
ibm.com/redbooks

Front cover

Batch Modernization on z/OS

Alex Louwe Kooijmans Christian Strauer
Elsie Ramos Sridhar Sudarsan
Snehal Antani Susann Thomas
Patrick Bruinsma Andreas Wagner
Manuel Müeller Janet Wall
Martin Packer

Provides an overview of current batch
processing technology

Discusses how to use, simplify,
and improve batch processing

Includes example scenarios
that use batch processing

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Batch Modernization on z/OS

July 2012

SG24-7779-01

© Copyright International Business Machines Corporation 2009, 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (July 2012)

This edition applies to the following software levels:
� z/OS Version 1 Release 9
� IBM 31-bit SDK for z/OS Java 2 Technology Edition, V5
� IBM 64-bit SDK for z/OS Java 2 Technology Edition, V5
� PHP Version 5.1.2 for z/OS
� DB2 Version 9.1
� IMS Version 10
� WebSphere XD Compute Grid Version 6.1
� WebSphere Transformation Extender Version 8 Release 2
� Tivoli Workload Scheduler Version 8 Release 5 Modification 0

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team who wrote this book . xi
Now you can become a published author, too! . xiv
Comments welcome. .xv
Stay connected to IBM Redbooks .xv

Summary of changes . xvii
July 2012, Second Edition . xvii

Chapter 1. Executive overview of batch modernization on z/OS 1
1.1 Do you still need batch? . 2
1.2 Is replacing batch with OLTP an option? . 2
1.3 Strengths of z/OS for batch. 3
1.4 Batch modernization on z/OS . 4
1.5 New technologies can help . 5
1.6 Conclusion . 6

Part 1. Overview of batch processing . 7

Chapter 2. Introduction to batch modernization on z/OS . 9
2.1 Differences between OLTP and batch processing . 10

2.1.1 Reasons for using batch . 11
2.2 Taking advantage of z/OS features for batch processing . 12

2.2.1 Centralized computing model . 12
2.2.2 Security . 13
2.2.3 Manageability . 13
2.2.4 Workload management . 13
2.2.5 Reliability. 14
2.2.6 Scalability . 14
2.2.7 Availability . 14
2.2.8 Batch processing environment . 15

2.3 Drivers for change. 15
2.3.1 Existing programs are not adequate for new requirements 16
2.3.2 Necessary skills to maintain and use the current technology are

no longer available . 17
2.3.3 The batch window needs to be shortened or made more efficient 17
2.3.4 Running batch at any time . 18
2.3.5 Maintaining the actual batch programs is too complex . 18

Chapter 3. Bulk processing reference architecture . 19
3.1 Why do we need a reference architecture? . 20
3.2 Overview . 20
3.3 Bulk reference architecture . 21

3.3.1 Infrastructure services. 22
3.3.2 Data access management services . 22
3.3.3 Bulk application container . 23
© Copyright IBM Corp. 2009, 2012. All rights reserved. iii

3.3.4 Invocation services . 24
3.3.5 System management and operations . 25
3.3.6 Bulk application development . 26
3.3.7 Analytics . 27

3.4 Building up the bulk processing reference architecture . 28

Part 2. Serving new functional requirements in z/OS batch . 31

Chapter 4. Implement new functionality using traditional languages 33
4.1 Why use traditional languages for new functionality? . 34
4.2 XML support in COBOL and PL/I . 36

4.2.1 Using built-in XML support in COBOL. 36
4.2.2 Using built-in XML support in PL/I. 38
4.2.3 Using the XML Toolkit for z/OS. 39
4.2.4 Using z/OS XML System Services . 39
4.2.5 Solving the “XML problem” by combining XML technologies 41
4.2.6 Using pureXML capabilities in DB2 9 for z/OS . 45
4.2.7 Summary. 47

4.3 Implementing new functionality in C/C++ . 47

Chapter 5. Introduction to Java on z/OS . 49
5.1 The basics of Java . 50
5.2 Special Java APIs for batch processing on z/OS . 51
5.3 Data access with Java on z/OS . 52

5.3.1 Summary. 54
5.4 Encoding issues . 54
5.5 Java Interoperability with COBOL and PL/I. 55

5.5.1 Enterprise COBOL . 55
5.5.2 Enterprise PL/I . 56

Chapter 6. Implement new functionality using Java in traditional containers 57
6.1 Java in CICS . 58
6.2 Java in IMS . 58

6.2.1 Introduction to IMS databases . 58
6.2.2 Object mapped access to hierarchical data . 60
6.2.3 Java applications in IMS . 60

6.3 Java in DB2 for z/OS. 64
6.3.1 Java interoperability with other languages . 64
6.3.2 Configuring the system environment. 65
6.3.3 Development of the sample application . 67

Chapter 7. Implement new functionality using stand-alone Java. 77
7.1 Running Java with the BPXBATCH or BPXBATSL utilities. 78
7.2 Running Java with JZOS. 79
7.3 Interoperability with other languages . 80
7.4 Development tools . 80
7.5 Sample stand-alone Java batch application . 82

7.5.1 Creating invoice data with COBOL . 83
7.5.2 Generating a PDF in Java. 84

Chapter 8. Implement new functionality using Java in WebSphere XD
Compute Grid . 93

8.1 Java and Java Platform, Enterprise Edition . 94
8.2 The Java EE runtime environment on z/OS . 95
iv Batch Modernization on z/OS

8.3 WebSphere XD Compute Grid overview. 97
8.4 Quality of service in a WebSphere environment on z/OS . 103

8.4.1 Security . 104
8.4.2 High availability and scalability . 104

8.5 Interoperability with other languages . 106
8.6 Batch programming using WebSphere XD Compute Grid . 106
8.7 Developing a WebSphere batch application . 109

8.7.1 Setting up the environment . 110
8.7.2 Creating a batch application using the BDS Framework. 114
8.7.3 Testing the batch application . 124
8.7.4 Running Echo batch application on WebSphere XD Compute Grid z/OS 144
8.7.5 Debugging your application in the Unit Test Server . 150
8.7.6 Reusing the Echo application for huge data processing using BDS. 153
8.7.7 Conclusion . 155

8.8 Summary. 156

Chapter 9. Implement new functionality using PHP on z/OS 157
9.1 Introduction to PHP for z/OS. 158
9.2 PHP Interoperabilty with other languages. 160
9.3 Development tools . 160
9.4 Sample application for using PHP in stand-alone batch . 161

9.4.1 Eclipse setup. 162
9.4.2 Importing and customizing the sample project . 164
9.4.3 Implementing and deploying the PHP application. 168

Chapter 10. Summary of new functional requirements in z/OS batch 173

Chapter 11. Batch environment enhancements in z/OS V1R13 177
11.1 Introduction to z/OS Batch Runtime . 178

11.1.1 Java COBOL with DB2 interoperability . 178
11.1.2 JZOS Batch Launcher enhancements . 180

11.2 JES2 batch modernization . 181
11.2.1 Instream data in PROCs and INCLUDEs . 181
11.2.2 Support for JOBRC (job return code) . 183
11.2.3 Spin and SPIN data set. 185
11.2.4 Evict a job on a step boundary . 185

Part 3. Implement agile batch . 187

Chapter 12. Create agile batch by optimizing the
Information Management architecture . 189

12.1 Data Warehousing on System z . 190
12.2 ETL . 191

12.2.1 Overcoming operational inefficiency with ETL . 193
12.2.2 ETL Accelerator with DataStage. 200

Chapter 13. Create agile batch by optimizing DB2 access . 207
13.1 Data caching . 209
13.2 Optimizing data access using SQL functionality . 210

13.2.1 Joining tables . 210
13.2.2 Using SELECT FROM INSERT/UPDATE/DELETE/MERGE 211
13.2.3 Multi-row processing . 212
13.2.4 Explain SQL statements . 212

13.3 Optimizing data access using system functionality . 212
 Contents v

13.3.1 Optimizing using DB2 for z/OS functionality . 213
13.3.2 Optimizing using I/O features . 218
13.3.3 Optimizing using JDBC functionality . 219
13.3.4 Checkpoint and restart functionality . 221

Chapter 14. Create agile batch by implementing trigger mechanisms 223
14.1 Job submission with native Java technology . 224

14.1.1 Developing the code . 225
14.1.2 Configuring WebSphere Application Server z/OS for deployment 234

14.2 Using WebSphere XD Compute Grid trigger mechanisms . 234
14.2.1 The Job Management Console . 235
14.2.2 The command-line interface . 240
14.2.3 The WSGrid command-line utility . 242
14.2.4 Web services and EJB interfaces for the Job Scheduler 249

14.3 Exploiting enhanced features of Tivoli Workload Scheduler for z/OS. 263
14.3.1 Strengths of Tivoli Workload Scheduler for z/OS . 263
14.3.2 Integrate Tivoli Workload Scheduler for z/OS with WebSphere XD

Compute Grid . 266
14.4 Triggering a DB2 stored procedure. 270

14.4.1 Using WebSphere MQ to trigger a DB2 stored procedure 270
14.4.2 DB2 as a Web service provider. 279

Part 4. Improve batch efficiency . 299

Chapter 15. Approaches and techniques to reduce the batch window 301
15.1 Project Management techniques. 302

15.1.1 Gantt charts . 302
15.1.2 Dependency diagrams . 303
15.1.3 Critical Path Analysis . 304

15.2 Seven key strategies. 304
15.2.1 Ensuring the system is properly configured . 305
15.2.2 Implementing data in memory. 305
15.2.3 Optimizing I/O . 305
15.2.4 Increasing parallelism . 305
15.2.5 Reducing the impact of failures. 306
15.2.6 Increasing operational effectiveness. 306
15.2.7 Improving application efficiency . 306

15.3 Non-window batch. 306

Chapter 16. Increasing concurrency by exploiting BatchPipes 309
16.1 Basic function . 310
16.2 Implementation . 312

16.2.1 Setting up the Pipes subsystem . 313
16.2.2 Implementing Individual Pipes . 313

16.3 New Pipes connectors . 314
16.4 Additional Pipes functions . 314

16.4.1 BatchPipePlex. 314
16.4.2 BatchPipeWorks . 314

Chapter 17. Batch application design and patterns in WebSphere XD
Compute Grid . 319

17.1 The Strategy pattern as the foundation for designing batch applications 320
17.1.1 The Batch Data Stream Framework and its implementation of these patterns. 324
17.1.2 Sharing business services across batch and OLTP . 325
vi Batch Modernization on z/OS

17.2 Conclusions. 335

Chapter 18. Java performance best practices . 337
18.1 Java performance in common. 338

18.1.1 Garbage collection . 338
18.1.2 Profiling . 338

18.2 Stand-alone Java batch . 339
18.2.1 JVM startup cost . 339

Chapter 19. Increasing batch efficiency by using performance instrumentation . . . 341
19.1 System-level and WLM workload SMF . 342
19.2 DB2 Subsystem-level instrumentation . 343

19.2.1 DB2 Statistics Trace . 344
19.2.2 DB2 Catalog . 344
19.2.3 SMF 42-6 . 344
19.2.4 Putting Statistics Trace, DB2 Catalog and SMF 42-6 together 345

19.3 Batch suite instrumentation. 345
19.4 Job-Level SMF . 346

19.4.1 Data Set OPENs And CLOSEs. 346
19.4.2 DB2 job-level Accounting Trace and deeper. 348
19.4.3 DFSORT . 351
19.4.4 BatchPipes/MVS . 351
19.4.5 DFSMShsm functional statistics . 352

19.5 Other job-level instrumentation . 352
19.5.1 SYSIBM.SYSCOPY for DB2 utility jobs . 352
19.5.2 Tivoli Workload Scheduler information . 352
19.5.3 Step-Termination Exit . 353
19.5.4 System Log . 354

Part 5. Reduce batch complexity. 355

Chapter 20. Reduce batch complexity using a Business Rules Management
System . 357

20.1 Introduction to Business Rule Management . 360
20.2 Overview of IBM WebSphere ILOG WebSphere BRMS. 360
20.3 Using ILOG BRMS on System z . 364

20.3.1 Option 1: ILOG JRules on System z using Rule Execution Server. 365
20.3.2 Option 2: IBM WebSphere ILOG Rules for COBOL . 367

20.4 Using ILOG BRMS in batch . 370

Chapter 21. Reduce batch complexity using middleware for transformation logic . 371
21.1 WebSphere Transformation Extender: Enabling universal transformation 373
21.2 Business value of WebSphere Transformation Extender . 374
21.3 Sample using WebSphere Transformation Extender in z/OS batch 375

21.3.1 Creating the mapping file . 377
21.3.2 Transferring files to z/OS . 393
21.3.3 Running the job on z/OS to transform input data . 394

Chapter 22. Reduce batch complexity by eliminating custom file transfer logic . . . 397
22.1 Using WebSphere MQ FTE to perform managed file transfers. 398
22.2 Initiating file transfer using a Java job . 401
22.3 Initiating file transfer using an Ant job . 403
22.4 Summary. 404

Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 405
 Contents vii

23.1 Invoking DFSORT functions . 406
23.2 Data that DFSORT can process . 406
23.3 Beyond sorting . 406

23.3.1 Record selection . 407
23.3.2 Record reformatting . 408
23.3.3 Parsing . 409
23.3.4 Report writing . 410
23.3.5 Record combining . 410
23.3.6 Checking data . 411
23.3.7 IFTHEN conditional processing. 412

23.4 Symbols . 414
23.4.1 Converting COBOL copybooks to DFSORT symbols . 416

23.5 Invoking DFSORT from Java with JZOS. 417
23.5.1 JZOS invoking DFSORT sample . 417

Part 6. Appendixes . 421

Appendix A. DB2 configuration . 423
Data Definition Language for Java stored procedure. 424
Data Definition Language for stand-alone Java application. 424
DB2 SQL Insert statements for sample data . 426

Appendix B. Source code. 429
Java stored procedure to generate PDF files. 430
Java PDF creator . 437
PHP PDF creator . 442
Dynamic batch Web application. 445
JCL for running WebSphere Transformation Extender transformation in batch mode. . . . 448
Triggering Java Stored procedure to generate PDF files . 450

Appendix C. Additional material . 453
Locating the Web material . 453
Using the Web material . 453

System requirements for downloading the Web material . 454
How to use the Web material . 454

Related publications . 455
IBM Redbooks publications . 455
Other publications . 455
Online resources . 456
How to get IBM Redbooks publications . 457
Help from IBM . 457

Index . 459
viii Batch Modernization on z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2009, 2012. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
BatchPipes®
CICS®
DataMirror®
DataPower®
DataStage®
DB2®
developerWorks®
DRDA®
DS8000®
FICON®
GDPS®

Geographically Dispersed Parallel
Sysplex™

HiperSockets™
IBM®
ILOG®
IMS™
InfoSphere®
Language Environment®
MVS™
NetView®
OS/390®
Parallel Sysplex®
pureXML®

QualityStage®
RACF®
Rational®
Redbooks®
Redbooks (logo) ®
RMF™
System z10®
System z®
Tivoli®
WebSphere®
z/OS®
z10™
zSeries®

The following terms are trademarks of other companies:

Intel, Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

Hibernate, Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in
the U.S. and other countries.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Batch Modernization on z/OS

http://www.ibm.com/legal/copytrade.shtml

Preface

Mainframe computers play a central role in the daily operations of many of the world’s largest
corporations, and batch processing is a fundamental part of the workloads that run on the
mainframe. A large portion of the workload on IBM® z/OS® systems is processed in batch
mode. Although several IBM Redbooks® publications discuss application modernization on
the IBM z/OS platform, this book specifically addresses batch processing in detail.

Many different technologies are available in a batch environment on z/OS systems. This book
demonstrates these technologies and shows how the z/OS system offers a sophisticated
environment for batch. In this practical book, we discuss a variety of themes that are of
importance for batch workloads on z/OS systems and offer examples that you can try on your
own system. The book also includes a chapter on future developments in batch processing.

The audience for this book includes IT architects and application developers, with a focus on
batch processing on the z/OS platform.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Poughkeepsie Center.

Alex Louwe Kooijmans is a project leader with the ITSO in Poughkeepsie, NY, and
specializes in SOA technology and solutions on System z®. He also specializes in application
modernization and transformation on z/OS. Previously, he worked as a Client IT Architect in
the Financial Services sector with IBM in The Netherlands, advising financial services
companies on IT issues such as software and hardware strategy and on demand. Alex has
also worked at the Technical Marketing Competence Center for zSeries® and Linux in
Boeblingen, Germany, providing support to customers starting up with Java and
WebSphere® on System z. From 1997 to 2000, Alex completed a previous assignment with
the ITSO, managing various IBM Redbooks projects and delivering workshops around the
world in the area of WebSphere, Java, and e-business technology on System z. Before 1997,
Alex held a variety of positions in application design and development, product support, and
project management, mostly in relation to the IBM mainframe.

Elsie Ramos is a Project Leader at the International Technical Support Organization,
Poughkeepsie Center. She has over 30 years of experience in IT supporting various
platforms, including System z servers.

Snehal Antani works for the SOA Technology Practice within IBM Software Services for
WebSphere as a senior managing consultant. He leads the consulting practice for the
WebSphere XD suite of products, which includes WebSphere Virtual Enterprise, WebSphere
XD Compute Grid (WebSphere batch technologies), and WebSphere eXtreme Scale. His
focus is on grid, HPC, and middleware architectures and design, serving as a technical
advisor to key customers, driving clients towards production, and speaking at industry
conferences worldwide. Prior to joining IBM Software Services for WebSphere, Snehal
worked in product development for both WebSphere Application Server for z/OS and
WebSphere Extended Deployment. He has worked closely with many large distributed and
z/OS clients around the world, helping them achieve production with WebSphere products as
well as influence their technical strategies. Snehal has disclosed numerous patents and
technical publications in the domains of enterprise application infrastructure and grid
© Copyright IBM Corp. 2009, 2012. All rights reserved. xi

computing. He earned a BS in computer science from Purdue University and will complete his
MS in computer science from Rensselaer Polytechnic Institute (RPI) in Troy, NY with a thesis
in the area of quantifying and improving the resiliency of middleware infrastructures.

Patrick Bruinsma is a certified Senior IT Specialist with 10 years of advanced experience on
z/OS, OS/390®, DB2®, MQ Series, WebSphere MQ Workflow, Blaze Advisor, CICS®,
Workload Manager, Java, WebSphere Application Server for z/OS, z/OS UNIX (UNIX System
Services), and SAP on z/OS, as well as general installation and implementation expertise on
nearly all z/OS software. He is proficient in teaching technical education and has co-authored
several IBM Redbooks publications. In January 2007, Patrick was appointed System z
Software IT Architect. For the last 4 years, he has focused on the design and integration of
large-scale commercial computing environments, mainly in the mainframe computing arena.
He supports the System z sales team and provides expertise on platform positioning and
solution design.

Manuel Mueller is an IT Specialist with IBM Software Group Services. He joined IBM in 2003
as a member of the IMS™ Technical Sales team. His work centers on integration techniques
of mainframe data and applications into a heterogenous landscape. He has authored an IBM
Redbooks publication about WebSphere Information Integrator and has taught several
workshops on System z, covering Data Propagation and Information Integration of IMS, DB2,
VSAM, and others. After he joined the Software Group IM Services team, he worked on a
variety of projects that are all clustered around data storage in databases and data intensive
applications. This work includes the acquaintance with several products, most prominent
among which are z/OS, UNIX, IMS, DB2, and SAP. He has a BS in Information Technology
Management from the University of Cooperative Education (Berufsakademie) Stuttgart,
Germany, and the Open University London, U.K., in a partnership program with IBM.

Martin Packer is a Senior IT Specialist working for IBM in the U.K. and Ireland. He has 24
years of mainframe performance experience, having consulted with dozens of customers in
that time. He has contributed to a large number of IBM Redbooks publications over the past
20 years, has presented at many conferences, and has built a number of tools for processing
mainframe performance instrumentation, most notably in the areas of batch window
reduction, Parallel Sysplex® Performance, and DB2 Tuning. He holds a Bachelor’s Degree in
Math and Physics and a Master’s Degree in Information Technology, both from the University
College in London.

Christian Strauer is an IT specialist from IBM Germany. He works as a System z technical
presales specialist in the Financial Services and Insurance sector. His areas of expertise are
Java, Java batch, and XML solutions on System z as well as System z capacity planning. He
has worked for IBM since 2002, when he started his studies at the University of Cooperative
Education in Mannheim. After his studies, Christian joined the System z Field Technical Sales
Support team in 2005 and was involved in many Java and XML projects on z/OS throughout
Germany. Christian has authored an IBM Redbooks publication about Java Batch on z/OS.
He holds a diploma in Applied Computer Sciences.

Sridhar Sudarsan is an Executive IT Architect with Software Lab Services in IBM. He has led
enterprise architecture solutions for several customers worldwide for over 10 years. His
clients include large companies in the finance, public sector, automobile, and SRM industry
verticals. He has consulted with customers to build and realize their IT strategy. He invented
the batch programming model in J2EE, now included in WebSphere Compute Grid. He
champions and leads the enterprise batch modernization and modern bulk processing
strategy in IBM and at customers.

Susann Thomas is an IT specialist at IBM Research and Development in Boeblingen,
Germany, and specializes in modern technologies such as WebSphere solutions on z/OS.
She works as a lab services specialist for Worldwide Technology Practice in the IBM Software
xii Batch Modernization on z/OS

Group, Application, and Integration Middleware Software. Her area of expertise is
WebSphere Application Server for z/OS, WebSphere XD Compute Grid on z/OS, Java batch,
and XML on z/OS, as well as modern application development on z/OS. From 2001 to 2004,
Susann held a variety of positions in application programming and infrastructure
management and project management, mostly in relation to the IBM System z platform. She
has worked for IBM since 2004, when she started her studies at the University of Cooperative
Education in Mannheim. After her studies, Susann joined the System z Software Field
Technical Sales Support team in 2007 and was involved in enterprise modernization,
application programming, WebSphere, Java, and XML projects on z/OS throughout Germany.
She holds a diploma in Economics and Informatics.

Andreas Wagner is a database administrator at GAD in Germany. He has 17 years of
experience on the Mainframe (including UNIX System Services) and on distributed platforms.
He worked 7 years on the mainframe as a programmer on software development projects
(PL/I batch and online programs with DB2 for z/OS). For the last 10 years, he has worked as
a DB2 database administrator on mainframe and distributed platforms (Linux, Windows, and
AIX®). His areas of expertise include Java (JDBC and SQLJ) and WebSphere applications
(J2EE and DataSource administration).

Janet Wall is the Project Manager for the IBM WebSphere ILOG® Business Rule
Management System (BRMS) System z solutions. Her responsibilities and focus are on the
BRMS System z product strategy and managing requirements for the product directions.
Janet has approximately 30 years of IT experience in both mainframe and distributed
environments. In the last 10 years, she has focused on business rule management in which
she has concentrated on assisting customers to understand the benefits and how to apply
best practices within BRMS. Janet was a contributing author of the Business Rule Applied
Book, has authored several Business Rule articles, and has presented on Business Rule
Management and Information Architecture at several IT conferences. She holds a B.S. in
Computer Science from Kean University and an M.B.A. in Finance from Seton Hall University.

Thanks to the following people for their contributions to this project:

Rich Conway, Mike Connolly
IBM International Technical Support Organization, Poughkeepsie Center, USA

Budi Darmawan
Project leader, IBM International Technical Support Organization, Austin Center, USA

Norman Aaronson
System z Java Project/Release Manager, IBM Systems and Technology Group, System z
Platform, Poughkeepsie, USA

Philipp Breitbach
IT Specialist, Software Services for WebSphere, IBM Software Group, Germany

Yuan-Chi Chang
Manager Database Research Group, Intelligent Information Management, IBM Thomas J.
Watson Research Center, USA

Michael Dewert
DB2 Performance, Data Sharing, Recovery Technical Solution Architect, DB2 for z/OS
Development - SWAT TEAM, IBM Software Group, Germany

Carl Farkas
TechWorks zWebSphere Application Integration consultant and zChampion, IBM Software
Group, France
 Preface xiii

Willie Favero
Data Warehouse for System z Swat Team, DB2 SME, IBM Silicon Valley Laboratory, IBM
Software Group, USA

Denis Gaebler
IT Specialist, IBM Software Group, Germany

Timothy Hahn
IBM Distinguished Engineer, IBM Software Group, Rational®

Avard Hart
System z Solution Architect, IBM USA

Eugene Kuehlthau
IT Specialist, Advanced Technical Support (ATS), USA

Patricia Pettersson
WebSphere Technical Sales, IBM Software Group, Sweden

Gary Puchkoff
Senior Technical Staff Member, IBM Systems and Technology Group. System z Strategy and
Architecture, Poughkeepsie, USA

Chris Vignola
Senior Technical Staff Member, WebSphere XD Architect, Java Batch & Compute Grid, IBM
Software Group, Poughkeepsie, USA

Maryela Weihrauch
IBM Distinguished Engineer, DB2 z/OS Development - Solutions Architect, IBM Silicon Valley
Lab, USA

Kirk Wolf and Steve Goetze
Dovetailed Technologies, LLC

Claus Weidenfeller
GAD, Germany

Frank Yaeger
DFSORT Development Team, IBM Silicon Valley Lab, USA

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
xiv Batch Modernization on z/OS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xvi Batch Modernization on z/OS

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

Summary of Changes
for SG24-7779-01
for Batch Modernization on z/OS
as created or updated on July 26, 2012.

July 2012, Second Edition

This revision reflects the addition, deletion, or modification of new and changed information
described below.

New information
� Added Chapter 11, “Batch environment enhancements in z/OS V1R13” on page 177
© Copyright IBM Corp. 2009, 2012. All rights reserved. xvii

xviii Batch Modernization on z/OS

Chapter 1. Executive overview of batch
modernization on z/OS

Today, mainframe computers play a central role in the daily operations of most of the world’s
largest corporations. In banking, finance, health care, insurance, public utilities, government,
and a multitude of other public and private enterprises, the mainframe computer continues to
form the foundation of modern business. Batch processing is a fundamental part of the
workloads that run on the mainframe. This book discusses the advantages of batch
processing.

The IBM mainframe is designed from the ground up to co-host OLTP and batch, with
advantaged features to balance and prioritize workloads, efficiently access data, and
probably most importantly, to manage large workloads and possible failures. Mission-critical
batch windows often run on the mainframe with minimal on-site staff and, in some cases,
even fully unattended, processing large quantities of data at relatively low cost with maximum
reliability.

1

© Copyright IBM Corp. 2009, 2012. All rights reserved. 1

1.1 Do you still need batch?

For almost all companies in every industry, batch processing is still a fundamental,
mission-critical component. Examples of batch processes commonly used in industries today
include:

� Generating reports of all daily processed data
� Printing or sending bi-weekly account statements to all customers of a bank
� Paying salaries for all employees
� Running analytics on a large Data Warehouse
� Archiving historical data at the end of month
� Optimizing databases
� Creating backups of files and databases, for Disaster Recovery purposes
� Processing files with large amounts of data from business partners

Batch processing has significant advantages when it comes to performing repetitive logic.
Static data is read only once, then cached and used throughout the program. Also, for
example, one SQL query to update a status field in 10,000 rows of a database table is far
more efficient than 10,000 online transaction processing (OLTP) programs, each running a
query to update the status field in one row at a time.

Thus, batch processing in the sense of bulk processing of massive amounts of transactions
during non-office hours remains a viable and strategic option. Because organizations want
results faster without waiting for overnight OLTP processing, we will the need to run batch
processes at any time during the day, in parallel with the OLTP window.

1.2 Is replacing batch with OLTP an option?

Batch is sometimes referred to as bulk processing of OLTP logic or as just a program that
runs in the batch window. Reasons to design an application function as a batch process
include:

� Real-time processing of the business logic is not possible because there is a dependency
on something else that is not available at that time. In this case, the input of the transaction
is put aside in a file or a database and processed later in a batch program. The functional
design phase of an application determines whether a function is designed as a batch
process or OLTP.

� A large amount of repetitive processing needs to occur, for example calculating
withholding tax on the employee salaries of a large company. In this case, running each
calculation as a separate OLTP transaction is inefficient, because a large part of each
calculation might be using the same static data elements, such as tax percentages used.

� You need to defer CPU cycles to a time of the day when the system is not in use by online
users, such as when preparing the printed invoices for the orders placed during the day.

� You need to build periodic interface files with logical groupings of records to be sent to the
information systems of your partners. This type of processing occurs frequently in the
banking industry. Sending one big file with many records every day might be more efficient
and more reliable than sending each record in real-time.

Note: Batch jobs do not always include an application program. For example, many times a
utility is used to extract data, reorganize a database, create a backup copy of data, or
replicate a file.
2 Batch Modernization on z/OS

It might look like the ideal IT environment consists of OLTP only, where each user action
immediately leads to making all the updates without delay and where a user immediately
receives the desired output. However, there are many functions in an information system that
cannot and should not be designed and run as an OLTP function. Therefore, the design for an
information system needs to identify clearly the functions that are implemented as a batch
function.

1.3 Strengths of z/OS for batch

z/OS can provide its unique quality of service in combination with System z hardware and
Parallel Sysplex capabilities.

The generally recognized z/OS strengths for batch fall into a number of broad categories:

� Centralized computing model

z/OS provides the advantages of a better overall utilization because of resource sharing
and data proximity. This flexibility in resource sharing also results in more agility in
executing OLTP and batch concurrently.

� Security

z/OS provides deep security integration, from the application level down to the operating
system level and the hardware.

� Manageability

z/OS is equipped with an extensive set of management tools for managing and controlling
hundreds of complex simultaneously running applications, comprising batch and online
components, databases, transaction managers, and so on. Many z/OS environments run
large numbers of batch jobs unattended. It is not uncommon to run 5,000 to 10,000 jobs in
one evening on a System z system.

� Workload management

z/OS Workload Manager makes it possible to run many parallel batch jobs at the same
time, sharing resources and balanced and prioritized according to SLA specifications.

� Reliability

System z and z/OS provide an advanced combination of availability and resilience.
Failures in batch programs are recovered automatically and execution of a batch program
can be deferred to another LPAR or another system in case of a disaster.

� Scalability

The z/OS Parallel Sysplex configuration provides additional horizontal scalability. Peaks in
batch processing are, therefore, scaled throughout the system, acquiring additional
resources as needed.

� Availability

The System z and z/OS availability features include:

– Unique mainframe clustering technology for maximum up-time (Parallel Sysplex)

– The ability to deploy participating nodes in the Sysplex cluster remotely
(Geographically Dispersed Parallel Sysplex™)

– The ability to replicate data real-time at remote locations (PPRC)
Chapter 1. Executive overview of batch modernization on z/OS 3

� Batch processing environment

The heart of the batch environment on an IBM mainframe is the combination of a job
scheduler, Job Entry System (JES), and a spool and job management tools, such as the
System Display and Search Facility (SDSF).

1.4 Batch modernization on z/OS

Even if the existing batch process is currently optimally implemented in terms of performance,
process controlling, and monitoring, there can be requirements that require new tools and
technologies. New functional and non-functional requirements might require changes in the
way that batch is organized as well as require new technologies. We refer to this process of
deploying new tools and technologies in batch as batch modernization.

A number of drivers can lead to batch modernization on z/OS:

� Existing programming languages are not adequate for new requirements.

Most of the applications on the IBM mainframe are still written in traditional procedural
programming languages such as COBOL and PL/I. New functional requirements such as
creating PDF documents, sending e-mails, or just the ability to access a remote system
directly, might require you to consider another programming language for batch programs.
In principle this would be Java, but other languages such as PHP can be an option too.

� The necessary skills to maintain and use the current technology are no longer available.

A growing problem for many companies is that skills in certain traditional technologies are
more difficult to find.

� The batch window needs to be shortened or made more efficient.

An indirect reason for modernizing the batch environment might be that the traditional
batch window is getting shorter (because the OLTP window is getting longer).
Performance optimization, increased parallelism, and moving certain batch processes into
the OLTP window are options to achieve a shorter batch window. These activities might
require that you deploy new technologies.

� You want to run batch at any time.

As already mentioned, just because the current batch window is getting shorter, the batch
workload itself is not reduced, leading to the consideration of running a batch job either in
the traditional nightly batch window or at any time during the OLTP window. Introducing

Attention: It is a common misunderstanding that a skill shortage in traditional
technologies such as COBOL, CICS or IMS automatically means that the mainframe is
not a viable option for the future. Practically all popular standards and technologies,
such as Java, Java EE, XML, Web Services, Web 2.0, and so forth, are fully supported
and integrated on the mainframe.

Note: Java development of z/OS applications can be done entirely on the workstation
using Eclipse or IBM Rational tools. In the case of Java stand-alone batch, a basic
understanding of JCL, TSO, ISPF, and UNIX is needed to set up the runtime
environment and test on z/OS.

In the case of the WebSphere XD Compute Grid programming model, the developer
does not need to work with JCL, TSO, and ISPF to deploy and test batch programs.
4 Batch Modernization on z/OS

batch processes during the OLTP window might impose some challenges, especially with
regards to accessing data concurrently.

� Maintaining the actual batch programs is too complex.

The number and complexity of batch programs might lead to a situation where it takes too
much time to implement new business requirements, especially in the case where batch
programs contain numerous lines of code for formatting and transforming data.
State-of-the-art tooling and middleware can help to make the process of maintaining
complex batch applications more agile and less error prone.

1.5 New technologies can help

Introducing new technologies on the mainframe can help to address the issues mentioned in
the previous section, as follows:

� Existing programming languages are not adequate for new requirements.

Java, either running stand-alone as a batch job, running inside WebSphere XD Compute
Grid or running in a traditional environment as a DB2 stored procedure, an IMS Batch
Messaging Program (BMP) or CICS, can help to address the broad arena of today’s
functional requirements. PHP also offers options to address functional requirements that
are hard to implement in traditional programming languages.

� The necessary skills to maintain and use the current technology are no longer available.

The use of Java or PHP can also circumvent a possible skills shortage in traditional
programming languages. State-of-the-art development tools on the workstation, such as
Rational Application Developer, Rational Developer for System z, and Eclipse can be used
to develop these types of applications. And, WebSphere technology can be used on the
mainframe, to provide platform transparency for the developer.

� The batch window needs to be shortened or made more efficient.

There is generally a drive to keep the batch window as short as possible and to provide
online hours on the system as long as possible. To gain time in the batch window, you can
attempt to make batch smarter and better performing, but in many cases the batch window
on z/OS is already optimized to the maximum.

A way to save time can be to move batch workload from the traditional batch window to the
OLTP window; however, application dependencies and avoiding parallel access to master
data in both OLTP and batch workload make this method a challenge. You can
considerably reduce or even eliminate dependencies on master data by accessing data in
a replicated data warehouse. InfoSphere® Data Warehouse, InfoSphere Replication
Server, and InfoSphere DataStage® are solutions that you can use in such an
architecture.

� Maintaining the actual batch programs is too complex.

The complexity of batch can sometimes become a problem. In addition to the business
logic, batch programs often contain custom code for transforming data and data formats,
file transfer, and ETL logic. Rather than hand coding these tasks, you can use tools that
allow for more flexibility and quicker time to market:

– WebSphere Transformation Extender provides an Eclipse-based toolkit for designing
and developing data transformations. These mappings are then deployed to z/OS and
run as a separate program.

– WebSphere ILOG JRules provides an environment to design and maintain business
rules, also in a batch environment.
Chapter 1. Executive overview of batch modernization on z/OS 5

– WebSphere MQ File Transfer Edition (FTE) provides an extension to the classical
WebSphere MQ product to perform secure and managed file transfers to and from a
z/OS batch.

– InfoSphere solutions can manage ETL tasks in batch.

– Tivoli® Workload Scheduler remains the flagship job scheduling solution on z/OS.
Tivoli Workload Scheduler can work with WebSphere XD Compute Grid. Tivoli
Workload Scheduler also provides a SOAP-based interface for triggering jobs as a
service.

1.6 Conclusion

z/OS is a natural operating system for running large mission-critical batch workloads in a
reliable way. Disaster recovery, automatic restart of broken jobs, automatic rollback of
database updates to the latest sync point are all part of the z/OS solution. Hundreds of
Fortune 1000 companies run mission-critical batch on z/OS. With the introduction of Java and
Java-based middleware on z/OS, this quality can be put into action for a broader set of
functional requirements and other technologies can help to reduce complexity or reduce the
traditional batch window.
6 Batch Modernization on z/OS

Part 1 Overview of batch
processing

In this part of the book, we provide an introduction to batch processing and batch processing
modernization in Chapter 2, “Introduction to batch modernization on z/OS” on page 9. We
also position a framework for batch bulk processing in Chapter 3, “Bulk processing reference
architecture” on page 19.

Part 1
© Copyright IBM Corp. 2009, 2012. All rights reserved. 7

8 Batch Modernization on z/OS

Chapter 2. Introduction to batch
modernization on z/OS

Today, mainframe computers play a central role in the daily operations of many of the world’s
largest corporations. While other forms of computing are used extensively in various business
capacities, the mainframe occupies a coveted place in today’s e-business environment. In
banking, finance, health care, insurance, public utilities, government, and a multitude of other
public and private enterprises, the mainframe computer continues to form the foundation of
modern business.

For almost all companies in every industry, batch processing is still a fundamental,
mission-critical component. In this book, we describe aspects of modern batch processing
and point out why it might be necessary to change the current batch process to achieve
modern business requirements.

In this chapter, we introduce the concept of batch modernization and discuss the following
topics:

� Differences between OLTP and batch processing
� Taking advantage of z/OS features for batch processing
� Drivers for change

2

© Copyright IBM Corp. 2009, 2012. All rights reserved. 9

2.1 Differences between OLTP and batch processing

Data processing on the mainframe can be grouped into two main categories:

� Online transaction processing (OLTP)
� Batch processing

OLTP is triggered by a user with a direct response. To initiate OLTP, users typically complete
an entry form or select other appropriate actions through a user interface application
component. The user interface component then initiates the associated online transaction
with the business logic in the background. When the transaction is complete, the same user
interface or other user interface component presents the result of the transaction to the user.
The response can be data or can be a message regarding the success or failure of the
processing of the input data.

During the processing time of the online transaction, the user typically has to wait and cannot
work with the user interface. Therefore, it is extremely important that the transaction is
finished in the shortest time possible. Thus, the scope of online transactions and the amount
of data that is processed has to be relatively small to minimize the locking of resources on the
system.

In contrast, batch processes require no user activity. Most batch programs read data from
various sources (for example databases, files, and message queues), process that data, and
then store the result. On the mainframe, batch programs are often designed to handle very
large amounts of data within a very short time (such as millions of records in an elapsed time
of just a few minutes).

Figure 2-1 illustrates the difference between OLTP and batch processing.

Figure 2-1 Difference between OLTP and batch processing

Batch workload

Output
data

Online (interactive) transaction

Application
program

Accesses shared data on
behalf of an online user

Query

Reply

Input
data

Application
program

Processes data to
perform a particular task
10 Batch Modernization on z/OS

Generally, one batch program generates output data that then is used as input by another
batch program. Because of this type of dependency, a “network” of batch jobs can grow and
become quite complex very quickly. Appropriate tools, such as Tivoli Workload Scheduler,
help when executing and monitoring batch programs within a large job network.

In large IT environments, batch jobs usually run overnight. During this batch window, online
activity is restricted or even completely forbidden. Because the online capability is extremely
relevant for almost all companies, the batch window must end as soon as possible or at least
before the committed start time of the OLTP window. The start and times of the batch window
(which can be different on different days of the week or month) are specified in the
service-level agreement (SLA), which also includes additional information regarding
management of errors, recovery, and so forth.

Examples of batch activities include:

� Generating daily reports of processed data
� Paying salaries for employees
� Archiving historical data at the end of month
� Reorganizing data
� Processing files with large amounts of data from a partner

Batch processing provides the following advantages:

� A batch window and an online window allow balanced system usage with almost constant
100% utilization, helping to optimize IT resources and save costs. In other words, you use
the mainframe during the non-office hours for work that does not need immediate
response, freeing up cycles during the office hours for transactions that need immediate
response.

� Batch programs are more efficient performing repetitive logic.

� Postponing transactions can help to achieve more business security, for example
intervening into money transfers that might damage the business.

2.1.1 Reasons for using batch

Batch is sometimes referred to as bulk processing of OLTP logic or as just a program that
runs in the batch window. Reasons to design an application function as a batch process
include:

� Real-time processing of the business logic is not possible because there is a dependency
on something else that is not available at that time. In this case, the input of the transaction
is put aside in a file or a database and processed later in a batch program. Whether this is
the case is discovered in the functional design of the application.

� A large amount of repetitive processing needs to occur, for example calculating
withholding tax on the employee salaries of a large company. In this case, running each

Important: The batch window can vary greatly depending on the day of the week or
month. For example, most companies have different job networks on weekdays, weekends,
the last workday of the week, and the last day of the month. End of week and end of month
processing can make a job network significant more complex and longer to run. These
factors are all included in the SLA.

Note: Batch jobs do not always include an application program. For example, many times a
utility is used to extract data, reorganize a database, create a backup copy of data, or
replicate a file.
Chapter 2. Introduction to batch modernization on z/OS 11

calculation as a separate OLTP transaction is inefficient, because a large part of each
calculation might be using the same static data elements, such as tax percentages used.

� You need to defer CPU cycles to a time of the day when the system is not in use by online
users, such as when preparing the printed invoices for the orders placed during the day.

� You need to build periodic interface files with logical groupings of records to be sent to the
information systems of your partners. This type of processing occurs frequently in the
banking industry. Sending one big file with many records every day might be more efficient
and more reliable than sending each record in real-time.

It might look like the ideal IT environment consists of OLTP only, where each user action
immediately leads to making all the updates without delay and where a user immediately
receives the desired output. However, there are many functions in an information system that
cannot and should not be designed and run as an OLTP function. Therefore, the design for an
information system needs to identify clearly the functions that are implemented as a batch
function.

2.2 Taking advantage of z/OS features for batch processing

Generally, z/OS strengths for batch processing fall into a number of broad categories:

� Centralized computing model
� Security
� Manageability
� Workload management
� Reliability
� Scalability
� Availability
� Batch processing environment

We describe each of these features in detail in the sections that follow.

2.2.1 Centralized computing model

The centralized computing model is characterized by a single or few, but large, computing
nodes. These nodes host a variety of applications that all share the same computing
resources, such as memory, CPU, and disk and tape storage. This sharing of resources leads
to an overall better utilization of those resources and less idle time. All users are directly
connected to this system.

Another key aspect of the centralized computing model is data proximity. Having applications
are in close proximity to the data that they use seriously reduces communication overhead,
increases security, and minimizes points of failure, all of which effects batch workloads
positively as such workloads typically process huge amounts of data.
12 Batch Modernization on z/OS

2.2.2 Security

z/OS provides deep security integration, from the application level down to the operating
system level and the hardware.

Centralized security
The Resource Access Control Facility (RACF®) provides centralized security functions, such
as user identification and authentication, resource access control, and auditing for both the
operating system and applications running on the system.

With the introduction of the System Authorization Facility suite of services, a centralized point
was created within the operating system infrastructure through which both operating system
components and applications could invoke the services of the z/OS resident security
manager.

Auditing and logging
A very important feature of a centralized authentication and access control mechanism is the
ability to record and analyze security information. The audit data is essential for ensuring that
the customer’s installation security policy is followed. The RACF option of the z/OS Security
Server provides multiple ways to specify what security-relevant events are recorded in the
audit stream and how that information is reduced and analyzed. RACF provides a wide
variety of capabilities and tools to the auditor for data analysis.

Accountability
Accountability in z/OS is achieved by a combination of user authentication and the ability to
propagate a user’s credentials throughout the application. The System Management Facility
(SMF) interface is designed for collecting performance and accounting information. z/OS will
collect all accounting and performance data and present this back to the installation through
RMF and SMF records. These records can be analyzed and aggregated in performance and
capacity reports, but can also be used as a base for security analysis and accounting policies.

Network security
Networking and communications security on z/OS is provided by the Communications Server
element of z/OS. The Communications Server provides networking and communication
services for accessing z/OS applications over both SNA and TCP/IP networks. You can
exploit these features using batch. Thus, batch can be run very secure on z/OS.

2.2.3 Manageability

The z/OS operating system is designed to manage multiple workloads in a single system
image, providing the means to manage complex environments. As a consequence, z/OS is
equipped with an extensive set of management tools to manage and control thousands of
complex, simultaneously running applications, comprised of batch and online components,
databases, transaction managers, and so on.

2.2.4 Workload management

The z/OS Workload Manager (WLM) controls the distribution of workloads over different
partitions and the prioritization of work within a partition. CPU resources can be reassigned
dynamically through Intelligent Resource Director (IRD). WLM and IRD working together
provide unique on-demand capacity services. Furthermore, WLM can work with Sysplex
Chapter 2. Introduction to batch modernization on z/OS 13

Distributor to load-balance workloads throughout the systems in the sysplex and make the
network entry point into the system highly available.

These capabilities make the mainframe an ideal platform for running mixed workloads of
hundreds of different business-critical applications while achieving very high resource
utilization. Of course, batch workloads are also managed by WLM. Thus, it is possible to run
hundreds of parallel batch jobs at the same time, which is very difficult on other platforms.

2.2.5 Reliability

System z and z/OS provide an advanced combination of availability and resilience. The
combination of redundancy and virtualization delivers extraordinary levels of application
availability and recoverability. The IBM mainframe architecture protects users from hardware
failures as well as software failures. If an application fails, its workload can be picked up by a
backup of the same application running on the same physical hardware.

Mainframe workloads can be shared by systems running up to 100 km apart, allowing for
smooth disaster recovery procedures. And when the time comes to add system capacity or to
replace a failed hardware module, those hardware changes can be made without interrupting
customer service. Some mainframes run uninterrupted for years, adapting to changing needs,
workloads, and applications while continuously in production. Because batch can be very
critical, the reliability of the mainframe is a big advantage.

2.2.6 Scalability

The z/OS Parallel Sysplex configuration provides additional horizontal scalability. A sysplex
can be a cluster of up to 32 z/OS images in different partitions on different System z systems
(that are possibly geographically dispersed) with full data sharing and high availability and
recovery.

The machines participating in a Parallel Sysplex can be physically dispersed up to 100 km
from one another, which gives the capability of having a physically decentralized
infrastructure that is logically centralized.

With z/OS, the horizontal scalability is not limited to specific workloads. Any workload can
take advantage of the Parallel Sysplex scaling options. Scalability is fundamental in an
on-demand world, and the IT infrastructure should be able to scale when business demands
more resources.

Another key performance and scalability benefit is provided by the HiperSockets™ virtual
TCP/IP network, which eliminates network delays between applications and subsystems
running within a mainframe.

2.2.7 Availability

System z has many components that address availability.

Parallel Sysplex, the clustering solution for the z/OS environment, provides both scalability
and availability. A failure of one image in the cluster does not affect the other images, and any
specific transaction running on the Parallel Sysplex can be fully dispatched and recovered in
any other image, making use of the full data sharing architecture.

For higher availability and disaster recovery purposes, a Parallel Sysplex can be configured in
a Geographically Dispersed Parallel Sysplex (GDPS®) mode.
14 Batch Modernization on z/OS

The System z and z/OS availability features are:

� Unique mainframe clustering technology for maximum up time (Parallel Sysplex)

� The ability to deploy participating nodes in the Sysplex cluster remotely (Geographically
Dispersed Parallel Sysplex)

� The ability to replicate data real-time at remote locations (PPRC)

2.2.8 Batch processing environment

Another outstanding capability of the mainframe architecture, in addition to transaction
processing, is the capability to run batch workloads. In a z/OS environment, dedicated
subsystems (JES2 or JES3) in combination with special job scheduling software, such as
Tivoli Workload Scheduler, manage batch processing.

Today, the IBM mainframe is better positioned than ever to handle batch processing. With the
ability to run batch processes written in the Java language making use of lower-cost specialty
processors and with the ability to access back-end data, either on z/OS or any other server,
z/OS has become a very cost-effective platform for running business-critical batch
applications.

Because of its nature, high performance batch processing has several requirements for the
platform on which the batch workload will be run:

� Deliver superior OLTP and Batch Processing performance, often concurrently, on the
same platform with dynamic workload management.

� Take advantage of proximity of data, the most important factor for high performance batch
processing, because batch is inherently I/O intensive.

� Address heavy I/O workload without channel/device contention.

� Provide enterprise-wide management of system resources.

� Provide parallel execution of workloads.

� Provide automatic job scheduling.

� Deliver scalability to meet growing batch processing volume and time pressures.

� Offer extreme high availability to meet critical batch processing demands.

� Provide Lock Management to manage updates to the same record without corrupting
data.

These requirements are handled extremely well with the following System z capabilities:

� Workload Management
� Powerful I/O subsystem
� Unmatched scalability, availability, and security features

2.3 Drivers for change

Today, the current IT infrastructure for large mainframe customers is getting more and more
complex. In addition to the core business that often runs completely on the mainframe, some
applications also process work on distributed systems. The work is often split into online and
batch processes.
Chapter 2. Introduction to batch modernization on z/OS 15

Even if the existing batch process is implemented optimally in terms of performance, process
controlling, and monitoring, there could still be requirements that might lead to deploying new
tools, processes, and technologies.

In the following sections, we discuss the key drivers for change in a batch environment on
z/OS. In the remainder of the book, we continue to work with these themes.

2.3.1 Existing programs are not adequate for new requirements

Most of the applications on the IBM mainframe are still written in traditional programming
languages, such as COBOL and PL/I. The examples in this section show possible
requirements for business applications that are difficult or even impossible to realize with
these traditional programming languages.

Generating documents in PDF format
Producing documents in a Portable Document Format (PDF) is becoming increasingly more
important because PDF is an open standard that allows users to exchange and view
documents on many different computing platforms. For example, using PDF allows bank
customers to receive account statements electronically.

Because PDF is an open standard, you can also generate these PDF documents on the
mainframe using traditional languages. However, doing so can be difficult because there are
no public libraries available to easily generate PDF documents. Alternatively, with modern
languages such as Java, it is fairly straightforward to create a document in PDF because
there are corresponding public libraries available.

When using batch, it makes sense to create PDF files, for example for sending salary
statements to employees.

Sending e-mails
The ability to send e-mails has become quite a common requirement in modern applications,
for example using an e-mail confirmation for notification that a payment is processed.
Although you can accomplish this requirement using a traditional programming language, it is
quite complicated. Again, for a language such as Java, this requirement is easy to implement.

Processing XML
Because of its flexibility in data structure, XML is very suitable for exchanging any kind of
data. In fact, XML has established itself as a new standard for data exchange. For example,
with DB2 V9, you can store XML data natively in DB2 databases, allowing a user to query
data using XML Query Language (XQuery). Also, other mainframe components have
expanded regarding XML capabilities, including extensions to traditional languages
(Enterprise COBOL and Enterprise PL/I) and the system environment (XML System
Services).

Although you can now process XML data with traditional languages, this method is not always
recommended because of some limitations. However, because XML is also very important for
batch, it is best to evaluate the different options, including XML in all different languages, from
COBOL and PL/I using C/C++ to Java.

Implementation of new industry standards
In the early days of computing, only mainframe computers existed. All standards regarding
computing were developed on the mainframe and, therefore, were immediately available
within mainframe programming languages.
16 Batch Modernization on z/OS

Today, new standards are also developed on distributed platforms and become available on
the mainframe through new types of middleware, such as Business Process Execution
Language (BPEL), Web Services, and Web 2.0. In some cases, these new standards do not
make it into traditional programming languages on z/OS.

Access to remote systems
Through the implementation of service-oriented architecture (SOA), software development
has changed massively in the last years. More companies use remote systems that are
integrated in the current business workflow, increasing the need to access data and business
logic on remote systems.

Again, traditional programming languages might not be adequate to directly access a remote
database or to perform a Remote Procedure Call (RPC) to a remote program on any platform.

Today, different technologies are available to access remote systems, such as Web Services,
which is positioned as the protocol of choice in an SOA. Web Services is supported in J2EE
servers as well as in Java.

2.3.2 Necessary skills to maintain and use the current technology are
no longer available

A growing problem for many companies is that skills in traditional technologies are more
difficult to find. New employees might not have knowledge of traditional mainframe
technologies because their education normally is not mainframe minded. Typical mainframe
skills include:

� Job Control Language (JCL)
� Traditional programming languages (COBOL, PL/I, and Assembler)
� ISPF user interface and TSO command-line interface
� General architecture of the mainframe
� Concepts of programming on the mainframe
� Using the ISPF editor
� Working with traditional MVS data sets

To work with a traditional batch environment on z/OS, a basic, although extensive, training is
required. Also, it takes time to really become a professional. Using new standards and
programming languages can “soften” the training requirement significantly, especially when
WebSphere middleware and a Java batch programming model is used for batch programs. In
this case, there is no need to have JCL, TSO, ISPF, and COBOL skills.

2.3.3 The batch window needs to be shortened or made more efficient

Another reason for changing existing processes in a batch environment might be that the
traditional batch window is getting smaller. In the early days of computing, batch work usually
ran overnight. During this time, no online activity was possible. Today, many applications need

Note: Java development of z/OS applications can be done entirely on the workstation
using Eclipse or IBM Rational tools. In the case of Java stand-alone batch, a basic
understanding of JCL, TSO, ISPF, and UNIX is needed to set up the runtime environment
and to test on z/OS.

In the case of the WebSphere XD Compute Grid programming model, the developer does
not need to work with JCL, TSO, and ISPF to deploy and test batch programs.
Chapter 2. Introduction to batch modernization on z/OS 17

a longer online time, sometimes up to 7x24. As a consequence, the batch window is
constantly shrinking. Reasons to extend the online workload to 7x24 include:

� Extending business to the Internet (for example Internet banking and online shopping)
� Providing application availability to global offices in many different countries

Although online activities are broadening, batch workload is still necessary. This situation
causes online transactions increasingly to run parallel to batch programs. Because online and
batch applications usually share the same data, the risk of performance degradation grows,
which can influence online or batch processing. Thus, changing the current batch architecture
might be necessary to minimize effects regarding a shrinking batch window.

2.3.4 Running batch at any time

As already mentioned, just because the current batch window is getting shorter, the batch
workload itself is not reduced, leading to the consideration of running a batch job either in the
traditional nightly batch window or at any time during the OLTP window. Furthermore, it might
happen that you need more flexibility because your users want to have a greater influence on
the execution time of some batch jobs. For these reasons, you might want to change the
current batch process to allow execution of batch jobs at any time.

2.3.5 Maintaining the actual batch programs is too complex

Batch processes in large companies can be quite complex. It is not unusual that those
companies run thousands of different batch jobs in their environment. In most cases, each of
these jobs is built of several steps. Within these steps, the data is processed either with
standard utilities or with self-written programs.

Often these jobs or steps have dependencies on each other. The sum of these dependencies
can quickly result in a very complex network of different batch jobs and steps.

An inspection of the entire batch process is of crucial importance. Because of the complexity
of the network of different batch jobs and steps, only tools such as Tivoli Workload Scheduler
are suitable to handle such a big job network. These tools guarantee the correct submission
of all jobs at the right time or, in case of errors, generate a corresponding alarm.

In addition to the complexity of the network of jobs, the batch programs themselves can
become very complex due to continuous development, which results in increased complexity
of programs. Alternatively, batch programs can contain a large amount of custom code, which
can be eliminated completely by using adequate tools.

Thus, based on the complexity of the existing job network or batch programs, a change of the
current batch process might be necessary to increase the maintainability of the program.
18 Batch Modernization on z/OS

Chapter 3. Bulk processing reference
architecture

Recent studies in IBM on batch modernization have shown some interesting observations.
We have already discussed some of them in 2.3, “Drivers for change” on page 15. In this
chapter, we discuss other observations that we use to build a reference model.

There are a number of batch implementations, across industries and across geographies at
enterprise and application levels. Many of these are proprietary implementations, built several
years ago, to cater to specific requirements. Some of the basic requirements might be the
same, but there might be need to scale. With current architectures, that might not be feasible
or practical.

There are redundancies in code, data access, and operational management because of
different OLTP and batch platforms, which results in additional cost to own and maintain
disparate systems. Java plays an important role in OLTP systems, so it does pay to use Java
in the batch applications where it makes sense.

3

© Copyright IBM Corp. 2009, 2012. All rights reserved. 19

3.1 Why do we need a reference architecture?

There is a general confusion over classification of workloads in the industry. There are a
number of purviews under which batch workloads might fall, the most common and
recognized one being the traditional batch process that is executed in a dedicated batch
window. The dwindling skills in the bulk processing community has led to confusion over
application of workload styles, such as batch; online transaction processing (OLTP); extract,
transform, and load (ETL); event processing; straight through processing (STP); and so forth.
For example, ETL is predominantly batch operations but is a separate workload type in itself.
Similarly, analytics, scientific processing and stream processing are all different
manifestations of batch or bulk processing. Adequate tools and processes do not exist to
design bulk workloads, which leads to inefficiency in execution and under utilization of
existing middleware, tools, management utilities, and IT infrastructure.

Before we talk about various aspects and capabilities of the products and platforms in batch
processing, it is important to understand and speak the same language between all
parties—business, application, and IT architects who are designing such solution;
developers, database developers, and administrators; and operations teams and system
administrators.

We have created a reference model for bulk processing to set all the parameters in one place,
irrespective of technology or product choices. Then, we look at what capabilities exist at each
component and layer.

3.2 Overview

The bulk processing reference architecture provides a blueprint for various kinds of batch
processing that apply to a single application or across an enterprise. This architecture is
based on the proven way of establishing building blocks of bulk processing, with a partially
layered architecture using services and components and data flows that represent and
implement bulk business processes. An architecture built using relationships between layers
can help design bulk processes in the context of any architecture, which is a significant step
towards making batch processing a first class workload. This architecture enables bulk
business processes to be modeled as they should be, as bulk IT processes and services, to
gain the economies of scale in execution. Using a reference architecture for bulk processing
aligns with modern trends in computing, such as service-oriented architecture (SOA) design
techniques, which help address the declining skills issues that we describe in 2.3.2,
“Necessary skills to maintain and use the current technology are no longer available” on
page 17.

The major capability that the bulk processing solution stack offers is reuse of existing assets.
There are a large number of existing batch applications that are written in various
programming languages and that run on mainframe platforms that can and should be reused.
As business and IT transformation roadmaps are created and executed, in the initial stages,
re-use is critical to minimize down time and to understand the approaches to re-engineer
assets for the next several years.
20 Batch Modernization on z/OS

The bulk processing reference model is an extensible and flexible architecture blueprint that
provides:

� Reduced IT cost, which allows reuse of business and application artifacts (design,
implementation, and system management) throughout OLTP and batch systems.

� The capability to take advantage current, highly available IT skills to design, implement,
and manage bulk applications using modern programming languages and techniques.

� Optimized and efficient execution to run bulk applications on heterogeneous platforms and
to take advantage of the platform capabilities.

� Flexibility in the design of bulk processes based on business requirements that can be
interleaved with OLTP processes to take advantage of technology rather than being
constrained by it.

� Agility to deliver applications align to business needs quicker and with lower overhead.

Layers allow a clear separation of concerns to facilitate the design of bulk processes. The
bulk processing reference model defines a blueprint that can be used to then define the
layers, the components within each layer, the options available at each layer, and the typical
architectural decisions that need to be made.

3.3 Bulk reference architecture

The layers illustrated in figure Figure 3-1 depict a set of logical layers in the bulk processing
reference architecture. This architecture follows the Layers1 pattern, but we define it as
partially layered architecture. Although we do follow a pattern where components within each
layer follow the same abstraction, there might be direct dependencies between a layer and
any layer below it, not just the immediate layer. For example, the invocation and scheduling
services can invoke a data access management service where bulk data warehousing jobs
are performed.

Figure 3-1 High-level bulk processing reference architecture

1 The Layers architectural pattern helps to structure applications that can be decomposed into groups of subtasks in
which each group of subtasks is at a particular level of abstraction. See Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-Oriented Software Architecture: A System Of Patterns. West Sussex, England:
John Wiley & Sons Ltd., 1996.

Bulk application container

Data access
management services

Infrastructure services

Bulk
application

development

System
management

and
operations

Analytics

Invocation and scheduling services
Chapter 3. Bulk processing reference architecture 21

Sometimes, the concepts of layers and tiers are often used interchangeably. However, the
important difference to note here is that a layer is a logical structuring mechanism for the
elements that make up the software solution, whereas a tier is a physical structuring
mechanism for the system infrastructure. In this section, we discuss only the logical
structuring of the software solution elements.

All bulk applications are likely to have some manifestation of each of these layers in the
implementation; however, they are not mandatory in the design. While each of the layers have
a key role to play, the level of importance in a given solution can be different. The components
might also differ based on a number of factors, including business and IT key performance
indicators (KPI), existing applications and infrastructure, as well as time and budget
constraints.

The core of the execution environment for running batch applications is in the center that
comprises the Invocation and scheduling services, bulk application container, data access
management services, and Infrastructure services. The surrounding layers—bulk application
development, system management, and operations and analytics—are used to develop,
manage, and optimize bulk applications and apply throughout the life cycle.

In the following sections, we look at each of these layers in detail and discuss the relationship
between them.

3.3.1 Infrastructure services

The infrastructure services layer constitutes the base of the operational environment. This
layer contains the hardware infrastructure, including the servers, network, data storage, and
SAN, as well as the target operating system and platform on which the bulk processes
execute. Generally, all available server and operating systems can be used in this layer. z/OS,
Linux for System z, distributed platforms running various versions of UNIX, and Windows can
be the operating system of choice in the infrastructure services.

A number of functions are available in this layer. For example, a large number of bulk
applications use file data streams. To execute these bulk jobs efficiently, one step in the batch
flow typically sorts files. The recommended method to sort files, when possible, is to use the
functions that are provided by the operating system, such as DFSORT. This sorting of files
leads to a general best practice that the processing occur as close to the data as possible to
get the best performance.

3.3.2 Data access management services

By definition, batch or bulk applications are largely dependent on processing high data
volumes. These high data volumes can be stored in a number of different types of data
stores, such as relational database or files or coming in as streams or continuous feeds.

The data access management services layer, as shown in Figure 3-2, comprises a persistent
and transient, or in-memory, data store that is used to front the persistent data. Data can be
stored in any structured format in files. Then, the data can be read in chunks or one file at a
time into an input data stream for further processing. Similarly, data can be accessed by
reading messages from (or writing messages to) a queue. For example, this pattern of
reading data from a queue can be used when trying to read streams of data coming in as a
feed from a business partner.

Note: Taking advantage of optimized functions such as file sort and merge in the
infrastructure services is key to executing efficient bulk applications.
22 Batch Modernization on z/OS

Figure 3-2 Data access management services

The “In-memory data access” in the figure represents either an in-memory database (IMDB)
or an in-memory data grid (IMDG). With performance and throughput being paramount to
completing jobs before a deadline, topologies using IMDB or IMDG are attractive. There are
specific decision factors that go into selecting one or the other:

� An IMDB has more flexibility in storing the data in a normalized form and better querying
capabilities.

� An IMDG tends to be more programming language based (for example WebSphere
eXtreme Scale has a POJO-based framework) and provides more scalability. A
programming language based framework can be used to store:

– In-memory transient referential data that is used to process all records

– In-memory chunks of input stream records to avoid an I/O for every record

– In-memory chunks of output stream records before “flushing” them to an output I/O
stream

Data can also be read from or written to queues. The queues can represent an input stream
of data that is processed by the container. It also represents messages being put in queues
for further consumption downstream after the unit of work processes records.

These are the most commonly used data access forms that are in play in the majority of the
batch jobs. There might be some custom data access patterns in use, because of a more
complex assortment of data from multiple data sources, or due to other interoperability
reasons. These data access mechanisms should be used cautiously in green-field application
developments weighing trade-offs between maintenance and upkeep costs with the flexibility
that it provides.

All data access management services need to be highly optimized because there is a
potential to invoke a service at least once for every record that is processed in bulk
applications. Given volumes that are typically processed in batch jobs, this processing can
affect throughput significantly.

3.3.3 Bulk application container

The bulk application container provides a programming model and a framework for
managing the life cycle of each bulk application. It allows jobs to be submitted, canceled,
suspended, or resumed. The core of a job step’s life cycle provided by any bulk application or
batch container provides the following set of life cycle management steps:

initialize job step and data streams;
loop

read data from the input data streams;
process data;
write data to an output stream;

Data access management services

“F ile” Data
access

Queue based
data access

In-memory
data access

Custom data
access
Chapter 3. Bulk processing reference architecture 23

checkpoint, if required;
loopend
clean up job step and data streams;

A checkpoint is one of the key distinguishing features of bulk jobs from OLTP applications, in
that data gets “committed” in chunks, along with other required housekeeping to maintain
recovery information for restarting jobs. An extreme example is doing a checkpoint after every
record, which equates to how OLTP applications typically work. At the other extreme is doing
a checkpoint at the end of the job step, which might not be feasible in most cases, because
recoveries can be expensive and too many locks can be held in the database for too much
time. It is generally somewhere between these two extremes. The checkpoint interval can
vary depending on a number of factors, such as whether jobs are run concurrently with OLTP
applications, how long locks can be held, the amount of hardware resources available, SLAs
to be met, time available to meet deadlines, and so forth. Depending on the technology used,
there are static ways of setting these checkpoint intervals, but ideally checkpoint intervals can
be set dynamically as well.

What differentiates containers is the quality of services, including but not limited to:

� The management and operation of the jobs
� The level of sophistication in providing check-pointing mechanisms
� Ease in configuring job parameters
� Integration with schedulers invoking jobs
� Portability to run in different environments

3.3.4 Invocation services

All bulk applications need to be initiated or invoked. As shown in Figure 3-3, there are two
methods of job invocation:

� Planned jobs
� Ad-hoc jobs

Figure 3-3 Invocation services

Planned jobs are set to be invoked based on pre-determined criteria, for example calendar
date, time of the day, or completion of prior jobs based on a network of job flows defined. In
the early days of computing, planned jobs were the only way jobs were invoked, and batch
jobs ran when OLTP systems shut down or at night after provisioning dedicated resources to
execute batch jobs. Planned jobs are in vogue in many enterprises today and, in many cases,
make business sense, because there are deadlines to meet as set by regulatory boards or
customers. Planned jobs provide more control to allocate resources for the workload type.
Arguably, in some cases, problem determination is easier. A good example of a planned job is
sending inventory status updates to the retail headquarters from a store done twice a day, at
noon and midnight.

Bulk Partner
services

Bu siness p rocess
and event services

Scheduler
services

Invocation services
Ad hoc Planned
24 Batch Modernization on z/OS

Ad hoc jobs are invoked because of a triggered event or rule and can run at any time. For
example, if business partners send files of data that need to be processed, a job can be
triggered to start after every n files are available, where n is a set number of files. Using the
same retail inventory status update example, an ad hoc trigger rule can be set to start the
status update job when 30% of the items are at 60% of original. Using ad hoc rules is better
aligned with a direct business need, provides flexibility, and is a first step in running data
processing when needed so that the customer gets near real-time access to information.

Combining the planned and ad hoc jobs is fairly normal and takes advantage of the strengths
of both. The complexity is shifted to designing the applications and resource provisioning. In
Chapter 14, “Create agile batch by implementing trigger mechanisms” on page 223, we
discuss in more detail different methods to trigger ad hoc batch jobs.

3.3.5 System management and operations

All bulk processes or batch jobs, whether they are ad hoc or planned, need to be managed.
Figure 3-4 illustrates the life cycle of batch jobs.

Figure 3-4 Batch application life cycle - execution and management

Figure 3-4 shows a comprehensive set of steps that are required in the management and
execution of every job:

1. The client first initiates the job, either triggered by an event or at a pre-set schedule.

2. The scheduler then schedules this job.

3. The scheduler queues the job for dispatch and tracking.

This phase analyses the job and the resources available for execution and plans for the
dispatch of the job. In order to plan for the resources, optionally a resource broker can be

Resource-Job Assignment Management
 Resource availability & capacity (dynamic)
 Centralized, clustered, distributed

 Job to resource assignments & optimization

Workload-Resource Usage Management
 Workload sensors and actuators
 Resource usage optimizat ion

Client
Interaction

Resource
Broking

Scheduling

Workload
Mgmt

Executing

job init iated

status

resource
usage s tatus

job dispatched

m
o

n
ito

ri ng

&
 co

n
tro

l

events &
timers

re
so

u
rc

e

as
si

g
ne

d
Execution Management
 Job execution
 Parallel coordinat ion
 Application interaction

1

2
3

Resource Mgmt

Resource Model & Configuration
 Physical, logical, virtual resource model: attributes, relations
 Resource configuration and operation
 Resource capacity planning

Provisioning Mgmt

Resource & Software Provisioning
 Resources: physical, logical, virtual
 Software: middleware & applicat ions

Job Management
 Job queuing & t racking
Planning
 Job & resource analysis & planning
Orchestration / Choreography
 Job dependencies
 Resource dependencies
 Event & timer driven job act ions
Chapter 3. Bulk processing reference architecture 25

used. For example, Tivoli Workload Scheduler uses a resource broker to manage the
assignment of resources to a job, based on availability and capacity determined
dynamically. The resource broker uses services from a resource manager that has the
physical and virtual resource model and its attributes and an overview of the resource
configuration. Tivoli Dynamic Workload Broker provides a number of these capabilities. A
provisioning manager discovers and tracks data center resources to enable more accurate
server provisioning and software deployments. It also facilitates efforts to consistently
follow user defined policies and preferred configurations, in support of corporate and
regulatory compliance efforts. The workload management helps with balancing the
workload across available resources to optimize resource usage. A solution could be built
using all or a subset of these capabilities, depending on cost and complexity of the jobs
that need to be executed and managed.

4. The scheduler then dispatches the job to the execution environment where, upon
completion, the status is sent back to the client.

3.3.6 Bulk application development

Bulk applications can be built from scratch as the result of green-field requirements.
Alternatively, as in many cases, they can be the result of an evolutionary migration,
re-engineering or re-designing a project of existing batch applications. Figure 3-5 shows the
approaches that can be followed for development.

Figure 3-5 Application life cycle: Development and migration

For modernization, the approach is based on a guiding principle: Do not perform code
translations without doing a proper due diligence. Simply performing a code translation of
batch applications from, say, COBOL to Java without due diligence will probably prove
expensive and unworkable. Moreover, it will produce unreadable, unmaintainable, and
inefficient code. To understand what the platform-independent model for the batch jobs would
be, the business logic and flows need to be abstracted, which will provide a platform
independent model.

Ident ify a unit of
work to be run in a

loop

Identify i nput and
output data

streams

Identify partit ion-
able segments of

data

Determine Data stream
and processing patterns

for target platform

Create/modify
model

New Bulk
processing

requirements

Legacy code

Extract model

Separate batch
infrastructure logic

from application
logic

M
o

d
e

rn
iz

e
 le

g
ac

y,
 b

ot
to

m
 u

p

Identify reusable
code

Develop
application

B
a

tc
h

 a
p

p
lic

at
io

n

d
ev

el
o

p
m

en
t

26 Batch Modernization on z/OS

A combination of manual processes and tools can be used to create these business logic and
data flow artifacts. Doing so ensures that current implementations and future requirements
can be captured more accurately. The platform independent models can then be
implemented in any platform specific model and programming language using a model driven
approach.

For the more green-field requirements for bulk processing, the best practice is to follow a
similar approach of first modeling the solution. The key elements to be identified are the data
streams and the unit of work to be applied to the data in the streams. Identifying partitionable
segments of data helps with optimizing the design and helps to design an efficient
implementation. Depending on the target platform of choice, a number of other elements
specific to each programming model and runtime environment will need to be factored in the
design and implementation.

This development approach does not focus on the deployment and testing aspects of bulk
applications in detail. Common best practices in OLTP applications also apply to bulk
applications deployment and testing.

3.3.7 Analytics

The analytics component applies to every element in the bulk processing reference
architecture. For example, in the invocation optimization component, you want to have insight
into the ability to determine the best target application server for an incoming job request.
This information can be determined by simple algorithms to some very sophisticated
techniques using analytics. Some of the simplest implementations will maintain a table of the
available target servers, and a server is chosen using round robin or randomly. At the other
end of the spectrum of algorithms, you have a self-learning system that determines a target
available server based on historical data of getting the best throughput. This determination
requires collecting and analyzing data from the infrastructure, data, and application
containers over a period of time.

If there are shared resources between OLTP and bulk applications, the workload manager
can make decisions based on business rules that then drive the checkpoint policies. For
example, WLM might determine the following conditions based on predefined SLAs:

� A batch job is negatively impacting the OLTP, and OLTP is more important

– Dynamically reduce the checkpoint interval for the batch jobs
– Dynamically inject pauses between the checkpoint intervals for the batch jobs

� The deadline for a particular batch job is approaching, we need to speed it up

– Dynamically increase the checkpoint interval for the batch jobs
– Dynamically decrease pauses between the checkpoint intervals for the batch jobs

Most of the current systems have some level of analytics built in, which we describe in the
following chapters.
Chapter 3. Bulk processing reference architecture 27

3.4 Building up the bulk processing reference architecture

We have now described a bit more detail about each layer, resulting in a diagram as shown in
Figure 3-6.

Figure 3-6 Bulk processing reference architecture

We use this reference architecture as we describe the various products that enable batch
processing on z/OS in this book. We unfold and dive deeper into each layer using specific
products and capabilities of the products to provide a better understanding of how the layers
all can be used in conjunction to build a solution specific to your bulk processing needs.

Bulk application container

In fo rmation storage

Data access management services

“F ile” Data
access

Queue based
data access

In-memory
data access

Custom data
access

Infrastructu re services
All layers above this interacts w ith or uses the services from the core OS

Bulk
application

development
Environment for

creating and
migrating bulk
applications

System
management

and
operations

Manage, monitor
and secure bulk

processes

A nalytics
for scheduling, check-pointing, resource management

Bulk Partner
services

Business p rocess
and event services

Scheduler
services

Invocation & Scheduling optimization
Resource brokering, Split & Parallelize, Pace, Throttle

Invocation services
Ad hoc Planned
28 Batch Modernization on z/OS

Figure 3-7 illustrates the products that can be used in each layer. We discuss some of these
products in more detail in the remainder of this book.

Figure 3-7 Bulk processing reference architecture with mapped products

Bulk application container

In fo rmation storage

Data access management services

“F ile” Data
access

Queue based
data access

In-memory
data access

Custom data
access

Infrastructure services
All layers above this interacts w ith or uses the services from the core OS

Bulk
application

development
Environment for

creating and
migrating bulk
applications

System
management

and
operations

Manage, monitor
and secure bulk

processes

Analytics
for scheduling, check-pointing, resource management

Invocation & scheduling services

Bulk Partner
services

Business p rocess
and event services

Scheduler
services

Invocation & scheduling optimization
Split & Parallelize, Pace, Throttle

•WebSphere Process Server
•WebSphere Business Services Fabr ic
•FileNet
•TWS

•WebSphere Process Server
•WebSphere Business Services Fabric
•FileNet
•TWS

•WebSphere ESB
•WebSphere Message Broker
•WebSphere Datapower
•WebSphere Transformation Extender
•WebSphere MQ
•WebSphere MQ FTE

•WebSphere ESB
•WebSphere Message Broker
•WebSphere Datapower
•WebSphere Transf ormation Extender
•WebSphere MQ
•WebSphere MQ FTE

•Rational Software Architect
•Rational Application Developer
•Rational Developer for z and i
•Rational Team Concert
•Rational Application Scanner
•Rational ClearCase / ClearQuest
•Rational Tester for SOA Quality

•Rational Software Architect
•Rational Application Developer
•Rational Developer for z and i
•Rational Team Concert
•Rational Application Scanner
•Rational ClearCase / ClearQuest
•Rational Tester for SOA Quality

•WebSphere Compute Grid
•Tivoli Workload Broker
•Tivoli Composite Application Manager
•IBM System s Director
•Tivoli Usage and Accounting Manager
•Tivoli Provisioning Manager
•Tivoli CCMDB / TADDM
•Tivoli Compliance Insight Manager
•Tivoli Business Service Manager
•Tivoli Access Manager
•Tivoli Federated Identity Manager
•Tivoli Security Policy Manager

•WebSphere Compute Grid
•Tivoli Workload Broker
•Tivoli Composite Application Manager
•IBM Systems Director
•Tivoli Usage and Accounting Manager
•Tivoli Provisioning Manager
•Tivoli CCMDB / TADDM
•Tivoli Compliance Insight Manager
•Tivoli Business Service Manager
•Tivoli Access Manager
•Tivoli Federated Identity Manager
•Tivoli Security Policy Manager•WebSphere Virtual Enterprise

•IBM Power Systems,
BladeCent er, System z

•WebSphere Vir tual Enterprise
•IBM Power Systems,
BladeCenter, System z

•DB2 for z/OS; DB2 UDB
•IBM Information Server
•Infosphere MDM
•InfoSphere Data Warehouse

•DB2 for z/OS; DB2 UDB
•IBM Information Server
•Infosphere MDM
•InfoSphere Data Warehouse

•WebSphere Transformation Extender
•WebSphere Message Broker
•WebSphere MQ FTE
•Datastage TX

•WebSphere Transf ormation Extender
•WebSphere Message Broker
•WebSphere MQ FTE
•Datastage TX

•WebSphere MQ
•WebSphere MQ

•WebSphere eXtreme
Scale
•Solid DB

•WebSphere eXtreme
Scale
•Solid DB

•Tivoli Workload
scheduler

•Tivoli Workload
scheduler

•WebSphere Compute Grid
•WebSphere ESB
•WebSphere Message Broker
•WebSphere Datapower
•WebSphere Transformation Extender
•WebSphere MQ
•WebSphere MQ FTE

•WebSphere Com pute Grid
•WebSphere ESB
•WebSphere Message Broker
•WebSphere Datapower
•WebSphere Transf ormation Extender
•WebSphere MQ
•WebSphere MQ FTE

•WebSphere Compute
Grid
•TWS

•WebSphere Compute
Grid
•TWS
Chapter 3. Bulk processing reference architecture 29

30 Batch Modernization on z/OS

Part 2 Serving new functional
requirements in z/OS
batch

One of the drivers for change in a batch environment is the introduction of functional
requirements that cannot be met easily with existing traditional technology. Unfortunately, it is
sometimes very difficult to handle these requirements in an existing batch environment due to
constraints in the technology and, especially, constraints in the programming language in use.

Examples of requirements that might require new technology on z/OS include:

� Integration with the outside world, for example through Web Services

� Expansion of print jobs to create PDF files, for example sending invoice files as a PDF to
customers

� Generating electronic reports in formats such as *.xls or *.doc

� Generating diagrams for reports

� Sending e-mail

� Sending Short Messages (SMS) to recipients

� Direct remote access to heterogeneous systems using protocols such as TCP/IP, HTTP,
and Web Services

� Direct remote access to heterogeneous databases on other platforms

Part 2
© Copyright IBM Corp. 2009, 2012. All rights reserved. 31

� Imbedding functionality provided by applications from independent software vendors
(ISVs) that are not written in traditional z/OS programming languages

� Using different versions of XML:

– Parsing XML data
– Storing and forwarding XML data
– Generating XML data
– Transforming XML data into other formats

As shown with these examples, these types of requirements cannot be implemented on z/OS
using traditional batch technologies, such as JCL and COBOL.

In this part of the book, we discuss different new technologies with a focus on supporting new
state-of-the-art requirements. The choice of the programming language is key when it comes
to supporting functional requirements, and we discuss scenarios using traditional
programming languages as well as new programming languages such as Java and PHP.

We also discuss different runtime environments in combination with Java. In addition to using
Java stand-alone in JCL, you can also use Java in a runtime container, such as WebSphere
XD Compute Grid, inside an IMS BMP, or inside a DB2 stored procedure. In all of these,
cases the developer has access to a broader functionality.

We include samples that you can download from the Web site as described in Appendix C,
“Additional material” on page 453.

We discuss the following technologies in this part:

� In Chapter 4, “Implement new functionality using traditional languages” on page 33, we
discuss the enhanced capabilities of COBOL and PL/I and how to use the XML
capabilities.

� In Chapter 5, “Introduction to Java on z/OS” on page 49, we discuss using the Java
language and follow on with the following chapters that discuss using Java in different
environments:

– In Chapter 6, “Implement new functionality using Java in traditional containers” on
page 57, we discuss traditional runtime environments, including CICS, IMS, and DB2.

– In Chapter 7, “Implement new functionality using stand-alone Java” on page 77, we
discuss stand-alone in JCL.

– In Chapter 8, “Implement new functionality using Java in WebSphere XD Compute
Grid” on page 93, we discuss WebSphere XD Compute Grid.

� In Chapter 9, “Implement new functionality using PHP on z/OS” on page 157, we discuss
PHP in stand-alone batch.

Note: What is traditional technology actually? In the context of this book, we identify
traditional technology as technologies that are widely in use on z/OS for batch processing
for decades, such as JCL, MVS data sets, COBOL, PL/I, and Assembler. These
technologies are well proven and provide excellent quality of service but, unfortunately, do
not provide support for all today’s requirements. In contrast, modern technologies include
programming languages, frameworks, and middleware that have been added to z/OS over
the past decade, are also well proven, but still not widely in use on z/OS.
32 Batch Modernization on z/OS

Chapter 4. Implement new functionality
using traditional languages

This chapter provides a brief overview of how to get access to a broader functionality when
using traditional languages on z/OS such as COBOL, PL/I, C/C++. We discuss the recently
added XML capabilities in COBOL and PL/I.

This chapter includes the following topics:

� Why use traditional languages for new functionality?
� XML support in COBOL and PL/I
� Implementing new functionality in C/C++

4

© Copyright IBM Corp. 2009, 2012. All rights reserved. 33

4.1 Why use traditional languages for new functionality?

In today’s programming, with programs written in high-level and scripting languages such as
Java and PHP, it is easy to forget that a significant number of current business applications on
mainframes are written using traditional languages such as Assembler, COBOL, and PL/I.

The data serving capabilities of System z provide a reliable foundation for an optimized IT
infrastructure as required in today’s business environments. COBOL and PL/I, with their
procedural programming model, provide a huge strength for processing massive amounts of
data. If you run a traditional data intensive application on z/OS, your application also benefits
from the System z hardware, the z/OS operating system, and database system strengths
such as fast data access, high-availability, scalability, and reliability.

Figure 4-1 shows the development cycle for traditional z/OS applications written in COBOL or
PL/I, starting with creating the source code and ending with an executable module.

Figure 4-1 Process flow for an application using a traditional procedural programming language

The steps in this cycle are as follows:

1. In the compile step, modules of source code are translated into relocatable machine
language in the form of object code.

2. Object code must be processed by a binder (or linkage editor or loader) before it can be
executed. The binder resolves unresolved references in the object code and ensures that
everything that the program needs is included in the final load module.

3. To execute a load module, the binder loads the module into real storage and then transfers
control to it to begin execution.

If you have the requirement to enrich your existing traditional batch applications with new
modern technology such as XML or Web Services or if you only want to introduce new
techniques to modernize your environment, you must be aware of the following questions:

� Which programming languages on z/OS fulfill your requirements?
� Which skills are required for development?
� Are modern tools available that make development easier?

To select the programming language is one important decision in case you need to design a
new application or to enrich an existing application with new techniques. You must be aware
of the strengths, as well as the weaknesses, of each language to make the best choice,
based on the particular requirements of the application.

A crucial factor in choosing a programming language is determining which functionality you
need to implement. If COBOL or PL/I is used for most of the applications in your environment,
it is likely the language of choice for the new application as well because of the existing skills
in your development team and for reason of standardization. There might be a case, however,
for using multiple languages to take advantage of the strengths of a particular language for
only certain parts of the application. It might be a good choice to write frequently invoked
subroutines in Java or C/C++, even if the standard language is COBOL or PL/I. Each
programming language has its inherent strengths, and an application designer should exploit

Source
code

Load
module

Object
module

Compiler Binder Execution
34 Batch Modernization on z/OS

these strengths. If a given application merits the added complication of writing it in multiple
languages, the designer should take advantage of the particular features of each language.
Keep in mind, however, that when it is time to update the application, multiple skills must be
available. Thus, complexity in design must always be weighed against ease of maintenance.

You might find that your investment in applications written in traditional languages is reaching
its end and that you have many reasons to move to a higher level language such as Java, but
that you are not ready to change all your applications to Java or another modern language.

Remember that COBOL or PL/I, though not today’s hottest technology, still offers a very
efficient way to fulfil most enterprise computing requirements, which is operating on data.
Although there seems to be a rush to code everything in Java and other Web-enabled
languages, COBOL or PL/I remain a proven language to handle large volumes of data to be
processed on the mainframe.

Reasons to convert from a lower-level procedural language to a higher-level language
include:

� Traditional code can be difficult to maintain because of a shortage of available skills.
� Tooling for higher-level languages is more state-of-the-art and more productive.
� There is a lack of functionality in lower-level languages.

COBOL and PL/I sometimes have a lack in functionality to serve certain new requirements.
However, in some areas, these languages have advanced significantly and can now be used
for fulfilling the following requirements that were not possible a few years ago:

� XML support in COBOL and PL/I

The XML support available in COBOL and PL/I can be used to for certain functionality
requiring the usage of XML, but both COBOL and PL/I have limitations compared to Java.
Also, the syntax of COBOL or PL/I applications draws a lot of energy and attention from
the developer instead of focusing on the thinking process needed for software
development. However, for small and simple applications that only process XML
documents it is not difficult to use the XML support available in COBOL and PL/I.

� Interoperability with C/C++

The COBOL and PL/I compilers provide compatibility for calling a C/C++ program, making
it easier to decide to implement enhanced functionality in C/C++ modules and reuse those
modules in COBOL and PL/I programs.

� Interoperability with Java

The COBOL and PL/I compilers provide compatibility for integrating traditional programs
with Java components. (See 5.5, “Java Interoperability with COBOL and PL/I” on page 55
for more detailed information.)

� Unicode support

Unicode support for Enterprise COBOL and PL/I also helps to modernize your
applications, particularly the case if your application is used across countries or regions
with different languages. More information is provided in Enterprise COBOL for z/OS
Programming Guide Version 4 Release 1, SC23-8529 and Enterprise PL/I for z/OS
Programming Guide Version 3 Release 8, SC27-1457.

� The earlier traditional compilers for z/OS do not take advantage of the System z hardware
advancements. The latest compilers take advantage of the hardware exploitation.
Chapter 4. Implement new functionality using traditional languages 35

4.2 XML support in COBOL and PL/I

System z is a platform with large pools of structured data that are of high value to applications
and middleware. XML processing is very data intensive, and introducing XML in the
application usually has consequences for the performance and CPU cost, compared to not
using XML.

IBM is continuously optimizing the technology to make the usage of XML as transparent as
possible in terms of performance and CPU cost and currently provides the z/OS XML System
Services, which is a unique XML parser written in Assembler for z/OS. z/OS XML System
Services is part of the z/OS operating system. The latest version of Enterprise COBOL and
PL/I, the XML Toolkit for z/OS and also DB2 9 for z/OS and CICS TS Version 4.1 are
exploiters of the z/OS XML System Services parser to provide the best possible performance
in XML processing on z/OS and to offload the workload on the zIIP and zAAP specialty
engines. (See 4.2.4, “Using z/OS XML System Services” on page 39 for detailed information.)

If you decide to use XML processing in a COBOL or PL/I application, you can use the
following technologies to implement the required functions in your traditional batch
environment:

� Using built-in XML support in COBOL
� Using built-in XML support in PL/I
� Using the XML Toolkit for z/OS
� Using z/OS XML System Services
� Solving the “XML problem” by combining XML technologies
� Using pureXML capabilities in DB2 9 for z/OS

In the following sections, we discuss each of these options in more detail.

4.2.1 Using built-in XML support in COBOL

The easiest way to implement XML processing in your traditional COBOL application is to use
the COBOL built-in subroutine which provides a basic SAX-style parsing. However, you will
notice that you will reach the limitations quickly, for example in the validation functionality. This
option is recommended only for small and easy implementations.

Processing XML input
You can process the XML input in your COBOL program by using the XML PARSE statement.
The XML PARSE statement is the COBOL language interface to either of two high-speed
XML parsers. You use the XMLPARSE compiler option to choose the appropriate parser for
your application:

� XMLPARSE(XMLSS)

This compiler option selects the z/OS XML System Services parser. This option provides
enhanced features such as namespace processing and conversion of text fragments to
national character representation (Unicode UTF-16) and 100% of z/OS XML System

Note: For more information, refer to XML Processing on z/OS, SG24-7810. This book
provides information about XML processing technologies on z/OS, with emphasis on z/OS
XML System Services, the z/OS XML Toolkit, Enterprise COBOL and PL/I built-in XML
processing support, and Java XML processing in the SDK including usage in various z/OS
environments such as CICS, IMS, and Rational Developer for System z, including code
samples.
36 Batch Modernization on z/OS

services parsing is eligible for zAAP. See 4.2.4, “Using z/OS XML System Services” on
page 39 for more information.

� XMLPARSE(COMPAT)

This compiler option selects the XML parser that is built into the COBOL library. This
option provides compatibility with XML parsing in Enterprise COBOL Version 3.

Processing XML input involves passing control to and receiving control from the XML parser.
You start this exchange of control by using the XML PARSE statement, which specifies a
processing procedure that receives control from the XML parser to handle the parser events.
You use special registers in your processing procedure to exchange information with the
parser.

Use the following COBOL facilities to process XML input:

� Use the XML PARSE statement to begin XML parsing and to identify the document and
your processing procedure

� Use the ENCODING phrase of the XML PARSE statement to specify the encoding of the
XML document

� Use your processing procedure to control the parsing, that is to receive and process XML
events and associated document fragments and to return to the parser for continued
processing

� Use the following special registers to receive and pass information:

– XML-CODE to receive the status of XML parsing and, in some cases, to return
information to the parser

– XML-EVENT to receive the name of each XML event from the parser

– XML-NTEXT to receive XML document fragments that are returned as national
character data

– XML-TEXT to receive document fragments that are returned as alphanumeric data

– XML-NAMESPACE or XML-NNAMESPACE to receive a namespace identifier for a
NAMESPACE-DECLARATION XML event or for an element name or attribute name
that is in a namespace

– XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX to receive a namespace
prefix for a NAMESPACE-DECLARATION XML event or for an element name or
attribute name that is prefixed

The XML namespace special registers are undefined outside the processing procedure.

You can use the ENCODING phrase and the RETURNING NATIONAL phrase of the XML
PARSE statement only when the XMLPARSE(XMLSS) compiler option is in effect.

Processing XML output
You can produce XML output from a COBOL program using the XML GENERATE statement.
In the XML GENERATE statement, you identify the source and the output data items. You can
optionally also identify:

� A field to receive a count of the XML characters generated

� A code page in which the generated XML document is to be encoded

� A namespace for the generated document

Link-edit considerations: COBOL programs that contain the XMLPARSE statement must
be link-edited with AMODE 31.
Chapter 4. Implement new functionality using traditional languages 37

� A namespace prefix to qualify the start and end tag of each element, if you specify a
namespace

� A statement to receive control if an exception occurs

Optionally, you can generate an XML declaration for the document and can cause eligible
source data items to be expressed as attributes in the output rather than as elements.

You can use the XML-CODE special register to determine the status of XML generation.

After you transform COBOL data items to XML, you can use the resulting XML output in
various ways, such as deploying it in a Web service, passing it as a message to WebSphere
MQ, or transmitting it for subsequent conversion to a CICS communication area.

4.2.2 Using built-in XML support in PL/I

Enterprise PL/I for z/OS allows existing PL/I transactions to process inbound and outbound
XML data directly within the applications. It provides a high-speed parser that enables PL/I
programs to parse XML documents in EBCDIC, ASCII or UTF-16. Using the IBM PL/I Simple
API for XML (SAX) parser, this XML can then be passed to other applications, even those
running on other platforms, including IMS and CICS environments. With PL/I Enterprise V3.3
and later, Enterprise PL/I also supports the generation of XML. Using a built-in function, you
can dump the contents of a structure as XML into a buffer. IBM PL/I provides a SAX-like
event-based interface for parsing XML documents. The parser invokes an
application-supplied handler for parser events, passing references to the corresponding
document fragments.

The parser has the following characteristics:

� It provides high-performance, but non-standard interfaces.

� It supports XML files encoded in either Unicode UTF-16 or a single-byte code page.

� The parser is non-validating, but it does partially check for well-formed errors and
generates exception events if it discovers any errors.

The PLISAXx (x = A or B or C) built-in subroutines provide basic XML parsing capability,
which allows programs to consume inbound XML documents, check the syntax, and react to
the content. These subroutines do not provide XML generation, which must instead be
accomplished by PL/I program logic or by using the XMLCHAR built-in function.

PLISAXA and PLISAXB have no special environmental requirements. They execute in all the
principal runtime environments, including CICS, IMS, and WebSphere MQ, as well as z/OS
batch and TSO. PLISAXA and PLISAXB do have some important limits, they have no support
for XML name spaces, no support for Unicode UTF-8 documents, and they require that the
entire XML document be passed to them (either in a buffer or a file) before they do any
parsing of it.

PLISAXC has no special environmental requirements except that it is not supported in
AMODE 24. It executes in all the principal runtime environments, including CICS, IMS, and
WebSphere MQ, as well as z/OS batch and TSO.

Link-edit considerations: COBOL programs that contain the XML GENERATE statement
must be link-edited with AMODE 31.
38 Batch Modernization on z/OS

The new PLISAXC built-in subroutine uses the z/OS XML System Services and this workload
is 100% eligible for the zAAP specialty engine. See 4.2.4, “Using z/OS XML System Services”
on page 39 for more information.

4.2.3 Using the XML Toolkit for z/OS

If you require more then simple XML parsing functionality in your traditional batch application
on z/OS, it can be very useful to call a C/C++ program from COBOL or PL/I. The IBM XML
Toolkit for z/OS is designed to provide a valuable infrastructure component to assist you in
creating, integrating, and maintaining your business-to-business solutions.

The XML Toolkit for z/OS is EuroReady. It is based on a cross-platform, open source code
based parser (C/C++) that is designed to be compliant with industry standards.

IBM XML Toolkit for z/OS, V1.10 continues to provide enhanced support for the XML Parser,
C++ Edition and the XSLT Processor, C++ Edition. The XML Parser, C++ Edition is updated
with the following support:

� Ability to optionally utilize z/OS XML System Services (see 4.2.4, “Using z/OS XML
System Services” on page 39) as an underlying parsing technology when performing
Document Object Model (DOM) and Simple API for XML (SAX2) based parsing
operations. Support is provided for both non-validating parsing as well as validating
parsing utilizing schema based on the W3C Schema recommendation. This enhancement
is provided by way of a set of new z/OS-specific parser C++ classes that are similar in
name to and closely mimic the existing DOM and SAX2 interfaces. Utilizing z/OS XML
provides redirection to zAAP specialty processors of the portion of the XML parsing
operation performed by z/OS XML and might result in significant improved raw
performance as well.

� A new feature that supports importing multiple schemas with the same namespace.

� Improved source offset support, enhancing the ability to obtain information that correlates
parsed output with the associated data in the input document being parsed. This new
support is included in the new z/OS-specific parser classes described above.

4.2.4 Using z/OS XML System Services

The “XML problem” was identified as an issue in 2003 and probably earlier. New
programming models were wrapping everything in XML to enable transactions to take place in
a more generic fashion throughout the network. XML is used to provide envelope information
and metadata about the transaction. Traditional back-end transaction processing needed to
handle the new XML-based standards, such as SOAP, efficiently or risk becoming obsolete.
Users were looking at heavy additional CPU costs to support the same transaction load that
they have always managed, just because the requesters of those transactions require them to
be in an XML form instead of a traditional (and proprietary) form.

IBM provides the z/OS XML System Services (z/OS XML) as a new line item developed to
address the soaring demand for XML processing workloads on System z. The z/OS XML
parser is a system level XML parser that is integrated with the base z/OS operating system. It

Note: You can find more information regarding XML support in Enterprise PL/I for z/OS
Programming Guide Version 3 Release 8, SC27-1457.

Note: Optional usage of z/OS XML by XML Parser, C++ Edition users for non-validating
parsing is also available in XML Toolkit V1.9 by using PTFs UA40707 and UA40708.
Chapter 4. Implement new functionality using traditional languages 39

is intended for use by system components, middleware, and applications that need a simple,
efficient, XML parsing solution. z/OS XML can currently be accessed by a C/C++ or an
Assembler programming interface. The z/OS XML parser includes the following specifications
and functions:

� Is written in Assembler language.

� Is an integrated parser for z/OS and a non-Java environment.

� Provides a buffer-in, buffer-out processing model instead of the event-driven model that is
common to SAX parsers.

� Natively handles a number of character encodings, including UTF-8, UTF-16 (big endian),
IBM-1047, and IBM-037.

� Uses buffer spanning to handle documents of unbounded length.

� Contains minimal linkage overhead.

� Provides the ability for parsing operations to be run 100% on a System z Application
Assist Processor (zAAP) when called in TCB mode or a System z10® Integrated
Information Processor (zIIP) when called in SRB mode, for example DRDA® mode.

� Provides assistive aids to the user in debugging not well formed documents.

z/OS XML is an integrated component of the z/OS base, so no additional installation is
required. This integration also makes z/OS XML a high-performance parser, supporting z/OS
environments where minimum overhead is a priority, such as SRB and cross-memory modes.
The interface itself is simple and efficient, consisting of five Assembler-level callable services
that avoid event-driven interface overhead. z/OS XML parses its XML documents to a
self-defining binary form that is easy to navigate all while complying with the World Wide Web
Consortium’s XML specifications.

z/OS XML, like most XML parsers, can parse and check the syntax of an entire XML
document. z/OS XML rises above other parsers, however, with its ability to parse incomplete
documents as part of a series of fragments that make up an entire XML document. This ability
saves on storage overhead when dealing with large XML documents that could be hundreds
of megabytes in size. Rather than allocate one large buffer to fit a particular XML document,
z/OS XML allows applications to allocate, use, and reuse a smaller buffer in memory to step
through the entire document. A 100 MB document, for example, could be sequentially parsed
in 100 fragments of 1 MB each, thereby greatly reducing an application’s memory footprint.
z/OS XML allows greater customization for storage management by supporting
application-specific exits for allocating and de-allocating storage. z/OS XML also supports a
string identifier exit which allows applications to further save on storage by assigning
numerical identifiers to strings from the XML document. Finally, z/OS XML provides an
interface to efficiently query an XML document’s encoding.

You call the z/OS XML parser natively from a COBOL or PL/I application, but, for example, to
handle a pointer in COBOL is not as simple, which is why Enterprise COBOL and PL/I, DB2
for z/OS, and the XML Toolkit for z/OS exploit the z/OS XML parser to reduce the application
development and to increase performance.
40 Batch Modernization on z/OS

4.2.5 Solving the “XML problem” by combining XML technologies

Traditional transaction processing on z/OS increasingly means handling XML, driving up CPU
costs, which has led to several issues:

� The XML Toolkit was not performing well.
� z/OS XML is very fast but lacks the interfaces that most people use (SAX2 or DOM).
� z/OS XML also lacks a validating feature.
� IBM has high performance validating parsers, but they were not generally accessible.

Each of the individual technologies had its strengths and its weaknesses:

� XML Toolkit for z/OS

The XML Toolkit for z/OS provides the SAX2 and DOM as de-facto standard XML parsing
APIs. The parser is function-rich, but performance is unacceptable. It provides an
event-driven programming model where the caller and parser call one another to walk
through the document. As items are identified by the parser, they are passed to the
appropriate event handler. This processing model makes offload impractical and there is
too much entry/exit overhead.

See Figure 4-2.

Figure 4-2 XML Toolkit for z/OS

� z/OS XML

z/OS XML is a parser for z/OS components and applications with the following key
characteristics:

– Very high performance (short pathlength)
– Offloaded to specialty engines (zAAP or zIIP as appropriate)
– Limited functionality, relative to the toolkit (for example non-validating)
– Proprietary buffer-in/buffer-out interface

z/OS XML attacks the XML problem from an absolute performance standpoint as well as
cost-performance through offload to assist processors.

See Figure 4-3.

SAX2, DOM

Application

event handlers

Parser
Chapter 4. Implement new functionality using traditional languages 41

Figure 4-3 z/OS XML

� XL/XP

The XL/XP XML parser is specialized in high-performance validation and the schemas are
pre-compiled to improve parse-time performance. XL/XP is a derivative of
research-based, and IBM-internal XML parsers and delivers the same parsed data stream
as z/OS XML.

See Figure 4-4.

Figure 4-4 XL/XP

The requirement became to develop a high-performance, validating parsing solution with
common programming interfaces that runs on assist processors.

z/OS XML was first implemented and released in V1.8 as a high-performance,
system-friendly interface and a good first step in solving the “XML problem.” z/OS XML was
enhanced in V1.9 with offload capabilities to a specialty engine (zAAP), a high-level language
binding (C) and performance improvements. However, the validation of XML documents
against a schema and a processing model that developers were already familiar with was still
needed. XML processing costs were still too high, and so there was a lot of pressure to move
workload off of System z. Also a system-friendly, simple call/return processing model was
needed with no layers of object-oriented APIs burning CPU cycles.

All of this had evolved to a currently available solution combining the z/OS XML parser, the
XL/XP validating parser and the XML Toolkit for z/OS to solve the growing issues in
application development and performance on XML processing on z/OS.

parsed XML datastream

z/OS XML SS

z/OS XML SS parser
(non-validating) on

lo
ad

offlo
ad XML text

Application

parse (…)

consume
datastream

parsed XML datastream

XL /XP

XML text

Application

parse (…)

Schema textOSR

Generator

Parser

Opt Schema Representation

consume
datastream

Generate an optimized
schema for use at

parse time
42 Batch Modernization on z/OS

Figure 4-5 provides a brief overview how the components z/OS, XLXP, and the XML Toolkit
work together.

Figure 4-5 Architectural overview of using z/OS XML, XLXP, and the XML Toolkit

This solution includes the following are key aspects:

� This environment is a non-Java environment. Because Java is already offloaded, any XML
processing occurring within a Java application is already running on a specialty engine.

� XL/XP is an IBM internal-only parser that allows validation of XML documents against a
pre-processed XML schema. It cannot be used directly at this time but is imbedded in
various IBM middleware products.

� The XML Toolkit for z/OS is an open-source based collection of parser and stylesheet
processors that implement the most widely accepted APIs (for example, SAX, DOM, and
an XSLT processor).

� z/OS XML acts as a container and integration point for new XML processing capabilities.

� It provides an offload wrapper for both the z/OS XML non-validating parser, and XL/XP.

� It allows XL/XP validating parse functionality to be used by any software running on z/OS.

� The XML Toolkit for z/OS is enhanced to call the z/OS XML component and to request
either a validating or non-validating parse.

� It provides offload capability for a large portion of the overall parse request. Some small
portion of the parse request will not be offloaded, because processing still takes place
within the XML Toolkit for z/OS to implement the parsing APIs it provides.

� Absolute performance improvements are being seen when running the XML Toolkit for
z/OS in concert with z/OS XML. Approximately a 50% pathlength reduction for SAX
parses, and 40% for DOM parse requests.

So, we use the XML Toolkit for z/OS, the z/OS XML, and the XL/XP to solve the “XML
problem” with a complete set of functionality to reach high performance and cost reduction.

z/OS XML parser
(non-validating)

XLXP
(validating)

parsed XML data stream

event handlers

event handlers

event handlers

event handlers

event handlers

SAX 2 or DOM

Parser xmlReader

Other SAX
classes

call to event
handlers

Encoding conversion services

Network services

File access services

Initiate a
SAX parse

parse to
data

stream

XML Toolkit for z/OS

z /OS XML

Application

o
nlo

a
d

o
fflo

a
d

event generator,
glue code

event generator traverses parsed data stream

1

3
4

5

2

Chapter 4. Implement new functionality using traditional languages 43

With the combination of these components the following problems are addressed and solved:

� Parse with schema validation

– Integrate an existing proprietary IBM validating parser (XL/XP) with the z/OS XML
parser.

– XL/XP is already incorporated in existing IBM middleware products and z/OS XML
becomes a container providing offload and an API.

� SAX2 and DOM interfaces

– “Slide” z/OS XML under the XML Toolkit for z/OS

– Extend existing class library to allow re-direction of parsing to z/OS XML

– z/OS XML does the actual parse, and the XML Toolkit provides the API and external
behaviors

� Additional supporting functionality

– Offsets to locations of parsed items in the source document

– Fully qualified names in end element records

– Mark attribute value records generated as defaults from the DTD

– Enhanced IPCS support

� More supported encodings

– European country extended code pages (EBCDIC based), 19 new in total

� 100% zIIP offload

– When caller is in enclave SRB mode, z/OS XML offloads to a zIIP

– Will now always offload 100% of z/OS XML, and not the dialed percentage of the
enclave

� New functions delivered through different mechanisms

– z/OS releases

– SPEs (APARs)

– XML Toolkit for z/OS releases

DB2 is the first exploiter that currently uses both XL/XP for parsing with validation, and z/OS
XML for non-validating parses in V9.

The system requirements are as follows:

� z/OS XML APARs

– OA25903 - rollback of the validating parse function from z/OS V1.10 to V1.9

– OA22777 - support for 19 additional European encodings (available now)

– OA23828 - offload 100% of parser cycles on zIIP when in SRB mode

� XML Toolkit for z/OS APARs:

– OA22700 - use z/OS XML for non-validating parse requests (for release 9 of the toolkit)
44 Batch Modernization on z/OS

For more information, see the following resources:

� z/OS XML System Services User’s Guide and Reference, SA23-1350

� z/OS XML System Services Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/xml/

� XML Toolkit for z/OS Web site at:

http://www-03.ibm.com/servers/eserver/zseries/software/xml/

� Using XML on z/OS and OS/390 for Application Integration, SG24-6285

http://www.redbooks.ibm.com/abstracts/sg246285.html?Open

� The World Wide Web Consortium Web site at:

http://www.w3.org/

� Extensible Markup Language (XML) 1.0 Web site at:

http://www.w3.org/TR/2006/REC-xml-20060816/

� Extensible Markup Language (XML) 1.1 WQeb site at:

http://www.w3.org/TR/2006/REC-xml11-20060816/

4.2.6 Using pureXML capabilities in DB2 9 for z/OS

DB2 Version 9.1 for z/OS (referred to as DB2 9 hereafter) is a hybrid data server with
integrated pureXML® technology to natively manage XML data with unprecedented reliability,
availability, scalability, and performance. DB2 9 pureXML exploits z/OS XML System Services
for high-performance parsing with improved price and performance utilizing IBM System z
specialty engines.

Figure 4-6 shows a technical overview for the XML support in DB2 9 for z/OS. You can insert
your XML document and during the insert the document will be checked if well-formed and if
you want you can validate the document against a registered XML schema. You can also use
the functions of DB2 9 to search in the stored XML documents or generate XML documents
from existing data in your database.

Figure 4-6 XML Support in DB2 9 for z/OS

DB2 Engine

21

3

4

56

7

8 9

XML

1

2

3

4

5

6

7

8

9

Insert XML

Store as XML

Shred into Relational

Retrieve XML

Publish XML

Select XML

XML to XML

XML to Relational

Relational to XML

0 XML Storage

XSR

0

Relational

Application
XML

XML
Chapter 4. Implement new functionality using traditional languages 45

http://www-03.ibm.com/servers/eserver/zseries/software/xml/
http://www.redbooks.ibm.com/abstracts/sg246285.html?Open
http://www.ibm.com/servers/eserver/zseries/zos/xml/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/
http://www.w3.org/TR/2006/REC-xml11-20060816/

PureXML includes the following capabilities:

� XML data type and storage techniques for efficient management of hierarchical structures
inherent in XML documents.

� pureXML indexes to speed search subsets of XML documents.

� New query language support (SQL/XML and XPath) based on industry standards and new
query optimization techniques.

� Industry-leading support for managing, validating, and evolving XML schemas.

� Comprehensive administrative capabilities, including DB2 utilities and tools.

� Integration with popular application programming interfaces (APIs) and development
environments.

� XML shredding, publishing, and relational view facilities for working with existing relational
models.

� Proven enterprise-level reliability, availability, scalability, performance, security, and
maturity that users expect from DB2.

Prior to DB2 9, an XML document could have been stored in its entirety as a Character Large
Object (CLOB). Alternatively, the XML Extender could have been invoked to convert and map
XML data to relational data. The XML Extender used “side tables” as rudimentary indexes
into the XML data and used the z/OS XML Toolkit to manipulate XML data. PureXML
eliminates the need for the XML Extender and can help developers to reduce application
system complexity, improve development productivity, lower maintenance costs, and develop
new applications to get insight into unexploited XML data.

It is recognized that XML, which is widely adopted across industries for its flexibility and
portability, is nonetheless verbose and its manipulations incur more overhead than its
relational counterparts. Even though z/OS XML System Services is an efficient system level
XML parser on z/OS, additional general CPU cost reduction is possible. With the proper
software and hardware, local DB2 calls to z/OS XML System Services are redirected to a IBM
System z Application Assist Processor (zAAP) specialty engine. Included are invocations
from the attachments that run in TCB mode. DB2 already has functions that can be redirected
to the System z Integrated Information Processor (zIIP) specialty engine. For a workload
already on a specialty engine, the intent is to continue to run it. For a workload not running on
a specialty engine, the intent is to allow the DB2 XML processing to run on a specialty engine
to mitigate its cost.

There are differences between DRDA redirection and z/OS XML System Services redirection.
For XML, DB2 9 XML inserts, updates or the LOAD utility invoke z/OS XML System Services
and these system invocations are the only operations eligible for zAAP. A workload arriving
through DRDA can have a portion of its entire XML workload redirected to the zIIP, including
select, insert, update, delete, and query. A DRDA workload executes in Enclave SRB mode
and none of it is zAAP-eligible.

Even though a local XML workload is 100% zAAP-eligible for its z/OS XML System Services
invocation, only the z/OS XML System Services portion, not the entire execution of the XML
insert/update/LOAD is redirected. DB2 actions prior to and after that call are not
zAAP-eligible.
46 Batch Modernization on z/OS

You can find more detailed information about pureXML capabilities in the following resources:

� DB2 Version 9.1 for z/OS XML Guide, SC18-9858, which is available at:

http://publib.boulder.ibm.com/epubs/pdf/dsnxgk10.pdf

� DB2 9 for z/OS: Deploying SOA Solutions, SG24-7663, which is available at:

http://www.redbooks.ibm.com/abstracts/sg247663.html

4.2.7 Summary

There are lots of possibilities to work with XML under z/OS. IBM System z offers excellent
performance with z/OS XML System Services. z/OS XML and its high performance together
with zAAP and zIIP speciality processors is a very cost efficient solution.

4.3 Implementing new functionality in C/C++

You might have requirements that are not easy or even impossible to implement with COBOL
and PL/I but for which C/C++ is an option. C and C++ are comprehensive and powerful
programming languages that allow you to produce high-performing programs providing
optimized business software solutions. If you have the requirement to integrate C/C++
functions in your traditional batch environment, you can use Inter Language Communication
(ICL) between C and C++ programs, and between C or C++ programs and Assembler,
COBOL, PL/I or FORTRAN programs.

Inter Language Communication (ICL) under the Language Environment® covers COBOL,
PL/I and C/C++, but Assembler is not a language in terms of ILC.

Java is not covered in ICL, as Java is an object oriented model providing interoperability
through CLASS inheritance. Java runs under UNIX System Services and can be invoked in
different ways, such as by invoking a BPXPATCH or BPXBATSL job (see 7.1, “Running Java
with the BPXBATCH or BPXBATSL utilities” on page 78), or by CICS (see 6.1, “Java in CICS”
on page 58) or IMS (see 6.2, “Java in IMS” on page 58).

ICL focuses on direct program CALLs between modules written in a procedural language,
such as COBOL and PL/I. Enterprise COBOL and Enterprise PL/I added a lot of features
(compared to what was in the earlier compilers) to make it easy to call C functions from
COBOL or PL/I. In fact, it is possible to call any C function from COBOL or PL/I (and because
there are also now many useful C functions on the mainframe, this is important). Some
reasons for calling C/C++ modules in traditional batch applications include:

� When you need to implement a function in an existing batch program that is already
available as a C/C++ module. You can then simply call that existing C/C++ module from
your existing COBOL or PL/I program using ILC.

� When COBOL or PL/I do not provide the syntax and APIs to implement the function you
require. An examples are using communication protocols, such as TCP/IP.

� When you do not have skills available (anymore) to continue coding in COBOL or PL/I. In
that case you can consider to gradually move to C/C++ by implementing new functionality
in C/C++ and keeping existing functionality in COBOL or PL/I. ILC is available to integrate.
Chapter 4. Implement new functionality using traditional languages 47

http://www.redbooks.ibm.com/abstracts/sg247663.html
http://publib.boulder.ibm.com/epubs/pdf/dsnxgk10.pdf

� When you need to “bridge” from COBOL or PL/I to Java or vice versa. In that case you can
use Java Native Interface (JNI) to bridge between Java and C/C++ and ILC to bridge
between C/C++ and COBOL or PL/I.

� When you need to “plug in” a vendor product into your existing COBOL or PL/I batch
environment. A vendor product might provide modules in C/C++ that you need to integrate
in existing COBOL or PL/I batch programs, such as for printing purposes.

Note that mixing languages should not be a goal by itself, because it increases complexity
and dependency on multiple programming skills. Consider mixing languages and using ILC
only if there is no other option. The good thing is that with the Language Environment and
ILC, z/OS provides one virtual environment for multiple programming languages.

Note: The IBM C compilers and the IBM COBOL and PL/I compilers use the same default
linkage.
48 Batch Modernization on z/OS

Chapter 5. Introduction to Java on z/OS

Before we discuss the various scenarios with Java in subsequent chapters, we first provide an
overview of Java on z/OS in this chapter. This chapter includes the following topics:

� The basics of Java
� Special Java APIs for batch processing on z/OS
� Data access with Java on z/OS
� Encoding issues
� Java Interoperability with COBOL and PL/I

5

© Copyright IBM Corp. 2009, 2012. All rights reserved. 49

5.1 The basics of Java

As traditional languages such as COBOL, PL/I, and Assembler sometimes lack functionality
to serve certain new requirements (see Part 2, “Serving new functional requirements in z/OS
batch” on page 31), Java can be a very interesting option to solve many of those issues.

Because Java is platform independent, it is very easy to reuse components on z/OS that
originally have been written for distributed platforms. This includes Java based Open Source
components as well as Java based functions and frameworks provided by ISVs. As of today, a
huge variety of different Java libraries for all kind of purposes can be found and reused for
your own batch processes.

Figure 5-1 shows how the platform independency is achieved by the different available IBM
Java Virtual Machines (JVMs).

Figure 5-1 Platform independency with IBM JVMs

For different kinds of operating systems and their underlaying hardware, a special IBM JVM is
available. This JVM abstracts the underlaying components of the OS and hardware by
translating the compiled Java bytecode to OS specific instructions. As a result, every Java
program can be run on all of the mentioned platforms without recompiling it.

All the IBM JVMs are built on a common code base with platform specific extensions. This
allows a common handling of IBM JVMs on all platforms.

In addition to the aspect of code reuse for batch modernization on z/OS, Java also offers the
following advantages on z/OS:

� Easy programming model through object orientation

� Java skills are more readily available in the market

� Rich in functionality

� Very good development tools on Eclipse base available

Note: Java bytecode is not bound to the IBM JVM. It also runs in other JVMs that comply
to the Java standard.

IBM Power Processor X86 Processor

X86 LinuxWindows

IBM z10 Microprocessor

Linux on
Power

AIX
Linux on
System z

z/OS

X86 Linux
JVM

Windows
JVM

Linux on
Power JVM

AIX
JVM

Linux on
System z JVM

z/OS
JVM

Common code base

Platform
specific

extensions

Platform
specific

extensions

Platform
specific

extensions

Platform
specific

extensions

Platform
specific

extensions

Platform
specific

extensions

Java
bytecode

Java
bytecode

Java
bytecode

Java
bytecode

Java
bytecode

Java
bytecode
50 Batch Modernization on z/OS

� Can be run on System z10 Application Assist Processor (zAAP) to reduce cost

� Data proximity

Due to local connectors to data back-end systems, you can achieve high performance. For
example, the JDBC Type II driver for z/OS allows Java z/OS programs to interact with DB2
z/OS based on a cross memory connection. In contrast to the TCP/IP based JDBC Type
IV driver, this eliminates the cost for the network connection. Especially in a batch
environment where typically much data is involved, this can be a competitive advantage.

� Multithreading support

In contrast to traditional z/OS programming languages, Java supports multithreading,
which can help to achieve higher efficiency and better performance as multiple threads
can run in parallel on the processors available.

These advantages can be used in nearly all run times on z/OS:

� CICS
� IMS
� DB2
� WebSphere Application Server
� WebSphere stack solutions running on WebSphere Application Server, such as

WebSphere Process Server, and WebSphere Portal
� Java stand-alone under z/OS

Thus, you can use Java in batch nearly wherever you want. We discuss these run times and
their usability for Java batch in subsequent chapters in more detail.

For further information about Java on z/OS, see:

http://www.ibm.com/servers/eserver/zseries/software/java/

5.2 Special Java APIs for batch processing on z/OS

IBM uses a common code base for the JVM on all platforms plus additional platform specific
extensions. One of those extensions on z/OS is specific Java APIs for batch processing,
including:

� MVS data set and VSAM access to interact with z/OS specific data

� Condition code passing for integration of Java batch jobs into z/OS job nets

� z/OS Catalog search

� Interaction with the MVS Console

� Conversion of COBOL/ASM data types to Java types

� Invoking DFSORT to effectively sort data (see 23.5, “Invoking DFSORT from Java with
JZOS” on page 417 for further details)

� Access to z/OS Access Method Services (IDCAMS)

� RACF APIs to integrate Java into the z/OS security model

� Writing of Logstreams (for example as an Appender to LOG4J)

� Submission of Jobs from Java (see 14.1, “Job submission with native Java technology” on
page 224 for further details)

For a description of the function, see:

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html
Chapter 5. Introduction to Java on z/OS 51

http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html

For a description of the com.ibm.jzos packages, see the full Javadoc at:

http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html

You can find samples about how to implement these APIs in the following resources:

� In the JZOS Cookbook at:

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

� On the IBM Web site:

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp
.html

5.3 Data access with Java on z/OS

Because data access is a very important aspect of batch, we discuss this topic in further
detail here. Data on z/OS typically not only resides in UNIX System Services based files or in
DB2 on z/OS. Instead, much of z/OS data is very often stored in sequential files, partioned
data sets and VSAM. To address the needs to access these z/OS specific data stores, Java
APIs are available.

Data access support in Java on z/OS is provided by a complementary set of functions of the
JZOS toolkit library and the Java Record I/O library (JRIO). Together, these libraries allow
Java applications access to mainframe file systems that ordinary Java APIs do not support.

The JZOS toolkit provides thin wrappers for z/OS C/C++ Library functions which can be used
to access MVS data sets. For a full discussion on these C/C++ functions, refer to the following
IBM C/C++ publications:

� z/OS C/C++ Run-Time Library Reference, SA22-7821
� z/OS C/C++ Programming Guide, SC09-4765

Using the JZOS toolkit, Java programs can access any MVS data sets supported by the
C/C++ library, including:

� Partitioned Data Set (PDS)A
� Partitioned Data Set Extended (PDSE)
� Sequential Files
� Virtual Sequential Access File (VSAM) of the type KSDS, RRDS, or ESDS

The z/OS C/C++ library supports several models of I/O when using MVS data sets:

Record mode Each read or write processes a single record of a data set.

Stream mode Data set records are presented as a stream of bytes. Each read or
write reads some portion of those bytes, irrespective of record
boundaries. Stream mode is further distinguished by two types:

Text (stream) mode

Data set records are converted to a stream of bytes and a “new line”
record delimiter is placed in the stream between records after trailing
blanks are removed.

Binary (stream) mode

Data set records are placed in the stream as is.

Note: The javadoc reflects the current version of the IBM Java SDK for z/OS. If some of
these functions are not included in your SDK, update it to the latest version.
52 Batch Modernization on z/OS

http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html
http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download
http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp.html

For example, if we define an INPUT and OUTPUT DD statement in a JCL that is calling a
Java job with the JZOS batch launcher (see 7.2, “Running Java with JZOS” on page 79 later
on), we can copy the INPUT data set to the OUTPUT data set in binary record mode, as
shown in Example 5-1:

Example 5-1 Copying an MVS data set in binary record mode using ZFile

ZFile zFileIn = new ZFile("//DD:INPUT", "rb,type=record,noseek");
ZFile zFileOut = new ZFile("//DD:OUTPUT", "wb,type=record,noseek");
try {
 byte[] recBuf = new byte[zFileIn.getLrecl()];
 int nRead;
 while((nRead = zFileIn.read(recBuf)) >= 0) {
 zFileOut.write(recBuf, 0, nRead);
 };
} finally {
 zFileIn.close();
 zFileOut.close();
}

In contrast to binary record mode, Example 5-2 shows how to read an MVS data set in text
stream mode to put it to SYSOUT. This example is reading all data defined by a DD statement
called INPUT and writes it to SYSOUT.

Example 5-2 Reading an MVS data set in text stream mode using ZFile

ZFile zFile = new ZFile("//DD:INPUT", "rt");
 try {
 String enc = ZUtil.getDefaultPlatformEncoding();
 InputStream is = zFile.getInputStream();
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(is, enc));
 String line;
 while ((line = rdr.readLine()) != null) {
 System.out.println(line);
 };
 } finally {
 zFile.close();
 }

Instead of the previous example, we can also use the JZOS FileFactory to perform the same
function. This one has the benefit of being simpler and more platform portable as shown in
Example 5-3.

Example 5-3 Reading text from MVS data set using FileFactory

BufferedReader rdr = FileFactory.newBufferedReader("//DD:INPUT");
try {
 String line;
 while ((line = rdr.readLine()) != null) {
 System.out.println(line);
 }
} finally {
 rdr.close();
}

Chapter 5. Introduction to Java on z/OS 53

In addition to binary record mode and text stream mode, the third way to access MVS data
sets is binary stream mode. For example. we can define the following DD statement in a JCL:

//INPUT DD DSN=STRAUER.XML.IN.BIN,DISP=SHR

This INPUT data set contains some XML data which we parse later on with the standard Java
SAXParser as shown in Example 5-4.

Example 5-4 Parsing XML from an MVS data set using ZFile binary stream mode

SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 MyDocumentHandler handler = new MyDocumentHandler();
 ZFile zFile = new ZFile("//DD:INPUT", "rb");
 try {
 parser.parse(zFile.getInputStream(), handler);
 } finally {
 zFile.close();
 }

The JZOS toolkit APIs should be used for accessing all types of MVS data sets and the
standard java.io Java library should be used for accessing UNIX System Services files
(HFS/zFS).

For more information about accessing MVS data sets with JZOS, refer to the JZOS Cookbook
at:

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

5.3.1 Summary

All of these z/OS Java APIs allow a very efficient integration of Java into the z/OS batch
environment because they provide the ability to use a lot of commonly used functions of other
z/OS programming languages also to be used in Java. Combined with the additional
capabilities of Java, such as object orientation or PDF creation, Java can be a very interesting
option to serve new functional requirements in a z/OS batch environment.

5.4 Encoding issues

Under z/OS, the default code page for UNIX System Services is IBM-1047. As the JVM is
using UNIX System Services, I/O operations are per default EBCDIC. Sometimes, this can
lead to problems:

� If we are developing all Java code on distributed platforms, we have to be very careful
about the encoding of some files. Some files, such as the *.class files, have to be
uploaded to z/OS in binary mode through FTP. Other files, such as *.properties files, in
contrast, must be converted to EBCDIC by using ASCII mode in FTP.

� Sometimes, external Java libraries from third parties contain hard coded ASCII characters
in the code, which often also causes problems.

Note: Because the SAXParser is standard Java, we do not show the source code here.
54 Batch Modernization on z/OS

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

The easiest way to get around this is to use the following parameter when launching the JVM,
which causes the z/OS JVM to read/write everything in ASCII and solves the problems:

-Dfile.encoding=ISO8859-1

5.5 Java Interoperability with COBOL and PL/I

Another important aspect of using Java in an existing z/OS batch environment is
interoperability between the COBOL and PL/I and the Java language.

Basically, there are two ways to achieve interoperability between Java and other languages:

� Using functionalities of the runtime environment, such as CICS, IMS, DB2, WebSphere
Application Server, or JES.

� Creating direct language calls.

The first option depends heavily on the selected run time. We provide further details about
this option in Chapter 6, “Implement new functionality using Java in traditional containers” on
page 57 and Chapter 8, “Implement new functionality using Java in WebSphere XD Compute
Grid” on page 93 for CICS/IMS/DB2 and WebSphere respectively.

In contrast, the second option is not bound to a runtime environment. We discuss details
about this option in the next two sections. Also refer to 4.3, “Implementing new functionality in
C/C++” on page 47.

5.5.1 Enterprise COBOL

Enterprise COBOL offers the capabilities to invoke Java methods from COBOL and the other
way around to invoke COBOL programs from Java. When you are using object-oriented (OO)
COBOL, Enterprise COBOL allows this interaction with Java based on the Java Native
Interface (JNI) technology.

You can find further information about how to use COBOL and Java interoperability Enterprise
COBOL for z/OS Programming Guide Version 4 Release 1, SC23-8529.

Another important aspect of COBOL and Java interaction is data conversion between Java
and COBOL. Many data sets on z/OS systems contain records described by COBOL
copybooks. These records contain fields that conform to the set of valid COBOL types, such
as Alpha, Alpha-numeric, unscaled numeric, decimal (packed or zoned) and binary
(COMP-5). As it is desirable for Java programs to read and process this kind of data set,
writing the code to convert from the COBOL to Java datatypes can be tricky. Therefore, the
IBM Java SDK for z/OS offers a complete set of field converter types that help to convert
COBOL/ASM types to Java types.

Note: WebSphere Application Server for z/OS is using ASCII encoding as a default.
Therefore, encoding should not be a problem in WebSphere Application Server.

Note: In Enterprise COBOL, the JVM is started only one time when OO COBOL is
initiated. Thus, there is no additional cost when you call Java methods from COBOL after
this initiation.
Chapter 5. Introduction to Java on z/OS 55

http://publibfp.boulder.ibm.com/epubs/pdf/igy3pg40.pdf

5.5.2 Enterprise PL/I

Enterprise PL/I also allows you to invoke Java methods and Java can invoke PL/I programs.
Again, this is based on the JNI technology.

You can find further information about PL/I and Java interoperability Enterprise PL/I for z/OS
Programming Guide Version 3 Release 8, SC27-1457.

Note: Each time you invoke a Java method from PL/I, it creates a new JVM. Depending on
the amount of Java code to be processed, this JVM startup can lead to a relative overhead.
In contrast, if your are invoking PL/I programs from Java, the JVM is only started once.
56 Batch Modernization on z/OS

http://publibfp.boulder.ibm.com/epubs/pdf/ibm3pg70.pdf

Chapter 6. Implement new functionality
using Java in traditional
containers

In this chapter, we explain the different capabilities of using Java based batch in the traditional
runtime environments such as CICS, IMS, and DB2 for z/OS. This chapter includes the
following topics:

� Java in CICS
� Java in IMS
� Java in DB2 for z/OS

6

© Copyright IBM Corp. 2009, 2012. All rights reserved. 57

6.1 Java in CICS

Because CICS is not intended as full batch container, we do not discuss CICS in this book.
Nevertheless, you might have situations where you want to implement batch processing in
CICS and also consider Java as a programming language. Refer to the extensive resources
available for CICS and Java Application Development for CICS, SG24-5275. in particular.

6.2 Java in IMS

Using Java in IMS can be an attractive option for batch processing because it combines the
benefits of Java’s rich functionality and additional reliability provided by IMS through specific
methods for checkpointing, restarting, and rollback.

IMS Java batch applications can access IMS databases, VSAM files, GSAM files or DB2
databases. For DB2 it might be important to know, that the connection to DB2 that is
established by the IMS Java batch program accessing DB2 can be reused until the program
finishes its work.

This chapter explains how Java can be used in an IMS environment for batch processing.
6.2.1, “Introduction to IMS databases” on page 58 provides a brief introduction on IMS
databases and 6.2.3, “Java applications in IMS” on page 60 discusses how to use Java in an
IMS batch environment.

6.2.1 Introduction to IMS databases

In the following section, we give a brief overview of IMS databases. If you are familiar with
IMS principles, you can skip this section.

Hierarchical databases
An IMS Database (IMS DB) is made up of records that are composed like trees (as opposed
to relational database systems, for example DB2, that store data in tables). Certain types of
data might call for a specific storage structure. For example, a phone directory matching
names and phone numbers fits well into a table, while a log of customer orders with several
articles per order likes to dwell in a tree. Figure 6-1 illustrates the concept of storing data in a
hierarchical tree.

Figure 6-1 Hierarchical database
58 Batch Modernization on z/OS

http://www.redbooks.ibm.com/abstracts/sg245275.html
http://www.redbooks.ibm.com/abstracts/sg245275.html

The exemplary customer database shown in Figure 6-1 stores the orders and support
requests of all customers of a company. For every customer, there is one record, each with
one root segment. The root segment stores the name and the address of the respective
customer. Every record can contain several copies of the dependent segments order and
request according to the number of orders and requests that the customer placed. For every
item of an order, the product name and the number of items is noted in an extra segment.
These structures allow for fast navigation through the data and to find a position with little
effort.

Furthermore, the structures of IMS databases and XML documents are very similar. Special
applications can store XML efficiently in new or already existing IMS databases and retrieve
XML and keep the hierarchical organization of the data all the way through. In addition to
using Java, using XML can be a very good enrichment of existing IMS applications.

IMS data can be accessed by navigating the hierarchical structure. The original method for
accessing this data was Data Language/I (DL/I), which is roughly equivalent to SQL. DL/I
uses trees instead of tables and returns single segments instead of result sets. There is also
a hierarchical database interface for Java that encapsulates DL/I calls in Java methods.

To use both hierarchical and relational access to IMS databases, you must either create a
Java representation of the IMS segment hierarchy and fields or use the DLIModelUtility
plug-in to generate the IMSDatabaseView object from IMS DBDs, PSBs, and COBOL
Copybooks.

Relational access to hierarchical data
In addition to DL/I, the same data can be accessed using Java DataBase Connectivity
(JDBC). Because JDBC does not operate on trees, but on tables, the data in the tree must be
mapped to a table. In the previous example, every instance of Item (the lowest mapped
segment) results in a separate row. If several instances of Item have the same instance of
Order as a parent, they share the same data for Order_No and Order_Date in the resulting
table. Table 6-1 shows a mapping between hierarchical data and relational data.

Table 6-1 Relational representation of hierarchical data

Note: IMS Version 11 provides an implicit mapping called virtual private keys. Using this
concept, an SQL INSERT no longer requires a WHERE clause (nonstandard SQL) to
determine the hierarchical position of the new segment. For more information, see the
following resource:

ftp://ftp.software.ibm.com/software/os/systemz/pdf/July_14_Telecon_Get_Smart_IM
S_Application_with_Cobol.pdf

Cust-Name Cust_Address Order_No Order_Date Item_Name Item_Pcs

Cust 1 Street 1 40 2009-11-14 Paper 2

Cust 1 Street 1 40 2009-11-14 Pencil 1

Cust 1 Street 1 41 2009-11-18 Eraser 1

Cust 1 Street 1 44 2009-12-04 Envelope 3

Cust 1 Street 1 44 2009-12-04 Paper 4

Cust 2 Street 8 43 2009-12-03 Paper 20

Cust 3 Street 4 42 2009-12-01 Pencil 10

Cust 3 Street 4 42 2009-12-01 Paper 8
Chapter 6. Implement new functionality using Java in traditional containers 59

ftp://ftp.software.ibm.com/software/os/systemz/pdf/July_14_Telecon_Get_Smart_IMS_Application_with_Cobol.pdf

6.2.2 Object mapped access to hierarchical data

With Java, a very popular way of persisting Java objects is to use an object-relational mapper
to store the data that is in an Java object instance.See the following resources for examples:

� Hibernate

http://www.hibernate.org

� The Sun Java Persistence API (JPA)

http://java.sun.com/javaee/technologies/persistence.jsp

Currently, this feature is not available. You can use DB2 within IMS Java to persist objects into
DB2 databases and tables (for example, by using Hibernate as a Java persistence
framework).

6.2.3 Java applications in IMS

As described previously, you can access IMS data using two method. Both access methods,
JDBC or the IMS hierarchical database interface for Java, require the IMS Base API for Java
to convert the calls to DL/I calls, as depicted in Figure 6-2.

Figure 6-2 Java applications in IMS

Java Message Processing (JMP) and Java Batch Processing (JBP) applications can access
DB2 for z/OS databases in addition to IMS databases. For more details about Java in IMS,
see IMS Version 7 Java Update, SG24-6536 and the IMS Information Center.
60 Batch Modernization on z/OS

http://java.sun.com/javaee/technologies/persistence.jsp
http://www.hibernate.org

IMS Java batch processing
Each IMS application program runs in an IMS region. Traditionally, there are the two region
types:

� MPP for online processing
� BMP for batch processing

Two additional region types were introduced to accommodate IMS Java application programs:

� JMP for online processing
� JBP for batch processing

Both make use of a Java Virtual Machine (JVM).

Batch-type processing with Java in an (online) IMS environment can be achieved using a JBP
region. Programs running inside JBP regions can access the IMS message queues for output
but not for input. They can be started using JCL (or using TSO).

If the application does not need to run in an IMS dependent region, a JBP is not necessary.
Nevertheless, running an application in the JBP container provides transactional services and
checkpoint restart support.

Starting a JBP application
JBP applications are either started from TSO or by submitting a job with JCL. Example 6-1
shows a sample JCL. For a description of the parameters, see:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.im
s10.doc.sdr/ims_dfsjbp_procedure.htm

Example 6-1 Sample JCL to start a JBP

//JBPJOB JOB 1,IMS,MSGLEVEL=1,PRTY=11,CLASS=K,MSGCLASS=A,REGION=56K
// EXEC DFSJBP,
// IMSID=
// PROC MBR=TEMPNAME,PSB=,JVMOPMAS=,OUT=,
// OPT=N,SPIE=0,TEST=0,DIRCA=000,
// STIMER=,CKPTID=,PARDLI=,
// CPUTIME=,NBA=,OBA=,IMSID=,
// PREINIT=,RGN=56K,SOUT=A,
// SYS2=,ALTID=,APARM=,ENVIRON=,LOCKMAX=,
// XPLINK=N
//*
//JBPRGN EXEC PGM=DFSRRC00,REGION=&RGN,
// PARM=(JBP,&MBR,&PSB,&JVMOPMAS,&OUT,
// &OPT&SPIE&TEST&DIRCA,
// &STIMER,&CKPTID,&PARDLI,&CPUTIME,
// &NBA,&OBA,&IMSID,
// &PREINIT,&ALTID,
// '&APARM',&ENVIRON,&LOCKMAX,
// &XPLINK)
//STEPLIB DD DSN=IMS.&SYS2.SDFSJLIB,DISP=SHR
// DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
// DD DSN=IMS.&SYS2.PGMLIB,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//PROCLIB DD DSN=IMS.&SYS2.PROCLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=&SOUT,
// DCB=(LRECL=121,RECFM=VBA,BLKSIZE=3129),
// SPACE=(125,(2500,100),RLSE,,ROUND)
Chapter 6. Implement new functionality using Java in traditional containers 61

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.ims10.doc.sdr/ims_dfsjbp_procedure.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.ims10.doc.sdr/ims_dfsjbp_procedure.htm

Data safety: IMS checkpoints
Data changes are bundled into transactions, which are either executed completely or not at all
to ensure data integrity. For example, a customer’s order and the amount that is billed is
entered simultaneously. Thus, either the order is accepted and the customer is billed or the
order is rejected and the customer is not billed.

In batch processing, transactions are established by checkpoints. IMS commits all data
changes since the beginning of the batch process or since the last checkpoint when
checkpoint() is called.

Should a batch process not have completed its work (abnormal end), you can restart it using
restart().

The primary methods for checkpoint and restart are:

� IMSTransaction().checkpoint()
� IMSTransaction().restart()

These methods perform functions that are analogous to the DL/I system service calls:
(symbolic) CHKP and XRST.

Example
Example 6-2 shows a JBP application that performs the following tasks:

� Connecting to a database
� Making a restart call
� Performing database processing
� Periodically making checkpoints
� Issuing a final checkpoint
� Disconnecting from the database at the end of the program

Example 6-2 JBP application

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 IMSTransaction.getTransaction().restart(); //Restart application
 //after abend from last
 //checkpoint
 repeat {

 repeat {
 results=statement.executeQuery(...); //Perform DB processing
 ...
 MessageQueue.insertMessage(...); //Send output messages
 ...
 }

 IMSTransaction.getTransaction().checkpoint(); //Periodic checkpoints
 // divide work
 }

 conn.close(); //Close DB connection
 return;
}

62 Batch Modernization on z/OS

On an initial application start, the IMSTransaction().restart() method notifies IMS that
symbolic checkpoint and restart is to be enabled for the application. The application then
issues periodic IMSTransaction().checkpoint() calls to take checkpoints. The
IMSTransaction().checkpoint() method allows the application to provide a
com.ibm.ims.application.SaveArea object that contains one or more other application Java
objects whose state is to be saved with the checkpoint. Should the application fail, the state of
these objects can then be restored during restart, which is different from the traditional IMS
batch that allows to store deserialized Java objects in the checkpoint area of an IMS JBP
instead of copybooks or DSECTs.

If a restart is required, it is initiated by the application. The checkpoint ID is provided either
with the IMSTransaction().restart() call (similarly to providing the ID to the XRST call in
IMS) or within the CKPTID= parameter of the JBP region JCL. The restart() method returns a
SaveArea object that contains the application objects in the same order in which they were
originally checkpointed.

If, for whatever reason, the data changes that the application made are not written to the
database, rollback() is called instead of checkpoint(), as follows:

IMSTransaction.getTransaction().rollback(); //Roll back DB updates

For more detailed information about the programming model for symbolic checkpoint and
restart, see JBP application with symbolic checkpoint and restart at:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims10.doc.apg
/ie0j1bas999243.htm#symbckpt

If you need transactionality, this IMS feature can be a big advantage compared to stand-alone
Java batch applications, which we discuss in Chapter 7, “Implement new functionality using
stand-alone Java” on page 77.

Java interoperability with other languages
In addition to the common ways of communication, IMS Java applications can interact with
applications written in other languages using IMS queues such as C. C can then be used to
call other modules, for example Assembler. Special cases in this area are COBOL and PL/I,
which have compiler and API provided support to interoperate with Java.

For COBOL, procedural mixed mode COBOL programs in addition to object-oriented (OO)
COBOL applications can run in the same regions as Java applications and interact with them
using JNI. JNI is used to call the C-language DL/I routines. The COBOL compiler generates
Java classes which use the compiler-generated native methods. Thus, COBOL procedures
and methods can call Java methods and OO COBOL methods can be called by Java
methods (see 5.5, “Java Interoperability with COBOL and PL/I” on page 55). Also, an OO
COBOL method can call a procedural COBOL module.

IMS Java development
All current development environments for the mainframe support IMS Java applications.

As an example, development is possible with pure Eclipse, but you need to download the
imsjava JAR files. These files are available from the HFS path where the IMS Java HFS was
installed. In addition, you can use Ant scripts and the FTP Spool API that are available with
z/OS to automatically create a JAR file, upload it to the z/OS host, execute the IMS Java
Batch, and return the output job log into the Eclipse workspace.

If you want to write and test Java applications that access IMS data, you can use the sample
application for IMS solutions for Java development. You can download this sample application
from the IMS Web site. It provides a working sample that is run against the Dealership
Chapter 6. Implement new functionality using Java in traditional containers 63

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims10.doc.apg/ie0j1bas999243.htm#symbckpt

database and helps application developers build Java applications. Jobs to build the
Dealership database comes with the IMS installation. For more information about the IVP
jobs and tasks for the IMS sample application for XQuery support in IMS, see the IMS Version
10: Installation Guide at:

http://www-306.ibm.com/software/data/ims/imsjava/

For details about the classes that you use to develop a JBP application, see the Java API
specification for IMS at:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.im
s10.doc.apr/ims10javadoc.htm

6.3 Java in DB2 for z/OS

In addition to an IMS BMP, you can use DB2 for z/OS as a Java batch run time by using DB2
Java stored procedures. If Java programs are executed in a DB2 stored procedure, they can
benefit from DB2 functionalities. From a batch point of view, these benefits include:

� Transactional processing

Because stored procedures are integrated in the DB2 environment, they can fully
participate in the current transaction flow, thus allowing a Java program to use the same
transaction context as the program that is calling the stored procedure (including
two-phase commit support).

� Java Virtual Machine (JVM) instantiated only once

Compared to stand-alone Java Batch (see Chapter 7, “Implement new functionality using
stand-alone Java” on page 77), the JVM for a DB2 Java stored procedure is started only
once when it is called for first time. Because DB2 reuses the started JVM, subsequent
calls to a stored procedure can be processed immediately, which can become relevant
when stored procedures are called many times repeatedly, as they are typically in an
OLTP environment. However, in the context of batch processing, it is more likely that a
batch stored procedure gets called just once and the JVM startup cost is not that relevant.

� Reuse of DB2 thread.

To run a stored procedure, a process must first connect to DB2 and then issue a CALL
statement. Thus, stored procedures use the same physical DB2 thread for processing
SQL statements as the process that called the stored procedure, and there is no additional
cost for building DB2 connections within the stored procedure.

� Scalability

With respect to stored procedures, scalability is ensured by the integration of DB2 for z/OS
with other mainframe components.

You can run several stored procedures at the same time within one single address space.
Furthermore, depending on the workload, the integrated Workload Manager (WLM) can
start additional address spaces, if required, which ensures that stored procedures scale
and are particularly well suited to process high workloads.

6.3.1 Java interoperability with other languages

Another important aspect of using Java in DB2 stored procedures is interoperability with other
programming languages. Because the Java is running in a DB2 stored procedure address
space, you can call the Java application from anywhere by just connecting to DB2 and issue
an SQL CALL statement. This CALL statement is part of the SQL standard. Therefore, any
64 Batch Modernization on z/OS

http://www-306.ibm.com/software/data/ims/imsjava/
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.ims10.doc.apr/ims10javadoc.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.ims10.doc.apr/ims10javadoc.htm

program (written in any language) that is capable of connecting to DB2 and using SQL is
suitable to invoke Java batch within DB2.

6.3.2 Configuring the system environment

In this section, we describe the relevant steps to set up the system to run Java stored
procedures in DB2.

To set up a Java enabled stored procedure address space, we performed the steps described
in the following sections.

Creating the WLM environment startup procedure for Java routines
First, you need to set up the WLM environment startup procedure for Java routines. However,
the WLM address space startup procedure for Java routines requires extra DD statements
that other routines do not need.

Example 6-3 shows a startup procedure for an address space in which Java routines can run.
The JAVAENV DD statement indicates to DB2 that the WLM environment is for Java routines.

Example 6-3 Startup procedure for a Java stored procedure WLM address space

//DSNWLM PROC RGN=0K,APPLENV=WLMIJAV,DB2SSN=DSN,NUMTCB=5
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=DSN910.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN910.SDSNEXIT
// DD DISP=SHR,DSN=DSN910.SDSNLOAD
// DD DISP=SHR,DSN=DSN910.SDSNLOD2
//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV
//JSPDEBUG DD SYSOUT=A
//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//JAVAOUT DD PATH=’/tmp/wlmijav.javaout’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//JAVAERR DD PATH=’/tmp/wlmijav.javaerr’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU

WLM application environment values for Java routines
To define the application environment for Java routines to Workload Manager (WLM), we had
to specify appropriate values (such as Application Environment Name, Start Parameters, and

Note: You can find detailed information about setting up and developing Java stored
procedures in the following resources:

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083
� Application Programming Guide and Reference for Java, SC18-9842

Note: You can download all the necessary material to create this example (such as DDL
and SQL statements, Eclipse workspace, and so forth) as described in Appendix C,
“Additional material” on page 453.
Chapter 6. Implement new functionality using Java in traditional containers 65

so forth) on the WLM setup panels. For more information about how to do this setup, refer to
DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604.

Setting up the JAVAENV file
For Java routines, the startup procedure for the stored procedure address space contains a
JAVAENV DD statement. This statement specifies a data set that contains Language
Environment runtime options (such as CLASSPATH, DB2_BASE, JCC_HOME, and so forth)
for the routines that run in the stored procedure address space. This data set should have
record format VB, record length 255, and block size 4096.

The Language Environment runtime options string in a JAVAENV data set has a maximum
length of 245 bytes. If you exceed the maximum length, DB2 truncates the contents but does
not issue a message. If you enter the contents of the JAVAENV data set on more than one
line, DB2 concatenates the lines automatically to form the runtime options string.

If the environment variable list is too long (the JAVAENV content is greater than 245 bytes),
you can put the environment variable list in a separate file and use the _CEE_ENVFILE
variable to point to that file.

Because Java programs could need many different JAR files at run time, the Language
Environment runtime options string can exceed 254 bytes very quickly. Therefore, we
recommend to use _CEE_ENVFILE to point to a file instead of setting values for CLASSPATH
or other runtime options in the JAVAENV data set.

Example 6-4 shows a JAVAENV file that we used to run the Java stored procedure.

Example 6-4 Content of JAVAENV file WLMIJAV.JSPENV

XPLINK(ON),
ENVAR("DB2_BASE=/usr/lpp/db2/d9gg/db2910_base",
"_CEE_ENVFILE=/u/wagnera/javastp/cee_envfile.txt",
"TZ=EST5EDT",
"JCC_HOME=/usr/lpp/db2/d9gg/db2910_jdbc",
"JAVA_HOME=/usr/lpp/java/J5.0"),
MSGFILE(JSPDEBUG,,,,ENQ)

This file contains an environment variable called JAVA_HOME. With this variable, you can
point to a specific directory with a Java version in your runtime environment. In our system,
we used Java version 5.0.

We used the _CEE_ENVFILE variable to point to a separate file with further runtime options.
This file is stored in the UNIX System Services file system. See Example 6-5 for an example
that we used.

Example 6-5 Content of /u/wagnera/javastp/cee_envfile.txt file

CLASSPATH=/u/wagnera/javastp/PdfGenerate.jar:/u/wagnera/javastp/lib/iText-2.1.5.jar

The Java program for the stored procedure needs two different JAR files:

PdfGenerate.jar Contains our self-written Java code
iText-2.1.5.jar Contains classes for generating PDF files

Important: We recommend that you use the same Java compiler version in your
development environment as the one configured for your DB2 Java stored procedure
runtime environment.
66 Batch Modernization on z/OS

In the next chapter, we explain in detail how to create and store the JAR files in the UNIX
System Services file system.

After we completed these steps, our system environment was prepared to run a Java stored
procedure.

6.3.3 Development of the sample application

In our example, we assume that an existing COBOL batch program needs to be enhanced. A
new requirement has resulted in the ability of the program to process XML data to generate
PDF files. The input data is stored in a DB2 XML column.

Because it is very easy to use Java to generate PDF files, we decided to create a Java stored
procedure to implement this new requirement. We then call this new Java stored procedure
from the existing COBOL program. The only modification needed in the existing COBOL
program is a call to the new Java stored procedure.

In the following sections, we describe how to develop the Java stored procedure using Eclipse
tooling. As mentioned previously, you can use this stored procedure to generate PDF files
from XML data. As shown in Figure 6-3, the procedure processes all data with one single call.

Figure 6-3 Java stored procedure

The flow of the procedure is as follows:

1. Read XML formatted data from DB2 by using XML functionality.

2. Generate files in PDF format.

3. Store generated PDF files in DB2 as Binary Large Object (BLOB) or in a UNIX System
Services file system or both.

Note: The user who is supposed to start the stored procedure address space must have
READ authority to all configuration and JAR files that are used by the stored procedure.
Note that this user is usually not the same user who calls the DB2 stored procedure!

DB2 table
with XML
column

COBOL job
creating data

Java
Stored procedure
creating PDF files

PDF1 PDF2 PDF3
DB2 table
with BLOB

column

CALL read XML

store_fs

store_fs_db2

store_db2
Chapter 6. Implement new functionality using Java in traditional containers 67

Setting up the DB2 environment
To run our example, we first create a DB2 table with one XML and one BLOB column, as
shown in Example 6-6.

Example 6-6 Create table for Java stored procedure example

CREATE TABLE BATCH.XML2PDF
 (ID INTEGER NOT NULL
 ,XML_DATA XML
 ,PDF_DATA BLOB(1M)
 ,PRIMARY KEY (ID)
)

Next, we insert test data in XML format. This XML data should contain information about a
company (all employees and the departments for which they work). The easiest way to insert
the data is using an SQL INSERT statement. For our test, we inserted only two rows in DB2
with data from two different companies.

Example 6-7 shows an extract of our INSERT statements. Example A-4 on page 426 lists the
the complete statements for this example.

Example 6-7 Insert XML test data

-- Insert first company
INSERT INTO BATCH.XML2PDF (ID, XML_DATA)
VALUES (1,
'<?xml vesion="1.0"?>
<Company>
<Name>Big data center</Name>
<Department>

<DepNo>1</DepNo>
<Description>Production</Description>
<Employee>

<EmpNo>1</EmpNo>
<FirstName>Paul</FirstName>
<LastName>Smith</LastName>

</Employee>
<Employee>

<EmpNo>2</EmpNo>
<FirstName>Hannah</FirstName>
<LastName>Smith</LastName>

</Employee>
</Department>
<Department>

<DepNo>2</DepNo>
<Description>Development</Description>
<Employee>

<EmpNo>3</EmpNo>
<FirstName>Mia</FirstName>
<LastName>Brown</LastName>

</Employee>
.......
68 Batch Modernization on z/OS

Developing the Java stored procedure
After setting up the DB2 environment, we implement the stored procedure. For development,
we use an Eclipse project. We start the Eclipse workbench and create a new Java project
called JavaSTP by selecting File New Java Project.

Next, we create a new package called com.ibm.itso.sample in the src folder. Afterwards, we
create the following new classes in that package:

� GenPdf.java
� PdfCreator.java

You can find the complete code for every class in “Java stored procedure to generate PDF
files” on page 430.

In the GenPdf class, we implement only the one runGenerate method. Example 6-8 shows the
content of this method. This method must be static because DB2 is calling this method
when the Java stored procedure is executed. The method contains the following parameters
to allow the user to influence the flow of the Java program:

action store_db2: store PDF file in DB2 BLOB column
store_fs: store PDF file in UNIX System Services file system
store_fs_db2: store PDF file in DB2 and UNIX System Services file
system

pdfDir Directory to store PDF files in the UNIX System Services file system

From a Java stored procedure perspective, these two parameters are used only to control the
flow of the Java coding. They are pure input parameters.

With DB2 stored procedures, you can also return values to the caller. You can use result sets
for multiple returned rows of data. Returned parameters are called output parameters. It is
also possible to define a parameter for input and output processing.

When defining the DB2 stored procedure you have to decide whether the parameter is input
(IN), output (OU), or both input and output (INOUT).

Example 6-8 The runGenerate method in the GenPdf Java Class

public static void runGenerate(String action, String pdfDir)
throws SQLException {

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

}

Next, we code the PdfGenerator.java class, which reads the XML data, generates PDF files,
and stores the files in DB2 or the UNIX System Services file system.

Important: We recommend that you use the same Java compiler version in your Eclipse
environment as the one configured for your DB2 Java stored procedure runtime
environment.

Note: DB2 passes INOUT and OUT parameters as single-entry arrays. Thus, in the Java
routine, you must declare OUT or INOUT parameter as arrays. For more information, see
DB2 Version 9.1 for z/OS Application Programming Guide and Reference for Java,
SC18-9842.
Chapter 6. Implement new functionality using Java in traditional containers 69

To create PDF files, we use the Open Source Java library iText-2.1.5.jar. To use this
library, we follow these steps:

1. We first create a folder called lib in the Eclipse Project

2. Then, we download iText-2.1.5.jar from the following Web site:

http://www.lowagie.com/iText/download.html

3. Finally, we save this file in the lib folder of the Eclipse project.

Because the library iText-2.1.5.jar is needed to develop and run the Java program, we
copy this file through FTP to the runtime environment of the Java stored procedure on z/OS.
In our case, as shown in Example 6-5 on page 66, the Java environment expects this file in
the UNIX System Services folder /u/wagnera/javastp/lib.

Then, we include the iText-2.1.5.jar in the Eclipse Build Path by right-clicking the Java
project and selecting Build Path Configure Build Path as shown in Figure 6-4.

Figure 6-4 Configure Build Path in Eclipse workbench

In the next window, we select Add Jars, select the iTest-2.1.5.jar file, and press OK twice.
Now, the two classes—GenPdf and PdfCreator—compile without any errors.

Next, we take a closer look at some code of class PdfCreator. As shown in Example 6-9, the
connection URL in our case is jdbc:default:connection. This URL forces DB2 to use the
same physical thread that processes the CALL statement for the stored procedure, which is
important regarding DB2 processing. For example, if DB2 uses a different thread for SQL
processing within our stored procedure than the process that called our stored procedure, we
cannot access data within the stored procedure because it is blocked by the process that
called the stored procedure.

Example 6-9 Get Connection within Java stored procedure

// Get connection to the database
Connection con = DriverManager.getConnection("jdbc:default:connection");
70 Batch Modernization on z/OS

http://www.lowagie.com/iText/download.html

In our example, we use XML data as input for our stored procedure, as shown in
Example 6-10. Thereby, each row of our table contains all data from one single company.

Example 6-10 SELECT data from XML column

SELECT ID, EMP.*
FROM BATCH.XML2PDF

, XMLTABLE('$X/Company/Department/Employee' PASSING XML_DATA AS "X"
COLUMNS COMPANY VARCHAR(50) PATH '../../Name'

, DEPT_NO INTEGER PATH '../DepNo'
, DEPT_DESCR VARCHAR(20) PATH '../Description'
, EMP_NO INTEGER PATH 'EmpNo'
, FIRST_NAME VARCHAR(20) PATH 'FirstName'
, LAST_NAME VARCHAR(20) PATH 'LastName'

) EMP
ORDER BY ID, EMP.DEPT_NO, EMP_NO;

Because XML is fully integrated to the DB2 system, you can access and manage XML data
using DB2 functions and capabilities. These include functions such as parsing, validation,
index support for fast queries, and much more.

To receive values from DB2, we use the XMLTABLE function with XPath instructions. The
XMLTABLE function returns information from XML data in the form of a DB2 table. With the
SELECT statement shown in Example 6-10, we retrieve all data of all companies using one
single DB2 cursor.

Depending on the input parameter value, we store the generated PDF data in the UNIX
System Services file system, a DB2 BLOB column, or both. Example 6-11 shows the relevant
Java code.

Example 6-11 Save PDF file in DB2 or UNIX System Services file system

// save PDF file in USS file system
FileOutputStream fOut = new FileOutputStream(pdfDir + File.separator

+ "Report" + oldId + ".pdf");
out.writeTo(fOut);
fOut.close();

// save PDF file in DB2 BLOB column
String strSQL = "UPDATE BATCH.XML2PDF SET PDF_DATA = ? WHERE ID = ?";
PreparedStatement psUpd = con.prepareStatement(strSQL);
InputStream is = new ByteArrayInputStream(out.toByteArray());
psUpd.setBinaryStream(1, is, -1);
psUpd.setInt(2, oldId);
psUpd.execute();

By calling the stored procedure with the value store_fs for the first parameter, the generated
PDF file for each company is stored in the UNIX System Services file system. Using the
store_db2 value, the PDF files are saved in DB2. Using the store_fs_db2 value, the PDF files
are saved in both DB2 and the UNIX System Services file system.

Note: For detailed information regarding DB2 and XML processing, see DB2 Version 9.1
for z/OS XML Guide, SC18-9858.
Chapter 6. Implement new functionality using Java in traditional containers 71

Creating the DB2 stored procedure
The next step is to define the Java stored procedure in DB2 by issuing a CREATE
PROCEDURE statement. To form the correct statement, you need the following information:

� IN, OUT, and INOUT parameters for the stored procedure
� Is the stored procedure returning data using DB2 result sets?
� Java method that should be issued when the stored procedure is called
� Name of the WLM Java Application Environment

Example 6-12 shows the CREATE statement for the stored procedure. There are many more
parameters available. For detailed information about each parameter, refer to the SQL
documentation of DB2 for z/OS.

Example 6-12 Creating the stored procedure in DB2

CREATE PROCEDURE BATCH.JAVASTP
 (IN ACTION VARCHAR(15)
 ,IN PDF_DIR VARCHAR(100))
 EXTERNAL NAME 'com.ibm.itso.sample.GenPdf.runGenerate'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 NOT DETERMINISTIC
 FENCED
 CALLED ON NULL INPUT
 MODIFIES SQL DATA
 NO DBINFO
 NO COLLID
 WLM ENVIRONMENT D9GGWLMJ
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 PROGRAM TYPE SUB
 SECURITY DB2
 INHERIT SPECIAL REGISTERS
 STOP AFTER SYSTEM DEFAULT FAILURES
 COMMIT ON RETURN NO;

GRANT EXECUTE ON PROCEDURE BATCH.JAVASTP TO PUBLIC;

Of course, it is not necessary to re-create the stored procedure in DB2 only because the Java
code of the stored procedure is modified. However, if you need to change one of the
parameters or add another parameter needs, you must re-create the stored procedure in
DB2.

Deploying the Java files to the UNIX System Services file system
Because our stored procedure runs on z/OS, we build a JAR file and copy this file to the z/OS
environment. As shown in Example 6-5 on page 66, the Java environment expects the file
PdfGenerate.jar in UNIX System Services folder /u/wagnera/javastp. To build and copy the
JAR file, we used an Ant script in Eclipse.

To use Ant, you download the following Open Source libraries:

� The jakarta-oro-2.0.8.zip file from the Apache Jakarta Project at:

http://jakarta.apache.org/site/downloads/downloads_oro.cgi

� The commons-net-2.0.zip file from the Apache Commons Project at:

http://commons.apache.org/downloads/download_net.cgi
72 Batch Modernization on z/OS

http://jakarta.apache.org/site/downloads/downloads_oro.cgi
http://commons.apache.org/downloads/download_net.cgi

From these compressed files, you extract the following files:

� commons-net-2.0.jar
� jakarta-oro-2.0.8.jar

Then, save these files in a folder on the hard disk. After you save the files, use Window
Preferences in the Eclipse workbench and activate the Ant - Editor - Runtime. As shown in
Figure 6-5, click Add External JARs and add the two JAR files to the Ant run time.

Figure 6-5 Add JAR files to Ant run time

Now, right-click the Java project JavaSTP, and select New File to create a file called
deploy.xml. In this file, we configure the necessary steps for the deploy process (that is
compile the Java source, build the JAR file, and copy the JAR file to UNIX System Services
file system). For the entire content of this file, see Example B-3.

Next, right-click the Java project JavaSTP, and select New File to create a file called
zos.properties. In this file we configure necessary parameters that are used as input for the
deploy.xml script to copy the JAR file (server, user, password, JAR directory, and JAR name).
See Example 6-13.

Example 6-13 The zos.properties file for the deploy process

either the Eclipse workspace directory or your "home directory"
server = zos.server.dns.name
userid = uid
password = pw
the home directory for deploying the application jar
Chapter 6. Implement new functionality using Java in traditional containers 73

appl.home = /u/wagnera/javastp
jar name
jarname = PdfGenerate.jar
time to wait for output in seconds
waittime = 0
remote debugging
debug= no

The JAR file is copied to the UNIX System Services file
/u/wagnera/javastp/PdfGenerate.jar. As mentioned previously, the user who starts the
stored procedure address space must have READ authority to this file.

Finally, we build and copy the JAR file with the Ant script to z/OS by right-clicking deploy.xml
and selecting Run As Ant Build.

Refreshing the WLM Application Environment
Every time you change the Java code under Eclipse, you have to deploy the new JAR files to
the UNIX System Services file system with the Ant script. However, to activate the new
version, you also have to refresh the current WLM Application Environment.

The easiest way to refresh this environment is to issue the DB2 system stored procedure
SYSPROC.WLM_REFRESH. This stored procedure uses the following parameters:

IN - WLM_ENV_NAME Name of the WLM application environment
IN - SSID DB2 subsystem ID
OUT - STATUS_MSG Message text from system stored procedure
OUT - STATUS_CODE Return code from system stored procedure

We recommend to use a local Java application to call this system stored procedure.

To do this, we create a second Java project called UtilSTP (click File New Java Project)
in Eclipse. Then, we create the package com.ibm.itso.sample in the src folder of the UtilSTP
project. In this package, we create the new Java class RefreshWLM. Example 6-14 shows the
relevant code to refresh our WLM Application Environment. You can find the entire Java
source code in Example B-5 on page 435.

Example 6-14 Refresh application environment

CallableStatement cs = con.prepareCall("CALL SYSPROC.WLM_REFRESH(?, ?, ?, ?)");
cs.setString(1, "D9GGWLMJ");
cs.setString(2, "D9G1");
cs.registerOutParameter(3, Types.VARCHAR);
cs.registerOutParameter(4, Types.INTEGER);
cs.execute();
System.out.println("WLM_REFRESH ended with: RC=" + cs.getInt(4)

+ ", Text: " + cs.getString(3));

Because our local Java program connects to DB2 on z/OS, we downloaded using FTP the
db2jcc.jar and the db2jcc_license_cisuz.jar files from the z/OS system (the exact folder
where it is stored can be retrieved from the database administrator) into the root directory of
the UtilSTP project. These two JAR files are necessary to use JDBC. We also put these two
files in the build path of the UtilSTP project by selecting Project Build Path Configure
Build Path.
74 Batch Modernization on z/OS

Testing the stored procedure
The easiest way to test the stored procedure is to use a local Java test application. Therefore,
we created a new class called TestSTP in the Java UtilSTP project. Example 6-15 shows the
relevant lines of code. You can find the entire Java source code in Example B-6 on page 436.

Example 6-15 Testing the stored procedure

CallableStatement cs = con.prepareCall("CALL BATCH.JAVASTP(?, ?)");
cs.setString(1, "store_fs_db2");
cs.setString(2, "/u/wagnera/javastp/pdfs");
cs.execute();

In our example, the PDF files are stored in the UNIX System Services directory
/u/wagnera/javastp/pdfs. This directory must exist in the UNIX System Services file system,
and the user who starts the stored procedure address space must have authority to create
files in this directory.

To start the test program, right-click TestSTP, and select RunAs Java Application. After
the test program completes, we downloaded using FTP the generated PDF files from the
UNIX System Services directory /u/wagnera/javastp/pdfs. Figure 6-6 shows an example
PDF file.

Figure 6-6 Generated PDF file

Important: Every time you deploy a new version with the Ant script, you have to issue
RefreshWLM (right-click RefreshWLM and select RunAs Java Application) to activate
the new version in DB2 for z/OS.
Chapter 6. Implement new functionality using Java in traditional containers 75

76 Batch Modernization on z/OS

Chapter 7. Implement new functionality
using stand-alone Java

In addition to using middleware that provides a runtime environment for Java, you can run
Java as a stand-alone batch job. Everything you need to run Java as a stand-alone batch job
is part of the z/OS operating system. Figure 7-1 illustrates how to incorporate Java into the
batch environment.

Figure 7-1 Overview of stand-alone Java batch

You can completely integrate Java into your existing batch environment. For example, after
running a COBOL preparation step with a Return Code (RC) of zero, you can then use Java

7

JCL calling COBOL Run COBOL program

RC

JCL calling Java

End job net

Java batch launcher

Create JVM and
run Java program

RC

JCL calling COBOL Run COBOL program

RC

>0

=0

=0

>0
© Copyright IBM Corp. 2009, 2012. All rights reserved. 77

to implement functionality that is difficult to implement in COBOL. In the Java step, you need a
“launch” mechanism that creates the JVM and launches the Java program. The launched
Java program itself can then generate RCs at the end so that the job automation starts other
jobs based on the results.

In this chapter, we discuss different z/OS stand-alone Java batch launchers, introduce ways
to interact from Java with other languages, talk about development capabilities in stand-alone
Java batch, and give an example of how to enrich an existing COBOL job with Java
functionality in a stand-alone batch environment.

This chapter includes the following topics:

� Running Java with the BPXBATCH or BPXBATSL utilities
� Running Java with JZOS
� Interoperability with other languages
� Development tools
� Sample stand-alone Java batch application

7.1 Running Java with the BPXBATCH or BPXBATSL utilities

You can invoke a Java program in a job on z/OS using one of the following alternatives:

� The BPXBATCH or BPXBATSL utility
� IBM JZOS Batch Toolkit for z/OS (JZOS)

We discuss the first option briefly in this chapter. We discuss the second option in the next
section, Running Java with JZOS.

BPXBATCH and BPXBATSL are batch launcher facilities under z/OS that allow you to launch
z/OS UNIX System Services programs in batch. Therefore, you can also use them to launch a
Java Virtual Machine (JVM) in a batch job on z/OS. However, compared to the JZOS batch
launcher, these utilities have some limitations:

� No flexible configuration of the z/OS UNIX System Services environment for each job

� No condition code that is passed from Java programs

� When launched with BPXBATCH, the z/OS UNIX System Services program runs in a
separate address space and prevents the use of DD statements by the UNIX program.

� When launched with BPXBATSL, the z/OS UNIX System Services program is launched in
the same address space and DD statements can be used.

You can find more information about how to use BPXBATCH and BPXBATSL for Java batch
on z/OS in Java Stand-alone Applications on z/OS, Volume I, SG24-7177.
78 Batch Modernization on z/OS

7.2 Running Java with JZOS

The JZOS batch launcher is a good option to enhance an existing stand-alone z/OS batch
environment with additonal functionality written in Java. JZOS is included in the following
versions of the IBM SDK for z/OS:

� Java 31-Bit SDK 1.4.2 SR6 for z/OS or higher
� Java 31-Bit SDK 5.0 SR3 for z/OS or higher
� Java 64-Bit SDK 5.0 SR3 for z/OS or higher
� Java 31-Bit SDK 6.0 all versions
� Java 64-Bit SDK 6.0 all versions

Figure 7-2 illustrates how JZOS works. A Job Control Language (JCL) calls the JZOS batch
launcher load module which creates the JVM under UNIX System Services. The JCL
contains all relevant information about how to launch the batch job:

� DD statements that are expected by the Java program
� Java main class
� Java version that is needed for this job
� Classpath
� Libpath
� Additional JVM arguments
� JVM Encoding

Figure 7-2 JZOS overview

The JVM called by the JZOS load module then initiates the Java program by calling the main
class. While the Java batch job is running, all System.out.println and System.err.println
are redirected to the SYSOUT and SYSERR DD designations, respectively, of the job.

Another advantage of JZOS is that the launcher and the JVM run in the same address space,
making job accounting easier and allowing the use of DD statement. Because JZOS Java
batch jobs are launched by standard z/OS JCL, it is easier to integrate Java batch jobs in
workload scheduling products such as Tivoli Workload Scheduler.

Note: Every time you start a JZOS batch job, a JVM is initiated. For further information
about how this might impact performance see 18.2, “Stand-alone Java batch” on page 339.

USS

z/OS

JZOS Batch
launcher

JVM

*.class files

JCL

JZOS address space

JES Sysout

TWS
Chapter 7. Implement new functionality using stand-alone Java 79

In summary, the JZOS batch launcher is a good tool to enrich your existing batch environment
with Java functionality.

For further information about JZOS, see the following Web site:

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html

Another excellent resource is Java Stand-alone Applications on z/OS Volume II, SG24-7291.

7.3 Interoperability with other languages

In addition to using native language calls as described in 5.5, “Java Interoperability with
COBOL and PL/I” on page 55, you can use the functionality provided by the z/OS batch
environment to establish a mixed environment where the Java application and the
applications written in other languages are in separate jobs or job steps. These jobs are then
connected afterwards by the job automation (see Figure 7-1 on page 77). The data transfer
between these job steps can be realized by storing data in temporary data sets or in UNIX
System Services files.

Combining programming languages provides a clear separation of the program logic. In the
case of program errors, having program logic separated helps to locate the error easily.
Furthermore, less interaction between the different developers is needed.

Alternatively, if we have a high frequency of switching between short Java steps and steps
written in another language, the overhead for each JVM startup might become a
disadvantage. In that case, direct language calls from object-oriented (OO) COBOL to Java
and the other way around might be more attractive (see 5.5, “Java Interoperability with
COBOL and PL/I” on page 55).

7.4 Development tools

Because Java developers very often come from the distributed world, the tooling for
developing stand-alone Java batch applications becomes a very important aspect. In this
section, we discuss the following development tools:

� Tooling for the z/OS UNIX System Services environment
� Tooling for developing the Java code itself

For Java developers that have never worked on z/OS, the OMVS Shell and the ISHELL might
be difficult to handle. To solve this issue, the z/OS UNIX System Services environment can be
enriched with some tools that are very common in the Linux and UNIX space, such as:

� bash
� vi
� viascii
� vim
� openssh

These tools, and many others, can also be used on z/OS. For more information, see the z/OS
UNIX System Services Tools at the following Web site:

http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/
80 Batch Modernization on z/OS

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/

For Java code development, Eclipse-based tools are very common. Such Eclipse-based tools
can also be used for stand-alone Java batch development in combination with the JZOS
batch launcher.

An excellent starting point for developing stand-alone Java is the JZOS Cookbook, which you
can downloaded from:

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

If you want to use the Eclipse platform only for development of z/OS batch written in Java, you
can find a cost free and very efficient solution described in Java Stand-alone Applications on
z/OS Volume II, SG24-7291. This book includes a chapter that describes a solution that is
based on Ant scripts, which allows you to compile and deploy a Java batch application to
z/OS with only a few clicks. This solution combines the advantages of Eclipse-like syntax
highlighting and code completion with an easy deployment to z/OS, including job output in
Eclipse. In most cases, you will not need 3270 sessions.

If you also want do develop programs in traditional languages such as COBOL and PL/I in
Eclipse with features such as syntax highlighting or code completion, IBM Rational Developer
for System z is a solution. Rational Developer for System z is an Eclipse-based integrated
development environment (IDE) that allows application developers to edit, compile, build, and
interactively debug COBOL, PL/I, and Java programs. Syntax highlighting, build assistance,
and interactive debug of applications running on remote z/OS systems are supported. In
addition, users can directly access z/OS data sets, including JCL and UNIX System Services
files, and can view VSAM data using the IDE. For Java developers who are familiar with an
IDE, Rational Developer for System z can ease interaction with z/OS and raise productivity.

You can find further details about how to use Rational Developer for System z for z/OS
application development in Topics on Version 7 of IBM Rational Developer for System z and
IBM WebSphere Developer for System z, SG24-7482.

Note: you can also combine the advantages of the Ant script and Rational Developer for
System z.
Chapter 7. Implement new functionality using stand-alone Java 81

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

7.5 Sample stand-alone Java batch application

In this section, we describe a sample of how to modernize an existing batch environment with
stand-alone Java with the purpose of getting access to more functionality in batch.

Figure 7-3 shows a job net that originally consists of two jobs managed by Tivoli Workload
Scheduler:

� A COBOL stand-alone batch job that inserts data for invoices into DB2 on z/OS based on
input from a sequential data set.

� A COBOL job that creates invoices based on the DB2 data and sends those invoices to a
physical printer.

Figure 7-3 Stand-alone Java batch sample overview

Because printed invoices cost money (in the form of printer cost, paper, and postage),
invoices based on PDF files are an alternative. However, because creating PDF files in
COBOL and PL/I is more difficult and time consuming, we created a third job in this sample
that is written in Java. This Java job uses the same DB2 input data as the COBOL printing job,
but instead of real printed invoices, it creates PDF files using a Java PDF library. To send
those invoices directly to the recipient, we create another job in Java that sends these files
using e-mail to their recipients. All of the jobs and their dependencies are managed by Tivoli
Workload Scheduler.

Note: We do not show how to implement the COBOL print job and the e-mail send job
because most z/OS users will understand this process. Furthermore, sending e-mails with
Java is quite easy and, therefore, we do not need explain it further here. Our purpose is to
show how to use Java to implement a new piece of functionality and integrate it within the
batch flow, not to explain all the possible functionality of Java.

DB2

TW S

Sequential
dataset

COBOL job
creating data
for invoices

COBOL job
printing invoices

on printer

Java job
creating

pdf invoices

Java job
sending pdf files
f iles via E-Mail

PDF1 PDF2 PDF3
82 Batch Modernization on z/OS

This scenario demonstrates the easy integration of Java functionality into an existing z/OS
batch landscape. The Java job behaves as all other jobs:

� The job is submitted by JCL.
� JES takes care of the job management.
� The job can be managed by a workload scheduler such as Tivoli Workload Scheduler.
� The job is accountable similar to a COBOL or PL/I job.
� WLM manges the job priorities.

The advantage of using Java in this scenario is that Java provides an easy way to solve the
functionality requirements. For e-mail or PDF creation, Java includes libraries that only need a
few lines of code to implement the job.

7.5.1 Creating invoice data with COBOL

As a first step, we create a COBOL job that reads invoice data from a sequential MVS data
set and inserts this data in a sorted way into DB2 on z/OS.

Figure 7-4 shows the Entity Relationship Model (ERM) of the DB2 database that we use. The
COBOL job uses a flat file as input and transforms it into the corresponding tables.

Figure 7-4 Invoice data for the Entity Relationship Model
Chapter 7. Implement new functionality using stand-alone Java 83

You can find the Data Definition Language (DDL) and SQL statements to insert this sample in
Appendix A, “DB2 configuration” on page 423 as well as in the Eclipse project file that is
included in the additional material for this book. You can find the COBOL source code and the
flat file in Appendix C, “Additional material” on page 453.

7.5.2 Generating a PDF in Java

After the invoice data is inserted into DB2, we create a new job in Java that connects to DB2
and reads the data for PDF generation. This job is based on an Eclipse project. You can find
the entire project in Chapter C, “Additional material” on page 453.

To create this new job, we first implement the HelloWorld sample as described in Chapter 4,
“Java development and job management with Eclipse” in Java Stand-alone Applications on
z/OS Volume II, SG24-7291. Then, to create the PDF files, we follow these steps:

1. Use the Open Source Java library iText-2.1.5 from:

http://www.lowagie.com/iText/

Downloaded the iText-2.1.5.jar file and save this file in the deploy folder of the Eclipse
project.

2. Next, download using FTP the db2jcc.jar and db2jcc_license_cisuz.jar files from the
z/OS system into the root directory of the Eclipse folder. (You can obtain the exact folder
name where these files are stored on the z/OS system from the database administrator.)
These two JAR files are necessary to use JDBC.

3. Select the project in the Project Explorer, and press F5 to refresh it. The directory
structure looks similar to that shown in Figure 7-5.

Figure 7-5 Eclipse directory structure
84 Batch Modernization on z/OS

http://www.lowagie.com/iText/
http://www.redbooks.ibm.com/abstracts/sg247291.html
http://www.redbooks.ibm.com/abstracts/sg247291.html

4. Next, include these three JAR files in the Eclipse Build Path. Right-click the project, and
select Build Path Configure Build Path as shown in Figure 7-6. In the window that
opens, select Add Jars.

Figure 7-6 Configuring the Java Build Path
Chapter 7. Implement new functionality using stand-alone Java 85

5. Next, select the DB2 and iText JAR files as shown in, Figure 7-7 and press OK.

Figure 7-7 JAR file selection
86 Batch Modernization on z/OS

6. Figure 7-8 shows the build path for our test environment. Select OK.

Figure 7-8 Java Library Path

7. Open the zos-properties file and enter a new JAR file name:

jarname = pdfinvoice.jar

8. Now, to code the program, we create a new package called com.ibm.itso in the src folder.
Then, we create the following new classes in that package:

– InvoiceCreator.java
– PdfCreator.java

In both classes, we add the Java code to get the required invoice data from the DB2 tables
using JDBC and the iText classes to generate the PDF files. You can find the complete
code in “Java PDF creator” on page 437.

Note: Because we use only the JDBC Type II Driver for the cross-memory data access
between DB2 and z/OS, the two JAR files, db2jcc_license_cisuz.jar and db2jcc.jar,
are not required to be in the Java Build Path of Eclipse. Nevertheless, in our example,
we include them for cases where we might need DB2 specific functions, such as a Type
IV connection test with Java.
Chapter 7. Implement new functionality using stand-alone Java 87

9. To launch the Java job with the JZOS batch launcher, we modify the HelloWorld JCL in the
jcl folder of the Eclipse workspace to look like the sample shown in Example 7-1.

Example 7-1 JCL to launch Java PDF Creator

//STRAUERA JOB
/*JOBPARM SYSAFF=SC48,L=9999
//PROCLIB JCLLIB ORDER=SYS1.IBM.PROCLIB
//HOLD OUTPUT JESDS=ALL,DEFAULT=Y,OUTDISP=(HOLD,HOLD)
//JAVA EXEC PROC=JVMPRC50,
// JAVACLS='com.ibm.itso.sample.InvoiceCreator',
// ARGS='/u/strauer/jzos/pdf'
//STEPLIB DD DISP=SHR,DSN=DB9G9.SDSNLOAD
// DD DISP=SHR,DSN=DB9G9.SDSNLOD2
//STDENV DD *
#This is a shell script which configures
any environment variables for the Java JVM.
Variables must be exported to be seen by the launcher.

. /etc/profile
export APPL_HOME=/u/strauer/jzos
export JAVA_HOME=/usr/lpp/java/J5.0
export DB2_HOME=/usr/lpp/db2/d9gg/db2910_jdbc/classes

export PATH="$PATH":"{JAVA_HOME}"/bin:

LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin/classic
LIBPATH="$LIBPATH":"/usr/lpp/db2/d9gg/db2910_jdbc/lib"
export LIBPATH="$LIBPATH":

Customize your CLASSPATH here
Add application home directory and jars to CLASSPATH
for i in "${DB2_HOME}"/*.jar; do
 CLASSPATH="$CLASSPATH":"$i"
 done
for i in "${APPL_HOME}"/*.jar; do
 CLASSPATH="$CLASSPATH":"$i"
 done
export CLASSPATH="$CLASSPATH":

Configure JVM options
IJO="-Xms16m -Xmx128m"
Uncomment the following line if you want to debug the application
#IJO="$IJO -Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=8000"
Uncomment the following if you want to run with Ascii file encoding..
IJO="$IJO -Dfile.encoding=ISO8859-1"
IJO="$IJO -Ddb2.jcc.ssid=D9G1"
export IBM_JAVA_OPTIONS="$IJO "

export JAVA_DUMP_HEAP=false
export JAVA_PROPAGATE=NO
export IBM_JAVA_ZOS_TDUMP=NO
//
88 Batch Modernization on z/OS

The most important changes to this JCL include:

– Changing the JAVACLS to point to the main class
com.ibm.itso.sample.InvoiceCreator and specifying the UNIX System Services
directory where the PDF files are stored as ARGS

– Because we use the JDBC Type II driver to connect to DB2 with high performance
cross-memory operations, including the SDSNLOAD and SDSNLOD2 member in the
STEPLIB

– Creating a new UNIX System Services variable, DB2_HOME, that points to the
directory of the JDBC driver

– Because the JDBC Type II driver needs a native *.so file, adding the JDBC lib directory
to the LIBPATH

– Adding a script that adds all JAR files in the DB2_Home directory to the class path

– If not specified by a properties file, adding the JVM -Ddb2.jcc.ssid option

Note: The specific directories shown in our examples might be different on your
system. Consult with your system administrator and DB2 administrator to determine the
appropriate values for STEPLIB, LIBPATH, and CLASSPATH.
Chapter 7. Implement new functionality using stand-alone Java 89

10.Finally, deploy and submit the job with the Ant script by right-clicking deploy.xml. Then,
select Run As Ant Build as shown in Figure 7-9.

Figure 7-9 Eclipse Ant Deploy

The Ant script performs the following steps:

a. Compiles all the Java files on the local workstation.

b. Build a JAR file that contains all the created *.class files.

c. Uploads the necessary JAR files in binary mode using FTP to z/OS UNIX System
Services.

d. Uploads the JCL that we customize before in Eclipse to z/OS in ASCII mode.

e. Submits the job using FTP.

f. Retrieve the output using FTP.
90 Batch Modernization on z/OS

The output on the system console looks similar to that shown in Example 7-2.

Example 7-2 Java batch job output

[...]
JVMJZBL1023N Invoking com.ibm.itso.sample.InvoiceCreator.main()...
 [java] JVMJZBL1024N com.ibm.itso.sample.InvoiceCreator.main() completed.
 [java] JVMJZBL1021N JZOS batch launcher completed, return code=0
 [java] !! END OF JES SPOOL FILE !!
 [java] Connecting to DB2
 [java] ... connected.
 [java] Starting to create pdf file /u/strauer/jzos/pdf/Invoice_No_1.pdf...
 [java] ... invoice pdf file created.
 [java] Starting to create pdf file /u/strauer/jzos/pdf/Invoice_No_2.pdf...
 [java] ... invoice pdf file created.
 [java] Starting to create pdf file /u/strauer/jzos/pdf/Invoice_No_3.pdf...
 [java] ... invoice pdf file created.
 [java] Starting to create pdf file /u/strauer/jzos/pdf/Invoice_No_7.pdf...
 [java] ... invoice pdf file created.
 [java] Starting to create pdf file /u/strauer/jzos/pdf/Invoice_No_8.pdf...
 [java] ... invoice pdf file created.
 [java] !! END OF JES SPOOL FILE !!
[...]

11.Now, check the results and open one of the created PDF files. Figure 7-10 shows one of
the batch-created PDF files from our test environment.

Figure 7-10 PDF invoice created in Java

12.Finally, we can implement another job in Java that takes these PDF files and sends them
to the appropriate recipients using e-mail.

In summary, this sample application shows an easy and effective method to use Java with the
JZOS batch launcher to enrich an existing batch environment with new functionality.
Chapter 7. Implement new functionality using stand-alone Java 91

92 Batch Modernization on z/OS

Chapter 8. Implement new functionality
using Java in WebSphere XD
Compute Grid

Most of the batch workloads running on z/OS today are written in traditional languages such
as COBOL or PL/I. Many of these workloads contain complex business logic and process a
very large amount of input and output data.

Today, we can deploy Java batch applications on z/OS in a traditional batch run time, such as
IMS or DB2, or as stand-alone batch, for example with JZOS as described in Chapter 7,
“Implement new functionality using stand-alone Java” on page 77. However, depending on
the environment, there can be disadvantages, such as a JVM is created for every batch job,
which increases the CPU usage, consumes additional resources, and increases the overall
cost of implementing a Java batch application as opposed to implementing the same
application in a more traditional language.

One of the ways to deploy a Java batch application is in the UNIX System Services shell. The
z/OS UNIX System Services does support shell scripts and a cron facility, which you can use
to set up scheduled background processing. However, this facility lacks robust monitoring and
administration capabilities like Tivoli Workload Scheduler. This situation gets much better in
the case where a Java batch program is run inside a JCL managed by a workload scheduler,
such as Tivoli Workload Scheduler. However, with WebSphere Application Server for z/OS
container server services, Java fits very well into the On Line Batch Processing paradigm on
z/OS. WebSphere Extended Deployment (XD) Compute Grid for z/OS, a batch container for
Java EE applications, extends the existing WebSphere core functions and is easily accessible
using the same administration console as WebSphere Application Server for z/OS.

8

© Copyright IBM Corp. 2009, 2012. All rights reserved. 93

With the Java EE platform as the core foundation for WebSphere Application Server for z/OS,
WebSphere XD Compute Grid delivers the following improved qualities:

� Business flexibility delivers the core capabilities to more efficiently and effectively support
both Java batch and OLTP workloads concurrently.

� Processing enables centralized management for a heterogeneous IT infrastructure that
consists of both WebSphere and non-WebSphere application servers.

� Extended manageability offers simpler and improved management of complex system
operations with real-time visualization tools, application versioning, and gradual, controlled
implementation of autonomic capabilities such as health management. This manageability
helps to reduce the cost and complexity of managing WebSphere’s IT resources.

� Dynamic operations enable the Java EE application environment to support a focused
configuration of WebSphere resources, and helps to increase the speed at which a
company can adapt to business change.

� High-performance computing optimizes the performance of business-critical applications
to support near-linear scalability for high-end transaction processing. Improves customer
service levels while also taking advantage of existing Java skills and resources.

This chapter includes the following topics:

� Java and Java Platform, Enterprise Edition
� The Java EE runtime environment on z/OS
� WebSphere XD Compute Grid overview
� Quality of service in a WebSphere environment on z/OS
� Interoperability with other languages
� Batch programming using WebSphere XD Compute Grid
� Developing a WebSphere batch application
� Summary

8.1 Java and Java Platform, Enterprise Edition

The Java Platform, Enterprise Edition (Java EE) standard, as implemented by today’s
application server products, has emerged as a very popular model and environment for
developing and deploying modern, enterprise-class business applications, especially OLTP
applications. As a result, the Java EE skill base is rapidly growing in the industry, making the
Java language and Java EE application servers an interesting and obvious target to host
other types of enterprise business workloads, such as batch and compute-intensive
applications.

In general, it is comparatively less expensive to achieve an equivalent level of application
development competency with Java as with older languages. The object oriented nature of
the language enables rapid development cycles. In addition ISVs provide a large portfolio of
powerful Java applications and frameworks. Furthermore, JVM performance is continually
increasing. This marks Java as the language of choice for the development of new business
applications or a target language for the re-engineering of existing applications.

Additionally, the Java EE standard as implemented by today’s application server products has
emerged as a very popular model and environment for developing and deploying modern,
enterprise-class business applications, especially OLTP applications. As a result, the Java EE
skill base is rapidly growing in the industry.
94 Batch Modernization on z/OS

8.2 The Java EE runtime environment on z/OS

The Java EE environment on z/OS as implemented by WebSphere Application Server for
z/OS provides a natural home for deploying enterprise-class business applications written in
Java. Figure 8-1 illustrates a simplified overview for OLTP workload in a WebSphere
Application Server for z/OS environment, where Java EE-based applications are facilitated
and managed as transaction-oriented applications. The user sends a request from a client
over HTTP or IIOP, the business logic written in Java is invoked, and a response is sent to the
user. All the transactional processing is done by WebSphere Application Server for z/OS.

Figure 8-1 OLTP workload in a Java EE runtime environment on z/OS

WebSphere provides many of the overall system services (that is container services) that are
required by complex business applications. Some typical container services are security,
transaction support, Web services, session pooling, connection pooling, caching, and
messaging, just to name a few. All this leads to a simplified Java application design,
accelerates development time, simplifies management, and increases the application’s
overall security, availability, performance, and stability.

Unfortunately, the Java-based business logic residing within WebSphere Application Server
for z/OS is not efficiently accessible from traditional batch. Figure 8-2 shows that traditional
runtime environments, such as IMS, CICS, and TSO, exist in addition to the OLTP
environment that is based on WebSphere Application Server. Integration between the
traditional runtime environments and WebSphere Application Server is based on connectors
and messaging.

WebSphere Application Server z/OS

Commit Transact ion

Start Transact ion

Response (HTTP(IIOP)

Database

Request (HTTP/IIOP)EJB Clients

MQ & SIB
Messages

Web Services
Clients

Web Client

T raditional OLTP
JEE Application

Business Logic

C
lient
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 95

Figure 8-2 Traditional batch and OLTP workload in WebSphere Application Server for z/OS today

As mentioned previously, WebSphere XD Compute Grid introduces a new type of workload to
the Java EE world: Java EE-based batch workloads that can run concurrently similar to the
way this is done in traditional batch on z/OS. This solution expands on existing z/OS support
for WebSphere, such as virtualization, goal-directed policy, and the capability to run both
Java EE-based transactional and the Java EE-based batch workloads.

With WebSphere XD Compute Grid as a batch container, the business logic in WebSphere
Application Server for z/OS, that is Java EE applications, is accessible by the traditional batch
world on z/OS as shown in Figure 8-3 on page 97. Java-based business logic residing within
WebSphere can be seamlessly integrated into the traditional batch execution environment
and so the business logic can be shared across both the batch and OLTP paradigms.

CICS

IMS

DB2

External
Scheduler

JES

JCLJCLJCL

Client

WebSphere z/OS

JCLJCLJava

Native Runtime
(COBOL, PL/I, etc)
96 Batch Modernization on z/OS

Figure 8-3 Batch and OLTP workload in WebSphere XD Compute Grid on z/OS

In contrast to the real-time, request-and-response behavior of typical transactional
WebSphere applications, batch workloads require dedicated computing resources for longer
periods of time. Traditionally, the processing of Java EE based batch workloads had to occur
either in a separate, isolated environment, or executed during a specific time period (such as
off hours), or both, so that it did not negatively impact the real-time processing of
transactional requests. This separation of transactional and batch workloads resulted in a
costly duplication of resources, with limited ability to share resources during the same
periods. WebSphere XD Compute Grid supports two general types of long-running workloads
in a Java EE application server:

� Batch
� Compute-intensive

With WebSphere XD Compute Grid for z/OS, however, these workloads can be dynamically
balanced with transactional workloads by exploiting Workload Management (WLM).

This is the idea of a new kind of batch modernization using container managed batch where
we can use the Java programming model for batch. Furthermore, with WebSphere XD
Compute Grid for z/OS, you can make use of existing batch assets such as applications that
are written in COBOL or PL/I, as well as the workload scheduler, JCL, and so forth. In
addition, WebSphere XD Compute Grid for z/OS allows you to use the same business logic in
both OLTP and batch contexts.

8.3 WebSphere XD Compute Grid overview

WebSphere XD Compute Grid for z/OS builds on top of the existing WebSphere Java EE
programming model and container services by providing a job scheduler, an execution
environment, and additional features that are designed specifically to provide for the
execution and management of long-running batch applications. Just as WebSphere
Application Server Network Deployment (ND) for z/OS provides a more natural environment

External
Scheduler

JES

JCL

CICS

IMS

Native Runtime
(COBOL, PL/I, etc)

DB2 z/OS

Client

WebSphere XD
Compute Grid

for z/OS

JCLJCL

JCLJCLJava
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 97

for hosting Java enterprise applications, specifically OLTP applications, WebSphere XD
Compute Grid provides a more robust environment for deploying Java batch applications as
shown in Figure 8-4.

Figure 8-4 Batch and OLTP workload in a WebSphere environment

WebSphere z/OS

WebSphere Application Sever for z/OS

Commit Transact ion

Start T ransaction

Response (HTTP(IIOP)

Request (HTTP/I IOP)
EJB Clients

MQ & SIB
Messages

Web Services
Clients

Web Client

JEE Application

Business Logic

C
lient

JDBC

JCA

…

DB2

CICS

etc

EJB

Web
Service

BATCHExternal Scheduler
98 Batch Modernization on z/OS

A WebSphere XD Compute Grid environment (as shown in Figure 8-5) is modeled after the
z/OS Job Entry Subsystem (JES), which uses components such as Job Control Language
(JCL), a job dispatcher, and job executors (JES initiators).

Figure 8-5 Container managed batch environment overview

WebSphere XD Compute Grid has an XML-based job description metadata called xJCL, a
job dispatcher called the Job Scheduler (JS), and multi-threaded job executors called Grid
Execution Endpoints (GEE). In addition, a Parallel Job Manager (PJM) component partitions
and governs the execution of parallel batch jobs. Each of these WebSphere XD Compute
Grid components are Java EE applications that can be placed in one JVM or in a fully
clustered environment, that allow you to use WebSphere Application Server for z/OS security,
scalability, high availability, and life cycle management best practices. The components of
such a WebSphere XD Compute Grid environment are:

� Web, Shell, API

The job scheduler exposes the following API types to access its management functions:

– The Job Management Console (JMC), which is a Web interface

– The lrcmd shell command

– APIs that are available as either Web Services and EJBs (see 14.2, “Using WebSphere
XD Compute Grid trigger mechanisms” on page 234)

However, jobs can also be submitted to the system using an enterprise scheduler like
Tivoli Workload Scheduler for z/OS (see 14.3.2, “Integrate Tivoli Workload Scheduler for
z/OS with WebSphere XD Compute Grid” on page 266).

WebSphere z/OS

Job Scheduler

public getJobLog(String jobid) {
_scheduler.getJobLog(jobid);

}

Job Management Console

Command Line Interface

Programmatic
(EJB, JMS, or Web Services)

Dispatch
Pol icies

Partitioning
Strategies

Job management console
Web Application

Job dispatcher

Job
Scheduler
Database

(LRS)

WebSphere z/OS

PJM WebSphere z/OS

GEE
External Scheduler
(like TWS for z/OS)

WSGrid Client

xJCL

WAS
Config

Job Logs

xJCL

WAS Conf igJob Logs

WebSphere z/OS

GEE

WAS Conf igJob Logs

WAS Confi gJob Logs

WebSphere z/OS

GEE

WAS Conf igJob Logs

Non-WebSphere z/OS

XD Agent

X D ConfigJob Logs

Non-WebSphere z/OS

XD Agent

X D ConfigJob Logs

1

2

3

4

J 2EE 5

J2E E

J2EE

J 2EE

J2E E

JD BC

6

Container
Database
(LREE)

7

8

JDBC
8

9

Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 99

� xJCL

Jobs are described using a job control language. Compute Grid jobs use an XML based
job control language. The job description identifies which application to run, its inputs, and
outputs.

� Job scheduler

The job scheduler (JS) is the job entry point to XD Compute Grid that provides all job
life-cycle management functions, such as submit, cancel, restart, and so forth, and the
monitoring functionality. It maintains a history of all jobs, including those waiting to run,
those running, and those that have already run. It also maintains usage data for jobs that
have run. The JS dispatches workload to either the PJM or GEE and also hosts the JMC.

� Batch container

The batch container is called the Grid Execution Endpoint (GEE) component that executes
the actual business logic of the batch jobs. Java EE-based batch applications run inside
the WebSphere batch container. Native execution applications run inside a separate
container, which is described in the following section. A WebSphere cell can have any
number of batch containers.

� Java EE batch application

Java EE batch applications are regular WebSphere Java EE applications, deployed as an
Enterprise Archive (EAR) file, that contain implementations of one or more Java batch
applications. These Java batch applications follow either the transactional batch or
compute-intensive programming models.

� Scheduler tables

The job scheduler uses a relational database (LRS) to store job information. It can be any
relational database supported by WebSphere Application Server. If the job scheduler is
clustered, the database must be a network database, such as DB2.

� Container tables

The batch container uses a relational database (LREE) to store checkpoint information for
transactional batch applications. The database can be any relational database supported
by WebSphere Application Server. If the batch container is clustered, the database must
be a network database, such as DB2.

� JDBC

JDBC is standard JDBC connectivity to the scheduler and container tables, as supported
by the WebSphere Application Server connection manager.

� Parallel Job Manager

The Parallel Job Manager (PJM) breaks large batch jobs into smaller partitions for parallel
execution and provides job life-cycle management (submit, stop, cancel, and restart) for
the single logical job and each of its partitions. The PJM component is not a required
component in a WebSphere XD Compute Grid environment.

All of this means that a WebSphere XD Compute Grid environment supports today’s batch
processing needs, including:

� 24x7 batch processing, where batch can be executed concurrently with online transaction
processing (OLTP)

� Sharing business services across batch and OLTP, where a service can be executed in
multiple execution environments without sacrificing efficiencies, such as bulk-data
processing
100 Batch Modernization on z/OS

� Parallel-processing and caching features, where large problems can be partitioned,
governed, and processed in parallel across a collection of server resources while hiding
the complexities of multi-threading and management

� Container-managed batch qualities-of-service, such as checkpoint algorithms, restart
mechanisms, multi-threading, and threshold policies, so the developer can focus on
business logic

� Use application design patterns for building agile applications, where object-oriented
design and service-orientation allow emerging middleware technologies, such as
persistence and caching, to be adopted easily.

� Take advantage of the qualities-of-service of WebSphere Application Server z/OS, such
as security, thread-pooling, connection-pooling, scalability and z/OS integration.

The platform includes also:

� Runtime components for submitting, dispatching, monitoring, and governing the execution
of batch applications across a collection of resources

� Workload-management integrations for goals-oriented execution, where batch jobs can be
throttled, paced, and reprioritized to meet batch and OLTP service-level agreements

� Operational control, external scheduler integration, and management, with reduced
operational complexity for parallel processing, disaster recovery, and high availability

� End-to-end application development tooling for lightweight, POJO-based development,
development frameworks and libraries, unit test, and application deployment.

Finally, the solution meets the requirements of heterogeneous enterprise environments by
supporting:

� Platform-neutral batch applications that allow the location of the application’s data to
dictate the application deployment platform

� Standardized batch application architecture across platforms

� Standardized operational control and job management for all platforms, where the
enterprise scheduler, in conjunction with WebSphere XD Compute Grid, can provide a
common infrastructure for operational management; archiving, auditing, and log
management; and scheduling for batch running on z/OS and non-z/OS platforms.

Compared to Java stand-alone applications, the WebSphere XD Compute Grid environment
delivers a modern batch-processing platform for Java EE based applications. The JZOS
technology delivers two technologies, the JZOS Launcher and the Java z/OS APIs. (See 7.2,
“Running Java with JZOS” on page 79 for more information.) JZOS allows a stand-alone Java
program to be invoked using JCL and also plays a role in a WebSphere XD Compute Grid
environment. You can use the APIs, which we discuss in 5.2, “Special Java APIs for batch
processing on z/OS” on page 51, from WebSphere batch applications. The APIs provide a
strong integration point for Java and traditional z/OS as shown in Figure 8-6.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 101

Figure 8-6 The role of JZOS in container managed batch

However, the JZOS launcher is not efficient for thousands of batch jobs that are run within a
batch window, because a J2SE JVM lacks the following capabilities:

� No security, transaction, or connection management facilities

� No checkpoint or restart facility for batch jobs (which must be implemented by the Java
program itself)

� No inherent high availability or other quality of service (QoS) that WebSphere Application
Server for z/OS provides

� The JVM is not persistent or reusable (because each job step that uses Java needs to
reload the JVM)

Compared to JZOS, WebSphere XD Compute Grid is built on WebSphere Application Server
for z/OS and takes advantage of all necessary QoS and services provided by the WebSphere
Application Server for z/OS run time such as:

� Security, transaction, and connection management
� Thread pooling
� High availability
� Persistent and reusable JVM and execution container

WebSphere XD Compute Grid is a simple Batch Programming Framework that allows
developers to:

� Focus on business logic in batch applications, not on infrastructure support

� Can be used to incrementally modernize the existing batch environment

� Allows for co-locating batch program execution with OLTP execution (distributed) to better
utilize application infrastructure and run batch and OLTP concurrently

WebSphere XD Compute Grid also supports a robust batch application infrastructure with the
following capabilities:

� Application availability
� Prioritization
� Integration, particularly with z/OS WLM to enhance job execution and management

J2SE
JZOS

Launcher

ZFS

HFS

VSAM
JZOS
API‘s

JZOS
API‘s

External
Scheduler

JES

JCLJCLJCL

JCLJCLJava

WebSphere XD
Compute Grid

for z/OS

JCLJCLJava
102 Batch Modernization on z/OS

The WebSphere XD Compute Grid environment delivers the following tools for executing
transactional Java batch applications:

� Container management checkpoint and restart capabilities
� Batch Data Stream (BDS) Management
� Parallel Job Execution (PJM)
� Operational control
� External scheduler integration (such as Tivoli Workload Scheduler for z/OS)
� SMF records for batch
� z/OS WLM integration

Using WebSphere for batch applications provides the following advantages:

� Batch modernization

Pursuing batch modernization projects has been of particular interest of z/OS customers.
The purpose of these projects is to migrate from a native z/OS batch run time, typically
developed in programming languages such as C, C++, PL/I, and COBOL, to Java.

� Highly parallel batch jobs

Taking advantage of the dispatcher-worker architecture of WebSphere XD Compute Grid
to execute highly parallel batch jobs. A highly-parallel batch job is defined as a single,
large batch job that can be broken into discrete chunks; each chunk can be executed
concurrently across a grid of resources.

� Dynamic OLTP and batch run time

On z/OS, WebSphere XD Compute Grid integrates with WebSphere for z/OS, and the
underlying z/OS operating system, and uses its inherent dynamic run time. For distributed
platforms, WebSphere XD Compute Grid integrates with WebSphere XD Operations
Optimization to deliver a virtualized and goals-oriented infrastructure.

� Batch as a service

WebSphere XD delivers features for resource usage accounting and reporting, on z/OS,
these features integrate with the features already available on the platform (workload
management, RMF, SMF, and so on).

� Replace existing batch frameworks

IT Operations, prior to the introduction of enterprise batch run times like WebSphere XD
Compute Grid, took it upon themselves to build their own batch solutions. These
infrastructures are being replaced with XD Compute Grid in an effort to eliminate code
maintenance and execution costs.

� Sharing business logic across OLTP and batch

Business services, defined as discrete tasks responsible for executing some business
function, can be shared across both the batch and OLTP run times.

8.4 Quality of service in a WebSphere environment on z/OS

WebSphere XD Compute Grid is designed to deliver a modern batch-processing platform for
the enterprise. It supports today’s batch processing needs, including 24x7 batch processing,
shared business services across batch and OLTP, parallel-processing and caching features,
and container-managed batch QoS. An important aspect of the WebSphere batch
environment is also that it uses application design patterns for building agile applications and
the QoS, such as security, thread-pooling, connection-pooling, high availability and scalability,
and z/OS integration. We provide further detail in the sections that follow.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 103

8.4.1 Security

Because of the rapid growth of e-business and the integration of different organizations,
securing and managing (IT) infrastructures has become very complex and demanding.
Protecting sensitive and confidential data from malicious intruders, deadly viruses, and
worms is not an easy task. It requires constant monitoring of the daily IT business operations
and deploying the latest security technology.

WebSphere XD Compute Grid is based on a WebSphere Application Server for z/OS
environment. Thus, WebSphere XD Compute Grid uses the WebSphere Application Server
for z/OS security and underlying operating system infrastructure security which can provide
customers running enterprise applications with secure and reliable services, which are
consistently managed by a security product such as RACF.

The security infrastructure of the underlying operating system provides certain security
services to the WebSphere security application, including the file system security support to
secure sensitive files in WebSphere product installation. The WebSphere system
administrator can configure the product to obtain authentication information directly from the
operating system user registry. On z/OS, WebSphere LocalOS registry uses the System
Authorization Facility (SAF) implementation. SAF is a common set of APIs that allow a z/OS
pluggable z/OS security manager, such as RACF or a third-party equivalent, to manage
authentication and authorization needs on z/OS. These security products contain information
about users, groups of users, resources, and user or group access to those resources. These
products provide authentication and access control for the z/OS environment.

WebSphere XD Compute Grid security is based on the following techniques:

� WebSphere authentication for access to job scheduler interfaces. Users defined to the
active WebSphere security registry can authenticate and gain access to the job
scheduler's Web, command line, and programmatic interfaces.

� Role-based security for permission rights to job. Authenticated users must be assigned to
the appropriate roles to perform actions against jobs. There are two roles:

– lrsubmitter

Users in the lrsubmitter role can submit and operate on their own jobs but on no others.

– lradmin

Users in the lradmin role can submit jobs and operate on their own or anyone else’s
jobs.

WebSphere XD Compute Grid roles are assigned through the job scheduler configuration
page in the WebSphere administrative console.

8.4.2 High availability and scalability

High availability in this context means the ability of all WebSphere Application Server for z/OS
components to be available nearly continuous at 99,999% for 365x24x7. If your workloads are
predictable, system resources can be fairly static, but if workloads fluctuate and system
resources are needed on-demand, then your environment should also be very scalable. Also,

Note: You can find more information about WebSphere security at Version 7 in general in
WebSphere Application Server V7.0 Security Guide, SG24-7660.

For more information about security in WebSphere on z/OS at Version 6.1, refer to Security
in WebSphere Application Server V6.1 and J2EE 1.4 on z/OS, SG24-7384.
104 Batch Modernization on z/OS

the types of workload that are running on the system influence the system setup. If you want
to run highly parallel jobs, if you have many concurrent jobs, or if you have a high submission
rate of jobs, the Parallel Job Manager (PJM) is needed.

If high availability is needed, clustering of Compute Grid components is needed. Both the job
scheduler and the batch container should be deployed to, and operated on, clusters to
provide high availability. For all these requirements you have to set up a high available and
very scalable WebSphere Application Server for z/OS batch environment for your Java EE
based batch applications as shown in Figure 8-7.

Figure 8-7 High availability and scalability in a WebSphere batch environment

Typical application clustering techniques should be used with the job scheduler to ensure it is
highly available. The job scheduler (JS) supports multiple methods of access to its APIs, such
as Web application, command line, Web service, and Enterprise JavaBean (EJB). Ensuring
highly available network access to a clustered job scheduler depends on the job scheduler
API access method. These choices include using the WebSphere plug-in or the On-Demand
Router (ODR) from the WebSphere XD Operations Optimization feature. The batch container
is made highly available simply by deploying it to a cluster. The job scheduler automatically
recognizes the batch container is clustered and takes advantage of it to ensure a highly
available execution environment for the batch jobs that run there.

The most available and scalable WebSphere Application Server for z/OS batch environment
has redundant job scheduler, parallel job manager, and grid execution endpoints. Each
component is clustered across two data centers. If you have a clustered job scheduler you
have multiple active job schedulers and your jobs can be managed by any scheduler in your
cluster environment. If your grid execution endpoints are clustered your batch applications are
hosted also on clusters. Also, database sharing and shared file systems are necessary for a
high available and scalable WebSphere Application Server for z/OS batch environment.

LPAR

z/OS

W ebSphere z/OS

JVM

Database

Load Balancer

LPAR

W ebSphere z/OS

JVM

PJM

JS

CPU

CPUCPU

LPAR

WebSphere z/OS

JVM

GEE

CPUCPU CPUC PU

z/OS

LPAR

WebSphere z/OS

JVM

PJM

LPAR

WebSphere z/OS

JVM

JS

CPU

CPUCPU

LPAR

WebSphere z/OS

JVM

GEE

C PUCPU CPUCPU
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 105

8.5 Interoperability with other languages

WebSphere Application Server for z/OS batch applications are Java EE-based applications.
Thus, for interoperability with other languages such as COBOL and PL/I, you need to use
native languages calls (as described in 5.5, “Java Interoperability with COBOL and PL/I” on
page 55) or the functionality that is provided by the z/OS batch environment to use a mixed
environment of Java and other languages in a Java EE-based batch application. See
Figure 8-8.

Figure 8-8 WebSphere XD Compute Grid Batch and traditional z/OS Interoperability

8.6 Batch programming using WebSphere XD Compute Grid

WebSphere XD Compute Grid provides the most complete enterprise Java batch
programming solution available. WebSphere XD Compute Grid provides the following
capabilities:

� A concise, powerful POJO-based programming model
� Simple packaging
� A simple deployment model
� Full-feature Job Control Language (JCL)
� A sophisticated job scheduler
� A robust execution environment
� Comprehensive workload management and administrative tools

The batch container operates with WebSphere Application Server for z/OS, which is a
multi-machine configuration, but WebSphere XD Compute Grid also provides a unit test
environment that you can run on a standalone WebSphere Application Server. WebSphere
XD Compute Grid also offers an Eclipse-based development experience, and additionally
supports Rational Application Developer or Rational Developer for System z as a full-function
development environment.

J2EE batch application

WebSphere XD
Compute Grid

Batch Container

setProperties(Properties p) {

…
}

Init ialize
Native Structures:

Cobol Modules, DFSort, etc…

Execute
Native Structures:

Cobol Modules, DFSort, etc…

Teardown
Native Structures:

Cobol Modules, DFSort, etc…

WAS z/OS Servant Region

createJobStep()}

…

}

destroyJobStep() {

…
}

processJobStep() {

…

}

106 Batch Modernization on z/OS

At a high level, a batch job is a declarative construct that directs the execution of a series of
one or more batch applications, and specifies their inputs and outputs. A batch job performs
this set of tasks in sequence to accomplish a particular business function. Batch applications
are programs designed to execute non-interactively in the background. Input and output is
generally accessed as logical constructs by the batch application and are mapped to concrete
data resources by the batch job definition.

Batch jobs commonly process large volumes of input/output data that are frequently
record-oriented, usually representing critical business data. Business processing tasks
performed by batch jobs can range widely. Batch jobs have been used in the System z
environment for decades and continue as a backbone of many large and medium sized
businesses to this day.

Figure 8-9 shows the basic anatomy of the elements in a batch job. The job definition
describes the batch steps to execute and the sequence in which they run. Each step is
defined with a particular batch application to invoke and its input and output data. Common
sources and destinations for data include files, databases, transaction systems, message
queues, and so on.

Figure 8-9 The basic flow of a batch application

WebSphere XD Compute Grid provides the following programming models:

� The transactional batch programming model requires the implementation of
container-managed persistence entity bean (EJBs)

� In contrast, the compute-intensive programming model is implemented as a simple POJO
and packaged into an enterprise archive (EAR) file for deployment into the WebSphere
environment.

Step 1

Input
Data

Start Batch Job

Execute Step N
if Step N-1 RC = 0

Fixed Block Dataset
Variable Block Dataset

JDBC
File

IBATIS
…

Step N
Complete Batch Job

Map Data to Object

Output
Data

Fixed Block Dataset
Variable Block Dataset
JDBC
File
IBATIS
…

Java Java

Map Object to Data
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 107

A WebSphere XD Compute Grid batch application consists of a set of POJOs and runs under
the control of the WebSphere XD Compute Grid batch container, which itself runs as an
extension to a standard WebSphere Application Server. Figure 8-10 depicts the application
components and their relationship to the batch container.

Figure 8-10 Batch programming model

The batch container runs a batch job under the control of an asynchronous bean, which you
can think of as a container-managed thread. The batch container processes a job definition
and carries out its life cycle, using an asynchronous bean as the unit of execution.

A batch application is made up of the following user-provided components:

Batch job step This POJO provides the business logic to execute as a step in a batch
job. The batch container invokes the batch job step during the course
of processing a job definition.

Batch data stream This POJO provides the batch job step with access to data. A batch
application can be written to access one batch data stream or several.
A batch data stream can be written to provide access to any sort of
data, including data from RDBs, file systems, message queues,
through J2C connectors, and so on.

The batch container is responsible for open, close, and checkpoint-related callbacks onto a
batch data stream during the life cycle of a job step. The batch job step itself calls methods on
the batch data stream to get and put data.

Note: WebSphere XD Compute Grid V6.1 extends the simple POJO style offered by the
compute-intensive model to transactional batch. Transactional batch programs are also
implemented as simple POJOs and packaged into EAR files for deployment. Here, we
concentrate on building a POJO-based batch application because this method is the
preferred method for building a batch application. For more information about the batch
programming model, see the Information Center for WebSphere XD Compute Grid at:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1m1/index.jsp

WebSphere Application Server z/OS

Batch Container
Message queue

F ile system

Application fi les

RDB

Application tables

RDB

Container tab les

J
D

B
C

JD
B

C

Batch application

Batch
JobStep

Batch
Data Stream

Checkpoint
data

Checkpoint
algorithm

Result
algorithm

Checkpoint
algorithm

Result
algorithm

Batch Controller
async bean
108 Batch Modernization on z/OS

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1m1/index.jsp

A batch application can optionally include these user-provided components:

� Checkpoint algorithm

– The batch container provides a checkpoint/restart mechanism to support job restart
from a known-point of consistency. A job might need to be interrupted and then
subsequently restarted after a planned or unplanned outage. The batch container calls
the checkpoint algorithm periodically to determine if it is time to take a checkpoint.

– Compute Grid provides two pre-built checkpoint algorithms, one that supports a
time-based checkpoint interval, and another that supports a checkpoint interval based
on record-count.

� Results algorithm

– Each batch job step supplies a return code when it is done. The results algorithm has
visibility to the return codes from all steps in a batch job and returns a final, overall
return code for the job as a whole.

– WebSphere XD Compute Grid provides a pre-built results algorithm that returns the
numerically highest step return code as the overall job return code.

The WebSphere XD Compute Grid batch programming model consists of the following
principal interfaces, two of which are essential to building a batch application and two which
are optional and intended for advanced scenarios:

� Essential interfaces

– BatchJobStepInterface defines the interaction between the batch container and the
batch application.

– BatchDataStream abstracts a particular input source or output destination for a batch
application and defines the interaction between WebSphere XD Compute Grid and a
concrete BatchDataStream implementation.

� Optional interfaces

– CheckpointPolicyAlgorithm defines the interaction between Compute Grid and a
custom checkpoint policy implementation. A checkpoint policy is used to determine
when Compute Grid will checkpoint a running batch job to enable restart after a
planned or unplanned interruption.

– ResultsAlgorithm defines the interaction between WebSphere XD Compute Grid and a
custom results algorithm. The purpose of the results algorithm is to provide the overall
return code for a job. The algorithm has visibility to the return codes from each of the
job steps.

8.7 Developing a WebSphere batch application

With the basic concepts of a batch job and the WebSphere XD Compute Grid batch
programming model, it is time to apply these concepts in a simple example that spotlights the
essential batch interfaces, BatchJobStepInterface and BatchDataStream. The remainder of
this section walks through the steps for implementing a sample batch job step and batch data
stream using the Eclipse development environment, and testing them using a utility, called the
Batch Simulator.

In this section, we show how to modernize an existing batch environment with a WebSphere
XD Compute Grid application using the following steps:

1. Setting up the environment.

2. Creating a batch application using the BDS Framework.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 109

3. Testing the batch application in Eclipse using the Batch Simulator, with a Unit Test
Environment on the local machine, on z/OS with the Batch Simulator, and on WebSphere
XD Compute Grid on z/OS.

4. Running Echo batch application on WebSphere XD Compute Grid z/OS.

5. Debugging your application in the Unit Test Server.

6. Reusing the Echo application for huge data processing using BDS.

8.7.1 Setting up the environment

WebSphere XD Compute Grid offers an Eclipse-based development experience, and
additionally supports in the Rational Application Developer or Rational Developer for
System z as a full-function development environment which helps you to develop Java
EE-based batch applications. You can also install Eclipse V3.2 or higher, if you do not have it
already installed.

Figure 8-11 shows the end-to-end application development tooling for lightweight,
POJO-based development, the development frameworks and libraries, the functionality for
unit testing, and application deployment.

Figure 8-11 End-to-end development tooling for WebSphere batch applications

Note: You can download all necessary material to create this example, such as the Eclipse
workspace, from the Internet as described in Appendix C, “Additional material” on
page 453.

BDS
Framework

BDS
POJO

Job
properties

Batch Simulator

Generate
Packaging.properties

script

packageApp
script

installApp
script

Generate xJCL
script

runJob
script

WebSphere
Batch

Test Server
(Batch UTE)

Packaging
properties

*.ear

xJCL

Job
Log

1

2

3

4

5

6

110 Batch Modernization on z/OS

Referring to the numbers in Figure 8-11:

1. A Java IDE is used as development environment for WebSphere XD Compute Grid Batch.
You can use your favorite Java EE application development workbench, but you just need
to include a couple of libraries in the Java Build Path, package applications as normal Java
EE applications (EAR files) and deploy them to a WebSphere XD Compute Grid batch
runtime environment. You can also use Rational Application Developer or the WebSphere
6.1 Application Server Toolkit. The key benefit of using these tools is the integrated test
environment which allows for testing of the application before deploying.

2. The Batch Data Stream (BDS) Framework is a development toolkit that implements the
WebSphere XD Compute Grid interfaces for accessing common input and output sources
such as files, databases, and so on. BDS acts as bridge between job business logic and
the WebSphere XD Compute Grid programming model.

3. A POJO-based application development model. As of WebSphere XD Compute Grid, you
only have to write POJO-based business logic. Tooling such as Eclipse or Rational
Application Developer will generate the necessary WebSphere XD Compute Grid artifacts
to run the application as shown in Figure 8-12.

Figure 8-12 Simplified Batch Programming Model

4. The Batch Simulator is a light-weight, non-Java EE batch run time that exercises the
WebSphere XD Compute Grid programming model. This runs in any standard Java
development environment like Eclipse, and facilitates simpler application development
because you are only dealing with POJOs and no middleware run time. The Batch
Simulator is really for developing and testing your business logic. When your business
logic is sound, you would execute function tests, system tests, and then deploy to
production. You can download this from batch simulator download.

5. The Unit Test Environment (UTE) runs your batch application in a single WebSphere
server that has the WebSphere XD Compute Grid run time installed. It is important to
function-test your applications in the UTE to ensure that it behaves as expected when
transactions are applied.

6. The Batch Packager is a utility that generates the necessary artifacts (for EAR creation)
for deploying your POJO-based business logic into the WebSphere XD Compute Grid run
time. The Batch Packager is a script that can be integrated into the deployment process of
your application. It can also be run independently of the WebSphere run time, so you do
not need any heavy-weight installs in your development environment.

J2EE *.ear

application.xml

was.policy

ejb-jar.xml

ibm-ejb- jar-bnd.xml

EJB *.jar

<your batch POJO
goes here>

W ebSphere
Application Server

for z/OS

WebSphere XD
Com pute GridStandard

WebSphere
J2EE

deployment
Batch

Container

Batch
Framework

EJB

Batch
Controller

EJB
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 111

To explain how to use the BDS Framework pattern and how to use the WebSphere XD
Compute Grid Batch development Eclipse workspace that is delivered with this book, we use
the simple Echo sample application for reading, processing, and writing the data.

The workspace is designed for batch application development and testing and is
preconfigured with the BDS Framework, Batch Simulator, and Batch Packager utility (shown
in Figure 8-11 on page 110).

This project combines the WebSphere XD Compute Grid development tools into a
ready-to-use environment. It includes sample applications and Ant scripts to install and run
them in a WebSphere XD Compute Grid test server. The test server is optional and installed
separately (see “Testing using the WebSphere XD Compute Grid UTE” on page 129 for more
details).

The Echo application demonstrates a trivial batch application which we use for implementing
all input and output patterns of the BDS Framework. This framework simplifies batch
application development by allowing the developer to focus on writing core-business logic and
not have to deal with the WebSphere XD Compute Grid specific programming model.

Quickstart and overview of the workspace
The workspace includes the Echo sample application and Ant scripts to help you take these
applications through their basic life cycle. That life cycle can be summarized as:

1. Writing the code with help of Eclipse based tooling.
2. Initial testing using Batch Simulator.
3. Generating packaging properties.
4. Creating the install package.
5. Installing the package in UTE.
6. Generating xJCL.
7. Submitting the job.

Figure 8-11 on page 110 illustrates this life cycle.

To get started with the sample, download and decompress the WXDCG_sample.zip file and
open the Eclipse workspace (batchdevenv.6.1.0.3.1/workspace). The workspace supplies
source code and build/install/run Ant scripts for the Echo application.

Scripts are supplied for the following actions:

� Generate packaging properties
� Package application
� Install application in test server
� Generate job definition (xJCL)

Note: You can also download an Eclipse workspace from the WebSphere XD Compute
Grid Wiki, which provides more than the Echo sample, from the following Web site:

http://www.ibm.com/developerworks/forums/thread.jspa?threadID=228339&tstart=0

Note: You can read more about the Compute Grid tools in the WebSphere XD Compute
Grid Wiki at:

http://www-128.ibm.com/developerworks/forums/thread.jspa?messageID=14038395
038395

Note: The joblogs are retrieved and stored back into Eclipse project.
112 Batch Modernization on z/OS

http://www-128.ibm.com/developerworks/forums/thread.jspa?messageID=14038395�
http://www.ibm.com/developerworks/forums/thread.jspa?threadID=228339&tstart=0

� Run job in test server

The workspace includes the following directories:

scr Sample application and workspace utility source code

data Sample application input data and contains sample application output
data after running the samples

ear EAR files after packaging sample applications

joblog Compute Grid job logs after running sample jobs

lib POJO JAR files created during packaging process

props.packaging Generated packaging properties. Packaging properties are generated
by the Batch Simulator

props.simulator Run properties for the Batch Simulator. One properties file is provided
for each sample application

script.ant Build/install/run Ant script for sample applications

script.ant/config Environment configuration data to identify your WebSphere
Application Server environment

script.ant/imports Generic build/install/run Ant scripts

script.wsadmin Generic WebSphere Application Server admin scripts

tmp Scratch space used when deploying batch applications

xJCL Generated xJCL (job definitions); xJCL files are generated by the
Batch Simulator

The workspace is nearly ready to use when you first open it. In fact, no configuration is
required if you intend only to execute the sample applications locally inside Eclipse using the
Batch Simulator. Configuration is required only to use the WebSphere XD Compute Grid Test
Server. To configure the Workspace to use the WebSphere XD Compute Grid Test Server,
edit scripts.ant/config/WASConfig.xml. Read the comment block at the top of
WASConfig.xml for instructions. Basically, you must specify a WebSphere Application Server
profile directory and a WebSphere Application Server server host and port.

1. Open the WASconfig.xml file under script.ant config.

2. Specify the following:

– The WebSphere Application Server home installation directory, for example,
</WebSphere/AppServer/profiles/AppSrv01>

– The WebSphere Application Server host name, for example, <localname>

– The WebSphere Application Server default port, for example, <9080>

See Figure 8-13.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 113

Figure 8-13 Configure the Workspace to use the Compute Grid Test Server, WASconfig.xml

8.7.2 Creating a batch application using the BDS Framework

Because the WebSphere XD Compute Grid batch framework provides only a
BatchDataStream interface, it is useful to extend this framework with abstract classes that
provide basic implementations of common patterns. The BDS framework provides an
implementation for this model, called the GenericXDBatchStep, a simple step that uses one
input and one output stream.

Rather than impose the burden of implementing the full WebSphere XD Compute Grid
programming model on the developer, the BDS Framework takes a patterns approach and
provides most of the implementation for the developer. The developer has to implement
specific interfaces that correspond to the different patterns, for example, to map raw data to a
domain object, to map a domain object to raw data, to apply some transformation to the input
domain object to produce the output.

Figure 8-14 shows a summary of the BDS framework with the input and output pattern type.

Figure 8-14 Summary of the BDS framework

In detail, the input and output pattern of the BDS framework are:

� JDBCReaderPattern and JDBCWriterPattern

Used to retrieve/write data from a database using a JDBC connection. The supported
classes are:

– LocalJDBCReader / LocalJDBCWriter
– JDBCReader / JDBCWriter
– CursorHoldableJDBCReader

ZFile

JDBC

ZFile

text file

dat a

byte file

text file

byte file

IB M code

“inputstream“

IBM code

GenericXDBatchStep

IBM code

“outputstream“

User code

pattern implementation class

Us er code

batchRecordProcessor

User code

pattern implementation class
114 Batch Modernization on z/OS

� ByteReaderPattern and ByteWriterPattern

Used to read/write byte data from a file. The supported class is FileByteReader /
FileByteWriter.

� FileReaderPattern and FileWriterPattern

Used to read/write a text file. The supported class is TextFileReader / TextFileWriter.

� RecordOrientedDatasetReaderPattern and RecordOrientedDatasetWriterPattern

Used to read a z/OS data set. The supported classes are:

– ZFileStreamOrientedTextReader / ZFileStreamOrientedTextWriter
– ZFileStreamOrientedByteReader / ZFileStreamOrientedByteWriter
– ZFileRecordOrientedDataReader / ZFileStreamOrientedDataWriter

� JPAReaderPattern and JPAWriterPattern

Used to retrieve data from a database using OpenJPA and to write data to a database
using a Java Persistence API (JPA) connection. The supported class is JPAReader /
JPAWriter.

Part of the workspace is a new enterprise application project which includes the necessary
classes for mapping the input data to the domain object, processing the data and mapping
the object data to the output data. The Echo sample is an easy application for processing
input data into output data and includes the following necessary Java classes:

� A class to represent a record from the input stream EchoDataHolder.java in the
com.batch.domainobjects folder as the domain object. This class is the object
representation of a record in the batch input stream. This is constructed while reading a
record from the input BDS, and passed on to the batch bean. This class is like a data or
cargo bean that contains attributes and corresponding getters and setters, of the fields in
the input stream.

� A batch input stream class EchoReader.java in the folder
com.batch.streams.inputstreams. The key objective for this class is to map the raw data
to a domain object. This class provides sample implementations for the following input
patterns:

– Reading text from a file (FileReaderPattern)

– Reading rows from a database (JDBCReaderPattern)

– Reading bytes from a file (ByteReaderPattern)

– Reading bytes from a fixed-block MVS data set
(RecordOrientedDatasetReaderPattern).

This class implements four different patterns (as described previously). Switching among
input patterns is simpler from the xJCL. The developer is, therefore, responsible for
mapping the raw data from whatever source to the domain object. The methods
implemented in this class provide mappings from several input sources to an
EchoDataHolder domain object. As a result, the source of the data can be specified in the
xJCL as a change in the IBM-provided BatchDataStream implementation, and the
developers implementation class can remain the same.

See Example 8-1.

Example 8-1 Batch input stream class

package com.ibm.websphere.batch.samples.echo.streams.inputstreams;

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.IOException;
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 115

import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.util.HashMap;
import java.util.Properties;
import com.ibm.jzos.ZFile;
import com.ibm.websphere.batch.devframework.configuration.BDSFWLogger;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.ByteReaderPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.FileReaderPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.JDBCReaderPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.RecordOrientedDatasetReaderPattern;
import com.ibm.websphere.batch.samples.echo.domainobjects.EchoDataHolder;

public class EchoReader implements FileReaderPattern, JDBCReaderPattern,
ByteReaderPattern, RecordOrientedDatasetReaderPattern {

...
}

� A batch output stream class EchoWriter.java in the folder
com.batch.streams.outputstreams. The key objective of this class is to map the domain
object to raw data. This class provides sample implementations for the following output
patterns:

– Writing the domain object to a file (FileWriterPattern)

– Writing the domain object to a database (JDBCWriterPattern)

– Writing the bytes of a domain object to a file (ByteWriterPattern)

– Writing the bytes of a domain object to a fixed-block MVS data set
(RecordOrientedDatasetWriterPattern)

This class implements four different patterns (as described above). Switching among
output patterns is therefore simpler from the xJCL. There might be different targets to
which the data should be written. The domain object must be mapped to the various
destinations. The developer is therefore responsible for mapping the domain object to the
raw data format for the of the destination. The methods implemented in this class provide
mappings from the EchoDataHolder domain object to several output sources. As a result,
the destination for the data can be specified in the xJCL as a change in the IBM-provided
BatchDataStream implementation, and the developers implementation class can remain
the same.

See Example 8-2.

Example 8-2 Batch output stream class

package com.ibm.websphere.batch.samples.echo.streams.outputstreams;

import java.io.BufferedOutputStream;
import java.io.BufferedWriter;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.util.Properties;
import com.ibm.jzos.ZFile;
import com.ibm.websphere.batch.devframework.configuration.BDSFWLogger;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.ByteWriterPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.FileWriterPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.JDBCWriterPattern;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.RecordOrientedDatasetWriterPattern;
import com.ibm.websphere.batch.samples.echo.domainobjects.EchoDataHolder;

public class EchoWriter implements FileWriterPattern, ByteWriterPattern,
116 Batch Modernization on z/OS

JDBCWriterPattern, RecordOrientedDatasetWriterPattern {
...

}

� A batch step class Echo.java in the com.batch.steps package which corresponds to the
basic flow echoReader --> Echo Step --> echoWriter. That means while not yet done
processing all records in the input stream, read the next record from echoReader, pass the
input record to the Echo step, which will apply some transformation to it, and write the
transformed record to the output stream. A batch step, represented as a
BatchJobStepInterface, whose task is to execute business logic against a stream of
records.

See Example 8-3.

Example 8-3 Basic flow of a batch step class

while (!doneProcessingRecords) {
inputRecord = getNextRecord();
outputRecord = processRecord(inputRecord);
writeOutputRecord(outputRecord);

}

The input batch data stream can be zero, one or n input or output streams. In the Echo
example, there is one input stream reading from a file and one output stream writing to a file.

The job definition for the simple Echo batch application includes the following information:

� Job name and application name
� Controller JNDI name
� Utility jars
� Checkpoint implementation
� Declarations for the input/output stream and the data transformation

You have two options for your job definition to test your application:

� Write the xJCL

� Use a properties file and then generate the xJCL using a Ant script. The syntax is similar
to the xJCL and shown in Example 8-4.

Example 8-4 Properties for Echo batch application

job-name=Echo
application-name=Echo

controller-jndi-name=ejb/com/ibm/ws/batch/EchoBatchController
#

utilityjars=../lib/batchframework.jar;../lib/ibmjzos-1.4.jar

checkpoint-algorithm=com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase
checkpoint-algorithm-prop.recordcount=1000

#Input Stream declarations
bds.inputStream=com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader
bds-prop.inputStream.PATTERN_IMPL_CLASS=com.batch.streams.inputstreams.EchoReader
bds-prop.inputStream.FILENAME=${echo.data}/input.txt
bds-prop.inputStream.debug=false
bds-prop.inputStream.EnablePerformanceMeasurement=false
bds-prop.inputStream.EnableDetailedPerformanceMeasurement=false
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 117

#data transformation declarations

batch_bean-name=IVTStep1
batch-bean-jndi-name=ejb/GenericXDBatchStep
batch-step-class=com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

#batch-bean-jndi-name=ejb/com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

prop.BATCHRECORDPROCESSOR=com.batch.steps.Echo
prop.debug=false
prop.EnablePerformanceMeasurement=false
prop.EnableDetailedPerformanceMeasurement=false

#Output stream declarations
bds.outputStream=com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter
bds-prop.outputStream.PATTERN_IMPL_CLASS=com.batch.streams.outputstreams.EchoWriter
bds-prop.outputStream.tablename=alg.tivpwxd0
bds-prop.outputStream.FILENAME=${echo.data}/output.txt
bds-prop.outputStream.AppendJobIdToFileName=false
bds-prop.outputStream.EnablePerformanceMeasurement=false
bds-prop.outputStream.EnableDetailedPerformanceMeasurement=false
bds-prop.outputStream.debug=false

The WebSphere XD Compute Grid Batch Simulator includes an option for generating a
properties file for the WebSphere XD Compute Grid Batch Packager utility. This utility creates
a Java EE EAR file. To generate packaging properties using the Batch Simulator, simply
invoke the simulator as part of the configuration in the Eclipse workspace, passing the
simulator job properties, plus the -writePackagingProps flag, for example:

java com.ibm.websphere.batch.BatchSimulator EchoJobStep.props
–writePackagingProps

You can use the generatePackagingProps.EchoBatchJobStep.xml Ant script from the
script.ant folder of the sample workspace to create the packaging properties for the
EchoJobStep application, as shown in Figure 8-15.
118 Batch Modernization on z/OS

Figure 8-15 Generate packaging properties

The output looks as shown in Figure 8-16.

Figure 8-16 Output - Generate packaging properties

WebSphere XD Compute Grid includes a packaging utility called the Batch Packager.
Because WebSphere XD Compute Grid batch applications run in WebSphere Application
Servers, they are installed as Java EE EAR files. The Batch Packager handles many of the
details surrounding the EJB deployment descriptor and other minor details of EAR file
creation. The Batch Packager is driven by a properties file.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 119

Use the packageApp.Echo.xml Ant script from the script.ant folder of the sample workspace
to create the EAR file for the Echo application, as shown in Figure 8-17 on page 120.

Figure 8-17 Package Compute Grid applications

The output is as shown in Example 8-5.

Example 8-5 Output - Package Compute Grid applications

Buildfile: C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant\2.packageApp.Echo.xml
jar:
[echo] Creating jar file
C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant/../lib/Echo.jar
message:
[echo] Packaging Echo for Compute Grid Test Server
[echo] Test Server configuration: /WebSphere/ApplicationServer/profiles/AppSrv01
makeEAR:
[echo] Packaging batch artifacts from archive
C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant/../lib/Echo.jar
[java] Application name : Echo
[java] Job level input JAR : ../lib/Echo.jar
[java] Output EAR file name : ../export/Echo
120 Batch Modernization on z/OS

[java] Step Information : {IVTStep1, ejb/GenericXDBatchStep,
com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep, null, null}
[java] Utility Jar file(s) : ../lib/batchframework.jar;../lib/ibmjzos-1.4.jar
[java] Packaging EAR file ../export/Echo ...
[java] Successfully packaged EAR file ../export/Echo.ear
getPlatform:
[echo] Running on windows
packageApp:
[echo] Running EJBDeploy ...
...
[exec] Invoking RMIC.
[exec] Invoking RMIC for all the ejb references.

Writing output file

[exec] Exporting archive 'Echo.deployed.ear'. Refreshing /Echo.ear.

Exporting archive 'Echo.deployed.ear'.
Exporting archive 'Echo.deployed.ear'. ibmzos-1.4.jar
...
Exporting archive 'Echo.deployed.ear'. META-INF/MANIEST.MF
Exporting archive 'Echo.deployed.ear'. batchframework.jar
Exporting archive 'Echo.deployed.ear'.
Shutting down workbench.

[exec] EJBDeploy complete.0 Errors, 209 Warnings, 0 Informational Messages
...
run:
BUILD SUCCESSFUL
Total time: 39 seconds
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 121

If you are using a properties file instead of writing the xJCL, you can use an Ant script called
generate.xJCL.Echo.xml, which is also provided in the workspace to generate the xJCL. See
Figure 8-18.

Figure 8-18 Generate xJCL

The output is shown in Figure 8-19.

Figure 8-19 Output - Generate xJCL

If you are writing the xJCL by yourself, you have to specify for each step the input/output
stream and the step you will use. The following code snippets explain each part in some more
122 Batch Modernization on z/OS

detail. You can find the sample job in the xJCL folder (it is the generated xJCL from the
properties file /props.simulator/Echo.props). It is built as follows:

1. You have to declare the inputStream that the GenericXDBatchStep will look up and
resolve. See Example 8-6 for an excerpt and see Echo.xml in the xJCL directory of the
workspace for the complete XML.

Example 8-6 Declaration of inputStream in xJCL

<job name="Echo" default-application-name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
 <job-step name="Step1">

...
 <batch-data-streams>

...
 <bds>
 <logical-name>inputStream</logical-name>
 <props>
 <prop name="FILENAME" value="${echo.data}/input.txt"/>

...
 <prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.echo.streams.inputstreams.EchoReader"/>
 </props>
 <impl-class>

com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>
 </bds>
 </batch-data-streams>

...
 </job-step>
</job>

2. You have to declare the outputStream that the GenericXDBatchStep will look up and
resolve. See Example 8-7 for an excerpt and see Echo.xml in the xJCL directory of the
workspace for the complete XML.

Example 8-7 Declaration of outputStream in xJCL

<job name="Echo" default-application-name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
 <job-step name="Step1">

...
 <batch-data-streams>
 <bds>
 <logical-name>outputStream</logical-name>
 <props>
 <prop name="FILENAME" value="${echo.data}/output.txt"/>

...
 <prop name="PATTERN_IMPL_CLASS"
value="com.ibm.websphere.batch.samples.echo.streams.outputstreams.EchoWriter"/>
 </props>
 <impl-class>

com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>
 </bds>

...
 </batch-data-streams>

...
 </job-step>
</job>
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 123

3. You have to reference GenericXDBatchStep as the implementation for the job, as shown in
Example 8-8.

Example 8-8 Reference the GenericXDBatchStep

<job name="Echo" default-application-name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <jndi-name>ejb/com/ibm/ws/batch/EchoBatchController</jndi-name>
 <step-scheduling-criteria>
 <scheduling-mode>sequential</scheduling-mode>
 </step-scheduling-criteria>
 <checkpoint-algorithm name="chkpt">
 <classname>com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase</classname>
 <props>
 <prop name="recordcount" value="1000"/>
 </props>
 </checkpoint-algorithm>
 <results-algorithms>
 <results-algorithm name="jobsum">
 <classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>
 </results-algorithm>
 </results-algorithms>
 <job-step name="Step1">
 <jndi-name>ejb/GenericXDBatchStep</jndi-name>
 <checkpoint-algorithm-ref name="chkpt"/>
 <results-ref name="jobsum"/>
...
 </job-step>
</job>

4. You have to specify your Batch Record Processor implementation as a step property, as
shown in Example 8-9.

Example 8-9 Batch record processor implementation

<job name="Echo" default-application-name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
 <props>
 <prop name="EnablePerformanceMeasurement" value="false"/>
 <prop name="EnableDetailedPerformanceMeasurement" value="false"/>
 <prop name="debug" value="false"/>
 <prop name="BATCHRECORDPROCESSOR" value="com.ibm.websphere.batch.samples.echo.steps.Echo"/>
 </props>
 </job-step>
</job>

Now you are finished with the application development, and you can start testing the batch
application.

8.7.3 Testing the batch application

To test the batch application, you can use different options, such as batch simulation inside
the Eclipse workspace or on z/OS by using a local WebSphere XD Compute Grid unit test
environment. You can also use WebSphere on z/OS. In the following sections we discuss the
different options for testing the batch application.

Testing using the Batch Simulator in the Eclipse workspace
As mentioned earlier, WebSphere XD Compute Grid provides a test environment that
executes inside a standalone WebSphere Application Server, but to simplify things even
further for this example (and avoid additional application packaging and deployment tasks), a
testing aid called the Batch Simulator is included for your use. The Batch Simulator enables
124 Batch Modernization on z/OS

you to initially test your batch POJOs right inside the Eclipse environment. Bear in mind,
though, that the Batch Simulator runs in a J2SE environment, whereas the actual WebSphere
XD Compute Grid execution environment is Java EE, because it runs inside WebSphere
Application Server. Still, the Batch Simulator is useful for testing basic POJO applications and
testing the essential business logic in the batch job step.

In the example the batchsimulator.jar file is included in the Eclipse workspace but this file is
also part of the WebSphere Compute Grid installation and is located under, for example,
C:\IBM\WebSphere\AppServer\lib.

For initial testing, with the batch application in your Eclipse-based workspace, you can use
the Batch Simulator. To run the Echo sample with the Batch Simulator, you need to provide a
job definition that describes the batch job step you want to execute and its batch data
streams. A sample job definition that is ready to use for this sample batch job step can be
found in the Eclipse workspace under /props.simulator/Echo.props.

To configure a specific run for an application using the Batch Simulator in Eclipse, you have to
define that you want to run a java application. Add a name, for example, Echo, and add the
project name, the main class, the arguments which are needed and Classpath. Figure 8-20,
Figure 8-21, and Figure 8-22 show the configuration to run the Echo application using the
Batch Simulator. This is already configured in the sample workspace.

Figure 8-20 Run Echo with Batch Simulator - Main
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 125

Figure 8-21 Run Echo with Batch Simulator - Arguments
126 Batch Modernization on z/OS

Figure 8-22 Run Echo with Batch Simulator - Classpath Definition
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 127

If you click Run Echo as shown in Figure 8-23, you receive the output as shown in
Example 8-10 in the console from the Echo sample. In addition, the output file is created.

Figure 8-23 Using the Batch Simulator to run Echo application

Example 8-10 Output from running Echo application in Eclipse using the Batch Simulator

IBM Batch Simulator Version 1.1 - Build 20080721
BatchSimulator: start job Echo
BatchSimulator: outputStream checkpoint data: 0
BatchSimulator: inputStream checkpoint data: 0
BatchSimulator: outputStream checkpoint data: 80000
BatchSimulator: inputStream checkpoint data: 1000
BatchSimulator: outputStream checkpoint data: 160000
BatchSimulator: inputStream checkpoint data: 2000
BatchSimulator: outputStream checkpoint data: 240000
BatchSimulator: inputStream checkpoint data: 3000
BatchSimulator: outputStream checkpoint data: 320000
BatchSimulator: inputStream checkpoint data: 4000
BatchSimulator: outputStream checkpoint data: 400000
BatchSimulator: inputStream checkpoint data: 5000
BatchSimulator: outputStream checkpoint data: 480000
BatchSimulator: inputStream checkpoint data: 6000
BatchSimulator: outputStream checkpoint data: 560000
BatchSimulator: inputStream checkpoint data: 7000
BatchSimulator: outputStream checkpoint data: 640000
BatchSimulator: inputStream checkpoint data: 8000
BatchSimulator: outputStream checkpoint data: 720000
128 Batch Modernization on z/OS

...
BatchSimulator: outputStream checkpoint data: 6160000
BatchSimulator: inputStream checkpoint data: 77000
INFO->jobid: Echo:GenericXDBatchStep.destroyStep()- Total Execution Time: 1094
BatchSimulator: end job Echo - RC=0

Testing using the WebSphere XD Compute Grid UTE
Before starting to work with WebSphere XD Compute Grid on z/OS, you can set up an
environment for testing on your local machine. First, you have to install and configure the
UTE, also know as Compute Grid Test Server or Compute Grid UTE.

Obtaining the Compute Grid UTE
The Compute Grid UTE is available from one of two sources:

� Compute Grid trial download which you can download from developerWorks®
WebSphere Downloads Trial. Select WebSphere Extended Deployment Compute
Grid Version 6.1. The direct Web link is:

http://www.ibm.com/developerworks/downloads/ws/wscg/learn.html?S_TACT=105AGX10&
S_CMP=ART

The recommended fix pack levels are:

– WebSphere Application Server 6.1.0.23, which is available at:

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg24022255

– WebSphere Extended Deployment 6.1.0.5, which is available at:

http://www-01.ibm.com/support/docview.wss?rs=3023&uid=swg24020719

� UTE augment included in a licensed WebSphere XD Compute Grid product.

Setting up the Compute Grid UTE
The UTE can be setup in the following configurations:

1. Inside a trial version of WebSphere Application Server and using a trial download of UTE

2. Inside a licensed version of WebSphere Application Server and using a download of UTE

3. Inside Rational Application Developer or Rational Developer for System z using a
download of UTE

The sample is based on configuration option #1 from the preceding list. The examples given
are done using Windows XP. The steps for Linux are similar.

All the install and configuration steps for these environment are provided in the WebSphere
Extended Deployment Compute Grid Wiki at:

http://www.ibm.com/developerworks/forums/thread.jspa?threadID=227667&tstart=0

The WebSphere batch environment that we are using in the sample provides a single server
UTE topology. The UTE is integrated with the product install, and a profile template,
wxdcgUTE_augment, is provided for augmentation. Augmentation of this template configures
the UTE on a standalone application server.

When the UTE is integrated during the product installation, all the necessary files are stored
in the target profile. The selected application server is configured to host the Job Scheduler

Note: UTE is supported in standalone WebSphere Application Server application server
only (or in the Rational Application Developer unit test server).
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 129

http://www.ibm.com/developerworks/downloads/ws/wscg/learn.html?S_TACT=105AGX10&S_CMP=ART
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg24022255
http://www-01.ibm.com/support/docview.wss?rs=3023&uid=swg24020719
http://www.ibm.com/developerworks/forums/thread.jspa?threadID=227667&tstart=0

and job execution environment. It also creates and configures local Derby databases to
support the job components.

Figure 8-24 shows the UTE topology.

Figure 8-24 Sample WebSphere batch UTE

Using the Compute Grid UTE
The workspace also includes support for the Compute Grid Test Server. This support
provides scripts for packaging, installation, and job submission of batch applications using the
Test Server. The Test Server is not part of the workspace. You must install it separately as
described in “Testing using the WebSphere XD Compute Grid UTE” on page 129.

Compute Grid batch applications run on WebSphere servers. You can install the Echo.ear file
through regular WebSphere systems management interfaces, for example the Admin console
or the wsadmin utility. Use the installApp.Echo.xml Ant script from the script.ant folder of
the sample workspace to install the Echo application in the Compute Grid Test Server (UTE),
as shown in Figure 8-25.

WebSphere JVM

Derby
checkpoint
database

Derby
scheduler
database

Job Scheduler

GEE

Job Management C onsole

Command Line Interface

1

xJCL

2

public getJobLog(St ring jobid) {
_scheduler. getJobLog(jobid);

}

Programmatic
(EJB, JMS, or Web Services)

2

3

130 Batch Modernization on z/OS

Figure 8-25 Install package in UTE

The output of the install process is shown in Example 8-11.

Example 8-11 Output - Install package in UTE

Buildfile: C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant\3.installApp.Echo.xml
installApp:
 [echo] Installing Echo in Compute Grid Test Server
 [echo] Test Server configuration: /WebSphere/ApplicationServer/profiles/AppSrv01
 [java] wsadmin
 [java] arg[0]=/WebSphere/ApplicationServer/profiles/AppSrv01
 [java]
arg[1]=C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant/../script.wsadmin/installApp.py
 [java] arg[2]=Echo
 [java]
arg[3]=C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant/../export/Echo.deployed.ear
 [java] Launched command /WebSphere/ApplicationServer/profiles/AppSrv01/bin/wsadmin.bat -f
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../script.wsadmin/installApp.py Echo
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../export/Echo.deployed.ear
 [java] WASX7209I: Connected to process "server1" on node suthomasNode01 using SOAP connector; The
type of process is: UnManagedProcess
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 131

 [java] WASX7209I: Connected to process "server1" on node suthomasNode01 using SOAP connector; The
type of process is: UnManagedProcess
 [java] WASX7303I: The following options are passed to the scripting environment and are available as
arguments that are stored in the argv variable: "[Echo,
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../export/Echo.deployed.ear]"
 [java] WASX7209I: Connected to process "server1" on node suthomasNode01 using SOAP connector; The
type of process is: UnManagedProcess
 [java] WASX7303I: The following options are passed to the scripting environment and are available as
arguments that are stored in the argv variable: "[Echo,
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../export/Echo.deployed.ear]"
 [java] ADMA5017I: Uninstallation of Echo started.
 [java] WASX7209I: Connected to process "server1" on node suthomasNode01 using SOAP connector; The
type of process is: UnManagedProcess
 [java] WASX7303I: The following options are passed to the scripting environment and are available as
arguments that are stored in the argv variable: "[Echo,
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../export/Echo.deployed.ear]"
 [java] ADMA5017I: Uninstallation of Echo started.
 [java] ADMA5104I: The server index entry for WebSphere:cell=suthomasNode01Cell,node=suthomasNode01 is
updated successfully.
 [java] WASX7209I: Connected to process "server1" on node suthomasNode01 using SOAP connector; The
type of process is: UnManagedProcess
...
[java] installApp.py is installing Echo using
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../export/Echo.deployed.ear
 [java] ADMA5016I: Installation of Echo started.
 [java] ADMA5058I: Application and module versions are validated with versions of deployment targets.
 [java] ADMA5005I: The application Echo is configured in the WebSphere Application Server repository.
 [java] ADMA5053I: The library references for the installed optional package are created.
 [java] ADMA5005I: The application Echo is configured in the WebSphere Application Server repository.
 [java] ADMA5001I: The application binaries are saved in
C:\WebSphere\ApplicationServer\profiles\AppSrv01\wstemp\Script121ef71ed7b\workspace\cells\suthomasNode01Cel
l\applications\Echo.ear\Echo.ear
 [java] ADMA5005I: The application Echo is configured in the WebSphere Application Server repository.
 [java] SECJ0400I: Successfuly updated the application Echo with the appContextIDForSecurity
information.
 [java] ADMA5005I: The application Echo is configured in the WebSphere Application Server repository.
 [java] ADMA5011I: The cleanup of the temp directory for application Echo is complete.
 [java] ADMA5013I: Application Echo installed successfully.
 [java] configuration saved
 [java] application Echo started
 [java] installApp.py complete
 [java] Command complete - rc=0
BUILD SUCCESSFUL
Total time: 51 seconds

If the application is installed successfully in your local WebSphere environment, you have to
“submit” the job using the Eclipse workspace or using the job management console as we
describe later in this section.
132 Batch Modernization on z/OS

Form your workspace, you can use the Ant script 5.runJob.Echo.xml, as shown in
Figure 8-26, for submitting a job. Right-click the script file and choose Run as Ant build.

Figure 8-26 Submit Job

During the job runs, you receive the output in the console of your Eclipse workspace. The job
log is also available in file under /joblog/<jobname_jobid>.job.log.txt. The output of this
sample is shown in Example 8-12.

Example 8-12 Output - Submit Job

Buildfile: C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant\5.runJob.Echo.xml
checkFile:
runJob:
 [echo] Running job Echo.xml in Compute Grid Test Server
 [echo] Test Server configuration: /WebSphere/ApplicationServer/profiles/AppSrv01
 [echo] Test Server host: localhost
 [echo] Test Server port: 9083
 [java] RunJob inputs:
 [java] /WebSphere/ApplicationServer/profiles/AppSrv01
 [java] C:\workspace\batchdevenv.6.1.0.3.1\workspace\BatchDevEnv\script.ant/..
 [java] localhost
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 133

 [java] 9083
 [java] Echo.xml
 [java] Substitution[0]: echo.data=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data
 [java] Launched command /WebSphere/ApplicationServer/profiles/AppSrv01/bin/lrcmd.bat -cmd=submit
-xJCl=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../xJCL/Echo.xml -host=localhost -port=9083
echo.data=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data
[java] Command complete - rc=0
 [java] runJob jobid=Echo:00014
 [java] Launched command /WebSphere/ApplicationServer/profiles/AppSrv01/bin/lrcmd.bat -cmd=status -jobid=Echo:00014
-host=localhost -port=9083
 [java] Command complete - rc=0
 [java] Echo:00014 ended normally
 [java] Launched command /WebSphere/ApplicationServer/profiles/AppSrv01/bin/lrcmd.bat -cmd=saveJobLog
-jobid=Echo:00014 -fileName=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../joblog/joblog.zip
-host=localhost -port=9083
[java] Command complete - rc=0
 [java] Echo:00014 ended normally
 [java] Launched command /WebSphere/ApplicationServer/profiles/AppSrv01/bin/lrcmd.bat -cmd=saveJobLog
-jobid=Echo:00014 -fileName=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../joblog/joblog.zip
-host=localhost -port=9083
 [java] Joblog saved to
C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../joblog\Echo_00014.job.log.txt
 [java] CWLRB5671I: [06/17/09 14:21:48:593 GMT-06:00] Processing for job Echo:00014 started.
 [java] Original XJCL
 [java] 1 : <?xml version="1.0" encoding="UTF-8"?>
 [java] 2 : <!--## WebSphere Batch xJCL## This file generated on 2009.06.17 at 14:18:51 GMT-06:00 by:# IBM Batch
Simulator Version 1.1 - Build 20080721#-->
 [java] 3 : <job default-application-name="Echo" name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 [java] 4 : <jndi-name>ejb/com/ibm/ws/batch/EchoBatchController</jndi-name>
 [java] 5 : <step-scheduling-criteria>
 [java] 6 : <scheduling-mode>sequential</scheduling-mode>
 [java] 7 : </step-scheduling-criteria>
 [java] 8 : <checkpoint-algorithm name="chkpt">
 [java] 9 : <classname>com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase</classname>
 [java] 10 : <props>
 [java] 11 : <prop name="recordcount" value="1000"></prop>
 [java] 12 : </props>
 [java] 13 : </checkpoint-algorithm>
 [java] 14 : <results-algorithms>
 [java] 15 : <results-algorithm name="jobsum">
 [java] 16 : <classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>
 [java] 17 : </results-algorithm>
 [java] 18 : </results-algorithms>
 [java] 19 : <job-step name="Step1">
 [java] 20 : <jndi-name>ejb/GenericXDBatchStep</jndi-name>
 [java] 21 : <checkpoint-algorithm-ref name="chkpt"></checkpoint-algorithm-ref>
 [java] 22 : <results-ref name="jobsum"></results-ref>
 [java] 23 : <batch-data-streams>
 [java] 24 : <bds>
 [java] 25 : <logical-name>outputStream</logical-name>
 [java] 26 : <props>
 [java] 27 : <prop name="FILENAME" value="${echo.data}/output.txt"></prop>
 [java] 28 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
 [java] 29 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 30 : <prop name="AppendJobIdToFileName" value="false"></prop>
 [java] 31 : <prop name="debug" value="false"></prop>
 [java] 32 : <prop name="tablename" value="alg.tivpwxd0"></prop>
 [java] 33 : <prop name="PATTERN_IMPL_CLASS"
value="com.batch.streams.outputstreams.EchoWriter"></prop>
 [java] 34 : </props>
 [java] 35 :
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>
 [java] 36 : </bds>
 [java] 37 : <bds>
 [java] 38 : <logical-name>inputStream</logical-name>
 [java] 39 : <props>
134 Batch Modernization on z/OS

 [java] 40 : <prop name="FILENAME" value="${echo.data}/input.txt"></prop>
 [java] 41 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
 [java] 42 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 43 : <prop name="debug" value="false"></prop>
 [java] 44 : <prop name="PATTERN_IMPL_CLASS"
value="com.batch.streams.inputstreams.EchoReader"></prop>
 [java] 45 : </props>
 [java] 46 :
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>
 [java] 47 : </bds>
 [java] 48 : </batch-data-streams>
 [java] 49 : <props>
 [java] 50 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
 [java] 51 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 52 : <prop name="debug" value="false"></prop>
 [java] 53 : <prop name="BATCHRECORDPROCESSOR" value="com.batch.steps.Echo"></prop>
 [java] 54 : </props>
 [java] 55 : </job-step>
 [java] 56 : </job>
 [java] Substituted XJCL
 [java] 1 : <?xml version="1.0" encoding="UTF-8"?>
 [java] 2 : <!--## WebSphere Batch xJCL## This file generated on 2009.06.17 at 14:18:51 GMT-06:00 by:# IBM Batch
Simulator Version 1.1 - Build 20080721#-->
 [java] 3 : <job default-application-name="Echo" name="Echo" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 [java] 4 : <jndi-name>ejb/com/ibm/ws/batch/EchoBatchController</jndi-name>
 [java] 5 : <step-scheduling-criteria>
 [java] 6 : <scheduling-mode>sequential</scheduling-mode>
 [java] 7 : </step-scheduling-criteria>
 [java] 8 : <checkpoint-algorithm name="chkpt">
 [java] 9 : <classname>com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase</classname>
 [java] 10 : <props>
 [java] 11 : <prop name="recordcount" value="1000"></prop>
 [java] 12 : </props>
 [java] 13 : </checkpoint-algorithm>
 [java] 14 : <results-algorithms>
 [java] 15 : <results-algorithm name="jobsum">
 [java] 16 : <classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>
 [java] 17 : </results-algorithm>
 [java] 18 : </results-algorithms>
 [java] 19 : <job-step name="Step1">
 [java] 20 : <jndi-name>ejb/GenericXDBatchStep</jndi-name>
 [java] 21 : <checkpoint-algorithm-ref name="chkpt"></checkpoint-algorithm-ref>
 [java] 22 : <results-ref name="jobsum"></results-ref>
 [java] 23 : <batch-data-streams>
 [java] 24 : <bds>
 [java] 25 : <logical-name>outputStream</logical-name>
 [java] 26 : <props>
 [java] 27 : <prop name="FILENAME"
value="C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data/output.txt"></prop>
 [java] 28 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
 [java] 29 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 30 : <prop name="AppendJobIdToFileName" value="false"></prop>
 [java] 31 : <prop name="debug" value="false"></prop>
 [java] 32 : <prop name="tablename" value="alg.tivpwxd0"></prop>
 [java] 33 : <prop name="PATTERN_IMPL_CLASS"
value="com.batch.streams.outputstreams.EchoWriter"></prop>
 [java] 34 : </props>
 [java] 35 :
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>
 [java] 36 : </bds>
 [java] 37 : <bds>
 [java] 38 : <logical-name>inputStream</logical-name>
 [java] 39 : <props>
 [java] 40 : <prop name="FILENAME"
value="C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data/input.txt"></prop>
 [java] 41 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 135

 [java] 42 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 43 : <prop name="debug" value="false"></prop>
 [java] 44 : <prop name="PATTERN_IMPL_CLASS"
value="com.batch.streams.inputstreams.EchoReader"></prop>
 [java] 45 : </props>
 [java] 46 :
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>
 [java] 47 : </bds>
 [java] 48 : </batch-data-streams>
 [java] 49 : <props>
 [java] 50 : <prop name="EnablePerformanceMeasurement" value="false"></prop>
 [java] 51 : <prop name="EnableDetailedPerformanceMeasurement" value="false"></prop>
 [java] 52 : <prop name="debug" value="false"></prop>
 [java] 53 : <prop name="BATCHRECORDPROCESSOR" value="com.batch.steps.Echo"></prop>
 [java] 54 : </props>
 [java] 55 : </job-step>
 [java] 56 : </job>
 [java] CWLRB5684I: [06/17/09 14:21:48:718 GMT-06:00] Job Echo:00014 is queued for execution
 [java] CWLRB5586I: [06/17/09 14:21:48:718 GMT-06:00] CWLRS6006I: Job class Default, Importance 8, Service Class
null, Service Goal Type 0, Application Type j2ee, Submitter UNAUTHENTICATED.
 [java] CWLRB5586I: [06/17/09 14:21:48:718 GMT-06:00] CWLRS6007I: Job Arrival Time 6/17/09 2:21 PM, Goal Max
Completion Time 0, Goal Max Queue Time 0, Breach Time 6/18/09 2:21 PM.
 [java] CWLRB5586I: [06/17/09 14:21:48:718 GMT-06:00] CWLRS6021I: List of eligible endpoints to execute the job:
suthomasNode01/server1.
 [java] CWLRB5586I: [06/17/09 14:21:48:718 GMT-06:00] CWLRS6011I: APC is not active. GAP will make the endpoint
selection.
 [java] CWLRB5586I: [06/17/09 14:21:49:031 GMT-06:00] CWLRS6013I: GAP is dispatching job Echo:00014. Job queue time
0.313 seconds.
 [java] CWLRB3090I: [06/17/09 14:21:49:343 GMT-06:00] Job Echo:00014 is dispatched to endpoint
suthomasNode01\server1: result: 0
 [java] CWLRB5588I: [06/17/09 14:21:49:359 GMT-06:00] Setting up j2ee job Echo:00014 for execution in Grid Execution
Environment suthomasNode01Cell/suthomasNode01/server1: [jobClass Default] [jobName Echo] [module null] [user
UNAUTHENTICATED] [applicationName Echo] [applicationType j2ee] [transactionClass ${default_iiop_transaction_class}]
 [java] CWLRB2210I: [06/17/09 14:21:49:453 GMT-06:00] Job setup manager bean is setting up job: Echo:00014
 [java] CWLRB1690I: [06/17/09 14:21:49:468 GMT-06:00] No match found in job status table entry using key: [bjeename
*] [jobid Echo:00014]: Job Echo:00014 is not restarting.
 [java] CWLRB1740I: [06/17/09 14:21:49:562 GMT-06:00] Job [Echo:00014] is in job setup.
 [java] CWLRB1670I: [06/17/09 14:21:49:593 GMT-06:00] Creating abstract resources required by the job.
 [java] CWLRB1760I: [06/17/09 14:21:49:625 GMT-06:00] Job [Echo:00014] is submitted for execution.
 [java] CWLRB2230I: [06/17/09 14:21:49:687 GMT-06:00] Job setup manager bean completed job Echo:00014 setup: return
code: 0
 [java] CWLRB1850I: [06/17/09 14:21:49:703 GMT-06:00] Initializing for step dispatch using scheduling mode:
sequential
 [java] CWLRB1650I: [06/17/09 14:21:49:718 GMT-06:00] Created checkpoint repository table entry using key: [jobid
Echo:00014] [stepname Step1] [bdsname outputStream]
 [java] CWLRB1650I: [06/17/09 14:21:49:734 GMT-06:00] Created checkpoint repository table entry using key: [jobid
Echo:00014] [stepname Step1] [bdsname inputStream]
 [java] CWLRB1970I: [06/17/09 14:21:49:750 GMT-06:00] Created job step status table entry using key [jobid
Echo:00014] [stepname Step1]
 [java] CWLRB1990I: [06/17/09 14:21:49:750 GMT-06:00] Found job results table entry matching on key: [jobid
Echo:00014]
 [java] CWLRB2030I: [06/17/09 14:21:49:750 GMT-06:00] Initialization for sequential step dispatch is complete.
 [java] CWLRB1870I: [06/17/09 14:21:49:750 GMT-06:00] Subscribing to job cancel or stop subject:
BizGridJobCancel_Echo:00014
 [java] CWLRB1910I: [06/17/09 14:21:49:750 GMT-06:00] Dispatching job Echo:00014: job contains 1 step(s).
 [java] CWLRB2420I: [06/17/09 14:21:49:828 GMT-06:00] Job [Echo:00014] Step [Step1] is in step setup.
 [java] CWLRB5616I: [06/17/09 14:21:49:843 GMT-06:00] Setting step Step1 batch data stream outputStream properties:
EnableDetailedPerformanceMeasurement=false EnablePerformanceMeasurement=false
FILENAME=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data/output.txt
AppendJobIdToFileName=false debug=false PATTERN_IMPL_CLASS=com.batch.streams.outputstreams.EchoWriter
tablename=alg.tivpwxd0
 [java] CWLRB5618I: [06/17/09 14:21:49:843 GMT-06:00] Initializing step Step1 batch data stream outputStream
 [java] CWLRB5620I: [06/17/09 14:21:49:859 GMT-06:00] Opening step Step1 batch data stream outputStream
 [java] CWLRB5616I: [06/17/09 14:21:49:859 GMT-06:00] Setting step Step1 batch data stream inputStream properties:
EnableDetailedPerformanceMeasurement=false EnablePerformanceMeasurement=false
136 Batch Modernization on z/OS

FILENAME=C:/workspace/batchdevenv.6.1.0.3.1/workspace/BatchDevEnv/script.ant/../data/input.txt debug=false
PATTERN_IMPL_CLASS=com.batch.streams.inputstreams.EchoReader
 [java] CWLRB5618I: [06/17/09 14:21:49:859 GMT-06:00] Initializing step Step1 batch data stream inputStream
 [java] CWLRB5620I: [06/17/09 14:21:49:875 GMT-06:00] Opening step Step1 batch data stream inputStream
 [java] CWLRB5622I: [06/17/09 14:21:50:031 GMT-06:00] Loading job step bean for step Step1 using jndi name:
ejb/GenericXDBatchStep
 [java] CWLRB5594I: [06/17/09 14:21:50:156 GMT-06:00] Step Step1 setup is complete: ended normally
 [java] CWLRB2440I: [06/17/09 14:21:50:187 GMT-06:00] Job [Echo:00014] Step [Step1] is dispatched.
...
[java] CWLRB5628I: [06/17/09 14:21:54:093 GMT-06:00] Step Step1: chkpt checkpoint taken [iteration 76000]
 [java] CWLRB5628I: [06/17/09 14:21:54:109 GMT-06:00] Step Step1: chkpt checkpoint taken [iteration 77000]
 [java] CWLRB5630I: [06/17/09 14:21:54:156 GMT-06:00] Step Step1 completes normally: ended normally
 [java] CWLRB2460I: [06/17/09 14:21:54:156 GMT-06:00] Job [Echo:00014] Step [Step1] is in step breakdown.
 [java] CWLRB5606I: [06/17/09 14:21:54:171 GMT-06:00] Destroying job step: Step1
 [java] System.out: [06/17/09 14:21:54:171 GMT-06:00] INFO->jobid: Echo:00014:GenericXDBatchStep.destroyStep()-
Total Execution Time: 4015
 [java] CWLRB5608I: [06/17/09 14:21:54:171 GMT-06:00] Job step Step1 destroy completed with rc: 0
 [java] CWLRB5610I: [06/17/09 14:21:54:218 GMT-06:00] Firing Step1 results algorithm
com.ibm.wsspi.batch.resultsalgorithms.jobsum: [RC 0] [jobRC 0]
 [java] CWLRB5624I: [06/17/09 14:21:54:218 GMT-06:00] Stopping step Step1 chkpt checkpoint. User transaction
status: STATUS_ACTIVE
 [java] CWLRB5602I: [06/17/09 14:21:54:234 GMT-06:00] Closing Step1 batch data stream: outputStream
 [java] CWLRB5602I: [06/17/09 14:21:54:843 GMT-06:00] Closing Step1 batch data stream: inputStream
 [java] CWLRB5604I: [06/17/09 14:21:54:859 GMT-06:00] Freeing Step1 batch data stream: outputStream
 [java] CWLRB5604I: [06/17/09 14:21:54:859 GMT-06:00] Freeing Step1 batch data stream: inputStream
 [java] CWLRB2600I: [06/17/09 14:21:54:859 GMT-06:00] Job [Echo:00014] Step [Step1] completed normally rc=0.
 [java] CWLRB5594I: [06/17/09 14:21:54:890 GMT-06:00] Step Step1 execution is complete: ended normally
 [java] CWLRB1890I: [06/17/09 14:21:54:906 GMT-06:00] Unsubscribing from job cancel or stop subject:
BizGridJobCancel_Echo:00014
 [java] CWLRB3800I: [06/17/09 14:21:54:906 GMT-06:00] Job [Echo:00014] ended normally.
 [java] CWLRB5596I: [06/17/09 14:21:54:953 GMT-06:00] Grid Execution Environment sequential step processing
complete: ended
 [java] CWLRB2250I: [06/17/09 14:21:54:953 GMT-06:00] Job setup manager bean is breaking down job: Echo:00014
 [java] CWLRB5598I: [06/17/09 14:21:54:953 GMT-06:00] Removing job abstract resources
 [java] CWLRB5600I: [06/17/09 14:21:54:953 GMT-06:00] Removing job step status table entries
 [java] CWLRB2270I: [06/17/09 14:21:54:984 GMT-06:00] Job setup manager bean completed job Echo:00014 breakdown
 [java] CWLRB5764I: [06/17/09 14:21:54:984 GMT-06:00] Job Echo:00014 ended
 [java] Command complete - rc=0
BUILD SUCCESSFUL
Total time: 34 seconds

The sample output data will be saved in /data/output.txt, as shown in Figure 8-27.

Figure 8-27 Sample output data

The other option is to use the Job Management Console (JMC) to schedule a job and submit
jobs. You can also submit, manage, and view job logs using WebSphere XD Compute Grid’s
Job Management Console. Just point your browser at http://localhost/jmc. For example,
for checking the job log, click View jobs under Job Management, open your specific job
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 137

identified by the job ID, and you can see the job output of the Echo sample, as shown in
Figure 8-28.

Figure 8-28 Echo Job output in the Job Management Console

Testing using the Batch Simulator on z/OS
If the Echo sample runs successfully on your local WebSphere UTE, you are ready to test
your batch application on z/OS. The first option is also to use the Batch Simulator, which is
very easy to use. You do not need access to the JMC to submit your test jobs and also your
application does not have to be installed in WebSphere on z/OS which is very useful for
testing applications.

1. The first step is to make some small changes in your properties file (remember that the
Batch Simulator uses simple properties files instead of xJCLs), because your input/outfile
file will be under UNIX System Services. A sample zEcho properties file is also in the
workspace in the folder props.simulator. You only have to change the directory for your
input and your output file in the zEcho properties file, as shown in Example 8-13, where
you use your user directory.

Example 8-13 Sample zEcho properties file

bds-prop.inputStream.FILENAME=/u/sthomas/data/input.txt
...
bds-prop.outputStream.FILENAME=/u/sthomas/data/output.txt
138 Batch Modernization on z/OS

2. The next step is to transfer the necessary files to the host. You can use FTP, an FTP client,
an Ant script from your workspace, or tools such as Rational Developer for System z to
transfer the following files to the UNIX System Services directory:

– zEcho.props
– Libraries

• batchframework.jar
• batchpackager.jar
• batchsimulator.jar
• batchsimulatorRT.jar
• ibmjzos-1.4.jar

– input.txt
– Echo.jar (also available in the workspace in the lib directory)

3. Export your Echo sample to Echo.jar. Select domain objects, steps, input streams, and
output streams, right-click, and select Export in the pop-up window, as shown in
Figure 8-29.

Figure 8-29 Export Echo.jar
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 139

4. In the following window, specify the output JAR file, and select other options, as shown in
Figure 8-30.

Figure 8-30 Export Echo.jar specification
140 Batch Modernization on z/OS

5. After the export and upload, the UNIX System Services file system on z/OS should look as
shown in Figure 8-31.

Figure 8-31 Using the Batch Simulator under UNIX System Services - Files, as shown through the
Rational Developer for System z remote system explorer view

6. Create a batch.sh file under UNIX System Services, and add the command shown in
Example 8-14.

Example 8-14 Sample batch.sh file to run Echo under z/OS with Batch Simulator

java -classpath
lib/Echo.jar:lib/batchframework.jar:lib/batchsimulator.jar:lib/batchsimulatorRT
.jar:lib/batchruntime.jar:lib/ibmjzos1.4.jar
com.ibm.websphere.batch.BatchSimulator xJCL/zEcho.props
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 141

7. Change the permission of the script to 755 and run the shell script batch.sh from your
UNIX System Services console, as shown in Figure 8-32. The command window of
Rational Developer for System z could also be used to invoke the chmod command and run
the shell script.

Figure 8-32 Run batch.sh to use the Batch Simulator under UNIX System Services
142 Batch Modernization on z/OS

The output should look as shown in Figure 8-33 and Figure 8-34.

Figure 8-33 Run Echo sample with Batch Simulator under UNIX System Services - Part 1

Figure 8-34 Run Echo sample with Batch Simulator under UNIX System Services - Part 2
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 143

8.7.4 Running Echo batch application on WebSphere XD Compute Grid z/OS

The last step is to install the Echo sample in the WebSphere XD Compute Grid on z/OS
environment and submit the job. Figure 8-35 shows a simple WebSphere XD Compute Grid
z/OS environment with two application servers, one for the Job Scheduler (JS) and one as
Grid Execution Endpoint (GEE). In a production environment it is recommended to use a
complete clustered environment, but for testing this environment should be enough.

Figure 8-35 Sample WebSphere XD Compute Grid z/OS environment

The first step is to configure the Compute Grid environment.

As mentioned previously, we are using two application server, allrsa01 which host the Job
Scheduler and algeea01 as Grid Execution Endpoint, as shown in Figure 8-36.

Figure 8-36 WebSphere Application Server for z/OS Job Scheduler and Grid Execution Endpoint

Note: This is not a complete configuration walk trough, only some important facts are
mentioned here. More details for how to configure a WebSphere XD Compute Grid
environment are provided in the Information Center or the WebSphere XD Compute Grid
Wiki.

WebSphere z/OS

WebSphere JVMWebSphere JVM

DB2 z/OSDB2 z/OS

Job Scheduler GEE

Job Management C onsole

Command Line Interface

1

xJCL

2

public getJobLog(Str ing jobid) {
_scheduler.getJobLog(jobid);

}

Programmatic
(EJB, JMS, or Web Services)

2 3
144 Batch Modernization on z/OS

We use DB2 z/OS instead of the default Derby database tables (already configured after the
installation). To use DB2 for z/OS, define a DB2 Universal JDBC Driver Provider and two data
sources for the job scheduling and for the checkpoint database. See Figure 8-37.

Figure 8-37 Data source definition for job scheduling and checkpoint database
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 145

The last step is to configure the Job Scheduler under System administration Job
scheduler. Set the following properties, as shown in Figure 8-38:

� Application server on which the Job Scheduler is hosted
� Database schema name
� Data source JNDI name
� Endpoint job log location

Figure 8-38 Job Scheduler configuration

The Grid Execution Endpoints are defined under Job scheduler WebSphere grid
endpoint, as shown in Figure 8-39.

Figure 8-39 Grid endpoint definition
146 Batch Modernization on z/OS

The next step, after the WebSphere XD Compute Grid z/OS is running, is to install the Echo
sample application. You can use a wsadmin script or the Admin console. When using the
Admin console, you can install your Echo sample under Applications Install New
Application. Browse to the Echo.deployed.ear file in the Eclipse workspace, and click Next,
as shown in Figure 8-40.

Figure 8-40 Install Echo sample on WebSphere on z/OS

Click Next to accept the defaults on the next window, because we do not need any installation
options. These might be necessary for other applications. To map the modules to the GEE
server, choose the server for the grid execution, select the module EchoEJBs, click Apply
and then click Next, as shown in Figure 8-41.

Figure 8-41 Map Modules to Grid Execution Endpoint server
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 147

Click Finish. Your Echo application is now installed on the grid execution server. Click Save
(directly to the master configuration), as shown in Figure 8-42.

Figure 8-42 Save installed Echo application in the master configuration

The last step, is to start the Echo application. Select Echo, and click Start, as shown in
Figure 8-43.

Figure 8-43 Start Echo application on WebSphere on z/OS
148 Batch Modernization on z/OS

Your Echo sample application should now start successfully, resulting in a green arrow, as
shown in Figure 8-44.

Figure 8-44 Run Echo application on WebSphere Application Server for z/OS

You can find different options to trigger a batch application in 14.2, “Using WebSphere XD
Compute Grid trigger mechanisms” on page 234.
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 149

8.7.5 Debugging your application in the Unit Test Server

Use the Java remote debugger for source debugging of WebSphere XD Compute Grid batch
applications. To prepare the environment:

1. First, enable debugging in your WebSphere XD Compute Grid Test Server by selecting
Application Server server1 Process Definition Java Virtual Machine. See
Figure 8-45 for the values to use.

Figure 8-45 WebSphere Admin console - setting Debug Mode

Take note of the debugger port number. The default of 7777 should be fine. In addition,
remember that you must restart the Test Server to activate the debugger port.
150 Batch Modernization on z/OS

2. Next, create a Debug Configuration in Eclipse. The port number in the debug configuration
must match the one you used in your Test Server configuration, as shown in Figure 8-46.
Click Debug to activate the debug session.

Figure 8-46 Eclipse Debug Configuration
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 151

3. Finally, set a break point in your batch application and run a job that executes it, as shown
in Figure 8-47, by clicking in the left margin of the source code pane next to the statement
where you want the debug sessions to pause.

Figure 8-47 Eclipse - Set breakpoint

4. Now, run the job using the runJobEcho.xml Ant script, as shown in Figure 8-48, and this
time, the debug window opens.

Figure 8-48 Run Echo with Ant script
152 Batch Modernization on z/OS

8.7.6 Reusing the Echo application for huge data processing using BDS

With the simple Echo application you can start to create more data processing batch flows
only by using xJCL and the patterns of the BDS framework. To run the Echo example as
shown in Figure 8-49, the xJCL includes the following steps each having an input and an
output stream mapping:

� Step 1: File to ZFile
� Step 2: ZFile to database
� Step 3: Database to database
� Step 4: Database to ZFile
� Step 5: ZFile to File

Figure 8-49 Sample batch application for huge data processing

Note: The Echo sample uses a batch step and input/output patterns from the BDS
framework.

JDBCReader

JDBCWri ter

TextFileReader

RecordOrientedDatasetWriter

ZFile

File
(input.tx t)

Step3

Java

Step 1

Java

RecordOrientedReader

JDBCWri ter

Step 2

Java

data

JDBCReader

RecordOrientedDatasetWriter

ZFile

Step 4

Java

Rec ordOrientedDatasetReader

TextFi leWriter

File
(output.txt)

Step 5

Java

data

TIMESTAMPSTRINGCOUNTERJOB_ID
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 153

To create such data flow processing using the Echo application, which implements all BDS
patterns, you have to change the properties for the input/output stream in the xJCL:

� For data in files

– FileByteReader / FileByteWriter (Example 8-15)
– TextFileReader / TextFileWriter (Example 8-16)

Example 8-15 xJCL properties for reading from a text file

<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.inputstreams.EchoReader"></prop>
<prop name="FILENAME" value="/u/sthomas/data/input.txt"></prop>
<prop name="debug" value="false"></prop>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader</impl-class>
</bds>

Example 8-16 xJCL properties for writing to a text file

<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.inputstreams.EchoWriter"></prop>
<prop name="FILENAME" value="/u/sthomas/data/output.txt"></prop>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileWriter</impl-
class>
</bds>

� For data in z/OS data sets

– ZFileStreamOrientedTextReader / ZFileStreamOrientedTextWriter (Example 8-17)
– ZFileStreamOrientedByteReader / ZFileStreamOrientedByteWriter (Example 8-18)
– ZFileRecordOrientedDataReader / ZFileRecordOrientedDataWriter

Example 8-17 xJCL properties for reading byte data from a z/OS data set

<bds>
<logical-name>inputStream</logical-name>
<props>
 <prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.inputstreams.EchoReader"/>
 <prop name="DSNAME" value="STHOMAS.BATCH.RECORD.INPUT"/>
 <prop name="ds_parameters" value="rt"/>
 <prop name="file.encoding" value="CP1047"/>
 <prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteReader</impl-c
lass>
</bds>
154 Batch Modernization on z/OS

Example 8-18 xJCL properties for writing byte data into a z/OS data set

<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.outputstreams.EchoWriter"/>
<prop name="DSNAME" value="STHOMAS.BATCH.RECORD.OUTPUT"/>
<prop name="ds_parameters" value="wt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="${debug}"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteWriter</impl-c
lass>
</bds>

� For data in databases

– LocalJDBCReader/LocalJDBCWriter (Example 8-19)
– JDBCReader/JDBCWriter (Example 8-20)
– CursorHoldableJDBCReader

Example 8-19 xJCL properties for reading data from a database using a JDBC connection

<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.inputstreams.EchoReader"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCReader</impl-class>
</bds>

Example 8-20 xJCL properties for writing data to a database using a JDBC connection

<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.batch.streams.outputstreams.EchoWriter"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCWriter</impl-class>
</bds>

8.7.7 Conclusion

WebSphere Extended Deployment Compute Grid provides a simple abstraction of a batch job
step and its inputs and outputs. The programming model is concise and straightforward to
use. The built-in checkpoint/rollback mechanism makes it easy to build robust, restartable
Java batch applications. The Batch Simulator utility offers an alternative test environment that
Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid 155

runs inside your Eclipse (or Rational Application Developer or Rational Developer for System
z) development environment. Its xJCL generator can help jump start you to the next phase of
testing in the Compute Grid Unit Test Server.

8.8 Summary

Batch applications within a WebSphere XD Compute Grid environment are deployed like any
regular Java EE application. After it is deployed, WebSphere Compute Grid detects that it is a
Java EE-based batch application. When the application is deployed, an administrator can
define service policies for the application, in preparation for submitting a job. The service
policies are different for such batch applications, the only metrics supported for batch
applications are maximum desired queue time and discretionary.
156 Batch Modernization on z/OS

Chapter 9. Implement new functionality
using PHP on z/OS

In this chapter we provide an overview of using PHP on z/OS. This chapter includes the
following topics:

� Introduction to PHP for z/OS
� PHP Interoperabilty with other languages
� Development tools
� Sample application for using PHP in stand-alone batch

9

© Copyright IBM Corp. 2009, 2012. All rights reserved. 157

9.1 Introduction to PHP for z/OS

In addition to using stand-alone as well as container-managed Java for new functionality in
z/OS batch, PHP is also an interesting alternative to consider.

PHP is a scripting language that is very often used for dynamic Web sites. It offers a rich set
of functionality. Because it is widely used by a large community of programmers around the
world, many skills are available on the market today. For z/OS, there is also a version
available as part of the IBM Ported Tools for z/OS, which is available at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/ported/php/index.html

For this book we used version 5.1.2 of PHP for z/OS.

Figure 9-1 shows how PHP for z/OS works. The PHP interpreter as base for PHP scripts is
using UNIX System Services under z/OS. In addition to the base PHP libraries that are
delivered together with the PHP interpreter, PHP for z/OS also offers a PDO extension to
support access to DB2 on z/OS. This extension allows to access DB2 on z/OS data using the
Open Database Connectivity (ODBC) interface.

Figure 9-1 PHP for z/OS overview

Based on the PHP interpreter and the PHP base libraries, we can run our PHP scripts. A
script can be called using the php command in a shell or from the command line. For example,
to call a HelloWorld program in PHP, enter the following command on the UNIX System
Services shell:

php HelloWorld.php

Similar to Java, there are also lots of additional PHP libraries available that offer extra
functionality on top of the base PHP libraries. These libraries are available on Open Source
base as well as from software vendors.

To exploit PHP in batch, the interpreter needs to be launched using a z/OS batch launcher
that opens a UNIX System Services shell and calls the php interpreter as shown in
Figure 9-2. The batch launcher itself is called by a JCL and returns the shell output directly to
the JES sysout. Furthermore, the job can be managed by a workload scheduler like Tivoli
Workload Scheduler.

Note: Custom PHP extensions are not supported on z/OS.

z/OS USS

PHP for z/OS interpreter

PHP scripts

PHP base libraries PDO_ODBC extension

Additional libraries
158 Batch Modernization on z/OS

http://www.ibm.com/servers/eserver/zseries/zos/unix/ported/php/index.html

Figure 9-2 PHP batch launcher overview

Available batch launcher options for PHP are:

� BPXBATCH as a part of z/OS
� BPXBATSL as a part of z/OS
� AOPBATCH as part of the Infoprint Server
� Co:Z Batch from Dovetailed Technologies, LLC

Because each batch launcher has different characteristics, we provide a comparison in
Table 9-1.

Table 9-1 z/OS UNIX System Services batch launcher comparison

Feature BPXBATCH BPXBATSL AOPBATCH COZBATCH

Same address space No Yes Yes Yes

STDOUT/STD to data set/sysout Yes (1.7+) Yes (1.7+) Yes Yes

STDIN from data set/sysin No No Yes Yes

Run a default login shell Yes No (unless
root)

No Yes

Run a UNIX command without a
shell

Yes Yes Yes Yes

Set ENV vars from JCL vars Limiteda

a. One or more ENVAR() Language Environment runtime options can be specified on the PARM
to set environment variables using JCL variables. The size of the entire PARM field is limited
to 100 characters.

Limiteda Limiteda Yes

PARM= args support quoting No No Yes Yes

Override(set) step return code No No No Yes

USS

z/OS

PHP batch
launcher

PHP interpreter

PHP scripts

JCL

Common address space
(all batch launchers
except BPXBATCH)

JES Sysout

TWS
Chapter 9. Implement new functionality using PHP on z/OS 159

9.2 PHP Interoperabilty with other languages

In contrast to Java, there is no supported method for executing native calls from PHP to other
languages and the other way around. However, the use of functionality provided by the z/OS
batch environment to establish a mixed environment of PHP and other languages in
stand-alone batch still applies. That means we can integrate PHP into existing batch
environments by using job nets of different programming languages that exchange data using
files or databases (see 5.5, “Java Interoperability with COBOL and PL/I” on page 55).

9.3 Development tools

To develop PHP batch applications, we can use ISPF or Eclipse based tools. Because
features such as syntax highlighting or code completion for PHP are difficult in ISPF, we
created an Eclipse project for using PHP batch on z/OS.

Figure 9-3 shows how Eclipse can be used for PHP development on z/OS. We used the PHP
Development Tools (PDT) for Eclipse to develop PHP code on a local workstation, which
allows features such syntax highlighting and automatic code completion for PHP code.

Figure 9-3 PHP z/OS batch development with Eclipse

To deploy and execute the locally developed scripts on z/OS afterwards, we used an Ant
script that executes the following steps:

1. Upload all locally developed *.php files using FTP in ASCII mode to a z/OS UNIX System
Services directory.

Optionally, *.php files from other external PHP libraries can also be uploaded into a
separate z/OS UNIX System Services directory.

2. Upload a JCL to an MVS data set using FTP in ASCII. This JCL is calling a batch launcher
like BPXBATCH to execute PHP under UNIX System Services.

3. Submit the job with a Java program, which is like using the Jakarta Commons Net FTP
classes to submit the job using FTP.

4. Retrieve the Output using FTP using the same program described in step 3.

Eclipse on local
workstation

ANT deploy script

USS

z/OS

PHP batch
launcher

PHP interpreter

PHP scripts

JCL

JES Sysout

Develop PHP scripts and JCL

Upload PHP scripts to USS

Upload JCL

Submit job

Retrieve output from JES
160 Batch Modernization on z/OS

All steps are completely automated, that means one click deploys, submits and retrieves the
output of the PHP batch. We provide a complete explanation, including the sample code, in
the next section.

9.4 Sample application for using PHP in stand-alone batch

In this section, we provide a sample application that shows how to use PHP in batch under
z/OS to enrich an existing batch environment with more functionality.

Figure 9-4 shows what the sample is doing. Basically, it is the same sample as provided in
7.5, “Sample stand-alone Java batch application” on page 82. The only difference is that the
PDF file creation job and the e-Mail send job are implemented in PHP instead of Java.

Figure 9-4 Stand-alone PHP batch sample overview

The ERM model for the DB2 database and the data creation job in COBOL remain the same.
For convenience, we also included it in the sample Eclipse project part of the Additional
Material as described in “Importing and customizing the sample project” on page 164 later on.

On the following pages, we will explain how to implement this sample with the development
environment explained in 9.3, “Development tools” on page 160.

DB2

TW S

Sequential
dataset

COBOL job
creating data
for invoices

COBOL job
printing invoices

on printer

PHP job
creating

pdf invoices

PHP job
sending pdf files
f iles via E-Mail

PDF1 PDF2 PDF3
Chapter 9. Implement new functionality using PHP on z/OS 161

9.4.1 Eclipse setup

To set up the Eclipse environment, follow these steps:

1. Set up a proper Eclipse environment for PHP development by downloading the PHP
Development Tools (PDT), which are available at the following Web site:

http://www.eclipse.org/pdt/downloads/

We use the “PDT 2.1 All In Ones / EPP PHP Package” for our sample. Decompress the
package, and start eclipse.exe. Then, select Help Install New Software to open the
Eclipse Java Development Tools. These tools are required for proper Ant support.

2. In the “Work with:” field, enter the following site, as shown in Figure 9-5:

http://download.eclipse.org/releases/ganymede/

Figure 9-5 Update of Eclipse PDT with Java Development Tools

3. Select the Eclipse Java Development Tools as shown in Figure 9-5 on page 162, click
Next, and follow the instructions to install the package.

To facilitate the application deployment from the Eclipse workbench, the Ant FTP support
in Eclipse needs to be included in the classpath.

Download commons-net-2.0.zip and jakarta-oro-2.0.8.zip from:

– http://commons.apache.org/downloads/download_net.cgi
– http://jakarta.apache.org/site/downloads/downloads_oro.cgi
162 Batch Modernization on z/OS

http://commons.apache.org/downloads/download_net.cgi
http://jakarta.apache.org/site/downloads/downloads_oro.cgi
http://www.eclipse.org/pdt/downloads/
http://jakarta.apache.org/site/downloads/downloads_oro.cgi
http://download.eclipse.org/releases/ganymede/

Then, extract commons-net-2.0.jar and jakarta-oro-2.0.8.jar from the compressed
files, and put them into a directory called c:\ant_ftp_jars.

4. Open Eclipse, and select Window Preferences Ant Runtime. On the classpath
tab, select Ant Home Entries, and click Add External JARs as shown in Figure 9-6.

Figure 9-6 Eclipse Ant Classpath

5. Select the two JAR files in the c:\ant_ftp_jars directory, and click Open. The Ant FTP
support JAR files are added to the Ant classpath. Click OK.

Now, Eclipse is ready for PHP development with Ant support.
Chapter 9. Implement new functionality using PHP on z/OS 163

9.4.2 Importing and customizing the sample project

To start with the project, use the PHP_pdf_generator.zip as described in Appendix C,
“Additional material” on page 453. Then, follow these steps:

1. Switch to Eclipse, and select File Import.

2. Select General Existing Project into Workspace as shown Figure 9-7, and click
Next.

Figure 9-7 Import of sample project into Eclipse
164 Batch Modernization on z/OS

3. In the window that opens, select the “Select archive file” option, and then select the
compressed file using the Browse button as shown in Figure 9-8. Click Finish. Now the
project is imported.

Figure 9-8 Import of sample project into Eclipse 2

Figure 9-9 shows how the project is organized.

Figure 9-9 Eclipse project overview
Chapter 9. Implement new functionality using PHP on z/OS 165

The project consists of the following folders and files:

appl Contains the following *.php source files:

DbConnect.php A .php script to connect DB2 z/OS.

execute.sh A shell script that sets environment variables,
changes permission bits and executes the PHP
program.

InvoiceCreator.php The main program that creates the PDF files.

jcl Contains the JCL to start the job.

PHPPDF The JCL that starts the PHP job with a batch launcher.

lib Stores *.php library files, for example for PDF creation.

deploy.xml The Ant script that performs the steps described in 9.3, “Development
tools” on page 160.

submit.jar The Java program that is called by the Ant script. It submits the job
using FTP and retrieves the job output back to Eclipse.

zos.properties Contains all variables that are required by the Ant script.

Customizing the zos.properties file
First, you need to customize the zos.properties file by adjusting the following parameters:

server The DNS name or IP address of the z/OS system to where you want to
deploy the PHP application.

userid A TSO user name that allows you to log in using FTP on the z/OS
destination system.

password The corresponding password for the user ID.

jcl.dsn A partitioned data set where you can store the JCL as member.

appl.home The UNIX System Services directory where you want to store the PHP
application.

jclPath For each Eclipse project, the JCL file names need to be different to
avoid overwriting members with the same name on the host. For that
reason, you can change the path in the zos.properties file.

waittime If a PHP batch job runs very long, the Ant task that tries to retrieve the
job output from JES using FTP might run into a timeout. In that case,
you can use this parameter to specify a wait time in seconds.

Example 9-1 shows an example zos.properties file.

Example 9-1 Sample zos.properties file

Customize this file or move a customized copy of this file up to
either the Eclipse workspace directory or your "home directory"
server = wtsc48oe.itso.ibm.com
userid = STRAUER

Important: You do not need to modify the deploy.xml script. All parameters, such as
destination directories, are managed by an external properties file.

Note: This partitioned data set must already exist or be newly allocated.
166 Batch Modernization on z/OS

password = PASSWORD

The JCL PDS dataset, which must be in single quotes:
jcl.dsn = 'STRAUER.SAMPLE.JCL'

the home directory for deploying the application jar
appl.home = /u/strauer/php

local JCL pathes
jclPath = jcl/PHPPDF

time to wait for output in seconds
waittime = 0 for output in seconds
waittime = 0

JCL
Next, you need to customize the JCL. Open the PHPPDF file in the jcl folder. In this JCL,
customize the following lines:

� Job name

The job name has be your user ID plus exactly one character. Otherwise, we cannot
submit the job using FTP.

� PARM statement in STEP1 and STEP2

We have to adjust the path to point <appl_home>/appl/execute whereby <appl_home> is
the value of appl.home set in zos.properties.

Example 9-2 shows a sample JCL.

Example 9-2 Sample JCL to submit PHP job

//STRAUERA JOB
/*JOBPARM SYSAFF=SC48,L=9999
//**
//* Run PHP under a UNIX System Service shell
//**
//HOLD OUTPUT JESDS=ALL,DEFAULT=Y,OUTDISP=(HOLD,HOLD)
//STEP1 EXEC PGM=BPXBATCH,
// PARM='SH chmod 755 /u/strauer/php/appl/execute.sh'
//STEP2 EXEC PGM=BPXBATCH,
// PARM='SH /u/strauer/php/appl/execute.sh'
//STDIN DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//

Note: We use BPXBATCH in our sample. Of course, you can also use one of the other
batch launchers listed in Table 9-1 on page 159.
Chapter 9. Implement new functionality using PHP on z/OS 167

9.4.3 Implementing and deploying the PHP application

To create PDF files in PHP, we use the FPDF Library. First, download the V1.6 compressed
file from the following Web site:

http://www.fpdf.org

Then, decompress the following files into the lib folder of the project:

� fpdf.php
� All files in the font directory and its subdirectories

To see the files in Eclipse, right-click the project, and select Refresh as shown in Figure 9-10.
Now, all the required files of the FPDF Library displays in the lib folder in Eclipse.

Figure 9-10 Refreshing Eclipse project

You can find the source code that we developed to read the DB2 z/OS data and to create PDF
files, which consists of DbConnect.php and InvoiceCreator.php, in the src folder and in “PHP
PDF creator” on page 442.

Assuming that ODBC for DB2 z/OS is set up properly, you need to change $dsn, $username,
and $passwd in DbConnect.php, as shown in Example 9-3.

Example 9-3 Parameters to connect to DB2 z/OS

$dsn='odbc:DB9G';
$username='STRAUER';
$passwd='PASSWORD';

Because the JCL calls the PHP application using the execute.sh shell script, you need to
customize it for your environment. The shell script consists of the following statements:

� A PATH variable export pointing to the bin directory of PHP.

� A STEPLIB variable export pointing SDSNLOAD and SDSNLOD2 for proper ODBC
usage.

� A DSNAOINI export pointing to the ODBC ini file because ODBC would not work without
it.
168 Batch Modernization on z/OS

http://www.fpdf.org

� A chmod of the DbConnect.php file because the file should only be accessible by the owner
because it contains the user name and password for DB2.

� The final call of the PHP script, including a directory path as a parameter to the PHP
script. The created PDF files are stored in this directory.

You need to customize these statements to your environment. Example 9-4 shows the
customization for our example.

Example 9-4 Sample execute.sh shell script

export PATH=$PATH:/usr/lpp/php/bin
export STEPLIB=$STEPLIB:DB9G9.SDSNLOAD:DB9G9.SDSNLOD2
export DSNAOINI="/u/strauer/php/odbc.ini"
chmod 700 /u/strauer/php/appl/DbConnect.php
php /u/strauer/php/appl/InvoiceCreator.php /u/strauer/php/pdf

Now, you can deploy the application by right-clicking deploy.xml, and selecting Run As
Ant Build as shown in Figure 9-11.

Figure 9-11 Eclipse PHP Deployment with Ant
Chapter 9. Implement new functionality using PHP on z/OS 169

Then, select which deployment targets to used (see Figure 9-12). The default is all. We select
Run to execute the Ant script.

Figure 9-12 Eclipse PHP Deployment with Ant 2

Example 9-5 shows the output on the console.

Example 9-5 PHP batch job output

[...]
 [java] PATH is /usr/lpp/Printsrv/bin:/bin:/usr/sbin:/usr/lpp/java/J5.0/bin
 [java] X-Powered-By: PHP/5.1.2
 [java] Content-type: text/html
 [java] Connecting to DB2
 [java] ... Connected
 [java] Starting to create pdf file /u/strauer/php/pdf/Invoice_No_1.pdf...
 [java] Starting to create pdf file /u/strauer/php/pdf/Invoice_No_2.pdf...
 [java] Starting to create pdf file /u/strauer/php/pdf/Invoice_No_3.pdf...
 [java] Starting to create pdf file /u/strauer/php/pdf/Invoice_No_7.pdf...
 [java] Starting to create pdf file /u/strauer/php/pdf/Invoice_No_8.pdf...
 [java] !! END OF JES SPOOL FILE !!
[...]
170 Batch Modernization on z/OS

Finally, you can check the results. Figure 9-13 shows how one batch created PDF files.

Figure 9-13 PDF invoice created in PHP

The next step is to implement another job in PHP that takes all of these PDF files and sends
them to their recipients.

To sum it up, this sample application shows how PHP together with a batch launcher can be
used to easily get additional functionality in a batch environment.

Note: The PHP script produces PDF files that are encoded in EBCDIC. To get around this,
we identified the following different options:

� Download the PDF files in ASCII mode using FTP (this will do an automatic code page
conversion to ASCII) for further processing by other applications.

� Implement an iconv job in UNIX System Services.

� Modify the FPDF PHP script directly to use the PHP function iconv when performing file
system output. That means we already do a conversion from IBM-1047 to ISO8859-1
before writing to the file system.
Chapter 9. Implement new functionality using PHP on z/OS 171

172 Batch Modernization on z/OS

Chapter 10. Summary of new functional
requirements in z/OS batch

Based on the assumption that a business regularly requires new functionality for a batch
environment, in this part of the book, we discussed various approaches on z/OS to make use
of a broadened set of technology. Each solution that we discussed has its advantages and
disadvantages. Your choice depends on which solution best serves the requirements.

At a minimum, we suggest that you consider the following criteria:

� Functionality provided by the programming language

Depending on your current and future batch functional requirements, you can choose
between the following main options regarding the programming language:

– COBOL and PL/I

These languages offer excellent capabilities in a typical data driven environment.
Furthermore, all of them also offer basic XML capabilities. But when it comes to
functionality such as PDF creation, using e-Mail and remote access, things can
become difficult to implement.

– Java

Java offers an extremely broad functionality in all kinds of runtime environments. There
are lots of built-in functions in Java available, but also a huge number of software
vendors and Open Source projects provide Java libraries.

– PHP

As PHP is widely used by a huge community of developers, it also provides state-of the
art technology for all kinds of current functional requirements.

� Functionality provided by the run time

Compared to stand-alone batch, a run time such as WebSphere XD Compute Grid can
offer additional functionality through the Java EE model, for example managed security.

10
© Copyright IBM Corp. 2009, 2012. All rights reserved. 173

� Available skills

While talking about different programming languages and runtime environments, skills can
become a critical factor, such as:

– What kind of programming skill is available in your company?

– Is enough skill for the runtime environment (CICS, IMS, DB2, and WebSphere XD
Compute Grid) available?

– How will the situation be in the future? Will people retire, for example? If yes, a strategy
for a new programming language or runtime environment might be evaluated.

� IT Strategy

How does each scenario fit into your IT strategy (for example, do you have a Java EE
strategy)?

� Platform independency

If platform independency is important for you, PHP or Java in every z/OS run time might
be the preferred language compared to COBOL, PL/I, or Assembler.

� Runtime cost

Depending on which approach you choose, you might get a substantially different cost to
run a certain application with different technologies. Some factors that influence the (run
time) cost are:

– Java runs largely on zAAPs, and if you have only zIIP engines and no zAAP engines,
you can use the zAAP on zIIP solution from IBM.

– If you use XML in COBOL, PL/I, or Assembler, the XML parsing part can also run on a
zIIP

– PHP only runs on General Purpose Processors (GPs)

� Development cost

Development cost can differ depending on the programming language. Important factors
determining development cost are:

– Skills availability (skills that are widely available tend to be cheaper than skills that are
scarce)

– Tools productivity

– Functionality of the language

– Robustness of the technology (troubleshooting takes a lot of time)

� Development tools

All solutions offer very good tool capabilities to develop batch applications for z/OS, so we
do not expect the tooling to be a big factor in making a decision between the options
discussed in this part of the book.

� Access to z/OS data

COBOL, PL/I, C/C++, and Java in all run times offer APIs for accessing z/OS data.
However, access to native z/OS data (MVS data sets) is supported in an easier and more
natural way in COBOL, PL/I, and Assembler than in Java, C/C++ or PHP. Especially in a
high-volume batch environment with lots of I/O on MVS data sets this can become a key
decision factor. In summary:

– COBOL, PL/I, and Assembler provide the most natural access to native z/OS data

– C/C++ provides access for all types of data on z/OS too
174 Batch Modernization on z/OS

– Java programs in stand-alone batch, CICS, IMS or DB2 stored procedures can access
z/OS data sets and VSAM files using specific classes, and IMS and DB2 data on z/OS
using a native high performance JDBC driver

– In addition to the Java data access methods above, Java in WebSphere XD Compute
Grid can furthermore exploit Java EE features to externalize data sources

– PHP only allows access to z/OS UNIX System Services files and DB2 on z/OS. There
is no support for accessing MVS data sets.

� Workload scheduler integration

Very often, jobs are managed by a workload scheduler. All discussed solutions offer the
possibility to submit jobs using a JCL, that means they can easily be integrated into a
workload scheduler like Tivoli Workload Scheduler. The integration might only differ in
small areas, for example if you use a DB2 stored procedure for batch processing, you
would have to wait for the output in JES until the stored procedure terminates.

� Transactionality

If Two Phase Commit is required for your batch application, you carefully have to think
about your runtime environment. For example, all stand-alone alternatives offer no
transactionality. In contrast, containers like IMS, DB2 and WebSphere XD Compute Grid
have the ability to manage transactions. Depending on your exact requirements, these
would have to be examined in more detail concerning transactionality.

� Checkpointing

As batch jobs can run very long, checkpoints can become a very important criteria to
avoid very complex rollbacks or locking aspects. For stand-alone batch applications, this
has to be implemented manually. A container such as IMS or WebSphere XD Compute
Grid in contrast already provide this functionality.

� JVM startup cost

Stand-alone Java batch or Java in IMS cause a JVM startup for every job. If the jobs are
long running tasks, this is negligible. But if you have many short running Java batch jobs,
you might consider WebSphere XD Compute Grid or a Java DB2 stored procedure, which
efficiently reuse JVMs.

� Performance

Different programming languages and different programming models often have a big
difference in performance. This also has to be taken into account for new functionality in
batch. In certain situations performance could be the determining factor to choose for a
certain technology.

All those criteria have to be kept in mind while choosing a technology for new functionality in
batch. Besides these distinction criteria, you should remember that all solutions can leverage
the high availability and scalability concept of the z/OS operating system and its stack
products.

To sum it up, z/OS offers a lot of excellent capabilities to implement state of the art batch
functionality.
Chapter 10. Summary of new functional requirements in z/OS batch 175

176 Batch Modernization on z/OS

Chapter 11. Batch environment
enhancements in z/OS V1R13

In this chapter we discuss various batch environment enhancements in z/OS V1R13. We
review the IBM z/OS Batch Runtime which provides the ability to update the DB2 database
from both COBOL and Java in a single transaction, and review Java COBOL interoperability.

We also describe the following updates to improve batch job processing:

� Instream data in PROCs (cataloged and instream)

� Support for JOBRC (return code)

� Spin and SPIN data set

� Requeue a job by command on a step boundary

11
© Copyright IBM Corp. 2009, 2012. All rights reserved. 177

11.1 Introduction to z/OS Batch Runtime

In current z/OS environments there is a need to re-engineer existing native z/OS COBOL
applications to incorporate Java in order to take advantage of its many language features and
the large developer skill base.

A mixed z/OS COBOL and Java batch application must share a DB2 connection and use
relevant language APIs to communicate with DB2 in the same unit of work (UOW). During the
running of such a re-engineered program, Embedded Structured Query Language (SQL)
DB2 access in Enterprise COBOL and Java Database Connectivity (JDBC), Structured
Query Language for Java (SQLJ) DB2 access in Java, or both, must coexist transparently.

The z/OS Batch Runtime environment is a new option for running batch work in z/OS V1R13.
It provides a managed environment for the integration of Java and COBOL, and is consistent
with IBM WebSphere-based batch. It enables shared access to a DB2 connection by both
COBOL and Java programs, where DB2 COBOL and Java applications share a single
database connection. Updates to DB2 are committed in a single transaction. It allows the
interoperability of COBOL and Java applications within the same unit of work (UOW) and
provides database integrity.

The application runs within the Batch Runtime environment provided with z/OS V1R13 and
preserves COBOL assets while migrating to Java applications where required. It also
provides commit and rollback services by leveraging the z/OS Recovery Subsystem Services
(RSS) and the Java Database Connectivity (JDBC) driver. Executing your DB2 hybrid
applications in this container simplifies your code and helps ensure the integrity of your data.

The Java program execution is inserted as a step into the batch job and handles the following
tasks:

� To launch Batch Runtime, a special environment that is able to run the desired Java
program.

� To handle return codes that differ from those of traditional batch. This difference in
handling return codes requires modifications that are provided in JES2 of z/OS V1R13, as
described in 11.2, “JES2 batch modernization” on page 181“.

As with any other program, this new Batch Runtime environment is started by an initiator. It is
then dubbed into a UNIX System Services process in which a JVM is started to run the
desired Java program. This entire address space is named a JZOS address space, which is
conceptually the equivalent of the overall process for non-interpreted languages such as C or
COBOL. Refer to 7.2, “Running Java with JZOS” on page 79.

11.1.1 Java COBOL with DB2 interoperability

Java COBOL with DB2 interoperability support in z/OS V1R13 provides the ability to replace
or add functions in current 3GL DB2 (for example, COBOL DB2) application inventory with
new Java DB2 code. It requires local attach z/OS DB2 connection sharing for common DB2
access and UOW transactional integrity among the application components. This offers a
generalized solution that does not require a specific runtime or middleware. That is, a pure
batch environment and its implementation require few or no changes to existing code; it only
needs special callbacks for commit and rollback.

The topology of the z/OS Batch Runtime is displayed in Figure 11-1 on page 179. It depicts
the job flow from the submission of the JCL to the Java batch application (BCDBATCH) to the
z/OS batch container.
178 Batch Modernization on z/OS

Figure 11-1 Topology of the z/OS Batch Runtime

Usage and invocation
Batch Runtime is invoked through batch JCL. A sample JCL procedure, BCDPROC, is shown
in Example 11-1.

Example 11-1 BCDPROC procedure

//BCDPROC PROC VERSION='61', JVMLDM version: 61 (Java 6.0.1 31bit)
// LOGLVL='+I', Debug level: +I(info) +T(trc)
// LEPARM='' Language Environment parms
//*
//***
//* *
//* Proprietary Statement: *
//* *
//* Licensed Materials - Property of IBM
*
//* 5694-A01 *
//* Copyright IBM Corp. 2011. *
//* *
//* Status = HBB7780 *
//* *
//* Component = z/OS Batch Runtime (SC1BC) *
//* *
//* EXTERNAL CLASSIFICATION = OTHER *
//* END OF EXTERNAL CLASSIFICATION: *
//* *
//* Sample procedure JCL to invoke z/OS Batch Runtime *
//* *
//* Notes: *
//* *
//* 1. Override the VERSION symbolic parameter in your JCL *
//* to match the level of the Java SDK you are running. *

JES BCDBATCH
Proc

Submit
JCL

JZOS JVM z/OS Batch Container

Transaction
Service

z/OS Batch
Container

JDBC JAVA/Cobol App

Commit
Rollback

z/OS Plugin

Execution
Service

z/OS Plugin

Process Job Step

Local DB2

Policy/logs

RRS shared attach
Chapter 11. Batch environment enhancements in z/OS V1R13 179

//* *
//* VERSION=61 Java SDK 6.0.1 (31 bit) *
//* *
//* 2. Override the LOGLVL symbolic parameter to control *
//* the messages issued by the jZOS Java launcher. *
//* *
//* Use the +T option when reporting problems to IBM or *
//* to diagnose problems in the STDENV script. *
//* *
//* 3. Override the LEPARM symbolic parameter to add any *
//* application specific language environment options *
//* needed. *
//* *
//* Change History = *
//* *
//* $L0=BATCH,HBB7780,100324,KDKJ: *
//* *
//* *
//***
//JAVA EXEC PGM=JVMLDM&VERSION,REGION=0M,
// PARM='&LEPARM/&LOGLVL'
//*
//SYSPRINT DD SYSOUT=* System stdout
//SYSOUT DD SYSOUT=* System stderr
//STDOUT DD SYSOUT=* Java System.out
//STDERR DD SYSOUT=* Java System.err
//BCDOUT DD SYSOUT=* Batch container messages
//BCDTRACE DD SYSOUT=* Batch container trace
//*
//CEEDUMP DD SYSOUT=*
//*

z/OS batch runtime is invoked through JCL that invokes the job BCDBATCH, which invokes
the JZOS launcher to initialize the Java environment. Because BCDBATCH invokes JZOS,
one level of the JZOS launcher exists for each Java SDK level and bit mode. You define the
level with a symbolic, and your installation can update the symbolic as new levels of the Java
SDK are added or made the default.

11.1.2 JZOS Batch Launcher enhancements

The enhancements to the JZOS Batch Launcher and Toolkit in z/OS V1R13 are:

� Support for z/OS Java SDK 1.4.2 (31-bit), z/OS Java SDK 5.0, SDK 6.0.0, (31-bit and
64-bit) and SDK 6.0.1 (31-bit and 64-bit).

� The ability to access z/OS Workload Manager (WLM) services

� The ability to submit z/OS batch jobs from Java
180 Batch Modernization on z/OS

11.2 JES2 batch modernization

Enhancements were required to fully support Java applications in batch environments.
Various updates were made in z/OS V1R13 to improve BATCH job processing, which include
support for:

� Instream data in PROCs
� Control of job return codes
� Spin and SPIN data set
� Requeue a job by command on a step boundary

11.2.1 Instream data in PROCs and INCLUDEs

Support was added in z/OS V1R13 for instream data sets in JCL PROCs and INCLUDEs that
provides batch modernization for Java.

� It simplified the writing of JCL PROCs to allow JCL coders to combine the JCL and control
data sets in one PROC member.

� Support was added to allow instream data sets to be created when processing DD DATA
or DD * JCL within proclibs or INCLUDEs.

– The DD * and DD DATA JCL cards and all their operands can now be placed in a JCL
PROC followed by the instream data. During conversion processing, this instream data
is stripped out and placed into a JES2 instream data set. When the job runs, it can
access this data set like it would an instream data set in a normal JCL stream.

– The difference with standard instream support is that it does not automatically
generate a //SYSIN DD * card. If a non-JCL card is encountered in a PROC or
INLCUDE outside a DD * or DD DATA it continues to be flagged as an error.

� Supports all users of PROCs started tasks and batch jobs. However, it only works for jobs
running under a JES2 subsystem, it does not work if the job is run under the master
subsystem.

� Once z/OS V1R13 is installed, it is required that the job convert on a z/OS V1R13
member. It can later execute on any level member.

� Support was added for both cataloged and instream procedures; see Example 11-2.

Example 11-2 Example of a new procedure

//ABC JOB
//INCLUDE MEMBER=HELLO
//STEPA EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSUT1 DD DATA
HELLO WORLD
/*

Instream data sets in PROCs
New SYSIN data sets are included in the extended status DSLIST function. They are not
included in the SPOOL data set browse of JCLIN and are not part of the original JCL
submitted. They are not transmitted to other nodes or offloaded and are not part of the
original JCL submitted.
Chapter 11. Batch environment enhancements in z/OS V1R13 181

Instream data sets are not part of the submitted JCL, so they are not included when looking at
the original JCL and are not sent over NJE to other nodes. But they do appear in the data set
list. Instream data sets work for batch jobs and started tasks. The support in z/OS V1R13
provides the ability for conceptual control data sets, where the application parameters reside,
to not be separated from proclibs or INCLUDEs.

See Example 11-3 for an instream data in PROC example.

Example 11-3 Instream data in PROC

//HELLO PROC
//STEP1 EXEC ASMHCLG
//C.SYSIN DD *
TEST CSECT ,
 STM 14,12,12(13)
 BALR 12,0
 USING *,12
 ST 13,SAVAREA+4
 LA 13,SAVAREA
 SPACE 1
 WTO 'Hello world!'
 SPACE 1
 L 13,SAVAREA+4
 LM 14,12,12(13)
 SR 15,15
 BR 14
 SPACE 1
SAVAREA DC 18F'0'
 END
//L.TEST DD DUMMY
//L.SYSXX DD *
// PEND

Example 11-4 shows a simple example of a PROC that calls another nested PROC and has
an instream input. This can be run in a batch job or by just doing a S HELLO.

Example 11-4 PROC calling a nested PROC

s hello
$HASP100 HELLO ON STCINRDR
$HASP373 HELLO STARTED
+Hello world!
$HASP395 HELLO ENDED

Example 11-5 is an example of instream data in PROCs and INCLUDEs for JES2 only. It
requires both z/OS V1R13 and JES2 1.13 on the converting system and the initiating system.
This is not supported for MSTR subsystems or by JES3.

Example 11-5 Instream data in PROCs and INCLUDEs

//PROC1 PROC
//ASTEP EXEC PGM=xyz
//DD1 DD *
This is instream data
// PEND
182 Batch Modernization on z/OS

11.2.2 Support for JOBRC (job return code)

The success or failure of a JCL stream is not always determined by the highest completion
code of any step. The highest completion code of a job is not necessarily the most
meaningful. Sometimes it is the completion code of the last step or the completion code of a
specific step. A new JCL keyword was added to control the reported completion code. The
new JOBRC= operand on the JOB card now gives the JCL writer the ability to control what
completion code is presented for the job. This provides a more useful way to take into account
the most meaningful completion code. This new JCL keyword allows you to select the last
step, a specific step, or the highest step completion code.

The new JOBRC keyword on the JOB card to control a job is:

JOBRC= MAXRC | LASTRC | (STEP,name.name)

The possible values for the JOBRC keyword are:

� MAXRC – Default, the job return code is the maximum of any step.

� LASTRC – The job return code is the return code of the last step.

� (STEP, stepname.procstepname) – The job return code of the identified step; if the step
does not execute it defaults to MAXRC.

The $T JOBCLASS(x) command has also been enhanced with a new JOBRC operand to
affect processing for all jobs in the job class:

JOBCLASS JOBRC= MAXRC | LASTRC

Job return code
The job return code is presented in ENF 70, $DJ CC= command, extended status (SDSF)
and the $HASP165 message:

� $DJQ,CC= value

� ENF 70 field ENF70_MAXCC

Extended status STTRMXRC
The extended status max return code field STTRMXRC was updated to return the new
JOBRC information. It now includes two new conditions regarding how a job can end:

� A new bit indicates that the JOBRC specification affected the completion code.

� The old maximum return code is available in the verbose job STVBMXRC field.

� The IAZSSS2 (SAPI) fields SSS2MXRC and SSS2LSAB are not affected.

Origin is JCTMAXRC and JCTLSTAB, which are not changed.

You can get new combinations of conditions:

� JOB ABENDed but has a condition code from:

– A step that was named in JOBRC=(STEP,xxxx) completed

– A final step that specified COND= ONLY or EVEN and JOBRC=LASTRC

� Job EOM similar to ABEND if JOBRC=(STEP,xxxx) and step completed

Note: The JOBRC keyword on the job card takes precedence.
Chapter 11. Batch environment enhancements in z/OS V1R13 183

� Ended by CC and completion code from JOBRC=(STEP,x)

Not CC from the step that caused the job to end.

Processing for extended status is not affected by this support. It returns a different view of the
job completion code. It does not indicate how a job ended, but the last ABEND code and a
high return code.

An effect of these changes is that you can get new combinations of return codes that might
not have been expected. This can happen when the job ended abnormally but the step
specified on JOBRC ran normally. To ensure that the correct data is reported, use the
STTRXAB and STTRXCDE bits to interpret the information in the 3-byte code field
STTRMXCC.

HASP165 message text
The HASP165 message was updated to accommodate the new JOBRC processing:

� To always display the job completion code as a 4-digit value (with leading zeros).

� To indicate whether the displayed completion code is the maximum completion code for
the job or whether it was affected by the JOBRC processing (last or specific step
completion code).

This helps identify if a specific step was requested in JOBRC and that step did not run,
resulting in the maximum return code being returned.

The updated HASP165 message text:

Jobname ENDED AT node reason

Examples of reason:

� MAXCC=code - JOBRC was not specified.

Code is now always 4 digits, MAXCC=0000

� JOBRC=code - JOBRC was specified and affected the return code.

� MAXRC=code - JOBRC was specified but MAXRC was returned.

� ABENDED Sxxx,Uyyy.

� ABENDED abend_code, JOBRC=code.

JOBRC=(STEP,stepname), step executed, but later step ABENDed.

Another case that can occur is that the JOBRC requests the return code from a specific step
but the job also ABENDs. In this case, the ABEND code and the JOBRC are both presented
in the HASP165. Two additional job error case return codes were defined:

� Converter error – The converter returned a bad return code and failed the job.

� System failure – The job was executing at the time of a system failure and was not
requeued for execution.

Usage and invocation
The use and invocation with this new option in z/OS V1R13:

� If JOBRC=LASTRC is specified, this specification indicates to use the return code of the
last executed step as the completion code for the job.

Note: A JES2 cancel command, a JCL error, or a system failure overrides any JOBRC or
maximum return code for a job.
184 Batch Modernization on z/OS

� If JOBRC=(STEP,C.HLASM) is specified, the return code for the C step in the HLASM
procstepname is used as the completion code for the job.

Benefit and value
By using JOBRC, you can better determine the success of a job without having to examine
the job output.

11.2.3 Spin and SPIN data set

JESLOG SPIN processing was added in z/OS 1.2 to allow long-running jobs to spin their job
log and system messages data sets, and provided the ability to specify the automatic spin
options in JCL. z/OS V1R13 extended the JESLOG support to any SPIN data set the job may
allocate, even those with large amounts of SPOOL space.

The SPIN= operand on the DD statement was enhanced with an optional value to indicate
when a SPIN data set should be spun off.

SPIN=(UNALLOC,option)

where
– ‘hh:mm' - Spin at specific time
– +hh:mm' - Spin every hh:mm interval
– nnn, nnnK, nnnM - Spin every nnn lines
– NOCMND - Cannot be spun by command
– CMNDONLY - Can be spun via operator command (default if no interval)

This function can be disabled by specifying NOCMND. By default spin data sets can be spun
by operator command. The DDNAME= operand was added to the $TJ.SPIN command to
spin a specific data set.

Benefit and value
Using SPIN eliminates the requirement to take down a long-running process to release spool
space.

11.2.4 Evict a job on a step boundary

Long-running jobs can be an issue when an installation is trying to shut down a system. z/OS
V1R13 batch modernization provides an orderly method of getting jobs out of execution. This
enhancement can help jobs that have multiple long-running steps. A new operand has been
implemented on the $E J command that forces a job out of execution when the current step
ends. The job resumes execution from the next step.

A new STEP operand on the $EJ command is provided:

$EJxxxx,STEP[,HOLD]

This option deals with cross-member requests in the following way:

� It forces a job out of execution when the current step ends.

� The optional HOLD operand makes the job held.

� The job is requeued for execution and held, if requested.

Note: No application code or JCL change is required.
Chapter 11. Batch environment enhancements in z/OS V1R13 185

� It requires the JES journal to be active:

– JOBCLASS(x) JOURNAL=YES

� The option utilizes existing restart logic of z/OS to restart the job from the next step.

Previously used to restart jobs after an IPL

� It uses the new step end SSI to communicate with the initiator to requeue the job:

– New JES2 exit 58 called in step end SSI.

– This can be used to inhibit or to trigger the function.

Benefit and value
This provides more orderly shutdowns of systems to enhance batch processing.

In summary, z/OS V1R13 offers various batch environment enhancements to improve batch
job processing.
186 Batch Modernization on z/OS

Part 3 Implement agile batch

In this part of the book, we discuss a collection of topics that are related to the requirement of
being able to run batch processes any time. As previously mentioned earlier in this book,
many times batch processes are locked into a batch window, typically at night. There can be
different reasons for this type of processing, such as application dependencies, but also
technical reasons, such as spreading the workload efficiently across the 24 hours inside a
day or not being able to access the same data in a database concurrently with both batch and
OLTP processes.

In this part of the book, we do not discuss the topic of application dependencies, because this
topic is very specific in every situation. Instead, we focus on the following key areas:

� The ability to work smarter with data, so that there is more opportunity to run batch
processes operating on data during the OLTP window.

In Chapter 12, “Create agile batch by optimizing the Information Management
architecture” on page 189, we discuss a number of Information Management solutions
that can help to make batch bulk data operations more efficient and also offload direct I/O
from master databases onto data extracts or Data Warehouses.

� Optimizing data access to DB2 databases, so that locking of data and tables is shortened
allowing for more concurrent I/O operations on the same data, which increases the
potential to run batch and OLTP concurrently while using the same DB2 database.

We discuss best practices in this area in Chapter 13, “Create agile batch by optimizing
DB2 access” on page 207.

� In some environments, there is no easy way or no way at all to trigger a batch job any time
during the day, on demand. For this purpose, you need flexible triggering of batch jobs, for
example, by just clicking a button in a browser. In certain cases, you might have a
requirement for application-driven triggering of a batch job.

In Chapter 14, “Create agile batch by implementing trigger mechanisms” on page 223, we
show different ways of implementing batch job triggering. Some of these scenarios keep
on exploiting Tivoli Workload Scheduler as the manager of all batch jobs.

Part 3
© Copyright IBM Corp. 2009, 2012. All rights reserved. 187

188 Batch Modernization on z/OS

Chapter 12. Create agile batch by optimizing the
Information Management architecture

This chapter discusses architectures to make batch jobs related to data access more agile.

We discuss Data Warehousing on System z and the process of extract, transform, and load
(ETL). This process is often implemented on the mainframe using Job Control Language
(JCL) batch technology. There is nothing wrong with using batch jobs, but business drivers
might force a redesign of ETL process to achieve a higher degree of agile batch.

Today, business optimization is dependent on having trusted information, that is integrated,
enterprise ready, and dynamic. Information should be a service throughout the enterprise,
similar to electric or water utilities, that are always available and easily accessed when
required. This availability and ease of access requires a Data Warehouse that has accurate
data that is ready for use by business analysts.

In this chapter, we focus on gaining confidence by creating clean, standardized, and
organized data. We will describe ETL techniques that have minimal impact on the online
transaction processing (OTLP) environment, that is used to facilitate and manage
transaction-oriented applications.

We also discuss IBM InfoSphere DataStage in relation to agile batch. IBM InfoSphere
DataStage is particularly useful when you are dealing with many transformations and
differences between the source and target data model. For those of you who want to learn
about the installation of the Information Server, it is best to read Enterprise Data Warehousing
with DB2 9 for z/OS, SG24-7637, which describes the setup of InfoSphere DataStage. For
more information about the design of InfoSphere DataStage flows, read IBM InfoSphere
DataStage Data Flow and Job Design, SG24-7576.

This chapter includes the following topics:

� Data Warehousing on System z
� ETL

12
© Copyright IBM Corp. 2009, 2012. All rights reserved. 189

12.1 Data Warehousing on System z

Data Warehouses have become a significant part of today’s operational IT environment,
where they supports decision making systems of the business.

A Data Warehouse is a collection of the organization’s data with a corporate-wide scope for
use in decision support and informational applications. Therefore, a Data Warehouse is
designed to serve all possible decision support processes for an organization. Two types of
data subsystems make up the Data Warehouse environment:

� The Enterprise Data Warehouse, which contains all data with a global scope
� The Data Marts, which contain data for a specific business

Figure 12-1 shows an example of a Data Warehouse and Business Intelligence (BI) or
Decision Support system of the enterprise. This Data Warehouse and BI system provides
executives and line managers with information to help support their decisions and to sustain
and improve their business.

Figure 12-1 Data Warehousing on z/OS: Architectural view

Data Warehouses contain the consolidated information of multiple sources such as financial,
marketing and inventory transaction data. Today’s Data Warehouses have to support mixed
workloads, such as:

� Continuous data loading
� Standard reports
� Ad-hoc query users
� Business Intelligence analytics
� Operational Business Intelligence

These workloads can come in large quantities that include the processing of millions of data
records, representing millions of business transactions, all which need to be ordered,
organized, transformed and analyzed.

Because of the size of Data Warehouses and the fact that we have to support multiple
workloads, the System z mainframe is in many cases the best choice to operate as a Data
Warehouse DBMS server. Mainly because System z is known for its reliability, availability,
security and its protected access to data fulfilling compliance regulation. In addition, the

Business Intell igence System

Extract

DB2 /390

VSAM

IMS

CA-
Datacom

Adabas

CA-IDMS

O
 p

 e
 r

 a
 t

 i
o

n
a

 l

D
 a

 t
a

 S
 o

 u
 r

 c
 e

 s

Flat F iles

C
la

ss
ic

 F
ed

e
ra

tio
n

 S
e

rv
er

Analytical ProcessesDWH Processes

DWH Database z/OS

Cleansing
Transform
Load

Extract
Aggregate
Transform
Load

Staging
Layer

DWH
Layer

Data
Mart

Layer

Detailed
Data

(optional)

DB2
DB2

zIIP exploitation

Ad-hoc
Analysis

Reporting
...

Data
Mining

OLAP

BI

Cleansing
Transform
Load

Extract
Aggregate
Transform
LoadOff load Option
190 Batch Modernization on z/OS

System z platform has outstanding workload management capabilities, as well as it provides
hardware compression to minimize disk space of DB2 for z/OS and improved I/O
performance.

To meet today’s business requirements IBM has invested heavily in best of breed
technologies to provide a unified framework for delivering trusted information. Many of the
products IBM has to offer revolve around the process of ETL the data so that it ensures data
consistency, data integrity and that it is structured by an enterprise model that ties many
different uses of the information together. All this can be achieved on the System z platform
as well.

It is very common to see batch jobs as being part of the delivery of information. Especially
during the ETL processing and also as being part of the cleansing process. By cleansing, we
mean the process of detecting and correcting inaccurate data records.

In the next section, we discuss some enhancements that can be made to the ETL process in
order to meet today’s demand of agile batch.

12.2 ETL

The ETL process is commonly used in enterprises when building a data repository, in most
cases a Data Warehouse. In many cases we see this process is being implemented by using
batch job procedures. Figure 12-2 illustrates the concept of ETL.

Figure 12-2 ETL concept

ETL is a term that refers to the processes that extracts information from an online transaction
processing (OLTP) system and other sources, transforms it according to the needs of the
Data Warehousing environment (this can also include quality requirements), and loads it into
the Data Warehouse.

The extraction process takes the data from various sources. Each of these source systems
can use a different data organization, such as relational databases, hierarchical databases,
network databases, flat files, and even unstructured data. Depending on the source of the
data, you might need different techniques for extraction. The extraction process then converts
the data into a format that the transformation process can use.

The transformation process applies various rules and functions to the extracted data to
change the source data into a form that is useful for the data warehouse. This can include
conversion to the required data structure, aggregation, converting code, joining data from
multiple sources to derive new values, and so forth. The transformation process can also
include cleansing of data, such as removing duplicates and standardizing data formats.

In the load process, the transformed data is stored into the target, the Data Warehouse. When
the Data Warehouse is built for the first time, data needs to be extracted from various
sources, transformed, and loaded one time. This is called the initial load. After the initial load,

Source Data Extract Transform Load Data Warehouse
Chapter 12. Create agile batch by optimizing the Information Management architecture 191

the Data Warehouse has to be kept relevant by updating the data from the all the sources.
This process is known as data refresh.

This process includes the following basic stages:

Extract Retrieve the data from its source. Often, you have to consolidate data
from different sources, and in many cases this data is non-relational.

Transform Make the data fit for operational need. The data quality aspects are
usually considered critical.

Load Put the data into the end target database. The load is often considered
the most time consuming phase in the ETL process.

Traditionally, for data refresh, Data Warehouses extract data from the operational storage
through batch processes executed within maintenance windows. The batch extract jobs are
run perhaps once a month, but could be run as often as once a week, depending on the
business requirement and batch window availability. However, the need to obtain the most
recent data is becoming more and more important.

Another challenge in the batch update is the volume of data. A monthly data refresh will have
to handle a large volume of data. This will require a much longer batch window. A continuous
trickle feed might be a better option in this situation. Trickle feed is common “jargon”
terminology for continuously feeding the Data Warehouse. As soon as new data is generated
in the OLTP system, it is captured and passed to the ETL process in near real time. Using the
trickle feed approach, the information in a Data Warehouse is kept as recent as possible and
you avoid a batch window bottleneck.

Some of the data extracted from the OLTP window might not need a complex transformation.
It can be loaded directly to the Data Warehouse with only minor modifications. In this case,
data replication might be another option to consider. Data replication captures data from the
data source as soon as it is generated, performs minor modifications, and then inserts it into
the target database.

In most Data Warehouse environments, the ETL process is a combination of batch ETL, near
real time ETL, and replication solutions, depending on the business needs.

The locations where you run the ETL processes are an important consideration. The extract
process preferably runs on the platform where the source data is located. The
compute-intensive transformation process could run on a different platform, but this implies
moving a large amount of data between platforms. Finally, if load processing runs on a
different platform from the target system or where transformation took place, data has to be
moved again. There are many techniques available for data movement. Whichever technique
you employ for data movement, this is one of the biggest challenges in a Data Warehousing
environment.

Because most of the source data comes from the OLTP environment, we strongly suggest
hosting your Data Warehouse on the same platform and running the ETL process on that
platform. The System z platform has sufficient capabilities to support this kind of OLTP, ETL
and Data Warehousing workloads together in one or more logical environments.

Note: Although the System z10 mainframe has some outstanding design principles in
order to process large amounts of data, ETL based batch jobs can bring a lot of complexity
to a mainframe environment. The complexity can influence the agility as well, and in many
situations it already has. In 12.2.1, “Overcoming operational inefficiency with ETL” on
page 193 we take a look at the operational inefficiency some of us experience today.
192 Batch Modernization on z/OS

ETL processing can be quite complex. There are many operational challenges, such as
meeting the service level agreements (SLAs), scaling to the data volumes, and completing
within the available batch window. Organizations can develop in-house applications for ETL
processing, but IBM offers a rich set of tools as well for System z. These tools support most of
the data organizations you will find today. In addition, they support complex data
transformations and cleansing requirements. The tools exploit DB2 LOAD or parallel INSERT
capability to load a large volume of data efficiently.

In the next section, we discuss ways to improve batch agility, particularly for the extraction
phase of the ETL process.

12.2.1 Overcoming operational inefficiency with ETL

The design of the batch process for ETL is a very important matter and if not handled
appropriately it could cause significant operational problems over time. In mainframe
environments we often see huge amounts of data being handled by ETL-like batch jobs. The
volume can exceed anyone’s expectations. The data growth curve is only getting steeper for
many of the mainframe environments around the world.

You might consider a sort of “scaling strategy” to break up the batch jobs so that your are less
dependent on one single long-running batch job and can move gradually towards a
continuous transformation and update process. This way of thinking can give an organization
a better chance of meeting today’s business demand of highly accurate and available data.

Loading the data into the database is in general the most time consuming part of an ETL
process and this affects the overall time-performance-ratio of the batch job. Mainframe
environments can reduce the elapse time by using bulk processing of flat files instead of
doing standard SQL database processing that includes transactional integrity.

First, let us explore some solutions that can help us with extracting the data in a faster and
more scalable way, so it does not lock our master data that is used for OLTP work.

Data extraction improvement options
There are several improvements we can implement to establish a greater operational
efficiency. The first approach we would like to discuss, are the potential improvements we can
make to the data extraction stage of ETL. Figure 12-3 shows a technique that can be used to
extract data, using tooling to read the data from the log and place it in a transaction queue for
further parallel processing. This is just one example of a technique to move data from a
source to a target environment, but it could give a mainframe environment a huge batch
agility advantage.

Figure 12-3 Data extraction tools - Example

Organizations that face pressure from business users that require extended online application
availability, and at the same time request that more jobs and reports are processed, can look

Q Capture
WebSphere

MQ Q Apply

SOURCE TARGET

Highly parallel applyLog based capture
Chapter 12. Create agile batch by optimizing the Information Management architecture 193

at several IBM InfoSphere solutions for their problems. InfoSphere solutions can help solve
the following issues:

� Relative simple and straightforward continuous replications of tables
� Help to reduce nightly batch window for data integration
� File locking during data extraction, which prevents application availability to end-users
� A scalable data extraction architecture

Depending on the source data, you might need a different software product, which are low
impact solutions that supports the following modes of replication:

Continuous mirroring Apply data changes at the target as it is generated at the source
Periodic mirroring Apply net changes on a scheduled basis
Refresh Apply a snapshot version of source system

The IBM InfoSphere Information Server suite of products provides a framework for services
around data transformation, data quality assurance, metadata management, SOA services,
and other operations. IBM InfoSphere Information Server provides the following key
integration functions:

Understand data This function is about analyzing data to determine the meaning and
relationships of information. Web-based tools can be used to define
and annotate fields of business data. Monitoring functions can be used
to create reports over time. A meta model foundation (and the IBM
Metadata Server) helps in managing changes in the transactional
(OLTP) data model and their implication in the warehouse model and
derived reports.

Cleanse data We mentioned cleansing before as a key function. In a Data
Warehouse environment, multiple data sources maintained by different
applications are to be integrated. Consequently, the data values in the
transactional system can be stored in different formats and
independent systems are likely to duplicate data. The QualityStage®
component in Information Server supports consolidation, validation,
and standardizing of data from these multiple data sources and
thereby helps to build a consistent, accurate, and comprehensive
warehouse model.

Transform data Transforming data in the context of an ETL process is a major
requirement for a comprehensive Data Warehouse solution. The
DataStage component in Information Server provides a variety of
connectors and transformation functions for this purpose. High speed
join and sort operations as well as the parallel engine help in
implementing high-volume and complex data transformation and
movement. A comprehensive set of tools are offered to monitor,
manage, and schedule ETL jobs.

Deliver data In addition to the components mentioned in this section, Information
Server comes with many ready-to-use native connectors to various
data sources, both located on distributed or mainframe systems.
194 Batch Modernization on z/OS

Data extraction batch job procedures can be improved easily using an InfoSphere solution to
deliver data. Figure 12-4 displays the IBM InfoSphere solutions that available to extract data
from a source as a first step in the ETL process.

Figure 12-4 IBM InfoSphere data capture solutions

Depending on the source and target type, you might need a different product solution from
one of the following categories:

� Federation
� Publication
� Replication

Federation of data
A Data Warehouse can collect, consolidate, and aggregate data from various sources and
various source types. Not all sources are relational data sources, such as DB2 for z/OS is.
Some data might reside on System z in the following sources:

� IMS
� VSAM data sets
� ADABAS
� IDMS
� DATACOM
� Flat files

This data (or at least aggregates of it) needs to be integrated into the Data Warehouse so that
all information becomes available in a single place.

Heterogeneous Databases on z/OS

InfoSphere Classic
Federation Server

Heterogeneous Databases on LUW

InfoSphere Federation
Server

Heterogeneous Databases on z/OS

InfoSphere Classic
D ata Event Publisher

DB2 Databases on z/OS

InfoSphere Data
Event Publisher

Publication

Federation

ReplicationHeterogeneous Databases on z/OS

InfoSphere (Classic)
R eplication Server

Heterogeneous Databases on LUW
DB2 Databases on z/OS
DB2 Databases on LUW

InfoSphere Change
Data Capture

Access your mainframe data
sources via direct virtualized SQL

Access your mainframe data after
publication

Consolidate your mainframe data
to z/OS, to distributed, or both….
Chapter 12. Create agile batch by optimizing the Information Management architecture 195

InfoSphere Classic Federation can access this data in a way that makes it unnecessary to set
up a specialized extraction process for each of the different data sources (such as hierarchical
or relational databases).

The InfoSphere Classic Federation Data Server is installed where the data sources reside. A
connector is configured and started for each data source that needs to be accessed. These
connectors are used by the data server to access the source data from IMS, VSAM,
ADABAS, or other supported sources. The data server maps the various source data
structures to a relational structure. So all data accessed through the InfoSphere Classic
Federation Data Server looks like one relational database, even if the source is structured
hierarchically.

Mapping between source and target definitions is done with the Classic Data Architect, which
is an Eclipse-based workstation tool. It allows importing IMS DBD or COBOL copybooks to
obtain the structure definitions of source data. The user can select the information to include
in a target table, which is simulated as a relational structure by the data server. No further
configuration or coding is necessary.

An ETL server can access this data through JDBC or ODBC to move it to the Data
Warehouse in the form of staging tables or aggregates. The ETL Server and the InfoSphere
Classic Federation Data Server are primarily used for either an initial load or a full reload of
the Data Warehouse. Data in existing data sources can be updated as well, but this is usually
not required within a Data Warehouse environment.

Publication of data
After the data is loaded into the Data Warehouse, it usually must be updated incrementally.
You do not need to replace the entire content. InfoSphere Data Event Publisher and
InfoSphere Classic Data Event Publisher, respectively, are used to detect the changes in DB2
sources and existing data sources and to provide the information about the changes to the
ETL server.

The Classic Data Event Publisher and the Classic Federation have much code in common. If
you installed and configured Classic Federation before, you can extend this configuration to
allow event publishing. You must map existing data structures to relational tables by using
Classic Data Architect. You can even configure the server so that this information is used for
federation and event publishing at the same time, with just one running data server.

Instead of using a connector to directly access the existing data sources, a change capture
agent is used to detect all manipulations to the data source. In some cases, this is a logger
exit (such as IMS, for example). In other cases it is a log reader. The Change Capture Agent
sends the change information to the correlation service, which maps the existing data
structure to a relational structure that is designed with Classic Data Architect. Distribution
Service and Publisher are used to send the information about the changes through MQ to the
DataStage data integration server. The DataStage server is able to read the MQ messages
directly from the queue, just as they are transmitted. These events can then be stacked up in
staging tables and applied to the data warehouse in a composite update that is run in a batch
window.

Replication of data
Data replication is all about moving data between two systems that are the same, normally
used to keep data in a primary and secondary system consistent for disaster recovery or high
availability or to offload data to a secondary system for workload balancing, data distribution
or offloading queries.
196 Batch Modernization on z/OS

IBM offers two types of solutions to replicate data:

� InfoSphere Change Data Capture
� InfoSphere Replication Server

InfoSphere Change Data Capture uses log-based change data capture technology to provide
scalable, high performance and heterogeneous data integration without impacting source
systems. IBM InfoSphere Change Data Capture is a high-performance, low latency, real-time
data integration solution that enables customers to easily sense and respond to relevant
business data changes throughout the enterprise. These solutions provide the following
functions:

� Real-time data integration without impacting system performance

� Transactional integrity

� A full range of supported platforms and databases to work within existing environment

� Integration with Information Server to provide a single solution for real-time data
integration

InfoSphere Replication Server takes advantage of the WebSphere MQ strength, to guarantee
on-time delivery of data, and to queue up work. InfoSphere Change Data Capture however
delivers two replication models, queue-based and SQL-based, in one solution, providing
asynchronous log-based replication that maximizes flexibility and function.

The main difference between InfoSphere Change Data Capture and InfoSphere Classic
Replication Server, is that InfoSphere Change Data Capture on the mainframe only supports
DB2 for z/OS. And Classic Replication Server does support other heterogeneous databases
on z/OS. InfoSphere Change Data Capture was acquired by IBM from DataMirror®.
InfoSphere Change Data Capture has proved to be very scalable with high performance, with
its support for parallel stage processing.

Note: Improving the extraction of source data extends the ETL investment, because the
low impact/latency benefit combined with parallel load capabilities allows organizations to
process more data outside of traditional batch windows.
Chapter 12. Create agile batch by optimizing the Information Management architecture 197

InfoSphere Change Data Capture for batch window reduction
Figure 12-5 displays a simple ETL process where file locking for data extraction is eliminated
by implementing an InfoSphere solution that provides continuous application availability to
users even while changed data extraction is occurring.

Figure 12-5 ETL example

You can implement some in-flight transformation capabilities that simplify or eliminate
additional batch data extraction jobs. Particularly, InfoSphere Change Data Capture provides
functionality to do filtering, table mapping, and data translations. It also provides the option to
implement a User Exit to execute custom business logic, which can be implemented in
C/C++, Java or stored procedures.

Depending on further steps in the ETL process, by implementing more flexible data extraction
capabilities, it can provide users with the ability to access data throughout the day for
reporting and trends analysis so they can make informed business decisions and increase
revenue opportunities. In the next section, we discuss ways to improve the transformation and
load stages to accelerate the ETL process.

InfoSphere Change Data Capture is probably the best solution if you want a high
performance, scalable, log-based data replication for single database environments, because
it has a low impact on source or production systems. You can use it to provide a solid data
staging environment that can be used for further ETL processing to build a Data Warehouse.

Note: The idea behind all this is to extract the master data without impacting the OLTP
work and by putting the data into a Data Storage Area (DSA) or staging tables for further
ETL processing. This will contribute to the agility of the batch jobs and it can make a
significant contribution in reducing the elapse time of the ETL batch jobs.

DB2

Master Data EDW

DB2

DB2

Stage
or

D SA

EDW

Transformation

Load

Custom
Continuous Synchronization

In-flight Transformations

InfoSphere

ERP

2

1

1

2

Extracting the data

Custom code from staging to Warehouse

3

3

Loading the data
198 Batch Modernization on z/OS

As mentioned previously, you can implement InfoSphere Change Data Capture using one of
the following mechanisms:

� SQL replication, as shown in Figure 12-6, works as follows:

– Capture program reads changed data from the DB2 log.
– Changed data is staged in DB2 tables (CD tables).
– Changes pulled (or pushed) to target tables by Apply program.
– All done through DB2 SQL and DB2 client-server infrastructure.

Figure 12-6 SQL replication with InfoSphere Change Data Capture

� Q replication, as shown in Figure 12-7, works as follows:

– Capture program reads changed data from the DB2 log.
– Data is put directly into WebSphere MQ queues, without staging.
– WebSphere MQ delivers data to system where Apply program runs.
– Apply program pulls data from queues and applies to target tables.

Figure 12-7 Q replication with InfoSphere Change Data Capture

With the solution shown in Figure 12-7, you take advantage of WebSphere MQ strengths,
with guaranteed one-time delivery of data and SSL security options for encryption, digital
signatures, and so forth. This solution also provides a secure method to move data between
companies and firewalls. In addition, an outage at one site does not prevent progress on the
other. For example, the capture and MQ continue even when target system down. You can
also queue work for the target environment.

Q replication also includes the following advantages:

– Transactions are rebuilt in memory.
– Only committed transactions are put on queues.
– Each transaction is a separate MQ message.
– This solution allows for highly parallel queue apply, as shown in Figure 12-8.

Source
SOURCE2

SOURCE1

CD2

CD1CD1

DB2 Log

Capture

Target

Apply

CCD

HISTORY

REPLICA

UCOPY

WebSphere MQ
Source

SOURCE2

SOURCE1

DB2 Log

Capture

Target

Apply
CCD

UCOPY
Chapter 12. Create agile batch by optimizing the Information Management architecture 199

Figure 12-8 Parallel Q apply

12.2.2 ETL Accelerator with DataStage

Before taking a single batch job process apart, it is important that you have a good
understanding of all the dependencies your job might actually have. The ETL process design
is in many times procedural by nature and can exist of hundreds of operations. To provide the
business with agile batch capabilities, we might need to redesign the ETL process to become
highly efficient, maintainable and off-course scalable.

IBM InfoSphere DataStage product is part of the Information Server solution and it provides
functionality for the transformation and movement of data. In addition, it allows for codeless
and visual design of data flows. InfoSphere DataStage also includes many built-in
transformation functions.

One of the main functionalities of InfoSphere DataStage is to perform transformations in
batch or real time. The data source can be anything, from indexed files, to relational
databases and message queues. Data transformation and movement is the process by which
source data is selected, converted, and mapped to the format required by targeted systems.
The process manipulates data to bring it into compliance with business, domain, and integrity
rules and with other data in the target environment.

InfoSphere DataStage manages the data that is received on a periodic or scheduled basis.
For mainframe sites this could imply that we have to process massive data volumes. Using
the parallel processing capabilities of multiprocessor hardware platforms, InfoSphere
DataStage can scale to satisfy the demands of ever-growing data volumes, stringent real-time
requirements, and ever shrinking batch windows.

InfoSphere DataStage contains more than 300 pre-built functions that can be exploited to do
data validations, or all sorts of business derivations and calculations on data. The data flows

TX1: INSERT S1
TX2: INSERT S2

TX3: ROLLBACK
TX1: COMMIT
TX1: UPDATE S1
TX3: DELETE S1

DB2 Log

TX1: INSERT S1

TX1: COMMIT
TX1: UPDATE S1

Q Capture In-Memory Transactions

TX3: DELETE S1
TX3: ROLLBACK TX2: INSERT S2

“Zapped“ at Abort
Never makes it to queue Transaction is still “in-flight“

Nothing MQ put yet.

MQ Put when
Commit found

TGT3

TARGET

TGT1

Q Apply
Browser

Apply Agent

Apply Agent

Apply Agent

TGT2

Note: InfoSphere DataStage is particularly useful when you are dealing with many
transformations and significant differences between the source and target data model.
200 Batch Modernization on z/OS

are composed using the Information Server Client Package interface, with simple
point-and-click techniques you can draw a schema that represents your ETL process
requirements.

An InfoSphere DataStage job consists of individual stages where every stage is a step in the
process, for example extract data from source or to transform it. Parallel jobs are supported
that run inside the InfoSphere DataStage engine and have the capability to support parallel
processing as well.

The runtime engine for InfoSphere DataStage is primarily available for Linux for System z and
distributed platforms. There are however two older z/OS versions available, called InfoSphere
DataStage MVS Edition and InfoSphere DataStage Enterprise for z/OS. At the time of writing
this book, both versions are still available. It is good to know however that these z/OS
versions are still available for product order, but further development of these products is
uncertain. The way forward is InfoSphere DataStage for Linux for System z.

Figure 12-9 Initial load of the Data Warehouse

Figure 12-9 displays the following ETL architecture for building the initial Data Warehouse.

� Extract, Transform, and Load is done using an ETL Accelerator, which in its current
implementation is represented by InfoSphere DataStage (IBM Information Server) on a
secondary system. This could be Linux for System z.

� The data is extracted from the OLTP information of the data sharing group, transformed by
InfoSphere DataStage and then loaded into the Data Warehouse tables again.

� Distributed data sources are directly integrated into InfoSphere DataStage.

� In this example, the existing data sources are integrated through the WebSphere Classic
Federation Serve so that data is extracted from InfoSphere DataStage directly out of the
data sources such as IMS and VSAM.

Note: Running InfoSphere DataStage on Linux for System z enables us to use
HiperSockets and z/OS Batch Pipes, which can significantly increase the speed of loading
the data into the Data Warehouse.

Member A

OLTP

Member B

OLTP

CEC One CEC Two
CFCF

Member C

DWH

Member D

DWH

ETL Accelerator

pSeries
xSeries

zLinux

Extract

Load

Extract
JDBC/ODBC

Software AG
Adabas

VSAM,
IAM &

sequential

CA
IDMS

CA
Datacom

IMS

Classic Federat ion Server

z/OS

DB2 UDB
for LUW

Oracle SQL Server

Dis tributed Data Sources
- Integration -

Extract
JDBC/ODBC

D
a

ta
S

ta
ge

 P
a

ra
lle

l E
ng

in
eWebSphere

WebSphere
Chapter 12. Create agile batch by optimizing the Information Management architecture 201

Figure 12-10 shows the use of the BatchPipes® utility, which you can use to connect products
on Linux on System z with products on z/OS.

Figure 12-10 DB2ZLoad with BatchPipes

InfoSphere DataStage integration jobs extract and transform data based on defined data
sources. The jobs eventually write the result to a data set in the file system or insert records
into a database in DB2 for z/OS by using the LOAD utility.

The LOAD utility can only read from a data set, until the writing to the data set is completed.
So the ETL job cannot write while the LOAD job processes records.

To offer a way for both “writer” and “reader” jobs to run concurrently, you can use BatchPipes
functionality. The use of batch pipes can drastically shorten the Load phase, when used in
combination with System z hardware HyperSockets. Running in a test environment
demonstrated a load time reduction as high as 40%.

For more information about the BatchPipes utility, see the following resources:

� Chapter 16, “Increasing concurrency by exploiting BatchPipes” on page 309
� Enterprise Data Warehousing with DB2 9 for z/OS, SG24-7637

After the Data Warehouse is loaded, only incremental updates are performed. The changes
on the original data sources (z/OS and distributed) are captured by a publication product,
such as WebSphere Data Event Publisher, or a replication product, such as InfoSphere
Change Data Capture, and sent through WebSphere MQ to the DataStage ETL Accelerator.

z/OSLinux on z

DataStage Server

Job Flow

DB2Z Load Stage
1. Transf er data to BatchPipes
2. Invoke DB2 Load using

DSNUTILS

FTP

FTP

FTP

DSNUTILS
(Parallel Load)

Batch Pipes

SQL CALL

HyperSocket DB2

Part itioned Table

……
202 Batch Modernization on z/OS

Special InfoSphere DataStage procedural steps, which the product calls stages, take the
change information from WebSphere MQ, as shown in Figure 12-11, and updates or inserts
are performed on the Data Warehouse data.

Figure 12-11 Incrementally updated Data Warehouse

InfoSphere DataStage Designer
InfoSphere DataStage Designer is a GUI application that can be used to design InfoSphere
DataStage applications, which are called jobs. You define sources, business rules, and a
target in a job, and you can do all the ETL steps using these jobs. The GUI also supports
testing, debugging, and compiling of the job. Figure 12-12 shows an example of an
InfoSphere DataStage job.

Figure 12-12 InfoSphere DataStage job

A single InfoSphere DataStage job consists of one or more stages. Each stage represents a
processing step that is required for this job. Stages are connected using links, which
represent the flow of data between different stages. The product comes with a lot of stages
that have built-in functionality. Special stages are also available that you must install
separately. For example, InfoSphere DataStage Transformation Extender is orderable as an
add-on product. You can contain a group of stages in a container to allow for modularization
and a more simple job design.

Member B

OLTP

CEC One CEC Two
CFCF

Member C

DWH

Member D

DWH

ETL Accelerator

pSeries
xSeries

zLinux

DB2

VSAMSof tware AG
Adabas

IMS

Data Event Publisher

CA-
IDMS

z/OS

DB2 UDB
for LUW

Oracle

Data Event Publisher

Distributed

MQ

MQ

M
Q

Update & Insert

Member A

OLTP

C
h

a
ng

e
 C

a
p

tu
re

D
a

ta
S

ta
ge

 P
a

ra
lle

l
E

n
g

in
e

WebSphere

WebSphere WebSphere

Capture Capture
Chapter 12. Create agile batch by optimizing the Information Management architecture 203

Batch jobs
An IBM InfoSphere DataStage job consists of individual stages that are linked together, which
describe the flow of data from a data source to a data target. A stage usually has at least one
data input or one data output. However, some stages can accept more than one data input,
and output to more than one stage. Each stage has a set of predefined and editable
properties that tell it how to perform or process data. Properties might include the file name
for the sequential file stage, the columns to sort, the transformations to perform, and the
database table name for the DB2 stage. These properties are viewed or edited using stage
editors. Stages which have an iconic representation in the Designer are added to a job and
linked together using the Designer.

A parallel InfoSphere DataStage job incorporates two basic types of parallel processing,
pipeline and partitioning. Both of these methods are used at run time by the Information
Server engine to execute the job. This execution is done automatically. To the InfoSphere
DataStage developer, this job appears the same on the Designer.

Pipeline parallelism All stages run concurrently, even in a single-node configuration. As
data is read from the source, it is passed to the Sort and Aggregate
stage (see Figure 12-12 on page 203) for transformation, where it is
then passed to the DB2 target. Instead of waiting for all source data to
be read, as soon as the source data stream starts to produce rows,
these rows are passed to the subsequent stages.

All stages in our example operate simultaneously regardless of the
degree of parallelism of the configuration file. The Information Server
Engine always executes jobs with pipeline parallelism. If you ran the
example job on a system with multiple processors, the stage reading
would start on one processor and start filling a pipeline with the data it
read. The transformer stage starts running as soon as there was data
in the pipeline, processes it, and fills another pipeline. The stage
writing the transformed data to the target database would similarly
start writing as soon as there was data available. Thus, all three
stages are operating simultaneously.

Partition parallelism When large volumes of data are involved, you can use the power of
parallel processing to your best advantage by partitioning the data into
a number of separate sets, with each partition being handled by a
separate instance of the job stages.

Partition parallelism is accomplished at run time, instead of a manual
process that would be required by traditional systems. The DataStage
developer only needs to specify the algorithm to partition the data, not
the degree of parallelism or where the job will execute. Using partition
parallelism the same job would effectively be run simultaneously by
several processors, each handling a separate subset of the total data.
At the end of the job the data partitions can be collected back together
again and written to a single data source.

Note: You do not need multiple processors to run in parallel. A single processor is capable
of running multiple concurrent processes. Unfortunately, with InfoSphere DataStage
Enterprise for z/OS this would result in multiple Address Spaces being initiated. This is an
undesirable side effect, which leads to higher CPU consumption and slower performance.
204 Batch Modernization on z/OS

InfoSphere DataStage for Linux for System z can be an excellent runtime environment to
replace complex ETL stand-alone batch jobs and to become more agile in your current IT
environment. A lot of the work can be done without burdening the OLTP environment. In
addition to that, with InfoSphere DataStage a more efficient ETL process can be arranged
that takes advantage of out-of-box parallelism techniques.

Note: There is also the option to combine pipeline and partition parallel processing to
achieve even greater performance gains. In this scenario you would have stages
processing partitioned data and filling pipelines so the next one could start on that partition
before the previous one had finished.

For more information about parallel job design, see Parallel Job Developer Guide,
LC18-9891, which demonstrates how to design and run InfoSphere DataStage parallel
jobs as well as basic QualityStage functionality.
Chapter 12. Create agile batch by optimizing the Information Management architecture 205

206 Batch Modernization on z/OS

Chapter 13. Create agile batch by optimizing
DB2 access

Batch windows are defined as “the time when batch jobs are scheduled and no online
transactions are executed.” However, how do you explain Web downtime to your customers
for 4 hours during peak times at night because of a batch window? Looking at continuous
operations and high availability, batch windows are used less today because of business
needs. Thus, batch processes must be designed to allow them to run concurrently with online
transactions.

Because batch programs and online transactions often share the same data, their underlying
programs must consider the specific conditions in terms of parallel processing. For example,
multiple parallel processes can read the same data from the database, but if one process
changes data, the data is locked until the corresponding unit of work ends. During this time,
other processes that need the same data must wait.

Many batch jobs on z/OS access high volumes of DB2 data, and many times this data is the
same data that is used in OLTP transactions. Running heavy batch jobs that access millions
of DB2 records during the OLTP window can be a daunting task, because OLTP transactions
that require sub-second response time might be confronted with locks on the data.

The waiting time due to database locks is not the only issue. Running batch and online in
parallel causes a system to become more busy. If such a system receives its performance
limits, your service level agreements (for example regarding response time) can no longer be
guaranteed. To prevent a system from running at its limit, you need to treat the available
resources as economically as possible.

In Chapter 12, “Create agile batch by optimizing the Information Management architecture”
on page 189, we explained ways to extract or replicate data to a Data Warehouse so that at
least batch jobs could use a Data Warehouse for queries. In certain cases, you cannot run
batch programs on a data extract, and the DB2 master data needs to be accessed for
queries, updates, or both.

13
© Copyright IBM Corp. 2009, 2012. All rights reserved. 207

In situations where you need to run a batch program any time, including during the OLTP
window, and also run this batch program on master data, it becomes critical to implement
data access in both the OLTP transactions and the batch program in the most efficient
manner. Access to DB2 must be carefully designed and configured keeping in mind the
following principles:

� Normally batch programs process a huge amount of data. Thereby often, depending on
the business logic, some data is static and does not change during the program run (for
example company address information). It is recommended to read such data only once
from the database and cache it somewhere for further processing. This will prevent your
system from running unnecessary round trips to the database.

In 13.1, “Data caching” on page 209, we discuss these considerations.

� SQL is a flexible and powerful tool to access databases. A non-conscious developer could
theoretically write a one-line query that could hang up the performance of all your
applications accessing the database. Writing smart and well-performing queries is not
trivial.

In 13.2, “Optimizing data access using SQL functionality” on page 210, we provide some
best practices to apply.

� In a DB2 for z/OS environment there is quite a bit of configuration and there are many
ways to optimize performance. We just name a few:

– When accessing DB2 tables with static SQL, a PLAN is created and this PLAN has
several options you can configure. Making the right decisions is important.

– Running DB2 utilities frequently keeps DB2 databases “lean” and fast.

– Configuring DB2 system parameters can greatly influence performance and parallel
processing with the database.

– Choosing the correct checkpoint frequency and commit scope should be a key aspect
in any DB2 application design.

– When using Java, additional design and configuration decisions have to be made. The
Java DataBase Connectivity (JDBC) drivers have additional configuration options.

In 13.3, “Optimizing data access using system functionality” on page 212, we discuss a
variety of key considerations in optimizing DB2 access from a configuration point of view.

Note: In this book, we cannot mention all aspects and possibilities in relation to optimized
DB2 data access. You can find detailed information about optimizing database access in
the following resources:

� DB2 UDB for z/OS: Design Guidelines for High Performance and Availability,
SG24-7134

� DB2 9 Performance Monitoring and Tuning Guide, SC18-9851

� DB2 9 for z/OS Performance Topics, SG24-7473
208 Batch Modernization on z/OS

13.1 Data caching

Caching of data is one of the techniques to speed up the application and lower the database
workload. After data is cached, it is usually faster to get access to that data again than
retrieving it from the database again. Usually, cached data is stored in buffer storage. We can
distinguish between hardware and software caching.

Data cannot stay in a cache forever, however, and a cache needs to be “maintained,” meaning
that data in the cache needs to be cleaned up frequently. One reason for this might be that the
available memory in the buffer is no longer sufficient and more new data has to be stored.
Another reason might be that current data is no longer valid. Another process could have
changed data in the database but hasn’t updated the cached data. In this case, such invalid
data has to be removed from the cache.

There are various techniques available for removing data from caches.

� Least Recently Used (LRU)

The entry which has not been accessed for the longest time will be removed.

� First In First Out (FIFO)

The oldest entry will be removed.

� Least Frequently Used (LFU)

The least read entry will be removed.

� Random

A random entry will be removed.

� Climb Strategy

New data will always be stored at the lowest level. Every access of cached data will
increase the level of this data. If free space is needed, data on the lowest level will be
removed.

Due to their advantages caches are used in most places within the system. This applies to
both the software and the hardware level. The following list contains examples of caches,
which are used for faster processing, delivery or storage of data. A full list of available caches
is beyond the scope of this book.

� At the hardware level, caches are used in many ways (for example CPU, hard disk
controller).

� In DB2 several caches are used. For example, data that is requested by an application is
also stored in DB2 buffer pools. Using dynamic statement cache can accelerate execution
of dynamic SQL statements.

� WebSphere Application Server uses caches in many different areas. For example, DB2
connections are cached in a connection pool to avoid rebuilding connections every time a
WebSphere transaction is scheduled. Also Enterprise Java Beans are stored in its own
cache to prevent bean instantiation for each call.

� In order to accelerate transaction start processing, programs on the mainframe could be
kept in a Preload stage. This prevents loading load modules every time an online
transaction is scheduled.

� It might be a good idea to implement a self-written caching mechanism inside program.
Chapter 13. Create agile batch by optimizing DB2 access 209

DB2 itself uses a lot of its own caching mechanisms. However, even if the requested data is
still in the buffer pool and does not need to be read from hard disk, there might still be reasons
for using a separate application cache, as follows:

� As long as data is kept in an application cache, further access to DB2 for this data is not
required.

� If the data, for whatever reason, does not exist in the buffer pool anymore, you would still
have it in the application cache.

� If DB2 uses a bad access path for a query, further calls of this query would result in the
same overhead.

In general, the sooner that a cache is used, the more beneficial it is to performance.

13.2 Optimizing data access using SQL functionality

Data, which almost never changes during program execution time, is most appropriate for
caching. Other data must be read each time directly from the database, when needed. This
data should always be accessed in an optimal way to speed up processing and to minimize
claiming of system resources, which is especially important when running batch and online in
parallel.

To read and manipulate data SQL statements are sent to the database. Thereby, SQL has
many integrated functionality to efficiently access data. To get optimal performance all
features of SQL should be used. You need to design an application to access data optimally.

As a suggestion, we show only a few examples of how you can optimize data access using
SQL functionality. We discuss the following functions:

� Joining tables
� Using SELECT FROM INSERT/UPDATE/DELETE/MERGE
� Multi-row processing
� Explain SQL statements

13.2.1 Joining tables

Often, data is stored in different tables with dependencies between them. As an example,
table DEPARTMENT contains information about departments (such as DEPTNO and
LOCATION) and table EMPLOYEE contains information about employees of a company
(such as EMPNO, LAST_NAME, and FIRST_NAME). Because each employee is working in
a department, EMPLOYEE also contains the corresponding number of his department in
column WORKDEPT.

If a report needs to list data from multiple dependent tables, it is better to fetch all data with
one single SQL statement instead of accessing each table with a separate SQL statement as
shown in Example 13-1.

Example 13-1 Using SQL Joins

-- Better use one single SQL cursor
SELECT D.*, E.*
FROM DEPARTMENT D
INNER JOIN EMPLOYEE E

ON D.DEPTNO = E.WORKDEPT
ORDER BY D.DEPTNO, E.EMPNO;
210 Batch Modernization on z/OS

-- Instead of using two different SQL cursor
SELECT D.*
FROM DEPARTMENT D
ORDER BY D.DEPTNO;

WHILE RowIsFound DO
 SELECT E.*
 FROM EMPLOYEE E
 WHERE E.WORKDEPT =:D_DEPTNO
 ORDER BY E.EMPNO;
END

13.2.2 Using SELECT FROM INSERT/UPDATE/DELETE/MERGE

By using the SQL syntax SELECT FROM INSERT/UPDATE/DELETE/MERGE, you can
reduce the number of needed SQL statements, which is particularly useful in cases where
tables contain columns which are automatically changed by DB2 (Trigger, Generated Always,
and so forth).

Example 13-2 shows that a single SQL statement is sufficient to directly determine data,
which is assigned by DB2 after an INSERT/UPDATE statement. It can, for the purpose of
logging, also be relevant to receive contents of a column before the data is deleted. Without
this functionality two separate SQL statements would be necessary.

Example 13-2 SELECT FROM INSERT/UPDATE/DELETE

CREATE TABLE T1 (COLa INTEGER, COLb TIMESTAMP WITH DEFAULT);

-- Retreive current value for column “COLb” after inserting new data
SELECT COLb FROM FINAL TABLE (INSERT INTO T1 (COLa) VALUES (1));

-- Retreive current value for column “COLb” after updating current data
SELECT COLb FROM FINAL TABLE (UPDATE T1 SET COLb = COLb + 1 year);

-- Retreive value for column “COLb” before deleting data
SELECT COLb FROM OLD TABLE (DELETE FROM T1 WHERE COLa = 1);

Note: SELECT FROM INSERT requires DB2 for z/OS Version 8 and SELECT FROM
UPDATE/DELETE/MERGE requires DB2 for z/OS Version 9.
Chapter 13. Create agile batch by optimizing DB2 access 211

13.2.3 Multi-row processing

Multi-row support by DB2 allows processing of multiple records with one single SQL
statement. In this case, all data is transferred as one block to DB2 instead of transferring all
data individually with separate SQL statements. You can use this technique, especially for
remote access, to minimize network traffic and to reach a significant performance gain.

Example 13-3, instead of using many statements only one single SQL statement is necessary
to insert different records in the database.

Example 13-3 Multi-row processing

01 T1-VARS.
 05 COLa PIC S9(9) COMP-4 OCCURS 3 TIMES.
 05 COLb PIC X(32) OCCURS 3 TIMES.
 05 COLc OCCURS 3 TIMES.
 49 COLc-LEN PIC S9(4) COMP-4.

49 COLc-DATA PIC X(60).

INSERT INTO T1 (COLa, COLb, COLc)
VALUES (:HV-COLa-ARRAY, :HV-COLb-ARRAY, :HV-COLc-ARRAY :HV-IND-ARRAY)
FOR 3 ROWS

You can also take advantage of multi-row processing in environments like Java. As an
example, using the JDBC method addBatch allows processing of multiple records as a block.

13.2.4 Explain SQL statements

DB2 provides a comprehensive explain facility that provides detailed information about an
access plan that the DB2 Optimizer chooses for an SQL statement. This information that
allows in-depth analysis of an access path is stored in separate explain tables in the
database. By using tools such as Visual Explain, you can see a graphical display of a query
access path.

This access path, especially in regard to performance aspects, is of crucial importance for the
execution time of SQL statements. When modifying the access path, depending on the
underlying data or table structure, the response time of an SQL statement could change
significantly.

Now the developer can try to reach a better access path by changing the SQL statement
without changing the requested result set. After every change, the developer can explain the
SQL statement again and check whether the access plan has improved. With this procedure,
the developer can identify the most appropriate SQL statement.

13.3 Optimizing data access using system functionality

Many functions are available on the mainframe to optimize data processing. In this section,
we discuss techniques in the following categories:

� Optimizing using DB2 for z/OS functionality
� Optimizing using I/O features
� Optimizing using JDBC functionality
� Checkpoint and restart functionality
212 Batch Modernization on z/OS

13.3.1 Optimizing using DB2 for z/OS functionality

DB2 on z/OS provides many functionalities to optimize data processing. Because of high
integration between hardware and software, DB2 on z/OS exploits mainframe strengths, for
example powerful I/O processing. Many different functions are available, but we discuss only
a few in this book.

Clone DB2 tables
A clone table is a table which has the same structure as the base table. You can create a
clone table by using the ALTER TABLE statement and setting the parameter ADD CLONE.
After this procedure, two different tables with the same data structure exists in DB2.

Because these two tables are completely independent, you can, for example, load data in the
clone table and process them without influencing data in the base table. By issuing a simple
SQL EXCHANGE statement, you can switch between the base and the clone table. You can
also repeat this command at any time.

As an example, we have to prepare data for a Data Warehouse. This data should contain
information about the next business day. First, we load and prepare the data in the clone
table. As mentioned, the normal online and batch process is not influenced, because they are
processing data from the base table.

When the next business day starts, we switch the base and the clone table by issuing an SQL
EXCHANGE statement. With this technique, our current online and batch environment could
immediately process data for the next business day without any outage. Our former base
table has switched to a “new” clone table and could also be used to load and prepare data for
the next business day.

Using clone tables, you can reduce or even eliminate service outage caused by batch
processes.

DB2 Locking and Isolation Level
Locking of data is one of the most important aspects when running programs in parallel.
Locks are used by DB2 internally to ensure data consistency. Thereby, DB2 utilizes multiple
kinds of locks, including transaction and LOB locks, latches, claims, and drains.

When a page or row is locked, the table, partition, or table space that contains it is also
locked. In that case, the table, partition, or table space lock has one of the following intent
modes:

S (Share) The lock owner and any concurrent processes can read but not
change the locked page or row.

U (Update) The lock owner can read but not change the locked page or row.
Concurrent processes can read the data.

U locks reduce the chance of deadlocks when the lock owner is
reading a page or row to determine whether to change it, because the
owner can start with the U lock and then promote the lock to an X lock
to change the page or row.

Note: Some of the following examples require DB2 for z/OS Version 9.
Chapter 13. Create agile batch by optimizing DB2 access 213

X (Exclusive) The lock owner can read or change the locked page or row. A
concurrent process cannot read or update the data, because he is not
allowed to acquire S, U, or X locks on the page or row.

A concurrent process can access the data if the process runs with UR
isolation level (see description of DB2 isolation levels below).

The following list contains the different modes for table, partition, and table space locks:

IS (Intent Share) The lock owner can read data in the table, partition, or
table space but cannot change it. Concurrent processes
can both read and change the data.

IX (Intent Exclusive) The lock owner and concurrent processes can read and
change data in the table, partition, or table space.

S (Share) The lock owner and any concurrent processes can read
but not change data in the table, partition, or table space.

U (Update) The lock owner can read but not change the locked data;
however, the owner can promote the lock to an X lock and
then can change the data. Processes concurrent with the
U lock can acquire S locks and read the data, but no
concurrent process can acquire a U lock.

SIX (Share with Intent Exclusive) The lock owner can read and change data in the table,
partition, or table space. Concurrent processes can read
data in the table, partition, or table space but not change it.

X (Exclusive) The lock owner can read or change data in the table,
partition, or table space. A concurrent process can access
the data if the process runs with UR isolation or if data in a
partitioned table space is running with CS isolation and
CURRENTDATA(NO).

For example, an SQL statement locates Paul Smith in a table of customer data and changes
his address. The statement locks the entire table space in mode IX and the specific row that it
changes in mode X.

Thus, lock compatibility is very important to understand DB2 concurrency regarding parallel
processing. For example, assume one process holding an S-lock on a row and another
process wanting to read the data. The second process first tries to also set an S-lock on the
same row. Because these two locks are compatible (see Table 13-1), both processes could
read the same data. But, if the other process would want to change this data, he first has to
set an X-lock. These two locks are incompatible. Therefore, the second process has to wait
until the first process releases his S-lock.

Compatibility for page and row locks is easy to define. Table 13-1 shows whether page locks
of any two modes, or row locks of any two modes, are compatible (Yes) or not (No).

Table 13-1 Compatibility of page lock and row lock modes

Lock Mode S U X

S Yes Yes No

U Yes No No

X No No No
214 Batch Modernization on z/OS

Compatibility for table space locks is slightly more complex. Table 13-2 shows whether table
space locks of any two modes are compatible.

Table 13-2 Compatibility of table and table space (or partition) lock modes

The duration of a lock is the length of time the lock is held. It varies according to when the lock
is acquired and when it is released. For maximum concurrency, locks on a small amount of
data held for a short duration are better than locks on a large amount of data held for a long
duration. However, acquiring a lock requires processor time, and holding a lock requires
storage; thus, acquiring and holding one table space lock is more economical than acquiring
and holding many page locks. Consider that trade-off to meet your performance and
concurrency objectives.

One important parameter which influences duration of locks is the DB2 Isolation Level for an
SQL statement. The following list shows the different DB2 Isolation Level options.

Repeatable Read (RR) A row or page lock is held for all accessed rows, qualifying or not,
at least until the next commit point. If the application process
returns to the same page and reads the same row again, another
application cannot have changed the rows nor have inserted any
new qualifying rows.

Read Stability (RS) A row or page lock is held for rows or pages that are returned to
an application at least until the next commit point. If the
application process returns to the same page and reads the
same row again, another application cannot have changed the
rows, although additional qualifying rows might have been
inserted by another application process.

Cursor Stability (CS) A row or page lock is held only long enough to allow the cursor to
move to another row or page. For data that satisfies the search
condition of the application, the lock is held until the application
locks the next row or page. For data that does not satisfy the
search condition, the lock is immediately released.

Uncommitted Read (UR) The application acquires no page or row locks and can run
concurrently with most other operations. But the application is in
danger of reading data that was changed by another operation
but not yet committed.

Isolation level RS has the highest lock behavior and, therefore, the lowest possible
concurrency. Alternatively, isolation level UR has the lowest lock behavior and the highest
possible concurrency (but with danger of reading uncommitted data).

Lock Mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No

IX Yes No Yes Yes No No

S Yes No Yes Yes No No

U Yes No Yes No No No

SIX Yes No No No No No

X No No No No No No
Chapter 13. Create agile batch by optimizing DB2 access 215

You can set an Isolation Level for your SQL statements in different ways:

� SQL statement level

At the end of your statement, use WITH UR/CS/RS/RR to explicit set an Isolation Level for
this single statement. This Isolation Level is used even if the package which contains this
statement is bound with a different Isolation Level.

� DB2 package/plan level

When using traditional languages (such as COBOL and PL/I), you can use option
ISOLATION(UR/CS/RS/RR) when running the BIND or REBIND command for the
corresponding package or plan.

� Java native application

When running a Java native application you can choose the Isolation Level by using the
method setTransactionIsolation of the current connection object. The following list
shows the JDBC and the corresponding DB2 Isolation Level.

– Transaction_Serializable DB2 isolation level RR
– Transaction_Repeatable_Read DB2 isolation level RS
– Transaction_Read_Committed DB2 isolation level CS
– Transaction_Read_Uncommitted DB2 isolation level UR

� J2EE or Java EE application

Setting an Isolation Level in J2EE or Java EE application environments depends on your
current environment (J2EE or Java EE application, application server provider). In this
book, we cannot describe all variants. Therefore, to set an Isolation Level, look into your
application environment documentation.

Lock avoidance
Under certain circumstances, if DB2 can determine that the data it is reading has already
been committed, it can avoid taking the lock altogether. Lock avoidance will increase
concurrency, decrease the lock, and unlock activity and associated CPU resource
consumption.

Therefore, effective lock avoidance is very important in all environments. The number of
unlock requests per commit is a good indicator of the effectiveness of lock avoidance. If
perfect lock avoidance is achieved, a transaction only takes locks on the resources that it
wants to modify, and releases all of them in a single unlock request at commit time.

Tip: A good compromise to achieve good concurrency without risk of reading uncommitted
data is to use isolation level CS. Remember, however, some application might need a
higher isolation level. Based on this information, you need to decide which isolation level to
use for your application.

Attention: JDBC level Transaction_Repeatable_Read corresponds with DB2 level
Read Stability, whereas DB2 level Repeatable Read corresponds with JDBC level
Transaction_Serializable.

Tip: JDBC level Transaction_Repeatable_Read, which corresponds to DB2 level RS, is
the default Isolation Level for a WebSphere application. To change this default, you can
use custom property webSphereDefaultIsolationLevel at the data source
configuration.
216 Batch Modernization on z/OS

If the number of unlock requests per commit is greater than 1 (and it always is in the real
world), it indicates that, as the rows were being processed, the transaction had to acquire and
release some S-locks. The general rule-of-thumb is that the number of unlock requests per
commit should be less than 5.

Fast table append
When creating a DB2 table, you can also define a clustering index. If present, DB2 tries to
save the data in the same order as defined by the clustering index. Therefore, if new data is
inserted or loaded into the table, DB2 first has to search for the right place, which be an
expensive, time-consuming operation.

With DB2 for z/OS V9 it is now possible to force DB2 to save new data always at the end of
the table. Especially when processing a huge amount of data (INSERT or LOAD), this could
speed up your processing.

To activate or deactivate this functionality, you can use the SQL ALTER TABLE statement to
set the APPEND YES/NO options. You can also set this option directly when creating the
table.

Index on expression
Indexes are often used to speed up SQL processing. However, with DB2 for z/OS V8 an index
cannot be used when running an SQL statement with expressions, as shown in
Example 13-4.

Example 13-4 Select all data for year 2003

SELECT * FROM TABLE T1 WHERE YEAR(DATE_COLUMN) = 2003

With DB2 for z/OS V9, you can now define an index to speed up SQL processing when using
expressions, as shown in Example 13-5.

Example 13-5 Create Index on expression

CREATE INDEX T1.YEAR_2003 ON T1
(YEAR(DATE_COLUMN) ASC)

Online REBUILD index
If no adequate index exists, it can take a long time for DB2 to identify all data for a query. In
this case, DB2 has to scan the whole table to get all data requested by the query. Often, to
speed up this query another index has to be created. If a lot of data is stored in the table, you
need to first create the new index with the DEFER YES option.

By using this option, the index is defined only in DB2, but it is not physically created.
Afterwards, run the REBUILD INDEX utility to create index data and make this new index
available for SQL processing. With DB2 V9, you can now run REBUILD INDEX during online
and batch processing.

Detecting unnecessary indexes
As mentioned previously, you can use an index to speed up SQL processing. Alternatively,
every index must also be maintained by DB2. However, what about an index, which was
created for a specific SQL statement and this statement is not used anymore?

Because a not used index is an avoidable overhead for heavy batch inserts or updates, you
need to remove this index. This process is made easier with DB2 V9 and Real Time Statistics
(RTS) using the LASTUSED field in the SYSIBM.SYSINDEXSPACESTATS table.
Chapter 13. Create agile batch by optimizing DB2 access 217

Buffer pool size
The size of a buffer pool plays a crucial role in the performance of queries. After read data is
cached in memory the first time, it can be processed faster a second time. When the data is
still in the buffer pool, it does not need to be read from the hard disk again. In this case,
expensive I/O processing is not necessary.

Often, in the case of batch processing lots of data is read from or written to DB2. Thereby, a
too small buffer pool can quickly decrease performance of a running batch program. With
DB2 V9 the maximum size of a buffer pool has increased, so that it is now possible to create
very large buffer pools.

By the way, the underlying DB2 page size is also relevant to classify the maximum size of a
buffer pool. For example, if you increase your DB2 page size from 4 KB to 8 KB and do not
increase your buffer pool size, then you are only able to cache half as many pages in the
buffer pool. This can have an impact on the buffer pool hit ratio. If you do plan to use larger
DB2 page sizes, we recommend that you also review your DB2 buffer pool sizes. Always
ensure you have enough real storage available to back any increase in buffer pools, to avoid
any paging to disk.

RUNSTATS and REORG
If you send an SQL statement to the database, the DB2 internal Optimizer analyzes the SQL
statement and specifies an access path. To find the best access path for your SQL statement,
the Optimizer uses internal information (like indices implemented on the table, frequent
values for special columns). To create this statistical information you have to run the DB2
RUNSTATS utility.

Because of the effort, DB2 does not automatically update this statistics if data is changed. But
only with correct statistical information the Optimizer could choose a good access path.
Therefore, it is recommended to run RUNSTATS after your data has significantly changed.

If you run RUNSTATS with the SHRLEVEL(CHANGE) option, you do not need to stop online
or batch processing. When using static SQL, you also have to rebind the corresponding DB2
packages with the REBIND utility.

Further, to achieve best performance for your data access, you also should run the REORG
utility after your data has significantly changed. After starting this utility, DB2 reorganizes the
data in the database (for example sort all rows as defined by the clustering index). Similar to
using RUNSTATS, it is not necessary to stop online or batch processing to reorganize data.

13.3.2 Optimizing using I/O features

Performance is of course one of the most important parts of every application. As batch is
mostly I/O bound, optimal I/O performance is extremely relevant to achieve fast batch
processing. Especially the Mainframe has always provided powerful I/O functionality.

The following examples show only some technologies and configurable options to achieve
best I/O performance with DB2 for z/OS.

MIDAW
The Modified Indirect Data Address Word (MIDAW) facility is integrated in System z
processors to improve FICON® performance, especially when accessing DB2 databases.
This facility is a new method of gathering data into and scattering data from discontinuous
storage locations during an I/O operation.
218 Batch Modernization on z/OS

The use of MIDAWs will not cause the bits to move any faster across the FICON link, but they
reduce the number of frames and sequences flowing across the link, which makes the
channel more efficient.

Thereby, the most benefit occurs with Extended Format data sets that have small block sizes.
Because DB2 depends on Extended Format data sets to stripe the logs, or to enable data
sets to be larger than 4 GB, DB2 is a major beneficiary from the MIDAW facility.

DSNZPARMs
With DSNZPARMs, you have many different settings available to configure a DB2 system to
your needs (like activate dynamic statement caching, maximum size of statement cache and
much, much more). Thereby, some of these DSNZPARMs relate to storage functions:

� Data Set VSAM Control Interface (CI) size

With V7, DB2 uses only the VSAM CI size of 4 KB. If DB2 page size is 8, 16, or 32 KB,
DB2 treated the page as a chain of 2, 4, or 8 CIs.

Since V8, setting the DSVCI parameter to YES allows DB2 to use VSAM CI sizes of 8, 16,
and 32 KB and therefore to synchronize DB2 page size and VSAM CI size.

With DSVCI=YES, VSAM splits 32 KB CI over two blocks of 16 KB in order to span two
tracks and not waste space within a single track usage (48 KB). A 16 KB block is not used
every 15 tracks (CA size) because the CI cannot span a CA boundary.

� Sequential processing and disk cache

The parameter SEQCACH is used to determine whether data in the disk cache is to be
used in sequential mode (BYPASS) or sequential detected mode (SEQ). Although
BYPASS, the default, is still a valid option for detected mode, cache is not bypassed
because the 3990 controllers were in use.

For the later disks (RVA, ESS, or DS8000®), BYPASS uses sequential detect, and SEQ
uses explicit command. The differences are as follows:

– SEQ (explicit) puts tracks on the accelerated list and starts pre-staging for next I/O.
Operations are done on extent boundaries or stage groups. Explicit SEQ reacts faster
and can end sooner than using the detect mechanism (BYPASS).

– BYPASS (sequential detect) stages data to the end of a stage group.

The recommendation is to set SEQCACH to SEQ.

� Utilities use of disk cache

The parameter SEQPRES specifies whether (YES) or not (NO, default) DB2 utilities that
scan a non-partitioning index followed by an update should allow data to remain in cache
longer when reading data. If you specify YES, DB2 utility prefetch reads remain in cache
longer, possibly improving performance of subsequent writes of large non-partitioned
indexes.

Similar to what we discussed for sequential processing and disk cache (SEQCACH), the
recommendation is to set SEQPRES to YES.

13.3.3 Optimizing using JDBC functionality

It is undisputed that in recent years more and more applications have been developed in
Java, making more and more SQL statements communicate using JDBC with the database.
Therefore, many features have been implemented in JDBC to optimize this communication.
Chapter 13. Create agile batch by optimizing DB2 access 219

The following examples show only some possibilities, to optimize data access for Java
applications:

� Use batch update API (addBatch or executeBatch) for larger amount of inserted, updated,
and merged rows, which can speed up processing. See Example 13-6.

Example 13-6 Using JDBC addBatch

PreparedStatement ps = con.prepareStatement("INSERT INTO TB1 (COL1) Values(?)");
for (int i=0; i<100; i++) {

ps.setShort(1, i);
ps.addBatch();

}
ps.executeBatch();

� Progressive Locator support (dynamic data format)

Based on actual size, this new support first determines the most efficient mode to return
LOB/XML data. You can activate or deactivate this support by setting JCC properties:

– progressiveStreaming = yes/no (default is yes)
– streamBufferSize = value (default 1 M)

As mentioned, the method for returning LOB/XML data is based on actual size.

– For LOB/XML data size smaller than 12 KB, the data is inlined similar to varchar data.

– For LOB/XML data size between 12 KB and streamBufferSize, the data is chained to
the query result.

– For LOB/XML data size between streamBufferSize and 2 GB a large object locator is
returned.

� Java data types should match DB2 data types

To avoid data type cross-conversion you should use the correct Java for your DB2 data
type (for example, java.math.BigDecimal for DB2 DECIMAL data type).

� Only select and update columns as necessary

A Java object is created for every retrieved column.

� Store numbers as numbers

Numeric data should always be stored in DB2 numeric data types. If you store such data
in character data types, you get some disadvantages:

– DB2 does not check automatically whether this character data only contain numbers.

– SQL numeric functions, such as AVG, cannot be used directly.

– Because Java applications always are executed in Unicode, DB2 character data which
is stored in EBCDIC/ASCII has to be converted. Because numbers are not dependent
on an encoding schema, no conversion is necessary.

� Turn autocommit off for native Java processing

If you did not change the default behavior and run a native Java application, a “commit” is
sent to the database after every single SQL statement. This commit is extremely
expensive and can result in data inconsistency if the entire business transaction must be
rolled back but some data changes are already committed.
220 Batch Modernization on z/OS

You can use the JDBC method setAutoCommit to turn on or off autocommit, as shown in
Example 13-7.

Example 13-7 Java turn autocommit off

con.setAutoCommit(false);

13.3.4 Checkpoint and restart functionality

Normally batch programs process a huge amount of data. Furthermore, it is not unusual that
data from many different systems (like DB2, MQ, IMS databases) are read or changed by one
single batch process. To prevent data inconsistency, all participated systems must commit at
the same time.

To achieve optimal performance for a batch job, it is recommended not to write a checkpoint
after each input data. However, it is not useful to commit all changes at the end of a batch run
with only one single checkpoint either. In this case, changed data is blocked for the entire
period of the batch job and cannot be accessed by other processes (such as online
processing). It would also generate a significant overhead for the system (for example
management of locks). Also, in case of an error, the necessary rollback process could
become considerably more expensive.

Therefore, it is important to write checkpoints at reasonable intervals. Further, in order to
flexibly respond to current circumstances, you need the possibility to influence checkpoint
settings at start or during batch processing.

You should have the opportunity:

� To write checkpoints after a specified number of processed data

� To write checkpoints after a specified period of time. Thereby, after reaching this time limit
a checkpoint must be written, even if the specified number of processed data has not been
reached. This prevents you from locking your data too long.

� To easily and dynamically change current settings.

Furthermore, the batch program needs a restart functionality. If an error occurs during a batch
run and the program aborts, all changes to the last checkpoint are committed in the system.
But because the program is not yet finished, it needs to be started again. In this case, it is
important that the program continues processing immediately after the last checkpoint. It
must, in any case, ensure that already processed data is not reprocessed. Therefore when
restarting, batch programs often have a separate logic implemented to ensure the correct
processing after the last checkpoint.

Note: You can find more information about Java and DB2 optimization in the following
resources:

� Application Programming Guide and Reference for Java, SC18-9842
� DB2 for z/OS and OS/390: Ready for Java, SG24-6435
� DB2 for z/OS and WebSphere: The Perfect Couple, SG24-6319

Note: As previously mentioned, it is not the scope of this book to describe all system
features and SQL-based opportunities to establish an optimal database access. However,
these few examples should provides a good idea of the impact achieved with optimization.
Chapter 13. Create agile batch by optimizing DB2 access 221

222 Batch Modernization on z/OS

Chapter 14. Create agile batch by
implementing trigger
mechanisms

Today, obtaining information about demand is critical from a business point of view. Demand
also affects batch workloads. For example, consider the following scenarios:

� Creating business reports with heavy input data amounts that are produced on demand
just by a mouse click.

� Executing urgent transactions immediately although they are normally scheduled for a
certain batch window later.

In addition to the aspect that data must be prepared for well, as described in Chapter 12,
“Create agile batch by optimizing the Information Management architecture” on page 189, we
also need to consider how the batch itself can be triggered. Therefore, in this book, we
provide different approaches to how batch can be submitted flexibly.

In this chapter, we discuss the following scenarios:

� How to submit jobs with Java, for example from a WebSphere application, in 14.1, “Job
submission with native Java technology” on page 224

� How to trigger jobs running in a WebSphere XD Compute Grid, in 14.2, “Using
WebSphere XD Compute Grid trigger mechanisms” on page 234

� How to trigger jobs on demand with the help of Tivoli Workload Scheduler, in 14.3,
“Exploiting enhanced features of Tivoli Workload Scheduler for z/OS” on page 263

� How to trigger a DB2 stored procedure that is used for batch purposes, in 14.4, “Triggering
a DB2 stored procedure” on page 270

Furthermore, we explain how to use WebSphere Application Server as a GUI to submit jobs
in different ways.

14
© Copyright IBM Corp. 2009, 2012. All rights reserved. 223

14.1 Job submission with native Java technology

The first option to schedule z/OS batch jobs in a dynamic way is to use Java technology. Java
on z/OS provides a special API that allows to submit jobs directly from of a Java application.
To demonstrate how you could use this API, we created a sample J2EE application.
Figure 14-1 shows how this application works. A simple servlet is acting as a Web interface to
the user.

Figure 14-1 Dynamic batch sample application

Figure 14-2 shows how this servlet looks from a user perspective. It consists of a form with
two parameter input fields as well as a Submit and Cancel button. Because this application is
intended as a template for further chapters, it is a modular, which means that we use the
parameters in other chapters for different purposes.

Figure 14-2 Sample application welcome page

By click Submit, the servlet calls a Session Bean called TriggerBatchBean, which contains
the logic to call a job.

You can find the servlet and session bean source code in “Dynamic batch Web application”
on page 445.

Note 1: In the template version of the application, the session bean returns only the value
of the two parameters.

Note 2: We use WebSphere Application Server for z/OS Version 6.1 in our scenario to
ensure compatibility with the J2EE 1.4 specification. Although we could have used Java EE
5.0, we wanted to ensure that a broad range of users can use this sample.

WebSphere Application Server for z/OS

DynamicBatch Servlet
TriggerBatchBean
(Session Bean)

z/OS job
Submit
224 Batch Modernization on z/OS

We also provide this application as a Rational Application Developer project. See Appendix C,
“Additional material” on page 453 for more details. This project is be the base for the next
sections. However, if you do not have Rational Application Developer, you can also use
another J2EE development tool.

14.1.1 Developing the code

With the help of this J2EE application template, we can implement the job submission EJB
based on the JZOS Toolkit MvsJobSubmitter class from the following Web site:

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp.html

This class is part of the IBM Java SDK for z/OS in all current releases.

To implement the job submission, follow these steps:

1. First, switch to the J2EE Perspective in Rational Application Developer. Then, import the
three projects of the application Dynamic Batch application template in Rational
Application Developer by selecting File Import General Existing Project into
Workspace Next. Choose Select archive file. Browse for the
DynamicBatchRADProject.zip file of the additional material of this book, and press Finish.

2. Create a new class called MvsJobSubmitter.java and a class called MvsJob.java in the
com.ibm.itso.sample package to submit z/OS batch jobs from the TriggerBatchBean. The
Rational Application Developer Project Explorer should now look like that shown in
Figure 14-3.

Note 1: We includes instructions about how to download the entire EJB project that we
discuss in this section in Appendix C, “Additional material” on page 453.

Note: Keep in mind that because we use a Web application to submit a z/OS batch job, we
do not know how long a submitted job will run. Thus, we do not wait for the job output in the
Web application and only submit it. Nevertheless, to get the results to the user, we propose
to implement some kind of notification (for example through e-mail) that informs the user
after the job of the results.
Chapter 14. Create agile batch by implementing trigger mechanisms 225

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp.html

Figure 14-3 Rational Application Developer Project Explorer

3. In the MvsJobSubmitter.java file, insert the code shown in Example 14-1.

Example 14-1 MvsJobSubmitter.java

package com.ibm.itso.sample;

/*
===
* Licensed Materials - Property of IBM
* "Restricted Materials of IBM"
* (C) Copyright IBM Corp. 2005. All Rights Reserved
*
===
*/
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Iterator;
import java.util.Properties;
import java.util.StringTokenizer;

import com.ibm.jzos.Exec;
import com.ibm.jzos.FileFactory;
import com.ibm.jzos.RcException;
import com.ibm.jzos.ZUtil;

public class MvsJobSubmitter {

public static final String SUBMIT_JOB_CMD = "submitJob";
226 Batch Modernization on z/OS

Exec exec;
BufferedWriter intrdrWriter;

/**
 * Submits a JCL read from a file
 * Argument can be a Unix file/path name or a "//dataset.name".
 */
public void run(String jobName) throws IOException {

MvsJobSubmitter submitter = new MvsJobSubmitter();
// copy the file to the InternalReaderWriter (and close that writer)
copyFile(jobName, submitter.getInternalReaderWriter());
submitter.submitJob();

}

/**
 * Construct an instance, which causes the "submitJob" Rexx script to
 * be started to receive our JCL.
 */
public MvsJobSubmitter() throws IOException {

executeSubmit(); // starts the child process
}

/**
 * Answers a writer that can be used by the client to
 * send JCL to the Rexx submitJob process.
 * Clients should either flush() or close() this Writer
 * to ensure that buffered data is actually sent to the child process
 * @return Writer
 * @throws IOException
 */
public Writer getInternalReaderWriter() throws IOException {

if (intrdrWriter == null) {
intrdrWriter = exec.getStdinWriter();

}
return intrdrWriter;

}

/**
 * Answers an MvsJob object which is a simple bean holding the
 * submitted jobname and userid. The method should be called
 * once after writing jcl to getInternalReaderWriter() and closing
 * @return MvsJob if submitted successfully, otherwise an exception is thrown
 *
 * @throws IOException if there is an error communicating with the child Rexx

process
 * or if the child process had an error submitting the process.
 */
public MvsJob submitJob() throws IOException {

if (exec == null) {
 // can only do this once!
throw new IllegalStateException("Child process already stopped?");

}
MvsJob mvsjob = null;

 String line;
 String firstLine = null;
 while ((line = exec.readLine()) != null) {
 if (firstLine == null) firstLine = line;
 if (mvsjob == null) {
Chapter 14. Create agile batch by implementing trigger mechanisms 227

 StringTokenizer tok = new StringTokenizer(line);
 if (tok.countTokens() == 3) {
 if (tok.nextToken().equalsIgnoreCase("Submitted:")) {
 String jobname = tok.nextToken();
 String jobid = tok.nextToken();
 mvsjob = new MvsJob(jobname, jobid);
 }
 }
 }
 }
 int rc = exec.getReturnCode(); // wait for process completion
 exec = null;
 if (mvsjob == null) rc = 3; // somehow we got a good return code with invalid
output
 if (rc != 0) {
 throw new RcException("Rexx 'submitJob' process failed: " + firstLine, rc);
 }
 return mvsjob;

}

/**
 * Start the "submitJob" child process.
 */
protected void executeSubmit() throws IOException {

exec = new Exec(getSubmitCommand(), getEnvironment());
exec.run();

}

/*
 * Return the command to be executed via Runtime.exec(). This is
 * the Rexx script 'submitJob'. By default, this script needs to be present
 * in the current PATH. However, if the System variable jzos.script.path
 * is defined, it will be used to prefix 'submitJob'.
 */
protected static String getSubmitCommand() {

String cmdPath = System.getProperty("jzos.script.path", "");
if (cmdPath.length() > 0 && !cmdPath.endsWith("/")) {

cmdPath = cmdPath + "/";
}
return cmdPath + SUBMIT_JOB_CMD;

}

/*
 * Return the environment to use for the child process. This is
 * the current environment with _BPX_SHAREAS and _BPX_SPAWN_SCRIPT set to "YES"
 * so that the child process will execute in the same address space.
 */
protected static String[] getEnvironment() {

Properties p = ZUtil.getEnvironment();
p.put("_BPX_SHAREAS", "YES");
p.put("_BPX_SPAWN_SCRIPT", "YES");
String[] environ = new String[p.size()];
int i=0;

 for (Iterator iter = p.keySet().iterator(); iter.hasNext();) {
 String key = (String)iter.next();
 environ[i++] = key + "=" + p.getProperty(key);
 }
 return environ;
}

228 Batch Modernization on z/OS

/**
 * Copy a file given its name to a Writer.
 * After copying or on error, close both files.
 */
protected static void copyFile(String filename, Writer writer) throws IOException {

BufferedReader rdr = null;
try {

rdr = FileFactory.newBufferedReader(filename);
String line;
while ((line = rdr.readLine()) != null) {

writer.write(line);
writer.write("\n");

}

} finally {
writer.close();
if (rdr != null) {

rdr.close();
}

}
}

}

4. Next, insert in the MvsJob.java file the code shown in Example 14-2.

Example 14-2 MvsJob.java

/*
===
* Licensed Materials - Property of IBM
* "Restricted Materials of IBM"
* (C) Copyright IBM Corp. 2005. All Rights Reserved
*
===
*/
package com.ibm.itso.sample;

/**
 * Simple bean which holds an MVS jobname and id.
 */
public class MvsJob {

String jobname;
String jobid;

public MvsJob(String name, String id) {
this.jobname = name;
this.jobid = id;

}

public String getJobid() {
return jobid;

}

public String getJobname() {
return jobname;

}

Chapter 14. Create agile batch by implementing trigger mechanisms 229

public String toString() {
return "" + jobname + "(" + jobid + ")";

}
}

5. Because the JZOS Toolkit libraries are not included in the Rational Application Developer
Build Path, you now have to download the ibmjzos.jar file from the z/OS system using
FTP to the root directory of the Rational Application Developer EJB project on the local
workstation. This SLA file is stored in <Java_Home>/lib.ext on z/OS.

6. After you download the file, click the project, and press F5 to refresh the content. Now the
ibmjzos.jar file displays in the project. Include this file by right-clicking the project, and
then clicking Build Path Configure Build Path as shown in Figure 14-4.

Figure 14-4 Configuring Rational Application Developer Build Path
230 Batch Modernization on z/OS

7. In the JAR Selection window, select Add JARs. select the ibmjzos.jar file, as shown in
Figure 14-5.

Figure 14-5 Adding ibmjzos.jar file to Build Path

8. Click OK. Apply the settings by pressing OK again. Now, all code errors disappear in
Rational Application Developer.

9. With the help of the two recently created Java classes, you can submit a z/OS job by
passing a job name as an MVS data set name in the form of //dataset.name or as a UNIX
file path to the run() method in MvsJobSubmitter.java. To call this method by the
TriggerBatchBean, we open the TriggerBatchBean.java file in the Project Explorer.

10.Then, change the public String execute(String[] parameters) as shown in
Example 14-3. Because you need only one parameter from the servlet form (the job
name), perform a check within this method as to whether the parameters are valid. If yes,
call the MvsJobSubmitter.run() method, and return to the servlet that the job was
submitted. If not, return to the servlet that the parameters were wrong.

Example 14-3 TriggerBatchBean execute method

public String execute(String[] parameters)
{

String message="";
for (int i=1; i<parameters.length; i++)
{

if (parameters[i].equals("")==false || parameters[0].equals(""))
{

message="Please enter the job name in parameter 1, the other
parameters have to left empty.";

}
else if (parameters[0].equals("")==false)
{

try {
MvsJobSubmitter submitter = new MvsJobSubmitter();
submitter.run(parameters[0]);
Chapter 14. Create agile batch by implementing trigger mechanisms 231

message="Job "+parameters[0]+" successfully submitted. Please
check output.";

} catch (IOException e) {
e.printStackTrace();
message="Error: "+e.getMessage();

}
}

}
return message;

}

11.They project is now ready for packaging. Select the following projects in the Project
Explorer:

– DynamicBatch
– DynamicBatchEar
– DynamicBatchEjb

12.Then, right-click the select projects, and select Prepare for Deployment as shown
Figure 14-6.

Figure 14-6 Preparing projects for deployment in Rational Application Developer
232 Batch Modernization on z/OS

13.Next, right-click the DynamicBatchEar project and select Export Ear file as shown in
Figure 14-7.

Figure 14-7 Export EAR file in Rational Application Developer

14.Browse for a file location where you want to store this EAR file, and select Finish (see
Figure 14-8).

Figure 14-8 Exporting EAR file in Rational Application Developer
Chapter 14. Create agile batch by implementing trigger mechanisms 233

14.1.2 Configuring WebSphere Application Server z/OS for deployment

Before you deploy the EAR file to WebSphere Application Server for z/OS, you have to add a
JVM parameter to the Servant:

1. Select Servers Application Servers ServerName Server Infrastructure
Process Definition Servant Java Virtual Machine.

2. Under Generic JVM arguments, add:

-Djzos.script.path=${JAVA_HOME}/mvstools/samples/scripts

This parameter is needed to tell the JVM where to find certain REXX scripts that take care
of the job submission that is initiated by the JZOS Toolkit classes.

3. Then, select OK, and Save.

4. Now, you can deploy the EAR file of the previous to WebSphere Application Server, and
start the application.

5. After deploying the application, call the application by entering the following address in the
browser:

http://<hostname>:<port>/DynamicBatch/DynamicBatch

6. In the browser, enter a job name as Parameter 1, and click Submit (see Figure 14-9). This
job name can either be a MVS data set or a z/OS UNIX file.

Figure 14-9 Submitting a job with the sample application in native Java

7. Finally, verify the job results in SDSF.

14.2 Using WebSphere XD Compute Grid trigger mechanisms

The WebSphere XD Compute Grid component provides ways of managing the scheduling
and execution control of background activities in a grid computing environment. The various
ways that you can manage your Compute Grid environment include using the Job
Management Console (JMC), analyzing job logs, specifying job classes, and using
classification rules:

� Using the JMC directly from a browser
� Using the command line interface
� Using WSGrid command-line utility
� Web services and EJB interfaces for the job scheduler

Note: Because we are submitting jobs out of WebSphere Application Server, the submitted
job will run under the user ID of WebSphere Application Server.
234 Batch Modernization on z/OS

Using the JMC, you can:

� Submit jobs
� Monitor job execution
� Perform operational actions against jobs
� View job logs
� Manage the job repository
� Manage job schedules

– A job log is a file that contains a detailed record of the execution details of a job. It is
comprised of both system and application messages. Job logs are stored on the
endpoints where the job runs and on the application server that hosts the job
scheduler. Job logs are viewable through the JMC and from the command line.

– A job class establishes a policy for resource consumption by a set of grid jobs. Through
this policy, execution time, number of concurrent jobs, job log and job output queue
storage can be controlled. Each job is assigned to a job class. A default job class is
provided for jobs that do not specify a class.

– Classification rules are saved in a configuration file named gridclassrules.xml under
the configuration directory of WebSphere Application Server. In WebSphere XD, there
is one gridclassrules.xml per cell, and the rules are ordered based on the priority
element.

You can find more detailed information for job logs, job classes, and job classifications in the
WebSphere XD Compute Grid Information Center at:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp

14.2.1 The Job Management Console

WebSphere XD Compute Grid introduces the Job Management Console (JMC), a
stand-alone Web interface for managing jobs. Interaction with the job repository is also
possible, where jobs can be saved, removed or submitted to the repository. This console
provides controlled access when security is enabled. Only authorized users who are granted
the lrsubmitter or lradmin roles through the WebSphere XD administrative console can be
allowed access to the JMC.

Through the JMC, you can submit job schedules with a preferred processing time. Also, you
can configure job schedules so that they can occur or recur on a specific time of day or week,
and so on. When you are ready to submit a job, you can choose to delay the submission of it
by specifying the start date and time of when you want to run the job.

To access the Job Management Console:

1. Configure the job scheduler.

2. Ensure that the job scheduler is running.

3. In a browser, enter:

http://<job scheduler server host>:<port>/jmc

For example:

https://wtsc48.itso.ibm.com:9575/jmc/console.jsp

4. If an On-Demand Router (ODR) is defined in the cell, enter:

http://<odr host>:80/jmc

To explain the functionality of the JMC, we use the Echo sample application from 8.7,
“Developing a WebSphere batch application” on page 109. The Echo application is installed
Chapter 14. Create agile batch by implementing trigger mechanisms 235

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp

in the WebSphere XD Compute Grid Execution Endpoint (GEE) and started. So, you can now
submit batch jobs. First, open the JMC in the browser. The window shown in Figure 14-10
opens.

Figure 14-10 The WebSphere XD Compute Grid Job Management Console

Through the JMC, you can perform the following functions:

� Store and manage the job repository. Select Save a job under Job Repository. Enter a
Job name and browse, for example, to the xJCL zOSEcho.xml in your workspace. See
Figure 14-11.

Figure 14-11 Store a job in the job repository
236 Batch Modernization on z/OS

� View jobs in the job repository. Select View saved jobs under Job Repository. Your
zOSEcho job should be stored in the job repository. See Figure 14-12.

Figure 14-12 View jobs in the job repository

� Submit jobs. Select Submit a job under Job Management. Choose Job repository and
browse to the job you want to submit, for example zOSEcho. Click Submit. See
Figure 14-13.

Figure 14-13 Submit job from the job repository with JMC
Chapter 14. Create agile batch by implementing trigger mechanisms 237

� View job logs. Select View jobs under Job Management and choose the job with
<Job-name>:<job-id> that you want to view. You see the job output, and you can also
download the job log as *.txt file. See Figure 14-14.

Figure 14-14 View jobs in the JMC
238 Batch Modernization on z/OS

� Manage job schedules and view schedules. Select Create a schedule to set up a job
schedule and under View schedules you can see all your scheduled jobs. See
Figure 14-15.

Figure 14-15 Schedule a job with JMC

� Monitor job execution

� Perform operational actions against jobs
Chapter 14. Create agile batch by implementing trigger mechanisms 239

To access the field help for the JMC, click Help in the upper, right corner of every job
management panel. See Figure 14-16.

Figure 14-16 Help for JMC

14.2.2 The command-line interface

The command-line interface interacts with the job scheduler to submit and manipulate a
WebSphere XD Compute Grid job. It is located in the was_root/bin directory as the lrcmd.sh
script and can be invoked from any location in the WebSphere cell.

Use the lrcmd script to perform the following operations:

� Display usage information for lrcmd
� Submit a job to the job scheduler
� Cancel a previously submitted job
� Restart a job
� Purge job information
� Save an xJCL to the job repository
� Remove a job from the job repository
� Show xJCL stored in the job repository
� Show the status of a Compute Grid job
� Suspend a job
� Resume start of a previously suspended job
� Display the output for a job
� Displays the return code of a batch job
� Submit a recurring job request to the job scheduler
� Modify an existing recurring job request
240 Batch Modernization on z/OS

� Cancel an existing recurring job request
� List all existing recurring job requests
� Show all recurring jobs of a request

You can find a complete list about how to invoke all operations in the WebSphere XD
Compute Grid Information Center at:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp

To find the utility, go to <WAS_HOME>/bin in the TSO OMVS session, for example,
/wasalconfig/V6R1/alcell/alnodea/AppServer/profiles/default/bin. The lrcmd.sh script
is in this directory. Example 14-4 shows an example of submitting a job with the
command-line interface.

Example 14-4 Example of submitting a batch job

./lrcmd.sh -cmd=submit -job=zOSEcho -host=wtsc48.itso.ibm.com -port=9575

CWLRB4960I: Wed Jun 24 15:23:11 EDT 2009 : com.ibm.ws.batch.wsbatch : Job
[Echo:00032] is submitted.

Example 14-5 shows the status coming back after the job has ended.

Example 14-5 Example of receiving the job status of a submitted batch job

<-- jobid=Echo:00032

./lrcmd.sh -cmd=status -jobid=Echo:00032 -host=wtsc48.itso.ibm.com -port=9575

CWLRB4940I: com.ibm.ws.batch.wsbatch : -cmd=status -jobid=Echo:00032
-host=wtsc48.itso.ibm.com -port=9575

CWLRB5160I: Wed Jun 24 15:26:08 EDT 2009 : Job [Echo:00032] execution has ended.

Example 14-6 shows an example of retrieving job output.

Example 14-6 Example of retrieving output of a batch job

./lrcmd.sh -cmd=output -jobid=Echo:00032 -host=wtsc48.itso.ibm.com -port=9575

CWLRB4940I: com.ibm.websphere.batch.wsbatch : -cmd=output -jobid=Echo:00032

CWLRB5000I: Wed Jun 24 15:26:55 EDT 2009 : com.ibm.ws.batch.wsbatch : response to output

CWLRB1740I: [06/24/09 19:23:15:578 GMT+00:00] Job [Echo:00032] is in job setup.
CWLRB1760I: [06/24/09 19:23:15:856 GMT+00:00] Job [Echo:00032] is submitted for execution.
CWLRB2420I: [06/24/09 19:23:16:440 GMT+00:00] Job [Echo:00032] Step [EchoStep1] is in step
setup.
CWLRB2440I: [06/24/09 19:23:16:794 GMT+00:00] Job [Echo:00032] Step [EchoStep1] is
dispatched.
CWLRB2460I: [06/24/09 19:23:25:020 GMT+00:00] Job [Echo:00032] Step [EchoStep1] is in step
breakdown.
CWLRB2600I: [06/24/09 19:23:25:116 GMT+00:00] Job [Echo:00032] Step [EchoStep1] completed
normally rc=0.
CWLRB3800I: [06/24/09 19:23:25:168 GMT+00:00] Job [Echo:00032] ended normally.
End
Chapter 14. Create agile batch by implementing trigger mechanisms 241

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp

Figure 14-17 shows the JMC showing the status of the job submitted using the command line
interface.

Figure 14-17 Run zOSEcho with command line utility: View submitted job from console in JMC

14.2.3 The WSGrid command-line utility

The WSGrid utility is designed to facilitate integration of WebSphere XD Compute Grid jobs
with external workload schedulers. You can use this utility to sub-dispatch a WebSphere XD
Compute Grid job.

The WSGrid utility is a client application of the Job Scheduler message-driven interface. Use
the WSGrid utility to facilitate control of WebSphere XD Compute Grid batch jobs by external
workload schedulers, such as Tivoli Workload Scheduler. The WSGrid utility is invoked by an
external workload scheduler as part of a larger task choreography. The WSGrid utility submits
a WebSphere XD Compute Grid batch job, then waits for its completion. The job log from the
WebSphere batch job is written to the standard output stream of the environment in which the
WSGrid utility was invoked.

WSGrid is a shell script that uses a JMS interface of the Job Scheduler to submit jobs into a
WebSphere XD Compute Grid topology. Its function is to provide an integration point between
the Job Scheduler and enterprise scheduling products such as Tivoli Workload Scheduler.
Logs of jobs submitted by WSGrid are written to the output stream of the environment from
which WSGrid is invoked. When the job completes, WSGrid returns with the return code of
the batch job. To set up WSGrid and submitting jobs:

1. Invoke wsgridConfig.py to install the JobschedulerMDI application and associated JMS
artefacts:

a. From a shell, change to the <WAS_HOME>/<cell>/<node>/AppServer/bin directory. In
our case, we change to the following directory:

/wasalconfig/V6R1/alcell/alnodea/AppServer/profiles/default/bin

b. Invoke the command shown in Example 14-7 to run the wsgridConfig.py script to
install the JobschedulerMDI application and associated JMS artifacts:

Example 14-7 Run the wsgridConfig.py script

./wsadmin.sh –f wsgridConfig.py -install –node alnodea -server allrsa01
-providers wtsc48.itso.ibm.com,9565
242 Batch Modernization on z/OS

See Example 14-8 for the results.

Example 14-8 Output of the wsgridConfig.py script

/wasalconfig/V6R1/alcell/alnodea/AppServer/profiles/default/bin>./wsadmin.sh -f
wsgridConfig.py -install -node alnodea -server allrsa01 -providers
wtsc48.itso.ibm.com,9565
WASX7209I: Connected to process "dmgr" on node aldm using SOAP connector; The t
ype of process is: DeploymentManager

WASX7303I: The following options are passed to the scripting environment and are
 available as arguments that are stored in the argv variable: "Ý-install, -node,
 alnodea, -server, allrsa01, -providers, wtsc48.itso.ibm.com,9565¨"

wsgridConfig.py is performing install using

 target cluster or server : /Node:alnodea/Server:allrsa01/
 MDI application name : JobSchedulerMDI
 JMS connection factory : com.ibm.ws.grid.ConnectionFactory
 JMS activation spec : com.ibm.ws.grid.ActivationSpec
 JMS input queue name : com.ibm.ws.grid.InputQueue
 JMS output queue name : com.ibm.ws.grid.OutputQueue
 JMS file store root : /tmp/JobSchedulerBus
 SIB identifier : JobSchedulerBus
 endpoint provider list : wtsc48.itso.ibm.com:9565

ADMA5016I: Installation of JobSchedulerMDI started.
ADMA5058I: Application and module versions are validated with versions of deploy
ment targets.
ADMA5005I: The application JobSchedulerMDI is configured in the WebSphere Applic
ation Server repository.
ADMA5053I: The library references for the installed optional package are created
.
ADMA5005I: The application JobSchedulerMDI is configured in the WebSphere Applic
ation Server repository.
ADMA5110I: The application JobSchedulerMDI is installed as a hidden application
and will not be exposed via administrative interfaces such as GUI client, wsadmi
n or MBean Java API. In order to perform management operations on this applicat
ion, the application name must be known.
ADMA5005I: The application JobSchedulerMDI is configured in the WebSphere Applic
ation Server repository.
SECJ0400I: Successfuly updated the application JobSchedulerMDI with the appConte
xtIDForSecurity information.
ADMA5005I: The application JobSchedulerMDI is configured in the WebSphere Applic
ation Server repository.
ADMA5011I: The cleanup of the temp directory for application JobSchedulerMDI is
complete.
ADMA5013I: Application JobSchedulerMDI installed successfully.
saving config...

Note: The SIB_ENDPOINT_ADDRESS port of each server or cluster member that
hosts the Job Scheduler; in this case this is allsra01 on node alnodea. You need to list
the SIB_ENDPOINT_ADDRESS ports of all servers that host the job_scheduler. In the
case of the environment, we have a only single server hosting the Job Scheduler.
Chapter 14. Create agile batch by implementing trigger mechanisms 243

Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
starting JobSchedulerMDI

wsgridConfig.py INFO: installed JobSchedulerMDI to node/server alnodea/allrsa01
Done installing JobSchedulerMDI
createBus JobSchedulerBus
wsgridConfig.py INFO: created SIB JobSchedulerBus
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created SIB member on target /Node:alnodea/Server:allrsa01/
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created SIB destination com.ibm.ws.grid.InputQueue
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created SIB destination com.ibm.ws.grid.OutputQueue
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created JMS connection factory com.ibm.ws.grid.ConnectionF
actory
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created JMS queue com.ibm.ws.grid.InputQueue
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created JMS queue com.ibm.ws.grid.OutputQueue
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
wsgridConfig.py INFO: created JMS activation spec com.ibm.ws.grid.ActivationSpec
saving config...
Done saving..
wsgridConfig.py INFO: Configuration was saved and synchronized to the active nod
es
244 Batch Modernization on z/OS

You can check in the WebSphere administrative console the tasks that wsgridConfig.py
performs during the installation:

– J2C connection factory, com.ibm.ws.grid.ConnectionFactory, as shown in
Figure 14-18.

Figure 14-18 J2C connection factory

– JMS activation specification, com.ibm.ws.grid.ActivationSpec, as shown in
Figure 14-19.

Figure 14-19 J2C activation specification
Chapter 14. Create agile batch by implementing trigger mechanisms 245

– JMS input queue name, com.ibm.ws.grid.InputQueue, and JMS output queue name,
com.ibm.ws.grid.OutputQueue, as shown in Figure 14-20.

Figure 14-20 J2C administered objects

� SIB identifier, JobSchedulerBus, as shown in Figure 14-21.

Figure 14-21 Bus

After WSGrid is configured, you can launch it using the WSGrid.sh shell script. The script
takes in a control file as parameter which is a simple properties file that contains
information about the scheduler location and the batch job to submit.

2. Run the Wsgrid.sh script using the commands we describe here. WSGrid supports
distinct ways of specifying a WebSphere job:

a. You can specify an xJCL file. In this case, the format of invoking the command is as
follows:

WSGrid.sh <control properties file> <path to job xJCL>

The control properties file is a fully qualified path name to the file that contains the
WSGrid job properties:

• Scheduler-host property is the scheduler server host machine name.

• Scheduler-port property is the WC_defaulthost port of the scheduler server. This
information can be retrieved from the administrative console at Application
Servers <name of scheduler server or cluster member Ports.
246 Batch Modernization on z/OS

See Example 14-9 for an example of these properties.

Example 14-9 Sample job properties file without job information - wsgrid.cntl

#scheduler-host>=<hostname>
scheduler-host=wtsc48.itso.ibm.com
#scheduler-port=<port>
scheduler-port=9575
#properties
debug=false

b. You can specify the name of an xJCL file in the job repository. In this case the format of
the command is as follows:

WSGrid.sh <control properties file>

The control properties file is a fully qualified path name to the file that contains the
WSGrid control properties.

In addition to the scheduler-host and the scheduler-port, the information of the xJCL in
the repository is provided. The example zOSEchowsgrd.cntl file, as shown in
Example 14-10, is included in the workspace in the folder cntl.

Example 14-10 Sample job zOSEchowsgrid.cntl properties file with job information

#scheduler-host>=<hostname>
scheduler-host=wtsc48.itso.ibm.com
#scheduler-port=<port>
scheduler-port=9575
#repository-job=<jobname>
repository-job=zOSEcho
#properties
debug=false

The output of the command is shown in Example 14-11.

Example 14-11 Run Echo sample with ./WSGrid.sh zOSEchowsgrid.cntl

cd <WAS_HOME>/bin {f.e. /wasalconfig/V6R1/alcell/alnodea/AppServer/bin}

./WSGrid.sh zOSEchowsgrid.cntl

...
CWLRB5618I: Ý06/25/09 13:16:01:166 GMT+00:00¨ Initializing step EchoStep1 batch
data stream inputStream
CWLRB5620I: Ý06/25/09 13:16:01:166 GMT+00:00¨ Opening step EchoStep1 batch data
stream inputStream
CWLRB5622I: Ý06/25/09 13:16:01:180 GMT+00:00¨ Loading job step bean for step Ech
oStep1 using jndi name: ejb/GenericXDBatchStep
CWLRB5594I: Ý06/25/09 13:16:01:191 GMT+00:00¨ Step EchoStep1 setup is complete:
ended normally
CWLRB2440I: Ý06/25/09 13:16:01:225 GMT+00:00¨ Job ÝEcho:00035¨ Step ÝEchoStep1¨
is dispatched.
...

CWLRB5628I: Ý06/25/09 13:16:04:930 GMT+00:00¨ Step EchoStep1: chkpt checkpoint t
aken Ýiteration 44000¨
CWLRB5628I: Ý06/25/09 13:16:05:000 GMT+00:00¨ Step EchoStep1: chkpt checkpoint t
aken Ýiteration 45000¨
Chapter 14. Create agile batch by implementing trigger mechanisms 247

CWLRB5628I: Ý06/25/09 13:16:05:104 GMT+00:00¨ Step EchoStep1: chkpt checkpoint t
aken Ýiteration 46000¨
...
CWLRB5628I: Ý06/25/09 13:16:07:058 GMT+00:00¨ Step EchoStep1: chkpt checkpoint t
aken Ýiteration 75000¨
CWLRB5628I: Ý06/25/09 13:16:07:111 GMT+00:00¨ Step EchoStep1: chkpt checkpoint t
aken Ýiteration 76000¨
CWLRB5630I: Ý06/25/09 13:16:07:157 GMT+00:00¨ Step EchoStep1 completes normally:
 ended normally
CWLRB2460I: Ý06/25/09 13:16:07:157 GMT+00:00¨ Job ÝEcho:00035¨ Step ÝEchoStep1¨
is in step breakdown.
CWLRB5606I: Ý06/25/09 13:16:07:183 GMT+00:00¨ Destroying job step: EchoStep1
System.out: Ý06/25/09 13:16:07:183 GMT+00:00¨ INFO->jobid: Echo:00035:GenericXDB
atchStep.destroyStep()- Total Execution Time: 5993
CWLRB5608I: Ý06/25/09 13:16:07:183 GMT+00:00¨ Job step EchoStep1 destroy complet
ed with rc: 0
CWLRB5610I: Ý06/25/09 13:16:07:185 GMT+00:00¨ Firing EchoStep1 results algorithm
 com.ibm.wsspi.batch.resultsalgorithms.jobsum: ÝRC 0¨ ÝjobRC 0¨
CWLRB5624I: Ý06/25/09 13:16:07:188 GMT+00:00¨ Stopping step EchoStep1 chkpt chec
kpoint. User transaction status: STATUS_ACTIVE
CWLRB5602I: Ý06/25/09 13:16:07:193 GMT+00:00¨ Closing EchoStep1 batch data strea
m: outputStream
CWLRB5602I: Ý06/25/09 13:16:07:212 GMT+00:00¨ Closing EchoStep1 batch data strea
m: inputStream
CWLRB5604I: Ý06/25/09 13:16:07:216 GMT+00:00¨ Freeing EchoStep1 batch data strea
m: outputStream
CWLRB5604I: Ý06/25/09 13:16:07:216 GMT+00:00¨ Freeing EchoStep1 batch data strea
m: inputStream
CWLRB2600I: Ý06/25/09 13:16:07:216 GMT+00:00¨ Job ÝEcho:00035¨ Step ÝEchoStep1¨
completed normally rc=0.
CWLRB5594I: Ý06/25/09 13:16:07:241 GMT+00:00¨ Step EchoStep1 execution is comple
te: ended normally
CWLRB1890I: Ý06/25/09 13:16:07:244 GMT+00:00¨ Unsubscribing from job cancel or s
top subject: BizGridJobCancel_Echo:00035
CWLRB3800I: Ý06/25/09 13:16:07:248 GMT+00:00¨ Job ÝEcho:00035¨ ended normally.
CWLRB5596I: Ý06/25/09 13:16:07:281 GMT+00:00¨ Grid Execution Environment sequent
ial step processing complete: ended
CWLRB2250I: Ý06/25/09 13:16:07:283 GMT+00:00¨ Job setup manager bean is breaking
 down job: Echo:00035
CWLRB5598I: Ý06/25/09 13:16:07:285 GMT+00:00¨ Removing job abstract resources
CWLRB5600I: Ý06/25/09 13:16:07:289 GMT+00:00¨ Removing job step status table ent
ries
CWLRB2270I: Ý06/25/09 13:16:07:293 GMT+00:00¨ Job setup manager bean completed j
ob Echo:00035 breakdown
CWLRB5764I: Ý06/25/09 13:16:07:294 GMT+00:00¨ Job Echo:00035 ended
CWLRB3880I: Job ÝEcho:00035¨ ending status: RC=0
248 Batch Modernization on z/OS

See Figure 14-22 for the status of the job in the JMC.

Figure 14-22 Run zOSEcho with WSGrid: View submitted job using WSGrid in JMC

14.2.4 Web services and EJB interfaces for the Job Scheduler

Schedulers enable Java EE application tasks to run at a requested time. Schedulers also
enable application developers to create their own stateless session EJB components to
receive event notifications during a task life cycle, allowing the plugging-in of custom logging
utilities or workflow applications.

The Job Scheduler supports programmatic access to its functions over both an enterprise
bean (EJB) interface for Java EE applications and a Web Services interface for both Java EE
and non-Java EE applications.

Using the base scheduler in WebSphere with the Job Scheduler
The Job Scheduler EJB interface is used to programmatically submit and manipulate a
WebSphere XD Compute Grid job. You can use the EJB interface in conjunction with the base
scheduler in WebSphere Application Server for z/OS to perform calendar-based submission
of a WebSphere XD Compute Grid job. This sample describes how to submit a WebSphere
XD Compute Grid job to the Job Scheduler using the base scheduler in WebSphere
Application Server.

Developing the code
First, you have to look up a configured scheduler. Each configured scheduler is available from
two different programming models.

� A Java EE server application, such as a servlet or EJB component can use the Scheduler
API. Schedulers are accessed by looking them up using a JNDI name or resource
reference.

� Java Management Extensions (JMX) applications, such as wsadmin scripts, can use the
Scheduler API using WASScheduler MBeans.

Note 1: In this sample, we use a servlet or an EJB module. All necessary information for
using the JMX API is provided in the WebSphere XD Compute Grid Information Center.

You can also find the entire project that we develop in this section in Appendix C,
“Additional material” on page 453.
Chapter 14. Create agile batch by implementing trigger mechanisms 249

Follow these steps:

1. First, switch to the J2EE Perspective in Rational Application Developer. Then, import the
projects of the application Scheduler Wrapper Test application template in Rational
Application Developer by selecting File Import General Existing Project into
Workspace Next. Choose Select archive file, and browse for the
SchedulerWrapperProject.zip file of the additional material of this book, and press
Finish.

Your Rational Application Developer Project Explorer should now look similar that shown
Figure 14-23.

Figure 14-23 Rational Application Developer Project Explorer
250 Batch Modernization on z/OS

2. Next, include the batchruntime.jar file by right-clicking SchedulerWrapperTest project
and selecting Build Path Configure Build Path. Then, select Add JARs. Locate the
batchruntime.jar on your local machine, for example
C:\WebSphere\ApplicationServer\lib, and add this JAR to your build path. Click OK. See
Figure 14-24.

Figure 14-24 Configure Build Path for SchedulerWrapper project

A Java EE server application, such as a servlet or EJB component can use the Scheduler
API. Schedulers are accessed by looking them up using a JNDI name or resource
reference. Locate Schedulers using the javax.naming.Context.lookup() method from a
J2EE server application, such as a servlet or EJB module.

3. In the JobSchedulerProxyImpl.java. file, insert the code shown in Figure 14-12.

Example 14-12 JobSchedulerProxyImpl.java

package com.ibm.ws.batch;

import java.rmi.RemoteException;
import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import com.ibm.websphere.batch.IJobSchedulerProxy;
import com.ibm.websphere.longrun.InvalidJobIDException;
import com.ibm.websphere.longrun.InvalidOperationException;
import com.ibm.websphere.longrun.JCLException;
import com.ibm.websphere.longrun.JobScheduler;
import com.ibm.websphere.longrun.JobSchedulerHome;
import com.ibm.websphere.longrun.JobSubmissionException;
import com.ibm.websphere.longrun.SchedulerException;

public class JobSchedulerProxyImpl implements IJobSchedulerProxy {

private JobSchedulerHome jsHome;

private String schedulerHostName;
Chapter 14. Create agile batch by implementing trigger mechanisms 251

private String schedulerNodeName;
private String schedulerServerName;
private String schedulerBootstrapPort;
private String schedulerClusterName;

private JobScheduler getJobScheduler() {
 JobScheduler js = null;
 JobSchedulerHome jsHome = null;
 try {

Hashtable env = new Hashtable();
InitialContext ctxt = null;
String longRunningContext = null;

env.put (
Context.INITIAL_CONTEXT_FACTORY,
“com.ibm.websphere.naming.WsnInitialContextFactory"
);

env.put(
Context.PROVIDER_URL,
"corbaloc:iiop:"
+ schedulerHostName
+ ":"
+ schedulerBootstrapPort
+ "/NameServiceCellRoot"
);

 ctxt = new InitialContext(env);

 if(schedulerNodeName != null && schedulerServerName != null) {

 longRunningContext = "nodes/" + schedulerNodeName + "/servers/" + schedulerServerName ;
 }
 else

if(schedulerClusterName != null) {
longRunningContext = "clusters/" + schedulerClusterName;

 }

 String longRunningScheduler = "/ejb/com/ibm/websphere/longrun/JobSchedulerHome";

 Object o = ctxt.lookup(longRunningContext + longRunningScheduler);

 jsHome = (JobSchedulerHome) PortableRemoteObject.narrow(o, JobSchedulerHome.class);
 js = jsHome.create();

 } catch (Exception e) { throw new RuntimeException("unable to obtain JobSchedulerHome: " + e); }

 return js;
 }

 public String submitJob(String xJCL) throws

RemoteException, SchedulerException, JCLException, JobSubmissionException {

JobScheduler js = getJobScheduler();
String jobID = js.submitJob(xJCL);
return jobID;

}

 public void cancelJob(String jobid) throws

RemoteException, InvalidOperationException, InvalidJobIDException, SchedulerException {

JobScheduler js = getJobScheduler();
js.cancelJob(jobid);

 }

 public void restartJob(String jobid) throws

RemoteException, InvalidJobIDException, InvalidOperationException,
SchedulerException, JCLException, JobSubmissionException {

JobScheduler js = getJobScheduler();
js.restartJob(jobid);

 }

 public int getJobRC(String jobid) throws

RemoteException, InvalidOperationException, InvalidJobIDException, SchedulerException {

JobScheduler js = getJobScheduler();
int rc = js.getBatchJobRC(jobid);
return rc;

 }

 public int getJobStatus(String jobid) throws RemoteException, InvalidJobIDException, SchedulerException {
JobScheduler js = getJobScheduler();
int rc = js.getJobStatus(jobid);
252 Batch Modernization on z/OS

return rc;
 }

 public JobSchedulerProxyImpl(String schedulerHostName,String schedulerNodeName,
String schedulerServerName, String schedulerBootstrapPort) {
this.schedulerHostName = schedulerHostName;
this.schedulerNodeName = schedulerNodeName;
this.schedulerServerName = schedulerServerName;
this.schedulerBootstrapPort = schedulerBootstrapPort;

 }

 public JobSchedulerProxyImpl(String schedulerClusterName,
String schedulerBootstrapPort, String schedulerHostName) {

this.schedulerHostName = schedulerHostName;
this.schedulerBootstrapPort = schedulerBootstrapPort;
this.schedulerClusterName = schedulerClusterName;

}
}

The Scheduler is now available to use from a J2EE server application. The source is
included in the com.ibm.ws.batch package.

In the servlet SchedulerWrapperServlet.java, you need to hard code the following
variables:

– Host name
– Scheduler name
– Node name
– Bootstrap port
– Cluster name

The host name and the bootstrap port is always required. Depending on your WebSphere
XD Compute Grid environment you have to set the cluster name in a clustered
environment or the server and node name in a non-clustered environment.

Also, ensure that the xJCL is placed in a string, for example, by reading an xJCL file into a
string. In this example, the simpleEchoJob xJCLs implements as a string, the same xJCL
we used in the other WebSphere XD Compute Grid samples. Depending if you use the
local UTE or the z/OS environment you have to change the file names for the input and
output file in the xJCL, for example:

– local UTE

• <prop name=\"FILENAME\" value=\"C:\\output.txt\"></prop>
• <prop name=\"FILENAME\" value=\"C:\\input.txt\"></prop>

– z/OS environment

• <prop name=\"FILENAME\" value=\"/u/sthomas/data/output.txt\"></prop>
• <prop name=\"FILENAME\" value=\"/u/sthomas/data/input.txt\"></prop>

The source of the SchedulerWrapperServlet is shown in Example 14-13.

Example 14-13 SchedulerWrapperServlet source

package com.ibm.ws.batch;

import java.io.IOException;
import java.io.PrintWriter;
import java.rmi.RemoteException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.batch.IJobSchedulerProxy;
import com.ibm.websphere.longrun.InvalidJobIDException;
import com.ibm.websphere.longrun.InvalidOperationException;
Chapter 14. Create agile batch by implementing trigger mechanisms 253

import com.ibm.websphere.longrun.JCLException;
import com.ibm.websphere.longrun.JobSubmissionException;
import com.ibm.websphere.longrun.SchedulerException;

/**
 * Servlet implementation class for Servlet: SchedulerWrapperServlet
 *
 */
 public class SchedulerWrapperServlet extends javax.servlet.http.HttpServlet implements
javax.servlet.Servlet {

/* WebSphere zOS
private String schedulerHostName = "wtsc48.itso.ibm.com";
private String schedulerNodeName = "alnodea";
private String schedulerServerName = "allrsa01";
private String schedulerBootstrapPort = "9560";
private String schedulerClusterName = null;
*/

// local WebSphere UTE
private String schedulerHostName = "localhost";
private String schedulerNodeName = "suthomasNode01";
private String schedulerServerName = "server1";
private String schedulerBootstrapPort = "2812";
private String schedulerClusterName = null;

IJobSchedulerProxy schedProxy = null;
/*

 private static final String simpleEchoJob=

 "<?xml version=\"1.0\" encoding=\"UTF-8\"?> "+

 "<job default-application-name=\"Echo\" name=\"Echo\"
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"> +
"<jndi-name>ejb/com/ibm/ws/batch/EchoBatchController</jndi-name> "+

 "<step-scheduling-criteria> "+
 "<scheduling-mode>sequential</scheduling-mode> "+
 "</step-scheduling-criteria> "+
 "<checkpoint-algorithm name=\"chkpt\"> "+
 "<classname>com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase</classname>"+
 "<props> "+
 "<prop name=\"recordcount\" value=\"1000\"></prop> "+
 "</props> "+
 "</checkpoint-algorithm> "+
 "<results-algorithms> "+
 "<results-algorithm name=\"jobsum\"> "+
 "<classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>"+
 "</results-algorithm> "+
 "</results-algorithms> "+
 "<job-step name=\"Step1\"> "+
 "<jndi-name>ejb/GenericXDBatchStep</jndi-name> "+
 "<checkpoint-algorithm-ref name=\"chkpt\"></checkpoint-algorithm-ref>"+
 "<results-ref name=\"jobsum\"></results-ref> "+
 "<batch-data-streams> "+
 "<bds> "+
 "<logical-name>outputStream</logical-name> "+
 "<props> "+
 "<prop name=\"FILENAME\" value=\"C:\\output.txt\"></prop> "+
 "<prop name=\"EnablePerformanceMeasurement\" value=\"false\"></prop>"+
 "<prop name=\"EnableDetailedPerformanceMeasurement\" value=\"false\"></prop>"+
254 Batch Modernization on z/OS

 "<prop name=\"AppendJobIdToFileName\" value=\"false\"></prop> "+
 "<prop name=\"debug\" value=\"false\"></prop> "+
 "<prop name=\"PATTERN_IMPL_CLASS\" value=\"com.batch.streams.outputstreams.EchoWriter\"></prop>"+
 "</props> "+
 "<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>

"+
 "</bds> "+
 "<bds> "+
 "<logical-name>inputStream</logical-name> "+
 "<props> "+
 "<prop name=\"FILENAME\" value=\"C:\\input.txt\"></prop> "+
 "<prop name=\"EnablePerformanceMeasurement\" value=\"false\"></prop>"+
 "<prop name=\"EnableDetailedPerformanceMeasurement\" value=\"false\"></prop>"+
 "<prop name=\"debug\" value=\"false\"></prop> "+
 "<prop name=\"PATTERN_IMPL_CLASS\" value=\"com.batch.streams.inputstreams.EchoReader\"></prop>"+
 "</props> "+
 "<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>

"+
 "</bds> "+

 "</batch-data-streams> "+
 "<props> "+
 "<prop name=\"EnablePerformanceMeasurement\" value=\"false\"></prop>"+
 "<prop name=\"EnableDetailedPerformanceMeasurement\" value=\"false\"></prop>"+
 "<prop name=\"debug\" value=\"false\"></prop> "+
 "<prop name=\"BATCHRECORDPROCESSOR\" value=\"com.batch.steps.Echo\"></prop>"+
 "</props> "+
 "</job-step> "+
 "</job>";

 /* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#HttpServlet()
 */
public SchedulerWrapperServlet() {

super();
}

/* (non-Javadoc)
 * @see javax.servlet.GenericServlet#init()
 */
public void init() throws ServletException {

// TODO Auto-generated method stub
super.init();

if (schedulerClusterName==null){
schedProxy = new JobSchedulerProxyImpl(schedulerHostName, schedulerNodeName, schedulerServerName,

schedulerBootstrapPort);
}
else {

schedProxy = new JobSchedulerProxyImpl(schedulerClusterName, schedulerBootstrapPort,
schedulerHostName);

}
}

/* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#doGet(HttpServletRequest request, HttpServletResponse response)
 */
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,

IOException {
String cmd = request.getParameter("command");
Chapter 14. Create agile batch by implementing trigger mechanisms 255

if(cmd != null && !cmd.equals("")) {

if(cmd.equalsIgnoreCase("submit")) {
_submitJob(request, response);

} else if(cmd.equalsIgnoreCase("cancel")) {
_cancelJob(request,response);

} else if(cmd.equalsIgnoreCase("getJobStatus")) {
_getJobStatus(request, response);

} else if(cmd.equalsIgnoreCase("getJobRC")) {
_getJobRC(request, response);

}
}

}

private void _getJobRC(HttpServletRequest request, HttpServletResponse response) {
try {

String jobId = request.getParameter("jobid");
if(jobId != null && !jobId.equals("")) {

int jobRC = schedProxy.getJobRC(jobId);
PrintWriter pw = response.getWriter();
pw.print("RC of Job: " + jobId + " is: " + jobRC);

}
} catch (RemoteException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (SchedulerException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InvalidJobIDException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InvalidOperationException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

private void _getJobStatus(HttpServletRequest request, HttpServletResponse response) {
try {

String jobId = request.getParameter("jobid");
if(jobId != null && !jobId.equals("")) {

int status = schedProxy.getJobStatus(jobId);
PrintWriter pw = response.getWriter();
pw.print("Status of Job: " + jobId + " is: " + status);

}
} catch (RemoteException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (SchedulerException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InvalidJobIDException e) {
// TODO Auto-generated catch block
e.printStackTrace();
256 Batch Modernization on z/OS

}
}

private void _cancelJob(HttpServletRequest request, HttpServletResponse response) {
try {

String jobId = request.getParameter("jobid");
if(jobId != null && !jobId.equals("")) {

schedProxy.cancelJob(jobId);
PrintWriter pw = response.getWriter();
pw.print("Cancelled Job: " + jobId);

}
} catch (RemoteException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (SchedulerException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InvalidOperationException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InvalidJobIDException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

private void _submitJob(HttpServletRequest request, HttpServletResponse response) {
try {

//String jobId = schedProxy.submitJob(simpleCIJob);
String jobId = schedProxy.submitJob(simpleEchoJob);
PrintWriter pw = response.getWriter();
pw.print("Submitted Job: " + jobId);

} catch (RemoteException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (SchedulerException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (JCLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (JobSubmissionException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}
/* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response)
 */
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,

IOException {
// TODO Auto-generated method stub

}
}

Chapter 14. Create agile batch by implementing trigger mechanisms 257

4. Now, export the SchedulerWrapperTest application as a *.war file. Right-click
SchedulerWrapperTest in the Eclipse environment, and choose Export as shown in
Figure 14-25.

Figure 14-25 Export SchedulerWrapperTest from Eclipse environment
258 Batch Modernization on z/OS

5. Select WAR file as type for export, and click Next, as shown in Figure 14-26.

Figure 14-26 Export SchedulerWrapperTest as Web module

6. Select the destination for the exported SchedulerWrapperTest WAR file, and click Finish,
as shown in Figure 14-27.

Figure 14-27 Export Web project to the local file system

The SchedulerWrapperTest.war file will be created in the directory and can now be
installed in the WebSphere environment for testing the application.
Chapter 14. Create agile batch by implementing trigger mechanisms 259

You have to log in to the administrative console on the local UTE or on the z/OS
environment depending where you want to install the application. The installation process
is the same in both environments. Select Applications Install New Application, as
shown in Figure 14-28.

Figure 14-28 SchedulerWrapperTest.war - Install application

7. Browse to the SchedulerWrapperTest.war file on your local file system, type
/SchedulerWrapperTest as context root, and click Next. See Figure 14-29.

Figure 14-29 SchedulerWrapperTest.war - Path to application and context root

If you install the application in your local UTE, there is only one server where you can
install the WAR file. If you want to install the application on a different WebSphere
260 Batch Modernization on z/OS

environment configuration, select a server that hosts a Scheduler and not a Grid
Execution Endpoint. For all the other installation options, select the default.

8. After you installed the application successfully, start the application. Now, you are ready to
use the application where you can submit, cancel, and restart Echo jobs, or you can also
get the job status or the job return code from submitted jobs.

9. Next, call the application by entering the following address in the browser. The servlet URL
is:

http://<hostname>:<port>/SchedulerWrapperTest/SchedulerWrapperServlet

The servlet usage is simple. Use the servlet URL, and add the command that you want to
set up as follows:

– <servleturl>?command=submit to submit an Echo job
– <servleturl>?command=cancel&jobid=xxx to cancel a job with a special job id
– <servleturl>?command=getJobStatus&jobid=xxx to get the job status
– <servleturl>?command=getJobRC&jobid=xxx to get the job return code

The Job Scheduler Web Services interface
The Job Scheduler for Web Services provides the following interfaces for driving a
WebSphere XD Compute Grid job from a Web Services client program. Through this interface
you can perform the following actions like provided in the JMC:

� cancelJob(jobid)
� cancelRecurringRequest(request)
� getBatchJobRC(jobid)
� getJobDetails(jobid)
� getJobOutput(jobid)
� getJobStatus(jobid)
� modifyRecurringRequest(request)
� purgeJob(jobid)
� removeJobFromRepository(job)
� restartJob(jobid)
� resumeJob(jobid)
� saveJobToRepositoryAndSubmit(xJCL,job,replace)
� saveJobToRepository(xJCL,job,replace)
� showAllJobs()
� showAllRecurringRequests()
� showJobFromRepository(job)
� showRecurringJobs(request)
� submitJobFromRepository(job)
� submitJob(xJCL)
� submitRecurringRequest(job)
� suspendJob(jobid,seconds)
Chapter 14. Create agile batch by implementing trigger mechanisms 261

Refer to the Job Scheduler Web Services Web Service Description Language (WSDL) file, as
shown in Figure 14-30, for detailed descriptions of the Web services interface.

Figure 14-30 Job Scheduler Web Service interface

Tools for Web Services development
Tools are provided to assist with the following aspects of Web Services development:

Discover Browse the UDDI Business Registries or WSIL documents to locate
existing Web Services for integration.

Create or Transform Create bottom-up Web Services from existing artifacts, such as Java
beans and enterprise beans. Create top-down Web Services from
WSDL discovered from others or created using the WSDL Editor.

Build Wrap existing artifacts as SOAP accessible services and describe
them in WSDL. The Web Services wizards assist you in generating a
Java client proxy to Web Services described in WSDL and in
generating Java bean skeletons from WSDL.

Deploy Deploy Web Services into a variety of test environments.
262 Batch Modernization on z/OS

Test Test Web Services running locally or remotely in order to get instant
feedback.

Develop Generate sample applications to assist you in creating your own Web
Services client application.

Publish Publish Web Services to a UDDI v2 or v3 Business Registry,
advertising your Web Services so that other businesses and clients
can access them.

14.3 Exploiting enhanced features of Tivoli Workload
Scheduler for z/OS

Tivoli Workload Scheduler for z/OS as part of the IBM Tivoli Dynamic Workload Automation
portfolio provides mainframe batch and real-time workload scheduling. Tivoli Workload
Scheduler on z/OS is a calendar- and event-based enterprise batch job scheduler for
mainframe environments.

14.3.1 Strengths of Tivoli Workload Scheduler for z/OS

In the following sections, we provide an overview of the strengths of Tivoli Workload
Scheduler:

� Calendar based and event based
� End-to-end solution
� Single point of control
� Scalability
� High availability
� Fault tolerance
� Dynamic scheduling: Integration with Workload Manager
� Triggers on System Console messages
� Automated job rerun
� Critical Path
� Exposing services into WEB API, Java EE REXX calls, and REXX-based interface
� Reporting
� Integrated file transfer

Calendar based and event based
Tivoli Workload Scheduler for z/OS is a leading scheduling solution in combining extensive
calendar and event triggering services.

� Calendar services

Tivoli Workload Scheduler for z/OS builds the plans from your description of the
production workload. It builds both high-level (long-term) plan and detailed (current) plans.
You can produce trial plans to forecast future workloads (for example, to simulate the
effects of changes to your production workload, calendar, and installation).

Note: There is no sample available at the moment, but to develop the code should work as
using the EJB interface.
Chapter 14. Create agile batch by implementing trigger mechanisms 263

� Event Triggering services

Tivoli Workload Scheduler for z/OS enables unexpected work to be added automatically to
the plan. On demand scheduling can be driven by jobs that arrive to JES, resources that
change status to available, data sets that are revealed on the system.

End-to-end solution
Tivoli Dynamic Workload Automation components allow IT organizations to establish a virtual
control point to build and automate a repeatable, scalable service execution process across
the enterprise. It provides the ability to consolidate enterprise-wide batch and event-triggered
workloads spanning multiple applications and systems, giving IT organizations efficient
control and management of cross-enterprise workloads.

The Tivoli Workload Automation family components can be flexibly deployed into any
solution-based environment. Customers can choose between mainframe-centric,
distributed-centric or peer-to-peer parallel end-to-end enterprise scheduling solutions.
Extensive awareness and interfacing is provided to SAP, PeopleSoft and Oracle business
applications. Additionally, the end to end solution can be extended to include Tivoli Dynamic
Workload Broker agent, which routes workloads to the best available resources on demand,
based on user policies and IT resource availability. It also automatically identifies newly
provisioned IT resources and incorporates them into the workload matching pool.

Single point of control
Tivoli Workload Scheduler for z/OS integrates with Tivoli Enterprise Portal. This integration
enables you to monitor job status changes, alert conditions and critical paths, and also to
combine Tivoli Workload Scheduler events with other application and system events. You will
have a unified integrated interface, bringing up in a single window different view of resources
in the enterprise. The integration is easily customizable and gives you the possibility to be
alerted at any situation which is relevant in your environment, making it faster to proactively
react to anomalous conditions.

Scalability
Tivoli Workload Scheduler for z/OS has a proven track record of scaling beyond 250,000 jobs
a day in real customer production environments.

High availability
High availability for any Tivoli Dynamic Workload Automation solution is guaranteed by fail
over mechanisms. Stand-by Controller, alternate workstation, backup and flip-flop plans are
some of the features used to minimize the risk of outages in the z/OS production workload.
Backup master, full status fault tolerant agents implement the fail over mechanism in
end-to-end environment.

Fault tolerance
The end-to-end solution gives built-in fault tolerance, using the capability of the master
domain manager to generate the plan and distribute it to the agents in the network. The plan
contains a complete set of scheduling instructions, so that the agent can manage workload
and resolve dependencies even in the event of a loss of communication with the master.
264 Batch Modernization on z/OS

Dynamic scheduling: Integration with Workload Manager
Tivoli Workload Scheduler for z/OS integrates with IBM Workload Manager, a z/OS
component, to provide the ability to dynamically route workloads to best available System z
resources, based on resource availability and capacity. Integration with WLM is provided in
two different ways:

� Using WLM Scheduling Environment (SE)

WLM SE is an attribute of Tivoli Workload Scheduler z/OS operations and WLM SE
availability status is checked before jobs submission to avoid queuing jobs that cannot be
executed. Jobs are automatically re-submitted at SE availability status change.

� Using WLM Service Class.

A Tivoli Workload Scheduler for z/OS operation which is on a Critical Path (see Critical
Path section) and is running late can be automatically promoted to a better performance
WLM Service Class. You can associate different WLM Service Classes to different
operations, to flexibly accelerate or slow down your workload.

Triggers on System Console messages
Tivoli Workload Scheduler for z/OS integrates with Tivoli System Automation for z/OS and AF
Operator to bilaterally facilitate automatic scheduling of workflows.

Integration with Tivoli System Automation for z/OS provides scheduling teams with complete
visibility and control over automated System z resources from within the scheduling
infrastructure, while, on the other side, allows to automatically trigger processes based on
messages logged at System Console.

The same capability—automatic triggering of processes based on messages logged on
System Console— is provided by Tivoli Workload Scheduler z/OS integration with AF
Operator.

Automated job rerun
Tivoli Workload Scheduler for z/OS provides a Restart and Cleanup function to automatically
restart any job in the plan (both failing and successfully) from any step, including:

� Capability to recover the data set or catalog configuration to the state previous to job
running.

� Capability to restart the job at any step with optional adjustment of GDG generation
numbers to match the ones generated in one of the previous job runs.

� Automatic determination of “restartable” steps, based on referenced data sets, and “best”
step to restart the job from.

� Data set cleanup and data set protection.

Critical Path
Tivoli Workload Scheduler for z/OS provides a Critical Path feature to automatically manage
SLAs for milestone jobs. Milestone jobs are jobs that are critical to the business and must not
miss their deadlines. The user will flag Critical Jobs and Tivoli Workload Scheduler for z/OS
will automatically calculate the Critical Path to those jobs and promote jobs on the Critical
Paths which are late and might affect the Critical Jobs deadline. The promotion algorithm
uses the WLM integration.
Chapter 14. Create agile batch by implementing trigger mechanisms 265

Exposing services into WEB API, Java EE REXX calls, and REXX-based
interface
Open Java EE and Web Services interfacing allow IT organizations to consolidate custom
applications and services into the service execution process. REXX-based programming
interfaces are also available to flexibly communicate with Tivoli Workload Scheduler for z/OS.

Reporting
Advanced reporting capabilities are going to be provided this year as part of the Tivoli
Dynamic Workload Console. Standard and user defined reports will enable to display product
plan details, track and tune workload capacity during time, control the timely workload
execution according to goals and SLA, and so forth.

Integrated file transfer
With WebSphere MQFDI and Tivoli Workload Scheduler for z/OS or distributed IBM provides
an integrated file transfer capability.

14.3.2 Integrate Tivoli Workload Scheduler for z/OS with WebSphere XD
Compute Grid

WebSphere XD Compute Grid is an execution run time for enterprise grid and java batch
applications. It is not an enterprise scheduler. Enterprise schedulers serve as an integration
point where the entire batch infrastructure is managed centrally. Artifacts such as
enterprise-wide batch schedulers, dependencies among jobs and external resources, the
location for where the job should execute, and so on are defined and managed at this point.
WebSphere XD Compute Grid works alongside enterprise schedulers and is essentially one
destination where enterprise schedulers can dispatch to. WebSphere XD Compute Grid’s
primary objectives are to execute batch jobs with high performance, recoverability, and
availability.

On the z/OS platform, WebSphere XD Compute Grid integrates with JES and allows jobs to
be submitted using JCL. Because enterprise schedulers are familiar with how to manage JES
batch jobs, they by proxy are able to manage WebSphere XD Compute Grid jobs. Note that
on z/OS, a native MQ client is used for job submission and monitoring, therefore the job
submissions do not require the initialization and termination of a Java Virtual Machine,
ensuring high performance. On distributed platforms, a Java-based adapter client bridges the
gap, again by proxy, between the enterprise scheduler and Compute Grid.

Enterprise schedulers centrally manage operational plans and other such scheduler-specific
artifacts. These schedulers then dispatch batch jobs to WebSphere XD Compute Grid using
JES, on distributed platforms, the details differ but the concept remains the same.
WebSphere XD Compute Grid then executes the job, assuring that the defined qualities of
service are met, and notifies the enterprise scheduler of job state information and other such
execution data.

WebSphere XD Compute Grid complements enterprise schedulers such as Tivoli Workload
Scheduler, Control-M, Zeke, and so on, but it does not replace them.
266 Batch Modernization on z/OS

WebSphere XD Compute Grid and enterprise schedulers (such as Tivoli Workload
Scheduler) have the following differences:

� WebSphere XD Compute Grid provides:

– Batch programming model

– Batch development tools

– Batch execution environment (called batch container)

– Checkpoint or restart and failover capabilities

– Job operations such as submit, cancel, stop, pause, and resume

– Classification or WLM for batch jobs (requires object-oriented on distributed)

– Job management console (plus command-line console and APIs)

– Job logs (viewable or retrievable through JMC, command-line console, or APIs)

– Job classes (rules for how much CPU, threads, and so forth that batch jobs can
consume)

– High availability or scalability for job scheduler and batch container

– Support for both WebSphere Application Server-hosted batch applications and native
applications

– Integration with enterprise schedulers, so that the enterprise scheduler can be the
superior job scheduler that dispatches jobs to the WebSphere XD Compute Grid job
scheduler (called meta-scheduling), which enables WebSphere XD Compute Grid jobs
to be part of a larger workload that is scheduled by the enterprise scheduler

� Enterprise schedulers provide:

– Ability to define workload schedule with dependencies

– Ability to execute (JES jobs on z/OS or UNIX and bat commands on UNIX or Windows)

– Ability to execute based on time or date (once or recurring) plus a trigger based on
resource (that is file)

– Ability to conditionally execute next item in the schedule based on result of previous
thing in schedule

– On z/OS, basic operations console to visualize the workload

Because an external scheduler does not know how to directly manage WebSphere XD
Compute Grid jobs, a proxy model is used. The proxy model uses a regular JCL job to submit
or monitor the WebSphere XD Compute Grid batch job. The JCL job step invokes a special
program provided by the product, named WSGrid, an application which submits and monitors
a batch job. WSGrid writes intermediary results of the job into the JCL job’s joblog and does
not return until the underlying job is complete, thus providing a synchronous execution model.
Because the external scheduler can manage JCL jobs, it can manage a JCL job that invokes
WSGrid. Using this pattern, the external scheduler can indirectly manage a job. An optional
plug-in interface in the Job Scheduler enables a user to add code that updates the external
scheduler operation plan to reflect the unique state of the underlying job, such as job started,
step started, step ended, job ended. The WSGrid program is written with special recovery

Note: Enterprise schedulers have more powerful scheduling rules, such as
time/date/resource (file) and does job choreography. WebSphere XD Compute Grid has
only time/date scheduling and does not do job choreography. WebSphere XD Compute
Grid does do multi-step jobs with conditional execution among the job steps based on
return codes from the batch applications.
Chapter 14. Create agile batch by implementing trigger mechanisms 267

processing so that if the JCL job is cancelled, the underlying job is cancelled also, thus
ensuring synchronized life cycle of the two jobs.

The external scheduler interface uses the Java Message Service (JMS) as a bidirectional
communication mechanism between an external client and the Job Scheduler. The interface
uses platform messaging as the JMS provider. Integrating the Job Scheduler with an external
workload scheduler is achieved by configuring and securing the Job Scheduler, enabling the
interface by configuring the Job Scheduler message-driven interface, the service integration
bus and the JMS queues, then using the WSGrid utility to run grid jobs.

WebSphere XD Compute Grid jobs can optionally be controlled through an external workload
scheduler, such as Tivoli Workload Scheduler. Prepare for this integration by following these
required steps in the WebSphere XD Compute Grid environment:

1. Configure the WebSphere Service Integration Bus (SIBus) and required JMS artifacts.

2. Install the JobSchedulerMDI application in the same server or cluster that is hosting the
Job Scheduler.

3. Configure bus and JMS security if security is enabled in your environment.

4. Optionally implement and install the WSGridNotification SPI.

5. Use WSGrid utility as the executable launched by the external workload scheduler.

Figure 14-31 shows the job control by an external workload scheduler for the z/OS platform
environment. In this diagram, Tivoli Workload Scheduler is shown as an example workload
scheduler and shows the flow of scheduled jobs from Tivoli Workload Scheduler to WSGrid,
through Job Scheduler to the Grid Execution Endpoint and from the Grid Execution Endpoint
back to Tivoli Workload Scheduler z/OS using zConnector.

Figure 14-31 Flow of dynamic job scheduling with Tivoli Workload Scheduler for z/OS

Tivoli Workload Scheduler z/OS

JES

//JOB1 JOB " … "
//STEP1 PGM=IDCAMS
//STEP2 PGM=WSGRID,
//SYSIN DD *
// jndi-name="ejb/DOIT"
// …

WebSphere XD
Compute Grid

Job Scheduler

<job name= "JOB1" …
<job-step name="STEP2">
<jndi-name>”ejb/DOIT”</jndi-name>
…

WSGrid

Operation
Plan

Status Listener Mgr

TWS
Listener

other
Listener…

‘MODIFY CPE XT’
(update curr ent
operation plan)

1
2

3

JCL

WebSphere XD
Compute Grid

Grid Execution
Endpoi nt

Job

WebSphere XD
Compute Grid

Grid Execution
Endpoi nt

Job

5

6

JCL

Message

7

W SGrid properties f ile
268 Batch Modernization on z/OS

The flow shown in the figure is as follows:

1. Tivoli Workload Scheduler determines which job to execute, for example based on
operational plans.

2. Tivoli Workload Scheduler submits the corresponding JCL to JES.

3. The WSGrid connector is initialized (the submitted JCL contains a traditional pgm=WSGRID
statement) and passes the xJCL as a parameter.

4. WSGrid submits the xJCL to the WebSphere XD Compute Grid Job Scheduler (JS).

5. The WebSphere XD Compute Grid Job Scheduler, using the z/OS workload manager
(WLM), selects the best Grid Execution Endpoint (GEE) to which to dispatch the batch job.

6. Job logs, job execution status data, and the job and step return codes are transmitted to
the WSGrid connector. The job executes, with its output directed to SYSOUT, like a
standard MVS batch job.

7. Batch jobs executing within the Grid Execution Endpoint can dynamically submit new jobs
through Tivoli Workload Scheduler z/OS.

Tivoli Workload Scheduler is already very often used to manage batch workloads on the z/OS
platform. While Java batch executed inside a WebSphere environment is attractive, a way to
control the WebSphere XD Compute Grid jobs through Tivoli Workload Scheduler is needed.

Figure 14-32 puts into perspective a WebSphere XD Compute Grid batch infrastructure,
traditional batch infrastructure, and potential OLTP infrastructure where the workload is
scheduled by Tivoli Workload Scheduler for z/OS.

Figure 14-32 Scheduling traditional batch, WebSphere XD Compute Grid batch and OLTP workload
with Tivoli Workload Scheduler z/OS

z/OS
Tivoli Workload

Scheduler for z/OS

JES

JCL JCL
WSGrid

IHSIHS

WebSphere XD
Compute Grid z /OS

Job Scheduler

WebSphere XD
Compute Grid z/OS

Grid Execution Endpoint

WebSphere XD
C ompute Grid z/OS

Grid Execution Endpoint

JES Initiators WebSphere z/OS

OLTP

DB2 z/OS

Batch OLTP
Chapter 14. Create agile batch by implementing trigger mechanisms 269

More information about the integration of WebSphere XD Compute Grid with external
schedulers is provided in the specific Information Center:

� For Job Scheduler configuration, see:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp?topic=/com.ibm.
websphere.gridmgr.doc/info/scheduler/tcgconf.html

� For security information, see:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/topic/com.ibm.websphere.g
ridmgr.doc/info/scheduler/tcgexsched.html

� For information about how to run WebSphere XD Compute Grid jobs with the WSGrid
utility, see:

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp?topic=/com.ibm.
websphere.gridmgr.doc/info/scheduler/ccgwsgrid.html

14.4 Triggering a DB2 stored procedure

You can trigger DB2 stored procedures using any of the following techniques.

� SQL “CALL” statement

Every program (written in any language) that can connect to DB2 and supports calling
stored procedures is suitable to trigger DB2 stored procedures using the SQL CALL
statement.

� MQ message

In this case a MQ message would be written to a dedicated queue. If the stored procedure
needs input parameters, they must be included in the input message. If DB2 MQListener is
started, the input message is read and passed to the stored procedure. The stored
procedure output message would then be stored by MQListener in the reply queue.

� Web Services

DB2 allows you to access your DB2 data and applications as Web Services. Also, by using
DB2 User Defined Functions (UDF) you can call other Web Services (for example within a
stored procedure or simply by using SQL statements).

In the following sections, we describe how to trigger stored procedures by sending an MQ
message or calling a Web Service.

14.4.1 Using WebSphere MQ to trigger a DB2 stored procedure

DB2 for z/OS provides an asynchronous listener, MQListener. MQListener is a framework for
tasks that read from WebSphere MQ queues and call DB2 stored procedures with messages
as those messages arrive.

MQListener combines messaging with database operations. You can configure the
MQListener daemon to listen to the WebSphere MQ message queues that you specify in a
configuration database. MQListener reads the messages that arrive from the queue and calls
DB2 stored procedures using the messages as input parameters. If the message requires a
reply, MQListener creates a reply from the output that is generated by the stored procedure.
The message retrieval order is fixed at the highest priority first, and then within each priority
the first message received is the first message served.
270 Batch Modernization on z/OS

http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp?topic=/com.ibm.websphere.gridmgr.doc/info/scheduler/tcgconf.html
http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/topic/com.ibm.websphere.gridmgr.doc/info/scheduler/tcgexsched.html
http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r1/index.jsp?topic=/com.ibm.websphere.gridmgr.doc/info/scheduler/ccgwsgrid.html

MQListener runs as a single multi-threaded process under z/OS UNIX System Services.
Each thread or task establishes a connection to its configured message queue for input. Each
task also connects to a DB2 database on which to run the stored procedure. The information
about the queue and the stored procedure is stored in a table in the configuration database.
The combination of the queue and the stored procedure is a task.

MQListener tasks are grouped together into named configurations. By default, the
configuration name is empty. If you do not specify the name of a configuration for a task,
MQListener uses the configuration with an empty name.

There is support for both one-phase and two-phase commit environments. A one-phase
commit environment is where DB and MQ interactions are independent. A two-phase commit
environment is where DB and MQ interactions are combined in a single unit of work.

The MQListener UNIX System Services command db2mqln1 is the name of the executable for
one phase and db2mqln2 is the name of the executable for two phase.

Configuring MQListener system environment
To trigger a stored procedure from MQ, you first have to configure your WebSphere MQ and
DB2 environment to work together. Therefore, you must go through some installation tasks
(such as creating queues, creating the DB2 table SYSMQL.LISTENERS, and so forth). The
systems programming activities to configure the environment are beyond the scope of this
book.

After the environment is configured, some new message queues are created in the system.
These queues are used internally by MQListener. In our test system, we created the following
queues:

ADMIN_Q Admin queue
BACKOUT_Q Backout queue
IN_Q Input queue having a backout queue with threshold=3
REPLY_Q Output queue or reply queue
DEADLETTER_Q Dead letter queue

Creating the DB2 stored procedure to process MQ message
To test the WebSphere MQ trigger mechanism we use the same DB2 Java stored procedure
BATCH.JAVASTP that we developed in 6.3, “Java in DB2 for z/OS” on page 64. This stored
procedure generates PDF files based on XML input data and stores these files in DB2, a
UNIX System Services file system or both. Therefore, if the BATCH.JAVASTP procedure is
missing in your environment, first create this procedure as described in 6.3, “Java in DB2 for
z/OS” on page 64.

In this section, we describe only the necessary changes to start the batch stored procedure
additionally from WebSphere MQ.

Java stored procedure
DB2 MQListener reads messages from WebSphere MQ queues and calls DB2 stored
procedures. When the stored procedure completes its work, MQListener reads the output
message from the stored procedure and writes this message to the configured reply queue.

Note: You can download all the necessary material to create this example (such as the
Eclipse workspace, DDL, and so forth) as described in Appendix C, “Additional material”
on page 453.
Chapter 14. Create agile batch by implementing trigger mechanisms 271

Therefore, the stored procedure that MQListener calls must have the following two
parameters:

� Input parameter for incoming message in character format
� Output parameter for outgoing message in character format

The Java class to generate PDF files needs two different parameters, but the incoming
message is only a single character string. Further, we want to characterize the current
running process with a jobID. Adding a jobID is necessary if you want to process many
incoming messages. The output message should contain this jobID, so you can see which
jobs have finished.

Therefore, we need create an incoming message with these parameters separated by the
colon (:) in one single character string as shown in Example 14-14.

Example 14-14 Sample incoming message

ReportJob01:store_fs_db2:/u/wagnera/javastp/pdfs

For the Java stored procedure, you need to create a method with the following features and
capabilities:

� Contain one input and one output parameter
� Split the incoming message into three different parameters
� Call the Java class to generate PDF files
� Define the output message

Example 14-15 shows the content of method triggeredByMQ, which is called by DB2 when
the stored procedure is called by MQListener. You can find this source code in “Triggering
Java Stored procedure to generate PDF files” on page 450.

Example 14-15 Method triggeredByMQ from Java Class GenPdf

public static void triggeredByMQ(String inMsg, String[] outMsg)
throws SQLException {

String temp = inMsg;
String jobID = temp.substring(0, temp.indexOf(":"));
temp = temp.substring(temp.indexOf(":") + 1);
String action = temp.substring(0, temp.indexOf(":"));
String pdfDir = temp.substring(temp.indexOf(":") + 1);

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

outMsg[0] = new String("PDF(s) fuer JobID '"
+ jobID + "' successfully created.");

}

Finally, build and copy the JAR file with the Ant script by right-clicking deploy.xml and
selecting Run As Ant Build as described in “Deploying the Java files to the UNIX System
Services file system” on page 72.

Defining the stored procedure in DB2
Next, you need to redefine the new Java stored procedure that MQListener calls, because in
this case, the triggeredByMQ method must be issued (instead of runGenerate) and this stored
procedure has different input and output parameter as BATCH.JAVASTP. Therefore, you need
272 Batch Modernization on z/OS

to create a new procedure called BATCH.MQ_TRIGGERED_STP in DB2 as shown in
Example 14-16.

Example 14-16 Define Java stored procedure for MQListener

CREATE PROCEDURE BATCH.MQ_TRIGGERED_STP
 (IN IN_MSG VARCHAR(115)
 ,OUT OUT_MSG VARCHAR(100))
 EXTERNAL NAME 'com.ibm.itso.sample.GenPdf.triggeredByMQ'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 NOT DETERMINISTIC
 FENCED
 CALLED ON NULL INPUT
 MODIFIES SQL DATA
 NO DBINFO
 NO COLLID
 WLM ENVIRONMENT D9GGWLMJ
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 PROGRAM TYPE SUB
 SECURITY DB2
 INHERIT SPECIAL REGISTERS
 STOP AFTER SYSTEM DEFAULT FAILURES
 COMMIT ON RETURN NO ;

GRANT EXECUTE ON PROCEDURE BATCH.MQ_TRIGGERED_STP TO PUBLIC;

After changing the Java code, do not to refresh the current WLM application environment by
running the RefreshWLM program, which is in the Eclipse UtilSTP project, as described in
“Refreshing the WLM Application Environment” on page 74.

Testing the stored procedure locally
Before using MQListener to start the Java stored procedure, test this stored procedure.
Change the TestSTP Java program in the UtilSTP program as shown in Example 14-17. The
first parameter for the stored procedure contains one character string with three internal
parameters, separated by a colon (:). You can find this source code in “Triggering Java Stored
procedure to generate PDF files” on page 450.

Example 14-17 Testing stored procedure “MQ_TRIGGERED_STP” locally

String inMsg = "TestLocal:store_fs_db2:/u/wagnera/javastp/pdfs";

System.out.println("Call STP.......");
CallableStatement cs = con.prepareCall("CALL BATCH.MQ_TRIGGERED_STP(?, ?)");
cs.setString(1, inMsg);
cs.registerOutParameter(2, java.sql.Types.VARCHAR);
cs.execute();
System.out.println("Call STP ended: " + cs.getString(2));

cs.close();

Configuring MQListener tasks
As part of configuring MQListener in DB2 for z/OS, you must configure at least one
MQListener task. These tasks are UNIX System Services processes that listen on assigned
Chapter 14. Create agile batch by implementing trigger mechanisms 273

queues and start the configured stored procedure for this queue to process the incoming
message. Normally the system programmer is responsible for configuration and starting
MQListener tasks. Therefore, in this book we describe only the necessary steps to configure
and start a MQListener.

Use the MQListener command, db2mqln1 or db2mqln2, to configure and start MQListener
tasks. Issue the command from the z/OS UNIX System Services command line in any
directory. Alternatively, you can put the command in a file, grant execute permission, and use
the BPXBATCH utility to invoke the script from JCL.

To configure and start DB2 MQListener tasks, set up the UNIX System Services environment
for DB2 and MQ connectivity. Edit the .profile file in your UNIX System Services home
directory and append the lines as shown in Example 14-18). The values for LIBPATH, PATH,
and STEPLIB are system specific. You need to change them to fit your environment.

Example 14-18 Append data to UNIX System Services user profile .profile

#MQLISTENER
export MQLNHOME=/usr/lpp/db2/d9gg/db2910_mql/listener
export PATH=$PATH:$MQLNHOME/bin
export LIBPATH=$LIBPATH:$MQLNHOME/lib
export STEPLIB=$STEPLIB:DB9G9.SDSNEXIT:DB9G9.SDSNLOAD:DB9G9.SDSNLOD2
export STEPLIB=$STEPLIB:MQ700.SCSQLOAD:MQ700.SCSQAUTH

Example 14-19 shows the command to add a new MQListener configuration. The add
parameter with the db2mqln1 or db2mqln2 command updates a row in the DB2 table,
SYSMQL.LISTENERS. To get help with the command and the valid parameters, issue
db2mqln1/db2mqln2 help <command>.

Example 14-19 Add new MQListener

db2mqln1/db2mqln2 add
 -ssID <subsystem name>
 -config <configuration name>
 -queueManager <queuemanager name>
 -inputQueue <inputqueue name>
 -procName <stored-procedure name>
 -procSchema <stored-procedure schema name>
 -numInstances <number of instances

To start the MQListener task, issue the command shown in Example 14-20.

Example 14-20 Start MQListener

db2mqln1/db2mqln2 run
 -ssID <subsystem name>
 -config <configuration name>
 -adminQueue <adminqueue name>
 -adminQMgr <adminqueuemanager name>

To stop or restart a MQListener task, issue the command shown in Example 14-21.

Example 14-21 Stop/Restart MQListener

db2mqln1/db2mqln2 admin
 -adminQueue <adminqueue name>
 -adminQMgr <adminqueuemanager name>
274 Batch Modernization on z/OS

 -adminCommand shutdown/restart

To remove messaging tasks from your environment, issue the command shown in
Example 14-22.

Example 14-22 Remove task from environment

db2mqln1/db2mqln2 remove
 -ssID <subsystem name>
 -config <configuration name>
 -queueManager <queuemanager name>
 -inputQueue <inputqueue name>

To display information about the configuration, issue the command shown in Example 14-23.

Example 14-23 Display information about configured tasks

db2mqln1/db2mqln2 show
 -ssID <subsystem name>
 -config <configuration name> | all

Now, you can start the MQListener tasks. In our example, we use the following configuration:

DB2 system D9G1
Queue Manager MQG1
Queue for input messages WAGNERA.DB2.REQUEST
Queue for output messages WAGNERA.DB2.REPLY
Queue for failing messages WAGNERA.DB2.BACKOUT
DB2 stored procedure BATCH.MQ_TRIGGERED_STP

We define our MQListener task with the UNIX System Services command shown in
Example 14-24.

Example 14-24 Define MQListener task

db2mqln1 add -ssid D9G1 -inputQueue WAGNERA.DB2.REQUEST -queueManager MQG1
-procSchema BATCH -procName MQ_TRIGGERED_STP

As mentioned previously, when configuring the MQListener system environment, we created
an admin queue called ADMIN_Q. You need this information to start, stop, and restart the
MQListener task. In this case, we start the MQListener task with the UNIX System Services
command shown in Example 14-25.

Example 14-25 Start MQListener task

db2mqln1 run -ssID D9G1 -adminQueue ADMIN_Q -adminQMgr MQG1

For every message that is stored in the input queue, this MQListener task performs the
following tasks:

1. Reads the message.

2. Calls the configured DB2 stored procedure BATCH.MQ_TRIGGERED_STP by sending
this message as the first (IN) parameter of our stored procedure.

3. Store the output message from the stored procedure, the second (OUT) parameter of the
stored procedure, in the replyqQueue.
Chapter 14. Create agile batch by implementing trigger mechanisms 275

You can stop the MQListener task with the UNIX System Services command shown in
Example 14-26.

Example 14-26 Stop MQListener task

db2mqln1 admin -adminQueue ADMIN_Q -adminQMgr MQG1 -adminCommand shutdown

Binding the JCC driver packages
Before you trigger a Java stored procedure with WebSphere MQ, you must bind the
necessary JDBC driver packages.

Because our stored procedure is written in Java, we use DB2 JCC driver to communicate with
the database. This driver needs packages that must be bound to the system. Because the
MQListener program uses a special DB2 collection, you must bind JCC packages into this
collection. In our test setup, MQListener is using collection LSNR.

To bind the JCC packages, you can use class com.ibm.db2.jcc.DB2Binder that is included in
the DB2 driver file db2jcc.jar. One method to bind the JCC packages is to create a shell
script in the UNIX System Services home directory containing the necessary commands and
start the script. Example 14-27 shows the content of this shell script. The values for
JDBC_Path, Url, Uid, Pw, and Col are system specific. You must change them to fit your
environment.

Example 14-27 Binding DB2 JCC packages

JDBC_Path=/usr/lpp/db2/d9gg/db2910_jdbc
Url=jdbc:db2://<server>:<port>/<DB2Location>
Uid=<User>
Pw=<Pw>
Col=LSNR

export CLASSPATH=$CLASSPATH:$JDBC_Path/classes/db2jcc.jar
export CLASSPATH=$CLASSPATH:$JDBC_Path/classes/db2jcc_license_cisuz.jar

java com.ibm.db2.jcc.DB2Binder -url $Url -user $Uid -password $Pw -collection $Col

Testing the application to send MQ message
To test DB2 MQListener, you need to send a message to the input queue that was used when
you defined the MQListener task, (In our test system, this is WAGNERA.DB2.REQUEST.)

To test MQListener easily, we created a sample J2EE application, as shown in Figure 14-33.
A simple servlet acts as a Web interface to the user. We used this same generic application
for the sample in 14.2, “Using WebSphere XD Compute Grid trigger mechanisms” on
page 234.

Figure 14-33 Dynamic batch sample application for use with MQListener

WebSphere Application Server for z/OS

DynamicBatch Servlet
TriggerBatchBean
(Session Bean)

MQ
input queueSEND MSG
276 Batch Modernization on z/OS

Figure 14-34 shows this servlet looks from a user perspective. It consists of a form with two
parameter input fields as well as a Submit and Cancel button. By clicking Submit, the servlet
calls a Session Bean called TriggerBatchBean. This bean contains the logic to check input
parameter and send a message to queue WAGNERA.DB2.REQUEST.

Figure 14-34 Sample application Welcome page

The servlet and session bean source code can be found under “Dynamic batch Web
application” on page 445.

We also provide this application as a Rational Application Developer project. See Appendix C,
“Additional material” on page 453 for more details. However, if you do not have Rational
Application Developer, you could also use some other kind of J2EE development tool.

Changing the template session bean
Because the template session bean returns only the value of the input parameter, you need to
change the code. You can download the modified EJB project as described in Appendix C,
“Additional material” on page 453. To change the code:

1. First, verify that only one parameter is allowed, as shown in Example 14-28.

Example 14-28 Only one parameter allowed

// only one parameter allowed
try {

if (parameters[0].trim() == "") {
message = "Error: parameter 1 must be set";
return message;

}
if (parameters[1].trim() != "") {

message = "Error: parameter 2 not allowed";
return message;

}
} catch (Exception e) {

message = "Error: wrong input parameter!'";

Note 1: In the template version of the application, the session bean returns only the value
of the two parameters.

Note 2: In our scenario, we use WebSphere Application Server for z/OS Version 6.1 to
ensure compatibility with the J2EE 1.4 specification. Although we could have used Java EE
5.0, we wanted to ensure that a broad range of users can use this sample.
Chapter 14. Create agile batch by implementing trigger mechanisms 277

return message;
}

2. Next, verify the value of the input parameter. The Java stored procedure needs the
following three input parameters, separated by a colon (:):

JobID To classify our current job
action Possible values are

store_fs Save PDF files only in UNIX System Services file system
store_db2 Save PDF files only in DB2 BLOB column
store_fs_db2 PDF files in UNIX System Services file system and in DB2

BLOB column
pdfDir UNIX System Services directory to store generated PDF files

Example 14-29 shows the relevant code.

Example 14-29 Check input parameter value

// Check input parameter
String temp = parameters[0];
String jobID = "";
String action = "";
String pdfDir = "";
try {

jobID = temp.substring(0, temp.indexOf(":"));
temp = temp.substring(temp.indexOf(":") + 1);
action = temp.substring(0, temp.indexOf(":"));
pdfDir = temp.substring(temp.indexOf(":") + 1);

} catch (Exception e) {
message = "Error: wrong input parameter '"

+ parameters[0]
+ "', must be

'DB2StoredProcPara1:DB2StoredProcPara2:DB2StoredProcPara3'!";
return message;

}

// check value of parameter "action"
if (!action.equalsIgnoreCase("store_fs")

&& !action.equalsIgnoreCase("store_fs_db2")
&& !action.equalsIgnoreCase("store_db2")) {

message = "Error: wrong input parameter for 'DB2StoredProcPara2',”
+ “ must be one of 'store_fs, store_db2, store_fs_db2'!";

return message;
}

3. Send the value of input parameter as a MQ message to the input queue, as shown in
Example 14-30.

Example 14-30 Send MQ message

QueueConnectionFactory conFactory = null;
QueueConnection conn = null;
QueueSession session = null;
QueueSender sender = null;
InitialContext jndi;
try {

jndi = new InitialContext();
278 Batch Modernization on z/OS

conFactory = (QueueConnectionFactory) jndi.lookup("jms/ConFactory");
conn = (QueueConnection) conFactory.createConnection();
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);

Queue queue = (Queue) jndi.lookup("jms/DB2Request");
sender = session.createSender(queue);

TextMessage msg = session.createTextMessage(parameters[0]);
sender.send(msg);

} catch (NamingException e) {
message = "Error: " + e.getMessage();
e.printStackTrace();

} catch (JMSException e) {
message = "Error: " + e.getMessage();
e.printStackTrace();

}

4. Finally, inform the user that the batch job was submitted successfully, as shown in
Example 14-31.

Example 14-31 Return info message to Web application

message = "Job '" + jobID + "' successfully submitted to create “
+ “PDF files in USS directory '" + pdfDir + "'.";

return message;

Because we send only a message to the queue, we also must inform the user when the job
completes. This example is a small example to show how to trigger a stored procedure by
sending a message to a queue. In a production environment, you also must implement a
mechanism to inform the user when the job completes.

14.4.2 DB2 as a Web service provider

For each type of architecture, DB2 for z/OS offers a robust solution for Web applications.

Specifically, using DB2 for z/OS as a database server for a Web application provides the
following advantages:

� Exceptional scalability

The volume of transactions on any Web application varies. Transaction loads can
increase, or spike, at different times of the day, on different days of the month, or at
different times of the year. Transaction loads also tend to increase over time. In a Parallel
Sysplex environment, DB2 for z/OS can handle the full range of transaction loads with little
or no impact on performance. Any individual user is generally unaware of how busy the
system is at a given point in time.

� High degree of availability

When DB2 for z/OS runs in a Parallel Sysplex environment, the availability of data and
applications is very high. If one DB2 subsystem is unavailable, for example, because of
maintenance, other DB2 subsystems in the Sysplex take over the workload. Users are

Note: You can find more Information about DB2 as a Web service provider in Enabling
z/OS Applications for SOA, SG24-7669.
Chapter 14. Create agile batch by implementing trigger mechanisms 279

unaware that part of the system is unavailable because they have access to the data and
applications that they need.

� Ability to manage a mixed workload

DB2 for z/OS effectively and efficiently manages priorities of a mixed workload as a result
of its tight integration with z/OS Workload Manager.

� Protection of data integrity

Users of DB2 for z/OS can benefit from the product's well-known strength in the areas of
security and reliability.

To run DB2 as a Web service provider you need a WebSphere Application Server. The
WebSphere Application Server can be on z/OS or a distributed platform.

While DB2 can act as a Web service requester, DB2 made a conscious decision to reuse the
Web Services infrastructure that works well that is provided with products, such as
WebSphere Application Server, WebSphere Message Broker, WebSphere DataPower®, and
so on, and focused on the Web service to DB2 mapping instead of reimplementing everything
from scratch.

DB2 development made a conscious decision to not start over but to use the existing Web
services infrastructure provided by application servers.

Using Data Web Services
The easiest way to expose DB2 data and business logic as a Web service is using the Data
Web Services (DWS) feature of the IBM Data Studio tool.

In this section, we use the following tools:

� IBM Data Studio, Version 2.2 for development
� WebSphere Application Server for z/OS as the Web service hosting environment

Data Web Services (DWS) is a new solution to significantly ease the development,
deployment, and management of Web Services-based access to DB2. DWS lets you take
Data Manipulation Language (DML) statements (such as SELECT, INSERT, UDATE,
DELETE, XQuery, and, last but not least, stored procedure calls) and generate Web Services
from these statements without writing a single line of code. The generated Web Services are
packaged as a ready-to-deploy Web application (as a WAR file), which can easily be
deployed to supported application servers.

Highlights of DWS include:

� Creating Web Services using DWS requires no programming.

DWS lets you create Web Services using a drag-and-drop interface.

� DWS supports SOAP over HTTP and Web Services Description Language (WSDL)
generation.

DWS automatically generates a WSDL file that contains a description of the Web service.

� No code generation.

DWS consists of a common metadata-driven run time, and there is no “black box” code
that gets generated “under the covers,” which results in a reliable and lightweight
application.

Note: For more information about Data Studio, refer to:

http://www.ibm.com/software/data/studio/
280 Batch Modernization on z/OS

http://www.ibm.com/software/data/studio/

Developing a stored procedure as a Web service
In this example, we show how to create a simple service that calls a stored procedure. We will
create a stored procedure which generates PDF files based on XML input data and store
these files in DB2, UNIX System Services file system or both. In 6.3, “Java in DB2 for z/OS”
on page 64, we describe how to create the Java stored procedure BATCH.JAVASTP using
native Eclipse IDE. In this section, we use Data Studio for development. Thus, we focus on
the Web Services part and describe only the necessary steps to create the stored procedure.

Creating the Java stored procedure
To create and test the Web Service easily, first create a simple Java stored procedure. This
procedure must have the same input and output parameters as the procedure to generate
PDF files. This procedure is necessary because this information is relevant for the Web
Services Description Language (WSDL) definition. To create the procedure:

1. After installing and starting Data Studio, close the Welcome window. Then, create a new
Development project by clicking File New Data Development Project. Our project is
named Redbook. After clicking Next, you need to create a connection to the database.

Figure 14-35 shows how to create the DB2 for z/OS connection. Define the following
options:

– Select a database manager: DB2 for z/OS
– Location: DB2 location
– Host: Name or IP address of your DB2 server
– Port number: Port number of DB2 server
– User name: User for database access
– Password: Password for database access

Note: You can download all the necessary material to create this example (such as Data
Studio workspace, DDL, and so forth) as described in Appendix C, “Additional material” on
page 453.
Chapter 14. Create agile batch by implementing trigger mechanisms 281

Figure 14-35 Create database connection

You can test the configuration by clicking Test Connection. If the connection is configured
properly, you can click Finish.
282 Batch Modernization on z/OS

2. Next, select the configured Connection, and click Finish (see Figure 14-36).

Figure 14-36 Configuring connection

3. To create the stored procedure, expand the Redbook project in the Data Project Explorer
window, select Stored Procedures, and right-click New Stored Procedure (see
Figure 14-37).

Figure 14-37 Create stored procedure
Chapter 14. Create agile batch by implementing trigger mechanisms 283

4. In the next window set the following options, as shown in Figure 14-38:

– Name: BATCH.SOAP_TRIGGERED_STP
– Language: Java
– Java package: com.ibm.itso.sample
– Dynamic SQL using JDBC

Click Next.

Figure 14-38 Create Java stored procedure
284 Batch Modernization on z/OS

5. Then, remove the predefined Statement, and choose None for the “Result set” option as
shown in Figure 14-39. Click Next.

Figure 14-39 Removing pre defined SQL statement
Chapter 14. Create agile batch by implementing trigger mechanisms 285

6. Now, you need to define the input and output parameters. As mentioned previously, the
test procedure must have the same input and output parameters as the procedure to
generate PDF files. You need to create the following parameters:

– IN parameter ACTION - DB2 data type VARCHAR(15)
– IN parameter PDF_DIR - DB2 data type VARCHAR(100)
– OUT parameter OUT_MSG - DB2 data type VARCHAR(100)

In the current window, click Add to define the first parameter, as shown in Figure 14-40.

Figure 14-40 Define first input parameter

a. Click Add to add this parameter the list of parameters.

b. You can use the current window to add another parameter. Change Name from VAR01
to PDF_DIR and change “Length” from 15 to 100. Then, click Add.

c. To add the third parameter change “Name” from VAR01 to OUT_MSG and change
“Parameter mode” from IN to OUT. Then, click Add.

d. Now that all the necessary parameters are defined, click Close to close this window.
286 Batch Modernization on z/OS

7. Click Next and then click Advanced to define the WLM environment (see Figure 14-41).

Figure 14-41 Define WLM environment

8. Click OK. Then, to complete the stored procedure definition, click Finish.

9. Next, you need to change the Java code. Expand the Data Project Explorer window to
receive the Java source of the test procedure and double-click the Java file (see
Figure 14-42).

Figure 14-42 Open Java source

10.Change the Java code to return a message to the Web Service caller as shown in
Example 14-32.

Example 14-32 Return message to Web Service caller

public static void SOAP_TRIGGERED_STP_1(java.lang.String ACTION,
java.lang.String PDF_DIR, java.lang.String[] OUT_MSG)
throws SQLException, Exception {

// Set return parameter
OUT_MSG[0] = "This is our test Stored procedure";

}

Chapter 14. Create agile batch by implementing trigger mechanisms 287

11.Now, you can deploy this Java stored procedure by right-clicking the
BATCH.SOAP_TRIGGERED_STP procedure and choosing Deploy (see Figure 14-43).

Figure 14-43 Deploy stored procedure

12.In the next window, set values for following parameters:

– Target Schema: BATCH
– Default Path: SYSIBM,SYSFUN,SYSPROC

Then, click Finish. You can see the results of the deploy process in the SQL Results
window (see Figure 14-44).

Figure 14-44 SQL Results
288 Batch Modernization on z/OS

13.To test the simple stored procedure, right-click BATCH.SOAP_TRIGGERED_STP, a click
Run. In the window that opens, set up values for the two input parameters. Because this is
only a test stored procedure, you can enter any value (see Figure 14-45).

Figure 14-45 Set input parameter

14.You can check the result of the test run in the Parameters tab of the SQL Results window
(see Figure 14-46).

Figure 14-46 Test stored procedure

Creating a Web service that calls the stored procedure
To create a Web service that calls the sample stored procedure:

1. Right-click Web Services (in Data Project Explorer), and choose New Web Service. In
the window that opens, set the following values (see Figure 14-47), and click Finish.

– Name: BatchStoredProcedure
– Namespace URI: http://redbook.itso.ibm.com/BatchStoredProcedure

Figure 14-47 Set values for Web Service
Chapter 14. Create agile batch by implementing trigger mechanisms 289

2. To add the stored procedure to this Web Service, right-click
BATCH.SOAP_TRIGGERED_STP, and choose Add to Web Service (see Figure 14-48).

Figure 14-48 Add stored procedure to Web Service

3. In the window that opens, select BatchStoredProcedure, and then click > to move this
Web service from “Available Web services” to “Selected Web services.” Then, click Next
and Finish.

4. Next, build and deploy the Web service. Right-click the BatchStoredProcedure Web
service, and choose Build and Deploy (see Figure 14-49).

Figure 14-49 Build and Deploy Web Service
290 Batch Modernization on z/OS

5. In the window that opens, change the following values (see Figure 14-50) and click Finish:

– Web server Type: WebSphere Application Server, Version 6 (all releases)
– Message protocols: Clear the REST option (Web access)

Clear this option because you do not need this feature for our test.

Figure 14-50 Change values for Web Service

Note: With this step, Data Studio creates a complete Java EE Web project. This project
contain all the necessary data to call the stored procedure as a Web service (such as a
WSDL file).
Chapter 14. Create agile batch by implementing trigger mechanisms 291

6. Now, you need to change the Data Studio perspective. Select Window Open
Perspective Other, and choose Java EE perspective as shown in Figure 14-51.

Figure 14-51 Open Java EE perspective

7. Export the Web project by right-clicking RedbookBatchStoredProcedureWeb, and
selecting Export WAR file as shown in Figure 14-52.

Figure 14-52 Export WAR file

8. Finally, set a Destination (such as c:\Temp\BatchSTP.war), and then click Finish.

Deploying the Web service to WebSphere Application Server
You need to deploy the created WAR module to a WebSphere Application Server. Set the
following options:

� Context root: BatchStoredProcedureWeb
� Data source: Resource Reference
292 Batch Modernization on z/OS

The WAR module contains an application that uses a resource reference
jdbc/BatchStoredProcedure to connect to the database. You must map this reference to an
existing data source.

Testing the Web service
Data Studio contains a Web Services Test client. To use this Test client:

1. In the Java EE perspective, select Run Launch the Web Services Explorer to start
this test client. The Web Services Explorer window opens with an icon bar and three
panes:

– Navigator
– Actions
– Status

2. In the icon bar, click the WSDL page icon, and select WSDL main in the Navigator
window. In the WSDL URI field, enter the following URI:

http://<server>:<port>/BatchStoredProcedureWeb/services/BatchStoredProcedure?WSDL

In this URI, <server> is the host name of the WebSphere Application Server, and <port> is
the HTTP port for the default_host virtual host.

3. As shown in Figure 14-53, select SOAP_TRIGGERED_STP in the Navigator window. In
the Actions window, define values for the two input parameter. Because this is still the test
Java procedure, you can enter any value. Call the new Web service by clicking Go.

Figure 14-53 Testing a Web service using the Web Services Explorer

4. To see the result of the test, click Source in the Status window. The SOAP Request and
Response displays as shown in Example 14-33.

Example 14-33 SOAP Request and Response

SOAP Request:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://redbook.itso.ibm.com/BatchStoredProcedure"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <soapenv:Body>
Chapter 14. Create agile batch by implementing trigger mechanisms 293

- <q0:SOAP_TRIGGERED_STP>
 <ACTION>1</ACTION>
 <PDF_DIR>1</PDF_DIR>
 </q0:SOAP_TRIGGERED_STP>
 </soapenv:Body>
 </soapenv:Envelope>

SOAP Response:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <soapenv:Body>
- <SOAP_TRIGGERED_STPResponse
xmlns:ns1="http://redbook.itso.ibm.com/BatchStoredProcedure">
 <OUT_MSG>This is our test Stored procedure</OUT_MSG>
 </SOAP_TRIGGERED_STPResponse>
 </soapenv:Body>
 </soapenv:Envelope>

Creating a Java stored procedure to generate PDF files
Because you have tested the test Web service successfully, you can now develop the “real”
stored procedure to generate PDF files from XML data. You need to create the stored
procedure in the same manner as describe in 6.3, “Java in DB2 for z/OS” on page 64 for
stored procedure BATCH.JAVASTP. Follow these steps:

1. First, redefine the stored procedure in DB2 because the stored procedure needs to use a
different main class. Thus, you need to DROP and CREATE our stored procedure.

The easiest way to execute SQL statements is to create an SQL Script in Data Studio.
Change the Data perspective by right-clicking SQL Scripts, and selecting New SQL or
XQuery Script, as shown in Figure 14-54.

Figure 14-54 Creating a new SQL Script in Data Studio

2. Name the script ReplaceSTP.sql, and click Finish. In file ReplaceSTP.sql script, write the
statements as shown in Example 14-34.

Example 14-34 Recreate stored procedure

DROP PROCEDURE BATCH.SOAP_TRIGGERED_STP RESTRICT;

CREATE PROCEDURE BATCH.SOAP_TRIGGERED_STP

(IN ACTION VARCHAR(15)
,IN PDF_DIR VARCHAR(100)
,OUT OUT_MSG VARCHAR(100))

EXTERNAL NAME 'com.ibm.itso.sample.GenPdf.triggeredBySOAP'
294 Batch Modernization on z/OS

LANGUAGE JAVA
PARAMETER STYLE JAVA
NOT DETERMINISTIC
FENCED
CALLED ON NULL INPUT
MODIFIES SQL DATA
NO DBINFO
NO COLLID
WLM ENVIRONMENT D9GGWLMJ
ASUTIME NO LIMIT
STAY RESIDENT YES
PROGRAM TYPE SUB
SECURITY DB2
INHERIT SPECIAL REGISTERS
STOP AFTER SYSTEM DEFAULT FAILURES
COMMIT ON RETURN NO

;
GRANT EXECUTE ON PROCEDURE BATCH.SOAP_TRIGGERED_STP TO PUBLIC;

3. Execute this statement as shown in Figure 14-55. Right-click ReplaceSTP.sql, and select
Run SQL.

Figure 14-55 Recreating a stored procedure
Chapter 14. Create agile batch by implementing trigger mechanisms 295

You also need to create some Java classes in Data Studio. Because there are only a few
differences, we briefly describe the necessary steps in Data Studio for the JavaSTP
successfully. You can find more information about developing this Java class in 6.3, “Java in
DB2 for z/OS” on page 64.

To create the Java classes in Data Studio:

1. Create a new Java project called JavaSTP.

2. Create a new folder called lib, and store the iText-2.1.5.jar file in this folder.

3. Add iText-2.1.5.jar to the Java build path.

4. Create the deploy.xml and zos.properties files in your project. For information about the
content of these files, see 6.3, “Java in DB2 for z/OS” on page 64.

5. Create a Java package called com.ibm.itso.sample.

6. Create the GenPDF and PdfCreator Java classes. For this Java source code, see 6.3, “Java
in DB2 for z/OS” on page 64.

Example 14-35 The triggeredBySOAP method and the GenPdf class

public static void triggeredBySOAP(String action, String pdfDir, String[] outMsg)
throws SQLException {

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

outMsg[0] = new String("PDF(s) successfully created.");
}

7. Append the jakarta-oro-2.0.8.jar and commons-net-2.0.jar JAR files for the Ant run
time to the Ant environment using Window Preferences Ant Runtime (as
described in 6.3, “Java in DB2 for z/OS” on page 64).

8. Deploy Java sources by right-clicking deploy.xml, and then clicking Run As Ant Build.

Here are the steps for the UtilSTP Java project:

1. Create a new Java project called UtilSTP.

2. Create a new folder called lib, and store the DB2 driver JAR files, db2jcc.jar and
db2jcc_license_cisuz.jar, in this folder.

3. Add the driver JAR files to the Java build path.

4. Create a Java package called com.ibm.itso.sample.

5. Create the Java classes RefreshWLM and TestSTP. For Java source code, see 6.3, “Java in
DB2 for z/OS” on page 64.

Important: You have to use the same Java compiler version in Data Studio Java projects
as configured for the DB2 Java stored procedure runtime environment. If you do not know
the configured DB2 Java runtime version ask your DB2 system programmer.

Important: You have to add the triggeredBySOAP method to the GenPDF class as shown
in Example 14-35.
296 Batch Modernization on z/OS

Example 14-36 Change class TestSTP

CallableStatement cs = con.prepareCall("CALL BATCH.SOAP_TRIGGERED_STP(?, ?, ?)");
cs.setString(1, action);
cs.setString(2, pdfDir);
cs.registerOutParameter(3, java.sql.Types.VARCHAR);
cs.execute();
System.out.println("Call STP ended: " + cs.getString(3));

6. Refresh the WLM environment by right-clicking class RefreshWLM, and clicking Run
As Java Application.

7. Test the stored procedure by right-clicking class RefreshWLM, and clicking Run As
Java Application.

Final test to generate PDF files
Finally, you can test the Web service to generate PDF files. As mentioned previously, we use
the integrated Data Studio Web Service Test client. In the Java EE perspective, select Run
Launch the Web Services Explorer to start this test client.

When starting the SOAP call, you have to set the input parameter. You must use special
values because the stored procedure creates the files in UNIX System Services file system.
Set the following values for the parameters:

� ACTION: One of the following values
– store_fs
– store_db2
– store_fs_db2

� PDF_DIR: /u/wagnera/javastp/pdfs

Important: You must change the TestSTP class as shown in Example 14-36.
Chapter 14. Create agile batch by implementing trigger mechanisms 297

298 Batch Modernization on z/OS

Part 4 Improve batch efficiency

Traditional application designs typically split processing into the following processing
windows:

� Daytime online processing, generally characterized by short-running transactions
� The overnight batch window
� Periodic batch windows, such as month-end processing

In many environments, the various batch windows are under increasing time pressure. The
main sources of this pressure include the following factors:

� The need to complete batch processing in shorter time periods to allow the online day to
be extended.

� The need to handle larger volumes of data.

� The need to incorporate additional functions.

These factors cause organizations to seek to speed up batch processing and to reduce the
time that online applications are unavailable.

In this part of the book, we discuss methods to make batch more efficient and faster in the
following chapters:

� Chapter 15, “Approaches and techniques to reduce the batch window” on page 301

� Chapter 16, “Increasing concurrency by exploiting BatchPipes” on page 309

� Chapter 17, “Batch application design and patterns in WebSphere XD Compute Grid” on
page 319

� Chapter 18, “Java performance best practices” on page 337

� Chapter 19, “Increasing batch efficiency by using performance instrumentation” on
page 341

Part 4

Note: In this book, we make no distinction between the overnight batch window and
periodic windows because their characteristics are generally the same.
© Copyright IBM Corp. 2009, 2012. All rights reserved. 299

300 Batch Modernization on z/OS

Chapter 15. Approaches and techniques to
reduce the batch window

System/390 MVS Parallel Sysplex Batch Performance, SG24-2557 is the definitive work on
how to tune a batch window. Though published in 1995, its methodology remains current.
This chapter summarizes the approach that book advocated. Two key elements are
particularly useful:

� The use of Project Management techniques, such as Gantt charts, in depicting the batch
window and driving a project to reduce its run time.

� The pursuit of Seven Key Strategies to reduce the batch’s run time.

This chapter also covers non-window batch, which that book did not cover.

This chapter includes the following topics:

� Project Management techniques
� Seven key strategies
� Non-window batch

15
© Copyright IBM Corp. 2009, 2012. All rights reserved. 301

15.1 Project Management techniques

Classic Project Management techniques work very well for understanding and reducing the
batch window.

These techniques include

� Gantt charts to depict the batch timeline.
� Dependency (node and arc) diagrams.
� Critical Path Analysis.

However, before we discuss these techniques, consider the analogy of a batch window as a
project.

A project can be viewed as a set of related activities to be completed within a given time
period (with available resources). The activities are, of course, chosen to meet the objectives
of the project. In addition, these activities have dependencies between them.

Now consider a typical batch workload. You can view the definition of an activity in several
different ways:

� Each job is one activity.
� Each step is an activity.
� Each step consists of several activities.

These activities are inter-related, with the following dependencies:

� A data set is created in one job and read in another.
� Several jobs must complete reading a data set before another job can update it.
� A DB2 table must be processed by one job before another can use it.
� An FTP transmission must complete before other activities can commence.

Of course, as with real projects, additional work might need to be scheduled around the main
batch window (and resources must be provisioned).

15.1.1 Gantt charts

A Gantt chart is a timeline diagram. For a regular project, the timeline is probably expressed
in days, weeks, and months. For a batch window, it is expressed in hours and minutes.

Figure 15-1 depicts part of a batch window. The timeline is from 10 AM to midday. 29 job
runnings are shown, with run times ranging from a few minutes to about 45 minutes.

This example has a high degree of parallelism. There are also several jobs (for example
P08LO056) on which there is no benefit in working, because the run time is very small and
completely overlapped with other jobs.

Other jobs (for example P01LO060) are long-running and obviously of significance in
reducing the overall batch window.

While a good device for depicting a batch window, Gantt charts can become very large,
spanning many pages. It is worthwhile to restrict their size, perhaps by removing
short-running jobs (for example, those that run for less than 5 minutes).

It is possible to guess dependencies from Gantt charts; however, this method is not a
foolproof way of deriving them, especially if you have removed short-running jobs.
302 Batch Modernization on z/OS

Figure 15-1 Sample Gantt chart depicting part of a batch window

15.1.2 Dependency diagrams

A useful technique for depicting the logic of a batch application is to draw a dependency
diagram. Typically drawn at the job level, this comprises a series of boxes (nodes) and arrows
(arcs).

Installations usually maintain such documentation manually, with each node being a job
running and each arc a dependency (or, where appropriate, several dependencies such as a
group of data sets).

A dependency diagram is useful for understanding why certain jobs have to wait for other jobs
to complete. An installation seeking to reduce their batch run time would attempt to remove
some of these dependencies, perhaps through a technique such as using BatchPipes/MVS
pipe.
Chapter 15. Approaches and techniques to reduce the batch window 303

15.1.3 Critical Path Analysis

Critical Path Analysis establishes which jobs are on the critical path from the start of the
window to the finish. Any reduction in the run time of a job on the critical path shortens the
window. So establishing which jobs are on the critical path is important. Or at least that is the
theory.

In practice, there are some problems with this approach, but it still has merit:

� The work in an installation’s batch window varies considerably from night to night.

� Many installations’ batch windows are so complex it is impractical to calculate which jobs
are on the critical path.

� Real batch windows have multiple deadlines, multiple external triggers and multiple
starting points.

� Jobs that are “near critical” are important as well. These are jobs that would become on
the critical path if only a few jobs on the critical path were shortened.

None of these problems completely undermine the Critical Path Analysis approach: Some
degree of pragmatism can be applied to the problem. For example, those jobs that are “near
critical” are usually fairly obvious.

15.2 Seven key strategies

The following general approaches help reduce the batch window:

� Ensuring the system is properly configured
� Implementing data in memory (DIM)
� Optimizing I/O
� Increasing parallelism
� Reducing the impact of failures
� Increasing operational effectiveness
� Improving application efficiency

You can use these approaches (or strategies) in combination. You need to apply them
appropriately to you specific environment and batch applications.

Some approaches can be implemented with system-wide or subsystem-wide actions, for
example using the DB2 ALTER BUFFERPOOL command to increase the size of a DB2
subsystem’s buffer pool. Other approaches require “engineering into” the workload, that is
detailed implementation, such as implementing a BatchPipes/MVS pipeline, which we explain
in detail in Chapter 16, “Increasing concurrency by exploiting BatchPipes” on page 309.

We now discuss these key strategies in more detail.

Note: Take care not to cause resource issues through the inappropriate use of the
techniques or to cause batch processing failures (perhaps through poor understanding of
the applications’ logic and dependencies).
304 Batch Modernization on z/OS

15.2.1 Ensuring the system is properly configured

Ensuring a properly configured system means making sure there are generally adequate
system resources, so work flow is not inhibited, such as:

� Adequate CPU to avoid CPU queuing
� Memory so the system does not page
� A powerful enough I/O subsystem
� A DB2 Data Sharing environment with adequate resources

As well as resource considerations, ensure that important systems and other software are set
up properly as follows:

� Workload Manager (WLM) set up to provide for good batch throughput
� DB2 subsystems optimally tuned for batch

15.2.2 Implementing data in memory

Implementing data in memory (DIM) techniques is a complex task, but one likely to yield good
results. It means exploiting appropriately the various software facilities available to eliminate
unnecessary I/Os. These I/Os include repeated reads of the same data, such as:

� DB2 buffer pools
� Virtual I/O (VIO) in Central Storage
� Queued Sequential Access Method (QSAM) buffering
� Batch LSR Subsystem (BLSR) exploiting VSAM Local Shared Resources buffering
� DFSORT Large Memory Object sorting

To be able to implement DIM techniques, you need spare memory, spare CPU capacity, and a
batch workload that is I/O-intensive.

15.2.3 Optimizing I/O

Optimizing I/O means ensuring the I/O processing done by batch jobs is performed as quickly
as possible, such as:

� The correct use of DS8000 Cache functions
� Exploiting modern Channel Programming functions such as zHPF and MIDAWs
� Using the fastest FICON channels
� Using HyperPAV to minimize IOSQ time

I/O optimization is most important when the batch workload is I/O-intensive. Where there is
little spare CPU capacity I/O optimization could cause an I/O bottleneck to be replaced by a
CPU bottleneck.

15.2.4 Increasing parallelism

Increasing parallelism means running more things alongside each other, such as:

� Reducing the elapsed time of a set of jobs by running more of them alongside each other.
� Performing I/O in parallel, using techniques such as Stripes.
� Performing DB2 queries using CPU Query Parallelism to use multiple TCBs.
� Cloning batch jobs to work against subsets of the data.

To be able to run more work in parallel, you need adequate resources, most importantly spare
CPU capacity and memory, and adequate I/O bandwidth.
Chapter 15. Approaches and techniques to reduce the batch window 305

15.2.5 Reducing the impact of failures

Reducing the impact of failures means ensuring that any prolongation of the run time of the
batch workload by failures is minimized. For example, this includes such actions as:

� Making batch jobs more reliable by fixing problems in the code.
� Ensuring that recovery procedures are effective and swift.

15.2.6 Increasing operational effectiveness

Increasing operational effectiveness means ensuring scheduling policies are executed
accurately and promptly, for examples:

� Using an automatic scheduler such as Tivoli Workload Scheduler.
� Using the NetView® automation product.

15.2.7 Improving application efficiency

Improving application efficiency means looking at ways to make the applications process
more efficiently, such as:

� Replacing obviously long sequential searches by hash searches or binary searches.
� Replacing self-written processing with DFSORT processing as this is optimized for speed.

15.3 Non-window batch

As well as batch defined by scheduler to run within a window there are other kinds of batch
(collectively known as non-window batch) such as:

� Event-triggered batch jobs
� Development batch, such as compilations and functional tests
� Ad-hoc batch

The considerations for non-window batch performance apply also to window batch. For
example, the need to manage the use of resources is common to both.

Non-window batch shares many characteristics with other “transaction-like” workloads:

� The work consists of independently-scheduled pieces.

� There might be many such pieces of work in the system at the same time.

� Resource interlocks, such as database table accesses or data set processes, are largely
absent.

� Work arrival rates might be similar to those of online transactions. (Morning and Afternoon
peaks might be present.)

� Work placement within a Parallel Sysplex environment can be flexible.

Note: The term “transaction-like” here refers to the bounded-duration independent nature
of the work rather than more sophisticated transactional attributes, such as the ability to roll
back work.
306 Batch Modernization on z/OS

Because of the “transaction-like” nature of non-window batch many of the standard
performance management techniques are important, rather than the more topology-driven
approaches outlined in “Seven key strategies” on page 304. These include:

� Workload Manager (WLM) goal setting and management

� Resource management, perhaps with WLM Resource Groups

� WLM Period Aging, so that shorter-running batch jobs are treated better than
longer-running jobs

� Initiator management (analogous to, for example, CICS transaction resource limits such
as MAXTASKS)

� Job Class management

� Job placement around the Parallel Sysplex, by analogy to Session Placement

Note: In Part 3, “Implement agile batch” on page 187, we present a number of important
topics in relation the ability of running non-window or “anytime” batch.
Chapter 15. Approaches and techniques to reduce the batch window 307

308 Batch Modernization on z/OS

Chapter 16. Increasing concurrency by
exploiting BatchPipes

Pipes is a relatively old product, but one which continues to provide useful function, especially
for increasing concurrency. Its BatchPipeWorks component also can enable some
simplification by replacing self-written code with standard functions.

This chapter includes the following topics:

� Basic function
� Implementation
� New Pipes connectors
� Additional Pipes functions

16

Note: In this chapter, we refer to BatchPipes/MVS as simply Pipes.
© Copyright IBM Corp. 2009, 2012. All rights reserved. 309

16.1 Basic function

Consider the common case of a batch job step that writes a new sequential data set, followed
by another job step that reads it. Traditionally the second job (the “reader”) cannot start
processing the data set until the first job (the “writer”) has finished writing to it. So the two job
steps cannot run concurrently.

Figure 16-1 shows such a writer / reader pair. Job W is the writer and Job R is the reader.
Time flows from left to right, so in this case it is clear Job R runs after Job W.

Figure 16-1 An unpiped writer/reader pair accessing a data set

With Pipes a short in-memory queue is created. This queue (or pipe) is written to by the writer
job and read from by the reader job. As records become available in the pipe the reader can
process them, removing them from the front of the queue. The writer places records on the
back of the queue.

Job W Job R
310 Batch Modernization on z/OS

Figure 16-2 shows the same scenario as Figure 16-1 but with the disk data set replaced by a
pipe. Again Job W writes the data and Job R reads it. This time Job W and Job R run
together.

Figure 16-2 A writer/reader pair accessing a piped data set

The Pipes approach has a number of advantages:

� The reader and writer must run at the same time, increasing concurrency and shortening
their combined run time.

� Whereas the traditional approach would have involved physical I/O the Pipes approach is
“in memory”. This reduction in I/O has the potential to reduce run time.

� There is no disk or tape space requirement for the pipe. So this approach is essentially
limitless.

� Where the physical data set would have been on tape, re-implementing as a pipe
eliminates the tape mounts.

In this chapter, these above criteria are used to determine whether a technology is
“pipeline-like.”

Job steps can participate in multiple pipes, whether as a reader, a writer, or both. Further,
more than one reader can read from the same pipe (and more than one writer can write to the
same pipe). This potential for creating complex topologies of pipes leads to the concept of a
pipeline. Many pipeline topologies lead to more than two job steps being overlapped. Under
these circumstances the potential for concurrency is even greater.

Pipes is supported for sequential file access using Basic Sequential Access Method (BSAM)
or Queued Sequential Access Method (QSAM). It is not possible, for example, to pipe a
Virtual Sequential Access Method (VSAM) data set between jobs. DFSORT automatically
detects when a data set it is processing is a pipe and uses BSAM to process it. (DFSORT
detects any subsystem data set and switches to BSAM.)

Job R

Job W
Chapter 16. Increasing concurrency by exploiting BatchPipes 311

A sort is a good example of a processing operation that breaks the pipeline. Figure 16-3
illustrates such a situation.

Figure 16-3 A sort operation in a pipeline

Suppose Job W writes a data set that Job S sorts and Job R reads the sorted data. Because
the last record read into the sort might be the first record the sort writes there can be no
overlap between the sort input and output phases. So Job W can be overlapped with the input
phase of Job S but not with the output phase of Job S. Similarly Job R can be overlapped with
the output phase of Job S but not the input phase. So Job W and Job R cannot overlap at all.

Pipes is able to use the Coupling Facility to create pipes between different z/OS images in a
sysplex. See 16.4.1, “BatchPipePlex” on page 314 for more information about cross-sysplex
pipes.

Pipes has additional record-processing capabilities, modelled on CMS Pipelines, described in
16.4.2, “BatchPipeWorks” on page 314. These can yield further concurrency and application
simplification.

16.2 Implementation

This section is a basic introduction to implementing Pipes. There are two steps that need to
be performed:

1. Set up the Pipes subsystem, outlined in 16.2.1, “Setting up the Pipes subsystem” on
page 313.

2. Replace specific individual data sets by pipes, described in 16.2.2, “Implementing
Individual Pipes” on page 313.

Job W

Job R

Job S Input Phase
Job S

Sort Work
Phase

Job S Output Phase
312 Batch Modernization on z/OS

16.2.1 Setting up the Pipes subsystem

Pipes runs as a subsystem in a started task address space, whose name is the subsystem
name. A popular choice for subsystem name is BP01. This address space must be started
before jobs can create pipes.

You can control individual user ID’s access to Pipes using the PSP.ASFPPIPE.ssnm RACF
FACILITY class where ssnm is the subsystem name. For individual pipes use RACF DATASET
profiles. You can also control a user’s access to BatchPipeWorks (described in 16.4.2,
“BatchPipeWorks” on page 314) using the PSP.ASFPFIT.ssnm RACF FACILITY class.

To set up BatchPipePlex ensure the subsystems all have the same name and create the
Coupling Facility list structure using your installation’s Coupling Facility Resource
Management (CFRM) policy. For more on BatchPipePlex see 16.4.1, “BatchPipePlex” on
page 314.

Installations should enable SMF recording so that the performance of individual pipes can be
monitored and managed.

16.2.2 Implementing Individual Pipes

Readers and writers for an individual pipe use a slightly modified DD statement. Often the
only change is to add SUBSYS=ssnm to the DD statement. As a minimum all jobs using the pipe
must:

� Specify the same pipe name, using the DSN parameter on the DD statement.

� Specify the same logical record length using the LRECL parameter on the DD statement.

� Specify the same record format using the RECFM parameter on the DD statement. This
can be F, FB, V or VB. VBS data sets are not supported. It is highly recommended to use
FB or VB.

The reader’s block sizes must be at least as large as the writer’s. IBM recommends that you
do not code BLKSIZE. Not doing so means:

� For FB the system uses the largest value for block size that is a multiple of the record
length and less than 32670.

� For VB the system uses the value 32760.

The block size determines how efficiently Pipes moves the data. The more records per block,
the more efficient the movement of data is.

It is also necessary to arrange for the pipe’s readers and writers to run at the same time,
usually using the batch scheduler.

It is important to think through recovery scenarios, in case one of the jobs using the pipe fails.

The performance of an application that uses Pipes is important. Consider the case where a
pipe’s writer consistently outperforms the same pipe’s reader. The writer will spend time
waiting for the reader to process records. The application might run faster if a second (cloned)
reader also read from the pipe.
Chapter 16. Increasing concurrency by exploiting BatchPipes 313

16.3 New Pipes connectors

Two relatively recent APARs document new connectors to Pipes:

� The fix for APAR PK34251 allows the DB2 Template Utility to specify a pipe as input to the
DB2 LOAD utility.

� The fix for APAR PK37032 allows users of IBM Communications Server’s FTP functions to
specify a pipe for PUT and GET requests.

Additionally, CICS SupportPac CA1J provides a connector to CICS transactions, allowing
transfer of data from transactions using the standard COMMAREA mechanism.

Recently, the BPXWDYN Dynamic Allocation service was enhanced to support the SUBSYS
parameter, which allows the JZOS ZFile Java class to allocate pipes in a similar manner to
regular sequential data sets.

16.4 Additional Pipes functions

BatchPipes/MVS Version 2 has two additional sets of function which Version 1 didn’t. (The
SmartBatch product had these extra functions also but BatchPipes/MVS Version 2 is the
currently marketed product.)

� BatchPipePlex allows pipes to be created that span the whole parallel sysplex.

� BatchPipeWorks allows additional concurrency and simplification.

16.4.1 BatchPipePlex

Many installations allow their batch work to spread across more than one LPAR in a parallel
sysplex. With the basic Pipes implementation it is not possible for a writer to a pipe to be on
one system and a reader on another. In the case where you cannot guarantee all the
members of a pipeline will run on the same LPAR this could be a significant problem.

To pipe across systems within a parallel sysplex use BatchPipePlex. This uses a Coupling
Facility structure to extend the queue that a basic pipe would implement.

The structure is called SYSASFPssnm, where ssnm is the name associated with the BatchPipes
subsystems within the pipeplex (which must all have the same name.) For example, if all
subsystems are called PSP1 the structure is called SYSASFPPSP1.

Because the structure has a fixed single name consider duplexing it to avoid it being a single
point of failure.

Using BatchPipePlex is slower than using a basic pipe. Therefore it is recommended not to
use BatchPipePlex for a single system pipe.

16.4.2 BatchPipeWorks

While the main purpose of Pipes is to provide increased concurrency, the product also has
another useful capability: BatchPipeWorks.

BatchPipeWorks is a subset of the CMS Pipelines package, ported to z/OS. It allows the
construction of pipelines from a palette of 100 built in stages as well as stages you can write
yourself.
314 Batch Modernization on z/OS

A pipeline is a series of programs called stages through which data flows. A pipeline consists
of one or more stages and the output of one stage automatically becomes the input to the
next stage. Each stage takes input records, performs a simple transformation on each of
them, and passes the result on.

Examples of things you can do are:

� Select records based on criteria
� Reformat or change the contents of records
� Combine records
� Duplicate records
� Write your own REXX programs that change records
� Read data from and write data to data sets and the job log

Examples of built in stages are:

LOCATE Selects records containing a specific string
CHOP Truncates records at the specified length
SORT Sorts the records
BPREAD Reads records from a BatchPipes writer or a BatchPipes pipe
BPWRITE Writes records to a BatchPipes reader or a BatchPipes pipe
BPCOPY Makes copies of data flowing through the BatchPipes pipe
< Reads from a data set
> Writes to a data set

The last five stages introduce interesting possibilities:

� Writing data to both a pipe and a data set, perhaps to provide a “hardened” copy for
downstream processing.

This is in fact more likely to be useful as a data backup rather than a recovery point for if
the pipeline fails. This is because, at best, a partial set of output data would be written in
the event of a failure. That would be difficult to recover from.

A second copy of a data set written to a pipe might be useful for downstream jobs that
could not be scheduled to run in the pipe’s time frame.

� Writing two or more copies of the same data to two or more pipes, so that a corresponding
number of reader jobs could read the data in parallel.

� Using a BatchPipeWorks pipeline to edit records written by a job before they are written to
a data set (rather than a pipe). Such an arrangement is called a half pipe because it does
not actually write to a pipe.
Chapter 16. Increasing concurrency by exploiting BatchPipes 315

Figure 16-4 shows some of the possibilities. Job W writes to a pipe using a fittings pipeline
with three stages or fittings. Fitting 3 also writes a hardened copy to disk.

Figure 16-4 Fittings, including one that writes a hardened copy to disk

Here is an example of coding a fittings pipeline:

//OUTPUT DD DSN=MY.PIPE1,LRECL=80,RECFM=FB,
// SUBSYS=(BP01,FIT=’take 500 | chop 50 | bpwrite’)

In this example, as the job writes a record it is passed to the pipeline. The first 500 records
are kept and any subsequent records are discarded. These 500 records are chopped to 50
bytes in length and the records are written to the pipe MY.PIPE1.

Because BatchPipeWorks enables you to quickly add processing to an existing job using its
already-present DD statements, you might be able to remove other home-written job steps
and increase concurrency by using the BatchPipeWorks “data flow” programming style.

The next two sections discuss other techniques with capabilities that partially overlap those of
BatchPipeWorks.

DFSORT similarities to BatchPipeWorks
Even without the use of IFTHEN, DFSORT invocations are a type of pipeline. Take the
example of a SORT or COPY operation. (MERGE is only slightly different). A SORT can
comprise the following stage-like processing elements:

1. Reading from the SORTIN DD
2. Throwing away the first nnn records with SKIPREC
3. Pre-processing records with an E15 exit
4. Keeping or throwing away records using INCLUDE / OMIT
5. Throwing away all records after the first mmm with STOPAFT
6. Sorting with SORT or copying with COPY
7. Summing (in the case of SORT) with SUM
8. Reformatting with OUTREC

Job W

Job R

Fitting 3

Fitting 2

Fitting 1
316 Batch Modernization on z/OS

9. Post-processing records with an E35 exit
10.OUTFIL processing

These processing elements apply in the sequence above (though it is normal to use only a
few of them).

OUTFIL processing allows different “sub-pipes” to be used with each of several different
output data sets. Each OUTFIL sub-pipe can comprise the following stage-like processing
elements:

1. Record selection with STARTREC, ENDREC or SAMPLE
2. Record selection with INCLUDE, OMIT, or SAVE
3. Various actions such as reformatting with OUTREC and parsing with PARSE
4. Splitting the output stream with, for example, SPLIT

Again, these elements (where present) must be in the sequence above.

There is another level of pipelining: IFTHEN processing. With IFTHEN you can pass data
through multiple reformatting stages. IFTHEN is available within INREC, OUTREC and
OUTFIL OUTREC statements.

With the potential exception of sort work data sets in the SORT stage, intermediate data is
not written to any intermediate data set and records are passed one at a time through the
stage (except for SUM where their values are accumulated).

As previously mentioned, DFSORT input and output data sets can be BatchPipes pipes.

When DFSORT is invoked more than once in an ICETOOL step these are separate pipelines
in that the results of one DFSORT invocation can be fed into the next DFSORT invocation but
using only intermediate data sets.

UNIX pipes in batch with BPXBATCH
UNIX has its own pipeline support through the use of the pipe symbol (|), separating UNIX
commands. Here’s an example, using BPXBATCH:

//B1 EXEC PGM=BPXBATCH,PARM='SH ls -a | tail +3 | nl'
//STDOUT DD SYSOUT=*

In this example, the list of files in the working directory is generated. The top two lines of the
output are thrown away and the remaining lines are numbered.

It is not possible to replace BatchPipeWorks pipelines with UNIX pipelines because the latter
cannot read from or write to any DD statements other than STDIN and STDOUT and there
are restrictions on the types of data sets STDIN and STDOUT can use.

Note: The UNIX commands are not the same as the Pipes stages.
Chapter 16. Increasing concurrency by exploiting BatchPipes 317

318 Batch Modernization on z/OS

Chapter 17. Batch application design and
patterns in WebSphere XD
Compute Grid

This chapter introduces a set of design patterns and development approaches for batch
applications. Designing applications can be a challenging task. Alternatively, the current
problem must be solved; however, the implementation must be flexible enough to adopt future
requirements easily. In addition, the slightest inefficiencies in processing a single record can
be exacerbated by the sheer volume of records to be processed.

Object-oriented (OO) programming techniques, when applied well, is an important tool for
building agile applications. However, OO is still a programming technique and does not
provide any standard template of sorts to solve a particular class of problems. Design
patterns provide a reusable template for solving a particular type of problem.

This chapter discusses the design patterns, which focus on separating concerns through
encapsulation and componentization, principles that are important for building agile
applications. The chapter also discusses how to share services across batch and OLTP, and
includes a sample whose source code can be found in Appendix C, “Additional material” on
page 453.

17
© Copyright IBM Corp. 2009, 2012. All rights reserved. 319

17.1 The Strategy pattern as the foundation for designing batch
applications

Designing batch applications can be a challenging task. Two important design facts must be
kept in mind: massive volume of records to be processed exacerbates any inefficiencies in
the implementation; and agility is important for improving time-to-market, reducing
maintenance costs, and improving application stability, where business services can be easily
composed into new applications. By following a set of design principles, we can achieve both
performance and agility.

The first design principle to follow is the Strategy pattern, where components within the
application are decoupled through interfaces. Each component is tasked with solving a
specific problem: reading data, processing data, or writing data. This decoupling enables
different algorithms to be plugged into the application with zero impact to the other
components. Figure 17-1 illustrates this concept.

Figure 17-1 Applying the Strategy pattern to batch applications

Figure 17-1 illustrates three components to a batch job: Input, Batch Job Step, and Output.
The Input component is a domain-object factory, which maps raw bytes into a valid domain
object. The Batch Job Step component contains the business logic, including validations,
transformations, and business rules that execute against a valid domain object. This
component does not know, nor should it care, how the domain object was obtained, it simply
expects a complete (valid) domain object. Finally the Output component’s only task is to map
a processed domain object to raw bytes. The Output component does not care what
processing took place, only that the processed domain object is valid and can be persisted.
Each component operates on a single record, which is important when discussing parallel
processing strategies.

Strict enforcement of this encapsulation ensures agility and service reuse. For example, we
can change the source of records from a file to a database by changing the input
implementation. This change will be in complete isolation of the Batch Job Step and the
Output components. Likewise, we can change the Output implementation to persist data to a
fixed-block data set on z/OS instead of a text file, and this change will be unknown to the other
modules. Figure two illustrates an example of applying the strategy pattern not only for
encapsulating the input, process, and output components, but also within the process
component (also know as the kernel) where validations can be plugged in.

As Figure 17-2 illustrates, the Input Data Stream (Input DS) produces valid input domain
objects. One record is passed to the kernel for processing, where the kernel knows nothing
about how that domain object was obtained. The kernel, also using the strategy pattern, will
apply a set of validations and other business logic to the record. As new requirements are
dictated, additional validations can be plugged into the kernel.
320 Batch Modernization on z/OS

Figure 17-2 Strategy pattern applied to create a kernel that processes batch records

Finally, the kernel returns the output domain object to the Output Data Stream (Output DS) for
persistence.

Validations and business rules that are applied to a batch application must be carefully
designed. Validations typically make use of referential data, for example, in order to validate
whether a bank account is active or not, the account number will get looked up in some
database. In the context of batch, the cost of a validation is magnified because of the number
of records that must be processed. If a validation takes 100 ms, and you must process 10
million records, the absolute fastest time the job can execute in is 1 million seconds. Caching,
data-aware routing, and complex SQL queries are a few strategies that can be applied to
reduce the complexity of the validations. For example, a more efficient way to process valid
bank account records is to add a clause in the predicate of the SQL query, select accounts
from accountTable where account.status = ‘active’. Each record processed by the
kernel will be active; therefore the validation can be removed.

There are two benefits to designing the kernel to operate on a single record whose origin is
unknown: first, by writing each module to only operate on one record at a time, we can shift
the burden of parallel processing outside of the application code and to the infrastructure; and
second, the kernel can evolve to become a service that is shared across multiple execution
styles, batch, online transactional processing, and so forth, without sacrificing performance
optimizations that each paradigm provides.

Writing multi-threaded code can be difficult, but can significantly reduce the elapsed time of a
batch job. Maintaining and debugging multi-threaded code though can be expensive. By
designing a kernel that is agnostic to the source of valid domain objects, parallel processing
can be handled by the infrastructure. As Figure 17-3 illustrates, the Input DS can be designed
to accept parameters that dictate the range of data that should be retrieved. In this example, a
constraint in the predicate of the SQL query is used, but byte ranges in files, record ranges in
Fixed Block data sets, and so forth are also possible.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 321

Figure 17-3 Shifting the burden of parallel batch from the application to the infrastructure

Some external parallel processing engine can create multiple instances of a batch job, in this
case, the Parallel Job Manager component of WebSphere XD Compute Grid applies a
partitioning algorithm that determines the range of data that each job instance will operate on.
To maximize throughput, the partitioning strategy for a batch job should match how the data
has been partitioned. More over, the partitioning strategy can independent of the application,
where the application developer is not responsible for determining how many instances (or
threads) must be executed, nor on what data each thread will operate. By shifting this burden
to the infrastructure, workload management data, capacity metrics, service-level agreements,
and database optimizations can be used to determine the ideal concurrency setting at a
specific moment. The infrastructure optimizations, as well as the details of how the Parallel
Job Manager operates, are outside of the scope of this chapter.

Performance of batch applications tends to be very important. Not only must batch
applications complete within a specific (and often demanding) deadline, but also any
inefficiency in the application is magnified. Using the strategy pattern and clearly separating
out the roles of input, process, and output bottom-up performance analysis can help monitor
and debug performance degradations. For example, by taking start and end times before and
after each call to the Input component, we are able to get a rough idea of how much time is
spent fetching records. Using the System.currentTimeMillis call can be highly inaccurate
when processing one record, but when processing hundreds of thousands of records, this
time becomes more accurate. Example 17-1 illustrates this concept.

Example 17-1 Measuring time spent on fetching records

// For each record perform the following logic as part of a loop

startTime = System.getCurrentTimeMillis();
record = readRecord();
endTime = System.getCurrentTimeMillis();
recordCount++;
totalReadTime = totalReadTime + (endTime – startTime);
startTime = System.getCurrentTimeMillis();
processedRecord = processRecord(record);
endTime = System.getCurrentTimeMillis();
totalProcessTime = totalProcessTime + (endTime – startTime);
322 Batch Modernization on z/OS

startTime = System.getCurrentTimeMillis();
writeRecord(processRecord);
endTime = System.getCurrentTimeMillis();
totalWriteTime = totalWriteTime + (endTime – startTime);

// Now, include code to print average read/process/write/times

At the end of the job, we can calculate the average time spent reading/processing/writing
records. A simple performance test could be to determine the amount of time each
component spent completing their respective tasks, and identifying (relatively) where most of
the time was spent in the batch job. For example, when executing a job and gathering these
performance metrics, one can determine that 60% of the time was spent reading records
while the remaining 40% were split evenly in processing and writing records.

The first place to further analyze for performance improvements could be the Input
component. The performance analysis of components could be incorporated into a
continuous-integration platform as well. Because the input, process, and output modules are
independent from one another, each can be executed separately. For example, a system can
be built for each module where the input test data is constant, each new version of the
module is executed with the constant test data, and the elapsed time for each version is
tracked, where any degradation in elapsed time indicates a performance regression. This
bottom-up performance analysis can help ensure each module is highly optimized. By
focusing on building high-performance components, the assembly of these components into
new batch jobs helps ensure that these new jobs are already well optimized.

By building highly optimized, loosely integrated components, it is possible to build a library of
modules that can be easily assembled into new batch applications. As Figure 17-4 illustrates,
WebSphere XD Compute Grid xJCL definitions can be used to assemble the various input,
processing, and output components into batch jobs. By building a bottom-up performance
analysis process, each module will ideally be optimized, helping to ensure that the new jobs
also perform well.

Figure 17-4 Libraries of functions can be created and assembled using some metadata
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 323

Further processes can be built around this library of functions, where application developers’
focus on building more functions into the libraries, and business analysts can assemble new
functions without having to develop or understand the underlying code. Figure 17-5 illustrates
this concept.

Figure 17-5 Domain-driven development & Business-Driven Assembly.

17.1.1 The Batch Data Stream Framework and its implementation of these
patterns

The better the contract between an application and its execution container, the more
container-managed services can be provided. In WebSphere XD Compute Grid, the contract
is the programming model for implementing batch data streams and batch job steps. The
J2EE programming model allows the EJB container to provide services such as security
demarcation, transaction context management, caching, and so on. Similarly, the WebSphere
XD Compute Grid batch container, a peer to the EJB container within an application server, s
integrates with batch applications through two programming interfaces: one for providing
checkpoint and restart functionality for input and output data streams; and the other for
influencing the checkpoint (transaction) interval for a batch job step. To take advantage of the
various container services provided by the WebSphere XD Compute Grid batch container,
applications must implement the appropriate interfaces.

The Batch Data Stream Framework (BDS Framework) provides a tight contract between the
application and the batch container, incorporates best practices, provides design patterns
using templates and callbacks that simplify the task of developing business logic, all while
ensuring there is adequate decoupling between the business logic and the proprietary
WebSphere XD Compute Grid APIs.

There are two components of the framework: first, templates for various input and output
stream types (reading/writing with JDBC, MVS data sets, UNIX files, and so forth), where the
nuances of checkpointing and restarting each of the input and output stream types have been
implemented; and second, various application design patterns, such as the strategy pattern,
and application services such as performance metrics, logging, threshold policies, and so on.
The UML for the current version of the BDSFW can be found in Appendix C, “Additional
material” on page 453. Details about how to implement BDS Framework applications can be
324 Batch Modernization on z/OS

found in Chapter 8, “Implement new functionality using Java in WebSphere XD Compute
Grid” on page 93.

17.1.2 Sharing business services across batch and OLTP

Separating the roles of input, process, and output as outlined in the previous section can help
ensure that agile, high performance batch applications are built. The next step is to build
services that can run in batch and OLTP infrastructures without sacrificing the performance
optimizations available in each domain. Batch and OLTP workloads are fundamentally
different; therefore there are very different strategies for maximizing the throughput of each
workload type. Traditionally there are two fundamental types of batch workloads to consider:
first, asynchronous random-access batch jobs; and second, asynchronous,
sequential-access batch jobs.

Asynchronous, random-access batch jobs are similar to OLTP applications—data is accessed
randomly and therefore the optimizations available include caching and data-aware routing.
Random user-requests are passed to the infrastructure using a queue-based infrastructure
such as WebSphere MQ. The Message Driven Beans (MDBs) waiting for new work in the
queues will execute one message (that is 1 record) at a time.

Batch workloads typically read and write data sequentially whereas OLTP workloads read
and write data randomly. Batch workloads access DB2 directly using JDBC whereas OLTP
applications will use an object-relational mapping technology such as Java Persistence
Architecture (JPA) or Hibernate.

There are four typical performance optimizations that are applied for batch workloads:

� A single select query is executed to retrieve the rows to be processed; the database
cursor is marked to remain open across transactions (also known as Cursor Holdability).
The anti-performance approach is to issue many smaller select queries, where each query
is demarcated by the global transaction managed by the application server’s transaction
manager; upon a global transaction commit, the cursor is closed by the database.

� Tuning the DB2 z/OS buffer pools to hold larger blocks of data. Because the batch
workloads are processing data sequentially, larger buffer pools enable more data to be
prefetched from the database. Refer to “Buffer pool size” on page 218 for more details on
this topic.

� Data prefetching threads within the application server, where background threads are
continuously prefetching data to ensure the thread of execution is not blocked and waiting
on I/O.

� Using the JDBC batch features of prepared statements in Java. Because data will be
written in bulk, N prepared statements can be grouped and executed together as opposed
to executing one statement at a time. There are a number of advantages here: first, there
are M/N remote calls to the database when using JDBC batch versus M remote calls,
where M is the total number of statements to be executed and N is the size of each group
of statements batched together; second, the database is able to optimize the execution of
the statements. Database products such as DB2 for z/OS, DB2 UDB, and Oracle 10g have
different optimal batch values. A simple performance test was run with DB2 for z/OS,
where 10 million business records were inserted, varying the JDBC batch size from 1 to
50. Figure 17-6 on page 326 illustrates the results, where we found a batch size of 20
records was optimal and effectively doubled throughput from ~10,000 records per second
to ~21,000.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 325

Figure 17-6 Performance benefits of applying JDBC batching

The Strategy pattern serves as a foundation for sharing business services across batch and
OLTP. The kernel described in the previous section can be the service that is shared across
batch and OLTP. The kernel is designed to be data injected, where the data to be processed
is passed to the kernel by some domain object factory. The alternative approach is a service
that follows a data acquired pattern, where the service will explicitly retrieve the domain object
that is to be processed. The latter type of service is typically found in OLTP applications (Web
Services, EJBs, and so forth).

Figure 17-7 illustrates how services can be shared across batch and OLTP. The shared
service is data injected, where the domain object (input Data Transfer Object or iDTO) is
passed into the service by some external mechanism.

Figure 17-7 An approach for sharing services across batch and OLTP
326 Batch Modernization on z/OS

The processed domain object (oDTO, which stands for “output Data Transfer Object”) is
returned by the shared service to the caller. When this service is executed in OLTP mode, an
OLTP wrapper (Web service, EJB, and so forth) will obtain the iDTO, typically through some
OLTP-oriented data access layer, and invoke the shared service. When executing in batch
mode, bulk data readers and writers, managed by some batch container, will feed records into
the shared service. A more concrete example of this shared-services architecture is available
in Appendix C, “Additional material” on page 453.

A key component to modern batch processing is the use of container-managed services,
where the batch application only contains business-specific code. J2EE application servers
provide several containers: Web Container for managing servlets, EJB container for
managing Enterprise Java Beans, and so forth. These containers demarcate transactions,
enforce security roles, integrate with application server services such as connection and
thread pooling, and so forth. The role of containers, and maintaining their responsibilities is
important in terms of sharing services across batch and OLTP. WebSphere XD Compute Grid
delivers a batch container, which is a peer to the EJB and Web containers within an
application server. The batch container provides services like checkpoint/restart, where batch
jobs can be restarted at some point in time with complete transactional and data integrity, as
well as enforce security identities, among many other functions. Figure 17-8 illustrates the
role of OLTP containers and the batch container when sharing business services across both
of those domains.

Figure 17-8 The role of containers when sharing business services across batch and OLTP.

Services shared across OLTP and batch should be written to assume that there is a
transaction context and a security context on the thread of execution. It is then the burden of
the execution container to enforce transactional and security semantics.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 327

The following example demonstrates how to share services across batch and OLTP. This
example shares an account reconciliation service across batch and OLTP, where the BDS
Framework is used to integrate the service with the WebSphere XD Compute Grid batch
container. To share the service, the application architecture is divided into several sections.
The application kernel is composed of the domain object, the record-processor that is the
shared business service, and the several business validations. The kernel application is then
wrapped by code specific to each execution paradigm: a batch step wrapper that connects
batch data-streams to the kernel service; and an OLTP wrapper that interacts with the
data-access layer to retrieve a single business record to be processed. Figure 17-9 depicts
the kernel, composed of the shared service and shared business validations.

Figure 17-9 Class diagram illustrating the kernel of the shared-service

The shared service, AccountReconcilliationSharedService in this case, is designed to be
indifferent of the source of the data to be processed; the service accepts a business record (a
domain object), applies business validations to that business object, and either executes the
business logic or signals to the caller that the record was not processed.
328 Batch Modernization on z/OS

Example 17-2 illustrates an example of a shared-service implementation, where the method
Object processRecord(Object record) is the service method invoked from both batch and
OLTP mode.

Example 17-2 Source code for the shared service

package com.ibm.websphere.batch.samples.sharedservice.steps;

import java.math.BigDecimal;
import java.util.Properties;

import com.ibm.websphere.batch.devframework.steps.technologyadapters.BatchRecordProcessor;
import com.ibm.websphere.batch.samples.sharedservice.domainobjects.AccountDomainObject;
import com.ibm.websphere.batch.samples.sharedservice.validators.BusinessValidator;

public class AccountReconciliationSharedService implements BatchRecordProcessor {

public static final String accountStatusValidatorKey = "ACCOUNT_STATUS_VALIDATOR";
public static final String fraudValidatorKey = "FRAUD_VALIDATOR";
public static final String sessionBalanceValidatorKey = "SESSION_BALANCE_VALIDATOR";

protected BusinessValidator accountStatusValidator;
protected BusinessValidator fraudValidator;
protected BusinessValidator sessionBalanceValidator;

protected String defaultAccountStatusValidator =
"com.ibm.websphere.batch.samples.sharedservice.validators.AccountStatusValidator";

protected String defaultFraudValidator = "com.ibm.websphere.batch.samples.sharedservice.validators.FraudValidator";
protected String defaultSessionBalanceValidator =

"com.ibm.websphere.batch.samples.sharedservice.validators.SessionBalanceValidator";

public void initialize(Properties props) {

String accountStatusValidatorImplClass = props.getProperty(accountStatusValidatorKey,
defaultAccountStatusValidator);

accountStatusValidator = (BusinessValidator) this.loadClass(accountStatusValidatorImplClass);
accountStatusValidator.initialize(props);

String fraudValidatorImplClass = props.getProperty(fraudValidatorKey, defaultFraudValidator);
fraudValidator = (BusinessValidator) this.loadClass(fraudValidatorImplClass);
fraudValidator.initialize(props);

String sessionBalanceValidatorImplClass = props.getProperty(sessionBalanceValidatorKey,
defaultSessionBalanceValidator);

sessionBalanceValidator = (BusinessValidator) this.loadClass(sessionBalanceValidatorImplClass);
sessionBalanceValidator.initialize(props);

}

public Object processRecord(Object record) throws Exception {
AccountDomainObject obj = (AccountDomainObject) record;

if ((accountStatusValidator.isValid(obj)) && (this.fraudValidator.isValid(obj))&&
(this.sessionBalanceValidator.isValid(obj)))

{
BigDecimal sum= obj.getSessionBalance().add(obj.getAccountBalance());
obj.setAccountBalance(sum);
obj.setSessionBalance(BigDecimal.ZERO);
return obj;

}
else return null;

}

public int completeProcessing() {
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 329

accountStatusValidator.destroy();
fraudValidator.destroy();
sessionBalanceValidator.destroy();
return 0;

}

protected Object loadClass(String className)
{

try
{

Object retval = Thread.currentThread().getContextClassLoader().loadClass(className).newInstance();
return retval;

}
catch (Throwable t)
{

throw new RuntimeException(t);
}

}

}

When processing in batch mode, the Batch Data Stream (BDS) Framework connects the data
reader and writer batch data streams to the batch record processor. Figure 17-10 illustrates
the batch components of the application.

Figure 17-10 Class diagram for the batch wrappers to the shared service
330 Batch Modernization on z/OS

The classes DataReader and DataWriter implement the relevant reader and writer patterns
from the BDS Framework. The specific roles of the classes used in batch mode are:

� DataReader

The role of this class is to map the raw data to the AccountDomainObject. The input can be
from one of two types of sources: a file and a database. Therefore this data reader must
implement both the FileReaderPattern and JDBCReaderPattern interfaces from the BDS
Framework.

� AccountReconciliationSharedService

The role of this class is to process each batch record which are AccountDomainObjects.
Each batch record must be validated; AccountReconcilliationSharedService, therefore,
passes the AccountDomainObject to each validator specified. If any validations fail, NULL
is returned to the BDS Framework. If all validations pass, the account balance of the
domain object is reconciled and processed record returned to the BDS Framework, which
will write the output to the outputStream.

� DataWriter

The role of this class is to map the domain object to raw data and write to the appropriate
location. In the case of this batch step, the output type can either be a database or a file,
therefore SaldosDataWriter implements both the JDBCWriterPattern and
FileWriterPattern interfaces in the BDS Framework.

When operating in OLTP mode, the shared service is wrapped with code whose purpose is to
interface with the OLTP Data Access Layer (DAL) to retrieve the relevant business record to
be processed. The OLTP wrapper then invokes the shared service, passing the acquired
business record as a parameter, similar to how the service would be invoked in batch mode.
The important difference here is that when in batch mode, the input and output streams are
optimized to read and write sequential data in bulk. When in OLTP mode, the DAL is
optimized to read and write a single, random business record.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 331

Figure 17-11 illustrates the OLTP wrapper to the shared service.

Figure 17-11 Class diagram illustrating the OLTP wrapper to the shared service

As shown in this diagram, the AccountReconciliationSharedService OLTP wrapper interacts
with the Data Access Layer (DAL) and the AccountObjectDAO Data Access Object (DAO).
Using the common factory/impl design pattern, we are able to interchange the various
persistence technologies (JDBC DAO, Hibernate DAO, Pure Query DAO, and so forth) in a
way that is transparent to the rest of the application. Example 17-3 describes the OLTP
wrapper implementation.

Example 17-3 Source code for the OLTP wrapper to the shared service

package com.ibm.websphere.batch.samples.sharedservice.services;

import java.util.Properties;

import com.ibm.websphere.batch.samples.sharedservice.dal.AccountObjectDAO;
import com.ibm.websphere.batch.samples.sharedservice.dal.DAL;
import com.ibm.websphere.batch.samples.sharedservice.domainobjects.AccountDomainObject;
import com.ibm.websphere.batch.samples.sharedservice.steps.AccountReconciliationSharedService;

public class ReconciliationOLTPService {

protected AccountObjectDAO accountDAO;
protected AccountReconciliationSharedService reconcileService;

public ReconciliationOLTPService()
{

accountDAO = DAL.getDAL().getAccountDAO();
reconcileService = new AccountReconciliationSharedService();
reconcileService.initialize(new Properties());

}

public boolean reconcileAccount(String accountId)
332 Batch Modernization on z/OS

{
try
{

AccountDomainObject obj = accountDAO.get(accountId);
obj = (AccountDomainObject) reconcileService.processRecord(obj);
if (obj == null)

return false;
else
{

accountDAO.put(obj);
return true;

}
}
catch (Throwable t)
{

throw new RuntimeException("Failed to reconcile account. " + t);
}

}

}

The service, upon initialization, gets a handle to the DAL and the configured DAO. The
reconcileAccount() method is then invoked in an OLTP context; where the service retrieves
the business record to reconcile from the DAO using the primary key passed to it. That
business record, which is the shared domain object, is then passed to the shared business
service in the same way the batch wrapper would hand a business record. As previously
stated, the shared service was written to be indifferent about the source of the business
record to be processed; therefore, the same business validations and logic are used from
both the OLTP and batch contexts.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 333

Figure 17-12 depicts the big picture, the OLTP and batch domains, for the application.

Figure 17-12 Class diagram illustrating the entire application (OLTP and Batch wrappers to the shared service)

Ultimately, the domain object becomes critical to this pattern for shared services. In this
example, the same domain object is used across all of the processing, but that isn’t a
requirement. The reader (batch data reader or the OLTP DAL) can acquire an input domain
object that is to be passed to the shared service for processing. The shared service can apply
its validations to the input domain-object, apply business logic or whatever other
transformations, and return to the caller an output domain-object. The batch data writer (or
the OLTP DAL) will then persist the output domain-object.

A potential optimization can be made to reduce the number of validations executed when in
batch mode. Specifically, more optimized queries could replace some (or all) of the business
validations. For example, when in OLTP mode, a validation can be executed that asserts the
account to be processed is indeed “active”. When executing the service in batch mode
however, a more optimized query, where a where clause is added limiting the data selection
to only “active” accounts could be execute (for example select * from table 1 where
334 Batch Modernization on z/OS

account_status = ‘active’). In this case, the validations registered with the shared service
would be different; this only implies that the technique for initializing the shared service should
be smarter, where the required business validations are configured upon initialization (or can
be dynamically modified).

17.2 Conclusions

By following the proposed application design guidelines, it is possible to not only share
business services across multiple execution styles, but doing so without sacrificing any of the
performance optimizations each domain provides. More over, well-designed applications
enable flexibility, where services can be reused and composed into new business functions.
To achieve this requires strong application architecture skills, as well as a deep understanding
of the nuances of each execution paradigm—batch, OLTP, real-time, and so forth.
Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid 335

336 Batch Modernization on z/OS

Chapter 18. Java performance best practices

In this chapter, we discuss certain important aspects with respect to performance of Java in
batch. It includes the following topics:

� Java performance in common
� Stand-alone Java batch

18
© Copyright IBM Corp. 2009, 2012. All rights reserved. 337

18.1 Java performance in common

In this section, we discuss performance aspects that affect Java on z/OS in common.

18.1.1 Garbage collection

An important aspect from a Java performance point of view is the garbage collection. If the
garbage collection takes too much time of the CPU time, we have to tune it. As this is very
well explained in the Java 6.0 Diagnostics Guide we, do not discuss this in more detail here.
The Java 6.0 Diagnostics Guide can be found at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/diag60.pdf

There is also an article at developerWorks at:

http://www.ibm.com/developerworks/java/library/j-ibmjava3/index.html?S_TACT=105AGX
02&S_CMP=EDU

Another way to reduce garbage collection in batch is to reduce object creation by reusing
objects.

New Java 6 features, such as compressed references and large pages, significantly reduce
the cost of garbage collection. See:

http://www.ibm.com/partnerworld/wps/whitepaper/systemz/java_websphere/performance

18.1.2 Profiling

Besides JVM tuning, we can achieve a lot of in tuning the Java batch application itself.
Therefore, we have to analyze the Java application at run time with a profiler. A very efficient
profiler is JinsightLive for IBM System which is available for free under

http://www.alphaworks.ibm.com/tech/jinsightlive

JinsightLive allows us to create a profile trace of a running Java application under z/OS. With
the help of the visualizer, we can then analyze the trace with graphical representation of the
application.

Based on patterns like a long running loop that we can see in the graphics, we can identify hot
spots that consume too much CPU. Based on these findings, we next have to verify whether
those areas cannot be coded more efficiently.

For further information about how to use JinsightLive, refer to the Web site.

Note: We saw that the gencon policy can be very attractive in many cases for Java batch
applications because batch applications tend to create many objects (for example a data
objects) just for a short time. Of course, this heavily depends on the application and has to
be verified with garbage collection policy comparisons in each situations by an analysis of
the verbose:gc trace.

Note: It can be useful for someone who did not write the Java code to analyze the code
because the developer might not see certain hot spots because of reasons for coding it in
that way.
338 Batch Modernization on z/OS

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/diag60.pdf
http://www.ibm.com/developerworks/java/library/j-ibmjava3/index.html?S_TACT=105AGX02&S_CMP=EDU
http://www.ibm.com/partnerworld/wps/whitepaper/systemz/java_websphere/performance
http://www.alphaworks.ibm.com/tech/jinsightlive

18.2 Stand-alone Java batch

In this section, we talk about stand-alone Java batch specific performance aspects which is
mainly the impact of JVM startup costs.

18.2.1 JVM startup cost

In each stand-alone Java step a JVM is created, regardless of the launcher we are using. For
a simple HelloWorld, we made the following measurements:

Table 18-1 JVM Startup cost

Because batch applications are normally long running jobs, this CPU time is negligible. It only
becomes a problem for very short running stand-alone Java batch applications. In that case, a
Java batch container like WebSphere XD Compute Grid helps because it reuses its JVMs for
the batch applications.

We mention the JIT, shared classes, Ahead of Time (AOT) compilation and JNI as areas to
look into for optimizing performance.

Just In Time (JIT) compiler
Another aspect is the Just In Time compiler (JIT). The JIT needs a certain time to optimize
code. If we know that we have a very short running stand-alone Java batch application, we
can use the following JVM parameter:

-XQuickstart

This parameter causes the JIT compiler to run with a subset of optimizations. This quicker
compilation allows for improved startup time for short running applications.

Also, putting the JIT DLL in the LPA has shown to give around 5% improvement in HelloWorld
startup.

Shared classes
Another way to improve JVM startup time is to use shared classes. The shared class cache is
intended to share classes across multiple JVMs. Because it resists across JVM restarts, it

Tip: In contrast to OLTP J2EE / Java EE applications where we normally only trace one
transaction for profiling with JinsightLive, we create a trace of the whole application in
batch. Those traces can become very huge!

Because batch often consists of repetitive patterns implemented in loops, we recommend
to modify the application for tracing purposes to run just one iteration of a loop.

JVM version Total TCB CPU Time (in CPU minutes)

5.0 SR5 0.02

6.0 SR3 0.02

Important: There is “one size fits all” solution and different applications might benefit from
different settings.
Chapter 18. Java performance best practices 339

can also help to reduce startup time of a single JVM.
When the JVM is started the first time, it creates the shared class cache identified by a name
as a JVM parameter. The next time it is started, we can tell the JVM to use this shared class
cache again by telling it the name of the already existing cache.

For more information about how to use shared classes see:

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.
zos.60/user/shc_overview.html

Ahead of Time (AOT) compilation
Also, as of Java 6, one can use Ahead-of-time (AOT) compilation. This is similar to JIT
compilation, but it does not take runtime information into account. But the big advantage is,
that the AOT compiled code can be stored in the shared class cache. Therefore, it survives
JVM restarts and helps to decrease the warm-up costs for the JVM.

The following developerWorks article talks about AOT compilation, along with shared classes
usage:

http://www.ibm.com/developerworks/java/library/j-sharedclasses/index.html?S_TACT=1
05AGX02&S_CMP=EDU#N1010B

Java Native Interface (JNI) best practices
Batch applications tend to use JNI significantly to access existing code. The following
developerWorks article provides best practices that are helpful in improving performance.

http://www.ibm.com/developerworks/java/library/j-jni/index.html?S_TACT=105AGX02&S_
CMP=EDU

Note: Although AOT compilation will show improvements over interpreted code, we do not
recommend to disable the JIT compiler. The AOT compiled code might still be JITed to
higher levels of optimization.
340 Batch Modernization on z/OS

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/shc_overview.html
http://www.ibm.com/developerworks/java/library/j-sharedclasses/index.html?S_TACT=105AGX02&S_CMP=EDU#N1010B
http://www.ibm.com/developerworks/java/library/j-jni/index.html?S_TACT=105AGX02&S_CMP=EDU

Chapter 19. Increasing batch efficiency by
using performance
instrumentation

This chapter outlines the types of instrumentation available for tuning batch and managing its
performance, whether window batch or non-window batch. With so much instrumentation
available, as this chapter demonstrates, it is important to structure its use in a way that is
helpful to any batch performance improvement project. The following sections are sequenced
accordingly:

� System-level and WLM workload SMF
� DB2 Subsystem-level instrumentation
� Batch suite instrumentation
� Job-Level SMF
� Other job-level instrumentation

Of course, some of these types of instrumentation might be irrelevant, for example if your
batch does not run against DB2. Another example is the case of batch which is not part of a
specific suite.

This chapter includes the following topics:

� System-level and WLM workload SMF
� DB2 Subsystem-level instrumentation
� Batch suite instrumentation
� Job-Level SMF
� Other job-level instrumentation

19

Note: This chapter mainly deals with raw sources of instrumentation, such as Systems
Management Facilities (SMF) records. Reporting tools, such as the RMF Post-processor,
are only briefly mentioned.

In this chapter, the following example illustrates the convention used:

“74-1” denotes “SMF Type 74 Subtype 1 records”.
© Copyright IBM Corp. 2009, 2012. All rights reserved. 341

19.1 System-level and WLM workload SMF

As with examining other workloads it is important to look at system-level instrumentation.
Similarly, with relatively minor differences, batch shares WLM Workload and Service Class
level instrumentation.

The standard system-level instrumentation comes from RMF and can be formatted into
reports using the RMF Post-processor.

Table 19-1 shows the main SMF record types used for system- and workload-level analysis.
There are other RMF-written SMF record types but these are the major ones for analyzing the
environment in which batch runs.

Table 19-1 SMF records used for system- and workload-level tuning

RMF writes records on the RMF interval. So you can plot the major numbers on a graph by
time of day across the window.

Record
Type

Area Description

70 CPU CPU at the z/OS image level, including zIIP and
zAAP.

LPAR descriptions, LPAR CPU time and LPAR
memory allocation (but not memory use)

Processor complex information

71 Memory and Paging Memory use at the z/OS image level and paging
information at the z/OS image level.

72 Workload information about goal attainment and memory
and CPU usage at the Service Class Period level.

CPU information includes zIIP and zAAP (as well
as crossover information).

74-1, 74-5 and
74-8

Disk, Cache and Tape 74-1 gives basic response time and I/O rate
information at the volume level - for both disk and
tape volumes.

74-5 gives disk cache information at the volume
level.

74-8 gives detailed cache controller information.

74-2 and 74-4 XCF and Coupling Facility 74-2 gives XCF information at the XCF member,
transport class and path level.
74-4 gives Coupling Facility information at the
Coupling Facility, path and structure levels.

75 Page Data Set Activity Page data set activity at the individual page data
set level.

78 Subtype 3 I/O Queuing Gives information about channel connectivity to
disk and tape control units and the degree of I//O
request queuing to each control unit.
342 Batch Modernization on z/OS

Another layer below the Service Class level is the address space level. “Job-Level SMF” on
page 346 discusses jobs but the 30-2 and 30-3 records instrument address spaces in a way
which can best be described as allowing “drill down” further from the Type 72 level. Because
SMF 30-2 and 30-3 have WLM Workload and Service Class in you can break down a Service
Class’ CPU time into individual address space CPU time. In the batch context this is
particularly useful for understanding which started tasks are consuming CPU and how this
varies through the batch window.

SMF 30-2 and 30-3 also record the Report Class the address space runs in.

19.2 DB2 Subsystem-level instrumentation

Tuning a DB2 subsystem is often the simplest method for speeding up the batch jobs which
use it. For example, increasing the buffer pool sizes overnight when other applications do not
need the memory can often speed up many batch jobs with one simple action.

In Figure 19-1 the amount of memory used by other applications (the “Other Apps” data
series) varies by time of day as the workload increases and decreases. Overnight the other
applications use much less memory than during the day. Accordingly the DB2 ALTER
BUFFERPOOL command is used in the evening to increase the size of each of the three
buffer pools first from 3 GB to 4 GB and later to 5 GB. In the morning the buffer pool sizes are
reduced in two stages from 5 GB each to 3 GB each.

Figure 19-1 Buffer Pool Memory Sizes Changing As System Conditions Permit

However, to conclude increasing buffer pool sizes (or making any other tuning change) needs
instrumentation. For DB2 the main subsystem-level instrumentation is Statistics Trace.
Additional information can be found in the DB2 Catalog. Still more information related to the
subsystem (but not necessarily the application) comes from other SMF record types. Most
prominent among these non-DB2 SMF record types is 42-6.

0

5

10

15

20

25

Midnight 3:00 AM 6:00 AM 9:00 AM Midday 3:00 PM 6:00 PM 9:00 PM

Hour

M
e

m
o

ry
 (

G
B

)

System DB2 BP0 DB2 BP1 DB2 BP2 Other Apps Free
Chapter 19. Increasing batch efficiency by using performance instrumentation 343

19.2.1 DB2 Statistics Trace

DB2 provides information at the subsystem level using Statistics Trace, which appears in SMF
on an interval basis as Type 100 and Type 102 records. The interval length is given by the
STATIME DSNZPARM parameter. Originally the default value for STATIME was 30 minutes
(an almost totally useless default). From DB2 Version 8 onwards the default is (a much more
useful) 5 minutes.

Fields which show counts (known as “counters”) are cumulative. That is it is necessary to
subtract the value for the field in two successive records to obtain the count of activities in the
STATIME interval. Reporting tools, such as DB2 Performance Experts Statistics Report,
perform the subtraction before reporting the count for that interval.

Fields which are snapshots can be used directly.

Some of the areas of DB2 activity instrumented by Statistics Trace are:

� Buffer Pools
� Group Buffer Pools
� EDM Pool
� Relational Data System (RDS) Sorting
� Logging
� Locking
� Virtual Storage

While Statistics Trace provides a useful set of instrumentation for general subsystem tuning it
should be supplemented with application-level instrumentation, most notably Accounting
Trace. (See 19.4.2, “DB2 job-level Accounting Trace and deeper” on page 348 for more
information about Accounting Trace.).

19.2.2 DB2 Catalog

The DB2 Catalog is a set of critically-important DB2 tables, controlling many aspects of a DB2
subsystems’ operations. There is one Catalog shared by all members of a DB2 Data Sharing
Group.

The Catalog contains such information as:

� Table and index definitions, including columns and keys

� Tablespace and indexspace definitions, including the buffer pool number the table space
or index space is in and partitioning information

� View definitions

� Plan and package definitions, including SQL statements for Static SQL

� Stored procedure, user-defined function (UDF) and trigger definitions

� Utility run information

This information can be useful in studying a DB2 subsystem environment and the
applications that run in it.

19.2.3 SMF 42-6

SMF 42-6 records are written on the SMF interval (by default every 30 minutes). A group of
such records are written for each address space, instrumenting every data set OPENed by
344 Batch Modernization on z/OS

the address space in the interval for which at least 1 I/O was performed. More precisely, every
such data set’s volume for which at least 1 I/O was performed.

The information includes:

� Data set name and volume serial number (volser)
� I/O count
� Response time components - Connect, Disconnect, Pend, IOSQ
� Estimates of cache hits and misses

These items make the 42-6 a very valuable SMF record for data set performance analysis.

19.2.4 Putting Statistics Trace, DB2 Catalog and SMF 42-6 together

DB2 Statistics Trace instruments a number of key areas where data set access is important
for performance, which includes:

� Buffer pools and group buffer pools
� EDM Pool
� Sort work pool
� Logging

Suppose you need to explain the I/O rate to disk for a specific buffer pool. (Statistics Trace
might lead you to the conclusion that this needs an explanation.)

You can use the DB2 Catalog to ascertain which tablespaces and indexspaces are in this
buffer pool. (You can get other information about these DB2 objects, such as partitioning
information and DB2’s view of their size, from the Catalog.)

Using DB2’s data set naming convention for tablespaces and indexspaces and the address
space name for the DBM1 address space for the DB2 subsystems you can select the SMF
42-6 data for just those data sets, including the I/O rate. (You can get other information as
well, such as DFSMS’ estimation of the effectiveness of disk cache for the data sets.)

19.3 Batch suite instrumentation

SMF 30-5 records give comprehensive information about individual job runnings. This
information includes:

� When the job ran

� On which system the job ran

� How much CPU the job used, including zAAP time, zIIP time and eligible CPU in both
categories but which was executed on a general-purpose processor instead

� How many EXCPs were performed and (using some analysis) how many were to disk and
how many to tape

Note: SMF 42-6 records are not created by DB2 but rather by DFSMS/MVS. So, while they
are written for DB2-owned data sets, they are also written for non-DB2 data sets.

Note: In addition to the SMF 42-6 information for the DB2 object you can use the IDCAMS
DCOLLECT information for the data sets associated with the object to obtain the
DFSMS/MVS view of the space used by the DB2 object.
Chapter 19. Increasing batch efficiency by using performance instrumentation 345

� Whether the job ended successfully, in so far as we can tell from return codes and ABEND
codes

� The difference in timestamps for reading in and execution, which would enable an analyst
to discern whether there is a shortage of initiators.

This information enables several different kinds of analysis. Among them are:

� Drawing a Gantt chart of an application based on job names and run times

� “Toplisting” jobs, such as the most CPU-burning jobs or the longest-running jobs, or the
jobs that do the most tape processing (whether by mounts or tape EXCPs).

19.4 Job-Level SMF

As indicated in 19.3, “Batch suite instrumentation” on page 345, you can obtain lots of
information about job runnings using SMF 30-5.

But you can drive this down further - to the step level - using SMF 30-4. As well as most of the
information available at job level in SMF 30-5 you can obtain such information as:

� When the step ran and what resources it consumed
� What the step-level program was
� Step return code

In addition to understanding the sequence of steps in a particular job you can perform
analyses such as:

� Which are the most CPU-intensive or longest-running steps

� Which steps use IDCAMS

� Which steps might use DB2 (because the program name is IKJEFT1B, although that might
equally denote a REXX step)

19.4.1 Data Set OPENs And CLOSEs

Both VSAM and non-VSAM data set OPEN and CLOSE information can be obtained for a job
step. The VSAM and non-VSAM cases are different:

� For VSAM data sets there are two distinct record types for OPEN and CLOSE events.
OPEN events are recorded in SMF 62 records. CLOSE events are recorded in SMF 64
records. Neither 62 nor 64 records contain the step number or name. To identify the step
you need to perform time stamp analysis with SMF 30-4 records, using the job name as a
key.

� For non-VSAM data sets there are again two record types: SMF 14 for read and SMF 15
for write. Both 14 and 15 records encompass both the OPEN and the CLOSE event for a
data set. Again there is no step information so a merge is required with SMF 30-4 records,
with job name as the key.

These four record types provide a wealth of information for conventional data sets but this
information is different (and differently organized) between the VSAM and non-VSAM cases.

For example, the Type 62 and 64 records contain very useful information about VSAM access
patterns and buffering.

As indicated in 19.2.3, “SMF 42-6” on page 344 you can obtain performance information
about an interval basis for a disk data set from DFSMS’ perspective using SMF 42-6. You can
346 Batch Modernization on z/OS

also obtain this information for when a disk data set is CLOSEd, again from SMF 42-6
records. 42-6 information is a very useful addition to that in Types 14, 15, 62, and 64.

Life Of A Data Set (LOADS)
Life Of A Data Set (LOADS) is a technique for using the OPEN and CLOSE signatures of data
sets to discern technologies that might speed up the jobs that use the data set, and perhaps
allow overlap.

Here are some examples:

� For a sequential data set a single writer of the entire data set followed by a single reader of
the entire data set might suggest a BatchPipes/MVS pipe.

� Repeated DFSORT operations against the same input data set might indicate OUTFIL to
be a useful technique.

� A VSAM data set where the processing is not conducive to any other technique but where
the statistics in the Type 62 and 64 records for the data set suggest VSAM LSR buffering
might suggest Batch LSR or System-Managed VSAM Buffering.

Using a Gantt chart for the LOADS depiction of a data set might reveal such patterns.

Figure 19-2 on page 348 depicts such a Gantt chart. In this example the life of the data set
MYJOB.PAYROLL.LEDGER.FILE is depicted. It is a 5 million block tape data set. The tape
block size is 32 KB. The Gantt chart shows Job W writing the data set, and Job R1 and Job
R2 reading the data set. (From EXCP counts or perhaps the use of a known utility such as
DFSORT COPY it is often possible to tell the data set is read in its entirety both times.)

This is the complete life of the data set (other than the recycling of the tapes at some possible
distant point) so we can think of speed ups that only involve these three jobs. If it were
possible, because of what we know about the jobs, to overlap them if we could remove the
dependencies this data set creates we would be able to run a lot faster.

One such solution is to pipe separate copies of the data set from Job W to Job R1 and Job
R2. Another, less beneficial, technique might be to overlap Job R1 and Job R2 by some kind
of “shared reading” implementation.

There are potentially other speed ups. For brevity, we do not cover those here.

Note: There is a gap between when Job R1 finishes with the tapes and when Job R2 starts
with them. This should be investigated. If this delay cannot be removed and so Job R2
cannot be overlapped with Job R1 it might still be beneficial to overlap Job R1 with Job W1.
In this case you would arrange for a second copy to be written in parallel to tape.
Chapter 19. Increasing batch efficiency by using performance instrumentation 347

Figure 19-2 Example Of LOADS For A Sequential Tape Data Set

This example shows some of the power of the LOADS technique in designing speed ups.

19.4.2 DB2 job-level Accounting Trace and deeper

When enabled, DB2 writes information about run times to Accounting Trace (externalized as
SMF 101). For useful DB2 batch performance analysis trace classes 1, 2, and 3 must be
enabled. DB2 can write package-level information if, in addition, trace classes 7 and 8 are
enabled.

At the plan level the 101 record has around 20 different buckets for where time is spent. At the
package level a similar number of buckets are available. A very good depiction of DB2 batch
step run time is to create a grid, with time buckets across the top and plan and package
names down the side. With this depiction it is easy to easy to conclude such things as “I need
to work on locking in Package PK1 in Plan PL3” and “for all plans and packages in this step I
need to buffer data better”.

At the plan invocation level you can examine buffer pool statistics at the individual buffer pool
level. This enables you to draw conclusions like “the majority of the jobs I care about might be
expected to benefit if Buffer Pool 3 were increased” or “Package PK2 in Plan PL2 spends a lot
of time accessing data on disk”.

Time buckets include:

� CPU, whether in DB2 or in the application (when the application has connected to DB2)

� I/O time, whether write or read, and whether synchronous or
asynchronous-but-not-overlapped.

� Waiting for locks or latches

� Waiting for miscellaneous DB2 services

The unknown time, which is the time that you get when you subtract the known time buckets
from the overall time, can have many causes, but the most common cause is CPU queuing
and paging.

Sequential Dataset MYJOB.PAYROLL.LEDGER.FILE
5M 32KB Blocks, On Tape

Job W Writes

Job R1 Reads

Job R2 Reads

Time
348 Batch Modernization on z/OS

Accounting Trace has information about Data Sharing aspects of response time, such as
waiting for Global Locks.

It is possible for a single DB2 invocation to cause multiple SMF 101 records to be produced,
whether through parallelism or because there are more DB2 packages invoked than can fit in
a single record.

For CPU- and sysplex-query parallelism DB2 can write detailed records, one for each parallel
task, or roll up all the parallel tasks into a parent record and a rollup (child) record. For batch
tuning it is sometimes useful to have the individual one-per-task records: When the tasks
aren’t balanced each will record different run times, so you can spot the imbalance and
reduce it.

Correlating DB2 Accounting Trace and jobs and steps
DB2 Accounting Trace (SMF 101) records have a time stamp but they do not have a job
name. Instead they have a correlation ID. In many cases the correlation ID is the job name.
Examples of this include the TSO Attach and DB2 Utility jobs. In other cases the correlation
ID is different from the job name. The most notable cases of this are IMS-originated batch. To
match the correlation ID to the job name knowledge of the IMS setup is required.

Step number is not in the SMF 101 record. If you have deciphered the correlation ID you can
use time stamp analysis to associate a job’s SMF 101 records with their steps.

Some batch DB2 applications access DB2 with more than one plan invocation (but not at the
same time) so sorting the records by time stamp within each step gives a good view.

It is also worth subtracting the DB2 elapsed times and CPU times from the step times.
Sometimes there is significant additional processing outside of DB2 that is revealed by this
technique.

Figure 19-3 on page 350 shows an example of how the time of a DB2 batch job can be
broken down. It differs from the standard Accounting Trace (Long) Report in that it is
simplified and the step-level information is interspersed with the appropriate DB2 Accounting
Trace information. All timings in this example are in minutes.

In this example STEP010 is the significant step (with STEP020 much shorter). Plan PL1 is
the only DB2 plan in STEP010. Within PL1’s execution in STEP010 the majority of the time is
in package GHJG0101. In particular CPU time (38 minutes) and Synchronous Database I/O
time (31 minutes). Async Read I/O time is also significant at 10 minutes. Package HHJG0212
is also significant, using 11 minutes of CPU.

In this artificial example there is no CPU Queuing time, so the numbers do all add up to the
headline totals. This is somewhat unusual and the example is constructed this way to make
the more significant points clear.

Note: In this example other components of response time have been suppressed, as have
other packages. The individually insignificant packages have been added together.
Chapter 19. Increasing batch efficiency by using performance instrumentation 349

Figure 19-3 Sample DB2 job time breakdown report using DB2 Accounting Trace

Examining DB2 job performance more deeply
For very detailed DB2 application performance analysis enable DB2 Performance Trace. The
CPU cost of Performance Trace is generally significant, it might delay the batch jobs for which
it is enabled, and a large amount of SMF data is likely to be written.

So use Performance Trace sparingly, focusing on job steps where it is necessary to tune the
SQL issued by the application. The information, for relevant jobs, is very valuable.

One of the most useful pieces of information Performance Trace can tell you is which SQL
statement is significant (by statement number with plan or package). With this information you
could use the DB2 Explain facility to analyze SQL Access Paths in detail.

You can enable Explain in two ways:

� Binding a plan or package with Explain enabled
� Explain a stand-alone SQL statement

With either method rows are placed in a special DB2 table: PLAN_TABLE. This table can be
queried to obtain information about how DB2 intended to run the SQL statement. Usually
several rows are produced. In skilled hands this can be very effective instrumentation for SQL
tuning.

Two DB2 Catalog tables, SYSIBM.SYSSTATEMENT and SYSIBM.SYSPACKSTMT, can be
queried. Given the plan name, statement number and (perhaps) package name you can
extract the SQL statement text. As mentioned above, to obtain the statement number and
(perhaps) package name, DB2 Performance Trace can be invaluable. (This is also true for
Explain.)

STEP010 – 02:35 to 04:15, Elapsed: 100 mins, CPU: 55 mins, EXCPs 1.8M

Plan PL1: 02:36 to 04:15, Elapsed: 99 mins, CPU 55 mins

6

…

1111HHJG0212

1103138GHJG0101

…Lock /

Latch

Wait

Async

Write

I/O

Async

Read

I/O

Sync
Database

I/O

CPU

Time

Package
Name

STEP020 – 04:15 to 04:18, Elapsed: 3 mins, CPU: 2 mins, EXCPs 1287

Plan PL2: 04:15 to 04:18, Elapsed: 3 mins, CPU 2 mins
350 Batch Modernization on z/OS

Most rows in PLAN_TABLE refer to specific indexes and tables. Using the DB2 Catalog you
can relate these to specific indexspaces and tablespaces. With this information you can use
SMF 42-6 to look at the I/O performance for the relevant DB2-owned data sets.

19.4.3 DFSORT

DFSORT has its own SMF record: Type 16.

An installation can specify for a SMF 16 record to be produced whenever a DFSORT
operation completes (whether directly-invoked or invoked by ICETOOL). There are two kinds
of SMF 16 records:

� When SMF=SHORT is in effect or if SMF=FULL is in effect but the DFSORT operation
terminated abnormally.

� When SMF=FULL is in effect.

SMF=FULL is recommended for serious DFSORT tuning work as it contains additional
information, such as a section for each SORTIN, SORTOUT and OUTFIL data set. While
some of this information duplicates that available with data set SMF records (as outlined in
19.4.1, “Data Set OPENs And CLOSEs” on page 346) some of it is additional.

An example of additional information is the number of records read from or written to the data
set. Record counts are important when tuning DFSORT activities as one of the major themes
is to reduce the number of records passing through each successive processing stage.

Other examples include the exit-processing specifications, major types of DFSORT control
statement (such as SUM), and whether EQUALS is specified. (EQUALS requires DFSORT to
preserve the order of records which have the same sort key, which can degrade
performance.)

Because the Type 16 record has the step number as well as job name it can be directly
related to a specific job step. To re-create the sequence within the step, because there can be
several DFSORT operations, sort the records by time stamp. JZOS and ICETOOL, as two
examples, can be used to drive multiple DFSORT operations within a single step.

For sorting operations the number of intermediate merges would ideally be only 1. z/OS
Release 10’s DFSORT level introduces in SMF 16 the number of intermediate merges (in field
ICEINMRG). If this number is greater than 1 the sort might benefit from an increased virtual
storage specification. Also in Release 10 a new message became available: If additional
intermediate merges are required the job log will also contain the message:

ICE247I INTERMEDIATE MERGE ENTERED - PERFORMANCE MAY BE DEGRADED

19.4.4 BatchPipes/MVS

BatchPipes/MVS has its own SMF record, Type 91, with a number of subtypes:

� Subtype 11 records the OPEN of a pipe by a job
� Subtype 12 is an interval record for that job
� Subtype 13 records the CLOSE
� Subtype 14 records pipe creation
� Subtype 15 records pipe deletion

Note: SMF 42-6 records will have the DB2 subsystem’s DBM1 address space name in, not
that of the batch job.
Chapter 19. Increasing batch efficiency by using performance instrumentation 351

You can use the 11 and 13 records to perform “pipe balancing” (minimizing reader-empty and
writer-full wait times) as well as understanding the characteristics of a pipe. The whole
pipeline topology can be reconstructed from Type 91.

Because the step number is recorded, as well as the job name, you can readily identify which
step the pipe was OPENed in and whether for read or for write. Further time stamp analysis to
determine the order in which pipes are OPENed and how far into the step they are OPENed
and CLOSEd is useful.

19.4.5 DFSMShsm functional statistics

DFSMShsm can record activities such as data set recalls from Migration Level 2 (ML2) in its
own Functional Statistics Record (FSR), written to SMF. This record is usually Type 241 but
the installation can change this.

The step name and number are not in the record but can be discerned by time stamp
analysis.

This record is mainly useful for understanding which DFSMShsm activities delay a job and for
how long. For example the start and end of a data set recall from ML2 can be discerned. If
recalls are shown to be a problem steps can be taken, such as scheduling a recall before the
job needs the data set.

19.5 Other job-level instrumentation

In addition to SMF records there is other instrumentation available. Some of the major
sources of information are described below.

It is also worth noting that source code for the job steps represents a very useful source of
information. Indeed the discovery of a lack of source code might be the compelling event that
drives an installation to re-implement portions of their batch.

19.5.1 SYSIBM.SYSCOPY for DB2 utility jobs

Most DB2 utilities insert one or more rows into the SYSIBM.SYSCOPY table in the DB2
Catalog. Each row contains, amongst other things, the job name and a time stamp. This can
be used, together with SMF 30-4 Step-End record timestamps, to determine which DB2 utility
executions were run in that step. This often explains the use of other facilities, such as
DFSORT, and can provide opportunities to tune the step from the DB2 Utilities perspective.

19.5.2 Tivoli Workload Scheduler information

With Tivoli Workload Scheduler you can obtain information at two levels:

� Application Definitions
� Operations in Real Time

Note: Tivoli Workload Scheduler can manage operations on more than just z/OS systems.
Information in this section applies to both z/OS and non-z/OS operations.
352 Batch Modernization on z/OS

Application Definitions
The Application Description (AD) ISPF panel provides long term information about
applications, as well as allowing you to change the applications’ definitions. You can obtain
information about such things as:

� Operations
� Dependencies
� Special resource requirements
� Run cycles
� Error tracking rules
� Operator instructions.

You can also calculate the critical path for an application.

Operations in Real Time: The current plan
The Query Current Plan (QCP) ISPF panel provides information about the current status of
current production. You can request detailed or summary information about individual
applications, operations, or workstations (such as z/OS images). With QCP you can also
obtain summary information concerning all operations. The QCP panel looks at the current
plan, which is continuously updated as the operations are processed. You can use the QCP
panel to:

� Determine why an operation has not been started.

� Provide status information.

� Display a list of operations that have ended-in-error.

� Decide if intervention is required to speed up the processing of specific applications.

You can display the applications that are most critical and those that have missed, or are
close to missing, the defined deadline.

� Check information before making modifications to the current plan.

� Display a list of all dependencies for an operation.

This function is of particular benefit to quickly identify which outstanding predecessors are
not completed.

� Determine the impact of an operation that has ended in error.

The Tivoli Job Scheduling Console is another interactive interface (running on, for example,
Windows) that enables you to monitor and control objects scheduled in the current plan.

19.5.3 Step-Termination Exit

A routine installed at the IEFACTRT exit point receives control from the system when a job or
job step terminates, whether normally or abnormally.

Every time an SMF record of certain types is about to be written the exit is called, with a
pointer to the record in memory. The types are 4, 5, 30, 32, 34, and 35. Most installations only
write Type 30 records. At step- or job-end there might be more than one Type 30 record and
the exit is called for each.

The exit has access to the whole SMF record’s data, including zIIP and zAAP CPU
information. Most installations have an IEFACTRT routine that provides some basic
information about the step.
Chapter 19. Increasing batch efficiency by using performance instrumentation 353

IBM supplies two sample exit routines for this exit point. One of them, IEEACTRT, writes a
summary of the step in the job’s log. The IEEACTRT sample shipped with z/OS Release 7
includes support for zAAP and zIIP time.

In the absence of SMF analysis, perhaps because it hasn’t been processed yet, the output
from this exit can be a useful piece of instrumentation.

19.5.4 System Log

The System Log (SYSLOG) is normally viewable using the System Display and Search
Facility (SDSF), using the LOG option. It records system messages and a wide variety of
other information in a format that might be more accessible than SMF.

This information includes;

� Tape mount and demount information
� Operator messages and replies
� Job run times
� DFSMShsm activity
� SLIP traps firing
� Security violations
� WebSphere MQ subsystem status and connection messages
� DB2 subsystem messages
� SMF events, such as dump data set switching

SYSLOG is not designed for batch tuning but sometimes the additional information it can
provide helps to explain the performance of a batch job or the environment it runs in.
354 Batch Modernization on z/OS

Part 5 Reduce batch
complexity

Batch programs, jobnets, and batch windows can be very complex from an application coding
point of view. Applications programs sometimes take on too much of a burden in tasks such
as database and file I/O, conversion of data and file transfer. Many times, JCL is used for
application logic. All of this can make a batch process difficult to maintain and less agile.
There is a lot of middleware on the market that helps abstracting non-business logic out of the
application code and at the same time makes the application programs easier to maintain
using sophisticated tools.

In this part of the book, we discuss a few areas in which middleware can help to improve the
maintainability and agility of the batch process. This part includes the following chapters:

� In Chapter 20, “Reduce batch complexity using a Business Rules Management System”
on page 357, we discuss how IBM JRules can help to maintain business rules in a very
agile manner.

� In Chapter 21, “Reduce batch complexity using middleware for transformation logic” on
page 371, we discuss how IBM WebSphere Transformation Extender can help in
developing and maintaining transformation logic using a light runtime environment on
z/OS and sophisticated development tools.

� In Chapter 22, “Reduce batch complexity by eliminating custom file transfer logic” on
page 397, we discuss IBM WebSphere File Transfer Edition (FTE), which you can use to
manage (batch) file transfers.

� In Chapter 23, “Reduce complexity by exploiting DFSORT / ICETOOL” on page 405, we
discuss two z/OS technologies that can help to manage complexity in sort operations
within your batch jobs.

Part 5
© Copyright IBM Corp. 2009, 2012. All rights reserved. 355

Note: Complexity with regards to data access can also be reduced by implementing a
smart Information Management architecture. Refer to Chapter 12, “Create agile batch by
optimizing the Information Management architecture” on page 189 for an overview of the
IBM Information Management solutions available for this purpose.
356 Batch Modernization on z/OS

Chapter 20. Reduce batch complexity using a
Business Rules Management
System

An organization’s success depends upon its agility for responding quickly to today’s complex,
ever-changing markets and regulatory climate. For example, a company’s ability to implement
new pricing models or change product or service features to meet or beat the competition is a
key differentiator in ensuring business success.

Many organizations today have their business policies and business rules automated in
applications that were developed over the course of years or even decades, making them
difficult for a person to comprehend. As these software assets mature, they tend to become
increasingly complex. Unfortunately, this complexity is compounded by a decline in technical
and business understanding of how these assets support business goals and priorities. This
lack of adaptability leads to a growing misalignment between what an application does, or can
do and what the business requires.

The application might become less transparent and the question of how quickly a change can
take place becomes the issue. In addition, identifying the exact change that is required for the
business without affecting the other processes that are embedded in the large complex
applications is even more complicated. For instance, can you be certain that all possible rules
to determine and calculate rebates are known and identified? What are the other rules that
are dependent upon what seems to be a single or simple change in one program?

The following list some key issues with regards to a corporation’s business policies and
business rules in System z applications:

� Business rules are many times implemented as “hard code” and in an inflexible manner,
making them hard to maintain, analyze, and manage.

� As a result of the previous bullet, there is insufficient insight in what business rules are
running the business applications today. The business rules were developed and
maintained like all the processing code that was developed. Additionally, when business
rules are implemented as hard code and developed using regular coding tools (for

20
© Copyright IBM Corp. 2009, 2012. All rights reserved. 357

COBOL, Java, and so forth), business rules are not recognizable as such anymore in the
programs being generated and they just get buried between the rest of the code.

� In traditional applications reuse of business rules is limited or practically non-existing.
Many business rules are imbedded in COBOL and PL/I programs and cannot be accessed
individually. When another business unit needs a similar or the same business rule as the
one that is already imbedded in an existing program, typically the developer takes a copy
of that piece of code, modifies it and re-implements it inside another COBOL or PL/I
program. In addition, there are usually two code bases: one for OLTP processing and one
for batch processing. Again, here is an example in which sharing the business rules
between OLTP and batch processing would be extremely beneficial but unfortunately in
the past has not occurred. Here is where a combination of an SOA approach and use of a
BRMS (business rules deployed as decision services) can help.

� The “Waterfall” application development process has its risks, that is the business rule
developer (who usually is a programmer with COBOL or Java skills) has to understand
and interpret the business rules designed by the business analyst and then include it in
hard code. This approach is risky and can lead to an inflexible implementation of the
business rules designed by the Business Analyst.

� Time to market is not what it should be. A simple change in a straightforward business rule
could take weeks or even months, depending on the complexity of the existing code. This
hurts the company’s performance and frustrates the Line-Of-Business Managers.

Figure 20-1 illustrates the context of both business rule and regular software life cycle
management.

Figure 20-1 Business rule and software life cycle management

Application
development

Business rule
management

Functional
requirements

Functional
enhancements/

platform upgrade

Business
polic ies

Business poli cy
And rules
changes

Business policy
And rules
changes

Business policy
And rules
changes

In-production
business rule application Synchronizati on
358 Batch Modernization on z/OS

To address these issues, corporations have looked to modernize their business applications
on System z. These applications modernization projects generally include addressing the
following goals:

� Increase innovation and productivity, by introducing new tools and technologies

� Increase business agility, by introducing a new application architecture, many times based
on SOA concepts, but also better application life cycle management tooling

� Support growth initiatives

� Access and reuse the business value that resides in existing systems, primarily by using
SOA concepts and rich development tooling

� Reduce application maintenance costs, by reducing redundancy, improving software
quality and more productive application life cycle management tooling

These projects focus on how the core System z applications can address the need to respond
rapidly to emerging opportunities. In order to manage agile solution delivery, it is essential to
be able to understand line of business applications in terms of the business rules they
implement and the effect of rule changes on key business processes.

With the advent of a Business Rule Management System (BRMS) for enterprise application
languages such as COBOL on System z, agile responsive solution adaptation has finally
become a reality. Through the identification and externalization of application business rules,
conditions can be defined that will result in new application behaviors offering a quick and
productive route to greatly enhance the business responsiveness of CICS, IMS and batch
operations by putting the business owner in control of application behavior change and at the
same time retaining good governance and change management.

This chapter provides insight into how to reduce batch complexity using a BRMS system. It
includes the following topics:

� Introduction to Business Rule Management
� Overview of IBM WebSphere ILOG WebSphere BRMS
� Using ILOG BRMS on System z
� Using ILOG BRMS in batch
Chapter 20. Reduce batch complexity using a Business Rules Management System 359

20.1 Introduction to Business Rule Management

Business rules are widely recognized as representing valuable “organizational DNA,” and the
advantages of using a BRMS as an alternative to conventional coding. Business Rule
Management addresses the issues of agility and true value for the business. Applications
constructed with Business Rule Management Systems deliver flexibility and agility, and
enhance the entire policy management infrastructure of the enterprise.

To help introduce the concept of a BRMS, here are some key terms and definitions:

� Business policy

Every organization has people responsible for setting the policies by which the
organization does business. A business policy is a statement of guidelines governing
business decisions. An insurer can have an underwriting policy, for example, that says, “An
existing customer can be eligible for discounts for additional policies if that customer is the
main insurance holder and has no disputed claims.”

� Business rules

The specific statements that enforce a policy are business rules. Policies are translated
into business rules, the detailed conditions and actions that unambiguously enforce the
policy. The business rules expand upon the policy by stating in detail the circumstances
under which the policy is applicable and the actions that enforce it. A business policy can
be translated into many business rules. In the insurance underwriting policy described
above, for example, the rules need to define the terms of the policy (for example, existing
customer and disputed claim). Regional regulations might require the rules to vary from
region to region, and the amount of the discount can change over time as underwriting
experiences more or less risk.

� Business Rule Management System (BRMS)

A Business Rule Management System (BRMS) provides the software to define and
manage business rules through the business rule life cycle. The IBM WebSphere ILOG
BRMS solution provides functionality for authoring, testing, analyzing and deploying
business rules. Its repository provides full management functionality for business rules,
including versioning, baseline management, security and metadata.

20.2 Overview of IBM WebSphere ILOG WebSphere BRMS

IBM WebSphere ILOG BRMS is a suite of tools that business and IT use to build systems in
which business rules are authored, modified and managed independently of the underlying
software system. ILOG BRMS is the IBM technology for creating, maintaining, and
implementing decision services that provide the following functions:

� A convenient communication channel between IT and business teams
� Easy implementation and reuse of business rules across the enterprise
� Flexible options for progressive IT modernization

When business rules are managed outside the application (meaning not embedded inside
application programs), a required rule change can be assessed, implemented and tested in a
much shorter time frame. ILOG BRMS effectively and efficiently delivers full life cycle
management for business rules. Managing business rules throughout the rule life cycle
requires more than just authoring, testing and deploying rules for a specific business area.
Equally important is effective management of changes to rules after they have been deployed
to achieve time and cost savings.
360 Batch Modernization on z/OS

Figure 20-2 shows the business rule life cycle.

Figure 20-2 Business rule life cycle

The advantages gained to quickly identify which rules need to be changed due to a change in
business policy, and then test the proposed changes prior to going into production, provides
the agility and competitive advantage to organizations.

The ILOG BRMS provides ways to:

� Organize business rules
� Make business rules accessible and searchable by relevant criteria
� Version business rules and maintain an audit trail
� Analyze business rules for consistency, completeness and business efficiency
� Test the implementation of business rules to ensure it is faithful to the business intent

Rule ManagerRule Manager

Analyze

Author

VerifyAssess
Impact

Validate

Deploy
Chapter 20. Reduce batch complexity using a Business Rules Management System 361

Figure 20-3 IBM WebSphere ILOG BRMS solution components

This functionality is included in a suite of tools within the ILOG BRMS, as shown in
Figure 20-3:

� Rule Studio is the business rule application development tool for developers, modelers and
architects. Rule Studio is fully integrated with Eclipse, the leading framework for
application development tools. It also works with IBM Rational Application Developer,
Rational System Architect, and WebSphere Integration Developer. All rule artifacts are
managed by Rule Studio as individual plain-text or XML files compatible with Eclipse's
standard file management, and can be stored and versioned in any SCM system. And,
because Eclipse plug-ins are available for the most widely used SCM systems, developers
can do integrated source management, rule project development and Java development
for most projects using the same IDE.

� Rule Team Server (RTS) is the business rule management tool for policy managers. It
combines a deep, scalable, high-performance rule repository with a thin-client rule
management application designed specifically for the needs of policy managers engaged
in rule authoring, management and maintenance. See Figure 20-4 on page 363 for an
impression of the tool.

Business Environments

Rule Team
Server

Rule Solutions
for Office

Technical Environment

Rule Studio
(Eclipse)

Decision Validation
Services

Rule Repository

Production Environment

Rules for COBOLRule Execution
Server for Java

Rule Execution
Server for .NET

Transparent
Decision Services
362 Batch Modernization on z/OS

Figure 20-4 IBM WebSphere ILOG Rule Team Server (RTS)

The RTS repository addresses the specific needs of rule-based policy management with:

– Complete multi-project rule management

Projects in RTS contain the project business object model, vocabulary and all the rule
artifacts, and are stored without reference to a specific execution model. The RTS
repository is designed to be an enterprise repository, storing in a single place multiple
independent or dependent rule projects and their histories.

– Multi user access

The repository supports automatic rule-level locking, as well as user-managed
persistent locks.

– Scalability

The RTS repository scales to dozens of users working on the same or different
projects, and hundreds of thousands of individual rule artifacts.

– Full version and history of rule artifacts

The RTS repository serves as a fully versioned content management system for the
Business Object Model (BOM), vocabulary, and rule artifacts. As artifacts evolve with
an application, the repository maintains all prior versions of each artifact in an
accessible and browsable format, providing a complete audit trail of policy
implementations.

– Baseline management

The repository maintains “baselines” of rule project states, allowing any previous
project state for which a baseline has been created to be recalled for examination.
Current project state can be “rolled back” to any previous baseline.
Chapter 20. Reduce batch complexity using a Business Rules Management System 363

– RDBMS and transactional safety

The RTS repository is fully relational, and is accessed only under transactional
protection, giving the repository the full benefit of content protection offered by modern
RDBMSs.

– Open schema

The repository schema is documented for read-only access by the customer’s own
reporting and querying applications. Business rules and metadata are accessible in
readable formats.

� The Rule Execution Server is a managed business rule execution platform that embeds
the JRules engine. The Rule Execution Server wraps the high-performance ILOG JRules
rule engine into a scalable, manageable and monitorable service that provides business
rule execution for all server-based applications, service-oriented architectures and
embedded rule applications. The Rule Execution Server uses the Java Connector
Architecture (JCA) to provide pooled, managed access to rule-based Decision Services.
Applications invoke the services through a wide choice of invocation technologies,
including stateless or stateful synchronous invocation using simple Java objects (POJOs)
or EJBs, or asynchronous invocation using Message-Driven Beans (MDBs). The
execution unit can be deployed in leading Java EE application servers using pre-packaged
resource archives or as an embedded J2SE component in non-Java EE architectures.
Java EE deployments can take advantage of clustered deployments for scalability and
robustness, especially when deployed to System z.

� The Decision Validation Services (DVS) module is for testing and simulation of business
rules. It provides rule testing functionality for both developers working in the application
development context, and policy managers who author and validate rules as part of the
business rule life cycle.

� The Rules for COBOL module simplifies the inclusion of BRMS to extend existing IT
investments to cost-effectively implement policy change management. The module gives
access to most of the features available with ILOG JRules:

– Define the input and output for generated code by importing COBOL data structures
into Rule Studio to create a Business Object Model (BOM).

– Create a business vocabulary for the BOM and extend the imported data-centric BOM
with action phrases.

– Create rule flows, Business Action Language (BAL) rules, decision tables and decision
trees using standard ILOG JRules features.

– Define and publish rule sets, and then generate COBOL source code from them for
compilation into an executable format.

20.3 Using ILOG BRMS on System z

As mentioned previously, many large customers are managing their business critical data on
the mainframe being accessed by mainframe or also distributed applications. In this context,
data proximity is an important performance factor in general but also when using a BRMS. As
shown in Figure 20-5 there are two options for using BRMS on System:

� Option 1: IBM WebSphere ILOG JRules on System z
� Option 2: IBM WebSphere ILOG Rules for COBOL

We describe the two options in more detail in the following sections.
364 Batch Modernization on z/OS

Figure 20-5 ILOG BRMS options for System z

20.3.1 Option 1: ILOG JRules on System z using Rule Execution Server

IBM WebSphere ILOG JRules on System z is the preferred option for companies who want to
author and execute decision services as part of their SOA strategy on System z or are
developing Java rule-based applications on System z and require a Business Rule
Management System with the Java rule execution as part of the application architecture.

The automated decision will then be managed in the ILOG BRMS with the rule expressed and
documented in business terms, versioned, with the ability to change it when the business
needs it, and easy reuse throughout the enterprise. ILOG BRMS generates the decision
services for SOA deployment.

Design

Maintain

Share

Deploy

Line Of Business

IT Operations

IT Development

Rule Solutions
for Office

Rule Studio

Rule Team
Server

Decision Validation
Services

Rul e Repository

Transparent
Decision Services

Rule Execution
Server

Rules for COBOL

Custom
Web
Applications
Chapter 20. Reduce batch complexity using a Business Rules Management System 365

Figure 20-6 ILOG JRules on System z using the Rules Execution Server

The following components are used for development in this option:

� Rule Studio, the Eclipse based tool, is used by developers and technical business
analysts.

� Rule Team Server is used by Line-Of-Business Managers and business analysts for rule
authoring and management. It is also used as a repository.

� Decision Validation Services is used for rule testing tool by both developers and
Line-Of-Business Managers

Execution and management might require RDBMS access, which can be either on or off the
System z. The following components are used for execution:

� Rule Execution Server, which is the Java rule engine and administration and monitoring
tool. It runs on WebSphere Application Server for z/OS or WebSphere Application Server
for Linux for System z.

� Rule Team Server Repository, which is a full featured Web-based rule management tool
and requires a RDBMS for the repository. In the case the repository is stored in DB2 on
z/OS, ILOG JRules can use a JDBC Type 2 driver to access it.

Example
A large bank has embarked into a SOA strategy on System z. The key objective of their SOA
strategy is agility and reuse. They are looking to define different types of services including
decision services. Decision services perform decisioning that is unrelated to data
transformation. Typically, they are passed data and return a data item that reflects a decision
or an action based on the execution of business rules. Examples include services that accept
credit reports and return creditworthiness scores. These services are central to the workings
of the enterprise and they often represent the core functions of a business process.

System z -
z/OS and zLinux

Rules are
deployed,

executed and
monitored in

J2EE services

Business Rule Management System

Rules are
Defined,
Analyzed

and
Maintained

Rules are
Stored and

Shared

User Tools

Rule Repository
366 Batch Modernization on z/OS

The bank has identified and prioritized the business decisions that they want to begin to
manage centrally. ILOG’s JRules Business Rule Management System is uniquely suited for
the formulation and implementation of transparent decision services:

� ILOG JRules empowers business teams to manage the business rules that automate their
policies.

� ILOG JRules helps development teams to deploy these business rules as fully formed
decision services and weave them into SOA platforms.

� ILOG JRules brings several business-side roles together to collaborate on transparent
decision services.

Their business analysts and business policy managers can validate and simulate rules prior
to deployment. And once the rules are fully tested, the administrator can hot-deploy them in
minutes.

The bank begins to deploy the higher priority decision services for execution. For example,
the decision service “Determine Credit Worthiness” was deployed and this service can now
be used by a CICS application and batch applications. By authoring the rules once and
storing them centrally in the ILOG rule repository, it eliminates the need for developers to
maintain two different code sets for online and batch processing. The business can view the
rules within the decision service and the IT department can monitor the decision service
usage.

20.3.2 Option 2: IBM WebSphere ILOG Rules for COBOL

IBM WebSphere ILOG Rules for COBOL is an option for customers that want to realize the
full benefits while retaining the existing COBOL architecture. ILOG Rules for COBOL provides
the benefit of incremental application modernization by managing business logic
independently of technical architecture. ILOG Rules for COBOL serves as a bridge between
ILOG JRules and COBOL applications.

Figure 20-7 ILOG Rules for COBOL

Rules are
generated as

COBOL source
for execution in

IMS, CICS,
batch

Rules
for COBOL

Business Rule Management Sys tem

Rules are
Defined,

Analyzed and
Maintained

Rules are
Stored and

Shared

User Tools

Rule Repository
Chapter 20. Reduce batch complexity using a Business Rules Management System 367

As shown in Figure 20-7 the steps are as follows:

1. Define the input and output for generated code by importing COBOL data structures into
IBM WebSphere ILOG Rule Studio to create a Business Object Model (BOM).

2. Create a business vocabulary for the BOM and extend the imported data-centric BOM with
action phrases.

3. Create rule flows, Business Action Language (BAL) rules, decision tables and decision
trees using standard JRules features.

4. Generate COBOL source code from defined and published rule sets for compilation into
an executable format.

Using ILOG Rules for COBOL is a combination of the Business Rule Management
functionality of the core ILOG and targeted for native COBOL execution:

� Development and management:

ILOG Rules for COBOL is installed with Rule Studio which is the rule development tool
based on Eclipse. This functionality includes the capability of the import of the COBOL
copybook for the creation of the Business Object Model (BOM) and the generation of the
COBOL sub-program.

In addition, ILOG Rules for COBOL can also be installed in Rule Team Server (RTS) for
enhanced rule authoring and management of business users. This install complements
the rule authoring and management of RTS with the functionality of the generation of the
COBOL sub-program.

� Execution of the rules are through a generated sub-program in Enterprise COBOL that is
compiled and linked on z/OS for native COBOL execution.

Example
A large manufacturing company runs its mission critical COBOL billing system (a rule
intensive application) on z/OS. This billing system is the center of a lot of other business
applications and performance is critical. The Finance Department has expressed a desire to
accelerate their release schedule substantially, in order to accommodate new products and
services that the business wants to offer. The IT department would like to streamline their
development cycle and wants to retain the COBOL execution on z/OS. In addition, the IT
department knows that the new product and service rules will need to be shared with
applications for order fulfillment. The manufacturing company will begin using ILOG JRules
with ILOG Rules for COBOL for management of their rules used in their COBOL applications.

The Business Analysts in the Finance Department work with the IT Developers to identify the
scope of data fields that will be impacted by these new rules. The IT department then
identifies the COBOL copybooks using these fields. These COBOL copybooks are then used
to create the Business Object Model (BOM) within ILOG JRules. Each COBOL field is given a
business name to ease the authoring of the rules as well as the review and reporting of the
rules.

The Business Analysts author the new product rules within Rule Team Server (the Web
management tool). Each set of business rules is based on a business decision required for a
business application. You can set up a rule project for each business decision that will in turn
equate to one subprogram generated by ILOG Rules for COBOL.

A rule flow is also designed for the ILOG Rules for COBOL project. This rule flow will be to
identify the order and dependencies in which the rule sets are needed for generation and
execution in the COBOL subprogram.
368 Batch Modernization on z/OS

Because these are new rules for a new product, the COBOL developer has identified where in
the application the ILOG Rules for COBOL generated program should be called and updates
the program accordingly. Then, when notified by the business analyst that the rules are ready
for testing, the COBOL developer uses Rule Studio to generate the COBOL program from the
rules within the ILOG JRules repository. This program is compiled and linked and ready for
testing.

If these rules need to be changed, the Business Analyst would go back into RTS to make the
necessary changes. RTS handles all the versioning and traceability of the rules.

Business rule mining
To begin modernizing an existing COBOL application, the current coded rules within the
application must be identified. This is where a business rule mining effort is helpful.

Business rule mining is the process of extracting essential intellectual business content
(business rules) from packaged or existing software, recasting them in natural language, and
storing them in a source rule repository for further analysis or forward engineering. The goal
is to capture these existing business rules in a way that the business can validate, control and
change them over time.

The target of your business rule mining effort will be directed by the objectives of the project
as well as the scope of the project phases. For example, if the first phase of a project is to
implement a system based on jurisdiction (that is, state or region), then the rule mining effort
would focus on identifying those rules that pertain to that jurisdiction. Other examples for rule
mining efforts are by sub-process, output report/screen or fields, specific business decision.
The output of the business rule mining project is the candidate business rules hopefully linked
or connected together to better understand the flow as these candidate rules were found in
the target program or programs as well as the related COBOL copybooks or file layouts.

The candidate rules and COBOL copybooks are used as sources for the modernization
project. With WebSphere ILOG Rules for COBOL, the modernization effort is done in three
steps to improve COBOL application flexibility and to rapidly create new applications with
WebSphere ILOG JRules and WebSphere ILOG Rules for COBOL:

1. Import the COBOL copybook

2. Author the business rules by using the candidate rule report and redesign the coded rules
within one of the rule artifacts in WebSphere ILOG JRules

3. Generate the COBOL program for native COBOL execution.

Summary
By using the BRMS with your existing COBOL applications, your organization can realize the
following bottom-line benefits:

� Preserved business value of existing assets and rules managed as intellectual assets in
the BRMS.

� Minimized business risk by ensuring consistency of the business rules throughout
business applications.

� Improved competitive position through enhanced business service and reuse with the
BRMS technology.

� Enhanced cost reduction and ROI with reduced total cost of ownership.
Chapter 20. Reduce batch complexity using a Business Rules Management System 369

20.4 Using ILOG BRMS in batch

Business rules developed and deployed with ILOG BRMS can be used in different ways in a
batch environment on z/OS:

� When running in the Rules Execution Server (Java EE or J2SE) on z/OS, rules can be
invoked as a decision service from an outside batch program. Depending upon the batch
program, the application architect needs to design how ILOG JRules will be executed.

– Batch programs running in WebSphere XD Compute Grid will have easy access to
ILOG business rules, as both environments are natural Java EE environments.

– Batch programs running in stand-alone Java (eventually using JZOS) have easy
access to the business rules too. When ILOG business rules are deployed to a J2SE
environment, these can easily reused from a stand-alone Java batch program; when
ILOG business rules are deployed to a Java EE environment, a Java stand-alone batch
program can perform a remote call to the business rule service in the Java EE server.

– Traditional batch programs written in COBOL or PL/I and running with JCL, however,
do not have easy access to a Java EE or J2SE environment. Options to access a
service in a Java EE environment from a traditional batch program are discussed in
Enabling z/OS Applications for SOA, SG24-7669.

� When using ILOG Rules for COBOL, business rules can be easily integrated with existing
COBOL batch programs, as the business rules are generated as executable COBOL
modules.
370 Batch Modernization on z/OS

Chapter 21. Reduce batch complexity using
middleware for transformation
logic

Batch processes in large companies can be quite complex. It is not unusual that those
companies run thousands of different batch jobs in their environment. In most cases, each of
these jobs is built of several steps. Within these steps, the data is normally processed either
with standard utilities or with self-written programs.

Thus, input data often must be converted before continuing to the real business logic. In many
cases this conversion is done with custom self-written programs. Depending on the
transformation requirements, conversion with self-written programs can be a very expensive
process. If there are changes in the transformation logic or a new transformation rule is
added, a lengthy application development process must be performed.

Today, there are tools available on the market that support data transformations. By using
such a tool, it is possible to react faster and in a more flexible manner regarding changes and
new requirements in data transformation logic. Alternatively, it is possible to reduce the
complexity of batch, because there is only one single tool in use for all types of different
transformations.

The WebSphere Transformation Extender is available on the System z platform for
embedding conversion logic in new or existing batch applications. You can also integrate
WebSphere Transformation Extender with DB2 and participate in CICS or IMS transactions.
In addition to z/OS, it also supports Linux for System z.

WebSphere Transformation Extender on System z provides the ability to quickly connect and
interface existing batch applications among themselves and with industry standards. The
transformation maps are developed in WebSphere Transformation Extender Design Studio on
Windows, where users can build processing and integration rules, integrate data of disparate
types from disparate sources, and process data objects natively without the need to program
in COBOL, PL/I, or Java.

21
© Copyright IBM Corp. 2009, 2012. All rights reserved. 371

WebSphere Transformation Extender on System z provides the following advantages, among
others:

� Eliminate custom integration programming for transforming data
� Avoid costly changes to applications written to older industry standards
� Improve quality assurance by validating information exchanges outside of the applications
� Reduce time and cost, maintaining interfaces to evolving standards
� Allow for fewer IT backlogs and code free maintenance

In this chapter, we create an example to show how to use WebSphere Transformation
Extender to transform data. This chapter includes the following topics:

� WebSphere Transformation Extender: Enabling universal transformation
� Business value of WebSphere Transformation Extender
� Sample using WebSphere Transformation Extender in z/OS batch
372 Batch Modernization on z/OS

21.1 WebSphere Transformation Extender: Enabling universal
transformation

WebSphere Transformation Extender is a powerful, transaction-oriented universal data
transformation and validation solution that delivers flexibility for IT systems, resulting in
business agility. It automates the transformation of high-volume, complex transactions without
the need for hand-coding, which provides enterprises with a quick return on investment.

WebSphere Transformation Extender performs transformation and routing of data in any
format, including XML, non-XML, and in mixed formats, from source systems to target
systems in batch and real-time environments. The sources can include files, relational
databases, message-oriented middleware (MOM), packaged applications, or other external
sources. After retrieving the data from its sources, WebSphere Transformation Extender
transforms the data and routes it to any number of targets where it is needed, providing the
appropriate content and format for each target system.

WebSphere Transformation Extender is integrated with other components of the IBM
WebSphere integration software suite for complete operational and transactional data
integration across the enterprise. It provides the following benefits:

� Highly automated transformation and routing of complex data across many points of
integration in real time to support high message volumes

� Enterprise-wide interoperability supported by a services-oriented architecture (SOA) for
seamless connectivity and interoperability across back-office systems

� Connectivity to a wide range of mainframe, existing, and enterprise applications,
databases, messaging systems, and external information sources

� Support for high-performance, event-driven, transactional environments to ensure
completion and validation of transactions in real time

� A comprehensive library of more than 120 pre-built functions to reduce development time
and simplify specification of rules for validation, transformation, and routing

� Seamless integration across the development, data, and production layers of the
enterprise, using existing IT infrastructures

� Ready-to-use solutions for industry standards and regulatory compliance for operational
and transactional data integration

� Multiple execution options to support right-time, right-style transformation, whether it is
batch, real-time, or embedded

WebSphere Transformation Extender exposes transformations as services inside SOAs. The
WebSphere Transformation Extender family delivers editions for both batch- and event-driven
systems, extending an enterprise service bus (ESB) or business process management (BPM)
solution. The editions can be embedded with customer applications written in a variety of
languages including C, COBOL, Java, and .Net. WebSphere Transformation Extender
supports many platforms, including the System z platform, where customers can deploy
WebSphere Transformation Extender in z/OS batch, CICS, IMS, UNIX System Services, and
Linux on System z environments. In the remainder of this chapter we focus on using
WebSphere Transformation Extender in a batch environment.
Chapter 21. Reduce batch complexity using middleware for transformation logic 373

21.2 Business value of WebSphere Transformation Extender

Without a dedicated solution for transformation, you need significant programming skills to
transform complex data formats, such as a Health Insurance Portability and Accountability
Act (HIPAA), Electronic Data Interchange (EDI), or an SAP IDOC document to other formats.
In this scenario, you need to write specialized, format-specific programs to perform the
preprocessing and postprocessing tasks of checking content quality. The tasks that are
associated with manually transforming formats must all be administered and maintained over
time, incurring development and maintenance costs.

WebSphere Transformation Extender minimizes the impact that integration imposes on an
application. WebSphere Transformation Extender maintains each transformation mapping,
including content validation and format variations, in a portable form, regardless of sources,
target applications, platforms, or adapter requirements, and without the user having to write
code. Its powerful write-once, deploy-anywhere portable technology enables you to grow your
infrastructure with your business.

New business services can be delivered quicker, with business-driven enhancements turned
around in shorter cycles. Business is also better served when electronic documents that are
exchanged between organizations can be validated before they are sent or received,
eliminating the costly errors and corrective actions that are required to re-send the
documents. Validation checking is also important for businesses that must comply with
regulatory and industry requirements for business-to-business transactions. In-process
validation of data before it is mapped eliminates wasted processing time, which can be
expensive.

What makes WebSphere Transformation Extender so different? WebSphere Transformation
Extender has unique capabilities that make it extremely powerful:

� WebSphere Transformation Extender has a unique many-to-many model of transforming
and processing data. With this model, WebSphere Transformation Extender can run all
transforms, lookups, and data enrichments with only one pass at the data, making it one of
the best performing transformation engines on the market.

� Data is validated to content rules and context usages as part of the transformation
process. It is not necessary to write separate logic or have separate executions to provide
extremely rich data validation.

� There is no “language” to WebSphere Transformation Extender. The transforms and data
process are all maintained within the spreadsheet-type GUI. It is not necessary to write
code to handle complex transforms.

� WebSphere Transformation Extender uses self-describing data models to handle data in
its native format and has a unique mechanism for describing data in its native form.

Therefore, with WebSphere Transformation Extender you can solve the following problems
regarding:

� Interoperability

– Connects applications, databases, processes within the enterprise
– Partners processes across the enterprise
– Powerful transformation and routing

� Speed

– Easy design and implementation
– Fast maintenance without coding
– Rapid adaptation to change
374 Batch Modernization on z/OS

� Simplified complexity

– No coding
– Consistent approach to multiple types of integration
– Reusable objects

� Adaptability

– Uses the existing IT infrastructure
– Fully supports existing IT investments such as databases and messaging middleware
– Non-invasive integration
– Application and industry packs

21.3 Sample using WebSphere Transformation Extender in
z/OS batch

In this section, we show how to use WebSphere Transformation Extender in a batch scenario
on z/OS. We transform XML-formatted data to a COBOL copybook format without writing any
specific code. All necessary activities could be performed with WebSphere Transformation
Extender Design Studio using drag-and-drop functionalities.

Example 21-1 shows the format of the XML input data, and Example 21-2 shows the required
copybook style output data format.

Example 21-1 XML input data

<?xml version="1.0" encoding="UTF-8"?>
<Company>
 <Name>Big data center</Name>
 <Department>
 <DepNo>1</DepNo>
 <Description>Production</Description>
.....

Example 21-2 Output data

Big data center 0000000001Production 0000000001Paul Smith
Big data center 0000000001Production 0000000002Hannah Smith
Big data center 0000000002Development 0000000003Mia Brown

Important: Although XML structures can be quite complex, the XML data structure in our
example is relatively simple. WebSphere Transformation Extender Design Studio is
prepared for complex XML structures, but you need to factor in time to obtain sufficient
experience to design and build complex mappings.

Note: Unfortunately, in this broad-scoped book, it is impossible to describe all functions
and possibilities of WebSphere Transformation Extender. For more information, see IBM
WebSphere Transformation Extender 8.2, SG24-7693.
Chapter 21. Reduce batch complexity using middleware for transformation logic 375

The transformation rules for this process are saved in a mapping file. To develop this file, we
use the Eclipse-based WebSphere Transformation Extender Design Studio V8.2 tool.
Figure 21-1 show the following relevant steps for our sample with WebSphere Transformation
Extender:

1. Create transformation rules with WebSphere Transformation Extender Design Studio.
2. Save mapping file on local hard disk.
3. Test transformation rules with local files.
4. Transfer mapping file through FTP (binary) to the mainframe.
5. Run the mainframe job to process input data.

Figure 21-1 Development of WebSphere Transformation Extender maps and deployment

The WebSphere Transformation Extender Design Studio is used at design time to model,
develop, and test the data transformation and application integration maps and systems. You
can integrate both content transformation and content-based routing through the WebSphere
Transformation Extender Design Studio graphical interface. The WebSphere Transformation
Extender Design Studio version 8.2 is an Eclipse-based design environment that contains
several components. For this example we use two of them:

Type Tree Editor Used to define data objects (including source and target data
structures).

Map Editor Used to develop maps that define your data transformation logic.

To develop a WebSphere Transformation Extender solution, you need to complete the
following steps:

1. Describe the data.

Data that is handled by WebSphere Transformation Extender is described in type trees
that define the data structure and semantics. The type trees are created in the Type Tree
Editor.

2. Transform the data.

Data is mapped between the source or sources and destination or destinations by using a
drag-and-drop method and entering map rules. The transformation maps are created in
the Map Editor.

Input
files

z/OS,
AIX
Linux,
Windows
…

z/OS, AIX, Linux, Windows

Excetutable

Map File

Output
files

Examples:
- Hierarchical Data
- Binary Data
- Packed Data
- Tabular Data
- Relational Data
- Nested Structures
- Mixed-Type Data
and on and on…

WTX
Design
Studio

e.g.
MQ Adapter

Input Cards Output Cards

Type Tree
Input

Type Tree
Output

Transformation
Rules

Mapping
from Input

files to
output files

WTX
engine
376 Batch Modernization on z/OS

3. Deploy the transformation.

Upon completion of the design, the map is compiled and deployed to the appropriate
WebSphere Transformation Extender runtime edition.

21.3.1 Creating the mapping file

You must create a mapping file for data transformation. This file contains information about
the input and output format and the necessary rules for transformation. Depending on the
complexity of the input and output data, creating a mapping file can be an elaborate process.

In our example, a batch COBOL program expects data in COBOL copybook format, but the
input is currently only available in XML format. Instead of changing the COBOL program and
using built-in XML functions1, we use WebSphere Transformation Extender to transform the
data first and then pass it on in copybook format to the COBOL program. With this method,
there is no need to change the COBOL program.

Input and output data
Our XML input data contains information about a company (see Example 21-3) and is stored
in the file c:\Redbook\WTX\input.xml.

Example 21-3 XML input data input.xml

<?xml version="1.0" encoding="UTF-8"?>
<Company>
 <Name>Big data center</Name>
 <Department>
 <DepNo>1</DepNo>
 <Description>Production</Description>
 <Employee>
 <EmpNo>1</EmpNo>
 <FirstName>Paul</FirstName>
 <LastName>Smith</LastName>
 </Employee>
 <Employee>
 <EmpNo>2</EmpNo>
 <FirstName>Hannah</FirstName>
 <LastName>Smith</LastName>
 </Employee>
 </Department>
 <Department>
 <DepNo>2</DepNo>
 <Description>Development</Description>

Note: You can download the necessary material to create this example (such as input
data, the WebSphere Transformation Extender Design Studio workspace, and so forth)
from the Internet. See Appendix C, “Additional material” on page 453 for more information.

Note: On the market today, many predefined mapping files are available to support
different standards. For example, to convert data based on the European Single Euro
Payments Area (SEPA) standard, it is easier to buy the predefined mapping file instead of
creating this file natively with WebSphere Transformation Extender.

1 Refer to 4.2, “XML support in COBOL and PL/I” on page 36 for more details regarding XML support in COBOL and
PL/I.
Chapter 21. Reduce batch complexity using middleware for transformation logic 377

 <Employee>
 <EmpNo>3</EmpNo>
 <FirstName>Mia</FirstName>
 <LastName>Brown</LastName>
 </Employee>
 </Department>
</Company>

A corresponding XML schema definition is stored in file c:\Redbook\WTX\input.xsd (see
Example 21-4).

Example 21-4 XML Schema Definition input.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Company" type="companyInfo" />
<xsd:complexType name="companyInfo">

<xsd:sequence>
<xsd:element name="Name" type="xsd:string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Department" type="departmentInfo"

minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="departmentInfo">

<xsd:sequence>
<xsd:element name="DepNo" type="xsd:unsignedShort"

minOccurs="1" maxOccurs="1" />
<xsd:element name="Description" type="xsd:string"

minOccurs="1" maxOccurs="1" />
<xsd:element name="Employee" type="employeeInfo"

minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="employeeInfo">

<xsd:sequence>
<xsd:element name="EmpNo" type="xsd:unsignedShort"

minOccurs="1" maxOccurs="1" />
<xsd:element name="FirstName" type="xsd:string"

minOccurs="1" maxOccurs="1" />
<xsd:element name="LastName" type="xsd:string"

minOccurs="1" maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

This data needs to be transformed to COBOL copybook format (see Example 21-5). The
copybook format is stored in file c:\Redbook\WTX\output.cpy.

Example 21-5 COBOL copybook format output.cpy

01 Company.
05 Name PIC X(20).
05 Department.

10 DepNo PIC 9(10).
10 Description PIC X(15).
10 Employee.
378 Batch Modernization on z/OS

15 EmpNo PIC 9(10).
15 FirstName PIC X(10).
15 LastName PIC X(10).

Starting WebSphere Transformation Extender Design Studio and
creating a project
First, start WebSphere Transformation Extender Design Studio, and create a new Extender
project called Redbook by selecting File New Extender Project. Figure 21-2 shows the
newly created project.

Figure 21-2 WebSphere Transformation Extender Design Studio project
Chapter 21. Reduce batch complexity using middleware for transformation logic 379

Importing XML files
To import the input XML data:

1. Right-click XML Files, and choose Import File System.

2. In the Import window, select the input.xml file. Then, click Browse to select the Redbook
project, and click Finish (see Figure 21-3).

Figure 21-3 Importing XML input data

3. Next, import the XML schema definition file. Right-click Schema Files, and choose
Import File System.

4. In the window that opens, select the input.xsd file. Then, click Browse to select Redbook
project, and click Finish. This method is similar to importing XML input data.
380 Batch Modernization on z/OS

Creating the Input Type Tree using XML Schema Definition
For transformation, you need to describe input and output data. In WebSphere
Transformation Extender, this description is called a Type Tree. You can create a Type Tree
manually or use a predefined WebSphere Transformation Extender import assistant. To
create the Type Tree for our input data:

1. Right-click Type Trees, and choose Import XML Schema (see Figure 21-4).

Figure 21-4 Importing XML Schema for Input Type Tree

2. In the window that opens, choose the input.xsd file, and Next twice. In the window that
opens, select the Redbook project (see Figure 21-5). Click Next, and then click Finish.

Figure 21-5 Choosing Project for Input Type Tree
Chapter 21. Reduce batch complexity using middleware for transformation logic 381

3. If the input file does not open automatically, open the input.mtt file, which is located in the
Type Trees folder. Using Tree Analyze Logic Only, the input definition type tree is
checked by Design Studio. The Analysis Results tab, as shown in Figure 21-6, shows the
output of analysis process. On this tab, you can verify whether the Type Tree definition has
any warnings or errors.

Figure 21-6 Analysis Results

4. Close the input.mtt file, and click Yes to save the changes.

Creating the Output Type Tree using COBOL copybook
Next, you need create the Type Tree for the output data:

1. Right-click Type Trees in the Extender Navigator window, and choose Import COBOL
Copybook.

2. In the window that opens, select the output.cpy file. Then, click Next twice, select the
Redbook project, click Next, and finally Finish.

3. If the file does not open automatically, open the output.mtt file, which is located in the
Type Trees folder.

In the COBOL copybook, each row of the output data contains data for one employee of
the company. In other words, a copybook represents one record. Because the output is a
file that contains several records, you need to modify the Type Tree by creating a FILE
level group to represent the entire file of records.

4. Right-click CopyBook, and choose Add to add a new type in the output Type Tree, as
shown in Figure 21-7.

Figure 21-7 Add new type to output tree

Note: With the V8.2 release, maps can now use schemas directly as definitions in input or
output cards. It means that you are not required to use the XML Schema Importer to create
type trees, as in previous versions of WebSphere Transformation Extender. To use the
schema directly in a transformation map, select an .XSD file instead of an .MTT file from
within the Map Editor.
382 Batch Modernization on z/OS

5. After clicking Yes, enter OutputFile as the name for this new Type Tree. Next, change the
type of OutputFile by right-clicking OutputFile and selecting Properties. In the Extender
Properties tab, change the Property Class from Category to Group (see Figure 21-8).

Figure 21-8 Change Property of new Type Tree

6. Click Yes to confirm that change. Then, right-click OutputFile, and choose Open.
Drag-and-drop Company in the first column of the Component tab, as shown in
Figure 21-9.

Figure 21-9 Edit “OutputFile”

7. You now need to set the range of the component to specify how many occurrences of the
element are expected. To set the range of the Company Record component, right-click the
component, and select Set Range.

8. In this example, specify an indefinite number of occurrences. So, in the Max field, enter s,
which stands for Some. Then, click OK. The name changes to Company Record(s), which
tells WebSphere Transformation Extender to produce multiple different output rows (not
only one single row).

Figure 21-10 Edit Component “Company Record”
Chapter 21. Reduce batch complexity using middleware for transformation logic 383

9. Next, you need to tell WebSphere Transformation Extender to write every row in a
separate line. Right-click Record - Company, select Properties, and change the
Terminator field from NONE to Literal. You also need to change the Value field to <LF> (for
LineFeed), as shown in Figure 21-11. Click the ... button, select LF, click Insert, and then
OK.

Figure 21-11 Changing value for Terminator

10.Using Tree Analyze Logic Only, the output definition Type Tree is checked by
WebSphere Transformation Extender Design Studio. The Analysis Results tab, shown in
Figure 21-6 on page 382, again shows output of the analysis process. On this tab, you can
verify whether the Type Tree definition has any warnings or errors.

11.Close the output.mtt file, and save the changes.

Creating the transformation map
A transformation map contains information such as input validation, transformation, output
format, and much more to produce output data. For detailed information, see IBM WebSphere
Transformation Extender 8.2, SG24-7693.

To create a transformation map:

1. In the Extender Navigator window, right-click Map Files, and select New Map Source
(see Figure 21-12). A map source file can contain several transformation maps.

Figure 21-12 Creating the mapping file
384 Batch Modernization on z/OS

2. In the window that opens, select the Redbook project, set File Name to XML2Cobol, and
click Finish.

3. Then, in the Outline tab, right-click XML2Cobol, and select New (see Figure 21-13). Enter
XML2CobolMap as the name for this map.

Figure 21-13 Creating a new map

Creating the Input Card
To create the Input Card:

1. Right-click Input Cards in XML2CobolMap, and select New (see Figure 21-14). Input and
Output Cards are based on Type Trees, as defined earlier.

Figure 21-14 Create Input Card

2. In the window that opens, set the CardName Property to InputXML and choose input.mtt
from the Redbook project as the Type Tree property (see Figure 21-15).

Figure 21-15 Set property Type Tree for Input Card
Chapter 21. Reduce batch complexity using middleware for transformation logic 385

3. For property Type, select DOC from the XML schema definition (see Figure 21-16).

Figure 21-16 Set property Type for the Input Card

4. Choose the input.xml file for the FilePath Property (see Figure 21-17), and click OK.

Figure 21-17 Set property FilePath for the Input Card
386 Batch Modernization on z/OS

Creating the Output Card
Next, you need to create an Output Card definition:

1. In the Outline window under XML2CobolMap, right-click Output Cards, and select New.

2. In the window that opens, set the CardName Property to OutputCOBOL, and choose
output.mtt from the Redbook project as the Type Tree property (see Figure 21-18).

Figure 21-18 Set property “TypeTree” for Output Card

3. For the property Type, select OutputFile from CopyBook (see Figure 21-19).

Figure 21-19 Set property Type for the Output Card
Chapter 21. Reduce batch complexity using middleware for transformation logic 387

4. Finally, set output.txt for the FilePath property (see Figure 21-20), and click OK.

Figure 21-20 Set property FilePath for the Output Card

Figure 21-21 shows the content of XML2CobolMap with the Input Card on the left side and
the Output Card on the right side.

Figure 21-21 Content of XML2CobolMap

Creating the map
To create the map, you can drag-and-drop fields from the left to the right side to define which
input field matches the corresponding output field. However, as shown in Figure 21-21, all
fields except Company Record(s) on the right side are locked. The reason is that on the left
side one single input XML data structure should map to many COBOL copybook rows.
388 Batch Modernization on z/OS

To solve this, create a functional map, a kind of sub-routine, that is called for each element (in
this case, for each record to be created). Click Company Record(s) on the right side and
then enter =EachCompany() in the Rule panel, as shown in Figure 21-22.

Figure 21-22 Create user-defined WebSphere Transformation Extender function EachCompany

Next, define a parameter for the WebSphere Transformation Extender function using
drag-and-drop fields from the Input Card as function parameter. All different parameters must
be separated by a comma sign. To define all needed parameters:

1. Drag the left side field “Name Comp companyInfo Type” and drop it as the first parameter
of function EachCompany.

2. Append the comma sign followed by a blank (“, ”) after the first parameter.

3. Drag the left side group “Department Comp companyInfo Type(1:s)” and drop it as the
second parameter after the comma sign (,).

4. Append the comma sign followed by a blank (“, ”) after the second parameter.

5. Drag the left side group “Employee Comp departmentInfo (1:s)” and drop it as the third
parameter after the comma sign (,).

6. Press Enter to complete the function definition. Without pressing Enter, your function
definition changes are not activated.

Example 21-6 shows the result of the function.

Example 21-6 Content of user-defined WebSphere Transformation Extender function EachCompany

=EachCompany(Name Comp companyInfo Type:Company Element:InputXML, Department Comp
companyInfo Type:Company Element:InputXML, Employee Comp departmentInfo:Department
Comp companyInfo Type:Company Element:InputXML)
Chapter 21. Reduce batch complexity using middleware for transformation logic 389

XML2CobolMap now looks like Figure 21-23.

Figure 21-23 XML2CobolMap after creating user-defined function “EachCompany”

Next, create the function EachCompany by right-clicking Company Record(s) on the right
and choosing Functional Map Wizard (see Figure 21-24).

Figure 21-24 Selecting the Functional Map wizard
390 Batch Modernization on z/OS

In the window that opens, click Create, and then Close. Now the function EachCompany is
shown in the map window. Every parameter of EachCompany results in one corresponding
Input Card. These cards can be sorted by dragging and dropping the cards within the current
window.

Now, you can define the mapping by dragging fields from Input Cards and dropping them on
the right side, as follows:

1. Drag field “In1” from input card “In1” to output card field Name Field.

2. Drag field “DepNo Comp departmentInfo” from input card “In2” to output card field DepNo
Field.

3. Drag field “Description Comp departmentInfo” from input card “In2” to output card field
Description Field.

4. Drag field “EmpNo Comp employeeInfo” from input card “In3” to output card field EmpNo
Field.

5. Drag field “FirstName Comp employeeInfo” from input card “In3” to output card field
FirstName Field.

6. Drag field “LastName Comp employeeInfo” from input card “In3” to output card field
LastName Field.

Now save the map. Figure 21-25 shows the content of map XML2CobolMap.

Figure 21-25 Content of XML2CobolMap
Chapter 21. Reduce batch complexity using middleware for transformation logic 391

Building the map
Reopen the map by double-clicking XML2CobolMap in the Outline window (see
Figure 21-26).

Figure 21-26 Reopen XML2CobolMap

To compile the map, choose Map Build to check and build the map to an internal format.

Testing the map
To test the transformation process, select Map Run. If everything works correctly, you see
the message shown in Figure 21-27.

Figure 21-27 Testing the transformation process

We defined our output card to save the transformed data in file output.txt. This file is stored
in the Misc folder (in the Extender Navigator window). Example 21-7 shows the content of our
output file. You can view the results of the map execution from within Design Studio. Click
Map View Run Results for a prompt for the inputs and outputs that you want to view.
Select or clear the boxes for the inputs and outputs that you want to review, and then click OK.

Example 21-7 Content of transformation output

Big data center 0000000001Production 0000000001Paul Smith
Big data center 0000000001Production 0000000002Hannah Smith
Big data center 0000000002Development 0000000003Mia Brown

This example shows how to transform data from XML format to COBOL copybook format
without writing any specific code. All necessary activities can be done by drag-and-drop using
WebSphere Transformation Extender Design Studio.

In the next section, 21.3.2, “Transferring files to z/OS” on page 393, we describe how to
transfer the mapping file and run the transformation process on the z/OS.

Note: After changing mapping rules or input or output cards, you must call Map Build to
recompile the map.
392 Batch Modernization on z/OS

21.3.2 Transferring files to z/OS

The executable map files in internal formats have different extensions, depending on the
platform on which they run:

.mmc for Windows

.mvs for z/OS

.hpi for HP-UX Itanium

.hp for HP-UX PA-RISC)

.aix for IBM AIX

.lnx for Linux Intel

.sun for Sun Solaris

Creating a z/OS specific mapping file
Because our COBOL batch program is running on z/OS, we first must create a
mainframe-specific executable mapping file by choosing Map Build for Specific
Platform IBM(TM) z/OS (see Figure 21-28).

Figure 21-28 Creating z/OS specific mapping file

By using the build command for z/OS map, the compiled map is placed in the Map Executable
folder, and a JCL template is generated and placed in the JCL Files folder in WebSphere
Transformation Extender Design Studio. This JCL template must be modified to use the map
and files that are used.

Creating a PDS data set on z/OS
In our example, the z/OS specific mapping file must be copied to a user-defined PDS data
set, which in our case is called WAGNERA.WTX.MAPS. We pre-allocated this data set with the
following options:

Data Set Name: WAGNERA.WTX.MAPS
Space units: Track
Primary quantity: 10
Secondary quantity: 10
Directory blocks: 10
Record format: FB
Record length: 80
Block size: 16000
Data set name type: PDS

Transferring files to a z/OS system
You have to transfer the compiled map file XML2CobolMap.mvs (found in the Extender Navigator
window under the Map Executables folder) in binary mode to the z/OS system as a sequential
Chapter 21. Reduce batch complexity using middleware for transformation logic 393

data set or member of a PDS. The record format has to Fixed Block (FB) and have the Logical
Record Length LRECL) must be 80.

Furthermore, you have to transfer the input XML data input.xml file and XML schema
definition file input.xsd. These files must be transferred in binary mode to the UNIX System
Services file system. In our example, we transferred these files to the UNIX System Services
directory /u/wagnera.

When transferring files, keep in mind the following aspects:

� Specify BINARY, not performing ASCII to EBCDIC translation and not eliminating carriage
returns and line feeds). If you are using an FTP tool, double-check the options, because
most tools will not have any pre-settings for files with file type .mvs, and the file transfer
outcome might be a random result.

� The file transfer must not use the CRLF option, or map corruption will result. Instead, use
either of the following options:

– Use the IBM Personal Communication Facility.
– Use standard FTP, which is available from a Windows command line.

Example 21-8 shows a proper FTP file transfer from the Windows command line.

Example 21-8 FTP commands to load the map file

ftp <your-host>
UserID
Password
binary
cd /u/wagnera
put C:\<WTX_workspace>\Redbook\input.xml input.xml
put C:\<WTX_workspace>\Redbook\input.xsd input.xsd
cd ‘WAGNERA.WTX.MAPS’
quote site LRECL=80 RECFM=FB
put C:\<WTX_workspace>\Redbook\XML2CobolMap.mvs XML2COB
quit

21.3.3 Running the job on z/OS to transform input data

To start a transformation process, you have to submit the corresponding JCL. We describe
this JCL in detail in this section. You can find the complete JCL in Example B-13 on page 448.

Example 21-9 shows the job card that we used.

Example 21-9 Job card

//WTXBATCH JOB (999,POK),'L06R',CLASS=A,REGION=0M,
// MSGCLASS=T,TIME=10,MSGLEVEL=(1,1),NOTIFY=&SYSUID

The quote site command: By using the FTP quote site command, you can set the file
type and allocation on the host.

Note: Our JCL contains some system specific values (such XML Toolkit STEPLIB, Output
data set name, and so forth). You must change these values to fit your environment.
394 Batch Modernization on z/OS

The first step in the job deletes the output data set (in our example called
WAGNERA.OUT.XML2COBO), as shown in Example 21-10.

Example 21-10 Deleting the output data set

//S0 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE WAGNERA.OUT.XML2COBO

The next step starts a batch transformation process by running the program DTXCMDSV.
Because we are transforming XML input data, we also need the XML Toolkit in the STEPLIB,
as shown in Example 21-11.

Example 21-11 Starting the batch transformation process

//DTX EXEC PGM=DTXCMDSV,REGION=0M,
// PARM='XML2COB /I1M ''/DD:MAPXSD'''
//STEPLIB DD DISP=SHR,DSN=BB26159.SDTXLOAD
// DD DISP=SHR,DSN=IXM.SIXMLOD1

The program DTXCMDSV is started with two parameters:

XML2COB DD name for the executable map file

/I1M ‘’/DD:MAPXSD’’’ Because our input Type Tree was created in WebSphere
Transformation Extender Design Studio by importing a XML schema
definition, we need this schema definition file when running our batch
transformation process. With this parameter we define the DD name
for our XML schema definition file.

Example 21-12 shows a DD name pointing to the WebSphere Transformation Extender map.
This is the PDS that we pre-allocated earlier and that we used to store the map. As mentioned
previously, the first parameter for program DTXCMDSV defines the DD name XML2COB for
the executable map file.

Example 21-12 Path to executable map file

//XML2COB DD DISP=SHR,DSN=WAGNERA.WTX.MAPS(XML2COB)

The next DD statements point to the necessary files for our batch transformation program, as
shown in Example 21-13.

INPUT UNIX System Services file with input XML data. This file must be
copied binary to the UNIX System Services file system and must
contain the option “encoding” with the correct value.

MAPXSD The second parameter for program DTXCMDSV defines the DD name
MAPXSD for the XML schema definition file. This file must also be
copied binary to UNIX System Services file system.

OUTPUT For our COBOL batch program, we write the output data to an MVS
data set with copybook-style records.

Example 21-13 Input and output definitions

//* Define the input dataset
//INPUT DD PATH='/u/wagnera/input.xml'
//*
//* Define the schema definition
Chapter 21. Reduce batch complexity using middleware for transformation logic 395

//MAPXSD DD PATH='/u/wagnera/input.xsd'
//*
//* Define the output dataset
//OUTPUT DD DSN=WAGNERA.OUT.XML2COBO,
// DCB=(RECFM=VB,LRECL=80),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1),RLSE),
// DISP=(NEW,CATLG,DELETE)

The number of temporary files to create depends on the characteristics of the map itself. It is
not always obvious to determine the exact number and the sizes to allocate. For complex
maps or for big files, some tests for adjustment might be necessary. Allocating the temporary
files is key for performance. Example 21-14 shows what we used.

Example 21-14 Temporary data sets

//SYSTMP01 DD DSN=&&TEMP01,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP02 DD DSN=&&TEMP02,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP03 DD DSN=&&TEMP03,
// DISP=(NEW,DELETE,DELETE),
........

Use the following rules to set the number of temporary files:

� One temporary data set is allocated in all cases, which is a general use work file.

� One temporary data set is also allocated for each input.

� Depending on how the map is constructed, the map might create a temporary data set for
each output to serve as its work file.

� In addition, one temporary data set is always allocated for each input or output defined
with an RECFM that is not fixed unblocked (F) or fixed blocked standard (FBS).

� Because you can develop a map with no inputs, and output work files cannot be used in
some situations, the minimum number of possible temporary files for a map execution is 1.
The maximum possible number is 1 + (2 x number of inputs) + (2 x number of outputs).

Important: The output data set must be a variable record length file, because our output
Type Tree was configured to produce a line feed after every employee record. When using
FB format, no line feed is produced.

Pre-allocating work files: Pre-allocating work files is not mandatory for small amounts of
data, but we highly recommend it for performance reasons.
396 Batch Modernization on z/OS

Chapter 22. Reduce batch complexity by
eliminating custom file transfer
logic

In batch, you typically process lots of input and output data. Therefore, file transfer from and
to other systems also plays a very important role. However, standard file transfer lacks the
following functionality:

� If the destination system is suddenly down, custom built logic must be implemented to
ensure that the transfer continues or restarts when the destination system is back again.

� Monitoring must be implemented on top of file transfer.

� Auditing must be implemented.

This lack of functionality forces companies to build additional logic in batch around file
transfer. Therefore, batch complexity grows larger than is optimal.

In this chapter, we show how to use WebSphere MQ File Transfer Edition to address this
issue.

This chapter includes the following topics:

� Using WebSphere MQ FTE to perform managed file transfers
� Initiating file transfer using a Java job
� Initiating file transfer using an Ant job
� Summary

22
© Copyright IBM Corp. 2009, 2012. All rights reserved. 397

22.1 Using WebSphere MQ FTE to perform managed file
transfers

Because of custom implementations around file transfer, you can use WebSphere MQ File
Transfer Edition (FTE) to remove this complexity.

Figure 22-1 illustrates how WebSphere MQ FTE works.

Figure 22-1 WebSphere MQ FTE overview

WebSphere MQ FTE consists of the following components:

� FTE agent

The FTE agent processes are long running Java processes that manage transferring files
on and off of a system. Thus, every file transfer operation has an agent as its source and
an agent as its destination.

The agent at the source end of the transfer is responsible for reading files from the source
system, converting them into a stream of messages. This stream of messages is
transferred, using MQ, to queues monitored by the destination agent for the transfer.

� Queue manager

WebSphere MQ provides standard queue managers that perform the message transport.

� Operational interfaces

To control the file transfer edition agents, WebSphere MQ FTE comes with operations
tooling in the form of a set of command-line commands and a graphical MQ Explorer
plug-in. With this operational tooling, you can define the patterns of which files are
transferred where and how.

Although most of the operations functionality is common to both the command-line tools
and the MQ Explorer plug-in, the command-line tools can also carry out administrative
functions. Examples of these administrative functions include defining new agents,
displaying all configured agents, and starting and stopping agent processes.

FTE
Agent

Queue
Manager

Queue
Manager

Queue
Manager

FTE
Agent

Monitoring Record KeepingOperations

(v6 or v7) (v6 or v7)

(v7)

(Coordination)

1. Operations tooling
communicates with
agent by sending
messages to a
queue that the
agent is monitoring

2. Agents transfers file
data using queues

3. Agents send progress and
logging messages to the
“coordination queue manager”
which publishes the messages to
subscribing applications

Queue
Manager

(Command)

Store + forward

Subscription

Key
398 Batch Modernization on z/OS

A typical flow of a sample file transfer might look like as follows:

1. The Operations tooling communicates with the agent on the left by sending messages to
the queue that the agent is monitoring.

2. The agents transfer the file data using queues to the destination agent which stores the
files.

While this process is running, the agents send progress and logging messages to the
coordination queue manager, which publishes the messages to other subscribing
applications.

The big advantage of WebSphere MQ FTE is that it eliminates custom logic around restart
and resume in case a destination system is down because it relies on the functionalities of
standard WebSphere MQ. WebSphere MQ FTE provides this functionality as it ships, thus
the entire transfer is managed automatically by the infrastructure.

In addition, WebSphere MQ FTE can also eliminate custom file transfer monitoring and
logging or auditing. WebSphere MQ FTE Logging is done by the transfer log entries which
record transfers as they flow through the system. The log entries tell us:

� When a transfer starts
� How a transfer is progressing
� If a transfer has completed or is cancelled

The transfer log also records any malformed input message for diagnostic purposes.

There is a single transfer log for all agents in the system which resides within the coordination
queue manager as topic SYSTEM.FTE/log. Each message is an XML document that is defined
by an XML schema.
Chapter 22. Reduce batch complexity by eliminating custom file transfer logic 399

The WebSphere MQ FTE user interface on a Windows or Linux workstation then shows a
formatted representation on the transfer log view, as shown in Figure 22-2.

Figure 22-2 FTE GUI
400 Batch Modernization on z/OS

Figure 22-3 show how this might look on the FTE user interface.

Figure 22-3 FTE Database Logger

Because messages are well formed, we can also write custom applications to read and
process transfer log messages, for example for audit purposes. Compared to normal FTP, this
kind of logging and auditing is much more effective.

For more information about WebSphere MQ FTE, see IBM WebSphere MQ File Transfer
Edition Solution Overview, REDP-4532.

In the context of batch, it is also import to know that WebSphere MQ FTE supports z/OS
UNIX System Services files as well as z/OS data sets. However, for a real batch integration,
you have to trigger the transfer with a job instead of with the operational tooling. Therefore,
you have the following options:

� Using a standard Java job that submits the file transfer command to WebSphere MQ FTE
� Using an Ant job

We discuss these options in the remainder of this chapter.

22.2 Initiating file transfer using a Java job

A sample file transfer initiation by a job might look like that shown in Example 22-1.

Example 22-1 Issuing a WebSphere MQ FTE transfer command

//STRAUERA JOB
/*JOBPARM SYSAFF=SC49
//JAVAJVM EXEC PGM=JVMLDM50,REGION=0M,PARM='+T'
//STEPLIB DD DSN=SYS1.SIEALNKE,DISP=SHR
// DD DSN=MQ700.V090210.SCSQAUTH,DISP=SHR
// DD DSN=MQ700.V090210.SCSQANLE,DISP=SHR
Chapter 22. Reduce batch complexity by eliminating custom file transfer logic 401

// DD DSN=MQ700.V090210.SCSQLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=* < System stdout
//SYSOUT DD SYSOUT=* < System stderr
//STDOUT DD SYSOUT=* < Java System.out
//STDERR DD SYSOUT=* < Java System.err
//CEEDUMP DD SYSOUT=*
//ABNLIGNR DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD *
This is a shell script that configures
any environment variables for the Java JVM.
Variables must be exported to be seen by the launcher.
Use PARM='+T' and set -x to debug environment script problems
set x
. /etc/profile

Java configuration (including MQ Java interface)
export JAVA_HOME=/usr/lpp/java/J5.0
export PATH=/bin:"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin/classic
LIBPATH="${LIBPATH}":/pp/mqmv7/V090210/java/lib/
export LIBPATH

FTE configuration
export FTE_PROD=/usr/lpp/mqmfte/V7R0M1/mqhg
export FTE_CONFIG=/var/mqmfte
export _BPXK_AUTOCVT=ON

Select function to be executed (script names without fte prefix)

. ${FTE_PROD}/bin/fteBatch CreateTransfer

Set JZOS parameters to FTE values
export IBM_JAVA_OPTIONS="${FTE_JAVA_OPTIONS}"
export JZOS_MAIN_ARGS="${FTE_MAIN_ARGS}"
//MAINARGS DD *
-da CHICAGO.AGENT2 -dm MQH2 -sa CHICAGO.AGENT -sm MQH1 -t text -w
-ds "//'STRAUER.SPUFI.OUT'" -de overwrite
"//'STRAUER.SPUFI.OUT2'"
//

This sample calls the JZOS batch launcher (see 7.2, “Running Java with JZOS” on page 79
for more details) and invokes a WebSphere MQ FTE command. The WebSphere MQ FTE
command is passed by the MAINARGS DD statement and transfers a single data set from
agent CHICAGO.AGENT to agent CHICAGO.AGENT2. The -w parameter is included so that
the step waits for the transfer command to complete. The step return code contains the return
code from the invoked function.

You need to adjust the following parameters in the JCL:

� STEPLIB to include the JZOS and MQ load modules

� JAVA_HOME to point to the Java home directory in UNIX System Services

� LIBPATH to include the MQ Java libraries
402 Batch Modernization on z/OS

� FTE _PROD to point to the FTE production directory in UNIX System Services

� FTE_CONFIG to point the WebSphere MQ FTE config directory under UNIX System
Services

After submitting the job, you can read the file transfer results in the job output.

22.3 Initiating file transfer using an Ant job

Another option to initiate a WebSphere MQ FTE command in batch is to use Ant in
combination with BPXBATCH.

In addition to the standard Ant tasks, such as copy, delete, or mkdir, WebSphere MQ FTE
offers extensions to Ant. These extensions, in combination with the standard Ant tasks, allow
you to send commands to WebSphere MQ FTE agents using WebSphere MQ. Those
extensions include, for example:

fte:copy
fte:move
fte:invoke

Example 22-2 shows a basic Ant script.

Example 22-2 A sample Ant script, antTest.xml

<?xml version="1.0"?>
<project name="Project1" default="main" basedir="/u/strauer/ant"
xmlns:fte="antlib:com.ibm.wmqfte.ant.taskdefs">
 <target name="init">
 <property name="srcfile" value="file1.txt"/>
 <property name="dstfile" value="file1_new.txt"/>
 <property name="Name" value="Demo System"/>
 </target>
 <target name="step1" depends="init">
 <echo>Starting build of ${Name}</echo>
 </target>
 <target name="step2" depends="step1">
 <fte:filecopy src="CHICAGO.AGENT@MQH1" dst="CHICAGO.AGENT2@MQH2"
rcproperty="copy.result">
 <fte:filespec srcfilespec="${srcfile}" dstfile="${dstfile}"/>
 </fte:filecopy>
 </target>
 <target name="step3" depends="step2">
 <echo>Finished build of ${Name}</echo>
 </target>
 <target name="main" description="runs this script">
 <antcall target="step3"/>
 </target>
 </project>

Note: Because the command is submitted using a Java job, it requires a JVM startup. See
18.2, “Stand-alone Java batch” on page 339 for performance aspects of JVM startup.
Chapter 22. Reduce batch complexity by eliminating custom file transfer logic 403

This script performs the following steps:

1. Printing out that the script is starting.

2. Copying a file from /u/strauer/file1.txt to /u/strauer/file1_new.txt.

3. Printing out that the script has finished.

All these steps depend on each other.

Compared to the job in 22.2, “Initiating file transfer using a Java job” on page 401, Ant allows
you to easily create very sophisticated file transfer scripts that include dependencies.
Furthermore, Ant is a platform-independent, open standard compared to JCL.

To launch the Ant script in batch, you can use BPXBATCH. First, ensure that the environment
variables FTE_JAVA_HOME and PATH are set correct in the .profile file, as follows:

export PATH=$PATH:/pp/mqmfte71/UK00000/bin
export FTE_JAVA_HOME=/usr/lpp/java/J5.0

Now, you can call the fteAnt command under <FTE_HOME>/bin using a BPXBATCH job, as
shown in Example 22-3.

Example 22-3 Launching Ant with BPXBATCH

//STRAUERB JOB
/*JOBPARM SYSAFF=SC49
//STEP1 EXEC PGM=BPXBATCH,REGION=0M,
// PARM='SH fteAnt -f /u/strauer/ant/antTest.xml'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*

This job calls the Ant script in a batch job.

22.4 Summary

WebSphere MQ FTE allows you to easily perform a file transfer that is completely managed.
For example, if a system in fails, WebSphere MQ FTE makes sure that the transfer is
completed later. Thus, you can reduce batch complexity by eliminating custom written file
transfer management logic. In addition, you can integrate WebSphere MQ FTE in batch using
a Java job or Ant.

Note: The fteAnt command is tagged ASCII. Therefore, you need to make sure AUTOCVT is
set to ON.

Note: Using Ant and BPXBATCH also requires a JVM startup. See 18.2, “Stand-alone
Java batch” on page 339 for performance aspects of JVM startup.
404 Batch Modernization on z/OS

Chapter 23. Reduce complexity by exploiting
DFSORT / ICETOOL

DFSORT has evolved far beyond simple sorting. This chapter demonstrates why you might
consider DFSORT functions to replace batch steps that you have written yourself to perform
tasks that can be done by standard functions and features provided by the z/OS environment.
You might want to consider DFSORT for the following reasons:

� DFSORT statements are less complex to code and maintain than self-written code.

� DFSORT functions have the potential to be more computationally efficient than self-written
code.

In this chapter, we discuss how you can build applications from the standard DFSORT and
ICETOOL capabilities.

This chapter includes the following topics:

� Invoking DFSORT functions
� Data that DFSORT can process
� Beyond sorting
� Symbols
� Invoking DFSORT from Java with JZOS

23

Note: The functions for DFSORT have been extended greatly over the last few years
through formal releases and new-function APARs, which are usually released annually.
This chapter assumes that you have the latest functions available.

Note: In this chapter the term OUTFIL means the OUTFIL statement that is used with the
DFSORT program. The term DFSORT OUTFIL is a more formal, equivalent term.
© Copyright IBM Corp. 2009, 2012. All rights reserved. 405

23.1 Invoking DFSORT functions

You can invoke DFSORT in a number of different ways:

� As direct program statements, using SYSIN
� Using ICETOOL and its own program statements
� Using REXX
� Using Assembler
� Using compiled high-level languages such as COBOL
� Using JZOS
� As an automatically-invoked replacement for IEBGENER (using ICEGENER)

23.2 Data that DFSORT can process

DFSORT can read from and write to data sets of the following types:

� Sequential data sets, whether on disk or tape (including a member of a PDS or PDSE)
� BatchPipes/MVS pipes
� VSAM files
� SPOOL files

Data can be Fixed, Variable, of Variable Spanned (except some types do not support Variable
Spanned data).

DFSORT has a good reputation for supporting new device types and data set configurations,
such as DFSMS Extended Format Sequential (which supports Striping and Compression) for
input and output data sets.

DFSORT cannot directly process database data, such as DB2 or IMS. Such data has to be
extracted to flat files first or written from flat files afterwards.

23.3 Beyond sorting

You can use DFSORT for other functions beyond sorting, merging, and copying data. The
following resources provide details:

� The article Beyond Sorting, which is available at:

http://www.ibm.com/support/docview.wss?rs=114&uid=isg3T7000091

� The article Smart DFSORT Tricks, which is available at:

http://www.ibm.com/support/docview.wss?rs=114&uid=isg3T7000094

Fundamentally, DFSORT takes records from a data set (or a concatenation of data sets) and
processes them and writes the results, whether that processing involves a sort or is more akin
to copying. (The MERGE operation takes multiple data sets and merges them,
post-processing the merged records and writing the results.)

Note: You can invoke many of DFSORT capabilities using DFSORT directly. You can
invoke some using ICETOOL, which is part of the DFSORT program product, to invoke
DFSORT transparently.
406 Batch Modernization on z/OS

http://www.ibm.com/support/docview.wss?rs=114&uid=isg3T7000091
http://www.ibm.com/support/docview.wss?rs=114&uid=isg3T7000094

Where speed, simplicity, or maintainability are important, both new and existing application
components that meet this pattern should be examined to see whether DFSORT functions
are a good match.

In this section, we describe some of the more uncommon functions of DFSORT.

23.3.1 Record selection

DFSORT has very sophisticated record selection capabilities, whether before any sort
(INCLUDE / OMIT) or after the sort (OUTFIL INCLUDE / OMIT).

With OUTFIL INCLUDE / OMIT, you can use different criteria to send records to multiple
output destinations, as Figure 23-1 shows. In this example, records are selected before the
actual sort with INCLUDE and then reformatted with INREC. Then, the sort data is written to
the following destinations:

� SORTOUT
� OUTFIL INCLUDE 1
� OUTFIL INCLUDE 2

The data written in each case is different, whether because different records are selected to
be written or different there is reformatting for the same record.

Figure 23-1 OUTFIL allows additional data outputs

OUTFIL
INCLUDE 2

OUTFIL
INCLUDE 1

Sort

SORTOUT

INCLUDE

INREC
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 407

The following selection criteria can be used individually or together, using AND or OR logic.

� Fields can be compared to other fields or to constant values, whether numeric or character
data.

� Fields can be compared to dates and times, including using simple logic such as
comparing to yesterday’s date.

� Substring comparisons can be made, for when the exact position of a match isn’t known in
a string.

� Bit-level comparisons can be made.

� Records can be selected based on whether they have valid EBCDIC or Packed-Decimal
numerics in a specific field, which can be especially helpful for checking whether data has
broken numerics in it, a common source of batch job failures.

� The ICETOOL SELECT operator writes records that meet (or fail to meet) specific criteria
as a group of records, such as “all records with duplicate values for a certain field occur in
more than one record” (ALLDUPS). You can reformat the selected records.

� With IFTHEN processing a flag can be conditionally injected into the records that can then
be used to keep or delete them.

23.3.2 Record reformatting

DFSORT has versatile record editing capabilities, whether using INREC on input or OUTREC
or OUTFIL on output. Unless you are writing to multiple destinations or need some specific
OUTFIL feature, it is recommended that you use the OUTREC statement rather than the
OUTFIL statement.

Here are some examples of reformatting capabilities:

� Overlaying fields

� Adding fields at the end of records

� Moving fields

� Finding and replacing strings, both as substrings and as direct lookups

� Manipulate timestamps and add the current time and date into records

� Reformat fields, such as converting to and from hexadecimal, translating from lower case
to upper case, and number reformatting

� Perform arithmetic operations, such as adding two numeric fields together to create a new
field

� Inserting sequence numbers

� Left- and right-justifying fields

� Converting between variable-length and fixed-length records and vice versa

With IFTHEN, you can selectively reformat records, based on whether the record meets
specific criteria.

Originally, DFSORT only reformatted records by explicitly specifying all the fields. With
OVERLAY, you can now specify just the fields to be changed, which simplifies many
reformatting applications.
408 Batch Modernization on z/OS

23.3.3 Parsing

Traditionally, DFSORT and ICETOOL worked only with fields in fixed positions with fixed
lengths in the record. With PARSE and IFTHEN PARSE, you can extract up to 100 delimited
fields and use them wherever you previously used fixed fields.

A delimited field is one that begins somewhere after one delimiting character and ends
somewhere before another delimiting character.

Figure 23-2 shows how to use PARSE to move variable-position and variable-length fields
into fixed positions and edited to yield fixed-length fields.

Figure 23-2 How PARSE moves and reformats fields to fixed positions

The following example, from the article DFSORT: Beyond Sorting, shows parsing and
reformatting comma separated values (CSV):

%01=(ENDBEFR=C',',FIXLEN=8),
%=(ENDBEFR=C','),
%03=(ENDBEFR=C',',FIXLEN=5),
%04=(FIXLEN=12)),
BUILD=(%01,14:%03,TRAN=LTOU,25:%04,UFF,TO=FS,LENGTH=15)

The PARSE operand defines the rules for extracting the delimited fields from each record into
%nn fixed parsed fields as follows:

� The first CSV field is extracted into the 8-byte %01 field. If the extracted data is less than 8
bytes, it is padded on the right with blanks.

� The second CSV field is ignored.

%00

%01

Record 1

Record 2

Record 3

After Parse

Record 1

Record 2

Record 3

Before Parse

%00

%00

%01

%01
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 409

� The third CSV field is extracted into the 5-byte %03 field. If the extracted data is less than
5 bytes, it is padded on the right with blanks.

� The fourth CSV field is extracted into the 12-byte %04 field. If the extracted data is less
than 12 bytes, it is padded on the right with blanks.

The BUILD operand reformats the records using the %nn fields as follows:

� Output positions 1-8 contains the data in the %01 parsed field.

� Output positions 14-18 contains the data in the %03 parsed field translated from
lowercase to uppercase.

� Output positions 25-39 contains the numeric digits from the %04 parsed field converted to
FS format.

23.3.4 Report writing

Both ICETOOL and OUTFIL can be used to write reports. ICETOOL is simple to use and is
recommended for reports where the sophistication of OUTFIL is not required. OUTFIL can
produce highly detailed reports that contain the following levels:

� Report-level, with report elements appearing once per report

� Page-level, with report elements appearing on each page

� Section-level, with report elements appearing once per section

A section break occurs when the value of specified fields changes, for example for a new
value of the Month field.

Both trailers and headers can be created, with or without detail lines in between. Detail lines
come from individual records, including those which did not cause the section break.

Headers can contain information such as the date and time the report was created, the new
value for the field that caused the section break, and the page number.

Trailers can contain the same information as headers but also information that can only be
computed at the end of a section such as averages, totals, and counts.

23.3.5 Record combining

Most DFSORT and ICETOOL operations treat each record individually. There are, however,
some functions which combine records:

� OUTFIL, as previously noted, allows computations such as averages, totals and counts to
be performed. These can operate on all records in the input data set (with TRAILER1), or
on all records on a page (with TRAILER2), or on all records in a section (with SECTIONS
and TRAILER3).

� SORT with SUM can be used to create totals and count records, and hence averages.

� IFTHEN WHEN=GROUP can process records as groups.

� ICETOOL OCCUR prints each unique value for specified numeric and character fields and
the number of times it occurs.

� ICETOOL RANGE prints a message containing the count of values in a numeric range.

� ICETOOL SELECT selects records for an output data set based on meeting criteria such
as duplicates.
410 Batch Modernization on z/OS

� ICETOOL SPLICE splices together fields from records that have duplicate numeric or
character field values. You can use this for situations where you need to join data sets or
look up values from another data set.

� ICETOOL STATS prints messages containing the minimum, maximum, average and the
total of all the values for a specific numeric field.

� ICETOOL UNIQUE prints a message containing the count of unique values in a numeric
or character field.

23.3.6 Checking data

Many batch job failures occur because of errors in the input data, for example invalid numeric
data (such as when character data is written to a numeric field). ICETOOL can help you avoid
these errors as follows:

� ICETOOL VERIFY can be used to check a data set for errors in signed packed decimal
and signed zoned decimal fields. For example, if one of the fields in one of the records has
invalid numeric data ICETOOL will terminate with return code 12.

You can print the record number and hexadecimal field value for each record and field in
error. (You can specify up to 10 fields to check.)

You can limit the number of errors printed before ICETOOL terminates with the LIMIT
parameter.

� Logical errors and character field problems can be checked with ICETOOL COUNT to set
return code of 4 or 12 based on how many records meet error criteria.

Example 23-1 sets return code 4 if any record in the IN data set contains the string ERROR
anywhere in positions 1 to 80. Not specifying RC4 will generate a return code 12 instead.

This example is a very simple error condition. More complex error conditions that could be
checked for include whether the record as a whole has logical consistency. For example
the city being Poughkeepsie but the state being other than New York or Arkansas.

Example 23-1 Using ICETOOL COUNT to detect data errors

//ICET1 EXEC PGM=ICETOOL
//DFSMSG DD SYSOUT=*
//TOOLMSG DD SYSOUT=*
//IN DD *
ABCD
DEFG
THIS RECORD IS IN ERROR
/*
//OUT DD SYSOUT=*
//TOOLIN DD *
 COUNT FROM(IN) USING(COUN) NOTEMPTY RC4
/*
//COUNCNTL DD *
 INCLUDE COND=(1,80,SS,EQ,C'ERROR')
/*
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 411

These techniques set a non-zero return code. An installation can automate based on such a
return code:

� The same job can behave differently depending on the return code.

� Automation can detect the return code and cause manual or automatic intervention if it is
non-zero.

23.3.7 IFTHEN conditional processing

IFTHEN processing allows different records in a data set to be processed differently,
depending on programmer-specified criteria. Further, a series of steps can be performed
against the data without intermediate data sets being written.

IFTHEN can be specified on INREC, OUTREC and OUTFIL statements. Indeed a DFSORT
step can include IFTHEN processing on as many INREC, OUTREC and OUTFIL statements
as you like. For example, you might include IFTHEN on an INREC statement and three
OUTFIL statements.

You can specify the following five types of IFTHEN clause:

� WHEN=INIT, which are processed before all other IFTHEN clauses. The BUILD, OVERLAY,
or PARSE subclause is applied to all records.

� WHEN=(logexp), where logexp is a logical expression. The BUILD, OVERLAY, or PARSE
subclause is applied if the logical expression evaluates to true.

� WHEN=ANY, where the clause’s BUILD, OVERLAY, or PARSE subclause is applied if any of
the preceding WHEN=(logexp) clauses evaluates to true.

� WHEN=GROUP allows you to do various types of operations involving groups of records, such
as propagating fields, identifiers and sequence numbers within groups. It further facilitates
other types of group operations such as sorting by groups, and including or omitting
records by groups.

Groups are identified by RECORDS=n, BEGIN=(logexp), or END=(logexp), or any combination
of the three.

� WHEN=NONE, where the BUILD, OVERLAY, or PARSE clause is applied only if none of the
preceding WHEN=(logexp) expressions are true.

Clauses are processed in the order they’re specified, except that WHEN=INIT and
WHEN=GROUP clauses are always processed first and WHEN=NONE clauses last.

The following sections provide two simple examples that illustrate the power of IFTHEN.

Treating records differently
Example 23-2 shows a JCL sample.

Example 23-2 Sample JCL

//COPY1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD *
AXLE
BOX
AERIAL
DEPOT
ASPIC
CARROT
412 Batch Modernization on z/OS

/*
//SORTOUT DD SYSOUT=*
//SYSIN DD *

OPTION COPY
INREC IFTHEN=(WHEN=(1,1,CH,EQ,C'A'),OVERLAY=(8:C'YES')),

IFTHEN=(WHEN=NONE,OVERLAY=(8:C'NO'))
/*

This sample treats records with the character A in position 1 differently from those with some
other character in the first position. The records with A have YES placed in position 8, and the
records without A have NO placed in position 8. This sample produces the following output:

AXLE YES
BOX NO
AERIAL YES
DEPOT NO
ASPIC YES
CARROT NO

This example, of course, is a very simple IFTHEN example.

Handling groups
Example 23-3 shows a JCL sample.

Example 23-3 Sample JCL

//COPY2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD *
<GROUP>
AXLE
BOX
</GROUP>
<GROUP>
AERIAL
DEPOT
ASPIC
CARROT
</GROUP>
/*
//SORTOUT DD SYSOUT=*
//SYSIN DD *

OPTION COPY
INREC IFTHEN=(WHEN=GROUP,

BEGIN=(1,7,CH,EQ,C'<GROUP>'),
END=(1,8,CH,EQ,C'</GROUP>'),
PUSH=(20:SEQ=3,25:ID=3))

OUTFIL OMIT=(1,7,CH,EQ,C'<GROUP>',OR,
1,8,CH,EQ,C'</GROUP>'),
OVERLAY=(20:20,3,ZD,SUB,+1,EDIT=(IIT),25:25,3,ZD,EDIT=(IIT))
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 413

This example is a more complex example that illustrates the use of WHEN=GROUP with
additional post processing. This sample produces the following output:

AXLE 1 1
BOX 2 1
AERIAL 1 2
DEPOT 2 2
ASPIC 3 2
CARROT 4 2

In this output, the first column of numbers is the record number within a group. The second is
the group’s identifier.

The input data in this example is a pair of groups of records. Each group is bracketed with
<GROUP> and </GROUP>.

The WHEN=GROUP clause recognizes the start and end of each group - with the strings
specified by BEGIN= and END=.

When a new group is encountered a new record sequence number within the group is placed
in positions 20 to 22 (specified by 20:SEQ=3). This sequence number is incremented by 1 for
each record in the group.

Specifying 25:ID=3 means the group number (starting at 1) is placed in positions 25 to 27.
The group number is incremented by 1 when a new group is encountered.

The OUTFIL OMIT statement removes the group start and end records, and reformats the
remaining data records:

� The sequence number within group is decremented by 1 and reformatted to blank out
leading zeroes. (It has to be decremented by 1 because the <GROUP> record had
sequence number 1 and the first data record had sequence number 2.

� The group identifier number is reformatted, suppressing its leading zeroes.

This example, admittedly, is a more complex example. In fact most of the complexity is in the
formatting in the OUTFIL statement.

23.4 Symbols

Symbols can make DFSORT and ICETOOL invocations more readable and maintainable.
Consider the following example:

SORT FIELDS=(12,8,CH,A,4,8,CH,A)

This code fragment is difficult to maintain if the input data changes format. This is particularly
the case when the same data set could be processed by more than one job.

Now consider the same example rewritten using Symbols. First, here is the SORT invocation
again:

SORT FIELDS=(SURNAME,A,FIRSTNAME,A)
414 Batch Modernization on z/OS

So, DFSORT will understand the SURNAME and FIRSTNAME symbols and define them in a
SYMNAMES DD of the form:

//SYMNAMES DD *
FIRSTNAME,4,8,CH
SURNAME,12,8,CH
/*

This code is much more maintainable and the SORT statement is more comprehensible.
Rather than using SYMNAMES DD * for the SYMNAMES file consider using a permanent
data set (such as a PDS member). If more than one DFSORT invocation uses the same input
file, a change in file format requires that you change only one part—the SYMNAMES
permanent data set.

A field can be mapped more than once. Consider the following example:

//SYMNAMES DD *
DATE,1,10,CH
YEAR,=,4,CH
SKIP,1
MONTH,*,2,CH
SKIP,1
DAY,*,2,CH
/*

The symbol DATE maps all 10 characters of a date field in the form YYYY-MM-DD.

The symbol YEAR maps the YYYY portion.

Each SKIP moves the cursor past a “-” portion of the field.

MONTH and DAY map the MM and DD portions of the field.

The equal sign character (=) in this example says “start the YEAR symbol at the same
position as the previous symbol” (in this case DATE).

The star character (*) in the definitions of MONTH and DAY means “start the symbol just after
the previous symbol or SKIP.”

Note: Symbols are not attached to the data (as a variable would be). A symbol relates to
the same offset and length in the record throughout. So, for example, if you refer to a
symbol in a reformatting INREC statement it is likely the reformatting will move the field to
a different position in the record and the symbol will not adjust its position to match.

A useful technique is to define one set of symbols for each stage, perhaps prefixing each
set with additional underscore characters to keep the set unique.
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 415

23.4.1 Converting COBOL copybooks to DFSORT symbols

The article Smart DFSORT Tricks includes a sample REXX EXEC COBDFSYM that allows
you to convert a COBOL copybook to a DFSORT Symbols file using the following two-step
process:

1. Wrap the COBOL copybook in a dummy program, and compile the program to get a
compiled listing.

2. Use the COBDFSYM REXX program to process the compiled listing, and create a
DFSORT symbols data set.

This process seems convoluted, but it uses the COBOL compiler to do the hardest work,
which makes the REXX EXEC relatively lightweight and maintainable. In reality, installations
using this technique can combine the two steps in single a batch job for ease of use. The
article includes a sample two-step program that you can adapt.

Example 23-4 shows a sample COBOL copybook.

Example 23-4 Sample COBOL copybook

 01 PACKAGE-RECORD.
 5 PACKAGE-HEADER.
 10 PACKAGE-HEADER-1 PIC X(13).
 10 FILLER PIC X.
 10 PACKAGE-HEADER-2 PIC X(1).
 10 FILLER PIC X.
 10 PACKAGE-SEQUENCE PIC 9(8) COMP-3.
 5 CUSTOMER-GROUP.
 10 CG-NAME PIC X(3).
 10 CG-COUNT PIC 9(10) COMP-3.
 10 CG-DATE PIC 9(6) COMP.
 10 CG-TIME PIC 9(8) COMP.
 10 CG-TYPE PIC S9(2) COMP.
 10 CG-LIMIT PIC S9(7).
 10 CG-STATUS PIC X(8).
 88 APPROVED VALUE 'APPROVED'.
 88 DENIED VALUE 'DENIED '.
 88 PENDING VALUE SPACES.
 10 CG-COUNTY-NO PIC 99.
 88 DUTCHESS VALUE 14.
 88 KINGS VALUE 24.
 88 NOCOUNTY VALUE ZERO.

Example 23-5 shows resulting DFSORT Symbols deck.

Example 23-5 Resulting DFSORT Symbols deck

POSITION,1
PACKAGE-RECORD,=,57,CH @1
 PACKAGE-HEADER,=,21,CH @1
 PACKAGE-HEADER-1,=,13,CH @1
 SKIP,1 @14
 PACKAGE-HEADER-2,*,1,CH @15
 SKIP,1 @16
 PACKAGE-SEQUENCE,*,5,PD @17
 CUSTOMER-GROUP,*,36,CH @22
 CG-NAME,=,3,CH @22
416 Batch Modernization on z/OS

 CG-COUNT,*,6,PD @25
CG-DATE,*,4,BI @31
 CG-TIME,*,4,BI @35
 CG-TYPE,*,2,FI @39
 CG-LIMIT,*,7,ZD @41
 CG-STATUS,*,8,CH @48
 APPROVED,'APPROVED'
 DENIED,'DENIED '
 PENDING,' '
 CG-COUNTY-NO,*,2,ZD @56
 DUTCHESS,14
 KINGS,24
 NOCOUNTY,0

In this example, the @56 and similar comments denote the positions in the record to which the
symbol maps.

23.5 Invoking DFSORT from Java with JZOS

JZOS includes the DfSort class, which enables programmers to invoke DFSORT from Java in
a straightforward manner. Java is an ideal language for scripting DFSORT because:

� Sophisticated operations can be performed inside a single program.

� Encapsulating these sophisticated operations inside a Java class makes them reusable.

� This approach retains the speed and linguistic simplicity of DFSORT.

� DFSORT is driven by text statements and Java has very strong text processing
capabilities.

� JZOS allows records from arbitrary sources to be sorted by DFSORT and written to
arbitrary destinations, not just standard data sets.

23.5.1 JZOS invoking DFSORT sample

Consider a case where we have records with 4-character names. We want to find the most
popular names in the records, which is termed ranking by frequency. We use the following
sample input data:

ABCD
EFGH
ABCD
ABCD
EFGH
IJKL

The desired output is:

ABCD 3
EFGH 2
IJKL 1

To produce this output, we need to perform the following DFSORT operations:

1. Count the records for each value in the field, and produce one record for each field value
with a count in it.
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 417

2. Sort the count records by count, and reformat the output to produce the report.

The output of the first operation is the input to the second, so we pass it by a transient data
set. This data set contains records each with two fields:

� The 4-character (EBCDIC) string
� A 4-byte integer count (binary)

Example 23-6 shows the JZOS DfSort class used to perform two DFSORT invocations within
the same program.

Example 23-6 Sample JZOS program to drive DFSORT: Ranking by frequency

// This program performs a "rank" operation
//
// In this case it counts the number of records with a give value in
// columns 1 to 4 and sorts by count descending.
//
// It invokes DFSORT twice to do it.
//
import com.ibm.jzos.DfSort;
import java.util.Random;

class SortRank
{
 public static void main(String args[])
 {

 // Generate a transient data set name based on userid and a
 // random integer rendered as a 7-digit number.
 Random generator=new Random();
 int r=generator.nextInt(9999999);
 String transDS="TEMPFILE.T"+Integer.toString(r);

 // Invoke DFSORT once - to create counts for each value
 DfSort dfSort1 = new DfSort();
 dfSort1.addControlStatement("INREC OVERLAY=(5:X'00000001')");
 dfSort1.addControlStatement("SORT FIELDS=(1,4,CH,A)");
 dfSort1.addControlStatement("SUM FIELDS=(5,4,BI)");
 dfSort1.addAllocation("alloc fi(SORTIN) da('MPACKER.INPUT1') reuse"+
 " shr msg(2)");
 dfSort1.addAllocation("alloc fi(SORTOUT)"+
 " da("+transDS+") reuse catalog"+
 " new cyl blksize(0) lrecl(80) recfm(fb) space(1,1) msg(2)");
 dfSort1.setSameAddressSpace(true);
 dfSort1.execute();

 dfSort1.addAllocation("free fi(SORTOUT)");

 // Invoke DFSORT a second time - to sort based on counts
 // NOTE: Transient data set is deleted at end of this sort.
 DfSort dfSort2 = new DfSort();
 dfSort2.addAllocation("alloc fi(SORTIN) da("+transDS+") reuse"+
 " delete shr msg(2)");
 dfSort2.addAllocation("alloc fi(SORTOUT)"+
 " da('MPACKER.OUTPUT1') reuse catalog"+
 " new cyl blksize(0) lrecl(80) recfm(fb) space(1,1) msg(2)");
418 Batch Modernization on z/OS

 dfSort2.addControlStatement("SORT FIELDS=(5,4,BI,D)");
 dfSort2.addControlStatement("OUTREC "+
 "FIELDS=(1,4,X,5,4,BI,EDIT=(IIIT))");
 dfSort2.setSameAddressSpace(true);
 dfSort2.execute();
 }
}

Here are the steps involved in this program:

1. Generate a transient data set name.

In this case, we generate an unqualified data set name using a random number. (It would
best to create a temporary data set, but JZOS, which uses the BPXWDYN service, is
unable to create temporary data sets.)

2. Perform the first DFSORT invocation.

We create object dfSort1 of class DfSort to control the sort.

We add control statements using the addControlStatement() method and allocate
SORTIN and SORTOUT data sets using the addAllocation() method.

We ensure that DFSORT runs in the same address space, and we run DFSORT using the
execute() method.

3. Free the SORTOUT data set so we can reallocate it to the SORTIN DD in the second
DFSORT invocation.

4. Invoke DFSORT a second time.

This time, the SORTIN is the output of the first sort and the SORTOUT is our final report.

This example is fairly complex, but it does include two DFSORT invocations and lots of data
set management. To be fair, the JCL is simpler because there are no DD statements for the
data or the DFSORT control statements.

In both DFSORT invocations the program was instructed to run in the same address space.
This simplifies retrieving the messages DFSORT produces.

You can retrieve the DFSORT return code with the getReturnCode() method. In our example,
we did not do so.

Further integration between DFSORT and JZOS is possible. You can pass the
getChildStdinStream() and getChildStdoutStream() methods records to and from
DFSORT. These methods connect DFSORT to arbitrary sources of data and destinations,
using the standard Java BufferedInputStream and BufferedOutputStream classes.

Note: The DFSORT statements in the first invocation are as follows:

INREC OVERLAY=(5:X'00000001') which places a binary ‘1’ in positions 5 to 8
SORT FIELDS=(1,4,CH,A) which sorts on the character field we’re counting
SUM FIELDS=(5,4,BI) which counts by summing the ‘1’ values from INREC

Note: The DFSORT statements in the second invocation are as follows:

SORT FIELDS=(5,4,BI,D) which sorts on the frequency field
OUTREC FIELDS=(1,4,X,5,4,BI,EDIT=(IIIT)) which formats the output
Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL 419

Note: It is not possible to use a getChildStdoutStream() as an OUTFIL destination.
Further, because getChildStdinStream() and getChildStdoutStream() use E15 and E35
exits, respectively it is not possible to use these Assembler exits when the streams are
used. It is, however, possible to use these exits in a JZOS DFSORT step when the streams
are not used.
420 Batch Modernization on z/OS

Part 6 Appendixes

Part 6
© Copyright IBM Corp. 2009, 2012. All rights reserved. 421

422 Batch Modernization on z/OS

Appendix A. DB2 configuration

In this appendix, we describe the DB2 configuration for the samples using DB2. This
appendix includes the following topics:

� Data Definition Language for Java stored procedure
� Data Definition Language for stand-alone Java application
� DB2 SQL Insert statements for sample data

A

© Copyright IBM Corp. 2009, 2012. All rights reserved. 423

Data Definition Language for Java stored procedure

The following examples show the DDL that we use for the Java Stored procedure described in
6.3, “Java in DB2 for z/OS” on page 64.

Example A-1 DDL for table BATCH.XML2PDF

CREATE TABLE BATCH.XML2PDF
 (ID INTEGER NOT NULL
 ,XML_DATA XML
 ,PDF_DATA BLOB(1M)
 ,PRIMARY KEY (ID)
)
;
GRANT SELECT, INSERT, UPDATE, DELETE
ON TABLE BATCH.XML2PDF TO PUBLIC;

Example A-2 DDL for Java Stored procedure

CREATE PROCEDURE BATCH.JAVASTP
 (IN ACTION VARCHAR(15)
 ,IN PDF_DIR VARCHAR(100))
 EXTERNAL NAME 'com.ibm.itso.sample.GenPdf.runGenerate'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 NOT DETERMINISTIC
 FENCED
 CALLED ON NULL INPUT
 MODIFIES SQL DATA
 NO DBINFO
 NO COLLID
 WLM ENVIRONMENT D9GGWLMJ
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 PROGRAM TYPE SUB
 SECURITY DB2
 INHERIT SPECIAL REGISTERS
 STOP AFTER SYSTEM DEFAULT FAILURES
 COMMIT ON RETURN NO ;

GRANT EXECUTE ON PROCEDURE BATCH.JAVASTP TO PUBLIC;

Data Definition Language for stand-alone Java application

Example A-3 is the DDL that we use for the sample application described in 7.5, “Sample
stand-alone Java batch application” on page 82.

Example A-3 DDL for Java stand-alone application

SET CURRENT SCHEMA = 'BATCH';

-- CREATE TABLE CUSTOMER
CREATE TABLE CUSTOMER
 (CUST_NO INTEGER NOT NULL
424 Batch Modernization on z/OS

 ,FIRST_NAME VARCHAR(20) NOT NULL
 ,LAST_NAME VARCHAR(30) NOT NULL
 ,STREET_NAME VARCHAR(30) NOT NULL
 ,STREET_NO SMALLINT NOT NULL
 ,ZIP SMALLINT NOT NULL
 ,CITY VARCHAR(20) NOT NULL
 ,STATE CHAR(2) NOT NULL
 ,COUNTRY VARCHAR(20) NOT NULL
 ,PRIMARY KEY (CUST_NO)
)
;

-- CREATE TABLE ITEM
CREATE TABLE ITEMS
(ITEM_NO INTEGER NOT NULL
 ,DESCRIPTION VARCHAR(100) NOT NULL
 ,SINGLE_PRICE DECIMAL(10, 2) NOT NULL
 ,PRIMARY KEY (ITEM_NO)
)
;

-- CREATE TABLE ORDER
CREATE TABLE ORDER
 (ORDER_NO INTEGER NOT NULL
 ,POS_NO SMALLINT NOT NULL
 ,CUST_NO INTEGER NOT NULL
 ,ITEM_NO INTEGER NOT NULL
 ,QUANTITY SMALLINT NOT NULL
 ,PRIMARY KEY (ORDER_NO, POS_NO)
)
;

-- ADD FOREIGN KEYS
ALTER TABLE ORDER
 ADD CONSTRAINT FK_ORDER_CUST
 FOREIGN KEY (CUST_NO)
 REFERENCES CUSTOMER
 ON DELETE CASCADE
;
ALTER TABLE ORDER
 ADD CONSTRAINT FK_ORDER_ITEM
 FOREIGN KEY (ITEM_NO)
 REFERENCES ITEMS
 ON DELETE RESTRICT
;

-- GRANTS
GRANT SELECT, INSERT, UPDATE, DELETE
ON TABLE CUSTOMER
 ,ITEMS
 ,ORDER
TO PUBLIC
;

Appendix A. DB2 configuration 425

DB2 SQL Insert statements for sample data

To work with the DB2 tables defined before, we execute the SQL statements shown in the
following examples to insert some sample data.

Example A-4 SQL statements to insert sample data for Java Stored procedure

-- Insert first company
INSERT INTO BATCH.XML2PDF (ID, XML_DATA)
VALUES (1,
'<?xml version="1.0"?>
<Company>
<Name>Big data center</Name>
<Department>

<DepNo>1</DepNo>
<Description>Production</Description>
<Employee>

<EmpNo>1</EmpNo>
<FirstName>Paul</FirstName>
<LastName>Smith</LastName>

</Employee>
<Employee>

<EmpNo>2</EmpNo>
<FirstName>Hannah</FirstName>
<LastName>Smith</LastName>

</Employee>
</Department>
<Department>

<DepNo>2</DepNo>
<Description>Development</Description>
<Employee>

<EmpNo>3</EmpNo>
<FirstName>Mia</FirstName>
<LastName>Brown</LastName>

</Employee>
</Department>

</Company>
')
;
-- Insert second company
INSERT INTO BATCH.XML2PDF (ID, XML_DATA)
VALUES (2,
'<?xml version="1.0"?>
<Company>
<Name>Small data center</Name>
<Department>

<DepNo>11</DepNo>
<Description>Production</Description>
<Employee>

<EmpNo>1</EmpNo>
<FirstName>Henry</FirstName>
<LastName>Tramp</LastName>

</Employee>
</Department>
<Department>
426 Batch Modernization on z/OS

<DepNo>22</DepNo>
<Description>Development</Description>
<Employee>

<EmpNo>2</EmpNo>
<FirstName>Mike</FirstName>
<LastName>Rocket</LastName>

</Employee>
</Department>

</Company>
')
;

Example A-5 SQL statements to insert sample data for stand-alone Java application

-- SET CURRENT SCHEMA
SET CURRENT SCHEMA = 'BATCH';

-- INSERT CUSTOMER
INSERT INTO CUSTOMER
 (CUST_NO, FIRST_NAME, LAST_NAME, STREET_NAME, STREET_NO
 ,ZIP, CITY, STATE, COUNTRY)
VALUES (1, 'Bob', 'Smith', 'Bestplace', 12,
 12345, 'New York City', 'NY', 'USA');

INSERT INTO CUSTOMER
 (CUST_NO, FIRST_NAME, LAST_NAME, STREET_NAME, STREET_NO
 ,ZIP, CITY, STATE, COUNTRY)
VALUES (2, 'Mary', 'Smith', 'Bestplace', 12,
 12345, 'New York City', 'NY', 'USA');

INSERT INTO CUSTOMER
 (CUST_NO, FIRST_NAME, LAST_NAME, STREET_NAME, STREET_NO
 ,ZIP, CITY, STATE, COUNTRY)
VALUES (3, 'John', 'Fellow', 'Nicestreet', 345,
 23456, 'Boston', 'MA', 'USA');

INSERT INTO CUSTOMER
 (CUST_NO, FIRST_NAME, LAST_NAME, STREET_NAME, STREET_NO
 ,ZIP, CITY, STATE, COUNTRY)
VALUES (4, 'Bart', 'Brown', 'Route', 66,
 10815, 'Cubero', 'NM', 'USA');

-- INSERT ITEMS
INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (1, 82.50, 'Sandwich Maker');

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (2, 35.00, 'Indoor Grill');

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (3, 632.30, 'Espresso Machine');

Appendix A. DB2 configuration 427

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (4, 52.40, 'Hand Mixer');

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (5, 72.30, 'Ice Crusher');

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (6, 18.00, '12-Cup Coffee Maker');

INSERT INTO ITEMS
 (ITEM_NO, SINGLE_PRICE, DESCRIPTION)
VALUES (7, 138.00, '950 Watts Microwave Oven');
428 Batch Modernization on z/OS

Appendix B. Source code

This appendix contains source code to which we refer in the chapters of this book. You can
find all source code for this book in the additional materials. For information about
downloading the additional materials, refer to Appendix C, “Additional material” on page 453.

B

© Copyright IBM Corp. 2009, 2012. All rights reserved. 429

Java stored procedure to generate PDF files

In this section, we provide the following source codes.

� Java Stored procedure that queries XML data from a DB2 z/OS database and creates
PDF files

� Content of the files you need to deploy the Stored procedure

� Java application that refresh the Stored procedure application environment

� Java application to test the Stored procedure

Example B-1 GenPdf.java - Java Stored procedure

package com.ibm.itso.sample;

import java.sql.SQLException;

public class GenPdf {

public static void runGenerate(String action, String pdfDir)
throws SQLException {

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

}
}

Example B-2 PdfCreator.java - Java Stored procedure

package com.ibm.itso.sample;

import java.awt.Color;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import com.lowagie.text.Chunk;
import com.lowagie.text.Document;
import com.lowagie.text.DocumentException;
import com.lowagie.text.Element;
import com.lowagie.text.Font;
import com.lowagie.text.FontFactory;
import com.lowagie.text.Paragraph;
import com.lowagie.text.pdf.PdfWriter;
import com.lowagie.text.pdf.draw.LineSeparator;
import com.lowagie.text.pdf.draw.VerticalPositionMark;

public class PdfCreator {
430 Batch Modernization on z/OS

public void generatePDF(String action, String pdfDir)
throws SQLException {

try {
// check value of parameter "action"
if (!action.equalsIgnoreCase("store_fs")

&& !action.equalsIgnoreCase("store_fs_db2")
&& !action.equalsIgnoreCase("store_db2")) {

throw new SQLException("wrong value for parameter 'action'");
}

// Get connection to the database
Connection con = DriverManager.getConnection("jdbc:default:connection");

// Select company data from XML column
String strSQL = "SELECT ID, EMP.* FROM BATCH.XML2PDF, XMLTABLE("

+ "'$X/Company/Department/Employee' PASSING XML_DATA AS \"X\" "
+ "COLUMNS COMPANY VARCHAR(50) PATH '../../Name' "
+ " , DEPT_NO INTEGER PATH '../DepNo' "
+ " , DEPT_DESCR VARCHAR(20) PATH '../Description' "
+ " , EMP_NO INTEGER PATH 'EmpNo' "
+ " , FIRST_NAME VARCHAR(20) PATH 'FirstName' "
+ " , LAST_NAME VARCHAR(20) PATH 'LastName' "
+ ") EMP ORDER BY ID, EMP.DEPT_NO, EMP_NO";

// Start generating PDF document(s)
PreparedStatement ps = con.prepareStatement(strSQL);
ResultSet rs = ps.executeQuery();

Document document = null;
Chunk c = null;
VerticalPositionMark separator = new LineSeparator(1, 100,

Color.BLUE, Element.ALIGN_RIGHT, -2);
ByteArrayOutputStream out = null;
boolean printHeading = true;
int oldDeptNo = 0;
int curId = 0;
int oldId = 0;
while (rs.next()) {

curId = rs.getInt("ID");
if (curId != oldId) {

// Company has changed
if (oldId != 0) {

// save PDF in DB2 and/or File system
document.close();
this.savePdf(con, action, pdfDir, oldId, out);

}

// generate new PDF file in memory for next company
document = new Document();
out = new ByteArrayOutputStream();
PdfWriter.getInstance(document, out);

document.open();
printHeading = true;
oldDeptNo = 0;
Appendix B. Source code 431

oldId = curId;
}

String CompanyName = rs.getString("COMPANY");
int curDeptNo = rs.getInt("DEPT_NO");
String DeptDesc = rs.getString("DEPT_DESCR");
int EmpNo = rs.getInt("EMP_NO");
String EmpFirstName = rs.getString("FIRST_NAME");
String EmpLastName = rs.getString("LAST_NAME");

// Heading
if (printHeading) {

document.add(separator);
Paragraph heading = new Paragraph();
heading.setAlignment(Element.ALIGN_LEFT);
heading.setSpacingAfter(3);
c = new Chunk("All Employees for company '" + CompanyName

+ "'\n", FontFactory.getFont(FontFactory.HELVETICA,
12, Font.NORMAL, new Color(0, 0, 0)));

heading.add(new Chunk(c));
document.add(heading);
document.add(separator);

printHeading = false;
}

// print Employees
if (curDeptNo != oldDeptNo) {

// new Department
Paragraph department = new Paragraph();
department.setAlignment(Element.ALIGN_LEFT);
department.setSpacingBefore(15);
c = new Chunk("Department " + curDeptNo + ": " + DeptDesc

+ "\n", FontFactory.getFont(FontFactory.HELVETICA,
12, Font.NORMAL, new Color(0, 0, 0)));

department.add(new Chunk(c));
document.add(department);

oldDeptNo = curDeptNo;
}

Paragraph employee = new Paragraph();
employee.setAlignment(Element.ALIGN_LEFT);
employee.setIndentationLeft(30);
c = new Chunk("EmpNo: " + EmpNo + ", " + EmpFirstName + " "

+ EmpLastName + "\n", FontFactory.getFont(
FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0,

0)));
employee.add(new Chunk(c));
document.add(employee);

}
rs.close();
ps.close();

// save last PDF in DB2 and/or File system
432 Batch Modernization on z/OS

document.close();
this.savePdf(con, action, pdfDir, oldId, out);

} catch (DocumentException de) {
throw new SQLException("DocumentException: " + de.getMessage());

} catch (IOException ioe) {
throw new SQLException("IOException: " + ioe.getMessage());

}
}

private void savePdf(Connection con, String action, String pdfDir,
int oldId, ByteArrayOutputStream out) throws IOException, SQLException {

// handle PDF file depending on parameter 'action'
if (action.equalsIgnoreCase("store_fs")

|| action.equalsIgnoreCase("store_fs_db2")) {
// write PDF to file system
FileOutputStream fOut = new FileOutputStream(pdfDir

+ File.separator + "Report" + oldId + ".pdf");
out.writeTo(fOut);
fOut.close();

}

if (action.equalsIgnoreCase("store_db2")
|| action.equalsIgnoreCase("store_fs_db2")) {

// update current DB2 row and save PDF file as BLOB
String strSQL = "UPDATE BATCH.XML2PDF SET PDF_DATA = ? WHERE ID = ?";
PreparedStatement psUpd = con.prepareStatement(strSQL);
InputStream is = new ByteArrayInputStream(out.toByteArray());
psUpd.setBinaryStream(1, is, -1);
psUpd.setInt(2, oldId);
psUpd.execute();
psUpd.close();

}

// Close the document
out.close();

}
}

Example B-3 deploy.xml

<project name="deploy" default="all">
<!-- This ant script deploys a batch Java applications to z/OS

using ftp.

 To run this script, YOU need to customize a zos.properties file
in one of the following places (in order of highest precedence):
 - the user's home directory ("Documents and Settings\<name>" in Windows)
 - the eclipse workspace base directory (the parent of this directory)
 - the same directory as this script

See the sample zos.properties files for required values
 -->
 <property file="${user.home}/zos.properties"/>
 <property file="../zos.properties" />
 <property file="./zos.properties" />
Appendix B. Source code 433

<target name="all" depends="compile, deployJar" />

<!-- for compiling if not done automatically by IDE (Eclipse) -->
<target name="compile">

<mkdir dir="bin"/>
<javac destdir="bin"

debug="on">
<src path="src"/>

</javac>
</target>

 <target name="buildJar">

<mkdir dir="deploy"/>
 <jar destfile="deploy/${jarname}">
 <fileset dir="bin">
 <include name="**/*"/>
 </fileset>
 </jar>
 </target>

<target name="deployJar" depends="buildJar" >
<echo message="Copying files to ${server}:${appl.home}..."/>
<ftp server="${server}"

 userid="${userid}"
 password="${password}"
 remotedir="${appl.home}"
 depends="no"
 binary="yes"
 verbose="yes" >
 <fileset dir="deploy" includes="" casesensitive="yes" />

</ftp>
</target>

</project>

Example B-4 zos.properties

Customize this file or move a customized copy of this file up to
either the Eclipse workspace directory or your "home directory"
server = zos.server.dns.name
userid = uid
password = pw

the home directory for deploying the application jar
appl.home = /u/wagnera/javastp

jar name
jarname = PdfGenerate.jar

time to wait for output in seconds
waittime = 0

remote debugging
debug= no
434 Batch Modernization on z/OS

Example B-5 RefreshWLM.java

package com.ibm.itso.sample;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Types;

public class RefreshWLM {

/**
 * Start to refresh Java Stored Procedure after changing Code
 *
 * @throws Exception
 */
public static void main(String[] args) throws Exception {

try {
if (args.length != 3) {

System.err.println("Input parameter is missing!");
System.err.println
("Para1: JDBC URL (e.g. 'jdbc:db2://<server>:<port>/<DB2Location>')");
System.err.println("Para2: DB User");
System.err.println("Para3: DB Password");

throw new Exception("Input parameter is missing!!!!");
}

String URL = args[0];
String User = args[1];
String Pw = args[2];

// connect to DB2
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println("Connection.......");
Connection con = DriverManager.getConnection(URL, User, Pw);
System.out.println("connected.");

System.out.println("Call STP.......");
CallableStatement cs = con

.prepareCall("CALL SYSPROC.WLM_REFRESH(?, ?, ?, ?)");
cs.setString(1, "D9GGWLMJ");
cs.setString(2, "D9G1");
cs.registerOutParameter(3, Types.VARCHAR);
cs.registerOutParameter(4, Types.INTEGER);
cs.execute();
System.out.println("WLM_REFRESH ended with: RC=" + cs.getInt(4)

+ ", Text: " + cs.getString(3));
cs.close();

con.close();
System.out.println("Connection closed.");

} catch (ClassNotFoundException cnfe) {
System.err.println(cnfe.getMessage());
cnfe.printStackTrace();
Appendix B. Source code 435

} catch (SQLException sqle) {
System.err.println(sqle.getMessage());
sqle.printStackTrace();

}
}

}

Example B-6 TestSTP.java

package com.ibm.itso.sample;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class TestSTP {

/**
 * Start to test Java Stored Procedure
 */
public static void main(String[] args) throws Exception {

try {
if (args.length != 3) {

System.err.println("Input parameter is missing!");
System.err.println
("Para1: JDBC URL (e.g. 'jdbc:db2://<server>:<port>/<DB2Location>')");
System.err.println("Para2: DB User");
System.err.println("Para3: DB Password");

throw new Exception("Input parameter is missing!!!!");
}

String URL = args[0];
String User = args[1];
String Pw = args[2];

// connect to DB2
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println("Connection.......");
Connection con = DriverManager.getConnection(URL, User, Pw);
System.out.println("connected.");

System.out.println("Call STP.......");
CallableStatement cs = con.prepareCall("CALL BATCH.JAVASTP(?, ?)");
cs.setString(1, "store_fs_db2");
cs.setString(2, "/u/wagnera/javastp/pdfs");
cs.execute();
cs.close();
System.out.println("Call STP ended.");

con.close();
System.out.println("Connection closed.");

} catch (ClassNotFoundException cnfe) {
436 Batch Modernization on z/OS

System.err.println(cnfe.getMessage());
cnfe.printStackTrace();

} catch (SQLException sqle) {
System.err.println(sqle.getMessage());
sqle.printStackTrace();

}
}

}

Java PDF creator

In this section, we provide the source code for the Java application that queries a DB2 z/OS
database and creates a PDF invoice based on the DB2 data.

Example B-7 Invoice Creator.java

package com.ibm.itso.sample;

public class InvoiceCreator {

public static void main(String[] args) {
PdfCreator pdfc = new PdfCreator();
pdfc.createInvoice(args[0]);

}
}

Example B-8 PdfCreator.java

package com.ibm.itso.sample;

import java.awt.Color;
import java.io.FileOutputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;

import com.lowagie.text.Chunk;
import com.lowagie.text.Document;
import com.lowagie.text.DocumentException;
import com.lowagie.text.Element;
import com.lowagie.text.Font;
import com.lowagie.text.FontFactory;
import com.lowagie.text.Paragraph;
import com.lowagie.text.pdf.PdfPCell;
import com.lowagie.text.pdf.PdfPTable;
import com.lowagie.text.pdf.PdfWriter;
import com.lowagie.text.pdf.draw.LineSeparator;
import com.lowagie.text.pdf.draw.VerticalPositionMark;
Appendix B. Source code 437

public class PdfCreator {
PdfCreator()
{

}

public void createInvoice(String pdfDir)
{

try {
//Connect to DB2 and retireve all orders
System.out.println("Connecting to DB2");

Class.forName("com.ibm.db2.jcc.DB2Driver");
Connection con=DriverManager.getConnection("jdbc:db2:DB9G");
System.out.println("... connected.");

ArrayList orderNos = new ArrayList();

String strSQL = "SELECT DISTINCT Order_No FROM BATCH.ORDER";
PreparedStatement ps = con.prepareStatement(strSQL);
ResultSet rs = ps.executeQuery();
while (rs.next()) {

int orderNo=rs.getInt(1);
orderNos.add(orderNo);

}
rs.close();
ps.close();

//Create PDF invoices for each order number
for (int i=0; i<orderNos.size(); i++)
{

int currentOrderNo=(Integer)orderNos.get(i);
System.out.println("Starting to create pdf file

"+pdfDir+"/Invoice_No_"+String.valueOf(currentOrderNo)+".pdf...");

FileOutputStream out = new
FileOutputStream(pdfDir+"/Invoice_No_"+String.valueOf(currentOrderNo)+".pdf");

Document document = new Document();
PdfWriter.getInstance(document, out);
document.open();
Chunk c;

// Add sender information
Paragraph sender= new Paragraph();
sender.setAlignment(Element.ALIGN_RIGHT);
c=new Chunk("Bob's Batch Store\n",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
sender.add(new Chunk(c));
c=new Chunk("JES Street 1111\n",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
sender.add(new Chunk(c));
c=new Chunk("12601 Poughkeepsie, NY\n",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
sender.add(new Chunk(c));
438 Batch Modernization on z/OS

c=new Chunk("USA\n", FontFactory.getFont(FontFactory.HELVETICA, 12,
Font.NORMAL, new Color(0, 0, 0)));

sender.add(new Chunk(c));
document.add(sender);

//Add recipient information from database
strSQL = "SELECT DISTINCT BATCH.CUSTOMER.* FROM BATCH.CUSTOMER,

BATCH.ORDER WHERE BATCH.CUSTOMER.CUST_NO = BATCH.ORDER.CUST_NO AND
BATCH.ORDER.ORDER_NO = "+ String.valueOf(currentOrderNo);

ps = con.prepareStatement(strSQL);
rs = ps.executeQuery();
while (rs.next()) {

String name=rs.getString("FIRST_NAME")+"
"+rs.getString("LAST_NAME");

String street=rs.getString("STREET_NAME")+"
"+rs.getInt("STREET_NO");

String town=rs.getInt("ZIP")+" "+rs.getString("CITY")+",
"+rs.getString("STATE");

String country=rs.getString("COUNTRY");

Paragraph recipient= new Paragraph();
recipient.setAlignment(Element.ALIGN_LEFT);
c=new Chunk(name+"\n", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.NORMAL, new Color(0, 0, 0)));
recipient.add(new Chunk(c));
c=new Chunk(street+"\n", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.NORMAL, new Color(0, 0, 0)));
recipient.add(new Chunk(c));
c=new Chunk(town+"\n", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.NORMAL, new Color(0, 0, 0)));
recipient.add(new Chunk(c));
c=new Chunk(country+"\n",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
recipient.add(new Chunk(c));
recipient.add("\n");
document.add(recipient);

}
rs.close();
ps.close();

//Add vertical line
VerticalPositionMark separator = new LineSeparator(1, 100, Color.BLUE,

Element.ALIGN_RIGHT, -2);
document.add(separator);
document.add(new Chunk("\n"));

//Add table header data
float[] widths = {0.08f, 0.15f, 0.57f, 0.20f, 0.20f};
PdfPTable table = new PdfPTable(widths);
table.setWidthPercentage(100);
PdfPCell cell = new PdfPCell();

c=new Chunk("Pos", FontFactory.getFont(FontFactory.HELVETICA, 12,
Font.BOLD, new Color(0, 0, 0)));

cell = new PdfPCell(new Paragraph(c));
Appendix B. Source code 439

cell.setMinimumHeight(25);
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);
c=new Chunk("Quantity", FontFactory.getFont(FontFactory.HELVETICA, 12,

Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);
c=new Chunk("Description", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);
c=new Chunk("Single price", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);
c=new Chunk("Total price", FontFactory.getFont(FontFactory.HELVETICA,

12, Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);

BigDecimal total=new BigDecimal(0);

//Add order data from database
strSQL = "SELECT * FROM BATCH.ITEMS, BATCH.ORDER WHERE

BATCH.ITEMS.ITEM_NO = BATCH.ORDER.ITEM_NO AND BATCH.ORDER.ORDER_NO = "+
String.valueOf(currentOrderNo)+" ORDER BY BATCH.ORDER.POS_NO";

ps = con.prepareStatement(strSQL);
rs = ps.executeQuery();
while (rs.next()) {

int pos=rs.getInt("POS_NO");
int quantity=rs.getInt("QUANTITY");
String description=rs.getString("DESCRIPTION");
BigDecimal singlePrice=rs.getBigDecimal("SINGLE_PRICE");
BigDecimal totalPrice=new BigDecimal("0");

c=new Chunk(String.valueOf(pos),
FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));

cell = new PdfPCell(new Paragraph(c));
table.addCell(cell);
c=new Chunk(String.valueOf(quantity),

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
table.addCell(cell);
c=new Chunk(description, FontFactory.getFont(FontFactory.HELVETICA,

12, Font.NORMAL, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
440 Batch Modernization on z/OS

table.addCell(cell);
c=new Chunk(singlePrice.toString()+" USD",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_RIGHT);
table.addCell(cell);
totalPrice=singlePrice.multiply(new BigDecimal(quantity));
c=new Chunk(totalPrice.toString()+" USD",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.NORMAL, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_RIGHT);
table.addCell(cell);
total=total.add(totalPrice);

}
rs.close();
ps.close();

//Add table footer data
c=new Chunk("Total", FontFactory.getFont(FontFactory.HELVETICA, 12,

Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
cell.setMinimumHeight(25);
table.addCell(cell);
cell = new PdfPCell(new Paragraph(""));
cell.setColspan(3);
table.addCell(cell);
c=new Chunk(total.toString()+" USD",

FontFactory.getFont(FontFactory.HELVETICA, 12, Font.BOLD, new Color(0, 0, 0)));
cell = new PdfPCell(new Paragraph(c));
cell.setHorizontalAlignment(Element.ALIGN_RIGHT);
cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell(cell);
document.add(table);

//Add vertical line
document.add(new Chunk("\n"));
document.add(new Chunk("\n"));
document.add(separator);

c=new Chunk("Please read our terms and conditions.",
FontFactory.getFont(FontFactory.HELVETICA, 10, Font.ITALIC, new Color(0, 0, 0)));

document.add(new Paragraph (c));

//Close the document
document.close();
System.out.println("... invoice pdf file created.");

}
con.close();

} catch (DocumentException de) {
System.err.println(de.getMessage());
de.printStackTrace();

} catch (IOException ioe) {
System.err.println(ioe.getMessage());
Appendix B. Source code 441

ioe.printStackTrace();
} catch (SQLException sqle) {

System.err.println(sqle.getMessage());
sqle.printStackTrace();

} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

}

PHP PDF creator

In this section, we provide the source code for the PHP application that queries a DB2 z/OS
database and creates a PDF invoice based on the DB2 data.

Example B-9 DbConnect.php

<?php
function getDb2Connection()
{

$dsn='odbc:DB9G';
$username='USER';
$passwd='PASSWORD';
$dbh = new PDO($dsn, $username, $passwd, array('PDO_ATTR_PERSISTENT' =>

false));
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
return $dbh;

}
?>

Example B-10 InvoiceCreator.php

<?php
require('../lib/fpdf.php');
require ('DbConnect.php');

try
{

//Connect to DB2 and retireve all orders
echo "Connecting to DB2 \n";
$con=getDb2Connection();
echo "... Connected \n";

$orderNos = array();
$i=0;
$sql = "SELECT DISTINCT Order_No FROM BATCH.ORDER";
foreach ($con->query($sql) as $row)
{

$orderNos[$i] = ($row[0]);
$i++;

}
$sql=NULL;
442 Batch Modernization on z/OS

//Create PDF invoices for each order number
for ($orderCount = 0; $orderCount < count($orderNos); $orderCount++) {

$currentOrderNo = $orderNos[$orderCount];
echo "Starting to create pdf file

".$argv[1]."/Invoice_No_".$currentOrderNo.".pdf...\n";

$pdf=new FPDF();
$pdf->AddPage();
$pdf->SetFont('Courier','',12);

//Add sender information
$text="Bobs Batch Store\n";
$text=$text."JES Street 1111\n";
$text=$text."12601 Poughkeepsie, NY\n";
$text=$text."USA\n";
$pdf->MultiCell(0,5,$text,0,R);

//Add recipient information from database
$sql = "SELECT DISTINCT BATCH.CUSTOMER.* FROM BATCH.CUSTOMER, BATCH.ORDER

WHERE BATCH.CUSTOMER.CUST_NO = BATCH.ORDER.CUST_NO AND BATCH.ORDER.ORDER_NO = " .
$currentOrderNo;

foreach ($con->query($sql) as $row)
{

$text=$row["FIRST_NAME"]." ".$row["LAST_NAME"]."\n";
$text=$text.$row["STREET_NAME"]." ".$row["STREET_NO"]."\n";
$text=$text.$row["ZIP"]." ".$row["CITY"].", ".$row["STATE"]."\n";
$text=$text.$row["COUNTRY"]."\n";
$text=$text."\n\n\n";
$pdf->MultiCell(0,5,$text,0,L);
$i++;

}
$sql=NULL;

//Add vertical line
$pdf->SetDrawColor(0,0,255);
$pdf->SetLineWidth(0.3);
$pdf->Line(10,58,200,58);

//Add table header data
$pdf->SetDrawColor(0,0,0);
$pdf->SetLineWidth(0.2);
$pdf->SetFont('Times','B',12);
$header=array('Pos','Quantity','Description','Single price','Total price');
$w=array(13,20,87,35,35);
for($i=0;$i<count($header);$i++)

$pdf->Cell($w[$i],7,$header[$i],1,0,'L');
$pdf->Ln();
$linecount=0;
$totalPrice=0;

//Add order data from database
$sql = "SELECT * FROM BATCH.ITEMS, BATCH.ORDER WHERE BATCH.ITEMS.ITEM_NO =

BATCH.ORDER.ITEM_NO AND BATCH.ORDER.ORDER_NO = ".$currentOrderNo." ORDER BY
BATCH.ORDER.POS_NO";

foreach ($con->query($sql) as $row)
Appendix B. Source code 443

{
$pdf->SetFont('Times','',12);
$totalItem=$row["SINGLE_PRICE"]*$row[QUANTITY];
$pdf->Cell(13,7,$row["POS_NO"],1,0,'L');
$pdf->Cell(20,7,$row["QUANTITY"],1,0,'L');
$pdf->Cell(87,7,$row["DESCRIPTION"],1,0,'L');
$pdf->Cell(35,7,number_format($row["SINGLE_PRICE"],2).' USD ',1,0,'R');
$pdf->Cell(35,7,number_format($totalItem,2).' USD ',1,0,'R');
$pdf->Ln();
$linecount++;
$totalPrice=$totalPrice+$totalItem;

}
$sql=NULL;

//Add table footer data
$pdf->SetFont('Times','B',12);
$footer=array('Total','',number_format($totalPrice,2).' USD ');
$w=array(13,142,35);
for($i=0;$i<count($header);$i++)
$pdf->Cell($w[$i],7,$footer[$i],1,0,'R');
$pdf->Ln();

//Add vertical line
$pdf->SetDrawColor(0,0,255);
$pdf->SetLineWidth(0.3);
$pos=88+$linecount*7;
$pdf->Line(10,$pos,200,$pos);

$pdf->SetFont('Times','I',10);
$text="\n\nPlease read our terms and conditions.";
$pdf->MultiCell(0,6,$text,0,L);
$pdf->Output($argv[1].'/Invoice_No_'.$currentOrderNo.'.pdf', F);

}

$con=NULL;
}
catch(Exception $e)
{

echo "Failed: " . $e->getMessage();
exit(0);

}
?>
444 Batch Modernization on z/OS

Dynamic batch Web application

In this section, we provide the source code of a simple servlet that calls a session bean
named TriggerBatchBean. The TriggerBatchBean is intended as an empty template to call
z/OS batch jobs in different ways.

Example B-11 BatchServlet.java

package com.ibm.itso.sample;

import java.io.IOException;
import java.io.PrintWriter;

import javax.ejb.CreateException;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class BatchServlet extends javax.servlet.http.HttpServlet implements
javax.servlet.Servlet {
 /**

 *
 */
private TriggerBatchHome batchHome;

private static final long serialVersionUID = 1L;

/* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#HttpServlet()
 */
public BatchServlet() {

super();
}

public void init(ServletConfig config) throws ServletException{
//Look up home interface
try {
 InitialContext ctx = new InitialContext();
 Object objref =

ctx.lookup("ejb/com/ibm/itso/sample/TriggerBatchHome");
 batchHome = (TriggerBatchHome)PortableRemoteObject.narrow(objref,

TriggerBatchHome.class);
} catch (Exception NamingException) {
 NamingException.printStackTrace();
}

}

/* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#doGet(HttpServletRequest request,

HttpServletResponse response)
Appendix B. Source code 445

 */
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
PrintWriter writer = response.getWriter();

String parameter1 = request.getParameter("Parameter1");
String parameter2 = request.getParameter("Parameter2");

if (parameter1 == null && parameter2==null) {
writer.println("<html>");
writer.println("<title>Dynamic job submission on z/OS</title>");
writer.println("<body>");
writer.println("<h1>Welcome to the z/OS batch submitter

application</h1>");
writer.println("<p>Please enter all required parameters.</p>");
writer.println("<form method=\"get\">");
writer.println("<p>Parameter 1: <input name=\"Parameter1\"

type=\"text\" size=\"80\" maxlength=\"100\"></p>");
writer.println("<p>Parameter 2: <input name=\"Parameter2\"

type=\"text\" size=\"80\" maxlength=\"100\"></p>");
writer.println("<input type=\"submit\" value=\" Submit\">");
writer.println("<input type=\"reset\" value=\" Cancel\">");
writer.println("</form>");
writer.println("</body>");
writer.println("</html>");

} else {
writer.println("<html>");
writer.println("<title>Dynamic job submission on z/OS</title>");
writer.println("<body>");
writer.println("<h1>z/OS batch submitter application - Results</h1>");
String returnMessage="";
try {

TriggerBatch triggerBatch=batchHome.create();
String[] paramters= {parameter1, parameter2};
returnMessage=triggerBatch.execute(paramters);
if (returnMessage.indexOf("Error")==-1)
{

writer.println("<p>"+returnMessage+"</p>");
}
else
{

writer.println("<p><font
color=\"#FF0000\">"+returnMessage+"</p>");

}
} catch (CreateException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
writer.println("<p>

Back</p>");
writer.println("</body>");
writer.println("</html>");

}
writer.close();

}
446 Batch Modernization on z/OS

/* (non-Java-doc)
 * @see javax.servlet.http.HttpServlet#doPost(HttpServletRequest request,

HttpServletResponse response)
 */
protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
// TODO Auto-generated method stub

}
}

Example B-12 TriggerBatchBean.java

package com.ibm.itso.sample;

/**
 * Bean implementation class for Enterprise Bean: TriggerBatch
 */
public class TriggerBatchBean implements javax.ejb.SessionBean {

static final long serialVersionUID = 3206093459760846163L;
private javax.ejb.SessionContext mySessionCtx;
/**
 * getSessionContext
 */
public javax.ejb.SessionContext getSessionContext() {

return mySessionCtx;
}
/**
 * setSessionContext
 */
public void setSessionContext(javax.ejb.SessionContext ctx) {

mySessionCtx = ctx;
}
/**
 * ejbCreate
 */
public void ejbCreate() throws javax.ejb.CreateException {
}
/**
 * ejbActivate
 */
public void ejbActivate() {
}
/**
 * ejbPassivate
 */
public void ejbPassivate() {
}
/**
 * ejbRemove
 */
public void ejbRemove() {
}

Appendix B. Source code 447

public String execute(String[] parameters)
{

String message="You entered the following parameters: ";
for (int i=0; i<parameters.length; i++)
{

message=message+" "+parameters[i];
}
return message;

}
}

JCL for running WebSphere Transformation Extender
transformation in batch mode

In this section, we provide the JCL to run XML transformation to COBOL CopyBook format on
z/OS.

Example B-13 JCL for running WebSphere Transformation Extender transformation in batch mode

//WTXBATCH JOB (999,POK),'L06R',CLASS=A,REGION=0M,
// MSGCLASS=T,TIME=10,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//*
//***
//* Sample JCL to perform the XML2COB map for the IBM Websphere *
//* Transformation Extender for z/OS(MVS) utilizing BURST MODE *
//* processing. *
//***
//* ----------- Clean Output file
//S0 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE WAGNERA.OUT.XML2COBO
//* NOTE: If the LE runtime library is not in the MVS LINKLIST,
//* the LE runtime library must be added to the STEPLIB
//* concatenation.
//* This job will allocate an output dataset and several
//* temporary workfiles. If you require a VOLSER specification,
//* the vol=ser= parameter must be added to the jcl.
//***
//DTX EXEC PGM=DTXCMDSV,REGION=0M,
// PARM='XML2COB /I1M ''/DD:MAPXSD'''
//STEPLIB DD DISP=SHR,DSN=BB26159.SDTXLOAD
// DD DISP=SHR,DSN=IXM.SIXMLOD1
//*
//* The map ddname specified in the JCL must match the map name specified
//* on the command line defined in the PARM statement
//*
//* A map can be coded in JCL in any of the
//* following three ways:
//*
//* //XML2COB DD DSN=DTX.SDTXSAMP,DISP=SHR
//* The command line identifies the map by its ddname:
//* e.g. PARM='XML2COB <option> <option> etc.'
448 Batch Modernization on z/OS

//*
//* //XML2COB DD DSN=DTX.SDTXSAMP(DTXBMMVS),DISP=SHR
//* The DD statement identifies the map as a member of
//* a PDS and the command line identifies the map by its ddname:
//* e.g. PARM='XML2COB <option> <option> etc.'
//*
//* //MAPLIB DD DSN=DTX.SDTXSAMP,DISP=SHR
//* The DD statement identifies the PDS only and the member
//* name is identified on the command line in parentheses
//* following the ddname that identifies the PDS:
//* e.g. PARM='MAPLIB(DTXBMMVS)'
//*
//XML2COB DD DISP=SHR,DSN=WAGNERA.WTX.MAPS(XML2COB)
//*
//* Sysout datasets. SYSPRINT, SYSOUT and CEEDUMP are required by
//* Language Environment.
//*
//DTXLOG DD SYSOUT=* Execution log
//DTXAUD DD SYSOUT=* Audit file
//DTXTRCE DD SYSOUT=* Trace file
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//*
//* Define the input dataset
//INPUT DD PATH='/u/wagnera/input.xml'
//*
//* Define the schema definition
//MAPXSD DD PATH='/u/wagnera/input.xsd'
//*
//* Define the output dataset
//OUTPUT DD DSN=WAGNERA.OUT.XML2COBO,
// DCB=(RECFM=VB,LRECL=80),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1),RLSE),
// DISP=(NEW,CATLG,DELETE)
//* Static temporary file allocations (if you want temporary files to be
//* dynamically allocated, remove or comment out the following statements).
//* The maximum number of temporary files used by a map is (2 * number of
//* inputs) + (2 * number of outputs) + 1. The minimum is equal to the number
//* of inputs + the number of outputs + 1. If static temporary allocations
//* are to be used they must be defined temporary datasets with RECFM=FBS;
//* The record length should be as large as convenient but not larger than
//* 32K. The BUFNO parameter should not be used. The amount of space
//* used by temporary files varies greatly from map to map depending on
//* map complexity, the amount of data being processed and the paging
//* options chosen.
//*
//SYSTMP01 DD DSN=&&TEMP01,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP02 DD DSN=&&TEMP02,
// DISP=(NEW,DELETE,DELETE),
Appendix B. Source code 449

// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP03 DD DSN=&&TEMP03,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP04 DD DSN=&&TEMP04,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))
//SYSTMP05 DD DSN=&&TEMP05,
// DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FBS,LRECL=32760),
// UNIT=SYSDA,
// SPACE=(TRK,(5,1))

Triggering Java Stored procedure to generate PDF files

In this section, we provide the Java code for the GenPdf and TestSTP classes.

Example B-14 GenPdf.java - Trigger Java Stored procedure

package com.ibm.itso.sample;

import java.sql.SQLException;

public class GenPdf {

public static void triggeredByMQ(String inMsg, String[] outMsg)
throws SQLException {

String temp = inMsg;
String jobID = temp.substring(0, temp.indexOf(":"));
temp = temp.substring(temp.indexOf(":") + 1);
String action = temp.substring(0, temp.indexOf(":"));
String pdfDir = temp.substring(temp.indexOf(":") + 1);

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

outMsg[0] = new String("PDF(s) fuer JobID '" + jobID + "' successfully
created.");

}

public static void runGenerate(String action, String pdfDir)
throws SQLException {

PdfCreator pdfc = new PdfCreator();
pdfc.generatePDF(action, pdfDir);

}
}

450 Batch Modernization on z/OS

Example B-15 TestSTP.java - Test procedure BATCH.TRIGGER_STP_WITH_MQ local

package com.ibm.itso.sample;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class TestSTP {

/**
 * Start to test Java Stored Procedure
 */
public static void main(String[] args) throws Exception {

try {
if (args.length != 3) {

System.err.println("Input parameter is missing!");
System.err.println("Para1: JDBC URL (e.g.” +

“'jdbc:db2://<server>:<port>/<DB2Location>')");
System.err.println("Para2: DB User");
System.err.println("Para3: DB Password");

throw new Exception("Input parameter is missing!!!!");
}

String URL = args[0];
String User = args[1];
String Pw = args[2];

// connect to DB2
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println("Connection.......");
Connection con = DriverManager.getConnection(URL, User, Pw);
System.out.println("connected.");

String inMsg = "TestLocal:store_fs_db2:/u/wagnera/javastp/pdfs";

System.out.println("Call STP.......");
CallableStatement cs =

con.prepareCall("CALL BATCH.TRIGGER_STP_WITH_MQ(?, ?)");
cs.setString(1, inMsg);
cs.registerOutParameter(2, java.sql.Types.VARCHAR);
cs.execute();
System.out.println("Call STP ended: " + cs.getString(2));

cs.close();

con.close();
System.out.println("Connection closed.");

} catch (ClassNotFoundException cnfe) {
System.err.println(cnfe.getMessage());
cnfe.printStackTrace();

} catch (SQLException sqle) {
System.err.println(sqle.getMessage());
Appendix B. Source code 451

sqle.printStackTrace();
}

}
}

452 Batch Modernization on z/OS

Appendix C. Additional material

This book refers to additional material that you can download from the Internet as described
in this appendix.

Locating the Web material

The Web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247779

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247779.

Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description

COBOL_data_generator.zip COBOL job as described in 7.5, “Sample stand-alone Java
batch application” on page 82

Java_STP_pdf_generator.zip Java DB2 stored procedure as described in 6.3, “Java in
DB2 for z/OS” on page 64

Java_pdf_generator.zip Java job as described in 7.5, “Sample stand-alone Java
batch application” on page 82

PHP_pdf_generator.zip PHP job as described in 9.4, “Sample application for using
PHP in stand-alone batch” on page 161

C

© Copyright IBM Corp. 2009, 2012. All rights reserved. 453

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DynamicBatchRADProject.zip The Dynamic Batch application as Rational Application
Developer project as described in 14.1, “Job submission
with native Java technology” on page 224.

NativeJavaEjb.zip The EJB that calls a z/OS batch job with native Java
technology from 14.1, “Job submission with native Java
technology” on page 224.

WTX_sample.zip WebSphere Transformation Extender example as
described in 21.3, “Sample using WebSphere
Transformation Extender in z/OS batch” on page 375.

WXDCG_sample.zip WebSphere XD Compute Grid sample workspace as
described in 8.7, “Developing a WebSphere batch
application” on page 109.

SchedulerWrapperProject.zip The Scheduler Wrapper Test using the EJB interface for
scheduling WebSphere XD Compute Grid jobs as Eclipse
project as described in 14.2.4, “Web services and EJB
interfaces for the Job Scheduler” on page 249 and 14.1.1,
“Developing the code” on page 225

STP_TriggeredByMQ.zip Trigger Stored procedure by using MQ as described in
“Creating the DB2 stored procedure to process MQ
message” on page 271

STP_TriggeredByMQ_EJB.zip The EJB that calls send a message to MQ to trigger DB2
Stored procedure by MQListener as described in “Creating
the DB2 stored procedure to process MQ message” on
page 271

STP_TriggeredByWebService.zip Trigger a stored procedure by using Web Services as
described in 14.4.2, “DB2 as a Web service provider” on
page 279

Batch_Design_Principles.zip Using the BDS Framework in WebSphere Compute Grid,
including a shared service example, as described in
Chapter 17, “Batch application design and patterns in
WebSphere XD Compute Grid” on page 319

System requirements for downloading the Web material

The following system configuration is recommended for downloading and unpacking the
provided .zip files:

Hard disk space: 40 MB minimum to download and 100 MB minimum to extract
Operating System: Windows

How to use the Web material

Create a subdirectory (folder) on your workstation, and decompress the contents of the Web
material .zip files into this folder. Follow the instructions in the chapter that describe the
sample to get started with the additional material.
454 Batch Modernization on z/OS

Related publications

We consider the publications that we list in this section particularly suitable for a more
detailed discussion of the topics that we cover in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM Redbooks
publications” on page 457. Note that some of the documents referenced here might be
available in softcopy only.

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083

� DB2 UDB for z/OS: Design Guidelines for High Performance and Availability, SG24-7134

� DB2 9 for z/OS Performance Topics, SG24-7473

� DB2 for z/OS and WebSphere: The Perfect Couple, SG24-6319

� DB2 for z/OS and OS/390: Ready for Java, SG24-643535

� EEnabling z/OS Applications for SOA, SG24-7669

� IBM WebSphere Transformation Extender 8.2, SG24-7693

� Java Stand-alone Applications on z/OS, Volume I, SG24-7177

� Java Stand-alone Applications on z/OS Volume II, SG24-7291

� Java Application Development for CICS, SG24-5275

� Topics on Version 7 of IBM Rational Developer for System z and IBM WebSphere
Developer for System z, SG24-7482

� IBM WebSphere MQ File Transfer Edition Solution Overview, REDP-4532

Other publications

These publications are also relevant as further information sources:

� Application Programming Guide and Reference for Java, SC18-9842

� XML Guide, SC18-9858

� DB2 9 Performance Monitoring and Tuning Guide, SC18-9851

� WebSphere z/OS - The Value of Co-Location, WP101476

� Enterprise COBOL for z/OS Programming Guide Version 4 Release 1, SC23-8529

� Enterprise PL/I for z/OS Programming Guide Version 3 Release 8, SC27-1457

� Pattern-Oriented Software Architecture: A System Of Patterns. West Sussex, England, ii.
Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, John Wiley & Sons
Ltd., 1996
© Copyright IBM Corp. 2009, 2012. All rights reserved. 455

Online resources

These Web sites are also relevant as further information sources:

� IBM z/OS Java

http://www.ibm.com/servers/eserver/zseries/software/java/

� JZOS

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview
.html

� JZOS Toolkit javadoc

http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html

� JZOS Sample applications

http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp
.html

� JZOS Cookbook

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

� z/OS Java 6.0 User Guide

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/diag60.pdf

� z/OS Java 6.0 Diagnostics Guide

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.us
er.zos.60/collection-welcome.html

� JinsightLive for IBM System z

http://www.alphaworks.ibm.com/tech/jinsightlive

� iText Java PDF library

http://www.lowagie.com/iText/

� FTP Ant task

http://ant.apache.org/manual/OptionalTasks/ftp.html

� z/OS UNIX System Services Tools and toys

http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/

� PHP on z/OS

http://www.ibm.com/servers/eserver/zseries/zos/unix/ported/php/index.html

� Eclipse PDT

http://www.eclipse.org/pdt/downloads/

� FDPF PHP library

http://www.fpdf.org

� WebSphere MQ File Transfer Edition Information Center

http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp?topic=/com.ibm.w
mqfte.home.doc/help_home_wmqfte.htm

� Managing Batch process in an SOA: Application Development Trends, The Lee, 2008

http://adtmag.com/Articles/2008/02/25/Managing-Batch-Processing-in-an-SOA.aspx?
Page=4
456 Batch Modernization on z/OS

http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html
http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html
http://www.ibm.com/servers/eserver/zseries/software/java/products/jzos/jzossamp.html
http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/diag60.pdf
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/collection-welcome.html
http://www.alphaworks.ibm.com/tech/jinsightlive
http://www.lowagie.com/iText/
http://ant.apache.org/manual/OptionalTasks/ftp.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/
http://www.ibm.com/servers/eserver/zseries/zos/unix/ported/php/index.html
http://www.eclipse.org/pdt/downloads/
http://www.fpdf.org
http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp?topic=/com.ibm.wmqfte.home.doc/help_home_wmqfte.htm
http://adtmag.com/Articles/2008/02/25/Managing-Batch-Processing-in-an-SOA.aspx?Page=4
http://adtmag.com/Articles/2008/02/25/Managing-Batch-Processing-in-an-SOA.aspx?Page=4

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks publications, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 457

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

458 Batch Modernization on z/OS

Index

A
ADD CLONE 213
ALTER TABLE 213
Ant libraries, in Eclipse 72

B
Batch

tuning
DFSMShsm 352
IEFACTRT 353
Life Of A Data Set (LOADS) 347
OPEN and CLOSE of data sets 346
OPEN and CLOSE, non-VSAM data sets 346
OPEN and CLOSE, VSAM data sets 346
SMF 30-4 record 346
SMF 30-5 record 345
System Log (SYSLOG) 354
Tivoli Workload Scheduler 352

Batch window 11
Batch window, optimizing

Critical Path Analysis 304
data in memory (DIM) techniques 305
DB2 buffer pools 305
dependency diagram 303
DFSORT 305
Gantt chart 302
I/O 305
parallelism 305
Queued Sequential Access Method (QSAM), buffer-
ing 305
seven approaches 304
Virtual I/O (VIO) 305
VSAM Local Shared Resources, buffering 305

BatchPipes
advantages 311
BatchPipePlex 314
BatchPipeWorks 314, 316
connectors 314

CICS 314
DB2 Template Utility 314
FTP 314

data sets supported 311
fittings pipeline 316
half pipe 315
pipeline 315
setting up 313
SMF records 351
use ID access 313
using, blocksize 313
using, DD statement 313
Version 2 314

BatchPipes, and DFSORT 316
BatchPipeWorks 309
Binary (stream) mode 52
© Copyright IBM Corp. 2009, 2012. All rights reserved.
Binder 34
BPXBATCH 78
BPXBATSL 78
Bulk processing reference architecture

Analytics 27
Bulk application container 22–23
Bulk application development 26
Data access management services 22
Infrastructure services 22
Invocation and scheduling services 22
Invocation services 24
System management and operations 25

Business Action Language (BAL) 368
Business Object Model (BOM) 363
Business policy 360
Business Process Execution Language (BPEL) 17
Business Rule Management 360
Business Rule Management System (BRMS) 359–360
Business rule mining 369
Business rules 360

C
Cache

removing data from 209
Climb Strategy 209
First In First Out (FIFO) 209
Least Frequently Used (LFU) 209
Least Recently Used (LRU) 209
Random 209

Caching 209
hardware 209

Caching, in DB2
dynamic statement cache 209

Caching, in WebSphere Application Server 209
Change Capture Agent 196
Checkpoint 24
Checkpoint interval 24
Classic Data Architect 196
Cleansing 191
CLOB (Character Large Object) 46
COBOL

XML support, built-in 36
ENCODING phrase 37
NAMESPACE-DECLARATION 37
NAMESPACE-DECLARATION XML 37
processing input 36
processing output 37
registers 37
XML GENERATE statement 37
XML PARSE statement 36–37
XML-CODE 37
XML-EVENT 37
XML-NAMESPACE 37
XML-NAMESPACE-PREFIX 37
 459

XML-NNAMESPACE 37
XML-NNAMESPACE-PREFIX 37
XML-NTEXT 37
XMLPARSE compiler option 36
XMLPARSE(COMPAT) compiler option 37
XMLPARSE(XMLSS) compiler option 36
XML-TEXT 37

COBOL and PL/I
C++ interoperability 35
Java interoperability 35
Unicode support 35
XML support 35

Codepage, UNIX System Services 54
Coupling Facility Resource Management (CFRM) 313

D
Data Mart 190
Data sources 195
Data Storage Area (DSA) 198
Data Warehouse 190

workloads, supported 190
Data Warehousing 189
Data Web Services (DWS) 280
Data, cleanse 194
Data, deliver 194
Data, extraction stage 193
Data, federation 195
Data, publication 196
Data, replication 196
Data, transform 194
Data, understand 194
DataStage 194
DataStage ETL Accelerator 202
DB2

explain, for access paths 212
multi-row processing 212

DB2 for z/OS
triggering a stored procedure

MQListener 270
Java code 272
JDBC drivers 276
remove tasks 275
starting tasks 274
stop/restart tasks 274
stored procedure, defining 272
stored procedure, testing locally 273
tasks, configuring 273

DB2 on z/OS
buffer pool, maximum size, in DB2 V9 218
buffer pool, size 218
checkpointing 221
clone tables 213
Data Set VSAM Control Interface (CI) size 219
DSNZPARMs 219
fast table append 217
index, when using expressions 217
Isolation Level 215

Cursor Stability (CS) 215
JDBC 216
Read Stability (RS) 215

Repeatable Read (RR) 215
Uncommitted Read (UR) 215
webSphereDefaultIsolationLevel 216

Isolation Level, setting 216
at DB2 package/plan level 216
at SQL statement level 216
in a Java EE application 216
in a Java native application 216

JDBC, optimizing 219
lock avoidance 216
locking

intent modes 213
locks 213
locks, compatibility for page and row locks 214
locks, compatibility for table spaces 215
Real Time Statistics (RTS) 217
REBIND 218
REORG 218
RUNSTATS 218
SEQPRES 219
tuning 343

Accounting Trace 344, 348
DB2 Catalog 344
Explain facility 350
Performance Trace 350
PLAN_TABLE 350
SMF, 42-6 records 344
Statistics 345
Statistics Trace 343–344
Statistics Trace, areas of activity instrumented
344
SYSIBM.SYSCOPY 352
SYSIBM.SYSPACKSTMT 350
SYSIBM.SYSSTATEMENT 350

Web service provider 279
DB2 tables, joining 210
db2mqln1 274
db2mqln2 274
DFSMShsm

SMF 352
DFSORT 405

combining records 410
data supported 406
IFTHEN 412
IFTHEN PARSE 409
IFTHEN, types 412
invoking functions 406
OVERLAY 408
PARSE 409
parsing 409
record selection 407
reformatting records 408
SMF records 351

DFSORT, invoking with JZOS
DfSort class 417

DL/I (Data Language/I) 59
DLIModelUtility plug-in 59
DOM (Document Object Model) 39
DRDA and zAAP eligibility 46
DRDA and zIIP eligibility 46
460 Batch Modernization on z/OS

E
EBCDIC, using PDF files in 171
Electronic Data Interchange (EDI) 374
ETL Accelerator 201
European Single Euro Payments Area (SEPA) 377
extract, transform, and load (ETL) 20, 189, 191, 198

cleansing 191
data refresh 192
data replication 192
extracting data faster 193
extraction process 191
file locking 198
load process 191
tools, on System z 193
transformation process 191
trickle feed 192

H
Health Insurance Portability and Accountability Act
(HIPAA) 374
Hibernate 60, 325
HiperSockets 201

I
IBM InfoSphere 194
IBM InfoSphere Datastage 189
IBM InfoSphere Information Server suite 194
IBM Rational Developer for System z 81
IBM WebSphere ILOG BRMS 360
IBM WebSphere ILOG BRMS (ILOG BRMS) 360
ICETOOL

checking data 411
OCCUR 410
RANGE 410
SELECT 410
SPLICE 411
STATS 411
UNIQUE 411

ILOG BRMS 360
Business Action Language (BAL) rules 364
Decision Services 364
Decision Validation Services (DVS) 364
JRules 364
Rule Execution Server 364
Rule Studio 362
Rule Team Server (RTS) 362
Rules for COBOL 364

IMS Database (IMS DB) 58
IMSDatabaseView object 59
Information Server Client Package interface 201
InfoSphere Change Data Capture 197–198, 202

Q replication 199
SQL replication 199

InfoSphere Classic Data Event Publisher 196
InfoSphere Classic Federation 196
InfoSphere Classic Federation Data Server 196
InfoSphere Data Event Publisher 196
InfoSphere DataStage 200

parallel processing 204

partition parallelism 204
pipeline parallelism 204

stage 203
stages 203

InfoSphere DataStage Designer 203
InfoSphere DataStage Enterprise for z/OS 201
InfoSphere DataStage MVS Edition 201
InfoSphere DataStage Transformation Extender 203
InfoSphere Replication Server 197
In-memory data grid (IMDG) 23
In-memory database (IMDB) 23
Inter Language Communication (ICL) 47
Inter Language Communication (ICL), and Java 47
iText-2.1.5.jar 70

J
Java EE batch application 100
Java EE environment, on z/OS 95
Java EE standard 94
Java Native Interface (JNI) 55
Java on z/OS

advantages 50
APIs, specific to z/OS 51
CICS 58
encoding 55
IMS 58
interoperability, with Enterprise COBOL 55
interoperability, with Enterprise PL/I 56
interoperability, with other languages 55
run times 51

Java on z/OS, stand-alone
invocation 78
tooling 80

Java Persistence API (JPA) 60
Java Persistence Architecture (JPA) 325
Java Record I/O library (JRIO) 52
Java Stored Procedure, in DB2

calling 64
configuring 65
creating 72
JAVAENV file 66
sample application 67
testing 75
WLM Application Environment 65
WLM Application Environment, refreshing 74
WLM environment startup procedure 65

Java stored procedure, in DB2 64
Java, in IMS 58

data access 58
development 63
interoperability, with other languages 63
Java Batch Processing (JBP) 60

checkpoints 62
example 62
restarting 62
starting 61

Java DataBase Connectivity (JDBC) 59
Java Message Processing (JMP) 60

Java, performance 338
Ahead-of-time (AOT) compilation 340
 Index 461

garbage collection 338
gencon policy 338

JinsightLive 338
Just In Time compiler (JIT) 339
JVM, startup 339
profiler 338
shared classes 339

Job Control Language (JCL) 99
Job Entry Subsystem (JES) 99
Jobs, triggering

using native Java 224
using Tivoli Workload Scheduler 263
using WebSphere XD Compute Grid 234

command line interface 240
command line interface, example 241
lrcmd.sh script 240
using base scheduler 249
Web Services and EJB interfaces 249
Web Services interface 261
Web Services interface, tools 262
WSGrid utility 242

JZOS batch launcher 53, 79
supported SDK version 79

JZOS Launcher 101
JZOS toolkit 52

MVS data sets supported 52

L
Language Environment 47
Load module 34
LOAD utility 202

M
Metadata Server 194
Modified Indirect Data Address Word (MIDAW) 218

N
Non-window batch 306

O
Object code 34
Object-relational mapper 60
online transaction processing (OLTP) 20
online transaction processing (OLTP) system 191
OUTFIL

combining records 410
report writing 410

P
Performance instrumentation 341

SMF 342
PHP 158
PHP on z/OS

batch launcher options 159
DB2 on z/OS, access to 158
DB2, access to 168
development

Eclipse, setup 162
PHP Development Tools (PDT), download 162

development tools 160
Eclipse 160
in batch 158
interoperability, with other languages 160
introduction 158
php command 158
PHP Development Tools (PDT) 160
PHP interpreter 158
PHP libraries 158
sample, steps 160

PHP, what is it? 158
Pipes, in UNIX 317
PL/I

XML support, built-in 38
PLISAXA 38
PLISAXB 38
PLISAXC 38
PLISAXx subroutines 38
XMLCHAR function 38
zAAP eligibility 39

PL/I Simple API for XML (SAX) parser 38
pureXML 45

Q
QualityStage 194

R
Record mode 52
Redbooks Web site 457
Redbooks website

Contact us xv
Replication, modes 194

continuous mirroring 194
periodic mirroring 194
refresh 194

Resource broker 25
Rule Team Server (RTS), repository 363

S
SAP IDOC 374
SAX2 (Simple API for XML) 39
Service-Level Agreement (SLA) 11
SMF record types 342

101 348–349
14 346
15 346
16 351
241 352
30-4 346
30-5 345
42-6 344, 346
62 346
64 346
91 351

subtype 11 351
subtype 12 351
462 Batch Modernization on z/OS

subtype 13 351
subtype 14 351
subtype 15 351

Staging tables 198
straight through processing (STP) 20
Stream mode 52
Symbols, in DFSORT and ICETOOL 414
System Authorization Facility (SAF) 104

T
Text (stream) mode 52
Tivoli Dynamic Workload Broker (TDWB) 26
Tivoli Dynamic Workload Broker agent 264
Tivoli Workload Automation 264
Tivoli Workload Scheduler 11

Application Description (AD) 353
automatic job rerun 265
calendar and event based scheduling 263
Critical Path 265
fault tolerance 264
file transfer, integrated 266
high availability 264
integration

AF Operator 265
Tivoli System Automation for z/OS 265

interfaces 266
Query Current Plan (QCP) 353
reporting 266
scalability 264
Tivoli Enterprise Portal, integration 264
Workload Manager, integration 265

Tivoli Workload Scheduler for z/OS
strengths 263

Tools, for z/OS UNIX Systems Services 80
Trickle feed 192

W
Web 2.0 17
Web Services 17
WebSphere Application Server for z/OS 95
WebSphere Data Event Publisher 202
WebSphere Extended Deployment (XD) Compute Grid
for z/OS 93

Batch container 100
Batch Data Stream (BDS) 103
Batch Packager 119
BDS framework

ByteReaderPattern 115
ByteWriterPattern 115
FileReaderPattern 115
FileWriterPattern 115
JDBC, supported classes 114
JDBCReaderPattern 114
JDBCWriterPattern 114
JPAReaderPattern 115
JPAWriterPattern 115
RecordOrientedDatasetReaderPattern 115
RecordOrientedDatasetWriterPattern 115

components 99

Compute Grid Test Server 129
Compute Grid UTE 129

download 129
setting up 129

development
Batch Data Stream (BDS) Framework 111
Batch Packager 111
Batch Simulator 111
BDS framework 114
IDE 111
job submission, options 132
life cycle 112
packaging properties, generating 118
Unit Test Environment (UTE) 111

GenericXDBatchStep 114
Grid Execution Endpoint (GEE) 99–100
high availability 104
job definition, options 117
Job Management Console (JMC) 99, 137
Job Scheduler (JS) 99–100
Job Scheduler (JS), access methods 105
lrcmd 99
On-Demand Router (ODR) 105
overview 97
Parallel Job Manager (PJM) 99–100, 105
programming 106
programming model

batch data stream 108
batch job step 108
BatchDataStream interface 109
BatchJobStepInterface interface 109
checkpoint algorithm 109
CheckpointPolicyAlgorithm interface 109
principal interfaces 109
results algorithm 109
ResultsAlgorithm interface 109

programming models 107
compute-intensive 107
transactional batch 107

Quality of Service (QoS) 103
security 104
security roles 104

assignment 104
lradmin 104
lrsubmitter 104

testing, options 124
testing, using Batch Simulator in Eclipse 124
testing, using Batch Simulator on z/OS 138
tools 103
why to use 103
workload types 97
xJCL 99

WebSphere ILOG Rules for COBOL 367
Business Object Model (BOM) 368

WebSphere MQ File Transfer Edition (FTE) 398
FTE Agent 398
logging 399
operational interfaces 398
Queue Manager 398
transfer, triggering
 Index 463

using Ant 403
using JZOS 401

WebSphere Transformation Extender 371, 373–374
advantages 372
benefits 373
mapping file 377
Type Tree 381

WebSphere Transformation Extender Design Studio
371, 376

components 376
Map Editor 376
Type Tree Editor 376

development
steps 376

map, building 392
map, creating 388
map, testing 392
mapping file, creating 384
mapping file, creating a z/OS version 393
starting 379
transferring files to z/OS 393
XML files, importing 380

WebSphere XD Compute Grid
classification rules 235
job class 235
job log 235
Job Management Console (JMC) 235

access 235
job schedules, managing 235

Job scheduler (JS) 100
scheduling jobs with an external scheduler 266

Service Integration Bus (SIBus) 268
WSGrid utility

invoking 246
xJCL 100

WebSphere XD Operations Optimization feature 105

X
xJCL 99
XL/XP XML parser 42
XML Extender 46
XML in DB2

creating a table with XML 68
XMLTABLE function 71

XML Parser, C++ Edition 39
XML parsing on z/OS, with DB2 V9 44
XML parsing, issues 41
XML processing options on z/OS 36
XML support, in COBOL and PL/I 35
XML System Services 16
XML Toolkit for z/OS 39, 41–42
XQuery 16

Z
z/OS BatchPipes 201
z/OS C/C++ library, I/O 52
z/OS XML parser 40

character encodings 40
specialty engine eligibility 40

z/OS XML System Services 36, 39
specialty engines, using 36
464 Batch Modernization on z/OS

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Batch M
odernization on z/OS

Batch M
odernization on z/OS

Batch M
odernization on z/OS

Batch M
odernization on z/OS

Batch M
odernization on z/OS

Batch M
odernization on z/OS

®

SG24-7779-01 ISBN 0738436968

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Batch Modernization on z/OS

Provides an overview
of current batch
processing
technology

Discusses how to use,
simplify, and improve
batch processing

Includes example
scenarios that use
batch processing

Mainframe computers play a central role in the daily operations of
many of the world’s largest corporations, and batch processing is a
fundamental part of the workloads that run on the mainframe. A large
portion of the workload on IBM z/OS systems is processed in batch
mode. Although several IBM Redbooks publications discuss application
modernization on the IBM z/OS platform, this book specifically
addresses batch processing in detail.

Many different technologies are available in a batch environment on
z/OS systems. This book demonstrates these technologies and shows
how the z/OS system offers a sophisticated environment for batch. In
this practical book, we discuss a variety of themes that are of
importance for batch workloads on z/OS systems and offer examples
that you can try on your own system. The book also includes a chapter
on future developments in batch processing.

The audience for this book includes IT architects and application
developers, with a focus on batch processing on the z/OS platform.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	July 2012, Second Edition

	Chapter 1. Executive overview of batch modernization on z/OS
	1.1 Do you still need batch?
	1.2 Is replacing batch with OLTP an option?
	1.3 Strengths of z/OS for batch
	1.4 Batch modernization on z/OS
	1.5 New technologies can help
	1.6 Conclusion

	Part 1 Overview of batch processing
	Chapter 2. Introduction to batch modernization on z/OS
	2.1 Differences between OLTP and batch processing
	2.1.1 Reasons for using batch

	2.2 Taking advantage of z/OS features for batch processing
	2.2.1 Centralized computing model
	2.2.2 Security
	2.2.3 Manageability
	2.2.4 Workload management
	2.2.5 Reliability
	2.2.6 Scalability
	2.2.7 Availability
	2.2.8 Batch processing environment

	2.3 Drivers for change
	2.3.1 Existing programs are not adequate for new requirements
	2.3.2 Necessary skills to maintain and use the current technology are no longer available
	2.3.3 The batch window needs to be shortened or made more efficient
	2.3.4 Running batch at any time
	2.3.5 Maintaining the actual batch programs is too complex

	Chapter 3. Bulk processing reference architecture
	3.1 Why do we need a reference architecture?
	3.2 Overview
	3.3 Bulk reference architecture
	3.3.1 Infrastructure services
	3.3.2 Data access management services
	3.3.3 Bulk application container
	3.3.4 Invocation services
	3.3.5 System management and operations
	3.3.6 Bulk application development
	3.3.7 Analytics

	3.4 Building up the bulk processing reference architecture

	Part 2 Serving new functional requirements in z/OS batch
	Chapter 4. Implement new functionality using traditional languages
	4.1 Why use traditional languages for new functionality?
	4.2 XML support in COBOL and PL/I
	4.2.1 Using built-in XML support in COBOL
	4.2.2 Using built-in XML support in PL/I
	4.2.3 Using the XML Toolkit for z/OS
	4.2.4 Using z/OS XML System Services
	4.2.5 Solving the “XML problem” by combining XML technologies
	4.2.6 Using pureXML capabilities in DB2 9 for z/OS
	4.2.7 Summary

	4.3 Implementing new functionality in C/C++

	Chapter 5. Introduction to Java on z/OS
	5.1 The basics of Java
	5.2 Special Java APIs for batch processing on z/OS
	5.3 Data access with Java on z/OS
	5.3.1 Summary

	5.4 Encoding issues
	5.5 Java Interoperability with COBOL and PL/I
	5.5.1 Enterprise COBOL
	5.5.2 Enterprise PL/I

	Chapter 6. Implement new functionality using Java in traditional containers
	6.1 Java in CICS
	6.2 Java in IMS
	6.2.1 Introduction to IMS databases
	6.2.2 Object mapped access to hierarchical data
	6.2.3 Java applications in IMS

	6.3 Java in DB2 for z/OS
	6.3.1 Java interoperability with other languages
	6.3.2 Configuring the system environment
	6.3.3 Development of the sample application

	Chapter 7. Implement new functionality using stand-alone Java
	7.1 Running Java with the BPXBATCH or BPXBATSL utilities
	7.2 Running Java with JZOS
	7.3 Interoperability with other languages
	7.4 Development tools
	7.5 Sample stand-alone Java batch application
	7.5.1 Creating invoice data with COBOL
	7.5.2 Generating a PDF in Java

	Chapter 8. Implement new functionality using Java in WebSphere XD Compute Grid
	8.1 Java and Java Platform, Enterprise Edition
	8.2 The Java EE runtime environment on z/OS
	8.3 WebSphere XD Compute Grid overview
	8.4 Quality of service in a WebSphere environment on z/OS
	8.4.1 Security
	8.4.2 High availability and scalability

	8.5 Interoperability with other languages
	8.6 Batch programming using WebSphere XD Compute Grid
	8.7 Developing a WebSphere batch application
	8.7.1 Setting up the environment
	8.7.2 Creating a batch application using the BDS Framework
	8.7.3 Testing the batch application
	8.7.4 Running Echo batch application on WebSphere XD Compute Grid z/OS
	8.7.5 Debugging your application in the Unit Test Server
	8.7.6 Reusing the Echo application for huge data processing using BDS
	8.7.7 Conclusion

	8.8 Summary

	Chapter 9. Implement new functionality using PHP on z/OS
	9.1 Introduction to PHP for z/OS
	9.2 PHP Interoperabilty with other languages
	9.3 Development tools
	9.4 Sample application for using PHP in stand-alone batch
	9.4.1 Eclipse setup
	9.4.2 Importing and customizing the sample project
	9.4.3 Implementing and deploying the PHP application

	Chapter 10. Summary of new functional requirements in z/OS batch
	Chapter 11. Batch environment enhancements in z/OS V1R13
	11.1 Introduction to z/OS Batch Runtime
	11.1.1 Java COBOL with DB2 interoperability
	11.1.2 JZOS Batch Launcher enhancements

	11.2 JES2 batch modernization
	11.2.1 Instream data in PROCs and INCLUDEs
	11.2.2 Support for JOBRC (job return code)
	11.2.3 Spin and SPIN data set
	11.2.4 Evict a job on a step boundary

	Part 3 Implement agile batch
	Chapter 12. Create agile batch by optimizing the Information Management architecture
	12.1 Data Warehousing on System z
	12.2 ETL
	12.2.1 Overcoming operational inefficiency with ETL
	12.2.2 ETL Accelerator with DataStage

	Chapter 13. Create agile batch by optimizing DB2 access
	13.1 Data caching
	13.2 Optimizing data access using SQL functionality
	13.2.1 Joining tables
	13.2.2 Using SELECT FROM INSERT/UPDATE/DELETE/MERGE
	13.2.3 Multi-row processing
	13.2.4 Explain SQL statements

	13.3 Optimizing data access using system functionality
	13.3.1 Optimizing using DB2 for z/OS functionality
	13.3.2 Optimizing using I/O features
	13.3.3 Optimizing using JDBC functionality
	13.3.4 Checkpoint and restart functionality

	Chapter 14. Create agile batch by implementing trigger mechanisms
	14.1 Job submission with native Java technology
	14.1.1 Developing the code
	14.1.2 Configuring WebSphere Application Server z/OS for deployment

	14.2 Using WebSphere XD Compute Grid trigger mechanisms
	14.2.1 The Job Management Console
	14.2.2 The command-line interface
	14.2.3 The WSGrid command-line utility
	14.2.4 Web services and EJB interfaces for the Job Scheduler

	14.3 Exploiting enhanced features of Tivoli Workload Scheduler for z/OS
	14.3.1 Strengths of Tivoli Workload Scheduler for z/OS
	14.3.2 Integrate Tivoli Workload Scheduler for z/OS with WebSphere XD Compute Grid

	14.4 Triggering a DB2 stored procedure
	14.4.1 Using WebSphere MQ to trigger a DB2 stored procedure
	14.4.2 DB2 as a Web service provider

	Part 4 Improve batch efficiency
	Chapter 15. Approaches and techniques to reduce the batch window
	15.1 Project Management techniques
	15.1.1 Gantt charts
	15.1.2 Dependency diagrams
	15.1.3 Critical Path Analysis

	15.2 Seven key strategies
	15.2.1 Ensuring the system is properly configured
	15.2.2 Implementing data in memory
	15.2.3 Optimizing I/O
	15.2.4 Increasing parallelism
	15.2.5 Reducing the impact of failures
	15.2.6 Increasing operational effectiveness
	15.2.7 Improving application efficiency

	15.3 Non-window batch

	Chapter 16. Increasing concurrency by exploiting BatchPipes
	16.1 Basic function
	16.2 Implementation
	16.2.1 Setting up the Pipes subsystem
	16.2.2 Implementing Individual Pipes

	16.3 New Pipes connectors
	16.4 Additional Pipes functions
	16.4.1 BatchPipePlex
	16.4.2 BatchPipeWorks

	Chapter 17. Batch application design and patterns in WebSphere XD Compute Grid
	17.1 The Strategy pattern as the foundation for designing batch applications
	17.1.1 The Batch Data Stream Framework and its implementation of these patterns
	17.1.2 Sharing business services across batch and OLTP

	17.2 Conclusions

	Chapter 18. Java performance best practices
	18.1 Java performance in common
	18.1.1 Garbage collection
	18.1.2 Profiling

	18.2 Stand-alone Java batch
	18.2.1 JVM startup cost

	Chapter 19. Increasing batch efficiency by using performance instrumentation
	19.1 System-level and WLM workload SMF
	19.2 DB2 Subsystem-level instrumentation
	19.2.1 DB2 Statistics Trace
	19.2.2 DB2 Catalog
	19.2.3 SMF 42-6
	19.2.4 Putting Statistics Trace, DB2 Catalog and SMF 42-6 together

	19.3 Batch suite instrumentation
	19.4 Job-Level SMF
	19.4.1 Data Set OPENs And CLOSEs
	19.4.2 DB2 job-level Accounting Trace and deeper
	19.4.3 DFSORT
	19.4.4 BatchPipes/MVS
	19.4.5 DFSMShsm functional statistics

	19.5 Other job-level instrumentation
	19.5.1 SYSIBM.SYSCOPY for DB2 utility jobs
	19.5.2 Tivoli Workload Scheduler information
	19.5.3 Step-Termination Exit
	19.5.4 System Log

	Part 5 Reduce batch complexity
	Chapter 20. Reduce batch complexity using a Business Rules Management System
	20.1 Introduction to Business Rule Management
	20.2 Overview of IBM WebSphere ILOG WebSphere BRMS
	20.3 Using ILOG BRMS on System z
	20.3.1 Option 1: ILOG JRules on System z using Rule Execution Server
	20.3.2 Option 2: IBM WebSphere ILOG Rules for COBOL

	20.4 Using ILOG BRMS in batch

	Chapter 21. Reduce batch complexity using middleware for transformation logic
	21.1 WebSphere Transformation Extender: Enabling universal transformation
	21.2 Business value of WebSphere Transformation Extender
	21.3 Sample using WebSphere Transformation Extender in z/OS batch
	21.3.1 Creating the mapping file
	21.3.2 Transferring files to z/OS
	21.3.3 Running the job on z/OS to transform input data

	Chapter 22. Reduce batch complexity by eliminating custom file transfer logic
	22.1 Using WebSphere MQ FTE to perform managed file transfers
	22.2 Initiating file transfer using a Java job
	22.3 Initiating file transfer using an Ant job
	22.4 Summary

	Chapter 23. Reduce complexity by exploiting DFSORT / ICETOOL
	23.1 Invoking DFSORT functions
	23.2 Data that DFSORT can process
	23.3 Beyond sorting
	23.3.1 Record selection
	23.3.2 Record reformatting
	23.3.3 Parsing
	23.3.4 Report writing
	23.3.5 Record combining
	23.3.6 Checking data
	23.3.7 IFTHEN conditional processing

	23.4 Symbols
	23.4.1 Converting COBOL copybooks to DFSORT symbols

	23.5 Invoking DFSORT from Java with JZOS
	23.5.1 JZOS invoking DFSORT sample

	Part 6 Appendixes
	Appendix A. DB2 configuration
	Data Definition Language for Java stored procedure
	Data Definition Language for stand-alone Java application
	DB2 SQL Insert statements for sample data

	Appendix B. Source code
	Java stored procedure to generate PDF files
	Java PDF creator
	PHP PDF creator
	Dynamic batch Web application
	JCL for running WebSphere Transformation Extender transformation in batch mode
	Triggering Java Stored procedure to generate PDF files

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

