the new encoding options: 

securityUtility help encode
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1.2.7  Shared configuration using includes

The Liberty profile also supports composed configuration. It is possible for the server.xml file 
to include other files. Included files are specified using the <include.../> directive, and must 
use the server.xml file’s syntax. Each included file must also contain a <server.../> 
element. Figure 1-4 provides a basic representation of how the configuration manager works 
with configuration coming from various sources. Each bundle in the run time provides 
configuration defaults and configuration metadata. The configuration manager reads this 
information from each bundle and merges it with information read from the server.xml file 
and any included files. The configuration manager will stop processing, with an error, if any 
required configuration files cannot be found.

Figure 1-4   The configuration manager processing configuration metadata

By using variables and included files, a wide variety of configuration patterns becomes 
possible. Configuration can be shared across servers or persisted in a source control 
repository at varying levels of granularity. For example, a configuration that is associated with 
a data source can be collected into a single XML file that is reused (as an included resource) 
across multiple server configurations. The data source configuration can use variables (for 
output directories, host names, ports, and so on) so that it can be applied directly across 
multiple servers unchanged.

Included files can be specified using full paths, paths with variables, or relative paths. Relative 
paths are resolved by looking in a location relative to the parent file, the server’s configuration 
directory, or the shared configuration directory (in that order).

Include statements can appear anywhere within the <server.../> configuration element, and 
each included file can include other files. To ensure that your included configuration behaves 
predictably, you must be aware of the following processing rules for included configuration 
files:

� Each included file is logically merged into the main configuration at the position that the 
<include /> statement occurs in the parent file.

shared.xml

optional
include

more.xml

<include optional="true" location="more.xml"/>
<include location="shared.xml"/>

extra.xml

<include location="extra.xml"/>

server.xml

Kernel Bundle

Config defaults
Config metadata

Feature Bundle

Config defaults
Config metadata

inject merged
configuration

read user
configuration

read default
configuration

Configuration Manager
(OSGi Configuration Admin)
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� For configuration instances such as applications or endpoints, a unique configuration is 
created for each appearance of the element in the XML file. An ID is generated if not 
otherwise specified.

� For singleton services, such as logging or application monitoring, entries are processed in 
the order that they appear in the file and later entries add to or override previous ones. 
This is also true for configuration instances (an application or data source) where the 
configuration instances have the same ID.

1.2.8  Dynamic configuration updates

The Liberty profile contains an implementation of the OSGi Configuration Admin service, 
which operates using the service patterns that are defined in that specification. Per that 
specification, the Liberty profile configuration manager does the following tasks: 

� Maintains and manages the configuration of the OSGi Service Platform as a whole. It sets 
the active configuration, at run time, for all configurable services.

� Monitors the OSGi Service Registry and provides configuration information to configurable 
services as they are registered.

At start, the configuration manager processes the contents of the server.xml file. It then 
merges those contents with the default values provided by each bundle to provide 
configuration information to each registered configurable service. If the server.xml file 
changes, the configuration manager reprocesses the file contents and immediately pushes 
configuration changes out to the configurable services affected by the change. There is no 
need to restart the server. 

The configuration manager also responds dynamically as bundles are added or removed from 
the system. For example, a new bundle might introduce additional configurable services. 
When a bundle is started, the configuration manager:

� Detects new services. 

� Resolves any user-provided configuration against the new configuration metadata and 
defaults that are provided by the new bundle. 

� Provides the resolved configuration to the consuming services.

Because the run time is dynamic, the configuration manager is tolerant when it processes 
configuration information from any source (user or system). The configuration manager safely 
ignores configuration elements or attributes for which it does not have metadata. For 
unknown attributes, the values are passed to the associated configurable services along with 
the rest of its configuration data. For unknown configuration definitions, the configuration 
manager parses configuration information at the time it becomes available and provides it to 
associated configurable services.

Note: Configuration dropins can also be used to further extend the configuration of a 
server. For more information, see the following link:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.iseries.doc/ae/twlp_setup_dropins.html?cp=SSAW57_8.5.5%2F2-3-11-0-3-1-3-3&
lang=en
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1.3  Runtime composition with features and services

The composable nature of the Liberty profile is based on the concept of features. A feature is 
a unit of function, essentially the minimum set of bundles that are required to support a 
particular technology. Features can, and do, overlap, and they can include other features.

As an example, the servlet-3.0 feature installs the collection of OSGi bundles required to 
support servlet applications, but not JSP applications. The jsp-2.2 feature includes the 
servlet-3.0 feature (it requires a servlet engine). When you enable the jsp-2.2 feature in a 
server, it installs all of the bundles that are required for servlet applications in addition to the 
bundles required to support JSPs (Figure 1-5).

Figure 1-5   Features are the units of composition for a Liberty profile server run time

1.3.1  Feature management

Features are configured in server.xml by adding <feature> elements to the 
<featureManager../>. When a new server is created using the server create command, the 
server.xml file has the jsp-2.2 feature enabled, as shown in Example 1-3. 

Example 1-3   Server.xml file with jsp-2.2 feature

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>
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The WebSphere developer tools enhanced editor provides a list of features to choose from 
and shows those features implicitly enabled by others, as shown in Figure 1-6.

Figure 1-6   Selecting features with the enhanced editor

Features can be added or removed from the server configuration while the server is running 
without requiring a server restart.

1.3.2  Automatic service discovery

The fit-to-purpose nature of the run time relies on dynamic behavior inherent in the OSGi 
Framework and the Service Registry. The Liberty profile relies on the OSGi Service Registry 
for dynamic registration and discovery of services. 

When a feature is enabled, the bundles that are required by that feature are installed in the 
OSGi framework. When a bundle is installed and started, in some cases, services are 
registered in the Service Registry. For most bundles in the Liberty profile, service registration 
and lifecycle are managed using OSGi Declarative Services (DS) components.

DS support operates on declared components, each of which is defined by an XML file in the 
bundle. When a bundle containing component declarations is added to the framework, DS 
takes action. It reads each component declaration and registers provided services in the 
service registry. DS then manages the lifecycle of the component by controlling its lifecycle 
based on a combination of declared attributes and satisfied dependencies.

The simple XML description of components allows DS to resolve service dependencies 
without requiring the component to be instantiated, or its implementation classes to be 
loaded. All of this facilitates late and lazy resource loading, which helps improve the server 
start and runtime memory footprint.
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1.4  Frictionless application development

The Liberty profile can deploy applications in the following ways: 

� As an archive file (WAR, EAR, or EBA)
� Extracted into a directory
� Described by an XML file (loose configuration)

There is no distinction between installing and starting an application, though installed 
applications can be stopped and restarted. 

By default, the Liberty profile monitors deployed applications for changes. Updates to static 
files (HTML, CSS, or JavaScript) or JSP files are detected and served immediately. Changes 
to servlet classes cause an automatic restart of the application.

1.4.1  Quick start using dropins

By default, each server contains a monitored application directory named dropins. When an 
application is placed in this directory, the server automatically deploys and starts the 
application. 

There are several options for placing applications in the dropins directory. Each provides a 
way for the server to determine the application type. The following list describes the 
placement options:

� Place the archive file with its identifying suffix (ear, war, wab, and so on) directly into the 
dropins directory: 

${server.config.dir}/dropins/myApp.war

� Extract the archive file into a directory that is named with the application name and the 
identifying suffix: 

${server.config.dir}/dropins/myApp.war/WEB-INF/...

� Place the archive file or the extracted archive into a subdirectory that is named with the 
identifying suffix:

${server.config.dir}/dropins/war/myApp/WEB-INF/...

1.4.2  Configuration-based application deployment

Explicitly declaring your application allows you to specify additional properties such as the 
context root, alter application start behavior, and so on. Explicitly configured applications are 
recommended for production environments to allow dropins monitoring to be disabled.

An application is declared in the server.xml file using the <application.../> element, which 
supports the following attributes: 

location The path to the application resource.

id A unique identifier for the application.

Caution: For large applications, monitoring the file system for changes to an application 
can be resource-intensive. Consider extending the monitoring interval if you see excessive 
I/O activity while the server is running. Application update monitoring should be disabled in 
production environments. For information, see 8.1.1, “Turning off application monitoring” 
on page 222.
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name A descriptive/display name for the application.

type The application type: WAR, EAR, or EBA. If this is not specified, it is 
inferred (if possible) from the application file name.

context-root The context root of the application.

autoStart A Boolean value indicating whether the server should start the 
application automatically. The default is true.

The location is the only required attribute for a declared application. It specifies the location of 
the application resource (archive, extracted directory, or loose configuration XML file) and can 
refer to any location in the file system. If the specified location is a relative path, it is resolved 
first against ${server.config.dir}/apps and then against ${shared.app.dir}.

Example 1-4 shows the terms for defining a web application in the serverl.xml file.

Example 1-4   Defining a web application in the server.xml file by using the application element

<application context-root="helloworld" type="war" id="helloworld"
    location="helloworld.war" name="helloworld"/>

Type-specific application elements can be used to simplify the declaration of applications: 

� <webApplication.../>
� <osgiApplication.../>
� <enterpriseApplication.../>

These elements are used in a manner identical to the generic <application.../> element, 
but eliminate the type attribute, as the application type is built into the shorthand of the 
element itself. The I<webApplication.../> element also uses a contextRoot attribute instead 
of context-root. Example 1-4 and Example 1-5 show two equivalent declarations for an 
application, using the <application.../> and <webApplication.../> elements.

Example 1-5   Defining a web application in the server.xml file by using the webApplication element 

<webApplication contextRoot="helloworld" location="helloworld.war" />

Update monitoring for declared applications has a configurable trigger. By default, the file 
system is polled for changes. When you use the tools to develop your applications, the tools 
change the update trigger from polled to mbean. This allows the tools to influence when the 
server discovers updated files based on when files are saved and whether they are actively 
being edited. 

1.4.3  Using loose configuration for applications

In a loose configuration, an application can be distributed across arbitrary locations on disk, 
and yet run as though it existed in a single, flat directory structure. Tools such as Rational 
Application Developer and WebSphere Application Server Developer Tools for Eclipse use 
loose configuration to allow users to run their applications directly from the projects in their 
Eclipse workspace. This saves disk space, improves performance, and gives developers 
more immediate feedback when they make changes because it avoids copying files between 
the Eclipse workspace and the server definition.
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1.4.4  Configuring an application’s context root

The context root is the entry point of a web application. The context root for an application is 
determined using the following criteria in order of precedence: 

1. The context root attribute of an application declared in server.xml 

<application context-root=”rootOne” location=”...”/>, or 

<webApplication contextRoot=”rootOne” location=”...”/>

2. The context-root element in the application.xml file in an EAR application

<context-root>rootTwo</context-root>

3. The context-root element in the ibm-web-ext.xml in a web application

<context-root uri="rootThree" />

4. The name of the declared web application in server.xml

<application name=”rootFour” ... />

5. The Web-ContextPath in the bundle manifest of an OSGi WAB

Web-ContextPath: /rootFive

6. The directory or file name of an artifact in the dropins directory

${server.config.dir}/dropins/war/rootSix 
${server.config.dir}/dropins/rootSix.war

1.4.5  Compatibility with WebSphere Application Server

The Liberty profile is a part of WebSphere Application Server and shares core technologies 
with the full profile. Applications that are developed on Version v8.5 of the Liberty profile, with 
the exceptions of those using Java Platform, Enterprise Edition 7, will run on version v8.0 or 
v8.5 of the full profile. There are differences between the Liberty profile and full profile. The 
differences are mostly focused on the definition and use of classloading or shared libraries. 
Section 3.3, “Controlling class visibility in applications” on page 94 provides an overview of 
how classloading and shared library support work in the Liberty profile. That overview gives 
special regard to management and use of third-party libraries. 

Chapter 8, “From development to production” on page 221 describes strategies for promoting 
applications that are developed using the Liberty profile to production systems.

1.5  Product extensions

The Liberty profile supports direct extension of the run time by using product extensions. A 
product extension allows custom content to be added to a Liberty installation in a way that 
avoids conflicts with the base content of the product and with other product extensions. A 
product extension is defined by using a simple properties file in the 
${wlp.install.dir}/etc/extensions/ directory named <extensionName>.properties. This 
naming convention helps ensure that each product extension has a unique name. The unique 
name, in turn, is used as a prefix to avoid collisions when specifying extension-provided 
features and configuration in the server.xml file.
30 IBM WebSphere Application Server Liberty Profile Guide for Developers



Product extensions usually contain features and bundles, but can also contain other things 
such as custom server templates or scripts. In general, the structure of a product extension 
resembles the structure of a Liberty profile installation, as shown in Figure 1-7, particularly 
regarding the following items 

� Bundles (in a lib/ directory), 
� Features (in a lib/features/ directory),
� Server templates (in a templates/servers/ directory)

Creating a product extension is as simple as creating a properties file in the 
${wlp.install.dir}/etc/extensions/ directory, which follows the naming convention and 
contains the following two values: 

� com.ibm.websphere.productId

A descriptive product ID, usually in the form of a reverse-qualified domain name.

� com.ibm.websphere.productInstall

The absolute or relative location of the root product extension directory. If the value of this 
property is a relative path, it is assumed to be a peer of the Liberty installation directory, 
${wlp.install.dir}.

For convenience in development, the ${wlp.user.dir}/extension/ directory functions as a 
default product extension, and uses, usr as its prefix in the configuration. Figure 1-7 shows 
the Liberty profile installation with default and product extension content. 

Figure 1-7   A Liberty profile installation with default and product extension content

Example 1-6 provides a snippet of the server.xml file demonstrating how prefixes are used 
when enabling extension-provided features. The prefix that is used for Product Extension A 
from Figure 1-7 is extA, which matches the name of the extA.properties file in 
${wlp.install.dir}/etc/extensions that defines the extension.

Example 1-6   Using extension-provided features in the server.xml file

<featureManager>
<feature>usr:usrExtFeature-1.0</feature>
<feature>extA:simpleTai-1.0</feature>
<feature>extB:blueprintExtension-1.0</feature>

</featureManager>

Liberty profile installation (wlp/)
etc/extensions/

extA.properties
extB.properties

Default Extension
usr/extension/lib/

usr.ext.bundleX-1.0.jar
usr/extension/lib/features/

usrExtFeature-1.0.mf

Product Extension A (extensionA/)
README.TXT
bin/
lib/

extA.bundle-1.0.jar
lib/features/

simpleTai-1.0.mf

Product Extension B (extensionB/)
README.TXT
bin
lib/

extB.bundle-1.0.jar
lib/features/

blueprintExtension-1.0.mf
templates/servers/extBServer/

server.xml
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Section 9.2, “Defining a custom feature” on page 237 walks through creating and packaging a 
custom feature as a subsystem archive (an *.esa file). Both the featureManager command 
and the WebSphere developer tools provide mechanisms for managing the features that are 
installed into product extensions. 

For more information about product extensions, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/cwlp_prod_ext.html

1.6  Overview of Java EE 7

The Liberty Profile has added support for Java EE 7 by means of adding both a bundle for the 
Java EE 7 Web Profile and a bundle for the Java EE 7 Full Platform. Each of these bundles 
includes a collection of features that implement the standards required by the Java EE 
specification.

1.6.1  Java EE 7 Web Profile

The Web Profile provides specifications for web applications. Java EE 6 introduced the Web 
Profile to help developers of dynamic web applications, providing technologies such as EJB 
Lite, Java Persistence API, and Java Transaction API. The Java EE 7 Web Profile updates the 
specifications of the original Web Profile and adds support for HTML5.

The Java EE 7 Web Profile includes the following features:

beanValidation-1.1 The Bean Validation 1.1 specification provides an 
annotation-based model for validating JavaBeans. It can be used to 
assert and maintain the integrity of data as it travels through an 
application.

cdi-1.2 The Contexts and Dependency Injection specification makes it 
easier to integrate Java EE components of different types. It 
provides a common mechanism to inject component such as EJBs 
or Managed Beans into other components such as JSPs or other 
EJBs.

ejbLite-3.2 This feature enables support for Enterprise JavaBeans written to 
the EJB Lite subset of the EJB 3.2 specification.

el-3.0 This feature enables support for the Expression Language (EL) 
3.0.

jaxrs-2.0 This feature enables support for Java API for RESTful Web 
Services. JAX-RS annotations can be used to define web service 
clients and endpoints that comply with the REST architectural style. 
Endpoints are accessed through a common interface that is based 
on the HTTP standard methods.

jaxrsClient-2.0 This feature enables support for Java Client API for JAX-RS 2.0.

jdbc-4.1 This feature enables the configuration of DataSources to access 
databases from applications. Any JDBC driver that complies with 
the JDBC 4.1, 4.0, 3.0, or 2.x specification can be used; 
customized configuration of many specific providers is included. 
High performance connection pooling is also provided.
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jndi-1.0 This feature enables the use of Java Naming and Directory 
Interface (JNDI) to access server configured resources such as 
DataSources or JMS Connection Factories. It also allows access to 
Java primitives configured in the server as a jndiEntry.

jpa-2.1 This feature enables support for applications that use 
application-managed and container-managed JPA written to the 
Java Persistence API 2.1 specification. The support is built on top 
of EclipseLink to support the container-managed programming 
model.

jsf-2.2 This feature enables support for web applications that use the 
JavaServer Faces (JSF) 2.2 framework. This framework simplifies 
the construction of user interfaces.

jsonp-1.0 The Java API for JSON Processing (JSON-P) feature provides a 
standardized method for constructing and manipulating data to be 
rendered in JavaScript Object Notation (JSON).

jsp-2.3 This feature enables support for JavaServer Pages (JSPs) that are 
written to the JSP 2.3 specification. This framework simplifies the 
construction of user interfaces. Enabling this feature also enables 
the Expression Language (EL) version 3.0 feature.

managedBeans-1.0 This feature enables support for the Managed Beans 1.0 
specification. Managed Beans provide a common foundation for 
different Java EE components types that are managed by a 
container. Common services provided to Managed Beans include 
resource injection, lifecycle management, and the use of 
interceptors.

servlet-3.1 This feature enables support for HTTP servlets written to the Java 
servlet 3.1 specification. You can package servlets in Java EE 
specified WAR or EAR files. If servlet security is required, you 
should also configure an appSecurity feature. Without a security 
feature, any security constraints for the application are ignored.

webProfile-7.0 This feature combines the Liberty features that support the Java 
EE 7.0 Web Profile.

websocket-1.0 This feature enables support for WebSocket applications written to 
the Java API for WebSocket 1.0 specification.

websocket-1.1 This feature enables support for WebSocket applications written to 
the Java API for WebSocket 1.1 specification.

1.6.2  Java EE 7 Full Platform

Java EE 7 introduces the Full Platform, which includes not just the Web Profile specifications, 
but also specifications for enterprise, web service, batch, and other applications. It also adds 
support for application security, deployment, and management.

The Java EE 7 Full Platform bundle adds the following features, but also loads the features 
from the Java EE 7 Web Profile listed above:

websocket-1.1 This feature enables support for WebSocket applications written to 
the Java API for WebSocket 1.1 specification.

appClientSupport-1.0 This feature enables the Liberty server to process client modules 
and support remote client containers.
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batch-1.0 This feature enables support for the Java Batch 1.0 API specified 
by JSR-352.

concurrent-1.0 This feature enables the creation of managed executors that allow 
applications to submit tasks to run concurrently, with thread context 
that is managed by the application server. It also enables the 
creation of managed thread factories to create threads that run with 
the threadcontext of the component that looks up the managed 
thread factory.

ejb-3.2 This feature enables support for Enterprise JavaBeans written to 
the EJB 3.2 specification.

ejbHome-3.2 This feature enables the use of home interfaces in Enterprise 
JavaBeans.

ejbPersistentTimer-3.2 This feature enables the use of persistent timers in Enterprise 
JavaBeans.

ejbRemote-3.2 This feature enables the use of remote interfaces in Enterprise 
JavaBeans.

jacc-1.5 This feature enables support for Java Authorization Contract for 
Containers (JACC) version 1.5. In order to add the jacc-1.5 feature 
to your server, you need to add the third-party JACC provider, 
which is not a part of WebSphere Application Server Liberty profile.

jaspic-1.1 This feature enables support for securing the server runtime 
environment and applications using Java Authentication SPI for 
Containers (JASPIC) providers as defined in JSR-196.

javaee-7.0 This feature combines the Liberty features that support the Java 
EE 7.0 Full Platform.

javaeeClient-7.0 This feature enables support for Java EE 7 Application Client.

javaMail-1.5 This feature allows applications to use the JavaMail 1.5 API.

jca-1.7 This feature enables the configuration of resource adapters to 
access enterprise information systems (EISs) from applications. 
The configuration of a resource adapter also includes the 
configuration of connection factories, administered objects, and 
activation specifications. Any resource adapter that complies with 
the JCA 1.7 specification or lower can be used. High performance 
connection pooling is also provided.

jcaInboundSecurity-1.0 This feature enables security inflow for resource adapters.

jms-2.0 This feature enables the configuration of resource adapters to 
access messaging systems using the Java Message Service API. 
This also includes the configuration JMS connection factories, 
queues, topics, and activation specifications. Any JMS resource 
adapter that complies with the JCA 1.6 specification can be used.

jmsMdb-3.2 This feature is superseded by mdb-3.2. This feature enables the 
use of message-driven Enterprise JavaBeans written to the EJB 
3.2 specification. Message-driven beans (MDBs) allow 
asynchronous processing of messages within a Java EE 
component.

mdb-3.2 This feature enables the use of message-driven Enterprise 
JavaBeans written to the EJB 3.2 specification. MDBs allow 
asynchronous processing of messages within a Java EE 
component.
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wasJmsClient-2.0 The wasJmsClient-2.0 feature provides applications with access to 
the message queues that are hosted on WebSphere Application 
Server through the JMS 2.0 API. This feature supersedes 
wasJmsClient-1.1. The wasJmsClient-2.0 feature is compliant with 
JMS 2.0 specifications and is supported only on JDK 7 or later. It 
enables access to the messaging engine that is enabled through 
the wasJmsServer feature, and also to the service integration bus 
that is hosted on a full profile server.

wasJmsSecurity-1.0 This feature enables the WebSphere Embedded Messaging Server 
to authenticate and authorize access from JMS clients.

wasJmsServer-1.0 This feature enables an embedded messaging server that is 
JMS-compliant. Applications can send and receive messages by 
using the wasJmsClient feature.

wmqJmsClient-2.0 This feature provides applications with access to message queues 
hosted on IBM MQ through the JMS 2.0 API.
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Chapter 2. Installation

There are several ways to install the Liberty profile. In this chapter, we focus on the 
installation methods that are most commonly used for setting up a development environment. 

The Liberty profile is designed for easy operation using the provided scripts and direct editing 
of the server configuration XML files. The development tools provide an integrated 
development environment (IDE) for application development with plenty of assistance and 
short-cuts to aid creating, modifying, and controlling Liberty profile servers. The development 
tools make development easier but are not strictly required, and if you prefer, you can just 
install the run time.

The chapter contains the following sections:

� Installing the WebSphere developer tools
� Installing the Liberty profile
� Configuring the server runtime JDK
� Starting and stopping a Liberty profile server

For more installation methods, including installation for production, refer to the following IBM 
Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welc
ome_ndmp.html
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2.1  Installing the WebSphere developer tools

WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for 
developing, assembling, and deploying applications to the WebSphere Application Server 
Liberty profile. These tools should be installed into your Eclipse workbench. Additionally, you 
can use IBM Rational Application Developer V9, which has WebSphere Developer Tools 
integrated.

For supported Eclipse versions and more installation methods, refer to the following IBM 
Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.rad.install.doc
/topics/t_install_wdt.html

There are a number of different ways to install the WebSphere Application Server Developer 
Tools for Eclipse into your development environment including:

� Through the Eclipse Marketplace
� Using the WASDev site
� With a downloaded installation file

2.1.1  Installation from Eclipse Marketplace

You can install IBM WebSphere Application Server Liberty Profile Developer Tools for Luna 
directly from the Eclipse Marketplace by completing the following steps:

1. Start the Eclipse integrated development environment (IDE) for Java EE Developers 
workbench.

2. Click Help → Eclipse Marketplace (Figure 2-1).

Figure 2-1   Eclipse Marketplace menu item
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3. In the Find field, type WebSphere liberty and then click Go. 

4. In the list of results, locate IBM WebSphere Application Server Liberty Profile 
Developer Tools for Luna and then click Install (Figure 2-2).

Figure 2-2   Eclipse Marketplace search for WebSphere Liberty
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5. On the Confirm Selected Features page, expand the parent nodes and select the features 
that you want to install. When you are finished, click Confirm (Figure 2-3).

The following features are available:

– Open Services Gateway initiative (OSGi) Application Development Tools
– Web Development Tools
– Web Services Development Tools
– WebSphere Application Server Liberty Profile Tools 

Figure 2-3   Liberty features

6. On the Review Licenses page, review the license and if you agree to the terms, click I 
accept the terms of the license agreement. Then, click Finish. The installation process 
starts.

7. When the installation process completes, restart the workbench.

2.1.2  Installation from the WASdev community site

You can install the WebSphere developer tools by using the links that are provided on the 
WASdev community site if you are using Eclipse 3.7.2 or later. Use the following steps to 
download the toolset:

1. Start the Eclipse IDE for Java EE Developers workbench.

2. Open a web browser to http://wasdev.net and click the download tab.

Tip: During the installation, a security warning dialog box might open and display the 
following warning:

“Warning: You are installing software that contains unsigned content. The authenticity 
or validity of this software cannot be established. Do you want to continue with the 
install?”

You can safely ignore the message and click OK to continue.
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3. Select the appropriate version of the WebSphere Application Server Developer Tools 
from the downloads page (Figure 2-4 on page 41).

Figure 2-4   IBM WebSphere Liberty Repository

4. Locate WebSphere Application Server Developer Tools for Eclipse and click 
Download for your version of Eclipse.

5. Locate the Install icon for WebSphere Application Server Liberty Profile (Figure 2-5).

Figure 2-5   WebSphere Developer Tools Install buttons
Chapter 2. Installation 41



6. From the browser window, drag the Install icon to the toolbar of your Eclipse workbench. 
This starts the installation process and opens a dialog box.

7. On the Confirm Selected Features page, expand the parent node and select the features 
that you want to install. 

The following features are available:

– OSGi Application Development Tools
– Web Development Tools
– Web Services Development Tools
– WebSphere Application Server Liberty Profile Tools

When you are finished, click Confirm (Figure 2-6).

Figure 2-6   Liberty features

8. On the Review Licenses page, review the license and if you agree to the terms, click I 
accept the terms of the license agreement. Then, click Finish. The installation process 
starts.

9. When the installation process completes, restart the workbench.

2.1.3  Installation from downloaded installation files

You can install the IBM WebSphere Application Server Liberty Profile Developer Tools for 
Luna into an existing Eclipse workbench. This is facilitated by using the installation files that 
you download to your computer.

Tip: During the installation, a security warning dialog box might open and display the 
following warning:

“Warning: You are installing software that contains unsigned content. The authenticity 
or validity of this software cannot be established. Do you want to continue with the 
install?”

You can safely ignore the message and click OK to continue.
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If you run the system disconnected from the Internet, Eclipse requires some prerequisite files. 
For detailed instructions about how to perform this installation and details about the additional 
prerequisite Eclipse files, refer to the following IBM Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.rad.install.doc
/topics/t_install_wdt.html

2.2  Installing the Liberty profile

To serve your applications, you must install the Liberty profile runtime environment. The 
environment is the same whether you are using it for development, test, or production. The 
WebSphere developer tools integrate with the Liberty profile to give you a seamless, 
integrated development environment that can aid you in developing and testing your 
applications.

2.2.1  Installation using the Liberty profile developer tools

The Liberty profile runtime environment can be installed directly from within the Liberty profile 
developer tools. Installing in this manner also creates an initial server.

The following steps for installing the Liberty profile and server assume that you have already 
installed the tools that are described in 2.1, “Installing the WebSphere developer tools” on 
page 38:

1. Start Eclipse with WebSphere developer tools installed (or Rational Application Developer 
V9).

Tip: During the configuration of the run time and server, you are prompted to provide 
names for similar items, which can cause confusion. The following are the names that you 
will be asked to define, in the order you encounter them:

Server Host Name The name of the machine running the server or local 
host.

Server Name The name of the server as it will be known by Eclipse. 
This should not be confused with the actual server 
created in the Liberty profile.

Liberty Profile Server Name The name of the server that will be created in the Liberty 
profile runtime environment. This is your actual Liberty 
Profile Server.
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2. Select File → New → Other.

3. In the Wizards text box, either browse to Server → Server or type server in the filter field. 
Select the Server icon and then click Next (Figure 2-7).

Figure 2-7   Selecting the server installation wizard
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4. Expand IBM and select WebSphere Application Server Liberty Profile from the 
available server list, as shown in Figure 2-8. Provide the Server’s host name and the 
Server name that you want displayed in the workbench, and click Next. 

Figure 2-8   Defining the Liberty profile for a new server
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5. If you installed a Liberty profile runtime environment, you can select Choose an existing 
installation and browse to select the Liberty profile runtime installation location. This 
example does not have a Liberty runtime environment that is installed, so one needs to be 
installed. To do so, select Install from an archive or a repository and click Next 
(Figure 2-9).

Figure 2-9   Install from an archive or a repository
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6. In the Install Runtime Environment, start by entering a path for where you would like the 
runtime installation.

7. If you previously downloaded a Liberty profile runtime archive file from IBM Passport 
Advantage® or WASdev.net, you can select the downloaded archive using the first option 
of Install a new runtime environment from an archive. In this example, we are 
downloading directly from the IBM website. Choose the second option Download and 
install a new runtime environment from ibm.com, select the wanted version of Liberty 
Profile Runtime, and click Next (Figure 2-10). 

Figure 2-10   Select the Liberty runtime
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8. On the Install Add-ons page, select any additional features that you want added to your 
server installation. The additional features include open source packages and the 
extended version of the Liberty profile, which adds extra capabilities, including JMS and 
Web Services. Click Next (Figure 2-11).

Figure 2-11   Install optional server add-ons

9. Accept the license agreements, and then click Next.
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10.Enter the wanted Server name and click Finish (Figure 2-12).

Figure 2-12   Enter the Server name

11.The Liberty profile runtime environment is downloaded and installed.

12.When setup is complete, you see the new server and runtime environment displayed in 
the Servers view of your workbench. Figure 2-13 shows the newly created server that is 
expanded. 

Figure 2-13   The new server shown in the Servers view

2.2.2  Installation using the command line

If you have obtained the Liberty profile runtime environment from WASdev.net or through 
Passport Advantage, you have downloaded a JAR file. The JAR file has a name similar to 
wlp-runtime-8.5.5.6.jar. 

Installing the runtime environment
To install the Liberty profile, you must extract the archive file by completing the following 
steps:

1. Run the following command to extract the contents of the Liberty archive:

java -jar wlp-runtime-8.5.5.6.jar

2. Press x to skip reading the license terms or press Enter to view them.

Tip: It is also possible to use the WebSphere Developer Tools to do debugging on remote 
Liberty servers. This requires additional configuration to define where the remote server is 
running.
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3. Press Enter to view the license agreement.

4. Press 1 if you agree to the license terms and are ready to proceed.

5. Provide the installation path for the Liberty profile, for example:

C:\IBM\WebSphere

6. Press Enter.

The server is installed into a wlp directory within the install directory that is specified in 
step 5. If you did not specify an installation location, it installs to the current directory. 

Creating a server
The Liberty profile runtime environment does not come with a server defined. To create a 
server, you must run the following command (Figure 2-14) from the Liberty profile bin 
directory (wlp/bin):

server create <server name> 

Figure 2-14   Create server command

This creates a server, with the provided name, in the usr/servers directory.

Adding the new server and runtime environment into the tools
To use the Liberty profile developer tools with your new runtime and server, you must add 
them into the tools. This can be done by following the instructions in 2.2.1, “Installation using 
the Liberty profile developer tools” on page 43. Then, select your run time and server at the 
relevant steps.

Installing using a compressed file
It is also possible to install the runtime using a compressed file. In this example, version 7 of 
the web profile has been extracted to the local file system using a compressed utility. Other 
compressed distributions include the javaee7 and osgi bundles.

Tip: A Liberty profile runtime environment can contain multiple servers. You do not need to 
install multiple run times onto a machine to run multiple servers. 

Server name is an optional parameter. If you do not specify a server name, defaultServer is 
used. 
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The example in Figure 2-15 shows the creation of a test server and the feature list for the 
expanded environment.

Figure 2-15   Web profile feature list

2.2.3  Installation on z/OS

IBM Installation Manager is used to install the Liberty profile on z/OS using the 
com.ibm.websphere.liberty.zOS.v85 package offering. Use the latest version of IBM 
Installation Manager that is supported by your Liberty profile distribution. For more 
information about installing IBM Installation Manager on z/OS, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSDV2W_1.8.0/com.ibm.silentinstall12
.doc/topics/t_zos.html

To install the Liberty profile, install the Liberty offering by running the following imcl command 
of IBM Installation Manager (Example 2-1).

Example 2-1   Installing Liberty profile using IBM Installation Manager on z/OS

MTRES1 @ SC49:/u/mtres1/IIM/tools>./imcl install com.ibm.websphere.liberty.zOS.v85 
-installationDirectory /u/mtsres1/IBM -repositories 
/u/mtres1/kits/8556/repository/ -acceptLicense
Installed com.ibm.websphere.liberty.zOS.v85_8.5.5006.20150425_1310 to the 
/u/mtres1/IBM directory.
MTRES1 @ SC49:/u/mtres1/IIM/tools>

The following folders are created during the installation process:

� bin 
� lib
� lafiles
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� properties

No Java Software Development Kit (SDK) is included as part of the Liberty install on z/OS by 
default. Use a 64-bit Java SDK such as the no-charge feature provided for z/OS, or install one 
of the optionalJava SDKs that are provided along with WebSphere Application Server for 
z/OS.

2.2.4  The Liberty profile runtime environment and server directory structure

The location of the various files and directories that make up the Liberty profile runtime 
environment and server are important. You must become familiar with these files to configure 
and deploy applications to the server.

Note: On z/OS, create your Liberty server configurations in a location independent of the 
installed Liberty profile. Do not use the usr subdirectory (wlp/usr).
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Runtime directory structure
Figure 2-16 provides an overview of the directory structure that is used by the Liberty profile 
runtime environment. The directory structure and location of files are essential for the healthy 
running of your servers. 

Figure 2-16   The Liberty runtime directory structure

Here are the most important Liberty runtime directories:

� bin

This directory contains scripts that are used to manage the Liberty profile server and 
server instances.

� etc

This directory is optional. It can be used for customization of the whole Liberty profile 
installation. The configurations that are defined by files in this directory apply to all Liberty 
profile servers. 

� lib

This directory contains the Liberty runtime libraries. 

� templates

This directory contains sample configuration files and a sample server.xml file for the 
Liberty profile.

� usr

This directory contains the server instances with their configuration and applications and 
any resources that can be shared between servers. The usr directory is user-owned and 
as such is not modified by any service releases.
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Server directory structure
Similar to the runtime directory structure, it is essential that you become familiar with the 
location and layout of the Liberty profile server files and directories (Figure 2-17). 

Figure 2-17   The Liberty server directory structure

Here are the most important Liberty profile server directories:

� apps 

This directory is optional. It can contain deployed applications or application descriptors if 
they are deployed using the WebSphere developer tools.

� dropins

Applications can be added and removed to the liberty server simply by dropping them into 
this folder. This directory is constantly monitored by the server to identify any changes and 
add or remove an application when the changes occur.

� logs

Contains the logs that are produced by the Liberty profile server. By default, this is the 
place where the trace or message logs are written. It also contains the first-failure data 
captures (FFDCs).

� resources

Contains additional resources for the Liberty profile server instance. For example, 
keystores that are generated by the Liberty profile server are in this directory.

� tranlog

Contains the transactional logs that are produced by the server run time and the 
applications. The transactional logs are used to commit or roll back transactional 
resources if there is a server failure.

� workarea

Contains the Liberty profile server operational files; is created during the first server run.
54 IBM WebSphere Application Server Liberty Profile Guide for Developers



2.3  Configuring the server runtime JDK

The Liberty profile requires a Java Runtime Environment (JRE) to run in. The Liberty profile 
server runs on Java version 6 or above provided by any vendor. A full list of supported Java 
versions is noted in the following System Requirements document:

http://www-01.ibm.com/support/docview.wss?uid=swg27038218

The following sections describe the ways that you can define which JRE is used. 

2.3.1  Defining the JRE from within workbench

When running a server through the workbench, the JRE to be used is defined in the server 
properties. When you created the server in Eclipse, you could define the JRE. To change the 
JRE, complete the following steps:

1. Switch to the Servers view in the workbench.

2. Right-click your server and select Open (Figure 2-18).

Figure 2-18   Opening a Server Properties window 

3. Select the Runtime Environment link (Figure 2-19).

Figure 2-19   Opening the Runtime Environment properties
Chapter 2. Installation 55

http://www-01.ibm.com/support/docview.wss?uid=swg27038218


4. A window is displayed allowing you to change the runtime environment, including 
changing your JRE (Figure 2-20). After you are satisfied with your changes, click Finish.

Figure 2-20   Edit Server Runtime Environment window

5. Save the changes to the Server properties. The new settings are used when you next start 
the server.

2.3.2  Configuring the system JRE

When starting the Liberty server using the command line, the server must know where to find 
its JRE. In the absence of any server or runtime configuration files that define the JRE, the 
system JRE is used.

On Windows systems, you can use Example 2-2 to set the JAVA_HOME property, so the 
Liberty server uses your own JRE installation directory.

Example 2-2   Setting the JRE for Liberty on Windows

set JAVA_HOME=C:\IBM\jre6
set PATH=%JAVA_HOME%\bin;%PATH%

Caution: If you created a server.env file that defines the JRE (either for the server or 
for the run time), this takes preference over the Eclipse setting. You must remove this 
file in order for the Eclipse setting to work.
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On Linux Systems, you can use Example 2-3 to set the JAVA_HOME property.

Example 2-3   Setting the JRE for Liberty on Linux

export JAVA_HOME=/opt/IBM/jre6
export PATH=$JAVA_HOME:$PATH

The Liberty profile runtime environment searches for the Java command in the following order 
of properties: JAVA_HOME, JRE_HOME, and PATH.

2.3.3  Using server.env to define the JRE

The server.env file is a Liberty profile-specific configuration file that can be used to define the 
JRE for the servers to use. When you install the Liberty profile this configuration file does not 
exist, so you must create it. Create the file in one of the following locations:

� ${wlp.install.dir}/etc/server.env

The settings here apply to all servers in the runtime environment.

� ${server.config.dir}/server.env

These settings are specific to the server containing the file. This server.env is used in 
preference to the runtime level when both exist.

To define the JRE, add the following line into the server.env file:

JAVA_HOME=<path to your JRE>

You can use the server.env file to provide any other additional environment variables that 
your server might need.

2.3.4  Specifying JVM properties

You can use the jvm.options files at the runtime and server levels to specify jvm-specific start 
options, for example, -X arguments. The options are applied when you start, run, or debug the 
server. Be sure to specify only one option per line.

When you install the Liberty profile, this configuration file does not exist, so you must create it. 
Create the file in one of the following locations:

� ${wlp.install.dir}/etc/jvm.options

The settings here apply to all servers in the run time.

� ${server.config.dir}/jvm.options

These settings are specific to the server containing the file. This jvm.options file is used in 
preference to one at the runtime level when both exist.

2.4  Starting and stopping a Liberty profile server

You can control the state of the Liberty profile server either from the command line or through 
the workbench. We describe the two methods in this section.

Caution: The server.env files support only key=value pairs. Variable expansion is not 
supported. 
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2.4.1  Starting and stopping the server by using the command line

The server can be controlled from a single server command that is in the 
${wlp.install.dir}/bin directory. The following commands can be used to start and stop 
the server:

� server start <servername>

Starts the server running in the background

� server run <servername>

Starts the server running in the foreground and writes the console output to the window. To 
stop the Liberty profile server in this mode, press Ctrl+c or kill its process or run server 
stop from another command window.

� server debug <servername>

Starts the server in debug mode.

� server stop <servername>

Stops the server.

� server status <servername>

Displays the current state of the server.

2.4.2  Starting and stopping the server from the workbench

You can control the state of the Liberty profile server from directly within the workbench. This 
can be done from the Server view. Either right-click the server and select the required option, 
or click the icons that are attached to the Server view, as shown in Figure 2-21.

Figure 2-21   Starting the server by using the start button

The following buttons are available to control the server:

 Starts the server in debug mode. 

 Starts the server.

 Stops the server.

Hint: If the workbench is open and it has the Liberty profile server already defined, it 
automatically updates. Updates reflect the status of the server and show the output 
from the server in the console window.
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Chapter 3. Developing and deploying web 
applications

IBM WebSphere Application Server V8.5 Liberty Profile provides a simplified environment for 
developing and deploying applications. Whether working in the Liberty profile developer tools 
or in a third-party text editor, you can quickly build, run, and update applications. Development 
impact, such as configuration and server restarts, are kept to a minimum to reduce the 
amount of time it takes to develop new applications. The Liberty profile supports Java SE 6, 
Java SE 7, and Java SE 8 runtime environment, but the Java EE 7 features require Java SE 7 
or later. In this chapter, we describe the benefits of developing applications in the Liberty 
profile environment. 

The chapter contains the following sections:

� Developing applications using the Liberty profile developer tools
� Developing outside the Liberty profile developer tools
� Controlling class visibility in applications
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3.1  Developing applications using the Liberty profile developer 
tools

The Liberty profile developer tools provide a lightweight, rich environment for developing 
applications. Using the Liberty profile developer tools simplifies the creation of applications by 
providing wizards and graphical design tools for Java EE applications. Server configuration 
tasks are simplified by using the tools. In many cases, the tools can infer what configuration is 
needed based on the application and update it automatically. Working in the Liberty profile 
developer tools environment also enables iterative development by republishing applications 
when you make changes in the integrated development environment (IDE).

In this section, we describe an iterative development scenario involving several technologies 
that are supported by the Liberty profile server. 

3.1.1  Using the tools to create a simple servlet application

In this section, we describe how to develop and deploy a simple servlet application using 
either the Liberty profile developer tools or a simple text editor. Following the procedure that is 
described in this chapter reveals the simplicity of developing and updating applications in the 
Liberty environment. 

Liberty profile supports the Java EE Servlet 3.1 API. This book assumes some knowledge of 
Java EE technologies, so the actual coding of the example servlet is not described here. 

The Liberty profile developer tools provide a rich development environment for building web 
applications. In this section, we take you through the end-to-end process of developing, 
deploying, and updating an application. 

Getting started
Before you begin, make sure that you have installed the Liberty profile server and tools as 
described in 2.1, “Installing the WebSphere developer tools” on page 38. The following steps 
outline how to create a new project for later deployment:

1. Begin by creating a web project in the Liberty profile developer tools by using the Create a 
Web Project wizard from the toolbar, as shown in Figure 3-1.

Figure 3-1   Selecting the Create a Web Project wizard

2. In the first window, give the project the name ITSOWeb and select the Simple project 
template. Leave Programming Model, as the default value, Java EE. Clicking Next takes 
you to the Deployment options. 

3. Under Target Runtime, make sure that WebSphere Application Server V8.5 Liberty 
Profile is selected. Leave all other options as the default values, and click Finish. Accept 
the option to switch to the web perspective if you are prompted to do so.
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Building a servlet application
Now add a servlet to the ITSOWeb web project by completing the following steps: 

1. Begin by creating a servlet using the Create Servlet wizard: 

a. To start the wizard, right-click your ITSOWeb project in the Enterprise Explorer window 
and select New → Servlet. 

b. Use com.itso.example for the package name and HelloITSO for the servlet class 
name. All other values can be left at the defaults. Figure 3-2 shows the Create Servlet 
wizard. 

Figure 3-2   Create Servlet wizard

2. After finishing the wizard, the HelloITSO.java file is included in the ITSOWeb project. 
Open the file and add some simple output to the servlet’s doGet method. Figure 3-3 shows 
an example doGet method. 

Figure 3-3   Example doGet method for the HelloITSO servlet

For more information about developing servlets and other dynamic web content, see the 
Liberty profile developer tools at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.etools.rpe.doc/
topics/crpe.html

Deploying the application
Before deploying the application, ensure that you created a Liberty Profile Server in the 
development environment as described in 2.2.1, “Installation using the Liberty profile 
developer tools” on page 43. To deploy the application, complete the following steps:

1. In the Servers view, locate your Liberty Profile Server. Right-click the server and select 
Add and Remove. 
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2. In the resulting window, select the ITSOWeb project and click Add, then click Finish. The 
web project is now available on the server. You should see output similar to Figure 3-4 on 
page 62 in the console. If your server is not started, start your server. The application is 
automatically assigned the context root matching the project name of ITSOWeb. The 
application start is fast. 

Figure 3-4   Output from deploying an application

Verifying the application
To verify the application, open a web browser and go to:

http://localhost:9080/ITSOWeb/HelloITSO

You should see the following output syntax:

Hello, Liberty developer 

Updating the application
The Liberty profile server supports hot deployment for all applications. To verify, change the 
servlet to output a different message in its doGet method. When you save the file, the changes 
are automatically published to the server. In the console output, notice that the application 
was stopped, updated, and made available again almost instantaneously. Verify that your 
changes are active by visiting the HelloITSO page again. 

3.1.2  Developing and deploying a JSP application

The Liberty profile server supports the JavaServer Pages (JSP) 2.3 specification. JSP allows 
you to separate presentation logic from your business logic. 

The procedure for creating and deploying a JSP in the Liberty profile developer tools is similar 
to the procedure for a servlet. To create and deploy, complete the following steps:

1. Begin by creating a new JSP file by right-clicking the ITSOWeb project and selecting 
New → JSP File. 

2. Enter ITSOWelcome.jsp for the name of the page and click Next. 

3. On the Select JSP template window, make sure that the template New JSP File (HTML) is 
selected and click Finish.

Result: Note the extreme speed of the application start and that it was automatically 
assigned the context root matching the project name of ITSOWeb.
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4. The ITSOWelcome.jsp page automatically opens in the Rich Page editor. By default, the 
editor displays a split view that shows both the JSP source and a preview of the output. 

Insert some text into the source editor between the body tags. Notice that the preview 
pane is automatically updated. Figure 3-5 on page 63 shows the JSP editor after adding a 
form to submit a simple input value to the HelloITSO servlet. 

Figure 3-5   Editing the ITSOWelcome JSP file

The Rich Page editor contains several powerful features that are beyond the scope of this 
book. For more information, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.etools.rpe.d
oc/topics/crpe.html
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5. Because the ITSOWeb project is already deployed to the ITSO Example Server, no extra 
steps are needed to deploy and test the new JSP file. However, to test the JSP file, which 
is shown in Figure 3-6, open the HelloITSO servlet again and add an implementation for 
the doPost method. For example, the code, which is shown in Figure 3-6, outputs a 
message using the value of the JSP’s input field. When you are finished editing the 
servlet, save and close the file. Notice that the application is automatically updated on the 
server. 

Figure 3-6   Example doPost implementation for the HelloITSO servlet

6. To test the application, enter the link in to your web browser:

http://localhost:9080/ITSOWeb/ITSOWelcome.jsp

You should be able to submit a value in the JSP file and see the output message from the 
servlet that reflects the value that is given in the input field of the JSP.

3.1.3  Developing and deploying a JSF application

JavaServer Faces (JSF) simplifies the development of user interfaces for web applications by 
providing the following features:

� Templates to define layout
� Composite components that turn a page into a JSF UI component
� Custom logic tags
� Expression functions and validation
� Component libraries
� XHTML page development

For more information about JSF and the features it provides, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.mu
ltiplatform.doc/ae/cweb_javaserver_faces.html

JSF tools
The Liberty profile developer tools provide a rich development environment for building 
high-quality JSF applications. In this section, we describe a simple JSF application using JSP 
files, a managed bean, and navigation rules. For more information about the powerful 
features that are provided by the JSF tools, refer to the following IBM Knowledge Center 
website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.etools.jsf.doc/
topics/tjsfover.html
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Enabling JSF in a web project
To enable JSF in a web project, right-click the project and select Properties. Click Project 
Facets and enable JavaServer Faces, as shown in Figure 3-7. Click OK to close the 
properties.

Figure 3-7   Enabling JSF in a web project

Feature enablement
To reduce the impact and resource usage, the Liberty profile server enables only features that 
are actively being used. When you create a server using the Liberty profile developer tools, 
the configuration automatically is updated to enable servlets and JSPs. By default, the JSF 
application run time is not enabled. The server configuration must be updated to run JSF 
applications.
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When you add applications to the server or update the facets of a project that is deployed to 
the server, the Liberty profile developer tools try to determine what features should be 
enabled on the server to support the application. If you update the project to add the JSF 
facet, the tools prompt you to resolve conflicts to add the jsf-2.2 feature to the Liberty profile 
server. You can add or remove the features by Add or Remove and resolve conflicts, as 
shown in Figure 3-8 on page 66.

Figure 3-8   JSF feature enablement

You can verify that the change took place by opening the server.xml file and confirming that 
<feature>jsf-2.2</feature> was added. Also, the console output shows that the jsf-2.2 
feature was installed to the server, as shown in Figure 3-9.

Figure 3-9   Console output after JSF feature enablement
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Building a JSF application
Now that JSF is enabled in your web project, begin creating a JSF application by opening the 
WebContent/WEB-INF/faces-config.xml file for editing in the Faces Config editor. 

Adding a managed bean and set properties
Complete the following steps to add a managed bean:

1. On the ManagedBean tab, click Session and then click Add to add a session scoped 
managed bean. 

2. In the resulting window, click Create a new Java class for the managed bean. 

3. A window opens and in that window, create a class named UserManagedBean in the 
com.itso.example package. 

4. Go through the remaining windows in the managed bean wizard by clicking Next and then 
Finish. 

Figure 3-10 shows the ManagedBean configuration after the wizard finishes. 

Figure 3-10   ManagedBean configuration for UserManagedBean

Now that the managed bean is added, complete the following steps to edit the 
UserManagedBean class: 

1. Open the UserManagedBean class for editing.

2. Add String fields named user and location. 

3. Add a getter and setter for both fields. 

4. Add a method named, clear that sets both fields to null and returns the string “clear”. 

5. Add a method that is named submit that simply returns the string “submit”. 
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Example code for the UserManagedBean class is shown in Figure 3-11 on page 68.

Figure 3-11   Example UserManagedBean code

To further edit the properties of the managed bean, complete the following steps:

1. Go back to the Faces Config editor for the managed bean. You can set initial values for the 
managed bean’s properties by clicking Add under the Initialization section. 

2. From the property name drop-down menu, select the Name property. In the value field, 
enter Liberty User (Figure 3-12). 

Figure 3-12   Adding a Managed Property

3. Repeat the process for the location property. In the value field, enter Liberty User 
Location.

Adding JSF-enabled JSP files
Create three JSP files, input.jsp, visit.jsp, and goodbye.jsp using the Create JSP wizard. 
To create each file, in the wizard’s template selection page, select New JavaServer Faces 
(JSF) Page (html). 
68 IBM WebSphere Application Server Liberty Profile Guide for Developers



The input.jsp file asks for two input parameters, a name and a location. The values are 
taken from the managed bean userManagedBean. Figure 3-13 shows example code to 
accomplish this process. 

Figure 3-13   Example code for input.jsp

The visit.jsp file outputs the name and location value from the userManagedBean. It then 
displays a button to return to the previous page, and a button to quit the application. 
Figure 3-14 shows example code for visit.jsp.

Figure 3-14   Example code for visit.jsp

The goodbye.jsp file outputs the name value and has a command button that allows you to 
start over. Example code is shown in Figure 3-15.

Figure 3-15   Example goodbye.jsp file

Adding navigation rules and setting outcome properties
To add navigation rules, complete the following steps:

1. In the Faces Config editor, click the tab that is labeled Navigation Rule. Drag each of the 
three JSP files you created in the editor. 

2. Create links between the files. If the palette is not already displayed, select Window → 
Show View → Palette. On the palette, click Link, and then click the input.jsp file. End 
the link by clicking the visit.jsp file. You should now see an arrow pointing from 
input.jsp to visit.jsp. 

3. On the palette, click Select and then click the new link and view the properties in the 
properties view. If the properties view is not available, select Window → Show View → 
Properties. In the outcome field of the properties, enter submit. 

4. Follow the same procedure to create a link between the visit.jsp file and the 
goodbye.jsp file, and set the outcome field to goodbye. 
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5. Create a link between the goodbye.jsp file and the input.jsp file, and set the outcome 
property to clear. 

6. Finally, create a link from the visit.jsp file back to the input.jsp file and set the outcome 
to clear. 

Figure 3-16 shows the navigation rule window after all the rules are created.

Figure 3-16   JSF navigation rules

Testing the application
Access the application by visiting the following website:

http://localhost:9080/ITSOWeb/faces/input.jsp

3.1.4  Developing and deploying JAX-RS applications

The Java API for RESTful Web Services (JAX-RS) simplifies the development of applications 
that use Representational State Transfer (REST) principles. 

More information about JAX-RS is available at the following website: 

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.mu
ltiplatform.doc/ae/cwbs_jaxrs_overview.html

Result: Notice how the managed bean fields were initialized without having to add code in 
the JSP. Also, notice that the application navigates to the correct pages based on the 
navigation rules without having to embed navigation logic in the JSP files. 
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Building a simple JAX-RS application
To build and configure a JAX-RS application in the Liberty profile developer tools, complete 
the following steps: 

1. To enable the JAX-RS facet on the web project, right-click the project and select 
Properties. Click Project Facets and enable JAX-RS by selecting the check box next to 
JAX-RS (REST Web Services). And select 2.0 from the pull-down list next to JAX-RS 
(REST Web Services), as shown in Figure 3-17.

Figure 3-17   Web project facet list

2. After Enabling JAX-RS (REST Web Services), you see a blue i mark below the window 
with a note that further configuration is available. 

3. Clicking the note opens a window with various configuration options for JAX-RS. Enable the 
check box next to Update Deployment Descriptor. You can leave all of the values on this 
window as their defaults and click OK. If you open the web.xml file for the web project, you 
notice that a servlet and servlet mapping were added for JAX-RS. 

Feature enablement
As with JSF, the Liberty profile server does not load the JAX-RS run time unless it is actively 
being used. Click OK on the facet window to enable the feature. If you load the server.xml 
file, in the source view, you notice that <feature>jaxrs-2.0</feature> now is added to the 
list of feature definitions. 
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Creating an application class
A JAX-RS application class is used to define the classes that are used in the application. 
Create one now by creating a new Java class that extends the 
javax.ws.rs.core.Application. The class should contain a getClasses() method that 
returns the classes that are involved in the application, as shown in Figure 3-18 on page 72. 

Figure 3-18   JAX-RS application class

Creating the ITSOJaxrsExample class
To create the class for your JAX-RS, complete the following steps:

1. Create a Java class named ITSOJaxrsExample or import the class that is included in the 
download material for this book. For more information, see Appendix A, “Additional 
material” on page 257.

2. The class must be annotated with @Path(“/example”) to indicate that the class is used 
with requests to the ITSOWeb/jaxrs/example. 

3. Add a method that is called getString that returns a javax.ws.rs.Response object. The 
method must be annotated with @GET. Also, add a method that is called postString that 
takes a string as a parameter and returns a response object. The postString method 
should be annotated with @POST. 

Figure 3-19 shows an example of the completed class. 

Figure 3-19   JAX-RS resource class

Adding a servlet initialization parameter
The servlet that was added when we updated the web project to enable the JAX-RS facet 
must know about your application class. This is done by creating an initialization parameter 
for the JAX-RS Servlet. To create an initialization parameter, complete the following steps:

1. Open the web.xml file in the design editor and right-click JAX-RS Servlet. 

2. Select Add → Initialization Parameter. 
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3. On the resulting details window, enter javax.ws.rs.Application in the name field and the 
name of your Application class in the value field, as shown in Figure 3-20 on page 73.

Figure 3-20   Creating an initialization parameter for the JAX-RS servlet

Testing your application
To test your application, open a web browser and visit the following website:

http://localhost:9080/ITSOWeb/jaxrs/example

You should see the output Hello ITSO from JAX-RS.

Example 3-1   Error message with JAX-RS enabled

[ERROR   ] An exception occurred during processing of the 
org.apache.wink.server.internal.providers.exception.EJBAccessExceptionMapper 
class. This class is ignored.

Creating the ITSOJaxrsExampleClient class
The Liberty profile supports Java EE Client API for JAX-RS (JAX-RS client) and provides the 
JAX-RS client wizard to create the JAX-RS client class.

To create the class for your JAX-RS client, complete the following steps:

1. Begin by opening ITSOWeb → Services → REST.

Note: When you access web applications with JAX-RS enabled, you might see the error 
(shown in Example 3-1) displayed in the console output. This message does not represent 
a functional error and can be safely ignored. 
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2. Right-click /example : com.itso.example.ITSOJaxrsExample, and select Generate → 
JAX-RS Client, as shown in Figure 3-21.

Figure 3-21   Open JAX-RS client wizard

3. Use ITSOJaxrsExampleClient for the class name and com.itso.example.client for the 
package name, and enable Generate JAX-RS Client Filter. All other values can be left as 
default. Click Finish.

The window in Figure 3-22 shows the JAX-RS client wizard.

Figure 3-22   JAX-RS client wizard

4. After finishing the wizard, you can verify that the ITSOJaxrsExampleClient.java file and 
the ITSOJaxrsExampleClientFilter.java file is included in the ITSOWeb project. 
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5. You do not have to enable the jaxrsClient-2.0 feature because the jaxrs-2.0 feature 
enables the jaxrsClient-2.0 feature. However, if the Liberty profile uses only the JAX-RS 
client function, you have to enable the jaxrsClient-2.0 feature.

Using JSON-P in the application
The Java API for JSON Processing (JSON-P) provides a standardized method for 
constructing and manipulating data to be rendered in JavaScript Object Notation (JSON).The 
Liberty profile supports JSON-P and provides the JSON-P feature.

You can use JSON-P in the RESTful services. In this part, we describe how you can use 
JSON-P in JAX-RS applications in the Liberty profile developer tools.

To use JSON-P in the ITSOJaxrsExample class, complete the following steps:

1. Open the ITSOJaxrsExample.java file, and find the @GET annotation.

2. The @Produces annotation under the @GET annotation is used to specify the MIME media 
types of representations. You should modify the @Produces annotation to remove 
TEXT_PLAIN and enter APPLICATION_JSON. Entering APPLICATION_JSON informs the client to 
accept the JSON data.

3. Next, you should modify the getString() method under the @Produces annotation to return 
JSON data to the client. You should create the JSON object using the 
createObjectBuilder() method, and add the values using the add() method, and return 
JSON object, as shown in Figure 3-23 as an example.

Figure 3-23   JSON-P example code

4. Enable the jsonp-1.0 feature in server configuration.

5. To test the application, enter the link in your web browser:

http://localhost:9080/ITSOWeb/jaxrs/example

You should see the JSON data was created by using JSON-P.

3.1.5  Using Context and Dependency Injection in web applications with the 
Liberty profile developer tools

By using the Context and Dependency Injection (CDI) feature of Java EE 6 and Java EE 7, 
you can inject resources into your applications. Previous versions of Java EE allowed you to 
inject certain resources, such as EJBs or a Persistence Context, but the CDI specification 
allows for more general-purpose resource injection. 

CDI also helps manage the lifecycle of beans through annotations. Beans can be defined to 
live for the life of a request, session, application, or conversation. 
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For more information about CDI, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.zseri
es.doc/ae/cweb_cdi.html

Use the procedure that is outlined in the rest of this section to create a simple faces 
application that uses JavaBeans that are injected by CDI.

Enabling the CDI project facet
Enable the CDI project facet by completing the following steps:

1. Right-click the ITSOWeb project and select Properties. In the window that opens, click 
Project Facets. 

2. Enable the CDI project facet by selecting the check box next to Context and dependency 
injection (CDI), as shown in Figure 3-24 on page 76. This creates a named beans.xml in 
the web project. You can find it under WebContent → WEB-INF.

Figure 3-24   Enabling the CDI project facet

Creating a simple bean class
Create a Java class named InjectedBean or import the class that is included in the download 
material for this book. The class should be annotated with 
@javax.enterprise.context.RequestScoped to indicate that the bean’s lifecycle is only as 
long as a single request. 

The InjectedBean class should contain one method, getHello(), which simply returns the 
string “Hello from the injected bean”. The completed class should look like the example in 
Figure 3-25. 

Figure 3-25   The InjectedBean class
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Creating another managed bean class
You can inject InjectedBean resources into another managed bean class by using CDI. Now, 
create a Java class named ExampleBean that uses the InjectedBean to return a value. Add 
the following actions to the class implementation:

� The @javax.enterprise.context.RequestScoped annotation should be added to the class 
to indicate the bean’s lifecycle.

� The annotation @javax.inject.Named(“itsoBean”) should be added to the class to 
indicate that clients can access this managed bean by the name itsoBean.

� The class should have a field of type InjectedBean. The field should be annotated with 
@javax.inject.Inject to indicate that the value is injected by the container. 

� The class should have a single method, getMessage() that simply returns the value of 
injectedBean.getHello(). 

The completed class should look like the example in Figure 3-26 on page 77.

Figure 3-26   The ExampleBean class

Creating a JSP file to use the managed beans
Creating a JSP file to use the managed beans allows you to access the applications using 
CDI with web browser.

To create a JSP named cdiExample.jsp, use the Create JSP wizard. In the wizard’s template 
selection window, click New JavaServer Faces (JSF) Page (html). 

In the body of the new JSP file, add an outputText element that has a value of 
#{itsoBean.message}, as shown in Example 3-2. Earlier, when “Creating another managed 
bean class”, you annotated the ExampleBean class with @javax.inject.Named(“itsoBean”), 
so the value for the outputText element is populated with the results of calling getMessage() 
on an ExampleBean instance.

Example 3-2   Outputting the bean value in cdiExample.jsp

<body>
<f:view>

<h:outputText value=”#{itsoBean.message}”/>
</f:view>
</body>
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Testing the application
Test the web application by visiting the link:

http://localhost:9080/ITSOWeb/faces/cdiExample.jsp

3.1.6  Developing JAX-WS web services applications with the Liberty profile 
developer tools

The Java API for XML Web Services (JAX-WS) allows you to create web services 
applications in a Java EE environment. The JAX-WS API eases the development of web 
services applications by allowing developers to expose Java classes as web services using 
annotations. Developers are freed from having to deal with the complexities of the message 
format. For more information about JAX-WS, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.do
c/ae/cwbs_jaxws.html

JAX-WS support is provided only by WebSphere Liberty profile editions other than the core 
edition. 

Complete the actions outline in the following sections to expose a Java class as a web service 
in WebSphere Liberty profile. 

Creating the service implementation 
This example simulates bottom-up web services development where an existing 
implementation is exposed as a service. To do this, create a simple Java class to act as the 
service implementation. 

Create a Java class in the ITSOWeb project named ITSOGreeter. It should have one method, 
named getValue, that takes a String as an input. It should return the String Hello, <name> 
from the ITSO Greeter. The completed ITSOGreeter class is shown in Figure 3-27.

Figure 3-27   The ITSOGreeter class

Result: You should see the output (Hello from the injected bean). Your web application 
did not have to directly instantiate either the ExampleBean or the InjectedBean class. 
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Creating a web service 
To expose the ITSOGreeter class as a web service, complete the following steps:

1. Begin by right-clicking the ITSOWeb project and selecting New → Other. In the “Select a 
wizard” dialog box, expand Web Services and select Web Service, as shown in 
Figure 3-28.

Figure 3-28   Web Service wizard selection

2. In the first window of the wizard, click Browse to select the ITSOGreeter class as the 
service implementation. Leave the web service type as the default, Bottom up Java bean 
Web Service. 

3. On the left side of the window, there is a slider that lets you control how much of the web 
service is generated. For this example, leave the slider at the default value of Start 
service. 

4. Under Configuration, the server run time should be WebSphere Application Server V8.5 
Liberty Profile and the Web Service run time should be IBM WebSphere JAX-WS. These 
values are set by default, but if they are not, you can click the values to change them.
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5. By default, the wizard does not generate client code for the web service. You can change 
this by moving the lower slider up to Start client. As with the web service configuration, 
the server run time should be WebSphere Application Server V8.5 Liberty Profile and 
the Web Service run time should be IBM WebSphere JAX-WS. Figure 3-29 shows the 
completed wizard window.

Figure 3-29   Web Services wizard

6. Click Next to advance to the next window. The second window has many options for the 
generated web service. If you plan to use this example code as a starting point for the 
example in 6.6, “JAX-WS security” on page 200, select the check box next to Generate 
WSDL file into the project. This step is optional as the example in this chapter works with 
or without a generated WSDL file, and the file can be generated later if needed. 

7. Accept all of the defaults for other options and click Next to advance to the next window.

8. Accept all of the defaults on the WSDL interface options window and click Next.

9. If the Liberty profile server is not started, the next window requires you to start it before 
proceeding. After it is started, click Next.

10.Accept all defaults on the web service client options window and click Next.
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11.Click Finish to complete the wizard. Note the following changes that the wizard made:

– The wizard created a class named ITSOGreeterDelegate that provides a wrapper for 
the ITSOGreeter class. The ITSOGreeterDelegate class is annotated with @WebService 
to expose it as a JAX-WS web service. 

– The wizard created a new EAR project named ITSOWebEAR and added the ITSOWeb 
dynamic web project to the new project’s modules. It also added the new EAR to the 
server. You can verify this by loading the server configuration.

– A new web project named ITSOWebClient was created to contain the JAX-WS client 
code. In addition to the JAX-WS artifacts, the new project contains JAXB generated 
classes. 

– A new EAR project named ITSOWebClientEAR was created to contain the 
ITSOWebClient. The wizard also deployed this EAR to the server. 

Testing the web service
Test the web service by completing the following steps: 

1. Make sure that the service side of the web service is working correctly by visiting the link:

http://localhost:9080/ITSOWeb/ITSOGreeterService?wsdl 

This should return the WSDL document for the web service. Some web browsers hide 
XML documents by default. If you see an empty page when visiting the link, you might 
need to view the source to see the WSDL document.

2. Create a servlet in the ITSOWebClient project to drive the web service client. Using the 
Create Servlet wizard, create a servlet named JAXWSGreeterClient. 

In the servlet’s doGet method, create an instance of ITSOGreeterService. This is one of 
the client classes that was generated by the web services wizard. Call the 
getITSOGreeterPort method on the ITSOGreeterService instance to get an 
ITSOGreeterDelegate instance. Finally, print the value that is returned from calling 
getValue on the delegate instance. 

Figure 3-30 on page 81 shows the completed servlet code. 

Figure 3-30   JAXWSGreeterClient servlet code

3. Test the servlet by visiting the link:

http://localhost:9080/ITSOWebClient/JAXWSGreeterClient

Caution: The code in the client project is generated to use JAX-WS APIs that are 
not available in JavaSE 6. If you are using JRE Version 6, you might need to change 
the order of dependencies on the project’s build path so that the Liberty profile 
runtime dependency precedes the JRE dependency. 
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3.1.7  Developing WebSocket applications with the Liberty profile developer 
tools

WebSocket is a standard protocol that enables a web browser or client application and a web 
server application to communicate by using one full duplex connection. You can develop the 
WebSocket 1.0 and WebSocket 1.1 applications that are supported by the Liberty profile 
V8.5.5.4 and later. 

For more information about WebSocket, refer to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/cwlp_websockets.html

Use the procedure that is outlined in the rest of this section to create a simple WebSocket 
application.

Creating a WebSocket server endpoint
Create a WebSocket server endpoint named WebSocket or import the class that is included in 
the download material for this book. In the case of creating, complete the following steps:

1. Begin with selecting the wizard by right-clicking the ITSOWeb project and selecting 
New → Other. 

2. Select WebSocket Endpoint, and click Next. You can filter the entries that are shown in 
the dialog box by entering web in the search box, as shown in Figure 3-31 on page 82.

Figure 3-31   Selecting WebSocket Endpoint

3. Enter com.itso.example for the Java package and WebSocket for the Class name of the 
page, and click Finish. You can verify that <feature>websocket-1.1</feature> was 
added by opening the server.xml file.

Result: You should see the output Hello, JAX-WS Client from the ITSO Greeter.
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4. The WebSocket.java page automatically opens. The class should be annotated with 
@OnOpen, @OnMessage, @OnClose, and @OnError. The onOpen() method should contain the 
processing to store the WebSocket session for later use. And the @OnMessage method 
should contain the processing to close the WebSocket session and to send the messages.

The completed class should look like the example in Figure 3-32 on page 83.

Figure 3-32   WebSocket class

Creating WebSocket client endpoint
Create an html file as the WebSocket client endpoint named WebSocketIndex or import the 
html that is included in the download material for this book. In the case of creating, complete 
the following steps:

1. Begin by creating the html file by right-clicking the ITSOWeb project and selecting New → 
HTML File. 

2. Enter WebSocketIndex.html for the File name of the page, and click Next.

3. Select New HTML File (5) for the Templates, and click Finish.
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4. The WebSocketIndex.html automatically opens. Insert the JavaScript into the source editor 
between the body tags. Figure 3-33 on page 84 shows the html file after adding a form to 
submit a simple value to the WebSocket server endpoint and the processing for 
WebSocket. The html file should contain the processing for creating a WebSocket object 
instance and handling the lifecycle events of WebSocket.

Figure 3-33   WebSocketIndex html

Testing the application
Test the web application by visiting the link:

http://localhost:9080/ITSOWeb/WebSocketIndex.html

3.1.8  Debugging applications with the Liberty profile developer tools

One of the most powerful features of developing in the Liberty profile developer tools 
environment is the ability to debug code running on the server directly from the development 

Result: You should be able to submit a value in the html file and see the output message 
from the WebSocket server endpoint that reflects the value that is given in the input field of 
the html file. And you should be able to repeat many times. If you submit “close” as the 
value, you should see the output (Connection closed).
84 IBM WebSphere Application Server Liberty Profile Guide for Developers



environment. The following procedure is an example of how you debug a simple application in 
the Liberty profile developer tools environment.
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To debug applications, complete the following steps:

1. The server must be run in debug mode. You can start (or restart) the server in debug 
mode by clicking the bug icon in the Servers view, as shown in Figure 3-34. 

Figure 3-34   Restarting the server in debug mode

2. To debug the application, set a breakpoint in the doGet method of the HelloITSO servlet. 
On most platforms, you can do this by selecting a line in the method and pressing 
Ctrl+Shift+b. You can also right-click the vertical bar to the left of the line of code and 
select Toggle Breakpoint. 

3. Open a web browser and enter the address for the HelloITSO example:

http://localhost:9080/ITSOWeb/HelloITSO

4. A dialog in the tools prompts you to switch to the debug perspective (unless you 
configured Eclipse to switch automatically). Click YES, and you see that the debugger hit 
the breakpoint in the doGet method. Make a change to the method and save the file. 
Advance past the breakpoint by clicking Resume on the menu bar (or by pressing F8.) 
The output in the browser changed based on the changes that you made. 

For more information, refer to Chapter 7, “Serviceability and troubleshooting” on page 209.

3.2  Developing outside the Liberty profile developer tools

Developers who prefer working outside of the Liberty profile developer tools environment can 
also enjoy a simplified development experience by using the Liberty profile server. Liberty 
profile is designed to reduce development impact by providing a fast, lightweight environment 
for application development. The following list covers some of the key design features of the 
Liberty profile server that contribute to the new environment:

� Quick server start
� Hot deployment of applications
� Dynamic feature enablement
� Dynamic configuration
� Simple configuration that can be modified in a text editor

These characteristics of the Liberty profile ensure that developers can write, debug, and 
update applications without wasting time on server restarts or updating configuration through 
a complex administrative interface. 

In this section, we cover several considerations to keep in mind when developing applications 
outside of the Liberty profile developer tools environment. 
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3.2.1  Feature enablement

The Liberty profile server only loads into memory the subset of the run time that is being 
used. You must specifically enable features in the configuration for them to be available to 
your applications. The following is a list of features that are used in the examples in this 
chapter: 

servlet-3.1 Servlet 3.1
jsp-2.3 JavaServer Pages (JSP) 2.3
jpa-2.0 Java Persistence Architecture (JPA) 2.0
jaxrs-2.0 Java API for RESTful Web Services (JAX-RS) 2.0
jaxrsClient-2.0 Java EE Client API for JAX-RS
jsonp-1.0 Java API for JSON Processing
wasJmsClient-2.0 Java Messaging Service (JMS) Client 2.0
wasJmsServer-1.0 Java Messaging Service (JMS) Server 1.0
cdi-1.2 Context and Dependency Injection (CDI) 1.2
jaxws-2.2 Java XML Web Services (JAX-WS) 2.2
websocket-1.1 WebSocket

Some of those listed features also provide other features. For example, the jsp-2.3 feature 
contains the EL-3.0 feature. If your server configuration has jsp-2.3 enabled, it does not 
need to have EL-3.0 additionally specified to run servlets.

When you add or remove a feature, the run time is dynamically updated to enable or disable 
the function. You can test this by deploying a simple servlet and removing the servlet-3.1 
feature from the configuration. When you remove the feature, you see the text in Example 3-3 
in the console output.

Example 3-3   Console output after removing the servlet feature

[AUDIT   ] CWWKF0013I: The server removed the following features: [servlet-3.1].

If you attempt to load a servlet, the server should fail to respond to the request. Now, enable 
the servlet-3.1 feature again. You should see the output in Example 3-4 in the console.

Example 3-4   Console output after enabling the servlet feature

[AUDIT   ] CWWKF0012I: The server installed the following features: [servlet-3.1].

If you load the servlet now, the request succeeds. 

3.2.2  Dynamic application update

By default, applications are automatically updated whenever a change to the application files 
is made. This allows you to save time that is not lost restarting applications manually. 

This behavior can be seen by updating the web.xml file for a deployed web archive (WAR). 
Make a change, such as changing the value of a servlet mapping, and save the file. Then, 
load the servlet using the new mapping, and observe that the application is automatically 
updated. 
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3.2.3  Common development configuration

Liberty profile uses reasonable default values for configuration whenever possible. Some 
common cases where you might decide to update the configuration during development are 
covered next in this section.

Context root for web applications
Unless it is explicitly defined in the server.xml file or in the application, the context root for a 
web application is automatically determined from the file name of the WAR file. By default, the 
value of the context root is the WAR file name without the WAR extension. If you want to 
change the value of the context root, it can be specified in the configuration using the 
application definition that is shown in Example 3-5.

Example 3-5   An application definition from server.xml

<webApplication contextRoot=”myWebAppRoot” location=”ITSOWeb.war” />

HTTP server ports
The default port for HTTP requests is 9080. You can also change this value in the 
configuration. To change the port to 9090, add the endpoint definition in Example 3-6 to the 
server.xml file. Setting the host value to * allows you to access this server from a different 
host machine. The default value for host is localhost, which limits access to browsers 
running on the local host machine.

Example 3-6   An endpoint definition from server.xml

<httpEndpoint id=”defaultHttpEndpoint” host=”*” httpPort=”9090”/>

For more information, refer to 1.4.2, “Configuration-based application deployment” on 
page 28.

3.2.4  Dynamic configuration

Dynamic configuration updates in Liberty profile server mean that you do not have to waste 
time restarting the server when you make changes to the configuration. This section covers 
some scenarios that display the benefits of dynamic configuration updates. 

Changing the HTTP server port
If port 9080 is in use on your machine or you are running multiple server instances, you might 
want to change the default HTTP port. With the server running, add the endpoint 
configuration, which is shown in Example 3-6, to your server.xml file. Save the file, and try to 
access a web application from the updated port. The server did not need to restart to make 
this change. 

Adding a JNDI entry
Liberty profile server gives you the ability to bind JNDI entries in the configuration. These 
values are automatically updated when they are added, updated, or removed from the 
configuration. 

Before using JNDI, you must add the JNDI-1.0 feature to your server’s configuration.
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To test this, create a simple servlet and add code similar to that shown in Figure 3-35 on 
page 89.

Figure 3-35   Look up a value using JNDI

Run the servlet, and notice that the servlet was unable to find the value. Now, add the XML 
element in Example 3-7 to the server.xml file.

Example 3-7   XML element in server.xml file

<jndiEntry value="This is a sample value" jndiName="jndi/exampleValue"/>

Save the file and without restarting the server, run the servlet again. Notice that it now prints 
out the value that was set in the server configuration. You can also test updating the value or 
removing the jndiEntry element. In each case, the server is dynamically updated without a 
restart. 

3.2.5  API JAR files

API JAR files for technologies that are included in the Liberty profile server are in the dev 
directory under the Liberty profile server home directory. The following list notes those 
directories:

� Java EE APIs are in dev/api/spec.
� IBM APIs are in dev/api/ibm.
� Third-party APIs are in dev/api/third-party.

The following list shows the API JAR files that are used for technologies that are covered in 
this chapter:

� Servlets

dev/api/spec/com.ibm.ws.javaee.servlet.3.1_1.0.9.jar

� JSP

dev/api/spec/com.ibm.ws.javaee.jsp.2.3_1.0.9.jar

� JSF

dev/api/spec/com.ibm.ws.javaee.jsf.2.2_1.0.9.jar
dev/api/spec/com.ibm.ws.javaee.jsf.tld.2.2_1.0.9.jar
dev/api/spec/com.ibm.ws.javaee.jstl.1.2_1.0.9.jar

� JAX-RS

dev/api/spec/com.ibm.ws.javaee.jaxrs.2.0_1.0.9.jar
dev/api/ibm/com.ibm.websphere.appserver.api.jaxrs20_1.0.9.jar
dev/api/third-party/com.ibm.websphere.appserver.thirdparty.jaxrs_1.0.9.jar

Caution: Only the server configuration is dynamically updated. Values are only read from 
bootstrap.properties when the server starts, so any value changes do not take place 
until you restart the server.
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� CDI

dev/api/spec/com.ibm.ws.javaee.cdi.1.2_1.2.9.jar

� JMS

dev/api/spec/com.ibm.ws.javaee.jms.2.0_1.0.9.jar

� JAX-WS

dev/api/spec/com.ibm.ws.javaee.jaxws.2.2_1.0.9.jar

3.2.6  Debugging applications

You can use a Java debugger to debug your applications by starting the server in debug 
mode. To do this, start the server with the server debug command. The server waits for a 
Java debugger to attach on port 7777 before starting. Optionally, you can change the port that 
the server uses for debugging by setting the value of WLP_DEBUG_ADDRESS to the wanted port in 
your operating system’s environment.

3.2.7  Using Maven to automate tasks for the Liberty profile

Apache Maven is a build scripting tool that is designed to hide some of the complexities of 
build management from the user. Maven simplifies dependency management by maintaining 
a set of versioned artifacts in a repository. 

Liberty profile enables building with Maven by providing a plug-in that can be used for 
common administrative tasks and a repository that contains certain API JAR files.

Plug-in repository
To use Maven for automating development tasks, first include the Liberty profile plug-in, in 
your project’s pom.xml file. The plug-in is in a public central repository. Example 3-8 shows a 
sample plug-in definition.

Example 3-8   Maven plug-in repository definition

<pluginRepository>
    <id>Liberty</id>
    <name>Liberty Repository</name>
    
<url>http://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/wasdev/maven/re
pository/</url>
    <layout>default</layout>
    <snapshots>
        <enabled>false</enabled>
    </snapshots>
    <releases>
        <enabled>true</enabled>
    </releases>
  </pluginRepository>

Caution: Only spec and ibm-api libraries are visible to applications by default. See 3.3, 
“Controlling class visibility in applications” on page 94 for more information about class 
visibility. 
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Specifying the plug-in and configuration
Example 3-9 shows how to load the Liberty Maven plug-in and specify a basic configuration. 
The configuration for serverHome and serverName is optional, but if it is not specified, it 
generally must be passed in as an argument when running from the command line.

Example 3-9   Loading and configuring the Liberty plug-in

<build>
        <plugins>
            <!-- Enable liberty-maven-plugin -->
            <plugin>
                <groupId>com.ibm.websphere.wlp.maven.plugins</groupId>
                <artifactId>liberty-maven-plugin</artifactId> 
                <version>1.0</version>
                <!-- Specify configuration -->
    <configuration>
       <serverHome>/opt/IBM/wlp</serverHome> 
       <serverName>testServer</serverName>    

</configuration>                         
            </plugin>
        </plugins>
    </build> 

Creating a server
Use the following command to create a server named SERVER_NAME in the directory 
SERVER_HOME:

mvn liberty:create-server -DserverHome=SERVER_HOME -DserverName=SERVER_NAME

Deploying and undeploying applications
Use the following command to deploy an application that is in APPLICATION_FILE to the server 
named SERVER_NAME:

mvn liberty:deploy -DserverName=SERVER_NAME -DserverHome=SERVER_HOME 
-DappArchive=APPLICATION_FILE

The server must be started to deploy the application. 

Use the following command to undeploy the same application: 

mvn liberty:undeploy -DserverName=SERVER_NAME -DserverHome=SERVER_HOME 
-DappArchive=APPLICATION_NAME

The server must be started to remove the application. In this scenario, the appArchive 
parameter uses the application name rather than a file path.

Starting and stopping the server
Use the following command line to start a Liberty profile server instance:

mvn liberty:start-server -DserverHome=SERVER_HOME -DserverName=SERVER_NAME

Use the following command to stop a running server:

mvn liberty:stop-server -DserverHome=SERVER_HOME -DserverName=SERVER_NAME

Examples: The following examples pass in the serverHome and serverName as 
arguments on the command line. These can be omitted if they are specified in the pom.xml 
file. 
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Packaging and installing the server
Use the following command line to package an existing server named SERVER_NAME in a file 
named ARCHIVE_FILE:

mvn liberty:package-server -DserverName=SERVER_NAME -DserverHome=SERVER_HOME 
-DpackageFile=ARCHIVE_FILE

Use the following command to install a server from an archive named ARCHIVE_FILE:

mvn liberty:install-server -DassemblyArchive=ARCHIVE_FILE

Dependency repositories
The API JAR files that are in the dev/ibm-api directory underneath the Liberty Profile Server 
home directory are also available in a public Maven repository. To use the repository, add the 
repository definition in Example 3-10 to your pom.xml file.

Example 3-10   Maven repository definition

<repository>
<id>wlp.central</id>

<url>http://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/wasdev/maven/re
pository</url>
<releases>

<enabled>true</enabled>
</releases>
<snapshots>

<enabled>false</enabled>
</snapshots>
</repository>

Example 3-11 provides an example of referencing a specific artifact dependency. In this 
scenario, the example is referencing the IBM JAX-RS extension APIs. 

Example 3-11   IBM JAX-RS extension APIs

<dependency>
<groupId>com.ibm.websphere.appserver.api</groupId>
<artifactId>com.ibm.websphere.appserver.api.jaxrs</artifactId>
<version>1.0</version>
<scope>provided</scope>

</dependency>

Java EE dependencies, such as the servlet API, are not available in the IBM repository. 
These dependencies can be accessed by using the repository definition in Example 3-12.

Example 3-12   Repository definition

<repository>
<id>java.net</id>
<url>http://download.java.net/maven/2</url>

</repository>
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The dependency definition in Example 3-13 shows how to reference the Java EE 7API. 

Example 3-13   Java EE 7API reference

<dependency>
<groupId>javax</groupId>
<artifactId>javaee-api</artifactId>
<version>7.0</version>
<scope>provided</scope>

</dependency>

3.2.8  Using Ant to automate tasks for the Liberty profile

Liberty profile provides an Ant plug-in so you can automate build processes that include 
management of the server and applications. 

Ant plug-in
The Liberty profile Ant plug-in is in the dev/tools/ant directory under the server home 
directory. To use the plug-in, you must make it available on the class path. To make the plug-in 
available, copy the plug-in JAR file to the lib directory of the Ant installation and reference it 
using an antlib namespace, as shown in Example 3-14.

Example 3-14   Using antlib to include the Ant plug-in

<project .... xmlns:wlp="antlib:com.ibm.websphere.wlp.ant">
    ...
  </project>

Deploying and undeploying applications
You can automate the addition and removal of applications using the deploy and undeploy 
tasks that are shown in Example 3-15. 

Example 3-15   Example of deploy and undeploy tasks

  <wlp:deploy file="${basedir}/resources/ITSOExample.ear"  timeout="40000"/>

<wlp:undeploy file="ITSOExample.ear" timeout="60000" />

Server administration
The following tasks are available for automating server administration tasks:

� Create

<wlp:server installDir=”${wlp_install_dir} operation=”create”/>

� Start

<wlp:server installDir="${wlp_install_dir}" operation="start" 
serverName="${serverName}" />

� Stop

<wlp:server installDir=”${wlp_install_dir}” operation=”stop” 
serverName=”${serverName}” />
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� Status

<wlp:server installDir=${wlp_install_dir}” operation="status"/>

� Package

<wlp:server installDir=”${wlp_install_dir}” operation=”package” 
archive=”packagedServer.zip”/>

3.3  Controlling class visibility in applications

Class visibility in the Liberty profile server is controlled by configuring a classloader for an 
application in the server configuration. Defining the classloader allows you to share common 
libraries with other applications and control the types of APIs that are visible to the 
application. Defining the classloader also ensures that applications load classes from their 
own libraries before using classes from the Liberty profile server run time. 

3.3.1  Using shared libraries in applications

Java EE application development often involves using common utility JAR files across several 
applications. You can avoid having to maintain several copies of the same utility JAR files by 
using shared libraries. 

A library, in the Liberty profile server, is composed of a collection of file sets that reference the 
JAR files to be included in the library. The library can be used in an application by creating a 
classloader definition for the application in the server configuration. The application 
classloader can share the in-memory copy of the library classes with other applications, or it 
can have its own private copy of the classes that are loaded from the same location. 

Shared libraries, which are defined in the configuration, can be used only by applications that 
are explicitly configured in the server.xml file. Applications without configuration, such as 
those placed in the dropins directory, can use a global shared library, as described in 3.3.5, 
“Global libraries” on page 96. 

3.3.2  Creating a shared library in the Liberty profile developer tools

To create a shared library in the Liberty profile developer tools, complete the following steps:

1. Load the server.xml file in the design editor.

2. Right-click the application and click Add → Classloader.

3. In the Classloader properties, click New next to Shared library references.

4. On the Shared Library details window, click New next to the Fileset reference to add a file 
set. 

5. Enter the properties for the file set details window and save the server.xml file.

Look at the source view for the server.xml file. The application now contains a classloader, 
which contains a library, which contains a file set. Example 3-16 on page 95 shows the 
resulting configuration from the server.xml file. 
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Example 3-16   Shared library configuration in server.xml

<classloader >
<commonLibrary>

<fileset includes=”utility.jar”/>
</commonLibrary>

</classloader>

The Liberty profile configuration is flexible enough to allow many configuration elements to be 
specified either as a child of a parent element, or as an attribute reference from that parent 
element. The shared library configuration in 3.3.3, “Creating a shared library outside of the 
tools” on page 95 displays how some of the same configuration can be specified using 
references. 

3.3.3  Creating a shared library outside of the tools

To create a shared library outside of the Liberty profile developer tools, you must manually 
edit the server.xml file to add the following items:

� A file set that references the JAR files on disk.

� A library that either contains or references the file set.

� A classloader for each application that uses the shared library. The classloader should 
reference the library element. If you want the application to share the in-memory copy of 
the library, use the commonLibraryRef attribute to reference the library. If you want the 
application to have its own copy of the library, use the privateLibraryRef attribute.

Example 3-17 shows the definition of a shared library that is used by two different 
applications. Both applications share an in-memory copy of the classes.

Example 3-17   Definition of two applications using the same shared library

<library id=”loggingLibrary”>
<fileset dir=”${server.config.dir}/logger” includes=”ITSOLogger.jar”/>

</library>

<application name=”ITSOApp1” location=”ITSO_1.ear”>
<classloader commonLibraryRef=”loggingLibrary”/>

</application>

<application name=”ITSOApp2” location=”ITSO_2.ear”>
<classloader commonLibraryRef=”loggingLibrary”/>

</application>

Caution: The Liberty profile developer tools use slightly different terminology than the 
server configuration file. A library in the tools is equivalent to a privateLibrary in 
server.xml. A shared library in the tools is equivalent to a commonLibrary in server.xml. 
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3.3.4  Using libraries to override Liberty profile server classes

The Liberty runtime hides its internal Java packages from application classloaders and only 
exposes the defined APIs. Also, you should configure only the features that you require into 
your server. For these reasons, it is unlikely that you will need to override Liberty profile server 
classes, but this section describes how you can do that if you find it necessary. You can 
accomplish this by creating a shared library that contains the classes you want to use. Use 
the following options:

� In the Liberty profile tools

On the classloader properties window, change the value in the drop-down menu for 
delegation to parentLast.

� Outside the Liberty profile tools

To change the classloader delegation outside the Liberty profile developer tools, add the 
delegation=”parentLast” attribute on the classloader element in the server.xml file. 

3.3.5  Global libraries

The Liberty profile server allows you to provide a library or set of libraries that can be 
accessed by all applications. To add a JAR file to this global shared library, simply copy it to 
one of the following two locations under ${WLP_USER_DIR}:

� shared/config/lib/global
� servers/server_name/lib/global

The libraries in these directories are used by all applications that do not specifically define a 
classloader. If you define a classloader for an application, the global library classes are not 
available unless you add the library global as a shared library. The sample configuration in 
Example 3-18 shows an application that is configured to use the global shared library. 

Example 3-18   Application using a global shared library

<application name=”ITSOApp1” location=”ITSO_1.ear”>
<classloader commonLibraryRef=”global”/>

</application>

3.3.6  Using a classloader to control API visibility

By default, an application in Liberty profile can see supported specification APIs (such as the 
Java EE Servlet specification) and IBM provided APIs. For the application to load classes 
from third-party libraries, such as those in dev/third-party, you must configure the allowed 
API types for the application classloader. In the Liberty profile developer tools, you can 
configure this value in the Allowed API types field on the classloader service details window. If 
you are directly editing the server.xml file, add the apiTypeVisibility attribute to the 
classloader element. In both cases, the value is to be a comma-separated list of any 
combination of the following items:

spec Supported Specification Libraries
ibm-api IBM provided APIs
ibm-spi IBM provided SPIs
third-party Third-party APIs
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For example, the following classloader element allows an application to see specification 
libraries, IBM provided APIs, and third-party APIs:

<classloader apiTypeVisibility="spec,ibm-api, third-party"/
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Chapter 4. Iterative development of OSGi 
applications

In addition to Java EE applications, WebSphere Application Server Liberty Profile allows you 
to develop Open Services Gateway initiative (OSGi) applications. OSGi provides a framework 
for developing flexible, modular applications. With OSGi applications, you can deploy and 
manage applications as a set of versioned OSGi bundles. 

The chapter contains the following sections:

� Introduction to OSGi applications in Liberty profile
� Developing OSGi applications in the Liberty profile developer tools
� Developing OSGi applications outside Liberty profile developer tools
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4.1  Introduction to OSGi applications in Liberty profile

The Liberty profile server and Liberty profile developer tools help you to develop and deploy 
modular OSGi applications quickly. The advantages of OSGi are included in the following list:

� Reduces complexity through modular design.

� Integrates with standard Java EE technologies such as servlets.

� Promotes service-oriented design.

� Composes isolated enterprise applications using multiple versioned bundles with dynamic 
lifecycles.

� Provides careful dependency and version management.

� Offers declarative assembly of components.

� Allows sharing modules through a bundle repository that can host common and versioned 
bundles. 

� Allows access to external bundle repositories.

� Allows administrative updates to deployed applications at a bundle level.

For more information, see the OSGi home page at the following website:

http://www.osgi.org

The OSGi support in the WebSphere Application Server Liberty profile is based on the 
Apache Aries open community project. 

4.2  Developing OSGi applications in the Liberty profile 
developer tools

The Liberty profile developer tools make developing OSGi applications easier by providing 
graphical editors for OSGi artifacts such as OSGi Blueprint and manifest files. The tool 
environment allows you to safely create dependencies on other bundles without having to 
worry about problems being introduced by mistakes in manual editing of manifest files. The 
Liberty profile developer tools can also help with converting existing Java EE applications into 
OSGi applications. 
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4.2.1  Using the tools to build an OSGi application

In this section, we describe how to build a simple hello world style OSGi application using 
different bundles for the client, the service, and the API. The application shows a limited 
subset of what is possible with OSGi applications, and shows how to get started building 
OSGi applications in the Liberty profile developer tools. 

Creating OSGi bundle projects
In this application, we use three bundles: a client bundle, a service bundle, and an API 
bundle. Begin by creating a project for each bundle by using the following process:

1. Click File → New → OSGi Bundle Project.

2. Enter a project name. This example uses the project names ITSO.OSGiExample.API, 
ITSO.OSGiExample.Client, and ITSO.OSGiExample.Service.

3. For the Target Runtime, select WebSphere Application Server V8.5 Liberty Profile. 

4. Clear the Add bundle to application check box. If you leave this check box selected, a 
new OSGi application project is created. 

5. Leave all other values as the default settings and exit the wizard by clicking Next → 
Next → Finish. 
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Starting with version 8.5.5.5, you can use the developer tools to create OSGi bundles using 
the Web 3.1 facet configuration as shown in Figure 4-1 on page 102.

Figure 4-1   Creating an OSGi Bundle with Web 3.1

Creating the client API
In the ITSO.OSGiExample.API project, create an interface named HelloAPI in the 
com.itso.example.osgi.api package. The interface should contain a single public method 
with a void return type named sayHello.
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Expose this interface class to other bundles by editing the manifest file for the project. You can 
open the manifest editor by double-clicking the Manifest element underneath the bundle 
project, as shown in Figure 4-2. 

Figure 4-2   API bundle project

In the manifest editor, click the Runtime tab. In the exported packages pane, click Add. 
Select the com.itso.example.osgi.api package from the list and then click OK. 

Creating the service bundle
The OSGi service bundle provides an implementation of the API. For the API interface to be 
visible in the service project, import the API package in the service bundle. To import the API 
package, complete the following steps:

1. Open the manifest editor for the ITSO.OSGiExample.Service project. In the Imported 
Packages pane of the Dependencies tab, click Add. In the package selection dialog, 
select com.itso.example.osgi.api. Save and close the manifest. 

2. Create an implementation for the API by creating a new Java class in the 
ITSO.OSGiExample.Service project named HelloImpl in the 
com.itso.example.osgi.service package. The class should implement the HelloAPI 
interface. In the implementation of the sayHello() method, enter an output statement such 
as System.out.println(“Hello, Liberty developers from OSGi”). Save and close the 
file. 

3. Export the service implementation using an OSGi Blueprint file. Begin by creating the file. 
Right-click the ITSO.OSGiExample.Service project and select New → Blueprint File. 
Leave all values as the defaults, and click Finish. 

Warning: When selecting an interface, you might need to start typing before the list of 
available interfaces is shown. 
Chapter 4. Iterative development of OSGi applications 103



4. In the Overview pane of the Blueprint editor’s design tab, click Add. Click Bean and click 
OK. Click Browse and select HelloImpl (you must start typing in the “choose type name” 
field to display the list of options). Leave the Bean ID field as the default value, 
HelloImplBean. 

5. Click Blueprint in the Overview pane and click Add. 

a. Click Service, and click OK. 

b. Click Browse next to the Service Interface field and select HelloAPI. 

c. Click Browse next to the Bean Reference field and select HelloImplBean. 

d. Click OK and save the file. 

e. Examine the source for the Blueprint file and verify that it resembles the XML that is 
shown in Figure 4-3. 

Figure 4-3   Service Blueprint file

Creating an OSGi client bundle
The OSGi client bundle calls the sayHello method on the service implementation. Similar to 
the service bundle, the client bundle must have access to the API by importing the API 
package in its manifest. Use the procedure from step 1 on page 103 to edit the manifest and 
import the API. 

Create a HelloITSOClient class in the ITSO.OSGiExample.Client project in the 
com.itso.example.osgi.client package. The class should contain the following pieces:

� A private field of type HelloAPI named helloService.

� Get and Set methods for the helloService field.

� A method named init that is called when the client is initialized. This method should print 
a message and then run helloService.sayHello().
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The completed class should resemble the code that is shown in Figure 4-4. 

Figure 4-4   Source code for HelloITSOClient

The client must be configured so that it can recognize the service implementation and have 
the service dependency that is injected into the helloService field. This is done by creating a 
Blueprint file for the client by using the following steps: 

1. Create a Blueprint file by right-clicking the ITSO.OSGiExample.Client project and selecting 
New → Blueprint File. You can accept all default values for the file and click Finish. 

2. Add a reference element to the Blueprint:

a. Click Add in the Overview pane in the Blueprint editor. 

b. Click Reference and click OK. 

c. Click Browse beside the Reference Interface field, and select HelloAPI from the list of 
classes. 

d. In the Reference ID field, enter helloRef. 

e. Click OK to finish adding the reference element. 

3. Add a bean element to the Blueprint file:

a. Click Add in the Overview pane. 

b. Select Bean and click OK. 

c. Click Browse, select HelloITSOClient, and click OK. 

d. Click OK again to finish adding the bean element. 

e. In the bean properties window on the right side of the editor, locate the Initialization 
Method field and click Browse. 

f. Select the init() method and click OK. This alerts the Blueprint container to run the 
init method when the HelloITSOClient class is instantiated. 

4. Add a property to the HelloITSOClientBean by selecting the bean in the Overview pane 
and clicking Add. Select Property and click OK. In the Details window, enter 
helloService in the Name field. Then, click Browse beside the Reference field and select 
the helloRef reference. Click OK to finish adding the property. 

5. Save the Blueprint file and switch to the Source tab. 
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The completed file should resemble Figure 4-5. 

Figure 4-5   Blueprint file for ITSO.OSGiExample.Client

Creating an OSGi application
Create an OSGi application to contain the three OSGi bundles by completing the following 
steps:

1. Click File → New → OSGi Application Project. 

2. Enter a project name, such as ITSO.OSGiExample.App. Leave the other values as the 
defaults and click Next. 

3. In the contained bundles list, select all three OSGi bundle projects and click Finish. 

4.2.2  Using the tools to deploy and test an OSGi application

To deploy the OSGi application to a WebSphere Liberty profile server instance, right-click the 
server in the Servers view and select Add and Remove. In the Add and Remove window, 
select the ITSO.OSGiExample.App application and click Add. Then, click Finish to complete 
adding the application to the server. 

The application is now deployed and started. You should see output in the console similar to 
Figure 4-6.

Figure 4-6   Output after adding the OSGi application to the server

The localConnector-1.0, blueprint-1.0, servlet-3.1, wab-1.0 features are added automatically 
and the default servlet-3.0 is removed automatically because it is superseded by the 
servlet-3.1 feature. The init method of the client is called during the application start, so you 
see the messages that are printed in the init method in the console. Note also that the 
message from the service implementation is printed because the client started the sayHello 
method. 
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4.2.3  Adding an OSGi web application bundle

Now add an OSGi web application bundle to the OSGi application. The web application uses 
the existing service inside a servlet. Rather than using Blueprint to manage the service 
reference, use the service registry to locate the service. Complete the following steps:

1. Begin by creating an OSGi bundle project called ITSO.OSGiExample.WebApp. This process 
is similar to the process that is described in “Creating OSGi bundle projects” on page 101. 
The following list shows the differences:

a. On the first window of the create project wizard, select the Add Web Support check 
box. 

b. Leave the check box checked for adding the bundle to the OSGi application so that it is 
added to the ITSO.OSGiExample.App application.

c. Optionally, on the web module window, enter a different value for the context root. In 
this example, we use a context root of osgi.

2. As was the case with the service and client bundles, you must edit the manifest for the 
web application bundle to import its dependencies. Open the manifest editor and navigate 
to the Dependencies tab. Notice that several servlet dependencies were automatically 
added to the manifest when the project was created. Add the com.itso.example.osgi.api 
package to the list of dependencies. Additionally, you must add org.osgi.framework 
version 1.5.0 to the list. 

3. Create a servlet in the new bundle project by using the Create Servlet wizard. Name the 
servlet HelloWABServlet, use the com.itso.example.osgi.wab package name, and edit 
the servlet URL mapping value to be /hello. For more information about creating servlets 
in the Liberty profile developer tools, see 3.1.1, “Using the tools to create a simple servlet 
application” on page 60.

4. In the servlet, add a private field of type HelloAPI named helloService. In the doGet 
method, add a call to helloService.sayHello().

5. Also, in the servlet, override the init(ServletContext) method. In this method, you use 
the ServletContext to get the ServletConfig. From the ServletConfig, get the 
osgi-bundlecontext attribute. This is the OSGi BundleContext object. You can use this 
BundleContext to look up the HelloAPI service in the service registry. The complete init 
method is shown in Figure 4-7.

Figure 4-7   Example init method for the HelloWABServlet

6. Save the servlet. 

You can test this by visiting a link such as the one below, providing your server is listening on 
localhost and port 9080 as defined in its server.xml configuration file:

http://localhost:9080/osgi/hello

You do not see any output in the browser (unless you added output in the servlet’s doGet 
method) but you see the message Hello, Liberty developer displayed in the console output. 
This message shows that the servlet successfully retrieved the service from the service 
register in its init method and started the service’s sayHello method in its doGet method. 
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A new feature osgiAppIntegration-1.0 available with Liberty profile version 8.5.5.5, enables 
the integration of OSGi application services. This means that the OSGi applications running 
in the same Liberty profile server can share their services with each other. To accomplish this, 
you must do the following tasks:

1. Add the future osgiAppIntegration-1.0 to the server.xml configuration file of your Liberty 
profile server.

2. Add the Application-ExportService header to the META-INF/APPLICATION.MF file of the 
application that needs to export the service as in Example 4-1.

Example 4-1   Application-ExportService header in META-INF/APPLICATION.MF

Application-ExportService: com.itso.example.osgi.service;binding:=local

3. Add the Application-ImportService header to the META-INF/APPLICATION.MF file of the 
application that needs to import the service as in Example 4-2.

Example 4-2   Application-ImportService header in META-INF/APPLICATION.MF

Application-ImportService: com.itso.example.osgi.service;binding:=local

An OSGi application can both export and import services from other OSGi applications from 
the same Liberty profile server by using both headers. The binding:=local directive has to 
be added at the end of the import and export headers so that the OSGi applications within the 
same Liberty profile server can communicate with each other.

4.2.4  Deploying an OSGi application to Liberty in the cloud

You can deploy an OSGi application in IBM Bluemix™ in order to share it and use the benefits 
of the cloud environment. 

You can use IBM WebSphere Application Server Developer Tools to package a Liberty profile 
server to IBM Bluemix. The IBM Eclipse Tools for Bluemix needs to be installed in the 
Developer Tools so that you can define a Bluemix server that is required as a target to 
package your Liberty profile server. You also need a valid IBM Bluemix account.
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To create an IBM Bluemix server profile by using your Developer Tools, select the IBM 
Bluemix option under the IBM group in the New Server window shown in Figure 4-8 on 
page 109.

Figure 4-8   Defining a new IBM Bluemix server

To package a Liberty profile server that you already configured, right-click the server in the 
Servers view and select the Package Server to IBM Bluemix option that is located under 
Utilities, shown in Figure 4-9.

Figure 4-9   Package a Liberty profile server to IBM Bluemix
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For more information about deploying applications with IBM Eclipse Tools for Bluemix, refer to 
the following website:

https://www.ng.bluemix.net/docs/#manageapps/eclipsetools/eclipsetools.html#eclipse
tools

4.3  Developing OSGi applications outside Liberty profile 
developer tools

Developers who prefer working outside of the Liberty profile developer tools environment can 
still develop OSGi applications quickly by using the Liberty profile server. In this section, we 
describe some considerations for developing in this environment and some tools to automate 
build and deployment processes. 

4.3.1  Building and deploying OSGi applications outside of the tools

When building OSGi applications outside the Liberty profile developer tools, there are several 
API and SPI JAR files that are in the dev directory that contain important core classes, such 
as BundleContext and ServiceReference:

� dev/api/spec/com.ibm.ws.org.osgi.cmpn.4.2.0_1.0.8.jar
� dev/api/spec/com.ibm.ws.org.osgi.core.4.2.0_1.0.8.jar
� dev/spi/third-party/com.ibm.wsspi.thirdparty.blueprint_1.1.8.jar
� dev/spi/spec/com.ibm.wsspi.org.osgi.cmpn.5.0.0_1.0.8.jar
� dev/spi/spec/com.ibm.wsspi.org.osgi.core.5.0.0_1.0.8.jar

Enterprise bundle archive (EBA) files can be placed in the dropins directory, such as EAR or 
WAR files. You can also define them explicitly using an application element in the server.xml 
file. 

OSGi console
You can use the OSGi console to debug your applications. The Liberty profile uses the 
Eclipse Equinox implementation of the OSGi core specification that provides this console. 
The OSGi console is not available by default; you have to enable it: 

1. Add the osgiConsole-1.0 feature to your Liberty profile server.xml file.

2. Set the OSGi console port in the bootstrap.properties file of your Liberty profile server 
by adding the line osgi.console=5471.

The bootstrap.properties file has to be created manually in the same location as your 
server.xml file; it does not exist by default.

3. Restart your Liberty profile server. 

4. Test the OSGi console by issuing a telnet command to the console port you have set.

Note: For the following files, use the appropriate versions that are related to your Liberty 
profile environment.

Important: To deploy OSGi applications to a Liberty profile server, you need to manually 
enable the features blueprint-1.0, osgi.jpa-1.0, and wab-1.0 in the server.xml 
configuration file.
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OSGi bundle repositories
You can share common OSGi bundles both locally or remotely so that your OSGi applications 
can access them. This can be accomplished by editing the server.xml configuration file and 
adding a bundleRepository tag. Example 4-3 on page 111 shows a local repository 
configuration and Example 4-4 on page 111 shows a remote repository configuration type.

Example 4-3   Server.xml configuration for a local OSGi bundle repository

<bundleRepository> 
   <fileset dir="directory_path" include="*.jar"/> 
</bundleRepository> 

The directory_path used to define a local OSGi bundle repository is the path to the directory 
containing the common OSGi bundles.

Example 4-4   Server.xml configuration for a remote OSGi bundle repository

<bundleRepository location="URL" />

The URL used to define a remote OSGi bundle repository defines the location of an OSGi 
Bundle Repository XML file and it supports HTTP, HTTPS, and file protocol types.

4.3.2  Using Maven to automate OSGi development tasks

You can automate the building and deployment of OSGi applications by using the Liberty 
Maven plug-in, with open source tools. An example of an open source tool is the EBA Maven 
plug-in that is developed by Apache Aries. 

As described in 3.2.7, “Using Maven to automate tasks for the Liberty profile” on page 90, you 
can use the Liberty Maven plug-in to automate tasks. Some examples of these tasks are 
deploying applications and starting a Liberty profile server. 

The EBA Maven plug-in allows you to build EBA archives from component bundles. It can 
automatically generate an Application Manifest file from information that is contained in the 
Maven pom file. For more information about the EBA Maven plug-in, refer to the following 
website:

http://aries.apache.org/modules/ebamavenpluginproject.html

4.3.3  Using Ant to automate OSGi development tasks

With Apache Ant and the Liberty Ant plug-in, you can automate the packaging and 
deployment of OSGi applications. Refer to 3.2.8, “Using Ant to automate tasks for the Liberty 
profile” on page 93 for more information about using the Liberty plug-in. This section gives 
further details about how to automate tasks, such as deploying and undeploying applications 
or starting and stopping servers. 

You can use standard Ant tasks, such as zip, to package OSGi applications that can then be 
deployed using the Liberty plug-in. Example 4-5 shows sample syntax for creating an OSGi 
application named ITSOExampleApp by packaging the META-INF/APPLICATION.MF file into the 
EBA file, and including all bundle files.

Example 4-5   Syntax for creating an OSGi application

<zip destfile="${output.dir}/ITSOExampleApp.eba" basedir="${basedir}">
    <filename name="META-INF/APPLICATION.MF"/>
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    <fileset dir="${basedir}">
        <include name="*.jar"/>
    </fileset>
</zip>

The Ant property ${output.dir} is user-defined and specifies the output directory for your 
build. The Ant property ${basedir} is predefined and specifies the directory that contains the 
Ant build.xml file.

Refer to the following website for more information about how to use Ant to automate tasks for 
the Liberty profile:

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/
ae/twlp_dev_ant.html?cp=SSEQTP_8.5.5%2F1-3-11-0-3-2-1-8&lang=en
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Chapter 5. Developing enterprise 
applications with Liberty profile

The Liberty profile server supports the full stack of Java EE technologies. In this chapter, you 
become familiar with advanced application features, such as accessing databases, using 
Enterprise JavaBeans, asynchronous programming with JMS, concurrent features, and more. 
By using these features, the Liberty profile developer tools provide code wizards and a server 
configuration editor to simplify development. 

The chapter contains the following sections:

� Data access in the Liberty profile
� Developing Enterprise JavaBeans applications
� Developing Java Message Service applications
� Developing applications using asynchronous and concurrent features
� Developing applications using JavaMail
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5.1  Data access in the Liberty profile

For data access, WebSphere Liberty profile supports the Java Persistence API (JPA) and 
JDBC. The Liberty profile developer tools simplify the development of data access 
applications for these technologies by assisting with the setup of required resources. In this 
section, we give an overview of data access in the Liberty profile and give examples of how to 
develop data access applications with the Liberty profile. We also briefly describe accessing 
noSQL databases from applications deployed in WebSphere Liberty.

5.1.1  Accessing data using a data source and JDBC

JDBC provides a database-independent API for querying and updating data. Liberty profile 
provides support for data access using 4.1 and earlier versions of the JDBC API. 

Basic concepts for configuring data access in Liberty profile server
To use JDBC in an application, first configure access to the database. In Liberty profile, define 
a data source that has knowledge of the database. Several key configuration concepts 
important to this process are described in this section. 

Files and file sets
A file set is simply a collection of files. They have several purposes in Liberty profile. In the 
context of data access, they are used to point to the JDBC driver library files provided by a 
database vendor. 

Shared libraries
As described in 3.3, “Controlling class visibility in applications” on page 94, shared libraries 
provide a collection of classes that can be used by one or more applications or data sources. 
Libraries are composed of file set elements that define the location of the class files. 

JDBC drivers
A JDBC driver definition references a shared library. You can optionally specify individual 
classes from the vendor-provided JDBC driver library to be used as the data source 
implementation. If you do not specify the implementation classes, the Liberty profile server 
infers the appropriate class name for most common databases. 

Data sources
A data source is the key piece of configuration for data access in the Liberty profile server. In 
the simplest case, a data source is composed only of a JDBC driver and the JNDI name 
where the data source is made available. In more complex scenarios, you can specify other 
properties, such as the type of data source, transactional behavior, or vendor-specific 
database properties. For more information about the various configuration options that are 
available for data sources, see the following IBM Knowledge Center website: 

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_dep_configuring_ds.html?cp=SSAW57_8.5.5%2F1-3-11-0-3-2-17-0-0
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Adding a data source using Liberty profile developer tools
The Liberty profile developer tools facilitate the definition of adding a data source and related 
entities. The following scenario shows one way to define all of the artifacts that are necessary 
to add a data source to your application. Complete the following steps to add a data source:

1. Open the server.xml file for your WebSphere Liberty profile server. In the design view, 
select Server Configuration and click Add. Select Data Source and click OK 
(Figure 5-1).

Figure 5-1   Adding a data source to an application
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The Enable Element pop-up window is displayed and allows you to select the JDBC 
feature version. For Java EE 7 applications, select jdbc-4.1, as shown in Figure 5-2.

Figure 5-2   Selecting JDBC feature version

2. In the input field for JNDI Name, enter jdbc/ITSO. 
3. The data source requires a JDBC Driver. On the Data Source Details window, beside the 

JDBC driver reference, click Add. You can add either child element or global. You should 
use global if you plan to use the same driver for many data sources. In this case, you will 
add child, which is a default, when you click Add. This opens the configuration window 
where you configure the new JDBC driver. See Figure 5-3.

Figure 5-3   JDBC Driver details
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4. A JDBC driver requires driver implementation classes; this is specified using the shared 
library. Beside the Shared libraries reference field, click Add to create a shared library. 
This opens a window to configure the library. Enter derbyLibrary in the Name field, as 
shown in Figure 5-4. 

Figure 5-4   Shared Library details

5. Now, create a new file set for the shared library by clicking Add (located next to the input 
field for Fileset reference). This opens the Fileset Details window.

6. Enter the directory where the JAR files for your JDBC driver are located (in the Base 
directory field for that JDBC driver). You can also click Browse to select a directory, as 
shown in Figure 5-5. 

Figure 5-5   Fileset details

Finding the JAR files: The JAR files that are used for accessing your database are not 
provided as part of the Liberty run time. You need to select the Base directory in the 
Fileset details for the JAR files that are provided as part of your database run time. This 
example uses a Derby database, which can be downloaded from the following website:

http://db.apache.org/derby

Library placement: For easier Liberty server packaging, it is recommended to put 
driver JAR files in the Liberty shared resources folder 
(WLP_HOME\usr\shared\resources). This folder is referred to by default by the server 
variable ${shared.resource.dir}. Variable usage is shown in the Base directory input 
field in Figure 5-5. We created the derby subdirectory in that folder and put the JAR file 
in that directory.
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7. To finish the data source configuration, you need to provide database-related properties. 
Right-click the Data Source element under the Configuration Structure and select Add → 
Derby Embedded Properties. Then, use the following steps to finish the data source 
configuration:

a. In the Properties window, select Create in the Create database drop-down menu.

b. In the Database name field, enter the full path to database (for example, 
c:\DerbyDatabases\ITSO). If you provide just the database name, it will be created in 
the WLP_HOME\usr\servers\serverName directory. 

8. Save the server.xml file. The data source is now available for applications. 

Instead of using tools, configuring the data source can be achieved by editing the 
server.xml file directly. Example 5-1 shows part of the server.xml file that is related to the 
previous database configuration.

Example 5-1   Datasource definition in the server.xml

<dataSource jndiName="jdbc/ITSO">
<jdbcDriver>

<library name="derbyLibrary">
                <fileset dir="${shared.resource.dir}/derby"/>

</library>
</jdbcDriver>
<properties.derby.embedded createDatabase="create" databaseName="ITSO"/>

    </dataSource>

This scenario describes a simple data source configuration. More information about 
configuring database connectivity in the Liberty profile can be found at the following IBM 
Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_dep_configuring_ds.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2
-17-0-0

Using the data source in an application
A data source that is defined in the server configuration can be accessed using JNDI. The 
jndiName property specifies the location of the data source in the namespace. To retrieve the 
DataSource object, simply look it up in JNDI. The code in Figure 5-6 displays how to 
accomplish this using the javax.annotation.Resource annotation on a field. You can also 
obtain the DataSource object by creating a new InitialContext object and starting the 
lookup method with the JNDI name of the data source as an argument. 

Figure 5-6   Retrieving a DataSource in a servlet
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Defining a data source in an application
Applications can also define data sources through annotations or a deployment descriptor. To 
configure a data source this way, the application must have access to the JDBC driver 
classes. To do this, create a classloader for the application as described in 3.3, “Controlling 
class visibility in applications” on page 94. The classloader should reference a shared library 
that contains the JDBC driver classes. 

Defining a data source using annotations
Example 5-2 defines a data source in a Java class of an application using annotations. The 
DataSourceDefinition annotation on the class defines various properties for the data source. 
Only the name and className are required properties. 

Example 5-2   Annotations defining a data source

@DataSourceDefinition(name="java:comp/env/jdbc/ITSODataSource",
className ="org.apache.derby.jdbc.EmbeddedXADataSource40",
databaseName = "ITSO", 
isolationLevel = Connection.TRANSACTION_READ_COMMITTED,
loginTimeout = 88,
maxPoolSize = 10,
properties = {"connectionTimeout=0",

"createDatabase=create",
"queryTimeout=1m20s"})

Defining a data source using a deployment descriptor
You can define a data source in a WAR file deployment descriptor by adding a data source 
element to the web.xml file. You can simply edit the file, or use the deployment descriptor 
editor in the Liberty profile developer tools. 

To create the data source in the tools, complete the following steps:

1. Begin by loading the web.xml file. In the design view, select the Web Application and click 
Add. 

2. On the resulting window, select Data Source. Complete the properties for the data source. 
For example, enter java:comp/env/jdbc/jdbc/ITSODataSourceDD for the name, 
org.apache.derby.jdbc.EmbeddedDataSource for the class name, and ITSODD for the 
database name. 

3. Now, click the new data source in the window on the left, and click Add. Select Property 
to add a property. In the property editor, enter createDatabase in the name field and 
create in the value field. 

4. Save the deployment descriptor. If the server is running, the data source is now available 
to your applications.

Example 5-3 shows how the completed data source appears in the web.xml file. 

Example 5-3   Data source definition in a deployment descriptor

<data-source>
<name>java:comp/env/jdbc/ITSODataSourceDD</name>
<class-name>

org.apache.derby.jdbc.EmbeddedDataSource
</class-name>

JNDI Naming: The name for the embedded data source must be in one of the java:global, 
java:app, java:module, or java:comp name spaces.
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<database-name>ITSODD</database-name>
<property>

<name>createDatabase</name>
<value>create</value>

</property>
</data-source>

The definitions here represent a small portion of the configuration options that are available 
for data sources. For more information about application-defined data sources, see the 
following IBM Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_ds_appdefined.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-17-0
-0-1

Using application-defined data sources
Obtaining an application-defined data source in an application uses the same procedure 
regardless of whether the data source was defined in a DataSourceDefinition annotation or in 
a deployment descriptor. In both cases, the data source is available in the namespace at the 
location you specified in the name property. Figure 5-7 shows sample code for retrieving a 
DataSource that was defined in the web application’s deployment descriptor.

Figure 5-7   Obtaining a DataSource defined in web.xml

Figure 5-8 shows sample code for accessing a DataSource that was defined in an annotation. 

Figure 5-8   Obtaining a DataSource defined in annotations

Testing the data sources
Appendix A, “Additional material” on page 257 contains an application and three prebuilt 
Derby databases that can be used to test each data source. 
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You can use one of the following database options during testing:

� To use the Derby databases, expand ITSO_Derby.zip, ITSO2_Derby.zip, and 
ITSODD_Derby.zip in the server’s root directory. The data source definitions in the 
applications are designed to access these databases. 

� To use another database, you must update the data sources to reference your database. 
Also, you must create a table named USERTBL in the database with the following 
configurations:

– A column named NAME with a type that maps to java.lang.String (such as VARCHAR).

– A column named LOCATION with a type that maps to java.lang.String.

– A column named ID with a type that maps to java.lang.Integer (such as INTEGER). 
This column should be generated by the database. 

The application contains three servlets: DataSourceServlet, AnnotationDataSourceServlet, 
and WebXmlDataSourceServlet. Each extends the abstract class BaseDataSourceServlet. 
Each servlet can perform four simple operations on the database table. The operations 
include selecting all rows, inserting a new row, dropping the table, or creating the table. 

Each servlet can be tested using the JSP page dataSource.jsp that is included in the 
additional materials. To access the page, visit:

http://localhost:9080/ITSOWeb/dataSource.jsp

Dynamic configuration updates for data sources
Changing the attributes of a data source element at run time results in dynamic updates to 
the server. Although the run time is updated immediately, some dynamic updates might affect 
a running server differently than others. For example, changing the isolationLevel attribute 
changes the isolation level for any future connection request, but current connections retain 
their existing isolation level. An update to the value of the commitOrRollbackOnCleanup 
attribute takes place immediately.

You can find a list of data source properties and their associated configuration update 
behaviors at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_ds_config_updates.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-
17-0-0-0

The rules that are noted apply only to data sources that are defined in the server 
configuration. When you update the properties of an application-defined data source, the 
entire data source is destroyed and the updated application uses a new data source. 
Effectively, from a developer perspective, all of the changes take place immediately. 

Caution: When importing entire projects from the additional materials, some of the 
examples for later sections might have compile errors. For example, the class 
MongoServlet has compile errors until you add the MongoDB JDBC driver to the project’s 
class path, as described in “Configuring MongoDB in the server configuration” on 
page 134. 

Note: Because of database differences, the create table statement might not work for all 
databases.
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5.1.2  Developing JPA applications

The Java Persistence API (JPA) provides a framework for working with relational databases in 
an object-oriented way. WebSphere Liberty profile server provides support for applications 
that use application-managed and container-managed JPA written to the JPA 2.1 or JPA 2.0 
specification. In this chapter, we focus on the JPA 2.1 version. The support is built on top of 
EclipseLink with extensions to support the container-managed programming model.

Creating a JPA entity
The following procedure allows you to create a simple JPA application in the Liberty profile 
developer tools: 

1. Before beginning, make sure that you defined a data source as described in 5.1, “Data 
access in the Liberty profile” on page 114. 

2. Create a new Dynamic Web Project that uses the WebSphere Liberty runtime and the 3.1 
web module version.

3. Begin by enabling the JPA facet on the created project; select the 2.1 version. This causes 
a persistence.xml file to be added to the project. If the project is deployed to the Liberty 
profile server, it also causes the tools to prompt you to add the JPA-2.1 feature to the 
server configuration. 

4. Create a JPA entity class by right-clicking the project and selecting New → JPA Entity. 
Enter com.ibm.itso.jpa21 in the Java package field and Person in the Class name field. 

Figure 5-9 shows the first page of the JPA entity wizard.

Figure 5-9   New JPA Entity wizard

5. Click Next to advance to the next window. Under Table name, clear the Use default check 
box. Enter PERSONTBL in the Table name field. 

6. Add an entity field by clicking Add. Click Browse next to the Type field to select 
java.lang.Integer, enter id in the Name field, and then click OK. Select the check box in 
122 IBM WebSphere Application Server Liberty Profile Guide for Developers



the Key column for the row containing the id field to indicate that the field is the primary 
key for the table.

7. Add an entity field by clicking Add. Click Browse next to the Type field to select 
java.lang.String, enter name in the name field, and then click OK. 

8. Repeat step 7 to add a field named location and a java.lang.String type. 

Figure 5-10 shows the completed second window of the JPA wizard. Click Finish to exit 
the wizard.

Figure 5-10   JPA Entity Properties window

9. Now, look at the source of the Person class. Notice that the id field is annotated with the 
javax.persistence.Id annotation to indicate that it is the primary key. 

10.The Derby database that we use is automatically generating the id field. For JPA to handle 
the generated ID field correctly, it must be annotated with 
javax.persistence.GeneratedValue. The strategy attribute for the annotation should be 
set to GenerationValue.IDENTITY. Figure 5-11 shows how the annotation should look. 

Figure 5-11   The id field for the UserEntity class

Creating data access object
Once the JPA entities are created, they are managed using the EntityManager. It is a 
preferable practice to not embed data access code directly in your component (such as, 
servlet). Instead, create a data access object, which handles all the required tasks. 
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In this chapter, two possible solutions for data access are presented and noted in the 
following list:

� POJO-based data access object (DAO), which uses local transactions and CDI.

� EJB-based data access object, which uses JTA container-managed transactions.

Because Java EE 6 and later allows embedding EJBs in the web module, it is now easier to 
use EJBs for data access and to let the container manage transactions.

Creating a POJO-based DAO
The following process shows you how to create and configure POJO-based JPA entity 
management.

Create a class to handle the actual persistence by right-clicking the project and selecting 
New → Class. Enter com.ibm.itso.jpa21 for the package name and PersonPojoDao for the 
class name. In the source editor, create two methods: persistPerson and listPersons.

The class is using @ApplicationScoped annotation to make the instance of the PersonPojoDao 
available in the application with injection and @Named annotation to make it accessible in JSP 
pages by using Expression Language (EL). PersonPojoDao is also using @PersistentUnit to 
inject the EntityManagerFactory object. In the following simple example, there is no error 
handling logic needed.

The listPersons method runs a query that selects all Person objects and returns the results. 

In the persistPerson method, you start the transaction and persist a new Person object. 
Finally, you have to commit the transaction or engage rollback in case of an error. 

The complete class is presented in Example 5-4.

Example 5-4   PersonPojoDao class 

@ApplicationScoped
@Named("personDao")
public class PersonPojoDao {

@PersistenceUnit
private EntityManagerFactory emf;

public Integer persistPerson(Person person) {
EntityManager em = emf.createEntityManager();

try {
em.getTransaction().begin();
em.persist(person);
em.getTransaction().commit();
System.out.println("Created Person: id=" + person.getId() + " name=" + 

person.getName());
return person.getId();

}
finally {

// clean up in case of exception
if (em.getTransaction().isActive()){
    em.getTransaction().rollback();
}
em.close();

}
}
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public List<Person> listPersons() {
EntityManager em = emf.createEntityManager();

try {
em.getTransaction().begin();
List<Person> resultList = em.createQuery("Select p from Person p", 

Person.class).getResultList();
em.getTransaction().commit();
System.out.println("List returned: " + resultList.size());
return resultList;

}
finally {

// clean up in case of exception
if (em.getTransaction().isActive()){
    em.getTransaction().rollback();
}
em.close();

}
}

}

Configuring a persistent unit for local transactions
To allow the application to connect to a database, you need to configure a persistent unit by 
using the following steps:

1. Open the persistence.xml file in the design editor. Then, select the Connection tab.

2. Select Resource Local from the Transaction type combo and enter jdbc/ITSO in the 
Non-JTA data source field, as shown in Figure 5-12. 

Figure 5-12   Persistence unit connection configuration
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Creating an EJB-based DAO
The following steps show you how to create and configure EJB-based JPA entity 
management:

1. Create an EJB class to handle the actual persistence by right-clicking the project and 
selecting New → Other. In the Select a wizard pop-up window, start typing Session and 
select Session Bean, as shown in Figure 5-13.

Figure 5-13   Selecting Session Bean in wizard

2. Enter com.ibm.itso.jpa21 for the package name and PersonEJBDao for the class name. In 
the source editor, create two methods: persistPerson and listPersons.

The class is using @Stateless annotation to mark the class as EJB and @Named annotation 
to make it accessible in JSP pages by using EL. PersonEJBDao is using 
@PersistenceContext annotation to inject EntityManager. There is no error handling logic 
in the following simple example.

The listPersons method runs a query that selects all Person objects and returns the 
results. The persistPerson persists a new Person object. The complete class is 
presented in Example 5-5.

Example 5-5   PersonEJBDao class

@Stateless
@LocalBean
@Named("personEJBDao")
public class PersonEJBDao {

@PersistenceContext
private EntityManager em;

public Integer persistPerson(Person person) {
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em.persist(person);
em.flush();
System.out.println("Created Person: id=" + person.getId() 

+ " name=" + person.getName());
return person.getId();

}
public List<Person> listPersons() {

List<Person> resultList = 
em.createQuery("Select p from Person p", 

Person.class).getResultList();
return resultList;

}
}

Configuring persistent unit for JTA transactions
1. Open the persistence.xml file in the design editor. Then, select the Connection tab.

Select Default(JTA) from the Transaction type combo and enter jdbc/ITSO in the JTA 
data source field, as shown in Figure 5-14.

Figure 5-14   Configuring persistent unit connection details

Creating the front end for testing JPA
In this section, to test JPA-enabled classes, you create both a simple front-end application 
and a JSP page and a servlet. Use the following steps to complete the process:

1. Begin by creating a JSP file named index.jsp. The JSP contains a table with a list of 
persons, a form with two input fields, and a Submit button. The page is accessing a dao 
object using the name defined in @Named annotation. Example 5-6 shows the completed 
JSP file.
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Example 5-6   Complete index.jsp file

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
    pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd">
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Hello Liberty JPA</title>
</head>
<body>
<H2>Hello, Liberty Developer from JPA.</H2>
These are our previous visitors:
<TABLE border=5>
<tr>

<TH>ID</TH><TH>Name</TH><TH>Location</TH>
</tr>
<%-- change to items="${personDao.listPersons() to use Pojo dao --%>
<c:forEach var="person" items="${personEJBDao.listPersons()}">
    <tr>
        <td><c:out value="${person.id}"/></td>
        <td><c:out value="${person.name}"/></td>
        <td><c:out value="${person.location}"/></td>
    </tr>
</c:forEach>
</TABLE>
<form action="JPA21Servlet" method="POST">
Name:<input type="text" name="name"/><BR>
Location: <input type="text" name="location"/><BR>
<input type="submit" value="Submit New Visitor"/>
</form>
</body>
</html>

2. Create a servlet named JPA21Servlet. The servlet uses annotations to either inject a 
POJO or EJB data access object. Comment out the object not needed, see Example 5-7.

Example 5-7   Injecting dao into servlet

@WebServlet("/JPA21Servlet")
public class JPA21Servlet extends HttpServlet {

// Uncomment for POJO dao
//@Inject
//PersonPojoDao personDao;

// Comment for POJO dao
@EJB
PersonEJBDao personDao;

3. The doPost method reads the name and location parameters on the request to persist a 
new Person object and redirects to the index.jsp page. Example 5-8 shows a sample 
doPost method. 
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Example 5-8   JPA21Servlet doPost method

protected void doPost(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

String name = request.getParameter("name");
String location = request.getParameter("location");
Person p = new Person();
p.setName(name);
p.setLocation(location);
personDao.persistPerson(p);

response.sendRedirect("index.jsp");
}

Configuring server and testing JPA application
Before you can run the application, you need to configure Liberty server for JPA applications 
and create the database schema that holds persisted objects.

Preparing the server
To run the application, you have to enable the following features in the server configuration:

� jpa-2.1
� jsp-2.3
� cdi-1.2 - for Pojo example
� ejbLite-3.2 - for EJB example

You need to add features to the server configuration by using the following steps: 

1. In the Servers view, expand the WebSphere Liberty server and double-click Server 
Configuration.

2. Select Feature Manager and in the Feature Manager section click Add, as shown in 
Figure 5-15.

Figure 5-15   Adding features

3. In the Select the features to enable dialog, select jpa-2.1, cdi-1.2, and ejbLite-3.2 
features, and click OK. You also need to add the jsp-2.3 feature, if it is not already 
present.

4. Save the server configuration.
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Auto generating the schema for JPA entities
For development purposes, it is useful to quickly generate database schema. The schema 
can be based on your entities without a need to access database-specific tools or writing and 
running special schema generating scripts. This is possible in JPA 2.0, but you must use 
provider proprietary properties. JPA 2.1 introduces standard properties that allow you to 
generate schema, create scripts, and load data at start.

To configure automatic schema generation, use the following steps:

1. Open the persistence.xml file and select the Schema Generation tab.

2. In the Database action field, select Create. If you often change schema, you can select 
Drop and Create, but remember that all data is lost during redeployment.

If, in addition, you want to create scripts for later usage, select the required option in the 
Scripts generation field and provide file names in the Scripts target field, as shown in 
Figure 5-16. Scripts are generated in the server directory 
(WLP_HOME/usr/servers/serverName).

Figure 5-16   Schema generation options

Testing application
Finally, test the application by visiting the following website:

http://localhost:9080/ITSOJPA21App/index.jsp 
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You should see output similar to Figure 5-17 on page 131. The table is empty on the first run 
because the database contains no records.

Figure 5-17   Output from the JPA application

5.1.3  Data access with noSQL database

NoSQL databases are becoming more popular. They are especially preferred for storing large 
amounts of unstructured data. Although they lack traditional database features (such as 
transaction management and defined schemas), their simple development and ability to scale 
horizontally make it a preferred choice for some applications.

WebSphere Liberty profile currently provides support for easy development with MongoDB 
and CouchDB.

Data access with MongoDB
The Liberty profile developer tools can facilitate the development of data access applications 
using MongoDB by simplifying the setup of required resources. Use the following sections 
and procedures to create an example application that stores, retrieves, and deletes data from 
a MongoDB database.

Installing MongoDB
For this example, you need a running instance of MongoDB. For more information about 
downloading, installing, and running MongoDB, go to the following website:

http://www.mongodb.org

Setting up the MongoDB Java driver
To set up the MongoDB Java driver, complete the following steps:

1. Download the MongoDB Java driver from the MongoDB website. Ensure that you 
download Version 2.10.1 or later. Save the Java driver JAR file in the location on disk 
where you want the Liberty profile server to access the driver. 

2. Create a shared library. Select the Server configuration, click Add, and select Shared 
Library. In the details window for the shared library, enter the value mongoLibrary in the 
ID field. Click Add next to the Fileset reference field to add a file set to the shared library. 
In the Base directory field, enter the directory where you saved the MongoDB Java driver 
JAR file. In the Includes pattern field, enter the Java driver JAR file name. For Version 
2.13.1, the file name is mongo-java-driver-2.13.1.jar.
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Creating an application
To test the MongoDB access, you create a web application with two parts. A JSP file is used 
to display an input form, and a servlet is used to interact with the MongoDB instance and 
return results. Complete the following steps to write an application that users MongoDB:

1. Begin by creating a new dynamic web project ITSOMongoApp.

2. Create a JSP file named mongoInput.jsp in the ITSOMongoApp project by using the New 
JSP File wizard. On the template selection page, choose New JSP File. 

3. In the JSP file, add a form that has an input field named item and an input field named 
price. The action attribute for the form should be MongoServlet and the method attribute 
should be POST. Add three submit buttons to the form, labeled Add to Catalog, Find in 
Catalog, and Delete from Catalog. Figure 5-18 shows the completed mongoInput.jsp file. 

Figure 5-18   Example mongoInput.jsp file

4. Create a servlet named MongoServlet in the ITSOMongoApp project by using the Create 
Servlet wizard. In the servlet, access is needed to the APIs that are contained in the 
MongoDB Java driver JAR file. Add this JAR file to the build path for the ITSOMongoApp 
project by right-clicking the project and selecting Properties. Select Java Build Path, 
and then click the Libraries tab. Then, proceed with one of the following two options:

– If your MongoDB Java driver JAR file is in your Eclipse workspace, click Add to add it 
to the build path. 

– Otherwise, click Add External Jars and navigate to the location of the JAR file. When 
you add the JAR file to the build path, click OK to update the project.

5. In the servlet, add a field of type com.mongodb.DB named mongoDB. Add the annotation 
@Resource(name = “jndi/mongoDB”) to the field so that the Liberty profile server injects the 
DB instance automatically. 

6. All of the database access takes place in the doPost method. In the doGet method, add the 
code in Example 5-9 to forward the request to the mongoInput.jsp file.

Example 5-9   Code to forward the request

RequestDispatcher rd = request.getRequestDispatcher(“mongoInput.jsp”);
rd.forward(request, response);

7. In the doPost method, obtain a DBCollection object by calling the getCollection method 
on the mongoDB field. The method parameter identifies the collection name. For this 
example, use the name catalog.

Caution: At the time of writing this book, the Mongo 3.x driver was not working in Liberty.
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8. Also, in the doPost method, create a com.mongodb.BasicDBObject instance named 
dbObject. Store the request parameters for item and price in the dbObject by using the 
append method. Continue with the following configuration options:

– If the request parameter add is not null, call insert on the DBCollection object, 
passing in dbObject. 

– If the request parameter find is not null, call find on the DBCollection object, passing in 
dbObject. The find method returns a com.mongodb.DBCursor object. Use the size 
method on DBCursor to determine the number of results. 

– If the request parameter delete is not null, run the remove method on the collection 
object, again passing in the dbObject. The remove method returns an object of type 
com.mongodb.WriteResult. You can use the getN method on the WriteResult object to 
determine how many results were deleted from the database. 

9. Now call the find method on the DBCollection object without passing in any parameters. 
This returns a DBCursor object that contains all entries in the catalog collection. Iterate 
through the results using the hasNext and next methods on DBCursor. The next method 
returns a DBObject instance that you can use to obtain the data. 
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10.Finally, obtain a RequestDispatcher instance and call the include method to include the 
contents of the mongoInput.jsp file. The completed doPost method is shown in 
Figure 5-19.

Figure 5-19   Example doPost method

Configuring MongoDB in the server configuration
To configure MongoDB in the server configuration, complete the following steps:

1. Create a Mongo instance in the server configuration:

a. Select the Server configuration, click Add, and then select Mongo. Accept the 
prompt to add the Mongo-2.0 Integration feature.

b. The details window contains several different options for configuring the Mongo 
instance, but you can keep all of the defaults except for the ID and MongoDB Java 
driver library reference. In the ID field, enter mongo. In the Java driver library reference 
field, use the drop-down menu to select mongoLibrary.

2. Create a MongoDB DB in the configuration: 

a. Select the server configuration, click Add, and then select MongoDB DB. 
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b. In the JNDI name field, enter the value jndi/mongoDB. 

c. In the database name field, enter exampleDB.

d. Use the Mongo instance reference drop-down menu to select mongo. 

The configuration is visible in server.xml in Example 5-10.

Example 5-10   Mongo db configuration in server.xml

<library id="mongoLibrary">
    <fileset dir="${shared.resource.dir}/mongo" 
includes="mongo-java-driver-2.13.1.jar"></fileset>
</library>
<mongo id="mongo" libraryRef="mongoLibrary"></mongo>
<mongoDB jndiName="jndi/mongoDB" mongoRef="mongo" 
databaseName="exampleDB"></mongoDB>

For more complex configurations visit the following page:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_mongodb_create.html?lang=en

Enabling the MongoDB feature
Mongo features should be already enabled in the server.xml as shown in Example 5-11.

Example 5-11   Mongo feature in server.xml

</featureManager>
    <feature>mongodb-2.0</feature>

</featureManager>

If the feature is not added, select the Feature Manager in the server configuration. Click Add, 
and select the mongodb-2.0 feature. 

Deploying the Application
Use the following steps to deploy applications: 

1. Applications need access to the library you defined for the Mongo Java driver. You cannot 
just drop it to the dropins folder, you have to configure it in the server.xml file (either 
using tools in Eclipse or manually). Here you will use Eclipse.

2. Select Liberty server, right-click and select Add and Remove, select ITSOMongoApp, 
click Add, and then click Finish.

3. Open Server configuration, select Web Application: ITSOMongoApp and click Add.

4. Select Classloader and click OK.

5. In the Classloader Details window, click the Browse button next to the Shared library 
references field. Select mongoLibrary from the list of available IDs and click OK. 

The following fragment of server.xml shows some application configuration, see 
Example 5-12.

Example 5-12   Application configuration in server.xml

<webApplication id="ITSOMongoApp" location="ITSOMongoApp.war" name="ITSOMongoApp">
    <classloader commonLibraryRef="mongoLibrary"></classloader>
</webApplication>
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Testing the application
Test the application by visiting the following website:

http://localhost:9080/ITSOMongoApp/MongoServlet

Data access with CouchDB
The Liberty profile developer tools can facilitate the development of data access applications 
using CouchDB by simplifying the setup of required resources. Use the following sections and 
procedures to create an example application that stores, retrieves, and deletes data from a 
CouchDB database.

Installing CouchDB
For this example, you need a running instance of CouchDB. For more information about 
downloading, installing, and running CouchDB, go to the following website:

http://docs.couchdb.org/en/1.6.1

Setting up the CouchDB Java connector
To set up the CouchDB Java connector, complete the following steps:

1. Download the CouchDB Java connector libraries. You must use Version 1.4.1 or later of 
the ektorp Java connector. The CouchDB Java connector is a set of files defined by maven 
dependency. Use the Maven plug-in to obtain it using the dependency shown in 
Example 5-13.

Example 5-13   Connector dependencies

<dependency>
    <groupId>org.ektorp</groupId>
    <artifactId>org.ektorp</artifactId>
    <version>1.4.1</version>
</dependency>

You can also download JAR files separately by using the list in Example 5-14 on 
page 136.

Example 5-14   JAR files needed by the connector

org.ektorp-1.4.1.jar        
    commons-codec-1.6.jar        
    commons-io-2.0.1.jar        
    commons-logging-1.1.1.jar        
    httpclient-4.2.5.jar        
    httpclient-cache-4.2.5.jar        
    httpcore-4.2.4.jar        
    jackson-annotations-2.2.2.jar        
    jackson-core-2.2.2.jar        
    jackson-databind-2.2.2.jar        
    slf4j-api-1.6.4.jar        
    slf4j-simple-1.6.4.jar

Save the Java connector JAR files in the location on disk where you want the Liberty 
profile server to access the driver.

Result: You should be able to use the web page to add, find, and remove items from the 
database. For the find operation to succeed, both input fields must match the 
corresponding fields in a database entry.
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2. Create a shared library. Select the Server configuration, click Add, and select Shared 
Library. In the details window for the shared library, enter the value couchLibrary in the ID 
field. Click Add next to the Fileset reference field to add a file set to the shared library. In 
the Base directory field, enter the directory where you saved the CouchDB Java connector 
JAR file. In the Includes pattern field, enter *.jar to include all the JAR files from the 
folder.

Creating an application
To test the CouchDB access, you create a web application with two parts. A JSP file is used 
to display an input form, and a servlet is used to interact with the CouchDB instance and 
return results. Complete the following steps to create an application that uses CouchDB:

1. Begin by creating a new dynamic web project ITSOCouchApp.

2. Create a JSP file named couchInput.jsp in the ITSOCouchApp project by using the New 
JSP File wizard. On the template selection page, choose New JSP File. 

3. In the JSP file, add a form that has an input field named item and an input field named 
price. The action attribute for the form should be CouchServlet and the method attribute 
should be POST. Add three submit buttons to the form, labeled Add to Catalog, Find in 
Catalog, and Delete from Catalog. Example 5-15 shows the completed couchInput.jsp 
file. 

Example 5-15   couchInput.jsp fragment

<body>
   <form action="CouchServlet" method="post">

ID: <input type="text" name="id"><BR>
     Item: <input type="text" name="item"><BR>
     Price: <input type="text" name="price"><BR>
     <input type="submit" name="add" value="Add to Catalog">
     <input type="submit" name="find" value="Find in Catalog">
     <input type="submit" name="delete" value="Delete fromCatalog">
   </form>
</body>

4. Create a servlet named CouchServlet in the ITSOCouchApp project by using the Create 
Servlet wizard. In the servlet, access is needed to the APIs that are contained in the 
CouchDB Java connector JAR files. Add these JAR files to the build path for the 
ITSOCouchApp project by right-clicking the project and selecting Properties. Select Java 
Build Path, and then click the Libraries tab. Then, proceed with one of the following two 
options:

– If your CouchDB Java connector JAR files are in your Eclipse workspace, click Add to 
add it to the build path. 

– Otherwise, click Add External Jars and navigate to the location of the JAR files. When 
you add the JAR files to the build path, click OK to update the project.

5. In the servlet, add a field of type org.ektorp.CouchDbInstance named couchDB. Add the 
annotation @Resource(name = “couchdb/connector”) to the field so that the Liberty profile 
server injects the DB instance automatically. 

6. All of the database access takes place in the doPost method. In the doGet method, add the 
code in Example 5-16 to forward the request to the couchInput.jsp file.

Example 5-16   Code to forward the request

RequestDispatcher rd = request.getRequestDispatcher(“couchInput.jsp”);
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rd.forward(request, response);

7. In the doPost method, obtain a CouchDbConnector object by calling the createConnector 
method on the couchDB field. The method parameters identify the database name and 
database creation, if not existing. For this example, use the name exampledb.

8. Also, in the doPost method, create a HashMap instance named doc. Store the request 
parameters for id, item, and price in the doc. Put the key value as _id. Continue with the 
following configuration options:

– If the request parameter add is not null, call create on the CouchDbConnector object, 
passing in doc object. 

– If the request parameter find is not null, call find on the CouchDbConnector object, 
passing in result class type and object key value. The find method returns a Map object 
that you put into the database. 

– If the request parameter delete is not null, first look for the object to delete by using the 
find method. If found, run the delete method passing in the found object. 

9. Now call the queryView method on the CouchDbConnector object passing ViewQuery 
object. This returns a List that contains all entries in the exampledb database. Iterate 
through the results list to display the data. 

10.Finally, obtain a RequestDispatcher instance and call the include method to include the 
contents of the couchInput.jsp file. The completed doPost method is shown in 
Example 5-17.

Example 5-17   doPost method implementation

protected void doPost(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

PrintWriter writer = response.getWriter();
writer.println("<BODY>");

    String dbname = "exampledb";
    try {
        //creates a database with the specified name
        CouchDbConnector dbc = couchDB.createConnector(dbname, true);
        
        //create a simple doc to place into your new database
        Map<String, Object> doc = new  HashMap<String, Object>();
        doc.put("_id", request.getParameter("id"));
        doc.put("item", request.getParameter("item"));
        doc.put("price", request.getParameter("price"));

if (request.getParameter("add") != null) {
        dbc.create(doc);
        writer.println("Added a simple doc!");

} else if (request.getParameter("find") != null) {
Map result = dbc.find(Map.class, request.getParameter("id"));
if (result != null) {

writer.println("<P>The item is in the catalog: " + result);
} else {

writer.println("The item was not found in the database");
}

} else if (request.getParameter("delete") != null) {
            Map result = dbc.find(Map.class, request.getParameter("id"));

if (result != null) {
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writer.println("<P>The item is in the catalog -  deleting.... " + 
result);

dbc.delete(result);
} else {

writer.println("The item was not found in the database");
}

}
writer.println("<P>All Database Entries");
writer.println("<TABLE 

border=\"5\"><TH>ID</TH><TH>Item</TH><TH>Price</TH>");
ViewQuery q = new ViewQuery().allDocs().includeDocs(true);
List<Map> bulkLoaded = dbc.queryView(q, Map.class);

for (Map map : bulkLoaded) {
writer.println("<TR>");
writer.println("<TD>" + map.get("_id") + "</TD>");
writer.println("<TD>" + map.get("item") + "</TD>");
writer.println("<TD>" + map.get("price") + "</TD>");
writer.println("</TR>");

}
writer.println("</TABLE>");

    }
    catch(Exception e){
    e.printStackTrace();
    }

RequestDispatcher rd = request.getRequestDispatcher("couchInput.jsp");
rd.include(request, response);
writer.println("</BODY>");

}

Configuring CouchDB in the server configuration
To configure CouchDB in the server configuration, complete the following process.

Create a Couch instance in the server configuration: 

� Select the Server configuration, click Add, and then select Couch. Accept when 
prompted to add the couchdb-1.0 Integration feature.

� The details window contains several different options for configuring the Couch instance. 
Provide the following options, as shown in Figure 5-20 on page 140:

– ID: couchdb

– Library reference: couchLibrary

– CouchDB user id: admin

– Password: mysecretpassword

– JNDI name: couchdb/connector

– URL: http://localhost:5984
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Figure 5-20   CouchDB options

The configuration is visible in server.xml in Example 5-18.

Example 5-18   Couch db configuration in server.xml

<library id="couchLibrary">
        <fileset dir="${shared.resource.dir}/crouch" includes="*.jar"/>
    </library>
    <couchdb id="couchdb" jndiName="couchdb/connector"

libraryRef="couchLibrary" url="http://localhost:5984"
username="admin" password="mysecretpassword"/> 

Enabling the CouchDB feature
Couch features should be already enabled in the server.xml as shown in Example 5-19.

Example 5-19   Couch feature in server.xml

</featureManager>
    <feature>couchdb-1.0</feature>

</featureManager>

If the CouchDB feature is not added, select the Feature Manager in the server configuration. 
Click Add, and select the couchdb-1.0 feature. 

Deploying Application
Use the following steps to deploy the application:

1. Applications need access to the library you defined for the CouchDB Java connector. You 
cannot just drop it into the dropins folder. You have to configure it in the server.xml, either 
by using tools in Eclipse or manually. In this example, use Eclipse.

2. Select Liberty server, right-click and select Add and Remove. Select ITSOCouchApp, 
click Add >, and click Finish.

3. Open Server configuration, select Web Application: ITSOCouchApp and click Add.

4. Select Classloader and click OK.

5. In the Classloader Details window, click the Browse button next to the Shared library 
references field. Select couchLibrary from the list of available IDs and click OK. 
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The following fragment of server.xml shows some of the application configuration in 
Example 5-20.

Example 5-20   Application configuration in server.xml

<webApplication id="ITSOCrouchApp" location="ITSOCrouchApp.war" 
name="ITSOCrouchApp">
    <classloader commonLibraryRef="couchLibrary"></classloader>
</webApplication>

Testing the application
Test the application by visiting the following website:

http://localhost:9080/ITSOCouchApp/CouchServlet

5.2  Developing Enterprise JavaBeans applications

The Enterprise JavaBeans (EJB) specification describes a component model for business 
logic in server applications. WebSphere Liberty Profile Server supports the EJB 3.2, EJB 3.2 
Lite specification, and message-driven beans (MDBs). 

5.2.1  What’s new in developing EJB applications for Liberty profile

WebSphere Liberty profile now supports full EJB 3.2 specification in addition to EJB Lite. The 
latest available features include those noted in the following list:

� Local and remote EJB
� Support for persistent and non-persistent timers
� Support for asynchronous session bean invocations

5.2.2  Developing applications using local EJB

The Liberty profile developer tools facilitate the development of EJB applications by providing 
wizards that help generate portions of the EJB code. Use the following sections and 
procedures to create and test a simple stateless local session bean that uses ejblite-3.2. 
Since Java EE now allows embedding EJBs in the web modules, this approach is shown in 
this section. WebSphere Liberty also fully supports creating an EAR project with separate 
web and EJB modules.

Creating a Dynamic Web Project
To create a project, complete the following steps:

1. Begin by creating a new project to hold the EJB application. Click File → New → Dynamic 
Web Project. On the first page of the New Project wizard, enter ITSOEJBLocal in the 
Project name field. 

Result: You should be able to use the web page to add, find, and remove items from the 
database. For the find and delete operations to succeed, you must provide an ID field.

Not authorized: If you receive the 401:Unauthorized error from the call, configure the 
admin user in CouchDB. In the C:\CouchDB\etc\couchdb\local.ini file at the end (in the 
[admins] section entry), uncomment the entry admin = mysecretpassword.
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2. Make sure that WebSphere Application Server V8.5 Liberty Profile is selected for the 
Target run time. Also, ensure that the Add project to an EAR check box is cleared. 

3. Click Finish to complete the wizard. A new project named ITSOEJBLocal is created after 
you exit the wizard. 

Creating the EJB
After creating the project, complete the following steps to create the EJB:

1. From the menu, select File → New → Session Bean (EJB 3.x), which starts the Create 
EJB 3.x Session Bean wizard. 

2. In the first window of the wizard, ensure that ITSOEJBLocal is selected in the Project field, 
enter com.ibm.itso.ejblocal in the Java package field, and Hello in the Class name field. 
Ensure that Stateless is specified for the State type field, and default No-interface View 
is selected. When you select the No-interface View, all public, non-static methods of the 
bean are available to clients. If you do not want that availability, select Local and define 
the interface with only required methods. The EJB creation wizard is shown in Figure 5-21.

Figure 5-21   Creating EJB

3. Click Next to advance to the next window, and then click Finish. The wizard now creates a 
class named Hello. Notice that the class is annotated with @Stateless and @LocalBean. 

4. Now, complete the EJB implementation by adding a method that is named hello that 
returns the string Hello from local bean. The completed class is shown in Example 5-21.

Example 5-21   Hello bean class

@Stateless
@LocalBean
public class Hello {
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public String hello() {
return "Hello from local bean";

}
}

Creating a test client
A servlet is used to test the created bean. To create a servlet, complete the following steps:

1. Using the Create New Servlet wizard, create a servlet in the ITSOEJBLocal project, in the 
package com.ibm.itso.ejbLocal named HelloServlet. In the generated class, add a field 
named helloBean of type Hello. Annotate the field with @EJB. 

2. In the servlet’s doGet method, print the results of calling the hello method on helloBean. 
The completed servlet is shown in Example 5-22.

Example 5-22   HelloServlet class

@WebServlet("/HelloServlet")
public class HelloServlet extends HttpServlet {

private static final long serialVersionUID = 1L;
@EJB
private Hello helloBean;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) 

throws ServletException, IOException {
PrintWriter out = response.getWriter();
out.println(helloBean.hello());

}
}

Enabling the EJB feature and testing
You can test HelloServlet directly from the workspace:

� Select the HelloServlet file, right-click, and select Run as → Run on Server 

� Browser in Eclipse is automatically opened pointing to the following website: 
http://localhost:9080/ITSOEJBLocal/HelloServlet 

By default, WebSphere Liberty server automatically loads the required features if they are 
available in the runtime. You should see, in the console, output messages similar to those in 
Example 5-23 on page 143 where the server is automatically adding jndi-1.0 and 
ejbLite-3.2; you can also notice default binding for the Hello bean.

Example 5-23   Automatically enabling features

[AUDIT   ] CWWKG0016I: Starting server configuration update.
[INFO    ] CWWKF0007I: Feature update started.
[AUDIT   ] CWWKG0017I: The server configuration was successfully updated in 0.856 
seconds.

Result: You should see the output, Hello from the local bean, in your web browser. 
This shows that the EJB was automatically injected into the helloBean field and that the 
servlet was able to successfully start the method hello. 
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[AUDIT   ] CWWKF0012I: The server installed the following features: [jndi-1.0, 
ejbLite-3.2].
[AUDIT   ] CWWKF0008I: Feature update completed in 0.846 seconds.
[INFO    ] CWWKZ0018I: Starting application ITSOEJBLocal.
[INFO    ] CNTR4000I: The ITSOEJBLocal.war EJB module in the ITSOEJBLocal 
application is starting.
[INFO    ] CNTR0167I: The server is binding the com.ibm.itso.ejblocal.Hello 
interface of the Hello enterprise bean in the ITSOEJBLocal.war module of the 
ITSOEJBLocal application.  The binding location is: 
java:global/ITSOEJBLocal/Hello!com.ibm.itso.ejblocal.Hello
[INFO    ] CNTR4001I: The ITSOEJBLocal.war EJB module in the ITSOEJBLocal 
application has started successfully.
[INFO    ] SRVE0169I: Loading Web Module: ITSOEJBLocal.
[INFO    ] SRVE0250I: Web Module ITSOEJBLocal has been bound to default_host.
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost:9080/ITSOEJBLocal/
[AUDIT   ] CWWKZ0001I: Application ITSOEJBLocal started in 0.313 seconds.
[AUDIT   ] CWWKG0016I: Starting server configuration update.

The required features can also be added by opening the server configuration and selecting 
Feature Manager in the server configuration. Then, click Add, and select ejbLite-3.2 and 
jndi-1.0.

5.2.3  Developing applications using remote EJB

Liberty also supports remote EJB as required by the Java EE 7 full platform specification. In 
this chapter, you create a project that has remote EJB and two types of clients (separate web 
application and Java client application).

Creating an EJB project
To create a project, complete the following steps:

1. Begin by creating a new project to hold the EJB application. Click File → New → EJB 
Project. On the first page of the New EJB Project wizard, enter ITSORemoteEJB in the 
Project name field, ensure that Add project to an EAR is checked and provides 
ITSORemote as the name for the EAR. Click Next. Then, again click Next.

2. In the Configure EJB module settings window, ensure that Create an EJB Client JAR 
is selected, then click Finish.

The EJB client JAR file is used by remote clients to find required class files.

Creating the EJB
After creating the project, complete the following steps to create the EJB:

1. From the menu select File → New → Session Bean (EJB 3.x), which starts the Create 
EJB 3.x Session Bean wizard. 
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2. In the first window of the wizard, ensure that ITSORemoteEJB is selected in the Project 
field. Enter com.ibm.itso.ejbRemote in the Java package field and HelloRemoteEJB in the 
Class name field. Ensure that Stateless is specified for the State type field, and change 
the business interface option from No-interface View to Remote (shown in Figure 5-22).

Figure 5-22   Creating remote EJB

3. Click Next to advance to the next window, and then click Finish. The wizard now creates a 
class named HelloREmoteEJB and also an interface called HelloREmoteEJBRemote in the 
ITSORemoteEJBClient project. Notice that the class is annotated with @Stateless and 
@Remote. 

4. Now, complete the EJB implementation by adding a method that is named hello that 
returns the string Hello from remote bean. The completed class is shown in 
Example 5-24.

Example 5-24   HelloRemoteEJB class

@Stateless
@Remote(HelloRemoteEJBRemote.class)
public class HelloRemoteEJB implements HelloRemoteEJBRemote {

public String hello() {
return "Hello from remote bean!";

}
}

5. Promote the hello() method to the remote interface. In the Outline view, click hello() 
method, right-click, and select Java EE Tools → Promote Methods. Accept the defaults 
and click OK.
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Enabling the feature and deploying to the server
To enable ejbRemote-3.2 in the server configuration, use the following steps:

1. In the Servers view, expand Liberty Server and double-click Server Configuration 
[server.xml]. 

2. Select Feature Manager and in the Feature Manager section of the window, click the Add 
button and add the ejbRemote-3.2 feature. 

3. Save the changes.

Now, deploy ITSORemote application to the server. To do so, in the Servers view right-click 
Liberty Server, then click Add and Remove, and add ITSORemote application.

Your remote EJB application is ready for testing.

Creating a web test client
A separate web project is created to show the remote access to the EJB. Complete the 
following steps to create a web test client:

1. Begin by creating a new web project to hold the client application. Click File → New → 
Dynamic Web Project. On the first page of the New Project wizard, enter 
ITSORemoteWebClient in the Project name field. 

2. Make sure that WebSphere Application Server V8.5 Liberty Profile is selected for the 
Target run time. Also, ensure that the Add project to an EAR check box is cleared. 

3. Click Finish to complete the wizard. A new project named ITSORemoteWebClient is 
created after you exit the wizard. 

4. Right click the ITSORemoteWebClient project and select Properties. In the project 
properties select Deployment Assembly.
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5. Click the Add button, select Project and then ITSORemoteEJBClient. Click Finish. 
Deployment Assembly properties should be updated with the ITSORemoteEJBClient.jar 
as shown in Figure 5-23.

Figure 5-23   Deployment assembly properties

6. Click OK to close the properties window and save the changes.

7. Using the Create New Servlet wizard, create a servlet in the ITSORemoteWebClient project, 
in the package com.ibm.itso.ejbRemote named HelloRemoteServlet. In the generated 
class, add a field named helloRemoteBean of type HelloRemoteEJBRemote. Annotate the 
field with @EJB. 

8. In the servlet’s doGet method, print the results of calling the hello method on helloBean. 
The completed servlet is shown in Example 5-25.

Example 5-25   HelloServlet class

@WebServlet("/HelloRemoteServlet")
public class HelloRemoteServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

@EJB(lookup="java:global/ITSORemote/ITSORemoteEJB/HelloRemoteEJB!com.ibm.itso.e
jbRemote.view.HelloRemoteEJBRemote")

private HelloRemoteEJBRemote helloRemoteBean;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

PrintWriter out = response.getWriter();
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out.println(helloRemoteBean.hello());
}

}

You can now test directly from the workspace:

1. Select the HelloRemoteServlet file, right-click, and select Run as → Run on Server 

2. Browser is automatically opened pointing to 
http://localhost:9080/ITSORemoteWebClient/HelloRemoteServlet

Creating a Java application test client
WebSphere Liberty now supports running Java applications, in the application client 
container, that can access your components running on the Liberty server (for example 
remote EJB).

Using the client container is a two part process. First, you need to create an application. 
Then, configure and run that application using a client container.

JNDI name for remote EJB: 

For beans in the same Liberty server, use: 
java:global/ApplicationName/ModuleName/EJBName!full.package.remote.interface.Na
me

For beans in a different Liberty server, use: 
corbaname:differentHostName:2809#ejb/global/ApplicationName/ModuleName/EJBName!f
ull.package.remote.interface.Name

Result: You should see the output Hello from the remote bean in your web browser. 
This shows that the EJB was automatically injected into the helloRemoteBean field and 
that the servlet was able to successfully call the method hello in the remote bean.
148 IBM WebSphere Application Server Liberty Profile Guide for Developers



Creating a Java application client
Use the following steps to create a Java application client:

1. Start by creating the new application client project. From the menu, select File → New → 
Application Client Project. On the first page of the New Project wizard, enter 
ITSOHelloJavaClient in the Project name field, type ITSOHelloJavaClientEAR in the EAR 
project name, and select 7.0 as the Application client module version. See Figure 5-24 on 
page 149. Then, click Next twice.

Figure 5-24   Creating an application client project

2. In the Configure Client module settings window, clear Create default Main class, and 
check to Generate application-client.xml. Click Finish.

3. Add the server run time to the project:

a. Right-click the ITSOHelloJavaClient project and select Build Path → Configure 
Build Path.

Attention: At the time of writing this book, it was not possible to select the Liberty Target 
run time while creating the Application client project. As a result, you need to later on add 
the Server Library to the project.
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b. Click Add Library. Select Server Runtime. Select your WebSphere Liberty runtime 
and click Finish. Click OK. 

4. Add ITSORemoteEJBClient library to the application libraries:

a. Right-click ITSOHelloJavaClientEAR and select Properties.

b. Select Deployment Assembly in the left section of the Properties window, as shown in 
Figure 5-25 on page 150, and click Add.

Figure 5-25   Configuring Deployment Assembly

c. Select Project and click Next.

d. Select ITSORemoteEJBClient and click Finish.

e. Click OK to close Properties window.

5. Create the main application class by using the New Java Class wizard. Enter 
com.ibm.itso.appclient as the Package name, HelloClient as Class name, and check 
to Create the main method. Click Finish.

6. Add the injected EJB as the static class field, and code the main method to call EJB. See 
the complete code in Example 5-26.

Example 5-26   Complete Hello client class

public class HelloClient {

@EJB(lookup="corbaname::localhost:2809#ejb/global/ITSORemote/ITSORemoteEJB/Hell
oRemoteEJB!com.ibm.itso.ejbRemote.view.HelloRemoteEJBRemote")

static HelloRemoteEJBRemote remoteBean;

public static void main(String[] args) {
System.out.println("Starting Liberty java client");
System.out.println(remoteBean.hello());

}

150 IBM WebSphere Application Server Liberty Profile Guide for Developers



}

7. For the application to automatically run, it needs to have the Main-class attribute 
configured in the MANIFEST.MF file. Use the following steps for that process:

a. Expand ITSORemoteEJBClient → appClientModule → META-INF and double-click 
MANIFEST.MF.

b. Scroll down and beside Main-Class, click Browse and select HelloClient class, as 
shown in Figure 5-26 on page 151.

Figure 5-26   Defining Main-Class in the manifest file

8. Create the application deployment descriptor by right-clicking the 
ITSOHelloJavaClientEAR and select the Java EE Tools → Generate Deployment 
Descriptor Stub.

9. To export the application, right-click ITSOHelloJavaClientEAR and select Export → EAR 
file. Now, the ITSOHelloJavaClientEARapplication is ready to be deployed in the 
application client container.

Configuring the Java application client container
To run the Java application client for WebSphere Liberty, you need to create and configure the 
container. To create the container, use the following steps:

1. Start by running the client create clientName command from the WLP_HOME\bin directory, 
providing ITSOHelloClient as the client name, as shown in Example 5-27.

Example 5-27   Creating client container

C:\IBM\WebSphere\wlp\bin>client create ITSOHelloClient
Client ITSOHelloClient created.

2. Observe that the ITSOHelloClient folder was created in the 
C:\IBM\WebSphere\wlp\usr\clients directory.

3. Copy the previously exported ITSOHelloJavaClientEAR.ear file to the 
C:\IBM\WebSphere\wlp\usr\clients\ITSOHelloClient\apps folder.

Running the application client: At the time of writing the book, it was not possible to 
run WebSphere Liberty application client directly from Eclipse. You need to export the 
application and configure application client container as described in the next section.
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4. Edit the client configuration file, client.xml, in 
C:\IBM\WebSphere\wlp\usr\clients\ITSOHelloClient (See Example 5-28).

Example 5-28   Client configuration file, client.xml

<?xml version="1.0" encoding="UTF-8"?>
<client description="new client">

<featureManager>
<feature>javaeeClient-7.0</feature>

</featureManager>
      <application id="ITSOHelloJavaClientEAR_ID" name="ITSOHelloJavaClientEAR" 
type="ear" location="ITSOHelloJavaClientEAR.ear"/>
</client>

5. Run your application by using the client container. This container executes the client run 
clientName command, as shown in Example 5-29.

Example 5-29   Running application

C:\IBM\WebSphere\wlp\bin>client run ITSOHelloClient

6. Observe the output from the successful application execution, as shown in Example 5-30.

Example 5-30   Output from the running application

...
[AUDIT   ] CWWKZ0001I: Application ITSOHelloJavaClientEAR started in 1.578 
seconds.
...
[AUDIT   ] CWWKF0035I: The client ITSOHelloClient is running.
Starting Liberty java client
Hello from remote bean!
[AUDIT   ] CWWKZ0009I: The application ITSOHelloJavaClientEAR has stopped 
successfully.
[AUDIT   ] CWWKE0908I: The client ITSOHelloClient stopped after 8.216 seconds.

5.2.4  Developing applications using timers

Applications often need to perform some tasks at a specific time or repeatedly (such as 
generating daily reports). The timer service allows you to schedule notifications according to 
a calendar schedule, at a specific time, after a duration of time, or at timed intervals. It is 
available to all enterprise beans except stateful.

Timers can be either automatic (created by the @Schedule annotation), or programmatic 
(created explicitly by TimerService methods). Automatic timers are created by the container 
during the application start.

Timers can also be non-persistent or persistent. Non-persistent timers configuration is held 
only in JVM memory. In case of application or server restart, it needs to be re-created. 
Non-persistent timers run in every JVM of the cluster, where the application is deployed. 
Persistent timers configuration is stored in the database and any missed notifications, for 
example, due to a stopped application, will be reissued after the restart.

Using non-persistent timers
Use the following steps to create non-persistent timers:

1. Start by creating a new project that holds your timer class.
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2. Create a new class with the code shown in Example 5-31 on page 153. Make sure to have 
persistent=false (as by default, timers are persistent). This timer runs on the tenth 
second every minute.

Example 5-31   Non-persistent timer bean

@Singleton
@Startup
public class TimerBean {

@PostConstruct
public void init() {

System.out.println("TimerBean initialized");
}
@Schedule(second="10", minute="*", hour="*", persistent=false )
public void generateReport() {

System.out.println("Generating report...");
// your logic here....

}
}

3. Configure the server to run the application with a non-persistent timer:

a. In the Servers view, expand your Liberty server and double-click Server 
configuration.

b. Add the ejbLite-3.2 feature, as shown in Figure 5-27.
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Figure 5-27   Adding the ejbLite-3.2 feature

You can also enable the ejbLite-3.2 feature manually, adding the snippet shown in 
Example 5-32 to the server.xml. 

Example 5-32   ejbLite feature in server.xml

<featureManager>
 <feature>ejbLite-3.2</feature>

</featureManager>

4. Now, deploy your application to the server. After a short time, you should see the output in 
the console (as shown in Example 5-33).

Example 5-33   Non-persistent timer running

[INFO    ] CNTR4000I: The ITSOTimerApp.war EJB module in the ITSOTimerApp 
application is starting.
[INFO    ] CNTR0167I: The server is binding the com.ibm.itso.timers.TimerBean 
interface of the TimerBean enterprise bean in the ITSOTimerApp.war module of 
the ITSOTimerApp application.  The binding location is: 
java:global/ITSOTimerApp/TimerBean!com.ibm.itso.timers.TimerBean
[INFO    ] CNTR0219I: The server created 0 persistent automatic timer or timers 
and 1 non-persistent automatic timer or timers for the ITSOTimerApp.war module.
...
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[INFO    ] CNTR4001I: The ITSOTimerApp.war EJB module in the ITSOTimerApp 
application has started successfully.
[INFO    ] SRVE0169I: Loading Web Module: ITSOTimerApp.
[INFO    ] SRVE0250I: Web Module ITSOTimerApp has been bound to default_host.
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost:9080/ITSOTimerApp/
[AUDIT   ] CWWKZ0001I: Application ITSOTimerApp started in 0.625 seconds.
[AUDIT   ] CWWKF0012I: The server installed the following features: 
[localConnector-1.0, jdbc-4.1, cdi-1.2, servlet-3.1, jndi-1.0, ejbLite-3.2].
[INFO    ] CWWKF0008I: Feature update completed in 1.803 seconds.
[AUDIT   ] CWWKF0011I: The server timerTest is ready to run a smarter planet.
Generating report...

Using persistent timers
Creating a persistent timer is similar to non-persistent, except for the server configuration, 
which is a bit more complex:

1. Start by creating a new project that holds your timer class.

2. Create a class with the code shown in Example 5-34. Make sure that you have a 
persistent=true or that you do not have a persistent element at all, as the default value 
for persistent element is true, if omitted. This timer runs on the tenth second of every 
minute.

Example 5-34   Persistent timer bean

@Singleton
@Startup
public class TimerBean {

@PostConstruct
public void init() {

System.out.println("TimerBean initialized");
}
@Schedule(second="10", minute="*", hour="*")
public void generateReport() {

System.out.println("Generating report via persistent timer...");
}

}

3. Configure the server to run the application with a non-persistent timer by using the 
following steps:

a. In the Servers view, expand your Liberty server and double-click Server 
configuration.

b. Add the ejbPersistentTimer-3.2 feature, as shown in Figure 5-28.
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Figure 5-28   Adding the ejbPersistentTimer feature

You can also enable the ejbPersistentTimer-3.2 feature manually, adding the snippet 
shown in Example 5-35 to server.xml. 

Example 5-35   ejbPersistentTimer feature in server.xml

<featureManager>
 <feature>ejbPersistentTimer-3.2</feature>

</featureManager>

c. Persistent timers require a database to store the timer details. In Liberty, persistent 
timers use the data source identified by the DefaultDataSource ID. Add default data 
source configuration to the server.xml, as shown in Example 5-36 on page 156. You 
can also add default data by using the graphical editor in a similar fashion (as shown in 
“Adding a data source using Liberty profile developer tools” on page 115).

Example 5-36   Default data source configuration using a Derby database

<dataSource id="DefaultDataSource">
        <jdbcDriver>
            <library name="derbyLibrary">
                <fileset dir="${shared.resource.dir}/derby"/>
            </library>
        </jdbcDriver>
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    <properties.derby.embedded createDatabase="create" 
databaseName="EJBTimers"/>
</dataSource>

4. Deploy your application to the server. After a short time, you should see the output in the 
console, as shown in Example 5-37.

Example 5-37   Persistent timer running

[INFO    ] CNTR4000I: The ITSOTimerApp.war EJB module in the ITSOTimerApp 
application is starting.
[INFO    ] CNTR0167I: The server is binding the com.ibm.itso.timers.TimerBean 
interface of the TimerBean enterprise bean in the ITSOTimerApp.war module of 
the ITSOTimerApp application.  The binding location is: 
java:global/ITSOTimerApp/TimerBean!com.ibm.itso.timers.TimerBean
[INFO    ] DSRA8203I: Database product name : Apache Derby
[INFO    ] DSRA8204I: Database product version : 10.8.2.3 - (1212722)
[INFO    ] DSRA8205I: JDBC driver name  : Apache Derby Embedded JDBC Driver
[INFO    ] DSRA8206I: JDBC driver version  : 10.8.2.3 - (1212722)
[INFO    ] CNTR0219I: The server created 1 persistent automatic timer or timers 
and 0 non-persistent automatic timer or timers for the ITSOTimerApp.war module.
TimerBean initialized
[INFO    ] CNTR4001I: The ITSOTimerApp.war EJB module in the ITSOTimerApp 
application has started successfully.
[INFO    ] SRVE0169I: Loading Web Module: ITSOTimerApp.
[INFO    ] SRVE0250I: Web Module ITSOTimerApp has been bound to default_host.
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost:9080/ITSOTimerApp/
[AUDIT   ] CWWKZ0001I: Application ITSOTimerApp started in 2.859 seconds.
[AUDIT   ] CWWKF0012I: The server installed the following features: 
[ejbPersistentTimer-3.2, localConnector-1.0, jdbc-4.1, cdi-1.2, servlet-3.1, 
jndi-1.0, ejbLite-3.2].
[INFO    ] CWWKF0008I: Feature update completed in 4.141 seconds.
[AUDIT   ] CWWKF0011I: The server timerTest is ready to run a Smarter Planet.
Generating report via persistent timer...

Using programmatic timers
Sometimes, timers need to be created on demand. This can be achieved by the 
TimerService. You create the timer using a TimerService API and a mark method to be 
invoked using the @Timeout annotation. Example 5-38 on page 157 shows sample code that 
creates a timer repeating every 10 seconds. The Returned Timer object can be used to query 
timer information (for example, when is the next execution of this timer) or cancel it (if you no 
longer want it to execute). 

Refer to the TimerService Javadoc for more information; see the following website:

http://docs.oracle.com/javaee/7/api/javax/ejb/TimerService.html

Example 5-38   Programmatic timer example

@Stateless
public class ProgrammaticTimer {

@Resource
TimerService timerService;

public Timer setupTimer() {
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System.out.println("Setting up timer");
TimerConfig tConfig = new TimerConfig();
tConfig.setPersistent(false);
Timer timer = timerService.createIntervalTimer(new Date(), 10000, tConfig);
return timer;

}
 @Timeout
  public void timeout() {
    System.out.println("Programmatic timer");
  }

}

While creating the timer, you can, via TimerConfig object, attach any Serializable object to it 
that may provide some additional data to the timeout method. See Example 5-39 about how 
to pass and retrieve that additional information.

Example 5-39   Using additional data with timer

public Timer setupTimerWithInfo() {
System.out.println("Setting up timer with Info");
String timerInfo = "ImportantMonthlyReport"
TimerConfig tConfig = new TimerConfig(timerInfo);
tConfig.setPersistent(false);
Timer timer = timerService.createIntervalTimer(new Date(), 10000, tConfig);
return timer;

}
 @Timeout
  public void timeout(Timer timer) {

// retrieve additional info
    System.out.println("Programmatic timer for: " + timer.getInfo());
  }

5.3  Developing Java Message Service applications

By using the Java Message Service (JMS) API, you can send messages between Java EE 
applications and components. It allows you to develop applications with loosely coupled 
communication. JMS is supported by WebSphere Liberty Profile, but it is not supported by the 
WebSphere Liberty core edition. 

The WebSphere Liberty profile provides an embedded messaging server that allows 
applications to act as a JMS server. Your applications can also act as JMS clients for another 
WebSphere Liberty profile instance, for an external WebSphere MQ server or for a third-party 
JMS provider when bundled with an application. For details about how to configure your 
application with Apache MQ, refer to chapter 7 of the IBM Redbooks publication Configuring 
and Deploying Open Source with WebSphere Application Server Liberty Profile, SG24-8194. 
WebSphere Liberty profile server supports both the point-to-point model and the publish and 
subscribe model. 

Use the procedure that is outlined in the rest of this section to create a web application that 
uses the JMS to send and receive messages. If you are using Liberty core edition, you cannot 
compile this application in the Liberty profile developer tools because the API JAR files for 
JMS are not available. 
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In addition to the EJB lite 3.2 specification, Liberty profile server provides support for the MDB 
3.2 specification. Message driven beans allow you to construct enterprise beans that operate 
asynchronously on messages that are received from other Java EE components.

5.3.1  What’s new in JMS 2.0 API?

Java EE 7 specification updates JMS API from 1.1 to 2.0. The most important changes are 
noted in the following list:

� New simplified API. API includes JMSContext object, which can be used instead of 
Connection and Session objects.

� All objects that have to be closed implement Autoclosable interface.

� Resources can be configured and injected via annotations.

5.3.2  Developing applications using JMS 2.0 API

In this section, you create a simple web application that uses new JMS 2.0 API to send and 
receive messages. You also configure Liberty server to support messaging.

Creating an application
1. Start by creating a new dynamic web project that holds your application.

2. Create a servlet that will be used to send messages. The SenderServlet code is presented 
in Example 5-40. Observe injection of resources, the Queue and JMSContext, and how 
simple it is to send messages by using its interface.

Example 5-40   SenderServlet code

@WebServlet("/SenderServlet")
@Resource(name="jms/itsoQCF", lookup="jms/itsoQCF", 
type=ConnectionFactory.class)
public class SenderServlet extends HttpServlet {

@Inject
@JMSConnectionFactory("java:comp/env/jms/itsoQCF")
private JMSContext jmsContext;

@Resource(lookup="jms/itsoQ")
private Queue queue;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

String message = "Test message " + new Date();
if(request.getParameter("msg") != null) {

message = request.getParameter("msg");
}
System.out.println("Sending message:  " + message);
jmsContext.createProducer().send(queue, message);
System.out.println("Message Sent!");
PrintWriter out = response.getWriter();
out.println("Message Sent!");

}
}

3. Create a second servlet to test the receiving of messages. This example uses 
synchronous receiving (see section 5.3.3, “Developing a message-driven bean (MDB) 
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application” on page 166, where you learn how to write a message-driven bean to read 
messages). Example 5-41 shows the ReceiverServlet. Again observe injection and usage 
of the new API to read messages.

Example 5-41   ReceiverServlet code

@WebServlet("/ReceiverServlet")
public class ReceiverServlet extends HttpServlet {

@Inject
@JMSConnectionFactory("jms/itsoQCF")
private JMSContext jmsContext;

@Resource(lookup="jms/itsoQ")
private Queue queue;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

System.out.println("Receiving message...");
PrintWriter out = response.getWriter();
Message message = jmsContext.createConsumer(queue).receive(5000);
if(message != null && message instanceof TextMessage) {

TextMessage textMessage = (TextMessage) message;
try {

System.out.println("Received: " + textMessage.getText());
out.println("Received: " + textMessage.getText());

} catch (JMSException e) {
out.println("Error: " + e.getMessage());

}
}
else {

System.out.println("No or unknown message");
out.println("No or unknown message");

}
}

}
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4. For injection of JMSContext to work, your application needs to be CDI enabled. You can do 
it by creating an empty beans.xml file in the WEB-INF folder in case of web modules or 
META-INF folder, in case of EJB or utility modules. Figure 5-29 on page 161 shows the 
project structure with servlets and beans.xml file.

Figure 5-29   Project structure

Now the application code is ready. Next, prepare the server for it.

Configuring server for JMS application
This configuration uses an embedded JMS engine provided with Liberty. JMS support is not 
available in the Liberty Core edition; however, the developers version contains full support for 
JMS so that you can develop and test your JMS applications.

To configure Liberty server to support JMS, use the following steps:

1. In the Servers view, expand Liberty Server and double-click Server Configuration.

2. Start with adding features to the Feature Manager. You can do it either using a graphical 
editor or editing the server.xml directly. You need to add features that are shown in 
Example 5-42.

Example 5-42   Features required by JMS application

<featureManager>
<feature>servlet-3.1</feature>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-2.0</feature>
<feature>cdi-1.2</feature>
<feature>jndi-1.0</feature>

</featureManager>
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3. Next, configure the Messaging engine. Select Server configuration and click Add. Select 
Messaging Engine, as shown in Figure 5-30 on page 162, and click OK.

Figure 5-30   Adding the messaging engine
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4. Next, configure the queue. Select the recently added Messaging Engine element and 
click Add. Select Queue, as shown in Figure 5-31 on page 163, and click OK.

Figure 5-31   Adding queue
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5. Select the just added Queue and specify the Queue name, in details, as itsoQ. See 
Figure 5-32.

Figure 5-32   Queue details

The same configuration could be achieved by adding text from Example 5-43 to the 
server.xml file.

Example 5-43   Messaging engine configuration in server.xml

<messagingEngine>
    <queue id="itsoQ"></queue>
</messagingEngine>

6. Configure required JMS resources (the connection factory and queue). Start with the 
connection factory. 
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7. Select Server configuration; click Add. Start typing JMS and select JMS Connection 
Factory, as shown in Figure 5-33, and click OK.

Figure 5-33   Adding connection factory

8. Select the recently added JMS Connection Factory, enter jms/itsoQCF as the JNDI 
name, and click Add. Select Embedded Messaging and click OK. 

9. In a similar way, add JMS Queue. Enter jms/itsoQ as JNDI name, and itsoQ as Queue 
name in the Embedded Messaging configuration, as shown in Figure 5-34 on page 165.

Figure 5-34   Queue configuration details

10.Similar configuration of JMS resources could be done by adding Example 5-44 fragment 
to the server.xml file.
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Example 5-44   JMS resources configuration in server.xml

<jmsConnectionFactory jndiName="jms/itsoQCF">
    <properties.wasJms/>
</jmsConnectionFactory>
<jmsQueue jndiName="jms/itsoQ">
    <properties.wasJms queueName="itsoQ"/>
</jmsQueue>

11.Your configuration is done. Save Server Configuration and close the editor.

Testing JMS application
To test the JMS application, follow these steps:

1. Start the server and deploy the sample application to it.

2. First invoke SenderServlet, either from Workspace or by using the following URL: 

http://localhost:9080/ITSOJMSApp/SenderServlet. 

You should see Message sent! text in the browser.

3. Now invoke ReceiverServlet, either from Workspace or by using the following URL: 
http://localhost:9080/ITSOJMSApp/ReceiverServlet. You should see Received: Test 
message Wed May 13 01:59:43 CEST 2015 text in the browser. 

5.3.3  Developing a message-driven bean (MDB) application 

The Liberty profile developer tools simplify the development of message-driven beans by 
providing wizards for creating message-driven beans and for creating related JMS resources. 
You extend the application from the previous section with MDB that will be invoked by the 
container when a new message arrives in the queue.

Creating the message-driven bean
To create a message driven bean, complete the following steps: 

1. Select the ITSOJMSApp project. By using the menu, click File → New → Message 
Driven Bean.
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2. In the message-driven bean wizard, enter the package name com.ibm.itso.jms20 and the 
class name as SimpleMDB. Click Finish. 

3. To finish implementing the ExamplePubSubMDB class, modify the onMessage method so 
that it prints the message that is received by the console. The completed message-driven 
bean class is shown in Example 5-45.

Example 5-45   Complete SimpleMDB code

@MessageDriven(name="SimpleMDB")
public class SimpleMDB implements MessageListener {
    public void onMessage(Message message) {
    try {

System.out.println("MDB: " + ((TextMessage)message).getText());
} catch (JMSException e) {

e.printStackTrace();
}

    }
}

Creating message-driven bean resources
This example uses the resources that are created in the JMS example in “Configuring server 
for JMS application” on page 161, including the messaging engine, queue, and JMS Queue. 
For this message-driven bean example, you must also create a JMS activation specification 
and properties. 

To create a JMS activation specification, complete the following steps:

1. In the Servers view, expand the Liberty Server and double-click the Server 
Configuration.

2. Select Server Configuration and click Add. Start typing JMS and select JMS Activation 
Specification. 

3. In the details window, specify a value for the ID field. The value must be in the format 
applicationName/moduleName/beanName, where applicationName is the name of the EAR 
application. Only applicationName is needed, if the application is packed as EAR. 
ApplicationName should be omitted if the application is a WAR or stand-alone EJB JAR 
file. The moduleName is the name of the module in which the message-driven bean is 
packaged (without extension). The beanName is the ejb-name of the enterprise bean. For 
this example, you use the application packed as WAR, so enter the value 
ITSOJMSApp/SimpleMDB.

You also must add properties to the JMS activation specification to indicate that you are using 
the embedded messaging engine and to specify the JMS Queue to be used. To do this, 
complete the following steps:

1. Click JMS Activation Specification in the server configuration and click Add. 

2. Select WebSphere Embedded JMS Activation Specification in the dialog box. 

3. On the details window for the properties, enter jmsItsoQ in the Destination reference field. 
Set ID in the JMS Queue (changing from itsoQ to jmsItsoQ), if the ID was not defined 
earlier. ID in the queue configuration is required.

Enabling features
To use the message-driven beans, you need to enable the mdb-3.2 feature. To add the 
mdb-3.2 feature, complete the following steps: 

1. Select Feature Manager in the server configuration.
Chapter 5. Developing enterprise applications with Liberty profile 167



2. Click Add, and select the mdb-3.2 feature.

3. It is assumed that other features required by ITSOJMSApp are already defined. If they are 
not, you need the features that are shown in Example 5-46.

Example 5-46   Features required to run MDB application

<featureManager>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-2.0</feature>

 <feature>cdi-1.2</feature>
<feature>mdb-3.2</feature>

</featureManager>

Testing the message-driven bean
To test the message-driven bean, use the SenderServlet servlet from 5.3.2, “Developing 
applications using JMS 2.0 API” on page 159. Point your browser to the following link to 
invoke servlet that will send a message, which will be received by the message-driven bean:

http://localhost:9080/ITSOJMSApp/SenderServlet

In the Console view, you should see the output shown in Example 5-47.

Example 5-47   Output from running MDB test

[INFO    ] SRVE0242I: [ITSOJMSApp] [/ITSOJMSApp] 
[com.ibm.itso.jms20.SenderServlet]: Initialization successful.
Sending message:  Test message Mon May 18 00:51:46 CEST 2015
Message Sent!
MDB: Test message Mon May 18 00:51:46 CEST 2015

5.4  Developing applications using asynchronous and 
concurrent features

Java EE 7 specification allows the application to invoke some of its logic asynchronously, as 
background tasks, and continue its main processing. Later, when the result is ready, it can be 
retrieved and returned to the client application.

Asynchronous call is usually used for long-running tasks, or tasks that require waiting for a 
resource that is needed to generate the response. Such operations limit the scalability of the 
application. Asynchronous call is running in a separate thread, which allows a return of the 
thread associated with the original request immediately to the container and then be available 
for processing requests from the next client.

Asynchronous processing can be achieved using the following methods:

� Asynchronous Servlets and Filters
� Asynchronous methods in Session beans
� Usage of Concurrent API

Each of these methods is briefly discussed in the next sections.
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5.4.1  Developing using @Asynchronous in servlets and filters

Java EE provides asynchronous processing support for servlets and filters. You create a 
simple servlet that prepares a response in asynchronous call.

1. Start by creating a new dynamic web project.

2. In the project, start the New Servlet wizard, and enter AsyncServlet as the class name 
and click Next.

3. Check Asynchronous Support, as shown in Figure 5-35, and click Finish.

Figure 5-35   Enabling Asynchronous support in the servlet

4. Notice that the created servlet has asyncSupported=true, as shown in Example 5-48.

Example 5-48   AsyncServlet definition

@WebServlet(asyncSupported = true, urlPatterns = { "/AsyncServlet" })
public class AsyncServlet extends HttpServlet {

5. Start to implement the doGet method. To put the request in the asynchronous mode and 
initialize AsyncContext, you call the request.startAsync() method.

6. Asynchronous tasks are represented as objects implementing the Runnable interface. You 
can either create a separate class for the task or instantiate the task as anonymous class. 
You need to pass the runnable task as parameter to the asyncContext.start() method. In 
this simple example, you use anonymous class as shown in Example 5-49 on page 170. If 
you want to use a separate class, remember to pass the asyncContext object to it. The 
run() method of the class just prints text to the servlet response and to the system out log. 
To simulate a long call, there are some calls to the Thread.sleep(3000) in the method.

Notice: If the request to the asynchronous servlet goes through servlet filters, they also 
need to have asynchronous support enabled.
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Example 5-49   Implementing asynchronous method

   asyncContext.start(new Runnable() {
 public void run() {
         try {
        String jobName = asyncContext.getRequest().getParameter("name"); 
        if(jobName == null) jobName = "TestJob";
        ServletResponse response = asyncContext.getResponse();

        response.setContentType("text/html");
        PrintWriter out = response.getWriter();
        out.println("<H2>Async servlet doing job: " + jobName + "</H2>"); 

out.println("Doing async job....<BR>");
 out.flush();

System.out.println("Doing async job....");
Thread.sleep(3000);

 out.println("Doing async job....<BR>");
 out.flush();
 System.out.println("Doing async job....");
 Thread.sleep(3000);

out.println("Sending response....<BR>");
 out.flush();
 System.out.println("Sending response");
 asyncContext.complete();

 }
 catch(Exception e) {
  e.printStackTrace();
 }
 }
 });

7. Call the asyncContext.complete() method to notify the container that the response should 
be returned. The full servlet code is shown in Example 5-50.

Example 5-50   AsyncServlet code

@WebServlet(asyncSupported = true, urlPatterns = { "/AsyncServlet" })
public class AsyncServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

   System.out.println("Before async");
   final AsyncContext asyncContext = request.startAsync();
   asyncContext.start(new Runnable() {
         public void run() {
         try {
        String jobName = asyncContext.getRequest().getParameter("name"); 
        if(jobName == null) jobName = "TestJob";
        ServletResponse response = asyncContext.getResponse();

        response.setContentType("text/html");
        PrintWriter out = response.getWriter();
        out.println("<H2>Async servlet doing job: " + jobName + "</H2>");

            out.println("Doing async job....<BR>");
            out.flush();
            System.out.println("Doing async job....");
            Thread.sleep(3000);
            out.println("Doing async job....<BR>");
            out.flush();
            System.out.println("Doing async job....");
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            Thread.sleep(3000);
            out.println("Sending response....<BR>");
            out.flush();
            System.out.println("Sending response");
            asyncContext.complete();

         }
         catch(Exception e) {
         e.printStackTrace();
         }
         }
   });
   try {

   // sleep added to show 2 different threads executing
   Thread.sleep(3000);

   } catch (InterruptedException e) {
   e.printStackTrace();

   }
   System.out.println("Ending main thread");
}

}

8. When you run this example in the message.log file, you can observe that it is executed by 
using two different threads (as shown in Example 5-51).

Example 5-51   Output in the message.log

[5/15/15 14:26:27:989 CEST] 0000005d SystemOut O Before async
[5/15/15 14:26:27:989 CEST] 0000005b SystemOut O Doing async job....
[5/15/15 14:26:30:989 CEST] 0000005b SystemOut O Doing async job....
[5/15/15 14:26:30:989 CEST] 0000005d SystemOut O Ending main thread
[5/15/15 14:26:33:989 CEST] 0000005b SystemOut O Sending response

5.4.2  Developing using @Asynchronous in session beans

Until Java EE 7, all calls to session beans were synchronous, and control was not returned to 
the client until the method has ended. With the introduction of asynchronous methods in 
session beans, control is returned immediately and the client can execute other logic while 
the bean is running. Asynchronous method returns an implementation of the 
java.util.concurrent.Future<V> interface, which allows the client to check: If the method 
has completed, retrieved the result, or requested computation to be canceled.

While defining asynchronous beans, specification allows to either mark a single method or 
class with @Asynchronous annotation. If the class is marked, all business methods are 
asynchronous. For simplicity, use annotation defined on the class level.
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To create a session bean with asynchronous support, use the following steps:

1. Create a new Session bean by selecting File → New → Session bean. Enter AsyncBean 
as a class name and check Asynchronous, as shown in Figure 5-36 on page 172.

Figure 5-36   Creating asynchronous session bean

2. Observe @Asynchronous annotation in the generated class in Example 5-52.

Example 5-52   Asynchronous session bean

@Stateless
@LocalBean
@Asynchronous
public class AsyncBean {

3. You implement a simple method that does some computation and returns 
AsyncResult<String> object, which implements Future interface, as shown in 
Example 5-53.

Example 5-53   Sample asynchronous method

public Future<String> longRunningCall() {
    try {

System.out.println("In logng running method...");
Thread.sleep(10000);
System.out.println("In logng running method...Ending");

} catch (InterruptedException e) {
e.printStackTrace();

}
    return new AsyncResult<String>("Done " + new Date());
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}

4. As a test client, a servlet is created. Servlet invokes a session bean method and stores the 
returned Future object in session. Later, servlet can check, by using the Future.isDone() 
method, if the result is ready, and retrieve the result using the Future.get() method. The 
complete doGet() method of the servlet is shown in Example 5-54.

Example 5-54   Servlet doGet method

@EJB
AsyncBean bean;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

PrintWriter out = response.getWriter();
HttpSession httpSession = request.getSession();

if(request.getParameter("create") != null) {
out.println("Calling bean");
Future<String> result = bean.longRunningCall();
out.println("isDone? " + result.isDone());
httpSession.setAttribute("result", result);

}
else {

Future<String> result = 
(Future<String>) httpSession.getAttribute("result");

if(result != null) {
out.println("isDone? " + result.isDone());
if(result.isDone()) {

try {
out.println("Reslut: " + result.get());
httpSession.removeAttribute("result");

} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();

}
}
else {

out.println("Not ready yet");
}

}
else {

out.println("Not started yet");
}

}
}

}

5.4.3  Developing using Concurrent API

Sometimes applications need to do some long running computation or schedule a task to be 
at a specific time on demand. This usually is done by creating new threads or using 
third-party libraries. It is a Java EE best practice to not create unmanaged threads. Java EE 7 
provides a standardized way to obtain managed threads that can run with context provided by 
the container using concurrent API.
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Concurrent API provided by the server offers the following classes to support asynchronous 
processing:

� Managed executors: Provides a way to start asynchronous tasks as Runnable or Callable 
objects within an application server environment with propagated context. 

You see an example of managed executor usage later in this chapter.

For more information about configuring and using managed executors, see the following 
website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/twlp_config_managedexecutor.html?lang=en-us

� Managed scheduled executors: Can schedule a task to run at a specific time or interval. 
For more information about configuring and using scheduled executors, see the following 
website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/twlp_config_scheduledexecutor.html?lang=en-us

� Managed thread factory: Allows to obtain container-managed thread for execution of 
custom code. Code runs within the context propagated from the thread that looked up or 
injected the managed thread factory.

For more information about configuring and using managed thread factory, see the 
following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/twlp_config_threadfactory.html?lang=en

� Thread context service: Allows to capture a managed thread context and apply it to 
invocations of specified interface methods on any thread. For more information about 
configuring and using context service, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/twlp_config_contextservice.html?lang=en

Using Managed Executor
In this section, you learn how to use managed executor and how to configure a server to 
support that. You access executor via ExecutorService. To create a class that uses executor 
service, use the following steps:

1. In the project, start the New Servlet wizard, and enter ConcurrentServlet as the class 
name and click Finish.

2. Inject into the servlet, the ExecutorService, as shown in Example 5-55. In the @Resource 
annotation, specify the JNDI name of the factory. It is configured later in the server.

Example 5-55   Injecting ExecutorService

@WebServlet("/ConcurrentServlet")
public class ConcurrentServlet extends HttpServlet {

@Resource(lookup="concurrent/executorService")
ExecutorService executorService;
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3. In the doGet method, use the executorService to submit a Runnable object to it. This is 
shown in Example 5-56. 

Example 5-56   Submitting a task for executor

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) 

throws ServletException, IOException {
System.out.println("In doGet - creating task");

executorService.submit(new Runnable() {
@Override
public void run() {

System.out.println("in task");
// your Runnable code
try {

Thread.sleep(5000);
} catch (InterruptedException e) {

e.printStackTrace();
}
System.out.println("Finishing task");

}
});
try {

Thread.sleep(2000);
} catch (InterruptedException e) {

e.printStackTrace();
}
System.out.println("Returning servlet method");

PrintWriter out = response.getWriter();
out.println("Servlet finished, task still working");

}

4. This simple servlet shows that you can finish your web request, while the newly created 
managed task is still executing. The sample output (the contents of the message.log file) is 
shown in Example 5-57.

Example 5-57   Output of running servlet

[5/17/15 2:09:15:529 CEST] 00000160 com.ibm.ws.webcontainer.servlet I 
SRVE0242I: [ITSOAsyncApp] [/ITSOAsyncApp] 
[com.ibm.itso.async.ConcurrentServlet]: Initialization successful.
[5/17/15 2:09:15:529 CEST] 00000160 SystemOut O In get - creating task
[5/17/15 2:09:15:529 CEST] 0000016a SystemOut O in task
[5/17/15 2:09:17:529 CEST] 00000160 SystemOut O Returning servlet method
[5/17/15 2:09:20:545 CEST] 0000016a SystemOut O Finishing task

Configuring the server for using concurrent API
To be able to use resources like thread factories or executors, you have to configure them in 
server.xml and enable the concurrent-1.0 feature. Use the following steps to configure the 
server:

1. In the Servers view, expand Liberty server and double-click Server Configuration.
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2. Select Server Configuration, click Add, and start typing Managed. Select Managed 
Executor, as shown in Figure 5-37, and click OK. As you can see, other objects that were 
mentioned in this chapter are available for configuration.

Figure 5-37   Adding Managed Executor to the configuration
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3. Accept the prompt to enable the concurrent-1.0 feature, as shown in Figure 5-38 on 
page 177.

Figure 5-38   Enabling concurrent-1.0 feature

4. Finish configuring the executor by entering concurrent/executorService in the JNDI 
name.

5. Save the changes. The server is ready to run the example. After deployment, you can 
invoke it by using http://localhost:9080/ITSOAsyncApp/ConcurrentServlet.

5.5  Developing applications using JavaMail

Liberty profile server now supports JavaMail features as required by Java EE 7 specification. 
You can send and receive emails in applications running on a Liberty server. MailSession 
object can be injected in application by using annotation or by JNDI lookup.

5.5.1  Writing, testing, and deploying the JavaMail sample application

Use the following steps to write a simple JavaMail application that can send a mail to a valid 
recipient through the server:

1. Create a new web application.

2. Create a new servlet with the content shown in Example 5-58. Make sure to use the 
correct “toAddress” value.

Example 5-58   Mail sending servlet

@WebServlet("/MailSender")
public class MailSender extends HttpServlet {

@Resource(lookup="mail/itsoMailSession")
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Session mailSession;

protected void doGet(HttpServletRequest request, HttpServletResponse 
response) throws ServletException, IOException {

System.out.println("Sending test email");
String toAddress = "valid@Email.Address";
String message = "Test message";
if(request.getParameter("msg") != null) {

message = request.getParameter("msg");
}
Message mail = new MimeMessage(mailSession);
try {

mail.setRecipient(Message.RecipientType.TO, new 
InternetAddress(toAddress));

mail.setSubject("Test subject");
mail.setSentDate(new Date());
mail.setText(message);
Transport.send(mail);
System.out.println("Message sent successfully");

} catch (MessagingException e) {
e.printStackTrace();

}
}

}

3. Configure a mail session in the Liberty server:

a. In the Servers view, expand Liberty server and double-click Server Configuration.

b. In the Configuration Structure section, highlight Server Configuration and click 
Add.

c. In the Select the element to add section, start typing mail and select Mail Session 
Object, as shown in Figure 5-39 on page 179.
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Figure 5-39   Adding a Mail Session element

d. Provide Mail Session parameters: Mail session ID, JNDI name, description, mail server 
host, valid user name, and password for your mail server. You can also provide a 
default “From” address. The parameters are shown in Figure 5-40.

Figure 5-40   Mail Session details
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Instead of using tools, the same outcome can be achieved by editing the server.xml file 
directly. Example 5-59 shows part of the server.xml file that is related to the configuration 
previously done.

Example 5-59   Mail Session in server.xml

<mailSession 
    description="Mail session for testing" 
    from="Liberty2@itso.ibm.com" 
    host="localhost" 
    jndiName="mail/itsoMailSession" 
    mailSessionID="itsoMailSession" 
    user="validUser@account.com" 
    password="password"/>

4. Add servlet-3.1, cdi-1.2, and javaMail-1.5 features to the Liberty server.xml file as 
shown in Figure 5-41.

Figure 5-41   Enabling features in Liberty server.xml

5. Deploy the application on the Liberty profile server by copying it to the dropins folder or 
running directly from Workspace.

6. Use the following URL to invoke the MailServlet on the Liberty profile server:

http://<hostname>:<httpport>/ITSOMailApp/MailSender

A message should now be sent to the recipient mentioned in the servlet using the James mail 
server that is running outside of Liberty profile server.

<featureManager>
<feature>servlet-3.1</feature>
<feature>javaMail-1.5</feature>
<feature>cdi-1.2</feature>

</featureManager>
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Chapter 6. Configuring application security

Security is an essential component of any enterprise-level application. In this chapter, we 
provide you with a basic introduction to security using the Liberty profile.

The chapter contains the following sections:

� Enabling SSL
� HTTPS redirect
� Form login
� Securing JMS applications
� JAX-WS security
� Securing NoSQL applications

It is beyond the scope of this book to describe all aspects of security and how to configure 
them. For more information about security and how to implement specific security models not 
covered by this chapter (such as LTPA or SSO), see the IBM Knowledge Center at the 
following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_sec_webappsecurity.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-6
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6.1  Enabling SSL

You can configure the Liberty profile server to provide secure communication between a client 
and the server by enabling SSL. To establish secure communication, a certificate and an SSL 
configuration must be specified.

The keystore and certificate can be created either by using the WebSphere developer tools or 
from the command line. For development, you usually use a self-signed certificate, as shown 
in our examples later in this chapter. 

6.1.1  Configuration using the WebSphere developer tools

Use the WebSphere developer tools to add the keystore and self-signed certificate to your 
server using the following steps:

1. Open the Servers view in the workbench.

2. Right-click your server and select Utilities → Create SSL Certificate, as shown in 
Figure 6-1.

Figure 6-1   Selecting to create the SSL Certificate using WebSphere developer tools

Important: On publicly facing production servers, import a certificate from a trusted 
provider to the server keystore rather than using a self-signed certificate.
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3. You are prompted to create a password for your keystore and optionally set the validity 
period or subject for the certificate, as shown in Figure 6-2 on page 183. 

Figure 6-2   Entering values for the keystore and certificate

4. Enter the required values and click Finish. The Console window shows the output of the 
command, as shown in Figure 6-3.

Figure 6-3   Output of the Create SSL Certificate command

5. The output shows the line that should be added into the server configuration 
(server.xml). The line specifies to include GeneratedSSLInclude.xml file with SSL 
configuration (as shown in Example 6-1). The GeneratedSSLInclude.xml file contains 
configuration of the default keystore and enablement of the ssl-1.0 feature. 

Example 6-1   GeneratedSSLInclude.xml file contents.

<?xml version="1.0" encoding="UTF-8" ?>
<server description="This file was generated by the 'securityUtility 
createSSLCertificate' command on 2015-05-18 11:29:48 CEST.">
    <featureManager>
        <feature>ssl-1.0</feature>
    </featureManager>
    <keyStore id="defaultKeyStore" password="{xor}Lz4sLCgwLTs=" />

</server>
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6. If the line with the include command was not added to the server.xml automatically, you 
can paste the required line directly into the server.xml configuration file (in which case 
your configuration is complete and you can proceed to “HTTPS redirect”). Alternatively, 
use the Design view to be guided through the configuration, as shown in the following 
steps:

a. In the Servers view, expand the server and double-click Server configuration.

b. In the opened editor, select Server Configuration and click Add. Start typing Include 
and select the Include element, as shown in Figure 6-4. Then, click OK.

Figure 6-4   Adding Include element

c. Select added Include element, and beside the Location field, click Browse. Next, 
select the GeneratedSSLInclude.xml file and click OK.

d. Your configuration is now complete. Save the changes to the server configuration. The 
server, if started, detects the new settings and the SSL port is opened.

7. If you have applications that are installed on your server, you can now access them by 
specifying https:// and pointing your browser to the https port defined in your server 
configuration, httpEndpoint.
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6.1.2  Configuration using the command line

To create the keystore and generate the self-signed certificate using the command line, you 
must use the securityUtility command that is in ${wlp.install.dir}/bin. Example 6-2 
shows the command and the expected output.

Example 6-2   Using the securityUtility command

C:\Liberty\v85Runtime\bin>securityUtility createSSLCertificate 
--server=myThirdServer --password=passw0rd --validity=365 
--subject="CN=liberty,O=IBM,C=US"

Creating keystore 
C:\Liberty\v85Runtime\usr\servers\myThirdServer\resources\security\key.jks

Created SSL certificate for server myThirdServer

Add the following lines to the server.xml to enable SSL:

    <featureManager>
        <feature>ssl-1.0</feature>
    </featureManager>
    <keyStore id="defaultKeyStore" password="{xor}Lz4sLChvLTs=" />

The output from the command contains the information to be added into your server 
configuration to enable SSL. Copy and paste this output into your server.xml file. The server 
automatically detects the changes and activates the SSL port.

6.2  HTTPS redirect

With SSL enabled, the client can, in most cases, still access the application on both the 
secure and nonsecure ports. HTTPS redirect allows you to always direct the client to the 
secure HTTPS port even if the client requested the standard nonsecure port.

This section assumes that you are starting with the web application created in Chapter 3, 
“Developing and deploying web applications” on page 59. If you do not have this application in 
your project workspace, you can find a completed version included in the download material 
for this book. For more information see Appendix A, “Additional material” on page 257. As 
well, you can use any other web application that you currently have in your workspace.

To access and edit the available web applications to work with HTTPS redirect, complete the 
following steps:

1. Security settings for web applications are defined in the web.xml file. However, this file is 
not required, so it is possible that you do not have one in your project. Select your project, 
right-click, and choose Java EE Tools Generate → Deployment Descriptor Stub.

2. In the Project Explorer, expand your web application and double-click the deployment 
descriptor.

3. To enable HTTPS redirect, add a security constraint to your application. To do this, select 
Web Application in the Overview section and then click Add.

4. In the Add Item window, start typing Security and select Security Constraint, then click 
OK.
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5. The Security Constraint now appears in the Overview section. Next, define the Web 
Resource Collection for the Security Constraint. This identifies which addresses are 
covered by the Security Constraint. Expand the Security Constraint in the Overview 
section and select Web Resource Collection.

6. The details window, which is located to the right of the Editor, allows you to enter the 
details of the Web Resources. Give the Web Resource Collection a name and add in the 
URL Patterns to be used, as shown in Figure 6-5. Use pattern /* to protect all resources 
in the application.

Figure 6-5   Entering details for the Web Resource collection

7. Next, specify the details of the Security Constraint. In the Overview section, select 
Security Constraint. The details window now allows you to define the Security 
Constraint. Give the Security Constraint a name. Under the User Data Constraint 
section, select CONFIDENTIAL for the transport guarantee, as shown in Figure 6-6. This 
allows only secure communication with the web resource collection.

Figure 6-6   Entering details for Security constraint
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8. This example currently applies the HTTPS redirect to all communications with the 
addresses defined in the Web Resource Collection. To apply this redirect to only specific 
HTTP methods, right-click the Web Resource Collection in the Overview section and 
select Add → HTTP Method. You restrict HTTPS to only GET requests by entering just GET 
for the HTTP Method. However, it is recommended that you use the same settings for all 
HTTP methods.

9. The next step is to enable application security. In the server view, expand the server until 
you see the Feature Manager entry. Double-click the Feature Manager or right-click and 
select Open.

10.The Feature Manager window opens. Click Add, select appSecurity-2.0 from the list, and 
click OK.

11.HTTPS redirect is now fully configured. Save your changes and the WebSphere 
Developer Tool automatically updates the server with the new version of your application. 
If you now attempt to access the application at http://localhost:9080/yourContext, you 
notice that you are always redirected to https://localhost:9443/yourContext.

6.3  Form login

One of the most common ways to provide an authentication method to users of a web 
application is to use form-based login. This presents the users with a form where they can 
provide their login credentials. This section describes how to update your application and 
server to provide the form-based login.

This section expands on the HTTPS redirect example in 6.2, “HTTPS redirect” on page 185.

6.3.1  Defining the basic user registry

The first step in configuring form login is to create and define the actual registry that is used 
for authentication. In our example, we use a Basic User Registry. However, the Liberty profile 
does support other registries, including LDAP and custom registry. The following website 
provides more information about configuring the Liberty profile to work with these other 
registries:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_sec_authenticating.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-2

Use the following steps to create and define the registry for authentication using a Basic User 
Registry:

1. Open the server view in your workbench and double-click the Server Configuration for 
your server. This opens your server.xml file. Switch to the design tab, if it is not already 
selected.

2. In the Configuration Structure section located to the left, select the Feature Manager. The 
Feature Manager details are displayed to the right.

3. If the appSecurity-2.0 feature is not already in the list of features, click Add and select the 
appSecurity-2.0 feature.

4. Add the basic registry that is used for authentication. Under the Configuration Structure, 
select Server Configuration and click Add. 
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5. Start typing Basic, as shown in Figure 6-7 on page 188, select Basic User Registry, and 
click OK.

Figure 6-7   Adding Basic User Registry

6. Select Basic User Registry in the Configuration Structure. Under the Basic User Registry 
Details section to the right, enter an ID and Realm name for your registry, as shown in 
Figure 6-8.

Figure 6-8   Entering the Basic Registry details

7. Now that you have a basic user registry, you must add users or groups to it. Therefore, 
click Add.

8. In the resulting window, select User and click OK.
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9. A user object now appears under your basic user registry. Click the User object. Located 
to the right, under User Details, enter a user name of User1 and then click Set to enter a 
password, as shown in Figure 6-9. For the password encoding, you can use XOR 
encoding, AES encryption, or one-way hash. See the following link for more information 
about using encryption:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websph
ere.wlp.nd.multiplatform.doc/ae/cwlp_pwd_encrypt.html

Figure 6-9   Adding a user

10.Enter the password and click OK. You have now created a user for the basic registry. 
Repeat the process and add another user that is called User2.

11.Then, add a security group to the basic user registry. Select the Basic User Registry and 
click Add.

12.Select Group from the Add Item window and click OK.

13.A group element appears under your basic user registry. Ensure that it is selected and 
under Group Details. Enter Group1 as the group name.

14.We must now add users to the group. Select the group under the Configuration Structure 
and click Add. In the Add Item window, select member and click OK.

15.Select the member element that appears under the group. In the Group Member Details 
window, enter User1 for the User name.

16.Save the changes. Your configuration Structure should now contain the basic user registry 
structure, as shown in Figure 6-10.

Figure 6-10   The completed basic user registry
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6.3.2  Updating an application to support Form Login

To use Form Login for your application, you must make a number of changes to the 
application and its configuration. These changes are needed to allow the user to authenticate. 
The following sections describe the changes in detail.

Adding the login page
The user of the application must provide their login credentials to be authenticated. To allow 
the login process, provide a login page. This login page must contain a form that requests the 
user name and password and must always have the j_security_check action.

Example 6-3 shows an example form from the login.html page.

Example 6-3   The login form

<form method="POST" action="j_security_check">
<strong> Enter user ID and password: </strong>
<BR>
<strong> User ID</strong> <input type="text" size="20" name="j_username">
<strong> Password </strong>  <input type="password" size="20" name="j_password">
<BR>
<strong> Click submit to authenticate: </strong>
<input type="submit" name="login" value="Login">
</form>

Use the j_username input field to obtain the user name and use the j_password input field to 
obtain the user password. When a user requests a web page that requires authentication, the 
web server stores the original request and displays the login form. When the login form is 
completed and the user is successfully authenticated, the server redirects the call to the 
original request.

Adding a login error page
If the authentication of a user fails, you must be able to advise the user of the failure. This is 
done by adding a login error page to your application. Example 6-4 shows an example of a 
loginError.html file.

Example 6-4   An example login error page

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Login Error</title>
</head>
<body>
<H1><B>A Form login authentication failure occurred</B></H1>
<P>Authentication might fail for one of many reasons. Some possibilities include:
<OL>
<LI>The user ID or password might have been entered incorrectly; either misspelled 
or the wrong case was used.
<LI>The user ID or password does not exist, has expired, or has been disabled.
</OL>
</body>
</html>
190 IBM WebSphere Application Server Liberty Profile Guide for Developers



Adding a form logout page
Form logout is a mechanism to log out without having to close all web browser sessions. After 
logging out, access to a protected web resource requires reauthentication.

The form logout page is an HTML or JSP file that you include with your web application. This 
logout page contains a form with a special post action. Example 6-5 provides an example of a 
logout.jsp file.

Example 6-5   A Sample logout page

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
    pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
<h2>Sample Form Logout</h2>
<form method="POST" action="ibm_security_logout" name="logout">
<BR>
<strong> Click this button to log out: </strong>
<input type="submit" name="logout" value="Logout">
<input type="HIDDEN" name="logoutExitPage" value="/login.html">
</form>
</body>
</html>

The logoutExitPage specifies where the user is to be redirected after logging out.

Configuring the application
The final changes that are needed to the web application are in the configuration. The web 
application must define the login mechanism and also restrict access to the relevant 
endpoints.

Although you do not need to do the HTTPS redirect as part of the form login, it is advised. 
Connection over HTTPS ensures confidentiality of the login credentials. The following steps 
expand upon the configuration you set up in 6.2, “HTTPS redirect” on page 185 to define the 
login mechanism and limit the access to the relevant endpoints:

1. In the Project Explorer, expand your web application and double-click deployment 
descriptor.

2. The first configuration that must be added is a login configuration (which defines the login 
mechanism). In the Overview section of the Deployment Descriptor Editor, select Web 
Application and click Add.

3. Select Login Configuration from the list and click OK.

Caution: Logout does not work for basic authentication (such as a browser pop-up 
window), as the browser stores user credentials in the HTTP headers and resends them 
on every request. You have to close all browser windows to successfully log out of the site 
protected by basic authentication.
Chapter 6. Configuring application security 191



4. Click the login configuration. You can now define how the user logs in by updating the 
properties for the login configuration, as shown in Figure 6-11.

Figure 6-11   Defining the login configuration settings

5. You now must restrict your endpoint to allow only certain users to access the resource. 
This is done by adding a security constraint and adding an authorization constraint to that 
security constraint. You already have a security constraint that you added in 6.2, “HTTPS 
redirect” on page 185. Use this constraint and add the authorization constraint to it. Select 
the Security Constraint from within the Overview section, as shown in Figure 6-12.

Figure 6-12   Selecting the Security Constraint

Realm name: The realm name is an optional attribute that is used for differentiating 
between different repositories. If you have multiple repositories in your server, each one 
can have a realm name. You can then use the realm name to identify the repository to use 
for authentication. If you have only one repository, you can leave this value blank.
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6. In the details section, under Authorization Constraint, click Add (located to the right of the 
Role Name). This adds a role that is required for access to the resource. Give the role a 
name, as shown in Figure 6-13.

Figure 6-13   Adding an authorization role

7. The application changes are now complete. Save all the changes.

6.3.3  Defining bindings between the application and the server

The final step in enabling Form Login is to map the roles that are defined within the 
application to the groups and users in your user registry. To do this, you must add an 
application binding in your server configuration using the following steps:

1. Open the Server view in Eclipse and double-click Server Configuration for your server. 
This opens your server.xml file. Switch to the design tab if it is not already selected.

Note: The Role Name within your application is a logical name and can be any value that 
you like. In 6.3.3, “Defining bindings between the application and the server” on page 193, 
you add mappings between your application roles and the users and groups that are 
defined in your user registry.
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2. In the Configuration Structure, select your application and click Add, as shown in 
Figure 6-14 on page 194.

Figure 6-14   Adding an application binding

3. Select Application Binding from the list and click OK.

4. We now must specify the role to map. This should be the role that you defined in your 
application. Select Application Binding under the Configuration Structure and click Add.

5. Select security-role from the list and click OK.

6. Make sure that the security role is selected in the Configuration Structure and complete 
the security role name, as shown in Figure 6-15.

Figure 6-15   Defining the security role name

7. Map the security role with the users and groups that are to be considered part of this role. 
In our example, we are going to map Group1 to the AuthorizedManager role. Select the 
security-role under the Configuration Structure and click Add.

8. Select group from the list and click OK.

Note: As well as user and group, you can also select the special-subject option to 
assign access to either everyone or all.
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9. Select the Group element in the Configuration Structure. Under Group Details, enter the 
name of the group that is to be allowed access to the resource, as shown in Figure 6-16.

Figure 6-16   Entering the group details

10.Your Forms Login configuration is now complete. Save all changes. 

If you now access your application, you are taken to the login window. When you enter the 
user credentials, only User1, which is in Group1, has access to the application.

6.4  Securing EJB applications

WebSphere Liberty also supports security in EJB components. You can define the method 
permissions using ejb-jar.xml or with annotations. Example 6-6 shows how to define 
security roles and method permissions using annotations. The @DeclareRoles annotation 
defines security role references. The @RolesAllowed annotation defines which roles are 
allowed to call a given method. You can also use SessionContext interface to obtain the user 
principal or check if the user has a certain role. 

Example 6-6   Defining roles and method permissions via annotations

@Stateless
@LocalBean
@DeclareRoles("user")
public class SecuredEJB {

@Resource
private SessionContext ctx;

@RolesAllowed("user")
public String protectedMethod() {

return " Method called by " + ctx.getCallerPrincipal();
}

}

For more details about EJB security, see the following web site:

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.d
oc/topics/csecuringejee.htm?cp=SSEQTP_8.5.5&lang=en 

You can also find a lot of useful information about protecting EJB applications in Chapter 9, 
Securing an Enterprise JavaBeans application, in IBM Redbooks publication, WebSphere 
Application Server V7.0 Security Guide, SG24-7660. Although that publication is about the 
7.0 version, most of the information presented there is also relevant to WebSphere Liberty.
Chapter 6. Configuring application security 195

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/csecuringejee.htm?cp=SSEQTP_8.5.5&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/csecuringejee.htm?cp=SSEQTP_8.5.5&lang=en


6.5  Securing JMS applications

By default, JMS resources that are configured in the WebSphere Liberty profile server can be 
accessed by any user. You can enable JMS security to ensure that only authenticated and 
authorized users can access JMS resources, such as queues and topics. 

You can enable JMS security by manually editing the list of features in the server 
configuration file to add wasJmsSecurity-1.0. You can also enable the feature in the 
WebSphere developer tools by loading the server configuration editor and adding the 
wasJmsSecurity-1.0 feature to the feature manager. 

After you enable the JMS security feature, you must authenticate with an authorized user to 
access any JMS resources. 

6.5.1  Setting up user authentication

The first step to authenticating users is to create a user registry. Instructions for creating a 
basic user registry can be found in 6.3.1, “Defining the basic user registry” on page 187. You 
can also use a quickStartSecurity registry or an LDAP registry.

Users can be authenticated within application code or by configuration. The recommended 
approach is to authenticate using configured authentication data and avoid hardcoding 
authentication data in application.
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To authenticate within the server configuration, you edit the properties for the JMS 
Connection Factory to specify authentication data. Use the following steps to complete that 
process:

1. Open the Server Configuration. Click Add, start typing auth, select Authentication Data, 
as shown in Figure 6-17 on page 197. Then, click OK.

Figure 6-17   Adding authentication data

2. In the authentication data, provide the ID (for example jmsUser), username, and password.
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3. Select JMS Connection Factory. In the Container managed authentication data 
reference, select the just added authentication data (jmsUser), as shown in Figure 6-18.

Figure 6-18   Configuring authentication reference

4. The relevant changes in the server.xml are shown in Example 6-7. 

Example 6-7   Using authentication alias

<server description="new server">
....
<authData user="user1" password="password" id="jmsUser"></authData>
<jmsConnectionFactory jndiName="jms/itsoQCF" containerAuthDataRef="jmsUser">

        <properties.wasJms/>
    </jmsConnectionFactory>
</server>

You can also store the user name and password directly in the Embedded Messaging entry 
(represented as attributes of the properties.wasJms element) in the server.xml file, as 
shown in Example 6-8.

Example 6-8   Authenticating using properties.wasJms

<jmsConnectionFactory jndiName="jms/itsoQCF">
        <properties.wasJms password="password" userName="user1"/>
</jmsConnectionFactory>

To authenticate in the application code, provide the user name and password as parameters 
when you create a JMSContext in your application. Example 6-9 shows how you use the JMS 
API to authenticate.

Example 6-9   Authenticating within application code

@Resource(lookup="jms/itsoQCF")
private ConnectionFactory qcf;
....
jmsContext = qcf.createContext("user1", "password");
jmsContext.createProducer().send(queue, message);

When you have a message-driven bean in your application, you need to specify an 
authentication data reference in the activation specification (as shown in Example 6-10). You 
use the same authentication data that was configured earlier for the connection factory.
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Example 6-10   Configuring authentication data in activation specification

<jmsActivationSpec authDataRef="jmsUser" id="ITSOJMSApp/SimpleMDB">
    <properties.wasJms destinationRef="jmsItsoQ" 
destinationType="javax.jms.Queue"/>
    </jmsActivationSpec>

For more information about authentication, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_msg_sec_authenticate.html?lang=en

6.5.2  Setting up user authorization

To access JMS resources, an authenticated user must be granted authorization to access the 
resources. Authorization can be configured by editing the server configuration to add roles, 
users, and groups. 

To complete this process, use the following steps: 

1. Set up authorization in the Liberty profile developer tools. Open the server configuration 
editor and select Messaging Engine. Click Add and select Messaging Security, as 
shown in Figure 6-19. 

Figure 6-19   Adding Messaging Security

2. Now, select Role underneath Messaging Security. In the details window, enter a name 
(such as developer) in the Role name field. With Role still selected, click Add, to add a 
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user. In the User details window, enter a user name, such as User1, from your user 
registry. 

3. Add permissions for the role by selecting Role, then clicking Add, and selecting Queue 
Permission. In the Action field of the details window, you can configure whether the user 
is authorized to send, receive, browse, or all. Select an action from the drop-down next to 
the Action field (such as ALL). You can add additional actions by using the Add button. 

In the Queue reference field, enter a value that corresponds to the queue ID. 

You can also manually edit configurations. Example 6-11 on page 200 shows the 
configuration that must be added to the server.xml file for manual editing. 

Example 6-11   Configuration for manual editing

<messagingEngine>
    <queue id="itsoQ"/>
    <messagingSecurity>
    <role id="developer" name="developer">
    <user name="user1"/>
    <queuePermission queueRef="itsoQ">
    <action>ALL</action>
    </queuePermission>
    </role>

</messagingSecurity>
</messagingEngine>

6.6  JAX-WS security

Web services in Liberty profile server can be secured either at the transport layer or at the 
messaging layer. Configuring transport security allows you to authenticate and ensure 
confidentiality of HTTP communications between a web service client and a web service 
provider. Transport security can be enabled using SSL, basic authentication, or client 
certificate authentication. 

Message-level security allows you to secure SOAP messages that are exchanged between 
web service clients and web service providers using WS-Security standards. WebSphere 
Liberty profile supports the following web service standards:

� Web Services Security SOAP Message Security 1.1
� Web Services Security Username Token Profile 1.1
� Web Services Security X.509 Certificate Token Profile 1.1
� WS-SecurityPolicy 1.3

This section provides an example of how to secure a web service using SSL at the transport 
layer and Username Token authentication at the message layer. For more information about 
other ways to secure web services, see the following IBM Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.d
oc/ae/cwlp_wssec.html?cp=SSEQTP_8.5.5%2F1-3-11-0-4-9

This example builds on the JAX-WS example in 3.1.6, “Developing JAX-WS web services 
applications with the Liberty profile developer tools” on page 78. Before you begin, make sure 
that you enabled SSL by creating a keystore, as described in 6.1, “Enabling SSL” on 
page 182. Also, make sure that the appSecurity-2.0 feature is enabled. 
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In addition to creating a keystore, you must create an SSL Default Repertoire. To complete 
that process, use the following steps:

1. In the Liberty profile developer tools server configuration editor, create the default 
repertoire by selecting the server configuration element.

2. Click Add and then select SSL Default Repertoire. In the details window, enter 
defaultSSLConfig in the Default SSL repertoire field. Outside of the tool environment, 
create the sslDefault element, as shown in Example 6-12.

Example 6-12   Default SSL Repertoire

<sslDefault sslRef=”defaultSSLConfig”/>

3. You must also enable HTTPS redirect for the pattern /ITSOGreeterService so that 
requests to the web service over HTTP are redirected to the SSL port using HTTPS. To 
accomplish this task, use the procedure in 6.2, “HTTPS redirect” on page 185. After 
enabling redirect, test that it is working by visiting the following link:

http://localhost:9080/ITSOWeb/ITSOGreeterService?wsdl

You should be redirected to the following ULR:

https://localhost:9443/ITSOWeb/ITSOGreeterService?wsdl

You should see the contents of the WSDL document. 

4. To enable the web services security run time, you must enable the wsSecurity-1.1 feature 
in the server configuration. 

5. To configure the JAX-WS run time to send a Username Token with web service client 
requests, you can add a wsSecurityClient element to the server configuration. When it is 
specified, the WS-Security client configuration becomes the default configuration for all 
web services clients on the server. The configuration might be overridden 
programmatically by passing in property values in the RequestContext in the client code. 
Example 6-13 shows an example WS-Security client configuration. 

Example 6-13   WS-Security Client configuration

<wsSecurityClient ws-security.password=”password1” 
ws-security.username=”user1”/>

6. The WS-Security provider can also have a default configuration that is specified in the 
server configuration. To specify that web service providers should place the identity of the 
Username Token from the SOAP message on the thread, configure a wsSecurityProvider 
element in the server.xml file, as shown in Example 6-14.

Example 6-14   WS-Security Provider configuration

<wsSecurityProvider ws-security.username=”user1”>
<callerToken name=”UsernameToken”/>

</wsSecurityProvider>

7. You must also configure the WSDL for the web service provider and client to enforce SSL 
and to require a user name token. The Liberty profile developer tools make it easy to add 
web service security policy templates to the WSDL. 
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8. If you did not generate a WSDL file for the web service, you can do so now by following the 
procedure in “Creating a web service” on page 79 and making sure that the Generate 
WSDL file into the project option is selected in the second window. The wizard does not 
overwrite any existing artifacts without confirmation, so you do not lose any modifications 
that you made.

a. Begin by expanding ITSOWeb → Services and selecting 
(http://example.itso.com/ITSOGreeterService). Right-click the service and select 
Add Security Policy to Service WSDL. In the wizard, give the policy a name, such as 
UsernameTokenSSL. In the drop-down field for Policy template, select UsernameToken 
with password text, nonce, and created timestamp over SSL, as shown in 
Figure 6-20 on page 202. 

Figure 6-20   Web Service Security Policy wizard

b. Click Next and then select the check box to attach the security policy to the 
ITSOGreeterPortBinding. Click Finish and open the WSDL document in 
ITSOWeb/WebContent/WEB-INF/wsdl. A Policy element is added with the name 
UsernameTokenSSL. Also, there is now a PolicyReference element located underneath 
the binding element. With these changes to the WSDL file, the web service now 
generates an error if a client attempts to access the service without SSL or without a 
user name token. 

In the same WSDL file, we can ensure that SSL is used by changing the address for 
the ITSOGreeterPort. The new service definition is shown in Example 6-15.

Example 6-15   ITSOGreeterService definition

<service name=”ITSOGreeterService”>
<port name=”ITSOGreeterPort” binding=”tns:ITSOGreeterPortBinding”>
<soap:address location=”https://localhost:9443/ITSOWeb/ITSOGreeterService”/>
</port>

</service>
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9. You can attempt to test these changes now by visiting the link 
http://localhost:9080/ITSOWebClient/JAXWSGreeterClient. However, the test should 
fail because the client does not yet send a user name token. 

10.Now, make the same changes that were made to the provider WSDL to add the 
WS-Security policy and update the address to the client WSDL in the ITSOWebClient 
project. After making these changes, you can try again visiting the test client. This time, 
you should see the output Hello, JAX-WS Client from the ITSO Greeter that indicates 
that the service was successfully started. 

6.7  Securing NoSQL applications

NoSQL databases are becoming more popular. However, most of them are not protected by 
default and allow anybody to perform all operations. For production deployments of 
applications using such databases, you should enable protection on the databases and 
access them in a secure way.

6.7.1  Securing MongoDB applications

Applications that use MongoDB can be secured by using either application-managed security 
or container-managed security. You must also enable access control on the MondoDB 
instance. For more information about enabling database authorization in MongoDB, see the 
following website:

http://docs.mongodb.org/manual/core/security

In application-managed security, you make changes inside the application code to 
authenticate with the MongoDB instance. The code in Example 6-16 shows how to use the 
MongoDB APIs to authenticate. 

Example 6-16   Authenticating with a MongoDB instance

// mongoDB is an instance of com.mongodb.DB
if (!mongoDB.isAuthenticated())

mongoDB.authenticate(“user1”, “password1”.toCharArray());

In container-managed security, you edit the server configuration to specify a user name and 
password for the MongoDB instance. Example 6-17 shows how you specify the user name 
and password in the server.xml file. 

Example 6-17   Configuring authentication in a server.xml file

<mongo id=”mongoInstance1” libraryRef=”mongoLibrary” user=”user1” 
password=”password1”/>

6.7.2  Securing CouchDB applications

CouchDB databases are unprotected by default and everyone has privileges to do anything. 
For more information about enabling database security in CouchDB, see the following 
website:

http://docs.couchdb.org/en/latest/intro/security.html
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You can specify user name and password for a user accessing CouchDB in the Server 
configuration. To Configure the CouchDB element as shown in Figure 6-21 on page 204, 
double-click Server configuration in the Servers view, and select CouchDB element in the 
Server Configuration. Enter the username in the CouchDB user ID field and password in the 
password field.

Figure 6-21   Configuring CouchDB

You can also edit the server.xml file manually. Add the username and password elements, 
which are shown in Example 6-18.

Example 6-18   CouchDB element in server.xml

<couchdb username="admin" password="admin" libraryRef="couchLibrary" 
jndiName="couchdb/connector" url="http://localhost:5984" id="couchdb"></couchdb>

6.8  Authenticating users in Liberty profile

WebSphere Liberty profile server uses a user registry to get information about users and 
groups. The user registry is also used during authentication and authorization process.

For more information about how authentication is handled in Liberty, see the following page:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/cwlp_authentication.html?lang=en

6.8.1  User registries for WebSphere Liberty profile

The user registries store user and group information that is used for authentication purposes. 
Liberty profile supports the following types of user registries:

� Basic user registry: A simple registry, with all information contained in the server.xml file, 
mostly for development and prototyping purposes.

� LDAP registry: An extensive LDAP registry, supporting federation of multiple LDAPs and 
failover. Recommended for production deployments.

� Custom registry: You can develop a custom user registry class by implementing the 
com.ibm.websphere.security.UserRegistry and deploy as Open Service Gateway 
initiative (OSGi) service.
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� SAF registry: On the z/OS platform, you can configure Liberty to use the SAF registry.

For more information about configuration of these registries, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/twlp_sec_registries.html

6.8.2  Custom authentication methods

In this section, various authentication options are briefly described.

Using a servlet API
Java EE servlet API provides methods that can be used while customizing the authentication 
process. The most useful methods from the HttpServletRequest interface are noted in the 
following list:

� login(String username, String password): Authenticates user to the server with given 
user ID and password. If authentication is successful, it creates subject and LTPA cookie.

� logout(): Logs out the current user. This method invalidates user’s HTTP session, clears 
LTPA cookie, and removes user from the authentication cache.

� authenticate(HttpServletResponse response): Invokes authentication mechanism 
currently configured in given application. Method returns true, if authentication was 
successful.

For more information about these methods, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.
doc/ae/tsec_web.html?cp=SSEQTP_8.5.5%2F1-11-2-7-2-1&lang=en

Using a Trust Association Interceptor (TAI)
Sometimes, you need to provide a custom authentication process with additional parameters 
required or integrate authentication with a third-party security service. In such scenarios, you 
can develop TAI. To create TAI, you need to implement the 
com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

Once TAI is implemented, you need to add it to the Liberty profile server. You can use one of 
the following methods:

� Put the custom TAI class in a JAR file, for example simpleTAI.jar; then, make the JAR file 
available as a shared library. See the following website for Configuring TAI for the Liberty 
profile page:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websph
ere.wlp.nd.multiplatform.doc/ae/twlp_sec_tai.html

� Package the custom TAI class as a feature. See the following website for Developing a 
custom TAI as a Liberty profile feature page:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websph
ere.wlp.nd.multiplatform.doc/ae/twlp_feat_tai.html

For more information about TAI in general, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/twlp_dev_custom_tai.html
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Using a login module 
WebSphere Liberty profile provides Java Authentication and Authorization Service (JAAS) 
plug-in points to modify system login configuration. Login modules are best used when the 
authentication process suits your needs in general but you would like to add custom 
information to the created Subject.

To create a login module, you need to implement javax.security.auth.spi.LoginModule 
interface and then add it to the system.WEB_INBOUND login configuration.

For more information about developing login modules, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/twlp_dev_custom_jaas.html

Using OpenID   
OpenID is an open standard that allows users to authenticate themselves to multiple sites 
without the need to manage multiple accounts. WebSphere Liberty profile supports OpenID 
2.0 and plays a role as a Relying Party in web single-sign-on. 

The user accessing a protected application is redirected to the OpenID provider site for 
credential verification and then redirected back to the original site with authentication result.

For more information about using OpenID, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/cwlp_openid.html

Using OpenID Connect
OpenID Connect is another standard that is used by web single-sign-on. It is built on top of 
the OAuth 2.0 protocol. This protocol enables client applications to rely on authentication that 
is performed by an OpenID Connect Provider to verify the identity of a user. WebSphere 
Liberty profile supports OpenID Connect 1.0 and can act as Client, Relying Party, and 
Provider.

For example, this mechanism can be used to authenticate users to your application using 
their Google credentials. See the following website for more information about this topic:

https://www.youtube.com/watch?v=Rfxy0FKOfgw

For more information about using OpenID Connect, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/cwlp_openid_connect.html

For more information about OAuth support, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/cwlp_oauth_introduction.html?lang=en-us

Using JASPIC        
The Java Authentication SPI for Containers specification (JASPIC) defines a standard way to 
plug in your custom authentication provider. You can develop your JASPIC provider as a 
Liberty user feature or embed the provider in your application. 

For more information about developing using JASPIC, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/twlp_develop_jaspic.html
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Using SPNEGO    
You can use single sign-on for HTTP requests by using the Simple and Protected GSS API 
Negotiation Mechanism (SPNEGO) web authentication for WebSphere Liberty profile. 
SPNEGO single sign-on enables HTTP users to log in to a Microsoft domain controller only 
once at their desktop and to achieve single sign-on (SSO) with the Liberty profile server.

For more information about configuring SPNEGO in Liberty, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/twlp_spnego_config.html

Authentication filters
Authentication filters let you configure which requests should be processed by certain 
authentication providers (such as OpenID, OpenID Connect, or SPNEGO).

In the provider configuration, you define reference to the authentication filter. If all conditions 
defined in the filter are met, the request is processed by that provider.

Authentication filter can use any of the following elements: userAgent, host, webApp, 
remoteAddress, and requestUrl.

For more information about how to configure authentication filter, see the following website:

https://infocenters.hursley.ibm.com/wlpsolo/v85/draft/help/topic/com.ibm.websphere
.wlp.nd.multiplatform.doc/ae/rwlp_auth_filter.html

Note: SPNEGO is only supported in WebSphere Liberty profile with the IBM JDK.
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Chapter 7. Serviceability and 
troubleshooting

The Liberty profile has several tools to help identify problems with the server and the 
applications that are deployed to it.

This chapter contains the following sections:

� Logs and trace
� Server memory dump
� MBeans and JConsole
� OSGi Debug console
� Event logging feature
� Slow request detection and hung request detection capabilities
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7.1  Logs and trace

The Liberty profile can produce various traces that enable you to debug issues with the server 
and your applications. By default, no tracing is enabled. However, you can enable tracing if 
required. In this section, we describe where to find the output and how to configure what trace 
data is collected.

7.1.1  Inspecting the output logs and trace

The Liberty profile server records limited information by default. This basic information is 
useful for debugging common configuration issues. You can view the output logs by opening 
the ${server.output.dir}/logs/messages.log file. Example 7-1 shows a sample output from 
a server start.

Example 7-1   Sample content of the message.log file

[5/19/15 14:22:41:589 EDT] 00000707 com.ibm.ws.app.manager.AppMessageHelper                      
I CWWKZ0018I: Starting application ITSOWeb.
[5/19/15 14:22:41:691 EDT] 00000707 com.ibm.ws.webcontainer.osgi.webapp.WebGroup                 
I SRVE0169I: Loading Web Module: ITSOWeb.
[5/19/15 14:22:41:692 EDT] 00000707 com.ibm.ws.webcontainer                                      
I SRVE0250I: Web Module ITSOWeb has been bound to default_host.
[5/19/15 14:22:41:692 EDT] 00000707 com.ibm.ws.http.internal.VirtualHostImpl                     
A CWWKT0016I: Web application available (default_host): http://localhost:9087/ITSOWeb/
[5/19/15 14:22:41:694 EDT] 00000707 com.ibm.ws.app.manager.AppMessageHelper                      
A CWWKZ0003I: The application ITSOWeb updated in 0.104 seconds.
[5/19/15 14:23:29:560 EDT] 00000705 com.ibm.ws.session.WASSessionCore                            
I SESN0176I: A new session context will be created for application key default_host/ITSOWeb
[5/19/15 14:23:29:560 EDT] 00000705 com.ibm.ws.util                                              
I SESN0172I: The session manager is using the Java default SecureRandom implementation for 
session ID generation.
[5/19/15 14:23:29:568 EDT] 00000705 com.ibm.ws.jsp                                               
I JSPG8502I: The value of the JSP attribute jdkSourceLevel is "15".
[5/19/15 14:23:29:621 EDT] 00000705 
org.apache.myfaces.config.DefaultFacesConfigurationProvider  I Reading standard config 
META-INF/standard-faces-config.xml
[5/19/15 14:23:29:644 EDT] 00000705 
org.apache.myfaces.config.DefaultFacesConfigurationProvider  I Reading config 
/WEB-INF/faces-config.xml
[5/19/15 14:23:29:708 EDT] 00000705 org.apache.myfaces.application.ApplicationImpl               
I Couldn't discover the current project stage, using Production
[5/19/15 14:23:29:708 EDT] 00000705 org.apache.myfaces.config.FacesConfigurator                  
I Serialization provider : class 
org.apache.myfaces.shared_impl.util.serial.DefaultSerialFactory
[5/19/15 14:23:29:708 EDT] 00000705 org.apache.myfaces.webapp.AbstractFacesInitializer           
I ServletContext 'C:\IBM\ch3_ITSOWeb\ITSOWeb\WebContent' initialized.
[5/19/15 14:23:29:708 EDT] 00000705 com.ibm.ws.webcontainer.servlet                              
I SRVE0242I: [ITSOWeb] [/ITSOWeb] [Faces Servlet]: Initialization successful.
[5/19/15 14:23:29:724 EDT] 00000705 
apache.wink.server.internal.application.ApplicationProcessor I The following JAX-RS 
application has been processed: 
com.ibm.ws.jaxrs.webcontainer.JAXRSDefaultApplicationSubclassProxy
[5/19/15 14:23:29:724 EDT] 00000705 org.apache.wink.server.internal.log.Resources                
I The server has registered the JAX-RS resource class com.itso.example.ITSOJaxrsExample 
with @Path(/example).
[5/19/15 14:23:29:724 EDT] 00000705 org.apache.wink.server.internal.log.Providers                
I There are no custom JAX-RS providers defined in the application.
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[5/19/15 14:23:29:806 EDT] 00000705 com.ibm.ws.webcontainer.servlet                              
I SRVE0242I: [ITSOWeb] [/ITSOWeb] [JAX-RS Servlet]: Initialization successful.

The log shows the server start procedure. First, the kernel starts. Then, the feature manager 
initializes and reads the configuration from the server.xml file. The server is configured to 
listen on a given port. Then, the ITSOWeb application is started and finally the server is ready 
to serve the application.

7.1.2  Configuration of an additional trace

A typical task when working with applications is to enable and configure the logging 
properties of the runtime server to inspect for problems. The Liberty profile server can be 
configured to gather debug information for both runtime issues and application code.

The Liberty profile server, when started, is configured to capture a minimal amount of trace 
information. You can modify this default by specifying properties in the server configuration 
file or bootstrap.properties file. Open Service Gateway initiative (OSGi) logging output is 
intercepted and delivered through the trace support. There is also interception of 
java.util.logging output.

To learn more about configuring the logging service, see the IBM Knowledge Center at the 
following website:

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_logging.html

Configuring trace in the servers configuration
To configure an additional trace in the servers configuration, follow these steps:

1. Open the Servers view in your workbench and double-click Server Configuration for 
your server. This opens your server.xml file. Select the Design tab. 

2. Under the Configuration Structure, select Server Configuration and click Add, as shown 
in Figure 7-1.

Figure 7-1   Adding the logging option to the server configuration

3. Select Logging and click OK.
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4. Ensure that logging is selected under the Configuration Structure. You can now configure 
logging in the Logging details section, as shown in Figure 7-2. 

Figure 7-2   Entering the trace details

The Logging details window allows you to configure many aspects of logging, including the 
location of the logs and where they are stored. The Trace Specification defines what 
information to capture in the logs. In our example, we capture information-level messages 
for all classes. In addition, we chose to capture all debug or higher-level messages for any 
com.itso.example.* classes.

The trace.log file is located by default in the ${server.output.dir}/logs/ directory.

For information about how to add logging to your applications, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd
.multiplatform.doc/ae/ttrb_javalogapps.html

Configuring trace using bootstrap.properties
Using the server configuration file to enable logging is an easy and efficient method. However, 
the following list notes some cases where you might want to put logging properties in to the 
bootstrap.properties file:

� When logging is required before the configuration processing occurs at server start (this 
might be required for IBM support for debugging a server start problem).

� When the server.xml configuration is shared by multiple server instances, and logging is 
only required on one server (then the bootstrap.properties file for that server can be 
modified).
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Example 7-2 shows a sample bootstrap.properties file that enables tracing of any 
com.itso.example.* classes.

Example 7-2   A sample bootstrap.properties file

# New trace messages are written to the end of the file (true or false)
com.ibm.ws.logging.trace.append = "true"
# maximum size of e;ach trace file (in MB)
com.ibm.ws.logging.trace.max.file.size = 2
# maximum number of trace files
com.ibm.ws.logging.trace.max.files = 2
# Trace format (basic or advanced)
com.ibm.ws.logging.trace.format = "basic"
# Trace settings string - this string enables all trace
com.ibm.ws.logging.trace.specification = com.itso.example.*=debug

7.2  Server memory dump

To capture state information of a Liberty profile server, you can use the dump command. This 
can be useful for problem diagnosis of a Liberty profile server. 

The directory of results that is generated by the dump command contains server configuration, 
log information, and details of the deployed applications in the workarea directory. The dump 
command can be used against a running or stopped server. If the server is running, the 
following additional information is gathered:

� State of each OSGi bundle in the server

� Wiring information for each OSGi bundle in the server

� Component list managed by the Service Component Runtime (SCR)

� Detailed information of each component from SCR

� The current state of all requests still running in the system (if the requestTiming-1.0 
feature is enabled)

� The statistics about each of the JDBC requests the server has tracked (if 
timedOperations-1.0 feature is enabled)

The following syntax is an example of running the dump command:

server dump server1 --archive=c:\tmp\server1_dump.zip

You can also create a memory dump of the Liberty profile server by using the WebSphere 
developer tools. This is done by right-clicking the server in the Servers view and selecting 
Utilities → Generate Dump for Support. You have the option to generate a server or a JVM 
dump. The server dump can contain heap, system, or thread information. The JVM dump can 
contain heap or system information.

7.3  MBeans and JConsole

To monitor the Liberty profile server runtime characteristics, administrators and developers 
can use standard tools for Java runtimes, such as the JConsole.
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The Liberty profile offers the monitor-1.0 feature. This feature allows users to track 
information about the Liberty profile server runtime, such as JVM, web applications, and the 
thread pool. To enable this monitoring, add the monitor-1.0 feature to the server.xml 
configuration so that the following MXBeans are available:

� WebSphere:type=JvmStats
� WebSphere:type=ServletStats,name=*
� WebSphere:type=ThreadPoolStats,name=Default Executor
� [8.5.5.0 or later]org.apache.cxf:type=WebServiceStats,service=*,port=*
� [8.5.5.0 or later]WebSphere:type=SessionStats,name=*
� [8.5.5.0 or later]WebSphere:type=ConnectionPool,name=*

For more information about monitoring the Liberty profile using MXBeans, see the following 
website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_mon.html

JConsole is shipped as part of the Java Runtime package. To run JConsole against the 
Liberty profile, start it from the command line, as shown in the following syntax: 

C:\Java\jdk1.7.0_67\bin>jconsole.exe

When JConsole launches, a welcome page opens. You must connect to the Java process that 
runs the Liberty profile. The connection is made by logging in. The JConsole process must 
run under the same operating system user ID and use the same Java runtime as the server. 
As illustrated in Figure 7-3, we used the local server for our example.

Figure 7-3   Establishing a connection using JConsole
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The JConsole loads all runtime information into the tool. This includes information about the 
Java runtime, heap size, or processor usage, as illustrated in Figure 7-4.

Figure 7-4   Example of monitoring the output information using JConsole
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Using the JConsole tool, you can also trigger MBean operations that are part of the Liberty 
profile. MBeans are available under the MBeans tab. Figure 7-5 shows an example of issuing 
a restart command on the ITSOWeb application.

Figure 7-5   Issuing a restart request for an application using MBeans
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If you enabled the monitoring infrastructure in Liberty, you can also access additional 
MXBeans such as JvmStats, as illustrated in Figure 7-6.

Figure 7-6   Viewing JVMStats using JConsole

7.4  OSGi Debug console

The Liberty profile server provides the osgiConsole-1.0 feature that helps you administer the 
OSGi applications and features and also can be used for debugging. It can be used to display 
information about bundles, packages, and services that may be useful when developing your 
own features for product extensions. 

To set the console, follow the steps in “OSGi console” on page 110.

After configuring the feature and restarting the server, you can access the OSGi console by 
issuing a telnet command to the console port as in Example 7-3.

Example 7-3   

C:\>telnet localhost 5471
Connecting To localhost
osgi>

Type help to view a list of the options that are available in the OSGi console. For example, the 
ss command returns a summary status of all installed bundles.
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7.5  Event logging feature

The new event logging feature helps you debug your Liberty profile applications by creating 
log entries for events such as JDBC, servlet, or HTTP requests. This feature enables logging 
events and their duration. You can control which event types are to be logged, the minimum 
duration to trigger the logging, the log mode, and the sample rate. This gives you the 
opportunity to debug slow running components of your applications and it can be a good 
starting point for tuning the applications and their runtime environment.

The eventLogging feature is not included in the runtime by default. To install the feature into 
your Liberty runtime, use the featureManager command as follows:

featureManager install eventLogging-1.0

To enable this feature, you need to add the eventLogging-1.0 feature to the featureManager 
section of your server.xml file. To configure this feature, you can set the following properties 
in the server.xml configuration file:

� eventTypes: This property lets you select which type of events are logged. You can log 
more than one type of event by including a comma-delimited list. By default, invocation of 
all types of events is logged.

� logMode: This property lets you select between entry, exit, or both entry and exit types of 
events to be logged. So, the available values for the logMode property can be entry, exit, 
or entryExit. To set this property, you need to include a line such as in Example 7-4 in the 
server.xml configuration file.

Example 7-4   The eventLogging logMode property

<eventLogging logMode="entryExit" /> 

� sampleRate: For example, to log the events from one of every five requests, you need to 
set a value of 5 for this property. The default value is 1, meaning that events from all 
requests are to be logged. To set this property, you need to include a line such as in 
Example 7-5.

Example 7-5   The eventLogging sampleRate property

<eventLogging sampleRate="2" />

� minDuration: This property lets you select the minimum duration of the events to be 
logged. The default value is 500 milliseconds. This means that by default, only exit events 
that are longer that 500 ms will be logged. To log all events, you need to set the value to 0. 
The value must contain a positive integer followed by a unit of time, which can be hours 
(h), minutes (m), seconds (s), or milliseconds (ms). If no unit of time is specified, it defaults 
to milliseconds. So, for a value of 1 second, the value can be 1000, 1 s, or 1000 ms. To set 
this property, you need to include a line such as in Example 7-6.

Example 7-6   The eventLogging minDuration property

<eventLogging minDuration="1000" />

� includeContextInfo: This property lets you decide whether or not to include context 
information in the log entries. The default value is true, but you can turn it off by setting the 
false value as in Example 7-7 on page 219. You can configure this property in the 
server.xml configuration file of the Liberty profile server.
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Example 7-7   The eventLogging includeContextinfo property

<eventLogging includeContextInfo="false" />

7.6  Slow request detection and hung request detection 
capabilities 

The requestTiming-1.0 feature provides detailed information about any servlet requests that 
take longer than a configurable amount of time to run. It also automatically collects java cores 
from the server when requests are detected to be hung to facilitate problem determination.

To enable this feature, you have to add the requestTiming-1.0 short name to the list of 
features in the server.xml configuration file of your Liberty profile server. To configure this 
feature, you can set values for the following parameters:

� slowRequestThreshold: The value that you set for this parameter is the amount of time a 
request can run before it is considered slow. You can specify an integer value followed by 
a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). 
Combined units of time are allowed, for example 1m1s, which means 61 seconds. The 
default value is 10 seconds. If you need to disable slow request timing, set the value to 0. 
Example 7-8 shows an example of configuring this parameter for 300 milliseconds. A 
request duration higher than the value you set for this parameter triggers the logger to 
capture the details about the request and the events that made up the request.

Example 7-8   The requestTiming slowRequestThreshold property

<requestTiming slowRequestThreshold ="300ms" />

� hungRequestThreshold: The value that you can set for this parameter is the amount of time 
that a request can run before it is considered hung. You can specify an integer value 
followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or 
milliseconds (ms). Combined units of time are allowed, for example 1m1s, which means 
61 seconds. The default value is 10 minutes. If you need to disable hung request timing, 
set the value to 0. Example 7-9 shows an example of configuring this parameter for 
1 minute. A request duration higher than the value you set for this parameter triggers a 
warning in the messages log and request details to be captured.

Example 7-9   The requestTiming hungRequestThreshold property

<requestTiming hungRequestThreshold ="1m" />

� sampleRate: This parameter is the sampling rate for the request timing only. The default 
value is 1. To sample all requests, you need to set the value to 1. To sample one out of 10 
requests, you need to set the value to 10 as shown in Example 7-10. 

Example 7-10   The requestTiming sampleRate property

<requestTiming sampleRate="10" />

� includeContextInfo: This property lets you decide whether or not to include context 
information in the log entries. The default value is true, but you can turn it off by setting the 
false value as in Example 7-11 on page 220. You can configure this property in the 
server.xml configuration file of the Liberty profile server.
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Example 7-11   The requestTiming includeContextInfo property

< requestTiming includeContextInfo="false" />

7.7  Timed Operations feature

You have the option to detect operations in the application server that are running more slowly 
than expected by enabling the Timed Operations feature. This feature will log warnings about 
those operations and can use the information that is listed to decide if anything is running 
slower or faster than you expect. 

To enable the Timed Operations feature, add the following element declaration inside the 
featureManager element in your server.xml file:

<feature>timedOperations-1.0</feature>

The following properties are available for configuring this feature:

� enableReport: This boolean property lets you choose whether or not to generate a report 
to the logs detailing the 10 longest timed operations, grouped by type, and sorted within 
each group by expected duration. The default value is true.

� maxNumberTimedOperations: A warning is logged when the total number of timed 
operations reaches the integer value of this property. The default value is 10000.

� reportFrequency: This property determines the frequency, in hours, of generating reports 
to the logs detailing the 10 longest timed operations, grouped by type, and sorted within 
each group by average of actual duration. You have to specify a positive integer followed 
by the unit of time (hours) as in Example 7-12. The default frequency value is 24 hours.

Example 7-12   Timed operations feature configuration

<timedOperations maxNumberTimedOperations="10" reportFrequency="1h"/>
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Chapter 8. From development to production

The Liberty profile runtime fits the full range of production environments, from stand-alone 
servlet engines to massive Java EE deployments. By using the different Liberty server 
configurations to fit the different applications, you can eliminate the complexity of managing 
different applications servers. You can simplify your operations with a single set of 
management skills, tools, and processes. The Liberty profile can be used to develop and 
deploy on the same runtime, to any environment, at any scale. The applications can be 
moved easily between the traditional and the cloud environments, and the Liberty profile can 
be used to create an elastic hybrid cloud environment.

The chapter contains the following sections:

� Configuring a server for production use
� Using the package utility
� Moving an application to the full profile
� Using the Liberty profile on z/OS

8
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8.1  Configuring a server for production use

The following advanced configuration settings should be considered when using a Liberty 
profile server in a production environment. 

8.1.1  Turning off application monitoring

By default, application directories are monitored for any updates. Because applications are 
unlikely to change frequently in a production environment and because this monitoring can be 
resource-intensive, the preferred practice is to disable application monitoring. 

Application monitoring can be disabled in the Liberty profile developer tools by editing the 
server configuration. In the design view, click Application Monitoring. In the Application 
Monitoring details window, clear the box next to Monitor application drop-in directory. 
Additionally, you might want to change the value of the drop-down menu for Application 
update trigger to disabled. 

To disable application monitoring, by editing the server.xml file, add the following element:

<applicationMonitor updateTrigger=”disabled” dropinsEnabled=”false”/>

You can also change the value of the updateTrigger attribute to mbean. This allows you to 
update the application manually by using JMX. 

8.1.2  Turning off configuration file monitoring

As with application monitoring, configuration file monitoring is enabled by default. To disable 
this function by editing the server.xml file, add the following element:

<config updateTrigger="disabled"/>

If you want configuration file monitoring to be enabled and avoid being resource-intensive, 
you can change the value of the monitorInterval attribute. The monitorInterval means the 
rate at which the server checks for configuration updates. To change the value of the 
monitorInterval attribute, add the following element:

<config monitorInterval="60s" updateTrigger="polled"/>

8.1.3  Generating a web server plug-in configuration

To use the Liberty profile server with an external web server, you must generate the web 
server plug-in configuration, whose properties can be specified in the server configuration. 

To add plug-in configuration properties in the Liberty profile developer tools, load the 
server.xml file in the Design editor and click the server configuration. Then, click Add and 
select Generate Plug-in. You can specify properties such as ports in the Generate Plug-in 
details window. 

To add plug-in configuration properties by editing the server.xml file, add a 
pluginConfiguration element to the file. The element supports the following attributes:

webServerPort The port that the web server uses to listen for requests. The default 
value is 80. 
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webServerSecurePort The port that the web server uses to listen for secure requests. The 
default value is 443. 

ipv6Preferred Whether to prefer ipv6. The default value is false.

pluginInstallRoot The plug-in installation root.

sslCertLabel SSL certificate label.

sslKeyringLocation SSL key ring location.

sslStashFileLocation SSL stash file location.

The actual plug-in configuration file must be generated either by using a utility in the Liberty 
profile developer tools, or by running an mbean command using JMX. In the tools, generate 
the file by right-clicking the server and selecting Utilities → Generate Web Server Plug-in. 

To generate the plug-in configuration using mbean, use a JMX console, such as jconsole, to 
connect to the server. The localConnector-1.0 feature must be enabled on the server. From 
the console, start the defaultPluginConfig generation MBean. 

8.2  Using the package utility

Because a Liberty profile server is lightweight, it can be packaged easily with applications in a 
compressed file. This package can be stored, distributed to colleagues, and used to deploy 
the application to a different location or to another system. It can even be embedded in the 
product distribution. The deployment by replacing the package is the best practice for the 
Liberty profile.

The packaged Liberty profile is an archive file that contains one or more types of resources of 
the Liberty profile environment like the server configuration or the application. The types 
depend on the topology that is deployed. You can extract them manually or you can use an 
extraction tool to deploy the file to one or more systems. Alternatively, you can use the job 
manager or Liberty collective in the WebSphere Application Server Network Deployment 
product to deploy these images. 

The package contains all of the binary files, server configuration, and applications necessary 
to distribute the server. 

8.2.1  Packaging a Liberty profile server by using the WebSphere developer 
tools

Use the following procedure to package a Liberty profile server from the WebSphere 
developer tools:

1. Stop the server.

2. From the Servers view, right-click the server and select Utilities → Package Server.

3. Enter a file name for the archive.

4. Select whether you want to include all server content (including the server binary files) or 
only the server applications and configuration. 

5. Click Finish.
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8.2.2  Packaging a Liberty profile server from a command prompt

Use the following procedure to package a Liberty profile server from a command prompt: 

1. Navigate to the Liberty profile server installation root directory.

2. Run the bin/server package server_name command.

The package command supports the following options:

--archive The name of the output file
--include Include the entire server configuration by specifying all. Include only the 

server applications and configuration by specifying usr. Include only 
resources that are required by the server by specifying minify, that can 
minimize the server by scanning runtime and selecting only the loaded 
features.

8.2.3  Using the Job Manager to package and distribute Liberty profile servers

In WebSphere Application Server V8.5 Network Deployment, use the Job Manager to 
perform these functions:

� Package the Liberty profile runtime environments, configurations, and applications.
� Distribute and deploy a Liberty profile server and applications.
� Start embedded profile packages.

For more information about how to package the Liberty profile using the job manager, see the 
following website: 

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.mu
ltiplatform.doc/ae/tagt_jobmgr_comp_server.html

8.2.4  Using the Liberty collective to distribute Liberty profile servers

In WebSphere Application Server V8.5 Network Deployment, you can configure the Liberty 
collective. In the Liberty collective, the FileTransfer and FileService MBeans can be used 
to perform file actions on any Liberty server in the Liberty collective. This includes both 
Liberty servers configured as collective controllers and those configured as collective 
members. You can distribute the package to the Liberty server by using these MBeans. Also, 
you can use the AdminCenter to distribute the package, which is already available and more 
user-friendly to use MBean than using manually.

For more information about the package distribution using the Liberty collective, see the 
following website: 

http://www-01.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSAW57_8.5.5/co
m.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_collective_arch.html

8.3  Moving an application to the full profile

Applications that are developed on the Liberty profile server can also be redeployed to run on 
a WebSphere full profile server. The WebSphere full profile environment provides some 
features that are not available in the Liberty profile server. Applications that are developed in 
the full profile environment might not run on Liberty profile.
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8.3.1  Programming model differences between full profile and Liberty profile

The WebSphere full profile server and the Liberty profile server differ in programming support 
for the following technologies:

� Java EE 6
� Java EE 7
� Enterprise Open Service Gateway initiative (OSGi)

For example, the Liberty profile already supports Java EE 7, but full profile does not yet. For 
OSGi applications, Liberty profile does not support Blueprint security.

For a more detailed comparison of technologies that are supported by the full profile and 
Liberty profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_prog_model_support.html

8.3.2  Configuration differences between full profile and Liberty profile

Although applications developed in the Liberty profile environment can be run on the full 
profile, there might be some configuration differences that must be addressed. 

General concerns
In the Liberty profile, many properties that represent time values can be specified using units 
of time. For example, 1 hour can be specified as the value 1h. In full profile, time values are 
typically expressed as numeric values. When migrating application resources such as data 
sources or connection managers to full profile, you might need to modify property values to 
be specified as numbers. 

Class loading
The Liberty profile server provides different methods of controlling class visibility than the full 
profile server. If your application requires you to configure advanced class loading behavior, 
you might need to reconfigure class loading in the full profile environment. You might also 
need to configure class loading in full profile if your application embeds classes that conflict 
with the full profile run time. 

For more information about class loading in the full profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.do
c/ae/trun_classload.html

Data sources
Some data source properties have different names: 

� ifxIFX_LOCK_MODE_WAIT is informixLockModeWait in the full profile.
� supplementalJDBCTrace is supplementalTrace in the full profile.

Some data source properties have different default values: 

� beginTranForResultSetScrollingAPIs is true by default in the Liberty profile.
� beginTranForVendorAPIs is true by default in the Liberty profile.
� statementCacheSize is 10 by default in the Liberty profile.

The Liberty profile allows connectionSharing to be configured to either 
MatchOriginalRequest or MatchCurrentState. By default, it is MatchOriginalRequest.
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The Liberty profile allows connectionSharing to be configured in a finer grained manner, 
where individual connection properties can be matched based on the original connection 
request or current state of the connection. In the full profile, connectionSharing is a 
combination of bits representing which connection properties to match based on the current 
state of the connection. 

In the full profile, a value of 0 means match all properties that are based on the original 
connection request, and a value of -1 means to match all properties that are based on the 
current state of the connection. The default value for the full profile is 1, which means that the 
isolation level is matched based on the current state of the connection and all other properties 
are matched based on the original connection request.

For more information about the differences for data sources of the full profile and the Liberty 
profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_ds_diff.html

Connection Manager
Some of the connection manager properties have different names in the full profile and 
Liberty profile. Table 8-1 shows the property naming differences.

Table 8-1    Properties with different names

There are also differences in the way timeout values for immediate or never (disabled) are 
specified. In Liberty profile, 0 represents an immediate timeout and -1 represents a disabled 
timeout. In full profile, -1 represents an immediate timeout and 0 represents a disabled 
timeout. 

The value of the purge policy can also differ slightly between full profile and Liberty profile. 
There are three possible values in Liberty profile: EntirePool, FailingConnectionOnly, and 
ValidateAllConnections. The EntirePool option maps directly to the EntirePool option in 
full profile. FailingConnectionOnly maps to the FailingConnectionOnly option with the 
defaultPretestOptimizationOverride property set to false in the full profile. 
ValidateAllConnections corresponds to FailingConnectionOnly with the 
defaultPretestOptimizationOverride property set to true in full profile. 

For more information about the differences for Connection Manager of the full profile and the 
Liberty profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_connpool_diff.html

Security
In the Liberty profile, you can configure user-to-role mappings and runAs users in the 
application-bnd element of the server.xml file. In the full profile, you can configure this only 
in ibm-application-bnd.xml/xmi or via administrative console. 

Liberty profile property name Full profile property name

maxConnectionsPerThread maxNumberofMCsAllowableInThread

maxIdleTime unusedTimeout

maxPoolSize maxConnections

minPoolSize minConnections
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Liberty profile has the following security limitations as compared to full profile:

� Not all public APIs and SPIs are supported. The Java API document for each Liberty 
profile API is detailed in the Programming Interfaces (APIs) section of the IBM Knowledge 
Center, and is also available in a separate compressed file in one of the Javadoc 
subdirectories of the /dev directory of the server image.

� No horizontal propagation of the security attribute.

� No SecurityAdmin MBean support; therefore, methods such as clearing the authentication 
cache are not available.

� No Java 2 Connector (J2C) principal mapping modules support.

� No multiple security domain support.

� No security auditing subsystem that is part of the security infrastructure of the server.

For more information about the differences for the security of the full profile and the Liberty 
profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_sec_diff.html

Web Services Security
WS-Security in the Liberty profile is configured by using the WS-SecurityPolicy within the 
Web Service Definition Language (WSDL) file of a web service application. WS-Security, in 
the full profile, is configured and enabled by using a policy set. 

WS-Security in Liberty profile supports the following WS-Security Policy namespaces:

� http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 

� http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802 

� http://schemas.xmlsoap.org/ws/2005/07/securitypolicy 

WS-Security, in full profile, supports the WS-Security policy namespace:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

The Liberty profile supports more policy assertions than the full profile. To sign or encrypt a 
SupportingToken, such as a UsernameToken in the Liberty profile, you assert the token as 
SignedSupportingTokens, SignedEncryptedSupportingTokens, or 
EncryptedSupportingTokens. In the full profile, you must use an XPath expression to sign or 
encrypt a SupportingToken. 

Some endorsing tokens are not supported in the full profile, including 
EndorsingSupportingTokens, SignedEndorsingSupportingTokens, 
EndorsingEncryptedSupportingTokens, and SignedEndorsingEncryptedSupportingTokens.

Both the Liberty profile and the full profile support the SymmetricBinding and 
AsymmetricBinding assertions. Only Liberty profile supports the TransportBinding assertion.

The IncludeToken assertion is enforced in the Liberty profile, but is ignored in the 
WS-Security runtime environment of the full profile.

The Liberty profile supports PasswordDigest and key derivation in the UsernameToken 
assertion. The full profile supports only PasswordText in a UsernameToken.

An unrecognized element in the Security header is rejected by the full profile. It is accepted by 
the Liberty profile.
Chapter 8. From development to production 227

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_sec_diff.html


For more information about the differences for the Web Service Security of the full profile and 
the Liberty profile, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/cwlp_wssec_cxf_diff.html

Web applications
The Liberty profile server does not automatically expand web archive (WAR) files that are 
deployed to the server. The Java EE specification states that the getRealPath() method 
returns a null value if the content is being made available from a WAR file. 

If your application relies on a result being returned by getRealPath(), you must deploy the 
application as an expanded web application, not as a WAR file. For example, you can 
manually extract the WAR file and copy the expanded application to the dropins directory.

JSP
Full profile supports a useInMemory configuration option to store only translated JSP files in 
memory. The jsp-2.2 feature of Liberty profile does not support this option. 

8.4  Using the Liberty profile on z/OS

WebSphere Application Server V8.5 provides features for administering a Liberty profile on a 
z/OS platform. You can use IBM MVS™ operator commands to create, start, stop, or modify 
the Liberty profile servers.

The IBM Installation Manager is used to install the Liberty profile on z/OS using a part of the 
com.ibm.websphere.liberty.zOS.v85 package offering described in 2.2.3, “Installation on 
z/OS” on page 51.

Before creating a server or running the default server instance, you need to set the Java 
Runtime. The Liberty profile runtime searches for the Java command in the following order of 
properties: JAVA_HOME, JRE_HOME, and PATH. 

You can set the environment variable by executing a command with the same syntax as in 
Example 8-1. This command exports the environment variable, but it is only valid in the 
command prompt shell that you are currently in.

Example 8-1   Exporting the PATH environment variable

export PATH=/usr/lpp/java/J7.0_64/bin/:/bin/:/usr/sbin/:.

Additionally, you can use the Liberty profile server.env configuration file to set up a specified 
Java Runtime. To configure the Java runtime using this file, add the JAVA_HOME parameter and 
the required value for your environment into the file as in Example 8-2 on page 229. If the 
server.env file does not exist, you must create it manually in the Liberty profile etc directory, 
which should be in the Liberty profile installation directory. You have to create the etc 
directory manually in case it does not exist. The server.env file in the etc directory is shared 
by all servers created from runtime. You can also place the server.env file in the home 
directory of a server to be used only by that server.
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Example 8-2   JAVA_HOME variable in server.env

MTRES1 @ SC49:/u/mtres1/IBM/etc>cat ./server.env
JAVA_HOME=/usr/lpp/java/J7.0_64/
MTRES1 @ SC49:/u/mtres1/IBM/etc>

After setting the Java Runtime, you can create and start a Liberty profile server as in 
Example 8-3. You can configure your server and add features using the server.xml file.

Example 8-3   Creating and starting a Liberty profile server

MTRES1 @ SC49:/u/mtres1/IBM/bin>./server create server1
Server server1 created.
MTRES1 @ SC49:/u/mtres1/IBM/bin>./server start server1
Starting server server1.
Server server1 started with process ID 67633642.
MTRES1 @ SC49:/u/mtres1/IBM/bin>

To list the version of the Liberty profile that you are using, run the server version command. 
To find information about the features of your Liberty profile, run the productInfo 
featureInfo command as in Example 8-4.

Example 8-4   Listing the version and features of a Liberty profile

MTRES1 @ SC49:/u/mtres1/IBM/bin>server version
WebSphere Application Server 8.5.5.6, WAS FOR Z/OS 8.5.5.6 (1.0.9.20150425-1300) 
on IBM J9 VM, version pmz6470sr8fp10-20141219_01 (SR8 FP10) (en_US)
MTRES1 @ SC49:/u/mtres1/IBM/bin>./productInfo featureInfo
appSecurity-1.0 [1.1.0]
appSecurity-2.0 [1.0.0]
beanValidation-1.0 [1.0.0]
blueprint-1.0 [1.0.0]
cdi-1.0 [1.0.0]
clusterMember-1.0 [1.0.0]
collectiveController-1.0 [1.0.0]
collectiveMember-1.0 [1.0.0]
concurrent-1.0 [1.0.0]
distributedMap-1.0 [1.0.0]
ejbLite-3.1 [1.0.0]
jaxrs-1.1 [1.0.0]
jdbc-4.0 [1.0.0]
jndi-1.0 [1.0.0]
jpa-2.0 [1.0.0]
jsf-2.0 [1.0.0]
json-1.0 [1.0.0]
jsp-2.2 [1.0.0]
ldapRegistry-3.0 [1.0.0]
localConnector-1.0 [1.0.0]
managedBeans-1.0 [1.0.0]
monitor-1.0 [1.0.0]
oauth-2.0 [1.0.0]
osgi.jpa-1.0 [1.0.0]
osgiConsole-1.0 [1.0.0]

Note: The Liberty profile installation directory is often represented by the 
${wlp.install.dir} variable in configuration files.
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restConnector-1.0 [1.0.0]
serverStatus-1.0 [1.0.0]
servlet-3.0 [1.0.0]
sessionDatabase-1.0 [1.0.0]
ssl-1.0 [1.0.0]
timedOperations-1.0 [1.0.0]
wab-1.0 [1.0.0]
webCache-1.0 [1.0.0]
webProfile-6.0 [6.0.0]
zosSecurity-1.0 [1.0.0]
zosTransaction-1.0 [1.0.0]
zosWlm-1.0 [1.0.0]
MTRES1 @ SC49:/u/mtres1/IBM/bin>

Additional optional features provide enhanced integration with z/OS qualities of service:

� Classify inbound HTTP requests with Workload Manager (WLM)

� Use an IBM DB2® Type 2 driver with Resource Recovery Services (RRS) transaction 
management

� Authenticate users by using a System Authorization Facility (SAF) user registry

� Authorize users by using a SAF authorization provider

You can add more features to your Liberty profile installation by using the featureManager 
command. Be aware that some features are available starting with a specific version of the 
Liberty profile. For example, the z/OS Connect offering feature can be set up only if you are 
running Liberty profile version 8.5.5.2 with interim fix packs IFPI18279 and IFPI18379, or 
version 8.5.5.3. Make sure that you always run the most recent version of the Liberty profile.

To add features to your z/OS Liberty profile server, two steps need to be configured:

1. Install the new feature (if available for your version of z/OS Liberty profile server). This can 
be accomplished by using IBM Installation Manager or the featureManager command. For 
more information, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/twlp_inst_assets.html?cp=SSAW57_8.5.5%2F3-3-11-0-1-2&
lang=en

2. Enable the new feature by editing the server.xml configuration file of your z/OS Liberty 
profile server and adding the feature short name is a feature xml tag. 

For more information about administering the Liberty profile on z/OS, see the following IBM 
Knowledge Center website: 

http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.z
series.doc/ae/twlp_admin_zos.html?cp=SS7K4U_8.5.5%2F1-3-11-0-3-1-19

8.4.1  IBM z/OS Connect

The IBM z/OS Connect offering is a new Liberty profile feature that encapsulates calling z/OS 
target applications by using Representational State Transfer (REST) calls. Following are the 
benefits of z/OS Connect:

� Provides RESTful access to identify and invoke z/OS-based business assets in IBM 
CICS®, IBM IMS™, UNIX System Services, and classic batch environments, opening up 
these assets to cloud and mobile-based system of engagement environments.
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� Functionality that is based on Liberty server technology, is lightweight and easily 
configurable, and provides z/OS differentiation with SAF security integration, z/OS WLM, 
and Resource Recovery Services (RRS) integration. WLM integration means different 
URIs can have varying levels of priority and performance criteria.

� As a feature in the Liberty profile server on z/OS, you can integrate z/OS Connect with 
z/OS standard system management, which can run as a started task and integrate with 
z/OS automated operations.

� Provides the ability to secure individual or groups of z/OS Connect services with SAF 
security in which only specific users or groups can have access to specific services.

� Provides the ability to uniformly track requests from cloud, mobile, and web environments 
by using z/OS System Management Facility (SMF) services. This tracking means that 
z/OS clients can use their existing processes for auditing and chargeback for requests 
from these environments.

� Enables the ability to do an automatic conversion of the request payload from JavaScript 
Object Notation (JSON) form on input to binary form consumable by z/OS applications 
such as Cobol, PL/I, and C. The reverse for the response from the z/OS application, 
converting the output from binary to JSON form is also true.

To enable the z/OS Connect feature, you have to install it first. Example 8-5 provides a way to 
use the featureManager command in order to enable the z/OS Connect feature using a local 
repository. The second thing that you need to do is to edit the server.xml file of your Liberty 
profile server and add the zosConnect-1.0 feature.

Example 8-5   Installing the zosConnect-1.0 feature by using the featureManager command

MTRES1 @ SC49:/u/mtres1/IBM/bin>featureManager install zosConnect-1.0 
--offlineOnly --location=/u/mtres1/kits/8556/repository/files/

Additional Features Terms & Conditions:
By clicking on the "I agree" button , you agree that the program code,
samples, updates, fixes and related licensed materials such as keys and
documentation ("Code") that you are about to download are subject to
the terms of the license agreement that you accepted when you acquired
the Program for which you are obtaining the Code. You further agree
that you will install or use the Code solely as part of a Program for
which you have a valid agreement or Proof of Entitlement. The terms
"Program" and "Proof of Entitlement" have the same meaning as in the
IBM International Program License Agreement ("IPLA"). The IPLA is
available for reference at http://www.ibm.com/software/sla/

Select [1] I Agree, or [2] I do not Agree:  1

Step 1 of 4: Starting installation...
Step 2 of 4: Installing zosConnect-1.0...
Step 3 of 4: Cleaning up temporary files...
Step 4 of 4: Installation completed
CWWKF1017I: One or more features installed successfully: [zosConnect-1.0].
Start product validation...
Product validation completed successfully.

MTRES1 @ SC49:/u/mtres1/IBM/bin>
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For more information about the IBM z/OS Connect feature, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_setup_zosconnect.html

8.4.2  WebSphere optimized local adapters for z/OS

The z/OS native applications can use the WebSphere optimized local adapters (WOLA) new 
Liberty profile feature for z/OS to make inbound calls to the application server enterprise 
beans and enable native programs to act as a server and accept requests from applications 
running in the WebSphere Liberty profile server.

To enable this feature, you need to install it as shown in Example 8-6 and enable it by editing 
the server.xml file of your server. You have to use the zosLocalAdapters-1.0 short name of 
the feature.

Example 8-6   Installing the zosLocalAdapters-1.0 feature using the featureManager command

MTRES1 @ SC49:/u/mtres1/IBM/bin>featureManager install zosLocalAdapters-1.0 
--offlineOnly --location=/u/mtres1/kits/8556/repository/files/

Additional Features Terms & Conditions:
By clicking on the "I agree" button , you agree that the program code,
samples, updates, fixes and related licensed materials such as keys and
documentation ("Code") that you are about to download are subject to
the terms of the license agreement that you accepted when you acquired
the Program for which you are obtaining the Code. You further agree
that you will install or use the Code solely as part of a Program for
which you have a valid agreement or Proof of Entitlement. The terms
"Program" and "Proof of Entitlement" have the same meaning as in the
IBM International Program License Agreement ("IPLA"). The IPLA is
available for reference at http://www.ibm.com/software/sla/

Select [1] I Agree, or [2] I do not Agree:  1

Step 1 of 5: Starting installation...
Step 2 of 5: Installing jca-1.6...
Step 3 of 5: Installing zosLocalAdapters-1.0...
Step 4 of 5: Cleaning up temporary files...
Step 5 of 5: Installation completed
CWWKF1017I: One or more features installed successfully: [jca-1.6, 
zosLocalAdapters-1.0].
Start product validation...
Product validation completed successfully.
MTRES1 @ SC49:/u/mtres1/IBM/bin

In order to use this feature, edit the server.xml file of your Liberty profile server and create a 
connection factory entry to provide a JNDI name as shown in Example 8-7.

Example 8-7   Server.xml tags used for the zosLocalAdapters-1.0 feature

<server>  
<featureManager>  

<feature>zosConnect-1.0</feature>  
<feature>zosLocalAdapters-1.0</feature>  

</featureManager> 
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<!-- Local adapters connection factory definition -->  
<authData id="mtres" user="mtres1" password="{xor}MjY6LTM6Pg=="/>  
<connectionFactory id="wolaCF" jndiName="eis/ola" containerAuthDataRef="mtres">  

<properties.ola/>  
</connectionFactory> 

<!-- Provide WOLA server identity -->  
<zosLocalAdapters wolaGroup="LIB1" wolaName2="LIB2" wolaName3="LIB3" />  

</server> 

For more information about using the zosLocalAdapters-1.0 feature, see the following 
website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_dat_enableconnector.html

8.4.3  Disabling z/OS operator console command handling

A new feature for the z/OS Liberty profile is the option to disable the z/OS operator console 
command handling. This needs to be done because listening and handling the z/OS operator 
console commands directly from your application or product extension feature is in conflict 
with the built-in Liberty for z/OS operator console command handler.

Follow these steps to disable the z/OS operator console command handling:

1. Create the bootstrap.properties file (if it does not exist in the server configuration 
directory).

2. Set websphere.os.extension=zosNoConsoleExtensions-1.0 in the bootstrap.properties 
file.

3. Restart your z/OS Liberty profile server.

For more information, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_disable_zos_console.html
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Chapter 9. Developing and deploying 
custom features

Starting with version 8.5.5, IBM WebSphere Application Server Liberty Profile supports direct 
enhancement of the runtime with user-defined features deployed in product extensions. 
Creating your own features allows you to customize or extend the behavior of the runtime 
using system programming interfaces (SPIs) that applications do not have access to. 
User-defined features can also provide additional application programming interfaces (APIs) 
and services to deployed applications.

This chapter walks through the creation, packaging, and deployment of a custom feature in 
the following sections:

� Considerations for creating custom features
� Defining a custom feature

9
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9.1  Considerations for creating custom features

User-defined features become an integrated part of the runtime, allowing you to do things you 
cannot do with an application. The ways that applications are effected are as follows: 

� Features are installed and managed separately from business applications, keeping your 
runtime or product code separate from user code.

� Services that are provided by a user-defined feature can receive user specified 
configuration from the server.xml file, and that configuration can be viewed and modified 
in the WebSphere developer tools configuration editor.

� Classes in Open Service Gateway initiative (OSGi) bundles that are provisioned by a 
user-defined feature can use SPIs that are provided by the Liberty profile or by other 
extensions.

� OSGi bundles in a user-defined feature can augment or extend supported programming 
models. For example, a custom Trust Association Interceptor (TAI) can be provided by a 
user-defined feature. 

� OSGi bundles in a user-defined feature can interact with OSGi services that are provided 
by the runtime and by other extensions. With correct metadata, OSGi services that are 
provided by user-defined features can also be shared with OSGi applications.

General instructions for writing features and receiving configuration properties can be found 
at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/twlp_admin_extend.html

Consider the following list before you choose to extend the Liberty profile runtime: 

� Depending on your needs, features can run directly on the Liberty kernel with no 
dependence on application containers or other features. This approach provides a 
lightweight solution.

� Defining your own features can be powerful, but comes at the cost of portability. If 
portability between application servers is a primary concern, developing 
specification-compliant applications is more appropriate than creating product extensions 
and features.

� It is important to use only documented and supported externals to ensure that the Liberty 
profile can be serviced or upgraded with minimal disruption to your features and 
extensions. APIs, SPIs, and Javadoc are provided in the ${wlp.install.dir}/dev/ 
directory for use when developing and building your features. 

� Features can use OSGi management of native library loading, allowing you to package 
libraries for multiple architectures in a single JAR file. OSGi loads the appropriate library at 
runtime. 

Other details about supported externals are provided in the IBM Knowledge Center section 
Liberty profile externals support (considered as the authoritative source) at this website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/rwlp_profile_externals.html
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9.2  Defining a custom feature

A Liberty profile feature is a collection of resources, usually OSGi bundles, that provide 
classes and services to the Liberty profile runtime. A feature is defined using a text-based 
manifest file that follows the Subsystem Service metadata format in the OSGi Enterprise R5 
specification.

9.2.1  Elements of a feature

To create a feature, either manually or using WebSphere developer tools, you essentially 
must create a manifest file, example.mf, in the lib/features/ directory of a product 
extension. That manifest file must describe the feature with this type of information:

� What it is called
� How it is referenced
� Whether other features can use it

Also, the manifest enumerates the feature’s content, including any bundles that should be 
provisioned if the feature is enabled.

For more information about feature manifests, including the full list of all supported manifest 
headers, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/rwlp_feat_definition.html

Fixed-value manifest headers
There are a few headers in a feature manifest that must have specific, predefined values to 
allow the file to be recognized as a feature: 

IBM-Feature-Version: 2
The version of the feature subsystem type. Required.

Subsystem-Type: osgi.subsystem.feature
The feature subsystem type. Required.

Subsystem-ManifestVersion: 1
The version of the OSGi Subsystem manifest format. Specifying this 
header is not required, but recommended.

Required manifest headers
The key elements of a feature definition (shown with a representative example value) are as 
follows: 

Subsystem-SymbolicName: com.example.product.feature-1.0
The symbolic name of the feature, which follows the same style and 
syntax as the Bundle-SymbolicName header for bundles. Features can 
include other features, and when they do, they use the symbolic name 
to reference each other. The symbolic name of a feature should be 
sufficiently unique. It is safe to assume that two features with the same 
symbolic name are, in fact, the same feature. This header also 
supports the usage of attributes and directives, notably the visibility 
directive that is described in 9.2.2, “Visibility constraints for features, 
packages, and services” on page 239.
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Subsystem-Content: com.example.product.bundle; version=”[1,1.0.100)”
This header is the key to provisioning. It is a comma-separated list of 
resources that defines the feature’s content. As with package 
declarations in a bundle manifest, each element of this list can specify 
additional directives, such as type, location, or version. These 
directives are described in more detail in 9.2.3, “Subsystem content: 
Writing a minify-compatible feature” on page 242.

Recommended headers for public features
Here are the recommended headers for public features:

IBM-ShortName: example-1.0
A representative short name that can be used with the extension 
name, in server.xml, to enable a feature. This is recommended to 
simplify the user configuration of public features.

Subsystem-Localization: OSGI-INF/l10n/localization
The name and description of a feature can be globalized. Use this 
header to package properties files containing the translated values 
with your feature.

Subsystem-Name: %name
A short, localizable, and descriptive feature name. You can specify the 
value directly, or use a %propertyName format, which looks up the 
translated value in the file that is referenced by the 
Subsystem-Localization header.

Subsystem-Description: %description
A short, localizable, and feature description. You can specify the value 
directly or use a %propertyName format, which looks up the translated 
value in the file that is referenced by the Subsystem-Localization 
header.

Subsystem-Version: 1.0.0.qualifier

The version of the feature. See the OSGi core specification section 
3.2.5 for the details about how this is defined.

IBM-AppliesTo: com.ibm.websphere.appserver

The Liberty version that this feature applies to. You can specify a list of 
comma-delimited items, such as product_id, productVersion, 
productInstallType, and productEdition as in Example 9-1. If more than 
one item is supplied, the value for product_id must be different for 
each one.

Example 9-1   IBM-AppliesTo manifest header

IBM-AppliesTo: com.ibm.websphere.appserver; productVersion=8.5.5.5; 
productInstallType=Archive; productEdition="BASE,DEVELOPERS,EXPRESS,ND"

Subsystem-License: <site-name>/<license-document>

The license type for this feature. If this header is specified and you do 
not specify the IBM-License-Agreement and IBM-License-Information 
headers, the value of this header is displayed to the user for 
acceptance when installing.
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IBM-License-Agreement:lafiles/LA

The prefix of the location of the license agreement feature. It contains 
the path to the LA<language> files in the Liberty installation directory.

IBM-License-Information:lafiles/LI

The prefix of the location of the license information feature files. It 
contains the path to the LI<language> files in the Liberty installation 
directory.

Headers that influence provisioning behavior
The (not required) headers that influence provisioning behavior are:

IBM-API-Package: javax.servlet; type=”spec”
A list of packages that follows the bundle manifest’s Export-Package 
syntax and lists the packages that are provided by a feature that 
should be visible to applications. For further information, refer to 9.2.2, 
“Visibility constraints for features, packages, and services” on 
page 239.

IBM-API-Service: com.example.service.FeatureServiceOne
This header is used to indicate which services from the feature are 
visible to OSGi applications. The services that are listed in this header 
must be registered in the service registry by the bundles that comprise 
the feature. The service-name is the Java class or interface name of 
the service. Any specified attributes are interpreted as service 
properties that should be used when providing the service to OSGi 
applications. For further information, refer to 9.2.2, “Visibility 
constraints for features, packages, and services” on page 239.

IBM-SPI-Package: com.example.spi.utils
A list of packages that follows the bundle manifest’s Export-Package 
syntax and lists packages that are provided by a feature that should be 
visible to other features in other extensions. For further information, 
refer to 9.2.2, “Visibility constraints for features, packages, and 
services” on page 239.

IBM-Provision-Capability: <OSGi LDAP Filter>
Some features provide a function that is only useful if other features 
are enabled. This header allows a feature to be auto-provisioned when 
its requirements, as specified in the feature definition using a standard 
OSGi LDAP filter, are satisfied. This header is described in more detail 
in 9.2.5, “Creating a Liberty feature manually” on page 249.

IBM-App-ForceRestart: install, uninstall
The presence of this header in a feature manifest causes applications 
to be restarted when this feature is either installed, uninstalled, or 
both.

9.2.2  Visibility constraints for features, packages, and services

The Liberty profile runtime imposes visibility constraints allowing both the core runtime and 
any installed extensions to evolve independently. By default, features and their associated 
bundles are considered internal details of the runtime or extension that provides them. The 
following list identifies what this default means: 

� All features are private and cannot be specified in server.xml or included by features from 
other extensions.
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� Exported packages are only visible to other bundles provided by the same extension.

� Services that are registered in the service registry are not available to OSGi applications. 
Usage of registered services by consumers from other extensions is limited by the ability 
of consuming code to resolve the service interface.

The Subsystem-SymbolicName header supports a visibility attribute that controls how the 
feature can be used and resolved by the runtime and product extensions. As shown in 
Figure 9-1, there are three possible values for the visibility attribute: public, protected, and 
private (the default).

Figure 9-1   Visibility restrictions and features

Public features
Public features should be considered product externals or APIs. They can be used directly in 
server.xml files, are seen and used by the WebSphere developer tools, and appear in 
messages. Public features should have an IBM-ShortName header that is defined to simplify 
use. A list of public features that is provided by the Liberty runtime can be found in the 
following IBM support website: 

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/rwlp_feat.html

A public feature might be superseded by a newer version if necessary, such that the older 
version that is used by existing server configurations continue to function. For more 
information about superseded features, see the following website: 

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/cwlp_feat_mgmt.html

Example 9-2 on page 241 shows a snippet from a public feature manifest. Observe the 
presence of the IBM-ShortName header, used in combination with the extension prefix in 
server.xml, and the public visibility constraint on the Subsystem-SymbolicName header.
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Example 9-2   Declaration of a public feature, with an IBM-ShortName header

IBM-ShortName: example-1.0
Subsystem-SymbolicName: com.ibm.example.feature.public-1.0;

visibility:=public

Protected features
Protected features are also product externals, but should consider SPI, as the target 
consumer for a protected feature is another feature. Although protected features are not 
directly referenced in a configuration, they are referenced by other extensions and should be 
treated with an equal amount of care when changes are made to avoid breaking consumers. 

The Liberty profile defines several protected features, including features for the application 
manager and the class loading service, for use by product extensions. A list of protected 
features provided by the Liberty runtime area are available in the IBM support website: 

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/rwlp_protected_features.html

Example 9-3 shows a snippet from a protected feature manifest. 

Example 9-3   Declaration of a protected feature

Subsystem-SymbolicName: com.ibm.example.feature.protected-1.0;
visibility:=protected

Private features
Private features are the default. Private features are usable only within a product extension. 
Implementation details should be packaged using private features. Auto features, described 
in 9.2.5, “Creating a Liberty feature manually” on page 249, are almost always private 
features. They rely on the provisioning of other public or protected features to automatically 
enable additional capabilities.

Example 9-4 shows a snippet from a private feature manifest.

Example 9-4   Declaration of a private feature, which omits the visibility attribute 

Subsystem-SymbolicName: com.ibm.example.feature.private-1.0

Declaring API and SPI packages that are provided by a feature
By default, the individual packages that are exported by the bundles provisioned by a feature 
are private to the feature’s extension. This means that the individual packages that the 
bundles use to comprise your features are treated as internal implementation details for your 
product extension. Packages that should be shared with applications (as API) or with bundles 
from features in other extensions (as SPI) must be explicitly declared using manifest headers 
that follow the bundle’s Export-Package syntax. 

The IBM-SPI-Package header is used to list packages that are provided by a feature that 
should be treated as SPI. The IBM-API-Package header is used to list packages that are 
provided by a feature that should be treated as API. Both headers support an optional type 
attribute that identifies the type of package that is being shared. The type attribute uses the 
following values: 

api This value applies only to the IBM-API-Package header and is the 
default type for API package declarations. It is used to mark 
user-defined or product-defined API.
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ibm-api This value applies only to the IBM-API-Package header and is used for 
IBM-provided API packages.

internal This value applies only to the IBM-API-Package header and is used to 
indicate packages that are not API packages. However, they must be 
available to application classloaders in order for them to function 
correctly. For example, because of the use of reflection, bytecode 
enhancement or weaving, and resource injection.

spec Used for API or SPI provided by a standards body such as, 
javax.servlet or org.osgi.framework.

third-party Used for API or SPI to show that it is visible. However, these items are 
not provided or controlled by IBM. This situation usually applies to 
open source packages. Use of third-party packages carries additional 
risk for version-to-version migration, as these packages might change 
over time without consideration for compatibility with earlier versions.

You can see all feature manifest files of your Liberty profile in the /lib/features directory. 
For example, the values of the restConnector-1.0 feature are:

IBM-API-Package: com.ibm.websphere.jmx.connector.rest; 
type=”ibm-api”,com.ibm.ws.jmx.connector.client.rest; 
type=”ibm-api”,com.ibm.websphere.filetransfer; type=”ibm-api”

IBM-SPI-Package: com.ibm.wsspi.collective.plugins; type=”ibm-spi”, 
com.ibm.wsspi.collective.plugins.helpers; type=”ibm-spi”

9.2.3  Subsystem content: Writing a minify-compatible feature

The package utility, which is mentioned in 8.2, “Using the package utility” on page 223, can 
produce a minified server image. When you package a server with the --include=minify 
option, the package utility creates an archive that contains resources that only the server 
configuration requires. The list of required resources is built using the Subsystem-Content 
header that is defined for each enabled feature. When you create your own feature, it is 
important to verify the value of this header to ensure that a minified server that uses your 
feature has all of the resources that it needs.

The Subsystem-Content header follows the syntax shown in Example 9-5. As with an 
Export-Package bundle header, it is a comma-separated list of values, with optional 
semi-colon separated parameters, which can be attributes (=) or directives (:=). Each item in 
the list identifies an individual resource using a unique name.

Example 9-5   Syntax for Subsystem-Content header (see OSGi core spec section 1.3.2)

Subsystem-Content ::= resource ( ',' resource )*

resource ::= unique-name ( ';' parameter )*

unique-name ::= identifier ( ’.’ identifier )*

parameter ::= directive | attribute
directive ::= extended ’:=’ argument
attribute ::= extended ’=’ argument

Note: When enumerating API and SPI packages, the package version is not specified. The 
package versions should be maintained only by the bundles that provides those packages.
242 IBM WebSphere Application Server Liberty Profile Guide for Developers



argument ::= extended  | quoted-string
extended ::= ( alphanum | ’_’ | ’-’ | ’.’ )+
quoted-string ::= ’"’ ( ~["\#x0D#x0A#x00] | ’\"’|’\\’)* ’"’

The name that is used for a resource is influenced by its type, which is specified as an 
optional attribute. By default, a resource is assumed to be an OSGi bundle 
(type=”osgi.bundle”). The bundle’s symbolic name is used when specifying a bundle 
resource. Likewise, a feature’s symbolic name is used, along with 
type=”osgi.subsystem.feature”, to include another feature as a resource. For other 
supported types (type=”file” and type=”jar”) a unique string should be created for the 
resource using the syntax and character set that is allowed for symbolic or package names.

Resources can also specify a location directive to indicate where the artifact for that resource 
can or should be found. The specified location is also dependent on the type. The directive is 
not required for bundles or features, as the default (lib/ and lib/features/, respectively) is 
sufficient. For bundles and JAR files, the location directive can point to a list of directory 
locations, which constitute a search path (such as, look in dev/ first, then in lib/). The core 
runtime uses this list mechanism to provide API and SPI JAR files in the dev/ directory that 
are then serviced by the lib/ directory. For JAR and plain files, the location can (and in the 
case of files, must) contain a single path pointing directly to the backing resource. Paths are 
specified relative to the installation root of the extension containing the feature. When 
referencing public or protected features from another extension, the location field should not 
be specified. Rely on the symbolic name of the feature you are referencing and let the runtime 
figure out where to load it from.

In addition to type, the following list notes other supported directives: 

version The version attribute applies to bundles and specifies the versions to 
be matched when finding a bundle to satisfy the feature. Only bundles 
in this range are selected. A typical example of the version range is 
(1,1.0.100).

start-phase Start-phase is a directive that indicates when (relative to the rest of the 
runtime) a bundle that is used by a feature should be started. The 
start-phase directive can take one of the following values: SERVICE, 
CONTAINER, or APPLICATION. Bundles can also be defined to start 
before or just after these phases by adding _LATE to be later or _EARLY 
to be earlier than the key phase. So if you want to run immediately 
after the container phase, use CONTAINER_LATE, and if you want to run 
before the APPLICATION phase, use APPLICATION_EARLY.

The next sections provide examples of these directives in use.

9.2.4  Using the tools to create a custom feature

In this section, we describe how to build a simple feature containing a single bundle that prints 
“Hello World!” when it is started, and “Goodbye World!” when it is stopped. The focus here is 
on creating a feature and the supporting bundle resource, publishing the feature to a product 
extension, and finally using the feature as the catalyst to cause our bundle to be loaded and 
started by the OSGi runtime.

Creating an OSGi bundle project
Begin by creating a project for this bundle by completing the following steps:

1. Click File → New → OSGi Bundle Project.
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2. Enter a project name. This example uses the project name 
ITSO.OSGiExample.SimpleBundle.

3. For the Target Runtime, select WebSphere Application Server V8.5 Liberty Profile. 

4. Clear the Add bundle to application check box. If you leave this selected, a new OSGi 
application project is created. 

5. Leave all other values at the default settings and click Next → Next accepting all defaults.

6. This example uses a simple BundleActivator to show that the bundle is loaded by the 
runtime. Select the Generate an activator check box.

7. Exit the wizard by clicking Finish. The contents of the new bundle project should resemble 
what is shown in Figure 9-2.

Figure 9-2   OSGi bundle project with generated Activator

8. Update the contents of the Activator to roughly match the example contents of Figure 9-3.

Figure 9-3   Simple bundle activator
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Creating a Liberty feature project
Begin by creating a project for the new feature by completing the following steps:

1. Click File → New → Other → OSGi Liberty Feature Project and then click Next to open 
the Liberty Feature Project wizard, as shown in Figure 9-4 on page 245.

Figure 9-4   The Liberty Feature Project wizard

2. Enter a project name. This example uses the project name 
ITSO.OSGiExample.SimpleFeature.

3. For the Target runtime, select WebSphere Application Server V8.5 Liberty Profile and 
click Next.
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4. Select the check box next to itso.osgiexample.simplebundle to include our example 
bundle in our new feature as shown in Figure 9-5.

Figure 9-5   Adding a bundle to a feature

5. Exit the wizard by clicking Finish. The contents of the new feature project should 
resemble what is shown in Figure 9-6.

Figure 9-6   Liberty feature project
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6. Double-click the Manifest element in the feature project to open the manifest editor. 
Update the values in the manifest (Figure 9-7) and save your changes. Specifically, update 
the feature’s symbolic name and the feature name to include a version representation. 
This is counter to how versions usually work. In this case, consider the version string in the 
feature name to be a statement of API/SPI compatibility, especially for public features. 

Figure 9-7   The feature manifest editor

7. To support making changes to the bundle version (to apply service), select the bundle 
from the Subsystem-Content section of the editor, click Properties, and edit the 
Minimum Version and Maximum Version fields (Figure 9-8 on page 247). Click OK.

Figure 9-8   Editing the properties of a bundle that are listed in a feature’s Subsystem-Content
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8. Click the SUBSYSTEM.MF tab at the bottom of the manifest editor to view the raw source 
of the manifest, resembling what is shown in Figure 9-9. The specified 
Subsystem-Content is minimal, as the feature includes only a bundle resource (which is 
the default type) in a default location with the specified required version range. 

Figure 9-9   Raw contents of the feature manifest

Installing the feature
The WebSphere developer tools make installing the feature painless. Right-click the feature 
project, select Install Feature from the menu, select WebSphere Application Server V8.5 
Liberty Profile for the target run time, and click Finish. The WebSphere developer tools adds 
the feature and its contents to the default product extension of the target run time 
(Figure 9-10). You need to restart the server in case it is running.

Figure 9-10   The example bundle and feature that is installed into the default product extension
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Enabling the feature in a test server
Use the server configuration editor to edit the configuration of a test server by clicking Add 
next to the Feature Manager list and selecting the feature that we created from the list. 
Because it is a feature in the default product extension, it appears in the list with a usr: prefix. 
This example shows usr:simple-1.0 (Figure 9-11). Click OK to finish, and save the updated 
server configuration.

Figure 9-11   The simple-1.0 feature appears in the feature list with the usr: prefix

If you add this feature to a running server, you see something similar to the output shown in 
Example 9-6. “Hello World!” is the output from the simple activator that we provided for the 
feature bundle.

Example 9-6   Console output after enabling the usr:simple-1.0 feature.

[AUDIT   ] CWWKF0011I: The server simpleServer is ready to run a smarter planet.
[AUDIT   ] CWWKG0016I: Starting server configuration update.
Hello World!
[AUDIT   ] CWWKF0012I: The server installed the following features: 
[usr:simple-1.0].
[AUDIT   ] CWWKF0008I: Feature update completed in 0.220 seconds.
[AUDIT   ] CWWKG0017I: The server configuration was successfully updated in 0.236 
seconds.

9.2.5  Creating a Liberty feature manually

You can always create and deploy a Liberty feature manually, without the need of WebSphere 
Tools. 

The two things that you need in order to obtain a Liberty feature are the OSGi bundle and the 
corresponding feature manifest file. The OSGi bundle has to be copied in the 
${wlp.user.dir}/extension/lib directory and the manifest file has to be copied into the 
${wlp.user.dir}/extension/lib/features directory. By doing these two things, you are able 
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to finally install the new feature by adding its short name into the server.xml configuration file 
of the Liberty profile server.

To create a Liberty feature manually, follow the steps below:

1. Develop the OSGi bundle and the bundle manifest. It is required that the OSGi bundle 
manifest file contains the Bundle-SymbolicName header to specify a unique name for the 
bundle. Use the Export-Package header to specify the exported packages as in 
Example 9-7.

Example 9-7   Manifest file of an OSGi bundle

Bundle-SymbolicName: com.morleyc.example
Bundle-Version: 1.0.7
Bundle-ManifestVersion: 3
Export-Package: com.morleyc.example.testp1; version="1.0.3",
                com.morleyc.example.testp2; version="1.0.1",

com.morleyc.example.testp3; version="1.0.7"

2. Package the OSGi bundle Java classes and the manifest file by using the jar command 
as in Example 9-8.

Example 9-8   Packaging the Java classes and the manifest file by using the jar command

jar cfm example.jar MANIFEST.Mf *.class

3. Create the manifest file of the new Liberty profile custom feature by adding the required 
and the recommended headers as explained in 9.2.1, “Elements of a feature” on 
page 237. Example 9-9 shows such a manifest file named new-feature-1.0.mf.

Example 9-9   The contents of the custom Liberty profile feature new-feature-1.0.mf file

Subsystem-ManifestVersion: 1.0
Subsystem-SymbolicName: com.morleyc.example.new-feature-1.0; visibility:=public
Subsystem-Version: 1.0.0.qualifier
Subsystem-Type: osgi.subsystem.feature
Subsystem-Content: example; version="[1,1.0.100)"
IBM-Feature-Version: 7
IBM-API-Package: com.morleyc.example.testp1; type="api",
                 com.morleyc.example.testp2; type="api",

com.morleyc.example.testp3; type="api"
IBM-SPI-Package: com.new-feature.myservice.spi;
IBM-ShortName: new-feature-1.0

4. Copy the bundle of the new Liberty profile feature into the 
${wlp.user.dir}/extension/lib directory.

5. Copy the new Liberty profile feature manifest file into the 
${wlp.user.dir}/extension/lib/features directory.

6. If defined by the Subsystem-Name, Subsystem-Description, and Subsystem-Localization 
headers, copy the localization files into the 
${wlp.user.dir}/extension/lib/features/l10n directory.

7. Add the new feature to the Liberty profile server.xml configuration file as in Example 9-10.

Example 9-10   Adding the new feature in the server.xml Liberty profile configuration file

<featureManager>
     <feature>usr:new-feature-1.0</feature>
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</featureManager>

9.2.6  Automatic provisioning: Creating an auto-feature

An automatic feature is not configured by the user in the server XML. It is automatically 
loaded by the feature manager if the features specified in its IBM-Provision-Capability 
manifest header are configured by the user. This is useful when two features require 
additional Java classes to work together. The additional classes are put into the automatic 
feature. When only one of those features is configured, the extra Java classes are not loaded. 
In this way, automatic features can be used to keep features as small as possible without 
requiring the user to understand any relationships between them. 

For example, one feature might provide an application container and another might provide a 
generic security service. In order for them to work together, security collaborators specific to 
that container are required. Those collaborators are not useful in the absence of either the 
container or the security service. In this example, the security collaborator classes are 
packaged into a third, automatic feature, which contains the entry in its manifest file shown in 
Example 9-11. 

Example 9-11   Entry for automatic feature

IBM-Provision-Capability:
osgi.identity; 
filter:=”(&(type=osgi.subsystem.feature)(osgi.identity=com.ibm.itso.container))”,
osgi.identity; 
filter:=”(&(type=osgi.subsystem.feature)(osgi.identity=com.ibm.itso.security))”

The syntax for the IBM-Provision-Capability header is an LDAP query. The feature names 
that are specified in the query must be the Subsystem-SymbolicName values, not the 
IBM-ShortName values.

The bundles in the automatic feature can have mandatory dependencies on the bundles in 
both of the other features because the feature is provisioned only when both the container 
and security features are present. This is another way that automatic features helps minimize 
the mandatory dependencies between configured features. 

9.2.7  Packaging native code in your bundles

OSGi provides help for loading native libraries. You can package libraries for all supported 
architectures in your bundle and list them on the Bundle-NativeCode manifest header. Code a 
single System.loadLibrary call in your Java code. OSGi examines the manifest header, 
determines the correct library for the architecture being used, and loads that library. 
Example 9-12 shows an example definition of the native library name for Windows and OSX. 

Example 9-12   Definition of the native library name for Windows and OSX

Bundle-NativeCode:
lib/win32/x86/name.dll; osname=win32; processor=x86,
lib/macosx/libname.dylib; osname=macosx; processor=x86; processor=x86_64

Java has some limitations when loading native libraries that also apply in an OSGi framework. 
For example, a native library can be loaded only by one classloader in a JVM process, so the 
same native library cannot be used by more than one OSGi bundle. 
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9.2.8  Packaging features for delivery

Features can be packaged individually for an application to an existing Liberty profile 
installation or can be included in a packaged server if a self-contained deployment package is 
required.

OSGi subsystem archive
A subsystem archive is the OSGi-specified package for an individual feature. It contains the 
feature (subsystem) manifest and the files that are described by the Subsystem-Content 
manifest header. It is an archive file with an .esa suffix.

A subsystem archive is the output of WebSphere developer tools when you select Export for 
a Liberty feature project and can be applied to a Liberty profile installation by running the 
featureManager install command in the bin directory. 

Packaged server
If you want to create a complete deployment solution, you can generate an archive by running 
the server package command. This outputs a compressed file with the following contents:

� The Liberty runtime
� Any features in the user product extension directory (wlp/usr/extension)
� Your server configuration (for the server that is specified on the server package command)
� Any applications and resources that are contained within the server

Using the minify option generates a smaller package containing only the features that are 
used by the server as in Example 9-13. This includes features that are configured in the 
server.xml file, features that are included by configured features, and features that are 
resolved as automatic features from the configured features. For example, a minified server 
package for servlet support is only about 17 MB.

Example 9-13   Using the server package command with and without the minify option 

C:\IBM\WebSphere\Liberty855_OSGI\bin>server package server --include=minify
Packaging server server.
Querying server server for content.
Launching server (WebSphere Application Server 8.5.5.5/wlp-1.0.8.cl50520150305-2202) on Java HotSpot(TM) 64-Bit Server 
VM, version 1.7.0_79-b15 (en_US)
[AUDIT   ] CWWKE0001I: The server server has been launched.
[AUDIT   ] CWWKF0012I: The server installed the following features: [servlet-3.0].
[AUDIT   ] CWWKF0026I: The server server is ready to build a smaller package.
[AUDIT   ] CWWKE0036I: The server server stopped after 6.825 seconds.
Building archive for server server.
Server server package complete in C:\IBM\WebSphere\Liberty855_OSGI\usr\servers\server\server.zip.
C:\IBM\WebSphere\Liberty8555_OSGI\bin>dir C:\IBM\WebSphere\Liberty8555_OSGI\usr\servers\server\server.zip
 Volume in drive C has no label.
 Volume Serial Number is 3031-6CBE
 Directory of C:\IBM\WebSphere\Liberty8555_OSGI\usr\servers\server
05/08/2015  03:47 PM        43,945,347 server.zip
               1 File(s)     43,945,347 bytes
               0 Dir(s)   8,905,318,400 bytes free
C:\IBM\WebSphere\Liberty8555_OSGI\bin>
C:\IBM\WebSphere\Liberty8555_OSGI\bin>server package server
Packaging server server.
Server server package complete in C:\IBM\WebSphere\Liberty8555_OSGI\usr\servers\server\server.zip.
C:\IBM\WebSphere\Liberty8555_OSGI\bin>dir C:\IBM\WebSphere\Liberty8555_OSGI\usr\servers\server\server.zip
 Volume in drive C has no label.
 Volume Serial Number is 3031-6CBE
 Directory of C:\IBM\WebSphere\Liberty8555_OSGI\usr\servers\server
05/08/2015  04:03 PM        98,004,525 server.zip
               1 File(s)     98,004,525 bytes
               0 Dir(s)   8,851,329,024 bytes free
C:\IBM\WebSphere\Liberty8555_OSGI\bin>

Docker support
To ease testing and development cycles, you can also run your application using a pre-built 
Docker image containing IBM WebSphere Application Server for Developers V8.5.5 Liberty 
profile and an IBM JAVA Runtime Environment 7.1 in the Docker Hub. This means that you 
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can get the Liberty profile Docker image environment quickly and run your own applications in 
there.

For information about Docker Hub, see the following website:

https://www.docker.com/whatisdocker

For information about Liberty profile Docker support, see the following website:

http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/4/897/ENUS2
15-084/index.html&request_locale=en

In short, to set your Docker Liberty profile environment, you need to do the following:

1. Set your Docker environment. For information about how to do that on your system, see 
the following website:

https://docs.docker.com/installation/#installation

2. Pull your Liberty profile image using a Docker command, such as in Example 9-14.

Example 9-14   Running a WebSphere Liberty image in Docker

docker pull websphere-liberty
Pulling repository websphere-liberty
c659cb20283c: Download complete 
e9e06b06e14c: Download complete 
a82efea989f9: Download complete 
37bea4ee0c81: Download complete 
07f8e8c5e660: Download complete 
1982456d9ebb: Download complete 
068e3636b930: Download complete 
16b920ee3a3f: Download complete 
2508d7b16997: Download complete 
0d361e23268a: Download complete 
d6f640fd2033: Download complete 
031348e20192: Download complete 
71dcc2627667: Download complete 
161847a85d6c: Download complete 
f5fa021c4927: Download complete 
3e165babb523: Download complete 
a8a7133801c6: Download complete 
c2a2ffe2d254: Download complete 
3ce88d18a79e: Download complete 
3c650dabf41a: Download complete 
6681ce2f90c0: Download complete 
9cc0db580156: Download complete 
e1972175e2d4: Download complete 
Status: Image is up to date for websphere-liberty:latest

3. Publish your application to your Docker Liberty profile environment by using a Docker 
command such as in Example 9-15 on page 254. This command uses the dropins folder 
of the Liberty profile server to deploy the application. For more information about the 
dropins directory, see 1.4.1, “Quick start using dropins” on page 28.
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Example 9-15   Running an application in a WebSphere Liberty Docker container

docker run -d -e LICENSE=accept -p 80:9080  -v 
/tmp/myApp.war:/opt/ibm/wlp/usr/servers/defaultServer/dropins/myApp.war  
websphere-liberty

For an example on running an application in a WebSphere Liberty profile of a Docker 
container, read section 3.3, “Testing with a WebSphere Liberty Docker container” in 
Configuring and Deploying Open Source with WebSphere Application Server Liberty Profile, 
SG24-8194.

A Liberty product extension is a set of directories and files that have a layout similar to the 
Liberty product installation but are placed in your own installation location. It can contain the 
same types that are present in the Liberty product, such as feature and command-line scripts. 

The function in a product extension can be fully integrated into the Liberty runtime and 
WebSphere developer tools. Because it uses the extensible Liberty architecture, it also 
integrates into future tools that are written to use that extensibility. 

A product extension is identified to the Liberty run time through placement of a properties file 
in the Liberty installation. The name of the properties file is used as the product extension. 
For convenient development of features, there is a built-in user extension location in the 
Liberty installation structure: the usr/extension directory. You can install your features to that 
location for easy testing before you package them into your product extension. This is the 
location that the WebSphere developer tools use for feature installation. 

When you design product extensions, there are many aspects that you might want to consider 
beyond simple function. These design principles are applied to the Liberty product features to 
keep the servers highly compassable and simple to use. Those design principles are covered 
in the following sections.

Allowing the user to compose their server
It is a core design principle of the Liberty profile that the user should select which features are 
in their server. This allows the user to control at a fine-grained level the exact services that are 
available. There is intentionally no support for profile augmentation, so when your feature is 
installed into an existing Liberty profile, it is not used by any servers unless the user explicitly 
adds the feature to the server configuration. 

If you want to provide a way for your feature to be used without being manually added to the 
server configuration, you can provide a server template in the template servers directory of 
your product extension. This approach also allows you to provide a predefined custom 
configuration in addition to the feature itself. You can direct your users to specify your 
template on the server create command or you can provide your own command script in 
your extension bin directory that wraps the server create command and specifies your 
template, as shown in Example 9-16.

Example 9-16   Wrapping the server create command

server create --template=<extension-name>:<template-name>

Although this might be a convenient way to allow simple creation of working servers, it should 
not be used in place of providing useful configuration defaults in your features through 
metatype. Keeping the default values inside your feature allows you to adjust them in service 
or future releases. There is no support for modifying existing server.xml configuration files. 
These files are considered to be user-owned files and the Liberty profile does not change 
them. 
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For more information about Liberty profile product extensions, see 1.5, “Product extensions” 
on page 30.

Embedding the Liberty profile server in your applications

You can use the System Programming Interfaces (SPIs) that are provided by the Liberty 
profile to configure, control, and monitor a Liberty profile server in your applications.

The Liberty profile provides the following two SPIs to start or stop a Liberty profile server:

� com.ibm.wsspi.kernel.embeddable.Server
� com.ibm.wsspi.kernel.embeddable.ServerBuilder

Use a Future object to store the result of a start or stop operation. The return codes that are 
used by embedded operations are the same as the return codes used by the server 
command. Additionally, you can receive asynchronous notifications when the server is 
starting, has started, or has stopped by creating your own class that implements the 
com.ibm.wsspi.kernel.embeddable.ServerEventListener interface.

To include your Liberty profile server within your application, you must follow these steps:

1. Add to the class path the ws-server.jar file, which is in the 
${wlp.install.dir}/bin/tools directory of the Liberty profile installation.

2. Specify the name of your target server.

For more information about procedure to embed your Liberty profile server into your 
applications, see the following website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/twlp_extend_embed.html

All configuration is specified in the server.xml file
Almost all configuration for a server can be specified in the server.xml or other included 
configuration files. One exception is the case where properties must be set before server.xml 
processing. For example, JVM properties cannot be set in server.xml and for those you can 
use the bootstrap.properties or jvm.options files. Another exception is the case where a 
public specification requires that the configuration be contained in a specific file. Specifying 
configuration in the server.xml or included files allows an ecosystem of commands and tools 
to be built on those files. 

By receiving your configuration from the server.xml file, you benefit from the following 
capabilities:

� Automatic parsing and injection of your configuration properties

Notes: 

� Environment variables are not checked and the jvm.options and server.env files are 
not read.

� Management of the JVM and environment is assumed to be managed by the caller.

� Configure the ws-javaagent.jar file with the -javaagent JVM option. The 
ws-javaagent.jar file is in the ${wlp.install.dir}/bin/tools directory of the Liberty 
profile installation. You are advised to configure the ws-javaagent.jar file, but it is not 
mandatory unless you use capabilities of the server that require it, such as monitoring 
or trace. If you contact IBM support, you might need to provide trace, and if so, you 
must start the server with the ws-javaagent.jar file, even if you do not normally use it.
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� Reinjection every time the property values are updated

� Inclusion of your configuration in the generated schema that is used by the WebSphere 
developer tools and any future graphical user interfaces

� Management of configuration files by the Liberty run time

It also benefits your users by allowing them to keep all of their server configurations in a 
single file or set of files. 

Keeping it small and fast
Keep your dependency stack as short as possible. Defer as much of your initialization 
processing as possible. For example, you can use OSGi Declarative Services to delay loading 
of your service implementation classes until they are used. 

Dynamic behavior
Features should be able to stop and restart independent of the server restarting and 
independent of each other. This consideration relies on correct cleanup on shutdown and the 
dynamic management of references to services in other features. Your features should react 
dynamically to configuration updates. This dramatically reduces the need for servers to be 
restarted, especially during application development. It also greatly increases usability. 

Simple migration
It should be painless for users to apply service and product upgrades. Some design points 
that help to achieve that goal are included in the following list:

� No migration is required for configuration; all configuration remains compatible with earlier 
versions.

� Longer toleration of Java versions.

� Clear separation of product and user files and internal and external function.

� Feature evolution is strictly compatible with earlier versions. The versions in feature names 
provide a way to handle incompatibilities in upgrades by providing a new feature version 
with the new behavior but continuing to support the existing feature. 
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Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet, as described 
in the following sections. 

Locating the web material

The web material that is associated with this book is available in softcopy on the Internet from 
the IBM Redbooks web server. Point your web browser to the following URL:

ftp://www.redbooks.ibm.com/redbooks/SG248076

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks 
form number, SG248076.

Using the web material

The additional web material that accompanies this book includes the following files:

File name Description

ch3_ITSOWeb.zip A Liberty profile developer tools project with code samples from 
Chapter 3, “Developing and deploying web applications” on 
page 59

ch4_OSGiExample.zip A Liberty profile developer tools project with code samples from 
Chapter 4, “Iterative development of OSGi applications” on page 99

ch5_ITSOWeb.zip A Liberty profile developer tools project with code samples from 
Chapter 5, “Developing enterprise applications with Liberty profile” 
on page 113
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ITSO_derby.zip A Derby database for use with samples from Chapter 5, 
“Developing enterprise applications with Liberty profile” on 
page 113

ITSO2_derby.zip A Derby database for use with samples from Chapter 5, 
“Developing enterprise applications with Liberty profile” on 
page 113

ITSODD_derby.zip A Derby database for use with samples from Chapter 5, 
“Developing enterprise applications with Liberty profile” on 
page 113

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and download the contents of the web 
material files into this folder. Extract the sg248076.zip file into this folder to access the sample 
application files.

Importing the Liberty profile developer tools projects

To use any of the Liberty profile developer tools projects, you must first create a Liberty profile 
server runtime environment on your Eclipse installation, as described in 2.2.1, “Installation 
using the Liberty profile developer tools” on page 43. 

Use the following process to use any of the three example projects: ch3_ITSOWeb.zip, 
ch4_OSGiExample.zip, or ch5_ITSOWeb.zip:

1. Extract the compressed project file into its own subdirectory.

2. From Eclipse, run File → Import → Existing Projects Into Workspace.

3. In the Import Projects window, enter the path to the subdirectory where you extracted the 
compressed file in the Select root directory field. This should complete the Projects field 
with either ITSOWeb (for the examples from Chapter 3, “Developing and deploying web 
applications” on page 59 and Chapter 5, “Developing enterprise applications with Liberty 
profile” on page 113), or five projects beginning with ITSO.OSGiExample (for the 
examples from Chapter 4, “Iterative development of OSGi applications” on page 99).

4. Select the box to copy projects into the workspace.

5. Click Finish.

Using the compressed Derby database files

To use the compressed Derby database files, simply extract the compressed files and make a 
note of the file path. The examples in Chapter 5, “Developing enterprise applications with 
Liberty profile” on page 113 describe how to set up a data source to point to these example 
databases. 
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this book.

Online resources

These websites are relevant as further information sources:

� Enterprise Bundle Archive (EBA) Maven Plugin:

http://aries.apache.org/modules/ebamavenpluginproject.html

� OSGi home page:

http://www.osgi.org

� Stack Overflow tags:

http://stackoverflow.com/questions/tagged/websphere-liberty

� Supported operating systems for the Liberty profile:

http://www.ibm.com/support/docview.wss?uid=swg27038218

� Technologies that are supported by the Liberty profile:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/rwlp_prog_model_support.html?cp=SSAW57_8.5.5%2F1-0-2-0-0

� WASdev community:

http://wasdev.net

� WASdev forum:

https://developer.ibm.com/wasdev

� WebSphere Application Server Developer Tools for Eclipse:

http://publib.boulder.ibm.com/infocenter/radhelp/v9/topic/com.ibm.rad.install.d
oc/topics/t_install_wdt.html

� WebSphere Application Server Liberty Profile IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.do
c/ae/welc6tech_wlp_thr.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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