
ibm.com/redbooks

IBM® Tivoli®

IT Security Policy Management
Usage Patterns Using IBM Tivoli
Security Policy Manager

Axel Buecker
Scott Andrews

Craig Forster
Nicholas Harlow

Ming Lu
Sridhar Muppidi

Trevor Norvill
Philip Nye

Günter Waller
Eric T. White

End-to-end security policy
management for IT infrastructures

IBM Tivoli Security Policy
Manager architecture overview

Solution patterns and
deployment considerations

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IT Security Policy Management Usage Patterns
Using IBM Tivoli Security Policy Manager

October 2011

International Technical Support Organization

SG24-7880-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2011)

This edition applies to Version 7.1 of IBM Tivoli Security Policy Manager.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xii
Now you can become a published author, too! . xv
Comments welcome. xv
Stay connected to IBM Redbooks . xvi

Part 1. Business context . 1

Chapter 1. Business drivers and foundation for IT security policy
management . 3

1.1 Drivers that influence security . 4
1.1.1 Business drivers that influence security . 5
1.1.2 IT drivers that influence security . 7

1.2 IBM Security Framework . 10
1.2.1 Security Governance, Risk Management, and Compliance model . . 12
1.2.2 People and Identity domain. 13

1.3 IBM Security Blueprint. 14
1.4 SOA governance . 17

1.4.1 SOA adoption: Impact on business and security 18
1.4.2 Relating SOA governance to other business drivers 18

1.5 Identity and access management governance . 20
1.5.1 Critical data: Ensuring authorized access only when needed. 20
1.5.2 Driving operational efficiency through automation 21
1.5.3 Enforcing consistent policy enforcement across the IT environment 21

1.6 Compliance management . 22
1.6.1 Regulation and privacy concerns . 22
1.6.2 Assessing compliance: The audit trail . 23
1.6.3 Relating compliance management and governance 24

1.7 Data and information security . 25
1.7.1 Risk of unauthorized access and data loss. 25
1.7.2 Context-based information access . 26
1.7.3 Data security in cloud and SOA environments 27

1.8 IT security policy management: A unifying solution 28
1.8.1 Addressing governance . 29
1.8.2 Compliance and data security . 30
1.8.3 Risk management and the cost containment 31
© Copyright IBM Corp. 2011. All rights reserved. iii

1.9 Introduction to IT security policy life cycle management 32
1.9.1 Policy authoring. 34
1.9.2 Transform . 38
1.9.3 Enforcement . 39
1.9.4 Monitor . 39

1.10 Conclusion. 40

Chapter 2. Architecture patterns for externalizing security from
applications and services . 41

2.1 Intermediary approach . 43
2.1.1 Customer example . 44
2.1.2 Integrating policy at the intermediary level . 44

2.2 Container level approach . 47
2.2.1 Customer example . 48
2.2.2 Integrating policy at the container level . 49

2.3 Database level approach. 51
2.3.1 Customer example . 52
2.3.2 Integrating policy at the database level . 54

2.4 Application level approach . 56
2.4.1 Customer example . 56
2.4.2 Integrating policy at the application level . 57

2.5 Conclusion. 59

Part 2. Implementing a policy life cycle management solution . 61

Chapter 3. Tivoli Security Policy Manager overview and architecture . . . 63
3.1 Tivoli Security Policy Manager overview . 64

3.1.1 Tivoli Security Policy Manager components 64
3.2 Tivoli Security Policy Manager architecture . 69

3.2.1 Logical component architecture . 72
3.2.2 Policy server architecture . 75
3.2.3 Tivoli runtime security service architecture . 78
3.2.4 Policy data model, repository, and exchange 83
3.2.5 Policy administration and classification. 84
3.2.6 Delegated administrative security . 85
3.2.7 Auditing and reporting . 87

3.3 Example deployment physical architecture . 88
3.4 Conclusion. 91

Chapter 4. Integration with external systems . 93
4.1 Identity management. 94

4.1.1 Integration with identity management . 95
4.1.2 Integration with Tivoli Identity Manager. 96
4.1.3 Integration with other identity management systems 98
iv IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

4.2 Access management. 98
4.2.1 Integration with Tivoli Access Manager for e-business 100
4.2.2 Integration with other access management systems 103

4.3 Role management . 103
4.4 User repositories . 104

4.4.1 Integration with Tivoli Directory Server . 104
4.4.2 Integration with Tivoli Directory Integrator. 105
4.4.3 Integration with other user repositories . 109

4.5 Trust services . 110
4.5.1 Integration with Tivoli Federated Identity Manager 110

4.6 Application repositories . 111
4.6.1 Databases . 111
4.6.2 User registries . 112
4.6.3 Proprietary repositories . 112
4.6.4 Java. 112

4.7 Classification management tools. 113
4.8 Compliance management . 114
4.9 Rules engines . 115
4.10 Conclusion. 116

Part 3. Usage patterns for IT security policy management . 119

Chapter 5. Intermediary level integration . 121
5.1 Concepts and benefits. 122

5.1.1 Scenario A: Established application environments 122
5.1.2 Scenario B: Services external to the enterprise 124
5.1.3 Scenario C: SOA message protection policies 125
5.1.4 Conclusion . 127

5.2 Java Web Application Servers . 127
5.2.1 Foundation for integration . 128
5.2.2 Java Web Application Server integration and using the policy life cycle

model . 128
5.2.3 Conclusion . 137

5.3 Web Application Firewalls . 137
5.3.1 Foundation for integration . 138
5.3.2 WebSphere DataPower SOA Appliance integration with Tivoli Security

Policy Manager . 138
5.3.3 IBM WebSphere DataPower integration and using the policy life cycle

model . 139
5.3.4 Conclusion . 146

5.4 Enterprise Service Bus . 147
5.4.1 Foundation for integration . 148
5.4.2 WebSphere DataPower SOA Appliance integration with Tivoli Security
 Contents v

Policy Manager . 149
5.4.3 Conclusion . 156

5.5 Third-party intermediaries . 156
5.6 Conclusion. 157

Chapter 6. Container level integration. 159
6.1 Concepts and benefits. 160
6.2 WebSphere Application Server . 161

6.2.1 Foundation for integration . 161
6.2.2 WebSphere integration using the policy life cycle model 164
6.2.3 Conclusion . 169

6.3 Microsoft environment . 169
6.3.1 Microsoft container integration . 170
6.3.2 Integration with Tivoli Security Policy Manager. 171
6.3.3 Microsoft integration using the policy life cycle model 174
6.3.4 Conclusion . 185

6.4 Conclusion. 185

Chapter 7. Database level integration . 187
7.1 Concepts and benefits. 188
7.2 Database policy information point . 189

7.2.1 Foundation for integration . 190
7.2.2 Integration with Tivoli Security Policy Manager. 190
7.2.3 Database integration using the policy life cycle model 192
7.2.4 Conclusion . 193

7.3 Database policy enforcement point . 194
7.3.1 Foundation for integration . 194
7.3.2 Integration with Tivoli Security Policy Manager. 195
7.3.3 Database integration using the policy life cycle model 195
7.3.4 Conclusion . 202

7.4 Enterprise content management databases . 202
7.4.1 Foundation for integration . 203
7.4.2 Integration with Tivoli Security Policy Manager. 204
7.4.3 ECM integration using the policy life cycle model 206
7.4.4 Conclusion . 212

Chapter 8. Application level integration . 213
8.1 Runtime security services interfaces. 214

8.1.1 Tivoli Security Policy Manager authorization API 214
8.1.2 JSP tag library. 223
8.1.3 Custom authorization solutions for external systems 227
8.1.4 Policy information point . 233
8.1.5 External rules . 235

8.2 Policy management API . 237
vi IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

8.2.1 Plug-in structure . 237
8.2.2 Data model . 241
8.2.3 Plug-ins . 243

8.3 Application integration . 247
8.3.1 Integration with Java technology. 247
8.3.2 Integration with WebSphere Portal . 253
8.3.3 Integration with Microsoft technology . 254

8.4 Conclusion. 265

Chapter 9. Deployment considerations. 267
9.1 Business considerations . 268

9.1.1 Business use cases . 268
9.2 Deployment considerations . 270

9.2.1 Identifying stakeholders . 271
9.2.2 Identifying policies, services, and data . 272
9.2.3 Prioritizing services . 273
9.2.4 Identifying operational requirements . 273

9.3 Deployment architecture . 274
9.3.1 Single data center deployment pattern . 275
9.3.2 Remote office deployment pattern . 276
9.3.3 Other considerations in determining deployment patterns 278
9.3.4 Operational considerations . 279

9.4 Application integration considerations. 280
9.4.1 Integration patterns . 280
9.4.2 Application policy design considerations. 283
9.4.3 Conclusion . 288

9.5 Conclusion. 288

Related publications . 291
IBM Redbooks . 291
Other publications . 291
Online resources . 291
How to get Redbooks . 292
Help from IBM . 292
 Contents vii

viii IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

alphaWorks®
DataPower®
DB2®
Extreme Blue®
FileNet®

IBM®
ILOG®
Lotus®
On Demand Community®
Redbooks®

Redpaper™
Redbooks (logo) ®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency
which is now part of the Office of Government Commerce.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.ibm.com/legal/copytrade.shtml

Preface

In a growing number of organizations, policies are the key mechanism by which
the capabilities and requirements of services are expressed and made available
to other entities. The goals established and driven by the business need to be
consistently implemented, managed and enforced by the service-oriented
infrastructure; expressing these goals as policy and effectively managing this
policy is fundamental to the success of any IT and application transformation.

First, a flexible policy management framework must be in place to achieve
alignment with business goals and consistent security implementation. Second,
common re-usable security services are foundational building blocks for SOA
environments, providing the ability to secure data and applications. Consistent IT
Security Services that can be used by different components of an SOA run time
are required. Point solutions are not scalable, and cannot capture and express
enterprise-wide policy to ensure consistency and compliance.

In this IBM® Redbooks® publication, we discuss an IBM Security policy
management solution, which is composed of both policy management and
enforcement using IT security services. We discuss how this standards-based
unified policy management and enforcement solution can address
authentication, identity propagation, and authorization requirements, and thereby
help organizations demonstrate compliance, secure their services, and minimize
the risk of data loss.

This book is a valuable resource for security officers, consultants, and architects
who want to understand and implement a centralized security policy
management and entitlement solution.
© Copyright IBM Corp. 2011. All rights reserved. xi

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Axel Buecker is a Certified Consulting Software IT Specialist
at the International Technical Support Organization, Austin
Center. He writes extensively and teaches IBM classes
worldwide on areas of Software Security Architecture and
Network Computing Technologies. He holds a degree in
computer science from the University of Bremen, Germany.
He has 25 years of experience in a variety of areas related to
Workstation and Systems Management, Network Computing,
and e-business Solutions. Before joining the ITSO in March
2000, Axel worked for IBM in Germany as a Senior IT
Specialist in Software Security Architecture.

Scott Andrews is a Software Engineer in the Australian
Development Lab at the Gold Coast, Australia. He is the
Team Lead for a group that develops strategic integration
solutions within the IBM Security portfolio for Independent
Software Vendor (ISV) applications, such as Microsoft
SharePoint. He holds a Bachelor of Information Technology
degree from Bond University, Australia. Scott joined IBM in
April 2002 and is a University Ambassador and active
member of the IBM On Demand Community® helping to
promote IBM to university graduates and within the
community.

Craig Forster is an Advisory Software Engineer with IBM
Tivoli® Software Security in Austin, Texas. He joined IBM in
2005 after graduating from the University of Queensland with
a Bachelor of Engineering (Software) and Bachelor of
Science (Computer Science) degrees. His areas of expertise
include XACML, SOA security, J2EE security, and
authorization best practices.
xii IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Nicholas Harlow is a Product Manager in the IBM Tivoli
Security software organization. He manages a portfolio of
host and content security products. He began his career in
Tivoli Security as a software engineer in 2003. He holds a
degree in Computer Science from Stanford University and an
MBA from INSEAD. Nicholas has over ten years of experience
building high-quality software in both large and small
organizations and bridging the gap between the business and
technical aspects of organizational management. Before
joining IBM Tivoli Security in 2003, he was an IBM Extreme
Blue® intern and a university student, during which time he
was involved in several early-stage startup ventures.

Ming Lu, Ph.D., is a Senior Managing Consultant in the IBM
Software Services for Tivoli (ISST) security practice team. He
is in the enterprise security architect role and the team lead of
the US East team. Ming has over 15 years of experiences in
the field of information security, software engineering, and
system management. He has helped many customers
successfully design and deploy IBM security solutions. He
has also been involved in security solution design for IBM
WebSphere®, IBM Lotus®, and SOA projects. Before joining
ISST in 2006, Ming worked in the IBM Tivoli Austin lab for
seven years as a Senior Security Architect. He holds a Ph.D.
degree in Computer Science from Tsinghua University,
Beijing, China.

Sridhar Muppidi, Ph.D., is the Chief Architect for IBM
Security Solutions. As a Senior Technical Staff Member, he
drives security architecture and design activities across IBM
products, platforms, and solutions. In his career at IBM, his
responsibilities have included SOA and Cloud Security
Architecture, Identity and Access Management, Policy
Management, and solutions that are based on these areas.
He was the lead architect for IBM Security Policy
Management solutions, and led the product architecture and
design activities, as well as collaboration across IBM for a
unified security policy management solution. His current
responsibilities also include providing secure cross brand
security solutions to enterprises, leading work groups in
security and privacy, and representing IBM in open standards
activities.
 Preface xiii

Trevor Norvill is a senior accredited IT Specialist working for
IBM software group. He is based in the Gold Coast, Australia.
He has worked in Tivoli Security technical pre-sales,
post-sales lab services, and product development roles.
During his nine years at IBM, he has gained extensive
experience helping IBM clients design, deploy, and customize
Tivoli Security solutions. His certifications include advanced
deployment professional in IBM Tivoli Security management
solutions and IT Infrastructure Library (ITIL) V3. He holds a
degree in Computer Systems Engineering with honors from
the University of Queensland.

Philip Nye is an IT Specialist working on the Tivoli Security
Software Advanced Technology (SWAT) team, based out of
the Australian Development Lab on the Gold Coast. Philip
works with Tivoli Security products, including Tivoli Security
Policy Manager, Tivoli Identity Manager, Tivoli Access
Manager for e-business, Tivoli Federated Identity Manager,
and Tivoli Security Information and Event Manager in
pre-sales, post-sales engagements and delivering enhanced
product enablement. His holds a Bachelor of Engineering in
Software Engineering degree and a Bachelor of Business
Management degree from the University of Queensland.

Günter Waller is a Certified IT Specialist with IBM Germany.
He has 12 years of experience in IT security plus additional 21
years in IT and networking. He holds a degree in Mathematics
from Johann Wolfgang Goethe-Universität Frankfurt am Main,
Germany. His areas of expertise include Identity and Access
Management, Federated Identity Management, and Security
Policy Management. He has co-authored two IBM Redbooks
publications in the past (1996 and 2000). In 2008, he
co-authored a publication about SOA Policy Management in
Germany.

Eric T. White is a Sr. Managing Consultant in the US GBS
Security and Privacy Practice with over 25 years of
experience in the IT field, including Data Security & Privacy,
SOA Security Architecture, Process Reengineering, and
Systems Management. Eric is a globally recognized subject
matter expert, thought leader, and trusted advisor for highly
complex security and privacy initiatives among industry
leaders within the banking, financial, energy & utilities,
healthcare, insurance, retail, distribution, and
communications sectors. Most recently, Eric has lead the
security and privacy activities for multiple highly complex SOA
Application Infrastructure modernization programs in the retail
and energy/utilities sectors.
xiv IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Thanks to the following people for their contributions to this project:

Wade Wallace
International Technical Support Organization, Austin Center

Richard Cohen, Jeffrey DeMent, Deepak Gangadhar, Lachlan Hillman, Bill
Hines, Albee Jhoney, Carsten Lorenz, Timothy Moore, Martin Schmidt, Eric
Schulz, Ravi Srinivasan, Drew Walters, Nicholas Whelan, Eric Wood,
Krishna Yellepeddy
IBM

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author - all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

Part 1 Business context

In this part, we take a closer look at the current business challenges of managing
the increasing complexity for IT security policy life cycle management. We
introduce product agnostic architecture patterns for externalizing security that
can help to build an IT security life cycle management model.

Part 1
© Copyright IBM Corp. 2011. All rights reserved. 1

2 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 1. Business drivers and
foundation for IT security
policy management

As IT infrastructure and business processes have grown in complexity with the
continuing evolution of business practices and technology, so has the cost and
risk of managing the security of sensitive data and governing organizations that
rely on these processes and technologies.

In the first part of this chapter, we explore some of the concerns that characterize
security requirements of, and threats to, business and information technology
(IT) systems. We identify a number of the business drivers that illustrate these
concerns, including managing risk and cost, and compliance to business policies
and external regulations, showing how they can be translated into frameworks to
enable enterprise security.

To help you with your security challenges, IBM has created a bridge to address
the communication gap between the business and the technical perspectives of
security to enable simplification of thought and process. The IBM Security
Framework can help you translate the business view, and the IBM Security
Blueprint describes the technology landscape view. In concert, they can help
bring together the experiences we gained from working with many clients to build
a comprehensive solution view.

1

© Copyright IBM Corp. 2011. All rights reserved. 3

In the second part of this chapter, we look closer at comprehensive IT security
policy management and how it has emerged as a disciplined approach that
allows organizations to satisfy four critical business requirements:

� SOA governance
� Identity and access management governance
� Compliance management
� Data and information security

We provide an overview of each of these drivers and illustrate how IT security
policy management can help address the business challenges they pose. This
discussion of IT security policy management will introduce the concept of policy
life cycle management, a dynamic process of policy authoring, enforcing,
transforming, and monitoring that results in more transparent, efficient, and
cost-effective governance of the organization.

1.1 Drivers that influence security

Most of today’s projects are driven by both business and IT drivers, although we
can probably agree that business drivers are almost always the initiating factor.
Let us take a closer look at these influencing factors:

� Business drivers: Business drivers measure value, risk, and economic costs
that influence their approach to IT security. Value drivers determine the worth
of assets of the system to the business and of the business itself. Risk drivers
involve compliance, corporate structure, corporate image, and the risk
tolerance of the company. Economic drivers determine productivity impact,
competitive advantage, and system cost.

� IT drivers: IT drivers represent operational constraints in the general IT
environment. For example, the complexity of a system, including its
environment, that is exposed to internal and external threats presents risks
that the organization must address.

Business drivers also represent issues and consequences of significance to the
stakeholders of the managed business system. This set of drivers might vary
from industry to industry, from organization to organization in the same industry,
and even between different business applications in an organization.

IT drivers represent technical considerations that affect the trustworthiness of the
IT environment and likely the managed business systems as a whole. IT drivers
are universal and must be considered within the context of the business drivers
in all efforts. The combination of business and IT drivers represents the key
initiatives for security management.
4 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

1.1.1 Business drivers that influence security

Business drivers represent a relationship between the IT organization and the
rest of the business. They refer to business values that must be supported by the
IT security infrastructure.

Correct and reliable operation
Correct and reliable operation is the degree to which the business must be
accurate and consistent in its operation. Correct operation means that the
operations perform the proper response or function with no errors. Reliable
means that the same result occurs all the time. Any IT system must consistently
provide stakeholders with the expected results.

Security events and incidents might impact the correct and reliable operation of
these business processes. It might also affect the underlying IT infrastructure or
upstream and downstream business processes. The consequences of a
defective service (incorrect or varying results over time) might be significant to
the consumer of the service, and therefore to the provider of the service.

Service-level agreements
This driver applies to circumstances where security threats and threat agents
can impact an organization’s ability to conduct business. Service-level
agreements (SLAs) incorporate acceptable conditions of operation within an
organization. SLAs might vary from business system to business system or
application to application. Availability of systems, data, and processes is a
condition commonly referenced within SLAs.

IT asset value
From a business perspective, the IT asset value is directly related to the value of
the business transactions that it supports. These assets might be tangible or
intangible. For an e-retailer, these are tangible assets. For a financial services
company, the asset might be the client information or other data used in
transactions of the system.

Protection of the business asset value or brand image
This driver captures the firm's desire to protect its image. The loss of good will
from a security incident or attack has a direct consequence to the business.
Therefore, the security measures are likely to be proportional to the
consequence. When the desire to avoid negative publicity increases upon
encountering a security breach, the stipulation for this driver becomes stronger.
 Chapter 1. Business drivers and foundation for IT security policy management 5

Legal and regulatory compliance
Legal and regulatory compliance refers to the externally imposed conditions on
the transactions in the business system and the company, which includes the
rules and policies imposed by regulatory and government agencies. Civil,
criminal liability, or regulatory penalty from a security incident or attack have a
negative impact on the business. Therefore, the amount of regulation and steps
to ensure compliance should be factored in this driver, which includes privacy
issues, the ability to prove the transaction initiator, and proving compliance.

An implemented log management system can tell who did what, where, and
when. Log management, therefore, is an integral part of an IT security
compliance management system. For the retention period of the logs, it is
ensured that the necessary information is available and can be analyzed or
interpreted to a level that can help management to better investigate security
incidents or comply with external regulation or laws. Compliance is a key
business driver today, and log management should be a part of every IT security
compliance management solution. But it can also be implemented alone as an
initial step towards a larger IT security compliance initiative. As already
mentioned, many international standards and regulatory controls require logging
to be enabled and implemented. Also, these logs must be analyzed periodically
and stored for a specific period of time, depending on the particular standard or
regulatory control.

Contractual obligation
Security measures for an IT system are likely to be proportional to the
consequences encountered when the business encounters contractual liability
from a security attack. Depending on the structure and terms of the contract, the
consequence might lead to financial loss or liability. For example, when security
incidents are encountered, the business might be unable to fulfill its contractual
obligations of providing goods or services.

Financial loss and liability
Direct or indirect financial loss is a consequence to the business as a result of a
security incident. Direct loss might include theft of an asset, theft of a service, or
fraud. Indirect loss might include loss based on civil or criminal court ruling, loss
of good will, or re-prioritized budget allocation. This driver identifies the fact that
security measures for an IT system are likely to be in proportion to these
consequences.
6 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Critical infrastructure
This driver applies where security threats or threat agents can have a major
impact on services or resources that are common to, or shared among, a
community of businesses, the population at large, or both. Examples include
telecommunications, electrical power, transportation systems, computing, and so
on. The loss of critical infrastructure by its provider might have a ripple effect,
causing secondary losses and driving security decisions for those affected. An
important part of risk analysis is identifying critical infrastructure.

Safety and survival
This driver applies where security threats and threat agents can have a major
impact on aspects of human life, government function, and socio-economic
systems. Examples of processes to be considered for safety and survival impact
include continuity of critical infrastructure, medical system, life support, or other
high-impact or time-dependent process.

1.1.2 IT drivers that influence security

IT drivers make up the second group of key security initiatives. These are
considered universal drivers that must be considered in every modern IT solution
in a manner commensurate with the risks and consequences of a related failure
or incident.

Internal threats and threat agents
Security-related failures and incidents are caused by threats or threat agents
found within the physical and logical boundaries of the organization or enterprise
that operates and controls the IT system. These threats and threat agents might
be associated with technology or people.

An example of an internal threat is a poorly designed system that does not have
the appropriate controls. An example of an internal threat agent is a person who
would use his ability to access the IT system or influence business or
management processes to carry out a malicious activity.

External threats and threat agents
Security-related failures and incidents are caused by threats or threat agents
found outside the physical and logical boundaries of the organization or
enterprise that operates and controls the IT system. These threats and threat
agents are also associated with technology or people. They seek to either
penetrate the logical or physical boundary to become internal threats or threat
agents, or to influence business or management processes from outside the
logical or physical boundary.
 Chapter 1. Business drivers and foundation for IT security policy management 7

Examples of external threats are single points of failure for one or more business
or management processes that are outside the enterprise boundary, such as a
power system grid or a network connection, or a computer virus or worm that
penetrates the physical or logical network boundary. An example of an external
threat agent is a hacker, or someone who has gained the ability to act as an
insider, using personal electronic credentials or identifying information.

IT service management commitments
This driver identifies the fact that failure to manage the operation of the IT system
might result in security exposures to the business. This driver can be divided into
two categories: IT service delivery and IT service support.

� Service delivery commitments

The failure of the IT system to meet its metrics for managing itself can be
viewed as a security exposure to both business or management processes.

An example of security exposure for service delivery is when IT operations
processes cannot respond to critical events in a timely manner. Another is
when IT resilience processes cannot recover from a denial of service attack in
a timely manner, resulting in a loss of capacity or response time for business
processes.

� Service support commitments

The failure of the business or IT management system to meet its service-level
agreements can be viewed as a security exposure to business or
management processes.

An example of security exposure for service support is a situation in which the
customer relationship processes do not add, modify, or remove users from
access control lists in a timely manner.

IT environment complexity
The complexity of the IT environment might contribute to the security or
insecurity of the IT system. The IT environment reflects the infrastructure on
which the business system will be placed.

For example, any IT environment that is connected to the intranet or extranet is
exposed to internal or external threats or threat agents and requires specific
security responses. A stand-alone facility for our system represents the lowest
complexity. A hosting facility with other systems and other firms represents a
more complex environment. An environment with a larger number of systems,
varied network access paths, or a complex architecture, is a complex IT
environment.
8 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Business environment complexity
Because most businesses rely on IT, most business environments are an
interconnected set of businesses, each with its own complex IT environment,
business processes, and IT management processes. This complexity might
contribute to the security or insecurity of the IT system.

Audit and traceability
This driver identifies the need for the IT system to support an audit of information
contained within the system, whether it is associated with management data or
business data.

IT vulnerabilities: Configuration
Configuration vulnerabilities are potentially present in every IT system, providing
an opening to a potential attack based on the system and how it is designed and
set up.

IT vulnerabilities: Flaws
Software flaws potentially exist in every IT system. These flaws represent
vulnerabilities that were not detected and are not evident in the design
documents. As such, they are an unexpected deviation from what was designed.
An example is a defect in an operating system or application that is discovered
after implementation.

IT vulnerabilities: Exploits
The basic design of software in any IT system might be exploited by threats or
threat agents as a part of an attack on the IT system, the business, or the
management processes, which might include the use of a function within a
system in a way to compromise the system or underlying data. Although certain
people might define an exploit as both the flaw and the method, we treat them
separately because an exploit might involve using normal functions as designed
in an unusual manner to attack the system. The exploits can also be viewed as
the openings or avenues that an attacker can use.

Now it is time for us to introduce the IBM Security Framework, which focuses on
the what, not the how. It can help you translate your requirements into
coarse-grained business solutions, not into specific IT components or IT
services.
 Chapter 1. Business drivers and foundation for IT security policy management 9

1.2 IBM Security Framework

Today’s business leaders are expected to manage risk in their areas of
responsibility in the same way that CFOs manage risks in their domains. Security
risks and the potential impact on IT need to be communicated to executive peers
in business terms. Additionally, they need to align IT security controls with their
business processes, monitor and quantify IT risk in business terms, and
dynamically drive business-level insight at the executive level. Finally, business
leaders need to manage risk and orchestrate security operations in a way that
enforces compliance and optimizes business results.

As an organization secures its business processes, a business-driven approach
needs to become the guiding influence for ensuring that all the different security
domains work together in a holistic and synergistic manner, in alignment with the
overarching business objectives. Otherwise, the organization’s risk stance
becomes vulnerable due to misalignment of priorities between IT and the
business strategy. Using a standards-based approach to map business drivers to
IT security domains is often difficult and is often an afterthought.
10 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

IBM created a comprehensive IT security framework (Figure 1-1) that can help
ensure that every necessary IT security domain is properly addressed when
using a holistic approach to business-driven security.

Figure 1-1 The IBM Security Framework

IBM provides the full breadth and depth of solutions and services that can enable
organizations to take this business-driven, secure by design approach to security
in alignment with the IBM Security Framework. Comprehensive professional
services, managed services, and hardware and software offerings are available
from IBM to support your efforts in addressing the different security domains
covered by the IBM Security Framework.
 Chapter 1. Business drivers and foundation for IT security policy management 11

1.2.1 Security Governance, Risk Management, and Compliance
model

Every organization needs to define and communicate the principles and policies
that guide the business strategy and business operation. In addition, every
organization must evaluate its business and operational risks, and develop an
enterprise security plan to serve as a benchmark for the execution and validation
of the security management activities that are appropriate for their organization.

These principles and policies, the enterprise security plan, and the surrounding
quality improvement process represent the enterprise Security Governance, Risk
Management and Compliance model. Specifically, the requirements and the
compliance criteria for the five security domains are:

� People and Identity

This domain covers aspects about how to ensure that the correct people have
access to the correct assets at the correct time.

� Data and Information

This domain covers aspects about how to protect critical data in transit or at
rest across the organization.

� Application and Process

This domain covers aspects about how to ensure application and business
services security.

� Network, Server, and Endpoint (IT infrastructure)

This domain covers aspects about how to stay ahead of emerging threats
across IT system components.

� Physical Infrastructure

This domain covers aspects about how to use the capability for digital
controls to secure events, on people or things, in the physical space.

In the following section, we take a closer look at the People and Identity domain.
We focus on this domain because it is the driving factor for implementing a
security policy management solution. If you want to learn more about the other
IBM Security Framework domains refer to the IBM Redpaper™ publication
Introducing the IBM Security Framework and IBM Security Blueprint to Realize
Business-Driven Security, REDP-4528.
12 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

1.2.2 People and Identity domain

Organizations need to protect the assets and services that serve the business
and support the business operation. One aspect of protection is provided by
access control. The ability to provide effective access control services is based
on the ability to manage people and identity as defined by the enterprise’s
security governance, risk, and compliance model.

The Security Governance, Risk Management, and Compliance model provides
guidance about how identities are managed and how access control is
conducted. Organizations register people and map them to identities. The
relationships between people and organization are expressed in terms of role,
rights, business policies, and rules. The ability to register people and describe
their relationship with the enterprise is a key security enabler for the remaining
security domains:

� Data and Information
� Applications and Process
� Network, Server, and Endpoint (IT infrastructure)
� Physical Infrastructure

Operationally, people acting in authorized roles in an organization or as part of
an extended relationship are granted access to infrastructure, data, information,
and services. At the same time, people acting in unauthorized roles are denied
access to infrastructure, data, information, and services if they are acting outside
of the business policies and agreements.

Within an identity system, people can be issued a credential. A credential can
take any of several forms, including a physical identity card or logical token or
user identifier. The trustworthiness or strength of the credential is an important
aspect of business policy and risk management. The ability to effectively manage
the life cycle of identity, that is, the creation, removal, and role changes for
dynamic populations of workforce, customer, or user communities, is extremely
important. For example, the life cycle of identities and credentials can be
influenced by business cycles, employment cycles, customer relationship,
agreement, business, or calendar events, and so on.

Identity systems need to be integrated with appropriate sets of access controls.
Identity systems need to manage user roles, rights, and privileges across the IT
infrastructure that might contain multiple technology architectures, or multiple
identity and access control systems will be required to ensure that users have
access to the correct assets and services.
 Chapter 1. Business drivers and foundation for IT security policy management 13

Compliance for identity and access is often externally motivated compliance. For
example, legislated privacy and evidence recording is a significant driver for
implementation of comprehensive user provisioning and identity-related record
keeping.

Figure 1-2 shows a summary and additional aspects to be addressed within the
People and Identity domain.

Figure 1-2 People and Identity domain

After having addressed and mapped the IT security domain, People and Identity,
into your business solutions, it is time to look at the component-oriented view of
IT security in the IT Security Blueprint.

1.3 IBM Security Blueprint

The IBM Security Framework divides the area of business-oriented IT security
into five domains. The next step is to break these down into further detail to work
toward a common set of core security capabilities needed to help your
organization securely achieve its business goals. These core security
capabilities are called the IBM Security Blueprint.
14 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The IBM Security Blueprint uses a product-agnostic and solution-agnostic
approach to categorize and define security capabilities and services that are
required to answer the business concerns in the IBM Security Framework.

The IBM Security Blueprint was created after researching many
customer-related scenarios, focusing on how to build IT solutions. The intention
of the blueprint is to support and assist in designing and deploying security
solutions in your organization.

Building a specific solution requires a specific architecture, design, and
implementation. The IBM Security Blueprint can help you evaluate these areas,
but does not replace them. Using the IBM Security Blueprint in this way can
provide a solid approach to considering the security capabilities in a particular
architecture or solution.

IBM has chosen to use a high-level, service-oriented perspective for the
blueprint, based on the IBM service-oriented architecture (SOA) approach.
Services use and refine other services (for example, policy and access control
components affect almost every other infrastructure component.) To better
position and understand the IBM Security Blueprint, see Figure 1-3.

Figure 1-3 IBM Security Blueprint positioning

The left portion of Figure 1-3 represents the IBM Security Framework, which
describes and defines the security domains from a business perspective.

The middle portion in Figure 1-3 represents the IBM Security Blueprint, which
describes the IT security management and IT security infrastructure capabilities
 Chapter 1. Business drivers and foundation for IT security policy management 15

needed in an organization. As discussed earlier, the IBM Security Blueprint
describes these capabilities in product and vendor-neutral terms.

The right portion of Figure 1-3 on page 15 represents the solution architecture
views, which describe specific deployment guidance particular to a given IT
environment. Solution architecture views provide details about specific products,
solutions, and their interactions.

Figure 1-4 highlights the components and subcomponents of the IBM Security
Blueprint that have to be examined for every solution in the People and Identity
security domain. Besides the Foundational Security Management, the IBM
Security Blueprint enables you to determine the Security Services and
Infrastructure components by reviewing the component catalogs for these
Foundational Security Management services. Each of these components can
then be assessed by determining whether each particular infrastructure
component is required to make a Foundational Security Management service
functional so that it can address the issues or provide a prospected value
associated with the particular business security domain, in this case, People and
Identity.

Figure 1-4 IBM Security Blueprint components for the People and Identity solution pattern
16 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

We can see in Figure 1-4 on page 16 that almost all infrastructure components
may be required for a People and Identity security solutions apart from Code and
Images. The reason why those components are not included is that they are
mostly covered by other domains of the IBM Security Framework.

If you want to learn more about the Foundational Security Management as well
as the Security Services and Infrastructure sub-components, refer to Introducing
the IBM Security Framework and IBM Security Blueprint to Realize
Business-Driven Security, REDP-4528.

In the next section, we examine the comprehensive IT security policy
management and how it has emerged as a disciplined approach that allows
organizations to satisfy four critical business requirements:

� SOA governance
� Identity and access management governance
� Compliance management
� Data and information security

1.4 SOA governance

Service-oriented architecture (SOA) is a conceptual framework that casts
repeatable business tasks as services, which can be composed in different ways
to implement complex business processes as a series of linked services. Sets of
related services can then be organized into composite applications that support
specific business processes. These applications and services can be exposed
across organizations to enable internal collaboration within the organization as
well as external collaboration with partners, customers, and other stakeholders.

Starting in 2006, SOA emerged in response to the realization among senior
managers that continued innovation depends on effective integration between
business and technology in the organization. The flexible SOA approach to this
integration allows organizations to align business and IT objectives, using
existing IT investments while continuing to add new technology, allowing for
adaptation and minimal disruption of existing systems.

For more information about this topic, refer to Appendix A, “Introduction to
service-oriented architecture”, in Understanding SOA Security Design and
Implementation, SG24-7310.

In the remainder of this section, we explore the impact of SOA adoption on
business and security and the relationship between SOA governance and the
other business drivers.
 Chapter 1. Business drivers and foundation for IT security policy management 17

1.4.1 SOA adoption: Impact on business and security

Organizations began to adopt SOA in their existing IT infrastructures as a result
of the proliferation of independent business applications, each of which had its
own proprietary way to connect to other applications. As the number of these
services grows, connecting each new service to the others became a more
labor-intensive and inefficient task. This tight-coupling of services reduced the
flexibility of the organization to react to changing market conditions.

SOA emphasizes a loose-coupling between services, which increased the
flexibility that enterprise architects would have in reconfiguring the business
processes implemented through their IT investments, as well as promoting reuse
of this basic business logic. If organizations retain proprietary, hardcoded
security mechanisms, it decreases the flexibility and component reusability that
are the primary advantages of SOA. To adopt SOA, while maintaining a
manageable business security system, organizations encountered new security
challenges.

These challenges include:

� Selecting and enforcing appropriate security constraints across
organizational boundaries.

� Determining the relevant IT security policy for a composite application that
might have completely divergent policies governing its constituent services.

� Enforcing security, performance, and level of service requirements to
complete transactions across organizations in real time, which can be
impeded by a security process that is too heavy-weight.

1.4.2 Relating SOA governance to other business drivers

Although the four business drivers are distinct in their definition, they are
interrelated in a way that can be complex, each one affecting the others in
different ways.

For example, governance of identity and access management in a SOA
environment requires specific technical considerations. In an environment with
tightly-coupled services, each service may handle the identity of its clients
independently and differently from the other services. Decoupling identity and
access control from services is critical to handling identity consistently for all
services, reducing complexity while maintaining the flexibility of loosely-coupled
services.
18 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

After identity and access management are handled consistently across services,
it becomes easier to satisfy the next critical requirement: providing secure
access to service transactions to both internal and external users. Providing
secure access entails managing the authorization entitlements of the system’s
users to ensure that only authorized entities gain access to critical data and
operations.

Furthermore, consistent handling of security across the SOA environment allows
business and IT managers to define a consistent set of rules for how messages
are passed between services, specifying, for example, the level of encryption or
inclusion of digital signatures in service requests to protect the confidentiality or
integrity of messages flowing through the system.

Protecting the data in the system includes data at rest in storage repositories.
Customer data, such as financial information, healthcare details, or other
privacy-sensitive information, must be protected from improper disclosure and
corruption, either accidental or malicious. Failure to do so can cause
embarrassment to the organization, loss of customers and revenue, and in some
cases litigation for negligence, especially when the data is subject to
governmental regulations such as HIPAA1, Sarbanes-Oxley2, and FISMA3, to
name a few.

Effective governance and compliance management is critical for businesses
because they enable senior managers to manage business risk by protecting the
data and information vital to the organization’s operations. In addition, robust
SOA governance increases both the security and transparency of a system,
reducing the cost to comply with regulations, and providing auditable transaction
records.

1 HIPAA: The Health Insurance and Portability and Accountability Act was passed by the United
States Congress in 1996. For more information, refer to the following address:
http://www.hhs.gov/ocr/privacy/.

2 The Sarbanes-Oxley Act was passed in 2002 in response to widespread financial misdeeds in the
corporate community. For more information, refer to the following address:
http://www.soxlaw.com/

3 FISMA: The Federal Information Security Management Act promotes the development and
enforcement of key information security standards. For more information, refer to the following
address: http://csrc.nist.gov/groups/SMA/fisma/index.html
 Chapter 1. Business drivers and foundation for IT security policy management 19

http://www.hhs.gov/ocr/privacy/
http://www.soxlaw.com/
http://csrc.nist.gov/groups/SMA/fisma/index.html

1.5 Identity and access management governance

As personally identifiable information has increasingly become subject to
government regulations, the risk to organizations of failing to comply has
increased as well. Identity and access management solutions provide a way
organizations can try to manage this risk. In this section, we explore the
importance of identity and access management to securing and managing the
organization’s sensitive data. The topics covered include improving visibility into
the organization’s IT environment and ensuring data access to the right entities
when needed, improving operational efficiency through identity and access
management automation, and the importance of consistent enforcement of
identity and access management policies.

1.5.1 Critical data: Ensuring authorized access only when needed

Governance of identity and access management both within and across
organizational boundaries entails the ability to verify both the identity and
entitlements of the users and services attempting to access resources in the IT
environment. A system must be able to grant or deny access based on the
entitlements of these users. Additionally, system administrators must be able to
grant or revoke new entitlements to users and groups and propagate those
changes throughout the entire system.

Furthermore, organizations need to be able to manage access control not only
on the application level, but also at the sub-application level with entitlements on
individual operations within an application. These entitlements specify who is
allowed access, what they are allowed to do, and under which contextual
circumstances. For example, an online banking application might provide the
following operations:

� check_balance(account_id)
� transfer_amount(src_account_id, dest_account_id, amount)

For simplicity, assume that there are only two groups of users: customers and
bank staff. Bank staff should reasonably be allowed to check the balance of any
account ID, while customers should only be allowed to check the balance on
their own account. Similarly, bank staff should be able to transfer money
between accounts in such a way that the transaction is logged so that it can be
reflected in the account’s statements and audited later if necessary. Conversely,
customers should only be able to transfer funds from their own accounts to
destination accounts with the same auditability of the transaction. These
requirements constitute the business rules that should be used to govern this
simple banking application.
20 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Translating these business rules into an actionable form is an essential
challenge to overcome. With the proliferation of both client entities and
protectable resources within most IT environments, overlaying business rules
while managing the identity records and access entitlements can quickly become
a cumbersome and complicated task.

1.5.2 Driving operational efficiency through automation

Intelligent identity and access management solutions can ease the burdens of
assigning roles and entitlements by automating the discovery, pre-processing,
and collation of identity data. These data include business roles, entitlements,
and other attributes, giving system administrators a reasonable basis from which
to build an identity and access control system.

To extend the previous banking application example, suppose the bank’s
managers have invested for the first time in an identity and access management
system. It should be able to scan the user registry and automatically assign
users to the appropriate roles, with the correct entitlements.

As the business requirements evolve, so must the business rules that make up
the system of identity and access management governance. When the business
rules change, so must the roles, entitlements, and other identity attributes. The
identity and access management system can reduce the manual intervention
required to complete these changes by automating the life cycle of roles and
entitlements.

1.5.3 Enforcing consistent policy enforcement across the IT
environment

A policy-based approach is the most direct way to conceptualize a group of
business rules into an actionable directive. Collecting business rules for identity
and access management and translating them into an enforceable form results in
the production of a comprehensive IT security policy. This policy governs the IT
resources of the organization and determines who is allowed access to each
resource and under which contextual circumstances. In order for this policy to be
an effective tool of governance, it must be enforced consistently across the IT
environment.

Many IT environments are heterogeneous, with systems running existing
applications on old hardware integrated with modern systems and new
application types. As discussed earlier, service-oriented architectures can help to
loosely couple these systems and facilitate communication between them.
 Chapter 1. Business drivers and foundation for IT security policy management 21

However, it is important to be able to enforce IT security policy consistently,
regardless of the technology endpoint involved. For example, the same identity
and access management policy used to govern a composite web service
application on a distributed application server platform should also be applied to
an existing application running on the mainframe.

Consistent policy enforcement across the application and IT environment can
reduce the complexity of identity and access management governance, as well
as the cost of compliance with privacy and security regulations.

In addition, consistent policy enforcement can help to drive business workflow
and automate business processes, resulting in less human intervention, greater
efficiency, and reduced cost to manage the organization.

1.6 Compliance management

Organizations must be able to prove they are in compliance, for example, with
regulations that govern the use of sensitive information. Compliance
management can help to reduce the adverse consequences to an organization
of failing to meet the requirements of these regulations. This section examines
the importance of compliance management for application, process, data, and
information security, discussing the impact of regulation and privacy concerns,
assessing compliance requirements, and the relationship between compliance
and governance.

1.6.1 Regulation and privacy concerns

In recent years, high profile corporate financial scandals and the increasing
migration of personal information to online systems have ushered in a new era of
government regulation of information. Such regulations include the
Sarbanes-Oxley (SOX) Act, which introduced strict new financial reporting
requirements. In the healthcare sector, the Healthcare Information Portability and
Accountability Act (HIPAA) places strict constraints on how patient data is stored,
transmitted, and shared. In the financial sector, the Basel II Framework promotes
basic standards for banks worldwide.4

4 Basel II Framework: Devised by the Bank for International Settlements to set minimum capital
adequacy requirements. For more information, refer to the following address:
http://www.bis.org/publ/bcbsca.htm
22 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.bis.org/publ/bcbsca.htm

With the emergence of social networking tools, unprecedented amounts of
personal information has been uploaded to networks such as Facebook5,
LinkedIn6, and Twitter7. For individuals, these online networks constitute an
efficient way to communicate with friends, family, and professional associates.
However, the risk to privacy can result in the inadvertent disclosure of personal
information, which can cause damage to lives and careers, in some cases.

For organizations, these networks represent a new avenue for the accidental
release of sensitive corporate data to unintended audiences. The demand for a
high degree of privacy control and business policies to prevent data leaks places
new governance requirements on organizations.

Failure to comply with government regulations and to meet the privacy needs of
users can result in fines, litigation, and loss of revenue and customers. This can
present a significant business risk; managers who do not handle this risk
effectively do so at the peril of their careers and the organizations they manage.

1.6.2 Assessing compliance: The audit trail

Compliance depends on being able to verify that the organization is adhering to
the regulations and following its own policies as well. Adherence to the rules can
be verified only if the business functions implemented in the IT environment
leave transparent audit records that can be independently verified later by an
auditor.

Auditability of services ensures accountability for actions taken within the
organization’s systems, and it provides two primary benefits: verifiable evidence
of compliance and a source of event data should problems arise.

Just as identity and access management benefits greatly from a policy-based
approach, so does compliance management. Asserting in a policy which
operations require an audit record helps the business manager to translate the
compliance requirements of government regulations into an enforceable
business rule.

5 Facebook is a popular social networking website. For more information, refer to the following
address: http://www.facebook.com

6 LinkedIn is the leading professional networking website. For more information, refer to the following
address: http://www.linkedin.com

7 Twitter is a prominent microblogging service. For more information, refer to the following address:
http://www.twitter.com
 Chapter 1. Business drivers and foundation for IT security policy management 23

http://www.facebook.com
http://www.linkedin.com
http://www.twitter.com

Ideally, this audit data is collected in a central repository, from which managers
can generate reports, both to gather business intelligence and to demonstrate
compliance. Effective compliance management requires the ability to assert
rules, record the enforcement of those rules in audit records, and use the audit
data to demonstrate proper enforcement. However, compliance management
entails not only looking to past audit records to verify compliance, but also
monitoring the system’s enforcement points in real time for possible infractions of
the business rules.These management, enforcement, and reporting tasks can be
disaggregated and delegated to appropriate roles within the organization,
leading to greater flexibility and the possibility for greater alignment between the
compliance management IT systems and the business roles of the organization.

1.6.3 Relating compliance management and governance

Compliance is inextricably related to governance and organizational control. In a
complex IT environment, an application may be composed of both internal and
external services, with the distinction not visible to the user. Nonetheless, these
intraorganizational connections may impose both complex identity and access
management and regulatory compliance requirements. A responsible manager
will need to cope with these requirements, while providing a usable and
compelling service to users. Compliance and organizational control are two
related concepts that are important to understand.

Note: Being compliant versus being in control: If you have ever been audited
(or audited someone), you probably know that there is a difference between
being:

� In compliance: All your systems and processes are operated and delivered
according to the security policies and standards (and you have evidence
for that).

� In control: You know what is in compliance and what is not, you know why,
and you have a plan of action.

Now, what is more important? Being in control is. Because you could be in
compliance by accident. Further, if you are compliant, but not in control,
chances are high that you will not stay compliant for long.

If you are in control, you will end up being compliant eventually. Or at least you
will have it on record why you are not compliant.

And if you are not compliant and not in control, gaining control should be your
primary goal.
24 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Managing this complexity requires a normative statement as to how each
component of the application should be accessed, what information can be
shared across the organizational boundary, by whom, and what records of the
transaction should be retained. Using a policy-based approach, this normative
statement can be translated into a comprehensive IT security policy that can be
centrally managed, distributed, enforced, and audited across a heterogeneous
environment. Approaching compliance in this manner results in disciplined
governance and vice versa.

Effective compliance management can result in better governance, reduced
technological complexity, and lower cost of compliance.

1.7 Data and information security

Effective governance of SOA, identity and access, and compliance allows the
organization to manage IT business services, adherence to business policies
and government regulations, and access to data. However, none of these
explicitly manage the security of the data itself. This section explores the
importance of data and information security, discussing the risk organizations
face if their critical data is improperly secured, the need for context-based
information access, and data security in a cloud-based and SOA-based
environments.

1.7.1 Risk of unauthorized access and data loss

Sensitive personal and business data, such as health and finance records, need
to be protected. Newspapers are awash with embarrassing admissions of the
improper exposure of credit card information, social security numbers, and other
sensitive information from organizations that failed to protect sensitive data
adequately. An important part of security governance is ensuring the security of
data both in transit and at rest.

Data protection involves protecting the confidentiality and integrity of information
where appropriate. Organizations can protect data confidentiality using
encryption and integrity using digital signatures or message authentication
codes. IT security policy can be used to specify the strength of encryption or
signatures and which cryptographic algorithms should be used. Failure to do so
can result in the loss of valuable proprietary information, litigation, and loss
revenue, among other things.
 Chapter 1. Business drivers and foundation for IT security policy management 25

Unauthorized access to an organization’s data can result in the accidental
exposure of confidential proprietary information to competitors. Such accidents
can destroy an organization’s competitive advantage or reveal weaknesses that
would otherwise have remained concealed. Similar, accidental disclosure of
sensitive customer information can obligate the organization to launch expensive
mitigation efforts, make embarrassing disclosures in the media, and, in some
cases, defend against litigation.

1.7.2 Context-based information access

In addition to protecting the confidentiality and integrity of information using
cryptographic technology, an organization may also want to grant access to
certain information only in certain contexts.

For example, if an organization were engaged in sensitive discussions regarding
a potential merger or acquisition, the organization might want to grant only those
few individuals directly involved with conducting the negotiations and the due
diligence access to that information. If either of the organizations in this
hypothetical scenario were publicly traded corporations, premature disclosure to
the public of such discussions could adversely affect the stock price of either
organization, which might alter the negotiating terms or derail the deal entirely.

Similarly, if an unidentified person inside the organization were to gain access to
that information without its public disclosure, she could possibly use that
information to make advantageous securities trades, otherwise known as insider
trading, a serious offense punishable by incarceration. If the relevant regulatory
agency, such as the Securities and Exchange Commission, determined that the
organization has been negligent in allowing the disclosure of this information, it
could levy significant fines or other sanctions against the organization.

We can see from this example that the ability not only to encrypt and digitally
sign sensitive data but also to grant access only on a need-to-know basis can be
a significant advantage to organizations by helping to limit the risk of accidental
information exposure.

Similarly, an organization might want to grant access to certain data based on
the user’s role. For example, in a medical facility, patient information is highly
confidential.To access an individual patient’s record through the electronic health
record system, the organization mighty specify that only that patient’s physicians
are authorized to read that person’s file, while lab technicians are allowed to add
new lab results to the file, they may not change previously recorded results or
read anything else in the record.
26 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The capability to specify fine-grained access entitlements provides another way
for an organization to try to ensure the security of its sensitive information, by
limiting access only to certain individuals in certain contexts.

1.7.3 Data security in cloud and SOA environments

In our discussion of SOA, we have briefly examined the trend in IT organizations
toward disaggregating tightly coupled applications into reusable service
components that can be reorganized when needed into new composite
applications and even shared across organizational boundaries. Another trend is
the widespread adoption of cloud computing.

Both SOA and cloud computing present opportunities for the organization to
enhance its flexibility, ability to collaborate across organizational boundaries, and
operational efficiency. However, they present new challenges with respect to
data security as well.

When using cloud-based software services, an organization’s data often resides
on servers in a data center, over which the organization has no control. Similarly
in a SOA environment, an organization’s data might be subject to access by
parties external to the organization.

In the first situation, the organization must rely on the cloud provider to ensure
the security of its sensitive data and protect against unauthorized access by
other organizations and employees of the cloud service provider. In the latter
situation, the organization itself must provide robust security to protect its data
from unauthorized access from beyond the organizational boundary.

Note: The term cloud computing has been used to refer to many different
things. In this context, we use it to refer to the delivery of technological
capabilities as a service hosted on servers outside the organization and
delivered through the Internet. These capabilities can range from software to
hardware infrastructure, all delivered as a service. A familiar analog to this
model of delivering technology is the electrical utility: A customer subscribes
to the electricity provider and pays for usage of the service. The service
continues as long as the customer continues to pay. Cloud computing
services benefit an organization by providing access to software technology or
additional hardware infrastructure without having to purchase, install,
maintain, and support these goods; they are all included in the price of the
service.
 Chapter 1. Business drivers and foundation for IT security policy management 27

For a concrete cloud computing example, suppose a relatively small organization
that hosts a service online experiences an unanticipated spike in traffic and that
they lack the financial means to immediately purchase extra server and storage
capacity. The organization decides instead to rent new capacity from a cloud
infrastructure provider. The organization’s managers are rightly concerned that if
their sensitive data resides on machines they do not physically control, they will
significantly increase the risk of data leakage. Even though their cloud provider
hosts the data, the organization itself is still responsible for ensuring the data’s
security.

In this situation, the cloud provider can help to ensure the security of its
customers’ data by providing fine-grained context-based access control and
cryptography services, configurable for its different customers’ needs.

Similarly, in a SOA environment, organizations might want to provide external
users access to internal services. In this case, the service provider organization
would need to protect its own information using context-based access control
and cryptography to ensure that users of the service gain access only to data
they are authorized to see.

In either scenario, the organization must take steps to ensure the security of its
data. Context-based access control and cryptography can play an important
foundational role in the security solution for these scenarios.

1.8 IT security policy management: A unifying solution

We have examined three interrelated business drivers: identity and access
management, compliance management, and data and information security.
Identity and access management can allow IT architects to control and audit who
accesses the organization’s sensitive information. This access control and
auditability aids the organization’s managers to assert compliance with relevant
regulations and enhances the security of sensitive information. This enhanced
data security further reinforces the organization’s ability to comply with
regulations and protect sensitive or confidential information from accidental
disclosure. Management of compliance, identity, and access control requires a
mechanism to specify the rules, according to which the system can act to grant
or deny access to data. These rules represent the intentions of the organization’s
managers in service of the business goals and can be expressed and managed
as a policy that describes the capabilities and requirements of services in a
growing number of organizations. Business goals need to be implemented and
managed consistently across the organization. Policies can be used to capture
business goals and enforced across a heterogeneous environment. A flexible
policy management framework must be in place to align business goals with IT
28 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

assets and the implementation of security. Just as communication between
services is externalized from the services themselves in a service-oriented
architecture, so should the IT security policy definition and enforcement be
external to the applications and services in the environment. This topic is
covered in greater depth in IBM Tivoli Security Policy Manager, REDP-4483.

Policy management solutions can provide a snapshot of the rules used to
determine how the organization’s data is used. Managers can use this snapshot
as a benchmark from which to measure different aspects of governance, such as
transparency, processes, and stakeholder interests. Subsequently, we discuss
how organizations are using the control over their sensitive data gained through
the application of security policy management to satisfy their governance and
compliance needs.

1.8.1 Addressing governance

A managed IT security policy unambiguously defines the rules by which data is
stored, transmitted, and exchanged. Furthermore, it places constraints on how
services can be composed and how users can interact with them. In effect, this
policy not only protects the resources of the system, but also codifies the
governing principles of the business.

With respect to identity and access management, IT security policy defines how
data can be accessed and by whom. As services and resources in a system
proliferate, the ability to manage this policy and apply it correctly to each
resource becomes a more complex challenge. To provide the flexibility
businesses need, IT security policy requires the ability to specify fine-grained
entitlements down to the level of operations within applications. Resolving the
policies that govern two distinct parts of the application to provide the correct
effective policy for each user is critical and difficult when many sub-policies are in
place for a user role or set of services. Automating this function allows business
managers to focus their attention in more valuable ways.

Similarly, as organizations move towards service-oriented IT architectures, these
security policies can define the rules governing how the reusable services in the
environment can interact with each other. Having a systematic approach that
allows policy to be versioned and adjusted gives the organization’s managers
more control in aligning the behavior of IT resources with desired outcomes for
the organization. Because the effective policy is a snapshot of the rules
governing the organization, changes to the policy can be linked to desired
improvements in the performance of the organization and measured. In this way,
policy management can help to provide a systematic way to manage and
enhance governance.
 Chapter 1. Business drivers and foundation for IT security policy management 29

For example, an organization can focus on creating the high-level rules to govern
itself, from which they can author and manage policy using a central
administration point. The central administration point provides a common way to
manage policy across the entire IT infrastructure, a distinct benefit in highly
heterogeneous environments. The central policy management structure can
automatically handle distribution to the different enforcement points in the
system, keeping policy versions consistent throughout the environment, reducing
the manual human intervention that would otherwise be required to complete this
task.

In addition, sophisticated policy management solutions should facilitate the
authoring of IT security policies by automatically discovering and organizing
identity attributes, inferring role information, and estimating appropriate
entitlements from existing user and service registries.

1.8.2 Compliance and data security

As discussed previously, policy management can provide a snapshot of the rules
used to govern the business and an auditable trail to assert compliance with
these rules. These rules can try to accomplish a range of goals from
implementing government regulations to enforcing special data security
requirements. Regardless of the goals, these rules can be translated into an
appropriate policy. Subsequently, this policy can be tracked, managed, and
enforced. In this way, policy management solutions can be a valuable part of an
organization’s efforts to comply with regulation and ensure the security of its vital
information.

Automating the integration of identity and access management with IT security
policy management in a centrally administered solution can reduce the cost and
complexity of compliance with internal and external regulations. In addition,
providing a mechanism for consistently enforcing IT security policy across the IT
environment further reduces the cost and risk of failure to comply. IT security
policy management systems can also facilitate the monitoring of policy
enforcement, collecting of audit records, and reporting of audit results to
stakeholders. Monitoring, auditing, and reporting help the organization ensure
and assert compliance. Even without specific regulations in effect, they allow
business managers to understand how critical data is flowing through the system
and can serve as an early alert in case of problems, such as unauthorized
access attempts and possible data leaks, among others.

In the case of data leaks in particular, a comprehensive IT security policy
management system allows administrators to specify the precise level of
protection different data in the system should have. This has two significant
benefits: to prevent unauthorized access and corruption of data and provide
consistent enforcement and management of data across the organization.
30 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

1.8.3 Risk management and the cost containment

The global economic downturn that began in 2008 and persists today has
highlighted the importance of:

� Risk management
� Cost containment

IT security policy management can be a critical tool in managing the business
risk posed by insecure data and IT systems and reducing the cost of operations.
As previously discussed, security policy represents the rules that govern how the
organization’s data can be used. An unambiguous security policy can be
automatically and consistently enforced across the organization, reducing risk in
a number of ways. Risk and expected costs are proportional to each other.

For example, if the policy has been created to facilitate compliance with
regulations and enforced consistently, the business risk of failing to comply will
be reduced. Failing to comply with regulations can result in fines, sanctions,
litigation, and in extreme cases incarceration of the organization’s officers, a
expensive outcome. By reducing the risk of this event, the expected cost is also
reduced.

In another example, if the policy captures a strict set of data security rules, the
risk of unauthorized data disclosure will be reduced. Unauthorized data access
can result in the exposure of sensitive business and customer data, which can
cause loss of customers and diminished competitiveness in the market, resulting
in loss of revenue. In extreme cases, this situation can force an organization into
bankruptcy. Reducing the risk of unauthorized data access can reduce overall
business risk, reducing the cost of capital to the organization and, therefore, the
cost of operations.

In an ideal world, security considerations would play an important part in the
design of any IT solution from the beginning of a project. In real life, however, this
has not always been the case. For various reasons, security measures remain
non-functional requirements and hence often an afterthought. Time constraints
or lack of appropriate skills sometimes force organizations to proceed with a
solution that has only basic security mechanisms in place. But, after this solution
is running in a production environment, the need to revisit and improve security
becomes paramount to manage risk, either because of real security incidents or
as a result of audits and reviews carried out by an independent entity. In such
cases, organizations see the value and even realize an additional benefit of the
externalization approach: It allows organizations to easily add and change
security measures to a given application as business needs progress.
 Chapter 1. Business drivers and foundation for IT security policy management 31

The austerity imposed by the drastic economic shift has made the reduction of
cost another important driver of net income in a climate where revenue growth
has slowed across the economy. In addition, in the wake of financial scandals
and high-profile data breaches in recent years, businesses must now comply
with a new raft of regulations. IT security policy management can help reduce the
cost of compliance. These savings can provide managers with the opportunity to
demonstrate financial discipline in the face of adverse economic conditions.

1.9 Introduction to IT security policy life cycle
management

Organizations, the economy, and governmental regulations are all dynamic,
changing in response to shifts in the business cycle, real economic events, and
political conditions. Therefore, business policy must be dynamic as well,
changing in response to new conditions. As business policy changes, the
effective security policy governing the organization must also evolve. Security
policy management solutions should provide a way to examine this evolution of
policy in a holistic way and provide intelligent tools for managing changes.
Among these tools is a life cycle approach to policy that allows for creation,
implementation, and feedback from a policy, which can then be used to create
the next more effective version of the policy. This section presents an
introduction to a life cycle approach that conceptualizes policy as a dynamic
entity, just like the organizations it helps to govern.

The aim of IT security policy management is to define and manage an end to end
view of a security policy by modeling and transforming business processes into
operational roles and entitlements at an operational level to enable context
based, data-centric enforcement. To effectively manage this process, a holistic
approach that manages security policies throughout the full life cycle of
applications is required. All aspects of a security policy life cycle should be
continuously monitored, evaluated, and updated in an iterative approach that
meets the dynamic needs of business.
32 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Figure 1-5 shows that a full policy life cycle should be considered at all levels of
business and technology across multiple domains within an organization.

Figure 1-5 The policy management life cycle

The policy management life cycle can be decomposed into four key phases that
will be discussed in this section:

� Policy authoring
� Policy transformation
� Policy enforcement
� Monitoring

Using the life cycle model: We are using the policy life cycle model
throughout the discussion of our usage patterns, business scenarios, and so
on. Follow this life cycle model whenever you work on your IT security
policies.
 Chapter 1. Business drivers and foundation for IT security policy management 33

Several key tasks should be considered in all phases of policy life cycle
management as part of an overall identity governance strategy:

� Communication with executive management

Executive consultation and commitment should be obtained to sponsor any
security policy management project. Policy management should be
implemented using an iterative approach to incrementally refine an effective
security policy infrastructure. An executive sponsor should be consulted at
each stage of the project to ensure that objectives are continually prioritized in
line with business needs and that investment is meeting the required
objectives.

� Audit, compliance, and life cycle feedback

A key goal of implementing policy management is allowing an organization to
meet both internal security policy reporting and mandatory external identity
governance requirements. By auditing all phases of the policy management
life cycle, detailed data can be collected about aspects of policy creation,
deployment, and enforcement to improve visibility of key enterprise resources
in a holistic approach. Auditing all phases of a policy management process
also allows continuous evaluation of policy effectiveness so that an iterative
approach can be adopted for policy refinement.

� Change control

Change control is an important aspect of all phases of policy life cycle
management. A well defined, auditable, and secure change control process
should be implemented to support compliance goals. Change management
needs to be considered across all aspects of a policy management solution.

1.9.1 Policy authoring

Policy authoring is the process of translating business orientated security
requirements into policies consumable by IT operations. It aims to address a key
gap in the deployment of IT security measures between business process
owners and IT professionals. Business process owners formulate high-level
security requirements that IT professionals use to architect, implement, and
manage security measures that map business requirements to operational IT
solutions.

An executive sponsor should be consulted at each stage of the project to ensure
that objectives are continually prioritized in line with business needs and that
investment is meeting the required objectives. This is particular true when
considering the authoring of policies, as it provides an opportunity to interact with
executive management in a structured manner. Although there are no strict rules
on where a security policy management undertaking should start, policy
authoring is often the most logical starting point.
34 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Security policy authoring involves analyzing existing and proposed IT
environments to discover and classify metadata that captures key security
information for identities, services, and contextual information. This
understanding is necessary to effectively model a policy and simulate its effect
on an IT environment prior to deployment. The authoring task consists of three
phases:

� Importing resources and metadata
� Modeling and policy simulation
� Policy authoring

The outcome of policy authoring should be a policy that can be transformed and
consumed by a policy enforcement point, monitored and evaluated for
compliance, and fed back into the policy management life cycle. Change control
is an important aspect of all phases of policy life cycle management. A well
defined, auditable, and secure change control process should be implemented
during policy authoring to track entitlement modification through a policy change.

Importing resources and metadata
to effectively model business policies, business processes should be defined in
abstract IT terms. Before policy modeling can be considered, a process of
discovering security related metadata should be implemented. Metadata
representing identities, services, and contexts from heterogeneous systems
should to be mined and centrally collected to prepare it for policy modeling.

The first step is to analyze details of services, application roles, entitlements, and
data-level access requirements to extract metadata about those entities in a
centralized repository. Appropriate tooling and processes should be used that
allow for the collection of metadata for:

� Roles

A logical first step to approach the challenge of securing an IT infrastructure is
for organizations to model business and IT roles. Role management is a
process that enables discovery, creation, and ongoing change control of an
enterprise role structure governing user access to resources. After an
enterprise role structure is defined, a role based access control (RBAC)
system can provide a user-to-role and entitlement-to-role assignment that
offers quick compliance, risk, and governance value to executive
management. Role management provides the starting point for applying
fine-grained, data centric, and context sensitive policy management.

Tooling is required to support the role management process within an
organization. If an organization has an existing role management
infrastructure, it can be used to discover and import metadata about roles into
a security policy management solution.
 Chapter 1. Business drivers and foundation for IT security policy management 35

� Services

Services represent a mechanism for exposing key business operations to
consumers. Information about services can be mined from an existing
infrastructure if appropriate tooling is available and open standards are used
to define services. Metadata representing key aspects of services should
collected so that services can be defined and classified for the purpose of
policy modeling and simulation.

� Data

Role based access controls systems have limitations in the granularity of data
they use. It may be necessary to mine and classify data about the IT
environment for use in policy modeling. An analysis of data from
heterogeneous sources should be completed and compared against business
processes to establish classes of data required for authorization. This
involves a process of mining and centralizing metadata. The output of this
process should be a collection of metadata representing key aspects of the IT
environment that can be classified and modeled in policy modeling and
simulation.

� Other resource taxonomies: Generic resource definitions should be analyzed
so that metadata can be mined and centralized for classification and used in
policy modeling and simulation.

Modeling and policy simulation
Policy modeling is the process of using centralized data to effectively model a
business process. The aim is to capture business policies and define
entitlements in terms of classified groupings of metadata representing key
aspects of roles, resources, application data, and contextual constraints. The
following aspects should be considered:

� Classifying information

Business policies need to be articulated using an abstraction of the
underlying IT data representation to convey enough meaning to IT operators
so that detailed policies can be authored. Resources, data, and services
should be grouped under logical labels that represent common sets of
authorization groupings. As an example, a physician seeking to view a
patient’s medical history may request access to the their medical records.
The IT representation of a medical record may be represented by data
distributed across heterogeneous system. Consider that a medical record is
composed of data from two tables in a database system. This information can
be logically considered as a single data set and should be classified as
patient medical data.
36 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� Model policies

Policies should be modeled using classified data. They should contain a
series of rules that permit or deny defined actions for subjects. Each rule
maps classified resources to subjects and adds contextual conditions. For
example, a rule may specify that access should be granted to a physician if
they are granted the appropriate physician role and the data they are
accessing is considered patient medical data. An additional constraint can be
imposed to allow access only within business hours. Subjects in all other
roles or without the required data-level entitlements or context should be
denied.

Following a process of classifying resources, data, subjects, and environmental
constraints to produce policies allows for common sets of authorization
groupings to rationalize and promote re-use of logical groupings where possible.
This approach allows the number of managed policy objects to be significantly
reduced, facilitating more effective policy management.

As multiple policies can contain multiple rules, policies can become complex in
large deployments. It is desirable to validate a policy before moving to
implementation where the cost and complexity of fixing errors is much higher. A
policy simulation phase should be considered to analyze and simulate policy
models so that errors are not propagated to the implementation phase. The
modeling tool should provide a mechanism to evaluate a model policy for correct
behavior.

Policy authoring
Policy authoring is the process of taking a modeled policy template and authoring
a completed policy that can be transformed and operationally deployed. IT
operations take a modeled policy template and add details to abstract business
definitions. The following tasks should be considered as part of policy authoring:

� Author policies

Based on policy templates, authors complete policies to include all the details
required for a configurable policy. Policies are defined in terms of roles and
rule parameters. Rule parameters define a series of conditions that are
evaluated to make an authorization decision.

� Implement custom extensions

Any custom extensions needed to support an implemented policy should be
planned, designed, and built at this stage.

� Change control

Change control should be implemented to track all authored policies and
custom solutions. These policies and solutions become the baseline for
entitlement governance by collect policy artifacts.
 Chapter 1. Business drivers and foundation for IT security policy management 37

1.9.2 Transform

After policies are modeled and authored using well defined open standards,
policies need to be transformed into a format that can be consumed by
enforcement agents. Transformation can be decomposed into two components:

� Policy configuration
� Policy distribution

Configuration
Policy configuration is the process of transforming an abstract policy to add
binding information so that policies can be communicated to decision points in
terms of real IT infrastructure.

Policy authoring is performed at a policy administration point (PAP). PAPs do
not perform any policy decisions or enforcement tasks. The output of policy
authoring are policies defined in a canonical format that uses open standards for
interoperability, which allows a policy to be distributed to multiple decision points
by adding configuration information specific to each decision point. A distributed
policy consists of two parts, a canonical policy and configuration information that
binds the canonical policy to the underpinning IT infrastructure that supports the
implementation. Policy decisions are performed by a policy decision point
(PDP). There can be one or more PDPs to which a policy can be deployed.
Transformation must to be performed for each PDP.

Distribution
Configured policies need to be distributed to decision points in a controlled and
auditable manner. After a policy is transformed to bind authored policy roles and
rule parameters to real IT resources for each PDP, a process is required to
distribute policies. Each time a policy or the associated policy configuration is
changed, the following items should be considered:

� The distribution of the new policy needs to be approved by stakeholders
defined by a business workflow.

� Change control should ensure that a policy change is audited.

� The policy should be published to the PDP on a schedule determined by the
business.
38 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

1.9.3 Enforcement

After policies are modeled, authored, transformed, and deployed, policies need
to be enforced. Enforcement is implemented through a policy enforcement point
(PEP). A PEP allows a local resource manager to call out to a PDP for an
authorization decision. Each PEP has its own resource specific mechanism to
enforce the required policy. A canonical policy and binding information
configured turning transformation is used to implement authorization decisions.

Using a centralized policy decision model allows automation of policy
management, which is typically handled by local administrators. However, strong
integration is required with enforcement points to make an automated policy
management solution effective. The integration points must support the required
coverage of distribution targets and provide the flexibility security services
require.

A proper enforcement design should contain the following information:

� Enforcement agents required
� Systems requiring deployment of policy enforcement agents
� Custom enforcement point solutions

A change control process should be implemented that tracks and stores the
following information:

� Enforcement design

An enforcement design document should be kept under change control, as
the design may change over time.

� Custom enforcement solutions

Custom enforcement solutions should be kept under change control, as those
solutions may evolve with changing technology requirements.

� Enforcement point deployment status

Active enforcement points should be tracked under change control so reports
can be generated and this data can be used as feedback to the policy life
cycle.

1.9.4 Monitor

A security policy is authored, transformed, and enforced throughout the life cycle
of an application. All changes to this infrastructure must be closely monitored for
compliance and continuous feedback to the policy life cycle. A holistic monitoring
solution needs to be implemented to provide the ability to collect, analyze, and
report to key stakeholders.
 Chapter 1. Business drivers and foundation for IT security policy management 39

Three classes of monitoring can be considered:

� Policy runtime audit data

Most if not all systems in the IT environment are capable of collecting data
specific to its function. As policy management involves using distributed data
to author and enforce policies, an approach is required to define what audit
data is relevant to gain visibility into system access behavior. Monitoring
access to sensitive data may no longer be achieved by collecting a single log
file or audit record. Audit data and records from disparate sources needs to
collected, synthesized, and presented to authorized stakeholders. This
information can be useful for vulnerability analysis to detect and react to
threats in a rapidly change business environment.

� Policy configuration audit data

Artifacts from policy authoring, modeling, transformation, distribution, and
enforcement should be tracked through change control as policies are
implemented and refined, which allows stakeholders to monitor and analyze
the policy as it moves through the entire life cycle. Synthesized reports based
on policy artifacts may be useful in designing report for compliance purposes.

� Reporting

A key function of IT systems to produce reports on various aspects of
operation for management. A policy management solution should provide
standard reports and provide the ability to customize reports.

1.10 Conclusion

After introducing a business-driven security approach with the IBM Security
Framework, we presented the four business drivers for security policy
management:

� SOA governance
� Identity and access management governance
� Compliance management
� Data security risk management

We explored each of these topics, the challenges they represent to the
organization, and how security policy management can be used to effectively
address them. Finally, we discussed an IT security policy life cycle management
approach.
40 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 2. Architecture patterns for
externalizing security from
applications and services

In Chapter 1, “Business drivers and foundation for IT security policy
management” on page 3, we discussed the emerging business challenges of
today’s changing economy. We observed that IT security plays an important and
increasing role in this field. Given that IT security is part of the business, we
propose an approach that makes it part of the solution as well. We perceive
policy as being the mechanism that provides the link between the business
drivers and possible IT based solutions. The business view of policies is a high
level, overall view by nature, and it defines general objectives. To match this
perspective on the IT side, a centralized policy management approach is needed
that can abstract from the specific and implementation dependant enforcement
options and provide a scope that goes beyond the scope of a single entity.

Let us assume, for example, bank A has acquired insurance company B to be
able to provide a broader scope of financial services. The IT systems are
consolidated, so bank employees are now internal users of the insurance
applications. Regulations require that personally identifiable information be
provided on a need-to-know basis only, which means in particular that they must
not be combined with other information about the same person.

2

© Copyright IBM Corp. 2011. All rights reserved. 41

Let us assume a mutual customer of both A and B applies for a bank credit. The
bank clerk who has to decide about this credit application needs to access
certain data about the customer’s insurance policies, such as type of insurance
and due payments, while information about any claims made to the insurance
must not be shown. The insurance application must determine which information
needs to be provided based on the context of the inquiry.

The most specific, and therefore least desirable IT enforcement option, is the
enforcement through individual, custom coded applications. This approach bears
the highest cost for both development and maintenance and it is the least agile
and the most error prone approach. In our approach we combine the
alternatives, which avoid policy enforcement through custom coding under the
term externalizing of IT security policies.

The centralized approach that we are describing in this book can help bridge the
gap between business level security requirements, mainly formulated in a
non-technical language, and the technical rules. Those technical rules are used
to manage and enforce security policies across the organization’s IT and
application environments by using industry standards such as eXtensible Access
Control Markup Language1 (XACML), WS-SecurityPolicy2, Automated
Compliance Expert Markup Language3 (ACEML), and so on.

In this chapter, we describe patterns for externalizing security policy enforcement
that we have observed based on a variety of customer requirements and
deployments. In Chapter 1, “Business drivers and foundation for IT security
policy management” on page 3, we provided business reasons regarding the
need to externalize security policies from applications. In this chapter, we discuss
the more technical reasons that will drive a particular architecture pattern.
Technical parameters and constraints also determine the policy enforcement
options that are available.

Depending on the existing IT and application environment in an organization, a
combination of more than one pattern may be appropriate. None of the patterns
excludes any of the others. Having a choice here allows you to be as
non-intrusive as possible when adding security measures to an existing
application environment. IT components that are already present, such as a
proxy, an XML firewall, an Enterprise Service Bus, or application containers, may

1 More information about XACML can be obtained at the following OASIS website:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

2 The latest information about the OASIS standard WS-SecurityPolicy can be found at the following
address:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os
.html

3 More information about the Automated Compliance Expert (ACE) workgroup from the OpenGroup
can be found at the following address: https://www.opengroup.org/projects/security/ace/
42 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.opengroup.org/projects/security/ace/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html

be used for policy enforcement by integrating them with the common and
centralized security services.

Let us now take a closer look at the different architecture patterns for security
policy enforcements:

� Intermediary approach
� Container level approach
� Database level approach
� Application level approach

2.1 Intermediary approach

Organizations today are continually seeking new ways to deliver applications and
services efficiently and cost effectively. Many are already using approaches such
as service-oriented architecture (SOA) implementations, SOAP based web
services, and RESTful web services to provide access to on-premise and
off-premise applications, while increasing numbers of these organizations are
exploring techniques such as cloud computing, software as a service (SaaS),
and smart grid as a delivery platform. These alternatives to traditional IT
infrastructures can help reduce IT and application development costs, increase
opportunities for collaboration, and drive business growth. At the same time,
however, they can create new vulnerabilities, exposing access to applications
and services beyond traditional organizational boundaries. Organizations
therefore require more than traditional IT security to manage and protect access
to these applications and services.

As a result of the transformation of IT and application environments, a large
number of such web services (SOAP and REST) are being deployed to support
business needs. These web services need to be protected not only from
vulnerabilities from externalizing them, but also from the loss of intellectual
capital and company specific information. Typically, this protection needs to be
achieved without any modification to the service providers. One approach is to
intercept these services before the request reaches the service provider to
enforce security policy to protect the service. Components such as web services
gateways, XML firewalls, web proxies, an enterprise service bus, and others are
examples of intermediaries, where a service can be intercepted and an
appropriate security policy can be enforced. This approach is called the
intermediary approach and architecturally, provides a good fit within SOA
environments.

Let us review the need for an intermediary based approach through the following
utility services example.
 Chapter 2. Architecture patterns for externalizing security from applications and services 43

2.1.1 Customer example

A utility company with several million customers is in the process of deploying
smart meters on their customers’ premises for more efficient and lower-cost
operations, because the smart meters can send customer usage data directly to
the utility company’s SOA-based IT environment, rather than requiring their
employees to physically go out and read the meters. For scalability reasons, the
meters send their data to concentrators, which in turn use web service interfaces
to transmit this data. Those web services must be secured within the SOA
environment.

The key to securing access to both on- and off-premise applications and services
in this scenario is to build on the existing identity and access management
infrastructure and use it to support a scalable and highly available solution for
secure access to transformed resources. A centralized approach for security
policy is a good way to maintain overall governance and control. Each additional
service offering can then be implemented by simply adding more web services
and protecting each service per business needs.

Most of the communication involved in this example has financial implications, so
the implementation needs to be tamper resistant, meaning that it requires data
integrity. In addition, the data flows over the public network, which is not
protected against eavesdropping by nature. Therefore, confidentiality based on
data encryption is also important. After the smart meters are in place, it becomes
easy to increase the frequency of the read and write operations to enable more
business operations, which requires high availability of the entire IT environment.

Another important consideration might not be quite as obvious: The amount and
nature of the data that gets created in a full-scale smart meter environment is
likely to give away personal information about the customers, such as habitual
behavior patterns, periods of absence, and cultural attitudes, if it is correlated
intelligently. So there may be a need for policies governing the data life cycle,
duration of storage, anonymization, and auditing.

2.1.2 Integrating policy at the intermediary level

Let us now take a look at the steps required to establish the intermediary level
security policy enforcement approach. The most common implementations of
this approach involve SOAP based or RESTful web services; we use SOAP
while discussing the intermediary pattern.
44 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Service discovery and service registry integration
A web service typically comes with a formalized, standards-based service
description. This description presents a perfect starting point for adding policy
management information. However, in application environments with a large
number of services, this description might not scale well. To better use the
benefits of a formal service description language, organizations typically deploy
service registries that can assist with finding specific services. These registries
can also store policies and metadata, making them available to govern the
services.

A security policy management solution can use the registry and repository in two
ways:

� It can use the service registry to discover a service and import not only its
description but also any metadata that may be associated with the service.

� The policies authored by the security policy management solution can be
published back to the registry so that they can be used by other components
within the IT environment, which includes web service clients for guidance as
to how requests must be built, as well as policy enforcement entities for
instructions about the policies they have to enforce.

Service security policy authoring
Industry standards such as WS-SecurityPolicy and XACML provide a
mechanism to define security policies for message protection, and context level
authorization, respectively. These standards based policies can be associated
with the web services that need to be protected.

There is, however, a gap that needs to be bridged between the business policies
and their representation in IT terminology. At the current state of technology, this
is not an automated task. The tools that are available today can assist, but not
replace, the human assessment as to how a business requirement formulated in
a non-technical language needs to be represented in a formal way. However, the
fact that the formal policy languages are being used facilitates the process
greatly. It helps in particular to develop a common understanding between the
business owner and the enterprise architect. This is also where the need for
policy life cycle management as an iterative process becomes important.

Policy configuration and distribution
The formal policies are still an abstraction to a certain extent. The process of
converting them into a set of automatically enforceable rules is commonly
referred to as policy configuration, which usually means binding an abstract
policy element, such as a role, to a concrete object, such as a user ID or a group,
in a specific registry that can be accessed and enforced at run time.
 Chapter 2. Architecture patterns for externalizing security from applications and services 45

The defined policies and the associated configuration need to be distributed to
various components within an organization so that they can then be enforced.
Distribution targets include, but are not limited to, the service registries. In
general, policy decision points need to have access to the policies, but whether
these PDPs are distributed to them directly or by means of a service registry, is
specific to the implementation. In either case, it is important to have a
mechanism in place that can assure that the current version of the policy gets
used at any point in time.

Enforcement at the intermediary
Typically, all service requests pass through an intermediate entity (that cannot be
bypassed) before reaching the service provider. There are different examples of
such intermediaries; they may have been introduced for other purposes and now
need to be enhanced for security policy enforcement (XML firewalls, an
enterprise service bus (ESB), business process management servers, or
application containers), or they may have been introduced specifically to serve
as a policy enforcement point.

Depending on the specific needs (available interception points, performance
implications, persistent storage options, and so on) and also depending on the
type of policy that needs to be enforced (message protection versus access
control), different combinations of policy decision making and policy enforcement
are possible. Both tasks can be co-located in a single entity, or they can be
separate from each other, in which case the enforcer will have to reach out to the
decision point.

Security of runtime information
Complex fine-grained entitlements often require additional data for the decision
making process that go beyond the basic who does what on which target. This is
where the effect of the policy configuration step sets in. Any additional resources,
such as directory servers or databases whose contents can influence the
authorization decision, must be secured with the same due diligence as the core
application environment itself.

Message security, conversely, requires a strong authentication token such as a
Security Assertion Markup Language (SAML) token and a reliable verification
mechanism that must be in place.
46 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Auditing
In this intermediary pattern, we have touched on a variety of good reasons for
comprehensive auditing and logging. Let us recap some of them here.

� In an environment that consists of numerous on-premise and off-premise
devices it is paramount to have an early indication of any irregularities. If we
look at the example of smart meters, it is unlikely that such a device will ever
send a false identification unless it has been tampered with, there is a
stealthy attack, or there is a technical problem.

� We observed that policy authoring is an iterative process involving at least
two different groups of people with different skills and backgrounds, which
might result in errors when crafting the policies. Audit logs can serve as a
means to identify erroneous policies and correct them.

� We also observed that the data gathered by the business services have the
potential to be used for profiling. Audit logs can be used to identify that
attempts to perform this action have actually taken place.

More information about the intermediary approach can be found in Chapter 5,
“Intermediary level integration” on page 121.

2.2 Container level approach

To share information with a wide variety of users and to facilitate valuable partner
and customer interactions, organizations are creating increasingly collaborative
environments with shared touch points, using IBM WebSphere Portal, Microsoft
SharePoint, and custom applications built in Java and Microsoft .NET
development environments. These shared touch points have brought about an
enhanced user experience that needs to be controlled based on business needs
without compromising any company specific information.

As organizations are building these portals and applications, they like to
externalize the security policies that influence the behavior of the application or
portal. Typically, these policies are based on business needs of the organization
and can often change when business drivers or processes change. One way to
help facilitate this situation is for applications and portals to externalize security
enforcement to the application server container and focus only on the business
logic. The container can then be integrated with a security policy management
solution so that it can enforce the security policies defined by the business and
influence the behavior of the applications and portals.
 Chapter 2. Architecture patterns for externalizing security from applications and services 47

This approach to externalize application security from the application server
container and have the container influence the behavior of the application by
using a security policy management solution is called the container level
approach. This architecture pattern is typically used when developing new
applications or portals or for application re-engineering. Examples of application
containers that can be integrated with a security policy management solution
include J2EE container, SharePoint, ASP.NET, and so on.

Let us review the need for a container based approach through the following
financial services example.

2.2.1 Customer example

A large financial institution is offering some of their services through online
portals. This action proved successful, so more and more customers take
advantage of these online channels. The institution now wants to add more
services to its portals, including the most critical ones that expose a variety of
mission-critical applications and services. These services involve the exchange
of critical data such as credit card numbers, social security numbers, and other
personally identifiable information (PII). Now the organization faces the
challenge of ensuring in a productive way that user access remains secure. They
must also secure access to critical data from inside the organization. Corporate
security policies dictate that this access be managed on a need-to-know basis to
minimize risk of both intentional and unintentional data loss or breach of data
security.

Hardcoding security controls into these applications can generate redundant
logic, while running the risk of introducing inconsistency among applications.
Once in place, such controls are difficult to change, and they contribute to
increased operational costs and security risks for the organization.

Here are some of the specific challenges that this organization and the financial
services industry in general are facing:

� Being among the earliest IT pioneers, they have a long history of core
applications that were written for an entirely different environment. Portals
and service veneers are used to provide interfaces that serve today’s needs.

� New business initiatives and rapid growth have caused the establishment of a
variety of application platforms using different technologies that are
inconsistent in many ways.

� A number of mergers and acquisitions has added even more to the
inconsistencies in IT. As a result, governance requirements and the need for
better cost efficiency mandate a consolidation. Conversely, a smooth
migration path is needed to not disrupt the daily business.
48 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� The trend towards one-stop financial services has forced cooperation among
formerly separate types of operations within the organization, such as banks,
insurance companies, and building associations.

� The financial services industry worldwide is governed by a number of
government regulations and standards. Compliance is not an option; it is
mandatory.

� The observed overwhelming trend towards online banking and other
self-service offerings available to customers has raised the bar for security
controls. Sensitive financial data combined with PII is sent across the public
Internet and demands the best possible protection. Incidents of fraud can
damage reputation overnight.

From the above challenges these needs emerge: Applications should not have to
code their own security mechanisms, a centralized approach is required for
security policy management, it has to cover both external and internal
communication, and a set of common security services are needed that can be
used across all platforms and that can be easily adapted to change.

Given the fact that the core business of our financial services organization
depends 100% on the availability of its underlying IT systems, high availability
and resilience are paramount. This situation has two immediate consequences
for security services, including the security policy management:

� The security services themselves must have failover mechanisms in place.

� Special attention must be paid to the prevention of denial-of-service attacks
against the security services.

2.2.2 Integrating policy at the container level

We now take a look at the steps required to establish the container level security
policy enforcement approach. The most common implementations of this
approach involve portals and application servers, most of them either based on
Java or .NET. A security policy management solution should therefore support at
least these two.
 Chapter 2. Architecture patterns for externalizing security from applications and services 49

Interfacing with the container
There is not a single common interface available for security policy management
across all application container implementations. A policy management solution
must therefore provide a flexible, extendable, and modular architecture to be
able to support the consolidation challenges that we have described for this
pattern. It should support existing standards for obtaining external policy
decisions, such as Java Authentication Contract for Containers (JACC), a
well-established industry standard within the J2EE environment, by
implementing a JACC provider. Standard solutions for widely deployed platforms
such as SharePoint are desirable. An API to enable custom-made interfaces on
other container platforms will serve as a last resort if nothing else is available.

Discovering application resources
The possibilities for automatic (or easy) discovery of application resources
depend heavily on the available interfaces a specific platform provides. For
example, SharePoint provides a web service that can be used to discover
SharePoint resources. J2EE platforms have the potential to enable easy
discovery of resources such as ESBs, web URL patterns such as JSPs, and
roles through use of administrative interfaces. Unlike the web services
environment with its service description language, there is no universal
description language for a container in general. A good approach can be to
normalize to an intermediate descriptive format similar to what exists for web
services, which can help facilitate the resource import from different sources.

Policy administration
All aspects of policy administration depend on what the container platform can
offer and what is standardized. In the case of J2EE, there is existing standards
work that can be used. For example, a J2EE profile for the generic XACML policy
description language provides mapping of J2EE resources. This is a good
starting point for policy authoring, whereas role mapping needs to integrate with
the respective container runtime environment and its integration with user
authentication mechanisms. A consistent support for security policy
administration across multiple J2EE based container platforms appears to be
both desirable and achievable. A good security policy management solution
should provide capabilities to support other containers, such as SharePoint
policy administration, and be open to further extensions.
50 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy enforcement at the container
This is the core aspect of this pattern. The fact that the applications are unaware
of the security policy decisions helps to keep them simpler and easier to
maintain. Developers can focus on the business logic and do not need to
become security experts. Business agility is increased as changes and new
applications are implemented quicker. Consistency of security policies across
distributed environments more easily achieved and verified, both for existing and
new applications. In the case of portals, the portlets take the position of the
applications, so policy enforcement is externalized from them as well.

Auditing
In a highly regulated industry, auditing is one of the most important aspects of
security policy management. Being able to place this function at the container
level makes it easy to build a consistent, all-encompassing auditing and reporting
solution that includes both the policy management itself and the business
transactions, provided there is standard auditing support within the deployed IT
security policy management solution. A need for additional log and event
management capabilities may still arise due to compliance requirements and
government regulations.

More information about the container level approach can be found in Chapter 6,
“Container level integration” on page 159.

2.3 Database level approach

In many of today’s collaborative business environments, organizations may have
to share data with a variety of partners, employees, and others outside the
organization, most of whom need access only to a particular segment of the data
available to them in the environment in which they share information. This data
may have to be accessed from a number of applications and channels. Because
it is not always possible to modify the applications to enforce data-level security,
it may be necessary to enforce controls at the database level to ensure that the
right information is being disseminated to the right requestor for the right reason
or in the right context. The database and the data that it holds become a natural
point where one can apply and enforce security policies, particularly access
entitlements.

This approach, where the security controls are implemented on the databases
instead of modifying the applications, is called the database level approach.
Architecturally, this is a good fit when consistent access policies to data are
required regardless of the applications and channels that access the data.
 Chapter 2. Architecture patterns for externalizing security from applications and services 51

Let us review the database based approach through the following healthcare
organization example.

2.3.1 Customer example

A healthcare organization is constantly receiving data, such as medical records
from healthcare providers, and claims and other benefits-related information
from insurance providers. At the same time, the company is sending out data to
third parties, such as companies to whom billing or other services are
outsourced. In such a scenario, data security requires that information be shared
strictly on a need-to-know basis so that, for example, healthcare providers have
access only to medical records, and not claims or billing information, insurers see
only data related to claims and benefits, and providers of outsourced services
are limited to views of data related to the services they provide.

Both medical and financial data represent particularly sensitive types of
information that, when combined with Personally Identifiable Information (PII),
can cause great damage to the person to which they relate, if they get into the
wrong hands. In such a case, the healthcare provider would be held liable for the
damage or would face respective charges of liability due to lack of due diligence.
So it is obvious in this scenario how business needs directly relate to the
successful implementation of security measures.

A number of past incidents of data leakage that had wide press coverage have
shown that there is a less direct, but potentially far more severe, risk to the
business due to this issue: loss of reputation and resulting decline of future
revenue caused by customers walking away. In many countries, it is not possible
anymore to try to avoid this reputation damage by simply refusing to comment on
the incident because regulations require that data loss must be reported.

The following, non-exclusive list of data related and business driven
requirements have been identified based on data security needs:

� Grant access to data on a need-to-know basis.

� Make sure that access is granted consistently across all applications and all
data stores.

� Pay special attention to privileged users such as system administrators.

� Monitor sensitivity of data as time evolves.

� Be prepared for rapidly growing data volume.

� Consider different requirements for data at rest, in motion, and in use.
52 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Need-to-know principles
A user should only have access to those data elements that are necessary to
fulfill the respective duties based on their role. So, for example, a physician in a
hospital needs to see the entire medical record of a patient to avoid
mistreatment, but should not be able to see credit card information. A person in
charge of billing, conversely, needs access to the insurance data, to be able to
distinguish which treatment is covered by the insurance, and which treatment is
not covered and must be billed to the patient directly.

Consistent fine-grained access control
Regardless of the number of applications, business imposed rules and policies
apply to the entire organization. All applications operating on the same data must
follow the same rules. When applications need to be changed or new
applications are introduced, it should take little effort to establish consistency of
data access entitlements.

Privileged user management
System administrators often need privileges far beyond what their duties require,
simply because the system platform does not provide the level of granularity for
access control that the business needs dictate. Specifically, this means that a
system administrator can often access sensitive business or personally
identifiable data as a side effect of their administration privileges. It is a best
practice to reduce these privileges by adding an additional enforcement layer that
has much finer granularity both in determining a user’s role as well as the
significance of the data element being accessed. Administrators benefit because
they are no longer a prime suspect in case of a breach because the organization
can apply the same principles related to business data to administrators as well
as any other user.

Changing sensitivity of data
As time passes, certain information elements may lose their former importance
or gain additional importance. Data that is critical one day is less consequential,
perhaps not even relevant, at another time. For example, a temporary medical
condition may be critical only until the patient has fully recovered. After that, it
may not matter any more that the patient ever suffered from this problem.
Financial transactions may be kept secret until a certain point in time, after which
they become public knowledge. Policies may be needed to address conditions
like this, for example, a specified date can trigger an automatic change in the
status of a data element.
 Chapter 2. Architecture patterns for externalizing security from applications and services 53

Growing data volume
Data growth is exploding today, with data volumes doubling every 18 to 24
months according to some analysts. The implications for data security in the data
center are vast, as organizations store increasing amounts of content there.
More storage is required to support such massive data growth, and organizations
must make sure that the addition of more data stores takes place in accordance
to the existing access policies at any given point in time. There must not be a
single instant at which this principle is violated.

Data in different states
So far we have discussed how data entitlements are handled in the context of
business applications that carry out well defined, intended business processes.
For the sake of completeness, regulations require policies to be put in place to
ensure confidentiality and integrity of data at all times, including when they are in
transit (and thus prone to unauthorized interception) or at rest (and thus
potentially subject to intrusion attacks or information loss).

2.3.2 Integrating policy at the database level

We now take a look at the steps required to establish the database level security
policy enforcement approach.

Database resource discovery and classification
To be able to formulate policies related to data, the context of that data must first
be known to the policy management solution. A discovery mechanism is required
to provide information about relevant data, including metadata such as schema
and table structures, further classification of the data based on business
requirements, state of the data, and so on. Data classification is a task of its own
and can be carried out separately from policy management. It provides important
input to policy management, especially in providing important business contexts
to information. Classification applies to both structured (database) as well as
non-structured data (residing in the file systems).

Database security policy authoring
After the resource hierarchy has been identified, policies can then be defined and
associated with data elements or classification of data elements. Most
commercially available databases already provide a mechanism for enforcing
both coarse and fine levels of authorization policies; but they are specific to the
target database. Hence, policy authoring should provide an abstraction so that
you do not need to understand the details of all the database implementations.
There may be more than one policy required to accomplish the database specific
actions.
54 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy configuration and distribution
Because the policies are defined with a level of abstraction, configuration is
needed to map the parameters of the policy into enforceable entities on the
database where these policies would be enforced. The policies and configuration
information for databases may then be transformed into database commands
and distributed to databases where they will be enforced.

Enforcement at the database
Because a database server receives actions to perform natively, enforcement
requires merely to execute the actions, but additional conditions may have to be
accommodated for a proper context. The achievable granularity depends on the
combination of options available both on the management side and the specific
enforcement points. When calls by different applications invoke the same type of
operation on the database, consistent policy enforcement can be achieved and
eventually demonstrate compliance to the business. This situation also includes
control over actions carried out by privileged users with administrator rights who
have opportunities to bypass the business applications and access data directly
by using administrative tools.

Application integration
When using the fine grained access capabilities in databases, you need the
context of the user in addition to the application or system ID that is typically
used to connect to them. Some databases support this notion and provide the
ability to propagate identity, in which case there may not be any application
changes required. In other cases, where automatic propagation of identity is not
possible, applications may have to provide it explicitly during connection time.

Auditing
Accountability of both the business as a whole and the user as an individual is
essential. Auditing of policy management solution and enforcement is the key
approach. Given the fact that the pattern of database level enforcement presents
itself as a combined effort between the security policy management component
and the database, it is likely that the same situation applies to auditing. This
situation implies that a correlation of different audit logs with different formats is
likely to be needed. Specialized log and event management solutions provide
both the technical and the business side of this requirement. They can normalize
and abstract from the specific log formats and they can assess compliance with
business driven or law imposed rules and regulations such as the Health
Insurance Portability and Accountability Act (HIPAA). Log management also
helps to prove completeness and integrity of the logs, thus making it a business
supporting feature rather than just a technical component.
 Chapter 2. Architecture patterns for externalizing security from applications and services 55

More information about the database level approach can be found in Chapter 7,
“Database level integration” on page 187.

2.4 Application level approach

There will be scenarios where the previous approaches may not prove sufficient,
either because of specialized application needs or specific authorization
requirements. In some cases, the organization's needs might not align with
container based approaches, even if they are supported for their application
platform. The business will still need to influence the behavior of applications
through external policies, and explicitly leverage an IT security policy
management system. This approach is called the application level approach. IT
security policy management and decision making is still being externalized, so all
the advantages of centralization still apply. The only functions that need to be
implemented beyond policy enforcement are the creation of the policy decision
request, the invocation of the decision point interface, and acting accordingly on
the returned decision.

As mentioned before, none of the patterns are meant to be exclusive; they can
be combined with each other for specific situations and business needs. In our
current discussion, the application level approach in particular is most likely to be
combined with other approaches, such as the intermediary or container level
externalization pattern.

Let us review the application integration approach through the following services
organization example.

2.4.1 Customer example

A highly specialized IT services organization provides premium services to tax
counselor firms that are generally small or medium sized. Tax laws are complex
in most countries and undergo frequent changes, so the supporting software is
equally complex; it must not produce false results (because this would break the
law), which means it has to be thoroughly tested to the extreme, and
modifications due to legislation changes have to be in place precisely on the
effective date. The target market for these types of services consists of a limited
number of tax counselors. Their most important asset by far is the quality of their
software based service, that is, the quality of the software itself.
56 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Let us take a look at some of the security implications in this industry:

� Counselors’ offices are likely to have several employees. These employees
have individually assigned customers and they must not have access to other
customers’ sensitive tax data. So the IT services provided require a two stage
authentication process, one level for the counselor’s organization as a whole,
and one for the individual employee with his dedicated customers.
Entitlement policies must take the authentication level into consideration.

� The counselors’ employees are working with the firm’s local IT environment,
so they need to log in locally first. Identity federation is a user-friendly and
secure integration approach with the premium service provider. IT security
policy management should integrate with federated identities.

� As stated above, tax data is extremely sensitive and requires thorough
protection at all stages based on the context of the request.

� Auditing takes an important role not only to prove compliance of the provided
applications and services with legal obligations, but can also serve as a
monitoring tool for attempted attacks, especially insider attacks and privileged
user attacks. Trustworthiness is essential in this industry. A single breach can
destroy the services organization’s reputation beyond repair.

� Tax regulations change frequently over time. Tax data sometimes needs to
be processed some time after the fact, possibly even years later. In such a
case, the respective laws and regulations that date back to that point in time
must be applied. The respective versions of the software and possibly
respective versions of the corresponding IT security policy must be applied.
An adequate version control regime for IT security policy must be in place to
support this situation.

� High availability is often a requirement driven by business needs. Tax
obligations generally have a deadline attached, which, if not met, has serious
implications, such as fines and hefty interest being added to the amount due.
Therefore, the premium services must not fail, as covered by a service level
agreement. IT security policy management, being an essential component of
the solution, needs to provide that same service level.

2.4.2 Integrating policy at the application level

We now take a look at the steps required to establish the application level
security policy enforcement approach. More than in the other patterns, this
pattern should be used as an example only, because this pattern is not as
standardized as the other patterns described previously.
 Chapter 2. Architecture patterns for externalizing security from applications and services 57

Application resource discovery
With a custom-written application, it is less likely that the relevant resources can
be captured by a standardized method, so there is a need for a custom made
provider of resource metadata. Ideally, this provider would be integrated with the
software development environment of choice to extract the resources directly
from the source code. We already observed, with the container level pattern, that
it is desirable for the IT security policy management to have an intermediate
descriptive format. This situation equally applies here, especially when the two
patterns are combined in a solution.

Application security policy modeling and authoring
If the application design and development takes place at the same time as the
creation of the related IT security policies, both could be undertaken in a
synchronized fashion and benefit from each other. High level application design
could then be accompanied by policy modeling, which may include simulation of
policies as a way of early testing at a high level. This situation might reduce the
cost of application development substantially, because errors cost less the
earlier they are detected during the development cycle.

In a similar way, policy authoring could be done during the software coding and
testing phase, and again both activities would benefit from each other.

Policy configuration and distribution
A strict separation between policy decision making and policy enforcement
characterizes the application level integration pattern. We have seen that new
applications in particular benefit from this approach. Conversely, there may be
some extra migration effort required for existing applications. There are
situations where a nonstandard user repository with nonstandard interfaces is
being used for complex granular authorization. Integrating such technologies
with a new, standards-based IT security policy management solution can be
achieved by using custom policy information points. Standards such as XACML
provide enough flexibility to map to existing complex policies.

Policy enforcement
From the sample scenario that we have discussed so far, it can be assumed that
there will be intermediaries playing a role in the connection between the service
provider organization and the counselors’ offices. A centralized overall IT
security policy management solution can benefit from this architecture by using
an optimized placement of the respective enforcement functions. For example,
message security is often best placed at the intermediary, both from an
architectural and a performance perspective; the same may apply to
coarse-grained access control. Fine-grained authorization and entitlements,
however, typically make more sense in the application context.
58 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Although the effort of implementing an enforcement point adds to the amount of
development, the interfaces used by the application to communicate with the
policy decision point play an important role with respect to the resulting
maintenance cost. A published industry standard interface is desirable, as it can
be expected to remain stable and it avoids vendor lock-in.

More information about the application level approach can be found in Chapter 8,
“Application level integration” on page 213.

2.5 Conclusion

In this chapter, we have observed different approaches about how to address the
task of IT security policy management, a task that plays an important role in the
overall context of business driven IT governance. We have seen that there is no
single approach that covers all cases, but there are recurring patterns. We have
classified those patterns into four categories, being well aware of the fact that a
real-life situation is a mix of several of these categories. A centralized
architecture seems to be the preferred approach.

Typically, there will be one primary pattern. We provided some generic customer
examples to demonstrate how business demands tend to lead to its selection.
Technical considerations determine the full picture, which include platform
preferences, available skills, cost, availability of standards, availability of
roadmap information, and so on.

In the remaining parts of this book, we continue to discuss the different patterns
and approaches, and we introduce IBM Tivoli Security Policy Manager, which is
a product that provides a wide range of solutions to the challenges that business
requirements impose on IT security. We see that IBM Tivoli Security Policy
Manager addresses these needs by applying the IT security policy life cycle to
the observed architecture patterns in a flexible and agile fashion. We
demonstrate this situation by showing examples for both the breadth and depth
of the solution.
 Chapter 2. Architecture patterns for externalizing security from applications and services 59

60 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Part 2 Implementing a
policy life cycle
management
solution

We begin this part by introducing the logical component architecture of the IBM
Tivoli Security Policy Manager product, which can help you implement your own
IT security policy life cycle management. We then discuss important integration
aspects with external systems and conclude this part by looking at different
deployment considerations.

Part 2
© Copyright IBM Corp. 2011. All rights reserved. 61

62 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 3. Tivoli Security Policy
Manager overview and
architecture

In this chapter, we introduce Tivoli Security Policy Manager (TSPM) followed by
an in-depth discussion of the architecture of its key components, including policy
server and runtime security services.

The following topics are discussed:

� Tivoli Security Policy Manager overview
� Tivoli Security Policy Manager architecture
� Example deployment physical architecture

3

© Copyright IBM Corp. 2011. All rights reserved. 63

3.1 Tivoli Security Policy Manager overview

IBM Tivoli Security Policy Manager provides centralized application and data
entitlement management and SOA security policy management to enable access
control for data, applications, and services. Tivoli Security Policy Manager
provides capabilities to help improve compliance, and to drive identity based
operational governance across the organization.

Tivoli Security Policy Manager is a standards-based application and data
security solution. Along with other security systems and components, such as
auditing and reporting system, it provides life cycle management for IT security
policies, including authoring, transforming, enforcing, and monitoring.

Tivoli Security Policy Manager enables application owners and administrators to
externalize security and to simplify the management of complex authorization
policies for new and existing applications, including custom applications, and
databases. The benefits include:

� The ability to respond quickly to business changes through centralized
management of application roles, entitlements, and data-level access control.

� Improved compliance and security management with roles-, rules-,
attributes-, and context-based access control.

� Reduced manual, inconsistent, and costly administration of security policies
at each policy enforcement point.

� Operational governance with the ability to delegate and audit all changes to
policies.

3.1.1 Tivoli Security Policy Manager components

As shown in Figure 3-1 on page 65, at a high level, the product has the following
components:

� The policy administration point (PAP) is represented by the Tivoli Security
Policy Manager policy server and console.

� The policy decision point (PDP) is represented by the Tivoli Security Policy
Manager Runtime Security Service (RTSS).

� An example of a Tivoli Security Policy Manager policy enforcement point
(PEP) is a plug-in for WebSphere Application Server to enforce container
level security.
64 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� Tivoli Security Policy Manager provides a plug-in framework to integrate with
policy information points (PIPs), such as user registries, repositories, and
databases. Some PIP plug-ins are supplied by the product, and organizations
can develop their own PIP plug-ins to meet business requirements.

� A Policy Design Tool (PDT) is a modeling tool that can help users to model
and analyze high-level security requirements in a business context and create
security policy templates in a standard format for use within the IT
environment. The security policy templates created by the PDT can be
imported into Tivoli Security Policy Manager.

Figure 3-1 Tivoli Security Policy Manager end-to-end policy management

Policy administration point (centralized administration)
The PAP is delivered as the Tivoli Security Policy Manager policy server with the
following features:

� Resource identification and discovery

A Tivoli Security Policy Manager policy server helps you to discover existing
resources and associated metadata using existing repositories and registries
in an IT environment.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 65

� Resource classification

A Tivoli Security Policy Manager policy server enables you to classify
resources into groups, for the purpose of applying policy to a given group of
resources, in ways that align with the business requirements and provide
ease of management.

� Policy authoring

A Tivoli Security Policy Manager policy server enables authoring of different
security policies, such as message protection and authorization policies to
protect and govern services. Authoring is based on the type of policies using
an intuitive user interface to cater to both application owners and IT
operations. Policies can be defined based on the different contexts, such as
identity, service or resource, environment, and business.

� Policy transformation

A Tivoli Security Policy Manager policy server enables automatic conversion
of the policy to the format that is required by a given target system, which is
XACML or WS-SecurityPolicy. In addition, multiple policies can be combined
to derive effective policies both from inheritance and direct association.

� Secure policy distribution

A Tivoli Security Policy Manager policy server enables distribution of policy to
stand-alone PDPs (such as Tivoli Security Policy Manager runtime security
services) as well as to policy decision points that are embedded inside policy
enforcement points and resource managers. Tivoli Security Policy Manager
uses a protocol based on WS-Notification and WS-MetadataExchange,
secured by XML protection measures, such as digital signatures, to ensure
the integrity of the transferred policy. You can configure it to send updates
over SSL for another layer of protection and confidentiality. The policies are
secured both at the message level as well as by enforcing authentication and
authorization so that only valid entities can get the policies.

� Delegated administration

This feature allows you to delegate administrative tasks to individuals based
on roles and responsibilities. Roles that are shipped with Tivoli Security Policy
Manager include Application Admin, Application Owner, Policy Operations,
Policy Author, Auditor, IT Admin, and Role Admin. In addition, you can define
new roles based on business requirements.

� This feature provides auditing and logging for serviceability, reporting, and so
on, with standard resports.

� Change management and version control to keep track of policy changes,
versioning of policies, and so on.
66 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy decision point (Security as a Service)
The PDP is represented by the RTSS.

� Tivoli Security Policy Manager provides the capabilities to handle security
functions such as authentication (WS-Trust), authorization (XACML1), and
audit (Common Base Event2) in standards based services. These services
are delivered by the Tivoli runtime security service and can be used by
enforcement points to enforce policies that are centrally defined and
distributed.

� The Tivoli runtime security service provides not only token and identity
mediation, but also multiple levels of authorization enforcement with different
granularity based on standards based interfaces.

� For performance, scalability, and security reasons, you can deploy Tivoli
runtime security service in either local or remote mode. Thus, you can
evaluate policies locally if needed.

Policy enforcement point
Where needed, Tivoli Security Policy Manager provides enforcement points that
fall into the following patterns:

� Intermediary based enforcement

Intermediaries such as a web services gateway (for example, IBM
WebSphere DataPower®) can intercept a request and enforce policies before
providing access to the applications. The intermediaries can function either
both as PDP and PEP, or just as PEP using an external PDP (such as Tivoli
runtime security services). Message protection policies can be enforced at
message intermediaries, which are message handlers that can support the
WS-SecurityPolicy standard.

� Container based enforcement

The container is instrumented with a Tivoli Security Policy Manager plug-in
(for example, a plug-in for WebSphere Application Server) to enforce policies
without having to modify the applications.

1 More information about the OASIS eXtensible Access Control Markup Language can be found at
the following address: http://www.oasis-open.org/committees/xacml

2 More information about the Common Base Event can be found at the following address:
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Additional information: For more information about Tivoli runtime
security service in local or remote mode, refer to 3.2.3, “Tivoli runtime
security service architecture” on page 78.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 67

http://www.oasis-open.org/committees/xacml
http://www.ibm.com/developerworks/library/specification/ws-cbe/

� Database based enforcement

Relational database management systems (RDBMS) have their own policy
enforcement mechanism. Tivoli Security Policy Manager can transform and
distribute the security policy into the native policy of the RDBMS (such as IBM
DB2® and Oracle Database system). The database system functions both as
PDP and PEP to enforce the data access policy.

� Application based enforcement

Applications can use either the Java API based on JACC or web services
(SOAP or REST) based on XACML to retrieve authorization decisions from
Tivoli runtime security services and to enforce them.

Integration with policy information points (PIPs)
Tivoli Security Policy Manager supports the use of information from existing
identity management systems, identity and attribute repositories, application
databases, and rules engines when evaluating authorization policy.

The context of the policy information can be based on identity, service,
environment, or business.

Policy Design Tool
A Policy Design Tool (PDT) is provided by IBM alphaWorks®3 to help architects
model, analyze, and create policy templates and to check for Separation of
Duties violations prior to using those templates within the application
environment.

Architects can use this development tool to model and analyze the high-level
security requirements in a business context and to create IT security policy
templates in a standard format for use within the IT environment. Resources can
be classified according to their business function using multiple taxonomies.
Users can be assigned roles that capture the job functions that they are
performing. Thus, the security template policies are captured with
business-oriented resource classes and roles for ease of review with the
business process owners. Policy design tool also provides the ability to import
detailed IT security policy information that previously resided on different
platforms and provides the ability to assess a complete view of the IT security
policy landscape. A number of analysis functions also help ensure that policies
are consistent on the business level.

3 The IBM alphaWorks resources for the Policy Design Tool can be located at the following address:
http://www.alphaworks.ibm.com/tech/policydesigntool
68 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.alphaworks.ibm.com/tech/policydesigntool

After policies are captured, modeled with roles, and verified using the Policy
Design Tool, you can export them as policy templates for use by Tivoli Security
Policy Manager for application and data entitlement, and SOA security
operational policy management. Tivoli Security Policy Manager can use these
templates to author and refine application entitlements (roles-, rules-, attributes-,
and context-based) and to transform and enforce access control across
heterogeneous IT environment.

Additional features
In addition to these key features, Tivoli Security Policy Manager also integrates
with IBM products for governance and provisioning. Web services can be
discovered from WebSphere Service Registry and Repository (WSSR) and the
authored policies can be published back to the registry for governance.

Tivoli Security Policy Manager integrates with a number of IBM products and
therefore safeguards the existing investment in IBM products, for example:

� The capability of SOA governance of WebSphere Service Registry and
Repository

� The flexibility and speed of SOA security provided by DataPower SOA
appliances

� The life cycle management of identity and accounts provided by Tivoli Identity
Manager

� Tivoli Access Manager and Tivoli Federated Identity Manager

Other assets in the IT environment can also be used. Services can be discovered
from other registries that support UDDI, and integration with standard user
registries, such as LDAP and Active Directory, is supported as well. Tivoli
Security Policy Manager integrates with the IBM Tivoli Common Reporting
framework to provide unified reports on application roles and entitlements.

3.2 Tivoli Security Policy Manager architecture

In this section, we discuss the Tivoli Security Policy Manager architecture in
detail, including components such as policy server, runtime security service, and
other architectural aspects of the product, such as management API, data
model, administrative security, and others.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 69

To understand how the security capabilities of Tivoli Security Policy Manager can
be mapped to the IBM Security Blueprint, refer to Figure 3-2 on page 71. This
diagram shows the functional components of the People and Identity solution
pattern, and the highlighted elements indicate the functional components that
can be fulfilled, or implemented, using Tivoli Security Policy Manager. This
functional highlighting is applicable for the infrastructure service components as
well.

If we determine the desired functionality of a solution using the People and
Identity solution pattern, the mapping shown in Figure 3-2 on page 71 can be
used as a quick reference of the functional security management aspects of
Tivoli Security Policy Manager. This reference can help us determine which
functions of a solution can be covered by selecting this product.

Looking at the Risk and Compliance Assessment related sub-components, Tivoli
Security Policy Manager provides the capability to log policy violations, and
therefore can help with Risk Identification and Compliance Controlling. One
general use case for policies is to control risks by implementing organizational
guidelines, so you can use Tivoli Security Policy Manager to help with Risk
Controlling. Finally, as policies are important from a business and legal
perspective, and a policy can be considered as a specific type of business
record, Tivoli Security Policy Manager can be used to help with Records
Management. Furthermore, Tivoli Security Policy Manager puts the mechanisms
in place to enforce access to assets, and any effort to bypass those mechanisms
will be logged.

If you want to learn more about the Foundational Security Management and the
Security Services and Infrastructure sub-components, refer to Introducing the
IBM Security Framework and IBM Security Blueprint to Realize Business-Driven
Security, REDP-4528.
70 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Figure 3-2 Mapping of Tivoli Security Policy Manager to the IBM Security Blueprint
 Chapter 3. Tivoli Security Policy Manager overview and architecture 71

3.2.1 Logical component architecture

Tivoli Security Policy Manager architecture includes three core components and
one optional add-on component:

� The policy server and its console (for PAP)
� The runtime security services (for remote or local-mode PDP)
� The policy enforcement plug-ins (PEP) for specific application deployments
� The optional add-on component Policy Design Tool (PDT)

We discussed the capabilities of each of these components in 3.1.1, “Tivoli
Security Policy Manager components” on page 64.

The architecture of Tivoli Security Policy Manager is entirely standards-based
and scalable. The policy server is built on an Eclipse-based Open Services
Gateway initiative (OSGi) plug-in architecture and is extensible to support new
resources, new policies, new discovery and distribution mechanisms, new PDPs,
and PIPs. The runtime security service includes an interface to integrate with
existing identity management systems, existing identity and attribute repositories,
rules engines, and application and business repositories.

The Policy Design Tool is built on the Eclipse Rich Client Platform (RCP). It offers
a number of perspectives and views for modeling, analyzing, and debugging
access control policies. Its user interface is easy to use for business users
because it minimizes security-specific terminology and intuitively shows the
effects of policies. The tool also contains an embedded XACML PDP so that the
user can simulate access requests and debug the decision process that an
operational PDP will carry out in a real deployment.

Using this Policy Design Tool, architects can model and analyze the high-level
security requirements, assign users to roles, and create template access control
policies for resources, which include web services and application data in
relational databases. After review with business owners, these templates can be
exported into Tivoli Security Policy Manager to author and refine both message
protection and application entitlements (roles-, rules-, attributes-, and
context-based), transform the policies, and enforce them across the IT
environment. The policy templates are derived from the views of the business
owners; they can be further refined by IT system owners when applied to specific
IT environments.
72 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

At a high level, as illustrated in Figure 3-3, a Tivoli Security Policy Manager policy
server can import service definitions and metadata from repositories, such as
service registries, and can also work with existing identity and access
management systems. Policies can be authored by either the Policy Design Tool
(PDT) and imported into Tivoli Security Policy Manager as templates or they can
be created directly from the Tivoli Security Policy Manager console. These
security policies are transformed and securely distributed to various resources or
to a RTSS so that the resources can enforce the policies either directly or using
Tivoli runtime security service. Tivoli runtime security service can integrate with
existing identity and resource attribute sources, rules engines, and so on, at run
time. Finally, as we describe in 3.1.1, “Tivoli Security Policy Manager
components” on page 64, the Tivoli Security Policy Manager enforcement points
are provided in situations where the resource itself does not have the capability
to interpret standards-based security policies.

Figure 3-3 High-level architecture of Tivoli Security Policy Manager
 Chapter 3. Tivoli Security Policy Manager overview and architecture 73

The core of Tivoli Security Policy Manager consists of a policy administration
framework and user interface, a policy repository to store policy data and
metadata, and a security and delegation framework. Plug-ins of several different
types, which exist on top of this framework, enable additional capabilities of Tivoli
Security Policy Manager.

Tivoli Security Policy Manager uses the Java persistence object layer to work
with the underlying database. It supports persistence with major relational
database management systems (RDBMS) on the market today.

Figure 3-4 shows the various logical components of Tivoli Security Policy
Manager.

Figure 3-4 The logical components of Tivoli Security Policy Manager

The policy administration framework is based on OSGi, with extension points
defined that allow the addition of service, policy, policy domain, policy decision
and enforcement points, policy distribution target, and other capabilities of a
policy administration point.

Most notably, the service type and policy type extension points define and
manage the structure and semantics of instances of those kinds of services and
policies. For example, the web service service type plug-in manages the
processing of an imported WSDL4 to define an instance of a web service, as well
as any user interface pages specific to the contents of a web service.

4 WSDL: Web Services Description Language. Refer to http://www.w3.org/TR/wsdl for more
information about this topic.
74 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.w3.org/TR/wsdl

Similarly, the authorization policy type plug-in manages the user interaction of
authoring an authorization policy, as well as the import, calculation, and
generation of the XACML authorization policy created and distributed by Tivoli
Security Policy Manager.

The discovery capability employs service definition and other registry plug-ins to
query the IT environment for service data and any associated metadata.

The distribution capability provides the standardized (WS-Notification and
WS-MetadataExchange) secure policy exchange of notification and policy
retrieval, while also allowing plug-ins to provide custom distribution logic, for
example, to distribute policy to custom policy distribution targets using its
available APIs.

Finally, you can deploy the Tivoli runtime security services co-located with the
policy server or throughout the IT environment to provide a number of policy
distribution points.

3.2.2 Policy server architecture

A Tivoli Security Policy Manager policy server is the central component for IT
security policy administration, storage, and distribution. It is designed to be
extensible in order to support different policies and policy distribution targets.

Policy administration framework plug-in architecture
Tivoli Security Policy Manager needs to support multiple types of artifacts, which
include services, resources, policy types, service endpoints, policy distribution
targets, service definition, metadata registries, and so on. The policy server
consists of a security policy administration framework and the plug-ins that
provide security policy management functions. The underlying flexibility of the
security policy administration framework allows the product to be extended to
support any new type of service to be protected, type of policy to be authored,
type of registry to be queried, type of target to receive policy distributions, and so
on. The security policy administration framework exposes a collection of
extension points for extending functions, and can be used by other IBM products,
customers, and Business Partners. It also allows of each of these types of
plug-ins to contribute user interface panels to fully express their semantics and
configuration requirements.

The Tivoli security policy administration framework is built on the eclipse Equinox
OSGi runtime and extension registry. Tivoli security policy administration
framework plug-ins are developed using Eclipse IDE V3.3.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 75

Figure 3-5 shows this Tivoli security policy administration framework plug-in
architecture.

Figure 3-5 Tivoli security policy administration framework plug-in architecture

Tivoli security policy administration framework plug-in architecture defines a rich
set of service provider interfaces and implementations. These service provider
interfaces are used by Tivoli Security Policy Manager itself, and can also be used
by customers and third-party vendors to develop their own modules to extend the
functions of Tivoli Security Policy Manager.

The following pluggable functions are currently available for Tivoli Security Policy
Manager:

� Discovery (service definition registries)

Service definition registries are the existing repositories from which service
definitions can be retrieved. Examples are WebSphere Service Registry and
Repository, Database, WebSphere Application Server, and so on.

� Policy type

Policy standards and languages that are authored by an administrator,
applied to services, and enforced by policy enforcements points. Examples
are authorization policy, message protection policy, separation of duty (SOD),
and so on.

� Services and resources type

Services and resources are the objects in Tivoli Security Policy Manager to
which policies can be applied. Examples are web services, customer
applications, Microsoft SharePoint, portal resources, and so on.
76 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� Policy distribution targets

Policy distribution targets receive policies from Tivoli Security Policy Manager
policy server directly, using either “push” or “pull” methods, depending on the
nature of the target and network environment. By default, the policy
distribution targets “pull” the latest policies from the policy server, and some
types of the policy distribution targets can accept policy update “push” from
the policy server. Examples are registries such as WebSphere Service
Registry and Repository.

� Policy decision points (PDPs) and policy enforcement points (PEPs)

PDPs make authorization decisions for PEPs based on the policies defined
from the policy administration point (PAP). PEPs are the components that
perform the access control functions. Examples are Datapower (it can act as
both PDP and PEP, or PEP only), Enterprise Service Bus (acts as a PEP),
and WebSphere Application Server (acts as a PEP). New PDPs and PEPs
can be defined through this plug-in point.

The policy configuration data is specific to the PEP. It is also part of the
definitions of a new type of PEPs.

Typically, a PDP is also a policy distribution target.

� Role import and export

Import and export roles from or to various formats such as Comma-
Separated Values (CSV), Resource Description Framework5 (RDF), and so
on.

� Other plug-in points

In addition to above pluggable functions, there could be other pluggable
functions that work with Tivoli Security Policy Manager to support new
functions such as workflow, and so on.

It is worth noting that different Tivoli security policy administration platform
plug-in service provider interface (SPI) extension points have different
requirements for the implementation of different Java interfaces. For example, a
service type plug-in requires implementation of a service type class, a service
factory class, a UI provider class, and a point class for each type of element
within the service structure. For a policy type plug-in, a policy type class, a policy
factory class, policy authoring class, a UI provider class, and, optionally, a
configuration class need to be implemented. A service definition registry plug-in
requires implementation of four Java interfaces: a registry type class, a registry
factory class, a registry client class, and a UI provider class.

5 To find more information about the Resource Description Framework, go to the following address:
http://www.w3.org/RDF/
 Chapter 3. Tivoli Security Policy Manager overview and architecture 77

http://www.w3.org/RDF/

Details about how to develop a custom plug-in can be found in the Tivoli Security
Policy Manager wiki.6

Policy server management APIs
Tivoli Security Policy Manager policy server also provides a set of management
APIs to manage policy artifacts, which are used by the console and can also be
used by third-party applications or integrated with customer policy management
systems.

The management APIs cover the following areas:

� Object creation, list, modification, and deletion.

Tivoli Security Policy Manager objects include services, policies,
classifications, distribution mappings, roles, rule parameters, and so on.
These APIs handle object management.

� Services, policies, classifications, and roles import and export.

These APIs handle the exchange of service information, policy information,
and classification and role hierarchies between developer tools and portfolio
products.

� Status and reportable data manipulation.

These APIs handle the status information, such as current state of objects,
and historical data, such as policy distribution history.

3.2.3 Tivoli runtime security service architecture

The RTSS is a Java application that provides the runtime capabilities for
applications to evaluate policies produced by Tivoli Security Policy Manager.
There are two valid patterns of RTSS deployment: server and client in remote
mode (referred to as remote client), and client in local mode (referred to as local
client). The RTSS server maintains a copy of the effective policy that is
distributed to it from the policy server and handles remote client authorization
queries using the XACML/SOAP protocol.

6 Visit the Tivoli Security Policy Manager wiki at the following address:
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20S
ecurity%20Policy%20Manager/page/Home
78 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Security%20Policy%20Manager/page/Home

An RTSS local client also maintains a copy of the effective policy distributed from
the policy server. The local client operates completely independent and does not
require an RTSS server. Figure 3-6 shows the two valid patterns for RTSS
deployment.

Figure 3-6 RTSS deployment patterns
 Chapter 3. Tivoli Security Policy Manager overview and architecture 79

RTSS server and remote client
Figure 3-7 shows the component architecture of an RTSS server and a remote
client, and the interfaces that the RTSS server and client supports.

Figure 3-7 Tivoli runtime security service architecture (server and remote client)

RTSS server
An RTSS server runs inside WebSphere Application Server, and consists of an
administration service, authorization service, common authorization
components, which include a PIP interface and a rules interface, auditing
service, and policy storage service, and so on. An RTSS server is used as a
PDP, and multiple RTSS servers can be deployed and clustered to improve
availability and performance.

The RTSS administration service handles remote administration and policy
exchange with the Tivoli Security Policy Manager policy server. After an RTSS
server is registered with a Tivoli Security Policy Manager policy server, the policy
server can perform remote administration tasks on the RTSS server.
80 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

RTSS server policy update and exchange follows WS-Notification and
WS-MetadataExchange protocols. Each RTSS server is registered as a policy
distribution target (PDT) in the Tivoli Security Policy Manager policy server, and it
subscribes to the policies related to its local services. Whenever a policy
subscribed by the RTSS server has been updated, the policy server will send a
notification to the RTSS server using the WS-Notification protocol. The RTSS
server then retrieves the updated policy from the policy server using the
WS-MetaDataExchange protocol and replicates it locally. The storage service
maintains the local replica of the XACML policy.

The RTSS server provides an authorization services interface for RTSS remote
clients and applications that support the XACML over SOAP protocol directly. For
example, a .NET application can use the XACML over SOAP interface for getting
authorization decisions. One RTSS server can support multiple RTSS remote
clients.

RTSS common authorization components provide a PIP interface and a rule
interface. The policy information and external rules engine can be integrated into
the authorization check at run time. RTSS supports the use of information from
existing identity management systems, identity and attribute repositories, and
rules engines when evaluating authorization policy. The context of the policy
information can be based on identity, service, environment, and business.
Currently RTSS provides integrations with context providers through JNDI for
access to user repositories, JDBC for access to databases, WS-Trust for access
to Trust Services, and Java interface for generic purposes. The rule interface can
be used to integrate with external rules engines such as IBM WebSphere ILOG®
JRules.

RTSS remote client
The RTSS remote client is a lightweight proxy to an RTSS server. As such, it
does not maintain a local copy of the effective policy; instead, it forwards all
authorization queries to an RTSS server. The RTSS remote client provides an
API for applications to build their own PEPs. This API, called the Tivoli Security
Policy Manager Authorization API, extends the JACC standard to allow
application-level context to be used to make decisions.

In addition to the RTSS client for the WebSphere platform that is shipped with the
product, there can be additional RTSS clients or plug-ins for different platforms,
for example, an RTSS plug-in for the .NET platform.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 81

RTSS local client
The Tivoli Security Policy Manager RTSS local client is most similar to the RTSS
server, except that it is deployed as part of a WebSphere Application Server
instance. As with the RTSS server, the RTSS local client maintains its own local
copy of the effective policy from Tivoli Security Policy Manager. It has a local
authorization service that only serves local applications, and does not provide a
remote authorization service for other RTSS clients or external applications. A
Java Authorization Contract for Containers (JACC) provider is provided as a part
of its local authorization service to support container based authorization. A
JavaEE application can also use the Tivoli Security Policy Manager Authorization
API to obtain authorization decisions from the RTSS local authorization service
directly. Figure 3-8 shows the RTSS local client architecture.

The RTSS local client is also registered as a policy distribution target (PDT) with
the Tivoli Security Policy Manager policy server. The policy exchange procedure
between the policy server and the RTSS local client is the same as with the
RTSS server; it only retrieves the policies that apply to its local services. The
“local mode” here indicates that the client replicates the related XACML policies
locally and that it makes authorization decisions based upon those policies.

Figure 3-8 RTSS local client architecture
82 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

3.2.4 Policy data model, repository, and exchange

Tivoli Security Policy Manager has a dynamic and ontology based data model. It
uses the Java persistent data architecture and can be extended by exploiters.
Tivoli Security Policy Manager uses an additional layer to abstract the use of a
database so it can work with major RDBMSs on the market. Tivoli Security Policy
Manager works with Apache Derby, and has been tested with IBM DB2 as well.
You can choose several databases from major vendors for policy storage.

The Tivoli Security Policy Manager policy server maintains the policy database,
and distributes calculated effective policy to the policy distribution targets. The
policy distribution targets can be an RTSS server, RTSS local client, WebSphere
DataPower, WebSphere Service Registry and Repository, and other systems.
The policy distribution targets must be registered with the Tivoli Security Policy
Manager policy server before they can participate in the policy exchange. The
purpose of the registration is to establish a public key based mutual trusted
relationship and a secure communication between the policy server and the
policy distribution targets. The policy distribution target registration is secured
through a certificate exchange and unique identity assigned to each target. The
policy server acts as a Certificate Authority (CA) and issues public key
certificates for each policy distribution target. The tspmRegisterRTSS tool is used
for the RTSS policy distribution target initial registration, and the
tspmRegisterPDT tool is used for other policy distribution target’s (such as
WebSphere DataPower) initial registration.

When a policy has been updated on the Tivoli Security Policy Manager policy
server, a policy update notification is sent out to the policy distribution targets.
The actual policy exchange messages are signed with the certificate created
during the registration process, and all policies are sent over a secure
communication channel.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 83

The policy distribution mechanism is pluggable, but WS-Notification and
WS-MetaDataExchange protocols are the preferred approaches. Figure 3-9
shows the procedure of the policy distribution target registration and policy
exchange with related web services standards that can be used.

Figure 3-9 IT Security policy data exchange

3.2.5 Policy administration and classification

From a security policy administrator’s point of view, the process to administrate a
new IT security policy involves the following steps in Tivoli Security Policy
Manager:

1. Add a service definition in the policy server.

2. Define a policy.

3. Attach the policy to a service.

4. Configure the policy.

5. Distribute the policy.
84 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Managing the security of large-scale SOA environments is a key capability of
Tivoli Security Policy Manager. Classifications can reduce the administrative
impact by allowing common security requirements to be configured once and
applied to multiple services, ensuring that cross-cutting security requirements
are applied consistently. Any service-specific policy is then combined with the
classification’s policy to form the effective policy for the service. A service can be
included in multiple classifications.

For example, a confidential information classification can be created that
contains both a message protection policy specifying encryption, and an
authorization policy containing certain role membership requirements. This
classification can then be attached to any service deemed to be using
confidential information.

3.2.6 Delegated administrative security

Tivoli Security Policy Manager provides a powerful delegated administration
security framework. Administrators can delegate responsibility for certain tasks
to specific users. For example, a line-of-business owner can author an
attribute-based policy but then delegate the actual binding of that field to a
concrete LDAP attribute to the IT operations team.

This policy management administration framework allows the appropriate
individuals within the organization to handle the most appropriate tasks for their
job role in a secure manner. A Tivoli Security Policy Manager administrator can
define additional administrative roles in the policy management console.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 85

Figure 3-10 shows how a new sample security auditor role is defined with
appropriate privileges.

Figure 3-10 Administrative role definition using Tivoli Security Policy Manager console

Application owners do not need to know specific environment details (such as the
IP address and bind credentials of an LDAP server). However, the IT operations
team does not need to define an IT security policy, but simply ensure that it is
implemented effectively.
86 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

After an IT security policy is authored, it often requires enforcement of additional
criteria for the policy by the policy enforcement points. Tivoli Security Policy
Manager makes an important distinction between policy authoring and policy
configuration, primarily based on the roles within your organization.
Fundamentally, policy authoring refers to the user interaction that results in a
policy that is standards-compliant and inter-operable but might or might not
contain sufficient implementation detail to enforce on an enforcement point
platform. Policy configuration refers to the additional level of detail that is
required to augment the policy and to make it enforceable, potentially binding
platform-specific data based on the policy’s ultimate target platform.

In most use cases, the policy configuration data is not specific to any PDP. For
some use cases, however, configuration data is dependent specifically on the
intended decision point. For example, WebSphere DataPower may require the
presence of a summary element at the top of the message protection policy
document that describes the policy domain for the given policy. Different PEPs
will often have different policy configuration requirements.

Every aspect of the Tivoli Security Policy Manager management server is built on
a pluggable framework based on OSGi run time. Business Partners, OEM
vendors, and consultants can build custom solutions based on Tivoli Security
Policy Manager to provide unique value to their clients.

3.2.7 Auditing and reporting

Tivoli Security Policy Manager provides auditing capabilities on both policy
server and runtime security services. According to customer requirements,
auditing can be enabled or disabled. The auditing record is based on Common
Base Event7 format, and stored in multiple stores: policy server, RTSS, and
policy enforcement points.

The Tivoli Security Policy Manager built-in reporting uses the Tivoli Common
Reporting (TCR) tool. TCR is based on the Eclipse BIRT project, and
organizations can create their own reports. Tivoli Security Policy Manager
reporting requires a full database product (for example, IBM DB2) as the back
end, and provides some basic reports.

7 To learn more about the Common Base Events Specification, go to the following address:
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA
 Chapter 3. Tivoli Security Policy Manager overview and architecture 87

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA

Tivoli Security Policy Manager can be integrated with Tivoli Security Information
and Event Manager to provide advanced reporting functions. Tivoli Security
Information and Event Manager can collect Tivoli Security Policy Manager
auditing records in a secure and reliable way from the policy server, RTSS, and
policy enforcement points; the audit logs are stored in an efficiently compressed
depot. Tivoli Security Information and Event Manager performs data
normalization before it attempts to generate any reports. The data normalization
is based on a patented methodology; it breaks the audit record into Who, What,
on What, When, Where, from Where, and Where to aspects. The Tivoli Security
Information and Event Manager analysis and reporting is based on the
normalized data rather than the raw log from different systems. Built-in
compliance modules support reporting for government regulations and industry
standards such as Sarbanes Oxley (SOX), Health Insurance Portability and
Accountability Act (HIPPA), ISO 17799, PCI-DSS, and so on.

3.3 Example deployment physical architecture

In an IT production environment, reliability, availability, and scalability play an
important part of the service level agreement (SLA). Major Tivoli Security Policy
Manager components, including the policy server, RTSS server, and RTSS
client, are built on the J2EE platform; they can use the WebSphere Application
Server clustering technology for reliability, availability, and scalability. The Tivoli
Security Policy Manager console is the GUI administration tool; multiple consoles
can be set up for failover purposes.

Note: For more product information about Tivoli Security Information and
Event Manager, refer to the following address:

http://www.ibm.com/software/tivoli/products/security-info-event-mgr/
index.html
88 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.ibm.com/software/tivoli/products/security-info-event-mgr/index.html
http://www.ibm.com/software/tivoli/products/security-info-event-mgr/index.html

Figure 3-11 shows an example deployment architecture for Tivoli Security Policy
Manager.

Figure 3-11 Example physical architecture

The Tivoli Security Policy Manager policy server can rely on database
technologies such as DB2 high availability disaster recovery (HADR) to achieve
policy database high availability and performance. The policy server is deployed
within a WebSphere Application Server clustering environment, and thus can
provide failover and high availability for policy authoring, management, and
distribution tasks. One thing worth noting is that when you define the policies,
you want to place the relatively stable entitlements policies based on roles and
resources into the policy database; policy information that needs to be evaluated
at run time, user attributes, environment variables, and rules should be handled
by the runtime security services through the PIP and external rule interfaces. A
policy that is designed this way can help simplify the management of the Tivoli
Security Policy Manager policy server, reduce the size of the policy database,
and thus improve the overall system performance for both policy server and
runtime security services.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 89

A Tivoli Security Policy Manager RTSS server and local client do not contain full
replicas of the policy database, but receive the effective policy for an
administrator-defined subset of the services, which avoids replicating
unnecessary information in the IT environment. A Tivoli Security Policy Manager
remote client does not replicate any policy information, but instead requests
policy information at run time. Multiple RTSS servers can be used to improve the
scalability of the system, because each server can support multiple RTSS
clients; this is especially useful in a segmented network environment or a
network environment spanned across WANs.

In Figure 3-11 on page 89, the J2EE application uses the Tivoli Security Policy
Manager entitlements service. Tivoli Security Policy Manager policy servers,
RTSS servers, and RTSS clients are all deployed in WebSphere Application
Server clustering environments. For illustration purpose, we deploy the RTSS
remote client in the WebSphere Application Server cluster, and it queries the
authorization decisions from the RTSS server through the XACML/SOAP
protocol. The Tivoli Security Policy Manager policy server distributes the
necessary policy subsets to the RTSS server. The RTSS server queries user
attributes and other information from the replicated LDAP server using the PIP
interface.

For simplicity, we did not place components such as network load balancer or
IBM HTTP servers into Figure 3-11 on page 89. For more detailed information, to
WebSphere Application Server, DB2, and Tivoli Directory Server product
documentation about how to set up cluster and replication configurations.

There are other factors that need to be considered when designing the Tivoli
Security Policy Manager deployment architecture. For example, for applications
that require a large number of authorization queries during a short period of time,
an RTSS remote client is impractical due to performance degradation. For
container based authorization requests in a WebSphere Application Server
environment, currently only RTSS local client can be used.

Changing into a local mode client deployment: The RTSS local mode
client architecture will be similar to Figure 3-11 with a single box representing
the RTSS client in local mode, as opposed to separate boxes for RTSS client
(remote) and RTSS server, with the policy being replicated to this single box
from the Tivoli Security Policy Manager policy server. Figure 3-8 on page 82
depicts this general configuration.

Note: Refer to Chapter 9, “Deployment considerations” on page 267 for more
information about deployment considerations.
90 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

3.4 Conclusion

In this chapter, we gave an overview of Tivoli Security Policy Manager, followed
by a discussion of Tivoli Security Policy Manager architecture in detail. An
example deployment architecture was provided to illustrate how Tivoli Security
Policy Manager can be deployed in a production environment to support
application level entitlements service.

Tivoli Security Policy Manager is the central piece of the IT security policy life
cycle management solution. It is based on open standards and can be
customized and extended to meet different requirements, and it is built on
WebSphere technology and uses the reliability, availability, and scalability from
the WebSphere Application Server infrastructure.
 Chapter 3. Tivoli Security Policy Manager overview and architecture 91

92 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 4. Integration with external
systems

Tivoli Security Policy Manager provides a wide range of integration points that
provides the flexibility to deliver end-to-end management of centralized
application and data entitlements and SOA security policy. In this chapter, we
discuss some of the commonly used external systems that Tivoli Security Policy
Manager integrates with, which include:

� Identity management
� Access management
� Role management
� User repositories
� Trust services
� Application repositories
� Classification management tools
� Compliance management
� Rules engines

4

© Copyright IBM Corp. 2011. All rights reserved. 93

4.1 Identity management

Identity and access management governance is driving organizations to seek
end-to-end solutions to manage the full life cycle of identities and their
associated entitlements. These initiatives extend to how organizations manage
their electronic identities, access to IT systems, and processes. Organizations
aim to:

� Manage visibility of IT resources critical to business operations.

Organizations seek to understand what their critical business related IT
assets are and who has access to them.

� Control identity aspects of an IT infrastructure.

After identities and resources are clearly understood, policy based
management systems can be put in place to control which identities can have
access to which systems under what circumstances.

� Automate identity related processes.

Manual IT processes are error prone, difficult to control, and hard to
effectively audit. Organizations seek to automate identity related processes to
improve their ability to govern their critical systems and comply with
regulations.

Managing identities and the systems they have access to is a challenging task for
today’s organizations. Keeping track of which identities have access to which
systems is a complex task, especially as an organization grows. To deal with this
problem effectively, a structured, automated approach needs to be implemented.

Identity management provides a policy based mechanism to control and monitor
provisioned IT entitlements using a centrally defined policy based on roles. An
identity management system should allow a business to implement modeled
business processes involved in provisioning and ongoing management of
entitlements, which allows an organization to bring strong governance to the
process of entitlements provisioning.
94 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

4.1.1 Integration with identity management

Both identity management and security policy management systems make use
of a role based approach. The roles defined in an identity management system
are used to drive the provisioning of IT entitlements, whereas roles in a security
policy management system are used to drive policy based runtime authorization
decisions. There is often some overlap between the role definitions required for
the identity management system and the role definitions required for the security
policy management system.There may be a one-to-one mapping between the
roles in the two systems or business logic may need to be applied to transform
the set of roles in an identity management system into an appropriate role
structure that can be applied to a security policy management solution.

A tool that can interface with both systems and can apply business logic is
required to integrate the two systems, as shown in Figure 4-1.

Figure 4-1 Integrating identity management roles with security policy management

The flow of information between the two systems consists of three steps:

1. An identity management systems typically exposes an interface for retrieving
data from its repository. An integration tool needs to provide an Identity
Management System (IDMS) connector that can connect to the IDMS and
extract the required information, which in this case is role metadata.
 Chapter 4. Integration with external systems 95

2. Business logic may need to be applied to the data retrieved from the IDMS,
such as mapping a set of roles definitions in the IDMS to a set of roles useful
for a security policy management system. This transformation may include
using a subset of roles from IDMS, a super-set of the roles from the IDMS, a
consolidated set of roles from the IDMS, and so on.

3. A security policy management system typically exposes an interface for
adding data to its repository. An integration tool needs to provide a security
policy management system connector that can connect to the system and
store data in its repository.

4.1.2 Integration with Tivoli Identity Manager

Tivoli Identity Manager is a market leading and role based provisioning solution
that allows an organization to manage their provisioned entitlements in line with a
business policy.

The roles defined in Tivoli Identity Manager can be useful when defining policy in
Tivoli Security Policy Manager. Consider a scenario where only a subset of roles
defined in Tivoli Identity manager are appropriate for use in Tivoli Security Policy
Manager. Business logic needs to be applied to define which roles should be
exported from Tivoli Identity Manager into Tivoli Security Policy Manager.

IBM Tivoli Directory Integrator enables you to integrate data from different
repositories in an easy and flexible way. Tivoli Directory Integrator provides a
means of connecting to a range of IT systems to collect data, normalize it and
apply logic to transform the data into new forms. It provides a large set of
software components known as connectors that allow it to interface with a wide
range of IT systems.
96 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Tivoli Directory Integrator could be used to map roles between Tivoli Identity
Manager and Tivoli Security Policy Manager, as shown in Figure 4-2.

Figure 4-2 Integrating Tivoli Identity Manager with Tivoli Security Policy Manager for
importing roles

The integration works as follows:

1. Tivoli Directory Integrator can interface with Tivoli Identity Manager to listen
for updates to Tivoli Identity Manager roles through a change log connector.

2. Business logic can be defined in a Tivoli Directory Integrator AssemblyLine to
map Tivoli Identity Manager roles to a set of roles appropriate for Tivoli
Security Policy Manager.

3. Tivoli Directory Integrator can interface with Tivoli Security Policy Manager
using the API discussed in 8.2, “Policy management API” on page 237 to
import the new role definitions.
 Chapter 4. Integration with external systems 97

4.1.3 Integration with other identity management systems

Tivoli Security Policy Manager can use Tivoli Directory Integrator to interface
with many different types of external systems. Patterns similar to the one outlined
in 4.1.2, “Integration with Tivoli Identity Manager” on page 96 can be used if the
identity management vendor provides a public interface that role data can be
retrieved from using Tivoli Directory Integrator.

4.2 Access management

The goal of access management is to provide and ensure appropriate access to
an organization’s resources. In terms of an organization’s IT resources, it aims to
secure access to a set of heterogeneous systems, built on a range of modern
and established technology. This task is accomplished typically by offering a set
of security services that integrate with an organization’s IT infrastructure. The
following areas are key components of access management systems:

� Authentication services

There are a variety of technology, organizational, and business reasons why
different authentication schemes are used throughout an organization.
Access management systems typically offer a range of authentication
capabilities to support these needs. After an identity is authenticated, identity
tokens should be propagated to IT systems within the organization to avoid
the cost of unnecessarily implementing authentication services at multiple
points within the organization, thus enabling an organization wide single
sign-on (SSO) solution.

� Authorization services

An access management system should allow integration with existing and
emerging infrastructure to provide secure and centralized policy management
capabilities. Resources need to be discovered and modeled so that policy
can be authored against them. This component requires a flexible
authorization framework and a range of supported integration points.

� Federated identity services

Organizations are increasingly looking to use strategic relationships with
partners and customers. These relationships are often defined at the
business level through contracts and agreements. To facilitate the
implementation of these commitments, IT systems may be required to
interface with systems outside the traditional scope of their environment.
Providing a mechanism to federate identities across organizations is a key
component of this strategy.
98 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

A system that provides federated identity services should propagate identities
between organizations in an standards compliant manner. An important part
of federation services is a trust service component that allows the
transformation of a range of security tokens into consumable formats.

� Audit services

Comprehensive auditing capabilities should be provided by an access
management system to support identity and access management
governance. Auditing systems should be able to be used by compliance
systems to generate a holistic record of access to business critical systems.

Traditionally, access management solutions have provided authentication,
authorization, federation, and audit services for web and operating system based
resources. New standards and technology such as web services, service
orientated architecture (SOA), and cloud initiatives are driving new integration
points in the access management space. When combined with requirements to
implement authorization based on both data-level and context sensitive
attributes, new patterns for access management need to be considered.

It is desirable to use existing investments in access management technology to
provide true end-to-end and flexible policy management solutions. Authentication
and trust services can be used as key components when implementing policy
management solutions.

As an example, consider an organization that has an existing investment in
web-based access control systems. A reverse proxy server provides
authentication services at the perimeter of the network. In this example, consider
that the authentication processing involves significant complexity and that it is
highly desirable to re-use this investment if possible. The access management
system stores identity information in a proprietary authentication token that can
be used for single sign-on with other systems within the organization. The
identity token contains identity information and attributes about the identity that
can be useful for defining policies. To implement a solution that takes advantage
of identity information from an existing access management system, a trust
service may be required to transform the identity token into a normalized format
that the policy management system can consume, extract identity information
from and apply policy to. After a normalized identity is established, policy can be
authored, distributed, and enforced throughout the environment using attributes
from the normalized token.
 Chapter 4. Integration with external systems 99

4.2.1 Integration with Tivoli Access Manager for e-business

Organizations are increasingly using web-based technologies to expose
business services to customers, employees, and partners. A rapidly evolving
web technology landscape makes securing access to these services difficult.
Tivoli Access Manager for e-business (TAMeB) helps organizations improve
identity and access management governance by providing authentication,
authorization, and single sign-on capabilities for web based resources.

Tivoli Access Manager for e-business provides several components that can
implement access control at various points within an organization. A common
pattern is to implement a defense in-depth strategy to provide a layered security
approach. Access is authorized in the outer most layer of the network, known as
the demilitarized zone (DMZ). The Tivoli Access Manager for e-business
WebSEAL component provides a reverse proxy solution that can be used to
implement authentication, authorization, and single sign-on capabilities in the
DMZ. This setup allows users to be authenticated and authorized in line with a
centrally defined policy before proceeding to applications residing in more
protected areas of the network.

As part of the Tivoli Access Manager for e-business authentication process, a
credential is built that can contain detailed information about subjects. The
credential artifact is used in the authorization process implemented by WebSEAL
and can optionally be used by other downstream components to propagate
trusted subject information.
100 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Tivoli Security Policy Manager introduces an integration to allow Tivoli Access
Manager for e-business credentials and the attributes they contain to be used in
policy management. Figure 4-3 shows the flow of the integration:

Figure 4-3 Tivoli Access Manager integration with Tivoli Security Policy Manager

The logical flow to use a Tivoli Access Manager for e-business credential to
enforce complex policy is as follows:

1. A user requests a web-based resource, protected by Tivoli Access Manager
for e-business WebSEAL, which authenticates the user using the configured
authentication mechanism. Upon successful authentication, a credential is
constructed that contains a list of relevant attributes about the user. This
credential is used to authorize the user based on Tivoli Access Manager for
e-business’ authorization policy.

2. If the user is permitted, the request can be passed to the target web resource.
In this scenario, Tivoli Access Manager for e-business WebSEAL can be
configured to pass an authentication artifact known as iv-creds, which
contains identity information.

3. The security token, in this case iv-cred, is passed to the Tivoli Security Policy
Manager Runtime Security Service (RTSS) for processing in one of two ways.
It can be converted to a collection of XACML subject attributes (3a) or left in
its original format (3b) for use in a Tivoli Security Policy Manager access
decision.
 Chapter 4. Integration with external systems 101

a. Process the iv-cred security token to create a collection of XACML subject
attributes.

The JACCPlus API extends the Java Authorization Contract for
Containers (JACC) API to allow an application to control the context within
which the authorization decision is made. It supports parsing an iv-cred
token, which can be processed by the JACCPlus API to produce a
collection of XACML subject attributes that can be passed to the Tivoli
Security Policy Manager policy decision point. The JACCPlus API to pass
the iv-cred is discussed in 8.1.1, “Tivoli Security Policy Manager
authorization API” on page 214.

From a policy authoring point of view, a policy must be authored using
attributes names from the expected token. When JACCPlus is configured
to pass attributes to the RTSS as a collection of XACML subject attributes,
a policy should be authored using attribute names as they appear in the
Tivoli Access Manager for e-business credential.

b. Process the iv-creds security token as an generic token.

An extension to the JACCPlus API has been implemented to support
passing the iv-cred token directly to the RTSS. To enforce policy, the
RTSS requires that the iv-cred token be normalized into a standard
format. Tivoli Security Policy Manager introduces a new policy information
point (PIP) to manage security tokens called the Security Trust Service
(STS) PIP. Figure 4-3 on page 101 shows how RTSS makes use of the
STS PIP. The PIP uses WS-Trust to communicate with an STS.

An STS PIP should be configured to use a product that implements a trust
service. A trust service provides the ability to convert a number of different
security tokens to alternate formats. Tivoli Federated Identity Manager
provides a Security Token Service (STS) that can convert the iv-creds
token into a format consumable by RTSS for authorization. An RTSS
security token PIP should be configured to use the Tivoli Federated
Identity Manager Security Token Service (STS) to validate the iv-cred
token, map any attributes required, and issue a SAML 1.x token.

SAML requirements: The STS PIP requires that a Security Assertion
Markup Language (SAML) 1.x token be returned. Policy can be
authored using the SAML attribute identifiers from the transformed
SAML 1.x token.
102 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

4.2.2 Integration with other access management systems

Tivoli Security Policy Manager can integrate with virtually any access
management system as long as there is a mechanism to propagate identity
information. In 4.5, “Trust services” on page 110, we show how this task can be
accomplished with a trust service by normalizing authentication tokens from the
access management system in question.

4.3 Role management

Organizations often classify users by some aspect of their responsibilities within
the organization. These grouping are often based on data from human resources
systems such as job category. These grouping can be used for a variety of useful
purposes, including administration of business processes, controlling access to
systems and data, and so on.

Roles are typically discovered, managed, and rationalized using a role
management tool. This is a task in its own right and is not in the scope of a
security policy management tool. However, the output of a role management
process is useful for importing a role structure that can be used to define IT
security policy.

Tivoli Security Policy Manager provides three mechanism for importing role
definitions from external role management tools:

� Rule Interchange Format1 (RIF) file

Tivoli Security Policy Manager provides a mechanism to input role definitions
from an interchange file.

� API

The Tivoli Security Policy Manager API can be used to programmatically
import role definitions.

� Manually

Roles can be added manually through the Tivoli Security Policy Manager
administration console.

1 To discover more information about the Rule Interchange Format standards, go to the following
address: http://www.w3.org/2005/rules/Overview.html
 Chapter 4. Integration with external systems 103

http://www.w3.org/2005/rules/Overview.html

4.4 User repositories

Organizations typically use some form of user repository to capture and store
identity related information. User repositories store details such as identity
definitions, groups membership, and attributes related to an identity. It is
important that a security policy management system provides the flexibility to
integrate with an organization’s user repositories to use this information. Several
aspects must be considered in the context of a security policy management
solution:

� Role mapping

When defining policies in a policy management system, role definitions can
be defined in abstract terms to allow policies to be modeled at the business
level. To transform a policy into a form that IT operations can implement, role
definitions should be mapped to real IT resources. User repositories provide
the mechanism to map groups of users to roles.

� Policy information point

A PIP allows a policy management system to retrieve attributes from an
external system for use in an authorization decision. As a user repository
stores detailed information about identities, it is important that security policy
management systems integrate with user repositories to retrieve information
for use in authorization operations.

� Role mapping for administration

A security policy management system requires role definitions to define
administrative groups and controls. User repositories often contain the group
mappings required for this purpose.

4.4.1 Integration with Tivoli Directory Server

Tivoli Security Policy Manager can integrate with IBM Tivoli Directory Server
through the use of the Java Naming and Directory Interface (JNDI) using the
Lightweight Directory Access Protocol (LDAP). There are two points where
LDAP can be used:

� Role mapping

Tivoli Security Policy Manager supports the mapping of abstract roles to data
stored in a directory as part of the RTSS configuration. Roles are configured
by specifying the appropriate LDAP server details and adding LDAP search
parameters to define the role mapping.
104 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� Policy information point

A PIP can provide a source of attributes from an external system for use in an
authorization decision. The LDAP PIP allows data to be extracted through an
LDAP query. As part of the RTSS configuration, an LDAP query can be
specified to define the data required for the authorization decision.

4.4.2 Integration with Tivoli Directory Integrator

A modern IT infrastructure consists of a heterogeneous set of systems using
many different interfaces, standards, protocols, and technology. Different lines of
business often need to support technologies from different vendors for business
reasons. The technology that implements the data layer that underpins these
technologies are often not compatible and this can make system integration
difficult. Synchronization and integration of data from these repositories is
sometimes required to solve complex business and IT problems.

IBM Tivoli Directory Integrator enables you to integrate data from different
repositories in an easy and flexible way. There is virtually no limitation on the
type of data or system with which Tivoli Directory Integrator is able to work. Tivoli
Directory Integrator provides a means of connecting to many different IT systems
to collect data, normalize it, and apply logic to transform the data into new forms.
It provides a large set of software components known as connectors that allow it
to interface with a wide range of IT systems. The key to integrating data collected
from these systems is to convert system specific data into a common format that
can then be manipulated by logic defined in Tivoli Directory Integrator, which is
useful in many scenarios, including consolidating and transforming user
repositories and application data.

Tivoli Directory Integrator uses the concept of an AssemblyLine. At each stage of
the AssemblyLine, work is performed. This can include importing data from
systems, transforming data, or exporting data to systems.
 Chapter 4. Integration with external systems 105

Figure 4-4 shows the concept of using an AssemblyLine to process data from
multiple sources.

Figure 4-4 An example of a Tivoli Directory Integrator AssemblyLine

There are four integration points where Tivoli Security Policy Manager can
benefit from the integration capabilities of Tivoli Directory Integrator:

� Attribute data from external systems

Tivoli Security Policy Manager provides a PIP interface to retrieve attributes
from external sources.

Tivoli Directory Integrator provides server connectors that allow it to act as a
server for a given protocol. For example, it provides an LDAP server
connector that allows it to act as an LDAP server. This allows Tivoli Directory
Integrator to be used as the following:

– Target for an LDAP PIP using LDAP JNDI

– Target for a Java PIP using a Java interface

Tivoli Directory Integrator can integrate with many different systems and
apply logic to manipulate the data it retrieves. Using Tivoli Directory Integrator
to implement PIPs provides a policy management solution with considerable
flexibility when integrating with existing identity management systems, identity
and attribute repositories, application databases, rules engines, and so on.
106 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� Policy distribution targets

Tivoli Security Policy Manager supports a number of policy distribution
targets. As there are many possible integration points; some policy
distribution targets may require a custom solution. To support custom policy
distribution targets, the pluggable Tivoli Security Policy Management platform
can be used by writing a custom policy distribution target plug-in. The
interface to implement a custom policy distribution plug-in is discussed in 8.2,
“Policy management API” on page 237.

As Tivoli Directory Integrator provides a large set of connectors that integrate
with external systems, it can be useful to use it to implement a custom policy
distribution target plug-in.

� Import services

An important aspect of policy modeling and authoring is the discovery of
service definitions. In some cases, it is desirable to automate this process. A
custom service registry plug-in can be written to import resources into Tivoli
Security Policy Manager. As Tivoli Directory Integrator supports connectivity
to a wide range of systems, it can be useful to use its integration capabilities
to discover services from service registries and import them into Tivoli
Security Policy Manager by implementing a service registry plug-in.

� Role mapping

During policy configuration, roles defined in Tivoli Security Policy Manager
must be mapped to groups of users in external repositories. This mapping is
typically defined in a user registry, but there are circumstances where the
mapping may be defined in other sources such as a flat file. Tivoli Directory
Integrator can provide the flexibility to implement custom logic for role
mapping in such cases.
 Chapter 4. Integration with external systems 107

As an example of how Tivoli Directory Integrator can be used to provide
integration with external systems, consider the scenario shown in Figure 4-5. It
shows how Tivoli Security Policy Manager can be used to extract attribute data
from an external system for the purpose of performing an authorization
decisions. Tivoli Security Policy Manager is configured to use an LDAP PIP
implemented by Tivoli Directory Integrator to extract and consolidate information
from externals systems.

Figure 4-5 LDAP PIP using Tivoli Directory Integrator
108 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The goal is to collect data from two different external systems and transform it
into a single attribute required by Tivoli Security Policy Manager. The flow to
achieve this process is as follows:

1. A user requests a resource from an application, which uses the JACCPlus
API to enforce access control.

2. The application calls the JACCPlus TSPM authorization API. Details about
this interface are discussed in 8.1.1, “Tivoli Security Policy Manager
authorization API” on page 214.

3. The remote RTSS client makes an authorization request to the RTSS
authorization service.

4. The RTSS server is configured to retrieve attributes from an external system
using an LDAP PIP. This is set up during the configuration of Tivoli Security
Policy Manager. The required configuration is:

– The details of the target LDAP server

– An LDAP query to define the data required

Tivoli Security Policy Manager calls Tivoli Directory Integrator through an
LDAP PIP, which uses the Java Naming and Directory Interface (JNDI) to
make LDAP queries. In the example above, a single attribute is requested
from the LDAP server. This attribute will be used to communicate a result
containing composite data from two sources using Tivoli Directory Integrator.

5. A custom Tivoli Directory Integrator AssemblyLine is configured to perform
the interaction with external systems. An LDAP Server Connector is used to
accept requests from the Tivoli Security Policy Manager LDAP PIP. The
AssemblyLine implements logic takes the details of the LDAP query and
passes normalized data to the next connector. In this example, information
from a directory and database system is retrieved using standard Tivoli
Directory Integrator Connectors. The data from these two sources are
combined using logic defined in Tivoli Directory Integrator configuration to
produce a new composite attribute based on the data.

6. Tivoli Directory Integrator returns a single LDAP attribute containing the
consolidated data to Tivoli Security Policy Manager for use in an authorization
decision.

4.4.3 Integration with other user repositories

For user registries that do not support LDAP through JNDI, Tivoli Directory
Integrator can be used to implement a custom solution, as outlined in 4.4.2,
“Integration with Tivoli Directory Integrator” on page 105.
 Chapter 4. Integration with external systems 109

4.5 Trust services

Security tokens allow identity related information to be securely passed within
and between organizations. A security token contains a trusted source of identity
information about the holder of the token. This information typically includes
principal, group membership, and attribute information.

Due to the complexity of modern IT systems, there are many types of security
token formats in use. Some of these are older or proprietary formats and some
use open standards. Unfortunately, systems rarely understand all token formats.
Implementing custom logic in applications to process multiple security token
types is expensive and inefficient. To manage security tokens in a cost-effective
way, organizations can implement a trust service to deal with the complexity of
managing different security token types.

Implementing an IT security policy requires trusted sources of identity
information against which a policy is enforced. Security tokens contain the
identity information required and subject attributes, which can be useful when
making policy based authorization decisions. Trust services can be used where
required to simplify the management of security tokens when implementing a
security policy management project.

4.5.1 Integration with Tivoli Federated Identity Manager

IBM Tivoli Federated Identity Manager provides a Security Token Service (STS)
component that can validate incoming security tokens, transform security tokens,
and issue new token formats to consumers. The STS provides the ability to allow
validation of tokens to be performed if integrity checking is required. Mapping is
done by normalizing all incoming token types into an abstract, token independent
format, which allows logic to be easily configured to map attributes into a format
required by token consumers. Tokens can be issued in any supported format.

Tivoli Security Policy Manager introduces a new type of PIP that allows calls to a
STS for security token validation and mapping.

The STS PIP communicates with the STS using WS-Trust 1.2. To configure
Tivoli Federated Identity Manager, an STS trust chain could be configured to:

� Validate the incoming token type using an appropriate module

� Add mapping modules to map any required attributes

� Issue a SAML 1.x token
110 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The Tivoli Security Policy Manager STS PIP parses the SAML assertion received
from the STS and adds subject attributes for authorization decisions.

The STS PIP can cache subject attributes received from the STS to enhance
performance. The caching of subject attributes is controlled by checking
assertions for “time valid” if it is available. If “time valid” is not available, the “max
time to live” value is used instead. The “max time to live” value is configurable
through the Tivoli Security Policy Manager PIP user interface.

4.6 Application repositories

Authorization services may require the ability to query application repositories,
such as data bases and user registries, for information on which to base
authorization decisions at run time.

Data for authorization decisions can be retrieved from several points in an IT
system. Sometimes it makes sense to retrieve the data when a subject is
authenticated and propagate the information using a security token such as a
SAML assertion. This situation has the advantage of retrieving the data once so
that it can be used by multiple systems within the organization. However, if the
data in question is dynamic and likely to change within the lifetime of the security
token, it may not make sense to perform this action. The alternative is to
dynamically retrieve the data at run time during an authorization decision. Tivoli
Security Policy Manager provides the PIP interface to retrieve data for
authorization decisions at run time, which is potentially a more costly approach,
but ensures that the latest version of the data is retrieved.

4.6.1 Databases

Tivoli Security Policy Manager provides Java Database Connectivity (JDBC)
integration to support the retrieval of database information for use as policy
attributes in authorization decisions. A JDBC PIP is used to retrieve the required
data. The JDBC PIP is configured during RTSS configuration. Configuration
information includes details of the JDBC data source and an SQL query that
specifies what data to return for use in the authorization decision. The PIP
interface is discussed in 8.1.4, “Policy information point” on page 233.

SAML requirements: The Tivoli Security Policy Manager STS PIP requires a
SAML1.x token in the Request Security Token Response (RSTR).
 Chapter 4. Integration with external systems 111

4.6.2 User registries

As discussed in 4.4, “User repositories” on page 104, Tivoli Security Policy
Manager can integrate with user repositories to retrieve access decision
information, which can be useful for basing authorization decisions on
information over and above the data that can be established about an identity at
authentication time.

4.6.3 Proprietary repositories

Tivoli Security Policy Manager provides the flexibility to integrate with virtually
any system. As discussed in 4.4.2, “Integration with Tivoli Directory Integrator” on
page 105, Tivoli Directory Integrator can be used to connect to and retrieve data
from proprietary systems. For example, a flat file may contain data required to
make a Tivoli Security Policy Manager authorization decision. Tivoli Directory
Integrator could use a File System Connector to parse the file and provide the
data to RTSS through a PIP as access decision information.

4.6.4 Java

Integration points are provided to interface with external systems such as JDBC,
LDAP, and STS. These points represent common sources of identity and
application data required for authorization decisions that are provided as part of
the product. If additional flexibility is required, there are two options:

� Implement custom logic using Tivoli Directory Integrator, as discussed in
4.4.2, “Integration with Tivoli Directory Integrator” on page 105.

� Implement a custom Java PIP.

A Java PIP allows Java code to be executed to retrieve data from virtually any
external system required. The systems that can be integrated with are only
limited by the Java code that can be written. This situation allows for a high
degree of flexibility, but requires custom code to be written and maintained. As
an example, a PIP might be required to retrieve data from a web service for an
authorization decision. A custom Java class could be written and registered as a
Java PIP to retrieve information from the web service. The details of the PIP
interface are discussed in 8.1.4, “Policy information point” on page 233.
112 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

4.7 Classification management tools

Data classification is the process of identifying common sets of entities and
grouping them together using logical labels, which provides a way of rationalizing
the vast amount of data into logical groups so that business processes can be
defined in terms of these groupings. Data classification is a task in its own right,
and is a process that is performed in many parts of an enterprise.

In the context of implementing a security policy management solution, a
classification process is useful for defining groups of resources, subject, and
policies to simply the management of these entities. A security policy
management solution needs to be flexible enough to integrate with external
classification tools to allow the importation of classification definitions.

There are a wide range of tools available to classify resources. Tivoli Security
Policy Manager provides a separate policy design tool that allows architects to
import resource definitions, define policies, model and classify this data, and
export a policy template that includes classifications of services and policies. The
exported policy can be used by Tivoli Security Policy Manager to establish
classification for use during policy authoring.

Tivoli Security Policy Manager provides three mechanisms for integrating with
external classification systems:

� Rule Interchange Format (RIF) file

Tivoli Security Policy Manager provides a mechanism to input classification
definitions from an interchange file.

� API

The Tivoli Security Policy Manager API can be used to programmatically
import classification definitions.

� Manually

Classification definitions can be added manually through the Tivoli Security
Policy Manager administration console.
 Chapter 4. Integration with external systems 113

4.8 Compliance management

Compliance management is the process of ensuring that an organization
operates in accordance with expectations. Organizations define IT security
policies to ensure that IT systems are being operated according to all applicable
laws, regulations and ethical standards, such as:

� Sarbanes-Oxley
� Basel II
� Food and Drug Administration (FDA)
� NERC-CIP
� Health Insurance Portability and Accountability Act (HIPPA)
� Gramm-Leach-Bliley Act (GLBA)
� Payment Card Industry Data Security Standard (PCI DSS)
� ISO 27001 / 27002

IT security compliance is the process that safeguards the operations of an
organization to meet the requirements expressed in IT security policies. A
system that manages an IT security compliance process requires the ability to
identify compliance criteria and to assess, analyze, consolidate, and to report on
the compliance status of security controls. An IT security compliance
management system can be helpful in many situations, for example, to create
audit reports, to prevent or to clarify IT security incidents, or just to gather
evidences for future compliance activities.

A Security Information and Event Management (SIEM) system helps an
organization address IT security compliance management problems, such as the
collection, analysis, and archiving of audit data from many different computing
solutions across an organization. Organizations face three major challenges:

� Demonstrating compliance to regulatory requirements

� Ensuring appropriate protection of intellectual capital and privacy information

� Being able to manage security operations securely and effectively

An SIEM system should be able to collect data from log files and alerts from a
variety of infrastructure components such as firewalls, routers, antivirus systems,
servers, and many others. It can inform IT teams about unusual behavior on
these systems, and then these teams can decide what kind of action to take.
114 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

An SIEM architecture can be broken down into two elements:

� Security Information Management (SIM)

SIM provides reporting and analysis of data primarily from host systems and
applications, and secondarily from security devices to support regulatory
compliance initiatives, internal threat management, and security policy
compliance management. It can be used to support the activities of the IT
security, internal audit, and compliance organizations.

� Security Event Management (SEM)

The SEM component improves security incident response capabilities. It
processes near-real-time data from security devices, network devices, and
systems to provide near real-time event management for security operations.
It helps IT security operations personnel be more effective in responding to
external and internal threats.

An SIEM system provides complementary features to those provided by a
security policy management system and completes the policy life cycle
discussed in earlier chapters. Policy management enforces an IT security policy
in real time to control access to resources in line with a centralized security
policy. An SIEM system manages the reliable collection of log data from systems
of interest, analysis and reporting of archived log data for regulatory compliance,
and provides real-time event information for threat management.

To facilitate integration with an SIEM system, individual systems need to produce
security related events in a format that an SIEM system can consume. A key
aspect of an SIEM system is the capability to understand and consume data from
systems of interest. This data is normalized into a common format so that
analysis across a range of systems can be performed.

4.9 Rules engines

Business Rules Management Systems (BRMS) implement decision logic that
allows an organization to define, manage, and enforce a set of business rules
required by the business. They typically provide a mechanism to express rules at
the business level and a rules engine to implement the business logic in the
context of the IT environment. Business rules management systems are used to
define and implement re-usable rules that can be used by systems across the
organization to simplify the application environment. A rules engine might be
used to implement a fraud detection system that can be used by multiple
systems within the business.
 Chapter 4. Integration with external systems 115

When implementing a security policy management system, it is useful to use
existing investment in BRMS. Tivoli Security Policy Manager provides the RTSS
client external rules interface for interfacing with external systems such as rules
engines, as shown in Figure 4-6.

Figure 4-6 Tivoli Security Policy Manager client external rule calling BRMS API

An example of a BRMS system that Tivoli Security Policy Manager can interface
with is IBM WebSphere ILog JRules. JRules provides the JRule Java API that
can be used to implement a Tivoli Security Policy Manager external rule using
the IExternalRule interface. The RTSS external rules API is discussed in 8.1.5,
“External rules” on page 235.

4.10 Conclusion

A key capability of a policy management system is the ability to integrate with
external systems. This chapter has examined the capabilities of Tivoli Security
Policy Manager to integrate with external systems and the solutions it provides.
116 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Several Tivoli Security Policy Manager integration points were outlined and use
cases discussed, including integration with identity and access management,
application repositories, role management, classification management, rules
engines, and trust services. Finally, this chapter discussed compliance
management and its role in completing the policy management life cycle.
 Chapter 4. Integration with external systems 117

118 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Part 3 Usage patterns for
IT security policy
management

In this part, we take a closer look at the different architecture patterns for
externalizing security from applications and services, including the intermediary
level, container level, database level, and application level approach.

Part 3
© Copyright IBM Corp. 2011. All rights reserved. 119

120 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 5. Intermediary level
integration

In this chapter, we introduce and describe intermediary level integration with
Tivoli Security Policy Manager.

In Chapter 2, “Architecture patterns for externalizing security from applications
and services” on page 41, we explored architectural patterns when using Tivoli
Security Policy Manager; we now take a closer look at intermediary level
integration using this methodology by focusing on the following topics:

� Concepts and benefits
� Java Web Application Servers
� Web Application Firewalls
� Enterprise Service Bus
� Third-party intermediaries
� Conclusion

5

© Copyright IBM Corp. 2011. All rights reserved. 121

5.1 Concepts and benefits

When applying an externalized security policy, there are a number of
architecture patterns that can be applied. In this chapter, we discuss
intermediary level enforcement, the benefit of implementing this architectural
design, and the considerations that must be made.

Traditionally, security policy has been implemented at an application level, using
custom code and a customized security policy on a per-application basis.
Application development using this method is often considered undesirable due
to the inherent complexity involved, the business understanding required, and
the lack of central policy management. The logical evolution of security policy
enforcement is to externalize the policy management and enforcement through
security policy server application programming interfaces (API). This method is
discussed in more detail in Chapter 8, “Application level integration” on
page 213.

Naturally, there are situations when an application specific security
implementation is infeasible or incapable of enforcing the required policy. These
situations can be easily identified as organizations move towards a common
format of service delivery, most notably through service-oriented architecture
(SOA) implementations, SOAP based web services, and RESTful web services.
Tivoli Security Policy Manager can be used to take advantage of this common
service delivery environment and reduce the complexity in developing security
solutions across a range of environments and business architectures.

Let us consider three example deployment scenarios to explain the
implementation detail:

� Scenario A: Established application environments
� Scenario B: Services external to the enterprise
� Scenario C: SOA message protection policies

We briefly explore the scenarios in the following sections and then provide a
more detailed explanation of intermediary patterns using Tivoli Security Policy
Manager.

5.1.1 Scenario A: Established application environments

A local government has a collection of application server based web services
that it needs to secure. New compliance regulations stipulate the need for a more
fine grained authorization model, the collection of access audit records, and
stringent controls of their security policy governance.
122 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

These applications have not been changed by development teams in a number
of years and are only supported under a maintenance agreement. The source
code is either unavailable or there are insufficient skills available to modify the
core application operations and the project team does not have budget or time to
reinvest in them. This scenario is shown in Figure 5-1.

Figure 5-1 Established application business problem

The solution
This is a common scenario in modern computing environments where various
elements have been assembled over the lifetime of the environment and may be
at different stages of the development and maintenance software life cycle. Tivoli
Security Policy Manager has the ability to abstract the security policy and
enforcement operations away from the core software architecture and apply
decisions without any programmatic modifications to established or third-party
application environments.

Figure 5-2 Established application solution

When such a solution is deployed in a Java application server environment, the
enforcement is performed with Tivoli Security Policy Manager enabled JAX-RPC
and JAX-WS interceptors, as shown in Figure 5-2. The policy life cycle and
architectural designs are covered in more detail in 1.9, “Introduction to IT security
policy life cycle management” on page 32 and Chapter 2, “Architecture patterns
for externalizing security from applications and services” on page 41.
 Chapter 5. Intermediary level integration 123

5.1.2 Scenario B: Services external to the enterprise

One of the benefits for an SOA is the ability to delegate non-critical parts of a
business process to partners or other third parties. For example, a pharmacy
may have contracts with different drug suppliers. Although a business
relationship is in place between the pharmacy and the supplier, the pharmacy
still requires control over who can request drugs from the supplier and what type
and quantity of drugs can be requested.

In this example, shown in Figure 5-3, the pharmacy has no control over the
remote service. The solution described in Figure 5-2 on page 123 is not suitable
for this reason. The reporting available from the partner may not be adequate to
properly invoice the cost of drugs to the appropriate patient.

Figure 5-3 High level authorization business problem

The solution
This scenario is becoming more common as more businesses move to focus on
their core competencies and delegate non-critical processes to third parties.
Other examples include shipping and order fulfillment, payroll processing, and
employee benefits.

Tivoli Security Policy Manager provides the capability to integrate at an
intermediary level within the enterprise. When integrating with an XML Firewall or
Security Gateway, Tivoli Security Policy Manager can be used to author policy
for intermediaries that examine the full context of incoming messages and
access a selection of policy information points before the request is sent to the
partner or supplier.
124 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

An example of evaluating business requirements from the context of the
message is shown in Figure 5-4. An authorization decision can be made allowing
a patient to only access goods from a non-interacting pharmaceutical supplier,
when their other medications are recorded and available as attributes in their
health record using content enrichment services.

Figure 5-4 High level authorization solution

5.1.3 Scenario C: SOA message protection policies

Consider a bank is wanting to provide a number of SOA based web services to
outside mortgage brokers. The availability of these services will allow greater
interaction among their partners through up to date loan data and instant loan
applications. The messages passed between these providers will likely contain
sensitive personal information such as social security numbers, birth dates,
home addresses, and confidential banking data, such as account numbers and
contract terms.

The bank needs to develop a collection of polices that can ensure that the
messages contain the appropriate authentication credentials, that any
confidential or sensitive information is appropriately concealed from
eavesdroppers, and that the messages have been delivered without tampering.
These policies need to be available to the partners invoking the bank’s web
services, and mechanisms needs to be in place to ensure that these policies are
enforced.
 Chapter 5. Intermediary level integration 125

This concept is shown in Figure 5-5.

Figure 5-5 SOA message protection business problem

The solution
Organizations across the globe are taking advantage of the ability to collaborate
with partners and customers by exposing web services to the Internet. Tivoli
Security Policy Manager allows the involved parties to generate policies that
govern the security parameters of the messages that are sent across public
networks. These policies can be distributed and attached to service definitions,
which, when accessed by various enterprise service buses and application
server endpoints, can be readily enforced.

By implementing message protection policies, as shown in Figure 5-6,
compliance regulations can be met, and various sensitive data can be protected
through selective encryption, strong authentication protocols, and methods to
ensure that message integrity has not been compromised.

Figure 5-6 SOA message protection solution
126 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

5.1.4 Conclusion

An intermediary approach for authorization and message protection policy
provides the flexibility to integrate into a SOA environment without the need to
maintain or redeploy existing applications. Common business drivers for
implementing an intermediary solution include:

� When circumstances dictate that the established application cannot be
modified.

� When the party requiring authorization of the service does not control the
implementation of the service.

� When the organization is using applications not hosted within their own
secure networks.

Tivoli Security Policy Manager can be deployed into existing and new
environments providing intermediary integration and adding full capabilities of
external authorization, including content rich authorization decisions, central
policy management, and IT governance.

5.2 Java Web Application Servers

Intermediaries placed in front of established applications commonly involve using
the capabilities of the application server on which the established application is
running. Two common Java-based frameworks for implementing web services
are JAX-RPC and JAX-WS.

IBM WebSphere Application Server is the implementation by IBM of the Java
Platform, Enterprise Edition (Java EE) specification. WebSphere Application
Server provides the runtime environment for enterprise applications, including
the JAX-RPC and JAX-WS runtime environments.

Tivoli Security Policy Manager provides interceptors for both JAX-RPC and
JAX-WS that can be installed on WebSphere Application Server. Before we
discuss this action in detail, we briefly introduce some of the underlying security
foundation pertinent to our WebSphere Application Server and Tivoli Security
Policy Manager integration.

This section focuses on Java Web Application Server integration using an
intermediary pattern using JAX-WS JAX-RPC Interceptors. In 6.2, “WebSphere
Application Server” on page 161, we further explore container based integration
patterns with WebSphere.
 Chapter 5. Intermediary level integration 127

5.2.1 Foundation for integration

WebSphere Application Server drives business agility with a performance-based
foundation to build, reuse, run, integrate, and manage SOA applications and
services. Many organizations use WebSphere Application Server to host their
mission critical applications, such as Java EE applications, Portlet applications,
and Session Initiation Protocol (SIP) applications.

An advantage of integrating with a Java Web Application Server such as
WebSphere Application Server is that applications deployed using container
security can be easily managed without needing to implement custom security
logic or modules within the application itself. Integration at the container level is
discussed in Chapter 6, “Container level integration” on page 159.

In some cases it may not be possible to consume the container level security that
requires a different pattern, such as the intermediary integration. Using this
pattern, web services, applications, and security gateways generally do not
require any maintenance or configuration to enable the use of an external
security system for central policy management and governance.

In this section, we briefly introduce the basic concepts that characterize the
environment of intermediary integration support with Tivoli Security Policy
Manager and Java Web Application Servers.

5.2.2 Java Web Application Server integration and using the policy
life cycle model

In this section, we describe the intermediary integration points available within a
Java Web Application Server, using Tivoli Security Policy Manager interceptors,
by following the policy life cycle model.

Policy modeling and simulation
The intermediary integration pattern is typically used for established application
environments where the security constraints for the applications are also
generally well established. In such scenarios, much of the policy modeling and
simulation may have been completed when the applications were first deployed.
At that time, the capabilities added by Tivoli Security Policy Manager to the
scenario may not have been possible, so it is therefore essential to review the
policy modelling to ensure sufficient coverage of the business rules for accessing
the services.
128 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

You should follow a structured policy modeling and simulation procedure, for
example, by using the Policy Design Tool (discussed in “Policy Design Tool” on
page 68). This approach can be used for both established and new web service
application deployments, ensuring that the services, resources, and roles are
optimized for the operating environment.

Importing resources and metadata
Services that are secured using the Tivoli Security Policy Manager JAX-RPC or
JAX-WS interceptors are typically established applications in your environment,
of which you may not have access to the original source code or deployment
files. As a result, it is generally not possible to add these services as J2EE
applications or Portal applications, so an intermediary pattern for integration is
required, which will represent the services as web services in the Tivoli Security
Policy Manager console.

The two typical methods to import the definition of the web service into Tivoli
Security Policy Manager is to import from a registry such as WebSphere Service
Registry and Repository or export the definitions from the deployed application in
WebSphere Application Server. It is also possible to import from an Interchange
file that can be exported from a utility, such as the Policy Design Tool.

To import services directly from WebSphere Service Registry and Repository,
you must first add it as a Service Registry, as shown in Figure 5-7. During the
import process, select Services from a service registry as the Service Type
and then select the desired repository from those available in the list and
continue with the import steps.

Figure 5-7 Adding IBM WebSphere Service Registry and Repository as a Service
Registry
 Chapter 5. Intermediary level integration 129

If you want to export the definitions from an application in WebSphere
Application Server, first log onto the Integrated Solutions Console (ISC) for the
server or domain manager. Navigate to Applications in the left menu, expand
Application Types, and select WebSphere enterprise applications. Select the
check box of the application containing the web services to secure and then
choose Export.

The archive that is produced from these steps contains the WSDL files for every
web service in the application’s modules.

In the Services import window, select the Import the service from a file option
for the Service Type, as shown in Figure 5-8, and browse to the location where
you uploaded the WSDL in the Service Source window.

Figure 5-8 Importing a service from a file

Now that you have imported the web service from WebSphere Service Registry
and Repository or the exported WSDL files for your application, a new web
services structure is created. An example of a service imported from a WSDL is
shown in Example 5-1.

Example 5-1 Web Service resource structure imported from WSDL

Web Services
{http://echo.test.rtss.tscc.ibm.com}EchoService

EchoService
echo
toLowerCase
130 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

toUpperCase
whoAmI

The imported resource example shown in Example 5-1 on page 130 includes
multiple resource types from the web service, each represented as a child
service. Table 5-1 shows the mapping of each resource type to the
corresponding child service.

Table 5-1 Web service nodes in the services listing

After you have imported your web service resources into Tivoli Security Policy
Manager, you can author the policy to be applied to them.

Policy authoring
The policy created in Tivoli Security Policy Manager can be built as a role based
policy, which makes it similar to the default programmatic capability of J2EE
security. In this case, the centralized approach still has its typical advantages,
such as consistency across all deployed instances, audit support, management
efficiency, administrative delegation, and so on.

In the policy authoring phase, these options are abstract attribute identifiers and
are bound to specific pieces of information in the target IT environment during
the policy configuration phase.

You can attach the policy to the parent node in the service that will be inherited
by all the child nodes and you can attach the same policy to more than one
service. For web services, the only applicable action is invoke, which must be
selected when attaching to the desired service.

The full capabilities of rule-based policies can be used during policy authoring.
Application Roles and Rules Parameters, including rule parameters and external
rules, can be introduced for enriched authorization decision making. Rules are
processed in a logic If, Else If sequence that can be reordered as necessary to
maintain the desired processing order. Ensure you have selected the correct
policy evaluation action (Permit or Deny) and that your processing logic is
correct. During policy evaluation, the access decision of the first rule that is
matched will determine the final result.

Nodes in services listing Example resources

Namespace {http://echo.test.rtss.tscc.ibm.com}EchoService

Service Name EchoService

Operations echo, toLowerCase, toUpperCase, and whoAmI
 Chapter 5. Intermediary level integration 131

Policy configuration
Policy configuration provides the mapping between the abstract concepts of
application roles and rule parameters to real pieces of information in the IT
environment, such as LDAP groups and JDBC queries. Sources of external user
repositories must already be configured as User Registries under Registries and
Repositories and any User Registry Attribute Queries, Database Attribute
Queries, Security Token Service (STS) Attribute Queries or External Rules must
be configured in the Authorization Service found under Tivoli Security Policy
Manager Runtime Security Service (RTSS) for where the policy will be
distributed.

When performing the configuration, first add your desired RTSS instance to the
list of the Selected Policy Distribution Targets, as shown in Figure 5-9.

Figure 5-9 Adding runtime security services as a Policy Distribution Target
132 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Next, click IBM Tivoli Runtime Security Services as the Authorization Policy
Type for that instance, as shown in Figure 5-10, before clicking Next.

Figure 5-10 Selecting the Authorization Policy Type for your Policy Distribution Target
 Chapter 5. Intermediary level integration 133

In the next window, you need to select the Authorization Configuration Target
and click the Configure button to begin the mapping process for your Application
Roles and Rule Parameters, as shown in Figure 5-11. For each Configuration
Target to be mapped, first select the target and click the Update Mapping button,
which launches the appropriate wizard to allow you to query the appropriate
content enrichment sources for your roles and rules.

Figure 5-11 Configuring the Authorization Configuration Target

Application Roles are mapped to existing groups in your configured user registry
and you can map a role to include more than one group. Ensure that you select
the correct user registry that contains the group you want to map to, enter the
group query parameters, and click Search to look up the registry. Select the
group or groups for the mapping and click OK to save the mapping.

Map roles to groups: Ensure that only groups are selected. Both users and
groups may be returned from the user registry, but application roles should
only be mapped directly to groups.
134 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

A unique capability when configuring Rule Parameters in a policy for web
services enforcement is the ability to access the entire SOAP body at decision
time. This action allows rule parameters to be bound to XPath queries into this
SOAP body, meaning decisions can be made based on the message content
and not only request parameters or attributes. When you perform the rule
mapping, you should select Rule parameter is contained in the request, but in
a non-standard location as the value for where the rule parameter is located to
allow you to use an XPath query.

Using the SOAP message shown in Example 5-2, a rule parameter could be
bound to the <app:CustID> value using an XPath expression such as
“//*[local-name()=’CustID’]”. This setup allows the customer ID 1234, or any
other value in the message body, to be used in evaluation of a rule that could
then look up another value in an external database to determine the
authorization decision.

Example 5-2 SOAP message body extract

<soap:Body>
<app:GetCustomerData>

<app:CustID>1234</app:CustID>
</app:GetCustomerData>

</soap:Body>

When you have configured all of your Application Roles and Rule Parameters,
you can prepare for policy distribution.

Policy distribution
During the installation and configuration of your Tivoli Security Policy Manager
environment, it is likely that you have created at least one RTSS instance. The
RTSS that you distribute the authorization policy to must correspond to the RTSS
instance that the Tivoli Security Policy Manager JAX-RPC and JAX-WS
interceptors are configured to use. If you have not yet added an RTSS instance,
you must create one before you can distribute your policy.

Handling policy distribution targets: Tivoli Security Policy Manager V7.1
requires that you use the tspmRegisterRTSS command-line utility to add or
delete Tivoli Runtime Security Services policy distribution targets. If they are
added using the console, distribution will not complete successfully.
 Chapter 5. Intermediary level integration 135

Policy enforcement
To protect your web services running on a Java Web Application Server using an
intermediary pattern, you must manually configure either the Tivoli Security
Policy Manager JAX-RPC or JAX-WS interceptors. The installation can be
performed on a single server or a cluster, and unlike the container scenario
described in 6.2, “WebSphere Application Server” on page 161, RTSS can be
installed in either local or remote mode.

An important consideration about whether to configure local or remote mode is if
the RTSS client is not running in local mode note; each authorization decision
request has to leave the local JVM, which may impact performance. Although not
strictly required, the local mode installation positively influences performance.

Installing the appropriate interceptors for the JAX-RPC and JAX-WS frameworks
is trivial and is as simple as placing a library for each framework in the
appropriate location.

After you have installed an interceptor on a server, all of the web services of that
same type are automatically protected by Tivoli Security Policy Manager. If no
policy has been defined and distributed in Tivoli Security Policy Manager, then all
requests for that service are denied due to the deny bias. Authoring a specific
policy with a Permit authorization decision allows access to the services.

To demonstrate the transparency of interceptors and to assist in migration where
no previous policy existed, applying an Any user policy with Permit authorization
decision to the service effectively returns the access control to which it was
before the interceptor was installed. Of course, appropriate authorization policies
should be authored and distributed in a timely fashion to secure your resources
by way of intermediary integration.

Auditing and reporting
Because JAX-RPC and JAX-WS frameworks run within the Java Web
Application Server, applicable logs for recording and reporting access requests
and services on the server should be used for auditing and reporting.

Access through an interceptor - the deny bias: After an interceptor is
installed on an application server, all matching requests will be intercepted
and access will be denied unless explicitly allowed by distributed policy.
136 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

When the Tivoli Security Policy Manager interceptors are used as an
intermediary pattern, they add value in this scenario by transparently adding
auditing capabilities in a manner consistent with other enforcement types, such
as J2EE container enforcement and programmatic API invocation. To view these
records, refer to the Tivoli Security Policy Manager audit logs for the appropriate
RTSS instance.

5.2.3 Conclusion

The WebSphere Application Server container provides a number of integration
points to provide external authorization for web services using Tivoli Security
Policy Manager.

The use of Tivoli Security Policy Manager to intercept web service calls provides
rich policy constructs that are not normally available to traditional containers. To
achieve this scenario, Tivoli Security Policy Manager uses standards-based
interfaces for integration. The significant value-add when using Tivoli Security
Policy Manager for external authorization is that the application being protected
does not have to be modified, or even be aware that any authorization is being
performed by the interceptor. This situation ensures the application logic and
process flow is not compromised while still being able to be protected using fine
grained authorization security policy.

5.3 Web Application Firewalls

Many organizations are continuing to adopt cloud-based solutions in their
enterprise and transform their IT operations to SOA models. In doing so, there is
a need to protect applications exposed through XML based interfaces such as
WSDL and to scan Extensible Markup Language (XML) traffic. With these
services hosted outside of the traditional network boundaries, it is not only
inbound traffic to the organization that must be secured, but also the outbound
requests.

A Web Application Firewall, also referred to as a hardware appliance, network
device, or gateway, is typically deployed in the Demilitarized Zone (DMZ) of an
enterprise network. These specialist appliances are used to secure, accelerate,
and transform XML based traffic. Security of the traffic for Web Services and
XML based resources can include validation of content or messages and to
apply security policy, which may not be provided natively by the resources
themselves, but which are needed to meet organizational or regulatory
requirements. They can also be used to filter XML content and perform XML
acceleration and transformation as part of the processing.
 Chapter 5. Intermediary level integration 137

5.3.1 Foundation for integration

Web Application Firewalls are important network-based appliances for
organizations using XML based technologies such as web services. These
appliances can reduce the processing impact on existing web application servers
by parsing, validating, transforming, and routing XML messages using XPath and
XSLT on specifically designed hardware rather than in software before passing
the messages off to the back-end server. Web Application Firewalls can also
perform mediation such as translation of authentication tokens, expanding the
capability of integration with external parties.

By having an appliance perform the bulk of the processing and translation, these
Web Application Firewalls are generally able to provide performance
optimization, especially when all of the required business attributes for
authorization decisions are included in the request. Relying solely on the
message contents does limit the flexibility and capability of the policy constructs
to those supported by the appliance.

The capability to call external content enrichment data stores allows an
authorization policy to be deployed that not only uses the business data available
in the request, but also to derive data from other information sources. To achieve
this scenario, an appliance must be capable of integrating with an external policy
decision point (PDP), of which the appliance then acts only as the policy
enforcement point (PEP).

Where more than one appliance exists in the organization, such as multiple
front-end systems or internal and external appliances, the management of
multiple devices becomes time consuming and prone to error. The capability for
central policy management becomes highly desirable, which allows the
management of multiple appliances for consistent policy and governance.

5.3.2 WebSphere DataPower SOA Appliance integration with Tivoli
Security Policy Manager

IBM WebSphere DataPower SOA Appliances provide message transformation,
integration, and routing functions in a network device, cutting operational costs
and improving performance. The appliances are quickly and easily configurable,
helping you protect you environment against cross-site scripting, SQL injection,
and a wide variety of XML threats.

The appliances provide reliability and scalability by securing services at the
network layer with XML, SOAP, and WS-Web services processing and
authorization policy enforcement, which can be integrated with and delegated to
Tivoli Security Policy Manager using RTSS.
138 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

WebSphere DataPower can be configured to perform the role of a PDP by
consuming the distributed XACML policy (on box) or it can be configured to call a
remote RTSS instance (off box). In either case, it always acts as the PEP for
authorization decisions determined by the PDP.

Integration between WebSphere DataPower and Tivoli Security Policy Manager
can also be used to author and distribute a message protection policy that is
enforced locally on the appliance (on box). In scenarios where WebSphere
DataPower and WebSphere Service Registry and Repository are already
deployed, Tivoli Security Policy Manager can be added to the integration
architecture, providing a central security policy management and governance
capability. This setup provides the mechanism to author an authorization policy
that is enforced by WebSphere DataPower and a message protection policy that
is updated in WebSphere Service Registry and Repository.

Additionally, WebSphere DataPower can configure multiple on-board PDP
objects that are represented as distinct policy distribution targets (PDTs) in Tivoli
Security Policy Manager, which provides support for multiple WebSphere
DataPower domains.

Integration of WebSphere DataPower with Tivoli Security Policy Manager for
message protection policy is discussed in 5.4, “Enterprise Service Bus” on
page 147. In the remainder of this section, we focus on integrating WebSphere
DataPower with Tivoli Security Policy Manager for an authorization policy.

5.3.3 IBM WebSphere DataPower integration and using the policy life
cycle model

Now that we have explored the integration points available within WebSphere
DataPower, we can prepare to deploy Tivoli Security Policy Manager as part of
the security landscape by following the policy life cycle model.

Policy modeling and simulation
As an intermediary, WebSphere DataPower in many cases is already acting as a
web security gateway and policy enforcement point for your XML-based
applications. In this scenario, much of the policy modeling and simulation may
have been completed when the applications were first deployed. However to
ensure an optimized integration approach, existing services, resources, and
roles should be reviewed as part of the integration planning. Tivoli Security Policy
Manager integrates into this scenario by proving the central authorization policy
management for existing services and resources exposed by WebSphere
DataPower.
 Chapter 5. Intermediary level integration 139

For new web service application deployments, you should follow a structured
policy modeling and simulation procedure, for example, by using the Policy
Design Tool.

Importing resources and metadata
For deployments that contain WebSphere Service Registry and Repository in the
system landscape, services that are protected by WebSphere DataPower can be
imported directly into the Tivoli Security Policy Manager console. To import
services directly from WebSphere Service Registry and Repository, you must
first add it as a Service Registry. During the import process, select Services
from a service registry as the Service Type, as shown in Figure 5-12, and then
click Next. In the Service Source wizard, select the service registry you have
configured from those available in the Service registry drop-down menu.

Figure 5-12 Importing a service from IBM WebSphere Service Registry and Repository

If you do not have WebSphere Service Registry and Repository, or WebSphere
DataPower is protecting resources that are only known to it, you can also import
the service from the WSDL file or interchange file. To import from a WSDL file,
you must export the file from DataPower and copy it locally to where the console
is running. Be aware of referenced WSDL files, as these are not supported and
result in an error during the import process. If you use an interchange file, you
must also copy this locally to the console.

Fix pack information: Tivoli Security Policy Manager V7.1 Fix Pack 3
handles referenced XSD files by disregarding them.
140 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

After importing the web service either from a registry or file, a new service is
created under the Web Services service type, as shown in Example 5-3.

Example 5-3 Web Services resource structure

Web Services
{http://echo.test.rtss.tscc.ibm.com}EchoService

EchoService
echo
toLowerCase
toUpperCase
whoAmI

The imported resource example shown in Example 5-3 includes multiple
resource types from the web service, each represented as a child service.
Table 5-2 shows the mapping of each resource type to the corresponding child
service.

Table 5-2 Web service nodes in the services listing

After you have imported your web service resources into Tivoli Security Policy
Manager, you can author the policy to be applied to them.

Policy authoring
During authorization policy authoring, you must first consider the deployment
scenario for your WebSphere DataPower appliance and whether you will use the
on-board PDP capabilities or call an external RTSS PDP. The decision of which
type of PDP depends on the attributes available in the request, which can be
used to evaluate the fine grained authorization rules.

Nodes in services listing Example resources

Namespace {http://echo.test.rtss.tscc.ibm.com}EchoService

Service Name EchoService

Operations echo, toLowerCase, toUpperCase, and whoAmI
 Chapter 5. Intermediary level integration 141

When using the on-board PDP, the only supported content enrichment sources
are LDAP PIPs, although customized support can be extended by authoring
custom XSL. During LDAP PIP evaluation, you can only use attributes in the
request in a standard location, as shown in Figure 5-13, which is mapped during
policy configuration. External rules are not supported and DataPower encounters
an error during processing, not at policy distribution time.

Figure 5-13 Rule parameter mapping during Policy Configuration using request attributes

If the off-box PDP is configured, the full capability and support of Application
Roles and Rules can be incorporated into your authorization policies and are
evaluated by the remote RTSS.

When attaching your authorization policy, ensure you select the action of Invoke
for the web service resource you want to protect.
142 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy configuration
Before configuring your policy, you must add your WebSphere DataPower
appliance as a PDT using the add process for PDTs in Registries and
Repositories in the console. You need the host name of the target appliance and
the Web Service Client Port, which is configured on the appliance. In the Policy
Configuration window, select your appliance as the PDT, as shown in
Figure 5-14, and select DataPower as the Authorization Policy Type, as shown in
Figure 5-15.

Figure 5-14 Adding IBM WebSphere DataPower as a Policy Distribution Target

Figure 5-15 Selecting the Authorization Policy Type for your Policy Distribution Target
 Chapter 5. Intermediary level integration 143

When configuring your authorization policies, you must again consider whether
the authorization policy will be evaluated by an on-box or off-box PDP, as this
choice dictates from which locations in the request that attributes can be
accessed and used.

If you are using an on-box PDP, when you configure the Authorization
Configuration target, ensure that you only use attributes that are in the request in
a standard location that can be retrieved using the credential mapping
stylesheet.

When you use an off-box PDP, not only can you use the request attributes as
mappings for you rules, you can use XPath to reference data in the SOAP body
to access attributes and data contained in the request in a nonstandard location,
which provides application context authorization decisions, as shown
in Figure 5-16.

Figure 5-16 Rule parameter mapping during Policy Configuration using XPath

After you have completed the mapping of your Application Roles and Rules in
the Authorization Configuration target, no further configuration is necessary. The
WebSphere DataPower SOA Appliances and DataPower configuration targets
do not require configuration.
144 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy distribution
In addition to adding the WebSphere DataPower appliance as a PDT in Tivoli
Security Policy Manager, a number of configuration steps must be completed on
the appliance before the authorization policy can be enforced. Ensure that you
have completed the required steps for your appliance version and Tivoli Security
Policy Manager version.

A policy is distributed that is secured both at the message level and by enforcing
authentication and authorization so that only valid appliances can consume the
policies. Tivoli Security Policy Manager distributes policy using a protocol based
on WS-Notification and WS-MetadataExchange, using XML protection
measures, such as digital signatures, to ensure the integrity of the transferred
policy. Policy updates can be configured to be sent only over SSL for an
additional layer of protection and confidentiality.

When the PDT is configured to consume the policy notifications, the WebSphere
DataPower appliance requests the updated policy from Tivoli Security Policy
Manager and then receives the actual policy documents over the secured
channel. The appliance stores the policy as a file in a predefined PDT directory,
which acts as a Tivoli Security Policy Manager policy store for a DataPower
domain. The directory can also be configured as a source of data for a
DataPower XACML PDP object., which allows it to be used in an on-box XACML
authorization decision point object as part of a AAA Policy object.

The effective authorization policy that is distributed to WebSphere DataPower is
in the form of XACML, and as such, no example XACML is shown here.

On the DataPower appliance, the policy update is handled by an XML Firewall
service or a Multi-Protocol Gateway service that is listening for the Tivoli Security
Policy Manager notification. When the DataPower service receives the
notification, the service's policy fetches the relevant policy or policies and
marshals their storage in the specified PDT directory.

You can publish both an authorization policy and a message protection policy for
the same web service to a DataPower PDT at the same time. There can be
multiple DataPower PDTs on an appliance, but the receive updates stylesheet
(tspm-receive-updates.xsl) shipped with the appliance can only be used in one
PDT per domain. It is also not possible for a single DataPower PDT to support
policy stores in multiple domains.
 Chapter 5. Intermediary level integration 145

Policy enforcement
With intermediary based enforcement, a WebSphere DataPower appliance
intercepts the request and enforces the policies before providing access to the
applications. The appliance can function both as a PDP and a PEP or,
alternatively, the appliance can function simply as a PEP using RTSS as an
external PDP.

WebSphere DataPower uses an AAA policy, which is configured to reference the
configured XACML PDP object. During enforcement, the configured PDP is
called and examines the directory containing policy distributed from Tivoli
Security Policy Manager. The appliance then grants or denies access to the
requested web service using the result from the PDP.

Auditing and reporting
As an intermediary, WebSphere DataPower acts as the PEP and, depending on
the configuration, also as the PDP. The appropriate access and security logs
from the appliance should be used to provide event data for auditing and
reporting, which can be used to evaluate policy effectiveness and coverage.

If an off-box PDP is configured, you can use the RTSS audit logs for central
auditing and reporting.

5.3.4 Conclusion

Many organizations use WebSphere DataPower appliances to enforce secure
and controlled access to their web service resources and may also use IBM
WebSphere Service Registry and Repository to manage the publishing and
message protection policies (also known as message security policies) for those
resources. Tivoli Security Policy Manager can be quickly and easily integrated
into existing deployments of either product, providing central authorization and
message protection policy management. This setup reduces the impact of
managing policies across multiple appliances, reducing time and increasing
consistency of policy application.

This section demonstrated how to use Tivoli Security Policy Manager as an
external PDP by configuring an appliance to call an off-box RTSS, adding the full
capabilities of Application Roles and Rules to add content enrichment data for
authorization policy decisions.
146 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

5.4 Enterprise Service Bus

Enterprise Service Bus (ESB) is a service-oriented infrastructure component that
makes large-scale implementation of SOA principles flexible, reusable, and
manageable in a heterogeneous world.

Applications are represented as business services built from core services that
provide a set of capabilities that are worth advertising for use by other services.
Typically, a business service relies on many other services in its implementation.
Services interact through the ESB, which facilitates mediated interactions
between service endpoints. The ESB supports event-based interactions as well
as message exchange for service request handling.

One innovation of the ESB is a common model for messages and events. All
messages can become events if deploying the service binds the message to a
topic in the event space, which reduces the complexity of the applications being
integrated.

Implementing an ESB facilitates greater reuse of IT assets by separating
application logics and integration tasks, so you can reduce the number, size, and
complexity of integration interfaces. In doing so, you can add or change services
with minimal interruption to the existing IT environment, reducing cost and risk
involved as business changes and new opportunities arise.

There are multiple products from a range of vendors that can provide
implementations of the logical functionality of an ESB. Using IBM technologies,
some of the ESB product offerings include:

� WebSphere Enterprise Service Bus
� WebSphere Message Broker
� WebSphere DataPower

The decision as to which product implementation to use as your ESB upon your
environment and business requirements. In this section, we will provide a
foundation of a typical integration environment and explore a WebSphere
DataPower implementation in depth.
 Chapter 5. Intermediary level integration 147

5.4.1 Foundation for integration

Many organizations using an ESB such as WebSphere Enterprise Service Bus
or WebSphere Message Broker use the integration capabilities of IBM
WebSphere Service Registry and Repository to:

� Provide endpoint resolution based on a service level agreement established
in WebSphere Service Registry and Repository with the Governance
Enablement Profile and policy resolution support extended to cover all
Service Component Architecture (SCA) binding types and manual endpoints
configured in WebSphere Service Registry and Repository

� Use entity (document) information for routing, dynamic transformation, and
other types of policy processing in an up-to-date memory cache.

In an SOA environment using an ESB, events sent and received to and from the
bus represent an important security consideration, especially if those event
messages are not isolated within a trusted corporate network. Applying and
managing native message security policies within the ESB or WebSphere
Service Registry and Repository can become error prone and time consuming as
additional applications are added to the repository. To protect the integrity of the
messages and confidentiality of the data exchanged, measures must be
implemented to protect these applications.

A message protection policy is a set of conditional security requirements that
define the circumstances under which a message can be sent or received
(exchanged) in a web services environment. A message must meet these
requirements before it can be exchanged on the bus.

Tivoli Security Policy Manager can be used for a message protection policy by:

� Evaluating the message against the conditions in a policy. Each condition
evaluates to either true or false depending on the content of the message
request and the conditions of the policy

� Permitting or denying the message exchange, depending on the result of the
evaluation and the permit or deny settings in the policy.

The policy also defines the services with messages that you want to protect. The
messages that you author and manage with Tivoli Security Policy Manager must
adhere to OASIS Web Services Security (WSS) specifications. To successfully
author and manage message protection policies, you must be knowledgeable
about the OASIS Web Services Security elements; the Tivoli Security Policy
Manager console provides assistance in building these rules. The elements
include assertions, tokens, and bindings that are used in the messages you want
to protect.
148 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

WS-SecurityPolicy defines the assertions, such as security tokens and security
bindings, that can be used in a policy for a web services environment. Tivoli
Security Policy Manager supports WS-SecurityPolicy Version 1.2.

Integration for message protection policies within an ESB deployment can be
achieved using Tivoli Security Policy Manager and either:

� IBM WebSphere DataPower SOA appliance, as the PDT, PDP, and PEP

� IBM WebSphere Services Registry and Repository, as the PDT

The remainder of this section focuses on integrating WebSphere DataPower with
Tivoli Security Policy Manager for a message protection policy. Usage of
WebSphere DataPower for an authorization policy is described in 5.3, “Web
Application Firewalls” on page 137.

5.4.2 WebSphere DataPower SOA Appliance integration with Tivoli
Security Policy Manager

In 5.3.3, “IBM WebSphere DataPower integration and using the policy life cycle
model” on page 139, we explored the integration points available within
WebSphere DataPower using an authorization policy. We now consider message
protection policy using Tivoli Security Policy Manager as part of the security
landscape by following the policy life cycle model.

Policy modeling and simulation
This phase is similar to those steps followed when using WebSphere DataPower
as an intermediary for an authorization policy, as discussed in 5.3.2, “WebSphere
DataPower SOA Appliance integration with Tivoli Security Policy Manager” on
page 138. Typically, authorization and message protection policy are modeled at
the same time when applications are first deployed. By combing the authorization
and message protection policy modeling and simulation, you can achieve much
tighter levels of integration with greater coverage across your enterprise
applications.

When you model the business rules and requirements in this phase, it is
important to consider the origin and destination of your messages and whether
those networks are trusted. Using this information, you can then plan the level of
confidentiality and integrity needed for those messages and the endpoints with
which your policies will interact. Tivoli Security Policy Manager integrates into
this scenario by proving the central message protection policy management for
existing services and resources, which can be enforced by WebSphere
DataPower, but could equally be applied to IBM WebSphere Service Registry
and Repository to manage the message protection policy requirements.
 Chapter 5. Intermediary level integration 149

For new web service application deployments, you should follow a structured
policy modeling and simulation procedure, for example, by using the Policy
Design Tool.

Importing resources and metadata
The service structure of your applications for which a message protection policy
will be applied is the same as that defined for an authorization policy of web
services. Further information about importing resources and metadata when
using WebSphere DataPower for an authorization policy can be found in 5.3.3,
“IBM WebSphere DataPower integration and using the policy life cycle model” on
page 139.

You can either import your services from WebSphere Service Registry and
Repository, directly from the service from the WSDL file, or an interchange file,
for example, one exported from the Policy Design Tool. If you are importing from
a file, remember to copy this file to the local file system of the Tivoli Security
Policy Manager console.

After importing the web service, a new service is created under the Web
Services service type, as shown in Example 5-4.

Example 5-4 Web Services resource structure

Web Services
{http://echo.test.rtss.tscc.ibm.com}EchoService

EchoService
echo
toLowerCase
toUpperCase
whoAmI

The imported resource example shown in Example 5-4 includes multiple
resource types from the web service, each represented as a child service.
Table 5-3 shows the mapping of each resource type to the corresponding child
service.

Table 5-3 Web service nodes in the services listing

Nodes in services listing Example resources

Namespace {http://echo.test.rtss.tscc.ibm.com}EchoService

Service Name EchoService

Operations echo, toLowerCase, toUpperCase, and whoAmI
150 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

After you have imported your web service resources into Tivoli Security Policy
Manager, you can author the policy to be applied to them.

Policy authoring
Using Tivoli Security Policy Manager, you can create and manage policies that
evaluate the assertion types in the incoming messages that you want to protect.

Requests for access to web services are sent as SOAP messages, which
contain information about the request and the requester, but they also contain
information about how and under what conditions the message should be sent
and received. This information is called an assertion and a message can include
one or more assertions. You can use Tivoli Security Policy Manager to author
policies with the assertions your organization requires or you can import policies
from a file, such as one created in the Policy Design Tool.

Examples of some of the assertion types are shown in Table 5-4. Refer to the
product documentation for all supported assertion types available for use in your
policies.

Table 5-4 Assertions in a message protection policy

Assertion type Example assertions Purpose

Signature SignedElements
SignedParts

Specifies the parameters for
digital signatures that must be
applied to incoming
messages.

Encryption EncryptedElements
EncryptedParts

Specifies the parameters for
encryption that must be
applied to incoming
messages.

Require Message Parts RequiredElements
RequiredParts

Describes specific data that
incoming messages must
contain.

Security Binding Binding type:
TransportBinding
SymmetricBinding
AsymmetricBinding

Security Header
Formatting:
Layout

Specifies parameters for the
cryptographic algorithm and
security token used to
exchange messages
securely.
Specifies the formatting
standard to which the SOAP
security header must
conform.
 Chapter 5. Intermediary level integration 151

When attaching your message protection policy, no actions can be configured for
the web service resource you have selected, as the policy is applicable to the
transport of the message itself, not the operation.

Supporting Tokens SupportingTokens
EndorsingSupportingTo
kens

Specifies one or more
security tokens to be used
when exchanging messages
between the web service and
its clients.

Algorithm suite Basic256
TripleDes
Basic256Rsa15
Basic256Sha256
TripleDesSha256

Specifies the algorithms and
key lengths that must be
used for encryption and digital
signature operations.

Security Token X509Token
KerberosToken
SamlToken

Specifies the type and
parameters of security tokens
that must accompany
incoming messages.

SOAP Message Security Wss10
Wss11

Specifies the version of the
SOAP Message Security
specification. Also specifies
the types of SOAP message
security requirements.

WS-Trust Options Trust13 Specifies information that
defines additional extensions
defined in the WS-Trust
Version 1.3 specification.

Assertion type Example assertions Purpose
152 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy configuration
Before configuring your policy, you must add your WebSphere DataPower
appliance as a PDT using the add process for PTDs in Registries and
Repositories in the console. You need the host name of the target appliance as
well as the Web Service Client Port that is configured on the appliance. In the
Policy Configuration window, select your appliance as the PDT, as shown in
Figure 5-17.

Figure 5-17 Adding IBM WebSphere DataPower as a Policy Distribution Target
 Chapter 5. Intermediary level integration 153

Select DataPower as the Message Protection Policy Type, as shown in
Figure 5-18, before clicking Next to complete the policy configuration.

Figure 5-18 Selecting the Message Protection Policy Type for your Policy Distribution
Target

No additional mapping or further configuration is required, Configuration targets
with a Message Protection policy type and the policy can now be distributed.

Policy distribution
In addition to adding the WebSphere DataPower appliance as a PDT in Tivoli
Security Policy Manager, a number of configuration steps must be completed on
the appliance before the message protection policy can be distributed. Ensure
that you have completed the required steps for your appliance version and Tivoli
Security Policy Manager version. You can publish both an authorization policy
and a message protection policy for the same web service to a DataPower PDT
at the same time.

Policy distribution itself is secured both at the message level and by enforcing
authentication and authorization so that only valid appliances can consume the
policies. Further information about policy distribution can be found in 5.3.2,
“WebSphere DataPower SOA Appliance integration with Tivoli Security Policy
Manager” on page 138.

An example of a simple message protection policy is shown in Example 5-5. This
policy requires that the entire message be signed to protect the contents of the
message.

Example 5-5 Effective Message Protection policy

<wsp:Policy Name="urn:ibm:names:TSPM:7.1:Required_Signature"
wsu:Id="bb0c1b53-4eda-49bc-88eb-b80586e82444" >

<sp:SignedParts/>
154 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

</wsp:Policy>
<wsp:PolicyAttachment>

<wsp:AppliesTo>
<wsp:URI>

http://echo.test.rtss.tscc.ibm.com#wsdl11.service(EchoService)
</wsp:URI>

</wsp:AppliesTo>
<wsp:PolicyReference URI="urn:ibm:names:TSPM:7.1:Required_Signature"

/>
</wsp:PolicyAttachment>

The message protection policy is stored on the appliance and is used during
enforcement, which ensures that the message contains the required level of
protection.

Policy enforcement
A Tivoli Security Policy Manager message protection policy is enforced in the
DataPower Web Service Proxy service object by creating a WS-Policy object and
attaching it to a web service element. The WS-Policy object uses the message
protection policy distributed from Tivoli Security Policy Manager.

On the appliance, in the Policy tab of the Web Service Proxy service object, add
a WS-Policy object based on the Tivoli Security Policy Manager message
protection policy file. Note that the external sources for the WS-Policy object
cannot be configured at the WSDL level of the Web Service Proxy. The WSDL
level corresponds to the top level of the service definition in Tivoli Security Policy
Manager.

Any Tivoli Security Policy Manager message protection policy can be used by
WebSphere DataPower, but the relevant subject entries must be included in the
WSDL configured in the Web Service Proxy object. The actual subject entry can
be determined from the AppliesTo attribute in the PolicyAttachment element of
the policy file produced by Tivoli Security Policy Manager.

If the requirements of the message protection policy are not met, the message
itself will not be accepted and processed by WebSphere DataPower and an
appropriate error message will be returned to the web services client.

Auditing and reporting
As an intermediary, WebSphere DataPower acts as the PDP and PEP for
evaluating message protection policies. The appropriate access and security
logs from the appliance should be used to provide event data for auditing and
reporting, which can be used to evaluate policy effectiveness and coverage.
 Chapter 5. Intermediary level integration 155

No external Tivoli Security Policy Manager components are included in the policy
decision and enforcement process. The audit logs created by Tivoli Security
Policy Manager can be used to audit and report on policy authoring,
configuration, and distribution operations.

5.4.3 Conclusion

A common scenario for SOA deployments using an ESB is to define message
security policy in WebSphere Service Registry and Repository or enforcement
with WebSphere DataPower. This scenario can be significantly enhanced by
using Tivoli Security Policy Manager to centrally manage the required message
protection policies and distribute them to WebSphere DataPower for
enforcement, WebSphere Service Registry and Repository for central
registration, or both.

Tivoli Security Policy Manager can be quickly and easily integrated into existing
deployments of either products, providing central authorization and message
protection policy management. This setup reduces the impact of managing
policies across multiple appliances, reducing time and increasing the
consistency of the policy application.

5.5 Third-party intermediaries

Tivoli Security Policy Manager uses the XACML OASIS standard for
authorization policy, and as such, can be integrated into existing enterprise
deployments that are XACML aware. Further, through the use of custom
interceptors for authorization and mediation modules for Enterprise Service Bus
systems, authorization and message security can be centrally managed and
integrated with Tivoli Security Policy Manager.

Using a custom interceptor for your web application server or mediation module
or security node for your ESB, it is possible to call a Tivoli Security Policy
Manager policy decision point, which provides rich policy constructs to leverage
content enrichment data stores.

When used as an intermediary, this approach prevents the need for
modifications or ongoing maintenance of your established applications or XML
gateways while enjoying the benefits that Tivoli Security Policy Manager can
provide.
156 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

5.6 Conclusion

Applying externalized security policy has been implemented at an application
level, using custom code and customized security policy on a per-application
basis. Application development using this method is often considered
undesirable due to the inherent complexity involved, the business understanding
required, and the lack of central policy management. Integrating in this way can
often lead to application specific implementations that require application
development resources for policy maintenance, which requires considerable
specialized skills, knowledge, context, time, and expense.

Tivoli Security Policy Manager can be used to reduce the pain points of
traditional security integration by providing the capability for central policy
management for both authorization and message security. The developed
policies can be easily maintained and applied to your services in many cases
without the needing to modify the applications or for them to even be aware that
authorization and message protection has been delegated.

The use of Tivoli Security Policy Manager can help ensure consistent policy
application, management, and governance.
 Chapter 5. Intermediary level integration 157

158 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 6. Container level integration

In this chapter, we discuss the container level enforcement approach and
considerations for using this pattern. Earlier in this book, we discussed policy life
cycle management when using Tivoli Security Policy Manager. The details of the
container level integration approach will be outlined using this methodology.

We examine the following container based integration solutions with Tivoli
Security Policy Manager:

� WebSphere Application Server
� Microsoft environment

6

© Copyright IBM Corp. 2011. All rights reserved. 159

6.1 Concepts and benefits

Traditionally, security policy has been implemented at an application level, using
custom code on a per-application basis. Application development using this
method is often considered undesirable for a number of reasons. The costs
involved with this approach are generally higher, as each application maintains
its own security implementation. The business understanding required to
effectively implement security controls is significant, requiring the development
organization to understand detailed business requirements, which is not always
a trivial exercise. This approach also creates a fractured view of security that
does not provide visibility into the organization's overall security defences.

Security services provide a mechanism for developers to create applications
without the need to worry about the implementation details of security policy or
the enforcement mechanisms that enforce it. In Chapter 5, “Intermediary level
integration” on page 121, we examined the intermediary approach. In this
chapter, we examine how a container based approach can help an organization
deliver security in a cost-effective way.

Containers provide runtime services such as life cycle management, transaction
management, deployment services, security, and so on. These services are
common services used by application developers to develop solutions faster,
more consistently, and more reliably.

In the context of security policy management, it is useful to integrate with the
security services provided by container implementations, which allows the
application developer to continue to use the benefits of container based security
services while allowing policy to be centrally managed. This scenario brings
visibility to the overall security solution across an organization, therefore creating
a more consistent and secure solution. It also allows container based security to
be integrated with business context information from external systems, providing
a tool to express complex policy across an organization.

Significant cost savings and improvement in an organization’s overall IT security
can be realized using this approach, as it removes complex security logic from
applications while using a standards based security implementation.

This chapter discusses two container level integrations using Java and Microsoft
.NET technology.
160 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

6.2 WebSphere Application Server

WebSphere Application Server is the IBM implementation of the Java Platform,
Enterprise Edition (Java EE). It provides a container based runtime environment
for enterprise applications so that they can be developed faster, more
consistently, and more cost effectively.

WebSphere Application Server V7.0: Technical Overview, REDP-4482 provides
more detail about the basics of WebSphere Application Server and can serve as
a good starting point. In addition, the WebSphere Application Server Information
Center is located at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.home.doc/welcome.html

We discuss the underlying security foundation pertinent to WebSphere
Application Server and Tivoli Security Policy Manager integration, and then we
examine the Java EE support in detail by stepping through the seven policy life
cycle stages.

6.2.1 Foundation for integration

In this section, the basic concepts that characterize the environment of the J2EE
integration of Tivoli Security Policy Manager are discussed. These concepts
include:

� Containers as an application run time and the related J2EE security model

� The JACC standard for externalization of authorization

� Tivoli Security Policy Manager as a JACC provider

Containers and J2EE security
Containers provide runtime services for applications so that they can be created
faster and more reliably. WebSphere Application Server provides the following
container support that is relevant to the integration with Tivoli Security Policy
Manager:

� The web container processes servlets, JSPs (processed as servlets), and
other types of server-side includes. Requests are received through the HTTP
protocol.

� The EJB container provides all of the runtime services that are needed to
deploy and manage enterprise beans.
 Chapter 6. Container level integration 161

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.home.doc/welcome.html

� The portlet container processes JSR 286 compliant portlets. JSR 286 is the
Java portlet API 2.0. The portlet container is discussed in 8.3.2, “Integration
with WebSphere Portal” on page 253.

Security in a WebSphere Application Server environment has many facets. We
focus here on the topics of authentication and authorization at the container
level, which is often referred to as Java EE Security. Unless otherwise specified,
application implies both web and EJB based applications.

Java EE uses a role-based authorization model that consists of these definitions
and mappings:

� The application defines roles and protected resources within its deployment
descriptors. Deployment descriptors are files within the .ear or .war package
that describe the application.

� The deployment descriptors also define security constraints that map the
protected resources to a defined role. For example, to access a particular
URL, the caller must possess the “CEO” role. For any given user request, the
application server can identify the list of roles that are authorized to access
the request resource. This is called resource-to-role mapping.

� The security administrator is responsible for assigning users and groups to
roles. If a group is assigned a role and a user is a member of that group, then
the user is said to possess that role. For any given user, the application server
can identify the list of roles possessed by the user. This is called user-to-role
mapping.

The authorization decision is then done by looking for a match between the two
lists of roles. If the user possesses any permitted role, the access is allowed.
Otherwise, it is rejected.

Introducing JACC
Java Authorization Container Contract (JACC) was introduced by the Java
Specification Request (JSR) 115 process. This specification defines a contract
(interfaces and rules) between a J2EE container and an authorization framework
provider, which allows the latter to provide both authorization policy management
and access decision services to the former.

The contract allows a third-party authorization provider to plug into a Java EE
application server to make authorization decisions when a Java EE resource is
accessed. WebSphere Application Server provides the required interface so that
any third-party authorization solution can be used as a JACC provider.
162 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Tivoli Security Policy Manager as a JACC provider
Tivoli Security Policy Manager provides a set of capabilities that allows it to act
as a JACC provider. We explore this setup in more detail in the following
sections, guided by the life cycle stages that were introduced earlier.

For the sake of completeness, it should be mentioned that there are alternate
ways for applications to make authorization requests to Tivoli Security Policy
Manager from within WebSphere Application Sever. These ways match the
application level integration pattern and are not addressed here. For example,
arrow (1) in Figure 6-1 shows that applications have the ability to call the Tivoli
Security Policy Manager Runtime Security Service (RTSS) directly through the
Tivoli Security Policy Manager authorization API. Interceptors are also available
for JAX-WS and JAX-RPC web services, as discussed in 5.2, “Java Web
Application Servers” on page 127 and applications can also call the generic
XACML over SOAP interface, as discussed in “Authorization web service
interface” on page 227. Note that Tivoli Access Manager is included in this figure.
It is not a required component for container based integration, but can be used to
propagate authenticated identities from Tivoli Access Manager to Tivoli Security
Policy Manager, as discussed in 4.2.1, “Integration with Tivoli Access Manager
for e-business” on page 100.

Figure 6-1 WebSphere Application Server JACC (container level) Integration
 Chapter 6. Container level integration 163

6.2.2 WebSphere integration using the policy life cycle model

The WebSphere Application Server container level integration is outlined in the
security landscape of the policy life cycle model.

Policy modeling and simulation
Java EE applications declare security requirements through annotations or by
using deployment descriptors. This existing policy should only be considered a
starting point when managing the security of the application in Tivoli Security
Policy Manager. The existing policy can be used, enhanced, or it can be ignored.
This situation is especially useful when adding security to an existing or
third-party application that does not have security, or security that does not meet
the business requirements.

Importing resources and metadata
Tivoli Security Policy Manager can discover the resources contained in a Java
EE application and model them using the service structure shown in Figure 6-2.

Figure 6-2 J2EE service model
164 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

There are several steps that need to be carried out to establish the connection
between WebSphere Application Server and Tivoli Security Policy Manager.
Those steps are described in detail in the following two books:

� IBM Tivoli Security Policy Manager Version 7.1 Configuration Guide,
GC27-2713

� IBM Tivoli Security Policy Manager Version 7.1 Administration Guide,
SC23-9476

We highlight the required steps here.

1. Install and deploy RTSS in local mode on the WebSphere Application Server
server instance.

2. Configure Tivoli Security Policy Manager JACC provider on the WebSphere
Application Server console.

3. Create the RTSS service registry on the Tivoli Security Policy Manager
console.

4. Discover and selectively import J2EE application resources as service
resources into Tivoli Security Policy Manager.

These steps will now be briefly discussed.

Installing and deploying RTSS in local mode
The installation can be performed on a single server or cluster. For this
integration, it is mandatory to install the RTSS client in local mode because of the
following reasons:

� Application resources can only be discovered by RTSS if both are running on
the same application server.

� The default policy for the installed applications needs to be deployed to the
JACC provider, which only works in local mode.

� Each authorization decision request has to leave the local JVM if the RTSS
client is not running in local mode, which can impact performance. Although
not strictly required, the local mode installation allows the solution to deliver
much better performance.

Configuring the Tivoli Security Policy Manager JACC provider
Now that the RTSS client is known to WebSphere Application Server, it must be
defined as an external JACC provider. This action is done through the
WebSphere Application Server administration console. Restarting the application
server enables JACC for the entire WebSphere Application Server server
(WebSphere Application Server V7.0 for the security domain).
 Chapter 6. Container level integration 165

Creating the RTSS service registry
Tivoli Security Policy Manager should be configured to discover the applications
on WebSphere Application Server. The local RTSS client created in the previous
steps can be used as a service registry. Chapter 8, “Managing service registries”,
of Tivoli Security Policy Manager Version 7.1 Administration Guide, SC23-9476
has a section named “Adding runtime security services as a service registry” that
provides the details about how to accomplish this task. In essence, a Runtime
security services type registry is added to the list of service registries by using
the Tivoli Security Policy Manager console.

Discovering and importing applications as services
This step uses the Tivoli Security Policy Manager Import services function by
using the service registry created in the previous step. Chapter 3, “Managing
services”, of Tivoli Security Policy Manager Version 7.1 Administration Guide,
SC23-9476 has a section named “Discovering J2EE application resources from
a registry” that lists all the steps to accomplish this task. In essence, RTSS is
contacted and returns to the console all the resources it discovers in the
specified application as it is deployed in WebSphere Application Server. The
Tivoli Security Policy Manager administrator can now import the application
definition using the service structure shown in Figure 6-2 on page 164. The
selected application resources are added to the list of services in Tivoli Security
Policy Manager.

Coexistence of different policy management approaches
A distinction must be made between two different use patterns for RTSS as a
JACC provider. The difference relates to the management, that is, how does the
effective policy get created. The different methods do not affect the enforcement,
which always involves the JACC provider. Figure 6-3 on page 167 shows the
relevant flows:

1. Assume we have two applications, Application 1 and Application 2. We want
to keep the original policy for Application 1, but we want to use Tivoli Security
Policy Manager to manage the policies for Application 2. Initially, all policies
must be propagated to the JACC provider because, once enabled, the JACC
provider will have to make all the decisions for all applications.

2. In case of Application 1, any future changes will remain to be made on the
application server. Every change will have to be re-propagated to the JACC
provider, either by wsadmin scripting or by using the WebSphere Application
Server console on WebSphere Application Server V7 or later.
166 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

3. For Application 2, however, there must be no re-propagation of the policy
after the initial propagation. The effective policy will be provided by Tivoli
Security Policy Manager using its policy distribution mechanism (see “Policy
distribution” on page 168). If an unintended propagation has occurred by
mistake (for example, by propagating all applications instead of specific
ones), this situation can be corrected by re-distributing the proper policies
from Tivoli Security Policy Manager.

Figure 6-3 JACC effective policies

Policy authoring
Policy created in Tivoli Security Policy Manager can be built as a role based
policy, which makes it similar to the default deployment descriptor based policy.
In this case, the centralized approach still has its typical advantages, such as
consistency across all deployed instances, audit support, management
efficiency, administrative delegation, and so on. However, beyond that, the full
capabilities of rule based policies can be used. Rule parameters and external
rules can be introduced for enriched decision making.

In the policy authoring phase, policy is expressed as abstract attribute identifiers.
These identifiers relate to method invocation parameters for EJBs, and HTTP
query string parameters in the case of web applications. This relationship is
established in the next stage of the life cycle, which is policy configuration.

When you integrate your deployment with IBM Tivoli Access Manager for
e-business (which is a common scenario), all user credential attributes can be
referenced in the same way.
 Chapter 6. Container level integration 167

Policy configuration
Policy configuration provides specific Java EE support that allows parameters to
be explicitly mapped to either EJB method parameters or to HTTP request
parameters. Chapter 6, “Managing authorization policies”, of Tivoli Security
Policy Manager Version 7.1 Administration Guide, SC23-9476 has a section
named “Mapping rule parameters”, which describes this support in detail, as well
as the Tivoli Access Manager credential case. In essence, for the source of the
rule parameter to be mapped, select Rule parameter is contained in the
request, in a standard location, then complete the Rule Parameter ID in
Request field as follows:

� urn:ibm:jacc:1.0:ejb:parameter-value:<n>

Use this rule parameter for EJB method parameters (replace <n> with a
parameter offset number, starting at 0).

� urn:ibm:jacc:1.0:resource:http-param:<name>

Use this rule parameter for HTTP request parameters (replace <name> with
an actual parameter name as seen in the query string).

The Rule Parameter Name is the name of the referred parameter in the policy.

In the case of Tivoli Access Manager credential attributes, the rule parameter
identifiers must match the names in the credential and be uppercase characters.

Policy distribution
Regarding policy distribution, there are no special considerations for Java EE.
The local RTSS client running on the target application sever serves as the
distribution target. As mentioned before, policy distribution may become
necessary even if no changes were made, such as in the case of overridden
policies caused by inadvertent propagation of local default policies.

Policy enforcement
The Java EE/JACC integration described in this section supports both declarative
as well as programmatic security. An application invoking isCallerinRole to check
the user’s role membership, to exploit this action programmatically, does not
communicate directly with the enforcement point. It is still the container that
translates this request into permissions to call to the JACC provider, which in turn
translates the call into XACML requests and evaluates against the deployed
policy. The resulting Permission objects are as follows:

� Declarative:

WebUserDataPermission Can the user connect via HTTP or HTTPS?

WebResourcePermission Can the user access a given URL?
168 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

EJBMethodPermission Can the user invoke this method on this EJB?

� Programmatic:

WebRoleRefPermission Program calls isUserInRole() from a servlet /
JSP.

EJBRoleRefPermission Program calls isCallerInRole() from an EJB.

Auditing and reporting
Regarding auditing and reporting, there are no special considerations for J2EE.
Remember that we have seen that Tivoli Security Policy Manager adds value in
this scenario by transparently providing its auditing capabilities.

6.2.3 Conclusion

The WebSphere Application Server containers provide a number of integration
points to allow external authorization for web applications, EJBs, and portlets
using Tivoli Security Policy Manager.

The use of Tivoli Security Policy Manager for delegated authorization provides
rich policy constructs that are not normally available to the containers. However,
to achieve this scenario, Tivoli Security Policy Manager uses a standards-based
interface (JACC) where this is applicable and provides its own extensions where
there is no standard that could be exploited.

6.3 Microsoft environment

Many organizations have a deployment of at least one Microsoft software
application, if not their entire operating environment. As such, integration with
Microsoft environments is of significant importance and Tivoli Security Policy
Manager provides a number of integration points for providing external
authorization. In this section, we describe the integration levels available in a
Microsoft environment and provide examples of how integration can be
achieved, with links to existing integration offerings.

Note: Make sure to understand the distinction between programmatic
exploitation of the container based approach, as described throughout this
chapter, and application level integration, as described in Chapter 8,
“Application level integration” on page 213.
 Chapter 6. Container level integration 169

6.3.1 Microsoft container integration

In the context of integration, this section refers to the Microsoft Windows
operating environment as the container level that is providing the integration
capabilities for Tivoli Security Policy Manager. This situation is due to all of the
integration points being able to coexist and interoperate as though they were all
operating at the same level, and security policy can be written to take a holistic
approach to security for Microsoft based applications.

The Microsoft .NET Framework is the lowest level for interaction within the
Microsoft environment for Tivoli Security Policy Manager. It can be used directly
from within Microsoft Windows and can also be used in applications that are
accessed through the web using ASP.NET, hosted on Microsoft Internet
Information Services (IIS). At the core of the integration, the Microsoft .NET
Framework provides the necessary resources for applications and custom code
to externalize their authorization to Tivoli Security Policy Manager. Figure 6-4
shows the relationship between Microsoft Windows, the Microsoft .NET
Framework and services accessed through the web, plus the software stacking.

Figure 6-4 Microsoft container integration

Microsoft Windows Server

Internet Information Services
(IIS)

Microsoft
.NET

Framework

ASP.NET

Windows SharePoint Services
(WSS)

Microsoft Office SharePoint Server
(MOSS)
170 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Figure 6-4 on page 170 uses Windows SharePoint Services (WSS) and
Microsoft Office SharePoint Server (MOSS) as a commercial application
example that is layered upon the Microsoft .NET Framework (including
ASP.NET) and Internet Information Services (IIS) to integrate in the Microsoft
Windows container. Users of these applications are unaware of how the
applications actually work and are really only interested in the fact that after they
have logged in to their Microsoft Windows Desktop, they have access to all their
individual applications from within the one container.

As an alternative to the WSS example, any custom application hosted on IIS and
executed through ASP.NET could be shown, as could any stand-alone .NET
application that is executed from the desktop.

MOSS can be considered as an integration of its own, as it is a commercial
application that has been written to exploit the services and resources provided
by WSS and the .NET Framework. It provides a ready to use solution that covers
a number of major use cases, but still has the flexibility to be extended using
custom coded solutions for additional functionality.

6.3.2 Integration with Tivoli Security Policy Manager

There are a number of integration points that can be used when using Tivoli
Security Policy Manager to provide external authorization to Microsoft
applications. The integration point, or combination of points, depend on what
type of application is being integrated, such as a custom .NET application or
commercial application (such as Microsoft Office SharePoint Server) and what
additional data sources are required for authorization decisions (such as
Microsoft Active Directory).
 Chapter 6. Container level integration 171

In Figure 6-5, the integration components are shown, including the layer in the
Microsoft container they integrate with and how these components interact with
the Tivoli Security Policy Manager server components.

Figure 6-5 Microsoft integration architecture

An overview of each integration component, its function, and integration point is
discussed below:

� .NET integration with the .NET runtime security service client

This is the core component used by all the other integration components to
evaluate authorization decisions and entitlements.

TSPM server components

Integration components Microsoft container

TSPM

Internet Information Services
(IIS)

ASP.NET

Windows SharePoint Services
(WSS)

Microsoft Office SharePoint
Server

(MOSS)
SharePoint Item Event

Receiver

.NET
Role Provider

Microsoft Active Directory

SharePoint Authorization
HTTP Module

.NET runtime security
services client

(ASP.NET WCF client)

Runtime Security Services
172 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

It can be executed directly from a Microsoft .NET application or through the
web through ASP.NET, for example, as a SharePoint WebPart or within an
ASPX page.

The .NET runtime security services client communicates through XACML
over SOAP to call the RTSS web services, which are used to evaluate the
authorization or entitlements request.

Details about the programmatic use of the .NET runtime security service
client in a .NET application are provided later in this book.

� IIS integration with the SharePoint Authorization HTTP Module

Integrating at the IIS layer, this component is configured in the Web.config of
an ASP.NET as an authorization module. At this layer in the Microsoft
environment, the component is able to authorize requests at the HTTP level,
before the request is submitted to IIS for processing.

This setup provides interception of requests during the processing, in which
custom actions can be passed to IIS instead of the original request, such as
redirection to an access denied or error page. The module uses the .NET
runtime security services client for authorization requests.

Although this component is SharePoint specific in its operations, the concept
could be applied to write additional HTTP authorization modules for specific
applications, or be generic modules that use the SubjectHandler and
AttributeHandler interfaces of the .NET runtime security services client to
populate the attributes required for security policy decisions.

This component is generally used in conjunction with the SharePoint Item
Event Receiver and both components are bundled together as the
Enforcement Point for Microsoft SharePoint.

� ASP.NET integration with the .NET Role Provider

This component is an implementation of an ASP.NET role provider that is
executed through the .NET Role manager and uses the .NET runtime security
services client for authorization and entitlements requests. By integrating at
the ASP.NET layer though the Role manager, any existing Role manager
aware application can be migrated to use Tivoli Security Policy Manager for
role based authorization with minimal change or business impact. The Tivoli
Security Policy Manager .NET Role Provider allows the use of rich constructs
when authoring a security policy, which is generally not available when using
Active Directory group memberships or an application’s native security for
access control.

Use of the .NET Role Provider requires the creation of a custom service
application in the Tivoli Security Policy Manager console representing the
roles for the organization and configuration the application to use the .NET
Role Provider.
 Chapter 6. Container level integration 173

� MOSS integration with the SharePoint Item Event Receiver

A custom Item Event Receiver provides pre- and post-evening processing
within MOSS. When integrating at this level, fine-grained authorization
decisions can be made using SharePoint specific actions and resources. This
component uses the .NET runtime security services client for authorization
requests.

When registered for pre-events, this component can be used to authorize
events running within the SharePoint workflow, which are system driven
requests and are not available at the HTTP level, which are user driven
requests. It can be used in conjunction with the SharePoint Authorization
HTTP Module or in stand-alone mode.

This component is generally used in conjunction with the SharePoint
Authorization HTTP Module and both components are bundled together as
the Enforcement Point for Microsoft SharePoint.

� Active Directory integration with Tivoli Security Policy Manager and RTSS

During security policy authoring or security policy evaluation, Microsoft Active
Directory can be used by accessing it as a LDAP repository. This scenario
allows defining Application Roles using Active Directory groups and Rule
Parameters using Active Directory user attributes.

No specific configuration is required other than the standard host name, port,
and an administrative account with access to the required Active Directory.

6.3.3 Microsoft integration using the policy life cycle model

Now that we have explored the integration points available within the Microsoft
container, we can prepare to deploy Tivoli Security Policy Manager as part of the
security landscape by following the policy life cycle model.

Policy modelling and simulation
The current and proposed deployment of .NET applications and their security
configuration within your organization should form the basis for policy modelling
and architecting the associated security policy needs.

Managing native security across multiple .NET applications can be extremely
complex if they each implement their own security model, and some applications
on their own, such as Microsoft Office SharePoint Server, are extremely complex
regarding the management of fine-grained access control.

Traditionally, Microsoft based security has been implemented by adding users to
groups and then permitting or denying access based on group membership, or
explicitly permitting or denying individual users.
174 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Using one of more of the integration components and the rich security policy
constructs available in Tivoli Security Policy Manager, the traditional group based
security of your Microsoft applications can be simplified and migrated to a
combination of any or all of attribute, role, and identity based access control.

When using the .NET runtime security services directly, your policies can be
represented in any form that fits your organizational needs, which can be
mapped into a custom service application in the Tivoli Security Policy Manager
console with associated security policy.

When using the .NET Role Provider, the security policy model looks similar to
any existing role based models, but the Tivoli Security Policy Manager policies
may be optimized, given the rich policy constructs available to make use of
available attributes.

When using the SharePoint Authorization HTTP Module or SharePoint Item
Event Receiver, the model is driven by your SharePoint deployment.

Importing resources and metadata
The Microsoft integration component that you use determines your ability to
import or discover your resources and metadata. If your resources cannot be
imported, they must be created manually in the Tivoli Security Policy Manager
console.

When using the .NET runtime security services client directly, or when using the
.NET Role Provider, the required service hierarchy must be created manually as
a custom service in the Tivoli Security Policy Manager console.

� .NET runtime security services client

The service hierarchy when using the .NET runtime security services client
directly can be as simple as a single level, or as complex as your organization
needs. Remember though that the more complex your service structure, the
more likely it is that your policy modelling and simulation should be revisited
to optimize your structure and policies.

The hierarchy of the service created is extremely flexible, as the elements of
the service are accessed directly from within your code that is calling the
.NET runtime security services client. This action requires that the application
developer has a working knowledge of the service structure created by the
policy author to ensure that the correct elements are specified when making
authorization decisions.
 Chapter 6. Container level integration 175

An example is shown in Figure 6-6 that represents the custom service as an
organizational structure. Policies can be attached to any of the multiple points
in the service, with the final authorization or entitlements evaluation involving
the combination of the most specific policy plus any policies attached further
up in the service.

Figure 6-6 Custom service for the .NET runtime security services client

National Healthcare Management
|
+ ==> State and Territory
| |
| + ==> Regional
| | |
| | + ==> Hospital
| | | |
| | | + ==> Patient Records
| | | | |
| | | | + ==> Patient
| | | | | |
| | | | | + ==> ...
| | | | |
| | | | \/
| | | \/
| | |
| | + --> Clinic
| | | |
| | | + ==> Service Provider
| | | |
| | | + ==> ...
| | | |
| | | \/
| | \/
| |
| + ==> Metro
| | |
| | + ==> ...
| | |
| | \/
| \/
\/
176 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� .NET Role Provider

When using the .NET Role Provider, the service hierarchy is limited to a
single level due to the flat nature of the .NET Role manager, although the
.NET Role Provider does introduce support for an additional role context,
which allows a single service to be shared among multiple .NET applications
with their own role needs, but for management purposes can be contained
within a single service.

An advantage of using the Role Provider is that the application developer or
systems administrator responsible for configuring the application’s security
does not need to be aware of any service structure or policies, only the roles
that are required in the application’s execution. The Role Provider, through
the .NET Role manager, provides the roles for the user based on their Tivoli
Security Policy Manager entitlements.

An example of a single level role hierarchy is shown in Figure 6-7. Although
the example shows a SharePoint use scenario, the Role Provider can be used
with any ASP.NET application that supports the .NET Role manager.

Figure 6-7 Custom service hierarchy for the Role Provider

Further details about the Role Provider and creating a custom service are
available in the integration documentation.

� Enforcement Point for Microsoft SharePoint

Only when using the SharePoint Authorization HTTP Module and Item Event
Receiver (the “Enforcement Point”) can the service be imported. The import
process is accomplished by using published SharePoint web services called
from the Tivoli Security Policy Manager console to discover the SharePoint
site collection.

SharePoint Roles Custom Service
|
+ ==>Role 1
|
+ ==>Role 2
|
+ ==>Role 3
|
\/
 Chapter 6. Container level integration 177

The discovery results in a new hierarchical service being created that
contains site, web, and list resources for the site collection that was
discovered. Although list items are not discovered or displayed (due to the
potential number of items that would make navigation difficult), they can be
referenced within the policies.

When using the Enforcement Point, no native SharePoint security is required,
and all access control is driven by Tivoli Security Policy Manager policy.

An example of a discovered SharePoint site collection that has been imported
into Tivoli Security Policy Manager is shown in Figure 6-8.

Figure 6-8 Discovered service hierarchy for the Enforcement Point

Further details about the Enforcement Point are available in the integration
documentation.

Policy authoring
Aside from the capability to reuse security policy across multiple .NET
applications, one of greatest advantages of integrating your .NET application
security with Tivoli Security Policy Manager is the ability to use rich security
policy constructs. The policy you author can continue to represent a traditional
group based security model, common in many Microsoft environments if needed,
but can be extended or redefined to include attribute based decisions, such as
session data for fine-grained and dynamic authorization decisions.

SharePoint Site Collection
|
+ ==>http://sps2007
| |
| + ==> Research Portal
| |
| + ==> California Claims
| |
| + ==> Cancer Treatment
|
+ ==>http://sps2007:81
| |
| + ==> Quaterly Financial Reports
| |
| + ==> Quarterly Reports
|
\/
178 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

All of the integration components use the .NET runtime security services client to
perform their authorization and entitlements lookups and as such are able to
access the standard attributes provided by the client and have the flexibility to
provide custom attributes in the request, which can than be used in your security
policy. Some integration components provide custom attributes as a core
function of the integration and all integration components can populated custom
attributes as needed.

� .NET runtime security services client

When any of the integration components needs to call out to Tivoli Security
Policy Manager for an authorization or entitlements decision, the .NET
runtime security services client is used. In either call, the type of operation is
being performed is sent as the action-id in the XACML request, which must
correspond to an action defined for that service. When authoring your security
policy, you must ensure that you select the appropriate action for which the
policy applies.

The .NET runtime security services client provides a pluggable framework
that allows you to provide custom attributes for the resource being accessed,
the actions being performed, and subject specific attributes, such as the user
ID, group memberships, assigned roles, and an authentication token.

Details about how to use this pluggable framework is described in detail in
Chapter 8, “Application level integration” on page 213. All of the integration
components below are able to make use of this framework to provide custom
attributes for their corresponding services and security policies.

� .NET Role Provider

The .NET Role Provider provides a mechanism for .NET applications to use
the .NET Role manager to externalize authorization and entitlements
decisions to Tivoli Security Policy Manager. Most of the calls performed by the
.NET Role Provider are entitlements requests, such as GetAllRoles and
GetRolesForUser. When an entitlements request is performed, the elements
within the custom service that are accessible are returned and represented as
roles to the Microsoft container. If your application uses the .NET Role
manager methods, such as IsUserInRole directly, authorization calls are used
instead.

By default, the .NET Role Provider only supplies the action-id that is assigned
programmatically to represent whether the request originated from a user or
system driven process. User processes include user-centric calls, such as
generating a role principal after their initial log in or attempting to gain access
to a specific resource, while system processes are used for .NET Role
manager requests, such as retrieving all roles within the service. You must
author policy to cater for user and system driven processes using the action
to differentiate between the two.
 Chapter 6. Container level integration 179

Due to the .NET Role manager’s ability to cache a user’s role principal, you
should use dynamic attributes such as instance (not session) attributes with
caution. For example, during the initial login, a role principal is created for the
user representing their entitlements at that given point in time. If the security
policy requires a custom attribute that was not assigned during the login, it is
possible that user is not provided a particular role and because the role
principal is cached, access is prevented to other resources in future requests
that rely on a specific role.

An example custom attribute that would be static for the session but still
significant for the decision could be the logon location, such as a public kiosk,
department workstation, or VPN. The location may be significant in a security
policy that controls the business role entitlements that prevent privileged
operations from insecure environments. A custom attribute such as this one
would be added to the request using the pluggable framework provided by the
.NET runtime security services client.

Security policy for use with the .NET Role Provider generally uses Application
Roles and possibly Rule Parameters for custom attributes that are significant
for the entire session lifetime. If your Policy Modelling and Simulation from the
policy life cycle model is completed thoroughly and your .NET application
calls the .NET Role manager manually, it is possible to use entitlements calls
(GetRoleForUser) for general, system-wide role assignments and use
authorization calls (IsUserInRole) for context specific access. Applications
such as Microsoft SharePoint, however, only use entitlements calls.

� Enforcement Point for Microsoft SharePoint

The Enforcement Point for Microsoft SharePoint provides rich security policy
constructs during policy authoring by providing a number of custom attributes
that are populated in the XACML request. These attributes are provided to the
.NET runtime security services client using the pluggable framework.

The custom attributes added to the request by the Enforcement Point include
resource attributes, such as the SharePoint web, site, list and list item name
and ID being accessed, as well as action attributes, such as the function or
operation being performed in SharePoint. The resource attributes allow your
security policy to be structured around site resource based access and the
action attributes to control what operations can be performed on the resource
defined in the policy.

The service for the Enforcement Point is automatically created by performing
a service import, called a discovery. This process uses published web
services provided by SharePoint to discover the resources and content of a
site collection. During the service import, only resources up to the list level
can be discovered, although list items can still be referenced in your security
policies using the list item name or ID attributes.
180 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

An example of using SharePoint resource and action attributes could be a site
collection for an educational institution. The site provides specialized
document libraries for students and staff and a shared calendar accessible by
any member (staff or student) of the school. The resource attributes can be
use to control access to each resource in the site collection and the action
attributes allow your security policy to control what type of operations can be
performed on the resource, such as read only access (view), add content
(create), update existing content (edit), remove items (delete), or any
combination of those actions.

It is also possible to use the pluggable framework to provide your own custom
attributes to the XACML request if your require additional custom attributes,
such as document metadata.

Policy configuration
None of the integration components require specialized configuration at policy
configuration time, only that which is required for any security policy specific
items, such as application roles and rule parameters. If your security policy
references custom attributes populated by the .NET runtime security service
client, you must map these by referencing the attribute names in the XACML
request.

The XACML attribute in which the custom attributes reside depends on the type
of attribute. For example, SharePoint site collection data such as site, web, list
and list item names are on the Resource XACML attribute, and the operation
being performed is located in the Action XAML attribute. If you use the pluggable
framework to provide your own custom attributes to the .NET runtime security
services client, the configuration of your module determines the XACML attribute
where the attribute names and values are populated. All attributes are in a
standard location in the request.

In a Microsoft environment, typically all of the organizational data for users and
even system resources is contained within an Active Directory. It may be
necessary therefore to search the directory for additional attributes, such as a
user’s department or title. In Tivoli Security Policy Manager, an Active Directory is
treated in the same manner as an LDAP server, that is, to allow the retrieval of
groups for Application Roles and runtime data for Rule Parameters.

After you have provided mappings for your Application Roles and Rule
Parameters, the policy must be configured for runtime security services, as the
.NET runtime security services client calls the RTSS web services for
authorization and entitlements requests.
 Chapter 6. Container level integration 181

Policy distribution
After you have distributed your security policy to runtime security services, you
have now completed the necessary steps for your .NET application to integrate
using Tivoli Security Policy Manager for authorization.

The .NET runtime security services client used by the integration components
does not have the capability for a local or remote mode of operation, such as a
traditional Enforcement Point. This client uses the Authorization and Entitlements
web services on the runtime security services distribution targets.

During configuration of the .NET runtime security services client, a runtime
security services endpoint must be configured. The policy for the integration
component must be distributed to this runtime security services endpoint.

In high load environments, additional runtime security services endpoints should
be created and the configuration of the .NET runtime security services client
updated to spread the load of requests to individual endpoints.

When calling the runtime security services web services, the .NET runtime
security services client relies on Windows Communication Foundation (WCF),
which does not support the configuration of multiple endpoints to achieve load
balancing. If configuring individual instances of the .NET runtime security
services client to a specific runtime security services endpoint is not desirable,
consider implementing a load balancer in front of multiple endpoints and
configure the .NET runtime security services client to use the load balancer as
the endpoint. Ensure the appropriate SSL configuration is completed if
necessary.

Policy enforcement
The integration component that you are using determines how the security policy
is enforced, what users see in the event of an authorization failure, and if there
are any cases where the Tivoli Security Policy Manager policy cannot be
enforced.

� .NET runtime security services client

The .NET runtime security services client provides you the lowest level of
control over Tivoli Security Policy Manager policy enforcement in your .NET
application. When using the client to integrate your .NET code, it is your code
that serves as the policy enforcement point (PEP), using the result from the
authorization or entitlements call for the enforcement.

Your .NET application is responsible for handling the result appropriately,
such as displaying the requested content or an appropriate access denied or
error message to the user. Your .NET application should also output the
required message data for audit and reporting needs.
182 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The security configuration such as permissions for your .NET application is
driven through your code, with Tivoli Security Policy Manager acting as the
policy decision point (PDP).

� .NET Role Provider

When using the .NET Role Provider, Tivoli Security Policy Manager acts as
the PDP, but it is the .NET Role manager that becomes the PEP. The .NET
Role manager queries its configured role provider to retrieve the list of roles
for a user to build a Role Principal that it generally caches. When the user
attempts to access a resource, the .NET Role manager checks to see if the
Role Principal contains the required role; if not, it denies access.

The .NET application using the .NET Role manager is responsible for
displaying the appropriate content or messages to the user, and the security
management, such as permissions and required roles, are also managed by
the application directly.

Microsoft SharePoint, for example, can be configured to use a role provider.
When configured this way, permissions for accessing resources within a site
are managed through the SharePoint site administration, and auditing data
can be exported from the SharePoint site’s database.

Although the .NET Role Provider does provide trace messaging, runtime
authorization decisions should be logged as necessary by the .NET
application using the .NET Role manager. The .NET Role Provider may only
be called at the initial creation of the role principal, and as such may not
contain all of the resources that a user has requested access to during their
session.

� Enforcement Point for Microsoft SharePoint

The Enforcement Point for Microsoft SharePoint uses Tivoli Security Policy
Manager for security management and for policy enforcement. The
SharePoint Authorization HTTP module and the SharePoint Item Event
Receiver are deployed to SharePoint and collectively perform the role of the
PEP. Each of the modules is responsible for specific authorization decisions
within SharePoint, but can be enabled or disabled individually.

The security policies defined and attached to the discovered service in the
Tivoli Security Policy Manager console provide the security management for
SharePoint. No native SharePoint security permissions are required, although
they can still be defined, but will be evaluated by SharePoint before the
Enforcement Point is called.
 Chapter 6. Container level integration 183

Managing permissions within SharePoint directly is not recommended when
using the Enforcement Point, as it can be difficult to resolve incorrect access
failures and requires management in two separate locations, which can lead
to inconsistencies. Performing security management within SharePoint when
using the Enforcement Point is redundant and does not provide the rich
security policy constructs that Tivoli Security Policy Manager offers.

When the Enforcement Point encounters a denial or error for a request, it
redirects the user to the native SharePoint access denied or error page so
that the user in unaware of the existence of Tivoli Security Policy Manager
and their user experience is maintained.

The Enforcement Point calls the .NET runtime security services client on
every request for a resource within the SharePoint site and outputs the result
to the trace source. In some cases the Enforcement Point can only provide
limited security policy enforcement due to the order in which the modules are
called within the SharePoint workflow.

Auditing and reporting
All of the integration components provide auditing and reporting data through the
use of an individual .NET TraceSource for each component. Generally, you only
need to configure output for the integration component, but it may be necessary
to output messages from the .NET runtime security services client if it is used
directly in your .NET application or you need to perform a system diagnosis or
trace.

The logging for each integration component is controlled by applying the
necessary configuration in the web.config file of the .NET application. Control of
the trace options, such as the level of detail and output location, is achieved
through the use of the .NET trace classes in the System.Diagnostics
namespace.

Each of the integration components output messages resulting from access
decisions and operations, such as permitting and denying access or retrieving
roles for a user and all roles in the system. Initialization and configuration
messages is also output to validate your configuration and to determine version
information.

The various output formats available in the .NET trace classes, such as Windows
Event Log, text, or XML files, provide opportunities for central collection and
analysis of messages. You can also configure the severity threshold of messages
to increase or decrease the level of detail ranging from individual attributes,
access denied messages, and only fatal errors. You should update the logging
configuration to suit your collection and analysis needs, keeping in mine that
excessive messages may lead to performance degradation.
184 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Where the logging available from the integration components is not sufficient, or
cannot be integrated with your collection and analysis applications, the runtime
security services logs can be used for auditing and they can also be configured
to suit your collection and analysis needs.

Examining the trace and audit logs closely is a best practice during the initial
deployment of your .NET application integration to ensure that the correct
attributes are being provided and the expected authorization or entitlements
decisions match those expected for the resource being accessed. You should
continue to monitor the data collected in your logs to ensure your security
policies are sufficient for your business rules and that they continue to remain
current and provide full coverage for your integration.

6.3.4 Conclusion

The Microsoft container provides a number of integration points to allow external
authorization for .NET applications using Tivoli Security Policy Manager.

The use of Tivoli Security Policy Manager for delegated authorization provides
rich policy constructs that are not normally available to traditional Microsoft
Windows group based authorization and the use of Tivoli Security Policy
Manager can also eliminate some of the complexities of managing individual
native application security configuration.

An individual integration component or combination of components can be used
to provide full coverage to all your .NET based applications in the Microsoft
container.

6.4 Conclusion

This chapter discussed the container level approach and the value provided by
externalizing security from applications using a container based approach.
Several examples of container based integration were examined, including
integrations with IBM WebSphere Application Server. Several examples of
Microsoft based technology were also examined to show how Tivoli Security
Policy Manager can be used to manage security for .NET based applications.
 Chapter 6. Container level integration 185

186 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 7. Database level integration

In this chapter, we introduce and describe database level integration with Tivoli
Security Policy Manager.

Earlier in this book, we explored policy life cycle management using Tivoli
Security Policy Manager; now we explore database level integration using this
methodology.

In this chapter, we discuss the following topics:

� Concepts and benefits
� Database policy information point
� Database policy enforcement point
� Enterprise content management databases

7

© Copyright IBM Corp. 2011. All rights reserved. 187

7.1 Concepts and benefits

Databases are commonplace within almost every organization to satisfy the
need to store, retrieve, report and analyze structured data, and this need
increases every day. Whether a database is used directly by interfacing with the
raw tables or indirectly by applications accessing the database programmatically,
the value and sensitivity of the data must be considered.

Today, the volume of electronically stored information is continually increasing
due to convenience and lower administrative, management, and storage costs
when compared to manual paper records. Because more data is being retained
for longer periods, the security of the data becomes an important consideration
to the owners of the data. In some cases, regulatory compliance requirements
may exist that impose significant fines for not adhering to the required practices.

Traditionally organizations have relied upon database administrators (DBAs) to
implement manual checks and balances to ensure databases are secured to
prevent theft, unauthorized changes, and unprivileged access, or to comply with
regulatory requirements. This model has worked well and continues to do so for
small server deployments with only a few databases. As the number of servers,
databases, and tables increases, the impact of effectively managing these
resources becomes prohibitive due to the time required to manually perform the
operations, which increases the risk of error.

Given the complex nature of database security and the potential differences in
security models between vendors, a DBA is required generally for each database
type. By automating many of the manual steps required to secure and maintain
their databases, organizations can focus on the value that the data can provide
for reporting or implementing business rules, rather than the management of the
databases themselves.

The solution
Tivoli Security Policy Manager provides support for managing native database
security and support for specialized database systems, such as content
management databases. It can also use information in databases to enable
context-rich and attribute based authorization policy decisions.

In the context of Enterprise Content Management (ECM) systems, a significant
amount of high value corporate data is handled and stored, although just by
using an ECM, the data is well secured.
188 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

By managing centrally the security for databases, the level of effort required to
ensure cross system compliance, as well as the complexity associated with
managing multiple database products from different vendors, can be significantly
reduced. Updates or alterations to corporate wide policy can be applied rapidly to
new and existing systems, reducing the management impact and implementation
time frames.

7.2 Database policy information point

Business rules often have complex logic and pre-conditions that must be met to
permit a particular operation, as opposed to a simple allow or deny decision
based on group or role membership in a typical user repository. In the context of
authorization and entitlements management, it may be necessary to query
external data sources to retrieve additional information to assist in making the
decision, or to retrieve specific values against which to compare pre-conditions.

For example, a business role for a bank teller may allow the teller to approve an
overdraft up to a certain value without requiring the next organizational level. If
this policy is translated into traditional group or role based access, the hierarchy
required becomes increasingly complex to manage effectively and does not
provide flexibility to change the approval amount without needing to modify a
number of role or group memberships.

This is one such example where information from an external resource, such as
a record in an overdraft limits table from a database, can assist in the translation
of a business rule to a security rule. In this example, only a record in the
database needs to be updated, as the mapping between the user (or group) and
their approval limits does not need to be hardcoded or fixed to their profile.

The capability to retrieve business rule context data at execution time from a
database can reduce the number of individual user and group permissions and
role hierarchy, helps improve compliance by simplifying management, and
provides fine-grained attribute based authorization decisions.

In this section, we explore the capabilities of Tivoli Security Policy Manager to
use data stored in traditional databases to author policies incorporating attribute
data from a business context, not just traditional user and group based security
constructs.
 Chapter 7. Database level integration 189

7.2.1 Foundation for integration

In many organizations, there are often multiple sources of authoritative
information, specific to an application domain. For example, an organization may
maintain a human resource management system containing social security
numbers, employee IDs or serial numbers, and a home address, a corporate
directory containing company emails, cell phone numbers, and manager names,
and potentially many other repositories.

These systems may not be linked or synchronized in a well formed or logical
manner, as the data in these repositories may not necessarily be related or
meaningful when used in a stand-alone application context. There may,
however, be value in making attribute based authorization decisions using the
context data for an employee combined with attribute data from two or more
sources.

The use of databases as a policy information point enables the capability to use
attribute data from multiple sources in a single authorization decision.

7.2.2 Integration with Tivoli Security Policy Manager

In 3.1.1, “Tivoli Security Policy Manager components” on page 64, we introduced
the concept of a policy information point (PIP), which facilitates integration and
use of attributes from existing sources. In an organization, these sources may
include identity management systems, identity and attribute repositories, and
application databases. To adhere to business rules, it may be necessary to query
an external system to validate a certain value to ensure pre-conditions or
business requirements are met before a request or operation is authorized.

Tivoli Security Policy Manager supplies a database PIP allowing the
authorization service to base decisions off of information that is stored in
databases, which can be queried at the time of authorization.

Database PIPs can be used to execute standard or complex queries on a
configured database to retrieve attribute data that can then be referenced in
security policy as Rules. Only SELECT statements can be executed, because
PIPs are intended as a source of data; they are not allowed to update the data as
part of an authorization decision.

To extend the flexibility and capabilities of retrieving attribute data, database
PIPs support PIP chaining, which allow the output of one PIP as input into any
other PIP, not just databases. Chaining provides the capability to use unrelated
or application specific data to build rich attribute based security policy.
190 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Several high level processes for using a database PIP are:

� Using the Tivoli Security Policy Manager console, the Database Attribute
Query wizard helps you create a Database Attribute Query within the
required IBM Tivoli runtime security services.

The Database Attribute Query wizard helps you write queries using the
following form

SELECT column name FROM table WHERE column name EQUALS request
attribute

Alternatively, by customizing the security-services.xmi file, you can author
your own complex database queries in the form of the following examples:

SELECT column name 1 FROM table 1 WHERE search value 1 IN (SELECT
column name 2 FROM table 2 WHERE search value 2 = request attribute)

and

SELECT column name FROM table WHERE search value 1 = {request
attribute 1} AND search value 2 = {request attribute 2}

� As necessary, chain any existing PIPs together with the database PIP, which
allowing you to create nested queries, pattern matching, external lookup, and
custom functions that provide the attributes necessary to evaluate the policy
decision.

� In an Authorization Policy, add a Rule that represents the use of the rule
parameter where the required match of the evaluation corresponds to the
value returned by the Database Attribute Query or final query in the chain.

� During policy configuration, map the rule parameter referenced in the
authorization policy to the Attribute query in the Policy Configuration window.
Specify the return attribute section and name of the value from the database
query.

After your policy has been configured and deployed, the policy decision point
(PDP) will invoke the database PIP during policy enforcement. Multiple Database
Attribute Queries can be created, allowing the use of multiple attributes from the
same or different external databases in an authorization policy. These attributes
can be added as multiple rules in a single authorization policy, a single rule in
multiple authorization policies, or a combination of both, and can be combined
with PIP chaining, further enhancing the policy.
 Chapter 7. Database level integration 191

7.2.3 Database integration using the policy life cycle model

When using databases as PIPs, we are not necessarily implementing the
complete policy life cycle model, as PIP database integration is a facilitator of
user based attributes that are used to make authorization decisions. The process
for evaluating the need for, and use of database PIPs, is observed in some of the
phases of the policy life cycle model.

Policy modelling and simulation
In this phase, the notion of the actual PIP implementation or the number of PIPs
required is not significant, as the focus here is to understand the business rules
and the data available or required to apply these business rules.

Understanding what attribute data is required to make the authorization
decisions and where this data is stored leads into the next steps of the policy life
cycle model, which is when the use of PIPs will be realized.

Importing resources and metadata
The step of the policy life cycle model is not applicable to the use case of
database PIPs, as it is in fact the records within the target database that will be
used in Tivoli Security Policy Manager using a PIP to enable attribute based
authorization decisions in the security policies.

Policy authoring
In this step, you do not write policy for the PIP; rather, your authorization policies
contain Rules that, during policy configuration, are mapped to the database PIP.

Policy configuration
Most of the implementation of PIPs is completed in this phase. You define PIPs
during policy transformation, that is, transforming an abstract policy to add
binding information so that policies can be communicated to PDPs in terms of
real IT infrastructure. This generally occurs during the configuration stage of
transformation.

It is in this phase that the PIPs, Rule Parameters, and Rules for the authorization
policy are defined. During the Policy configuration action, the mapping between
the Database Attribute Query and Rule Parameters are mapped, allowing their
use in the Rules of the authorization policy.

Policy distribution
The database that the PIP is configured to execute the queries against does not
require the security policy to be distributed to it, because is the source of attribute
data for authorization decisions.
192 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy enforcement
During policy enforcement, when an authorization decision is required that relies
upon additional attribute context data, the PDP invokes the PIP for each of the
Rules that use mapped Rule Parameters that are mapped to Database Attribute
Queries. When the Database Attribute Query is executed, it returns attribute
values from the configured external database source, allowing the PDP to use
the attributes in the authorization decision.

After the PDP has evaluated whether to permit or deny access, the policy
enforcement point (PEP) is responsible to enforcing the decision.

Auditing and reporting
When the database PIP is invoked, it executes the appropriate SQL query
against the configured database. Permissions to execute the query must already
be configured in the database and as such, auditing and reporting is achieved by
monitoring the appropriate access control records on the target database.

The Tivoli Security Policy Manager Runtime Security Service (RTSS) logs
contain invocation details of the query and errors encountered during the
execution.

7.2.4 Conclusion

Many organizations store application or process specific data spread across
multiple disparate systems. When evaluating business decisions, it is often
valuable to use attributes and context from more than one source, which is
outside the realms of traditional role or group based security concepts.

Tivoli Security Policy Manager enables business rules to be implemented and
evaluated using multiple sources of data by exploiting database policy
information points and potentially chaining multiple PIPs when authoring and
evaluating authorization policies.

Database security: You need to ensure that the database that holds your
additional attribute context data is properly secured and cannot be hacked or
impersonated by a faked database.
 Chapter 7. Database level integration 193

7.3 Database policy enforcement point

There is an ever increasing need to store, retrieve, and analyze electronic data in
almost every organization while driving value and reducing costs. When you
consider a database, it is not only the hardware and software that makes it
expensive, but the skilled professionals needed to manage the database as well.

The cost of database administration can greatly exceed the cost of the database
software and hardware, so it is critical that the database administrator's time be
used effectively and efficiently. When you consider the number of types of
databases, such as active, analytical, cloud, data warehouse, distributed and
document oriented, it soon becomes apparent that the management of these
databases consumes considerable time and therefore costs.

Security management of databases and the resources they protect is a critical
component of an organization's overall database management process. A
security breech, theft of information, or accidental deletion of data might not only
impact the business from a brand image or trust perspective, but there may be
regulatory compliance requirements that impose significant fines for not adhering
to required practices.

In this section, we explore the capabilities of Tivoli Security Policy Manager to
manage native database security and provide central security policy
management, distribution, and enforcement.

7.3.1 Foundation for integration

Typically, most databases provide their own security implementation to protect
the integrity of the data stored in them. These implementations may not be
consistent or compatible between different database vendors and the tools and
utilities for these databases may not be able to be used across products.
Generally, after a user has been authenticated, an authorization check is
performed. Given the high volume of transactions that databases need to
perform, the processing time for authentication and authorization process must
be minimal.

It is not uncommon for an organization to maintain database management
systems (DBMS) from multiple vendors because, generally, each business
application they use in the workplace includes its own particular database type or
version. Having a heterogeneous database environment requires database
administrators (DBAs) to gain skills, and a significant portion of their time is spent
ensuring that consistent database security is applied to all of the DBMSs they
manage.
194 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

As the number of DBMSs increases and the amount of data in them increase, so
too does the time and cost. In any environment, as the workload increases, the
risk of error and inconsistency also increases, and centrally controlled and
automated processes can help drive compliance, efficiency, and reduce error,
risk, and cost.

7.3.2 Integration with Tivoli Security Policy Manager

Tivoli Security Policy Manager reduces the impact of maintaining database
security by providing centralized policy management and distribution, which
allows DBAs to spend less time administering the system and more time
focusing on other activities that benefit the business.

The database security policy management provided by Tivoli Security Policy
Manager is achieved by executing Structured Query Language (SQL) queries to
the databases that have been configured and imported. Tivoli Security Policy
Manager applies coarse-grained authorization policy and permissions to
databases by executing GRANT and REVOKE queries, which correspond to
Permit and Deny evaluations in authorization policies.

To ensure that the transactional capabilities of databases are not compromised,
during authorization the database does not make a local or remote call to RTSS;
rather, it uses the native GRANT and REVOKE permissions applied by Tivoli
Security Policy Manager.

When managing a database with Tivoli Security Policy Manager, no local or
remote RTSS is included in the system landscape; the DBMS itself acts as the
PDT, the PDP, and the PEP. Using a PIP in the context of database security
policy is not possible, as this would require a connection to an RTSS, which may
impact performance within a high volume transactional database.

Support for DB2 is included when Tivoli Security Policy Manager is installed;
other databases may require database specific plug-ins.

7.3.3 Database integration using the policy life cycle model

Now that we have explored database security policy management within Tivoli
Security Policy Manager, we can follow the deployment within the policy life cycle
model.
 Chapter 7. Database level integration 195

Policy modelling and simulation
Before a database schema is built, the structure is typically normalized to ensure
the data is stored in the most efficient layout for storage, retrieval, and
maintenance. This process is quite similar to the policy modelling step of
resources in the policy life cycle model. It is unlikely the database schema is able
to be changed, because the available resources are already defined; however,
user access control should be modelled and simulated.

As part of this stage, the available security constraints for the database should
be reviewed to ensure that this is the most efficient and effective way to meet the
needs of the organization and can be represented in Tivoli Security Policy
Manager. For authorization decisions, the security policy can only contain
application roles that map to users and groups provisioned into the database.
When modelling, fine-grained attribute based authorization decisions should not
be considered, only those that equate to GRANT and REVOKE permissions on
the database resources, including tables, views, functions, and procedures.

Importing resources and metadata
With the modelling and simulation of the database resources and security
constraints completed, the resources must be imported into Tivoli Security Policy
Manager so that security policy authoring can be achieved. Databases that have
their security policy managed by Tivoli Security Policy Manager are represented
as a Service Registry in Registries and Repositories, and all individual databases
must be imported individually. When importing a database, you can either use a
data source on WebSphere Application Server or specify the connection
parameters for the JDBC driver directly.
196 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The use of a JNDI source is shown in Figure 7-1. The data source definition must
contain a user that has the appropriate permissions to the resources you need to
discover with the registry.

Figure 7-1 Importing a database as a Service Registry using JNDI parameters

Now that you have created the database service registry, you must discover the
available resources from the database by using the Import function of the
Services window. You must select the Service Type Services from a service
registry and then select the source from the list of service registries you have
added. Next, you can select which resources you want to discover, including
Tables, Views, Procedures, and Functions, and you must specify which Schema
to search and, optionally, specify the resource name and whether to exclude
system tables from the query.

Next, a connection is opened to the database to discover the resources you have
specified in your search. During the discovery, each of the discovered resources
are displayed as a service that you can individually select, allowing you to specify
which resources are imported into the database service in Tivoli Security Policy
Manager. You optionally change the Service Name that is displayed in the
service hierarchy in Tivoli Security Policy Manager and you can also change the
description, which, by default, displays the metadata for the resource type that
the service represents.

After selecting which resources to import, you can optionally classify the service.
By classifying all your databases in the same classification, you can easily apply
the security policy across multiple databases.
 Chapter 7. Database level integration 197

When you have completed the import process, each of the resources discovered
will be displayed as a child service of your database. An example of a resource
structure is shown in Example 7-1, which includes Tables and their columns,
Views, Functions, and Procedures.

Example 7-1 Database resource structure

Databases
JKInsurance

calculatePremiumFunc
processClaimProc

AccountsTbl
accId
accNum
accTypeId

AccountTypeTbl
accTypeId
accTypeDesc

PoliciesTbl
policyId
policyNum
customerId
agentId

CustomersView
customerId
customerName
stateOfResidence
accId

The imported resource example as shown in Example 7-1 includes multiple
resource types from the database, each represented as a child service. Table 7-1
shows the mapping of each resource type to the corresponding child service.

Table 7-1 Database nodes in the services listing

After you import your database resources into Tivoli Security Policy Manager,
you can author the policy to be applied to those database.

Nodes in services listing Example resources

Function calculatePremiumFunc

Procedure processClaimProc

Table AccountsTbl, AccountTypeTbl, PoliciesTbl

View CustomersView
198 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy authoring
Due to the high-speed transactional nature of databases, it is undesirable to
perform an external call during processing to establish additional attributes or to
have an external PDP perform the authorization decision. For database services,
this means that only Application Roles that map to local users and groups for the
database are supported. If rules are added during policy authoring, the
conditions of the rules have no effect, and the authorization decision of the first
rule will be applied.

When authoring your policies, you can only attach a security policy to the
individual discovered resources, not the top level database. This situation occurs
because of how the authorization policy is transformed to GRANT and REVOKE
statements. You can select multiple services from the same or different
databases, allowing you to consistently apply the same native permissions.

For the Services to which the policy will be attached, you can configure the SQL
actions that the security policy manages and applies. The available SQL actions
that can be managed by Tivoli Security Policy Manager are DELETE, EXECUTE,
INSERT, SELECT and UPDATE, but you must ensure that the action you select
is appropriate to the resource type. For example, the EXECUTE action is not
applicable for table based operations, but can be selected during policy
authoring.

During the Application Roles selection, you can add a new role as part of the
authoring process or use roles that have been created previously. Although the
notion of role in Tivoli Security Policy Manager is generally agnostic to the PDT
and is determined at authorization time, for databases, the user or group to
which the role is mapped must be local to the database itself. For some
databases, this may be the local operating system accounts, or users and groups
defined in an access control table, managed by the database itself.

The built-in application role of Any user equates to PUBLIC or ANONYMOUS,
depending on the database implementation, and represents users who have not
authenticated to the database. The Any authenticated user role represents
PUBLIC access for users who have authenticated but where an individual user or
group has not been explicitly added.

The last step in policy authoring is to configure the Authorization Decision for the
security policy in which the Rules decide whether the evaluation of the rule
permits access or denies access. For a database, a Permit policy acts like a
GRANT query in SQL and a Deny policy acts like REVOKE query.

To ensure that the transactional capabilities of databases are not compromised,
rules are not applied when the policy is configured and distributed.
 Chapter 7. Database level integration 199

Policy configuration
With your authorization policies attached to your database resources, you can
now configure the policy specific to database resources. Before configuring your
policy, you must add your database as a PDT using the add process for PDTs in
Registries and Repositories. You then select your database as the PDT and also
as the PDP authorization type.

The status for the Authorization configuration target will be listed as No
configuration required. During policy configuration in Tivoli Security Policy
Manager, an authorization policy normally requires a configuration of application
roles and rule attributes. However, for an authorization policy attached to a
database resource, the standard policy configuration is not applicable, because
there are no valid rule attributes in a database GRANT statement, and the
default application role mapping is achieved by querying an LDAP group registry,
of which a database would have no integration capability. Calling external
sources during authorization decisions may also compromise the transactional
nature of a database.

Instead, an additional configuration target for your database will be listed that
provides an alternative user interface for user and group application role
mapping. When you select this configuration target and select Configure, the list
of application roles that have been added in authorization policies attached to the
database are displayed. You can now specify the mapping of the role names to
users and groups known to the database.

Typically user repositories for a database are internal to the database itself, or
may use known sources such as the local operating system. As such, it is not
possible to provide a search capability for all the potential repositories due to
database installation and configuration options. You must manually specify the
name of the user or group that maps to the role referenced in the policy. The
users and groups that you map must be valid within the database’s
authentication and authorization context and depend on the database
installation.

If your policy includes rules as part of the policy evaluation, these rules will be
ignored and therefore no option will be displayed to configure the rule mapping
attributes. The Access Decision for the policy will only evaluate to the decision of
the first rule.
200 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy distribution
During the policy distribution process, the policies and role mappings for the
database PDT are converted into database queries and then executed, causing
native SQL permissions to be applied to the database resources.

The distribution is achieved through the use of Java Database Connectivity
(JDBC) calls to the database using the connection parameters you specified
when adding the PDT for the database. During distribution, you can view the
resultant effective authorization policy converted to GRANT and REVOKE
statements, as shown in Example 7-2.

Example 7-2 Sample effective authorization policy

GRANT DELETE ON TABLE DSRDBM01.ACCOUNTS TO GROUP administrators
GRANT INSERT, UPDATE, SELECT, DELETE ON TABLE DSRDBM01.ACCOUNTS TO USER dbadmin
GRANT SELECT ON TABLE DSRDBM01.ACCOUNTS TO USER dbadmin, PUBLIC
REVOKE INSERT, UPDATE, DELETE ON TABLE DSRDBM01.ACCOUNTS FROM PUBLIC

After the policy has been distributed, it comes into effect immediately. Existing
connections to the database may need to be recycled to ensure that permissions
are reloaded for the resource in the database being accessed.

Policy enforcement
After you have distributed the policy to your database, the effective GRANT and
REVOKE SQL permissions are in effect. When database security policy is
managed by Tivoli Security Policy Manager, the database itself acts as the PDP
and PEP using the native database permissions. If no Tivoli Security Policy
Manager security policy has been distributed, the existing database access
control is used.

When a database client attempts to execute a query, stored procedure, or
access view, the native database permissions that have been transformed from
the eXtensible Access Control Markup Language (XACML) security policy from
Tivoli Security Policy Manager evaluates whether access is granted. Notification
to the client about the success or failure of the action they performed is not
changed when using Tivoli Security Policy Manager, allowing the use of existing
client error handling with no need to modify existing applications or database
consumers.
 Chapter 7. Database level integration 201

Auditing and reporting
When a database security policy is managed by Tivoli Security Policy Manager,
the database itself acts as the PDP and the PEP. Because there are no external
components from Tivoli Security Policy Manager included in the authorization
policy evaluation, all audit and reporting capabilities rely upon the configured
database.

In most enterprise DBMSs, the deployment tools include an audit facility that
allows you to monitor data access and provides information needed for
subsequent analysis. Auditing can help discover unwanted, unknown, and
unacceptable access to the data, as well as keep history records of the activities
on the database system. Refer to the auditing and reporting capabilities of your
DBMS to review the authorization policy evaluation results for the policy you
have distributed.

Any messages or errors encountered during the import of database resources
and metadata, policy authoring, policy configuration, or policy distribution
continue to be available in the console message and error logs.

7.3.4 Conclusion

The data organizations store in their databases not only represents significant
value to the business in terms of operational readiness and continuance, but the
data can also be used in analytics and reporting. Many organizations maintain
multiple data sources and require efficient systems to manage the security policy
and access control, allowing DBAs to spend less time administering the system
and more time focusing on other activities that benefit the business.

Tivoli Security Policy Manager reduces the manual and potentially error prone
tasks of defining and applying database security policy by providing a centralized
database security policy management solution, which has the effect of reducing
security management costs and ensures that the required policies are applied
consistently to all your database resources.

7.4 Enterprise content management databases

Most companies operate with strict content management requirements to help
them control content and automate content related processes. As unstructured
content grows exponentially, you need content management to capture, store,
manage, integrate, and deliver all forms of content across your enterprise.
202 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Having a Enterprise Content Management (ECM) system in place assists
companies in mining for the right information at the right time to make the right
decision.

Deployment of an ECM helps organizations meet regulatory and legal obligations
associated with records and establish retention periods for all information. As the
amount of content grows, Information Lifecycle Governance (ILG) becomes an
important factor when defining business processes and security requirements to
lower both cost and risk.

In this section, we describe the integration with the IBM Enterprise Content
Management solution to manage the security policy of resources and content
stored within the ECM.

7.4.1 Foundation for integration

An ECM system includes a number of features to store, archive, and dispose of
electronic resources and data. These resources are generally document oriented
databases and represent a high value to organizations, and are typically
captured through manual or automated document imaging processes. Processes
such as enterprise report management, standardization, and consolidation, as
well as content analytics, are common features of an ECM. These processes
enable you to search, assess, organize, and analyze large volumes of content.

A significant consideration for these systems is the security of the data. This
security is not just the physical security, but is user centric, including who can
access what data and under what special conditions may someone gain access
to which they would not normally be entitled.

Consider a business rule within the health care industry where doctors on duty
have access to Electronic Health Records of an inpatient, but only during their
working hours. This situation may exist for a number of regulatory or privacy
reasons, but generally makes logical sense: You do not want someone looking at
your medical records if they are not treating you.

Any person in the role of Doctor on duty should be granted access to documents
and folders classified as Electronic Health Records for patients whose status is
inpatient, where the time of the day matches the working hours for the doctor.
This business requirement for accessing content is based not only on Doctors
(the role), but also the content in the ECM (the resources), the time of day (the
rule), and could also include the level of access (the action).
 Chapter 7. Database level integration 203

The business rule in this case requires dynamic security policy using contextual
attributes for authorization decisions. Tivoli Security Policy Manager provides the
capability to manage security policy for an ECM with attribute based policy
constructs.

7.4.2 Integration with Tivoli Security Policy Manager

Tivoli Security Policy Manager provides native security and access control list
(ACL) integration with the IBM FileNet® Content Manager, simplifying the
maintenance and management of FileNet security. This setup enables the
authoring of policy within Tivoli Security Policy Manager that is meaningful within
an IBM FileNet ECM environment and provides support for security constructs
that represent specific permissions, content resource classification, and access
control.

Integration with IBM FileNet is achieved by using two components.

� IBM FileNet Plug-ins for Tivoli Security Policy Manager
� Tivoli Security Policy Manager Adapter for IBM FileNet

The Tivoli Security Policy Manager Adapter for IBM FileNet is a J2EE
application, which is deployed on the IBM FileNet Content Manager. The adapter
acts as the PDT and the PEP and is able to consume and transform XACML
policy from Tivoli Security Policy Manager and enforce authorization decisions
without the direct use of a runtime security services client or server.
204 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

An overview of the integration components is illustrated in Figure 7-2.

Figure 7-2 FileNet integration architecture

In Figure 7-2, Tivoli Security Policy Manager uses the IBM FileNet Discovery
Plug-in (1) to connect to the IBM FileNet Content Manager and to discover
applications that are available in the content repository. After the author selects
the desired application, the IBM FileNet Service Plug-in (2) connects with the
Metadata Engine in the Tivoli Security Policy Manager Adapter for IBM FileNet to
import the application model and metadata. The IBM FileNet Policy Authoring
Plug-in (3) uses the application metadata to help author content entitlement
policies. Finally, the IBM FileNet Policy Distribution Plug-in (4) distributes the
policy in XACML to the Policy Engine component of the adapter. The Policy
Engine (5) is ultimately responsible for enforcing the policy.

The Tivoli Security Policy Manager Adapter for IBM FileNet contains the
following integration components:

� Discovery Plug-in

The Discovery Plug-in (not explicitly shown in Figure 7-2) exposes application
programming interfaces (APIs) to discover IBM FileNet applications. The IBM
FileNet plug-ins for Tivoli Security Policy Manager use these APIs for
discovery of hosted applications.
 Chapter 7. Database level integration 205

� Metadata Engine

The Metadata Engine exposes the metadata extraction as APIs. The IBM
FileNet plug-ins for Tivoli Security Policy Manager use these APIs to import
metadata for content.

� Policy Engine

The Policy Engine exposes APIs to accept XACML policies. The IBM FileNet
plug-ins for Tivoli Security Policy Manager use these APIs to distribute policy.

The IBM FileNet adapter uses the IBM FileNet Content Engine (CE) APIs to
update the FileNet Security Policies’ access control lists (ACLs) for content
stored in the IBM FileNet Content Manager.

To dynamically update ACLs based on changes in the content repository, the
adapter exposes an EventQueue API. The EventQueue is populated by the
Event Filter deployed on the IBM FileNet Content Manager. The Event Filter
listens for change events in the IBM FileNet Content Manager, and forwards the
relevant events to the EventQueue. The Policy Engine evaluates the change
events to determine if the ACL of the event source object must be updated as a
result of the change.

The Tivoli Security Policy Manager Adapter for IBM FileNet is an example of how
you can use the Tivoli Security Policy Manager Software Development Kit (SDK)
to build custom endpoint integration components. Check with your Tivoli Security
Policy Manager representative for the availability of plug-ins for your ECM
product, including IBM FileNet.

7.4.3 ECM integration using the policy life cycle model

Now that we have explored the integration components of the Tivoli Security
Policy Manager Adapter for IBM FileNet, we can prepare to deploy and use the
integration within the policy life cycle model.

Policy modelling and simulation
When deploying an ECM, typically the structure of the content resources, their
classification, and required security levels are implemented within the system
itself.

When Tivoli Security Policy Manager is used to manage the security policy of
IBM FileNet, the modelling of roles, resources, and classifications is typically
already normalized, allowing us to prepare to import the resources and
metadata. Before implementing any new components into the system
architecture, review the existing modelling to ensure policy optimization.
206 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Importing resources and metadata
The IBM FileNet Discovery Plug-in provides the mechanism to discover
applications on the IBM FileNet Content Manager. The Metadata Engine running
on the IBM FileNet server exposes the services as a set of URL endpoints that
the IBM FileNet Discovery Plug-in uses to import the Application Model and
metadata.

The Metadata Engine uses the Model extraction services to extract the model
and the metadata from the IBM FileNet Content Manager using the IBM FileNet
CE API, as shown in Figure 7-3. These services are used by the Tivoli Security
Policy Manager IBM FileNet Discovery Plug-in to import the models and
metadata.

Figure 7-3 Model extraction services

After an application is selected, the available metadata and model information for
the application is imported as a service into the Tivoli Security Policy Manager
console, as shown in Figure 7-4.

Figure 7-4 Metadata hierarchy within Tivoli Security Policy Manager
 Chapter 7. Database level integration 207

After the models are imported into Tivoli Security Policy Manager, the hierarchy
appears as a service within the console. The metadata provides instance level
values for authoring policy.

Policy authoring
Authoring a policy using IBM FileNet application semantics involves the following
steps.

� Identifying resources
� Creating application roles
� Specifying conditions

To assist in authoring meaningful policy for IBM FileNet, the imported application
model and metadata enables the creation and maintenance of policy using
application domain semantics rather than XACML semantics. This task is
achieved by using the custom policy authoring plug-ins.

Identifying resources
The resource selection widget lets you refine the resource selection and is
provided at both the policy and rule levels. Resources are modelled as services
and can be specified globally or manually. In the IBM FileNet plug-ins, a resource
represents a service and the allowable actions in a standard authorization policy.

For example, a policy can be authored for all (*) cities or only Boston, as shown
in Figure 7-5.

Figure 7-5 Resource selection widget

The Entity drop-down menu specifies the resource name, Property specifies the
property of the resource, Relation specifies the operator, and Value specifies the
value of the property. These values are populated from the metadata imported
from IBM FileNet Content Manager.

Creating application roles
For IBM FileNet, application roles are created using the same logic as when
authoring a standard authorization policy. Roles are mapped to users or groups
defined in the LDAP registry during the policy configuration stage.
208 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Following our previous example of a health care context, application roles that
may be appropriate for the health care industry may be doctor, nurse, lab
technician, and so on.

Specifying conditions
The IBM FileNet plug-ins include support for additional rule types, including the
capability to repeat a time of day access policy with a timer widget. You can also
author a policy for specific resources that were discovered during the policy
import.

In our healthcare example, additional conditions that could be added to a policy
in the form of rules include:

� Resource restriction conditions for a specific city name. For example, City
Name = Austin.

� Environmental conditions for a specific time when the policy should be
enforced. For example, between close of normal business hours for the
organization.

An example of a time based environmental policy that is activated on the third
day of every month is shown in Figure 7-6.

Figure 7-6 Configure environmental conditions

With policy authoring completed, you can now proceed to configure and
distribute the policy to IBM FileNet.

Policy configuration
When configuring policy for IBM FileNet, your application roles and rule
parameters must be mapped from the abstract references to the specific physical
resources.
 Chapter 7. Database level integration 209

During application roles mapping, any new or existing roles must be mapped to
the users or groups provisioned in the directory server. The directory server must
already be configured in the User Registries for Tivoli Security Policy Manager.

Any rule parameters defined during the policy authoring must be mapped to
attributes from the XACML request. In our healthcare example, the city name
attribute could be populated in the Resource XACML attribute.

Policy distribution
With the policy configured, it can now be distributed by the IBM FileNet plug-ins
to the IBM FileNet adapter. The adapter must already be installed, configured,
and running on the IBM FileNet Content Manager.

During distribution, the XACML policy is distributed to the Policy Engine
component of the IBM FileNet adapter using a secured HTTP Post mechanism
as a batch mode event. The Policy Engine stores policies in its Policy Cache,
where it then becomes available for use during authorization decisions.

All policies are distributed in a single XACML file. When a new policy is added or
an existing policy is modified, the policy in Tivoli Security Policy Manager must be
redistributed to the adapter. When a new version of the policy is transferred, the
adapter discards old policies and refreshes the cache with the distributed
policies.

Policy enforcement
Policy enforcement is facilitated by the IBM FileNet adapter using the following
components:

� Policy Engine

� Event Handlers and Filters

Policy Engine
The primary responsibility of the Policy Engine is to parse the incoming XACML
policy from Tivoli Security Policy Manager and store it in the cache. It also
transforms the XACML policy into IBM FileNet ACLs for the target object (or
group of objects) in the IBM FileNet Content Manager, based on an event. An
event can be one of the following items:

� A property change event sent by IBM FileNet Content Manager, when the
property of an object or content in the Content Manager has changed, which
may require an ACL update.

� A timer event raised by a scheduler in the Policy Engine, resulting from a
time-based, environmental context definition in the policy. For example, a
repeat policy that occurs daily at a specified time, such as 9:00 a.m., when
the organization opens for business.
210 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Event Handlers and Filters
The adapter contains custom Event Handlers plug-ins written specifically for IBM
FileNet. Event Handlers register for specific event types originating from the IBM
FileNet Content Manager. These events are filtered at the source to ensure that
authorization events from an application discovered in Tivoli Security Policy
Manager are passed to the Event queue of the IBM FileNet adapter.

Property Change Events and Metadata Change Events originating from the IBM
FileNet Content Manager are used to enforce policies dynamically. In our
healthcare example, two events that may trigger an authorization decision
include:

1. An ACL of a patient folder must change when the patient’s state property
changes from normal to admitted.

2. An ACL of a document must change when the document is classified as a
daily treatment record.

When an event enters the queue, the adapter processes the authorization
decision request using the event data and the cached policy in the Policy Engine
to allow the FileNet Content Manager to either permit or deny the request.

Auditing and reporting
The Tivoli Security Policy Manager Adapter for IBM FileNet implements its own
logging facility, which is used primarily for error tracking and resolution and
recording general event history from the adapter. The adapter writes messages
of varying severity levels from information notification to fatal errors to its own
logs directory.

The logging severity can be configured and should be adjusted to the
environment where the adapter is installed and configured as well as
organizational requirements. For example, if the Event Handlers are regularly
updating native ACLs as a result of content changes, and the threshold severity
is too low, the log size may grow to an unmanageable size. If the severity
threshold is configured too high, messages that may indicate an impending
failure might not be recorded. Reporting and auditing on authorization decisions
for content access is performed through the analysis capabilities of the ECM
itself.

A potentially common critical error for the adapter is when the event queue is
full., which indicates that the maximum size of the queue must be increased by
modifying the EventQueue.size property. Monitoring the adapter logs for
operational message such as the queue size enables the fine tuning of the
adapter for each organization.
 Chapter 7. Database level integration 211

7.4.4 Conclusion

Tivoli Security Policy Manager Adapter for IBM FileNet provides several
integration components for use in Tivoli Security Policy Manager and are used
within the policy life cycle model. These integration components are used by
Tivoli Security Policy Manager, allowing you to author content entitlement
policies and enforce them on the IBM FileNet Content Manager by translating
XACML policy into appropriate native security constructs.

The IBM FileNet adapter enables IBM FileNet to interoperate with XACML,
adding the capability for rich security constructs, which can be adapted
dynamically to meet the entitlements management complexities in industries
such as healthcare.

By combining the powerful content management of IBM FileNet and the
fine-grained policy authoring capabilities of Tivoli Security Policy Manager, the
adapter offers a dynamic entitlements solution for challenging business
environments.
212 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 8. Application level integration

In previous chapters, we discussed the business drivers and patterns for
externalizing security policy enforcement and outlined intermediary, container,
and database patterns. When you cannot successfully externalize the security
policy enforcement with any of these patterns, the application integration pattern
should be considered. This pattern involves developing applications that
explicitly use an IT security policy management framework for security services.

Many business applications rely on custom-built authorization code, controlling
what their users can do within the application. There are a number of
disadvantages to this approach that Tivoli Security Policy Manager can help
address:

1. Lack of visibility

There is no way to inspect the policy driving the individual access decisions.
The security logic is often embedded in the programming code itself, or in files
that form part of the application.

2. Lack of control

The personnel responsible for security across the organization need to liaise
with each application team separately, rather than controlling policy directly.
There is no single view of the security policy.

8

© Copyright IBM Corp. 2011. All rights reserved. 213

3. Lack of flexibility

Updating the policy requires changes to application code, which is costly,
inefficient, and can lead to an inconsistent security policy and gaps in the
enterprise security solution.

Tivoli Security Policy Manager provides the capability for applications to
externalize their security functions to a performant, XACML-based runtime
engine driven by a standards-based policy framework. This policy can be
centrally managed, is external to the application, and can be updated
independent of application development cycles. This setup allows management
of the security policy and associated security infrastructure to be removed from
the application logic, allowing application developers to focus on delivering
features that provide core business value.

In this chapter, we discuss the Tivoli Security Policy Manager interfaces for
application integration and provide several examples of application integration.

8.1 Runtime security services interfaces

In this section, we discuss a summary of the interfaces provided by the Tivoli
Security Policy Manager Runtime Security Services (RTSS) and guide you about
where the interfaces are useful. We also outline a summary of the RTSS
enforcement and extension points. The Tivoli Security Policy Manager RTSS
Software Development Kit (SDK) provides detailed documentation on the
interfaces and examples of how to use them.1 The SDK is installed with the basic
RTSS components.

8.1.1 Tivoli Security Policy Manager authorization API

The Tivoli Security Policy Manager authorization API allows a caller to make an
authorization request to determine if access should be granted to a defined
protected resource. The interface abstracts details of an authorization request
and accepts context information, such as the currently authenticated user, the
resource involved, and the action being performed. In response, the caller
receives a Boolean authorization decision.

1 For more information about the SDK, go to the following address:
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tspm.doc_7.1/sdk/r
tssSDKreadme.html
214 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tspm.doc_7.1/sdk/rtssSDKreadme.html

The Tivoli Security Policy Manager authorization API is defined in the
com.ibm.sec.authz.jaccplus package. The following items are important
concepts related to this API:

� Application identifier

When performing an authorization decision, it is necessary to consider the
resource in question. The Tivoli Security Policy Manager authorization API
defines an application identifier (sometimes referred to as a context
identifier) as a string value that uniquely identifies an application or service. It
is a way to partition a policy space such that only a policy relevant to a
particular application is considered during an authorization decision. The
format of the string depends on the application or service being represented.
In the case of a custom application, this identifier is used to represent the
application within the Tivoli Security Policy Manager administration console.
The value of this identifier is the “applicationID” used when defining the
service structure.

� Evaluation context

When a request to authorize access to a resource is made, various attributes
of the user need to be considered in that decision. The information needs to
be passed using a mechanism that is provided by the API. The evaluation
context is the manner in which context information is passed to the decision
engine. Context information includes the currently authenticated user, group
membership, optional application-level roles, and other application-specific
attributes. An evaluation context should be created once on initialization and
then reused. An evaluation context should not be created on each request, as
this action causes a significant performance impact. There are two forms of
evaluation context:

– ContainerEvaluationContext

An evaluation context where subject data can be automatically retrieved
from a supported container, such as WebSphere Application Server, for
use in an authorization decision.

– ApplicationEvaluationContext

An evaluation context where subject information can be specified by the
caller. This should be used when the application is not running in an
environment supported by the ContainerEvaluationContext or the
application is running in an environment that does support
ContainerEvaluationContext, but where application security is disabled.
This is often the case where another framework, such as Spring, manages
authentication.
 Chapter 8. Application level integration 215

� ApplicationPermission

The following attributes should be considered during policy enforcement:

– The service resource to be considered in the authorization decision.

– The action to be considered in the authorization decision.

To represents a resource and action, the Tivoli Security Policy Manager API
defines an ApplicationPermission class that takes string parameters to
represent the service resource and action identifiers.

� ApplicationPolicy

ApplicationPolicy is the primary object used to invoke the Tivoli Security
Policy Manager API. It provides a method with a signature (String,
EvaluationContext, Permission) that returns a Boolean decision. The string
parameter represents the application identifier, which is the value specified
when defining the service structure. This method evaluates the policy for the
application specified by the context identifier to see whether the requested
action is granted on the specified resource to any of the users and groups in
the EvaluationContext.

Authorization using a container-authenticated subject
The Tivoli Security Policy Manager API can use the subject authenticated by the
WebSphere container at run time for authorization decisions. The
EvaluationContext implementation is
com.ibm.sec.authz.jaccplus.ContainerEvaluationContext. An example is
shown in Example 8-1.

Example 8-1 Authoring using a container-authenticated subject

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the container.
//The context should be created once and re-used.
private EvaluationContext _evalContext = new ContainerEvaluationContext();

public boolean isAllowed(String resource, String action) {
Permission perm = new ApplicationPermission(resource, action);
boolean retVal = ApplicationPolicy.getPolicy().implies(contextId, _evalContext, perm);
return retVal;

}

216 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Using an application-provided subject
If the application is not running in a container that supports the retrieval of
subject data, it can specify that information itself by using the
ApplicationEvaluationContext information defined by
com.ibm.sec.authz.jaccplus.ApplicationEvaluationContext, as shown in
Example 8-2.

The “handler data” map returned from EvaluationContext#getHandlerData() is
a thread-local map used for passing context information to the authorization API.
In this case, the constructed ApplicationSubject object in the map is using the
appropriate key value.

Example 8-2 Example of using an application-provided subject

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the application.
//The context should be created once and re-used.
private EvaluationContext _evalContext = new ApplicationEvaluationContext();

public boolean isAllowed(String user, String resource, String action) {
//First, convert our array of group identifiers to principals.
List<Principal> groupPrincipals = new ArrayList<Principal>(groupIds.length);
for (String thisGroup : groupIds) {

groupPrincipals.add(new ApplicationGroupPrincipal(thisGroup));
}

//Create our ApplicationSubject
ApplicationSubject subject = new ApplicationSubject();

//Specify the user identifier
subject.setUserPrincipal(new ApplicationUserPrincipal(user));
subject.setGroupPrincipals(groupPrincipals.toArray(new Principal[] {}));

//Set it in the HandlerData map
_evalContext.getHandlerData().put("java.security.auth.Subject.container", subject);

Permission perm = new ApplicationPermission(resource, action) ;

boolean retVal = ApplicationPolicy.getPolicy().implies(contextId, _evalContext, perm);

return retVal;
}

 Chapter 8. Application level integration 217

Providing additional subject attributes
An application can provide additional attributes to be used when evaluating a
policy. In the Tivoli Security Policy Manager console, these attributes are
specified as being “in the request, in a standard location”. Attributes are added
by implementing the com.ibm.sec.authz.jaccplus.IAttributesHandler
interface, then registering this implementation with the
com.ibm.sec.authz.jaccplus.ApplicationAttributes object for Subject,
Resource, Action, or Environment.

The com.ibm.sec.authz.jaccplus.ApplicationAttributes object is pre-created
for the Subject, as this is the most common use case. To register your handler
against it, use the code in Example 8-3.

Example 8-3 Providing additional subject attributes

ApplicationEvaluationContext context = new ApplicationEvaluationContext();

((ApplicationAttributes)context.getContext("com.ibm.sec.auth.subjectx.SubjectAttributes.contain
er")).registerHandler(
 "[attributeIdentifier]", new IAttributesHandler() {

 public List<Object> getAttribute(String key, EvaluationContext evalCtx) throws
PolicyContextException
 {
 ArrayList<Object> retVal = new ArrayList<Object>();
 retVal.add("[attribute-value]");
 return retVal;
 }

 public String[] getSupportedAttributes() {
 return new String[] { "[attributeIdentifier]" };
 }

 public boolean supports(String key) {
 return ("[attributeIdentifier]".equals(key));
 }
 });
218 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Providing additional resource, action, and environment
attributes

Attributes can be provided to the Resource, Action, and Environment request
sections in a manner similar to Example 8-3 on page 218. However, the
com.ibm.sec.authz.jaccplus.ApplicationAttributes object must be created
manually and registered against the appropriate key using the
com.ibm.sec.authz.jaccplus.EvaluationContext#registerHandler(String,
com.ibm.sec.authz.jaccplus.IEvaluationContextHandler, boolean) method,
as shown in Example 8-4.

Table 8-1 shows the correct String keys to use. These keys are provided as
constants of the ApplicationAttributes object as well.

Table 8-1 String keys for Resource, Action, and Environment

Example 8-4 Adding additional subject, resources, and environment attributes

ApplicationEvaluationContext context = new ApplicationEvaluationContext();

//The code for the AttributeContextHandler class is shown below.
IEvaluationContextHandler resourceContextHandler = new AttributeContextHandler(
 "com.ibm.sec.auth.subjectx.ResourceAttributes.container");

//We could also use ApplicationAttributes.ATTR_RESOURCE_KEY as the first parameter here
// Passing "true" means to over-ride any existing handler for this key; if false and a handler
// already exists an exception is thrown.
context.registerHandler("com.ibm.sec.auth.subjectx.ResourceAttributes.container",
resourceContextHandler, true);

//Now register IAttributeHandler implementations against the resourceAttrs object as above.
((ApplicationAttributes)context.getContext("com.ibm.sec.auth.subjectx.ResourceAttributes.contai
ner"))
 .registerHandler("[AttributeId]", handlerImpl);

//This is the code that returns an ApplicationAttributes object in response to the getContext()
call.
private static class AttributeContextHandler implements IEvaluationContextHandler
{

 private final String _context;
 private final ApplicationAttributes _attrs = new ApplicationAttributes();

Request section Context key

Resource “com.ibm.sec.auth.subjectx.ResourceAttributes.container”

Action “com.ibm.sec.auth.subjectx.ActionAttributes.container”

Environment “com.ibm.sec.auth.subjectx.EnvironmentAttributes.container”
 Chapter 8. Application level integration 219

 public AttributeContextHandler(String context) {
 this._context = context;
 }

 public Object getContext(String key, Map<String, Object> handlerData) {

 if (_context.equals(key))
 {
 return _attrs;
 }
 else
 {
 return null;
 }
 }

 public String[] getKeys() {
 return new String[] { _context };
 }

 public boolean supports(String key) {
 return _context.equals(key);
 }
}

Providing an XML fragment with the resource
An XML element can be provided with the resource at run time, allowing the
policy to use XPath to extract data as part of the authorization decision, as
shown in Example 8-5. The ApplicationPermission object has the capability to
hold an XML Node object, which is then automatically serialized at run time.

Example 8-5 Providing an XML fragment

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the container. The context
// should be created once and re-used.
private EvaluationContext _evalContext = new ContainerEvaluationContext();

public boolean isAllowed(String resource, String action, Node xmlContent) {
Permission perm = new ApplicationPermission(resource, action) ;
perm.setContent(xmlContent);

boolean retVal = ApplicationPolicy.getPolicy().implies(contextId, _evalContext, perm);
220 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

return retVal;
}

Providing a WS-Security authentication token with the subject
A WS-Security token can be added to the ApplicationSubject, as shown in
Example 8-6, which is serialized as part of the XACML Subject. Tivoli Security
Policy Manager can then send this token to Tivoli Federated Identity Manager for
validation or exchange. This token can be used in conjunction with, or instead of,
setting user and group identifiers, depending on the use case.

Example 8-6 Providing a WS-Security authentication token

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the application.
//The context should be created once and re-used.
private EvaluationContext _evalContext = new ApplicationEvaluationContext();

public boolean isAllowed(Element authnToken, String resource, String action) {
//Create our ApplicationSubject
ApplicationSubject subject = new ApplicationSubject();

//Add a WS-Security token
subject.setAuthenticationToken(tokenToken);

//Set it in the HandlerData map
_evalContext.getHandlerData().put("java.security.auth.Subject.container", subject);

Permission perm = new ApplicationPermission(resource, action) ;
boolean retVal = ApplicationPolicy.getPolicy().implies(contextId, _evalContext, perm);
return retVal;

}

 Chapter 8. Application level integration 221

Using DelegatedPermissionCollection for batch authorization
requests
Rather than making a series of implies() calls for a known set of
ApplicationPermission objects, the
com.ibm.sec.authz.jaccplus.DelegatedPermissionCollection object can be
used to make a single implies() call, as shown in Example 8-7. Depending on the
deployment scenario, this action may result in higher performance due to fewer
remote calls being made, for example, to check for access to three known
resources.

Example 8-7 Batch authorization requests

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the container. The context
// should be created once and re-used.
private EvaluationContext _evalContext = new ContainerEvaluationContext();

DelegatedPermissionCollection dpc = new DelegatedPermissionCollection();
dpc.add(new ApplicationPermission("resource-1", "read"));
dpc.add(new ApplicationPermission("resource-2", "read"));
dpc.add(new ApplicationPermission("resource-3", "read"));

//If all the Permissions in the collection are allowed, then the return value is
// true.
boolean allPermit = ApplicationPolicy.getPolicy().implies(contextId, _evalContext, dpc);

//Individual access results can be checked by calling DelegatedPermissionCollection#implies().
boolean resource1Permit = dpc.implies(new ApplicationPermission("resource-1", "read")));
boolean resource2Permit = dpc.implies(new ApplicationPermission("resource-2", "read")));
boolean resource3Permit = dpc.implies(new ApplicationPermission("resource-3", "read")));

Using getPermissions() for application entitlements
The com.ibm.sec.authz.jaccplus.ApplicationPolicy#getPermissions(String,
com.ibm.sec.authz.jaccplus.EvaluationContext, Class) method can be used
to retrieve a collection of Permissions that the currently authenticated Subject
can access, as shown in Example 8-8.

Example 8-8 Retrieving application entitlements using getPermissions()

//The context identifier normally the same within an application
public static String contextId = "applicationID";

//Create an EvaluationContext that gets data from the container. The context
// should be created once and re-used.
private EvaluationContext _evalContext = new ContainerEvaluationContext();
222 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

public List<String> getEntitlement(String action) {
//Get the list of resources that the current user can perform the specified action on
List<String> retVal = new ArrayList<String>();

//Call the getPermissions() API. Please note that only ApplicationPermission is supported.
PermissionCollection entitledPerms = ApplicationPolicy.getPolicy().getPermissions(

contextId, _evalContext, ApplicationPermission.class);

//You can loop over the returned Permissions using an Enumeration
Enumeration<Permission> e = entitledPerms.elements();
while (e.hasMoreElements())
{

 ApplicationPermission thisPerm = (ApplicationPermission)e.nextElement();
if (action.equals(thisPerm.getActions())) {

retVal.add(thisPerm.getName());
}

}

return retVal;
}

A Permission class must be passed to this API to determine the type of
Permissions extracted from the policy. The only supported class at this time is
com.ibm.sec.authz.jaccplus.ApplicationPermission.

8.1.2 JSP tag library

The Tivoli Security Policy Manager tag library is provided by the RTSS SDK. The
tag library is used to annotate authorization requests within a JSP page. The
library provides an XML-like programming interface that allows tags to define tag
attributes to construct an authorization request using the RTSS client.

The tag library supports two types of enforcement:

� Authorization

Requests a decision using a specific subject, action, and resource
combination. The return of this call is a Boolean response.

� Entitlement

Requests all of the authorized resources of a given subject and action. The
returned entitlement is stored in a cache, and a subsequent authorization
request for the same action and subject uses the cached data, thus avoiding
a call to the RTSS client.
 Chapter 8. Application level integration 223

The JSP library is included in a JSP page by including the following line:

<%@ taglib uri=”http://ibm.com/rtss/taglibs/1.0/authz” prefix=”tspm” %>

In the rest of this section, we discuss some of the tags available in the Tivoli
Security Policy Manager tag library.

Context tag
The <context> tag contains the serviceId used by the RTSS client to determine
the policies of a service defined in Tivoli Security Policy Manager. The context
tag may also contain a set of user-defined attributes, and whether to retrieve
entitlements.

Multiple context tags can be defined on the page to obtain entitlements from
different serviceId namespaces, or to set different user defined attributes for the
same serviceId namespace (Table 8-2).

Table 8-2 Supported attributes for the context tag

Example 8-9 shows a sample of how to define a context tag. This context
definition can be used by the other tag examples in this section.

Example 8-9 Example context tag

<tspm:context id="ctx1" serviceId="http://mydomain.com/myapp" />

Authorize tag
The <authorize> tag is used to dynamically hide or show parts of a JSP or portlet
based on policy authored in Tivoli Security Policy Manager. If the current user is
authorized, then the content of the tag is shown. If the user is not authorized,
then the content is not rendered. The authorization decision is based on the
subject, the specified action, and the specified resource ID. If the authorization is
denied, the elements under the authorize tag are not evaluated and displayed.

Attribute Description

ServiceId Identifier of the service that must match the namespace of a service
defined in Tivoli Security Policy Manager.

id A string used to identify a context that can be referenced by the
authorize / deny tags.

entitlement A Boolean value used to designate whether to retrieve the
entitlement of a service specified by the serviceId.
224 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The authorize tag inherits its serviceId, user-defined attributes, and whether to
retrieve entitlements or not from the referenced context. If the referenced context
contains an entitlement, then the authorize tag uses the cached entitlement to
make the authorization decision. If the referenced service identifier contains no
entitlement, then the authorize tag calls the RTSS client for an authorization
decision. Table 8-3 shows the supported attributes for the <authorize> tag.

Table 8-3 Supported attributes for the authorize tag

Example 8-10 shows how an <authorize> tag is used to determine if a subject
has access to the data within the authorize tag. If the subject is authorized, the
data is displayed. If the subject is not authorized, the data is not displayed.

Example 8-10 Example authorize tag

<tspm:authorize action="viewPolicy" resourceId="myapp:rbac:policies"
contextId="ctx1">

<table name="policies">
<tr><th>Name</th><th>Description</th></tr>
<tr><td>policyA</td><td>Allow access to all</td></tr> </table>

</tspm:authorize>

Deny tag
The <deny> tag is the opposite of the <authorize> tag. It is used to display
content when a request is not allowed. If the request is denied, the elements
under the deny tag are evaluated and displayed. Table 8-4 shows the supported
attributes for the <deny> tag.

Table 8-4 Supported attributes for the deny tag

Attribute Description

action An action name defined in Tivoli Security Policy Manager for the
service.

resourceId The resource ID of an element in a service structure defined in Tivoli
Security Policy Manager.

contextId The identifier of the context to use.

Attribute Description

action An action name defined in Tivoli Security Policy Manager for the
service.

resourceId The resource identifier of an element in a service structure defined
in Tivoli Security Policy Manager.

contextId The identifier of the context to use.
 Chapter 8. Application level integration 225

Example 8-11 shows a sample of how a <deny> tag can be used to display
content in an unauthorized use case. This tag can be used in conjunction with
the <authorize> tag to display content informing a user whether they are
authorized to access a resource or not.

Example 8-11 Authorization using the deny tag

<tspm:deny action="viewPolicy" resourceId="myapp:rbac:policies"
contextId="ctx1">

You are not authorized to view the policy myapp:rbac:policies!
</tspm:deny>

User provided context attributes
By default, the tag library uses the Tivoli Security Policy Manager API
ContainerEvaluationContext for policy evaluation. In addition to the
container-provided context, the application developer may inject additional
subject, resource, action, and environment attributes to the evaluation context
(Table 8-5).

Table 8-5 Supported attributes

Example 8-12 shows a sample of how additional context attributes can be
defined.

Example 8-12 Definition of additional context attributes

tspm:context id="ctx1" serviceId="http://mydomain.com/myapp" >
<tspm:subjects id="attr0Id">

<tspm:attribute value="a"/>
<tspm:attribute value="b"/>

</tspm:subjects>
<tspm:resources id="attr2Id">

<tspm:attribute value="a"/>
</tspm:resources>

Attribute Description

subject A set of subject attributes that can be used in an authorization
decision.

resources A set of resources attributes that can be used in an authorization
decision.

environments A set of environment attributes that can be used in an authorization
decision.

actions A set of action attributes that can be used in an authorization
decision.
226 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

<tspm:actions id="attr3Id">
<tspm:attribute value="a"/>

</tspm:actions>
<tspm:environments id="attr4Id">

<tspm:attribute value="a"/>
</tspm:environments>

</tspm:context>

8.1.3 Custom authorization solutions for external systems

There are many situations where flexible authorization capabilities are required
to integrate systems into a policy management infrastructure, such as:

� Custom devices requirements

Applications are being deployed on distributed smart devices, such as power
meters, industrial sensors, and so on. As these capabilities become more
wide spread and are embedded in mission critical devices, security is
becoming an important consideration. There are unique challenges that do
not exist in other policy enforcement scenarios, such as requirements to run
with a minimal memory footprint, limited communications protocols, limited
availability of cryptographic technology, and so on. A custom solution may be
required to work around technical restrictions imposed by technology in these
cases.

� Legacy application

Some applications may not easily integrate with the technology supported by
Tivoli Security Policy Manager. This may be due to applications using
technology that is not based on open standards, legacy or proprietary
technology, and so on.

In such cases, there are several options for integrating with Tivoli Security Policy
Manager. These can be divided into two categories:

� Custom authorization client implementation of the Tivoli Security Policy
Manager authorization web service

� Custom authorization application using the Tivoli Security Policy Manager
API

Authorization web service interface
Tivoli Security Policy Manager provides an authorization web service, which
authorization clients can use. The authorization web service is available as a way
to query the runtime security services server for authorization decisions. This
model can be used in any environment where a web service client can be
deployed.
 Chapter 8. Application level integration 227

The authorization web service allows you to send XACML requests to your
runtime security services server using the SOAP protocol. While IBM does not
provide a pre-built web services client, the Web Service Description Language
(WSDL) and associated files are provided as an attachment so you can generate
your own client.

The Tivoli Security Policy Manager authorization web service is defined using a
WSDL file. An authorization client can implement the Tivoli Security Policy
Manager authorization WSDL to call the Tivoli Security Policy Manager
authorization web service.

The authorization web service provides the following operations:

� evaluateXACML

This operation receives an evaluateXACMLRequest message that is the
standard XACML authorization request and produces a standardized
authorization decision in the form of a valuateXACMLResponse.

� evaluateEntitlements

This operation receives a proprietary evaluateEntitlementRequest message
containing the required information to produce a list of entitlements for the
designated subject.

Authorization requests are sent to the runtime security services server using the
following URL, customized to your environment, as shown in Example 8-13.

Example 8-13 Web service client URL

http://<rtss host>:<web container port>/rtss/authz/services/AuthzService

The protocol for a simple permit or deny authorization decision is an XACML
request over SOAP. The attributes contained within this request should follow a
few guidelines. Four elements are required for authorization: a set of subjects, a
set of resources, an action performed against the resources, and the
environment, or application context, which scopes the context for evaluation.
Attributes are included in each section in the XML format, as shown in
Example 8-14.

Example 8-14 XACML authorization request

<xacml-context:Attribute AttributeId="\<AttributeId\>" DataType="\<DataType\>" >
 <xacml-context:AttributeValue>value</xacml-context:AttributeValue>
</xacml-context:Attribute

The tables below reference the AttributeId and DataType fields.
228 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Subject
An XACML subject consists of a set of attributes that describe the principals
involved in the authorization request. For example, one subject can be the user
requesting access to the resource while another subject represents the policy
enforcement point (PEP) or code sending the request to the policy decision point
(PDP). The subject-category defines the type of subject. In an XACML request,
at least one access-subject must be defined.

The user's subject-id and a set of group-ids are usually specified here as
distinguished names.

Table 8-6 Subject AttributeId and DataType

To add custom attributes for the user, add more elements in the Subject block.
Use a custom AttributeId that describes the attribute (it must be a URI) and an
appropriate data type.

Resource
The XACML resource elements describe the resource to which the subject is
requesting access. Examples of resources are web services operations, a URL,
or custom service IDs (if using custom applications). The contents of this
element depends on the type of service the policy is authored for, such as
Application (Table 8-7) or Web Service (Table 8-8 on page 230).

Table 8-7 Application AttributeId and DataType

AttributeId DataType Value

urn:oasis:names:tc:xacml:1.0:su
bject:subject-id

http://www.w3.org/2001/XMLSch
ema#string

The user's login name as a string

urn:oasis:names:tc:xacml:1.0:su
bject:subject-id

urn:oasis:names:tc:xacml:1.0:da
ta-type:x500Name

The user's login name as an
X500Name

urn:oasis:names:tc:xacml:1.0:su
bject:group-id

http://www.w3.org/2001/XMLSch
ema#string

The groups the user is a member
of as a string

urn:oasis:names:tc:xacml:1.0:su
bject:group-id

urn:oasis:names:tc:xacml:1.0:da
ta-type:x500Name

The groups the user is a member
of as an X500Name

AttributeId DataType Value

urn:oasis:names:tc:xacml:1.0:re
source:resource-id

http://www.w3.org/2001/XMLSch
ema#string

The element name of the
resource being accessed
 Chapter 8. Application level integration 229

Table 8-8 Web Service AttributeId and DataType

Action
The action element describes the action the subject is trying to perform on the
resource. The XACML standard dictates that an action element needs to provide
one urn:oasis:names:tc:xacml:1.0:action:action-id attribute.

Table 8-9 Action AttributeId and DataType

Environment
The environment element is required to have an attribute contextId that specifies
the application ID, as shown in Example 8-15.

Example 8-15 Environment example

<xacml-context:Environment>
 <xacml-context:Attribute AttributeId="ContextId"
DataType="http://www.w3.org/2001/XMLSchema#string"
 Issuer="http://security.tivoli.ibm.com/policy/distribution">
 <xacml-context:AttributeValue>test-app</xacml-context:AttributeValue>
 </xacml-context:Attribute>
</xacml-context:Environment>

AttributeId DataType Value

urn:oasis:names:tc:xacml:1.0:re
source:resource-id

http://www.w3.org/2001/XMLSch
ema#anyURI

The HTTP URL of the web
service being accessed

urn:ibm:xacml:profiles:web-servi
ces:1.0:wsdl:1.1:service

http://www.w3.org/2001/XMLSch
ema#string

The service name in the WSDL
of the service being accessed, in
the format {namespace}Service

urn:ibm:xacml:profiles:web-servi
ces:1.0:wsdl:1.1:port

http://www.w3.org/2001/XMLSch
ema#string

The port name in the WSDL of
the service being accessed, in
the format {namespace}Port

urn:ibm:xacml:profiles:web-servi
ces:1.0:wsdl:1.1:operation

http://www.w3.org/2001/XMLSch
ema#string

The operation name in the
WSDL of the service being
accessed, in the format
{namespace}Operation

AttributeId DataType Value

urn:oasis:names:tc:xacml:1.0:ac
tion:action-id

http://www.w3.org/2001/XMLSch
ema#string

The action being performed on
the resource
230 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The following rules apply when using the environment element:

� If the full DN is being provided for the subject-id and group-id attributes, then
they must be included as both DataTypes
http://www.w3.org/2001/XMLSchema#string and
urn:oasis:names:tc:xacml:1.0:data-type:x500Name.

� For the Application service type in Tivoli Security Policy Manager, the
resource-id and action-id should be of type
http://www.w3.org/2001/XMLSchema#string.

Tivoli Security Policy Manager API with REST-based interface
A useful pattern for implementing authorization with external systems is to use
the capabilities of the Tivoli Security Policy Manager API to build a custom
authorization interface. The Web 2.0 paradigm provides a range of options that
should be considered when implementing such an interface.

Representational State Transfer (REST) defines an architectural style for
transferring representations of resources between a client and server, and
managing resource states. It is a commonly used method in Web 2.0 technology
to implement a RESTful facade against web services or applications.

In a RESTful approach, HTTP methods can be used to interact between a client
and server. It has become popular to use a RESTful methodology to transfer
representations of resources over HTTP using technologies, such as JavaScript
Object Notation (JSON).
 Chapter 8. Application level integration 231

Figure 8-1 shows how a custom authorization interface can be exposed using a
RESTful facade and JSON.

Figure 8-1 Custom RESTful based authorization solution

The server side solution consists of the following steps:

1. A RESTful authorization client submits an HTTP post request to a
WebSphere Application Server running a custom authorization solution. The
request contains a JSON object that includes details about the authorization
request, such as subject, target resource, and context.

2. A custom authorization solution that enforces Tivoli Security Policy Manager
policy is hosted in a WebSphere J2EE servlet. The authorization request is
processed by a J2EE servlet doPost method. A JSON package can be used
to capture the authorization data in the post request.

3. The subject, target, and context information extracted from the RESTful
request can be used in a Tivoli Security Policy Manager API authorization
decision, as defined in 8.1, “Runtime security services interfaces” on
page 214.

4. The authorization result captured by the Tivoli Security Policy Manager API
can be encapsulated in a JSON object and returned to the client in an HTTP
response.
232 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

8.1.4 Policy information point

Business rules often have complex logic and pre-conditions that must be met to
permit a particular operation as opposed to a simple allow or deny decision
based on group or role membership in a typical user repository. In the context of
authorization and entitlement management, it may be necessary to query
external data sources to retrieve additional information to assist in making the
decision, or to retrieve specific values against which to compare pre-conditions.

To facilitate authorization against business context information from external
systems, Tivoli Security Policy Manager provides the policy information point
(PIP) interface. The PIP interface provides a mechanism to query external
information sources for attribute data to be used in an authorization decision. The
PIP’s function is to look up, compute, or make arbitrary values available for use
during policy evaluation, based on request data from Tivoli Security Policy
Manager. There are several types of PIPs that allow Tivoli Security Policy
Manager to interface with external systems. In this section, we focus on the Java
PIP.

The Java PIP allows custom written Java code to act as a Tivoli Security Policy
Manager PIP, effectively enabling the system to interface with any technology
that supports the Java language.

PIPs are implemented as an OSGi2 extension plug-in to the RTSS server or
client. The SDK provides an example PIP, which should be used as a starting
point for any custom Java PIP development. A Java PIP consists of:

� A plug-in implementation class

The Java PIP should implement the
com.ibm.tscc.rtss.authz.api.IExternalFinder interface. The interface
defines several methods that require implementation. Once defined, the
implementation class is referenced in the plug-in configuration file.

� Plug-in configuration

An OSGi plug-in file should be created to extend the
com.ibm.tscc.rtss.authz.custom plug-in point. This plug-in defines the PIP.
Both the class file and the plugin.xml file form part of the jar file that make up
the deployable PIP. Example 8-16 shows a sample OSGi extension point
plug-in file.

Example 8-16 Example PIP plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>

2 To learn more about the Open Services Gateway initiative, go to the following address:
http://www.osgi.org
 Chapter 8. Application level integration 233

http://www.osgi.org

<plugin>
 <extension id="com.ibm.demo.authz.finder.sample"

name="Sample Attribute Finder"
point="com.ibm.tscc.rtss.authz.custom">

 <custom class="com.ibm.demo.authz.finder.sample">
<ConfigParameter

 Name="usernameAttributeId"
 Required="true"/>

</custom>
 </extension>
</plugin>

� An entry in the Tivoli Security Policy Manager configuration

The security-services.xmi file has to be updated with an entry that
configures the PIP into Tivoli Security Policy Manager. This file is located in
the following directory for the RTSS server:

<PROFILE_HOME>/config/cells/<CELL_NAME>/rtss/

The security-services.xmi file is located in the following directory for the
RTSS client:

<PROFILE_HOME>/config/cells/<CELL_NAME>/ertss

In Example 8-17, we show the configuration entry for a sample Java PIP. Note
that osgiCfgInit.sh needs to be run if the PIP is used on the RTSS client.

Example 8-17 Java PIP configuration entry

<components name="Authz">
<subComponents name="AttributeRetrievalServices">

<items name="Sample external rule">
<properties>

<values name="type" value="custom" type="java.lang.String"/>
<values name="id" value="com.ibm.demo.authz.finder.sample"

type="java.lang.String"/>
<values name="enabled" value="true" type="java.lang.String"/>
<values name="usernameAttributeId" value="userIdentifier"

type="java.lang.String"/>
</properties>

</items>
</subComponents>

</component>
234 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Policy information point deployment
To deploy a PIP into an RTSS, the following steps are required. Note that the
RTSS client paths are used in this example.

1. Stop the WebSphere Application Server where the RTSS client is installed.

2. Copy the PIP plug-in .jar file to the following location:

<WEBSPHERE_SERVER_HOME>/plugins

3. Make a backup copy of the following file:

<WEBSPHERE_PROFILE>/config/cells/<WEBSPHERE_CELL_NAME>/ertss/securit
y-services.xmi

4. Add the PIP configuration to the following file:

<WEBSPHERE_PROFILE>/config/cells/<WEBSPHERE_CELL_NAME>/ertss/securit
y-services.xmi

5. Start WebSphere Application Server.

8.1.5 External rules

Tivoli Security Policy Manager provides a flexible authorization framework by
using external rules. An external rule provides a pluggable callout to an external
authorization service that returns a permit or deny response. External rules are
implemented as an OSGi plug-in extending a Tivoli Security Policy Manager
RTSS extension point.

An external rule consists of the following parts:

� Implementing class

To implement an external rule, a Java class must be written that implements
the com.ibm.tscc.rtss.authz.api.IExternalRule interface. This interface
consists of startup, shutdown, and evaluate methods. The evaluate method is
passed as a com.ibm.tscc.rtss.authz.api.RequestContext object that
contains the context of the request.

� Plug-in configuration

The plug-in configuration file defines the OSGi extension point, id, name, and
configuration parameters required for an external rule. In Example 8-18, we
show a sample plugin.xml configuration file for a risk classification rule.

Example 8-18 Sample plugin.xml file for external rule

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
 <extension
 Chapter 8. Application level integration 235

 id="RiskClassificationRuleSample"
 name="Sample External Rule Implementation"
 point="com.ibm.tscc.rtss.authz.erule">
 <erule class=.RiskClassificationRule">
 <ConfigParameter
 Name="Hostname"
 Required="true"/>
 <ConfigParameter
 Name="Username"
 Required="false"/>
 <PolicyParameter
 Description="Risk classification"
 Name="RiskLevel"
 Required="false"/>
 </erule>
 </extension>

</plugin>

� Tivoli Security Policy Manager configuration

Tivoli Security Policy Manager is configured to use an external rule using the
security-services.xmi file. This file is located in the following directory for
the RTSS server:

<WASPROFILE>/config/cells/<CELL_NAME>/rtss

The security-services.xmi file is located in the following directory for the
RTSS client:

<WASPROFILE>/config/cells/<CELL_NAME>/ertss (RTSS Client)

This file contains the properties used for the external rule as defined in the
external rule plugin.xml. These parameters are used at startup and are
passed in a java.utils.Properties object to the startup method of a class
that implements the IExternalRule interface. These properties are then
accessible to the Java code implementing the external rule. In Example 8-19,
we show an excerpt from a security-services.xmi file that defines the
configuration for an example risk classification rule.

Example 8-19 Example security-services.xmi file

subComponents name="ExternalRules">
 <items name="server1-rules-engine">
 <properties>
 <values name="id" value="RiskClassificationRuleSample"
 type="java.lang.String" />
 <values name="enabled" value="true" type="java.lang.String" />
 <values name="Hostname" value="server1.customer.com"
type="java.lang.String" />
 <values name="Username" value="foo" type="java.lang.String" />
236 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

 </properties>
 </items>

8.2 Policy management API

Tivoli Security Policy Manager provides a range of basic features to manage
supported types of services, policies, service registries, policy distribution
targets, and so on. To support complex environments, the product has been
designed to use an extensible and pluggable architecture that allows for various
aspects of the product to be customized. The ability to extend the capabilities of
Tivoli Security Policy Manager allows custom solutions to be developed.

The Tivoli Security Policy Manager Software Development Kit3 (SDK) provides
details about the interfaces, classes, and examples of each of the major plug-in
types. When considering a project to customize Tivoli Security Policy Manager
plug-ins, these examples can be used as a starting point to guide the
implementation. We discuss the following aspects of the APIs:

� Plug-in structure
� Data model
� Plug-ins

8.2.1 Plug-in structure

Tivoli Security Policy Manager uses a pluggable OSGi based framework that
allows plug-ins for various types of objects to be defined.

Custom Tivoli Security Policy Manager OSGi plug-ins extend defined extension
points to create new types of objects in the system. The product provides several
basic plug-ins for each extension point. Examples include:

� Service type plug-ins, such as the WebService service plug-in, the J2EE
service plug-in, and the database service plug-in

� Policy type plug-ins, such as the authorization policy type plug-in, and the
message protection policy type plug-in

� Service registry types, such as the WebSphere Service Registry and
Repository registry plug-in and the Sharepoint Server registry plug-in

3 For more information about the SDK, go to the following address:
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tspm.doc_7.1/sdk/t
spmSDKreadme.html
 Chapter 8. Application level integration 237

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tspm.doc_7.1/sdk/tspmSDKreadme.html

Additional customized plug-ins can be defined for each extension point to extend
the capabilities of the product to support the required services, policies, service
registries, and so on. A custom plug-in may be required if:

� Integration with a non-supported service registry is required.
� Policy distribution is required for a non-supported policy distribution target.
� A custom service type is required.
� A custom policy type is required.

The process of developing plug-ins involves implementing the following
components:

� Plug-in configuration
� Plug-in relationships
� Java implementation

Plug-in configuration
The plugin.xml file of the com.ibm.tspm.extpts package defines the available
Tivoli Security Policy Manager extension points and the schema file for each
plug-in type. The schema file associated with each type of plug-in defines the
Tivoli Security Policy Manager interfaces required by each type of plug-in and the
structure of the plug-in configuration file.

Each plug-in consists of its own plugin.xml configuration file that defines the
plug-in. The plugin.xml file must conform to the schema definition for the
appropriate plug-in type defined in the com.ibm.tspm.extpts package. The
recommended approach for developing a plug-in is to follow an example from the
Tivoli Security Policy Manager SDK. Example 8-20 shows the DB2 service
registry plug-in.

Example 8-20 DB2 service registry plug-in

<plugin>
 <extension
 id="com.ibm.tspm.registry.db2"
 name="DB2 Service Definition Registry"
 point="com.ibm.tspm.extpts.serviceDefinitionRegistryType">
 <serviceDefinitionRegistry
 UIProviderExtensionId="com.ibm.tspm.registry.db2.ui"
 UIProviderPluginId="com.ibm.tspm.registry.db2.ui"
 factoryImpl="com.ibm.tspm.registry.db2.DB2ServiceRegistryFactory"
 serviceDefinitionRegistryImpl="com.ibm.tspm.registry.db2.DB2ServiceRegistry"
 typeImpl="com.ibm.tspm.registry.db2.DB2ServiceRegistryType">
 </serviceDefinitionRegistry>
 </extension>
</plugin>
238 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Commonly used attributes within this plug-in are shown in Table 8-10.

Table 8-10 Common attributes for the DB2 service registry plug-in

Plug-in relationships
When defining custom Tivoli Security Policy Manager plug-ins, constraints need
to be applied that define how objects relate to each other. Some objects in Tivoli
Security Policy Manager are not compatible with certain other objects. These
relationships are captured in the following file:

<WAS_PROFILE>/config/tspm/etc/com.ibm.tspm.servicePluginsConf.xmi

Attribute Description

id Identifies the plug-in.

point The extension point that this plug-in extends. The
com.ibm.tspm.extpts plugin.xml file defines the
serviceDefinitionRegistryType extension point and
associates it with the
serviceDefinitionRegistryType.exsd schema. This
file defines the format of the plug-in configuration file
and the interfaces required.

UIProviderExtensionId A plug-in that provides the UI for creating or modifying
an object of this type.

factoryImpl A class that implements the factory interface for the
db2 service definition registry plug-in. In this case, the
implementing class implements the
IServiceDefinitionRegistryFactory interface defined in
the serviceDefinitionRegistryType.exsd schema
file from the com.ibm.tspm.extpts package.

serviceDefinitionRegistryImpl A class that implements the service definition registry
interface for the DB2 service definition registry
plug-in. In this case, the implementing class
implements the IServiceDefinitionRegistry interface
defined in the serviceDefinitionRegistryType.exsd
schema file from com.ibm.tspm.extpts.

typeImpl A class that implements the service definition registry
type interface for the DB2 service definition registry
plug-in. In this case, the implementing class
implements the IServiceDefinitionRegistryType
interface defined in the
serviceDefinitionRegistryType.exsd schema file
from com.ibm.tspm.extpts.
 Chapter 8. Application level integration 239

The following categories of object relationships can be defined within this file:

� ServiceTypeID-WorksWith-PolicyTypeIDs

Not all service types can be attached to each policy type. For example,
message protection policies will not work with all service types, such as J2EE
applications. This relationship is not valid and this is defined using this
mapping.

� ServiceTypeID-WorksWith-ServiceDefRegIDs

Not all service types work with all service definition registries. For example,
the WebSphere service type works with the WebSphere Service Registry and
Repository service definition registry and the Universal Description Discovery
and Integration servers (UDDI) service definition registry, but the J2EE
application service type only works with the RTSS service definition registry.

� PDPTypeID-CanEval-PolicyTypeIDs

Not all policy decision points can evaluate all policy types. For example, the
DataPower policy decision point can evaluate both message protection policy
and XACML policy, but the DB2 policy decision point can only evaluate
XACML policy.

� PDTTypeID-CanStore-PolicyTypeIDs

Not all policy distribution target types can store all policy types. For example,
the RTSS can only process XACML policy, and the DataPower policy
distribution point can store both message protection policy as well as XACML
policy.

� PDPTypeID-OverridesConfig-PolicyTypeIDs

Some policy decision point types can override the configuration of a policy
type. For example, the DB2 policy decision point can override the
configuration of XACML authorization policies.

Java implementation
Interfaces define the expected behavior of individual plug-ins. The Tivoli Security
Policy Manager interface for each plug-in type is discussed later in this section.
Each type of plug-in has its own set of interfaces that are defined by the
com.ibm.tspm.extpts package. The appropriate interfaces for each plug-in must
be implemented to build a plug-in that functions correctly.
240 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

8.2.2 Data model

The com.ibm.tspm.datamodel.vo package contains data model interfaces that
are used throughout the product and are exposed for use in Tivoli Security Policy
Manager plug-ins. Classes that implement the value object interfaces represent
objects that are persisted in the Tivoli Security Policy Manager repository.

� IClassificationVO

The IClassificationVO interface defines a Tivoli Security Policy Manager
classification. A classification is a grouping mechanism for services and
policies that allow for more effective management of these objects.
Classifications are used to create an association between zero or more
policies and zero or more services. A classification provides a convenient way
to allow a collection of policies to be associated with a collection of services.

� IEffectivePolicyVO

An effective policy represents the combined policy for a service. When
multiple policies are defined for a service, they are consolidated into an
effective policy that can then be used by a policy decision point to enforce
authorization decisions. Effective policy can contain one or more effective
policy data objects defined by the IEffectivePolicyDataVO interface.
IEffectivePolicyVO value objects are created through
com.ibm.tspm.datamodel.vo.impl.PolicyVOFactory.

� IEffectivePolicyDataVO

The IEffectivePolicyDataVO interface defines effective policy data that
applies to a given service scope. Effective policy, presented by the
IEffectivePolicyVO interface, can contain one or more effective policy data
objects where the collection of generated effective policy data is the effective
policy for a service. The effective policy data includes the generated policy
and the MIME type of the generated policy for exporting to a file. New
IEffectivePolicyDataVO value objects are created through
com.ibm.tspm.datamodel.vo.impl.PolicyVOFactory.

� IPolicyDistributionTargetVO

A policy distribution target (PDT) is the endpoint for a policy. Examples of
PDTs include DataPower and WebSphere Application Server. The policy
distribution target might enforce the policy, use the policy to make an access
decision for enforcement elsewhere, or simply store the policy.
 Chapter 8. Application level integration 241

� IDistributionMappingVO

A distribution mapping is a representation of an association between a policy
type, a PDT, a PDP type, and a service. This association is compose of
information that is necessary to attach, configure, and distribute policy to an
endpoint. This object also includes status information captured during policy
configuration and distribution. A distribution mapping must exist in order for
policy to be distributed.

� IPolicyVO

A representation of a set of guidelines, rules, regulations, or requirements to
be enforced on a target. This set of conditions defines the circumstances
under which a request for access to the target is permitted or denied.

� IRoleVO

A representation of an abstract role used to represent users or groups that
can perform actions in a policy. The role remains abstract until it is mapped to
one or more users or groups using the IRoleMappingVO object.

� IRoleMappingVO

A representation of a mapping of an abstract role to one or more users and
groups for a given service. This mapping defines the users and groups used
with policy generation for a given service.

� IRuleParameterVO

A rule parameter represents an unbound piece of information referenced in
an IPolicyVO. For example, an authorization policy might require the
authenticated user's “department” to grant or deny access. An
IRuleParameterVO references this piece of information. During policy
configuration, an IConfiguredRuleParameterVO is created that specifies how
to get the value of “department” from the IT environment.

� IServiceDefinitionRegistryVO

A representation of a service definition registry. A service definition registry is
a repository of data and descriptor information regarding services in the IT
environment. Such service registries include UDDI and WebSphere Service
Registry and Repository. Tivoli Security Policy Manager uses the service
definition registry abstraction represented by this class to support these and
other service definition registry types.

� IServiceScopePointVO

A service scope point is usually the top of the service or resource tree and it
represents the service as a whole.
242 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� IPolicyDistributionResultVO

The status of a policy distribution operation (including policy removal) is
captured in a policy distribution event object. A policy distribution event object
contains one or more policy distribution records, each of which holds the
distribution status for one type of policy, configured for one type of PDP, and
targeted to one endpoint, also called a PDT. Policy distribution to a given PDT
might consist of multiple steps (notification and policy retrieval, for example).

The IPolicyDistributionResultVO interface represents information associated
with a policy distribution event, including policy removal, for a single step in
policy distribution to a single PDT. A step might be notification of a policy
update, or policy retrieval. Policy distribution result information includes the
time and status of the distribution step, and any information that might have
been returned by the PDT.

� IExportedPolicyDataVO

The IExportedPolicyDataVO contains policy data in an un-configured state.
An instance of the IExportedPolicyDataVO object is used to export policy data
to a file.

8.2.3 Plug-ins

In this section, we discuss the following plug-ins:

� Policy type plug-in
� Policy distribution plug-in
� Service registry plug-in
� Service plug-in

Policy type plug-in
Tivoli Security Policy Manager ships with many supported policy types, such as
the message protection policy type. It may be necessary to define your own
policy type to represent a custom type of policy. To implement a custom policy
type plug-in, the following interfaces from the
com.ibm.tspm.datamodel.plugins.api.policy package should to be
implemented:

� IPolicyAuthor

An interface for creating policies suitable for distribution. The interface defines
methods for converting a policy to an effective policy and converting a policy
to an exportable format. This interface must be implemented by all policy
plug-ins that require a security policy to be authored. To generate an effective
policy, an IPolicyPack data structure is provided as an input and contains the
basic data required to build an effective policy. Policy plug-ins should use the
policy pack rather than retrieving policies directly from the database.
 Chapter 8. Application level integration 243

The effective policy object can be exported to an external representation,
such as an XACML or WS-MessageProtection policy, depending on the
policy type. The IExportedPolicyDataVO, IEffectivePolicyDataVO, and
IPolicyVO interfaces from the data model are also used.

� IPolicyConfigurator

An interface for optionally transforming policy into a format that is suitable for
PDPs. Policy is authored in a standard format during policy authoring and
configurators may optionally modify the generated policy to be appropriate for
the PDP evaluating the policy. The interface is also called by Tivoli Security
Policy Manager to determine whether a policy has been configured and is
ready for distribution. The interface defines a method that allows the policy
configuration flow to determine if any additional configuration is necessary to
allow policy generation and distribution, and a method to transform an
effective policy to add additional configuration specific to a policy decision
point.

� IPolicyFactory

An interface for creating, modifying, deleting, and parsing policies, and
validating policy associations. It is responsible for returning a policy value
object, performing any outside operations needed for effective use of the
policy, setting the extension identifier, and setting the plug-in identifier. The
plug-in returns a policy value object in the case of the createPolicy and
modifyPolicy methods. The server is also responsible for removing the
requested value object from the repository in the case of the deletePolicy
method.

The com.ibm.tspm.datamodel.vo.impl.PolicyVOFactory class can be used
to create an object that implements IPolicyDistributionTargetVO.

� IPolicyType

An interface to return static information about a policy type. The interface
defines methods to exposed details such as name, description, and dialect of
a policy type. These methods are used to display information in the user
interface.

Policy distribution plug-in
Policy distribution plug-ins allow Tivoli Security Policy Manager to manage the
distribution of effective policies to PDTs. A PDT plug-in can be written to
customize the mechanism for distributing and removing a policy to and from an
endpoint. These plug-ins are an important feature of the product, as they allow
Tivoli Security Policy Manager to distribute policy to any custom endpoint for
which a PDT can be written. For example, a PDT plug-in may be required to
facilitate the distribution of policy to an endpoint using a particular
proprietary API.
244 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

To define a policy distribution target plug-in, the following interfaces should be
implemented from the com.ibm.tspm.datamodel.plugins.api.dist package:

� IPDTDistributor

An interface for distributing and removing policy to a PDT. It uses interfaces
defined in the data model, such as IPolicyDistributionTargetVO, to represent
the destination for a given policy, IServiceScopePointVO to represent a target
service, and IPolicyDistributionResultVO to represent the result of policy
distribute or remove operations.

� IPDTFactory

An interface for creating, modifying, and deleting PDT objects. It is
responsible for returning a PDT value object, performing any outside
operations needed for the effective use of the distribution target, setting the
extension identifier, and setting the plug-in identifier. An implementation of the
interface must return a policy distribution value object in the case of the
createDistributionTarget and modifyDistributionTarget methods. The server is
also responsible for removing the requested value object from the repository
in the case of the deleteDistributionTarget method.

The com.ibm.tspm.datamodel.vo.impl.DistributionVOFactory class can be
used to create an object that implements IPolicyDistributionTargetVO.

� IPDTType

An interface to return static information about a PDT type. A class that
implements the IPDTType interface can return name and description details
of a PDT type plug-in.

Service registry plug-in
Service definition registries are the existing repositories from which service
definitions can be retrieved. Examples are WebSphere Service Registry and
Repository, a database, WebSphere Application Server, and so on. To define a
service registry plug-in, the following interfaces can be implemented from the
com.ibm.tspm.datamodel.plugins.api.registry package. Several interfaces
from the data model are used, including IServiceDefinitionRegistryVO,
IServiceScopePointVO, IClassificationVO, and IRoleVO.

� IServiceDefinitionRegistry

An interface that represents a service definition registry and defines methods
to retrieve a list of services from a service registry, retrieves a specified
service definition from a service registry, validates service definitions from a
service registry, and retrieves roles and classifications associated with a
specified service in a service registry.
 Chapter 8. Application level integration 245

� IServiceDefinitionRegistryFactory

Interface for creating, modifying, and deleting service definition registry
objects. The plug-in is responsible for returning a service definition registry
value object, performing any outside operations needed for effective use of
the policy, setting the extension identifier, and setting the plug-in identifier.
The plug-in returns a service definition registry value object in the case of the
createServiceDefinitionRegistry and modifyServiceDefinitionRegistry
methods. The server is also responsible for removing the requested value
object from the repository in the case of the deleteServiceDefinitionRegistry
method.

The com.ibm.tspm.datamodel.vo.impl.RegistryVOFactory class can be used
to create an object that implements IServiceDefinitionRegistryVO.

� IServiceDefinitionRegistryType

An interface for returning static information about a service definition registry
type, such as name, description, and version of the service definition registry.
These methods are used to display information in the user interface.

Service plug-in
Tivoli Security Policy Manager ships with many supported services, such as the
J2EE service type or the SharePoint service type. It may be necessary to define
your own service type to represent a custom type of service. The interfaces
defined in the com.ibm.tspm.datamodel.plugins.api.service package should
be implemented to define a service type plug-in.

� IServiceFactory

An interface for creating, modifying, deleting, and importing services. It is
responsible for returning a service scope point value object, performing any
outside operations needed for effective use of the policy, setting the
extension identifier, and setting the plug-in identifier. The plug-in returns a
service scope point value object in the case of the createService and
modifyService methods. The server is also responsible for removing the
requested value object from the repository in the case of the deleteService
method.

The com.ibm.tspm.datamodel.vo.impl.ServiceVOFactory class can be used
to create an object that implements IServiceDefinitionRegistryVO.

� IServicePoint

An interface for defining a service point for a service type plug-in. A service
point defines a node in a service and can be a service scope point, a policy
attachment point, or a structure point.
246 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

� IServiceType

An interface to return static information about a service type. The interface
defines methods to exposed details such as a name and description of a
service type. These methods are used to display information in the user
interface.

8.3 Application integration

We have discussed several interfaces that can be used to integrate applications
with Tivoli Security Policy Manager, such as the Tivoli Security Policy Manager
authorization API, the Tivoli Security Policy Manager web services authorization
interface, and a pattern for implementing authorization using a RESTful pattern.

In this section, we examine three application level integrations, one based on the
Java based authorization API, a WebSphere Application Server portlet
integration example that uses the Tivoli Security Policy Manager Tag library, and
one that allows applications to integrate with C# and .NET based applications.

8.3.1 Integration with Java technology

Tivoli Security Policy Manager provides integration to support technology based
on the Java Platform, Enterprise Edition (Java EE), such as the container level
integration outlined in 6.2, “WebSphere Application Server” on page 161, or the
JAX-RPC and JAX-WS integration outlined in 5.2, “Java Web Application
Servers” on page 127. If a Java based application has security requirements that
cannot be implemented using any of the above security mechanisms, Tivoli
Security Policy Manager provides the Tivoli Security Policy Manager
authorization API to allow security services calls from within Java based
applications that support the interface.

Integration with WebSphere Application Server
Tivoli Security Policy Manager provides a mechanism to model Java EE
application resources and actions, attach policy controlling the conditions under
which those resources can be accessed, and evaluate that policy by invoking an
authorization API. The Tivoli Security Policy Manager authorization API is built
on two standards: Java Authorization Contract for Containers (JACC) and
eXtensible Access Control Markup Language (XACML).
 Chapter 8. Application level integration 247

The authorization API allows applications to pass context information for use in
an authorization decision. This context information, such as the authenticated
user and resource being accessed, is converted into an XACML request and
sent to the RTSS to be evaluated against the policy as shown in Figure 8-2.
Context handlers are used to populate additional information that may be needed
for the policy to reach a decision.

Figure 8-2 WebSphere Application Server integration

In the rest of this section, we study how an application is developed to use Tivoli
Security Policy Manager authorization decisions in the context of the security
policy management life cycle.

Policy modelling and simulation
The first step to externalize security is to model the resources in the application
and the actions that are to be performed on them. These resources, known as
services in Tivoli Security Policy Manager, and actions will be created in Tivoli
Security Policy Manager, and a policy describing the conditions under which
these resources can be accessed can be attached.

Using a healthcare provider organization as an example, let us consider an
application that allows access to patient information. Various personnel have
access to this application, but access needs to be restricted based on their role
and the specific data being accessed.
248 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

In the healthcare scenario, the application resources have been modeled as
follows:

� Patient information (such as billing address and phone numbers)
� Patient test results
� Patient prescription history
� Patient genomic data

After the resources have been modeled, unique identifiers can be created for
each resource. These identifiers are what the application itself should pass to
Tivoli Security Policy Manager at run time when performing a security check.

� Patient information could be allocated the identifier patient-info.

� Patient test results could be allocated the identifier patient-test-results.

� Patient prescription history could be allocated the identifier
patient-medications.

� Patient genomic data could be allocated the identifier patient-genomic.

The set of actions to be performed on these resources can also be identified.
Sometimes, a single action such as invoke is enough. In this use case, consider
the use two actions: read and edit.

Importing resources and metadata
After the resources and actions have been modeled, the service structure can be
created in Tivoli Security Policy Manager. An application service type should be
created in the Tivoli Security Policy Manager console with the following
attributes:

� The Application name is a human-readable name that is shown in the user
interface. In this scenario, we use Patient Data Application for the application
name.

� The Application ID is a context string that the application must pass at run
time when performing a security check. In this case, patient-application is the
appropriate value to use.

� Define resources in Tivoli Security Policy Manager console using the
structure modeled above. The first step is to provide a unique identifier for the
root service in the hierarchy. This is usually the same as the application ID
from the previous step.

� When defining the service structure, the two fields for Element Name and
Element ID are similar to the Application Name and Application ID fields from
earlier. The Element Name is a human-readable name that is displayed in the
Tivoli Security Policy Manager console, and the Element ID is what the
application must pass at run time when making an authorization decision
using the authorization API.
 Chapter 8. Application level integration 249

Policy authoring
In the next step, we need to define the policy or conditions under which access to
the resources should be granted or denied, and attach them to the specific
service definitions. For this example, let us consider the following policies:

� Doctors can edit prescriptions and test results for their own patients.
� Doctors can read all patient data.
� Nurses can read all patient data.
� Administrative assistants can read and edit patient information.

From this simple list of policies, the following roles can be identified:

� Doctor
� Nurse
� Administrative Assistant

Rule parameters can also be identified from this information. A rule parameter is
a piece of information required to make a decision, which is provided by the
calling application or retrieved dynamically from an information source in the
runtime environment.

In this case, a rule is required that expresses the following constraint: Doctors
can edit prescriptions and test results for their own patients.

Two pieces of information are needed to model this rule: the identifier of the
currently logged in user, and the doctor who is the primary care physician for that
patient, which we assume is the currently authenticated user. This gives us the
following rule parameters:

� Patient's physician
� Currently authenticated user

These roles and rule parameters can be created under the appropriate panels in
Tivoli Security Policy Manager.

Policy configuration
After the relevant policy has been created and attached, this policy needs to be
configured. The configuration step is where the abstract role definitions are
mapped to groups in the a directory, and the rule parameters are bound to a
concrete information source.

The most important piece of configuration for this information is the binding of the
rule parameters to information sources. Remember that there are two rule
parameters:

� Patient's physician
� Currently authenticated user
250 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Retrieving the patient's physician requires the identifier of the patient whose data
is being accessed. This is the first instance of a piece of data the application itself
must pass when making an authorization decision. It is important to define the
exact identifiers under which information like this is passed. In this instance, the
application will use the identifier patient-id.

Depending on the exact application environment, this patient ID could use a
search parameter for an LDAP or JDBC search. The Tivoli Security Policy
Manager product documentation covers the necessary steps that are required to
set up these types of searches. The important point to remember is that the
patient-id attribute should be specified as the Key attribute in the decision
request.

Policy distribution
After a policy is configured, it can be distributed to the appropriate RTSS PDT.

Policy enforcement
Now that the services and policies have been modeled and configured, the
information that must be passed in by the enforcement point becomes clear. To
summarize, the following data is required:

� The application ID of “patient-application”

� A resource identifier in the set [“patient-info”, “patient-test-results”,
“patient-medications”, “patient-genomic”]

� An action identifier in the set [“read”, “edit”]

� The identifier of the patient whose data is being accessed as the attribute
“patient-id”

The mechanism by which a customized PEP is written depends on the exact
environment on which the application runs. It could be an EJB if running within a
J2EE application, a Spring bean if running in Spring,; or a Java class called by
application code.

Section 8.1, “Runtime security services interfaces” on page 214 outlines the
Tivoli Security Policy Manager API. There are several design decisions that need
to be considered when writing the code that calls the Tivoli Security Policy
Manager API, such as determining how the identity of the currently authenticated
user is passed to the decision engine. This determines the implementation of the
EvaluationContext object that is used. The EvaluationContext is the object that
maintains references to the objects required to extract information from the
running environment.
 Chapter 8. Application level integration 251

There are a number of possible scenarios:

� The application is deployed in WebSphere Application Server, with
application security enabled, and using WebSphere authentication. In this
case, the API has the ability to automatically extract the authenticated user
from the WebSphere Application Server container. In this case, the calling
application should use a ContainerEvaluationContext implementation, as
shown in “Authorization using a container-authenticated subject” on
page 216.

� The application is deployed in WebSphere Application Server, but application
security is disabled and a custom authentication method is being used. This
scenario is common when a framework, such as Spring, is being used. For
this case, the application must create the user objects, so the
ApplicationEvaluationContext implementation, as shown in “Using an
application-provided subject” on page 217, should be used instead.

� If the ApplicationEvaluationContext is being used, then you first need to set
up the user context, as shown in “Using an application-provided subject” on
page 217.

� All attributes are provided through implementations of the IAttributesHandler
interface. These implementations are registered with the ApplicationAttributes
mapped to predefined keys in the EvaluationContext's handlers, as discussed
in “Providing additional resource, action, and environment attributes” on
page 219. In the sample use case, passing the patient identifier requires
setting up a callback mechanism. Attributes can be provided to the Resource,
Action, and Environment request sections.

Integration with other platforms based on Java
If the Java platform does not support Tivoli Security Policy Manager, a RESTful
approach can be used to implement a custom authorization interface, as
discussed in “Tivoli Security Policy Manager API with REST-based interface” on
page 231.

Considering re-use: It is important that the EvaluationContext is created
once and re-used across multiple calls. It is thread-safe, so sharing across
threads is encouraged as well. In many use cases, object state and helper
code is initialized on creation of the context object, and re-using the
instance ensures this initialization happens only once. Re-creating the
EvaluationContext instance on every request can result in a significant
performance impact.
252 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

8.3.2 Integration with WebSphere Portal

Portlets are special JSPs, and in theory the portlet support applies to other types
of JSPs as well. However, we only consider portlets listed in this section. Tivoli
Security Policy Manager can enforce authorization for contents within a JSP
page through a custom tag library, so this is a form of programmatic security
rather than declarative security.

The tag library is installed as part of the RTSS client. To use this library, the
following steps must be completed:

1. The application developer must identify the actions and resources within a
page content that can be governed by Tivoli Security Policy Manager policies.

2. The application developer implements the page using the tag library to
customize the visibility of page content.

3. A security administrator imports the actions and resources into Tivoli Security
Policy Manager. This information is used to author policies that govern user
privileges.

4. Finally, at run time, the JSP tag library invokes the RTSS client to obtain the
authorization decision and entitlements.

We now discuss these steps one by one.

Identifying portlet authorization resources
The portlet and its associated resources need to be defined to Tivoli Security
Policy Manager as a service to enable policy attachment. Tivoli Security Policy
Manager provides an Eclipse plug-in for this purpose. It is called the Tivoli
Security Policy Manager Interchange Editor. The Interchange Editor allows you
to define a portal service and store it in an interchange file.

The service description for portlets can contain one or more services, which in
turn consist of portlets, actions, and resources within the portlets. The
interchange file may also contain roles. It is good practice to use the Interchange
Editor side by side with the actual portal source code and use copy and paste to
avoid typing errors when entering the matching resource names.

The resulting interchange file is stored for later use by the Tivoli Security Policy
Manager administrative console.

Implementing authorization using the tag library
The tag library is discussed in 8.1.2, “JSP tag library” on page 223 in detail. The
application developer adds the tags required to implement the authorization calls.
 Chapter 8. Application level integration 253

Importing the interchange file
The XML interchange file, which was created using the Eclipse plug-in, must be
imported into Tivoli Security Policy Manager using the administrative console.
The components need to exist on the same system where your web browser is
located. Chapter 3. “Managing services”, of Tivoli Security Policy Manager
Version 7.1 Administration Guide, SC23-9476 has a sub-section named
“Importing services from an interchange file” that provides details about how to
import the portlet as a service.

After the service is imported, a policy can be attached to it. The policy must then
be distributed to the local RTSS on the portal server.

Runtime enforcement
Runtime integration is accomplished by providing a WebSphere Application
Server JACC based container integration. The tag library must exist in the
correct place. It calls the RTSS transparently. The resulting authorization
decision determines the content that gets rendered by the portlet.

8.3.3 Integration with Microsoft technology

Tivoli Security Policy Manager provides several integration options to support
Microsoft based technology. The .NET runtime security service client integration
can be used to externalize security from C# and .NET based applications. The
container level integration, which is discussed in 6.3, “Microsoft environment” on
page 169, uses the .NET runtime security service client integration to provide the
IIS integration with the SharePoint Authorization HTTP Module, ASP.NET
integration with the .NET Role Provider, and MOSS integration with the
SharePoint Item Event Receiver. If your application does not support the use of
the .NET Role Provider, you can use the .NET integration with the .NET runtime
security service client to externalize security policy management from your
applications.

C# and .NET application integration
Using the .NET runtime security services client, you can integrate Tivoli Security
Policy Manager authorization and entitlements decisions directly into your .NET
based applications. The Tivoli Security Policy Manager .NET Role Provider and
the Enforcement Point for Microsoft SharePoint (which includes the SharePoint
HTTP Authorization Module and SharePoint Item Event Receiver) are examples
of using the .NET runtime security services client to provide integration with Tivoli
Security Policy Manager.
254 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The .NET runtime security services client provides a programmatic framework for
calling the Tivoli Security Policy Manager runtime security services web services
for authorization and entitlements decisions in your .NET applications. The client
uses the Windows Communication Foundation (WCF) to transport XACML over
SOAP. Your .NET application is then able to use the returned decisions to
enforce access requests.

A typical usage of the .NET runtime security services client includes custom
.NET applications or specialized extensions, such as a SharePoint Webpart. It
may be necessary to use the .NET runtime security services client when the
Enforcement Point or Role Provider do not provide the require level of
integration, or they cannot be configured into your application. In both usage
scenarios, the configuration and code required to initialize and call the .NET
runtime security services client are the same.

When using the .NET runtime security services client directly in your code, an
accompanying custom service and associated security policy must be created
manually in the Tivoli Security Policy Manager console. The structure of the
custom service and the attached security policy is dictated by the outcome from
the policy modelling and simulation phase of the policy life cycle model
discussed in previous chapters.

The .NET runtime security services client can be used to implement in or migrate
security policy to Tivoli Security Policy Manager for your .NET applications, or it
can be implemented with the initial stages of application development. It is not
necessary to create the custom service before coding begins, but there is a fixed
relationship between the application’s authorization and entitlements
requirements and the custom service created in the Tivoli Security Policy
Manager console.

Service creation and policy authoring
The structure of the Tivoli Security Policy Manager custom service to be created
will be driven by the security requirements for the application determined during
the Policy Modelling and Simulation phase of the policy life cycle model. With
the service defined, the required security policy elements must be created and
attached within the custom service. If your security policy requires custom
attributes from your .NET application or from an external source such as a
directory server, they can be added here and mapped during the Policy
Configuration phase.
 Chapter 8. Application level integration 255

Figure 8-3 shows an example of a simple custom service that represents a
business system of inventory management. We use this example to demonstrate
the use of standard attributes from the request, such as action-id, the use of
custom attributes populated by the .NET application, and also external attributes
from a directory.

Figure 8-3 Sample custom service for .NET applications integration

The custom service shown in Figure 8-3 was derived from the following business
requirement:

“The ability to view (action) any of the inventory management system
categories (resource) has to depend on whether you are an employee or
supplier (application role), and which widget you order or supply (external
attribute).”

The following security policies have to be created and attached to meet these
requirements:

� Current Inventory Access policy, which permits all subjects to use the view
action on the current widgets on hand. This policy is attached to the Current
element.

� Employee Order Access policy, which permits employees to use the view
action on all widgets that are on order. This policy is attached to the On Order
element.

� Supplier Order Access policy, which permits suppliers to use the view action
on all widgets that are on order for the item that they supply. This policy is
attached to the On Order element.

� Future Demand Access policy, which permits supervisors to use the view
action on widgets that may need to be ordered to fulfill future demands and
avoid back orders.

Inventory Management
|
+ ==> Current
|
+ ==> On Order
|
+ ==> Future Demand
|
\/
256 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

With our custom service and security policies defined, we now explore how the
.NET runtime security services client can be used in the .NET applications to
integrate with Tivoli Security Policy Manager. The code used in this example
comes from a sample SharePoint Webpart, but the same Tivoli Security Policy
Manager integration can be applied in any .NET application.

Namespace references
To use the .NET runtime security services client in your .NET application code,
you must reference the namespace of the client, which also provides access to
the interfaces required to populate attributes in the request:

using IBM.Tivoli.SecurityPolicyManager.RTSS;

The initialization of the .NET runtime security services client and the interfaces
required to populate custom attributes in the request are discussed in later
sections.

Custom handlers
The .NET runtime security services client populates standard XACML attributes
of action-id and resource-id as part of the request. If your security policy requires
context specific or custom attributes, such as resource, session, or action, your
.NET application must populate those attributes for the .NET runtime security
services client.

Populating additional attributes is achieved by using handlers, which provide the
necessary attribute-ids and associated values, which are populated in the
XACML request. Handlers are custom coded modules that implement either the
Subject or Attribute handler interface. A number of ready to use subject and
attribute handlers are provided with the .NET runtime security services client.
 Chapter 8. Application level integration 257

Figure 8-4 shows the relationship between a custom .NET application, the .NET
runtime security services client, and custom subject and attributes handlers.

Figure 8-4 Using .NET runtime security services client with custom handlers

Subject handler interface
Referring back to our security policies, our Current Inventory Access policy
requires the subject-id from the XACML request to determine view access. The
subject-id must be populated by a Subject Handler, which the .NET runtime
security services client calls to populate the subject XACML attribute.

To build your own Subject Handler, you must implement the SubjectHandler
interface, as shown in Example 8-21.

Example 8-21 Subject Handler interface

public interface SubjectHandler
 {
 string GetSubjectId();
 string[] GetGroupIds();
 string[] GetRoles();
 XmlElement GetAuthenticationToken();
 }
258 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

If a particular method is not applicable to the .NET application or subject handler,
it should return null. The subject-id and group-ids should generally contain the
full distinguished name (DN) of the subject so they can be used to map
Application Roles during the policy authoring and policy configuration life cycle
phases.

A number of ready to use subject handlers are provided with the .NET runtime
security services client, or you can write your own subject handler by
implementing the SubjectHandler interface to have full control over populating
the attributes from .NET application.

Which subject handler the .NET runtime security services client uses can be
configured in the Web.config file for your .NET application, or programmatically
after initializing the client. If you need to use the .NET runtime security services
client in multiple places in your .NET application and require each instance to use
a different subject handler, you should configure the handlers programmatically.

The programmatic configuration of a subject handler is discussed in
“Authorization client initialization” on page 262.

Attribute handler interface
To provide fine grained authorization decisions, our example security policies not
only defined the inventory management systems that could be accessed, but
also provided some specific context around which widget type was being
accessed. This is an example of a custom resource attribute using session data.

Similar to the use of subject handlers, the .NET runtime security services client
can be configured to call custom attribute handlers to provide custom subject,
action, and resource attributes in the XACML request in addition to the action-id
(view in our example) and resource-id (the inventory system in our example).

Subject, Action, and Resource Attribute handlers are built using the same
interface and are also configured through the .NET application’s Web.config file
or programmatically. A Subject Attribute handler can be used to provide
extended subject attributes, such as a Department code or Job ID, whereas a
Subject handler is used only for subject-id, group, and role attributes, which is
described in “Subject handler interface” on page 258.

To build your own Attribute Handler, you must implement the AttributeHandler
interface, as shown in Example 8-22.

Example 8-22 AttributeHandler interface

public interface AttributeHandler
 {
 string GetIssuer();
 string[] GetAttributeIds();
 Chapter 8. Application level integration 259

 object[] GetAttributeValues(string attributeId, EvaluationContext
context);
 }

The .NET runtime security services client calls GetAttributeIds() for the array
of attributes the handler provides and then calls GetAttributeValues() for each
of the attribute IDs. If an attribute does not have a value for the context is it being
called, the value returned should be null. You can optionally return a custom
string representing the issuer of your attributes, or if this is not needed, return
null.

The .NET runtime security client will make available to your code
EvaluationContext, which provides you access to attribute data for the request,
such as the action, resource, and subject, as these may be significant when
determining values for the handler.

For our example, we build our own Resouce Handler (Example 8-23), which
populates a custom attribute called widgetType in the Resource XACML element.
The value for widgetType is set programmatically, but the handler could also
determine this value by accessing session or environment data in which the .NET
application is running.

Example 8-23 Custom ResourceHandler implementation

internal class WidgetAttributeHandler :
IBM.Tivoli.SecurityPolicyManager.RTSS.AttributeHandler
 {
 [ThreadStatic] private string widgetType_;
 string AttributeHandler.GetIssuer()
 {
 return null;
 }
 string[] AttributeHandler.GetAttributeIds()
 {
 return new string[] { "widgetType" };
 }
 internal string WidgetType
 {
 get
 {
 return widgetType_;
 }
 set
 {
 widgetType_ = value;
 }
 }
260 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

 object[] AttributeHandler.GetAttributeValues(string attributeId,
EvaluationContext context)
 {
 return new object[] { widgetType_ };
 }
 }

Now that we have added the custom handlers that populate specific attributes in
the XACML request, we can complete the policy configuration. This phase of the
policy life cycle model allows us to map attributes from the XACML request to
Rule Parameters. We can also use values from external sources in Rule
Parameters.

Policy configuration
During policy configuration, we are able to define from where our Rule Parameter
values are mapped. In our example, we had a requirement to evaluate access
decisions based on the widget that a supplier provided, which was attached at
the On Order element.

The widget being accessed in our .NET application is populated by the custom
resource handler. The value for this is contained within the widgetType custom
attribute of the Resource XACML attribute in the request.

We need to compare this to the supplier’s list of widgets that they provide, which
are contained in a directory server. Using their subject-id from the Subject
XACML attribute, we can retrieve their department attribute and determine if this
value contains widgetType.

This action demonstrates using application context or session data from the
runtime request to provide authorization against a predefined business system.
Our Supplier Order Access policy attached to the On Order element defined an
Application Role based on the group-ids contained within the Subject XACML
attribute.

If these were not populated by the subject handler, this could also be achieved by
using an additional Rule Parameter and determine a users group memberships
at run time from the same or different directory server or database and use the
subject-id to perform the lookup.

After our policy has been configured and deployed, we can call Tivoli Security
Policy Manager for delegated authorization and entitlements from within our
.NET application code.
 Chapter 8. Application level integration 261

Authorization client initialization
Before we can call out to Tivoli Security Policy Manager to make authorization
and entitlements decisions in a .NET application, we must first initialize the .NET
runtime security services client.

During initialization, the .NET runtime security services client will read its
configuration from the calling application’s Web.config file, which will add the
RTSS web services endpoint, configure the security and authentication settings
for the transport, and register any custom subject and attribute (action or
resource) handlers. After initialization, handlers can be added or updated
programmatically.

In the sample code shown in Example 8-24, you can see how line one
instantiates a new AuthorizationClient object, which should be a local member
and be reused without re-initializing it within your application’s class.

Line two demonstrates how to register a custom subject handler
programmatically. The handler must be accessible to your class, either by using a
reference (using) or as an internal class.

The third and fourth lines add custom resource and action handlers. When
adding a handler, you must define the handler type from the
EvaluationContext.Section enumeration and an instance of the required
handler. The subject and attribute handlers you register programmatically should
also be local members so you can access them throughout your class to update
the necessary values at run time.

Example 8-24 Authorization client initialization

_authzClient = new AuthorizationClient();
_authzClient.evaluationContext.SubjectHandler = new SubjectHandler();
_authzClient.evaluationContext.AddAttributeHandler(EvaluationContext.Section.Re
source, new ResourceAttributeHandler());
_authzClient.evaluationContext.AddAttributeHandler(EvaluationContext.Section.Ac
tion, new ActionAttributeHandler());

During initialization, any errors encountered by the .NET runtime security
services client are output to its TraceSource, and any exceptions are passed
back to your code to handle.

In our sample, shown in Example 8-25, we create a local member for our
resource handler and register it with the authorization client.

Example 8-25 Attribute Handler initialization and registration

widgetHandler_ = new WidgetAttributeHandler();
_authzClient = new AuthorizationClient();
262 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

_authzClient.EvaluationContext.AddAttributeHandler(EvaluationContext.Section.Re
source, widgetHandler_);

Authorization request
Making authorization requests to Tivoli Security Policy Manager is a single line
call after the .NET runtime security services client is configured and initialized:

bool accessAllowed = _authzClient.IsAccessAllowed(serviceName,
resource, action);

When creating a custom service, the Application Name field is what is displayed
in the Tivoli Security Policy Manager console and the Application ID is used to
reference the application in XACML requests. In our example, our Application
Name was Inventory Management, so we assume our service name was entered
as inventory-management, which we use in the .NET runtime security services
client call as the serviceName.

Child elements created in the custom service require an Element Name and
Element ID. Like its parent, the name is displayed in the Tivoli Security Policy
Manager console and the ID is used to reference it. In our example, our element
names were Current, On Order, and Future Demand. We assume the
corresponding element IDs are current, on-order, and future-demand, which we
use in the .NET runtime security services client call as the resource.

Finally, we must specify the action that corresponds to the function being
performed in your .NET application. This action must be one the actions selected
or defined when creating the custom service. For our example, the only action
we specified was view.

Using our example, if we want to authorize a supplier, Supplier One, who
manufactures widgetType1, the code shown in Example 8-26 is used.
Remember that widgetHandler_ is our local instance of the custom resource
attribute handler, which our application populates and the registered subject
handler determines the subject at run time.

Example 8-26 Sample authorization call

widgetHandler_.WidgetType = “widget1”;
bool accessAllowed = _authzClient.IsAccessAllowed(“inventory-management”,
“on-order”, “view”);

The return value is true only for operations that evaluate to permit, with all other
results being treated as false or unauthorized.
 Chapter 8. Application level integration 263

Entitlements request
If we are instead interested in what actions a user can do in our application,
rather than authorizing a specific transaction, we can use an entitlements call.
Entitlements differ from authorization calls in that they represent a collection of
authorization decision evaluations at a given point in time using the available
attribute data. As such, entitlements are best suited for decisions that do not rely
on session specific or dynamic attributes.

When making an entitlements call, you must provide the serviceName
(application ID of the custom service) and the action for the request. This request
returns all the elements within the custom service that evaluate to permit for the
given action.

string[] entitlements = _authzClient.GetEntitlements(serviceName,
action);

In our example, if we want to determine all inventory management systems our
supplier can access, we could use the entitlements call shown in Example 8-27.
Remember that if we have a security policy that requires specific attributes from
the original request, we must populate those attributes, or the policy may
evaluate to false. The entitlement decision is a policy combination of all
applicable policies attached to an element.

Example 8-27 Sample entitlements call

widgetHandler_.WidgetType = “widget1”;
string[] entitlements = _authzClient.GetEntitlements(“inventory-management”,
“view”);

Using our business rules, the entitlements returned should include the custom
service element IDs of current and on-order.

If we did not populate the WidgetType in our custom handler, the policy for On
Order would not have evaluated to permit and only current would have been
returned to our application.

Conclusion
As you can see by following our example, the use of the .NET runtime security
services client can provide your applications with flexible, context rich, and
reusable security policy across all your .NET applications.

The client can be used for stand-alone and for web based applications, such as
SharePoint WebParts and in ASPX pages. The client can also be used to build
specific integration points, such as the SharePoint Authorization HTTP Module,
SharePoint Item Event Receiver, and .NET Role Provider.
264 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

8.4 Conclusion

In this chapter, we discuss the application level approach, the Tivoli Security
Policy Manager interfaces for application integration, and several examples of
application integration, including integrations with Java and .NET technology.

Several Tivoli Security Policy Manager interfaces are discussed, including the
RTSS authorization API, the policy management API, and a pattern for
implementing a security interface using a RESTful approach.
 Chapter 8. Application level integration 265

266 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Chapter 9. Deployment considerations

In this chapter, we discuss a number of considerations for deploying Tivoli
Security Policy Manager, including:

� Business considerations
� Deployment considerations
� Deployment architecture
� Application integration considerations

In each of these sections, we explore the topic in more detail and answer
potential questions for each of the architectural decisions. Deployment
considerations and approaches for implementing a successful project are
discussed along with the architectural aspects of a deployment that should be
considered.

9

© Copyright IBM Corp. 2011. All rights reserved. 267

9.1 Business considerations

There are a number of high level business drivers that motivate an organization
to implement a security policy management initiative. These drivers are outlined
in Chapter 1, “Business drivers and foundation for IT security policy
management” on page 3 and include:

� Addressing governance
� Compliance and data security
� Risk management and cost containment

These business drivers should be clearly understood by all stake holders and a
clear strategy for addressing them should be implemented at the business level.
Addressing issues such as governance, compliance, data security, and risk
management are not stand-alone and one-off projects, as they are continually
evolving aspects of the business. Such initiatives require the continual support of
the business and evolve as business needs change.

Projects to transform how policy is managed within an organization tend to touch
many parts within the organization, including IT operations, the security teams,
application teams, application development, executive management, and so on.
It is important that a clear vision of the initiative is defined and all involved parties
in the organization agree before such a project is attempted.

9.1.1 Business use cases

Let us now spend some time to discuss three business use cases:

� Cloud computing
� Portal deployment
� Application data

Each implementation has unique requirements, so a deployment can consist of
one or more of these use cases. It is useful to align a project with at least one of
these broad use cases for communication with stake holders, which can help to
communicate the purpose of the project to all stake holders, both technical and
non-technical, and ensure commitment.

Cloud computing
Organizations are continually seeking new ways, such as service-oriented
architecture (SOA) and cloud computing initiatives, to deliver applications and
services efficiently and cost effectively. These alternatives to traditional IT
infrastructures can help reduce IT and application development costs, increase
opportunities for collaboration, and drive business growth.
268 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

At the same time, however, they can create new vulnerabilities, exposing access
to applications, data, and services beyond traditional organizational boundaries.
Organizations therefore require more than traditional IT security to manage and
protect access to these applications, data, and services.

Tivoli Security Policy Manager can help in cloud and SOA use cases to provide
the following items:

� Secure access to on- and off-premise deployments of applications and
services by reducing the risk of inconsistent security policies.

� Centrally managed user access in SOA deployments where the introduction
of web services is transforming the IT environment.

� Secure access to hybrid cloud deployments, in which organizations use the
benefits of the cloud while still protecting sensitive information that may be at
risk.

The intermediary pattern outlined in Chapter 5, “Intermediary level integration”
on page 121 discusses patterns that can be used to add security for cloud and
SOA based implementations. This policy can be further enriched with data from
external systems, such as user and data repositories, federation services, rules
engines, and so on, as discussed in Chapter 4, “Integration with external
systems” on page 93.

Portal deployment
Portal servers enable organizations to quickly consolidate applications and
content into role-based applications, complete with search and personalization
capabilities. This scenario provides users with an enhanced web experience, and
organizations to more efficiently grow, extend, and reuse assets. Exposing this
information brings security challenges about who, when, and where should have
access to this data.

Tivoli Security Policy Manager can provide the following items:

� A personalized view of enterprise resources based on entitlements

� Additional authorization capabilities to presentation logic covering
fine-grained controls to Portal applications

� Efficient centralized security policy management of portal resources

In Chapter 8, “Application level integration” on page 213, we discuss a pattern for
how Portal resources can be personalized and protected based on a security
policy.
 Chapter 9. Deployment considerations 269

Application data
Organizational data that was once stored securely on mainframe computers is
now increasingly available through business services to a diverse set of internal
and external users. This broader exposure creates unprecedented opportunities
for better collaboration and service delivery, but it also puts critical data at
greater risk for compromise. As composite applications become increasingly
complex, and as organizations work to make information and services more
accessible to more users, applications are potentially becoming more vulnerable.

Tivoli Security Policy Manager can provide the following benefits:

� Protect data by providing access on a need-to-know basis, particularly in
collaborative environments where multiple types of users need access to
different types of data.

� Enable security in data centers, where data volumes are growing at explosive
rates and privileged users may pose particular risks for unintended access.

� Manage the risk of data disclosure across the organization, through a
practical, life cycle based approach to data security.

The pattern outlined in Chapter 8, “Application level integration” on page 213 can
be used to protect application based resources. The pattern outlined in
Chapter 7, “Database level integration” on page 187 can be used to protect data
stored in database resources. Using these to patterns together can allow an
organization to centrally protect resources at the application and data layer,
which provides a view of policy that cannot be achieved without using this
approach.

Policy can be further enriched with data from external systems, such as user and
data repositories, trust services, rules engines, and so on, as discussed in
Chapter 4, “Integration with external systems” on page 93.

9.2 Deployment considerations

Before taking on a project to transform security policy management within an
organization, all stake holders should have a clear understanding of the business
motivations and drivers. Clear and achievable goals should be set that can be
executed to show value to stakeholders in incremental steps adopting an agile
methodology. As such, when a project touches many parts of an organization, it
is useful to start with a small and well defined project scope and develop the
project across several smaller iterations.
270 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Figure 9-1 shows how a policy management project can evolve over several
phases to continuously show value to an increasing number of stakeholders.

Figure 9-1 Phased implementation approach

The first phase focuses on the deployment of the basic components. In the
second phase, simple capabilities that are delivered with the base product should
be implemented to deliver basic functions. In the third phase, more complex
policies and roles can be deployed and data from external sources can be
integrated to create more meaningful and context aware policies. In the final
stage, encompassing phases four and five, the system is moving toward a
mature state, and integration with more complex systems can be implemented.

9.2.1 Identifying stakeholders

Before each iteration of the project, the involved stakeholders need to be
identified. This action allows technical and organizational requirements to be
planned prior to any implementation work. Typical stakeholders include, but are
not limited to:

� Application owners (business line management)
� Policy owners (security team)
� IT architects
� IT operations
� Executive sponsors
� Business unit owners

Each of these stakeholders represent a significant role within any
organization-wide project, and a successful implementation requires consensus
and cooperation from all parts of the business.
 Chapter 9. Deployment considerations 271

9.2.2 Identifying policies, services, and data

To effectively plan a deployment, the required business level policies should first
be determined. Because the policies involved can affect the scope of the project,
it is important to determine these policies as soon as possible in the planning
phase. From this information, the types of policies in scope can be formulated. A
project may involve implementing message protection policies, authorization
policies, or any other type of policies, which directly influences the level of effort
required for this project, and understanding this situation early in the project
phase can aid in the success of the project.

The services within the organization that policies may apply to need to be
considered next. The number and type of services involved can affect the scope
of the project as well. Specifically, the types of services that are required are an
important consideration. A project may involve managing container security, web
services security, application security, databases, and so on. By collecting and
understanding information about your applications, you can better scope the
integration options available and potentially discover the limitations.

Performing an inventory on your applications and data to scope their integration
capabilities can help you find the most appropriate integration pattern, such as
container, database, application, or intermediary. To start this process,
answering some simple questions, like those below, can aid in this planning
process:

� How does this application currently implement an authorization security
model?

� What interfaces (if any) does this application provide to facilitate external
authorization components?

� How will Tivoli Security Policy Manager be called into action?

� Can this application be hosted behind some other security device, such as
Tivoli Access Manager WebSEAL or WebSphere DataPower?

By better understanding your services and their integration capabilities, you can
then focus on what information can be used within your organization when
evaluating access control decisions to your applications.

Sources of information that may be of use in adding business context information
when managing a security policy should be identified as early as possible so that
the potential options for expressing policy become clear. This situation may
involve identifying user repositories, database repositories, security token
services, identity and access management services, and other types of external
systems. Having a clear understanding of this situation can help ensure that the
correct design and implementation is developed.
272 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

When mining policies, services, or environmental data, identify the owners of the
particular system or process. These owners need to be involved in the planning
and deployment of a project.

9.2.3 Prioritizing services

After the policies, services, and data sources have been identified, the phases of
the project can be planned. As Figure 9-1 on page 271 shows, services with
standard support provide an accelerated return on investment (ROI) and should
be implemented first. The requirements discovered in 9.2.2, “Identifying policies,
services, and data” on page 272 should be mapped to the capabilities supported
by the product.

The most strategic and least complex services, from both an organizational and
technical perspective, should be implemented first. Avoid any complex
integration work in the first stages of the project. This type of work should be
added as the solution matures in later iterations of the project. Ensure that the
implementation size is manageable and that applications are added one at a time
to ensure the migration has been completed successfully before attempting to
bring others online.

It is also important to ensure that applications continue to function as they
previously did, using the same content enrichment sources as they previously
did, such that the user experience or outputs are consistent. Use the capabilities
of Tivoli Security Policy Server to integrate with this external sources rather than
hardcoded implementations, so they can be easily modified as a security policy
is reviewed and changed.

9.2.4 Identifying operational requirements

In any system architecture that relies on external components as part of the
processing logic, it is essential to plan for and implement performance,
availability, and continuity systems. Generally, such capabilities include High
Availability and Disaster Recovery (HADR), Service Level Agreements (SLA),
and failover (redundancy). These capabilities are typically non-functional
requirements of the system, but are vital to the ongoing success of the
implementation.

A Tivoli Security Policy Server solution is composed of a number of individual
components, such as the Policy Server, runtime security services, and
Management Console (TIP), which all require planning for their operational
requirements. As with other infrastructure components to the broader systems, if
these components become unavailable, access to any number of consuming
services and applications may become unusable or unavailable.
 Chapter 9. Deployment considerations 273

Any system downtime ultimately leads to poor satisfaction levels and ongoing
costs to bring the systems online again.

Many of the Tivoli Security Policy Server components use the underlying
infrastructure of WebSphere Application Server, which includes the capabilities
for clustering, load balancing, high availability, and failover. When deploying a
large scale deployment of Tivoli Security Policy Server, it is vital that the
capabilities of the underlying platform are installed and properly configured to
facilitate HADR, meet SLAs, and provide redundancy for unplanned outages.

Planning for operational requirements and implementing these goals by using
the underlying capabilities of the platforms such as WebSphere Application
Server can assist in the ongoing availability and success of a Tivoli Security
Policy Server deployment.

9.3 Deployment architecture

As mentioned before, Tivoli Security Policy Server consists of console, policy
server, and runtime security services components. Depending on the IT
environment and the use case required, there are different ways to deploy the
components to meet those needs. We discuss some of the different and common
deployment options in this section.
274 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

9.3.1 Single data center deployment pattern

A small to medium scale deployment is normally contained within one data
center and the number of policy enforcement points are limited. For better
performance and ease of management, use a simple pattern using one policy
server and multiple runtime security services clients in local mode, as show in
Figure 9-2.

Figure 9-2 Single data center deployment pattern

The Tivoli Security Policy Manager console is the GUI interface used by security
administrators to manage the product. Depending on the business requirements,
multiple instances of the Tivoli Security Policy Manager console may be required
to support high availability for administrative tasks. As the administrative
components are separated from the runtime services, a highly available Tivoli
Security Policy Manager console is not necessary to provide a high availability
solution for the runtime components.
 Chapter 9. Deployment considerations 275

In a small to medium scale deployment, one Tivoli Security Policy Manager
console is usually sufficient. However, regular system backups and a quick
restoration capability is recommended in this case.

Multiple Tivoli Security Policy Manager policy servers can be set up within a
WebSphere Application Server cluster, and multiple policy database replicas can
be used to add high availability capabilities.

In this deployment pattern, an runtime security services client in local mode is
used for both the policy decision point and the policy enforcement point. The
runtime security services client in local mode is more efficient, because it
maintains a local cache of the policy for its services. Authorization decisions can
be made locally, avoiding the need to make a remote call over the network for an
authorization decision.

The runtime security services local client is less dependent on the policy server.
There is no need for continuous communication between the runtime security
services local client and the policy server. It is also easier for security
administrators to manage the runtime security services components, because
there are no additional layers between the local client and the policy server.

9.3.2 Remote office deployment pattern

A larger organization has its IT typically deployed in multiple data centers or
multiple regional offices. Using the Tivoli Security Policy Manager Runtime
Security Service (RTSS) server in local mode can help reduce the network traffic
over the WAN and simplify firewall settings between the remote offices and the
corporate office. Figure 9-3 on page 277 shows a remote office deployment
pattern. The policy server and policy database are set up in the corporate office,
and a corporate LDAP server provides the necessary user and role definitions.
RTSS local clients are deployed in the corporate office, as described in 9.3.1,
“Single data center deployment pattern” on page 275.
276 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Figure 9-3 Remote office deployment pattern

A pair of clustered RTSS policy servers are set up at the remote office, and a
WebSphere Application Server cluster provides system high availability and
scalability. The RTSS server maintains a local cache of the policies that apply to
the local services in the remote office. There could be some local user registries
and databases that provide additional policy information; the RTSS server can
use the policy information point (PIP) plug-in to retrieve this information. The
RTSS server acts as the policy decision point (PDP) in this pattern.
 Chapter 9. Deployment considerations 277

For services and applications running in the remote office, an RTSS remote
client is deployed to the WebSphere Application Server servers or clusters. The
RTSS remote client acts as the policy enforcement point (PEP) component, it
forwards the application’s authorization queries to the RTSS server through the
XACML over SOAP protocol, and then presents the authorization decision back
to the application. Because the RTSS remote client does not maintain a local
cache of the policies, the RTSS server must be highly available and able to
handle the peak volume of the queries. If needed, additional RTSS servers
(either standalone or clustered) can be set up to distribute the load; each server
or server cluster handles a certain number of applications or services. The RTSS
architecture is highly scalable to handle increased load.

9.3.3 Other considerations in determining deployment patterns

In the previous section, we used a network topology to design different
deployment patterns. In reality, a network topology is just one of the many factors
that can influence a Tivoli Security Policy Manager deployment pattern.

The total number of protected WebSphere Application Servers and clusters may
determine whether we need additional runtime security services servers to share
the policy distribution loads, and an runtime security services server is also
needed if there are PEPs that need to perform authorization queries through
XACML over SOAP.

Use runtime security services local clients for regular deployment. If there are a
large numbers of WebSphere Application Servers and clusters to be protected,
and if we observe performance degradation on the policy server, we can either
add more policy server instances in the WebSphere Application Server cluster,
or start to add runtime security services servers to share the load.

In an environment where both a policy server and runtime security services
server are present, both runtime security services local clients and remote clients
can be used. For systems with limited resources and a number of applications
and services, it is a good idea to use an runtime security services remote client.
For systems that have limited network access to the policy server, the runtime
security services remote client might be the only choice.

In summary, an runtime security services server can be used to share the load of
policy distribution, support runtime security services remote clients in a network
environment with limited access, and support PEPs that do not have an runtime
security services local client. The runtime security services local client is the
preferred way for J2EE applications and web services, and it is more efficient,
independent, and simple to manage. The runtime security services remote client
works better for systems with limited resources or limited network access.
278 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

9.3.4 Operational considerations

Let us take a look at some operational considerations.

Performance
The key to runtime performance is to ensure that the local policy cache for policy
distribution targets (PDT) is enabled. This action can reduce the level of
processing that is required for subsequent requests. Depending on the type of
application and the number of servers, it may be appropriate to use the local
runtime security services instances, avoiding the requirement for a remote
runtime security services client and server.

In environments that experience a high volume of transactions or peak load
capacity transactions, clustering and load balancing of remote runtime security
services instances may contribute to performance gains and reduce load on the
application servers themselves. A single and centrally managed runtime security
services cluster may also be more efficient and may require less ongoing
management than a number of individually embedded local instances. Of course,
this scenario relies upon your system architecture and available system
resources, and in some respects depends upon the actual business deployment
strategy, such as human resources, branch offices, and so on, of the
organization itself.

As we mentioned earlier, the unit of the policies that are distributed to the PDTs
is the service or application container. For each service or application container,
there is one XACML file that contains all policies. It is important to keep this
XACML file at a reasonable size so that it can be transferred and parsed more
efficiently. Refer to the discussion in 9.4.2, “Application policy design
considerations” on page 283 for more information about how to control the size of
the policy file.

In 9.2.2, “Identifying policies, services, and data” on page 272, we briefly
discussed how important it is to understand your applications to best determine
the integration pattern with Tivoli Security Policy Manager. When considering the
performance of an application, rather than the performance of the overall system
architecture, the design of how the integration will be achieved is important.

Writing applications and directly calling an API each time an authorization
decision is required may not be as efficient as using entitlements or potentially a
different form of integration, such as a container or interceptor. Service design
and policy structure can assist you in determining the best programmatic
implementation to use Tivoli Security Policy Manager security.
 Chapter 9. Deployment considerations 279

When considering Java based applications, for example, a method called
interceptor model from the Spring framework may yield improved performance
over calling externally for all authorization decisions, inline in the application
code. Especially for large codebases made up of multiple classes and methods,
it is more appropriate to protect the resources being accessed, rather than the
code itself, so that not every class and method requires a specific policy to be
authored and attached.

Performance is always a key issue in the deployment of new systems, and
ideally the new systems should outperform the previous one, while still adding
additional capabilities to the environment. When deploying Tivoli Security Policy
Manager, there are a number of optimizations and design choices that can all
contribute to overall performance efficiencies.

Policy administration
Next, let us talk about some challenges to bulk load Tivoli Security Policy
Manager policies, or to migrate the policies from one environment to another
environment. The default Tivoli Security Policy Manager management interface
console, Tivoli Integrated Portal (TIP), is GUI based, which is not an ideal
platform to manage a significant number of policies, as the operations cannot be
captured and repeated in an automated fashion.

The Tivoli Security Policy Manager V7.1 administration APIs can be used to
assist the policy administration tasks. You can develop your own command-line
applications to perform specific administration tasks, and then use scripts to call
these commands. When using scripts, you may need to define the format of input
files for policy definitions, and these input files and scripts can be modified and
reused in different environments (for example, from a QA environment to a
pre-production environment).

9.4 Application integration considerations

Tivoli Security Policy Manager provides multiple integration patterns for different
applications and services. We discuss some of these integration considerations
in this section.

9.4.1 Integration patterns

For the services or applications to be protected by Tivoli Security Policy
Manager, there might be multiple integration patterns. Depending on the
organization’s IT environment and business requirements, one or more
integration patterns may be applicable to your deployment.
280 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

There are six service types available in the Tivoli Security Policy Manager
console to represent your services and applications:

� Web services
� J2EE applications
� Portal applications
� Databases
� Microsoft SharePoint
� Applications

Although Tivoli Security Policy Manager differentiates between these different
service types, from an integration perspective, these types can be more broadly
categorized based on the method used to achieve integration. These patterns
include:

� Web services using WS-Security and WS-Trust
� Java based applications including J2EE and Portal
� Structured Query Language (SQL) for Databases
� XML over SOAP by calling runtime security services

For a web services based pattern, Tivoli Security Policy Manager can provide
authorization services using the WebSphere DataPower integration or using the
WS-Trust interface. In addition, Tivoli Security Policy Manager can provide
integration with Web Services Registry and Repositories (WSRR) for web
services message protection policies. For an IT environment that uses
WebSphere DataPower as a web services gateway, configure WebSphere
DataPower as a Tivoli Security Policy Manager PDT to provide better
performance and simpler configuration. However, if WebSphere DataPower is
not used, and the web service is built on top of WebSphere Application Server,
you may consider using the WS-Trust interface to make authorization service
calls to Tivoli Security Policy Manager through the trust chain on the Trust
Server. This configuration can be more complicated and requires additional
software components, but it works well in some IT environments.

If the organization uses Java applications, there are also several Tivoli Security
Policy Manager Java based integration patterns form which to choose. For
applications using WebSphere Application Server J2EE container security
services, Tivoli Security Policy Manager is shipped with a Tivoli Security Policy
Manager JACC container that can be integrated with a custom J2EE application
requiring configuration changes only. For applications that do not use J2EE
container security, the Tivoli Security Policy Manager JACC Plus API can be
used to make authorization calls to Tivoli Security Policy Manager. This API
applies not only to J2EE applications, but also generic Java applications, such as
the Plain Old Java Objects (POJO), or Java applications that use other
containers, such as Spring.
 Chapter 9. Deployment considerations 281

In the database integration pattern, if the data is well structured within a
supported database management system (such as DB2, Oracle, and so on), you
can use Tivoli Security Policy Manager to provision the database access control
policies directly to the database system using SQL. As an alternative, if the
database management system supports it, another pattern is to set the access
control over the particular database API or SPI calls to control access to the data.

For applications that cannot be integrated using the previous methods, or if you
have multiple applications or services with similar service, role, and rule
requirements, you can use XACML over SOAP to call runtime security services
that provide a Tivoli Security Policy Manager integration point. Although the
Tivoli Security Policy Manager console provides a discovery capability for
Microsoft SharePoint sites to create the logic site hierarchy, integration is
achieved by a Microsoft .NET runtime security services client. The remote client
calls the web service interfaces of runtime security services to enable
fine-grained authorization in Microsoft .NET environments. For all other
applications that make use of the XACML over SOAP (remote client) pattern, you
have the flexibility to create the service hierarchy in whatever format is most
suitable for our system landscape.

Possible service hierarchies for custom applications could include:

� Hierarchical system environment roles, for example, a Microsoft .NET Role
Provider

� Logical business functions, such as order taking, order processing, and
dispatching

� User interface components within an application used to evaluate which
controls should be visible or enabled, such as view, edit, or delete buttons

� A low level method of functions within the source code of an application
requiring defined permission levels to invoke the call

When selecting the Applications service type as your integration pattern, you
have the flexibility to model your requirements directly between your applications
and the resultant Tivoli Security Policy Manager services. Appropriate planning,
modelling, and simulation must be completed to ensure none of the other
integration patterns are better suited for your environment. Due to the flexible
nature of this pattern, it is easy to build your services in Tivoli Security Policy
Manager around your existing applications, which creates a one to one mapping
between application and authorization logic. This setup reduces the ability to
optimize and centralize your service, role, and rule definitions, and requires
application developers to understand the Tivoli Security Policy Manager
deployment rather than the abstract business security model.
282 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The application integration pattern is only limited by your organization’s IT
environments and can be used to complement complex business requirements
and usage patterns. When it comes to choosing the most appropriate integration
patterns, you should consider the following approaches:

� Avoid any overly complicated configurations, as these may become complex
and expensive to deploy and maintain.

� Use existing functions from the product rather than developing your own code
where possible. This action can reduce service and support costs during the
application’s lifetime.

� Investigate your integration options before implementing the final solution.
Where possible, use prototypes and proof of concepts that allow you to
validate the integration pattern prior to deployment.

9.4.2 Application policy design considerations

During the policy modelling and simulation phase of the policy lifecycle model,
we must consider the system architecture and business requirements to assists
us in selecting the most appropriate integration pattern. In this section, we focus
on the customizable Applications service type available in Tivoli Security Policy
Manager, which uses the XACML over SOAP (remote client) pattern. The
Applications service type should be used where additional flexibility is required
over the traditional service types available in Tivoli Security Policy Manager.

When you use a custom Applications service type, you have the flexibility to
define the application or service hierarchy to represent the logical business and
IT requirements. For web services, J2EE applications, Portal applications,
Microsoft SharePoint sites, and databases, the nodes in the protected services
are determined by the way they are defined in the corresponding service
definitions and are imported to Tivoli Security Policy Manager rather than created
manually.
 Chapter 9. Deployment considerations 283

Tivoli Security Policy Manager organizes application definitions in a tree, as
shown in Figure 9-4. The top level Application Container represents the parent
application level for all the protected Elements and the Child Elements below
them.

Figure 9-4 Application services tree structure

During the creation of your Applications service type, the Application Name you
specify is visible in the services list in the Tivoli Security Policy Manager console.
In Figure 9-4 healthMgmtApp represents the name and possibly also the
Application ID. This value is used as the Context ID for the service to index into
the policy store. Each of the Elements, such as patientProfile, and Child
Elements, such as treatmentPlans, must also have a name and ID supplied so
they may be referenced in authorization decisions on the client.

The granularity required for authorization in your application or the way in which
you model your requirements determines the hierarchical Element structure
defined within an Application Container. Although there are no restrictions on the
number of elements that can be created in the one container, careful planning
can improve the manageability and potential performance of authorization policy
decisions for the container.

Before defining an Applications service type, several general considerations
should be made to assist in creating an optimized and flexible service structure.

Service abstraction
When creating your custom service, if you have not considered the other
integration patterns available or planned your service requirements appropriately,
it is easy to build your service with a tight coupling tieing the implementations of
the real application and your service structure together. In doing so, you reduce
the benefits of centralized policy management and the ability to reuse your role
definitions and business rules across your integrated systems and applications.
284 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

The Elements you define in your service structure represent the modelling of the
real application, role, or process in your organization. We can use native names
of the resources, such as Java class, methods, and so on, we can use metadata
associated to the application, such as logical system components (each requiring
different levels of authorization), or even a model of the roles for a preconfigured
system, such as a Microsoft .NET Role Provider. In each case, it is important to
maintain a level of abstraction between the real IT assets and the custom
service.

For example, consider a custom web application deployed in WebSphere Portal
that customizes the user interface elements based on a authorization level or
entitlements of a user. Defining all of the user interface elements, such as
buttons, check boxes, menus and so on, may work well for a single application
deployment, but tightly couples the GUI design with service security policy
design. If there is more than one web application, each one needs a
corresponding service created in the Tivoli Security Policy Manager console,
reducing scalability and increasing management.

One solution allowing the web application design to be maintained and abstract
the service from the design is to use JSP tags to classify the GUI elements. For
this solution, the security policy is based on JSP tags when the Application
Developer assigns a unique JSP tag to each GUI element required. In the
corresponding service and security policy, the Security Administrator need only
be aware of the function of each JSP tag label and not the layout or design of the
web application itself. With a common understanding and agreement of the JSP
tags, both parties can continue to build and maintain their components without
needing to understand the implementation details of the other.

With careful planning and modelling and an agreement about the abstraction
details, you can create your service in the same way in which the TSPM service
types abstract the design and layout from the actual IT implementation.

Service and authorization policy management
One of the significant features of Tivoli Security Policy Manager is the abstraction
of business rules and authorization security policy from real IT assets and
processes. To simplify security policy management and facilitate reuse across all
services, it is important to understand and optimize all of your applications, roles,
business rules, and so on. This can be achieved by following the policy modelling
and simulation phase of the Policy Lifecycle Model, which minimizes the
implementation specific security policies.
 Chapter 9. Deployment considerations 285

When undertaking policy modelling and simulation, one of the desired outcomes
is to identify synergies between the various services and applications used within
the organization. If a custom Applications service type is required, it is important
to consider the breakdown of the service hierarchy required. For example,
consider two different applications with similar security models requirements. In
this scenario, much of the service hierarchy would be the same for both
applications, and therefore a good candidate to reuse.

If one application had an extremely complex model and required an extensive
hierarchy, it may be necessary to create a different Application Container for
each application. Similarly, if all of the levels of hierarchy are added for all of the
applications within the organization and no optimization has been performed, this
may result in hundreds of Elements being created. Maintaining a large number of
objects can be difficult and error prone simply due to the need for scrolling
through the service to find the requirement element and attach security policies.

If your custom Applications service type contains a significant number of
Elements and also Child Elements, the nesting effect of authorization policy
inheritance can add unnecessary complexities during policy authoring. Because
authorization policies are inherited by all children, you may need to author and
attach a specific policy at individual nodes to compensate for the parental
behavior. The maintenance and testing of complex and inherited policies can
become expensive and error prone.

If policy modelling and simulation is not completed thoroughly and optimizations
are not made, the number of resource elements and potential nested elements
can increase the level of effort required for effective policy management.

Application Role reuse
Although Application Roles are defined for the whole Tivoli Security Policy
Manager policy space, the mapping of an application role to user group is unique
for each application container and needs to be mapped for each custom
Applications service type that you create. Maintaining a large number of
Application Containers requires them to be individually mapped and managed. If
multiple applications share many of the same Application Role mappings,
aggregating the Elements from each application into one Application Container
makes it easier to reuse and manage the role mapping.

However, if a single application has not been optimized or has a significant
number of Elements defined, to improve manageability and performance, we
may need to consider maintaining multiple application containers. If there is any
change in the Application Role to user group mapping in the organization, we
must ensure that the change is propagated to all related Application Containers.
286 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Although this change increases the management requirements by having to
maintain more than one Application Container, the complexity is limited to just
the one application and allows the benefits of the Element aggregation for the
other applications to be maintained.

Service classification
Tivoli Security Policy Manager classifications are a collection of policies and
service types that can be used to simplify the policy administration. Multiple
classifications can be assigned to a single service type, and the union of the
policies defined in those classifications will be applied. Classifications can help
organize policies in a more efficient manner and can be used as building blocks
for attaching complex policies.

Traditionally, policies are attached directly to a service or an Element in an
Application Container, which requires that the security administrator understand
the details of the service or application. Classifications remove this need by only
requiring classifications with required policies to be created and then adding
services into the appropriate classifications.

The policies contained within a classification are typically well established and
represent defined actions or capabilities for of Application Roles. By using
classifications, a security administrator does not need to know the details of the
service when defining a classification. After classifications are defined, the
service or application owner can determine which classifications should be
applied.

Where possible, classification should be used to prevent the need for attaching
individual security policies to Elements of each Application Container. This
scenario assists in the reduction of the complexity of policy inheritance and
consistent policy management across protected services.

Authorization policy distribution, storage, and enforcement
Tivoli Security Policy Manager distributes effective policy to PDTs, such as
WebSphere DataPower, runtime security services, and so on. If you maintain a
number of Application Containers, each with similar Elements and Application
Roles and Rule Parameters, there is a significant amount of duplication in the
traffic, although the network traffic generated by the distribution is small.
 Chapter 9. Deployment considerations 287

For example, consider an organization that is maintaining hundreds of
Application Containers and a change in mapping is required for one of the
configured applications. Each of the Application Container role mappings must
be updated, configured, and then distributed, which results in additional security
policy management and network traffic impact to distribute a similar policy to the
configured PDTs. If classifications are used and similar Elements from different
applications are aggregated into only a few Application Containers, the
management and network traffic requirements are significantly reduced.

Using the example scenario above, if your Applications service type has not
been optimized to reduce the number of Elements and the number of custom
services required, the physical size of the policy and previous distributed policies
increases. The storage requirements for each PDP continues to increase as
additional policies are updated and distributed.

Conversely, some PDPs may only be responsible for a subset of the application
elements, which means it is undesirable to distribute and store the additional
policy elements. This situation can only be overcome by maintaining multiple
Application Containers with different PDT and PDP configurations.

During policy enforcement, performance may be degraded if the policy store is
extremely large and contains nested and complex policies. Instead, you should
have optimized services and an authorization policy to reduce the overall
footprint of the policy management, configuration, distribution, storage, and
enforcement.

9.4.3 Conclusion

Tivoli Security Policy Manager provides a number of integration patterns that are
suitable for a range of different applications and services. Each pattern is suited
to particular integration scenarios, with the XACML over SOAP (remote client)
pattern providing the most flexibility. With this pattern, you have the capability to
create the service hierarchy in whatever format is most suitable for your system
landscape, but a number of considerations must be explored to ensure
optimization and performance is achieved.

9.5 Conclusion

An enterprise deployment of any new system always requires effective planning
prior to any implementation. Defining and implementing a repeatable pattern for
deployment not only assists in the migration of applications one by one, but also
during migration from a test to production environment.
288 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

When deploying Tivoli Security Policy Manager, a number of significant planning
steps should be completed and all levels of the organization undergoing the
change should be included. By involving all functional departments of the
business, a greater sense of ownership by all is realized and there will likely be
fewer challenges, such as unknown applications and systems or missed rollouts
to users.

There are a number of deployment patterns that can be applied to a range of
organizational structures, each with specific implementation details, so it may be
necessary to choose a particular pattern, but also use deployment options from
another pattern.

By planning for your deployment thoroughly and gaining a clearer understanding
of your organizational services, resources, roles, business rules, infrastructure,
and operational requirements, you can experience a smoother implementation
and accelerated time to value for the solution.
 Chapter 9. Deployment considerations 289

290 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 292. Note that some of the documents referenced here may be available in
softcopy only.

� IBM Tivoli Security Policy Manager, REDP-4483

� Understanding SOA Security Design and Implementation, SG24-7310

� WebSphere Application Server V7.0: Technical Overview, REDP-4482

Other publications

These publications are also relevant as further information sources:

� IBM Tivoli Security Policy Manager Version 7.1 Administration Guide,
SC23-9476

� IBM Tivoli Security Policy Manager Version 7.1 Configuration Guide,
GC27-2713

Online resources

These websites are also relevant as further information sources:

� Additional information about Tivoli Security Policy Manager:

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=
en#/wiki/Tivoli%20Security%20Policy%20Manager/page/Home
© Copyright IBM Corp. 2011. All rights reserved. 291

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Security%20Policy%20Manager/page/Home
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Security%20Policy%20Manager/page/Home

� The IBM Tivoli Security Policy Manager Information Center contains
information describing the installation and use of IBM Tivoli Security Policy
Manager:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?top
ic=%2Fcom.ibm.tspm.doc_7.1%2Fwelcome.html

� The IBM WebSphere Application Server Information Center contains
information describing the installation and use of IBM WebSphere Application
Server:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.home.doc/welcome.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and additional materials, as well as order hardcopy Redbooks
publications, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
292 IT Security Policy Management Usage Patterns Using IBM Tivoli Security Policy Manager

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tspm.doc_7.1%2Fwelcome.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.home.doc/welcome.html

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

IT Security Policy M
anagem

ent Usage Patterns
Using IBM

 Tivoli Security Policy M
anager

®

SG24-7880-00 ISBN 0738436143

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IT Security Policy Management
Usage Patterns Using IBM
Tivoli Security Policy Manager

End-to-end
security policy
management for
IT infrastructures

IBM Tivoli Security
Policy Manager
architecture
overview

Solution patterns
and deployment
considerations

In a growing number of organizations, policies are the key mechanism by
which the capabilities and requirements of services are expressed and
made available to other entities. The goals established and driven by the
business need to be consistently implemented, managed and enforced by
the service-oriented infrastructure; expressing these goals as policy and
effectively managing this policy is fundamental to the success of any IT
and application transformation.

First, a flexible policy management framework must be in place to achieve
alignment with business goals and consistent security implementation.
Second, common re-usable security services are foundational building
blocks for SOA environments, providing the ability to secure data and
applications. Consistent IT Security Services that can be used by different
components of an SOA run time are required. Point solutions are not
scalable, and cannot capture and express enterprise-wide policy to
ensure consistency and compliance.

In this IBM Redbooks publication, we discuss an IBM Security policy
management solution, which is composed of both policy management
and enforcement using IT security services. We discuss how this
standards-based unified policy management and enforcement solution
can address authentication, identity propagation, and authorization
requirements, and thereby help organizations demonstrate compliance,
secure their services, and minimize the risk of data loss.

This book is a valuable resource for security officers, consultants, and
architects who want to understand and implement a centralized security
policy management and entitlement solution.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Business context
	Chapter 1. Business drivers and foundation for IT security policy management
	1.1 Drivers that influence security
	1.1.1 Business drivers that influence security
	1.1.2 IT drivers that influence security

	1.2 IBM Security Framework
	1.2.1 Security Governance, Risk Management, and Compliance model
	1.2.2 People and Identity domain

	1.3 IBM Security Blueprint
	1.4 SOA governance
	1.4.1 SOA adoption: Impact on business and security
	1.4.2 Relating SOA governance to other business drivers

	1.5 Identity and access management governance
	1.5.1 Critical data: Ensuring authorized access only when needed
	1.5.2 Driving operational efficiency through automation
	1.5.3 Enforcing consistent policy enforcement across the IT environment

	1.6 Compliance management
	1.6.1 Regulation and privacy concerns
	1.6.2 Assessing compliance: The audit trail
	1.6.3 Relating compliance management and governance

	1.7 Data and information security
	1.7.1 Risk of unauthorized access and data loss
	1.7.2 Context-based information access
	1.7.3 Data security in cloud and SOA environments

	1.8 IT security policy management: A unifying solution
	1.8.1 Addressing governance
	1.8.2 Compliance and data security
	1.8.3 Risk management and the cost containment

	1.9 Introduction to IT security policy life cycle management
	1.9.1 Policy authoring
	1.9.2 Transform
	1.9.3 Enforcement
	1.9.4 Monitor

	1.10 Conclusion

	Chapter 2. Architecture patterns for externalizing security from applications and services
	2.1 Intermediary approach
	2.1.1 Customer example
	2.1.2 Integrating policy at the intermediary level

	2.2 Container level approach
	2.2.1 Customer example
	2.2.2 Integrating policy at the container level

	2.3 Database level approach
	2.3.1 Customer example
	2.3.2 Integrating policy at the database level

	2.4 Application level approach
	2.4.1 Customer example
	2.4.2 Integrating policy at the application level

	2.5 Conclusion

	Part 2 Implementing a policy life cycle management solution
	Chapter 3. Tivoli Security Policy Manager overview and architecture
	3.1 Tivoli Security Policy Manager overview
	3.1.1 Tivoli Security Policy Manager components

	3.2 Tivoli Security Policy Manager architecture
	3.2.1 Logical component architecture
	3.2.2 Policy server architecture
	3.2.3 Tivoli runtime security service architecture
	3.2.4 Policy data model, repository, and exchange
	3.2.5 Policy administration and classification
	3.2.6 Delegated administrative security
	3.2.7 Auditing and reporting

	3.3 Example deployment physical architecture
	3.4 Conclusion

	Chapter 4. Integration with external systems
	4.1 Identity management
	4.1.1 Integration with identity management
	4.1.2 Integration with Tivoli Identity Manager
	4.1.3 Integration with other identity management systems

	4.2 Access management
	4.2.1 Integration with Tivoli Access Manager for e-business
	4.2.2 Integration with other access management systems

	4.3 Role management
	4.4 User repositories
	4.4.1 Integration with Tivoli Directory Server
	4.4.2 Integration with Tivoli Directory Integrator
	4.4.3 Integration with other user repositories

	4.5 Trust services
	4.5.1 Integration with Tivoli Federated Identity Manager

	4.6 Application repositories
	4.6.1 Databases
	4.6.2 User registries
	4.6.3 Proprietary repositories
	4.6.4 Java

	4.7 Classification management tools
	4.8 Compliance management
	4.9 Rules engines
	4.10 Conclusion

	Part 3 Usage patterns for IT security policy management
	Chapter 5. Intermediary level integration
	5.1 Concepts and benefits
	5.1.1 Scenario A: Established application environments
	5.1.2 Scenario B: Services external to the enterprise
	5.1.3 Scenario C: SOA message protection policies
	5.1.4 Conclusion

	5.2 Java Web Application Servers
	5.2.1 Foundation for integration
	5.2.2 Java Web Application Server integration and using the policy life cycle model
	5.2.3 Conclusion

	5.3 Web Application Firewalls
	5.3.1 Foundation for integration
	5.3.2 WebSphere DataPower SOA Appliance integration with Tivoli Security Policy Manager
	5.3.3 IBM WebSphere DataPower integration and using the policy life cycle model
	5.3.4 Conclusion

	5.4 Enterprise Service Bus
	5.4.1 Foundation for integration
	5.4.2 WebSphere DataPower SOA Appliance integration with Tivoli Security Policy Manager
	5.4.3 Conclusion

	5.5 Third-party intermediaries
	5.6 Conclusion

	Chapter 6. Container level integration
	6.1 Concepts and benefits
	6.2 WebSphere Application Server
	6.2.1 Foundation for integration
	6.2.2 WebSphere integration using the policy life cycle model
	6.2.3 Conclusion

	6.3 Microsoft environment
	6.3.1 Microsoft container integration
	6.3.2 Integration with Tivoli Security Policy Manager
	6.3.3 Microsoft integration using the policy life cycle model
	6.3.4 Conclusion

	6.4 Conclusion

	Chapter 7. Database level integration
	7.1 Concepts and benefits
	7.2 Database policy information point
	7.2.1 Foundation for integration
	7.2.2 Integration with Tivoli Security Policy Manager
	7.2.3 Database integration using the policy life cycle model
	7.2.4 Conclusion

	7.3 Database policy enforcement point
	7.3.1 Foundation for integration
	7.3.2 Integration with Tivoli Security Policy Manager
	7.3.3 Database integration using the policy life cycle model
	7.3.4 Conclusion

	7.4 Enterprise content management databases
	7.4.1 Foundation for integration
	7.4.2 Integration with Tivoli Security Policy Manager
	7.4.3 ECM integration using the policy life cycle model
	7.4.4 Conclusion

	Chapter 8. Application level integration
	8.1 Runtime security services interfaces
	8.1.1 Tivoli Security Policy Manager authorization API
	8.1.2 JSP tag library
	8.1.3 Custom authorization solutions for external systems
	8.1.4 Policy information point
	8.1.5 External rules

	8.2 Policy management API
	8.2.1 Plug-in structure
	8.2.2 Data model
	8.2.3 Plug-ins

	8.3 Application integration
	8.3.1 Integration with Java technology
	8.3.2 Integration with WebSphere Portal
	8.3.3 Integration with Microsoft technology

	8.4 Conclusion

	Chapter 9. Deployment considerations
	9.1 Business considerations
	9.1.1 Business use cases

	9.2 Deployment considerations
	9.2.1 Identifying stakeholders
	9.2.2 Identifying policies, services, and data
	9.2.3 Prioritizing services
	9.2.4 Identifying operational requirements

	9.3 Deployment architecture
	9.3.1 Single data center deployment pattern
	9.3.2 Remote office deployment pattern
	9.3.3 Other considerations in determining deployment patterns
	9.3.4 Operational considerations

	9.4 Application integration considerations
	9.4.1 Integration patterns
	9.4.2 Application policy design considerations
	9.4.3 Conclusion

	9.5 Conclusion

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

