

ibm.com/redbooks

WebSphere Application
Server V7.0:
Concepts, Planning, and Design

Arden Agopyan
Hermann Huebler

Tze Puah
Thomas Schulze

David Soler Vilageliu
Martin Keen

Discusses end-to-end planning for
WebSphere implementations

Defines WebSphere concepts
and best practices

Addresses distributed
and z/OS platforms

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V7.0: Concepts,
Planning, and Design

February 2009

International Technical Support Organization

SG24-7708-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2009)

This edition applies to Version 7.0 of WebSphere Application Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Notices . xv
Trademarks . xvi

Preface . xix
The team that wrote this book . xix
Become a published author . xxii
Comments welcome. xxii

Chapter 1. Introduction to WebSphere Application Server V7.0. 1
1.1 Java Platform Enterprise Edition (Java EE) . 2
1.2 WebSphere Application Server overview . 4

1.2.1 Application server purpose . 4
1.2.2 Evolving Java application development standards 6
1.2.3 Enhanced management . 7
1.2.4 Broader integration . 8
1.2.5 Advanced tooling and extensions . 11

1.3 Packaging . 13
1.3.1 WebSphere Application Server - Express V7.0 14
1.3.2 WebSphere Application Server V7.0. 15
1.3.3 WebSphere Application Server for Developers V7.0 15
1.3.4 WebSphere Application Server Network Deployment V7.0 15
1.3.5 WebSphere Application Server for z/OS V7.0 16
1.3.6 Packaging summary . 17

1.4 Supported hardware, platforms, and software . 18
1.4.1 Hardware. 18
1.4.2 Operating systems . 19
1.4.3 Web servers . 21
1.4.4 Database servers . 21
1.4.5 Directory servers . 22

1.5 Related products . 23
1.5.1 WebSphere Application Server Community Edition 23
1.5.2 WebSphere Extended Deployment. 24
1.5.3 Rational Application Developer Assembly and Deploy V7.5. 25
1.5.4 Rational Application Developer for WebSphere Software V7.5 26
1.5.5 Project Zero and WebSphere sMash . 27

Chapter 2. Integration with other products. 29
2.1 Tivoli Access Manager . 30

2.1.1 Integration with WebSphere Application Server 30

© Copyright IBM Corp. 2009. All rights reserved. iii

2.2 Tivoli Directory Server . 33
2.2.1 Lightweight Directory Access Protocol . 33
2.2.2 Integration with WebSphere Application Server 34

2.3 WebSphere MQ. 35
2.3.1 Integration with WebSphere Application Server 35

2.4 WebSphere Adapters . 39
2.4.1 Integration with WebSphere Application Server 41

2.5 WebSphere DataPower. 41
2.5.1 DataPower appliance models . 43
2.5.2 Integration with WebSphere Application Server 45

2.6 DB2 . 46
2.6.1 Integration with WebSphere Application Server 46

2.7 Tivoli Composite Application Manager for WebSphere. 47
2.7.1 Integration with WebSphere Application Server 48
2.7.2 ITCAM for WebSphere architecture . 48

Chapter 3. WebSphere Application Server concepts. 51
3.1 WebSphere Application Server concepts . 52

3.1.1 Profiles . 53
3.1.2 Stand-alone application servers . 55
3.1.3 Distributed application servers . 57
3.1.4 Nodes, node groups, and node agents . 59
3.1.5 Cells . 61
3.1.6 Deployment manager . 62
3.1.7 Administrative agent . 63
3.1.8 Job manager . 64
3.1.9 Web servers . 65
3.1.10 Proxy servers . 67
3.1.11 Generic servers. 70
3.1.12 Business level applications . 70
3.1.13 Centralized installation manager. 72
3.1.14 Intelligent runtime provisioning . 72

3.2 Server environments . 73
3.2.1 Single cell configurations . 74
3.2.2 Multiple cell configurations . 77
3.2.3 Mixed node versions in a cell . 77
3.2.4 Flexible management . 78

3.3 Clusters . 81
3.3.1 Application server clusters . 81
3.3.2 Proxy server clusters. 87
3.3.3 Generic server clusters . 87

3.4 Runtime processes . 88
3.4.1 Distributed platforms . 88

iv WebSphere Application Server V7.0: Concepts, Planning, and Design

3.4.2 WebSphere Application Server for z/OS. 89
3.5 Using Web servers . 89

3.5.1 Managed Web servers . 89
3.5.2 Unmanaged Web servers . 90
3.5.3 IBM HTTP Server as an unmanaged Web server (special case) . . . 92

Chapter 4. Infrastructure . 93
4.1 Infrastructure planning. 94
4.2 Design considerations . 95

4.2.1 Scalability . 96
4.2.2 Caching . 98
4.2.3 High availability . 99
4.2.4 Load-balancing and fail-over. 100
4.2.5 Disaster recovery . 101
4.2.6 Security . 102
4.2.7 Application deployment . 104
4.2.8 Servicability . 105

4.3 Sizing the infrastructure. 106
4.4 Benchmarking . 107
4.5 Performance tuning . 108

4.5.1 Application design issues . 108
4.5.2 Understand your requirements . 109
4.5.3 Test environment setup. 109
4.5.4 Load factors . 110
4.5.5 Production system tuning . 112
4.5.6 Conclusions. 113

4.6 Planning for monitoring . 114
4.6.1 Environment analysis for monitoring . 114
4.6.2 Performance and fault tolerance . 116
4.6.3 Alerting and problem resolution . 116
4.6.4 Testing . 117

4.7 Planning for backup and recovery. 117
4.7.1 Risk analysis . 117
4.7.2 Recovery strategy . 117
4.7.3 Backup plan . 118
4.7.4 Recovery plan . 118
4.7.5 Update and test process . 119

4.8 Planning for centralized installation. 119

Chapter 5. Topologies . 121
5.1 Topology selection criteria. 122

5.1.1 High availability . 122
5.1.2 Disaster recovery . 125

 Contents v

5.1.3 Security . 126
5.1.4 Maintainability . 126
5.1.5 Performance . 127
5.1.6 Application deployment . 129
5.1.7 Summary: Topology selection criteria . 133

5.2 Terminology. 134
5.2.1 Load balancers . 134
5.2.2 Reverse proxies . 135
5.2.3 Domain and protocol firewall . 136
5.2.4 Web servers and WebSphere Application Server Plug-in. 137
5.2.5 Application servers . 138
5.2.6 Directory and security services . 138
5.2.7 Messaging infrastructure. 138
5.2.8 Data layer . 139

5.3 Topologies in detail . 139
5.3.1 Stand-alone server topology . 140
5.3.2 Vertical scaling topology . 143
5.3.3 Horizontal scaling topology . 147
5.3.4 Reverse proxy topology . 154
5.3.5 Topology with redundancy of multiple components 160
5.3.6 Heterogeneous cell . 166
5.3.7 Multi-cell topology . 168
5.3.8 Advanced topology using an administrative agent 171
5.3.9 Advanced topology using a job manager . 174

Chapter 6. Installation . 179
6.1 What is new in V7.0. 180
6.2 Selecting a topology . 181
6.3 Selecting hardware and operating systems . 181
6.4 Planning for disk space and directories. 182
6.5 Naming conventions . 184
6.6 Planning for the load balancer. 184

6.6.1 Installation . 185
6.6.2 Configuration. 185

6.7 Planning for the DMZ secure proxy. 186
6.8 Planning for the HTTP server and plug-in . 187

6.8.1 Stand-alone server environment . 191
6.8.2 Distributed server environment . 194

6.9 Planning for WebSphere Application Server . 197
6.9.1 File systems and directories . 198
6.9.2 Single install or multiple installations. 199
6.9.3 Installation method . 201
6.9.4 Installing updates . 203

vi WebSphere Application Server V7.0: Concepts, Planning, and Design

6.9.5 Profile creation . 205
6.9.6 Naming convention . 220
6.9.7 TCP/IP port assignments . 222
6.9.8 Security considerations . 223

6.10 IBM Support Assistant. 226
6.11 Summary: Installation checklist . 227

Chapter 7. Performance, scalability, and high availability. 229
7.1 What is new in V7.0. 230

7.1.1 Runtime provisioning. 230
7.1.2 Java SE 6 . 230
7.1.3 DMZ secure proxy. 231
7.1.4 Flexible management . 231

7.2 Scalability . 231
7.2.1 Scaling overview . 232
7.2.2 Scaling the system . 233

7.3 Performance . 235
7.3.1 Performance evaluation . 235
7.3.2 System tuning . 236
7.3.3 Application environment tuning . 237
7.3.4 Application tuning . 240

7.4 Workload management . 241
7.4.1 HTTP servers . 241
7.4.2 DMZ proxy servers . 241
7.4.3 Application servers . 241
7.4.4 Clustering application servers . 243
7.4.5 Scheduling tasks . 245

7.5 High availability . 246
7.5.1 Overview . 246
7.5.2 Hardware high availability . 247
7.5.3 Process high availability . 247
7.5.4 Data availability . 248
7.5.5 Clustering and failover technique . 249
7.5.6 Maintainability . 250
7.5.7 WebSphere Application Server high availability features 250

7.6 Caching . 255
7.6.1 Edge caching . 256
7.6.2 Dynamic caching. 257
7.6.3 Data caching . 258

7.7 Session management . 260
7.7.1 Overview . 260
7.7.2 Session support . 261

7.8 Data replication service . 267

 Contents vii

7.9 WebSphere performance tools . 268
7.9.1 Performance monitoring considerations . 268
7.9.2 Tivoli performance viewer . 271
7.9.3 WebSphere performance advisors . 271
7.9.4 WebSphere request metrics . 273

7.10 Summary: Checklist for performance . 276

Chapter 8. Application development and deployment. 279
8.1 What is new in V7.0. 280
8.2 End-to-end life cycle . 283
8.3 Development and deployment tools . 285

8.3.1 Rational Application Developer for Assembly and Deploy V7.5 . . . 285
8.3.2 Rational Application Developer for WebSphere Software V7.5 . . . 286
8.3.3 WebSphere rapid deployment. 287
8.3.4 Which tools to use. 288

8.4 Naming conventions . 288
8.4.1 Naming for applications. 288
8.4.2 Naming for resources . 289

8.5 Source code management . 290
8.5.1 Rational ClearCase . 290
8.5.2 Concurrent Versions System (CVS) . 291
8.5.3 Subversion . 292
8.5.4 Choosing an SCM to use . 292

8.6 Automated build process. 294
8.7 Automated deployment process . 295
8.8 Automated functional tests . 296
8.9 Test environments. 296
8.10 Managing application configuration settings . 301

8.10.1 Classifying configuration settings . 301
8.10.2 Managing configuration setting . 302

8.11 Planning for application upgrades in production 305
8.12 Mapping application to application servers . 307
8.13 Planning checklist for applications . 309

Chapter 9. System management . 311
9.1 What is new in V7.0. 312
9.2 Administrative security . 314
9.3 WebSphere administration facilities . 314

9.3.1 Integrated Solutions Console . 316
9.3.2 WebSphere scripting client (wsadmin) . 316
9.3.3 Task automation with Ant . 317
9.3.4 Administrative programming . 317
9.3.5 Command line tools . 318

viii WebSphere Application Server V7.0: Concepts, Planning, and Design

9.3.6 Administrative agent . 318
9.3.7 Job manager . 319

9.4 Automation planning . 320
9.5 Configuration planning . 321

9.5.1 Configuration repository location and synchronization 321
9.5.2 Configuring application and application server startup behaviors. . 322
9.5.3 Custom application configuration templates 323
9.5.4 Planning for resource scope use. 323

9.6 Change management topics . 326
9.6.1 Application update. 326
9.6.2 Changes in topology . 327
9.6.3 Centralized installation manager (CIM). 328

9.7 Serviceability . 329
9.7.1 Log and traces . 330
9.7.2 Fix management . 331
9.7.3 Backing up and restoring the configuration. 332
9.7.4 MustGather documents. 332
9.7.5 IBM Support Assistant. 333
9.7.6 Information Center . 333

9.8 Planning checklist for system management . 334

Chapter 10. Messaging . 335
10.1 Messaging overview: What is messaging? . 336
10.2 What is new in V7.0. 336
10.3 Messaging options: What things do I need? . 337

10.3.1 Messaging provider standards . 338
10.3.2 Choosing a messaging provider . 339

10.4 Messaging topologies: How can I use messaging? 340
10.4.1 Default messaging provider concepts . 341
10.4.2 Choosing a messaging topology . 344

10.5 Messaging features: How secure and reliable is it? 350
10.5.1 More messaging concepts . 351
10.5.2 Planning for security . 351
10.5.3 Planning for high availability . 352
10.5.4 Planning for reliability . 353

10.6 Planning checklist for messaging . 355

Chapter 11. Web services . 357
11.1 Introduction to Web services . 358
11.2 What is new in V7.0. 359

11.2.1 What was in Feature Pack for V6.1. 360
11.2.2 Features added to WebSphere Application Server V7.0 360

11.3 Important aspects in using Web services . 361

 Contents ix

11.4 Web services architecture . 363
11.4.1 How can this architecture be used? . 365

11.5 Support for Web services in WebSphere Application Server 371
11.5.1 Supported standards. 372
11.5.2 Service integration bus . 372
11.5.3 Universal Description, Discovery, and Integration registries. 373
11.5.4 Web services gateway . 374
11.5.5 Security . 375
11.5.6 Performance . 375

11.6 Planning checklist for Web services . 376

Chapter 12. Security . 379
12.1 What is new in V7.0. 380
12.2 Security in WebSphere Application Server . 381

12.2.1 Authentication . 385
12.2.2 Authorization . 392
12.2.3 Secure communications . 395
12.2.4 Application security . 396
12.2.5 Security domains. 399
12.2.6 Auditing . 401

12.3 Security configuration considerations . 402
12.4 Planning checklist for security . 405

Chapter 13. WebSphere Application Server Feature Packs 407
13.1 Available feature packs . 408
13.2 WebSphere Application Server Feature Pack for Web 2.0 408

13.2.1 Introduction to Web 2.0 . 408
13.2.2 Overview of the Web 2.0 feature pack . 409
13.2.3 Security considerations . 411
13.2.4 Resources . 411

13.3 WebSphere Application Server Feature Pack for Service Component
Architecture . 412

13.3.1 Introduction to SCA . 412
13.3.2 Overview of the SCA feature pack . 415
13.3.3 Other considerations . 417
13.3.4 Resources . 417

Chapter 14. WebSphere Application Server for z/OS. 419
14.1 WebSphere Application Server structure on z/OS 420

14.1.1 Value of WebSphere Application Server on z/OS. 420
14.1.2 Common concepts . 421
14.1.3 Cell component—daemon. 422
14.1.4 Structure of an application server . 422
14.1.5 Runtime processes . 425

x WebSphere Application Server V7.0: Concepts, Planning, and Design

14.1.6 Workload management for WebSphere Application Server for z/OS .
428

14.1.7 Benefits of z/OS . 431
14.2 What is new in V7.0. 432
14.3 WebSphere Application Server 64-bit on z/OS 433

14.3.1 Overview . 433
14.3.2 Planning considerations . 434
14.3.3 Administration considerations . 435

14.4 Load modules in the HFS . 436
14.4.1 Overview . 436
14.4.2 Installation considerations. 437
14.4.3 HFS structure . 438

14.5 XCF support for WebSphere HA manager . 438
14.5.1 XCF support overview and benefits . 438
14.5.2 WebSphere HA manager . 439
14.5.3 Default core group discovery and failure detection protocol 441
14.5.4 XCF—alternative protocol on z/OS . 442
14.5.5 Activating XCF support for HA manager . 444

14.6 z/OS Fast Response Cache Accelerator. 446
14.6.1 Overview and benefits. 446
14.6.2 Configuring FRCA . 447
14.6.3 Monitoring FRCA. 451
14.6.4 Resource Access Control Facility (RACF) integration 452

14.7 Thread Hang Recovery . 452
14.7.1 Overview . 452
14.7.2 Pre-WebSphere Application Server V7.0 technique 453
14.7.3 WebSphere Application Server V7.0 technique 453
14.7.4 New properties . 454
14.7.5 Display command . 456

14.8 Installing WebSphere Application Server for z/OS 456
14.8.1 Installation overview . 457
14.8.2 Installation considerations. 457
14.8.3 Function Modification Identifiers . 460
14.8.4 SMP/E installation . 460
14.8.5 Customization . 461
14.8.6 Execute customization jobs. 465

14.9 System programmer considerations . 466
14.9.1 Systems Management Facility enhancements 466
14.9.2 WebSphere Application Server settings . 467
14.9.3 Java settings . 469
14.9.4 Basic WLM classifications. 472
14.9.5 Address Space ID reuse . 473
14.9.6 Deprecated features WebSphere Application Server for z/OS . . . 474

 Contents xi

14.9.7 Java Command Language (JACL) stabilized 474
14.9.8 Application profiling . 475

14.10 Planning checklist . 475
14.10.1 Planning considerations . 476
14.10.2 Resources . 477

Chapter 15. Migration . 479
15.1 Infrastructure migration considerations . 480

15.1.1 Scripting migration . 482
15.1.2 HTTP server plug-in support . 482
15.1.3 Coexisting versions on one system. 482
15.1.4 Runtime inter operability . 483
15.1.5 Runtime migration tools . 483
15.1.6 Mixed cell support . 484
15.1.7 Network Deployment migration strategies 484

15.2 Application development migration considerations 486
15.3 System management migration considerations 487
15.4 Messaging migration considerations . 488
15.5 Web services migration considerations. 488
15.6 Security migration considerations . 489
15.7 WebSphere Application Server for z/OS migration considerations 490

15.7.1 Migration and coexistence . 490
15.7.2 General considerations . 490
15.7.3 Migration process overview. 491
15.7.4 z/OS Migration Management Tool . 491
15.7.5 Migration Management Tool script . 495
15.7.6 Migration jobs . 497
15.7.7 Migration considerations for 64-bit mode 499

Appendix A. Sample topology walkthrough . 501
Topology review . 502

Advantages . 504
Disadvantages . 504

Sample topology. 504
Characteristics . 505

Installation . 507
Installing the Load Balancer (server A) . 507
Installing HTTP Servers (servers B and C) . 508
Creating Deployment manager (server D) . 508
Creating Application servers (servers D and E) . 508
Creating Job manager (server E) . 510

Deploying applications . 510
Configuring security . 511

xii WebSphere Application Server V7.0: Concepts, Planning, and Design

Testing the topology . 513
Service . 513
Administration . 516
Summary. 520

Related publications . 521
IBM Redbooks . 521
Online resources . 522
How to get Redbooks . 522
Help from IBM . 522

 Contents xiii

xiv WebSphere Application Server V7.0: Concepts, Planning, and Design

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. xv

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
Build Forge®
CICS®
ClearCase MultiSite®
ClearCase®
ClearQuest®
DataPower®
DB2 Connect™
DB2®
developerWorks®
Domino®
HACMP™

i5/OS®
IBM®
Informix®
iSeries®
Language Environment®
Lotus®
OMEGAMON®
Parallel Sysplex®
POWER®
PR/SM™
Processor Resource/Systems

Manager™
RACF®

Rational Rose®
Rational®
Redbooks®
Redbooks (logo) ®
RequisitePro®
System i®
System z®
Tivoli®
VTAM®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

AMD, AMD Opteron, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro
Devices, Inc.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

Novell, SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States
and other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

EJB, Enterprise JavaBeans, J2EE, J2SE, Java, JavaBeans, Javadoc, JavaScript, JavaServer, JDBC, JDK,
JMX, JNI, JRE, JSP, JVM, Solaris, Sun, Sun Java, ZFS, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, ActiveX, Microsoft, SQL Server, Windows Server, Windows, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel Itanium, Intel Pentium, Intel, Itanium, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other
countries, or both.

xvi WebSphere Application Server V7: Concepts, Planning and Design

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

 Notices xvii

xviii WebSphere Application Server V7: Concepts, Planning and Design

Preface

This IBM® Redbooks® publication discusses the concepts, planning, and design
of WebSphere® Application Server V7.0 environments. This book is aimed at IT
architects and consultants who want more information for the planning and
designing of application-serving environments, ranging from small to large, and
complex implementations.

This IBM Redbooks publication addresses the packaging and the features
incorporated into WebSphere Application Server, covers the most common
implementation topologies, and addresses planning for specific tasks and
components that conform to the WebSphere Application Server environment.

The book includes planning for WebSphere Application Server V7.0 and
WebSphere Application Server Network Deployment V7.0 on distributed
platforms, and WebSphere Application Server for z/OS V7.0. It also covers
migration considerations for migrating from previous releases.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Raleigh Center.

Arden Agopyan is an IT Specialist for WebSphere Technical Sales working at
Software Group, IBM Turkey since 2006. He has worked with WebSphere
Application Server since V5.1 and is an expert on planning, design,
implementation, and problem determination of WebSphere Application Server
solutions. Before joining IBM he worked as a senior Java™ and .NET solutions
developer. He holds a Computer Engineer degree from Galatasaray University in
Istanbul (Turkey).

Hermann Huebler is an IT Specialist working for IBM Global Services Strategic
Outsourcing Service Delivery in Austria. He has 21 years of experience in IT and
is working for IBM since 1994. After working as an System i® specialist for
several years, he started focusing on WebSphere products on distributed
platforms in 2001. His main areas of expertise are implementation, problem
determination, high availability, and performance tuning of the WebSphere
Application Server product family. These products include WebSphere
Application Server, WebSphere Portal, WebSphere MQ, Edge Components.

© Copyright IBM Corp. 2009. All rights reserved. xix

Tze Puah is an Application Infrastructure Services Principal working for Coles
Group Ltd in Melbourne, Australia since 2005. His areas of expertise include
infrastructure architecture design, implementation, problem determination and
performance tuning on WebSphere and Tivoli® products. These products include
WebSphere Application Server, WebSphere Portal Server, WebSphere Process
Server, WebSphere Commerce Server, WebSphere MQ, WebSphere Message
Broker and Tivoli Access Manager. He has 14 years of experience in IT and
holds a master degree in Computer Science.

Thomas Schulze is a Senior IT Specialist working since 2003 in System z®
pre-sales support in Germany. His areas of expertise include WebSphere
Application Server running on the System z platform with a speciality on
performing Healthchecks and Performance Tuning. He has written extensively on
the z/OS® parts of this book. He has 10 years of experience in IBM and holds a
degree in Computer Science from the University of Cooperative Education in
Mannheim (Germany).

David Soler Vilageliu is an IT Architect working for IBM Global Services in
Barcelona, Spain. He has more than 19 years of experience playing different
technical roles in the IT field and he is working for IBM since 2000. His areas of
expertise include WebSphere Application Server, ITCAM for WebSphere, ITCAM
for Response Time, and Unix systems. He holds a degree in Computer Science
from the Universitat Politècnica de Catalunya (Spain).

Martin Keen is a Senior IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere products, and SOA. He also teaches IBM classes
worldwide about WebSphere, SOA, and ESB. Before joining the ITSO, Martin
worked in the EMEA WebSphere Lab Services team in Hursley, UK. Martin holds
a bachelor’s degree in Computer Studies from Southampton Institute of Higher
Education.

Figure 0-1 Team (left-to-right): Tze, Arden, David, Martin, Thomas, and Hermann

xx WebSphere Application Server V7.0: Concepts, Planning, and Design

Thanks to the following people for their contributions to this project:

Tom Alcott
IBM WorldWide BI Technical Sales, USA

Jeff Mierzejewski
WebSphere for z/OS Configuration Test, USA

Dustin Amrhein
WebSphere Web Services Development
IBM Software Group, Application and Integration Middleware Software, USA.

Aaron Shook
IBM WebSphere Application Server Proxy Development, USA.

Keys Botzum
IBM Software Services for WebSphere (ISSW), USA

Tiaoyu Wang
IBM Application and Integration Middleware Software Development, Canada

David Follis
IBM WebSphere Application Server for z/OS Runtime Architect, USA

Holger Wunderlich
IBM Field Technical Sales Support, z/OS WebSphere Solutions, Germany

Mark T. Schleusner
IBM WebSphere Serviceability Development, USA

Matthew Leming
IBM WebSphere Messaging Development, UK

Graham Wallis
IBM Senior Technical Staff Member, WebSphere Messaging, UK

Gerhard Poul
IBM Software Services for WebSphere, Austria

Brian Stelzer
IBM AIM Early Programs - WebSphere Application Server, USA

The team who created WebSphere Application Server V6.1: Planning and
Design, SG24-7305.

 Preface xxi

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxii WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to WebSphere
Application Server V7.0

IBM WebSphere is the leading software platform for On Demand Business and
service-oriented architecture (SOA) for your enterprise. Providing
comprehensive leadership, WebSphere is evolving to meet the demands of
companies faced with challenging business requirements. This includes the
following tasks:

� Increasing operational efficiencies
� Strengthening client loyalty
� Integrating disparate platforms and systems
� Responding with speed to any market opportunity or external threat
� Adapting existing business to change quickly

IBM WebSphere is designed to enable you to build business-critical enterprise
applications and solutions as well as combining them with innovative new
functions. WebSphere includes and supports a wide range of products that help
you develop and serve your business applications. They are designed to make it
easier for clients to build, deploy, and manage dynamic Web sites and other more
complex solutions productively and effectively.

This chapter introduces WebSphere Application Server V7.0 for distributed
platforms and z/OS, and highlights other IBM software products related with
WebSphere Application Server.

1

© Copyright IBM Corp. 2009. All rights reserved. 1

1.1 Java Platform Enterprise Edition (Java EE)

WebSphere is the IBM brand of software products designed to work together to
help deliver dynamic On Demand Business quickly. It provides solutions for
connecting people, systems, applications, and services with internal and external
resources. WebSphere is infrastructure software, or middleware, designed for
dynamic On Demand Business and for enabling SOA for your enterprise. It
delivers a proven, secure, robust, and reliable software portfolio that provides an
excellent return on investment.

The technology that powers WebSphere products is Java. Over the years, many
software vendors have collaborated on a set of server-side application
programming technologies that help build Web accessible, distributed,
platform-neutral applications. These technologies are collectively branded as the
Java Platform, Enterprise Edition (Java EE) platform. This contrasts with the Java
Platform, Standard Edition (Java SE) platform, with which most clients are
familiar. Java SE supported the development of client-side applications with rich
graphical user interfaces (GUIs). The Java EE platform, built on top of the Java
SE platform, provides specifications for developing multi-tier enterprise
applications with Java. It consists of application technologies for defining
business logic and accessing enterprise resources such as databases,
enterprise resource planning (ERP) systems, messaging systems, internal and
external business services, e-mail servers, and so forth.

The potential value of Java EE to clients is tremendous. This includes the
following benefits:

� An architecture-driven approach allowing application development helps
reduce maintenance costs and allows for construction of an information
technology (IT) infrastructure that can grow to accommodate new services.

� Application development standards, tools and predefined rules improve
productivity and accelerates and shortens development cycles.

� Packaging, deployment, and management standards for your enterprise
applications facilitate systems and operations management.

Java Platform name changes: Java EE and Java SE were formerly named
Java 2 Platform, Enterprise Edition (J2EE™) and Java 2 Platform, Standard
Edition (J2SE™) respectively.
After this name change, J2EE 1.5 is renamed as Java EE 5. J2SE 6 is
renamed as Java SE 6. This book will cover these standards with their new
names.

2 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Industry standard technologies enable clients to choose among platforms,
development tools, and middleware to power their applications.

� Platform independence gives flexibility to create an application once and to
run it on multiple platforms. This provides true portability to enterprise
applications.

� Embedded support for Internet and Web technologies allows for applications
that can bring services and content to a wider range of customers, suppliers,
and others, without creating the need for proprietary integration.

Java EE 5, the latest release of the Java EE platform, represents a significant
evolution in the Java enterprise programming model. It improves the application
developer experience and productivity with following new features:

� Latest specifications

– Enterprise JavaBeans™ (EJB™) 3.0
– JAX-WS 2.0
– JSP™ 2.1
– Servlet 2.5
– JSF 1.2

� Java Development Kit (JDK™) 6.0

� Usage of progressive disclosure

� Annotations and injection support to reduce complexity

� EJB development as Plain Old Java Objects (POJOs)

� Java Persistence API (JPA) to allow creation of simpler entities using
annotated POJO model

Another exciting opportunity for IT is Web services. Web services allow for the
definition of functions or services within an enterprise that can be accessed
using industry standard protocols (such as HTTP and XML) already in use today.
This allows for easy integration of both intra- and inter-business applications that
can lead to increased productivity, expense reduction, and quicker time to
market. Web services are also the key elements of SOA, which provides reuse of
existing service components and more flexibility to enable businesses to address
changing opportunities.

 Chapter 1. Introduction to WebSphere Application Server V7.0 3

1.2 WebSphere Application Server overview

WebSphere Application Server is the IBM runtime environment for Java-based
applications. This section gives an overview of the options and functionalities that
WebSphere Application Server V7.0 offers:

� Application server purpose
� Evolving Java application development standards
� Enhanced management
� Broader integration
� Advanced tooling and extensions

1.2.1 Application server purpose

An application server provides the infrastructure for executing applications that
run your business. It insulates the infrastructure from hardware, operating
system, and the network (Figure 1-1). An application server also serves as a
platform to develop and deploy your Web services and Enterprise JavaBeans
(EJBs), and as a transaction and messaging engine while delivering business
logic to end-users on a variety of client devices.

Figure 1-1 Basic presentation of an application server and its environment

The application server acts as middleware between back-end systems and
clients. It provides a programming model, an infrastructure framework, and a set
of standards for a consistent designed link between them.

WebSphere Application Server provides the environment to run your solutions
and to integrate them with every platform and system as business application
services conforming to the SOA reference architecture (Figure 1-2 on page 5).

Application Server

Application

Hardware, Operating System, Database,
Network, Storage …

4 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 1-2 Position of Business Application Services in SOA reference architecture

WebSphere Application Server is a key SOA building block. From a SOA
perspective, with WebSphere Application Server you can perform the following
functions:

� Build and deploy reusable application services quickly and easily
� Run services in a secure, scalable, highly available environment
� Connect software assets and extend their reach
� Manage applications effortlessly
� Grow as your needs evolve, reusing core skills and assets

WebSphere Application Server is available on a wide range of platforms and in
multiple packages to meet specific business needs. By providing the application
server that is required to run specific applications, it also serves as the base for
other WebSphere products, such as IBM WebSphere Enterprise Service Bus,
WebSphere Process Server, WebSphere Portal, and many other IBM software
products.

As business needs evolve, new technology standards become available. The
reverse is also true. Since 1998, WebSphere has grown and adapted itself to
new technologies and to new standards to provide an innovative and
cutting-edge environment that allows you to design fully-integrated solutions and
to run your business applications.

Development
Services

Management
Services

Infrastructure Services

Interaction Services
Enables collaboration

between people, processes &
information

Information Services
Manages diverse data

and content in a
unified manner

Partner Services
Connect with trading

partners

Business Application
Services

Build on a robust,
services environment

Access Services
Facilitate interactions with
existing information and

application assets

Integrated
environment
for design

and creation
of solution

assets

Manage and
ecure services,
applications &

resources

Optimizes throughput, availability and utilization

A
pp

s
&

In

fo
 A

ss
et

s

Business Services
Supports enterprise business process and
goals through businesses functional service

Enterprise Service Bus

Process Services
Orchestrate and automate

business processes

Application
Servers

 Chapter 1. Introduction to WebSphere Application Server V7.0 5

1.2.2 Evolving Java application development standards

WebSphere Application Server V7.0 provides the runtime environment for
applications that conform to the J2EE 1.2, 1.3, 1.4, and Java EE 5 (formerly
J2EE 1.5) specifications.

Java SE V6 support adds the ability to invoke the Java compiler from within the
Java Virtual Machine (JVM™) and includes scripts with the ability to access APIs
within the JVM.

For universal data access and persistence, WebSphere Application Server
supports the following specifications:

� Java DataBase Connectivity (JDBC™) API 4.0

Using the JDBC API, you can connect to any type of data sources.

� Java Persistence API (JPA)

JPA delivers simplified programming models and a standard persistence API
for building reusable persistent objects.

� Service Data Objects (SDO)

With SDO, application programmers can uniformly access and manipulate
data from heterogeneous data sources as collections of tree-structured or
graph-structured objects. WebSphere Application Server V7.0 extends the
application server to support the following tasks:

� Java Specification Requests (JSR) 286 (Portlet 2.0) compliant portlets

� Session Initiation Protocol (SIP) applications conforming to the JSR 116
specification

� Java Servlet 2.5 (JSR 154) and JavaServer™ Pages (JSR 245) specifications
for Web applications

WebSphere Application Server’s enhanced support for application development
standards delivers maximum flexibility and significantly improves developer
productivity.

Feature Pack for EJB 3.0: The Feature Pack for EJB 3.0 available for
WebSphere Application Server V6.1 is embedded into WebSphere Application
Server V7.0.

If you have used EJB 3.0 Feature Pack functionality in your application in a
WebSphere Application Server V6.1 environment before, there is no need to
install additional WebSphere Application Server packages to use these
applications with V7.0.

6 WebSphere Application Server V7.0: Concepts, Planning, and Design

1.2.3 Enhanced management

WebSphere Application Server has several packaging options to meet your
demands. With these packages you can create basic scenarios with single
application server environments. Furthermore, you can extend your environment
to include multiple application servers that are administered from a single point of
control, the deployment manager. These application servers can be clustered to
provide scalable and high available environments.

New management features
WebSphere Application Server V7.0 adds the following new management
features to its packages:

� Flexible management components

These components allow you to build advanced and large-scale topologies
while reducing management and maintenance complexity.

– Administrative agent

Manage multiple stand-alone servers from a central point.

– Job manager

Transfer management jobs like deploying, starting and stopping
applications, and distributing files. You can include stand-alone and
Network Deployment servers in such topologies.

� Centralized Installation Manager

This component provides the capability to perform centralized installations
from the deployment manager to remote endpoints.

� Business Level Application definition

The new notion of defining applications, this allows you to group and manage
Java EE and other related artifacts under a single application definition.

� Improved Console Command Assistant

This component provides easier security configuration and database
connectivity, wizards, and a stand-alone thin administration client that enable
efficient management of the deployment environment.

� Enhanced administrative scripting for wsadmin

An extended sample script library accelerates automation implementations. It
also includes enhanced AdminTask commands.

� Consolidated administration feature for WebSphere DataPower®

This component allows you to manage and integrate your WebSphere
DataPower appliances into your environment.

 Chapter 1. Introduction to WebSphere Application Server V7.0 7

Runtime provisioning
WebSphere Application Server’s runtime provisioning mechanism allows the
application server runtime to select only the needed functions for memory and
space dynamically while running applications. Starting only the necessary
components for an application reduces the server footprint and startup time.

Security management and auditing
WebSphere Application Server V7.0 adds value to your installations by providing
the following security management and auditing improvements:

� A broader implementation of Kerberos and Single Sign-On features delivering
improved interoperability with other applications and environments.

� Ability to create multiple security domains within a single WebSphere
Application Server cell. Each security domain can have its own user
population (and underlying repository). Additionally, the application domain
can be separated from the administrative domain.

� Security auditing records the generation of WebSphere Application Server
administrative actions. These actions can be security configuration changes,
key and certificate management, access control policy changes, bus and
other system resources management, and so on. This feature enables you to
hold administrative users accountable for configuration and run time changes.

� The DMZ Secure Proxy, a proxy server hardened for DeMilitarized Zone
(DMZ) topologies, allows you to have a more secure out-of-box proxy
implementation outside the firewall.

� Fine-grained administration security can now be enforced through the
administration console. You can restrict access based on the administrators'
role at the cell, node, cluster, or application level, offering fine-grained control
over administrator scope. This capability is valuable in large-cell
implementations where multiple administrators are responsible for subsets of
the application portfolio running on the cell.

1.2.4 Broader integration

WebSphere Application Server’s expanded integration support simplifies
interoperability in mixed environments.

Web services
WebSphere Application Server V7.0 includes support for the following Web
services and Web services security standards:

� Web Services Interoperability Organization (WS-I) Basic Profile 1.2 and 2.0
� WS-I Reliable Secure Profile

8 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Java API for XML Web Services (JAX-WS)
� SOAP 1.2
� SOAP Message Transmission Optimization Mechanism (MTOM)
� XML-binary Optimized Packaging (XOP)
� WS-ReliableMessaging
� WS-Trust
� WS-SecureConversation
� WS-Policy

For centrally defining various quality-of-service polices you might want to apply to
Web services that are already deployed, WebSphere Application Server V7.0
provides Web service policy sets. There are two types of policy sets:

� Application policy sets

These sets are used for business-related assertions, such as business operations
that are defined in the Web Service Description Language (WSDL) file.

� System policy sets

These sets are used for non-business-related system messages, such as
messages that are defined in specifications that apply quality of service
policies. Examples include security token (RST) messages that are defined in
WS-Trust, or the creation of sequence messages that are defined in
WS-Reliable Messaging metadata.

Rather than defining individual policies and applying them on a Web service
base, policy sets can be applied once to all Web service applications to which
they are applicable, insuring a uniform quality of service for a given type of Web
service. Related to this, WebSphere Service Registry and Repository, an
additional WebSphere Software product, can discover WebSphere Application
Server V7.0 JAX-WS policy sets and existing associations, and can represent
those as policy attachments.

Web Services Feature Pack: The Feature Pack for Web Services available
for WebSphere Application Server V6.1 is embedded into WebSphere
Application Server V7.0.

If you have used Web Services Feature Pack functionality in your application
in a WebSphere Application Server V6.1 environment before, there is no need
to install additional WebSphere Application Server packages to use these
applications with V7.0.

 Chapter 1. Introduction to WebSphere Application Server V7.0 9

WebSphere Application Server supports the Web Services for Remote Portlets
(WSRP) standard. Using this standard, portals can provide portlets, applications,
and content as WSRP services, and other portals can integrate the WSRP
services as remote portlets for their users. With WebSphere Application Server
you can provide WSRP services. A portlet container, like WebSphere Portal, can
consume these services as remote portlets.

Messaging, connectivity, and transaction management
WebSphere Application Server supports asynchronous messaging through the
use of a Java Message Service (JMS) provider and its related messaging
system. WebSphere Application Server includes a fully integrated JMS 1.1
provider called the default messaging provider. The default messaging provider
complements and extends WebSphere MQ and the application server. It is
suitable for messaging among application servers and for providing messaging
capability between WebSphere Application Server and an existing WebSphere
MQ backbone.

WebSphere Application Server also supports Java EE Connector Architecture
(JCA) 1.5 resource adapters, which provides connectivity between application
servers and Enterprise Information Systems (EIS). WebSphere Application
Server V7.0 comes with Java Transaction API (JTA) 1.1 specification support,
which provides standard Java interfaces for transaction management.

Authentication and authorization
WebSphere Application Server provides authentication and authorization
capabilities to secure administrative functions and applications. Your choice of
user registries include an operating system user registry, like the Resource
Access Control Facility (RACF®) on z/OS, an LDAP registry (for example, IBM
Tivoli Directory Server), custom registries, file-based registries, or federated
repositories. In addition to the default authentication and authorization
capabilities, WebSphere Application Server has support for Java Authorization
Contract for Containers (JACC) 1.1. This gives you the option of using an
external JACC-compliant authorization provider for application security. The IBM
Tivoli Access Manager client embedded in WebSphere Application Server is
JACC-compliant and can be used to secure your WebSphere Application
Server-managed resources.

Application client
With WebSphere Application Server you can run client applications that
communicate with a WebSphere Application Server by installing the application
client component on the system on which the client applications run. It provides a
stand-alone client run-time environment for your client applications and enables
your client to run applications in a Java EE environment that is compatible with
EJB.

10 WebSphere Application Server V7.0: Concepts, Planning, and Design

The Application Client for WebSphere Application Server Version 7.0 consists of
the following client components:

� Java EE application client application

This component uses services provided by the Java EE Client Container.

� Thin application client application

This component does not use services provided by the Java EE Client
Container and includes a JVM API.

� Applet application client application

This component allows users to access enterprise beans in the WebSphere
Application Server through a Java applet in a HTML document.

� ActiveX® to EJB Bridge application client application

This component uses the Java Native Interface (JNI™) architecture to
programmatically access the JVM API (Windows® only).

Web server support
WebSphere Application Server can work with a Web server (like the IBM HTTP
Server included in WebSphere Application Server packages) to route requests
from browsers to the applications that run in WebSphere Application Server. A
WebSphere Web Server Plug-in is provided for installation with supported Web
servers. This plug-in directs requests to the appropriate application server and
performs workload balancing and fail-over among servers in a cluster.

1.2.5 Advanced tooling and extensions

This section discusses WebSphere Application Server tooling and extension
enhancements.

Application development and deployment tools
WebSphere Application Server includes the Rational® Application Developer
Assembly and Deploy V7.5 software platform, which is a set of tools based on
Eclipse that allows you to develop and deploy Java EE 5 applications. It includes
scripting tools to be used with WebSphere Application Server. WebSphere
Application Server is also compatible with Rational Application Developer for
WebSphere Software V7.5, which is available separately and fully exploits
capabilities within WebSphere Application Server V7.0 as a Java EE 5
application development and deployment tool.

Note: Rational Application Developer Assembly and Deploy V7.5, Rational
Application Developer V7.5 for WebSphere Software, and their differences are
explained in 1.5, “Related products” on page 23.

 Chapter 1. Introduction to WebSphere Application Server V7.0 11

Installation Factory
WebSphere Application Server includes the Installation Factory tool for creating
customized install packages (CIPs). CIPs are used for packaging installations,
updates, fixes, and applications to create custom and all-in-one installation
solutions. Installation Factory is convenient for ISVs that want to create
customized and bundled application solutions with WebSphere Application
Server, as well as for organizations who prefer to have ready-to-deploy
installation packages containing all the pre-installed artifacts. Consider using
Installation Factory to create one or more CIPs and use those CIPs to deploy or
update WebSphere throughout your organization.

Update Installer
WebSphere Application Server ships the Update Installer (UPDI) for installing
maintenance packages, fix packs, interim fixes, and so on.

WebSphere Application Server Feature Packs
WebSphere Application Server Feature Packs simplify the adoption of new
technology standards and make them available before the release of a new
version of WebSphere Application Server. This strategy started with WebSphere
Application Server V6.1 and continued with WebSphere Application Server V7.0.
Unlike in version 6.1, Feature Pack for EJB 3.0 and Feature Pack for Web
Services are embedded to WebSphere Application Server V7.0. At the time of
writing, there are two feature packs available for WebSphere Application Server
V7.0, as shown in Figure 1-3 on page 13:

� Feature Pack for Web 2.0

This feature pack enables you to build and run SOA services in a Web 2.0
application by offering Ajax and other Web 2.0-specific technical supports on
the server, rather than the front-end support only.

� Feature Pack for Service Component Architecture (SCA)

This feature pack provides an implementation of the Open SCA specifications
and a powerful programming model for constructing applications based on
SOA.

About Open SCA specifications: The Open SCA specifications were
designed by key technology vendors, including IBM, to address the service
composition and assembly development needs of organizations adopting
SOA.

12 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 1-3 Feature Pack structure for WebSphere Application Server V7.0

1.3 Packaging

Because different e-business application scenarios require different levels of
application server capabilities, WebSphere Application Server is available in
multiple packaging options. Although they share a common foundation, each
provides unique benefits to meet the needs of applications and the infrastructure
that supports them. At least one WebSphere Application Server product fulfills
the requirements of any particular project and its supporting infrastructure. As
your business grows, the WebSphere Application Server family provides a
migration path to more complex configurations. The following packages are
available:

� WebSphere Application Server - Express V7.0
� WebSphere Application Server V7.0
� WebSphere Application Server for Developers V7.0
� WebSphere Application Server Network Deployment V7.0
� WebSphere Application Server for z/OS V7.0

Web 2.0
Feature Pack

SCA
Feature Pack

WebSphere Application Server V7.0

Web
Services EJB 3.0

 Chapter 1. Introduction to WebSphere Application Server V7.0 13

Figure 1-4 summarizes the main components included in each WebSphere
Application Server package.

Figure 1-4 Packaging structure of WebSphere Application Server V7.0

1.3.1 WebSphere Application Server - Express V7.0

The Express package is geared to those who need to get started quickly with a
strong and affordable application server based on standards. It is specifically
targeted at medium-sized businesses or departments of a large corporation, and
is focused on providing ease of use and ease of application development. It
contains full Java EE 5, EJB 3.0, and Web services support but is limited to a
32-bit single-server environment and to a maximum of 240 Processor Value
Units (PVUs) per server for licensing purposes.

W
eb

Sp
he

re
 A

pp
lic

at
io

n
Se

rv
er

N

et
w

or
k

D
ep

lo
ym

en
t

(c
lu

st
er

ed
, m

ul
ti-

m
ac

hi
ne

)

W
eb

Sp
he

re
 A

pp
lic

at
io

n
Se

rv
er Web-based administration, Web services

Deployment manager, node agent, clustering

Work manager, application profiles

Java SDK 6

EJB container, messaging

Web, SIP, Portlet containers

High availability manager, edge components

Job manager

Administrative agent

Proxy server

W
eb

Sp
he

re
 A

pp
lic

at
io

n
Se

rv
er

fo
r z

/O
S

Workload Management

Sysplex Integration

Mainframe Qualities of Service

14 WebSphere Application Server V7.0: Concepts, Planning, and Design

It also includes feature pack support. This package does not provide clustering
and high availability features.

For more information about WebSphere Application Server - Express V7.0, see
the following Web page:

http://www.ibm.com/software/webservers/appserv/express/

1.3.2 WebSphere Application Server V7.0

The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Although the
WebSphere Application Server package is functionally equivalent to Express
(single-server environment), this package differs in packaging and licensing. It is
available for both 32-bit and 64-bit platforms. This package is ideal for lightweight
application solutions where cost and simplicity are key. This package is also
referred to as the WebSphere Application Server V7.0 Base package.

For more information about WebSphere Application Server V7.0, see the
following Web page:

http://www.ibm.com/software/webservers/appserv/was/

1.3.3 WebSphere Application Server for Developers V7.0

The WebSphere Application Server for Developers package is functionally
equivalent to the WebSphere Application Server package but it is licensed for
development use only.

WebSphere Application Server for Developers is an easy-to-use development
environment to build and test applications for your SOA.

1.3.4 WebSphere Application Server Network Deployment V7.0

WebSphere Application Server Network Deployment (ND) provides the
capabilities to develop more enhanced server infrastructures. It extends the
WebSphere Application Server base package and includes the following
features:

� Clustering capabilities
� Edge components
� Dynamic scalability
� High availability
� Advanced management features for distributed configurations

 Chapter 1. Introduction to WebSphere Application Server V7.0 15

http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/webservers/appserv/express/

These features become more important at larger enterprises, where applications
tend to service a larger client base, and more elaborate performance and high
availability requirements are in place.

WebSphere Application Server Network Deployment Edge Components provide
high performance and high availability features. For example, the Load Balancer
(a software load balancer) provides horizontal scalability by dispatching HTTP
requests among several Web server or application server nodes supporting
various dispatching options and algorithms to assure high availability in high
volume environments. The usage of Edge Component Load Balancer can reduce
Web server congestion, increase content availability, and provide scaling ability
for the Web server.

WebSphere Application Server Network Deployment also includes a dynamic
cache service, which improves performance by caching the output of servlets,
commands, Web services, and JSP files. This cache can be replicated to the
other servers. The state of dynamic cache can be monitored with the cache
monitor application. For more information about WebSphere Application Server
Network Deployment V7.0, see the following Web page:

http://www.ibm.com/software/webservers/appserv/was/network/

1.3.5 WebSphere Application Server for z/OS V7.0

IBM WebSphere Application Server for z/OS is a full-function version of
WebSphere Application Server Network Deployment. While it offers all the
options and functions common to WebSphere Application Server V7.0 on
distributed platforms, it enhances the product in a variety of ways:

� Defines Service Level Agreements (SLA) on a transaction base (response
time per transaction).

� Protects your production with Workload Management, in times of
unpretendable peaks.

� Uses z/OS functionality for billing based on used resources or transactions.

� Uses one central security repository, including Java role-based security.

� Builds a cluster inside of a single application server (multi-servant).

� Profits from near linear hardware and software scalability.

� Profits from System z cluster (Parallel Sysplex®) and up to 99.999%
availability.

For more information about WebSphere Application Server for z/OS V7.0, see
Chapter 14, “WebSphere Application Server for z/OS” on page 419 or visit the
following Web page:

http://www.ibm.com/software/webservers/appserv/zos_os390/

16 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/webservers/appserv/was/network/
http://www.ibm.com/software/webservers/appserv/zos_os390

1.3.6 Packaging summary

Table 1-1 details the WebSphere Application Server features.

Table 1-1 WebSphere Application Server V7.0 Packaging

Features Express Base Network
Deployment

 z/OS

Workload management within a server:
integrated with z/OS Workload Manager (for
SLA’s on transactional level and reporting for
chargeback)

No No No Yes

Enterprise Java Beans 3.0 Yes Yes Yes Yes

Full Java EE 5 support Yes Yes Yes Yes

Advanced security Yes Yes Yes Yes

Broad operating-system support and database
connectivity

Yes Yes Yes Yes

Advanced clustering No No Yes Yes

Integration with IBM Rational Application
Developer Assembly and Deploy

Yes Yes Yes Yes

Job manager and deployment manager No No Yes Yes

Rapid Java Development and Deployment Kit
(JDK) 6.0

Yes Yes Yes Yes

Runtime provisioning Yes Yes Yes Yes

Large-scale transaction support No No Yes Yes

Dynamic caching No No Yes Yes

Reporting and charge back:
Granular reporting on resource consumption

No No No Yes

WebSphere Application Server Feature Packs Yes Yes Yes Yes

Administrative agent Yes Yes Yes Yes

Edge components No No Yes Yes

Note: Not all features are available on all platforms. See the system
requirements Web page for each WebSphere Application Server package for
more information.

 Chapter 1. Introduction to WebSphere Application Server V7.0 17

1.4 Supported hardware, platforms, and software

This section details the hardware, platforms, and software versions that
WebSphere Application Server V7.0 supports at the time this book was written.

For the most up-to-date operating system levels and hardware requirements,
refer to the WebSphere Application Server system requirements, at the following
Web page:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.1 Hardware

Supported hardware for WebSphere Application Server V7.0 include the
following:

� IBM POWER® family of processors
� PA-RISC processor
� Intel® Itanium® 2 processor
� Intel Pentium® processor at 500 MHz or faster
� Intel EM64T or AMD™ Opteron™
� IBM System z processors
� IBM System i (iSeries®)
� SPARC workstations

18 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.2 Operating systems

Table 1-2 shows supported operating systems and their versions for WebSphere
Application Server V7.0

Table 1-2 Supported operating systems and versions

Operating systems Versions

Microsoft® Windows Supported with 32-bit WebSphere Application Server:
� Microsoft Vista Business
� Microsoft Vista Enterprise
� Microsoft Windows Server® 2003 with SP2
� Microsoft Windows Server 2003 R2
� Microsoft Windows Server 2008, Datacenter with SP1
� Microsoft Windows Server 2008, Enterprise with SP1
� Microsoft Windows Server 2008, Standard with SP1
� Microsoft Windows XP Professional with SP2
Supported with 64-bit WebSphere Application Server:
� Microsoft Windows Server 2003 x64 R2
� Microsoft Windows Server 2008 Enterprise x64 with SP1
� Microsoft Windows Server 2008 Datacenter x64 with SP1
� Microsoft Windows Server 2008 Standard x64 with SP1

IBM AIX® Supported with 32-bit and 64-bit WebSphere Application Server:
� AIX 6.1 with Maintenance Package 6100-00-04
� AIX 5L™ 5.3 with Service Pack 5300-07-01

Sun™ Solaris™ on Sparc Supported with 32-bit WebSphere Application Server:
� Sun Solaris Version 9 with Patch Cluster dated 1/03/08 or later
� Sun Solaris Version 10 with Patch Cluster dated 1/07/08 or later
Supported with 64-bit WebSphere Application Server:
� Sun Solaris Version 10 with Patch Cluster dated 1/07/08 or later

Sun Solaris on x64 Supported with 64-bit WebSphere Application Server:
� Sun Solaris Version 10 with Patch Cluster dated 1/07/08 or later

HP-UX on PA-RISC Supported with 32-bit WebSphere Application Server:
� HP-UX 11iv2 with Patch Bundle dated Dec 2007
� HP-UX 11iv3 with Patch Bundle dated Sep 2007

HP-UX on Itanium Supported with 64-bit WebSphere Application Server:
� HP-UX 11iv2 with Patch Bundle dated Dec 2007
� HP-UX 11iv3 with Patch Bundle dated Sep 2007

 Chapter 1. Introduction to WebSphere Application Server V7.0 19

Linux® on x86 Supported with 32-bit WebSphere Application Server:
� Red Hat Enterprise Linux AS, Version 4 with Update 6
� Red Hat Enterprise Linux ES, Version 4 with Update 6
� Red Hat Enterprise Linux WS, Version 4 with Update 6
� Red Hat Enterprise Linux, Version 5 with Update 1
� SUSE® Linux Enterprise Server, Version 9 with SP4
� SUSE Linux Enterprise Server, Version 10 with Update 1

Linux on x86-64 and POWER Supported with 32-bit and 64-bit WebSphere Application Server:
� Red Hat Enterprise Linux, Version 4 with Update 6
� Red Hat Enterprise Linux, Version 5 with Update 1
� SUSE Linux Enterprise Server, Version 9 with SP4
� SUSE Linux Enterprise Server, Version 10 with Update 1

Linux on System z and zSeries® Supported with 31-bit and 64-bit WebSphere Application Server:
� Red Hat Enterprise Linux AS, Version 4 with Update 6
� Red Hat Enterprise Linux, Version 5 with Update 1
� SUSE Linux Enterprise Server, Version 9 with SP4
� SUSE Linux Enterprise Server, Version 10 with Update 1

IBM z/OS
(Supported for WebSphere
Application Server V7.0 for z/OS)

Supported with 31-bit and 64-bit WebSphere Application Server:
� z/OS V1.7
� z/OS V1.8
� z/OS V1.9
� z/OS.e
� z/OS.e V1.7
� z/OS.e V1.8

IBM i � IBM i V5R4
� IBM i V6R1

Operating systems Versions

About support limitations: To see if there is a 32-bit or 64-bit support
limitation for your operating system, refer to the WebSphere Application
Server system requirements Web page:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

20 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.3 Web servers

Supported Web servers for WebSphere Application Server V7.0 are as follows:

� Apache HTTP Server 2.0.58
� Apache HTTP Server 2.2
� IBM HTTP Server for WebSphere Application Server V6.1
� IBM HTTP Server for WebSphere Application Server V7.0
� Internet Information Services (IIS) 6.0
� Internet Information Services (IIS) 7.0
� Lotus® Domino® Enterprise Server 7.0.2
� Lotus Domino Enterprise Server 8.0
� Sun Java™ System Web Server 6.1 SP8
� Sun Java System Web Server 7.0 Update 1

1.4.4 Database servers

Table 1-3 shows the database servers that WebSphere Application Server V7.0
supports.

Table 1-3 Supported database servers and versions

Note: Not every Web server is supported on all platforms. For more
information refer to the WebSphere Application Server system requirements
Web page:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Databases Versions

IBM DB2® a DB2 for iSeries 5.3, 5.4, or 6.1
DB2 for z/OS V8, V9 or V9.1
DB2 Connect™
DB2 Enterprise Server Edition V8.1, V8.2, V9.0 and V9.5
DB2 Express V8.1, V8.2, V9.0 and V9.5
DB2 Workgroup Server Edition V8.1, V8.2, V9.0 and V9.5

Cloudscape Cloudscape 10.3 (Derby)

Oracle® Oracle 10g Standard/Enterprise Release 1 - 10.1.0.5
Oracle 10g Standard/Enterprise Release 2 - 10.2.0.3
Oracle 11g Standard/Enterprise Release 1 - 11.1.0.6

Sybase Sybase Adaptive Server Enterprise 12.5.4
Sybase Adaptive Server Enterprise 15.0.2

Microsoft SQL Server® Microsoft SQL Server Enterprise 2005 SP2

 Chapter 1. Introduction to WebSphere Application Server V7.0 21

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.5 Directory servers

Supported directory servers for WebSphere Application Server V7.0 are as
follows:

� LDAP Servers using Stand Alone LDAP User Registry Configuration and
Federated Repository Configuration:

– IBM Tivoli Directory Server 6.0
– IBM Tivoli Directory Server 6.1
– IBM z/OS Integrated Security Services 1.8
– IBM z/OS Integrated Security Services 1.9
– IBM z/OS.e Security Server 1.8
– IBM z/OS.e Security Server 1.9
– Lotus Domino Enterprise Server 7.0
– Lotus Domino Enterprise Server 8.0
– Novell® eDirectory 8.7.3 SP9
– Novell eDirectory 8.8.1
– Sun Java Directory Server 6.0
– Sun Java Directory Server 6.1
– Windows Active Directory® 2003
– Windows Active Directory 2008

� LDAP Servers using only Federated Repository Configuration:

– Windows Active Directory Applications Mode 1.0 SP1
– OpenLDAP 2.4.7

Informix® Dynamic Server 10.00xC6
Dynamic Server 11.10xC1
Dynamic Server 11.5xC1

IMS IMS V9
IMS V10

WebSphere
Information Integrator

WebSphere Information Integrator 8.2 FP8
WebSphere Information Integrator 9.1 FP3
WebSphere Information Integrator 9.5 FP2

a. For a detailed list of supported fixpack levels and editions for DB2, see the
support document #7013265 at the following Web page:
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27013265

Databases Versions

22 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/support/dobview.wss?rs=180&uid=swg27013265

1.5 Related products

IBM offers complementary software products surrounding WebSphere
Application Server that provide simplification for developers, enhanced
management features, and a high performance runtime environment. Some of
these are introduced in this chapter:

� WebSphere Application Server Community Edition
� WebSphere Extended Deployment
� Rational Application Developer Assembly and Deploy V7.5
� Rational Application Developer for WebSphere Software V7.5
� Project Zero and WebSphere sMash

1.5.1 WebSphere Application Server Community Edition

WebSphere Application Server Community Edition is a lightweight single-server
Java EE application server built on Apache Geronimo, the open source
application server project of the Apache Software Foundation. This edition of
WebSphere Application Server is completely based on open source code and
available to download free of charge.

WebSphere Application Server Community Edition is a powerful alternative to
open source application servers. It has the following features:

� Brings together best-of-breed technologies across the broader open source
community to support Java EE 5 specifications such as the following:

– Apache MyFaces
– Apache OpenEJB
– Apache Open JPA
– Apache ActiveMQ
– TranQL

� Supports the Java Developer Kit (JDK) from IBM and Sun.

� Can be used as a runtime for Eclipse with its plug-in.

� Includes an open source Apache Derby database which is a small-footprint
database server with full transactional capability.

� Contains an easy-to-use administrative console application.

Note: WebSphere Application Server Community Edition’s codebase is
different from the WebSphere Application Server. It is not a different
packaging option for WebSphere Application Server. It is a separate product.

 Chapter 1. Introduction to WebSphere Application Server V7.0 23

� Product binaries and source code are available as no-charge downloads from
the IBM Web site.

� Optional fee-based support for WebSphere Application Server Community
Edition from IBM Technical support teams.

� Can be included in advanced topologies and managed with WebSphere
Extended Deployment.

For more information and the option to download WebSphere Application Server
Community Edition, see the following Web page:

http://www.ibm.com/software/webservers/appserv/community/

1.5.2 WebSphere Extended Deployment

WebSphere Extended Deployment (XD) is a suite of application infrastructure
products that can be installed and used separately or as a package:

� WebSphere Virtual Enterprise

This product, formerly Operations Optimization, provides application
infrastructure virtualization capabilities. Virtualization can lower costs required
to create, manage, and run enterprise applications by using existing hardware
resources. This package also contains additional management features like
application edition and dynamic application management, management of
heterogeneous application servers, and service policy management, which
provide an enhanced management environment for existing infrastructure.

� WebSphere eXtreme Scale

This product, formerly WebSphere Extended Deployment Data Grid, allows
business applications to process large volumes of transactions with efficiency
and linear scalability. WebSphere eXtreme Scale operates as an in-memory
data grid that dynamically caches, partitions, replicates, and manages
application data and business logic across multiple servers. It provides
transactional integrity and transparent failover to ensure high availability, high
reliability, and constant response times. WebSphere eXtreme Scale is a
software technology for conducting extreme transaction processing.

� Compute Grid

This product enables the scheduling, execution, and monitoring of batch type
jobs and compute-intensive tasks with service policy and workload
management.

This composition of packages delivers enhanced qualities of service with
features for optimizing IT resources and can be used in collaboration with
WebSphere Application Server packages.

24 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/webservers/appserv/community

Some of the benefits of WebSphere Extended Deployment are as follows:

� Provides virtualization capabilities that can dynamically match available
resources to changing workload demands. It enables more efficient resource
use as well as improved application performance and scalability.

� Features virtualization, and workload and health management for the
following application environments:

– PHP
– BEA WebLogic
– JBoss
– Apache Tomcat
– WebSphere Application Server Community Edition

� Offers enhanced capabilities in job scheduling, monitoring, and management
for batch-type workloads.

� Delivers customizable health policies and actions to help enhance
manageability.

� Supports innovative and highly scalable data fabrics to accelerate
data-intensive application performance.

For more information about WebSphere Extended Deployment, see the following
Web page:

http://www.ibm.com/software/webservers/appserv/extend/

1.5.3 Rational Application Developer Assembly and Deploy V7.5

In WebSphere Application Server V7.0, Rational Application Developer
Assembly and Deploy V7.5 replaces the Application Server Toolkit (AST) function
provided with WebSphere Application Server V6.1. This Eclipse-based
Integrated Development Environment (IDE) expands on the functions provided in
the Application Server Toolkit with Java EE 5 and is a subset of Rational
Application Developer for WebSphere Software V7.5. Rational Application
Developer Assembly and Deploy is fully licensed and supported with the
WebSphere Application Server license.

 Chapter 1. Introduction to WebSphere Application Server V7.0 25

http://www.ibm.com/software/webservers/appserv/extend

Some of the features of Rational Application Developer Assembly and Deploy are
as follows:

� Profile management tools for WebSphere Application Server
� Jython tools for administration script development and Jacl to Jython

conversion tools
� J2EE 1.4 (same level as Application Server Toolkit V6.1)
� Java EE 5 XML-form based DD editors
� Java EE 5 application support
� Supports only WebSphere Application Server V7.0 as runtime
� Contains WebSphere Application Server debug extensions
� Enhanced EAR support
� Application deployment support
� SIP development tools
� Visual editing tools
� Adapters support for simplified and enhanced integration

1.5.4 Rational Application Developer for WebSphere Software V7.5

Rational Application Developer for WebSphere Software is a full-featured
Eclipse-based IDE and includes comprehensive tools to improve developer
productivity. It is the only Java IDE tool you need to design, develop, and deploy
your applications for WebSphere Application Server.

Rational Application Developer for WebSphere Software adds functions to
Rational Application Developer Assembly and Deploy (Figure 1-5).

Figure 1-5 Rational development tools

Rational Application Developer for WebSphere Software includes the following
functions:

� Concurrent support for J2EE 1.2, 1.3, 1.4, and Java EE 5 specifications and
support for building applications with JDK 5 and JRE™ 1.6.

� EJB 3.0 productivity features.

Rational Application Developer for WebSphere Software

Rational Application Developer
Assembly & Deploy

26 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Visual editors, as follows:

– Domain modeling
– UML modeling
– Web development

� Web services and XML productivity features.

� Portlet development tools.

� Relational data tools.

� WebSphere Application Server V6.0, V6.1 and V7.0 test servers.

� Web 2.0 development features for visual development of responsive Rich
Internet Applications with Ajax and Dojo1.

� Integration with the Rational Unified Process and the Rational tool set, which
provides the end-to-end application development life cycle.

� Application analysis tools to check code for coding practices. Examples are
provided for best practices and issue resolution.

� Enhanced runtime analysis tools, such as memory leak detection, thread lock
detection, user-defined probes, and code coverage.

� Component test automation tools to automate test creation and manage test
cases.

� WebSphere adapters support, including CICS®, IMS, SAP®, Siebel®, JD
Edwards®, Oracle and PeopleSoft®.

� Support for Linux and Microsoft Windows operating systems.

For more information about Rational Application Developer for WebSphere
Software V7.5, see the following Web page:

http://www-01.ibm.com/software/awdtools/developer/application/

1.5.5 Project Zero and WebSphere sMash

Project Zero is an incubator project started by IBM, centered around agile
development and the next generation of dynamic Web applications. The project
brings a simple environment to create, assemble, and run applications based on
popular Web technologies. This environment includes a scripting runtime for
1 The Dojo Toolkit is a modular open source JavaScript™ toolkit (or library), designed for the rapid

development of cross platform, JavaScript/Ajax based applications and Web sites.

Note: Rational Application Developer for WebSphere Software is optionally
installable as a 60-day trial with WebSphere Application Server V7.0 and
purchased as a separate product.

 Chapter 1. Introduction to WebSphere Application Server V7.0 27

http://www.ibm.com/software/awdtools/developer/application/index.html

Groovy and PHP. It also includes application programming interfaces optimized
for producing REST-style services, integration mash-ups, and rich Web interfaces
corresponding to Web 2.0 concepts. It gives access to the latest features by
defaulting to experimental modules. Project Zero is free for development and
limited deployment.

Project Zero creates a new way to build commercial software, an approach that is
called Community-Driven Commercial Development. Community-Driven
Commercial Development is powered by community feedback.

The Community-Driven Commercial Development process served as a base for
two IBM Software products:

� WebSphere sMash Developer Edition

This product is a stable build of Project Zero, offered free of charge for
development and limited deployment usage. It includes useful tools for
developing applications in WebSphere sMash.

� WebSphere sMash

This product is the final commercial product and consists of stable modules
for production deployment. WebSphere sMash also includes messaging and
reliable communications features with Reliable Transport Extension for
WebSphere sMash package.

Some of the features of WebSphere sMash are as follows:

– It is an application-centric runtime. You can just create an application and
run it. Everything needed to run the application is built in, including the
HTTP stack,

– It is designed around Dynamic Scripting, REST, Rich Web Interfaces,
AJAX, and Feeds corresponding to Web 2.0 concepts.

– Application logic is created in one of two scripting languages:

• Groovy, for people that prefer Java.

• PHP for existing PHP programmers. The PHP runtime is provided
directly in the WebSphere sMash.

– It empowers developers to build applications directly on the Web with a
Web interface, and compose applications by wiring together REST
services.

For more information about Project Zero, see the following Web page:

http://www.projectzero.org/

For more information about WebSphere sMash, see the following Web page:

http://www.ibm.com/software/webservers/smash/

28 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.projectzero.org/
http://www.ibm.com/software/webservers/smash

Chapter 2. Integration with other
products

WebSphere Application Server works closely with other IBM products to provide
a fully integrated solution. This chapter introduces some of these products,
including those that provide enhanced security and messaging options, and
broad integration features:

� “Tivoli Access Manager” on page 30
� “Tivoli Directory Server” on page 33
� “WebSphere MQ” on page 35
� “WebSphere Adapters” on page 39
� “WebSphere DataPower” on page 41
� “DB2” on page 46
� “Tivoli Composite Application Manager for WebSphere” on page 47

2

© Copyright IBM Corp. 2009. All rights reserved. 29

2.1 Tivoli Access Manager

IBM Tivoli Access Manager provides a more holistic security solution at the
enterprise level than the standard security mechanisms found in WebSphere
Application Server.

Tivoli Access Manager provides the following features:

� Defines and manages centralized authentication, access, and audit policy for
a broad range of business initiatives.

� Establishes a new audit and reporting service that collects audit data from
multiple enforcement points, as well as from other platforms and security
applications.

� Enables flexible Single Sign-on (SSO) to Web-based applications that span
multiple sites or domains with a range of SSO options, to eliminate help-desk
calls and other security problems associated with multiple passwords.

� Uses a common security policy model with the Tivoli Access Manager family
of products to extend support to other resources.

� Manages and secures your business environments from your existing
hardware (mainframe, PCs, servers) and operating system platforms
including Windows, Linux, AIX, Solaris, and HP-UX.

� Provides a modular authorization architecture that separates security code
from application code.

In summary, Tivoli Access Manager provides centralized authentication and
authorization services to different products. Applications delegate authentication
and authorization decisions to Tivoli Access Manager.

For more information about Tivoli Access Manager, see the following Web page:

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

2.1.1 Integration with WebSphere Application Server

WebSphere Application Server provides its own security infrastructure. This
infrastructure is composed of some mechanisms that are specific to WebSphere
Application Server but also many that use open security technologies standards.
This security technology is widely proven, and the software can integrate with
other enterprise technologies.

For more information about WebSphere Application Server’s security
infrastructure, refer to 12.2, “Security in WebSphere Application Server” on
page 381.

30 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

The WebSphere Application Server security infrastructure is adequate for many
situations and circumstances. However, integrating WebSphere Application
Server with Tivoli Access Manager allows for an end-to-end integration of
application security across the entire enterprise.

The advantages at the enterprise level of using this approach are as follows:

� Reduced risk through a consistent services-based security architecture.

� Lower administration costs through centralized administration and fewer
security subsystems.

� Faster development and deployment.

� Reduced application development costs because developers do not have to
develop bespoke security subsystems.

� Built-in, centralized, and configurable handling of legislative business
concerns such as privacy requirements.

Repositories
As with WebSphere Application Server security, Tivoli Access Manager requires
a user repository. It supports many different repositories, such as IBM Tivoli
Directory Server and Microsoft Active Directory. Tivoli Access Manager can be
configured to use the same user repository as WebSphere Application Server,
enabling you to share user identities with both Tivoli Access Manager and
WebSphere Application Server.

Tivoli Access Manager policy server
The Tivoli Access Manager policy server maintains the master authorization
policy database, which contains the security policy information for all resources
and the credentials information of all participants in the secure domain, both
users and servers. The authorization database is then replicated across all local
authorization servers.

Tivoli Access Manager for WebSphere component
The Tivoli Access Manager client is embedded in WebSphere Application Server.
The Tivoli Access Manager client can be configured using the scripting and GUI
management facilities of WebSphere Application Server.

The Tivoli Access Manager server is bundled with WebSphere Application
Server Network Deployment. Tivoli Access Manager further integrates with
WebSphere Application Server by supporting the special subjects
AllAuthenticated and Everyone.

 Chapter 2. Integration with other products 31

All communication between the Tivoli Access Manager clients and the Tivoli
Access Manager server is performed through the Java Authorization Contract for
Containers (JACC) API.

Figure 2-1 shows the integration interfaces between WebSphere Application
Server and Tivoli Access Manager.

Figure 2-1 Integration of WebSphere Application Server with Tivoli Access Manager

Note: AllAuthenticated and Everyone are subjects that are specific to
WebSphere Application Server. These special categories allow access to a
resource to be granted to all those users who have been authenticated
regardless of what repository user groups they might belong to and allow
access to be granted to all users whether or not they are authenticated.

Access Manager Server

Access Manager Policy Server AM Authorization Server

WebSphere Application Server V7.0

Access Manager for WebSphere Component

GSO
Credential
Mapping

JACC
Management

JACC
Provider
Contract

TAI

Access Manager Java Runtime Component

PDJAdmin
(Management) Local ACL DB Replica

PDPerm
(Authorization)

PDPrincipal
(Authentication)

User Registry Master ACL DB ACL DB Replica

32 WebSphere Application Server V7.0: Concepts, Planning, and Design

Further advantages of using Tivoli Access Manager
We already reviewed the enterprise level advantages of using Tivoli Access
Manager. Using Tivoli Access Manager at the application server level has the
following further advantages:

� Supports accounts and password policies
� Supports dynamic changes to the authorization table without having to restart

applications
� Provides tight integration with WebSphere Application Server

Security, networking, and topology considerations
Because the LDAP server contains, and the Access Manager server manages,
sensitive data in terms of authentication, authorization, and privacy, the servers
belong to the data layer of the network. It is suggested to enable Secure Sockets
Layer (SSL) configuration options between the databases so data is encrypted.

2.2 Tivoli Directory Server

In today's highly connected world, directory servers are the foundation of
authentication systems for internal, and more commonly, external user
populations in the corporate infrastructure.

IBM Tivoli Directory Server provides a high-performance Lightweight Directory
Access Protocol (LDAP) identity infrastructure capable of handling millions of
entries. It is built to serve as the identity data foundation for your Web
applications and identity management initiatives.

2.2.1 Lightweight Directory Access Protocol

A directory is a data structure that enables the look up of names and associated
attributes arranged in a hierarchical tree structure. In the context of enterprise
application servers, this enables applications to look up a user principal and
determine what attributes the user has and of which groups the user is a
member. Decisions about authentication and authorization can then be made
using this information.

Legal considerations (privacy and data protection): Be aware that there
might be some legal or regulatory issues that surround storing of certain data
types, such as personally identifiable data in the European Union, on IT
systems. Ensure that you have consulted your legal department before
deploying such information on your systems. These considerations vary by
geography and industry.

 Chapter 2. Integration with other products 33

LDAP is a fast and simple way of looking up user entities in a hierarchical data
structure. It has advantages over using databases as a user repository in terms
of speed, simplicity, and standardized models or schemas for defining data.
Standard schemas have standard hierarchies of objects, such as objects that
represent a person in an organization. These objects, in turn, have attributes
such as a user ID, common name, and so forth. The schema can have custom
objects added to it, meaning that your directory is extensible and customizable.

Generally, LDAP is chosen over a custom database repository of users for these
reasons. LDAP implementations (such as IBM Tivoli Directory Server) use
database engines under the covers, but these engines are optimized for passive
lookup performance (through indexing techniques). This is possible because
LDAP implementations are based on the assumption that the data changes
relatively infrequently and that the directory is primarily for looking up data rather
than updating data. For more information about IBM Tivoli Directory Server, see
the following Web page:

http://www.ibm.com/software/tivoli/products/directory-server/

2.2.2 Integration with WebSphere Application Server

You can enable security in WebSphere Application Server to manage users, and
assign specific roles to them. To have a user account repository you must select
the type of user registry to be used (in this case, an LDAP registry). Tivoli
Directory Server can be used as a standalone LDAP registry for user account
repository of WebSphere Application Server. You can configure your user
account repository through the Integrated Solutions Console or through the
wsadmin command line tool.

Security, networking, and topology considerations
Because the LDAP server contains sensitive data in terms of authentication,
authorization, and privacy, the LDAP server belongs to the data layer of the
network. It is suggested to enable SSL options in the WebSphere Application
Server security configuration so that the data is encrypted between the
application server layer and the data layer.

For a list of supported directory servers for WebSphere Application Server, see
1.4.5, “Directory servers” on page 22.

Legal considerations (privacy and data protection): There might be some
legal or regulatory issues that surround storing of certain data types, such as
personally identifiable data in the European Union, on IT systems. Ensure that
you have consulted your legal department before deploying such information
on your systems. These considerations vary by geography and industry.

34 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/tivoli/products/directory-server/

2.3 WebSphere MQ

IBM WebSphere MQ is an asynchronous messaging technology that is available
from IBM. WebSphere MQ is a middleware technology designed for
application-to-application communication rather than application-to-user and
user interface communication.

WebSphere MQ is available on a large number of platforms and operating
systems. It offers a fast, robust, and scalable messaging solution that assures
once, and once only, delivery of messages to queue destinations that are hosted
by queue managers. This messaging solution has APIs in C, Java, COBOL, and
other languages, which allow applications to construct, send, and receive
messages.

With the advent of Java Message Service (JMS), generic, portable client
applications can be written to interface with proprietary messaging systems such
as WebSphere MQ. The integration of WebSphere Application Server with
WebSphere MQ over time has been influenced by this dichotomy of generic JMS
and proprietary WebSphere MQ access approaches.

For more information about WebSphere MQ, see the following Web page:

http://www.ibm.com/software/integration/wmq/

2.3.1 Integration with WebSphere Application Server

WebSphere Application Server messaging is a general term for a group of
components that provide the messaging functionality for applications.
WebSphere MQ and WebSphere Application Server messaging are
complementary technologies that are tightly integrated to provide for various
messaging topologies.

WebSphere Application Server supports asynchronous messaging based on the
JMS programming interface and the use of a JMS provider and its related
messaging system. JMS providers must conform to the JMS specification version
1.1.

 Chapter 2. Integration with other products 35

http://www.ibm.com/software/integration/wmq/

For WebSphere Application Server Version 7.0, the WebSphere MQ messaging
provider has enhanced administrative options supporting the following functions:

� WebSphere MQ channel compression

Data sent between WebSphere Application Server and WebSphere MQ can
be compressed, reducing the amount of data that is transferred.

� WebSphere MQ client channel definition table

The client channel definition table reduces the effort required to configure a
connection to a queue manager.

� Client channel exits

Client channel exits are pieces of Java code that you develop, and that are
executed in the application server at key points during the life cycle of a
WebSphere MQ channel. Your code can change the runtime characteristics of
the communications link between the WebSphere MQ messaging provider
and the WebSphere MQ queue manager.

� Transport-level encryption using SSL

Transport-level encryption using SSL is the supported way to configure SSL
for JMS resources associated with the WebSphere MQ messaging provider.
The SSL configuration is associated with the communication link for the
connection factory or activation specification.

� Automatic selection of the WebSphere MQ transport type

Servers in a cluster can be configured automatically to select their transport.

In WebSphere Application Server V7.0, you can use the following JMS providers:

� The default messaging provider
� WebSphere MQ
� Third-party JMS providers
� V5 default messaging provider (for migration purposes)

The default messaging provider is the JMS API implementation for messaging
(connection factories, JMS destinations, and so on). The concrete destinations
(queues and topic spaces) behind the default messaging provider interface are
implemented in a service integration bus. A service integration bus consists of
one or more bus members, which can be application servers or clusters. Each
bus member will have one messaging engine (more, in the case of clusters) that
manages connections to the bus and messages. A service integration bus can
connect to other service integration buses and to WebSphere MQ. Similarly, the
WebSphere MQ JMS provider is the JMS API implementation with WebSphere
MQ (with queue managers, for example) implementing the real destinations for
the JMS interface. WebSphere MQ can coexist on the same host as a
WebSphere Application Server messaging engine.

36 WebSphere Application Server V7.0: Concepts, Planning, and Design

Whether to use the default messaging provider, the direct WebSphere MQ
messaging provider, or a combination depends on a number of factors. There is
no set of questions that can lead you directly to the decision. However, consider
the following guidelines.

In general, the default messaging provider is a good choice for the following
circumstances:

� You are currently using the WebSphere Application Server V5 embedded
messaging provider for intra-WebSphere Application Server messaging.

� You require messaging between WebSphere Application Server and an
existing WebSphere MQ backbone and its applications.

The WebSphere MQ messaging provider is good choice for the following
circumstances:

� You are currently using a WebSphere MQ messaging provider and simply
want to continue using it.

� You require access to heterogeneous, non-JMS Enterprise Information
Systems (EIS).

� You require access to WebSphere MQ clustering.

Using a topology that combines WebSphere MQ and the default messaging
provider gives you the benefit of the tight integration between WebSphere and
the default messaging provider (clustering), and the flexibility of WebSphere MQ.

For more information about messaging with WebSphere Application Server and
about new features for WebSphere MQ connectivity see the following IBM
Information Center page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.iseries.doc/info/iseriesnd/ae/cmj_jmsp_wmq.html

Connecting WebSphere Application Server to WebSphere MQ
If you decide to use a topology that includes both WebSphere MQ and the default
messaging provider, there are two mechanisms to allow interaction between
them:

� Extend the WebSphere MQ and service integration bus networks by defining
a WebSphere MQ link on a messaging engine in a WebSphere Application
Server that connects the service integration bus to a WebSphere MQ queue
manager.

WebSphere MQ sees the connected service integration bus as a queue
manager. The service integration bus sees the WebSphere MQ network as
another service integration bus.

 Chapter 2. Integration with other products 37

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.iseries.doc/info/iseriesnd/ae/cmj_jmsp_wmq.html

WebSphere MQ applications can send messages to queue destinations on
the service integration bus and default messaging applications can send
messages to WebSphere MQ queues without being aware of the mixed
topology. As with WebSphere MQ queue manager networks, this mechanism
can be used to send messages from one messaging network to the other. It
cannot be used to consume messages from the other messaging network.

� Integrate specific WebSphere MQ resources into a service integration bus for
direct, synchronous access from default messaging applications running in
WebSphere Application Servers. This is achieved by representing a queue
manager or queue sharing group1 as a WebSphere MQ server in the
WebSphere Application Server cell and adding it to a service integration bus
as a bus member.

WebSphere MQ queues on queue managers, and queue sharing groups
running on z/OS, can be accessed in this way from any WebSphere
Application Server that is a member of the service integration bus.

Only WebSphere MQ queue managers and queue sharing groups running on
z/OS can be accessed from a service integration bus in this way.

The WebSphere MQ server does not depend on any one designated
messaging engine. This type of connectivity to MQ can tolerate the failure of
any given message engine if another is available in the bus, increasing
robustness and availability. This mechanism can be used for both sending
and consuming messages from WebSphere MQ queues.

When a default messaging application sends a message to a WebSphere MQ
queue, the message is immediately added to that queue. It is not stored by
the service integration bus for later transmission to WebSphere MQ when the
WebSphere MQ queue manager is not currently available. When a
WebSphere Application Server application receives a message from a
WebSphere MQ queue, it receives the message directly from the queue.

Keep in mind:

� WebSphere MQ to service integration bus connections are only
supported over TCP/IP.

� A service integration bus cannot be a member of a WebSphere MQ
cluster.

1 An MQ shared queue group is a collection of queues that can be accessed by one or more queue
managers. Each queue manager that is a member of the shared queue group has access to any of
the shared queues.

38 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 2-2 shows a sample integration for WebSphere Application Server and
WebSphere MQ.

Figure 2-2 WebSphere Application Server integration with WebSphere MQ

2.4 WebSphere Adapters

IBM WebSphere Adapters provide a set of generic technology and business
application adapters with wizards that quickly and easily service enable
Enterprise Information Systems (EISs) such as legacy applications, Enterprise
Resource Planning (ERP), Human Resources (HR), Customer Relationship
Management (CRM), and supply chain systems, and integrate them to IBM
Business Process Management (BPM), Enterprise Service Bus (ESB), and
application server solutions in a service-oriented architecture (SOA).

WebSphere Adapters implement the Java Connector Architecture (JCA) and
Enterprise MetaData Discovery specifications to provide a simple and quick
integration experience with graphical discovery tools without resorting to writing
code.

WebSphere Adapters includes three types of adapters:

� Application Adapters

These adapters integrate enterprise business application suites:

– JD Edwards EnterpriseOne
– Oracle E-Business Suite
– PeopleSoft Enterprise
– SAP Exchange Infrastructure
– SAP Software
– Siebel Business Applications

MQ
Link

JMS
Application

WebSphere
Application Server

V7.0

Messaging
Engine

Web
Services

WebSphere MQ
Queue Manager

WMQ
Application

WebSphere MQ
Queue Manager

WMQ
Application

MQ
Channel

Protocol

 Chapter 2. Integration with other products 39

� Technology Adapters

These adapters deliver file and database connectivity solutions:

– Email
– Flat Files
– File Transfer Protocol (FTP)
– Java Database Connectivity (JDBC)

� WBI Adapters

These adapters use an asynchronous stand alone runtime architecture (the
WBI Framework) with WebSphere MQ or JMS as the underlying transport
protocol. Originally designed for WebSphere InterChange Server (WICS),
they remain available for WebSphere Message Broker, WebSphere ESB, and
WebSphere Process Server users transitioning from WebSphere InterChange
Server or WebSphere Business Integration Server.

WebSphere Adapters are used with the WebSphere Adapter Toolkit, an
Eclipse-based toolkit, to enable customers and business partners to develop
custom JCA adapters to meet unique business requirements. The toolkit helps to
create either a basic JCA 1.5 adapter, or an adapter that uses the additional
capabilities of the Adapter Foundation Classes used by WebSphere Adapters.
The WebSphere Adapter Toolkit is provided as a no-fee download from IBM
developerWorks® to customers and business partners who secure licenses to
WebSphere Integration Developer and Rational Application Developer for
WebSphere Software.

For more information about IBM WebSphere Adapters, see the following Web
page:

http://www.ibm.com/software/integration/wbiadapters/

40 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/integration/wbiadapters/

2.4.1 Integration with WebSphere Application Server

WebSphere Adapter is designed to plug into WebSphere Application Server and
to provide bidirectional connectivity between enterprise applications (or Java EE
components), WebSphere Application Server, and EIS.

Figure 2-3 shows the relation between WebSphere Application Server and a
WebSphere Adapter.

Figure 2-3 WebSphere Adapter integration with WebSphere Application Server

2.5 WebSphere DataPower

IBM WebSphere DataPower SOA Appliances represent an important element in
the IBM holistic approach to SOA. IBM SOA appliances are purpose-built,
easy-to-deploy network devices that simplify, secure, and accelerate your XML
and Web services deployments while extending your SOA infrastructure. These
new appliances offer an innovative, pragmatic approach to harness the power of
SOA while simultaneously enabling you to use your existing application, security,
and networking infrastructure investments.

WebSphere Application Server

WebSphere
Adapter

Enterprise
Application
or Java EE
Component

Enterprise
Information

System

Note: Other available WebSphere Adapters are supported only with
WebSphere Integration Developer, WebSphere Process Server and
WebSphere Enterprise Service Bus.

 Chapter 2. Integration with other products 41

The IBM WebSphere DataPower SOA Appliances family contains
rack-mountable network devices that offer the following features:

� 1U (1.75-inch thick) rack-mountable, purpose-built network appliances.

� XML/SOAP firewall, field-level XML security, data validation, XML Web
services access control, and service virtualization.

� Lightweight and protocol-independent message brokering, integrated
message-level security, fine-grained access control, and the ability to bridge
important transaction networks to SOAs and ESBs.

� High performance, multi-step, wire-speed message processing, including
XML, XML Stylesheet Language Transformation (XSLT), XPath, and XML
Schema Definition (XSD).

� Centralized Web services policy and service-level management.

� Web services (WS) standard support:

– WS-Security
– Security Assertion Markup Language (SAML) 1.0/1.1/2.0
– portions of the Liberty Alliance protocol
– WS-Federation
– WS-Trust
– XML Key Management Specification (XKMS)
– Radius, XML Digital Signature
– XML-Encryption
– Web Services Distributed Management (WSDM)
– WS-SecureConversation
– WS-Policy
– WS-SecurityPolicy
– WS-ReliableMessaging
– SOAP
– Web Services Description Language (WSDL)
– Universal Description
– Discovery, and Integration (UDDI)

� Transport layer flexibility, which supports HTTP/HTTPS, MQ, Secure Sockets
Layer (SSL), File Transfer Protocol (FTP), and others.

� Scalable, wire-speed, any-to-any message transformation, such as arbitrary
binary, flat text and XML messages, which include COBOL copybook,
CORBA, CICS, ISO 8583, ASN.1, EDI, and others.

42 WebSphere Application Server V7.0: Concepts, Planning, and Design

DataPower appliances can meet the challenges that are present in an SOA
network with the following features:

� Consumable simplicity

An easy-to-install and easy-to-maintain network appliance that satisfies both
application and network operational groups, and supports current and
emerging standards, and readily available XML Web services standards.

� Enhanced security

Key support that includes XML/SOAP firewall and threat protection, field-level
XML security, data validation, XML Web services access control, service
virtualization, and SSL acceleration.

� Acceleration

A drop-in solution that can streamline XML and Web service deployments,
helping to lower the total cost of ownership and accelerate a return on your
assets, as you continue to move to SOA. SOA appliances are purpose-built
hardware devices that are capable of offloading overtaxed servers by
processing XML, Web services, and other message formats at wire speed.

2.5.1 DataPower appliance models

The WebSphere DataPower appliance family contains three models at the time
this book was written (Figure 2-4 on page 44). Each appliance has its own
characteristics. Each is designed to fit various business needs. These appliance
models are as follows:

� IBM WebSphere DataPower XML Accelerator XA35

This model can help speed common types of XML processing by offloading
the processing from servers and networks. It can perform XML parsing, XML
schema validation, XPath routing, XSLT, XML compression, and other
essential XML processing with wire-speed XML performance.

� IBM WebSphere DataPower XML Security Gateway XS40

XS40 provides a security-enforcement point for XML and Web service
transactions. It offers encryption, firewall filtering, digital signatures, schema
validation, WS-Security, XML access control, XPath, and so on.

� IBM WebSphere DataPower Integration Appliance XI50

This appliance provides transport-independent transformations between
binary, flat text files, and XML message formats. Visual tools are used to
describe data formats, create mappings between different formats, and define
message choreography. The XI50 appliance can transform binary, flat text,
and other non-XML messages to offer an innovative solution for security-rich
XML enablement, ESBs, and mainframe connectivity.

 Chapter 2. Integration with other products 43

Figure 2-4 DataPower SOA Appliance models

For more information about IBM WebSphere DataPower SOA Appliances, see
the following Web page:

http://www.ibm.com/software/integration/datapower/

For more information about devices and usage scenarios, refer to IBM Redpaper
IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting
Started, REDP-4327.

Security Tivoli
Access

Manager

Federated
Identity

Manager

Internet IP Firewall

XS40

Application Server

Web Tier

Client or
Server

Internet

SML
HTML
WML

XA35

Application Server Web Server

XML
XSL

Integration & Management Tiers

X150

ITCAM for
SOA

Web Services
Client

REPLY Q LEGACY REQ

LEGACY RESP

HTTP XML REQUEST
HTTP XML RESPONSE

44 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/integration/datapower/

2.5.2 Integration with WebSphere Application Server

In WebSphere Application Server V7.0, the new consolidated administration
feature for WebSphere DataPower allows you to manage and integrate
appliances into your environment.

The Integrated Solutions Console contains an administration interface
(DataPower appliance manager) to manage multiple WebSphere DataPower
boxes (Figure 2-5). The Integrated Solutions Console is the single point of
administration to manage both WebSphere Application Server and WebSphere
DataPower, and for solutions that combines them.

Figure 2-5 DataPower appliance manager interface of the Integrated Solutions Console

From DataPower appliance manager interface, you can perform the following
tasks:

� Add, change, or remove a DataPower appliance and monitor its operation and
synchronization status.

� Add a new firmware version, view existing firmware versions, or delete a
firmware version.

� Add, view, or delete a managed set. A managed set is a group of appliances
whose firmware, shareable appliance settings, and managed domains are all
kept synchronized.

� View the status of a task. A DataPower task is a long-running request that you
have asked the DataPower appliance manager to process.

Note: DataPower appliance manager of WebSphere Application Server
V7.0 can be used to manage DataPower appliances with a V3.6.0.4 or
higher level of firmware.

 Chapter 2. Integration with other products 45

2.6 DB2

IBM DB2 is an open-standards, multi-platform, relational database system that is
powerful enough to meet the demands of large corporations and flexible enough
to serve medium-sized and small businesses.

DB2 extends its innovative abilities as a hybrid data server. It enables rapid use
and deep compression of data, and extracts the full value of XML data in
operational processes.

DB2 delivers the following advantages:

� Improved performance for high priority workloads
� Shortened developer timelines with enhanced XML features
� Shortened time to recover
� Enhancements to server and compliance to safeguard your data server
� Reduced administration with advances in performance, manageability, and

installation

DB2 has editions to work on Linux, UNIX®, Windows, and z/OS. These editions
are designed to best fit your business needs. It also brings extra features (like
storage optimization, geodetic data management, and so on) to your
environment with its priced extensions.

For more information about IBM DB2 and its editions, see the following Web
page:

http://www.ibm.com/db2/

2.6.1 Integration with WebSphere Application Server

DB2 delivers enhanced integration capabilities and features with WebSphere
Application Server. You can speed up your application development and Web
deployment cycles with this powerful combination.

You can integrate DB2 with WebSphere Application Server in many scenarios:

� DB2 can be the hybrid data store for your applications. It can enhance your
data processing with its powerful XML capabilities. You can configure your
datasources to use DB2 using Java Database Connectivity (JDBC) drivers.

� With its pureQuery runtime environment, a high performance Java data
access platform that helps manage applications that access data, DB2
provides an alternate set of APIs that can be used instead of JDBC to access
the DB2 database. PureQuery support is based on Java Persistence API
(JPA) of the Java EE and Java SE environments.

46 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/db2/

� You can configure a service integration bus (messaging) member to use DB2
as a data store.

� The session management facility of WebSphere Application Server can be
configured for database session persistence, using DB2 as the data store.
You can collect and store session data in a DB2 database.

� DB2 can be used as the data store for your UDDI registry data.

� The scheduler database for storing and running tasks of the scheduler
service of WebSphere Application Server can be a DB2 database. The
scheduler service is a WebSphere programming extension responsible for
starting actions at specific times or intervals,

For more information about data access resources for WebSphere Application
Server, see the IBM Information Center Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.base.doc/info/aes/ae/welc6tech_dat.html

2.7 Tivoli Composite Application Manager for
WebSphere

IBM Tivoli Composite Application Manager for WebSphere (ITCAM for
WebSphere) is an application management tool that helps maintain the
availability and performance of on demand applications. It helps you pinpoint, in
real time, the source of bottlenecks in application code, server resources, and
external system dependencies. ITCAM for WebSphere provides in-depth
WebSphere-based application performance analysis and tracing facilities. It
provides detailed reports that you can use to enhance the performance of your
applications.

For more information about IBM Tivoli Composite Application Manager for
WebSphere, see the following Web page:

http://www.ibm.com/software/tivoli/products/composite-application-mgr-w
ebsphere/

 Chapter 2. Integration with other products 47

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_dat.html
http://www.ibm.com/software/tivoli/products/composite-application-mgr-websphere/
http://www.ibm.com/software/tivoli/products/composite-application-mgr-websphere/

2.7.1 Integration with WebSphere Application Server

ITCAM for WebSphere enables you to analyze the health of the WebSphere
Application Server and the transactions that are invoked in it. It is able to trace
the transaction execution to the detailed method-level information. It connects
transactions that spawn from one application server. It also invokes services from
other application servers, including mainframe applications in IMS or CICS.
ITCAM for WebSphere provides a flexible level of monitoring, from an
non-intrusive production ready monitor, to a detailed deep-dive tracing for
problems of locking or even memory leaks. ITCAM for WebSphere provides a
separate interactive Web console and allows monitoring data to be displayed on
the Tivoli Enterprise Portal.

ITCAM for WebSphere is an evolution from WebSphere Studio Application
Monitor and OMEGAMON® XE for WebSphere Application Server and provides
the following additional functions:

� Integration with IBM Tivoli Service Manager by providing a Web services
interface to get health status

� Improved memory leak and locking analysis pages

� Problem determination enhancements

� Advanced visualization, aggregation, persistence, and correlation of
performance metrics in Tivoli Enterprise Portal

� Additional WebSphere server platform support, including WebSphere Portal
Server and WebSphere Process Server

� Enhanced composite transaction tracing and decomposition

� Web session browser to help diagnose session-related problems

2.7.2 ITCAM for WebSphere architecture

ITCAM for WebSphere is a distributed performance monitoring application for
application servers. Its components are connected through TCP/IP
communication. The central component of ITCAM for WebSphere, the managing
server, is its heart and brain. It collects and displays various performance
information from application servers. The application servers run a component of
ITCAM for WebSphere called the data collector (DC), which is a collecting agent.
It helps you pinpoint, in real time, the source of bottlenecks in application code,
server resources, and external system dependencies. The Tivoli Enterprise
Monitoring Agent component collects information that shows the status of the
WebSphere server and sends this information to the Tivoli Enterprise Monitoring
Agent. This agent is installed on the individual machines where the data collector
resides.

48 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 2-6 shows the overall architecture of ITCAM for WebSphere.

Figure 2-6 ITCAM for WebSphere architecture

For more information about IBM Tivoli Composite Application Manager for
WebSphere usage scenarios, refer to the following Redbooks publications:

IBM Tivoli Composite Application Manager Family Installation, Configuration,
and Basic Usage, SG24-7151

Solution Deployment Guide for IBM Tivoli Composite Application Manager for
WebSphere, SG24-7293

Web Server

Application servers with
ITCAM for WebSphere

Data collectors

Browser interface
ITCAM

for WebSphere
Managing Server

Tivoli Enterprise
Management Server

and
Tivoli Enterprise

Portal Server

 Chapter 2. Integration with other products 49

50 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 3. WebSphere Application
Server concepts

Before you can plan a WebSphere Application Server installation and select a
topology, you need to understand some basic structural concepts and elements
that make up a WebSphere Application Server runtime environment.

This chapter will introduce common WebSphere Application Server concepts in
the following sections:

� “WebSphere Application Server concepts” on page 52
� “Server environments” on page 73
� “Clusters” on page 81
� “Runtime processes” on page 88
� “Using Web servers” on page 89

3

© Copyright IBM Corp. 2009. All rights reserved. 51

3.1 WebSphere Application Server concepts

WebSphere Application Server is organized based on the concept of cells,
nodes, and servers. While all of these elements are present in each
configuration, cells and nodes are concepts primarily related to Network
Deployment packaging. WebSphere Application Server also contains various
agents (explained later in this chapter) to provide service to management
components.

The application server is the primary runtime component in all configurations and
is where an application executes. All WebSphere Application Server
configurations can have one or more application servers. In the Express and
Base configurations, each application server functions as a separate entity and
there is no workload distribution or fail-over capabilities among application
servers. With Network Deployment, you can build a distributed server
environment consisting of multiple application servers maintained from a central
administration point as well as cluster application servers for workload
distribution. With Express and Base configurations, you can also use the
provided agents and manager components to build a topology for central
administration.

This section addresses the following concepts:

� “Profiles” on page 53
� “Stand-alone application servers” on page 55
� “Distributed application servers” on page 57
� “Nodes, node groups, and node agents” on page 59
� “Cells” on page 61
� “Deployment manager” on page 62
� “Administrative agent” on page 63
� “Job manager” on page 64
� “Web servers” on page 65
� “Proxy servers” on page 67
� “Generic servers” on page 70
� “Business level applications” on page 70
� “Centralized installation manager” on page 72
� “Intelligent runtime provisioning” on page 72

52 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.1 Profiles

This section focuses on profiles as a basic building block of WebSphere
Application Server.

Overview
WebSphere Application Server runtime environments are built by creating
profiles. Each profile is an instance of a WebSphere Application Server
configuration.

WebSphere Application Server Network Deployment allows you to create the
following profile types using provided profile templates:

� Cell

This environment creates two profiles:

– A management profile with a deployment manager
– An application server profile added (federated) to the management profile

� Management

A management profile provides components for managing multiple
application server environments. Possible profiles are as follows:

– Deployment manager
– Administrative agent
– Job manager

� Application server

An application server profile runs your enterprise applications and makes
them available to the internet or to an intranet. It contains a stand-alone
application server.

� Custom

A custom profile contains an empty node with no servers. However, a server
can be added after the profile is created.

� Secure proxy (configuration-only)

A secure proxy (configuration-only) profile is for use with a DeMilitarized Zone
(DMZ) secure proxy server. This configuration-only profile is intended only to
be used to configure the profile using the Integrated Solutions Console. After
you configure the profile, you can export the profile configuration and then
import it into the secure proxy profile in your DMZ. Secure proxy
(configuration-only) profile is only an administrative component.

 Chapter 3. WebSphere Application Server concepts 53

Administration is greatly enhanced when using profiles instead of multiple
product installations. Not only is disk space saved, but updating the product is
simplified when you maintain a single set of product core files. Also, creating new
profiles is more efficient and less prone to error than full product installations,
allowing a developer to create separate profiles of the product for development
and testing.

Profile concept
In WebSphere Application Server files are divided into two categories:

� Core product files

Application binaries for WebSphere Application Server

� User files

Customizations, including configuration files, installed applications, resource
adapters, properties, log files

Profiles are collections of user files (Figure 3-1). They share core product files. A
profile contains its own set of scripts, its own environment, and its own repository.

Figure 3-1 WebSphere Application Server installation structure

Each profile is stored in a unique directory path selected by the user at profile
creation time. Profiles are stored in a subdirectory of the installation directory by
default, but they can be located anywhere (Example 3-1).

Example 3-1 Directory structure of WebSphere Application Server V7.0 on Windows

C:\Program Files\IBM\WebSphere\AppServer\profiles
\AdminAgent01
\AppSrv01
\AppSrv02
\AppSrv03
\Dmgr01
\JobMgr01

+ =WebSphere Application
Server V7.0

Core Product Files

WebSphere
V7.0 User Files

(Profile)

Complete WebSphere
Application Server V7.0

Installation

54 WebSphere Application Server V7.0: Concepts, Planning, and Design

Profile creation
Profiles can be created at any point of time, during or after installation, by using
graphical or command line tools. After creating the profiles, for further
configuration and administration, you can use these profile management tools
provided with WebSphere Application Server:

� Manageprofiles

Command line interface for profile management functions.

� Profile Management Tool (PMT)

Eclipse Rich Client Platform (RCP)-based GUI that gathers user input and
invokes the manageprofiles command line tool to manage the profiles. For
z/OS, zPMT is used as the profile management tool. The zPMT is part of the
WebSphere Configuration Tools, that can be downloaded at the following Web
page:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368

3.1.2 Stand-alone application servers

All WebSphere Application Server packages support a single stand-alone server
environment. With a stand-alone configuration, each application server acts as
an unique entity. An application server runs one or more applications and
provides the services required to run those applications. Each stand-alone
server is created by defining an application server profile (Figure 3-2).

Figure 3-2 Stand-alone application server configuration

System A

Application
Server

Application
Server

Application
Server

Integrated Solutions
Console

Integrated Solutions
Console

Integrated Solutions
Console

 Chapter 3. WebSphere Application Server concepts 55

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368

A stand-alone server can be managed from its own administrative console. It
functions independent from all other application servers. You can also use
WebSphere Application Server’s scripting facility, wsadmin, to perform every
function that is available in the administrative console application.

Multiple stand-alone application servers can exist on a machine, either through
independent installations of the WebSphere Application Server product binaries
or by creating multiple application server profiles within one installation. However
stand-alone application servers do not provide workload management or failover
capabilities. They run isolated from each other.

With WebSphere Application Server for z/OS, it is possible to use workload load
balancing and response time goals on a transactional base as well as a special
clustering mechanism, the multi-servant region, with a stand-alone application
server. For more information about this refer to 14.1.4, “Structure of an
application server” on page 422.

About Figure 3-2 : This figure only shows portions of the actual WebSphere
Application Server components, The figure will change throughout this chapter
to reflect the concepts introduced in each section.

Manage stand-alone servers from a central point: With WebSphere
Application Server V7.0 it is possible to manage stand-alone servers from a
central point by using administrative agents and a job manager. This feature is
explained later in 3.2.4, “Flexible management” on page 78 on page 78.

56 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.3 Distributed application servers

With the Network Deployment packaging, you can build a distributed server
configuration to enable central administration, workload management, and
failover. In this environment, you integrate one or more application servers into a
cell that is managed by a central administration instance, a deployment manager
(explained in 3.1.6, “Deployment manager” on page 62). The application servers
can reside on the same machine as the deployment manager or on multiple
separate machines. Administration and management is handled centrally from
the administration interfaces by the deployment manager, as shown in
Figure 3-3.

Figure 3-3 Distributed application servers with WebSphere Application Server V7.0

With a distributed server configuration, you can create multiple application
servers to run unique sets of applications and manage those applications from a
central location. However, more importantly, you can cluster application servers
to allow for workload management and failover capabilities. Applications that are
installed in the cluster are replicated across the application servers. When one
server fails, another server in the cluster continues processing.

Workload is distributed among Web and Enterprise JavaBeans (EJB) containers
in a cluster using a weighted round-robin scheme. In z/OS, the weighted round
robin mechanism is replaced by the integration of WebSphere Application Server
for z/OS in the Workload Manager (WLM). The WLM is an integral part of the
operating system. This allows requests to be dispatched to a cluster member
according to real time load and whether or not the member reaches it defined
response time goals.

System BSystem A

Application
Server

Application
Server

Integrated Solutions
Console

Application
Server

Deployment
Manager

 Chapter 3. WebSphere Application Server concepts 57

It is also possible to replicate sessions saved in an application server of the
cluster to other cluster members with the session replication feature of
WebSphere Application Server.

A distributed server configuration can be created in one of three ways:

� Create a deployment manager profile to define the deployment manager.
Then, create one or more custom node profiles. The nodes defined by each
custom profile can be federated into the cell managed by the deployment
manager during profile creation or manually later. The custom nodes can exist
inside the same operating system image as the deployment manager or in
another operating system instance. Application servers can then be created
using the Integrated Solutions Console or wsadmin scripts.

The method is useful when you want to create multiple nodes, multiple
application servers on a node, or clusters. The process for creating and
federating each node is quick.

� Create a deployment manager profile to define the deployment manager.
Then, create one or more application server profiles and federate these
profiles into the cell managed by the deployment manager. This process adds
both nodes and application servers into the cell. The application server
profiles can exist on the deployment manager system or on multiple separate
system or z/OS image.

This method is useful in development or small configurations. Creating an
application server profile gives you the option of having the sample
applications installed on the server. When you federate the server and node
to the cell, any installed applications can be carried into the cell with the
server.

� Create a cell profile. This actually creates two profiles, a deployment manager
profile and a federated application server profile. Both reside on the same
machine.

This is useful in a development or test environment. Creating a single profile
gives you a simple distributed system on a single server or z/OS images.

58 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.4 Nodes, node groups, and node agents

This section defines node-related concepts.

Nodes
A node is an administrative grouping of application servers for configuration and
operational management within one operating system instance (virtualization
allows multiple operating systems on one machine). It is possible to create
multiple nodes inside one operating system instance, but a node cannot leave
the operating system boundaries. In a stand-alone application server
configuration, there is only one node. With Network Deployment, you can
configure a distributed server environment consisting of multiple nodes, which
are managed from one central administration server (Figure 3-4).

Figure 3-4 Node concept in a WebSphere Application Server network deployment
configuration

Node agents
In distributed server configurations, each node has a node agent that works with
the deployment manager to manage administration processes (Figure 3-4). A
node agent is created automatically when you add (federate) a stand-alone node
to a cell. It is not included in the Base and Express configurations.

System BSystem A

Node02

Application
Server

Integrated Solutions
Console

Node03

Application
Server

Deployment
Manager

Node01

Application
Server

Node Agent

Node Agent

Node Agent

 Chapter 3. WebSphere Application Server concepts 59

Node groups
A node group is a grouping of nodes within a cell that have similar capabilities. A
node group validates that the node is capable of performing certain functions
before allowing them. For example, a cluster cannot contain both z/OS nodes
and nodes that are not z/OS-based. In this case, you can define multiple node
groups, one for the z/OS nodes and one for nodes other than z/OS. A
DefaultNodeGroup is automatically created. This node group contains the
deployment manager and any new nodes with the same platform type. A node
can be a member of more than one node group.

On the z/OS platform, a node must be a member of a system complex (sysplex)
node group. Nodes in the same sysplex must be in the same sysplex node group.
A node can be in one sysplex node group only.

Figure 3-5 shows node and node groups concepts in an example.

Figure 3-5 Cell, deployment manager, node, and node group concepts

About sysplex: A sysplex is the z/OS implementation of a cluster. This
technique uses distributed members and a central point in the cluster, a
coupling facility, for caching, locking and listing. The coupling facility runs a
special firmware, the Coupling Facility Control Code (CFCC). The members
and the coupling facility communicate with each other using a high-speed
memory to memory connection, of up to 120Gb/s.

DefaultNodeGroup

zOS_NodeGroup1 zOS_NodeGroup2

z/OS Node 6

z/OS Node 5

WebSphere Application Server V7.0 Cell

z/OS Sysplex z/OS Sysplex

Dist_NodeGroup3

DMgr Node

Deployment
Manager

Node 1 Node 2
Node
Agent

Node
Agent

Node
Agent

Node
Agent

z/OS Node 4

z/OS Node 3
Node
Agent

Node
Agent

60 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.5 Cells

A cell is a grouping of nodes into a single administrative domain. In the Base and
Express configurations, a cell contains one node and that node contains one
server. See Figure 3-6.

Figure 3-6 Cell component in a WebSphere Application Server topology

In a Network Deployment environment, a cell can consist of multiple nodes (and
node groups), which are all administered from a single point, the deployment
manager (Figure 3-6). If your cell configuration contains nodes running on the
same platform, it is called a homogeneous cell. It is also possible to have a cell
made up of nodes on mixed platforms. This is referred to as a heterogeneous cell.

Figure 3-5 on page 60 shows a cell containing multiple nodes and node groups.

WebSphere Application Server V7.0 Network
Deployment environment

WebSphere Application Server V7.0
stand-alone environment

Integrated Solutions
Console

System BSystem A

Cell
Node02

Application
Server

Node03

Application
Server

Deployment
Manager

Node01

Application
Server

Node Agent

Node Agent

Node Agent

System A

Integrated Solutions
Console

Integrated Solutions
Console

Cell01

Application
Server

Node01

Cell01

Application
Server

Node01

Note: See 3.2, “Server environments” on page 73 for detailed information
about the various cell configurations.

 Chapter 3. WebSphere Application Server concepts 61

3.1.6 Deployment manager

The deployment manager is the central administration point of a cell that consists
of multiple nodes and node groups in a distributed server configuration. See
Figure 3-5 on page 60. The deployment manager uses the node agent to
manage the applications servers within one node.

A deployment manager provides management capability for multiple federated
nodes and can manage nodes that span multiple systems and platforms. A node
can only be managed by a single deployment manager and must be federated to
the cell of that deployment manager.

The configuration and application files for all nodes in the cell are centralized into
a master configuration repository. This centralized repository is managed by the
deployment manager and synchronized with local copies that are held on each of
the nodes. See Figure 3-7.

Figure 3-7 Configuration repositories in a network deployment installation

System BSystem A
Cell

Node02

Application
Server

Integrated Solutions
Console

Node03

Application
Server

Deployment
Manager

Node01

Application
Server

Node Agent

Node Agent

Node Agent

Master configuration
repository

Local configuration
Local configuration

Local configuration

62 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.7 Administrative agent

An administrative agent is a component that provides enhanced management
capabilities for stand-alone (Express and Base) application servers. This is a
new concept introduced with WebSphere Application Server V7.0.

In previous versions of WebSphere Application Server, each stand-alone server
was a single point of management containing its own administrative console.
With V7.0, most of the administrative components are separated from the
application server runtime. See Figure 3-8.

Figure 3-8 Comparison of V5, V6 and V7.0 base product architectures

All configurations related to the application server are directly connected to the
administrative agent that provides services to administrative tools.

An administrative agent can manage multiple stand-alone server instances on a
single system or z/OS image. When using an administrative agent, as the
number of application server instances increases, the redundancy of the
administration footprint (for each application server) is therefore eliminated.

Node A

Admin
scripts

(wsadmin)

Cell
Configuration

Integrated Solutions
Console

Application
Server

WebSphere Application Server
V5 & V6 Base Product Architecture

WebSphere Application Server
V7.0 Base Product Architecture

Node A
Configuration

Server
Configuration

Node Agent is
not included in
Base product

Node A

Admin
scripts

(wsadmin)

Cell
Configuration

Integrated Solutions
Console

Node A
Configuration

Server
Configuration

Administrative Agent
is included in
Base product

Administrative
Agent

Application
Server

 Chapter 3. WebSphere Application Server concepts 63

The administrative agent acts as the main component for the expanded multiple
node remote management environment provided with the job manager, as
explained in 3.2.4, “Flexible management” on page 78.

When working with the administrative agent, remember the following
circumstances:

� The administrative agent can only manage application servers that are
installed in the same operating system image as the administrative agent.

� The administrative agent only provides management of these application
servers and their applications. It does not provide clustering and failover
capabilities. For clustering, failover, and centralized application management,
you still need WebSphere Application Server Network Deployment.

3.1.8 Job manager

A job manager (Figure 3-9) is a component that provides management
capabilities for multiple stand-alone application servers, administrative agents,
and deployment managers. It brings enhanced multiple node installation options
for your environment.

Figure 3-9 High-level overview of a job manager architecture

Node

Application
Server

Administrative
Agent

Node

Node

Application
Server

Cell
Node

Application
Server

Deployment
Manager

Node Agent

Application
Server

Job
Manager

64 WebSphere Application Server V7.0: Concepts, Planning, and Design

The purpose of the job manager is to execute daily tasks in one step for multiple
installations. This includes the starting and stopping of servers, distribution and
deployment of applications and various other actions.

The job manager is a new concept introduced with WebSphere Application
Server V7.0 and is only available with WebSphere Application Server Network
Deployment and WebSphere Application Server for z/OS.

The job manager and job manager management models are explained in 3.2.4,
“Flexible management” on page 78.

3.1.9 Web servers

Although Web servers are independent products, they can be defined to the
WebSphere Application Server administration process. The primary purpose for
this is to enable the administrator to associate applications with one or more
defined Web servers in order to generate the proper routing information for Web
server plug-ins if multiple servers are used.

Web servers are associated with nodes. These nodes can be managed or
unmanaged.

� Managed nodes have a node agent on the Web server machine that allows
the deployment manager to administer the Web server. You can start or stop
the Web server from the deployment manager, generate the Web server
plug-in for the node, and automatically push it to the Web server. In most
installations, you have managed Web server nodes behind the firewall with
the WebSphere Application Server installations.

� Unmanaged nodes are not managed by WebSphere. You usually find these
outside the firewall or in the demilitarized zone. You have to manually transfer
the Web server plug-in configuration file to the Web server on an unmanaged
node. In a z/OS environment, you have to use unmanaged nodes if the Web
server is not running on the z/OS platform.

Special case: If the unmanaged Web server is an IBM HTTP Server, you
can administer it from the Integrated Solutions Console. This allows you to
automatically push the plug-in configuration file to the Web server with the
deployment manager using HTTP commands to the IBM HTTP Server
administration process. This configuration does not require a node agent.

The IBM HTTP Server is shipped with all WebSphere Application Server
packages.

 Chapter 3. WebSphere Application Server concepts 65

Web server plug-ins
A Web server can serve static contents and requests, like HTML pages.
However, when a request requires dynamic content, such as JSP or servlet
processing, it must be forwarded to WebSphere Application Server for handling.

To forward a request, you use a Web server plug-in that is included with the
WebSphere Application Server packages for installation on a Web server. You
transfer (manually or automatically with the deployment manager) an Extensible
Markup Language (XML) configuration file, configured on the WebSphere
Application Server, to the Web server plug-in directory. The plug-in uses the
configuration file to determine whether a request should be handled by the Web
server or an application server. When WebSphere Application Server receives a
request for an application server, it forwards the request to the appropriate Web
container in the application server. The plug-in can use HTTP or HTTPS to
transmit the request (Figure 3-10).

Figure 3-10 Web server plug-in concept with WebSphere Application Server

The plug-in is used for routing requests to one of multiple application servers.

About the sysplex distributor: On the z/OS platform you can also use the
sysplex distributor (SD) for the distribution of requests. The SD allows you to
send requests to the server that keeps its predefined response time goals
best, by questioning the Workload Manager (WLM) component. The SD is an
integral part of the System z operating system.

Web Server

Plug-in
Plug-in
config
XML
File

Cell

Node

Node

Application
Server

Application
Server

Application
Server

Application
Server

Request A

Request B

Request A

Request B

66 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.1.10 Proxy servers

A proxy server is a specific type of application server that routes requests to
content servers that perform the work. The proxy server is the initial point of
entry, after the protocol firewall, for requests entering the environment.

WebSphere Application Server allows you to create two types of proxy servers:

� WebSphere Application Server Proxy
� DMZ Secure Proxy Server

WebSphere Application Server Proxy
WebSphere Application Server Proxy supports two protocols:

� HTTP
� SIP

You can configure your WebSphere Application Server Proxy to use one of these
protocols or both of them. This proxy server is used to classify, prioritize, and
route HTTP and SIP requests to servers in the enterprise, as well as cache
content from servers.

HTTP proxy
The proxy server acts as a surrogate for content servers within the enterprise. As
a surrogate, you can configure the proxy server with rules to route to and load
balance the clusters of content servers. The proxy server is also capable of
securing the transport, using Secure Sockets Layer (SSL), as well as the content
using various authentication and authorization methods. Another important
feature is its capability to protect the identity of the content servers from the Web
clients by using response transformations (URL rewriting). The proxy server can
also improve performance by caching content locally and by protecting the
content servers from surges in traffic.

You can modify an existing proxy server to perform advanced routing options,
such as routing requests to a non-WebSphere application server. You may also
modify a proxy server to perform caching.

Note: When using WebSphere Application Server for z/OS V7.0, the proxy
server uses the Workload Management component to perform dynamic
routing.

 Chapter 3. WebSphere Application Server concepts 67

SIP proxy
The SIP proxy design is based on the HTTP proxy architecture. The SIP proxy
extends the HTTP proxy features. It can be considered a peer to the HTTP proxy.
Both the SIP and the HTTP proxy are designed to run within the same proxy
server and both rely on a similar filter-based architecture for message processing
and routing.

The SIP proxy server initiates communication and data sessions between users.
It delivers a high performance SIP proxy capability that you can use at the edge
of the network to route, load balance, and improve response times for SIP
dialogs to back end SIP resources. The SIP proxy provides a mechanism for
other components to extend the base function and support additional deployment
scenarios.

The SIP proxy is responsible for establishing outbound connections to remote
domains on behalf of the back end SIP containers and clients that reside within
the domain that is hosted by the proxy. Another important feature of the SIP
proxy is its capability to protect the identity of the back end SIP containers from
the SIP clients.

WebSphere Application Server Proxy provides many functions that Web server
and plug-in have but it is not a full replacement because it does not have Web
serving capabilities. (Static content can be served from the proxy cache) If the
Web server is used only for load balancing and routing with session affinity,
WebSphere Application Server Proxy can take the place of the Web server.

WebSphere Application Server Proxy is not considered a secure proxy for
demilitarized zone (DMZ) deployments. For example, it cannot bind to protected
ports without being a privileged user on most operating systems and users
cannot be switched after binding. WebSphere Application Server Proxy must stay
in the intranet/secure zone.

DMZ Secure Proxy Server
As the WebSphere Application Server Proxy is not ready for a DMZ, WebSphere
Application Server V7.0 ships a DMZ-hardened version of WebSphere
Application Server Proxy. The DMZ Secure Proxy Server comes in a separate
install package that contains a subset of WebSphere Application Server Network
Deployment and provides new security enhancements to allow deployments
inside of a demilitarized zone (Figure 3-11 on page 69).

68 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-11 DMZ secure proxy simplified topology

The DMZ Secure Proxy is designed to improve security by minimizing the
number of external ports opened, and running as an unprivileged user when
binding to well-known ports. It can be managed locally or remotely using the job
manager console.

For a sample topology using the DMZ Secure Proxy Server as reverse proxy, see
5.3.4, “Reverse proxy topology” on page 154.

Note: HTTP and SIP protocols supported by WebSphere Application Server
Proxy are also supported with DMZ Secure Proxy Server.

DMZ Secure
Proxy Server

Web Server

Application
Server

Web Server
Web Server

Secure back-end

Integrated Solutions
Console

Application
ServerApplication

Server

Fi
re

w
al

l

Fi
re

w
al

l

DMZ

 Chapter 3. WebSphere Application Server concepts 69

3.1.11 Generic servers

A generic server is a server that is managed in the WebSphere Application
Server administrative domain even though the server is not supplied by
WebSphere Application Server. The WebSphere Application Server generic
servers function enables you to define a generic server as an application server
instance within the WebSphere Application Server administration, and associate
it with a WebSphere Application Server or process.

There are two basic types of generic application servers:

� Non-Java applications or processes
� Java applications or processes

A generic server can therefore be any server or process that is necessary to
support the application server environment:

� Java server
� C or C++ server or process
� CORBA server
� Remote Method Invocation (RMI) server

3.1.12 Business level applications

Business level application (BLA) is a notion of an application beyond Java EE’s
definition. This is a new administration concept that expands the options
previously offered by Java EE. This grouping notion for enterprise-level
applications includes WebSphere and non-WebSphere artifacts like Service
Component Architecture (SCA) packages, libraries, and proxy filters under a
single application definition (Figure 3-12 on page 71). Every artifact in the group
is a composition unit.

70 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-12 Business level applications

A business level application has the following characteristics:

� Is a configuration that lists one or more composition units, which represent
the application binary files

� Might not explicitly manage the life cycle of every artifact

It is a model for defining an application and does not represent or contain
application binary files

� Can span more than WebSphere Application Server deployment target
runtimes, such as a proxy server, a Web server, WebSphere Application
Server Community Edition, and so on

� Provides the following management features for applications:

– Install
– Distribute
– Activate
– Monitor
– Update
– Remove

� Supports Application Service Provider (ASP) scenarios by allowing single
application binaries to be shared between multiple deployments

BLA1

EJB
Module

Web
Module

BLA3 BLA2

Java EE
Enterprise
Application

JAR

Business
Logic

Configuration

Composition

JAX-WS
Web

Service
Module

Portlet
Module

Java
Library

DB2
Database

CICS
TransactionJava

Library

Axis2 PAR JAR EARWAR

About ASPs: An ASP is a company providing information technology and
computer-based services to its customers. Software created using the ASP
model is also called on-demand software or software as a service.

 Chapter 3. WebSphere Application Server concepts 71

� Aligns WebSphere applications closer with business as opposed to IT
configuration

The overall logical application is intended to represent some function
recognizable to the business.

In summary, a BLA can be useful when an application has the following
characteristics:

� Is composed of multiple packages

� Applies to the post-deployment side of the application life cycle

� Contains additional libraries, or non-Java EE artifacts

� Includes artifacts that run on heterogeneous environments that include
WebSphere and non-WebSphere runtimes

� Is defined in a recursive manner (for example, if an application includes other
applications)

3.1.13 Centralized installation manager

In V7.0, the Network Deployment packaging adds the capability to perform
centralized installations from the deployment manager to remote nodes through
its centralized installation manager component.

Centralized installation manager enables a single installation to be pushed out as
an installation package from the deployment manager to a series of endpoints.
The endpoint can either be a node that is not part of a Network Deployment cell
or an existing Network Deployment node that might need a fix pack.

With centralized installation manager, an administrator can remotely install or
uninstall product components or maintenance to specific nodes directly from the
Integrated Solutions Console without having to log in and repetitively complete
these tasks for each node. Using centralized installation manager is a good way
to shorten the number of steps that are required to create and manage your
environment, and for an easier installation and patch management.

3.1.14 Intelligent runtime provisioning

Intelligent runtime provisioning is a new concept introduced with WebSphere
Application Server V7.0. This mechanism selects only the runtime functions
needed for an application (Figure 3-13 on page 73). Each application is
examined by WebSphere Application Server during the deployment to generate
an activation plan. At run time, the server uses the activation plan to start only
those components that are required inside the application server.

72 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-13 Intelligent runtime provisioning

Intelligent runtime provisioning is a feature that reduces memory footprint,
application server startup time, and used CPU resources needed to start the
application server.

3.2 Server environments

WebSphere Application Server enables you to build various server environments,
consisting of single and multiple application servers maintained from central
administrative points. This section provides information about the different
configurations that can be created using WebSphere Application Server V7.0:

� “Single cell configurations” on page 74
� “Multiple cell configurations” on page 77
� “Mixed node versions in a cell” on page 77
� “Flexible management” on page 78

WebSphere Application Server V7.0

Web Container

EJB Container

Web Services

SIP Container

Security

HA Manager

Infrastructure…

WebSphere Application Server V6.1

Web Container

EJB Container

Web Services

SIP Container

Security

HA Manager

Infrastructure…

All
Activated

Dynamically
Activated

Activation
Plan

 Chapter 3. WebSphere Application Server concepts 73

3.2.1 Single cell configurations

You can group nodes into a single administrative domain with cell configurations.
WebSphere Application Server allows you to create two types of configurations in
a single cell environment:

� Single system configurations
� Multiple systems configurations

Single system configurations
With the Base and Express configurations, you can only create a cell that
contains a single node with a single application server (Figure 3-14).

Figure 3-14 Cell configuration in Base and Express packages

A cell in a Network Deployment environment is a collection of multiple nodes.
Each node can contain one or more application servers. The cell contains one
deployment manager that manages the nodes and servers in the cell. A node
agent in the node is the contact point for the deployment manager during cell
administration. The deployment manager resides on the same system as the
nodes.

Systems: A system can be one of the following options:

� A server machine, if it contains only one operating system

� An operating system image, if the host server machine contains multiple
operating system images (for virtualization purposes for example)

� A z/OS image

Note: A server system can contain multiple Base and Express profiles
installations, therefore multiple cells.

Cell

Node

Application
Server

74 WebSphere Application Server V7.0: Concepts, Planning, and Design

A single system configuration in a distributed environment includes all processes
in one system (Figure 3-15).

Figure 3-15 Cell configuration option in Network Deployment: Single server system

Multiple systems configurations
As an alternative to a single system configuration, the Network Deployment
package allows you to create multiple systems configurations. The deployment
manager can be installed on one system (System A) and each node on a
different system (System B and System C), as shown in Figure 3-16 on page 76.
The servers do not have to be the same platform. For example, System A can be
an AIX system while System B is Microsoft Windows and System C is a z/OS
image.

System A

Cell

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Deployment Manager

 Chapter 3. WebSphere Application Server concepts 75

Figure 3-16 Cell configuration option in Network Deployment: Multiple server system

By the same logic, you can install other combinations, such as the deployment
manager and a node on one server system, with additional nodes installed on
separate server systems.

A Network Deployment environment gives you the flexibility to install the
WebSphere components on server systems and in locations that suit your
requirements.

System A

Cell

System B

Node

Application
Server

Node Agent

Deployment Manager

System C

Node

Application
Server

Application
Server

Node Agent

76 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.2.2 Multiple cell configurations

Cells can reach out over operating system boundaries. This means a cell can
reside entirely within one system, or be sprayed among two or more systems, as
shown in Figure 3-17.

Figure 3-17 Multiple independent cells sharing server systems

3.2.3 Mixed node versions in a cell

In general, a cell can contain nodes from different WebSphere Application Server
versions.

To administer such a topology, the deployment manager has to be at the level of
the highest node version. A WebSphere Application Server Network Deployment
V7.0 cell for example, can contain V5.1, V6.0, V6.1 ,and V7.0 nodes (Figure 3-18
on page 78). This requires that the deployment manager is at V7.0.

System A System B

Cell 1

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Deployment Manager

Cell 2

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Deployment
Manager

Note: Usually version n-3 is the last level that can be included in such a mixed
cell. However refer to the documentation of the specific versions that you want
to use, to make sure that you have a supported environment.

 Chapter 3. WebSphere Application Server concepts 77

Figure 3-18 Mixed node versions in a Network Deployment cell

3.2.4 Flexible management

Flexible management is a concept introduced with WebSphere Application
Server V7.0. With flexible management components like the administrative agent
and the job manager, you can build advanced and large-scale topologies and
manage single and multiple application server environments from a single point
of control. This reduces management and maintenance complexity.

Multiple base profiles
The administrative agent component of WebSphere Application Server provides
administration services and functions to manage multiple stand-alone (Express
and Base) application servers that are all installed in the same system.
Figure 3-8 on page 63 shows the administrative agent management model
introduced with WebSphere Application Server V7.0.

It is possible to manage multiple administrative agents with a job manager. These
administrative agents can reside on one or multiple systems.

Cell

Application
Server V6

Node Agent V6

Node V5.1

Node Agent V5.1

Node V6 Node V7.0

Application
Server
V7.0

Node Agent V7.0

Deployment Manager
V7.0

Application
Server
V7.0

Application
Server
V5.1

Application
Server
V5.1

Application
Server V6

Multiple release levels: You can upgrade a portion of the nodes in a cell,
while leaving others at a previous release level. Also, you might be managing
servers that are running multiple release levels in the same cell. It is
recommended to use this feature only for migration scenarios.

78 WebSphere Application Server V7.0: Concepts, Planning, and Design

Job manager management model and advanced topologies
The job manager component of WebSphere Application Server Network
Deployment allows you to build advanced management models and topologies
for your environment.

The job manager can manage multiple administrative agents in different systems
and can be the single point of control for these stand-alone server profiles
(Figure 3-19).

Figure 3-19 Job manager management model for multiple administrative agents

In a deployment manager environment, there is a tight coupling between
application servers and node agents and also between node agents and the
deployment manager. This tight coupling can impact the scalability of the
administrative run time if the runtime components are not located together in
close proximity using redundant, high capacity, low latency networks.

Node A

Configurations

WebSphere
Application
Server ND

V7.0

Admin
scripts

Admin
console Node B

Admin
scripts

Configurations

Integrated
Solutions Console

WebSphere
Application

Server –
Express

V7.0

Application
Server

Administrative
Agent

Node C

Configurations

WebSphere
Application

Server
V7.0

Application
Server

Administrative
Agent

Admin
scripts

Integrated
Solutions Console

Job
Manager

 Chapter 3. WebSphere Application Server concepts 79

The job manager addresses the limitations inherent in the current management
architecture by adopting a loosely coupled management architecture. Rather
than synchronously controlling a number of remote endpoints (node agents), the
job manager coordinates management across a group of endpoints by providing
an asynchronous job management capability across a number of nodes.

The advanced management model relies on the submission of management jobs
to these remote endpoints, which can be either a WebSphere Application Server
administrative agent or a deployment manager. In turn, the administrative agent
or the deployment manager executes the jobs that update the configuration,
starts or stops applications, and performs a variety of other common
administrative tasks (Figure 3-20).

To create a job manager and coordinate administrative actions among multiple
deployment managers and administer multiple unfederated application servers,
you need to create a management profile during the profile creation phase of the
installation.

Figure 3-20 Job manager management model

Servers

Deployment
Manager

Job Manager

Network
Deployment

Cell

Servers

Deployment
Manager

Network
Deployment

Cell

WebSphere
Application

Server

Administrative
Agent

WebSphere
Application

Server

Administrative
Agent

WebSphere
Application

Server

Administrative
Agent

80 WebSphere Application Server V7.0: Concepts, Planning, and Design

The job manager can manage nodes that span multiple systems and platforms.
A node managed by one job manager also can be managed by multiple job
managers.

3.3 Clusters

A cluster is a collection of servers managed together. Clusters behave as a
single application server entity to accomplish a job by parallel processing.
WebSphere Application Server provides clustering support for the following
different types of servers:

� Application server clusters
� Proxy server clusters
� Generic server clusters

3.3.1 Application server clusters

An application server cluster is a logical collection of application server
processes that provides workload balancing and high availability. It is a grouping
of application servers that run an identical set of applications managed so that
they behave as a single application server (parallel processing). WebSphere
Application Server Network Deployment or WebSphere Application Server for
z/OS is required for clustering.

Application servers that are a part of a cluster are called cluster members. When
you install, update, or delete an application, the updates are automatically
distributed to all members in the cluster. A rollout update option enables you to
update and restart the application servers on each node, one node at a time,
providing continuous availability of the application to the user.

Important characteristics of the application server clusters are as follows:

� A cell can have multiple or no clusters.
� A cluster member can only belong to a single cluster.
� Clusters may span server systems and nodes, but they cannot span cells.
� A cluster cannot span from distributed platforms to z/OS.
� A node group can be used to define groups of nodes that have enough in

common to host members of a given cluster. All cluster members in a cluster
must be in the same node group.

Note: The job manager is not a replacement for a deployment manager. It is
an option for remotely managing a Network Deployment deployment manager
or, more likely, multiple deployment managers, removing the cell boundaries.

 Chapter 3. WebSphere Application Server concepts 81

Cluster workload management
Workload management, implemented by the usage of application server clusters,
optimizes the distribution of client processing requests. WebSphere Application
Server can handle the workload management of servlet and EJB requests.
(HTTP requests can be workload-managed using tools like a load balancer.).

Use of a HTTP traffic-handling device such as IBM HTTP Server is highly
recommended. This is a simple and efficient way to front-end the WebSphere
HTTP transport.

The server-weighted round robin routing policy ensures a balanced routing
distribution based on the set of server weights that have been assigned to the
members of a cluster. In the case of horizontal clustering where each node
resides on a separate server system, the loss of one server system will not
disrupt the flow of requests, because the deployment manager is only used for
administrative tasks. The loss of the deployment manager would have no impact
on operations and primarily affects configuration activities. You can still use
administration scripts to manage your WebSphere Application Server
environment.

Workload management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers can be clustered with the EJB containers, enabling the
distribution of enterprise bean requests between EJB containers on different
application servers.

Workload management on the z/OS platform introduces a finer granularity, as
well as the usage of real-time performance data, to decide on which member a
transaction should be processed, instead of using a static round robin procedure.

It is possible to classify the incoming requests in their importance. For example,
requests coming from a platinum customer will be processed with higher
importance (and therefore faster), than a silver ranked customer.

About Workload Manager and Sysplex Distributor: Workload management
is achieved by using the Workload Manager (WLM) subsystem in combination
with the Sysplex Distributor (SD) component of z/OS. The Sysplex Distributor
receives incoming requests through a Dynamic Virtual IP address, and asks
WLM to which cluster member the request should be transmitted. WLM knows
how well each cluster member is achieving its performance goals in terms of
response time. It chooses the one that has the best response time to process
the work.

82 WebSphere Application Server V7.0: Concepts, Planning, and Design

When there are resource constraints, the WLM component will make sure that
the member processing the higher prioritized requests, gets additional resources
(like CPU), protecting the response time of your most important work.

For more information about workload management on the z/OS platform in
combination with WebSphere Application Server for z/OS, refer to 14.1.6,
“Workload management for WebSphere Application Server for z/OS” on
page 428.

High availability
WebSphere Application Server provides a high availability manager service to
eliminate single points of failure in one of the application servers. The high
availability manager service provides failover when servers are not available,
improving application availability. WebSphere Application Server also allows
HTTP Session memory-to-memory replication to replicate session data between
cluster members.

On the z/OS platform the WebSphere Application Server V7.0 high availability
manager can now use native z/OS cluster technology, the cross-system coupling
(XCF) services. This reduces the amount of CPU processsing used for the keep
alive check of clusters, while improving the time it takes to detect a failed
member.

For more information refer to 14.5, “XCF support for WebSphere HA manager”
on page 438.

In a high availability environment, a group of clusters can be defined as a core
group. All of the application servers defined as members of a cluster included in a
core group are automatically members of that core group. The use of core

About WLM changes: The WLM component can change the amount of CPU,
I/O and memory resources assigned to the different operating system
processes (the address spaces). To decide whether or not a process is eligible
for receiving additional resources, the system checks whether or not the
process keeps its defined performance targets, and whether there is more
important work in the system. This technique is performed dynamically so
there is no need for manual interaction after the definitions are made by the
system administrator (the system programmer).

About XCF services: The XCF services allow applications that are located
on multiple z/OS images to communicate with each other as well as to monitor
their status. In the case of WebSphere Application Server for z/OS, the
applications are the various cluster members.

 Chapter 3. WebSphere Application Server concepts 83

groups enables WebSphere Application Server to provide high availability for
applications that must always be available to end users. You can also configure
core groups to communicate with each other using the core group bridge. The
core groups can communicate within the same cell or across cells.

Vertical cluster
All cluster members can reside on the same system. This topology is known as
vertical scaling or vertical clustering (Figure 3-21).

Figure 3-21 A vertical cluster

Vertical clusters offer failover support inside one operating system image and
increase the resource use. For more details on vertical clusters and vertical
scaling, refer to 5.3.2, “Vertical scaling topology” on page 143.

Horizontal cluster
If cluster members are spread across different server systems and operating
system types, it is called horizontal scaling or horizontal clustering (Figure 3-22
on page 85). In this topology, each machine has a node in the cell holding a
cluster member. The combination of vertical and horizontal scaling is also
possible (Figure 3-23 on page 86).

System A

Cell

Deployment Manager

Node

Application
Server

Application
Server

Node Agent

Cluster

84 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-22 A horizontal cluster

Horizontal clusters increase availability by removing the bottleneck of using only
one physical system and increasing the scalability of the environment. For more
information about horizontal clusters and horizontal scaling see 5.3.3, “Horizontal
scaling topology” on page 147.

Multi-servant cluster
Multi-servant clustering is a special clustering topology for WebSphere
Application Server for z/OS. It basically allows each single application server
(regardless of a stand-alone or a network deployment cell), to use multiple
application running processes, to form a single application server image. If one of
the servant fails, z/OS makes sure that a new one is started automatically.

The usage of this z/OS function allows you to improve the availability of your
environment.

For more information about multi-servant regions, see 14.1.4, “Structure of an
application server” on page 422.

System A

Cell

System B

Node

Application
Server

Node Agent

Deployment Manager

System C

Node

Node Agent

Cluster

Application
Server

 Chapter 3. WebSphere Application Server concepts 85

Mixed topologies
Figure 3-23 shows a cluster that has four cluster members and is an example for
the combination of vertical and horizontal scaling topologies. The cluster uses
multiple members inside one operating system image (on one machine) as well
as being spread over multiple physical machines.

This cluster also shows the following characteristics:

� Cluster members can reside in multiple nodes.
� Only some of the application servers in a node are part of the cluster.
� Cluster members cannot span cells.

Figure 3-23 An application server cluster and its members

Mixed node versions in a cluster
A WebSphere Application Server Network Deployment V7.0 cluster can contain
nodes and application servers from WebSphere Application Server V5.1, V6.0,
V6.1, and V7.0. The topology shown in Figure 3-24 on page 87 contains mixed
version nodes within a cluster.

Server System A

Cell

Node01 on SYS_A

Application
Server

Application
Server

Node Agent

Node02 on SYS_B

Application
Server

Application
Server

Node Agent

Deployment Manager

86 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-24 Mixed version cluster nodes in a cell

3.3.2 Proxy server clusters

A proxy server cluster consists of a group of proxy servers that can route
requests and traffic to applications in a cell.

3.3.3 Generic server clusters

A generic server cluster allows you to configure external servers (non-IBM
application servers or a pre-V6 WebSphere Application Server) into a logical
cluster that can be used by the proxy server to route requests. It defines the
server endpoints to which URI groups are mapped.

With generic server clusters, generic servers host a common set of resources
and can receive routing actions as a unit.

Cell

Application
Server V6

Application
Server V6

Application
Server V6

Node Agent V6

Node V5.1

Application
Server
V5.1

Application
Server
V5.1

Application
Server
V5.1

Node Agent V5.1

Node V6 Node V7.0

Application
Server
V7.0

Application
Server
V7.0

Application
Server
V7.0

Node Agent V7.0

Cluster

Deployment Manager
V7.0

Note: You can upgrade a portion of the nodes in a cell, while leaving others at
a previous release level in stable cells. It is suggested to use this feature only
for migration scenarios.

 Chapter 3. WebSphere Application Server concepts 87

3.4 Runtime processes

In this section, we discuss how WebSphere Application Server processes
execute at run time. The executable processes include application servers, node
agents, administrative agents, deployment managers, and job managers. Note
that cells, nodes, and clusters are administrative concepts and not executable
components.

3.4.1 Distributed platforms

On distributed platforms (Windows, AIX, Linux, and so on), WebSphere
Application Server is built using a single process model where the entire server
runs in a single Java Virtual Machine (JVM) process.

Each process appears as a Java process. For example, when you start a
deployment manager on Windows, a java.exe process is visible in the Windows
Task Manager. Starting a node agent starts a second java.exe process, and each
application server started is seen as a java.exe process (Figure 3-25).

Figure 3-25 WebSphere Application Server processes on a Windows system

88 WebSphere Application Server V7.0: Concepts, Planning, and Design

3.4.2 WebSphere Application Server for z/OS

WebSphere Application Server for z/OS uses multiple runtime components to
form the different WebSphere Application Server parts (such as the application
server, deployment manager and so on). One part, the controller region, runs
some basic WebSphere Application Server functions, while the other, the servant
region, houses your applications.

You have the option to create multiple processes, z/OS address spaces, that run
your application. This form of mini-cluster, the multi-servant cluster, enhances the
performance and availability of your application, because a failure in one of these
servants does not harm the others. Each servant runs its own JVM and its own
copy of the application.

For detailed information about the WebSphere Application Server for z/OS
runtime, see 14.1.5, “Runtime processes” on page 425 in the z/OS chapter.

3.5 Using Web servers

In WebSphere Application Server, a Web server can be administratively defined
to the cell. This allows the association of applications to one or more Web
servers and custom plug-in configuration files to be generated for each Web
server. This section discusses the options you have for managing Web servers in
a WebSphere Application Server environment.

3.5.1 Managed Web servers

Defining a managed Web server allows you to start and stop the Web server
from the Integrated Solutions Console and push the plug-in configuration file to
the Web server. A node agent must be installed on the Web server machine. An
exception is if the Web server is the IBM HTTP Server. See 3.5.3, “IBM HTTP
Server as an unmanaged Web server (special case)” on page 92 for more
information. Figure 3-26 on page 90 illustrates a Web server managed node.

Managed and unmanaged nodes: When you define a Web server to
WebSphere Application Server, it is associated with a node. The node is either
a managed or an unmanaged. When we refer to managed Web servers, we
are referring to a Web server defined on a managed node. An unmanaged
Web server resides on an unmanaged node. In a stand-alone server
environment, you can define one unmanaged Web server. In a distributed
environment, you define multiple managed or unmanaged Web servers.

 Chapter 3. WebSphere Application Server concepts 89

Figure 3-26 Web server managed node

3.5.2 Unmanaged Web servers

Unmanaged Web servers reside on a system without a node agent. This is the
only option in a stand-alone server environment and is a common option for Web
servers installed outside a firewall. The use of this topology requires that each
time the plug-in configuration file is regenerated, it is copied from the machine
where WebSphere Application Server is installed to the machine where the Web
server is running. Figure 3-27 on page 91 illustrates a Web server unmanaged
node.

Server System A

Cell

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Deployment Manager

Server System B

Start/Stop
Manage

Web Server

Plug-in
Plug-in
Config
XML
File

Node Agent
Manages

90 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 3-27 Web server unmanaged node

Server System A

Cell

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Server System B

Manual transfer
or shared file

Web Server

Plug-in
Plug-in
Config
XML
File

Deployment Manager

 Chapter 3. WebSphere Application Server concepts 91

3.5.3 IBM HTTP Server as an unmanaged Web server (special case)

If the Web server is IBM HTTP Server, it can be installed on a remote machine
without installing a node agent. You can administer IBM HTTP Server through
the deployment manager using the IBM HTTP Server Admin Process for tasks
such as starting, stopping, or automatically pushing the plug-in configuration file.
Figure 3-28 illustrates an IBM HTTP Server unmanaged node.

Figure 3-28 IBM HTTP Server unmanaged node

Server System A

Cell

Node

Application
Server

Application
Server

Node Agent

Node

Application
Server

Application
Server

Node Agent

Deployment Manager

Server System B

Start/Stop
Manage

IBM HTTP
Server

Plug-in
Plug-in
Config
XML
File

IHS Admin
Process

HTTP commands
to manage IHS

92 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 4. Infrastructure

There are many things to consider when planning and designing an
infrastructure for a WebSphere Application Server environment. This chapter
describes the most important components specific to WebSphere Application
Server that you have to understand in order to run a successful WebSphere
infrastructure project.

This chapter contains the following sections:

� “Infrastructure planning” on page 94
� “Design considerations” on page 95
� “Sizing the infrastructure” on page 106
� “Benchmarking” on page 107
� “Performance tuning” on page 108
� “Planning for monitoring” on page 114
� “Planning for backup and recovery” on page 117
� “Planning for centralized installation” on page 119

4

Note: The terms machine and system stands as a synonym for physical
machines, logical partitions (LPARs) and operating system image.

© Copyright IBM Corp. 2009. All rights reserved. 93

4.1 Infrastructure planning

This section gives a general overview of the typical phases you have to go
through during a project. It includes how to gather requirements and how to apply
these requirements to a WebSphere Application Server project.

Typically, a new project starts with only a concept. Little is known about specific
implementation details, especially how they relate to the infrastructure. Your
development team and infrastructure team must work closely together to cater to
the needs of the overall application environment.

Bringing together a large team of people can create an environment that helps
hone the environment requirements. However, if unfocused, a large team can
wander aimlessly and create more confusion than resolved issues. For this
reason, carefully consider the size of the requirements gathering team and try to
keep the meetings as focused as possible. Provide template documents to be
completed by the developers, the application business owners, and the user
experience team.

Try to gather information that falls into the following categories:

� Functional requirements

Functional requirements are usually determined by business on the use of the
application and related functions.

� Non-functional requirements

Non-functional requirements describe the properties of the underlying
architecture and infrastructure such as reliability, scalability, availability, or
security.

� Capacity requirements

Capacity requirements include traffic estimates, traffic patterns, and expected
audience size.

Requirements gathering is an iterative process. Make sure that your plans are
flexible enough to deal with future changes in requirements Always keep in mind
that the plans can impact other parts of the project. To support this, make sure
that dependencies and data-flows, whether application or infrastructure-related,
are clearly documented.

94 WebSphere Application Server V7.0: Concepts, Planning, and Design

With this list of requirements, you can start to create the first draft of your design.
Target developing the following designs:

� Application design

To create your application design, use your functional and non-functional
requirements to create guidelines for your application developers about how
your application is built.

� Implementation design

This design defines the target deployment infrastructure on which your
application is deployed.

The final version of this implementation design will contain details about the
hardware, processors, and software that is installed. However, you do not
begin with all these details. Initially, your implementation design simply lists
component requirements, such as a database, a set of application servers, a
set of Web servers, and whatever other components are defined in the
requirements phase.

With these two draft designs, you can begin the process of formulating counts of
servers, network requirements, and the other items related to the infrastructure.
We describe this in 4.3, “Sizing the infrastructure” on page 106. In some cases, it
might be appropriate to perform benchmark tests. There are many ways to
perform benchmarking tests, and in 4.4, “Benchmarking” on page 107, we
describe some of these methods.

The last step in every deployment is to tune your system and measure whether it
can handle the projected load that your non-functional requirements specified.
For more details about how to plan for load tests, see 4.5, “Performance tuning”
on page 108.

4.2 Design considerations

The following sections discuss some points to consider when designing a
WebSphere Application Server deployment. They will most likely impact your
design significantly. We will talk in more detail about:

� “Scalability” on page 96
� “Caching” on page 98
� “High availability” on page 99
� “Load-balancing and fail-over” on page 100
� “Disaster recovery” on page 101
� “Security” on page 102
� “Application deployment” on page 104
� “Servicability” on page 105

 Chapter 4. Infrastructure 95

4.2.1 Scalability

Scalability, as used in this book, means the ability of the environment to grow as
the infrastructure load grows. Designing your infrastructure to be scalable
therefore, means to design your infrastructure with the ability to grow.

Scalability depends on many different factors such as hardware, operating
system, middleware, and so on. For example, z/OS systems usually scale better
for business transactions than other platforms.

Understanding the scalability of the components in your WebSphere Application
Server infrastructure and applying appropriate scaling techniques can greatly
improve availability and performance. Scaling techniques are especially useful in
multi-tier architectures when you want to evaluate components associated with
IP load balancers, such as the following components:

� Dispatchers or edge servers
� Web presentation servers
� Web application servers
� Data servers
� Transaction servers
� Logical partitions (LPARs)

Use the following steps to classify your Web site and to identify scaling
techniques that are applicable to your environment:

1. Understand the application environment.

Applications are key to the scalability of the infrastructure. It must be ensured
that the applications are designed for scaling. It is important to understand the
component flow and traffic volumes associated with existing applications and
to evaluate the nature of new applications. It is essential to understand each
single component and system being used in the transaction flow. Evaluate
how scaling can be applied for each of these components and applications.
Different types of applications represent different workload patterns. For
example, online banking applications might experience the greatest workload
at the database server, while other applications might experience the greatest
workload at the application server.

2. Categorize your workload.

Knowing the workload pattern for a site determines where you focus
scalability efforts and which scaling techniques you need to apply. For
example, a customer self-service site, such as an online bank, needs to focus
on transaction performance and the scalability of databases containing
customer information that is used across sessions. These considerations
would not typically be significant for a publish/subscribe site, where a user
signs up for data to be sent to them, usually through a mail message.

96 WebSphere Application Server V7.0: Concepts, Planning, and Design

Web sites with similar workload patterns can be classified into the following
site types:

– Publish/subscribe
– Online shopping
– Customer self-service
– Online trading
– Business to business

3. Determine the components most affected.

This step involves mapping the most important site characteristics to each
component. From a scalability viewpoint, the key components of the
infrastructure are the load balancers, the application servers, security
services, transaction and data servers, and the network. First focus on those
components which are most heavily used by the key transactions of your
applications.

4. Select the scaling techniques to apply.

When the information gathering is as complete as it can be, it is time to
consider matching scaling techniques to components. Manageability, security,
and availability are critical factors in all design decisions. Do not use
techniques that provide scalability but compromise any of the above
mentioned critical factors.

Choose from the following scaling techniques:

– Using a faster machine
– Using multiple machines
– Creating clusters
– Using appliance servers
– Segmenting the workload
– Using batch requests
– Aggregating user data
– Managing connections
– Using caching techniques
– Using intelligent virtualization techniques

5. Apply the techniques.

Testing is key to successful application deployment. It is crucial that you
determine not only if the scaling techniques are effective, but that they do not
adversely affect other areas. Keep in mind that all components making up the
infrastructure for your application environment must be balanced. Only when
you have achieved the desired results should you move into production.

 Chapter 4. Infrastructure 97

6. Reevaluate.

Recognize that any system is dynamic. The initial infrastructure will at some
point need to be reviewed and possibly expanded. Changes in the nature of
the workload can create a need to reevaluate the current environment. Large
increases in traffic will require examination of the machine configurations.
Scalability is not a one time design consideration, It is part of the growth of the
environment.

The developerWorks article Design for Scalability - an Update provides a
detailed discussion about these steps. It can be accessed at the following Web
page:

http://www.ibm.com/developerworks/websphere/library/techarticles/hipods
/scalability.html

We expand on some of the scaling techniques in Chapter 7, “Performance,
scalability, and high availability” on page 229.

4.2.2 Caching

Caching is a widely used technique to improve performance of application server
environments. If planning for a high volume web site, caching will most likely be
required to achieve satisfying performance results at acceptable cost.

WebSphere Application Server provides many different caching features at
different locations in the architecture.

WebSphere Application Network Deployment provides caching features at each
possible layer of the infrastructure:

� Infrastructure edge:

– Caching Proxy provided by the Edge Components
– WebSphere Proxy Server

� HTTP server layer:

– Edge Side Include (ESI) fragment caching capabilities provided by the
WebSphere plug-in

– Caching capabilities of the HTTP server itself (like the Fast Response
Cache Accelerator (FRCA) as provided by most implementations of IBM
HTTP Server)

� Application server layer:

– Dynamic caching service inside the application server’s JVM
– WebSphere Proxy Server

98 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/developerworks/websphere/library/techarticles/hipods/scalability.html

In addition to the caching features provided by WebSphere Application Server
Network Deployment, you might consider using third party caching devices or
external caching infrastructures provided by IBM and third parties.

To use the caching mechanisms provided by WebSphere Application Server and
other components of your environment, the application must be designed for
caching as well. Therefore it is suggested to design caching in close cooperation
with the application architect.

After you are done with designing your cache locations complete your
implementation design to include the caching components.

4.2.3 High availability

Designing an infrastructure for high availability means to design an infrastructure
in a way that your environment can survive the failure of one or multiple
components. High availability implies redundancy by avoiding any single point of
failure on any layer (network, hardware, processes, and so forth). The number of
failing components your environment has to survive without losing service
depends on the requirements for the specific environment.

The following list helps to identify the high availability needs in your infrastructure:

� Talk to the sponsor of your project to identify the high availability needs for
each of the services used. Because high availability in most cases means
redundancy, this also means that high availability will increase the cost of the
implementation.

Not every service has the same high availability requirements. Therefore it
would be a waste of effort to plan for full high availability for these types of
services. Be careful when evaluating, as the high availability of the whole
systems depends on the least available component. Carefully gather where
and what type of high availability you really need to be able to meet the
service level agreement (SLA) and non-functional requirements.

� When you have gathered the high availability requirements, review every
component of the implementation design you developed in 4.1, “Infrastructure
planning” on page 94, and determine how significant this component is for the
availability of the service, and how a failure would impact the availability of
your service.

� Evaluate every component you identified in the previous step against the
following checklist:

– How critical is the component for the service?

The criticality of the component will have an impact on the investments you
are willing to take to make this component highly available.

 Chapter 4. Infrastructure 99

– Consider regular maintenance.

In addition to failures of components, consider maintenance and hang
situations.

– Is the service under your control?

Sometimes you are deal with components in the architecture that are out
of your control. For example, external services provided by someone else.

If the component is out of your control, document this as an additional risk
and inform the project sponsor.

– What needs to be done to make the component highly available?

Sometimes you have more than one option to make a component highly
available. You have to make a selection as to which best fits your
requirements.

– Does the application handle outages in a defined way?

Check with the application developers on how the application handles an
outage of a component. Depending on the component and the error
situation, the application might need a specific design or error recovery
coded before using high availability features of the infrastructure.

– Prioritize your high availability investments.

Decide the high availability implementation based on the criticality of the
component and the expected outage rate. Document any deviations from
the requirements gathering.

– Size every component in a way that it can provide sufficient capacity even
in case of a failure of a redundant part.

After you are done with your high availability design, update your implementation
design to include the high availability features.

4.2.4 Load-balancing and fail-over

As a result of the design considerations for high availability you will most likely
identify a number of components that need redundancy. Having redundant
systems in an architecture requires you to think about how to implement this
redundancy to ensure getting the most benefit from the systems during normal
operations, and how you will manage a seamless fail-over in case a component
fails. This introduces the following techniques to your design:

� Load-balancing

Load-balancing is the technique to spread load across multiple available
copies of a component for an optimum usage of the available resources.

100 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Fail-over

Fail-over is the capability to automatically detect the outage of a component
and route requests around the failed component. When the failed resource
becomes available, it will be determined automatically by the system and
transparently rejoin workload processing.

For designing load-balancing and fail-over, you need to know each components
load-balancing and fail-over capabilities and how they can be used. Depending
on what features you use and how you achieve these capabilities, you will require
additional hardware and software to gain high availability.

In a typical WebSphere Application Server environment, there are a variety of
components that need to be considered when implementing load-balancing and
fail-over capabilities:

� Caching proxy servers
� HTTP servers
� Containers (such as the Web, SIP, and Portlet containers)
� Enterprise JavaBeans (EJB) containers
� Messaging engines
� Back-end serves (database, enterprise information systems, and so forth)
� User registries

While load-balancing and fail-over capabilities for some of these components is
incorporated into WebSphere Application Server, others require additional
hardware and software.

For example, to achieve high availability for your HTTP servers or reverse proxy
servers, you need IP sprayers in front of the HTTP servers or reverse proxy
servers. In contrast, fail-over capabilities for WebSphere default messaging is
provided by the WebSphere Application Server High Availability Manager
(HAManager) when using WebSphere clusters. Keep in mind that the
HAManager requires shared storage between all cluster members to be able to
fail-over the messaging service. After you have finished your load-balancing and
fail-over discussion, update your implementation design to include these features
as well.

4.2.5 Disaster recovery

Disaster recovery is a different requirement than high availability. In 4.2.3, “High
availability” on page 99, we discussed some considerations about what needs to
be done to make sure that our services are highly available. For example, an
outage of a single component will not bring our service down. High availability
can usually be achieved by avoiding any single point of failure in the architecture
and providing sufficient resources.

 Chapter 4. Infrastructure 101

Disaster recovery concentrates on the actions, processes, and preparations to
recover from a disaster that has struck your infrastructure. Important points when
planning for disaster recovery are as follows:

� Recovery Time Objective (RTO)

How much time can pass before the failed component must be up and
running?

� Recovery Point Objective (RPO)

How much data loss is affordable? The RPO sets the interval for which no
data backup can be provided. If no data loss can be afforded, the RPO would
be zero.

Planning for disaster recovery is a complex task, and requires an end-to-end
planning for all components of your data center. For information on WebSphere
Application Server and disaster recovery, refer to the developerWorks article
Everything you always wanted to know about WebSphere Application Server but
were afraid to ask, Part 5 available at the following Web page:

http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott
/0707_col_alcott.html

4.2.6 Security

WebSphere Application Server V7.0 is a powerful Java-based middleware
application server ready to run your mission critical applications and business
transactions. For this reason we need to design proper security in our
WebSphere Application Server infrastructure from the start of the design phase.

WebSphere Application Server provides a continuously expanding and flexible
security infrastructure you can use to make the access to your applications and
data more secure. The security model of WebSphere Application Server was
enhanced in Version 7.0 by adding the following features (for more information
see 12.1, “What is new in V7.0” on page 380):

� Support for multiple security domains
� Security auditing
� Improvements for certificate management
� SPNEGO and Kerberos1 support
� Java EE 5 Security Annotations support

1 Kerberos support is not part of the base products but is planned to be available in a future fix pack

102 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott/0707_col_alcott.html

It is the responsibility of the WebSphere Application Server infrastructure to
provide all the services required by applications to run in a secured environment.
It is imperative then, to have security in mind when planning for a WebSphere
Application Server infrastructure. In many cases you will find reusable
components of a security infrastructure already in place.

Consider how security will affect your infrastructure:

� Understand the security policy and requirements for your future environment.

� Work with a security subject matter expert to develop a security infrastructure
that adheres to the requirements and integrates in the existing infrastructure.

� Make sure that sufficient physical security is in place.

� Make sure the application developers understand the security requirements
and code the application accordingly.

� Consider the user registry (or registries) you plan to use. WebSphere
Application Server V7.0 supports multiple user registries and multiple security
domains.

� Make sure that the user registries are not breaking the high availability
requirements. Even if the user registries you are using are out of scope of the
WebSphere Application Server project, considerations for high availability
need to be taken and requested. For example, make sure that your LDAP
user registries are made highly available and are not a single point of failure.

� Define the trust domain for your environment. All computers in the same
WebSphere security domain trust each other. This trust domain can be
extended, and when using SPNEGO / Kerberos, even out to the Windows
desktop of the users in your enterprise.

� Assess your current implementation design and ensure that every possible
access to your systems is secured.

� Consider the level of auditing required and how to implement it.

� Consider how you will secure stored data. Think of operating system security
and encryption of stored data.

� Define a password policy, including considerations for handling password
expirations for individual users.

� Consider encryption requirements for network traffic. Encryption introduces
overhead and increased resource costs, so use encryption only where
appropriate.

� Define the encryption (SSL) endpoints in your communications.

 Chapter 4. Infrastructure 103

� Plan for certificates and their expiration:

– Decide which traffic requires certificates from a trusted certificate authority
and for which traffic a self-signed certificate is sufficient. Secured
connections to the outside world usually use a trusted certificate, but for
connections inside the enterprise, self-signed certificates are usually
enough.

– Develop a management strategy for the certificates. Many trusted
certificate authorities provide online tools which support certificate
management. But what about self-signed certificates?

– How are you going to back up your certificates? Always keep in mind that
your certificates are the key to your data. Your encrypted data is useless if
you lose your certificates.

– Plan how you will secure your certificates. Certificates are the key to your
data, therefore make sure that they are secured and backed up properly.

After you have finished your security considerations, update your implementation
design to include all security related components.

4.2.7 Application deployment

When planning for WebSphere Application Server infrastructure, do not delay
application deployment thoughts until the application is ready to deploy. Start this
planning task when you start designing your infrastructure. The way you deploy
your application affects your infrastructure design in various ways:

� Performance.

The way you deploy your application can affect performance significantly.
Tests showed significant performance differences when deploying Enterprise
Java Bean (EJB) modules to the same application server as the EJB client
components, compared to deploying EJB modules to a separate application
server than the EJB client components.

Deploying EJB modules to separate application servers, however, gives a lot
more flexibility and avoids duplication of code.

Note: Further hints and tips for WebSphere Application Server security
related considerations are described in IBM WebSphere Developer Technical
Journal article WebSphere Application Server V6 advanced security
hardening -- Part 1, available from the following Web page:

http://www.ibm.com/developerworks/websphere/techjournal//0512_botzum
/0512_botzum1.html

104 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/developerworks/websphere/techjournal//0512_botzum/0512_botzum1.html
http://www-128.ibm.com/developerworks/websphere/techjournal//0512_botzum/0512_botzum1.html

� Number of application servers

When you plan the deployment of multiple applications in your environment
you can either deploy multiple applications to the same application server or
create one server for each application. Depending on that decision you might
end up with a higher number of application servers in your cell. This means
that you will have a larger cell, which implies increased server startup times
and complexity for your environment due to larger high availability views.

� Cluster communication

The higher the number of application servers, the higher is the
communications and systems management overhead in your environment.

� Platforms

WebSphere Application Server supports building cross-platform cells. This
means you can create one cell containing servers on multiple platforms.
While this option increases the complexity of the environment and makes the
administration more complicated, it gives a lot of flexibility when it comes to
integration of existing software components.

After you know how your applications will be deployed, update your
implementation design.

4.2.8 Servicability

Plan for servicability and problem determination tasks for your environment.
Planning for servicability includes planning for tools, education, disk
requirements for debug data, communications requirements, required agents for
your tools, and so on.

Note: WebSphere Application Server V7.0 comes with IBM Support Assistant
V4.0 which provides many tools for problem analysis and data collection.
Refer to the following Web pages for more information:

http://www-01.ibm.com/software/support/isa/

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/ttrb_supportasst.html

 Chapter 4. Infrastructure 105

http://www-01.ibm.com/software/support/isa/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/ttrb_supportasst.html

4.3 Sizing the infrastructure

After determining the initial application and infrastructure design and scalability
techniques, you need to determine the system resources required for the project
to keep the service level agreements (SLAs). Whenever making sizing decisions
ensure that all design decisions are still honored.

Application design will evolve over time, and sizing is usually done in the early
stages of design. However, when sizing, it is important that you have a static
version of the application design with which to work. The better view you have of
the application design, the better your sizing estimate will be.

You have to consider which hardware platforms you want to use. This decision
depends on the following factors:

� Scaling capabilities of the platform
� Platforms WebSphere Application Server supports
� Performance, security, and high availability requirements of your environment.

Next, determine your scaling approach:

� Scaling up—vertical scaling

Scaling up is done inside a single system, typically on a multi-processor
machine. Even if this approach might be sufficient from the performance
perspective, the underlying hardware is the single points of failure.

� Scaling out—horizontal scaling

Scaling out means increasing the number of machines. Scaling out is typically
done to improve high availability by limiting single points of failure as well as
for scalability reasons when hardware resources are the limiting factor. You
have to support and maintain multiple machines. If you decide to use the
scale out approach keep in mind that your design must be capable of
processing the workload even if one system fails.

Sizing estimates are based solely on your input, which means the more accurate
the input, the better the results. Sizing work assumes an average standard of
application performance behavior and an average response time is assumed for
each transaction. Calculations based on this are performed to determine the
estimated number of machines and processors your application will require. If
your enterprise has a user experience team, they might have documented
standards for a typical response time that your new project is required to meet.

If you need a more accurate estimation of your hardware requirements and you
already have your application, consider using one of the benchmarking services
discussed in 4.4, “Benchmarking” on page 107.

106 WebSphere Application Server V7.0: Concepts, Planning, and Design

Based on your estimate, you might have to update the implementation design for
all of your planned environments. Changes to the production environment should
be incorporated into the development and testing environments if at all possible.
If this is not possible for budgetary reasons, ensure that the integration and
development environment are functionally equivalent.

Make sure to validate the sizing with a load test before starting the production.

4.4 Benchmarking

Benchmarking is the process used to determine the capacity of an application
environment through load testing. This determination enables you to make
reasonable judgements as your environment begins to change. Using
benchmarks, you can determine the current work environment capacity and set
expectations as new applications and components are introduced.

Many enterprises maintain a benchmark of their application stack and change it
after each launch or upgrade of a component. These customers usually have
well-developed application testing environments and teams dedicated to
benchmarking. For those that do not, alternatives such as the IBM Test Center
are available. There are also third-party benchmark companies that provide this
service.

IBM Test Center
IBM Global Services offers Performance Management, Testing, and Scalability
services. This team will come on-site and assess the overall site performance.
This investigation is platform neutral. Offerings include, but are not limited to the
following services:

� Testing and Scalability Services for TCP/IP networks
� Testing and Scalability Services for Web site stress analysis
� Performance Engineering and Test Process Consulting
� Performance Testing and Validation
� Performance Tuning and Capacity Optimization

Note: We recommend including a benchmark or load test as part of the
development process. This will prevent a lot of performance problems and
help improve the code quality of the application, as well as the robustness of
the overall environment.

 Chapter 4. Infrastructure 107

When using a service such as those provided by the IBM Test Center, you are
presented with large amounts of supporting documentation and evidence to
support the results of the tests. You can use this data to adjust your current
environment.

4.5 Performance tuning

Performance is one of the most important non-functional requirements for any
WebSphere environment. Application performance must be tracked continuously
during your project.

When your project is finished and you switch your environment into production,
you need to be confident that the environment can handle the user load.
Performance problems are by far the most user-visible problem that you can
have. Most users are willing to accept small functional problems when a system
is rolled out, but performance problems are unacceptable to most users and
affect everyone working on the system. Make sure to perform load tests that
represent a realistic user load against your system.

4.5.1 Application design issues

Many performance problems cannot be fixed by using more hardware or
changing WebSphere parameters. As such, you really have to make
performance testing and tuning part of your development process and release
cycles to avoid problems later on. Performance testing and tuning must be
considered in the project schedule.

It takes much more effort and money to correct issues after they occurred in
production than to fix them up front. If performance testing is part of your
development cycle, you are able to correct issues with your application design
much earlier, resulting in fewer issues when using your application on the
production environment.

Note: It is suggested when developing applications to use application profiling
techniques. This allows the development team to identify bottlenecks in the
applications and hot spots where a lot of CPU resources are consumed.
Usually, many hot spots can be removed with little effort.

108 WebSphere Application Server V7.0: Concepts, Planning, and Design

4.5.2 Understand your requirements

Without a clear understanding of your requirements, you have no goal to tune
against. It is important when doing performance tuning to have specific
objectives as follows:

� Transactions per second
� Throughput
� A maximum time frame, for batch style applications
� Maximum used resources

Do not waste time performance tuning a system that was improperly sized and
cannot withstand the load. To identify a good objective you have to understand
the non-functional requirements as well as the sizing of your environment.

4.5.3 Test environment setup

When executing performance tests, follow these general tips:

� Execute your tests in a production-like environment.

Using an environment that is as close as possible to the production
environment enables you to extrapolate the test results to the production
environment. If you are starting with a new environment use the future
production environment for your testing purposes before going live.

� Exclusive access to the environment for the test.

Make sure that nobody is using the test systems and that no background
processes are running that consume more resources than what you find in
production. For example, if the intent is to test performance during the
database backup, make sure the backup is running.

� Usage of monitoring options.

When implementing a WebSphere Application Server environment we
suggest using monitoring tools to check the health of the environment. During
performance tests there are two level of monitoring to be performed:

– Debug monitoring

The goal is to identify possible bottlenecks or reasons for problems. The
debugging level is detailed and will use additional resources, usually
affecting the test results.

– Production monitoring

After identifying and solving performance issues with the debug
monitoring, perform a test with the same set of monitoring options that are
later used in the productive environment. With this setting, you should be
able to satisfy the service level agreements.

 Chapter 4. Infrastructure 109

� Monitor resource use.

Check for processor, memory, and disk use before, during, and after each test
run to see if there are any unusual patterns. If the target environment is using
shared infrastructure, make sure the shared component is performing under
the projected shared load.

� Isolate network traffic as much as possible.

Using switches, there is rarely a circumstance where traffic from one server
overruns the port of another. It is possible, though, to flood ports used for
routing off the network to other networks or even the switch backbone for
heavy traffic. Make sure that your network isolates the testing environment as
much as possible prior to starting, because performance degradation of the
network can create unexpected results.

� Perform repetitive tests.

Reset the environment to a defined start state. This includes the database,
caches, and so on. Databases that use up datasets need to be reset in
particular. Make sure you have enough test data available.

4.5.4 Load factors

The most important factors that determine how you conduct your load tests are
as follows:

� Request rate
� Concurrent users
� Usage patterns

This is not a complete list and other factors can become more important
depending on the kind of site that is being developed.

Request rate
The request rate represents the number of requests per time unit. In Web-based
environments this is mostly expressed as number of HTTP requests per second.
It is critical that the request rate is close to the real word load expectations.

Concurrent users
The concurrent users number expresses the numbers of users concurrently
requesting service from your environment at a point in time. This number of users
is really firing requests to your system at a given point of time.

110 WebSphere Application Server V7.0: Concepts, Planning, and Design

In contrast to the concurrent users there are:

� Active users

Active users expresses all users currently using resources (for example, in the
form of session data) in your environment. It also includes the users who are
reading the response, entering data, and so on.

� Named users

Named users are users that are defined in the overall environment. This is
usually a large number compared to the number of concurrent users.

Usage patterns
At this point in the project, it is important that you consider how your users will
use the site. You might want to use the use cases that your developers defined
for their application design as an input to build your usage patterns. This makes it
easier to build the scenarios later that the load test will use.

Usage patterns consist of the following factors:

� Use cases modeled as click streams through your pages
� Weights applied to your use cases

Combining weights with click streams is important because it shows you how
many users you expect in which of your application components, and where they
generate load. After all, it is a different kind of load if you expect 70% of your
users to search your site instead of browsing through the catalog than vice versa.
These assumptions also have an impact on your caching strategy.

Notify your developers of your findings so that they can apply them to their
development effort. Make sure that the most common use cases are the ones
where most of the performance optimization work is performed.

To use this information later when recording your load test scenarios, we suggest
that you write a report with screen captures or URL paths for the click streams
(user behavior). Include the weights for your use cases to show the reviewers
how the load was distributed.

 Chapter 4. Infrastructure 111

4.5.5 Production system tuning

This is where you apply all the performance, scalability, and high availability
considerations in production. Tuning the system is an iterative process that
involves optimizing WebSphere parameters to suit your runtime environment.

When changing a production environment, use some standard practices:

� Change only one parameter at a time.
� Document all changes.
� Compare several test runs to the baseline.

Changes between test runs should not differ by more than a small percentage to
preclude introducing new problems that you might need to sort out before you
continue tuning.

As soon as you finish tuning your production systems, apply the settings to your
test environments to make sure that they are similar to production. Plan to rerun
your tests there to establish new baselines on these systems and to see how
these changes affect the performance.

Keep in mind that you often only have one chance to get this right. Normally, as
soon as you are in production with your system, you cannot run performance
tests on this environment any more, simply because you cannot take the
production system offline to run more performance tests. If a production system
is being tested, it is likely that the system is running in a severely degraded
position, and you have already lost half the battle.

After completing your first performance tests and tuning the WebSphere
parameters, evaluate your results and compare them to your objectives to see
how all of this worked out for you.

Important: To perform tuning in the production environment, have the final
version of code running. This version should have passed performance tests
on the integration environment prior to changing any WebSphere parameters
on the production system.

Note: Because it is rare to use a production system for load tests, it is usually
a bad idea to migrate these environments to new WebSphere versions without
doing a proper test on an equivalent test system or new hardware.

112 WebSphere Application Server V7.0: Concepts, Planning, and Design

4.5.6 Conclusions

There are various possible outcomes from your performance tests that you must
clearly understand and act upon:

� Performance meets your objectives.

If the performance meets your objectives, make sure that you have planned
for future growth and that you are meeting all of your performance goals. After
that, we suggest documenting your findings in a performance tuning report
and archiving it. Include all the settings that you changed to reach your
objectives.

This report is useful when you set up a new environment or when you have to
duplicate your results somewhere else on a similar environment with the
same application. This data is essential when adding additional replicas of
some components in the system, because they need to be configured to the
same settings used by the current resources.

� Performance is slower than required.

If your application performance is somewhat slower than expected, and you
have already done all possible application and WebSphere parameter tuning,
you might need to add more hardware (for example, increase memory,
upgrade processors, and so forth) to the bottleneck components in your
environment. Then, run the tests again. Verify with the appropriate teams that
there were no missed bottlenecks in the overall system flow.

� Performance is significantly slower than required.

In this case, you must start over with your sizing and ask the following
questions:

– Did you underestimate any of the application characteristics during your
initial sizing? If so, why?

– Did you underestimate the traffic and number of users/hits on the site?

– Is it still possible to change parts of the application to improve
performance?

– Is it possible to obtain additional resources?

After answering these questions, you should have a better understanding about
the problem that you face. Your best bet is to analyze your application and try to
find the bottlenecks that cause your performance problems. Tools such as the
Profiler that is part of Rational Application Developer Assembly and Deploy V7.5
and Rational Application Developer for WebSphere Software V7.5 can help.

 Chapter 4. Infrastructure 113

4.6 Planning for monitoring

As most WebSphere-based applications are internet-based applications, a 24×7
availability is a must. The tolerance of internet users for unavailable sites is low
and users usually navigate to the next site if your site is not operable. This means
you just lost a potential customer. It is required then, to track and monitor the
availability of your site so that you recognize when things are going wrong and
you can react in a timely manner.

An efficient monitoring, combined with a sophisticated alerting and problem
handling procedure, can increase the availability of your service significantly.
That is why you must plan for monitoring and problem handling. Do not wait until
your environment becomes unproductive.

4.6.1 Environment analysis for monitoring

Careful planning for monitoring is essential and must start with a detailed
analysis of the environment to be monitored. It is important to ensure that the full
environment is monitored and no single component is overseen.

To analyze the monitoring requirements for your environment consider the
following factors to give you an overview of what needs to be done:

Components to be monitored
It is essential that each component required to run your service is monitored. For
each component you identify, answer the following questions:

� What are the possible states of the component and how can you retrieve them?
� What is the impact of each of the possible states the component can have?
� What specific attributes of the component can be monitored?
� For each attribute you can monitor, define the following values:

– Which attribute values (or range of attribute values) show a normal status
of the component?

– Which attribute values (or range of attribute values) show a situation which
requires attention of the administrator (warning level)?

– Which attribute values (or range of attribute values) show a critical
condition for the component and require immediate administrator action
(alert)?

Prioritize each of the components monitoring results and define actions to be
taken.

114 WebSphere Application Server V7.0: Concepts, Planning, and Design

Monitoring software
To provide efficient 24×7 monitoring, it is required to use some kind of monitoring
software. Many organizations have some monitoring infrastructure in place.
Determine if you can reuse this for the WebSphere Application Server
infrastructure as well.

Monitoring agents
Depending on the monitoring software in use, monitoring agents for certain
components might be available. Otherwise, most monitoring software provides
some scripting interfaces that allow you to write your own scripts. The scripts will
check and output the results that the monitoring software can analyze.

Infrastructure requirements
When running monitoring in your environment you need to plan for additional
resources. Monitoring affects your environment in almost all aspects. Monitoring
requires memory, CPU cycles, network communications, and might even require
separate additional systems for gateways (or as server systems) for the
monitoring solution. Ensure that all the nonfunctional requirements for your
infrastructure are applied to these systems as well.

Monitoring levels
Monitoring must be in place in all layers of the infrastructure. You must ensure a
comprehensive monitoring of the environment. You will likely end up with multiple
monitoring tasks and solutions for different purposes.

Network monitoring
Network monitoring covers all networking infrastructure such as switches,
firewalls, routers, and so forth. It must also monitor the availability of all the
communication paths, including redundant communication paths.

Operating system monitoring
Most monitoring solutions provide monitoring capabilities for supported operating
systems. Using these features allows you to keep track of the health of your
environment from the operating system perspective and allows you to monitor
components like CPU use, memory use, file systems, processes, and so forth.

Middleware components monitoring
When using middleware components like application servers and databases,
monitoring on the operating system level is not sufficient, because the operating
system has no knowledge of the middleware state. You need specific monitoring
to the middleware that provides the runtime environment for your application.
WebSphere Application Server provides various interfaces that allow the
monitoring of your application server infrastructure. Many popular monitoring

 Chapter 4. Infrastructure 115

products, like the IBM Tivoli Composite Application Monitoring suite, support
these interfaces and provide ready-to-use agents to monitor your WebSphere
Application Server environment.

Transaction monitoring
The purpose of transaction monitoring is to monitor the environment from the
user perspective. Transaction monitoring uses pre-recorded transactions or click
sequences and replays them whereby the response for each replayed user
interaction is verified against expected results.

4.6.2 Performance and fault tolerance

Keep in mind that monitoring your environment (no matter at which level)
consumes additional resources. Ensure your monitoring setup does not cause
unacceptable impact to your environment.

The more you monitor, and the shorter the intervals between your monitoring
cycles, the quicker you can determine something out of the ordinary. But the
more you monitor, and the shorter the intervals between your monitoring cycles,
the higher the overhead you generate. The key to success is to find a good
balance between monitoring in sufficient short intervals to determine failures
without consuming an unacceptable amount of resources.

In addition to the performance impact, you need to make sure that any problems
in your monitoring infrastructure do not impact your environment. Monitoring,
even if there is something wrong in the monitoring infrastructure, must never be
the cause for any service outage.

4.6.3 Alerting and problem resolution

Monitoring alone is not enough to keep track of the health of your environment,
as monitoring does not solve issues. You improve availability if you combine your
monitoring with proper alerting to the responsible problem resolvers. What is the
use of monitoring if nobody knows that there is a problem? Some thoughts you
need to consider when planning for alerting:

� Who is alerted for which event?
� What are the required response times?
� How will the responsible persons be alerted?
� How will you avoid repeated alerts for the same events?
� How will alerts and the resolution of the alerts be documented?
� Who will track the alerts and problem resolution?
� Who is in charge of the alert until it is finally resolved?
� Who will perform the root cause analysis to avoid reoccurrences of the alert?

116 WebSphere Application Server V7.0: Concepts, Planning, and Design

Alerting is just a first part of your incident and problem management. For further
information and more details about incident and problem management refer to
the ITIL® pages at the following Web page:

http://www.itlibrary.org/index.php?page=ITIL

4.6.4 Testing

As with each component in your environment, do not forget to test your
monitoring infrastructure regularly. Especially if the implementation is new, test
every single monitoring alert and make sure that your monitoring detects each
condition of your system properly.

Do not stop your testing when you see a monitoring situation raised. Test the
whole process, including alerting and incident management and ensure that
conditions are reset automatically as soon as the situation is back to normal.

4.7 Planning for backup and recovery

In general, computer hardware and software is reliable, but sometimes failures
can occur and damage a machine, network device, software product,
configuration, or more importantly, business data. Do not underestimate the risk
of a human error that might lead to damage. It is important to plan for such
occurrences. There are a number of stages to creating a backup and recovery
plan, which is discussed in the following sections.

4.7.1 Risk analysis

The first step to creating a backup and recovery plan is to complete a
comprehensive risk analysis. The goal is to discover which areas are the most
critical and which hold the greatest risk. It is important to identify which business
processes are the most important and are prioritized accordingly.

4.7.2 Recovery strategy

When critical areas have been identified, develop a strategy for recovering those
areas. There are numerous backup and recovery strategies available that vary in
recovery time and cost. In most cases, the cost increases as the recovery time
decreases. The key to the proper strategy is to find the proper balance between
recovery time and cost. The business impact is the determining factor in finding
the proper balance. Business-critical processes need quick recovery time to
minimize business losses. Therefore, the recovery costs are greater.

 Chapter 4. Infrastructure 117

http://www.itlibrary.org/index.php?page=ITIL

4.7.3 Backup plan

With your recovery strategy, a backup plan needs to be created to handle the
daily backup operations. There are numerous backup methods varying in cost
and effectiveness. A hot backup site provides real-time recovery by automatically
switching to a whole new environment quickly and efficiently. For less critical
applications, warm and cold backup sites can be used. These are similar to hot
backup sites, but are less costly and effective. More commonly, sites use a
combination of backup sites, load-balancing, and high availability.

Other common backup strategies combine replication, shadowing, and remote
backup, as well as more mundane methods such as tape backup or Redundant
Array of Independent Disks (RAID) technologies. All are just as viable as a hot
backup site but require longer restore times.

Any physical backup must be stored at a remote location to be able to recover
from a disaster. New technologies make remote electronic vaulting a viable
alternative to physical backups. Many third-party vendors offer this service.

4.7.4 Recovery plan

If a disaster occurs, a plan for restoring operations as efficiently and quickly as
possible must be in place. The recovery plan must be coordinated with the
backup plan to ensure that the recovery happens smoothly. The appropriate
response must be readily available so that no matter what situation occurs, the
site is operational at the agreed upon disaster recovery time. A common practice
is to rate outages from minor to critical and have a corresponding response. For
example, a hard disk failure could be rated as a Class 2 outage and have a Class
2 response where the disk gets replaced and replicated with a 24-hour recovery
time. This makes recovering easier because resources are not wasted and
disaster recovery time is optimized.

Another key point the recovery plan must address is what happens after the
recovery. Minor disasters, such as disk failure, have little impact afterward but
critical disasters, such as the loss of the site, have a significant impact. For
example, if a hot backup site is used, the recovery plan must account for the
return to normal operation. New hardware or possibly a whole new data center
might need to be created. Post-disaster activities need to be completed quickly to
minimize costs.

118 WebSphere Application Server V7.0: Concepts, Planning, and Design

4.7.5 Update and test process

You must revise the backup and recovery plan on a regular basis to ensure that
the recovery plan meets your current needs. You also need to test the plan on a
regular basis to ensure that the technologies are functional and that the
personnel involved know their responsibilities. In addition to the regular
scheduled reviews, review the backup and recovery plan when adding new
hardware, technologies, or personnel.

4.8 Planning for centralized installation

One of the new features introduced in WebSphere Application Server Network
Deployment V7.0 is the centralized installation manager (CIM). Using the CIM
greatly simplifies the installation and the update of machines in a Network
Deployment cell. The administrator of the cell only has to install Network
Deployment on one machine and create a deployment manager profile. All CIM
related operations are available through either the Integrated Solutions Console
or through the wsadmin command.

The IBM white paper Centralized Installation Manager for IBM WebSphere
Application Server Network Deployment Version 7.0 provides detailed
information about the CIM. This should allow you to plan your environment for
centralized information accordingly. The white paper can be found at the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.cim.whitepaper.doc/cimwhitepaper.pdf

 Chapter 4. Infrastructure 119

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.cim.whitepaper.doc/cimwhitepaper.pdf

120 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 5. Topologies

Topology refers to what devices and computers are going to be used to set up a
WebSphere Application Server application—the physical layout of each one and
the relationship between them. When selecting a topology, there are a number of
considerations that impact the decision of which one to use.

This chapter describes some common topologies that are used in WebSphere
Application Server implementations. It addresses topologies that are relatively
simple as well as some that are more complex by describing the relationship
between WebSphere Application Server components and their role in the
solution.

This chapter contains the following sections:

� “Topology selection criteria” on page 122
� “Terminology” on page 134
� “Topologies in detail” on page 139

5

© Copyright IBM Corp. 2009. All rights reserved. 121

5.1 Topology selection criteria

There are many ways to architect a system that satisfies your need. In Chapter 4,
“Infrastructure” on page 93, we introduced some planning considerations for a
WebSphere Application Server environment. This section provides an overview
of the primary considerations in selecting a topology:

� “High availability” on page 122
� “Disaster recovery” on page 125
� “Security” on page 126
� “Maintainability” on page 126
� “Performance” on page 127
� “Application deployment” on page 129

5.1.1 High availability

High availability means that a system can tolerate a certain amount of failure and
errors, before it is no longer working properly. High availability is an important
consideration to take into account when designing your architecture. The
importance comes from the fact that your design for high availability is a key
criteria for the capability of your service to meet your expected service level
agreement (SLA). High availability is a complex topic that affects every single
component required to run your environment. High availability is not only a
design challenge for WebSphere but for every component on every layer of the
environment.

High availability is achieved by introducing redundancy in your architecture to be
fault tolerant. This means you need redundancy at different levels depending on
your availability requirements (for example: power supplies, network cables,
switches, processes, machines and so forth). WebSphere Application Server
Network Deployment provides a vast variety of options to provide a highly
available runtime environment for your applications. In the subsequent sections
we discuss many of WebSphere Application Server’s high availability features
and how you can benefit from them.

Avoid single points of failure
To avoid a single point of failure and to maximize system availability, the topology
needs to have some degree of redundancy. WebSphere Application Server high
availability topologies typically involve horizontal scaling across multiple
machines. Vertical scaling can improve availability by creating multiple
processes, but the machine itself still remains a single point of failure.

122 WebSphere Application Server V7.0: Concepts, Planning, and Design

When introducing redundancy, the need for a load distributor or front-end traffic
handler arises. An IP sprayer can direct Web client requests to the next available
Web server, bypassing any server that is not available. The IP sprayer server can
be configured with a cascade backup (hot standby) that takes over the operation
in case the primary server fails. This configuration eliminates the IP sprayer as a
single point of failure in the architecture.

Improved availability is one of the key benefits of scaling to multiple machines.
Applications that are hosted on multiple machines generally have less down time
and are able to service client requests more consistently.

Hardware redundancy
Eliminate single points of failure in a system by including hardware and
redundancy. Hardware redundancy can be invented at different levels. In the
topology considerations we are considering hardware redundancy at the system
level only.

You can use the following techniques:

� Use horizontal scaling to distribute application servers (and applications)
across multiple physical machines or z/OS images. If a hardware or process
failure occurs, clustered application servers are available to handle client
requests. Additional Web servers and IP sprayers can also be included in
horizontal scaling to provide higher availability.

� Use backup servers for databases, Web servers, IP sprayers, and other
important resources, ensuring that they remain available if a hardware or
process failure occurs.

� Keep the servers (physical machines) within the cluster sprayed in different
secured rooms to prevent site-related problems.

Process redundancy
Provide process redundancy and isolation so that a failing server does not impact
the remaining healthy servers. The following configurations provide some degree
of process isolation:

� Deploy the Web server on a different machine than the application servers.
This configuration ensures that problems with the application servers do not
affect the Web server and vice versa. Separate systems also increase the
security level.

� Use horizontal scaling, placing application servers on different systems.

� The usage of vertical scaling provides process isolation as related to
WebSphere processes only.

 Chapter 5. Topologies 123

Load balancing
Use load balancing techniques to make sure that individual servers are not
overwhelmed with client requests while other servers are idle. This includes the
following techniques:

� Use an IP sprayer to distribute requests across the Web servers in the
configuration.

� Direct requests for high-volume URLs to more powerful servers.

The Edge components included with the Network Deployment package provides
these features.

WebSphere Application Server provides these other load balancing
mechanisms:

� The WebSphere Application Server HTTP server plug-in to spread requests
across cluster members.

� The Enterprise JavaBeans (EJBs) workload management mechanism, which
is built into WebSphere Application Server to balance EJB workload across
cluster members

� The usage of partitioned queues. If the application permits, you can configure
partitioned queues to split message processing workload across multiple
servers.

Fail-over support
The environment must be able to continue processing client requests, even if one
or more components are offline. Some ways to provide fail-over support are as
follows:

� Use horizontal scaling with workload management to take advantage of
failover support.

� Use an IP sprayer to distribute requests across the Web servers in a
configuration.

� Use HTTP server plug-in support to distribute client requests among
application servers.

� Use EJB workload management to re-align EJB requests if an application
servers goes down.

� Use WebSphere high availability manager to provide fail-over support of
critical services, the singletons, like messaging engines, transaction service,
and so forth.

124 WebSphere Application Server V7.0: Concepts, Planning, and Design

Operating system based clustering
The WebSphere Application Server high availability framework provides
integration into an environment that uses other high availability frameworks, such
as operating system-based clustering software like HACMP™ on AIX, or parallel
sysplex on z/OS, to provide high availability for resources for which WebSphere
does not provide specific high availability functions. Consider such a technique
for WebSphere Application Server components such as a deployment manager,
node agents, single server environments, and so on.

5.1.2 Disaster recovery

The main considerations in disaster recovery planning are how to bring up a fully
operative environment after a disaster struck the system, how much data loss
you can afford, and how can ensure that your data remains consistent.

Cluster isolation1, for example, is a potential threat to your data consistency and
must be avoided in all circumstances. After the data consistency issues are
resolved (meaning that your problems regarding your WebSphere data, such as
configuration repository, logs and so forth are also resolved) you can resume
your planning for WebSphere disaster recovery.

There is no common solution for WebSphere Application Server in a disaster
recovery scenario as this depends on the existing environment, requirements,
applications and budget. For some considerations on disaster recovery in your
WebSphere environment, refer to the Developer works article Everything you
always wanted to know about WebSphere Application Server but were afraid to
ask, Part 5, available at the following Web page:
http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott
/0707_col_alcott.html

1 Cluster isolation in this context means a condition that each member of a clustered system
considers the other to be gone and therefore taking over the service. The result would be to have
two systems manipulating data.

Note: A design approach to spread your WebSphere Application Server cell
over multiple data centers is not a sufficient response to a disaster recovery
design challenge. Refer to the developerWorks article Everything you always
wanted to know about WebSphere Application Server but were afraid to ask --
Part 2, available at the following Web site:

http://www-128.ibm.com/developerworks/websphere/techjournal/0512_col
_alcott/0512_col_alcott.html

 Chapter 5. Topologies 125

http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott/0707_col_alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott/0707_col_alcott.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0512_col_alcott/0512_col_alcott.html

5.1.3 Security

Security is a critical consideration when designing a new system. A secure
system requires sophisticated controls in place to protect resources from threats.
Security is a vast topic but can be thought of in two basic categories:

� Physical security

Physical security means protection against physical threats such as
controlling physical access to the systems, but also includes tasks to protect
the environment of the systems.

� Logical security.

Logical security is connected to a specific IT solution, architecture, and
application design. It deals with all aspects of access to runtime resources
and data.

When selecting a topology, be aware that security usually requires a physical
separation of the Web server from the application server processes, typically
across one or more firewalls. A common configuration is the use of two firewalls
to create a DMZ between them. Information in the DMZ has some protection that
is based on protocol and port filtering. A Web server intercepts the requests and
forwards them to the corresponding application servers through the next firewall.
The sensitive portions of the business logic and data resides behind the second
firewall, which filters based on protocols, ports, IP addresses, and domains.
Before selecting and finalizing a topology, review the information in 4.2.6,
“Security” on page 102 and Chapter 12, “Security” on page 379.

5.1.4 Maintainability

Maintainability means that the complexity of the system must be kept in a
manageable state. When designing a WebSphere Application Server
infrastructure, many different non-functional requirements have to be considered.
This can increases the complexity of the environment to an extent that it
becomes difficult and error-prone to manage.

An easily maintained environment allows maintenance work to be done on the fly
and minimizes planned system outages for maintenance work. This includes the
ability to upgrade application releases while the system is running, as well as to
run different versions of servers, operating systems, and applications in the same
administrative unit. Not only does the infrastructure contribute to maintainability,
but the application as well. You will need an application development policy that
assures a sufficient number of application releases can work together. Especially
in large environments, it is often impossible to upgrade all instances of an
application at the same time.

126 WebSphere Application Server V7.0: Concepts, Planning, and Design

5.1.5 Performance

Performance determines the environment’s ability to process work in a given
interval. The higher the performance, the smaller the interval needed to process
a specified set of work, or the more work that can be processed in the same
interval.

When talking about performance there are two widely used approaches:

� Response time

Response time is a generic approach for a single type of request. It defines
the maximum amount of time a request should take until it is finished. This
metric is most often used in online workload, where a request has to achieve
a real-time goal.

� Throughput

The throughput metric measures the overall amount of work processed in a
certain amount of time. It is usually used for batch-kind workloads that need
to be finished in a certain time window.

WebSphere Application Server Network Deployment enables you to cluster
application servers so that you have multiple server instances running the same
application available to handle incoming requests. Clustering generally provides
improvements for performance, due to an optimized scaling.

Note: When using this metric make sure that the response time is not only
achieved in a single user-single transaction scenario, but also when the
projected production load is used against the system.

 Chapter 5. Topologies 127

Scaling
Scaling represents the ability of the system to grow as the load on the system
grows. There are multiple ways to achieve scaling. For example, multiple
machines can be configured to add processing power, improve security,
maximize availability, and balance workloads. Scaling may be vertical or
horizontal (Figure 5-1). Which you use depends on where and how the scaling is
taking place.

Figure 5-1 Vertical and horizontal scaling with WebSphere Application Server

� Vertical scaling

Vertical scaling involves creating additional application server processes on a
single physical machine or z/OS image, providing application server failover
as well as load balancing across multiple application servers. This topology
does not provide an efficient fault tolerance because a failure of the
operational system or the hardware on the physical machine itself might
cause problems to all servers in the cluster.

Server A

Daemon Deployment
Manager

Node
Agent

Application
Server

Application
Server

Application
Server

Application
Server

Server B

Daemon

Node
Agent

Application
Server

vertical
scaling

horizontal
scaling

128 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Horizontal scaling

Horizontal scaling involves creating application servers on multiple machines
to take advantage of the additional processing capacity available on each
machine. Using horizontal scaling techniques also provides hardware failover
support.

The following components provide functions for configuring scalability:

� WebSphere Application Server cluster support

The use of application server clusters can improve the performance of a
server, simplify its administration, and enable the use of workload
management.

� WebSphere workload management

The workload management capabilities of WebSphere Application Server can
be used to distribute requests among converged containers and EJB
containers in clustered application servers. This enables both load balancing
and failover, improving the reliability and scalability of WebSphere
applications. On the z/OS platform, the workload management function is
tightly integrated with the operating system to take advantage of the superior
workload management features of z/OS.

� IP sprayer

The IP sprayer transparently redirects all incoming HTTP requests from Web
clients to a group of Web servers. Although the clients behave as though they
are communicating directly with one specific Web server, the IP sprayer is
actually intercepting all those requests and distributing them among all the
available Web servers in the group. IP sprayers (such as the Load Balancer
Edge component or Cisco Local Director) can provide scalability, load
balancing, and failover for Web servers and other TCP/IP-based servers
whose protocol is understood by the IP sprayer.

5.1.6 Application deployment

Various application deployment decisions affect topology decisions. The
following application deployment-related considerations should be clarified
before finalizing the architecture.

Deployment of your EJBs
The way you deploy your EJBs will have a significant impact on your application
topology and of the performance you can expect. You have the choice to deploy
EJBs to the same application servers and clusters as the client modules invoking
the EJBs, or to separate, dedicated application servers and clusters running the
EJBs only.

 Chapter 5. Topologies 129

Both of these options are valid approaches depending on your environment and
requirements. For this discussion it is assumed that the EJBs provide local and
remote interfaces to be invoked.

To determine what is the best for your environment, consider the advantages and
disadvantages of deploying the EJBs to a different EJB servers and clusters as
the EJB clients application server:

� Advantages

– More consistency in the business functions, as all your enterprise
applications have to use the same version of the EJBs.

– Better re-use of EJB code, as the same code is used by all enterprise
applications requiring the same functionality.

– Application servers running the EJBs can be tuned individually.

– You can benefit from runtime provisioning as the EJB container only gets
loaded on the EJB servers, while the converged container only gets
loaded on the application servers running your WAR files.

– If you are running WebSphere Application System Client applications, the
client calls do not use the Java resources of your Web applications Java
virtual machine (JVM).

– You can run the EJBs on different systems or even different platforms from
your Web modules

– Easier deployment of the applications and EJBs

� Disadvantages

– Every EJB call is an out-of-process call. You will pay a performance
penalty for this configuration as this introduces a lot of serialization and
de-serialization overhead and even network traffic with encryption if the
EJBs are deployed to a different system.

– Re-authentication during EJB calls might be required.

– All the enterprise applications must be compatible with the existing version
of deployed EJBs. This requires coordination of the application
development.

– More application server processes are running, which increases the
memory footprint of the deployment.

– The number of application servers in the cell will increase, resulting in a
more complex administration.

– Upgrades of the EJBs are more complex, as multiple applications are
affected.

130 WebSphere Application Server V7.0: Concepts, Planning, and Design

Assignment of applications to clusters
When you are running multiple applications in your environment you must decide
if you want to deploy all your applications to the same application servers and
clusters or if you want to set up separate application servers and clusters for
each application.

To determine what is best for your environment, consider the advantages and
disadvantages of deploying all applications to separate application servers and
clusters (the one application to a server approach):

� Advantages

– You will get better process and application isolation and a faulty
application will not affect other applications (unless it is a common
component).

– The administration and maintenance work for application and
cluster-related tasks is easier.

– Easier tuning of the application servers. If you are running each
application separated from the others, you can tune the application
servers specifically for the need of this application. Often applications are
different in their tuning requirements so that it is almost impossible to tune
an application server properly when the applications are deployed to the
same application server and cluster.

– As fewer applications are running in the application server, the Java heap
requirements for the application will likely be less. You can configure a
smaller heap, which results in faster garbage collection cycles and better
and more consistent response times.

– You might benefit from the runtime provisioning capabilities of WebSphere
Application Server V7.0.

� Disadvantages

– You will end up with more application servers and clusters, which means
larger cells and the administration of your cell will become more complex.

– As you will have more application servers in your environment, you will
have larger cells. Larger high availability manager cells will result in
increased startup times

Note: The heap size of a JVM is finite. Even when using a 64-bit
implementation of WebSphere Application Server, you must be careful
with the heap sizing to avoid performance problems during garbage
collection.

 Chapter 5. Topologies 131

– You will more likely have to call your EJBs out-of-process and pay a
performance penalty for that.

– The memory footprint of the environment will increase as each of the
JVMs has a basic memory footprint.

Location of the embedded messaging infrastructure
When using the WebSphere Application Server embedded messaging
infrastructure, you must decide in which application servers the messaging
service should run. Whether you run the embedded messaging service on a
separate application server and cluster or co-located on an application server
running your applications depends on your needs.

To determine what is best for your environment, consider the advantages and
disadvantages of running the embedded messaging infrastructure on a separate
set of application servers and clusters:

� Advantages

– The messaging service runs on a separate JVM and will not use Java
resources of your application server. If multiple applications and JVMs are
using the messaging service this might be more important.

– It is possible to tune each application server for its specific usage. This
includes Java heap tuning as well as Java runtime tuning.

– Application servers and clusters can be started, stopped, and restarted
independently from the availability of the messaging service without
causing a failover of the messaging service (and vice versa).

– You can deploy your messaging infrastructure to systems independently
from the other application servers and clusters. This allows you to deploy
your messaging infrastructure to, for example, systems where message
persistence can be implemented easiest.

– You will benefit from the runtime provisioning capabilities of WebSphere
Application Server V7.0.

� Disadvantages

– The number of application servers in your cell increases, resulting in a
more complex administration of the cell.

– Due to the higher number of application servers, your cell and your core
group grows. You will see longer cell startup times and more overhead
caused by high availability manager.

– Memory footprint of the environment increases due to additional servers.

– The deployment of your applications might become more complex,
especially when using mediation modules.

132 WebSphere Application Server V7.0: Concepts, Planning, and Design

5.1.7 Summary: Topology selection criteria

Table 5-1, Table 5-2, and Table 5-3 on page 134 list some requirements for
topology selection, and possible solutions.

Table 5-1 Topology selection based on availability requirements

Table 5-2 Topology selection based on performance requirements

Requirement = availability Solution/topology

Web server Load Balancer (with hot backup) or a comparable
high availability solution, based on other products.

Application server � Horizontal scaling (process and hardware
redundancy)

� Vertical scaling (process redundancy)
� A combination of both
� Multi servant regions on z/OS

Database server Database or operating system-based high
availability solution

User registry Depends on the user registry in use. WebSphere
provides backup support for some user registries

Requirement =
performance/throughput

Solution/topology

Web server � Multiple Web servers in conjunction with Load
Balancer

� Caching Proxy Servers in conjunction with Load
Balancer

� Dynamic caching with Adaptive Fast Path
Architecture (AFPA) or ESI external caching

Application server � Clustering (in most cases horizontal)
� Deploy EJBs to the same JVM as the invoking

client
� Dynamic caching at the application server.
� Offload static content to be served from the

Web server and therefore offload the
application serversa

� Workload management and transaction classes
on z/OS to keep response times.

a. For details, see the following Web page:
http://www.redbooks.ibm.com/abstracts/TIPS0223.html

Database server � Separate database server
� Use partitioned database servers

 Chapter 5. Topologies 133

http://www.redbooks.ibm.com/abstracts/TIPS0223.html
http://www.redbooks.ibm.com/abstracts/TIPS0223.html

Table 5-3 Topology selection based on security requirements

5.2 Terminology

Before examining the topologies, take a minute to review the following
terminology. These are elements that you will see in the diagrams describing
each topology.

5.2.1 Load balancers

A load balancer, also referred to as an IP sprayer, enables horizontal scalability
by dispatching TCP/IP traffic among several identically configured servers.
Depending on the product used for load balancing, different protocols are
supported.

In our topologies, the load balancer is implemented using the Load Balancer
Edge component provided with the Network Deployment package, which
provides load balancing capabilities for HTTP, FTP, SSL, SMTP, NNTP, IMAP,
POP3, Telnet, SIP, and any other TCP based application.

Requirement = security Solution/topology

Web server � Separate the Web server into a DMZ, either on
LPAR or separate system.

� Use a DMZ secure proxy instead of Web server
with WebSphere plug-in.

� Separate administrative traffic from productive
traffic

Application server � Implement WebSphere Application Server
security.

� Create a separate network tier for the
application server.

� Separate the application servers from the
database and EIS layer

� Separate administrative traffic from productive
traffic

Note: On the z/OS platform, the function that provides intelligent load
balancing is the Sysplex Distributor. It balances incoming requests based on
real-time information about whether the possible members achieve their
performance goals. The member with the best performance rating processes
the incoming request.

134 WebSphere Application Server V7.0: Concepts, Planning, and Design

5.2.2 Reverse proxies

The purpose of a reverse proxy is to intercept client requests, retrieve the
requested information from the content servers, and to deliver the content back
to the client. Caching proxies provide an additional layer of security hiding your
servers from the clients. The caching proxy products provided by WebSphere
Application Server V7.0 (namely, the (deprecated) Edge Components Caching
Proxy, the DMZ secure proxy, and the WebSphere proxy server) provide the
capability to store cacheable content in a local cache. Subsequent requests for
the same content can be served out of this cache. This allows faster response
and decreases the load on the servers as well as the internal network.

Edge proxy
The caching proxy as provided with WebSphere Application Server V7.0 with the
Edge Components can be configured as a reverse and as a forwarding proxy. In
this book, it is considered as a reverse proxy only. This proxy server supports the
following protocols: HTTP, HTTPs, FTP and Gopher.

DMZ secure proxy
The DMZ secure proxy server is a new feature of WebSphere Application Server
V7.0. Using it allows you to install proxy servers in the demilitarized zone (DMZ)
at a reduced security risk, compared to installing an application server to host a
proxy server. This is achieved by removing all the features from the application
server that are not required to provide the proxy functionality. For example, there
is no Web container or EJB container in a DMZ secure proxy.

The DMZ secure proxy server supports the following protocols with and without
encryption: HTTP and SIP. To implement a DMZ secure proxy you need to install
the DMZ secure proxy product and create a profile using the secureproxy profile
template.

Note: The caching proxy (provided with WebSphere Application Server V7.0
as part of the Edge Components) was declared deprecated in WebSphere
Application Server V6.1. For a current list of deprecated, stabilized, and
removed features in WebSphere Application Server V7.0, see the WebSphere
Information Center article Deprecated, stabilized, and removed features at the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

Note: Do not mix up the DMZ secure proxy with the WebSphere Application
Server Proxy that you can configure in a network deployment manager cell.

 Chapter 5. Topologies 135

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

WebSphere Application Server Proxy
The WebSphere Application Server Proxy is a proxy server you configure in a
WebSphere Application Server Network Deployment cell. This proxy runs inside
the secure zone of the network as an application server and has access to cell
information and the current state of all servers and applications inside the cell.

5.2.3 Domain and protocol firewall

A firewall is a hardware and software system that manages the flow of
information between networking zones like the Internet and an organization's
private network. Firewalls can prevent unauthorized Internet users from
accessing services on private networks that are connected to the Internet,
especially intranets. In addition, firewalls can block some virus attacks, if those
viruses attacks have to cross the network boundaries protected by the firewall.
Another typical usage of firewalls is to prevent denial of service attacks against
services.

A firewall can separate two or more parts of a local network to control data
exchange between departments, network zones, and security domains.
Components of firewalls include filters or screens, each of which controls
transmission of certain classes of traffic. Firewalls provide the first line of defense
for protecting private information. Comprehensive security systems combine
firewalls with encryption and other complementary services, such as content
filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional firewall services include the following implementations:

� Screening routers (the protocol firewall)

Prevents unauthorized access from the Internet to the DMZ. The role of this
node is to provide the Internet traffic access only on certain ports and to block
other IP ports.

� Application gateways (the domain firewall)

Prevents unauthorized access from the DMZ to an internal network. The role
of a firewall allows the network traffic originating from the DMZ and not from
the Internet. It also provides some filtering from the intranet to the DMZ. A pair
of firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router.

136 WebSphere Application Server V7.0: Concepts, Planning, and Design

5.2.4 Web servers and WebSphere Application Server Plug-in

Most WebSphere Application Server topologies will have a Web server which
receives HTTP-based requests from clients. For security reasons the Web server
should be placed in a separate network zone secured by firewalls (a DMZ).

Usually the Web server, in conjunction with the WebSphere Application Server
Plug-in, provides the following functionality in the topology:

� Serves requests for static HTTP content like HTML files, images, and so forth.

� Requests for dynamic content like Java Server Pages (JSPs), servlets, and
portlets are forwarded to the appropriate WebSphere Application Server
through the WebSphere Application Server Plug-in.

� Allows caching of response fragments using the Edge Side Include (ESI)
cache.

� Breaks the secured socket layer (SSL) connection from the client (unless this
is done by another device in the architecture) and optionally opens a separate
secured connection from the Web server to the Web container on the
application server system.

WebSphere Application Server comes with Web server plug-ins for all supported
Web servers.

The plug-in uses a configuration file (plugin-cfg.xml) that contains settings
describing how to pass requests to the application server. The configuration file
is generated on the application server. Each time a change on the application
server affects the request routing of requests (for example, a new application is
installed) the plug-in must be regenerated and propagated to the Web server
machine again.

Note: For information about Web servers supported by WebSphere
Application Server V7.0, organized by platform, refer to the following Web
page:

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

Note: In a stand-alone topology, only unmanaged Web servers are possible.
This means the plug-in must be manually pushed out to the Web server
system. The exception to this is if you are using IBM HTTP Server. The
application server can automatically propagate the plug-in configuration file to
IBM HTTP Server, even though it is an unmanaged node, by using the
administrative instance of IBM HTTP Server.

 Chapter 5. Topologies 137

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

WebSphere Application Server V7.0 ships with IBM HTTP Server V7.0 on
distributed platforms and on z/OS ,which is based on Apache 2.2.8 plus its
additional fixes. For more details about what is new in IBM HTTP Server V7.0
see the Infocenter article What is new in this release, which can be found at the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.ihs.doc/info/ihs/ihs/cihs_newfunction.html

5.2.5 Application servers

Application servers are the heart of your topology, This layer in the architecture
provides the runtime environment for your Java Platform, Enterprise Edition
(Java EE) applications.

To provide all the flexibility and functionality offered by WebSphere Application
Server, various profiles types are available. Some of the profiles types are for
management purposes only. Others are required to process user requests at
runtime. The management-related components of the runtime environment are
implemented through specific application servers with predefined names. These
application servers are created for you when creating certain profiles. Your
topology has to consider which of these management servers are needed and
where they are placed.

5.2.6 Directory and security services

Directory and security services supply information about the location,
capabilities, and attributes (including user ID and password pairs and
certificates) of resources and users known to this WebSphere Application Server
environment. This node can supply information for various security services
(authentication and authorization) and can also perform the actual security
processing, for example, to verify certificates.

An example of a product that provides directory services is IBM Tivoli Directory
Server, included in the Network Deployment package.

5.2.7 Messaging infrastructure

WebSphere Application Server can either connect to and use an existing
messaging infrastructure, or it can provide its own infrastructure for messaging
through embedded messaging. The messaging service of the embedded
messaging provider in WebSphere can run in any user-created application
server.

138 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/cihs_newfunction.html

For more information, refer to the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html

5.2.8 Data layer

The data layer in the topology refers to a variety of back-end resources holding
real business data and logic for the enterprise. The enterprise applications
running on WebSphere Application Server access these resources to build
responses for the users and to update data based on user input. This can be a
database, an enterprise information system (EIS), a transaction monitor such as
CICS, a Web service, and so forth.

5.3 Topologies in detail

Due to the vast amount of configuration possibilities, WebSphere Application
Server provides many different configuration options to fit almost every
requirement. In this section we discuss some basic configuration topologies
(which can also be combined), depending on the requirements of your
environment.

Notes:

� WebSphere Application Server V7.0 allows you to create profiles either
graphically using the Profile Management Tool (pmt) or through the
manageprofiles command. As for traceability reasons, the
command-based creation is preferred. The samples in this chapter are
based on the manageprofiles command.

� On the z/OS platform, all the topologies introduced in this section profit
from the workload management capabilities offered from the Workload
Manager component and the WebSphere Application Server for z/OS. This
management allows you to set and keep performance-focused SLAs on a
transactional level.

For more information about the workload management capabilities for the
WebSphere Application Server for z/OS refer to 14.1.6, “Workload
management for WebSphere Application Server for z/OS” on page 428.

 Chapter 5. Topologies 139

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html

5.3.1 Stand-alone server topology

The topologies in this section all use a Web server as a front-end device. This
has the benefit of not deploying an application server in the DMZ as well as using
the Web server for caching purposes.

Application server
A stand-alone server topology refers to the installation of WebSphere Application
Server on one single (physical) machine or logical partition (LPAR) with one
application server only. This topology does not provide any load balancing or high
availability capability at all. You should be aware of the risks when implementing
such a topology.

Web server
Although you can install the Web server on the same system as WebSphere
Application Server, and you can even direct HTTP requests directly to the
application server, you should have a Web server in a DMZ as a front-end to
receive requests. The Web server is located in a DMZ to provide security,
performance, throughput, availability, and maintainability, while the application
server containing business logic is located securely in a separate network.

Note: A stand-alone application server on the z/OS platform offers some
degree of load balancing and high availability for the application itself.
WebSphere Application Server for z/OS uses multi-servant regions, best
thought of as a special application cluster to build each application server.
This provides one application image to the user while running multiple,
independent instances of the application.

The use of multiple application images or not can be configured by the system
administrator. For more information refer to 14.1.4, “Structure of an application
server” on page 422.

140 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 5-2 illustrates such a topology.

Figure 5-2 Stand-alone Server topology with Web server in a DMZ

Advantages
The advantages to a stand-alone server topology are as follows:

� Allows sizing and configuration of servers appropriately to each task

By installing components (Web server and application server) on separate
systems or z/OS images, each can be sized and configured to optimize the
performance of the various component.

� Removes resource contention

By physically separating the Web server from the application server, a high
load of static requests will not affect the resources (processor, memory, and
disk) available to WebSphere, and does not affect its ability to service
dynamic requests. The same applies when the Web server serves dynamic
content using other technologies, such as common gateway interface (CGI).

� Increases maintainability due to component independence

Server components can be reconfigured, or replaced, without affecting the
installation of other components, because they are on separate machines or
LPARs.

Outside World DMZ Internal Network

Directory and
Security
ServicesI

N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User
Existing

applications
and data

HTTP/HTTPS

System B

Application
Server

System A

Web Server

Plug-in

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

wa
ll

 Chapter 5. Topologies 141

� Increased security by using a DMZ

Isolating the Web server in a DMZ protects the business applications and
data in the internal network by restricting access from the public Web site to
the servers and databases where this information is stored. We suggest
avoiding topologies in which servers in the DMZ have direct access to the
database storing business or other security sensitive data.

Disadvantages
The disadvantages to a stand-alone server topology are as follows:

� Requires additional deployment

The plug-in configuration file is generated on the WebSphere Application
Server machine and must be copied to the Web server machine each time a
configuration change occurs, which affects requests for applications. Although
WebSphere Application Server V7.0 provides tools to automate this step, not
every environment is suitable to use these tools.

� Possible drop of performance

Depending on the network capacity and the distance of the Web server, the
network response time for communications between the application server
and Web server can limit the application response time. To prevent this,
ensure that you have an adequate network bandwidth between the Web
server and the application server.

� Additional security overhead due to SSL communication

When using SSL communication from the client to the Web server, the
communication from the plug-in to the application server must be encrypted
to avoid tat sensitive data being “sniffed” on the network. This additional
encryption introduces a performance penalty and increased resource use.
From a security perspective, we suggest configuring the connection from the
plug-in to the Web container, so that the plug-in and Web container must
mutually authenticate each other using certificates. This prevents
unauthorized access to the Web container.

� Additional systems to administer

With the Web server running on a separate system, there is one more system
to manage and to operate, which increases the operation cost of the
environment.

142 WebSphere Application Server V7.0: Concepts, Planning, and Design

Installation and configuration
To set up an environment as illustrated in Figure 5-2 on page 141 the following
installation and configuration steps are required:

System A
Perform the following steps to install and configure System A.

1. Install and configure a supported Web server.

2. Install and configure the WebSphere Application Server Plug-in for the Web
server.

System B
Perform the following steps to install and configure System B.

1. Install WebSphere Application Server V7.0

2. Create an application server profile using the following profile template:

<app_server_root>/profileTemplates/default

3. Create a Web server definition through the Integrated Solutions Console or
through the wsadmin scripting interface.

5.3.2 Vertical scaling topology

Vertical scaling (depicted in Figure 5-3 on page 144) refers to configuring
multiple application servers on a single machine or LPAR and creating a cluster
of associated application servers all hosting the same applications. All members
of the application server appear as one logical unit serving the applications
deployed to the cluster.

Keep in mind that a WebSphere Application Server cluster can only be
implemented with the Network Deployment or the z/OS packages.

Note: The Web server definition is used by the application server to
generate the plug-in configuration file. In a stand-alone topology, only one
Web server can be defined to the configuration and it must be an
unmanaged Web server.

 Chapter 5. Topologies 143

Figure 5-3 Vertical scaling topology with WebSphere Application Server

This vertical scaling example includes a cluster and three cluster members. The
Web server plug-in routes the requests according to the application server’s
availability. Some basic load balancing is performed at the Web server plug-in
level based on a weighted round-robin algorithm.

Vertical scaling can be combined with other topologies to optimize the
performance, throughput, and availability.

System B

Cluster

System A

Outside World DMZ Internal Network

Directory and
Security
Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User

Web
Server

Web Server
Plug-in

Application
Server 1

Application
Server 2

Application
Server 3

System C

Deployment
Manager

Existing
applications

and data

Do
m

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

wa
ll

HTTP/HTTPS

Note: The illustration in Figure 5-3 is intended to show a vertical scaling
topology of application servers but still contains several single points of
failures.

144 WebSphere Application Server V7.0: Concepts, Planning, and Design

Advantages
Implementing vertical scaling in your topology provides the following advantages:

� Optimized resource use

With vertical scaling, each application server running its own JVM uses a
portion of the machine’s processor and memory. The number of application
servers on a system can be increased or decreased to optimize the resource
use of the machine.

� Growth beyond the limits of a single JVM

A vertical scaling implementation allows you to grow with your implementation
beyond the limits of a single JVM as you can run multiple JVMs in parallel.

� Benefits from WebSphere Application Server workload management
capabilities

As vertical scaling is implemented through clusters, it allows you to benefit
from WebSphere Application Server workload management.

� Failover support

Due to the fact that vertical scaling is implemented using clusters, vertical
scaling topologies can also take advantage of the failover support provided by
WebSphere Application Server. If one of the application server processes is
stopped, the remaining cluster members will continue to process and realign
the workload.

Disadvantages
If you are using vertical scaling, there are some limitations and possible
drawbacks to consider:

� Single points of failure

Unless you combine the vertical scaling architecture with horizontal scaling,
you still have single points of failure (like hardware, operating system
processes and so on) in your architecture .

� Additional overhead

To implement vertical scaling you need WebSphere Application Server
Network Deployment. You need additional application server processes like
the deployment manager and the node agent process to manage such an
environment.

� Additional planning and implementation work required

To benefit from the load balancing and failover capabilities, you need to plan
for these scenarios. For example, to benefit from failover mechanism, you
need to think about what is required for a successful failover (like session data
and so forth) and size for all possible situations carefully.

 Chapter 5. Topologies 145

Installation and configuration
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-3 on page 144:

System A
Perform the following steps to configure System A:

1. Install and configure a supported Web server.

2. Install and configure the WebSphere Application Server Plug-in for the Web
server.

System B
Perform the following steps to configure System B:

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template. Federate this
profile to the deployment manager on server C either during profile creation or
by running the addNode command after the profile creation.

Alternatively you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the deployment manager running on System C by using the addNode
command.

System C
Perform the following steps to configure System C:

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the profile template
<app_server_root>/profileTemplates/dmgr template or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER.

3. Create an Web server definition through the Integrated Solutions Console or
through the wsadmin scripting interface.

4. Create a WebSphere Application Server cluster with three cluster members
on System B.

146 WebSphere Application Server V7.0: Concepts, Planning, and Design

5.3.3 Horizontal scaling topology

Horizontal scaling means to create one logical unit of servers across multiple
systems or LPARs where each member of the unit is able to serve each request.
Horizontal scaling at the application server tier does not require an IP sprayer. If
you want to scale at the Web server tier as well, we suggest that you implement
an IP sprayer.

We first introduce a topology without an IP sprayer and then one with the IP
sprayer component (see“Horizontal scaling topology with an IP sprayer” on
page 150).

Horizontal scaling topology without an IP sprayer
The topology shown in Figure 5-4 lets a single application span multiple
machines, while presenting itseft as a single logical image. In this example, the
WebSphere Application Server cluster spans System B and System C, each with
one application server. The deployment manager is installed on a separate
server, System D.

Figure 5-4 Horizontal scaling with cluster

System C

Outside World DMZ Internal Network

Directory
and Security

Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User

Existing
applications

and data

Pr
ot

oc
ol

 F
ire

w
al

l

HTTP/HTTPS

System A

Web Server

Plug-in

System B

Cluster

Application
Server 2

Application
Server 1

System D

Deployment
Manager

D
om

ai
n

Fi
re

w
al

l

 Chapter 5. Topologies 147

The Web server plug-in distributes requests to the cluster members on each
server performing load balancing and offers an initial failover just as it does in the
vertical clustering topology. If any component (hardware or software) on System
B fails, the application server on System C can continue to serve requests, and
vice versa.

Advantages
Horizontal scaling using clusters provides the following advantages:

� Improved throughput

As multiple systems are servicing your client requests simultaneously without
competing for resources, you can expect improved throughput from your
installation.

� Improved response times

Hosting cluster members on multiple machines enables each cluster member
to make use of its machine's processing resources, avoiding bottlenecks and
resource contention. Therefore, response times will improve in most
scenarios.

� Benefits from WebSphere Application Server workload management
capabilities

As horizontal scaling is implemented through clusters, it benefits from
WebSphere Application Server workload management.

� Provides enhanced failover support

As the cluster members are spread over multiple systems, this topology
provides hardware failover capabilities. Client requests can be redirected to
cluster members on other machines if a machine goes offline. The outage of a
system or an operating system failure does not stop your service from
working.

Note: The illustration in Figure 5-4 is intended to show a horizontal scaling
topology of application servers but still contains single points of failure
(namely, the Web server). To avoid these single points of failures you have to
enhance the topology as shown in “Horizontal scaling topology with an IP
sprayer” on page 150.

148 WebSphere Application Server V7.0: Concepts, Planning, and Design

Disadvantages
Horizontal scaling using clusters has the following disadvantages:

� Increased resources used

As multiple systems are required to implement this topology, the hardware
cost will increase.

To implement vertical scaling you need WebSphere Application Server
Network Deployment. Therefore, you need additional application server
processes like the deployment manager and the node agent process to
manage such an environment. This increases overhead and the memory
footprint of the installation.

� More complex administration

The maintenance and administration of the environment are more complex as
the number of systems increases.

Installation and configuration
The following sections indicate the minimum software configuration steps that
you need to perform for the topology shown in Figure 5-4 on page 147:

System A
Perform the following steps to configure System A.

1. Install and configure a supported Web server.

2. Install and configure the WebSphere Application Server Plug-in for the Web
server.

System B and System C
Perform the following steps to configure System B and System C.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template and federate
this profile to the deployment manager on system D either during profile
creation or by running the addNode command after the profile creation.

Alternatively, you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the deployment manager running on System D by using the addNode
command.

 Chapter 5. Topologies 149

System D
Perform the following steps to configure System D.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the profile template
<app_server_root>/profileTemplates/dmgr template, or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER

3. Create a Web server definition through the Integrated Solutions Console or
through the wsadmin scripting interface.

4. Create a WebSphere Application Server cluster with one cluster member on
System B and one cluster member on System C.

Horizontal scaling topology with an IP sprayer
Load balancing products can be used to distribute HTTP requests among Web
servers running on multiple physical machines. The Load Balancer component of
Network Dispatcher, for example, is an IP sprayer that performs intelligent load
balancing among Web servers based on server availability and workload.

Figure 5-5 on page 151 illustrates a horizontal scaling configuration that uses an
IP sprayer to redistribute requests between Web servers on multiple machines.

150 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 5-5 Simple IP sprayer horizontally scaled topology

The active Load Balancer hosts the highly available TCP/IP address, the cluster
address of your service and sprays requests to the Web servers. At the same
time, the Load Balancer keeps track of the Web servers health and routes
requests around Web servers that are not available. To avoid having the Load
Balancer be a single point of failure, the Load Balancer is set up in a hot-standby
cluster. The primary Load Balancer communicates its state and routing table to
the secondary Load Balancer. The secondary Load Balancer monitors the

System C

Outside World DMZ Internal Network

Directory
and Security

Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User
Pr

ot
oc

ol
 F

ire
w

al
l

HTTP/HTTPS

System E

Deployment
Manager

System B

Load
Balancer

Load
Balancer

hot standby

System D

Cluster

System A

Load
Balancer

Web Server

Plug-in

Web Server

Plug-in

Application
Server

Application
Server

D
om

ai
n

Fi
re

w
al

l

Existing
applications

and data

Note: To reduce the number of systems, and to demonstrate the co-location
capabilities of the Edge components Load Balancer, in Figure 5-5 the Load
Balancer and the Web server are installed on the same system. The Web
servers can be installed on separate systems in the DMZ as well. Consult the
Edge Components, Version 7.0 Information Center for supported network
configuration. See the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.edge.doc/welcome.html

 Chapter 5. Topologies 151

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.edge.doc/welcome.html

primary Load Balancer through heartbeat and takes over when it detects a
problem with the primary Load Balancer. Only one Load Balancer is active at a
time.

Both Web servers are active at the same time and perform load balancing and
failover between the application servers in the cluster through the Web server
plug-in. If any component on System C or System D fails, this should be detected
by the plug-in and the other server can continue to receive requests.

Advantages
Using an IP sprayer to distribute HTTP requests has the following advantages:

� Improved performance

By distributing incoming TCP/IP requests (in this case, HTTP requests)
among a group of Web servers, the workload is spread and you can expect
improved performance.

� Increased capacity

The usage of multiple Web servers increases the number of connected users
that can be served at the same time.

� Elimination of the Web server as a single point of failure.

Used in combination with load balancers this topology eliminates the Web
server as a single point of failure.

� Improved throughput and performance

By maximizing parallel processor and memory usage you can expect
increased throughput and performance.

Disadvantages
The usage of Load Balancer has some drawbacks most of which are cost
related, namely:

� Increased complexity

This configuration requires the Load Balancer component to be installed and
maintained. Therefore, it increases the installation and configuration
complexity. As the Load Balancer is running on a separate system there are
more systems to manage and to operate, which in turn, increases the cost for
the operation of the environment.

152 WebSphere Application Server V7.0: Concepts, Planning, and Design

Installation and configuration
The following sections indicate the minimum software configuration that you need
for the topology shown in Figure 5-5 on page 151:

System A and System B
Perform the following steps to configure System A and System B.

1. Install WebSphere Edge components Load Balancer.

2. Configure the Load Balancer component according to your network topology.

3. Install and configure a supported Web server.

4. Install and configure the WebSphere Application Server Plug-in for the Web
server.

System C and System D
Perform the following steps to configure System C and System D.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template and federate
this profile to the deployment manager on system E either during profile
creation or by running the addNode command after the profile creation.

Alternatively you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the deployment manager running on System E by using the addNode
command.

System E
Perform the following steps to configure System E.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the profile template
<app_server_root>/profileTemplates/dmgr template or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER.

3. Create the Web server definitions through the Integrated Solutions Console or
through the wsadmin scripting interface.

4. Create a WebSphere Application Server cluster using the Integrated
Solutions Console or wsadmin with one cluster member on System C and one
cluster member on System D.

 Chapter 5. Topologies 153

5.3.4 Reverse proxy topology

Reverse proxy servers, like the one provided with the Edge components or the
DMZ secure proxy, are typically used in DMZ configurations for two major
reasons:

� To provide additional security between the public Internet and the Web
servers (and application servers)

� To increase performance and reduce the load on the servers by content
caching

The topology shown in Figure 5-6 illustrates the use of a reverse proxy server.

Figure 5-6 Topology using an Edge Components reverse proxy

System B

Outside World DMZ Internal Network

Directory and
Security
Services

Existing
applications

and data

System A

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

wa
ll

Reverse
Proxy

Server A

Application
Server

Web Server

Plug-in

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User

HTTP/HTTPS

Note: The illustration in Figure 5-6 is intended to provide an overview of what
a topology, containing a reverse proxy might look like. The reader should be
reminded that high availability is not incorporated here. To achieve high
availability it would be required to have multiple reverse proxy servers and two
sets of Load Balancer cluster addresses. One cluster address for the proxy
servers and one cluster address for the Web servers.

154 WebSphere Application Server V7.0: Concepts, Planning, and Design

In this example, a reverse proxy in the DMZ listens on the HTTP and HTTPS port
(typically port 80 and 443) for requests. The reverse proxy intercepts the
incoming requests and verifies if there is a valid copy of the requested object in
its cache. If a valid, cached version is found, the cached copy is returned to the
client. If no valid copy of the requested object is found in the local cache it
forwards those requests to the Web server in the internal network. Responses
are returned through the reverse proxy to the Web client, hiding the Web server
from the clients and allowing the proxy server to store a copy of the object in the
local cache, if the configuration permits.

Reverse proxy configurations support high-performance DMZ solutions that
require as few open ports in the firewall as possible. The reverse proxy requires
only one open port per protocol to access the Web server behind the firewall.

Advantages
Advantages of using a reverse proxy server in a DMZ configuration are as
follows:

� Independent configuration

The reverse proxy installation has no effect on the configuration and
maintenance of a WebSphere application.

� Improved performance due to caching

As the reverse proxy server provides caching capabilities, in most cases it can
respond faster to client requests because objects can be served out of the
cache. In most cases the response time and performance will improve.

� Off loading the Web servers

The reverse proxy servers delivered with WebSphere Application Server V7.0
provide caching capabilities, off-loading the Web servers and the application
servers if dynamic caching is supported as well.

Disadvantages
Disadvantages of a reverse proxy server in a DMZ configuration are as follows:

� Increased complexity

This configuration requires an the Caching Proxy component to be installed
and maintained, increasing the installation and configuration complexity. As
the Load Balancer is running on a separate system there are more systems to
manage and to operate, which in turn, increases the cost for the operation of
the environment. Consider these costs against the advantages you realize.

� Increased latency for non-cacheable objects

Requests for non-cacheable objects increase network latency and lower
performance To be effective, a sufficiently high cache hit rate is required.

 Chapter 5. Topologies 155

Installation and configuration: Edge Proxy
The following sections indicate the minimum software configuration that you need
for the topology shown in Figure 5-6 on page 154.

System A
Perform the following steps to configure System A.

a. Install WebSphere Edge components.

b. Configure the required proxy directives in ibmproxy.conf.

System B
Perform the following steps to configure System B.

a. Install and configure a supported Web server.

b. Install and configure the WebSphere Application Server plug-in for the
Web server WebSphere Application Server (Express, Base, or Network
Deployment).

c. Create an application server profile.

d. Install WebSphere Application Server V7.0.

e. Create an application server profile using the
<app_server_root>/profileTemplates/default profile template .

f. Create an Web server definition through the Integrated Solutions Console
or through the wsadmin scripting interface.

Installation and configuration: DMZ secure proxy
When you plan to use the DMZ secure proxy instead of the Edge Proxy you must
be aware that you need WebSphere Application Server Network Deployment.
The DMZ secure proxy is not supported when using the base version of
WebSphere Application Server. Therefore, the topology will slightly change and
look similar to the illustration as shown in Figure 5-7 on page 157.

156 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 5-7 Topology using a DMZ secure proxy server

The following sections indicate the minimum software configuration steps you
need to perform for the topology shown in Figure 5-7. In this example, we are
assuming that the DMZ secure proxy is set up with security level HIGH and
therefore supports only static routing.

System A
Perform the following steps to configure System A.

1. Install the DMZ secure proxy software package.

2. Create an Application Server Profile using the
<app_server_root>/profileTemplates/secureproxy template.

System C

System B

Cluster

Outside World DMZ Internal Network

Directory and
Security
Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User
System A

DMZ secure
Proxy

Application
Server 1

Application
Server 2

Application
Server 3

Deployment
Manager

Existing
applications

and data
D

om
ai

n
Fi

re
w

al
l

P
ro

to
co

l F
ire

w
al

l

HTTP/HTTPS

Administrative
agent

Config-Only
DMZ secure

proxy

nodeagent

 Chapter 5. Topologies 157

System B
Perform the following steps to configure System B.

1. Install WebSphere Application Server V7.0

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template. Federate this
profile to the deployment manager on system C either during profile creation,
or by running the addNode command after the profile creation.

Alternatively you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the deployment manager running on System C by using the addNode
command.

System C
Perform the following steps to configure System C.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the profile template
<app_server_root>/profileTemplates/dmgr template or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER.

3. Create WebSphere Application Server clusters or un-clustered servers on
System B.

4. Deploy the applications to the application servers and make sure they are
started.

5. Because we are setting up a DMZ secure proxy with security level HIGH, only
static routing is supported. We have to export the routing information by
performing the following steps:

a. Go to the <profile_root>/bin directory of the deployment manager profile

b. Start wsadmin.bat(sh) -lang jython using the Jython scripting language
and run the commands shown in Example 5-1 to export the static routing
information.

Example 5-1 Sample Jython code to export static routing information

mbean=AdminControl.queryNames('*:*,type=TargetTreeMbean,process=dmgr')
AdminControl.invoke(mbean, 'exportTargetTree',
'<directory>/targetTree.xml')

6. Copy the file <directory>/targetTree.xml to System A.

158 WebSphere Application Server V7.0: Concepts, Planning, and Design

7. Create an application server profile using the
<app_server_root>/profileTemplates/management profile template and specify
-serverType as ADMIN_AGENT to create the administrative agent profile.

8. Create an Application Server Profile using the
<app_server_root>/profileTemplates/secureproxy template.

9. Register the DMZ secure proxy configuration-only profile to the Administrative
agent.

10.Use the Integrated Solutions Console from the administrative agent to
manage the DMZ secure proxy configuration-only template.

11.Export the configuration-only DMZ secure proxy to move the changes over to
the real DMZ secure proxy. You need to perform the following steps:

a. Go to the <profile_root>/bin directory of the configuration-only DMZ
secure proxy profile.

b. Start wsadmin -lang jython -conntype NONE.

c. Run the command shown in Example 5-2 to export the proxy profile.

Example 5-2 Sample code to export proxy profile

AdminTask.exportProxyProfile('[-archive
<directory>/DMZProxy.car]'

12.Copy the file <directory>/DMZProxy.car to System A.

Note: The profiles for the administrative agent and the DMZ secure proxy
are for administration purposes only. The DMZ secure proxy server is a
configuration-only profile. This means that the server cannot be started or
used for any work. This server is an administrative place-holder for the
DMZ secure proxy server on System A. If you try to start the
configuration-only profile, it will fail with the following error message in the
SystemOut.log:

Caused by:
com.ibm.ws.proxy.deployment.ProxyServerDisabledException: This
secure proxy server is part of a configuration-only installation
and cannot be started.

Tip: It is recommended to name the proxy server and the node name in the
configuration-only profile on System C the same as you did when creating
the proxy server on System A using parameters: -serverName and
-nodeName when running manageprofiles.

 Chapter 5. Topologies 159

System A
1. Copy the file targetTree.xml to the <profile_root>/staticRoutes directory.

2. Go to the <profile_root>/bin directory and start wsadmin -lang jython
-conntype NONE.

3. Import the profile changes from <directory>/DMZProxy.car by running the
wsadmin command shown in Example 5-3.

Example 5-3 Sample code to import proxy profile

AdminTask.importProxyProfile('-archive <directory>/DMZProxy.car
-deleteExistingServers true')
AdminConfig.save()

4. Start the DMZ secure proxy server.

5.3.5 Topology with redundancy of multiple components

To remove single points of failure in a topology, redundant components are
added. Most components in a WebSphere Application Server topology provide
the options to implement redundancy. For example, Load Balancer hot standby
server with the primary Load Balancer server, clustered Web servers, clustered
application servers, and so forth. The topology shown in Figure 5-8 on page 161
illustrates the minimum WebSphere components used in an installation with the
usual high availability requirements (whereby the number of application servers
might vary).

Note: The static routing information is not updated automatically.
Whenever there is a change (for example when an application is installed
or removed) the routing information needs to be manually refreshed. The
DMZ secure proxy servers needs to be restarted after each refresh of the
routing information to activate the change. If this is not feasible you need to
switch the dynamic routing to use a lower security level.

160 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 5-8 illustrates a topology with redundancy of several components.

Figure 5-8 Topology with redundancy of several components

The following components are redundant in this example:

� Two clusters of Load Balancers

In the illustrated topology there are two clusters of load balancers. Each of the
clusters provides a highly available cluster address. The first cluster, which
runs on System A with System B as hot standby, provides the cluster address
for the reverse proxies. This cluster address is used by the clients to access
the service.

The second cluster runs on System E, with System F as hot standby, provides
the cluster address for the Web servers, and is used by the proxy servers to
retrieve content if user requests cannot be served out of the cache. Refer to
“Horizontal scaling topology with an IP sprayer” on page 150 for a high level
overview how Load Balancers work.

System D System H

Proxy
Server

System B

Cell Multiple
Servers

Outside World DMZ Internal Network

Directory
and Security

Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
TUser

HTTP/HTTPS

Server M

Deployment
Manager

Cluster

Existing
applications

and data

System A

Server I

Server J

Server K

Server L

Load
Balancer

Web
Server

Plug-in

Load
Balancer

System F

System E

Load
Balancer

Load
Balancer

System C

Proxy
Server

System G

Web
Server

Plug-in

Application
Server 1

Application
Server 1

Application
Server 2

Application
Server 3

Application
Server 5

Application
Server 6

Application
Server 7

Application
Server 8

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

 Chapter 5. Topologies 161

� Two reverse proxy servers

Both of the reverse proxy servers (running on System C and System D) are
receiving requests from the Load Balancer and share the requests coming
from the clients. Each proxy server is installed on a different system to provide
a maximum level of redundancy. Keep in mind that both reverse proxy servers
must have an identical configuration.

� Two Web servers

Each Web server, one running on System G and the other one on System H,
receives requests from the second Load Balancer cluster and shares the
requests that come from the reverse proxies. Each Web server is installed on
a different machine but they must have an identical configuration.

� An application server cluster

The cluster is spread across four server systems and implements a
combination of vertical and horizontal scaling. The cluster consists of eight
cluster members, two on each server. Although the application servers are
grouped together in one cluster, they might originate from different
installations. The application servers on System I, for example, could be two
separate installations of WebSphere Application Server. The application
servers on System J could be profiles of a single installation.

� Two database servers

The database servers need to be made highly available using database
system specific tools or operating system-based clustering software.

� Two LDAP servers

The LDAP servers could use a high availability software product (like another
Load Balancer) or the backup LDAP server support (as provided through
federated repositories user registry in WebSphere Application Server). The
LDAP servers must have identical structure and user population.

This topology is designed to maximize performance, throughput, and availability.
It incorporates the benefits of the other topologies that have been discussed
earlier in this chapter.

Note: Each Load Balancer installation can host multiple cluster addresses.
You do not necessarily need a separate installation for each cluster
address.

162 WebSphere Application Server V7.0: Concepts, Planning, and Design

Advantages
The major advantages of this topology are as follows:

� Most single points of failure eliminated

There are no single points of failure. The Load Balancer node, reverse proxy
server, Web server, application server, database server, and LDAP server are
set up in a redundant way.

� Horizontal scaling in place

Horizontal scaling is done by using both the IP sprayer (for the reverse proxy
and the Web server nodes) and application server cluster technology to
maximize availability. The benefits from horizontal scaling are discussed in
5.3.3, “Horizontal scaling topology” on page 147.

� Improved application performance

In most cases the application performance is improved by using the following
techniques:

– Hosting application servers on multiple physical machines, z/OS images,
or both to optimize the usage of available processing power.

– Using clusters to scale application servers vertically, which makes more
efficient use of the resources of each machine.

� Using workload management technologies

Applications in this topology can benefit from workload management
techniques. In this example, workload management is performed as follows:

– Load Balancer Network Dispatcher to distribute client HTTP requests to
each reverse proxy server

– Load Balancer Network Dispatcher to distribute requests from the proxy
servers to each Web server

– WebSphere Application Server Network Deployment workload
management feature to distribute work among clustered application
servers

Note: There are still components in this topology, such as the deployment
manager, cell-wide services like the HAManager, and JNDI, which are not
highly available.

 Chapter 5. Topologies 163

Disadvantages
The major disadvantages of this topology is increased cost. This combined
topology has the disadvantages of costs in hardware, complexity, configuration,
and administration. Consider these costs in relation to advantages in
performance, throughput, and reliability.

Installation and configuration
The following sections indicate the minimum software configuration that you need
for the topology shown in Figure 5-8 on page 161:

System A, System B, System E and System F
Perform the following steps to configure System A, System B, System E and
System F.

1. Install WebSphere Edge components Load Balancer.
2. Configure the Load Balancer component according to your network topology.

System C and System D
To configure System C and System D, install and configure the Edge
Components Caching Proxy.

System G and System H
Perform the following steps to configure System G and System H.

1. Install and configure a supported Web server.
2. Install and configure the WebSphere Application Server Plug-in for the Web

server.

Note: As this topology is a combination of topologies described before, the
disadvantages of the other base topologies apply here as well.

Note: Keep in mind that System A and System B form one cluster and that
System E and System F form another, different cluster

Note: If you plan to implement the DMZ secure proxy you would not need the
Systems G and H.

164 WebSphere Application Server V7.0: Concepts, Planning, and Design

Servers I, J, K, and L
Perform the following steps to configure Servers I, J, K, and L.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template. Federate this
profile to the deployment manager on System M either during profile creation
or by running the addNode command after the profile creation.

Alternatively you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the deployment manager running on System C by using the addNode
command.

Server M
Perform the following steps to configure Server M.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/dmgr profile template, or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER.

3. Create an Web server definitions through the Integrated Solutions Console or
through the wsadmin scripting interface.

4. Create a WebSphere Application Server cluster with two cluster members on
System I, J, K, and L.

 Chapter 5. Topologies 165

5.3.6 Heterogeneous cell

Cells can span servers across multiple heterogeneous operating systems like
z/OS sysplex environments and distributed platforms. For example, z/OS nodes,
Linux nodes, UNIX nodes, and Microsoft Windows nodes can exist in the same
application server cell. This kind of configuration is referred to as a
heterogeneous cell. With WebSphere Application Server V7.0, there are many
different topologies that are possible to compose a heterogeneous cell, as shown
in Figure 5-9.

Figure 5-9 Different possibilities with a heterogeneous cell

Sysplex

DMGR

z/OS

Application
server node

z/OS

Application
server node

Traditional all z/OS, all in one sysplex

Sysplex

DMGR

z/OS

Application
server node

z/OS

Application
server node

All z/OS, but across different sysplexes

Sysplex

DMGR

Distributed

z/OS

Application
server node

Heterogeneous, DMGR on a
distributed platform

Distributed

z/OS

Heterogeneous, DMGR on z/OS

Application
server node

DMGR

166 WebSphere Application Server V7.0: Concepts, Planning, and Design

WebSphere Application Server Version 7.0 products can coexist with the
following supported versions:

� IBM WebSphere Application Server Version 5.1
� IBM WebSphere Application Server Network Deployment Version 5.1
� IBM WebSphere Application Server Version 5.1 for z/OS
� IBM WebSphere Application Server Version 6.0
� IBM WebSphere Application Server Network Deployment Version 6.0
� IBM WebSphere Application Server Version 6.0 for z/OS
� IBM WebSphere Application Server Version 6.1
� IBM WebSphere Application Server Network Deployment Version 6.1
� IBM WebSphere Application Server Version 6.1 for z/OS

WebSphere Application Server Version 5.1, Version 6.0, and Version 6.1 clients
can coexist with Version 7.0 clients.

Advantages
This topology is designed to maximize performance, throughput, and availability.
It incorporates the benefits of the other distributed server topologies and adds
the possibility to mix different operating systems. Advantages are as follows:

� Benefits from horizontal and vertical scaling described in previous sections

� Flexible deployment of components

Components can be deployed to systems on which they provide the best
value and effectiveness.

� Easier integration and reuse of existing software components

As multiple systems can be included in the cell, the integration of existing,
platform-specific software components is much easier.

� Easier migration

Running different versions and platforms of WebSphere Application Server in
a cell is a possible migration approach for migrating WebSphere Application
Server versions. Although this is a supported environment mixed version cells
should not be considered a permanent solution.

 Chapter 5. Topologies 167

Disadvantages
The disadvantages of this topology are as follows:

� Complex administration

Due to the heterogeneous environment, the administration is complex and
requires administrator knowledge for all platforms.

� Increased administration and operational costs

This combined topology has the disadvantages of costs in hardware,
configuration, and administration. Consider these costs in relation to gains in
performance, throughput, and reliability.

For information about planning and system considerations required to build a
heterogeneous cell, see the IBM White Paper WebSphere for z/OS --
Heterogeneous Cells, available at the following Web page:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

5.3.7 Multi-cell topology

The topologies introduced in 5.3.5, “Topology with redundancy of multiple
components” on page 160, and in 5.3.6, “Heterogeneous cell” on page 166
provide a high level of availability and redundancy of all sorts of WebSphere
components. Nevertheless, application software problems or malfunctioning of
cell level components such as high availability manager, though rare, are
potential threats to the availability of your service.

High availability and disaster recovery are two terms that need to be addressed
differently. A possible approach would be a two cell architecture as outlined in
Figure 5-10 on page 169

168 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

Figure 5-10 Multi-cell architecture

This topology is basically a duplication of the topology introduced in 5.3.5,
“Topology with redundancy of multiple components” on page 160. Here we are
implementing independent cells, both providing service. Even cell level problems
can be handled quickly in this topology, as full cells can activated and deactivated
as needed.

Load Balancer
Node

Cell 1

DMZ Internal Network

Directory
and Security

Services

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

Pr
ot

oc
ol

 F
ire

w
al

l

Load Balancer
Node
Load

Balancer

Clusters

Application Server Node

Application Server Node

Application Server Node

Application Server Node

Cell 2

Directory
and Security

Services

Application Server Node

Application Server Node

Application Server Node

Application Server Node

Database
Server

Database
Server

Caching
Proxy

Load Balancer
Node
Load

Balancer

Web Server
Redirector node

HTTP
Server Plug-in

Caching
Proxy

Web Server
Redirector node

HTTP
Server Plug-in

Application Server

Application Server

Application Server

Application Server

Application Server

Application Server

Application Server

Application Server

Load
Balancer

Caching
Proxy

Load Balancer
Node
Load

Balancer

Web Server
Redirector node

HTTP
Server Plug-in

Caching
Proxy

Web Server
Redirector node

HTTP
Server Plug-in

D
om

ai
n

Fi
re

w
al

l

HTTP/
HTTPS

 Chapter 5. Topologies 169

Advantages
This topology provides the following advantages:

� Provides all the advantages defined in 5.3.5, “Topology with redundancy of
multiple components” on page 160

� Allows you to react quickly to cell level problems

� Allows stepwise WebSphere upgrades

This topology allows independent releases of WebSphere Application Server
software in each cell. Therefore, each cell can up upgraded on its own. This
lowers the risk of an upgrade and provides a fall-back scenario in case of
upgrade problems.

� Allows stepwise application upgrades

Using this topology allows independent application releases in each cell and
provides a quick fall back scenario in case you determine application
problems in your production environment2.

� Possible approach for disaster recovery

If the cells are located in different data centers, it is a possible approach for a
disaster recovery solution from a WebSphere perspective.

� Co-location of cells is possible

You can collocate the two cells on the same systems to achieve the software
release independence described before. Be aware that this limits the disaster
recovery usability.

2 Of course this requires some sort of compatibility between application software releases

Note: The topology illustrated in Figure 5-10 is not a complete solution for
disaster recovery. For a real disaster recovery solution implementation
several issues need to be addressed:

� How do you route traffic to each of the cells?
� How will you handle affinity of requests?
� How will you handle session data?
� How will you handle security data?
� How will you address the data replication and consistency challenge?
� How will you handle a cell fail-over for each type of requests in your

application? Web requests, SIP requests, EJB Requests, Web services
and so forth

170 WebSphere Application Server V7.0: Concepts, Planning, and Design

Disadvantages
This topology offers the following disadvantages:

� Increased cost

This multi-cell topology has the disadvantages of costs in hardware,
complexity, configuration, and administration. But you need to consider these
costs in relation to gains in performance, throughput, and reliability. You will
likely have specific requirements to consider an architecture like that.

Installation and configuration
The installation and configurations steps for this topology are the same as in
“Installation and configuration” on page 164.

5.3.8 Advanced topology using an administrative agent

Even if single server deployments of WebSphere Application Server do not
provide any load-balancing and fail-over capabilities (with the exception of
WebSphere Application Server for z/OS), there are several installation scenarios
where a single server installation is sufficient according to the requirements. To
optimize such single server installations, it makes sense to run multiple single
server environments on one system to fully use the available system capacity.

Flexible management is an improvement in WebSphere Application Server V7.0
to reduce administration cost of large WebSphere deployments. One of the
enhancements of WebSphere Application Server V7.0 addressing this issue is
the administrative agent. For further information about the administrative agent
see 3.1.7, “Administrative agent” on page 63. To optimize the administration of
large single server deployments on one system, the administrative agent can be
used. The purpose of the administrative agent is to reduce the administration
cost and overhead.

Note: As this topology is a combination of topologies described before the
disadvantages of these base topologies apply here as well.

 Chapter 5. Topologies 171

The topology in Figure 5-11 shows a possible topology using an administrative
agent to manage all the single server installations on System B. Instead of
running the Configuration service, Integrated Solutions Console application, and
so forth in each of the application servers, these services are running in the
administrative agent for all profiles. The administrative agent therefore not only
reduces the administrative overhead for the installation but also simplifies the
administration, as all the administrative access uses one central point. Therefore,
you have one URL for the administration instead of multiple URLs.

Figure 5-11 Topology containing administrative agent

Advantages
The implementation of an administrative agent profile provides several benefits
for the installation as follows:

� Reduced administrative footprint

The administrative footprint is reduced when using multiple single server
installations in the same system.

Server A

Web Server 2

Outside World DMZ Internal Network

I
N
T
E
R
N
E
T

I
N
T
E
R
N
E
T

User
HTTP/HTTPS

Server B

Pr
ot

oc
ol

 F
ire

w
al

l

Web Server 1

Plug-in

Plug-in

Web Server n

Plug-in

Existing
applications

and data

Application
Server 1

Application
Server 2

Application
Server n

Existing
applications

and data

Directory
and Security

Services

Directory
and Security

Services

Existing
applications

and data

Directory
and Security

Services

A
dm

inistrative A
gent

Admin
console

Admin
scripts

Domain Firewall

D
om

ai
n

Fi
re

w
al

l

172 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Central access to administration tools

The access to the administrative tools (Integrated Solutions Console,
wsadmin) is simplified, as all access is through the administrative access.
Only one URL is used instead of multiple URLs, as without administrative
agents.

� Less firewall ports required

If there is a firewall between administrator’s workstation and the servers, less
ports need to be opened on the firewall. You only need accessibility to the
administrative agent instead to each application server.

Disadvantages
The implementation of an administrative agent profile has the disadvantage of
requiring an additional JVM.

An additional JVM is running on the system. It requires multiple single servers to
manage through the administrative agent to avoid an increased memory footprint
for the overall solution.

Installation and configuration
To setup an environment as illustrated in Figure 5-11 on page 172 the following
installation and configuration steps are required:

System A
Perform the following steps to configure System A.

1. Install and configure a supported Web server.

2. Install and configure the WebSphere Application Server plug-in for the Web
server.

System B
Perform the following steps to configure System B.

1. Install WebSphere Application Server V7.0.

2. Create as many application server profiles using the
<app_server_root>/profileTemplates/default profile template as required.
These are your single server profiles running your applications.

Note: In this topology there are multiple ways to install and configure your
Web server. You can run one instance of a Web server, multiple instances
of the same Web servers or even multiple installations if different Web
servers. All you have to make sure that each Web server’s plug-in points to
the correct application server on System B.

 Chapter 5. Topologies 173

3. Create an application server profile using the
<app_server_root>/profileTemplates/management profile template and
specify -serverType as ADMIN_AGENT.

This step creates the administrative agent profile.

4. Go to the binary directory of your Administrative profile and register each
single server profile to the administrative agent (registerNode).

5. Open the Integrated Solutions Console or a wsadmin session to the
administrative agent and select the application server you want to manage.

6. For each single server installation, create an Web server definition as needed
for your environment.

5.3.9 Advanced topology using a job manager

Under the aspect of flexible management in WebSphere Application Server V7.0,
the job manager function was introduced as a second component beside the
administrative agent. For more information about the job manager, see 3.1.8,
“Job manager” on page 64.

The job manager addresses scalability issues of the administrative runtime if the
components are spread over multiple remote locations. An example of such a
deployment is a typical branch deployment where central management is desired
but the nodes themselves are in branch locations.

The job manager uses a loosely coupled asynchronous administration model to
manage a number of remote endpoints. The job manager introduces different
administrative options and flexibility to set up a centralized administration model.
The topology illustrated in Figure 5-12 on page 175 demonstrates a possible
usage of a job manager for the central administration of multiple heterogeneous
environments.

174 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 5-12 Topology using a job manager

The topology shown in Figure 5-12 is a possible usage scenario for the job
manager. The job manager node on System A acts as a coordinator across
multiple deployment managers (System H and System D) and administrative
agents (System B and System C) through its asynchronous job management
capabilities. Keep in mind that the job manager is no replacement for the
deployment managers or administrative agents. The job manager relies on the
local management capabilities to execute the management jobs.

Advantages
Running a job manager in your environment provides several advantages for the
administration of your deployments:

� Allows central, remote management of multiple different administrative
entities through WAN networks

� Allows local and remote management of each installation
� Enhances the existing management models

Internal Network

Admin
console

Admin
scripts

Server K

Application
Server 1

Node
Agent

Server K

Application
Server 1

Node
Agent

System K

Application
Server 1

Node
Agent

System B

Application
Server 1

Application
Server 2

Application
Server n

A
dm

inistrative A
gent

System C

Application
Server 1

Application
Server 2

Application
Server n

A
dm

inistrative A
gent

Admin
console

Admin
scripts

Server K

Application
Server 1

Node
Agent

Server K

Application
Server 1

Node
Agent

System G

Application
Server 1

Node
Agent

System D

Deployment
Manager

Admin
console

Admin
scripts

Admin
console

Admin
scripts

System H

Deployment
Manager

System A

Job
Manager

Remote access

 Chapter 5. Topologies 175

Disadvantages
There are no real disadvantages specific to the job manager, except that you
need an additional JVM (namely the jobmgr application server) running.

Installation and configuration
To set up the environment illustrated in Figure 5-12 on page 175, the following
installation and configuration steps are required:

System A
Perform the following steps to configure System A.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/management profile template and
specify -serverType as JOB_MANAGER.

This step creates the job manager profile.

System B and System C
Perform the following steps to configure System B and System C.

1. Install WebSphere Application Server V7.0.

2. Create as many application server profiles using the
<app_server_root>/profileTemplates/default profile template as required.
These are your single server profiles running your applications.

3. Create an application server profile using the
<app_server_root>/profileTemplates/management profile template. Specify
-serverType as ADMIN_AGENT.

This step creates the administrative agent profile.

4. Go to the binary directory of your Administrative profile and register each
single server profile to the administrative agent (registerNode).

5. Use wsadmin in the binary subdirectory of the Administration agent profile
directory and register the administrative agent with the job manager by
running the AdminTask.registerWithJobManager task.

176 WebSphere Application Server V7.0: Concepts, Planning, and Design

System D and System H
Perform the following steps to configure System D and System H.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/dmgr profile template, or use the
<app_server_root>/profileTemplates/management template and specify
-serverType as DEPLOYMENT_MANAGER.

3. Use wsadmin in the binary subdirectory of the deployment manager profile
directory and register the deployment manager with the job manager by
running the AdminTask.registerWithJobManager task.

Systems E, F, G, I, J, and K
Perform the following steps to configure Systems E, F, G, I, J, and K.

1. Install WebSphere Application Server V7.0.

2. Create an application server profile using the
<app_server_root>/profileTemplates/managed profile template. Federate this
profile to the proper deployment manager either during profile creation or by
running the addNode command after the profile creation.

Alternatively, you can create an application server profile using the
<app_server_root>/profileTemplates/default profile template and federate the
node to the proper deployment manager by using the addNode command.

 Chapter 5. Topologies 177

178 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 6. Installation

This chapter provides general guidance for planning the installation of
WebSphere Application Server V7.0 and many of its components. To effectively
plan an installation, you need to select a topology, hardware, and operating
system, and prepare your environment for WebSphere Application Server
installation.

This chapter contains the following sections:

� “What is new in V7.0” on page 180
� “Selecting a topology” on page 181
� “Selecting hardware and operating systems” on page 181
� “Planning for disk space and directories” on page 182
� “Naming conventions” on page 184
� “Planning for the load balancer” on page 184
� “Planning for the DMZ secure proxy” on page 186
� “Planning for the HTTP server and plug-in” on page 187
� “Planning for WebSphere Application Server” on page 197
� “IBM Support Assistant” on page 226
� “Summary: Installation checklist” on page 227

6

Note: Detailed pre-requisite documentation for WebSphere Application Server
V7.0 can be found in the article System Requirements for WebSphere
Application Server V7.0, which is available at the following Web page:

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012284

© Copyright IBM Corp. 2009. All rights reserved. 179

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012284

This document does not describe the installation process itself. Refer to the
product documentation for details about installing WebSphere Application Server
V7.0. The installation documentation for WebSphere Application Server can be
found in the Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topinstalling.html

6.1 What is new in V7.0

The following installation-related items are new or changed significantly for the
WebSphere Application Server V7.0 editions for distributed systems:

� Non-root installation

– When installing as a non-root user, the installers for the IBM HTTP Server
and the Web server plug-in installers will now install a private copy of the
IBM Global Security Kit (GSKit). The private copy of the GSKit utility is
installed to sub-directory gsk7 of the products root directory for the product
which installs GSKit. So this is either <web_server_root>/gsk7 or
<plugins_root>/gsk7. This allows for root and non-root installations to use
secure socket layer (SSL) support.

– Verification of file systems permission before install

Before installing the product, users can verify that the adequate file
permissions exist. This verification can be invoked either during a check
box on the installation summary panel or the -OPT
checkFilePermissions="true" option in the response file when installing
silently. File system verification takes place before the install begins so as
to avoid an undefined product state due to insufficient file permissions.

– Changing ownership to another user after installation

After the installation of WebSphere Application Server, the
<app_server_root>/instutils/chutils command can be used to change
the file ownership to another user or group for future operations.

Note: There are still some limitations when installing WebSphere
Application Server as non-root user. Check the WebSphere Information
Center for details:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.i
bm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html?

180 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topinstalling.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html?

� Installation language support

The installer for WebSphere Application Server provides fine-grained
language support for the Integrated Solutions Console and the application
server runtime. This allows you to update language or add new packs at a
later time.

� Installing maintenance packages

The IBM Update Installer for WebSphere Software V7.0 supports multiple
releases (namely V6.0.2 (from 6.0.2.21 onward), V6.1 and V7.0). A single
installed instance of the Update Installer can be used to install updates to the
above mentioned versions of WebSphere Application Server.

Similar to the WebSphere Application Server installer, the Update Installer
provides a file permission verification feature that allows you to verify file
system permissions before the actual update begins, which reduces the risk
that the installation fails in an undefined state.

6.2 Selecting a topology

Chapter 5, “Topologies” on page 121 describes some common configurations.
Each topology description contains information about the software products
required and the information needed to create the WebSphere Application
Server runtime environment.

After identifying the topology that best fits your needs, map the components from
that topology to a specific hardware and operating system and plan for the
installation of the required products.

6.3 Selecting hardware and operating systems

After selecting a topology, the next step is to decide what platforms you will use to
map the selected topology to a specific hardware. These selections are driven by
several factors:

� Existing conditions
� Future growth
� Cost
� Skills within your company

 Chapter 6. Installation 181

When you choose the platform or platforms, you can determine the specific
configuration of each server by selecting the processor features, the amount of
memory, the number of direct-access storage device (DASD) arms, and storage
space that is required.

Along with selecting the hardware comes the operating system selection. The
operating system must be at a supported version with a proper maintenance
level installed for WebSphere Application Server to work properly and to get
support. Keep in mind that not every product you receive with WebSphere
Application Server V7.0 is supported on each operating system and platform.

For an updated list of the hardware and software requirements and supported
platforms for WebSphere Application Server V7.0, review the system
requirements for WebSphere Application Server V7.0, available at the following
Web page:

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012284

6.4 Planning for disk space and directories

Before installing WebSphere Application Server components you must provide
sufficient disk space for a successful installation and for an operation of the
environment.

Although WebSphere Application Server products provide a default directory
structure for their components, it might not be the best choice as the default
structure might limit the flexibility or become inconsistent in terms of naming.
Keep in mind that your directory names are bound to the naming rules.

There is no general rule if you should stick to one file system following the default
directory structure or create multiple file systems using different mount points.
Generally, disk space management is more flexible and efficient if you split the
installation in different file systems. Planning your directory structure and file
systems allows you to consider other criteria like performance, backup
requirements and capabilities, availability, and so on.

Note: In this section the term file system stands as a synonym for manageable
disk storage. This can be file systems on UNIX-based systems, disk partitions,
and drive letters on Windows, HFS/zFS for z/OS, and so on.

182 WebSphere Application Server V7.0: Concepts, Planning, and Design

Different file systems for the following purposes are useful:

� Application binaries

This file system stores the product binaries as dumped by the installer. When
designing this file system keep in mind that installing maintenance causes this
file system to grow.

� Profiles

This file system stores the profile-specific data that defines your runtime
environment. The minimum disk space required depends on the profile type
you create. The amount of user data needed depends on the applications
deployed to the profile.

� Log files

The purpose of this file system is to hold the log files of the application
servers. If this file system is not mounted under the default mount point you
have to change the server configuration for each server. This can be
accomplished either through scripting or by using a custom server template.

The size depends on the application and on the log retention policy of the
application servers.

� Dumps

System core dumps and Java heap dumps can be large and quickly fill a file
system. Therefore, it is a good practice to redirect system dumps, Java heap
dumps, and the Java core dumps to a dedicated directory.

This avoids a dumping process or Java virtual machine (JVM) filling up file
systems and impacting other running applications. It also allows you to locate
them easily. The size depends on the number of JVMs dumping to this
directory, their individual sizes, the number of dumps you want to retain, and
so on.

� Maintenance packages/CIM repositories

For easier management of your installation packages and your fix packs or
individual fixes you should keep them in a central repository. If you use the
centralized installation manager (CIM), this repository is located on the
deployment manager system.

� User data and content

This file system should be used to store other user data and content being
used in the applications.

Note: You do not need this file system on every server. Just maintain one
repository containing all your installation media, fixes, fix packs, and so on,
to have all installables at hand in case you need them.

 Chapter 6. Installation 183

6.5 Naming conventions

Naming conventions make the runtime environment more comprehensible. A
consistent naming convention helps standardize the structure of the environment
and allows for easy expansion of the environment and each component.

Naming conventions should be developed, established, and maintained for the
hardware and networking infrastructure, as well as the WebSphere Application
Server infrastructure, applications, and resources. When it comes to naming,
most companies have already developed a working naming convention for
existing infrastructure, and it is usually best to adhere to the existing convention
instead of trying to invent new one specific to WebSphere.

Because naming conventions are also related to many different aspects of a
company, they will vary depending on the characteristics of the environment.
With a proper naming convention, you should be able to understand the purpose
of an artifact by just looking at its name.

When you develop a naming convention, take into consideration which hardware
and software components are affected and what naming restrictions apply. On
many systems there are naming restrictions in terms of specific characters and
length of the names. In a heterogeneous environment this might become a pitfall.
Experience shows that it is best to avoid any special or national language
specific characters in the names.

6.6 Planning for the load balancer

Before starting the installation of the load balancer, several planning tasks must
be finished. The first pre-requisite to install the Load Balancer is that the detailed
network planning for your environment is finished and that you have an exact
understanding of the data flow in your environment. Edge Components V7.0 are
shipped with two versions of the Load Balancer:

� Load Balancer for IPv4
� Load Balancer for IPv4 and IPv6

Unless you have a specific requirement to use the Load Balancer for IPV4 you
should consider the newer Load Balancer: Load Balancer for IPv4 and IPv6.

Note: Several features of the Load Balancer for IPv4 were deprecated when
WebSphere Application Server V6.1 was announced. For a detailed list of the
deprecated features see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/rmig_depfeat.html#depv61

184 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_depfeat.html#depv61

6.6.1 Installation

Before starting with the installation, consult the IBM Information Center for the
type of Load Balancer you will install to ensure that all the required hardware and
software pre-requisites are met. The hardware and software requirements for the
Edge Components can be found at the following Web page:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27012372

The installation for both types of Load Balancer is done through the
platform-specific package manager. Detailed installation documentation for the
Load Balancer Product can be found at the following Web pages:

� For Load Balancer for IPv4, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.edge.doc/lbip4/LBguide.htm#HDRINSTALL

� For Load Balancer for IPv4 and IPv6, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.edge.doc/lb/info/ae/tins_installlb.html

6.6.2 Configuration

After the installation of the product you have to configure the Load Balancer for
your environment. The two available Load balancers provide a wide variety of
configuration options. You have multiple ways to configure the product and how
the Load Balancer should forward packets. The following sections give an
overview about some of these configuration tools and configuration options.

Configuration interfaces: Load Balancer for IPv4
The Load Balancer for IPv4 provides the following methods for configuration:

� Command line
� Graphical User Interface (GUI)
� Configuration Wizard

Configuration interfaces: Load Balancer for IPv4 and IPv6
The Load Balancer for IPv4 and IPv6 provides the following methods for
configuration:

� Command line
� Scripts
� GUI
� Configuration Wizard

 Chapter 6. Installation 185

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.edge.doc/lbip4/LBguide.htm#HDRINSTALL
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.edge.doc/lb/info/ae/tins_installlb.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27012372

Forwarding method
Each of the available versions of the Load Balancer provides different methods to
forward packages to the servers to which they are dispatching.

The Load Balancer for IPv4 provides the following forwarding methods:

� Media access control (MAC) level routing
� Network address translation (NAT)/Network address port translation (NAPT)
� Content-based routing (CBR)

The Load Balancer for IPv6 provides the following forwarding methods:

� MAC level routing
� Encapsulation forwarding

Advisors
Advisors are used to keep track of the health of the servers to which the Load
Balancer forwards the IP packets. The settings of the advisors are critical in
terms of how quickly an outage of a server can be determined. The more
frequent the advisor runs the quicker an outage is determined. But as advisors
are basically clients for the TCP/IP protocol used for accessing the server,
frequent advisor runs increase server load and network use.

The Load Balancer products provide a wide variety of build-in advisors ready to
use, but also allow the usage of custom advisors. You can write your own advisor
and configure Load Balancer to make decisions based of the response of your
advisor.

6.7 Planning for the DMZ secure proxy

The DMZ secure proxy is a new feature of the WebSphere Application Server
Network Deployment V7.0 product. In contrast to the WebSphere proxy that was
introduced in WebSphere Application Server V6.0.2, this WebSphere-based
proxy solution is hardened, and therefore suitable to run in a DMZ.

Note: NAT/NAPT and the CBR forwarding method are deprecated since
WebSphere Application Server V6.1

Note: The DMZ follows the same base principles for the installation as
WebSphere Application Server itself. This means that the DMZ secure proxy
differentiates between product binaries and runtime configuration files by
using profiles.

186 WebSphere Application Server V7.0: Concepts, Planning, and Design

The WebSphere Application Server DMZ secure proxy is available through a
separate installation media. A secureproxy profile template is created upon
installation of the DMZ secure proxy server and WebSphere Application Server
Network Deployment. These two profiles templates are different. The network
deployment installation provides a secureproxy profile template which generates
a configuration only profile. This profile can be used for the administration of the
DMZ secure proxy but is not runnable.

The secureproxy profile template that comes with DMZ secure proxy server is the
base for a proxy server running in the DMZ and forwarding requests to the
content servers.

Due to the similarity of the installation of a DMZ secure proxy server and
WebSphere Application Server, this section only outlines the differences.

The following items should be addressed before starting the installation of the
DMZ secure proxy server:

� Plan your file systems and directories
� Determine whether to perform a single install or multiple
� Select an installation method
� Installing updates
� Plan for profiles
� Plan for names
� Plan for TCP/IP port assignments
� Security considerations for the installation
� Installation of IBM Support Assistant Agent

For a detailed description on these items, refer to 6.9, “Planning for WebSphere
Application Server” on page 197.

6.8 Planning for the HTTP server and plug-in

The options for defining and managing Web servers depends on your chosen
topology and your WebSphere Application Server package. Decisions to make
include whether to collocate the Web server with other WebSphere Application
Server processes and whether to make the Web server managed or unmanaged.

The installation process includes installing a supported Web server and the
appropriate Web server plug-in and defining the Web server to WebSphere
Application Server.

 Chapter 6. Installation 187

The following examples outline the process required to create each sample
topology.

This is not a substitute for using the product documentation. It is intended to help
you understand the process. For detailed information about how the Plug-ins
Installation Wizard works, see the Install Guide, which can be found on the
Supplements media of the WebSphere Application Server V7.0 in the
plugin\docs directory.

During the plug-in installation, you are asked if the installation is local or remote.
Depending on the response, a certain path through the installation will occur.
Figure 6-1 on page 189 illustrates the plug-in installer behavior in more detail.

Note: Each example assumes that only the WebSphere processes shown in
the diagrams are installed on each system and that the profile for the process
is the default profile.

Note: When installing the IBM HTTP Server shipped with WebSphere
Application Server, you now have the option to install the Web server plug-in
at the same time. If you choose this option, you will automatically get a remote
installation.

The location for the plug-in configuration file is <ihs_install>/Plugins/config/.

The location for the plug-in configuration script is <ihs_install>/Plugins/bin.

188 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 6-1 Web server plug-in installer behavior

The plug-in installer maps all possible configurations to three scenarios,
(LOCAL_STANDALONE, LOCAL_DISTRIBUTED, and REMOTE) as depicted in
Figure 6-1:

� LOCAL_STANDALONE

A LOCAL_STANDALONE plug-in configuration is a default unfederated
stand-alone profile that has no existing Web server definition.

The Plug-ins Installation Wizard performs the following tasks in this case:

– Creates a Web server definition for the default stand-alone profile
– Configures the Web server to use the plugin-cfg.xml file

Manual steps required
before starting Web
server. Web server

configured to use the Web
server plugin-cfg .xml file
(LOCAL_DISTRIBUTED)

No manual steps required
before starting Web
server . Web server

configured to use the Web
server plugin-cfg.xml file
(LOCAL_STANDALONE)

Federated?

Web server
definition
exists?

Stand-alone? Managed? DMgr?

Managed
Profile
found?

(A)

Installation
type

Default
pro file

detected?

Manual steps required for a Web server definition.
Web server configured to use defaul t

plugin-cfg.xml file located in
<plugin_home>/config/<ws_name>/plugin-cfg.xml

Can start Web server using the default
plugin-cfg.xml file

(REMOTE)

Local Remote

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

NoNo

No

No

Note: If the stand-alone profile is federated, you need to re-create the Web
server definition.

 Chapter 6. Installation 189

What is next?

You can start the Web server and WebSphere Application Server without any
manual steps and access the snoop servlet through the Web server to verify
that everything is working.

� LOCAL_DISTRIBUTED

A LOCAL_DISTRIBUTED plug-in configuration has the following
characteristics:

– A stand-alone profile federated into a deployment manager cell.
– A managed node that is either federated or unfederated in a cell.
– A managed profile found after a default deployment manager cell

detected. See (A) in Figure 6-1 on page 189.

The Plug-ins installation wizard performs the following tasks in this case:

– Does not create a Web server definition for the default distributed profile.
– Configures the Web server to use the plugin-cfg.xml file in the Web server

definition directory that the user needs to create manually. You cannot
start the Web server until the manual steps are completed.

What is next?

– If the managed node is still not federated, federate the node first. This will
avoid the Web server definition being lost after the federation has
occurred.

– Run the manual Web server definition creation script.

– Start the Web server and WebSphere Application Server and run the
snoop servlet to verify that everything is working.

� REMOTE

A REMOTE plug-in configuration has the following characteristics:

– A remote install type selected by user at install time.

– A default deployment manager profile.

– No default profiles detected in the WebSphere Application Server directory
given by user.

– A default, unfederated, stand-alone profile with an existing Web server
definition.

The plug-ins installation wizard performs the following tasks in this case:

– Does not create a Web server definition for the default distributed profile.

– Configures the Web server to use the plugin-cfg.xml file in
<plugin_root>/config/<webserver_name>/plugin-cfg.xml.

190 WebSphere Application Server V7.0: Concepts, Planning, and Design

What is next?

If the default plugin-cfg.xml file in the <plugin_root> directory is used, start the
Web server and WebSphere Application Server and select the snoop servlet
to verify that everything is working. This requires that the
DefaultApplication.ear enterprise application is installed. If this is the case,
the snoop servlet is accessible at the following URL:

http://<hostname>:<web_server_port>/snoop

To benefit from the Web server definition, perform the following steps:

a. Copy the configuration script to the WebSphere Application Server
machine.

b. Run the manual Web server definition creation script.

c. Copy the generated Web server definition plugin-cfg.xml file back to the
Web server machine into the <plugin_root> directory tree. For IBM HTTP
Server, you can use the propagation feature.

d. Start the Web server and WebSphere Application Server and select the
snoop servlet.

6.8.1 Stand-alone server environment
In a stand-alone server environment, a Web server can be either remote or local
to the application server machine, but there can only be one defined to
WebSphere Application Server. The Web server always resides on an
unmanaged node.

Remote Web server
In this scenario, the application server and the Web server are on separate
machines. The Web server machine can reside in the internal network, or more
likely, will reside in the DMZ. See Figure 6-2.

Figure 6-2 Remote Web server in a stand-alone server environment

Web Client
(Browser)

Web Server

Plug-in

System B

Application
Server

System A

Fi
re

w
al

l

Fi
re

w
al

l

Internet Intranet

 Chapter 6. Installation 191

Assume that the application server is already installed and configured on system
A. Perform the following tasks:

1. Install the Web server on system B.

2. Install the Web server plug-in on system B by performing the following steps:

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
is under the config directory in the plug-in install directory. For example,
when the name specified for the Web server definition in the previous step
is webserver1, the default location for the plug-in file is as follows:

<plugin_root>/config/webserver1/plugin-cfg.xml

4. At the end of the plug-in installation, copy the script to the
<app_server_root>/bin directory of the application server machine, system A.
Start the application server, and execute the script.

When the Web server is defined to WebSphere Application Server, the plug-in
configuration file is generated automatically. For IBM HTTP Server, the new
plug-in file is propagated to the Web server automatically. For other Web
server types, you need to propagate the new plug-in configuration file to the
Web server.

Local Web server
In this scenario, a stand-alone application server exists on system A. The Web
server and Web server plug-in are also installed on system A. This topology is
suited to a development environment or for internal applications. See Figure 6-3
on page 193.

During the installation, the following tasks are performed:

1. A temporary plug-in configuration file is created and placed in the
location specified.

2. The Web server configuration file is updated with the plug-in
configuration, including the location of the plug-in configuration file.

3. A script is generated to define the Web server to WebSphere
Application Server. The script is located in the following location:

<plugin_root>/bin/configure<web_server_name>

192 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 6-3 Local Web server in a stand-alone server environment

Assume that the application server is already installed and configured. Perform
the following tasks:

1. Install the Web server on system A.

2. Install the Web server plug-in on system A by performing the following steps:

a. Select Local installation.
b. Enter a name for the Web server definition. The default is webserver1.
c. Select the location for the plug-in configuration file. By default, the location

under the config directory in the profile for the stand-alone application
server is selected. For example, when the name specified for the Web
server definition in the previous step is webserver1, the default location for
the plug-in file is as follows:
<profile_root>/config/cells/<cell_name>/nodes/webserver1_node/ser
vers/webserver1/plugin-cfg.xml

Be aware that in a local scenario, the plug-in configuration file does not
need to be propagated to the server when it is regenerated. The file is
generated directly in the location from which the Web server reads it.

The plug-in configuration file is automatically generated. Because this is a local
installation, you do not have to propagate the new plug-in configuration to the
Web server.

Web Client
(Browser)

Web Server

Plug-in

System A

Application
Server

During the installation, the following tasks are performed:

1. The plug-in configuration file is created and placed in the location
specified.

2. The Web server configuration file is updated with the plug-in configuration,
including the location of the plug-in configuration file.

3. The WebSphere Application Server configuration is updated to define the
new Web server.

 Chapter 6. Installation 193

6.8.2 Distributed server environment
Web servers in a distributed server environment can be local to the application
server, or remote. The Web server can also reside on the deployment manager
system. You can define multiple Web servers. The Web servers can reside on
managed or unmanaged nodes.

Remote Web server on an unmanaged node
In this scenario, the deployment manager and the Web server are on separate
machines. The process for this scenario is almost identical to that outlined for a
remote Web server in a stand-alone server environment. The primary difference
is that the script that defines the Web server is run against the deployment
manager and you will see an unmanaged node created for the Web server node.
In Figure 6-4, the node is unmanaged because there is no node agent on the
Web server system.

Figure 6-4 Remote Web server in a stand-alone server environment

Assume that the deployment manager is already installed and configured on
system A. Perform the following tasks:

1. Install the Web server on system B.

2. Install the Web server plug-in on system B by performing the following steps:

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the file is
placed in the directory that contains the server's configuration. For
example, when the name specified for the Web server definition in the
previous step is webserver1, the default location for the plug-in file is as
follows:

<plugin_root>/config/webserver1/plugin-cfg.xml

Web Client
(Browser)

Web Server

Plug-in

System B

Deployment
Manager

System A

Fi
re

w
al

l

Fi
re

w
al

l

Internet Intranet

194 WebSphere Application Server V7.0: Concepts, Planning, and Design

4. At the end of the plug-in installation, you need to copy the script to the
<app_server_root>/bin directory of the deployment manager machine
(system A), start the deployment manager, and execute the script.

When the Web server is defined to WebSphere Application Server, the plug-in
configuration file is generated automatically. For IBM HTTP Server, the new
plug-in file is propagated to the Web server automatically. For other Web server
types, you need to propagate the new plug-in configuration file to the Web server.

Local to a federated application server (managed node)
In this scenario, the Web server is installed on a system that also has a managed
node. This scenario would be the same if the deployment manager was also
installed on system A. See Figure 6-5.

Figure 6-5 Web server installed locally on an application server system

During the installation, the following tasks are performed:

1. A temporary plug-in configuration file is created and placed in the
location specified.

2. The Web server configuration file is updated with the plug-in
configuration, including the location of the plug-in configuration file.

3. A script is generated to define the Web server and an unmanaged
node to WebSphere Application Server. The script is located in the
following location:

<plugin_root>/bin/configure<web_server_name>

Deployment
Manager

System B

Web Server

Plug-in
WebSphere
Application
Server Node

Federate

System A

 Chapter 6. Installation 195

Assume that the application server is already installed, configured, and federated
to the deployment manager cell. Perform the following tasks:

1. Install the Web server on system A.

2. Install the Web server plug-in on system A by performing the following steps:

a. Select Local installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the file is
placed in the directory that contains the server's configuration. For
example, when the name specified for the Web server definition in the
previous step is webserver1, the default location for the plug-in file is as
follows:

<profile_root>/config/cells/<cell_name>/nodes/<AppSrv_node>/serve
rs/webserver1/plugin-cfg.xml

4. At the end of the plug-in installation, you need to execute the script to define
the Web server from the location in which the wizard stored it on system A.
Make sure that the deployment manager is running on system B. The
deployment manager configuration is updated and propagated back to
system A at node synchronization.

The plug-in configuration file is generated automatically and propagated at the
next node synchronization.

During the installation, the following tasks are performed:

1. The plug-in configuration file is created and placed in the location
specified.

2. The Web server configuration file is updated with the plug-in
configuration, including the location of the plug-in configuration file.

3. A script is generated to define the Web server and an unmanaged
node to WebSphere Application Server. The script is located in the
following location:

<plugin_root>/Plugins/bin/configure<web_server_name>

Note: For security reasons we do not suggest installing managed Web
servers in the DMZ.

196 WebSphere Application Server V7.0: Concepts, Planning, and Design

6.9 Planning for WebSphere Application Server

WebSphere Application Server V7,0 is a full product installation, not an upgrade
installation. Consider the best installation method to use based on the number of
systems and the complexity of the installations.

Review the documentation. The WebSphere Application Server Information
Center contains planning topics for all WebSphere Application Server package
that is tailored to each platform. This section gives you a high-level view at the
planning tasks you need to perform.

Address the following items before starting the installation of WebSphere
Application Server. These items introduced here are explained in more detail
throughout this section of the book:

� File systems and directories

When installing WebSphere Application Server you are free to choose on
which file systems you want to install the product and where you want to store
your runtime environment, logs, and so on.

� Single install or multiple installations

The standard installation is to install WebSphere Application Server once on a
machine and create multiple runtime environments using profiles. Each profile
has its own configuration data but shares the product binaries. In some
instances (test environments, for example), and depending on your chosen
topology, you might want to install multiple instances.

� Installation method

You have multiple options for the installation. Your choice is influenced by
several factors, including the size of the installation (how many systems), the
operating systems involved, how many times you anticipate performing the
same installation (should you use Installation factory or perform a silent
installation?), and if you are performing remote installations with unskilled
personnel.

� Installing updates

To apply maintenance to WebSphere Application Server you need the IBM
Update Installer 7.0.

Note: Information about installation considerations for WebSphere Application
Server V7.0 for z/OS is included in 14.8, “Installing WebSphere Application
Server for z/OS” on page 456.

 Chapter 6. Installation 197

� Slip install

Slip install means that custom installation packages (CIPs) are used to
update and manage installed packages.

� Profile creation

The environment is defined by creating profiles. You need to determine the
types of profiles you will need and on which systems you will need to install
them.

� Naming convention

Naming conventions can be an important management tool in large
environments. Naming not only makes it easier to understand the
environment but having a consistent naming convention in place is helpful if
writing scripts.

� TCP/IP port assignments

Each type of server (deployment manager, node agent, application server,
and so on) uses a series of TCP/IP ports. These ports must be unique on a
system and must be managed properly. This is essential to avoid port
conflicts if you are planning for multiple installations and profiles.

� Security considerations

Security for WebSphere falls into two basic categories:

– Administrative security
– Application security

During the installation, you will have the option to enable administrative
security. Plan a scheme for identifying administrative users, their roles, and
the user registry you will use to hold this information.

� IBM Support Assistant Agent

The IBM Support Assistant Agent is an optional feature that allows remote
troubleshooting (such as remote system file transfer, data collections, and
inventory report generation).

6.9.1 File systems and directories

WebSphere Application Server uses a default file system structure for storing the
binary files and the runtime environment unless specified otherwise. Review the
default directory structure and decide if this satisfies your needs. Refer to 6.4,
“Planning for disk space and directories” on page 182 for a more information.

198 WebSphere Application Server V7.0: Concepts, Planning, and Design

6.9.2 Single install or multiple installations

You can install WebSphere Application Server V7.0 multiple times on the same
system in different directories, or you can install WebSphere Application Server
V7.0 in parallel to older versions of WebSphere Application Server on the same
system. These installations are independent from each other. This configuration
facilitates fix management. If a fix is applied on a particular installation, it only
affects that specific WebSphere Application Server installation, leaving the
remaining installations on that machine unaffected. You do not have to stop the
other installations while applying fixes to a specific installation.

When you have a single installation of WebSphere Application Server V7.0, you
can create multiple application server profiles. In this case, all profiles share the
same product binaries. Therefore, you have to stop all application server JVMs of
all profiles before installing fixes. When fixes are installed, they affect all profiles.
Each profile has its own user data.

Figure 6-6 shows the difference between multiple installations and multiple
WebSphere profiles in a stand-alone server environment (Base and Express).

Figure 6-6 Stand-alone server installation options

The same logic holds true for Network Deployment installations. You can install
the product several times on the same system (multiple installs), each one for
administering different cells. Or, you can install Network Deployment once and
then create multiple profiles so that each profile is used to administer a different
cell.

Application
Server

. . .

Config
Files

Applications
(EAR/BLA/

Asset)

ServerApplication
Server

Config
Files

Applications
(EAR/BLA/

Asset)

Application
Server

. . .

Config
Files

Applications
(EAR/BLA/

Asset)

Application
Server

Config
Files

Applications
(EAR/BLA/

Asset)

Multiple installs Single install, multiple WebSphere profiles

Note: There is no architectural limit for multiple installations or multiple
profiles. The real limitation is ruled by the hardware capacity and licensing.

 Chapter 6. Installation 199

Figure 6-7 Deployment manager installation options

Using multiple installations and multiple profiles
Another possibility is the combination of multiple installation instances and
multiple profiles. Figure 6-8 illustrates a Network Deployment environment where
multiple runtime environments have been created using profiles.

Figure 6-8 Cell configuration flexibility

Deployment
Manager

. . .

Config
Files

Applications
(EAR/BLA/

Asset)

ServerDeployment
Manager

Config
Files

Applications
(EAR/BLA/

Asset)

Deployment
Manager

. . .

Config
Files

Applications
(EAR/BLA/

Asset)

Deployment
Manager

Config
Files

Applications
(EAR/BLA/

Asset)

Multiple installs Single install, multiple WebSphere profiles

Deployment
Manager

Deployment
Manager

Cell 1

U
si

ng
 m

ul
tip

le
 p

ro
fil

es

Application Server
Node

Application Server
Node

Application
Server

Application
Server U

si
ng

 m
ul

tip
le

 p
ro

fil
es

Application Server
Node

Application
Server

U
si

ng
 a

 s
in

gl
e

pr
of

ile
Cell 2

200 WebSphere Application Server V7.0: Concepts, Planning, and Design

Cell 1 contains a deployment manager and application server on separate
machines, using separate installation instances. Cell 2 contains a deployment
manager and two application servers that span three installation instances.

6.9.3 Installation method

Before starting installation activities, review the options you have for installing the
code and select the option that best fits your needs. On distributed systems, you
have several choices for installation:

� Graphical installation
� Silent installation
� Installation factory
� Centralized installation manager

Graphical installation
The installation wizard is suitable for installing WebSphere Application Server on
a small number of systems. Executing the installation wizard will install one
system. You can start with the Launchpad, which contains a list of installation
activities to select, or you can execute the installation program directly.

The installer checks for the required operating system level, sufficient disk space,
and user permissions. If you fail any of these, you can choose to ignore the
warnings. Note that there is a danger that the installation might fail or the product
might not work as expected later on.

Silent installation
To install WebSphere Application Server V7.0 on multiple systems or remote
systems, use the silent installation. This option enables you to store installation
and profile creation options in a single response file, and then issue a command
to perform the installation and (optionally) profile creation. The silent installation
approach offers the same options as the graphical installer. Providing the options
in a response file provides various advantages over using the graphical
installation wizard:

� The installation options can be planned and prepared in advance
� The prepared response file can be tested
� The installation is consistent and repeatable
� The installation is less fault-prone
� The installation is documented through the response file

Note: In case of problems with the silent installation, refer to the following Web
page:

http://www-01.ibm.com/support/docview.wss?uid=swg21255884

 Chapter 6. Installation 201

http://www-01.ibm.com/support/docview.wss?uid=swg21255884

Installation factory
The Installation Factory is an Eclipse-based tool that allows the creation of
WebSphere Application Server installation packages in a reliable and repeatable
way tailored to your needs.

The installation factory is part of the WebSphere deliverable on a separate media
and download. Updates to the installation factory are available through the
following Web page:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020213

The Installation Factory can produce two types of packages:

� Customized Installation Packages (CIP)

A WebSphere Application Server CIP package includes a WebSphere
Application Server product, product maintenance, profile customization,
enterprise archives, other user files as well as user-defined scripting.

� Integrated Installation Packages (IIP)

An IIP can be used to install a full WebSphere software stack including
Application Servers, feature pack, and other user files and might even contain
multiple CIPs.

The Installation Factory allows you to create one installation package to install
the full product stack you need to run your applications. Using the scripting
interface you can ship and install components not related to the WebSphere
installation process.

Depending on the platform on which you are running the Installation Factory, you
can build installation packages for operating systems other than the one on
which the Installation Factory is running. The Installation Factory running on AIX,
HP-UX, Linux, and Solaria operating systems can create installation packages
for all supported platforms. The Installation Factory running on Windows can
create installation packages for Windows and i5/OS®.

Note: The IBM WebSphere Installation Factory V7.0 is backwards-compatible
with WebSphere Application Server V6.1 and allows you to create WebSphere
V6.1 and WebSphere V7.0 installation packages.

202 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020213

As you can see from the CIP build process flow in Figure 6-9, it takes multiple
steps to build a CIP.

Figure 6-9 CIP build process

The CIP or IIP can be installed on the target system through two methods:

� Installation wizard
� Silent installer using a response file

The benefit of the Installation Factory is mainly in terms of installation time (fix
packs, for example, are directly incorporated into the installation image) and in
consistency and repeatability of the installations. This gives you a quick pay-back
for the time required to build the CIP and IIP.

Centralized installation manager
Another product feature which can be used to install and update WebSphere
Application Server Network Deployment installations is the CIM. More
information about CIM can be found in 9.6.3, “Centralized installation manager
(CIM)” on page 328.

6.9.4 Installing updates

For WebSphere maintenance tasks, you need to install the IBM Update Installer
for WebSphere Software V7.0 on your system. The Update Installer is provided
as a separate installer and needs to be installed on each system running
WebSphere Application Server. The installer for the Update Installer can be
found on the first supplemental media or through the IBM support download site
at the following Web page:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020212

Build definition wizard

Automated, customized
installation package

Processing engine
Build

definition
XML

 Chapter 6. Installation 203

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020212

The IBM Update Installer for WebSphere Software V7.0 can be used to apply
maintenance for multiple releases:

� V6.0.2 (from 6.0.2.21 onward)
� V6.1
� V7.0

Installation
The IBM Update Installer for WebSphere Software V7.0 can be installed through
one of the following options:

� Graphical installation, using the installation wizard
� Silent installation, using a response file
� Centralized, using the CIM

Features
The IBM Update Installer for WebSphere Software V7.0 provides the following
features:

� Installation and de-installation of code updates (fix packs or individual fixes)
� Prerequisite handling
� Logging capabilities
� Recovery functions

Fix handling
When dealing with fixes and fix packs, it is essential to plan for and to implement
a proper policy on where to archive fixes and fix packs. This is best implemented
by building a central repository. Having such a repository available allows quick
configuration of identical systems and brings systems to the identical software
level.

Note: The IBM Update Installer for WebSphere Software is updated on a
regular basis. It is advised to install the current version before installing any
updates.

Note: The CIM provides a centralized repository for fix and fix pack files.

204 WebSphere Application Server V7.0: Concepts, Planning, and Design

6.9.5 Profile creation

The installation process of WebSphere Application Server provides the product
files required to create a runtime environment. However, the actual runtime is
defined through the usage of profiles.

The product binaries remain unchanged after installation until you install
maintenance. Because all profiles of an installation share the same binaries, all
server processes of all profiles of an installation use the updated level of the
binaries after installing the service.

Profiles can be created either during the installation process of the product or
they can be created any time after the installation process is finished.

Before you start creating the profiles consider the following questions:

� What profile types will you need?

See “Profile types” on page 206.

� How to create the profiles?

See “Creating profiles during the installation” on page 208 and “Creating
additional profiles” on page 209.

� Where to store the profile configuration files?

See “Profile location” on page 219.

Profiles can be stored under the installation root for WebSphere Application
Server, or in any location you choose depending on your planning for disk and
directories as outlined in 6.4, “Planning for disk space and directories” on
page 182.

Tip: It is suggested not to create profiles during the installation. Always finish
the installation and upgrade the product to the latest fix pack level first before
creating the profiles.

 Chapter 6. Installation 205

Profile types
The types of profiles available to you depend on the WebSphere Application
Server package that you have installed. The profiles types that you need are
determined by your topology. The profile types are as follows:

� Management profile with a deployment manager server

The deployment manager profile creates an application server named dmgr
and deploys the Integrated Solutions Console (recommended). The
deployment manager provides a centralized administration interface for
multiple nodes with all attached servers in a single cell. The deployment
manager profile is the basis for clustering, high availability, fail-over, and so
on. When using manageprofiles you have two choices to create a deployment
manager profile.

– Specify -profileTemplate
<app_server_root>/profileTemplates/management and -serverType
DEPLOYMENT_MANAGER.

– Specify -profileTemplate <app_server_root>/profileTemplates/dmgr.

� Management profile with an administrative agent server

The administrative agent profile creates the application server named
adminagent and deploys the Integrated Solutions Console (recommended).

The administrative agent provides a centralized administration interface for
multiple unfederated application server profiles on the same system without
providing any support for clustering, high availability, fail-over, and so on.

When using manageprofiles specify -profileTemplate
<app_server_root>/profileTemplates/management and -serverType
ADMIN_AGENT.

� Management profile with a job manager server

The job manager profile creates the application server named jobmgr and
deploys the Integrated Solutions Console (recommended).

The job manager provides a centralized interface for the following tasks:

– Administering multiple unfederated application server profiles through the
administrative agent,

– Deployment manager profiles

– Asynchronous job submissions

No additional clustering, high availability, fail-over, and so on, capabilities are
provided.

When using manageprofiles specify -profileTemplate
<app_server_root>/profileTemplates/management and -serverType
JOB_MANAGER.

206 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Application server profiles

An application server profile creates an application server and deploys the
following applications:

– Default applications (optional)
– Sample applications (optional)
– Integrated Solutions Console (recommended)

The default name of the application server is server1, but this can be
overridden through the -serverName parameter in the manageprofiles
command, or when using the advanced profile creation option in the profile
management tool. The application server can either run as a stand-alone
application server or be federated to a deployment manager.

When using manageprofiles, specify -profileTemplate
<app_server_root>/profileTemplates/default to create an application server
profile.

� Custom profiles

The custom profile creates an empty node in a cell. The only application
server created is an application server named nodeagent. No applications are
deployed. The node can be federated with a deployment manager either
during profile creation or at a later time.

When using manageprofiles specify -profileTemplate
<app_server_root>/profileTemplates/managed.

� Cell profiles

A cell profile creates a deployment manager profile and a federated
application server profile at the same time on the system using default
naming conventions in certain areas. The result of this profile creation is a
fully functional cell. The following applications can be deployed to the
federated application server:

– Default applications (optional)
– Sample applications (optional)

On the deployment manager profile it deploys the Integrated Solutions
Console (recommended). From the functional perspective it is the same as
creating a management profile with a deployment manager server and an
application server profile, and then federating the application server profile to
the deployment manager.

When using manageprofiles, two portions of the cell must be created. Specify
-profileTemplate <app_server_root>/profileTemplates/cell/dmgr to create the
deployment manager portion of the profile, and specify -profileTemplate
<app_server_root>/profileTemplates/cell/default for the cell node portion of
the profile.

 Chapter 6. Installation 207

� Secure proxy profile

A secure proxy profile creates a proxy server that is supposed to run in the
DMZ and supports HTTP and SIP protocol and the corresponding secure
version of the protocol.

The default name of the application server is proxy1 but this can be
overridden through the -serverName parameter in the manageprofiles
command, or when using the advanced profile creation option in the profile
management tool.

When using manageprofiles, specify -profileTemplate
<app_server_root>/profileTemplates/secureproxy to create a secure proxy
profile.

Table 6-1 shows a list of the available profile types per WebSphere Application
Server edition.

Table 6-1 Available profile types per WebSphere Application Server edition

Creating profiles during the installation
On distributed platforms, profiles can be created during the installation of the
product or afterwards using either the Profile Management Tool or the
manageprofiles command.

When profiles are created during the installation of the product, they are created
using typical settings using default naming conventions, default port
assignments, default location (which is <app_server_root>/profiles directory),
and so on. Be careful when creating profiles during the installation as it might
violate some of your planned approach.

Product WebSphere profiles available

WebSphere Application
Server Express V7.0

� Management profile with an administrative agent server
� Application server profile

WebSphere Application
Server V7.0 (single server)

� Management profile with an administrative agent server
� Application server profile.

WebSphere Application
Server Network Deployment
V7.0

� Management profile with a deployment manager server
� Management profile with an administrative agent server
� Management profile with a job manager server
� Application server profile
� Cell profile
� Custom profile
� Secure proxy profile

Note: In order to have an operational product you must create a profile.

208 WebSphere Application Server V7.0: Concepts, Planning, and Design

Express and Base installation
The installation procedure for WebSphere Application Server V7.0 Express and
Base installs the core product files and optionally creates either an application
server profile or an administrative agent profile. After the installation, you can
create additional application server profiles using the profile management tool.
Additional profiles that you create can be located anywhere on the file system.

Network Deployment installations
The installation procedure for WebSphere Application Server Network
Deployment V7.0 installs the core product files and gives you the choice of
creating any of the available profile types or no profile at all. The network
deployment installation procedure gives you the option of whether a repository
for the CIM should be created. If you select to create the CIM repository you can
define the location of the repository and select that the current installation
package should be populated to this repository.

After the installation, you can create additional profiles using the Profile
Management Tool or the manage profiles command.

WebSphere for z/OS installations
The installation on WebSphere Application Server for z/OS uses SMP/E and only
installs the product binaries. After the installation, you create profiles using the
z/OS Profile Management Tool (zPMT) available in the Application Server Toolkit.
For more information in z/OS installation and configuration steps refer to 14.8,
“Installing WebSphere Application Server for z/OS” on page 456.

Creating additional profiles
Creating profiles after the installation enables you to create additional runtime
environments and to expand distributed server environments. Using the Profile
Management Tool (PMT) and choosing the advanced path or the manageprofiles
command to create the profiles enables gives you more flexibility in the options
you take.

Tips:

1. Use manageprofiles.bat(sh) to create your production profiles. Using the
scripting approach allows reuse and easier documentation.

2. To determine the parameters manageprofiles.bat(sh) requires for a
specific profile type, run manageprofiles.bat(sh) -create -templatePath
<templatePath> -help. For example, on Windows run:

.manageprofiles.bat -create -templatePath
\WebSphere\WAS70\profileTemplates\management -help

 Chapter 6. Installation 209

Deployment manager profile options
Table 6-2 shows a summary of the options available when creating a profile for a
deployment manager. The options depend on whether you take the typical or
advanced path through the PMT.

Table 6-2 Deployment manager profile options

Typical settings Advanced options

The administrative console is deployed by default. You have the option to deploy the administrative
console (recommended and preselected)

The profile name is Dmgrxx by default, where xx is 01
for the first deployment manager profile and
increments for each one created. The profile is stored
in <app_server_root>/profiles/Dmgrxx.

You can specify the profile name and its location.

The profile is not marked as the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile are run against the default profile.)

The cell name is <host>Cellxx.
The node name is <host>CellManagerxx.
Host name defaults to your system’s DNS host name.

You can specify the node, host, and cell names.

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

210 WebSphere Application Server V7.0: Concepts, Planning, and Design

Administrative agent profile options
Table 6-3 shows a summary of the options available when creating a profile for
an administrative agent. The options depend on whether you take the typical or
advanced path through the Profile Management Tool.

Table 6-3 Administrative agent profile options

(Windows) The deployment manager is run as a
service using a local system account and startup type
Automatic.

(Linux) The deployment manager will not run as a
Linux service.

(Windows) You can choose whether the
deployment manager will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Typical settings Advanced options

Typical settings Advanced options

The administrative console is deployed by default. You have the option to deploy the administrative
console (recommended and preselected).

The profile name is AdminAgentxx by default, where
xx is 01 for the first administrative agent profile and
increments for each one created. The profile is stored
in <app_server_root>/profiles/AdminAgentxx.

You can specify the profile name and its location.

The profile is not marked as the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile are run against the default profile.)

The cell name is <host>AACellxx.
The node name is <host>AANodexx.
Host name defaults to your system’s DNS host name.

You can specify the node, host, and cell names.

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

 Chapter 6. Installation 211

Job manager profile options
Table 6-4 shows a summary of the options available when creating a profile for a
job manager. The options depend on whether you take the typical or advanced
path through the Profile Management Tool.

Table 6-4 Job manager profile options

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager is run as a
service using a local system account and startup type
Automatic.

(Linux) The deployment manager will not run as a
Linux service.

(Windows) You can choose whether the
deployment manager will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Typical settings Advanced options

Typical settings Advanced options

The administrative console is deployed by default. You have the option to deploy the administrative
console (recommended and preselected).

The profile name is JobMgrxx by default, where xx is
01 for the first administrative agent profile and
increments for each one created. The profile is stored
in <app_server_root>/profiles/JobMgrxx.

You can specify the profile name and its location.

The profile is not marked as the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile are run against the default profile.)

The cell name is <host>JobMgrCellxx.
The node name is <host>JobMgrxx.
Host name defaults to your system’s DNS host name.

You can specify the node, host, and cell names.

212 WebSphere Application Server V7.0: Concepts, Planning, and Design

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager is run as a
service using a local system account and startup type
Automatic.

(Linux) The deployment manager will not run as a
Linux service.

(Windows) You can choose whether the
deployment manager will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Typical settings Advanced options

 Chapter 6. Installation 213

Application server profile options (non-Express V7.0)
Table 6-5 shows a summary of the options available when creating a profile for
an application server. The options depend on whether you take the typical or
advanced path through the Profile Management Tool.

Table 6-5 Application server profile options: V7.0

Typical settings Advanced options

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended and preselected), the
default application (preselected), and the sample
applications (if installed).

The profile name is AppSrvxx by default, where xx is
01 for the first application server profile and
increments for each one created. The profile is stored
in <app_server_root>/profiles/AppSrvxx.

You can specify profile name and its location.

The profile is not marked as the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile are run against the default profile.)

The application server is built using the default
application server template.

You can choose the default template, or a
development template that is optimized for
development purposes.

The node name is <host>Nodexx.
The server name is server1.
The host name defaults to your system’s DNS host
name.

You can specify the node name, server name and
host name.

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

214 WebSphere Application Server V7.0: Concepts, Planning, and Design

Application server profile options (Express V7.0)
Table 6-6 shows a summary of the options available when creating a profile for
an application server in WebSphere Application Server Express V7.0. The
options depend on whether you take the typical or advanced path through the
Profile Management Tool.

Table 6-6 Application server profile options: V7.0

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The application server is run as a service
using a local system account and startup type
Automatic.

(Linux) The application server will not run as a Linux
service.

(Windows) You can choose whether the
application server will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Does not create a Web server definition. Enables you to define an external Web server to
the configuration.

Typical settings Advanced options

Typical settings Advanced options

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended and preselected), the
default application (preselected), and the sample
applications (if installed).

The profile name is AppSrvxx by default, where xx is
01 for the first application server profile and
increments for each one created. The profile is stored
in <app_server_root>/profiles/AppSrvxx.

You can specify profile name and its location.

The application server is built using the default
application server template.

You can choose the default template, or a
development template that is optimized for
development purposes.

The node name is <host>Nodexx.
The server name is server1.
The host name defaults to your system’s DNS host
name.

You can specify the node name, server name and
host name.

 Chapter 6. Installation 215

Cell profile options
Table 6-7 on page 217 shows a summary of the options available when creating
a cell profile. Using this option actually creates two distinct profiles, a deployment
manager profile and an application server profile. The application server profile is
federated to the cell. The options you see are a reflection of the options you
would see if you were creating the individual profiles versus a cell.

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The application server is run as a service
using a local system account and startup type
Automatic.

(Linux) The application server will not run as a Linux
service.

(Windows) You can choose whether the
application server will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Does not create a Web server definition. Enables you to define an external Web server to
the configuration.

Typical settings Advanced options

216 WebSphere Application Server V7.0: Concepts, Planning, and Design

Table 6-7 Cell profile options

Typical settings Advanced options

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended and preselected), the
default application (preselected), and the sample
applications (if installed).

The profile name for the deployment manager is
Dmgrxx by default, where xx is 01 for the first
deployment manager profile and increments for each
one created.

You can specify the profile name

The profile name for the federated application server
and node is AppSrvxx by default, where xx is 01 for
the first application server profile and increments for
each one created.

You can specify the profile name

Directory <app_server_root>/profiles is used as
<profile_root>. The profiles are created in
<profile_root>/<profilename>

You can specify the <profile_root> directory. The
profiles are created in
<profile_root>/<profilename>

Neither profile is made the default profile. You can choose to make the deployment
manager profile the default profile.

The cell name is <host>Cellxx.
The node name for the deployment manager is
<host>CellManagerxx.
The node name for the application server is
<host>Nodexx .
The host name defaults to your system’s DNS host
name.

You can specify the cell name, the host name, and
the profile names for both profiles.

You can select whether to enable administrative security or not. By default Enable administrative security
is preselected. If you select yes, you have to specify a user name and password that is given administrative
authority.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

 Chapter 6. Installation 217

Custom profile options
Table 6-8 shows a summary of the options available when creating a custom
profile.

Table 6-8 Custom profile options

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.

(Windows) The application server is run as a service
using a local system account and startup type
Automatic.

(Linux) The product is not selected to run as a Linux
service

(Windows) You can choose whether the
application server will run as a service, under
which account the service runs and what startup
type is used

(Linux) You can create a Linux service and
specify the user name from which the service
runs.

Does not create a Web server definition. Enables you to define an external Web server to
the configuration.

Typical settings Advanced options

Typical settings Advanced options

The profile name is Customxx.
The profile is stored in
<app_server_root>/profiles/Customxx.
By default, it is not considered the default profile.

You can specify profile name and location. You
can also specify if you want this to be the default
profile.

The profile is not selected to be the default profile You can select this profile to be the default profile.

The node name is <host>Nodexx.
The host name defaults to your system’s DNS host
name.

You can specify the node name and host name.

You can choose to federate the node later, or during the profile creation process.
If you want to do it now, specify the deployment manager host and SOAP port (by default, localhost:8879).
If security is enabled on the deployment manager, you need to specify a user ID and password.

Creates a new default personal certificate for this
profile using the DN:
cn=<hostname>,ou=<cellname>,ou=<nodename>,o
=IBM,c=US

Allows you to enter the DN for the new certificate
being created or to import an existing default
personal certificate from an existing keystore

218 WebSphere Application Server V7.0: Concepts, Planning, and Design

Starting the Profile Management Tool
After the installation of Base, Express, or Network Deployment V7.0 on
distributed systems, you can start the Profile Management Tool in the following
ways:

� From the First Steps window.

� On Windows systems, from the Start menu (Start → Programs → IBM
WebSphere → Application Server [Network Deployment V7.0] → Profile
Management Tool)

� By executing the pmt.bat(sh) command.

For operating systems such as AIX 5L or Linux, the command is in the
<app_server_root>/bin/ProfileManagement directory.

For the Windows platform, the command is in the
<app_server_root>\bin\ProfileManagement directory.

The Profile Management Tool provides a graphical interface to the
<app_server_root>/manageprofiles.bat(sh) command. You can use this
command directly to manage (create, delete, and so on) profiles without a
graphical interface.

Profile location
Profiles created as a part of the installation or using the typical settings are
automatically placed in the <app_server_root>/profiles directory. When you
create profiles after the installation, you can designate the location where the
profiles are stored. Refer to 6.4, “Planning for disk space and directories” on
page 182 for considerations about disk space and directory planning.

Creates a new root signer certificate for this profile
using the DN: cn=<hostname>,ou=Root
Certificate,ou=<cellname>,ou=<nodename>,o=IBM,
c=US

Allows you to enter the DN for new root signer
certificate being created or to import an existing
root signing certificate from an existing keystore

Default expiration date for the personal certificate is 1
year.

Allows you to enter the expiration period

Default expiration date for the signer certificate is 15
years.

Allows you the enter the expiration period

Keystore password is WebAS Allows you to enter a unique password for the
keystore

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.

Typical settings Advanced options

 Chapter 6. Installation 219

6.9.6 Naming convention

The purpose for developing systematic naming concepts and rules for a
WebSphere site is two-fold:

� To provide guidance during setup and configuration
� To quickly narrow down the source of any issue that arises

Naming the WebSphere Application Server infrastructure artifacts, such as cells,
nodes, application servers, and so on should follow the company’s normal
naming conventions as far as possible. Some considerations to be taken into
account when developing the key concepts for the site during the installation
planning are as follows:

� Naming profiles

The profile name can be any unique name, but it is a good idea to have a
standard for naming profiles. This will help administrators easily determine a
logical name for a profile when creating it and will help them find the proper
profiles easily after creation. For example, a profile can include characters
that indicate the profile type, server, and an incremental number to distinguish
it from other similar profiles.

Do not use any of the following characters when naming your profile:

– Spaces

– Illegal special characters that are not allowed within the name of a
directory on your operating system (namely, * & ? ‘ “, and so forth)

– Slashes (/ or \)

� Naming cells

A cell represents an administrative domain.

In a stand-alone environment, the cell name is not usually visible to
administrators and a naming convention is not required. The name is
automatically generated during profile creation, and is in the following format:

<system_name><node_name><number>Cell

The <number> will increment, starting with “01,” with every new node. For
example, server1Node01Cell, server1Node02Cell, and so on.

In a distributed server environment, there are considerations for naming a
cell. A cell name must be unique in any circumstance in which the product is
running on the same physical machine or cluster of machines, such as a
sysplex. Additionally, a cell name must be unique in any circumstance in
which network connectivity between entities is required either between the
cells or from a client that must communicate with each of the cells. Cell
names also must be unique if their name spaces are going to be federated.

220 WebSphere Application Server V7.0: Concepts, Planning, and Design

Often a naming convention for cell names will include the name of the stage
(such as integration test, acceptance test, production) and the name of the
department or project owning it, if appropriate.

� Naming nodes

In a stand-alone environment, you will have a single node with a single
application server. A naming convention is not really a concern. However, you
can specify a node name during profile creation. If you take the default, the
node name is in the following format:

<system_name>NODE<number>

The <number> will increment, starting with “01,” with every new node, for
example, server1Node01, server1Node02, and so on.

In a distributed server environment, the node must be unique within a cell.
Nodes generally represent a system and will often include the host name of
the system. You can have multiple nodes on a system. Keep this in mind
when planning your WebSphere names.

Naming conventions for nodes often include the physical machine name
where they are running, such as NodexxAP010 if the server name is
ServerAP010 and a running number to enable growth if additional nodes
need to be created.

� Naming application servers

In stand-alone environments, the default server name is “server1,” but can be
overridden through the manageprofiles.bat(sh) command, or using the
advances profile creation options in the PMT.

In a distributed server environment, it is more likely that new application
servers are created on a federated node using the Integrated Solutions
Console or another administrative tool. In this case, the server can be named
and a meaningful name should be assigned. Whether you choose to name
servers based on their location, function, membership in a cluster, or some
other scheme will largely depend on how you anticipate your servers being
used and administered.

Note: When you federate multiple stand-alone application servers that
were created using the default naming schema to a cell, you will have a
unique combination of node name and server1, thus ending up with
multiple server1s in the cell.

Note: The server name must be unique within the node.

 Chapter 6. Installation 221

If each application server will host only a single application, the application
server name can include the name of the application. If several applications
(each deployed on their own application server) make up a total system or
project, that name can be used as a prefix to group the application servers,
which makes it easier to find them in the Integrated Solutions Console.

If an application server hosts multiple applications, develop some other kind
of suitable naming convention, such as the name of a project or the group of
applications deployed on the server.

� General naming rules

Avoid using reserved folder names as field values. The use of reserved folder
names can cause unpredictable results. The following words are reserved in
WebSphere Application Server:

– Cells
– Nodes
– Servers
– Clusters
– Applications
– Deployments

When you create a new object using the administrative console or a wsadmin
command, you often must specify a string for a name attribute. Most
characters are allowed in the name string (numbers, letters). However, the
name string cannot contain special characters or signs. The dot is not valid as
first character. The name string also cannot contain leading and trailing
spaces.

6.9.7 TCP/IP port assignments

The port assignment scheme for a WebSphere site should be developed in close
cooperation with the network administrators. From a security point-of-view, it is
highly desirable to know each and every port usage ahead of time, including the
process names and the owners using them.

Depending on the chosen WebSphere Application Server configuration and
hardware topology, the setup for a single machine can involve having multiple
cells, nodes, and server profiles in a single process space. Each WebSphere
process requires exclusive usage of several ports and knowledge of certain other
ports for communication with other WebSphere processes.

Tip: Avoid any language-specific characters in names.

222 WebSphere Application Server V7.0: Concepts, Planning, and Design

To simplify the installation and provide transparency to the ports use, the
following approach is reliable and reduces the complexity of such a scenario
considerably:

� With the network administration, discuss and decide on a fixed range of
continuous ports for exclusive use for the WebSphere Application Server
installation.

� Draw the overall WebSphere Application Server topology and map your
application life cycle stages onto WebSphere profiles.

� List the number of required ports per WebSphere profile and come up with an
enumeration scheme, using appropriate increments at the cell, node, and
application server level, starting with your first cell. Make sure to document
the ports in an appropriate way.

When creating your profiles with the PMT using the advanced options path, you
can set the ports for your profile as needed. The PMT identifies the ports used in
the same installation on that system and the ports that are currently in use and
will suggest unique ports to use.

The manageprofiles.bat(sh) command allows you to control the port numbers
through the -portsFile and -startingPort parameters.

For a list of the ports used by WebSphere Application Server and their default
settings, refer to the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.migration.nd.doc/info/ae/ae/rmig_portnumber.html

6.9.8 Security considerations

To plan a secure WebSphere Application Server environment, it is imperative that
you have highly skilled security specialists that can evaluate your business and
network security needs. You need to have a fairly clear idea of your plans for
security before installation of any production systems.

Tip: The same spreadsheet also can serve for the server names, process
names, user IDs, and so forth.

 Chapter 6. Installation 223

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.migration.nd.doc/info/ae/ae/rmig_portnumber.html

There are some specific considerations for installers that we address here. Take
into account the following security considerations during the installation planning
phase:

� Certificates

– If you will use digital certificates, make sure that you request them with
enough lead time so that they are available when you need them.

– If default certificates or dummy key ring files are provided with any of the
products you plan to install, replace them with your own certificates.

– If you are using self-signed certificates, plan your signer structure carefully
and exchange signer certificates if necessary.

� Network and physical security

– Usually one or more firewalls are part of the topology. After determining
what ports need to be open, make a request to the firewall administrator to
open them.

– Plan the physical access to the data center where the machines are going
to be installed to prevent delays to the personnel involved in the installation
and configuration tasks.

� User IDs

– Request user IDs with enough authority for the installation purposes, for
example, root on a Linux or UNIX operating system and a member of the
administrator group on a Windows operating system. For more
information, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.i
bm.websphere.installation.nd.doc/info/ae/ae/tins_install.html

Although non-root installation is also supported, some limitations apply.
For more information, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.i
bm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html

– If there is a policy on password expiration, it should be well known so as to
avoid disruption on the service (password expiration of root, Administrator,
or the password of the user to access some database).

Note: In WebSphere Application Server V7.0 signer and personal
certificates can be either created or imported during profile creation. If
you have new certificates created you can choose the correct DN
during profile creation.

224 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/tins_install.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html

Root versus non-root installation
The term non-root implies a Linux or UNIX installer, but also means a
non-administrator group installer on a Windows system. Non-root installers can
install WebSphere Application Server V7.0 in both silent and interactive mode for
full product installations and removals, incremental feature installations, and
silent profile creation.

Installing as a non-root user in Version 7.0 was enhanced and works almost the
same as installing as a root user does in previous versions. There are some
specifics you have to consider which are documented at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.installation.nd.doc/info/ae/ae/cins_nonroot.html

There are limitations of which you need to be aware. Refer to the following Web
page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.installation.nd.doc/info/ae/ae/cins_nonroot.html#cins_nonroot__n
onroot_install_limitations

Secure administration tasks
WebSphere Application Server provides a mechanism to secure the
administrative interfaces. With WebSphere Application Server V7.0, you have the
option to enable security for administrative tasks during profile creation for an
application server or deployment manager (including those created with cell
profiles). This option does not enable application security.

If you intend to create a profile during installation and want to secure your
administrative environment at the same time, you need to identify one user ID to
be used for administration. The user ID and password specified during profile
creation are created in the repository and assigned the Administrator role. This
ID can be used to access the administration tools and to add additional user IDs
for administration. When you enable security during profile creation, LTPA is used
as the authentication mechanism and the federated repository realm used is
used as account repository.

On distributed systems, am XML file-based user repository is created and
populated with the administrator ID. This XML file-based system can be
federated with other repository types to form an overall repository system. If you
do not want to use the file-based repository, do not enable administrative security
during profile creation or change it afterwards. In WebSphere for z/OS, you can
choose to use the file-based repository or use the z/OS system SAF-compliant
security database. Whether you choose to enable administration security during
profile creation or after, it is important that you do it before going into production.

 Chapter 6. Installation 225

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html#cins_nonroot__nonroot_install_limitations
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.nd.doc/info/ae/ae/cins_nonroot.html

6.10 IBM Support Assistant
IBM Support Assistant V4.0 (ISA) is a free tool that is intended to help you
research, analyze, and resolve problems using various support features and
problem determination tools. Using IBM Support Assistant you should be able to
determine the cause for most your problems faster and find solutions in a shorter
time. Therefore, the availability of your installation is increased. ISA provides you
many different tools for problem determination and materials collections. It allows
you to organize and transfer your troubleshooting efforts between members of
your team or to IBM for further support. The IBM Support Assistant consists of
the following three distinct features:

� IBM Support Assistant Workbench

The IBM Support Assistant Workbench, or simply the Workbench, is the
client-facing application that you can download and install on your
workstation. It enables you to use all the troubleshooting features of the
Support Assistant such as Search, Product Information, Data Collection,
Managing Service Requests, and Guided Troubleshooting. The Workbench
can only perform these functions locally. For example, on the system where it
is installed (with the exception of the Portable Collector). The following Web
page lists and describes the tools available in ISA:

http://www-01.ibm.com/support/docview.wss?rs=3455&uid=swg27013116

� IBM Support Assistant Agent

The IBM Support Assistant Agent, or simply the Agent, is the software that
needs to be installed on every system that you need to troubleshoot remotely.
After an Agent is installed on a system, it registers with the Agent Manager
and you can use the Workbench to communicate with the Agent and use
features such as remote system file transfer, data collections, and inventory
report generation on the remote machine.

� IBM Support Assistant Agent Manager

The IBM Support Assistant Agent Manager, or simply the Agent Manager,
needs to be installed only once in your network. The Agent Manager provides
a central location where information about all available Agents is stored and
acts as the certificate authority. For the remote troubleshooting to work, all
Agent and Workbench instances register with this Agent Manager. Any time a
Support Assistant Workbench needs to perform remote functions, it
authenticates with the Agent Manager and gets a list of the available Agents.
After this, the Workbench can communicate directly with the Agents.

226 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-01.ibm.com/support/docview.wss?rs=3455&uid=swg27013116

6.11 Summary: Installation checklist

Table 6-9 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 6-9 Planning checklist for installation planning

Resources
WebSphere Application Server ships with an installation guide that can be
accessed through the Launchpad. The WebSphere Application Server
Information Center also contains information that helps you through the
installation process. See the following Web page:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&
product=was-nd-mp&topic=

Note: For installation instructions and more details about IBM Support
Assistant, see the following Web page:

http://www.ibm.com/software/support/isa/

Planning item

Examine your selected topology to determine hardware needs and software licenses.
Create a list of what software should be installed on each system.

Determine what WebSphere Application Server profiles need to be created and whether
you will create them during installation or after. Decide on a location for the profile files
(6.4, “Planning for disk space and directories” on page 182).

Develop a naming convention that includes system naming and WebSphere Application
Server component naming.

Develop a strategy for managing certificates in your environment. Personal certificates
as well as signer certificates.

Develop a strategy for assigning TCP/IP ports to WebSphere processes.

Select an installation method (wizard, silent, Installation Factory).

Plan an administrative security strategy including user repository and role assignment.

Determine the user ID to be used for installation and whether you will perform a root or
non-root installation. If non-root, review the limitations.

Plan for the Web server and Web server plug-in installation. Determine if the Web server
is a managed or unmanaged server and note the implications. Create a strategy for
generating and propagating the Web server plug-in configuration file.

 Chapter 6. Installation 227

http://www.ibm.com/software/support/isa/
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=

228 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 7. Performance, scalability, and
high availability

This chapter discusses items to consider when implementing WebSphere
Application Server V7.0 so that the environment performs well, is highly scalable,
and provides high availability.

The nature of these three non-functional requirements make them related to
each other. For example: to increase the performance of your environment you
need to add additional resources. To be able to add additional resources
efficiently you need a scalable design and workload management to spread the
requests across all available components. By adding additional resources in
most cases you invent redundancy which is a prerequisite for high availability.

This chapter contains the following sections:

� What is new in V7.0
� Scalability
� Performance
� Workload management
� High availability
� Caching
� Session management
� Data replication service
� WebSphere performance tools
� Summary: Checklist for performance

7

© Copyright IBM Corp. 2009. All rights reserved. 229

7.1 What is new in V7.0

IBM WebSphere Application Server V7.0 provides several enhancements and
improvements related to performance, scalability, and high availability.

The main enhancements can be found in the following areas, described in the
following sections:

� “Runtime provisioning” on page 230

� “Java SE 6” on page 230

� “DMZ secure proxy” on page 231

� “Flexible management” on page 231

7.1.1 Runtime provisioning

Runtime provisioning is a feature of WebSphere Application Server V7.0, which
makes sure that only those runtime features of an application server are
activated that are needed to run the deployed applications. This results in
reduced startup time and a reduced memory footprint. For more details about
runtime provisioning refer to 3.1.14, “Intelligent runtime provisioning” on page 72.

7.1.2 Java SE 6

WebSphere Application Server V7.0 ships with Java SE 6. All platforms that ship
with an IBM software development kit for Java (SDK) will benefit from the
enhancements incorporated in the SDK. The most important enhancements
related to performance are as follows:

� Improved startup performance

A major reason behind the enhanced startup performance is the improved
class sharing in a cache. Class sharing in a cache was introduced in version 5
of IBM SDK. This technique was improved, and in version 6 of the SDK the
cache can now be persisted. This means the cache can also survive a reboot
of the system.

� Smaller memory footprint

As the Java class cache is shared across all running application servers, the
memory footprint for each running application server will be reduced. It can be
expected that especially large scale installations will benefit from this feature.
In particular, this will reduce the footprint on the z/OS platform, with its
structure of multiple Java processes and multiple Java Virtual Machines
(JVM).

230 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Improved 64-bit performance

When using the 64-bit version of Java SE V6 the usage of compressed
references provides significant improvements in memory footprint and
performance. By using this technique, heap sizes up to 25 GB are possible
while the overhead of a pure 64-bit implementation is reduced.

� Higher garbage collection (GC) throughput

Although the core GC technologies are the same as in version 5 of the SDK, a
new implementation of the GC component provides an improved footprint and
faster class loader performance. Additional performance improvements like
hierarchical scanning were implemented for the gencon policy.

7.1.3 DMZ secure proxy

The DMZ secure proxy server can be placed in the architecture to replace a Web
server with a plug-in. Performance tests have shown that a performance benefit
of up to 15% can be achieved using the DMZ secure proxy, compared to the Web
server plus plug-in configuration.

Additionally it can be expected that the DMZ secure proxy scales better than the
traditional Web server plus plug-in configuration. Thus you might end up with
fewer servers. You should perform proper testing in your environment to figure
out what configuration performs better in your specific environment.

7.1.4 Flexible management

Under the aspect of flexible management, two types of servers: administrative
agent and job manager, were introduced in WebSphere Application Server V7.0.
The main purpose of these server types is to increase administrative scalability.

For more information about flexible management refer to 3.2.4, “Flexible
management” on page 78.

7.2 Scalability

Scalability, in general terms, means adding hardware and software resources to
improve performance. However, adding more hardware might not necessarily
improve the performance of your environment if your systems are not tuned
properly or it your application is not scalable. Before investing in additional
resources, you should understand the workload characteristics of your systems
and ensure that your systems are properly tuned for this workload.

 Chapter 7. Performance, scalability, and high availability 231

7.2.1 Scaling overview

Consider additional hardware resources as a step for improving system
performance. There are two ways to improve performance when adding
hardware:

� Vertical scaling

Vertical scaling means increasing the throughput by adding resources inside
the server and operating system image to handle more requests in parallel.
From a hardware perspective, we can, for example, increase the number of
processors for a server. By upgrading the system hardware with additional
processors, the server can potentially gain a higher throughput. This concept
is relatively easy to implement and can apply to any server in an environment.
Examine vertical scaling at every potential bottleneck in your architecture.

� Horizontal scaling

Horizontal scaling means adding additional separated resources to handle
additional load. This applies to multi-tier scenarios and can require the use of
additional components like a load balancer that sits in front of the duplicated
servers and makes them appear as a single instance.

In a single tier scenario, the Web application and database servers are all
running on the same system. Creating a cluster and spreading application
servers across systems should improve the throughput. But at the same time,
additional systems introduce new communication traffic and load to the database
server. Ask yourself the following questions:

� How much network bandwidth will this server configuration consume?
� What will the performance improvement by adding more systems be?

Because of these questions, we recommend that you always perform a
scalability test to identify how well the site is performing after a hardware change.
Throughput and response time can be measured to ensure that the result meets
your expectations.

Note: In order to be scalable you need a scalable application. If an application
is not designed to be scalable, the scalability options are limited.

Note: Adding resources usually affects the dynamics of the system and
can potentially shift the bottleneck from one resource to another. Therefore
it is important to have a balanced system.

232 WebSphere Application Server V7.0: Concepts, Planning, and Design

In addition, be aware that the law of diminishing returns plays a role when using
either vertical or horizontal scaling technique. The law of diminishing returns is
an economics principle that states that if one factor of production is increased
while all others remain constant, the overall returns will reach a peak and then
begin to decrease. This law can be applied to scaling in computer systems as
well. This law means that adding two additional processors will not necessarily
grant you twice the processing capacity. Nor will adding two additional horizontal
servers in the application server tier necessarily grant you twice the request
serving capacity. Additional processing cycles are required to manage those
additional resources. Although the degradation might be small, it is not a direct
linear function of change in processing power to say that adding n additional
machines will result in n times the throughput.

7.2.2 Scaling the system

Examine the entire application environment to identify potential bottlenecks.
Throwing additional resources into the environment without fully understanding
what those resources are addressing can potentially worsen performance,
maintainability and scalability. It is necessary to know the application
environment, end-to-end, to identify the bottlenecks and ensure the appropriate
response is timely.

Network
When scaling at the network layer, such as with firewalls or switches, the most
common solution is vertical scaling. Network devices have processing capacity
and use memory much like any other hardware resource. Adding additional
hardware resources to a network device will increase the throughput of that
device, which positively impacts the scaling of that device. For example, moving
from 100 MBit to 1 GBit connections or even higher can significantly increase
performance at the network layer.

HTTP server
When scaling at the Web server layer, the most typical solution is horizontal
scaling. This means adding additional Web servers to the environment. To do so,
load balancers must be used. Be careful when adding servers and make sure
that the load balancer has adequate capacity, or adding the new Web servers will
simply shift the bottleneck from the Web tier to the load balancing tier. Vertical
scaling can be performed as well by adjusting HTTP tuning parameters, or by
increasing memory or processors.

Note: The benefit you get by adding resources depends on the hardware and
operating system platform you are using.

 Chapter 7. Performance, scalability, and high availability 233

DMZ secure server
The DMZ secure proxy provides horizontal and vertical scaling capabilities
besides the scaling activities on a per server basis. When scaling vertically, make
sure that you have sufficient resources. Also, be aware that this provides only
limited high availability. In any scaling scenario you need an IP sprayer like the
Edge Components to spread the incoming traffic across all proxy servers.

WebSphere containers
Scaling at the application server layer can be done with vertical or horizontal
scaling, or both. Vertical scaling at the application server layer can be done
physically or logically. WebSphere Application Server is a Java application itself
and can take advantage of additional processors or memory in the machine.
WebSphere Application Server applications can be clustered vertically, providing
multiple copies of the same application on the same physical machine.
WebSphere Application Server also supports horizontal cloning of applications
across multiple machines, which do not need to be identical in terms of physical
resources.

Default messaging
With the messaging engine and the service integration bus, WebSphere offers
the ability to scale messaging resources more efficiently. Using a cluster as a
service integration bus member, you can create partitioned destinations. This
enables a single logical queue to spread across multiple messaging engines. In
this scenario, all messaging engines are active all the time. For n cluster
members, the theory is that each receives an nth of the messages. This allows
for greater scalability of messaging resources across the cell. One key factor to
consider in this design is that message order is not preserved. That may or may
not be significant, depending on the nature of the application.

Multiple messaging engines for a cluster bus member is not the default setting.
For workload management, you must take steps to add additional messaging
engines. To make sure that the messaging engines are really running on different
servers you must configure proper high availability policies. WebSphere
Application Server V7 features a wizard for high availability policy setup which
can be used for most topologies.

Note: IBM HTTP Server for z/OS offers the unique feature of a scalable mode.
This allows the server to start additional instances of itself to offer vertical
scalability if the performance goals are not met.

234 WebSphere Application Server V7.0: Concepts, Planning, and Design

Data layer
At the data services layer, it is most common to implement vertical scaling.
Adding multiple copies of a database can introduce complexities that can be
unmanageable, and providing these resources to the application server might
introduce higher costs than the value provided. A database server, however, can
make use of higher numbers of processors or more memory. Most database
management systems can be tuned for performance with respect to I/O, pinned
memory, and numbers of processors.

7.3 Performance

The scaling technique to optimize performance which best fits your environment
depends on multiple factors. One of the main factors impacting your performance
is the type of workload your system is processing. The type of workload
determines what components of your environment (Web server, application
server, database server and so on) are most heavily used.

7.3.1 Performance evaluation

Although performance is often a subjective feeling, it must be made measurable
for evaluation. To evaluate the success of your scaling tasks the following
concepts help identify performance:

� Throughput

Throughput means the number of requests in a certain period that the system
can process. For example, if an application can handle 10 client requests
simultaneously and each request takes one second to process, this site can
have a potential throughput of 10 requests per second.

� Response time

Response time is the period from entering a system at a defined entry point
until exiting the system at a defined exit point. In a WebSphere Application
Server environment this is usually the time it takes for a request submitted by
a Web browser until the response is received at the Web browser.

 Chapter 7. Performance, scalability, and high availability 235

To measure the scaling success you need to generate a workload that meets the
following characteristics:

� Measurable

A metric that can be quantified, such as throughput and response time.

� Reproducible

The same results can be reproduced when the same test is executed multiple
times.

� Static

The same results can be achieved no matter for how long you execute the
run.

� Representative

The workload realistically represents the stress to the system under normal
operating considerations.

Workload should be discerned based on the specifications of the system. If you
are developing a data driven system, where 90% of the requests require a
database connection, this is a significantly different workload compared to a Web
application that makes 90% JSP and servlet calls, with the remaining 10% being
messages sent to a back-end store. This requires close work between the
application architect and the system architect.

Determine the projected load for a new system as early as possible. In the case
of Web applications, it is often difficult to predict traffic flows or to anticipate user
demand for the new application. In those cases, estimate using realistic models,
and then review the data when the system is launched to adjust expectations.

7.3.2 System tuning

The first step in performance considerations is to verify that the application and
application environment has been adequately tuned. Tuning needs to be verified
at the application code layer, the network layer, the server hardware layer, the
operating system layer, and the WebSphere Application Server layer.

Network layer
Tuning at the network layer is usually done at a high level only. Take the time to
verify that port settings on the switches match the settings of the network
interfaces. Many times, a network device is set to a specific speed, and the
network interface is set to auto-detect. Depending on the operating system, this
can cause performance problems due to the negotiation done by the system.
Also, reviewing these settings establishes a baseline expectation as you move
forward with scaling attempts.

236 WebSphere Application Server V7.0: Concepts, Planning, and Design

Server hardware and operating system layer
Take the time to verify that the servers used in the application environment have
been tuned adequately. This includes network options, TCP/IP settings, and even
possibly kernel parameters. Verify disk configurations and layout as well. The
tuning at this layer can be quite difficult without a specialist in the server
hardware or the operating system, but the adjustments can lead to significant
improvements in throughput.

7.3.3 Application environment tuning

Within the WebSphere Application Server environment, there are many settings
that can increase application capacity and reduce performance issues. The
purpose of this section is not to directly discuss those tuning parameters. This
section, however, should generate some thoughts on what settings to consider
when designing a WebSphere Application Server environment.

Web server
The Web server with the WebSphere plug-in should be tuned carefully. There are
many different configuration options that impact the performance such as
keep-alive settings, number of concurrent requests and, so on. The number of
concurrent requests is perhaps the most critical factor. The Web server must
allow for sufficient concurrent requests to make full use of the application server
infrastructure, but should also act as a filter and keep users waiting in the
network and avoid a flooding of the applications servers if more requests as the
system can handle are coming in.

As a rough initial start value for testing the maximum concurrent threads can be
set as follows:

MaxClients = (((TH + MC) * WAS) * 1.21) / WEB

Where:

– TH: Number of threads in the Web container
– MC: MaxConnections setting in the plugin-cfg.xml
– WAS: Number of WebSphere Application Server servers
– WEB: Number of Web servers

DMZ secure proxy server
The DMZ secure proxy server is designed as a possible replacement of the Web
server with the plug-in. The same tuning considerations apply for the DMZ
secure proxy as they do for the Web server with the plug-in loaded.

1 This allows 20% ot the threads to serve static content from the Web server

 Chapter 7. Performance, scalability, and high availability 237

For the DMZ secure proxy, there are two additional main tuning areas to
consider:

� JVM tuning

For tuning the JVM of the DMZ secure proxy the same rules apply as for the
application server JVM. Refer to “Application server/Java virtual machine” on
page 238 for additional information about JVM tuning.

� Proxy tuning

The proxy server provides specific tuning capabilities as well. The DMZ
secure proxy is configured through the Integrated Solutions Console and
provides performance monitoring infrastructure (PMI) data specific to the
proxy module.

When configuring the DMZ secure proxy server, review the following settings
closely:

� Proxy thread pool size

� HTTP proxy server settings

– Proxy settings (such as time-outs, connection pooling and so on)
– Routing rules
– Static cache rules
– Rewriting rules
– Proxy server transports
– Proxy cache instance configuration
– Denial of service protection

� Performance monitoring service

When using PMI to monitor the performance of your environment be aware
that there is no Integrated Solutions Console for the DMZ secure proxy.
Therefore, you cannot use the Tivoli Performance Viewer to check the PMI
data.

Application server/Java virtual machine
When configuring a JVM, look at the minimum and maximum heap sizes closely,
as proper heap sizing is a pre-requisite for satisfactory JVM performance. The
system default for the starting heap size and the maximum heap size depends on
the platform. The default minimum heap size for the IBM JDK and Runtime
Environment is 4 MB. The default maximum heap size depends on the platform
and is documented in the diagnostic guide for the IBM JDK. The diagnostic guide
can be found at the following Web page:

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/60.html

238 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/60.html

Starting a JVM with too little memory means that the application must
immediately switch context to allocate memory resources. This will slow down
the server startup and the execution of the application until it reaches the heap
size it needs to run. Conversely, a JVM that can grow too large does not perform
garbage collection often enough, which can leave the machine littered with
unused objects and a fragmented heap that requires compacting later on.

The levels should be adjusted during the testing phase to ascertain reasonable
levels for both settings. In addition, the prepared statement cache and dynamic
fragment caching also consume portions of the heap. You might be required to
make additional adjustments to the heap when those values are adjusted.

Thread pools
Inside the application server JVM separate thread pools are used to manage
different types of workload. Depending on your type of application, appropriate
thread pools require careful planning.

Web container thread pool
The thread pool for the Web container should be closely monitored during initial
load testing and production. This is the most common bottleneck in an
application environment. Adjust the number of threads in the pool too high, and
the system will spend too much time swapping between threads and requests will
not complete in a timely manner. Adjust the number of threads too low, and the
Web server threads can back up and cause a spike in response at the Web
server tier.

There are no hard rules in this space, because things such as the type and
version of Web server and the percentage of requests that require the application
server can impact the overall optimum tuning level. The best guideline is to tune
this setting in repetitive tests and adjust the numbers.

Enterprise JavaBeans container thread pool
TheEnterprise JavaBeans (EJB) container can be another source of potential
scalability bottlenecks. The inactive pool cleanup interval is a setting that
determines how often unused EJBs are cleaned from memory. Set it too low, and
the application will spend more time instantiating new EJBs when an existing
instance could have been reused. Set it too high, and the application will have a
larger memory heap footprint with unused objects remaining in memory. EJB
container cache settings can also create performance issues if not properly
tuned for the system.

 Chapter 7. Performance, scalability, and high availability 239

Messaging connection pool
When using the messaging service make sure that you configured the
messaging pool according to your needs. Depending on which messaging
service you use and how messaging is used in the application you have different
pooling options. Pools for message processing can, for example, be configured
on a per connection factory basis. The messaging listener service provides a
separate pool that can be configured through the Integrated Solutions Console.

To do so, navigate to Servers → Application Servers → <server_name> →
Messaging → Message Listener Service.

Further pooling options exist when using activation specifications to invoke
message driven beans (MDBs).

Mediation thread pool
If you want to run multiple mediations in your service integration bus
infrastructure concurrently, you need to configure a mediation thread pool using
the wsadmin command line interface.

Database connection pool
The database connection pool is another common location for bottlenecks,
especially in data-driven applications. The default pool size is 10, and depending
on the nature of the application and the number of requests, the default setting
might not be sufficient. During implementation testing, pay special attention to
the pool usage and adjust the pool size accordingly. The connections in the pool
consume additional Java heap, so you might be required to go back and adjust
the heap size after tuning the pool size.

Web services connection pool
Use HTTP transport properties for Java API for XML-based Web Services
(JAX-WS) and Java API for XML-based RPC (JAX-RPC) Web services to
manage the connection pool for HTTP outbound connections. Configure the
content encoding of the HTTP message, enable HTTP persistent connection,
and resent the HTTP request when a time-out occurs.

7.3.4 Application tuning

Tuning your application is the most important part of your tuning activities. While
environment-related tuning is important to optimize resource use and avoid
bottlenecks, it cannot compensate for a poorly written application. The majority of
performance-related problems are related to application design and coding
techniques. Only a well-designed application, implemented with the best
practices for programming, will give you good throughput and response times.

240 WebSphere Application Server V7.0: Concepts, Planning, and Design

Review the application code itself as part of the regular application life cycle to
ensure that it is using the most efficient algorithms and the most current APIs that
are available for external dependencies. Take care to use optimized database
queries or prepared statements instead of dynamic SQL statements. An
important task with which to optimize the application performance is application
profiling.

7.4 Workload management

Workload management is the concept of sharing requests across multiple
instances of a resource. Workload management is an important technique for
high availability as well as for performance and scalability. Workload
management techniques are implemented expressly for providing scalability and
availability within a system. These techniques allow the system to serve more
concurrent requests. Workload management allows for better use of resources
by distributing load more evenly. Components that are overloaded, and therefore
a potential bottleneck, can be routed around with workload management
algorithms. Workload management techniques also provide higher resiliency by
routing requests around failed components to duplicate copies of that resource.

7.4.1 HTTP servers

An IP sprayer component like the Edge Components Load Balancer can be used
to perform load balancing and workload management functionality for incoming
Web traffic. In addition, the WebSphere plug-in provides workload management
capabilities for applications running in an application server.

7.4.2 DMZ proxy servers

As with HTTP servers, an IP sprayer component like the Edge Components Load
Balancer can be used to perform load balancing and workload management
functionality for incoming Web traffic. In addition, the DMZ proxy server provides
workload management capabilities for applications running in an application
server.

7.4.3 Application servers

In WebSphere Application Server, workload management is achieved by sharing
requests across one or more application servers, each running a copy of the
application. In more complex topologies, workload management is embedded in
load balancing technologies that can be used in front of Web servers.

 Chapter 7. Performance, scalability, and high availability 241

Workload management is a WebSphere facility to provide load balancing and
affinity between nodes in a WebSphere clustered environment. Workload
management can be an important facet of performance. WebSphere uses
workload management to send requests to alternate members of the cluster if
the current member is too busy to process the request in a timely fashion.
WebSphere will route concurrent requests from a user to the same application
server to maintain session state.

WLM for WebSphere for z/OS works differently from the WLM for distributed
platforms. The workload management structure for incoming requests is handled
by the WLM subsystem features of z/OS. Organizations can define
business-oriented rules that are used to classify incoming requests and to assign
service level agreement types of performance goals. This is done on a
transaction level granularity compared to a server level granularity on the
distributed workload management. The system then automatically assigns
resources in terms of processor, memory, and I/O to try to achieve these goals.

In addition to the response times, the system can start additional processes,
called address spaces, that run the user application if there are performance
bottlenecks due to an unpredicted workload spike.

This explanation is an over-simplification of how workload management works in
z/OS. For more information about workload management of z/OS and the
WebSphere Application Server for z/OS refer to 14.1.6, “Workload management
for WebSphere Application Server for z/OS” on page 428, or see the WebSphere
article Understanding WAS for z/OS, available from the following Web page:

http://websphere.sys-con.com/read/98083.htm

242 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://websphere.sys-con.com/read/98083.htm

7.4.4 Clustering application servers

Clustering application servers that host Web containers automatically enables
plug-in workload management for the application servers and the servlets they
host. Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS, as shown in Figure 7-1.

Figure 7-1 Plug-in (Web container) workload management

This routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster, assuming no strong affinity configurations. If the weights
are scaled in the range from 0 to 20, the plug-in routes requests to those cluster
members with the higher weight value more often. No requests are sent to
cluster members with a weight of 0 unless no other servers are available.

A guideline formula for determining routing preference is:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

Where there are n cluster members in the cluster.

On the z/OS platform the assignment of transactions to cluster members is
performed on real-time achievement of defined performance goals. This has the
benefit that the system can differentiate between light requests that only use up a
small fragment of performance, and heavy requests that use more processor
capacity.

Web Cluster

Servlet-
Requests

Application
Server

Web
ContainerHTTP Server

Plug-in

DMZ
Proxy

Application
Server

Web
Container

 Chapter 7. Performance, scalability, and high availability 243

For more details about Web server plug-in workload management in a cluster
see the following Web page:

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=plug
in+workload+management&uid=swg21219567&loc=en_US&cs=utf-8&lang=en

The Web server plug-in temporarily routes around unavailable cluster members.
Workload management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers with the EJB containers can be clustered, enabling the
distribution of EJB requests between the EJB containers, shown in Figure 7-2.

Figure 7-2 EJB workload management

In this configuration, EJB client requests are routed to available EJB servers in a
round-robin fashion based on assigned server weights. The EJB clients can be
servlets operating within a Web container, stand-alone Java programs using
RMI/IIOP, or other EJBs.

The server-weighted, round-robin routing policy ensures a distribution based on
the set of server weights that have been assigned to the members of a cluster.
For example, if all servers in the cluster have the same weight, the expected
distribution for the cluster is that all servers receive the same number of requests.
If the weights for the servers are not equal, the distribution mechanism sends
more requests to the higher weight value servers than the lower weight value
servers. This policy ensures the desired distribution based on the weights
assigned to the cluster members.

EJB Cluster

EJB
Requests

Application
Server

EJB
Container

Application
Server

EJB
Container

Application
Server

Web
Container

Application
Server

EJB
Container

EJB
Requests

Java
Client

244 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=plugin+workload+management&uid=swg21219567&loc=en_US&cs=utf-8&lang=en

You can also choose that EJB requests are preferably routed to the same host as
the host of the requesting EJB client. In this case, only cluster members on that
host are chosen (using the round-robin weight method). Cluster members on
remote host are chosen only if a local server is not available.

When planning for clustering, determine the number of application servers and
their physical location. Determine the server weights to assign for application
servers based on considerations such as system stability and speed. When
creating the cluster, consider using the prefer local setting to ensure that when a
client (for example, a servlet) calls an EJB, WLM will attempt to select the EJB on
the same system as the client, eliminating network communication.

7.4.5 Scheduling tasks

WebSphere Application Server provides a Scheduler service that can be used to
schedule actions to happen with the following frequencies:

� Only once
� Some time in the future
� On a recurring basis
� At regular intervals

It can also receive notifications about task activity. Scheduler tasks can be stored
in a relational database and can be executed for indefinite repetitions and long
time periods. Scheduler tasks can be EJB-based tasks or they can be triggered
using JMS.

The Scheduler service can be a tool in workload management by scheduling
maintenance tasks such as backups, cleanups, or batch processing during
off-peak hours.

When a task runs, it is executed in the work manager associated with the
scheduler instance. You can control the number of actively running tasks at a
given time by configuring schedulers with a specific work manager. The number
of tasks that can run concurrently is set by the Number of alarm threads
parameter on the work manager.

 Chapter 7. Performance, scalability, and high availability 245

7.5 High availability

High availability is also known as resiliency. High availability is the description of
the system’s ability to respond to requests no matter the circumstances. This
section discusses several high availability considerations.

7.5.1 Overview

Both performance and scalability can affect availability. The key is to determine
the threshold for availability. The most common method of describing availability
is by the “nines,” or the percentage availability for the system. Therefore, 99.9%
availability represents 8.5 hours of outage in a single year. Add an additional 9, to
achieve 99.99% availability (approximately 1 hour of unplanned outage) in a
single year. The cornerstone measurement of “five nines” or 99.999% availability
represents an unplanned outage of less than five minutes in a year, which can be
achieved by z/OS running a parallel sysplex.

Calculating availability is a simple process using the following formula, where
MTBF is the mean time between failure and MTTR is the mean time to recovery:

Availability = (MTBF/(MTBF + MTTR)) X 100

When planning for performance and scalability, consider availability. Ensure that
the business case justifies the costs. In many real world examples, moving a
system availability from 99.9% to 99.99% can be extremely expensive. It can also
be true that the system will only be used during regular business hours on
regular working days. This implies that an availability of 99.9% would be more
than adequate to meet the operational window.

Because it is likely that the complete environment is made up of multiple
systems, the goal is to make the whole system as available as possible. This can
be done by minimizing the number of single points of failure (SPOF) throughout
the system. If a SPOF cannot be eliminated, perform planning to mitigate the
impact of that potential failure.

Note: Availability features will have an impact on the cost of the solution. You
have to evaluate this increment in the implementation cost against the cost of
not having the application available.

246 WebSphere Application Server V7.0: Concepts, Planning, and Design

7.5.2 Hardware high availability

Although modern hardware is reliable and many components are fault tolerant,
hardware can fail. Any mechanical component has an expected failure rate and a
projected useful life until failure.

To mitigate power failures, you can configure the equipment to have dual power
supplies. With a dual power supply configuration, you can further mitigate power
failures by plugging each power supply into separate circuits in the data center.

For servers, using multiple network interface cards in an adapter teaming
configuration allows a server to bind one IP address to more than one adapter,
and then provide failover facilities for the adapter. This, of course, should be
extended by plugging each adapter into separate switches as well to mitigate the
failure of a switch within the network infrastructure.

Hardware availability for servers at the disk level is also an important
consideration. External disk drive arrays and hard disk drive racks can be
deployed to provide redundant paths to the data, as well as make the disks
available independent of server failure. When working with disks, consider the
appropriate redundant array of inexpensive disks (RAID) levels for your disks.

Network hardware availability can be addressed by most major vendors. There is
now built-in support for stateful failover of firewalls, trunking of switches, and
failover for routers. These devices also support duplicate power supplies, multiple
controllers, and management devices.

7.5.3 Process high availability

In WebSphere Application Server, the concept of a singleton process is used.
Although not a new concept in WebSphere Application Server V7.0, it is
important to understand what this represents in the environment.

A singleton process is an executing function that can exist in only one location at
any given instance, or multiple instances of this function operate independently of
one another. In any system, there are likely to be singleton processes that are
key components of the system functionality.

WebSphere Application Server uses a high availability manager to provide
availability for singleton processes. We discuss this further in 7.5.7, “WebSphere
Application Server high availability features” on page 250,

 Chapter 7. Performance, scalability, and high availability 247

7.5.4 Data availability

In a WebSphere Application Server environment, there are multiple places where
data availability is important. Critical areas for data availability are as follows:

� Databases
� HTTP session state
� EJB session state
� EJB persistence

The majority of these requirements can be satisfied using facilities available in
WebSphere Application Server. We discuss these areas in more detail in the
next sections.

Database server availability
A database server is for many systems the largest and most critical single point
of failure in the environment. Depending on the nature of this data, there are
many techniques that you can employ to provide availability for this data:

� For read-only data, multiple copies of the database can be placed behind a
load balancing device that uses a virtual IP. This enables the application to
connect to one copy of the data and to transparently fail over to another
working copy.

� If the data is mostly read-only, consider the option of replication facilities to
keep multiple copies synchronized behind a virtual IP. Most commercial
database management systems offer some form of replication facility to keep
copies of a database synchronized.

� If the data is read/write and there is no prevalence of read-only access,
consider a hardware clustering solution for the database node. This requires
an external shared disk through Storage Area Network (SAN), Network
Attached Storage (NAS), or some other facility that can help to mitigate failure
of a single node.

Session data
WebSphere Application Server can persist session data in two ways:

� Using memory-to-memory replication to create a copy of the session data in
one or more additional servers

� By storing the session data in an external database.

The choice of which to use is really left to the user, and performance results may
vary. External database persistence will survive node failures and application
server restarts, but introduces a new single point of failure that must be mitigated
using an external hardware clustering or high availability solution.

248 WebSphere Application Server V7.0: Concepts, Planning, and Design

Memory-to-memory replication can reduce the impact of failure, but if a node
fails, the data held on that node is lost.

In contrary to the HTTP session persistence, stateful session EJB availability is
handled using memory-to-memory replication only. Using the EJB container
properties, you can specify a replication domain for the EJB container and enable
the stateful session bean failover using memory-to-memory replication. When
enabled, all stateful session beans in the container are able to fail over to another
instance of the bean and still maintain the session state.

EJB persistence
When designing applications that use the EJB 2.1 (and later) specifications, the
ability to persist these beans becomes available. If the beans participate in a
clustered container, bean persistence is available for all members of the cluster.
Using access intent policies, you can govern the data access for the persisted
bean. This EJB persistence API should not be confused with entity EJBs.

7.5.5 Clustering and failover technique

Clustering is the concept of creating highly available system processes across
multiple servers. On distributed platforms it is usually deployed in a manner that
only one of the servers is actively running the system resource.

Hardware-based clustering
Clustering is achieved by using an external clustering software, such as IBM
HACMP on AIX systems or using operating system cluster capabilities like the
Parallel Sysplex on the z/OS platform, to create a cluster of servers. Each server
is generally attached to a shared disk pool through NAS, a SAN, or simply by
chaining SCSI connections to an external disk array. Each system has the base
software image installed. The servers stay in constant communication with each
other over several connections through the use of heartbeats. Multiple paths
should be configured for these heartbeats so that the loss of a switch or network
interface does not necessarily cause a failover.

Note: Too few paths can create problems with both servers believing they
should be the active node. This situation is called cluster isolation and is a
serious thread to data consistency. Too many paths can create unnecessary
load associated with heartbeat management.

 Chapter 7. Performance, scalability, and high availability 249

Software-based clustering
With software clustering, the idea is to create multiple copies of an application
component and then have all of these copies available at once, both for
availability and scalability. In WebSphere Application Server Network
Deployment, application servers can be clustered. This provides both workload
management and high availability.

Web containers or EJB containers can be clustered. Whether this helps or hurts
performance depends on the nature of the applications and the load. In a
clustered environment, the Web server plug-in module and the DMZ secure
proxy server knows the location of all cluster members and route requests to all
of these. In the case of a failure, the plug-in marks the cluster member as
unavailable and does not send further requests to that member for a fixed
interval. After the retry interval, the plug-in will mark the cluster member as
available again and retry. This retry interval is configured through the Web server
plug-in settings in the Integrated Solutions Console.

7.5.6 Maintainability

Maintainability is the ability to keep the system running before, during, and after
scheduled maintenance. When considering maintainability in performance and
scalability, remember that maintenance needs to be periodically performed on
hardware components, operating systems, and software products in addition to
the application components. Maintainability allows for ease of administration
within the system by limiting the number of unique features found in duplicated
resources. There is a delicate balance between maintainability and performance.

7.5.7 WebSphere Application Server high availability features

This section discusses the WebSphere Application Server features that facilitate
high availability. It will help you understand how the high availability features work
and will assist you in planning for high availability.

High availability manager
WebSphere Application Server uses a high availability manager to eliminate
single points of failure. The high availability manager is responsible for running
key services on available application servers rather than on a dedicated one
(such as the deployment manager). It continually polls all of the core group
members to verify that they are active and healthy.

Note: The high availability manager service runs by default in each server.

250 WebSphere Application Server V7.0: Concepts, Planning, and Design

For certain functions (like transaction peer recovery) the high availability
manager takes advantage of fault tolerant storage technologies such as Network
Attached Storage (NAS), which significantly lowers the cost and complexity of
high availability configurations. The high availability manager also provides
peer-to-peer failover for critical services by maintaining a backup for these
services. WebSphere Application Server also supports other high availability
solutions such as HACMP, Parallel Sysplex, and so on.

A high availability manager continually monitors the application server
environment. If an application server component fails, the high availability
manager takes over the in-flight and in-doubt work for the failed server. This
introduces some overhead but significantly improves application server
availability.

A high availability manager focuses on recovery support and scalability in the
following areas:

� Embedded messaging
� Transaction managers
� Workload management controllers
� Application servers
� WebSphere partitioning facility instances
� On-demand routing
� Memory-to-memory replication through Data Replication Service (DRS)
� Resource adapter management

To provide this focused failover service, the high availability manager supervises
the JVMs of the application servers that are core group members. The high
availability manager uses one of the following methods to detect failures:

� An application server is marked as failed if the socket fails.

This method uses the KEEP_ALIVE function of TCP/IP and is tolerant of poor
performing application servers, which might happen if the application server is
overloaded, swapping, or thrashing. This method is recommended for
determining a JVM failure if you are using multicast emulation and are
running enough JVMs on a single application server to push the application
server into extreme processor starvation or memory starvation.

� A JVM is marked as failed if it stops sending heartbeats for a specified time
interval.

This method is referred to as active failure detection. When it is used, a JVM
sends out one heartbeat, or pulse, at a specific interval. This interval can be
configured in the Integrated Solutions Console by navigating to Servers →
Core Groups → <core_group_name> → Discovery and failure detection
→ Heartbeat transmission period. If the JVM does not respond to
heartbeats within a defined time frame, it is considered down.

 Chapter 7. Performance, scalability, and high availability 251

This time-out can be configured in the Integrated Solutions Console by
navigating to Servers → Core Groups → <core_group_name> →
Discovery and failure detection → Heartbeat timeout period. You can use
this method with multicast emulation. However, this method must be used for
true multicast addressing.

A new feature in WebSphere Application Server V7.0 is the ability to configure an
alternative protocol provider to monitor and manage communication between
core group members. In general, alternate protocol providers, such as the z/OS
Cross-system Coupling Facility (XCF)-based provider, uses less system
resources than the default Discovery Protocol and Failure Detection Protocol,
especially during times when the core group members are idle.

In either case, if a JVM fails, the application server on which it is running is
separated from the core group, and any services running on that application
server are failed over to the surviving core group members.

A JVM can be a node agent, an application server, or a deployment manager. If a
JVM fails, any singletons running in that JVM are activated on a peer JVM after
the failure is detected. This peer JVM is already running and eliminates the
normal startup time, which potentially can be minutes.

This actually is a key difference to using operating system-based high availability.
The high availability manager usually recovers in seconds while operating
system-based solutions take minutes.

When an application server fails, the high availability manager assigns the failing
application servers work to another eligible application server. Using shared
storage for common logging facilities (like the transaction logs) allows the high
availability manager to recover in-doubt and in-flight work if a component fails.

Core group
A core group is a high availability domain that consists of a set of processes in
the same cell that can directly establish high availability relationships. Highly
available components can only fail over to another process in the same core
group and replication can occur only between members of the same core group.

Note: The following Web page provides a testing routine you can use to
determine if your shared file system is suitable for use with the high availability
manager:

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=t
ransaction+log+failover&uid=swg24010222&loc=en_US&cs=utf-8&lang=en

252 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=transaction+log+failover&uid=swg24010222&loc=en_US&cs=utf-8&lang=en

A cell must contain at least one core group, although multiple core groups are
supported. Each core group contains a core group coordinator to manage its
high availability relationships, and a set of high availability policies that are used
to manage the highly available components within that core group.

WebSphere Application Server provides one standard core group: the
DefaultCoreGroup that is created during installation. New server instances are
added to the default core group as they are created.

In most cases one core group is sufficient for establishing a high availability
environment. However, certain topologies require the use of multiple core
groups. A basic rule is that all members of a core group require full IP visibility.
Therefore, you have to create multiple core groups if you spread the application
servers of your cell across different firewall zones.

If you are using a DMZ secure proxy server with dynamic routing, the routing
information is exchanged using core groups. In this case you need to create a
tunnel access point group to establish a core group bridge tunnel between the
core groups that are running on both sides of the firewall.

The core group contains a bridge service that supports cluster services that span
multiple core groups. Core groups are connected by access point groups. A core
group access point defines a set of bridge interfaces that resolve IP addresses
and ports. It is through this set of bridge interfaces that the core group bridge
provides access to a core group.

When moving core group members to new core groups, remember the following
information:

� Each server process within a cell can only be a member of one core group.
� If a cluster is defined for the cell, all cluster members must belong to the same

core group.

Network communication between all members of a core group is essential. The
network environment must consist of a fast local area network with full IP visibility
and bidirectional communication between all core group members. IP visibility
means that each member is entirely receptive to the communications of any
other core group member.

Note: A large number of application servers in a cell increases the overhead
of core group services and server startup times. You might consider creating
additional core groups when you have more than 50 servers in a cell.

 Chapter 7. Performance, scalability, and high availability 253

High availability groups
High availability groups are part of the high availability manager framework. A
high availability group provides the mechanism for building a highly available
component and enables the component to run in one of several different
processes. A high availability group cannot extend beyond the boundaries of a
core group.

A high availability group is associated with a specific component. The members
of the group are the set of processes where it is possible to run that component.
A product administrator cannot directly configure or define a high availability
group, and its associated set of members. Instead, high availability groups are
created dynamically at the request of the components that need to provide a
highly available function.

High availability groups are dynamically created components of a core group. A
core group contains one or more high availability groups. However, members of a
high availability group can also be members of other high availability groups, if all
of these high availability groups are defined within the same core group.

Every high availability group has a policy associated with it. This policy is used to
determine which members of a high availability group are active at a given time.
The policies that the high availability groups use are stored as part of the core
group configuration. The same policy can be used by several different high
availability groups, but all of the high availability groups to which it applies must
be part of the same core group.

Any WebSphere Application Server highly available component can create a high
availability group for its own usage. The component code must specify the
attributes that are used to create the name of the high availability group for that
component. For example, establishing a high availability group for the transaction
manager is as follows:

� The code included in the transaction manager component code specifies the
attribute type=WAS_TRANSACTIONS as part of the name of the high
availability group that is associated with this component.

� The high availability manager function includes the default policy Clustered
TM Policy that includes type=WAS_TRANSACTIONS as part of its match
criteria.

� Whenever transaction manager code joins a high availability group, the high
availability manager matches the match criteria of the Clustered TM Policy to
the high availability group member name. In this example, the name-value
pair type=WAS_TRANSACTIONS included in the high availability group name
is matched to the same string in the policy match criteria for the Clustered TM
Policy. This match associates the Clustered TM Policy with the high
availability group that was created by the transaction manager component.

254 WebSphere Application Server V7.0: Concepts, Planning, and Design

� After a policy is established for a high availability group, you can change some
of the policy attributes, such as quorum, fail back, and preferred servers. You
cannot change the policy type. If you need to change the policy type, you
must create a new policy and then use the match criteria to associate it with
the appropriate group.

Default messaging provider availability
A messaging engine is considered a singleton process. For the most part, the
service integration bus is used to provide high availability to the messaging
system process. If the service integration bus member is a cluster, and the
cluster member running the messaging engine fails, and the high availability
manager is configured for the messaging engine (the default), the service
integration bus activates the messaging engine on another member in the
cluster.

To accomplish the failover seamlessly, the queue information and message data
must be stored in a shared location, either using an external database or a
shared disk environment.

Only one cluster member at any given time is executing the process, although
any cluster member has the ability to spawn the process in case of active cluster
member failure.

7.6 Caching

Caching is a facility to off-load work to one or more external devices so that the
application server is not required to do all of the work associated with user
requests. There are caching options at many different layers in a complete
system solution. This section provides an overview of the different possibilities for
caching within a system. It does not attempt to provide all options, or specific
details, because the implementation types of caching are varied.

Note: If you want to use the same match criteria, you must delete the old
policy before defining the new policy. You cannot use the same match
criteria for two different policies.

Note: For those using embedded Derby as a messaging data store,
concurrent access can be a concern. The embedded Derby does not support
multiple servers running the Derby engine, so there would be no ability to have
multiple servers communicating with the same shared file system.

 Chapter 7. Performance, scalability, and high availability 255

In this section we will discuss the following caching capabilities of WebSphere
Application Server V7.0:

� Edge caching on page 256.
� Dynamic caching on page 257.
� Data caching on page 258.

7.6.1 Edge caching

Edge caching embraces a variety of methods. There are numerous software
components that can provide caching capabilities at the edge of the network:

� Reverse proxy servers, such as the Caching Proxy of the Edge components
or the DMZ secure proxy.

� Software components at the Web server, such as the Fast Response Cache
Accelerator (FRCA).

� External caching proxy providers that can provide content off loading at points
significantly closer to the client.

WebSphere Application Server can be used to configure and manage how these
resources are accessed.

Fast Response Cache Accelerator (FRCA)
FRCA is a caching technique used by the IBM HTTP server to cache static
content like HTML, text, graphics, and so on. Because the path length of such a
static request is reduced, the response time for these static requests will be
decreased. The amount of data processed by WebSphere Application Server will
decrease as well because only requests for dynamic elements are passed to the
application server. This cache can even be configured to enable high speed
caching of servlets and JSP files by using the Adaptive Fast Path Architecture
(AFPA) adapter bean through the external caching configuration section of the
administrative console.

Caching proxy
By using the Edge components Caching Proxy, you can intercept requests and
cache the results away from the Web servers or the application servers. This
enables you to offload additional work from the primary processing environment.
Implementing this caching adds servers and cost to the solution, but can result in
significant performance improvements and reduction in response time. This

Note: On the z/OS platform, WebSphere Application Server V7.0 can be
configured to use the FRCA technique, which provides better performance
than the default WebSphere Application Server implementation.

256 WebSphere Application Server V7.0: Concepts, Planning, and Design

cache can be configured to offload static content or dynamic content (but only on
a page level). Using the WebSphere Application Server Integrated Solutions
Console, you can also control how the content is loaded and invalidated.

DMZ secure proxy
The DMZ secure proxy server is a caching engine that allows you to offload
request processing from the core application servers. Using the DMZ secure
proxy server, you configure multiple security levels and routing policies. The DMZ
secure proxy server also allows you to serve static content directly, thereby
increasing performance for these requests.

The DMZ secure proxy server is capable of caching static and dynamic content
at the edge of the network. Depending on the routing policy used, it can
dynamically determine the availability of applications on the application servers.

Hardware caching
There are multiple network equipment providers that offer hardware cache
devices. These serve the same purpose as software caches do, namely to
offload content. The main difference is that these appliances are usually not
running full versions of an operating system. Instead they use a specialized
operating system that is dedicated to performing the caching function. This can
include custom file systems that offer higher performance than the operating
system file system and a significantly reduced instruction set. By placing
dedicated appliances, instead of software caching, in your architecture, you may
be able to reduce total cost of ownership, because these appliances do not have
to be managed as strictly as machines with full operating systems.

Caching services
There are a variety of providers that sell caching as a service. This function can
provide even higher performance gains, because these providers generally have
equipment positioned at Internet peering points throughout the world. This
means the user is not required to travel all the way through the Internet to get to
the application serving network to return content. In other words, these providers
bring the cached files physically as close as possible to the client.

7.6.2 Dynamic caching

Dynamic caching refers to the methods employed by WebSphere Application
Server either to provide fragment caching or to reuse components within the
application server engine. Fragment caching means that only some portions of a
page are cached.

 Chapter 7. Performance, scalability, and high availability 257

Dynamic caching is enabled at the application server container services level.
Cacheable objects are defined inside the cachespec.xml file, located inside the
Web module WEB-INF or enterprise bean META-INF directory. The
cachespec.xml file enables you to configure caching at a servlet/JSP level. The
caching options in cachespec.xml file must include sufficient details to allow the
dynamic cache service to build a unique cache-key. This cache-key is used to
uniquely identify each object. This might be achieved by specifying request
parameters, cookies, and so on. The cachespec.xml also file allows you to define
cache invalidation rules and policies.

Another dynamic caching option available is Edge Side Include (ESI) caching.
ESI caching is an in-memory caching solution implemented through the Web
server plug-in, WebSphere proxy server, or the DMZ secure proxy server. If
dynamic caching is enabled at the servlet Web container level, the plug-in uses
ESI caching.

An additional header is added to the HTTP request by the caching facility, called
the Surrogate-Capabilities header. The application server returns a
Surrogate-Control header in the response. Then, depending on the rules
specified for servlet caching, you can cache responses for JSP and servlets.

7.6.3 Data caching

Data caching is used to minimize the back-end database calls while at the same
time assuring the currency of the data. In most cases, the decision for data
currency is a business decision. There are multiple methods for configuring data
caching:

� Keep a local copy in a database within the same network realm as the
application.

� Cache data from a localized database in memory to minimize database
reads.

� Use EJB persistence to keep the data in the memory space of the running
application.

Sometimes data is provided by an external provider. Making live calls to this data
can prove to be a single point of failure and a slower performer. If there are no
strict dependencies on the currency of the data, offloading this data, or a subset,
to a local database can provide large performance, availability, and scalability
gains. The data can be refreshed periodically, preferably during off-peak hours
for the application.

Note: Pay special attention to the servlet caching configuration, because you
create unexpected results by returning a cached servlet fragment that is stale.

258 WebSphere Application Server V7.0: Concepts, Planning, and Design

Database data caching
To minimize direct reads from the database, database systems usually offer one
or more of the following options:

� Fetch ahead constructs attempt to anticipate that additional pages from that
table are required and then pre-loads those pages into memory pools.

� Buffer pools offer the ability to keep the data loaded into memory, assuming
that it is likely the same data will be requested again.

Both of these constructs reduce disk access, opting instead for reading the data
from the memory, increasing performance. These facilities assume that the data
is predominately read only. If the data has been written, the copy in memory can
be stale, depending on the write implementation of the database. Also, memory
buffers can be used to store data pages, reducing disk access. The key is to
make sure that the system has enough memory to provide to the database.

Application data caching
Another option is to cache some of the database or Web page data inside an
application by creating objects that are instantiated when the application server is
started. Those objects pull the necessary information in memory, improving
performance as the query is against an object in memory. The key is to make
sure there is some kind of synchronous or asynchronous mechanism (or both) to
update this cache on a timely basis according to the system requirements. This
approach, however, can create additional memory requirements, especially if a
dynamic cache that might grow over time is implemented.

EJB persistence implies loading the data into an EJB after a call to the data
provider. This is similar to database caching, except that caching takes place in
the application space, not the database server memory. The EJB has an access
intent, which indicates the rules used to determine the currency of the data in the
bean. From a performance standpoint, avoiding a call to an external database in
favor of a local bean creates significant gains.

 Chapter 7. Performance, scalability, and high availability 259

7.7 Session management

Multi-system scaling techniques rely on using multiple copies of an application
server. Multiple consecutive requests from various clients can be serviced by
different servers. If each client request is completely independent of every other
client request, it does not matter whether consecutive requests are processed on
the same server. However, in practice, client requests are not always
independent.

7.7.1 Overview

A client often makes a request, waits for the result, and then makes one or more
subsequent requests. The processing of these subsequent requests requires
information about the data processed in previous requests. Session
management allows linking requests that belong together.

In terms of session management there are two kinds of requests:

� Stateless

A server processes requests based solely on information provided with each
request and does not rely on information from earlier requests. Therefore, the
server does not need to maintain state information between requests.

� Stateful

A server processes requests based on both the information that is provided
with each request and information that is stored from earlier requests. To
achieve this, the server needs to access and maintain state information that is
generated during the processing of an earlier request.

For stateless interactions, it does not matter whether different requests are
processed by different servers. For stateful interactions, the server that
processes a request needs access to the state information necessary to execute
that request. Either the same server will process all requests that are associated
with dedicated state information, or the state information can be shared by all
servers that require it. If the data is shared across multiple systems, this will have
a performance impact.

260 WebSphere Application Server V7.0: Concepts, Planning, and Design

The load distribution facilities in WebSphere Application Server use several
different techniques for maintaining state information between client requests:

� Session affinity

The load distribution facility (for example, the Web server plug-in) recognizes
the existence of a client session and attempts to direct all requests within that
session to the same server.

� Transaction affinity

The load distribution facility recognizes the existence of a transaction and
attempts to direct all requests within the scope of that transaction to the same
server.

� Server affinity

The load distribution facility recognizes that although multiple servers might
be acceptable for a given client request, a particular server is best suited for
processing that request.

The WebSphere Application Server session manager, which is part of each
application server, stores client session information and takes session affinity
and server affinity into account when directing client requests to the cluster
members of an application server. The workload management service takes
server affinity and transaction affinity into account when directing client requests
among cluster members.

7.7.2 Session support

Information entered by a user in a Web application is often needed throughout
the application. For example, a user selection might be used to determine the
path through future menus or options to display content. This information is kept
in a session.

A session is a series of requests to a servlet that originate from the same user.
Each request arriving at the servlet contains a session ID. Each ID allows the
servlet to associate the request with a specific user. The WebSphere session
management component is responsible for managing sessions, providing
storage for session data, allocating session IDs that identify a specific session,
and tracking the session ID associated with each client request through the use
of cookies or URL rewriting techniques.

When planning for session data, there are three basic considerations:

� Application design
� Session tracking mechanism
� Session storage options.

 Chapter 7. Performance, scalability, and high availability 261

The following sections outline the planning considerations for each.

Application design
Although using session information is a convenient method for the developer, this
usage should be minimized. Only objects really needed for processing of
subsequent requests should be stored in the session. If sessions are persisted
during runtime, there is a performance impact if the session data is too big.

Session tracking mechanism
You can choose to use cookies, URL rewriting, SSL session IDs, or a
combination of these as the mechanism for managing session IDs.

Cookies
Using cookies as a session tracking mechanism is common. WebSphere session
management generates a unique session ID and returns it to the user’s Web
browser to be stored as a cookie.

URL rewriting
URL rewriting requires the developer to use special encoding APIs and to set up
the site page flow to avoid losing the encoded information. The session identifier
is stored in the page returned to the user. WebSphere encodes the session
identifier as a parameter on URLs that have been encoded programmatically by
the Web application developer.

URL rewriting can only be used for pages that are dynamically generated for
each request, such as pages generated by servlets or JSPs. If a static page is
used in the session flow the session information is lost. URL rewriting forces the
site designer to plan the user’s flow in the site to avoid losing their session ID.

SSL ID tracking
With SSL ID tracking, SSL session information is used to track the session ID.
Because the SSL session ID is negotiated between the Web browser and an
HTTP server, it cannot survive an HTTP server failure. However, the failure of an
application server does not affect the SSL session ID. In environments that use
WebSphere components with multiple HTTP servers, you must use an affinity
mechanism for the Web servers when SSL session ID is used as the session
tracking mechanism.

Note: Before finishing your session management planning, review the article
Sessions in the Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/cprs_sess.html

262 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cprs_sess.html

When the SSL session ID is used as the session tracking mechanism in a
clustered environment, either cookies or URL rewriting must be used to maintain
session affinity. The cookie or rewritten URL contains session affinity information
that enables the Web server to properly route requests back to the same server
after the HTTP session has been created on a server. The SSL ID is not sent in
the cookie or rewritten URL but is derived from the SSL information.

The main disadvantage of using SSL ID tracking is the performance degradation
due to the SSL overhead. If you have a business requirement to use SSL, this is
probably a good choice.

Selecting multiple tracking mechanisms
It is possible to combine multiple options for a Web application.

� Use of SSL session identifiers has preference to cookie and URL rewriting.
� Use of cookies has preference to URL rewriting.

If selecting SSL session ID tracking, we suggest that you also select cookies or
URL rewriting so that session affinity can be maintained. The cookie or rewritten
URL contains session affinity information enabling the Web server to properly
route a session back to the same server for each request.

Storage of session-related information
You can choose whether to store the session data as follows:

� Local sessions (non-persistent)
� Database persistent sessions
� Memory-to-memory replicated persistent sessions

The last two options allow session data to be accessed by multiple servers and
should be considered when planning for failover. Using a database or session
replication is also called session persistence.

Storing session data external to the system can have drawbacks in performance.
The amount of impact depends on the amount of session data, the method
chosen, and the performance and capacity of the external storage. Session
management implements caching optimizations to minimize the impact of
accessing the external storage, especially when consecutive requests are routed
to the same application server.

Note: SSL tracking is supported in IBM HTTP Server. Session tracking using
the SSL ID is deprecated in WebSphere Application Server V7.0

 Chapter 7. Performance, scalability, and high availability 263

Local sessions (non-persistent)
If the session data is stored in the application server memory only, the session
data is not available to any other servers. Although this option is the fastest and
the simplest to set up, an application server failure ends the session, because
the session data is lost.

The following settings can help you manage the local session storage:

� Maximum in-memory session count

This setting enables you to define a limit to the number of sessions in
memory. This prevents the sessions from acquiring too much of the JVM heap
and causing out-of-memory errors.

� Allow overflow

This setting permits an unlimited number of sessions. If you choose this
option, monitor the session cache size closely.

� Session time-out

This setting determines when sessions can be removed from cache.

Database persistent sessions
You can store session data in an external database. The administrator must
create the database and configure the session database in WebSphere through
a data source.

The Use multi-row schema setting gives you the option to use multi-row sessions
to support large session objects. With multi-row support, the WebSphere session
manager breaks the session data across multiple rows if the size of the session
object exceeds the size for a row. This also provides a more efficient mechanism
for storing and retrieving session contents when session attributes are large and
few changes are required to the session attributes.

Memory-to-memory replicated persistent sessions
Memory-to-memory replication copies session data across application servers in
a cluster, storing the data in the memory of an application server and providing
session persistence. Using memory-to-memory replication eliminates the effort
of maintaining a production database and eliminates the single point of failure
that can occur with a database. Test to determine which persistence mechanism
is the best one in your environment.

Note: Session overflow is enabled by default in WebSphere Application
Server V7.0

264 WebSphere Application Server V7.0: Concepts, Planning, and Design

The administrator sets up memory-to-memory replication by creating a
replication domain and adding application servers to it. You can manage
replication domains from the administrative console by navigating to
Environment → Replication domain. When defining a replication domain, you
must specify whether each session is replicated in one of the following manners:

� To one server (single replica)
� To every server (entire domain)
� To a defined number of servers

The number of replicas can affect performance. Smaller numbers of replicas
result in better performance because the data does not have to be copied into
many servers. By configuring more replicas, your system becomes more tolerant
to possible failures of application servers because the data is backed up in
several locations.

When adding an application server to a replication domain, you must specify the
replication mode for the server:

� Server mode

In this mode, a server only stores backup copies of other application server
sessions. It does not send copies of its own sessions to other application
servers.

� Client mode

In this mode, a server only broadcasts or sends copies of its own sessions. It
does not receive copies of sessions from other servers.

� Both mode

In this mode, the server is capable of sending its own sessions and receiving
sessions from other application servers. Because each server has a copy of
all sessions, this mode uses the most memory on each server. Replication of
sessions can impact performance.

Session manager settings
Session management in WebSphere Application Server can be defined at the
following levels:

� Application server

This is the default level. Configuration at this level is applied to all Web
modules within the server.

Navigate to Servers → Server Types → Application servers →
<server_name> → Session management → Distributed environment
settings → Memory-to-memory replication.

 Chapter 7. Performance, scalability, and high availability 265

� Application

Configuration at this level is applied to all Web modules within the application.
Navigate to Applications → Application Types → WebSphere enterprise
applications → <app_name> → Session management → Distributed
environment settings → Memory-to-memory replication.

� Web module

Configuration at this level is applied only to that Web module. Navigate to
Applications → Application Types → WebSphere enterprise
applications → <app_name> → Manage modules → <Web_module> →
Session management → Distributed environment settings →
Memory-to-memory replication.

The following session management properties can be set:

� Session tracking mechanism

Session tracking mechanism lets you select from cookies, URL rewriting, and SSL
ID tracking. Selecting cookies will lead you to a second configuration page
containing further configuration options.

� Maximum in-memory session count

Select Maximum in-memory session count and whether to allow this number to be
exceeded, or overflow.

� Session time-out

Session time-out specifies the amount of time to allow a session to remain idle
before invalidation.

� Security integration

Security integration specifies a user ID be associated with the HTTP session.

� Serialize session access

Serialize session access determines if concurrent session access in a given
server is allowed.

� Overwrite session management

Overwrite session management, for enterprise application and Web module level
only, determines whether these session management settings are used for the
current module, or if the settings are used from the parent object.

� Distributed environment settings

Distributed environment settings select how to persist sessions
(memory-to-memory replication or a database) and set tuning properties.

Note: Memory-to-memory persistence is only available in a Network Deployment
distributed server environment.

266 WebSphere Application Server V7.0: Concepts, Planning, and Design

7.8 Data replication service

The data replication service (DRS) is the WebSphere Application Server
component that replicates data. Session manager, dynamic cache, and stateful
session EJBs are the three consumers of the replication service.

To use data replication for these services, you must first create the replication
domains:

1. Create one replication domain for dynamic cache. The replication domain
must be configured for full group replication (both mode).

2. Create one replication domain to handle sessions for both HTTP sessions
and stateful session beans.

We discuss replication domains and session management memory-to-memory
replication in 7.7.2, “Session support” on page 261.

Configure dynamic cache replication through Servers → Server Types →
Application servers → <server_name > → Container services → Dynamic
cache service.

Session management for stateful session beans in WebSphere Application
Server can be defined at the following levels:

� Application server EJB container

Navigate to Servers −> Server Types → Application servers →
<server_name> → EJB Container.

� Application

Navigate to Applications → Application Types → WebSphere enterprise
applications → <app_name> → Stateful session bean failover settings.

� EJB module

Navigate to Applications → Application Types → WebSphere enterprise
applications → <app_name> → Manage modules → <EJB_module> →
Stateful session bean failover settings.

 Chapter 7. Performance, scalability, and high availability 267

7.9 WebSphere performance tools

When reviewing the application environment, you often need to delve deeper into
the behavior of the application than what is presented at the operating system
layer. This requires the use of specialized tools to capture the information.
WebSphere Application Server provides tools that allow the administrator to
gather information related to the performance of various components in the J2EE
environment. In this section, we discuss the following tool sets:

� Performance monitoring considerations on page 268
� Tivoli performance viewer on page 271
� WebSphere performance advisors on page 271
� WebSphere request metrics on page 273

7.9.1 Performance monitoring considerations

The Tivoli Performance Viewer is a monitoring tool that is used to capture data
presented through the WebSphere Application Server Performance Monitoring
Infrastructure (PMI) The PMI is a server-side monitoring component. WebSphere
PMI complies with the Performance Data Framework as defined in the J2EE 1.4
standard.

Configured through the Integrated Solutions Console, the PMI allows monitoring
tools to peer inside the WebSphere environment to capture specific details about
the application behavior. Using this interface, you are able to capture information
about the following resources:

� Application resources

– Custom PMI
– Enterprise bean counters
– JDBC connections counters
– J2C connections counters
– Servlets/JSPs counters
– SIP counters
– Web services counters
– ITCAM counters
– Any custom that runs in the environment

� WebSphere runtime resources

– JVM memory
– Thread pools
– Database connection pools
– Session persistence
– Dynamic caching

268 WebSphere Application Server V7.0: Concepts, Planning, and Design

– Proxy counters
– ORB counters
– Transactional counters
– Workload management counters

� System resources

– Processor usage
– Total free memory
– Components that are controlled outside the WebSphere environment but

that are vital in healthy application state

When determining which metrics to capture, you can select from the following
monitoring statistics sets:

� Basic (enabled by default)

– J2EE components
– CPU usage
– HTTP session information

� Extended (basic +)

– WLM
– Dynamic cache

� All

� Custom (select your own mix of metrics)

The Java Virtual Machine Tool Interface (JVMTI) is a native programming
interface that provides tools with the option to inspect the state of the JVM. This
interface was introduced with JVM V1.5. JVMTI replaces the Java Virtual
Machine Profiling Interface (JVMPI), which is supported in WebSphere
Application Server, Version 6.0.2 and earlier. The JVMPI interface became
deprecated in WebSphere Application Server Version 6.1. Both interfaces
(JVMTI and JVMPI) provide the ability to collect information about the JVM that
runs the application server. The statistics gathered through the JVMTI are
different between the JVM provided by IBM and the Sun HotSpot-based JVM,
including Sun HotSpot JVM on Solaris and the HP JVM for HP-UX.

Enabling the JVMTI involves enabling the JVM profiler for the application server
and selecting the appropriate metrics using the Custom settings.

Note: PMI offers the custom PMI application programming interface (API).
This enables you to insert your own custom metrics and have them captured
and available to the standard monitoring tools.

 Chapter 7. Performance, scalability, and high availability 269

Monitoring a system naturally changes the nature of the system. Introducing
performance metrics consumes some resources for the application. In
WebSphere Application Server V7.0, this impact has been minimized, though
obviously the more statistics you capture, the more processing power is required.

ITCAM for Web Resources Data Collector (eCAM)
WebSphere Application Server V7.0 offers an optional enhancement to PMI
called eCAM. eCAM is a separate data collector which is bootstrappd at startup
of the application server and monitors class loads and instruments only Web and
EJB containers. This data collector allows gathering of request oriented data,
elapsed time, CPU data, and counts.

The data collected by the eCAM data collector is exposed using an Mbean
registered in PMI. The collected performance data can be viewed through the
standard Tivoli Performance Viewer (TPV) of WebSphere Application Server.

The following counts collected by eCAM are exposed through TPV:

� RequestCount
� AverageResponseTime
� MaximumResponseTime
� MinimumResponseTime
� LastMinuteAverageResponseTime
� 90%AverageResponseTime
� AverageCPUUsage
� MaximumCPUUsage
� MinimumCPUUsage
� LastMinuteAverageCPUUsage
� 90%AverageCPUUsage

For details about the data collected by eCAM, refer to IBM Tivoli Composite
Application Manager for WebSphere Application Server counters in the
WebSphere Application Server Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/rprf_tpmcounter.html

270 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rprf_tpmcounter.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rprf_tpmcounter.html

7.9.2 Tivoli performance viewer

Tivoli Performance Viewer (TPV) is included with WebSphere Application Server
V7.0 and is used to record and display performance data. Since WebSphere
Application Server V6.0, TPV is integrated into the Integrated Solutions Console.

Using Tivoli Performance Viewer, you can perform the following tasks:

� Display PMI data collected from local and remote application servers:

– Summary reports show key areas of contention.
– Graphical/tabular views of raw PMI data.
– Optionally save collected PMI data to logs.

� Provide configuration advice through performance advisor section

Tuning advice formulated from gathered PMI and configuration data.

� Log performance data

Using TPV you can log real-time performance data and review the data at a
later time.

� View server performance logs

You can record and view data that has been logged by TPV in the Integrated
Solutions Console.

You can use TPV to create summary reports. These reports let you monitor the
server’s real-time performance and health. TPV enables you to work with the
performance modules. With these modules, you can drill down on specific areas
of interest, even old logs. Use the log analysis tools to detect trends over time.
TVP can also save performance data for later analysis or problem determination.

As the TPV runs inside the Integrated Solutions Console, the performance
impact depends on which edition of WebSphere Application Server you run.
When running the single server edition, the TPV runs in the same JVM as your
application. In Network Deployment, the TPV runs in the JVM of the deployment
manager. Certain functions (like the advisor), however, require resources in the
node agents or in the application servers.

7.9.3 WebSphere performance advisors

Gathering information made available through the PMI, the WebSphere
performance advisors have the ability to make suggestions about the
environment. The advisors are able to determine the current configuration for an
application server, and trending the PMI data over time, make informed decisions
about potential environmental changes that can enhance the performance of the
system. Advice is hard coded into the system and is based on IBM best practices

 Chapter 7. Performance, scalability, and high availability 271

for tuning and performance. The advisors do not implement any changes to the
environment. Instead, they identify the problem and allow the system
administrator to make the decision whether or not to implement. You should
perform tests after any change is implemented. There are two types of advisors:

� Performance and Diagnostic Advisor
� Performance Advisor in Tivoli Performance Viewer.

Performance and Diagnostic Advisor
This advisor is configured through the Integrated Solutions Console. It writes to
the SystemOut.log and to the console while in monitor mode. The interface is
configurable to determine how often data is gathered and advice is written. It
offers advice about the following components:

� J2C Connection Manager
– Thread pools
– LTC Nesting
– Serial reuse violation
– Plus various different diagnostic advises

� Web Container Session Manager
– Session size with overflow enabled
– Session size with overflow disabled
– Persistent session size

� Web Container
– Bounded thread pool
– Unbounded thread pool

� Orb Service
– Unbounded thread pool
– Bounded thread pool

� Data Source
– Connection pool size
– Prepared statement cache size

� Java virtual machine (JVM)

Memory leak detection

If you need to gather advice about items outside this list, use the Tivoli
Performance Viewer Advisor.

Performance Advisor in Tivoli Performance Viewer
This advisor is slightly different from the Performance and Diagnostic Advisor.
The Performance Advisor in Tivoli Performance Viewer is invoked only through
the TVP interface of the Integrated Solutions Console. It runs on the application
server you are monitoring, but the refresh intervals are based on selecting
refresh through the console. Also, the output is routed to the user interface

272 WebSphere Application Server V7.0: Concepts, Planning, and Design

instead of to an application server output log. This advisor also captures data
and gives advice about more components. Specifically, this advisor can capture
the following types of information:

� ORB service thread pools
� Web container thread pools
� Connection pool size
� Persisted session size and time
� Prepared statement cache size
� Session cache size
� Dynamic cache size
� JVM heap size
� DB2 performance configuration

The Performance Advisor in Tivoli Performance Viewer provides more extensive
advice than the Performance and Diagnostic Advisor. Running the Performance
Advisor in Tivoli Performance Viewer can require plenty of resources and impact
performance. Use it with care in production environments.

7.9.4 WebSphere request metrics

PMI provides information about average system resource usage statistics but
does not provide any correlation between the data. Request metrics, in contrast,
provide data about each individual transaction and correlate this data.

Overview
Request metrics gather information about single transactions within an
application. The metric tracks each step of a transaction and determines the
process time for each of the major application components. Several components
support this transaction metric:

� Web server plug-ins
� Web container
� EJB container
� JDBC calls
� Web services engine
� Default messaging provider

The amount of time that a request spends in each component is measured and
aggregated to define the complete execution time for that transaction. Both the
individual component times and the overall transaction time can be useful
metrics when trying to gauge user experience on a site. The data allows for a
hierarchical by response time view for each individual transaction. When
debugging resource constraints, these metrics provide critical data at each
component. The request metric provides filtering mechanisms to monitor

 Chapter 7. Performance, scalability, and high availability 273

synthetic transactions or to track the performance of a specific transaction. By
using test transactions, you can measure performance of the site end-to-end.

From a performance perspective, using transaction request metrics can aid in
determining if an application is meeting service level agreements (SLAs) for the
client. The metrics can be used to alert the user when an SLA target is not met.

Request metrics help administrators answer the following questions:

� What performance area should the user be focused on?
� Is there too much time being spent on any given area?
� How do I determine if response times for transactions are meeting their goals

and do not violate the SLAs

Those familiar with the Application Response Measurement (ARM) standard
know that beginning in WebSphere Application Server V5.1, the environment
was ARM 4.0 compliant. WebSphere Application Server V6 extended the
attributes measured to include Web services, JMS, and asynchronous beans.

Implementing request metrics
There are several methods for implementing request metrics. This section briefly
discusses the methods that are currently available.

Request filtering
The most common method of implementing request metrics is to use request
filtering. In this method, you use filters to limit the number of transactions that are
logged, capturing only those transactions you care to monitor. As an example,
you can use an IP address filter to monitor synthetic transactions that always
come from the same server. Some of the available filters are as follows:

� HTTP requests: Filtered by IP address, URI, or both
� Enterprise bean requests: Filtered by method name
� JMS requests: Filtered by parameters
� Web services requests: Filtered by parameters
� Source IP filters

The performance impact is less than 5% when all incoming transactions are
being instrumented. This is not a significant amount, but factor this in when
implementing the metrics. The path for implementation in the Integrated
Solutions Console is through Monitoring and Tuning → Request Metrics.

274 WebSphere Application Server V7.0: Concepts, Planning, and Design

Tracing
By setting the trace depth, you control not only the depth of information gathered
through the metric, but also the overall performance impact on the system. The
higher a tracing level, the greater the performance penalty the system takes.
There are several available trace levels:

� None

No data captured

� Hops

Process boundaries (Web server, servlet, EJB over RMI-IIOP)

� Performance_debug

Hops + 1 level of intraprocess calls

� Debug

Full capture (all cross-process/intraprocess calls)

Set the tracing levels in the Integrated Solutions Console by navigating to
Monitoring and Tuning → Request Metrics.

Output for request metrics
The data captured by request metrics is placed in several levels, depending on
the nature of the metric selected. For Web requests, the HTTP request is logged
to the output file specified in the plugin-cfg.xml file on the Web server. For
application server layers, servlets, Web services, EJB, JDBC, and JMS, the
information is logged to the SystemOut.log for that application server. The data
can also be output to an ARM agent and visualized using an ARM management
software, such as IBM Tivoli Monitoring for Transaction Performance or IBM
Enterprise Workload Management.

If you currently use a third-party tool that is ARM 4.0 compliant, the data can be
read by that agent as well. You can direct data to either the logs, the agent, or
both at the same time.

Application Response Measurement (ARM)
ARM is an Open Group standard that defines the specification and APIs for
per-transaction performance monitoring. Request metrics can be configured to
use ARM. In doing so, the request metrics use call across the ARM API to gather
the data.

Note: It is suggested not to use metric logging while implementing the ARM
agent monitoring, because the disk I/O can negatively impact performance.

 Chapter 7. Performance, scalability, and high availability 275

For more information about ARM, review the information on the following Web
page:

http://www.opengroup.org/tech/management/arm/

WebSphere request metrics support the Open Group ARM 4.0 Standard, as well
as the Tivoli ARM 2.0. The 4.0 standard is supported in all components. For the
Tivoli standard, WebSphere Application Server V7.0 supports all components
except Web server plug-ins. A correlator can be extracted from request metrics
transactions. This correlator can be passed to sub-transactions taking place in
non-WebSphere containers. This facility allows the complete transaction to be
accurately timed in complex environments.

Additional resources
For additional information about ARM and the WebSphere request metrics
implementation, refer to the following Web pages:

� ARM 4.0 specification

http://www.opengroup.org/management/arm.htm/

� Information about the ARM standard

http://www.opengroup.org/pubs/catalog/c807.htm

� IBM Tivoli Monitoring for Transaction Performance

http://www.ibm.com/software/tivoli/products/monitor-transaction/

� IBM Enterprise Workload Management

http://www.ibm.com/servers/eserver/about/virtualization/enterprise/e
wlm.html

7.10 Summary: Checklist for performance

Table 7-1 on page 277 provides a summary of items to consider as you plan, and
additional resources that can help you.

276 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/servers/eserver/about/virtualization/enterprise/ewlm.html
http://www.opengroup.org/tech/management/arm/
http://www.opengroup.org/management/arm.htm/
http://www.opengroup.org/pubs/catalog/c807.htm
http://www.ibm.com/software/tivoli/products/monitor-transaction/

Table 7-1 Planning checklist for Web applications

Planning item

Establish performance goals and identify workload characteristics (throughput,
response time, availability).

Design your topology to meet the performance goals. Determine if clustering will be
used.
Determine if the appropriate mechanisms are in place for workload management and
failover. As part of this, you need to consider where applications will be deployed (8.12,
“Mapping application to application servers” on page 307).

Implement a monitoring system to watch for performance problems and to assist in
determining if adjustments are necessary.

Monitor the following as potential physical bottleneck areas:
� Network load balancers
� Firewalls
� Application servers
� Database servers
� LTPA providers

Examine initial settings for performance tuning parameters and adjust if necessary.
Reevaluate these periodically:
� JVM heap maximum and minimum sizes
� Web container

– Thread pool
– Maximum persistent requests
– Timeout values

� EJB container
– Inactive pool cleanup interval
– Cache size

� Database connection pool
– Maximum connections
– Unused timeout
– Purge policy

� Database servers
– Maximum database agents
– Maximum connected applications
– Query heap size
– Sort heap size
– Buffer pool size
– Database memory heap
– Application control heap
– Lock timeout

� Directory services
– Database tuning
– Authentication cache intervals

 Chapter 7. Performance, scalability, and high availability 277

References
The WebSphere Application Server Information Center also contains a lot of
useful information.

For a good entry point to monitoring topics, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topmonitoring.html

For a good entry point to performance topics, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6toptuning.html

Plan for clustering:
� Number of application servers
� Physical location
� Server weights
� Prefer local setting

Consider the Scheduler service to run intensive tasks in off-peak hours.

Evaluate session management needs:
� Session ID mechanism (cookies, URL rewriting, SSL)
� Session timeout values
� Session, transaction, and server affinity
� Distributed session data store (memory-to-memory or database store)

For messaging applications using the default messaging provider, consider:
� Quality of service settings
� Bus topology

Planning item

278 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6toptuning.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6toptuning.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topmonitoring.html

Chapter 8. Application development
and deployment

This chapter highlights important topics you need to be aware of when planning
for the development and deployment of WebSphere applications. It contains
items of interest for application developers, WebSphere infrastructure architects,
and system administrators. This chapter includes the following topics:

� What is new in V7.0
� End-to-end life cycle
� Development and deployment tools
� Naming conventions
� Source code management
� Automated build process
� Automated deployment process
� Automated functional tests
� Test environments
� Managing application configuration settings
� Planning for application upgrades in production
� Mapping application to application servers
� Planning checklist for applications

8

© Copyright IBM Corp. 2009. All rights reserved. 279

8.1 What is new in V7.0

The following list highlights the features added since WebSphere Application
Server V7.0:

� Rational Application Developer Assembly and Deploy V7.5

Rational Application Developer Assembly and Deploy V7.5 ships with
WebSphere Application Server V7.0. It is fully licensed with WebSphere
Application Server V7.0. It can be used to build, test, and deploy Java
Platform, Enterprise Edition (Java EE) applications on a WebSphere
Application Server V7.0 environment (but not on any previous release). It has
support for all Java EE artifacts supported by WebSphere Application Server
V7.0, such as servlets, JSPs, Enterprise JavaBeans (EJBs), XML, and Web
services. It also supports developing Java EE 5 applications.

� Rational Application Developer for WebSphere Software V7.5

Rational Application Developer for WebSphere Software V7.5 ships with
WebSphere Application Server V7.0 which contains a 60 day trial license. It is
a fully featured integrated development environment that can be used to build,
test, and deploy Java EE applications on a WebSphere Application Server
V7.0 environment (and also supports the previous releases V6.0 and V6.1). It
has support for all Java EE artifacts supported by WebSphere Application
Server V7.0, such as servlets, JSPs, EJBs, XML, SIP, Portlet, and Web
services. It also supports developing Java EE 5 applications.

� Portlet application support enhancement

The portlet container in WebSphere Application Server V7.0 provides the
runtime environment for JSR 268 compliant portlets. Portlet applications are
intended to be combined with other portlets collectively to create a single
page of output. The portlet container takes the output of one or more portlets
and generates a complete page that can be displayed.

The primary development tool for portlets on WebSphere Application Server
is Rational Application Developer for WebSphere Software. Review
Introduction: Portlet applications in the WebSphere Application Server
Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/welc6tech_port_intro.html

Portlets are packaged in WAR files.

JSR 268 provides improvements to the portlet programming model. It allows
for events and shared parameters between portlets. It improves coordination
with other Web frameworks, and better serves resources and usage of
cookies. It provides an easy way to test portlets without the need to set up a
full portal.

280 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cport_portlets.html

For more information, see the following Web pages:

– JSR 268 Specification

http://www.jcp.org/en/jsr/detail?id=268

– IBM developerWorks article Exploiting the WebSphere Application Server
V6.1 portlet container: Part 1: Introducing the portlet container

http://www.ibm.com/developerworks/websphere/library/techarticles/
0607_hesmer/0607_hesmer.html

� Session Initiation Protocol (SIP) support

SIP applications are Java programs that use at least one SIP servlet written
conforming to the JSR 116 specification. SIP is used to establish, modify, and
terminate multimedia IP sessions. SIP negotiates the medium, the transport,
and the encoding for the call. After the SIP call has been established, the
communication takes place over the specified transport mechanism,
independent of SIP. Examples of application types that use SIP include voice
over IP, click-to-call, and instant messaging.

Rational Application Developer provides special tools for developing SIP
applications. SIP applications are packaged as SIP archive (SAR) files and
are deployed to the application server using the standard WebSphere
Application Server administrative tools. SAR files can also be bundled within a
Java EE application archive (EAR file), just like other Java EE components.

For more information, see the following Web pages:

– JSR 116 SIP Servlet API Specification

http://www.jcp.org/en/jsr/detail?id=116

– RFC 3261

http://www.ietf.org/rfc/rfc3261.txt

� IBM Software Developer Kit (SDK) for Java Version 6 support

WebSphere Application Server V7.0 supports the Java Development Kit
(JDK) version 6. This new JDK has enhanced the virtual machine, garbage
collection scheme, and Just-in-time (JIT) compiler implementations from
version 5. The Java Virtual Machine (JVM) is the runtime component of the
JDK. The SDK is required for both the runtime and any remote Java client.

For more information, see:

– Sun’s Java SE 6 Release Notes

http://java.sun.com/javase/6/webnotes/features.html

– Sun’s Java SE 6 Compatibility Notes

http://java.sun.com/javase/6/webnotes/compatibility.html

 Chapter 8. Application development and deployment 281

http://www.jcp.org/en/jsr/detail?id=268
http://java.sun.com/javase/6/webnotes/compatibility.html
http://www.ietf.org/rfc/rfc3261.txt
http://jcp.org/en/jsr/detail?id=168
http://jcp.org/en/jsr/detail?id=168
http://www.ietf.org/rfc/rfc3261.txt
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_hesmer/0607_hesmer.html

� Enterprise JavaBeans (EJB) thin client

WebSphere Application Server V7.0 introduces an EJB thin client. An EJB
client is a Java application that accesses the remote EJB from a server
through Java Native Directory Interface (JNDI) lookup. The EJB client is thin,
as it only requires the EJB thin client runtime library, as opposed to a
complete application client or application server installation.

For more information, see the following Web pages:

– RCP Project

http://www.eclipse.org/home/categories/rcp.php

– RCP tutorial

http://www.eclipse.org/articles/Article-RCP-1/tutoria11.html

� Just in time deployment for EJB 3.0 module

Prior to WebSphere Application Server V7.0, to run enterprise beans on
WebSphere Application Server you needed to use the EJBDeploy tool to
generate the deployment code for the enterprise beans. The EJBDeploy tool
manually resolved each EJB reference to its target EJB JNDI name.
WebSphere Application Server V7.0 introduces a new feature that performs
just-in-time deployment for EJB 3.0 modules. The application server
automatically locates the correct target EJB reference binding.

� WebSphere Business Level Application

WebSphere Business Level Application expands the notion of applications
beyond Java EE 5. It enables new formats for deployment packages, and a
new way of representing applications. It enables you to create a new logical
application that represents a meaningful business function.

We discuss this more in 3.1.12, “Business level applications” on page 70.

Also for more information, see the WebSphere Application Server Information
Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/crun_app_bla.html

282 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.eclipse.org/articles/Article-RCP-1/tutoria11.html
http://jcp.org/en/jsr/detail?id=168
http://www.ietf.org/rfc/rfc3261.txt
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/crun_app_bla.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/crun_app_bla.html

8.2 End-to-end life cycle

The WebSphere Application Server V7.0 environment and its integration with
Rational tools offers the developer support at every stage of the application
development life cycle. Key stages in this life cycle are as follows:

� Requirements gathering and analysis
� Prototyping
� High level design
� Low level design
� Implementation/coding/debugging
� Unit testing
� Integration testing
� Functional verification testing
� Acceptance testing
� Performance testing
� Deployment
� Maintenance (including fixes, modifications, and extensions)

The Rational Unified Process
IBM Rational Unified Process (RUP) is a software engineering process. It
provides a disciplined approach to assigning tasks and responsibilities within a
development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its users within a predictable schedule and
budget.

RUP is an iterative process, which means that the cycle can feedback into itself
and that software grows as the life cycle is repeated. The opposite is a waterfall
model where the output of each stage spills into the subsequent stage.

This iterative behavior of RUP occurs at both the macro and micro level. At a
macro level, the entire life cycle repeats itself. The maintenance stage often
leads back to the requirements gathering and analysis stage. At a micro level, the
review of one stage might lead back to the start of the stage again or to the start
of another stage.

At the macro level, phases of Inception, Elaboration, Construction, and Transition
can be identified in the process. These phases are basically periods of initial
planning, more detailed planning, implementation, and finalizing and moving on
to the next project cycle. The next cycle repeats these phases. At the micro level,
each phase can go through several iterations of itself. For example, during a
construction phase, coding, testing, and re-coding can take place a number of
times. Figure 8-1 on page 284 gives an overview of the RUP.

 Chapter 8. Application development and deployment 283

Figure 8-1 Rational Unified Process overview

RUP identifies a number of disciplines that are practiced during the various
phases. These disciplines are practiced during all phases, but the amount of
activity in each phase varies. Clearly, the requirements discipline will be more
active during the earlier inception and elaboration phases, for example.

RUP maps disciplines to roles. There are many roles, but the roles break down
into the following four basic sets:

� Analysts
� Developers
� Testers
� Managers

Members of the team can take on more than one role. More than one team
member can have the same role. Each role might require the practice of more
than one discipline.

RUP can be followed without using Rational Software. It is simply a process
specification after all. However, RUP provides specific guidance (called Tool
Mentors) on how to use Rational Software when following the process. The
disciplines identified in RUP, such as requirements analysis, design, or testing
map to specific pieces of Rational software and artifacts that this software
generates. RUP is a process that can be followed as much or as little as is
required.

Inception Elaboration Construction Transition

Phases

Iterations

Initial Elab #1 Elab #2 Const
#1

Const
#2

Const
#N

Tran
#1

Tran
#2

Disciplines

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration &
Change Mgmt

Project Management
Environment

284 WebSphere Application Server V7.0: Concepts, Planning, and Design

For more information about RUP, see the following Web page:

http://www.ibm.com/software/awdtools/rup

8.3 Development and deployment tools

The WebSphere Application Server V7.0 environment comes with a rich set of
development tools. All editions of WebSphere Application Server V7.0 include a
full licensed version of the Rational Application Developer Assembly and Deploy
V7.5, as well as a 60 day trial version of the Rational Application Developer for
WebSphere Software V7.5.

Rational Application Developer Assembly and Deploy V7.5 supports only the
version of the WebSphere Application Server with which it ships. This means that
Rational Application Developer Assembly and Deploy V7.5 supports most new
features of WebSphere Application Server V7.0 and supports it as an integrated
test environment. It does not, however, support any of the previous versions of
WebSphere Application Server as integrated test environments.

Rational Application Developer for WebSphere Software V7.5 supports all new
features of WebSphere Application Server V7.0 and is a fully featured integrated
development environment for developing SIP, Portlet, Web services, and Java EE
applications. It supports previous versions of WebSphere Application Server
(V6.0 and V6.1) as an integrated test environment.

8.3.1 Rational Application Developer for Assembly and Deploy V7.5

Rational Application Developer Assembly and Deploy V7.5 is based on the
Eclipse 3.4 platform and provides the following features:

� Java EE support

� Development of standard Java 2 Enterprise Edition (J2EE) and Java EE
artifacts, such as servlets, JSPs, and EJBs complying with J2EE 1.4 and 1.5
specifications

� Development of static Web projects (HTML, CSS style sheets, JavaScript)

� SIP development, including support for JSR 116 SIP servlets

� XML tools to build and validate XML artifacts, including schemas, DTDs, and
XML files

� WebSphere Enhanced EAR support

� Profile management tool

 Chapter 8. Application development and deployment 285

http://www.ibm.com/software/awdtools/rup
http://www.ibm.com/software/awdtools/rup

� Support for WebSphere Application Server V7.0 test environments in either a
local or remote configuration, but no support for any previous versions of
WebSphere Application Server (such as V6.0 or V6.1)

� Jython script development, including script debugging capabilities

� Jacl to Jython script conversion tools (jacl2jython)

� Integration with Concurrent Versions System (CVS), which is a popular
Source Code Management (SCM) repository and Rational ClearCase®

To summarize, Rational Application Developer Assembly and Deploy V7.5 is a
development environment that provides you with the tooling necessary to create,
test, and deploy the various artifacts supported by WebSphere Application
Server V7.0.

It does not include the productivity-enhancing features and visual editors found in
Rational Application Developer for WebSphere Software V7.5. It also does not
include Rational ClearCase, Crystal Reports, UML modeling, Struts, or JSF
support, and it does not support any of the previous releases of WebSphere
Application Server (such as V6.0 or V6.1) as test environments.

8.3.2 Rational Application Developer for WebSphere Software V7.5

Rational Application Developer for WebSphere Software V7.5 includes all the
features of Rational Application Developer Assembly and Deploy V7.5 and adds
more productivity-enhancing features, which makes it an even more appealing
development environment for advanced Java EE 5 development.

In addition to the features in Rational Application Developer Assembly and
Deploy V7.5, Rational Application Developer for WebSphere Software V7.5
brings features such as the following:

� Full support for Java EE 5, including EJB 3.0 support

� Portal application development with support for WebSphere Portal V6.0 and
V6.1 test environments

� EJB test client for easy testing of EJBs

� Support for annotation-based development

� Web 2.0 development features for visual development of responsive Rich
Internet Applications with Asynchronous JavaScript and XML (AJAX) and
Dojo

� UML modeling functionality

� Integration with the Rational Unified Process and Rational tool set, which
provides the end-to-end application development life cycle

286 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Application analysis tools that check code for coding practices (examples are
provided for best practices and issue resolution)

� Enhanced runtime analysis tools, such as memory leak detection, thread lock
detection, user-defined probes, and code coverage

� Crystal Reports for developing visual data reports

� Component test automation tools to automate creating tests and building and
managing test cases

8.3.3 WebSphere rapid deployment

WebSphere rapid deployment is a set of tools and capabilities (non-graphical
command line interface) included in the WebSphere Application Server V7.0
packaging and also used by the development tools. These features allow for the
deployment of applications with minimum effort on the part of the developer or
administrator. The rapid deployment model has the following three basic
features:

� Annotation-based programming
� Deployment automation
� Enhanced EAR file

Annotation-based programming enables you to annotate the EJB, servlet, or
Web service module code with special Javadoc™ syntax annotations. When the
source of the module is saved, the directives in these annotations are parsed,
and the rapid deployment tools use the directives to update deployment
descriptors. The developer can then concentrate on the Java source code rather
than metadata files.

Deployment automation is where applications installation packages are dropped
into a hot directory under an application server and the application is installed
automatically. Any installation parameters that have not been specified by the
installation package’s deployment descriptors have default values that are
applied by the automated deployment process.

Rapid deployment allows for a free-form deployment operation. In this mode, it is
possible to drop source code or compiled classes for servlets, EJBs, JSPs,
images, and so on into the hot directory without strict J2EE packaging. Rapid
deployment then compiles the classes, adds deployment descriptors, and
generates an EAR file that is automatically deployed on a running server.

An enhanced EAR file enables the enterprise archive package to include
information about resources and properties, such as data sources, which is
required by an application. When deployed on a server, the resources are
automatically created on the server.

 Chapter 8. Application development and deployment 287

The WebSphere rapid deployment set of tools can be useful for quickly testing an
application. For example, if you know you are going to test several versions of the
same application, you can use the automatic deployment feature to have the
rapid deployment tools automatically deploy the versions for you. There are
limitations and rules you need to follow when working with these utilities, and
most of the time you are significantly more productive using a full-blown
development environment, such as Rational Application Developer Assembly
and Deploy V7.5 or Rational Application Developer for WebSphere Software
V7.5.

8.3.4 Which tools to use

Which tool you choose depends on your requirements. If you need to develop,
deploy, and test applications on WebSphere Application Server V7.0 for fast
turnaround times, choose Rational Application Developer Assembly and Deploy
V7.5.

If you are developing applications that require the new features only available in
the WebSphere Application Server V7.0, such as JSR 286 events, you have to
use Rational Application Developer for WebSphere Software V7.5. It is
feature-rich and has lots of productivity-enhancing features not found in the
Rational Application Developer Assembly and Deploy V7.5.

8.4 Naming conventions

Spending some extra time on application-related naming concepts pays off in
practice, because it can reduce the time spent on analyzing the source of issues
during standard operations of future Java EE applications.

8.4.1 Naming for applications

Generally, some form of the Version, Release, Modification, Fix (VRMF) schema
is used to organize code and builds, and commonly, a dotted number system
such as 1.4.0.1 is used. In this way, code management systems can be certain of
identifying, creating, and re-creating application builds accurately from the
correct source code, and systems administrators and developers know exactly
which version is used.

Note: You can use rapid deployment tools for packaging applications at J2EE
1.3 or 1.4 specification levels. The rapid deployment tools do not support Java
EE 5 nor J2EE 1.2 specification level.

288 WebSphere Application Server V7.0: Concepts, Planning, and Design

Append the version number to the enterprise archive (EAR) file name, such as in
OrderApplication-1.4.0.1.ear.

Sometimes, the version number of included components, such as utility JAR files
packaged in the EAR, can also have version numbers in their file names, but this
can often cause problems. Consider a utility JAR with a version number in the file
name, such as log4j-1.2.4.jar. If that is updated and the name is changed to
log4j-1.2.5.jar, each developer has to update the class path settings in their
workspace, which will cost them time. It is better to use an SCM system and label
the new JAR file as being version 1.2.5, but keep the file name constant, such as
just log4j.jar.

To keep track of all the versions of included components, it is a good idea to
include a bill of materials file inside the EAR file itself. The file can be a simple
text file in the root of the EAR file that includes versions of all included
components, information about the tools used to build it, and the machine on
which the application was built. The bill of materials file can also include
information about dependencies to other components or applications, as well as
a list of fixes and modifications made to the release.

8.4.2 Naming for resources

When naming resources, associate the resource to both the application using it
and the physical resource to which it refers. As an example for our discussion, we
use a data source, but the concept holds also for other types of resources such
as messaging queue. Remember, if your company already has a naming
convention for other environments (non-WebSphere) in place, it is probably a
good idea to use the same naming convention in WebSphere.

Assume that you have a database called ORDER that holds orders placed by
your customers. The obvious name of the data source would be Order and its
JNDI name jdbc/Order.

If the ORDER database is used only by a single application, the application name
can also be included to further explain the purpose of the resource. The data
source would then be called Order_OrderApplication and its JNDI name
jdbc/Order_OrderApplication.

Because the Integrated Solutions Console sorts resources by name, you might
want to include the name of the application first in the resource, such as in
OrderApplication_Order. This gives you the possibility to sort your resources
according to the application using them.

 Chapter 8. Application development and deployment 289

To group and sort resources in the Integrated Solutions Console, you can also
use the Category field, which is available for all resources in the Integrated
Solutions Console. In this text field, you can enter, for example, a keyword and
then sort your resource on the Category column. So, instead of including the
name of the application in the resource name, you enter the application name in
the Category field instead. If you have several different database vendors, you
might also want to include the name of the database vendor for further
explanation. The Category field is a good place to do that.

8.5 Source code management

In development, it is important to manage generations of code. Carefully
organize and track application builds and the source code used to create them to
avoid confusion. In addition to tracking the version of the source code, it is
equally important to track the version of the build tools and which machine was
used to generate a build. Not all problems are due to bugs in source code.

Developers produce code and usually use an Integrated Development
Environment (IDE) such as the Rational Application Developer Assembly and
Deploy V7.5 or Rational Application Developer for WebSphere Software V7.5 to
do that. Code in an IDE is stored in a workspace on the file system, usually
locally on each developer’s machine. As the project continues, and perhaps new
members join the team, the code grows and it becomes necessary to manage
the code in a central master repository. This allows for the following advantages:

� Development team collaboration (work on common code)
� Code versioning (managing which versions are in which releases)
� Wider team collaboration (access for project managers, testers)

SCM systems are used for these purposes. Rational Application Developer
Assembly and Deploy V7.5 and Rational Application Developer for WebSphere
Software V7.5 support Rational ClearCase, CVS, and Subversion as SCM
systems.

8.5.1 Rational ClearCase

Rational ClearCase organizes its code repositories as Versioned Object Bases
(VOBs). VOBs contain versioned file and directory elements. Users of Rational
ClearCase are organized according to their roles. Each user has their own view
of the data that is in the VOB on which they are working. Rational ClearCase
tracks VOBs, views, and coordinates the checking in and checking out of VOB
data to and from views.

290 WebSphere Application Server V7.0: Concepts, Planning, and Design

As the role-based model suggests, Rational ClearCase is not just an SCM
system but also a Software Asset Management (SAM) system. This means that it
not only manages code but other assets. These further assets might be
produced by the other Rational products with which Rational ClearCase
integrates.

The Rational products with which ClearCase integrates are as follows:

� Rational Enterprise Suite Tools
� Rational Unified Process
� Rational IDEs.

Artifacts such as use cases generated by Rational RequisitePro® can be stored
in Rational ClearCase. These can then be fed into a Rational Rose® design
model and used to design Java components and generate Unified Modeling
Language (UML) diagrams and documentation.

Rational ClearCase can also be used to implement the Unified Change
Management (UCM) process. This change management process can be
enhanced by using Rational ClearCase in conjunction with Rational
ClearQuest®, a change and defect tracking software.

The software is scalable. \Rational ClearCase LT is a scaled down version of
Rational ClearCase for small-to medium-sized teams. It can be upgraded
seamlessly to Rational ClearCase as a user’s needs change. Additionally, you
may use a Rational ClearCase MultiSite® add-on to support use of the software
in geographically dispersed development teams. In short, although Rational
ClearCase is an SCM system, it is also an integral part of the Rational toolset
and RUP. For more information about Rational software, see the following Web
page:

http://www.ibm.com/software/rational

8.5.2 Concurrent Versions System (CVS)

CVS uses a branch model to support multiple courses of work that are somewhat
isolated from each other but still highly interdependent. Branches are where a
development team shares and integrates ongoing work. A branch can be thought
of as a shared workspace that is updated by team members as they make
changes to the project. This model enables individuals to work on a CVS team
project, share their work with others as changes are made, and access the work
of others as the project evolves. A special branch, referred to as HEAD,
represents the main course of work in the repository (HEAD is often referred to
as the trunk).

 Chapter 8. Application development and deployment 291

http://www.ibm.com/software/rational

CVS has the following features:

� Free to use under the GNU license
� Open source
� Widely used in the development community
� Other SCM repositories can be converted to CVS
� Many free client applications are available, for example, WinCVS
� Can store text and binary files
� Handles versioning and branching
� Is a centralized repository

For more information about Concurrent Versions System, see the following Web
page:

http://ximbiot.com/cvs/wiki

8.5.3 Subversion

Subversion is a free open source version control system that tracks the entire file
system and files. It versions directories and individual files and stores them into a
repository. Each time a change is made to the files or directories, the change will
be recorded in the repository. You can track the history of changes on files or
directories by reviewing the log files maintain by Subversion. Each file or
directory has a corresponding log file. Subversion is easy to configure and offers
rich graphical and command line interfaces to manage files and directories. For
more information about Subversion, see the following Web page:

http://subversion.tigris.org/

8.5.4 Choosing an SCM to use

The obvious question arises: Which SCM should the team use? There is no
simple answer to this question, because the answer depends on a number of
factors.

Current software and processes
To some extent, the choice depends on what the existing situation is (if any),
what the SCM and development process requirements are at present, and what
those requirements will be in the future. If a team uses CVS or Subversion and
an existing, successful, development process, Rational ClearCase might not be
necessary, especially if the size and complexity of requirements is not likely to
grow in the future. If this is not the case, Rational Clear LT or Rational ClearCase
are a good choice so that the full integration of Rational and WebSphere
products can be exploited now and in the future.

292 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://ximbiot.com/cvs/wiki
http://subversion.tigris.org/

Team size
Rational ClearCase LT gives a sound starting place for smaller teams. Rational
ClearCase LT can be upgraded to Rational ClearCase later if necessary. On
large development projects, Rational ClearCase and Rational ClearQuest have a
MultiSite option that allows for easier development by geographically dispersed
development teams.

Complexity of requirements
RUP provides a holistic approach to the end-to-end development life cycle. The
use of the UCM process, which is part of the RUP, can shield the user from
complex tagging and branching of code. CVS and Subversion do not shield the
user from this.

Cost
CVS and Subversion are possibly a cheaper option because they are free and
have a large user base, which means cheaper skills. In terms of hardware, it is
likely that hardware costs for hosting CVS or Subversion are cheaper because of
their smaller footprint. However, these might be false economies. The limitations
of CVS and Subverison can cause a team to migrate to Rational ClearCase later.

Change management process
If the development team uses CVS or Subversion rather than Rational
ClearCase, the team does not get a prescribed change management process for
CVS and Subversion such as the UCM. If their organization does not have its
own change management process, such a process should be created and put
into place.

Summary
In summary, the smaller the development team and the less complex the
requirements, the more likely that CVS, Subversion, or Rational ClearCase LT
are good choices. As team size and complexity grows, Rational ClearCase and
Rational ClearCase MultiSite become more attractive. Existing processes and
software, as well as the budget for new software, hardware, and training are likely
to inform the decision further. In matters of cost, there might be false economies.

 Chapter 8. Application development and deployment 293

8.6 Automated build process

The major impetus for implementing and maintaining an automated build process
is to provide a simple and convenient method for developers to perform builds for
development, test, and production environments.

The main problems you might run into when you do not have an automated
process are as follows:

� Failures on your test or production environment because the code was not
packaged correctly.

� The wrong code was deployed causing the application to fail.

� The development team, testers, and even customers have to wait to get the
code out to a test, staging, or production environment because the only
person who has control over these areas is unavailable.

� You cannot reproduce a problem on production because you do not know
what version of files are in production at the moment.

The time spent developing an automated build script will pay for itself over time.
After you have an automatic build process in place, you can virtually eliminate
failures due to improper deployment and packaging, considerably reduce the
turnaround time for a build, allow you to easily recreate what is in each of your
environments, and ensure that the code base is under configuration
management.

There are several tools on the market to help you develop a build script, including
Apache Ant. Apache Ant is a Java-based build tool that extends Java classes
and uses XML-based configuration files to perform its job. These files reference a
target tree in which various tasks are run. Each task is run by an object that
implements a particular task interface. Ant has become a popular tool in the Java
world.

WebSphere Application Server provides a copy of the Ant tool and a set of Ant
tasks that extend its capabilities to include product-specific functions. These
Apache Ant tasks reside in the com.ibm.websphere.ant.tasks package. The
Javadoc for this package contains detailed information about the Ant tasks and
how to use them.

The tasks included with WebSphere Application Server enable you to perform
the following tasks:

� Install and uninstall applications.
� Run EJB 1.x, 2.x and 3.x deployment and JSP pre-compilation tools.
� Start and stop servers in a base configuration.
� Run administrative scripts or commands.

294 WebSphere Application Server V7.0: Concepts, Planning, and Design

By combining these tasks with those provided by Ant, you can create build
scripts that pull the code from the SCM repository, and compile, package, and
deploy the enterprise application on WebSphere Application Server. To run Ant
and have it automatically see the WebSphere classes, use the ws_ant command.

For more detailed information about Ant, refer to the Apache organization Web
page:

http://ant.apache.org/index.html

Another product to consider is IBM Rational Build Forge®. IBM Rational Build
Forge is a product that provides a framework to automate the entire process
end-to-end. IBM Rational Build Forge automates individual tasks, but also the
hand-offs among the various steps in the process. IBM Rational Build Forge was
designed to integrate existing scripts and tools, so there is no need to replace
your pre-existing assets. It offers a comprehensive Application Development
Process Management solution that provides complete management and control
of the application development life cycle. IBM Rational Build Forge automates,
standardizes, and optimizes complex processes, integrating diverse tool sets to
deliver a repeatable and reliable application development life cycle process.

8.7 Automated deployment process

Automating the application deployment is something to consider if it is done more
than one time. Successful automation will provide an error free and consistent
application deployment approach. Most of the application deployment not only
involves installing the application itself, but it also needs to create other
WebSphere objects, configure the Web servers, file systems and others. These
tasks can be automated using shell scripting depending on the operating
systems, Java Common Language (JACL) and Jythons. For more information,
see the IBM developerWorks article Sample Scripts for WebSphere Application
Server Version 5 and 6 at the following Web page:

http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts
.html

 Chapter 8. Application development and deployment 295

http://ant.apache.org/index.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html

8.8 Automated functional tests

Automating your functional tests might be a good idea depending on your project
size and how complex the requirements of the project are. Scripts execute much
faster than people, but since they are not automatically generated, so someone
has to create the scripts at least one time. It is possible to create a script to cover
all functions in your application, but it would be complicated and costly. A good
idea is to create scripts for the main features of the system and those that will not
change that much over the time, so every time a new build is published by an
automated build tool or a human, you can be sure that the application still works
properly.

IBM offers a rich set of software tools for implementing automated test solutions.
These solutions solve many common problems and therefore reduce complexity
and cost. For more information, see the article Rational Functional Tester at the
following Web page:

http://www.ibm.com/software/awdtools/tester/functional/

8.9 Test environments

Before moving an application into production, it is important to test it thoroughly.
Because there are many kinds of tests that need to be run by different teams, a
proper test environment often consists of multiple test environments.

Tests cases must be developed according to system specification and use cases.
Do this before the application is developed. System specification and use cases
need to be detailed enough so that test cases can be developed. Test cases
need to verify both functional requirements (such as application business logic
and user interface) and non-functional requirements (such as performance or
capacity requirements). After creating the test cases and with sufficient
developed functionality in the application, start testing.

296 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/software/awdtools/tester/functional/

Figure 8-2 shows an overview of a recommended test environment setup.

Figure 8-2 Test environments

Whether you choose to use some of these test environments, all of them, or use
additional test environments depends on the system being developed, project
size, budget constraints, and so on.

Each environment is maintained as a separate cell in order to completely isolate
the environments from each other. For smaller environments, a single application
server profile is usually sufficient, while larger ones might need a deployment
manager for that particular cell environment.

Development
Environment

SCM Build
Server

Integration Test
Environment

HTTP,
WebSphere,

Database

System test
Environment

HTTP

Database

WebSphere

Acceptance test
Environment

HTTP

Database,
backends

WebSphere

Load
Balancer

Production
Environment

HTTP

Database,
backends

WebSphere

Load
Balancer

 Chapter 8. Application development and deployment 297

Development environment
Usually, each developer has their own WebSphere test environment integrated in
the development tool. This test environment is used for the developer’s daily work
and it is often active while the developer is coding. Whenever necessary, the
developer can perform instant testing.

Because of the tight integration between WebSphere Application Server and the
IBM development tools, the application server can run the application using the
resources in the developer’s workspace. This eliminates the need for developers
to execute build scripts, export, or otherwise package the application into an EAR
file, and deploy that on a test server for every small change made. This capability
makes it easy and quick to test applications while developing them and increases
developer productivity.

Each developer is also responsible for performing unit testing of their own code.
The majority of all tests performed for the system are executed in this
environment, and the primary goal is to wash out obvious code bugs. The
developers work against and share code using the SCM system. The
development environment is most often a powerful desktop machine.

When each developer has committed their code to the integration stream in the
SCM system, a development lead or integration team usually performs a clean
build of the whole application, bringing together code developed by different
developers. This is usually done on a special build server and is controlled by
automatic build scripts. See 8.6, “Automated build process” on page 294. This
server might need to have a copy of the Rational Application Developer for
Assembly and Deploy V7.5 or Rational Application Developer for WebSphere
Software V7.5 installed.

The development team should also create a Build Verification Test process (see
8.8, “Automated functional tests” on page 296), where each new build is
executed before making the build available to the team. A Build Verification Test
covers test cases or scenarios that verify that critical paths through the code are
operational. Build Verification Test scripts are often controlled by JUnit.

It is every developer’s responsibility to perform basic code profiling. By using the
profiling tools in Rational Application Developer Assembly and Deploy V7.5 or
Rational Application Developer for WebSphere Software V7.5, a developer can
discover methods that perform poorly, find memory leaks, or excessive creation
of objects.

298 WebSphere Application Server V7.0: Concepts, Planning, and Design

Integration test environment
After a successful build and regression test, the application is deployed to the
integration test environment. This is the environment where the developers
perform integration tests among all system components on a hardware and
software platform that mirrors the production environment, although in a small
size.

Because the production environment is often not the same platform as the
development environment, a guideline is to start testing on the target platform as
early as possible in the test phase. This testing will help discover problems with
incompatibilities between platforms (for example, hard coded folder paths such
as C:\ versus /usr). The integration test environment is usually the first
environment suitable for that.

For small projects, the integration test environment can often be shared between
different projects. But if the number of projects or developers is too large, it
becomes difficult to manage. Usually no more that five to 10 developers should
share a single integration test environment. If a developer needs to perform tests
that might damage the environment, a dedicated environment should be used. If
the machine has enough resources in terms of CPU and memory, using multiple
WebSphere profiles can also be a good method to isolate different teams from
each other. Using VMWare virtualization is another option. The development
team manages and controls the integration test environment.

System test environment
The purpose of the system test is to verify that the system meets both functional
and non-functional requirements. After the development team has tested the
application in their own controlled environment, it is delivered to the system test
team. When the application is delivered, the system test team deploys it using
the instructions given.

If the tests in the previous test stages have been less formal, a key aspect of the
system test is formality. The system test team is responsible for verifying all
aspects of the system and ensuring that it conforms to the specifications.
Functional requirements include specifications such as determining whether the
system execute the business rules defined, whether the user interface shows the
right information, and so on. Non-functional requirements include capacity,
performance, installation, backup, and failover requirements.

The system test team completely controls the system test environment. The
environment is usually a cut-down version of the real production environment, but
with all the important components in place. If the production environment is a
highly available environment with WebSphere clusters, the system test should
also be set up with clusters to verify both application functionality and
deployment routines.

 Chapter 8. Application development and deployment 299

The system test environment can also be used by other teams. Perhaps the
system administrators need to test new patch levels for the operating system,
WebSphere Application Server, database, and so on before rolling them out in
production. The system test environment is a good place to do that. If a patch is
committed, it should also be applied to the other test environments to keep all
environments synchronized.

Acceptance test environment
The acceptance test environment is the last stage where testing takes place
before moving the application into production. The acceptance test environment
is the one that most closely resembles the actual production environment.
Hardware and software must be identical to the production environment.

Because of cost constraints, it is often not possible to have an acceptance test
environment with identical capacity as the production environment. The
acceptance test environment is, therefore, usually smaller than the production
environment, but needs to contain all the same components, same brands, same
software patch levels, and the same configuration settings as the production
environment.

The purpose of the acceptance test environment is to give the operations team a
chance to familiarize themselves with the application and its procedures (such as
installation, backup, failover, and so on). It also provides an opportunity to test
unrelated applications together, because previous environments focused on
testing the applications independently of each other.

Often the acceptance test environment is where performance tests are run,
because the acceptance test environment is the one most similar to the real
production environment.

When doing performance tests, it is extremely important to have a representative
configuration as well as representative test data. It is not unusual that projects
perform successful performance tests where the results meet the given
requirements, and then when the application is moved into production, the
performance is bad. This can be because the production database is much larger
than the databases used in the acceptance test environment. It is important that
the test databases be populated with representative data. Ultimately, a copy of
the production database should be used, but this may not be possible because
tests might involve placing orders or sending confirmation e-mails. Other causes
for differences in performance between the successful performance tests and the
production environment is, for example, that the performance tests ran without
HTTP session persistence, while the production environment uses session
persistence. To get realistic results, the performance test environment and setup
must be realistic, too.

300 WebSphere Application Server V7.0: Concepts, Planning, and Design

8.10 Managing application configuration settings

Almost all non-trivial applications require at least some amount of configuration
to their environment in order to run optimally. Part of this configuration (such as
references to EJBs, data sources, and so on) is stored in the application
deployment descriptors and is modified by developers using tools such as
Rational Application Developer Assembly and Deploy V7.5 or Rational
Application Developer for WebSphere Software V7.5. Other settings, such as the
JVM maximum heap size and database connection pool size, are stored in the
WebSphere Application Server configuration repository and modified using the
WebSphere administrative tools. Finally, there are settings that are
application-internal, usually created by the developers and stored in Java
property files. These files are then modified, usually using a plain text editor, by
the system administrators after deploying the application.

8.10.1 Classifying configuration settings

Configuration data can often be categorized into three different categories.

� Application-specific

This category includes configuration options that are specific for an
application regardless of its deployment environment. Examples include how
many hits to display per page for a search result and the EJB transaction
timeout (for example, if the application has long-running transactions). This
category should move, unchanged, with the application between the different
environments.

� Application environment-specific

This category includes configuration options that are specific both to an
application and its deployment environment. Examples include log detail
levels, cache size, and JVM maximum heap size.

For example, in development, you might want to run the OrderApplication with
debug-level logging, but in production, you want to run it with only
warning-level logging. And during development, the OrderApplication might
work with a 256 MB heap, but in the busier production environment, it might
need a 1 GB heap size to perform well. These options should not move along
with the application between environments, but need to be tuned depending
on the environment.

 Chapter 8. Application development and deployment 301

� Environment-specific

This category includes configuration options that are specific to a deployment
environment but common to all applications running in that environment. This
category includes, for example, the name of the temp folder if applications
need to store temporary information. In the Windows development
environment, this might be C:\temp, but in the UNIX production environment,
it might be /tmp. This category of options must not move between
environments.

8.10.2 Managing configuration setting

Dealing with configuration settings is usually a major challenge for both
developers and system administrators. Not only may configuration settings have
to be changed when the application is moved from one deployment environment
to another, but the settings must also be kept in sync among all application
instances if running in a clustered environment.

To manage the settings stored in the WebSphere configuration repository (such
as the JVM maximum heap size), it is common to develop scripts that are run as
part of an automatic deployment to configure the settings correctly after the
application has been deployed. The values suitable for the application can be
stored in a bill of materials file inside the EAR file. This file can then be read by
scripts and used to configure the environment.

Settings stored in the deployment descriptors usually do not have to be changed
as the application is moved between different environments. Instead, the Java
EE specification separates the developers’ work from the deployers’. During
deployment, the resources specified in the deployment descriptors are mapped
to the corresponding resources for the environment (for example, a data source
reference is mapped to a JNDI entry, which points to a physical database).

Application-internal configuration settings, however, are often stored in Java
property files. These files are plain text files with key-value pairs. Java has
provided support for reading and making them available to the application using
the java.util.Properties class since Java 1.0. Although you can use databases,
LDAP, JNDI, and so on to store settings, plain Java property files are still the
most common way of configuring internal settings for Java applications. It is an
easy and straightforward method to accomplish the task. In a clustered
environment where the same application runs on multiple servers distributed
across different machines, care must be taken as to how to package, distribute,
and access the property files.

302 WebSphere Application Server V7.0: Concepts, Planning, and Design

For packaging the property files, you have two approaches. Either you include
the property files within the EAR file itself or you distribute them separately. To
include them within an EAR file, the easiest approach is to create a utility JAR
project, add the property files to it, and then add that project as a dependent
project to the projects that will read the property files. The utility JAR project is
then made available on the class path for the other projects. The best practice,
however, is to centralize access to the property files using a custom property
manager class, so access to the properties is not scattered all over your code.
For example, to load a property file using the class loader, you can use the code
snippet in Example 8-1.

Example 8-1 Loading a property file using the class loader code snippet

Properties props = new Properties();
InputStream in =
MyClass.class.getClassLoader().getResourceAsStream(“my.properties”);
props.load(in);
in.close();

Property files packaged in a JAR file in the EAR file are a good solution for
property files that should not be modified after the application has been deployed
(the application-specific category described in 8.10.1, “Classifying configuration
settings” on page 301).

If you want to make the property files easily accessible after the application has
been deployed, you might want to store them in a folder outside the EAR file. To
load the property files, you either make the folder available on the class path for
the application (and use the code snippet in Example 8-1) or you use an absolute
path name and the code snippet in Example 8-2 (assuming the file to load is
/opt/apps/OrderApp/my.properties).

Example 8-2 Absolute path name code snippet

Properties props = new Properties();
InputStream in = new
FileInputStream(“/opt/apps/OrderApp/my.properties”);
props.load(in);
in.close();

Using absolute path names is usually a bad idea because it tends to hard code
strings into your code, which is not what you want to do. A better approach is to
make the folder with the property files available on the class path for the
application. You can do this by defining a shared library to WebSphere
Application Server. Instead of specifying JAR files, you specify the name of the
folder that holds the property files, such as “/opt/apps/OrderApp”, in the
Classpath field for the shared library.

 Chapter 8. Application development and deployment 303

A lesser known, but better, approach to access property files is to use URL
resources. We do not go into the details of exactly how to do that here, but the
following steps describe the approach:

1. Create a folder on your system that holds the property file.

2. Use the Integrated Solutions Console and create a URL resource that points
to the property file and assign it a JNDI name.

3. In the application, create a URL resource reference binding pointing to the
JNDI name chosen.

4. In Java, use JNDI to look up the URL resource reference. Create an
InputStream from the URL, and use that InputStream as input to the
java.util.Properties class to load the property files.

This approach to access property files is also more Java EE compliant because it
does not rely on the java.io package for file access, which is prohibited according
to the Java EE specification.

The method also gives you the opportunity to load the property files using HTTP
and FTP. This allows you to set up an HTTP server serving properties files from a
central location.

Unless you are using the previous technique with the HTTP or FTP protocol, it is
convenient to manage all property files in a central location, on the deployment
manager. However, property files stored in folders outside the EAR files are not
propagated to the WebSphere nodes unless the folders are created under the
deployment manager cell configuration folder, which is
<dmgr_profile_home>\config\cells\<cell_name>.

By creating a folder, such as appconfig, under this folder, you can take advantage
of the WebSphere file transfer service to propagate your files to the nodes.
Because this folder is not known to the WebSphere Application Server
infrastructure, it will not happen automatically when the contents are changed.
You need to force a synchronization with the nodes. This propagates the property
files to the <profile_home>\config\cells\<cell_name>\appconfig directory on each
node. You can include that folder on the class path using a shared library or point
your URL resources to it.

Tip: When deciding on names for settings in property files, it is a good idea to
include the unit of the setting referred to in the name. Therefore, instead of
using MaxMemory or Timeout, it is better to use MaxMemoryMB and
TimeoutMS to indicate that the max memory should be given as megabytes
and the timeout as milliseconds. This can help reduce confusion for the
system administrator who does not know the internals of the application.

304 WebSphere Application Server V7.0: Concepts, Planning, and Design

If you store property files that need to be changed between different
environments inside the EAR file, you might discover that there are problems
involved with that approach, especially in a clustered environment.

In a clustered environment when an enterprise application is deployed to
WebSphere Application Server, it is distributed to each node in the cluster using
the WebSphere Application Server file transfer mechanism. At each node, the
EAR file is expanded and laid out on the file system so that WebSphere
Application Server can execute it. This means that a property file included in the
EAR file is automatically replicated to each member of the cluster.

If you then need to make a change to the property file, you either have to do it
manually on each cluster member, which can be error prone, or you do it on the
deployment manager itself and then distribute the updated file to each node
again. However, WebSphere Application Server does not fully expand the
contents of the EAR file to the file system on the deployment manager (it only
extracts from the EAR file the deployment descriptors needed to configure the
application in the WebSphere Application Server cell repository), so the property
file is not readily accessible on the deployment manager. Because of this, you
must manually unpack the EAR file, extract the property file, modify it, and then
re-create the EAR file again and redeploy the application. This is not a
recommended approach.

Another option is to distribute the property files within the EAR, but after
deployment, extract them from the EAR file and place them in a folder separate
from the EAR. An example of a folder name suitable for that is
<dmgr_profile_home>\config\cells\<cell_name>\configData on the deployment
manager machine. Anything in that folder is replicated to each node in the cell
when WebSphere Application Server synchronizes with the nodes. For the
application to find the file, it must then refer to it on its local file system. But
because that folder name includes both the name of the profile and the name of
the cell, it can quickly become messy and is usually not a good solution.

8.11 Planning for application upgrades in production

To have a production environment that enables you to roll out new versions of
applications while maintaining continuous availability is not only the responsibility
of the WebSphere infrastructure architects and system administrators, it is also
the responsibility of the developer. Even though they might not always realize it,
developers play a critical role in making the production environment stable and
highly available. If an application is poorly written or developers introduce
incompatible changes, there might not be much the system administrators can
do but to bring down the whole system for an application upgrade. And
unfortunately, application developers are too often not aware of the impact their
decisions have on the production environment.

 Chapter 8. Application development and deployment 305

Developers need to consider the following areas when planning for new versions:

� Database schema compatibility

If a change in the database layout is introduced, it might be necessary to shut
down all instances of an application (or even multiple applications if they use
the same database) in order to migrate the database to the new layout and
update the application.

One possibility is to migrate a copy of the database to the new layout and
install the new applications on a new WebSphere cluster, and then switch to
the new environment. In this case, all transactions committed to the hot
database will need to be re-applied to the copy, which is now the hot
database.

� EJB version compatibility

If EJB interfaces do not maintain backward compatibility and the application
has stand-alone Java clients, it might be necessary to distribute new versions
of the Java clients to users’ desktops. If the EJB clients are servlets but they
are not deployed as part of the same EAR file as the EJBs, or they are
running in a container separate from the EJB, it might be necessary to set up
special EJB bindings so that the version 1 clients can continue to use the
version 1 EJBs while version 2 clients use new version 2 EJBs.

� Compatibility of objects in HTTP session

If you take a simple, straightforward approach and use the WebSphere
Application Server rollout update feature and you have enabled HTTP session
persistence, you must make sure that objects stored in the HTTP session are
compatible between the two application releases. If a user is logged on and
has a session on one application server and that server is shut down for its
application to be upgraded, the user will be moved to another server in the
cluster and his session will be restored from the in-memory replica or from a
database. When the first server is upgraded, the second server will be shut
down and the user will then be moved back to the first server again. Now, if
the version 1 objects in the HTTP session in memory are not compatible with
the version 2 application, the application might fail.

� User interface compatibility

If a user is using the application and it suddenly changes the way it looks, the
user might become frustrated. And it might require training for users to learn a
new user interface or navigation system.

306 WebSphere Application Server V7.0: Concepts, Planning, and Design

We do not go into depth on this subject, but suggest investigating the IBM
developerWorks article Maintain continuous availability while updating
WebSphere Application Server enterprise applications. It describes what to
consider both from a developer point of view and a WebSphere infrastructure and
system administration point of view in order to have a highly available
environment that can handle a rollout of new application versions. It is available
from the following Web page:

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/
0412_vansickel.html

8.12 Mapping application to application servers

A question that often arises when deploying multiple applications to WebSphere
Application Server is whether the applications need to be deployed to the same
application server instance (JVM) or if you need to create a separate instance for
each application. There is no easy answer to this question because it depends
on several factors. Normally, you deploy multiple applications to one application
server, mainly because it uses a lot less resources. However, it is not always
possible to do so.

This section attempts to give you some points to consider so that you can make
the right decision for your particular environment.

The advantages of deploying each application to its own application server are
as follows:

� If an application server process crashes, it will bring down only the application
running in that server. However, if using a cluster, you would still have other
instances running.

� Many WebSphere Application Server settings, such as JVM heap size and
EJB transaction timeout, are configured at the application server level. If two
applications require different settings, they cannot be deployed to the same
application server. Note that multiple applications can be deployed to the
same application server and use the same heap, if it is large enough to
accommodate all applications.

� Java environment variables (specified using -D on the Java command line, or
using JVM custom properties) are specified per JVM instance. This means
that if you need to specify, for example, -Dlog4j.configuration with different
settings for each application, you cannot do that if they are all in the same
JVM.

 Chapter 8. Application development and deployment 307

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html

� You can use the WebSphere Application Server rollout update feature, which
requires the application server be stopped. Although it can be used when
there are multiple applications in each application server, all applications are
stopped as the application server is stopped. You need to have all
applications clustered to have other instances always available.

� Each application will receive its own SystemOut and SystemErr log file. If
multiple applications are deployed on the same application server, system log
output from all applications would be interleaved in the SystemOut and
SystemErr logs. Usually, this is not a problem because applications often use,
for example, log4j (which is configurable) to perform logging instead of plain
system out print statements.

� It is simple to diagnose problems as there is only one application in the JVM.

The advantages of deploying multiple applications to the same application server
are as follows:

� By deploying multiple applications to the same application server, you can
reduce the memory used. Each application server instance requires about
130 MB of RAM for it to run. If you have 10 such application server processes
running on your system, you have consumed more than 1 GB worth of RAM
for the WebSphere Application Server runtime alone.

� You can use EJB local interfaces to make local calls from one application to
another, because they are in the same JVM.

� Fewer application servers means fewer ports open in the WebSphere
Application Server tier, which means fewer ports need to be opened in the
firewall between the HTTP tier and the WebSphere Application Server tier.

Sometimes, a mixed approach is the best way to go. By grouping related or
similar applications and deploying them to the same application server, while
deploying other applications that need to run in their own environment, you can
achieve a good compromise.

308 WebSphere Application Server V7.0: Concepts, Planning, and Design

8.13 Planning checklist for applications

Table 8-1 lists items to consider as you plan. Following the table are additional
resources that can help you.

Table 8-1 Planning checklist for applications

Resources
The WebSphere Application Server Information Center contains a lot of useful
information. For a good entry point to information about application development
and deployment, go to the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topdeveloping.html

For detailed information about application development using Rational
Application Developer, refer to Rational Application Developer V7 Programming
Guide, SG24-7501.

Planning item

Select the appropriate set of application design and development tools.

Create a naming convention for applications and application resources.

Implement a source code management system.

Design an end-to-end test environment.

Create a strategy for maintaining and distributing application configuration data.

Create a strategy for application maintenance.

Determine where applications will be deployed. (all on one server?)

 Chapter 8. Application development and deployment 309

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topdeveloping.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topdeveloping.html

310 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 9. System management

This chapter provides an overview of the planning necessary for the system
management of the WebSphere Application Server runtime environment. It
focuses on developing a strategy to best use the multitude of system
management capabilities in WebSphere Application Server. The operational
efficiency of the overall system hinges on the proper implementation of the
system management processes.

This chapter contains the following sections:

� “What is new in V7.0” on page 312
� “Administrative security” on page 314
� “WebSphere administration facilities” on page 314
� “Automation planning” on page 320
� “Configuration planning” on page 321
� “Change management topics” on page 326
� “Serviceability” on page 329
� “Planning checklist for system management” on page 334

9

© Copyright IBM Corp. 2009. All rights reserved. 311

9.1 What is new in V7.0

The following list highlights the changes in administrative tools and processes in
WebSphere Application Server V7.0:

� Simplified administration of multiple Base profiles with an administrative agent

Prior to WebSphere Application Server V7.0, whether a Base or Express
installation, the WebSphere Administrative Console resided in the default
WebSphere Application Server. If you created multiple profiles within the
Base, each profile had a WebSphere Application Server instance and the
WebSphere Administrative Console resided in each WebSphere Application
Server instance. To administer each WebSphere Application Server instance,
you had to log into each individual WebSphere Administrative Console.

In WebSphere Application Server V7.0, you can use the administrative agent
to centrally manage all WebSphere Application Server instances within the
same physical server created by Base profiles. This is done through the
Integrated Solutions Console, where you select which WebSphere
Application Server instance to administer. This new feature reduces the
individual WebSphere Application Server footprint associated with
administration. It also simplifies administration of multiple Base profiles
WebSphere Application Server instances.

We discuss this more in 3.1.7, “Administrative agent” on page 63.

� Centralized administration of multiple WebSphere domains with a job
manager

In WebSphere Application Server V7.0, the job manager has been introduced
as a loosely coupled management model based on asynchronous
implementation, so that it provides centralized administration for multiple
deployment managers and multiple Base profiles (through an administrative
agent). It centralizes the distribution of applications, applications updates, and
WebSphere Application Server configuration updates across a large number
of WebSphere administrative domains. This dramatically increases the scale
of administration for WebSphere Application Server implementations. The job
manager does not replace deployment manager but augments it.

We discuss this more in 3.2.4, “Flexible management” on page 78.

� New runtime provisioning service

The new runtime provisioning service commissions only those components in
the Java Virtual Machine (JVM) that are required by the installed applications.
At application installation time, WebSphere Application Server examines the
application and creates an application-specific activation plan. At WebSphere
Application Server startup, it only starts those components that are detailed in

312 WebSphere Application Server V7.0: Concepts, Planning, and Design

the activation plan. This reduces the WebSphere Application Server footprint
and the resources needed for a given application portfolio.

We discuss this more in 3.1.14, “Intelligent runtime provisioning” on page 72.

� Administrative scripting enhancement

Administrative scripting wsadmin has been enhanced in WebSphere
Application Server V7.0. It provides a set of sample Jython libraries to
accelerate automation implementations. It introduces new adminstrative
tasks, improves help with Command Assistant, and supports wildcard usage.

� Properties file based configuration

WebSphere Application Server V7.0 supports properties file based
configuration, so that you can extract a WebSphere Application Server
configuration from a server into a property file. Manipulating the content in the
property file, such as the environment name, allows you to use the modified
property file to configure the same WebSphere Application Server
configuration in another server. Alternatively, you can also alter the value of a
field and use the modified property file to make the new WebSphere
Application Server configuration change in the same server.

� Manage WebSphere DataPower through the Integrated Solutions Console

In WebSphere Application Server V7.0, you can manage WebSphere
DataPower through the Integrated Solutions Console. It provides flexibility to
have all administration in one place.

We discuss this more in 2.5, “WebSphere DataPower” on page 41.

� Fine-grained administrative security

WebSphere Application Server V7.0 supports fine-grained security control,
which expands the administration scope. We can restrict access based on the
roles on the cell, node, server, cluster, application and node group level. This
capability is valuable in big organizations where you have different teams
responsible for supporting different applications.

� Centralized installation manager

The centralized installation manager (CIM) allows you to install and uninstall
WebSphere Application Server binaries and maintenance patches from a
centralized location (the deployment manager) to any servers in the network.
This capability allows flexibility so that you can perform installation and
uninstallation from a central place.

We discuss this more in 3.1.13, “Centralized installation manager” on
page 72.

 Chapter 9. System management 313

9.2 Administrative security

We suggest enabling administrative security to prevent unauthorized access to
the administrative tasks. Enabling administrative security only secures
administration tasks, not applications.

After administrative security is enabled, there is a security check when the
Integrated Solutions Console or other adminstrative facilities are accessed. The
security check makes sure that the accessing user is authenticated and has
been mapped to one of the console security roles. Depending on the console
role to which the user is mapped, different functions will be available.

Proper planning for system management includes identifying the people who will
need access as well as the level of access to the administrative tools. You will
need to consider and design a set of groups, users, and roles that fit your needs.

You should review the available roles and access levels in the WebSphere
Application Server Information Center, at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/csec_globalserver.html

WebSphere Application Server gives you the option to enable administrative
security during profile creation. If you choose this option during profile creation,
you will be asked to provide a user ID and password that will be stored in a set of
XML files and be mapped to the Administrator role. Additional users can be
added after profile creation using the administrative tools.

9.3 WebSphere administration facilities

WebSphere Application Server V7.0 provides a variety of administrative tools for
configuring and managing your runtime environment, as follows:

� Integrated Solutions Console

The Integrated Solutions Console is a browser-based client that uses a Web
application running in the Web container to administer WebSphere
Application Server.

� WebSphere scripting client (wsadmin)

The wsadmin client is a non-graphical scripting interface that can be used to
administer WebSphere Application Server from a command line prompt.

314 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/csec_globalserver.html

It can connect to WebSphere Application Server using one of the two
communication mechanisms:

– Simple Object Access Protocol (SOAP) by communicating with the
embedded HTTP server in the Web container.

– Remote Method Invocation (RMI), to communicate with the administrative
services.

� Task automation with Ant

With Another Neat Tool (Ant), you can create build scripts that compile,
package, install, and test your application on WebSphere Application Server.

� Administrative applications

You can develop custom Java applications that use the Java Management
Extensions (JMX™) based on the WebSphere Application Programming
Interface (API).

� Command line utilities

WebSphere Application Server provides administrative utilities to help
manage your environment, including the following features:

– Called from a command line.

– Can be used to perform common administrative tasks such as starting and
stopping WebSphere Application Server, backing up the configuration and
so on.

– Work on local servers and nodes only, including the deployment manager.

The combination of administrative tools you employ ultimately depends on the
size and complexity of your runtime environment. Where you have few resources,
but many tasks, we suggest the use of automation and scripts. Where you have
multiple administrators that will perform different tasks, you might want to
consider defining different access control roles. This is important where you want
non-administrators to be able to perform limited roles such as application
deployment.

Updates to configuration done through Integrated Solutions Console or the
wsadmin client are kept in a private temporary area called a workspace. These
changes are not copied to the configuration repository until an explicit save
command is issued. The workspace is kept in the <profile_root>\wstemp
directory. The use of a workspace allows multiple clients to access the
configuration concurrently. Care must be taken to prevent change conflicts.
Clients will usually detect such conflicts and allow you to control how to handle
them. For example, the wsadmin client has a property called setSaveMode that
can be set to control the default save behavior in case of conflict.

 Chapter 9. System management 315

9.3.1 Integrated Solutions Console

The Integrated Solutions Console connects to a running stand-alone server or, in
a distributed environment, to a deployment manager. In WebSphere Application
Server V7.0, it also connects to an administrative agent and a job manager.

Non-secure administration access
If administrative security is not enabled, the Integrated Solutions Console is
accessed with a Web browser through the following URL:

http://<hostname>:<WC_adminhost>/ibm/console/unsecureLogon.jsp

You can gain access to the console without entering a user name. If you do enter
a name, it is not validated and is used exclusively for logging purposes and to
enable the system to recover the session if it is lost while performing
administrative tasks.

Secure administration access
If administrative security is enabled, the Integrated Solutions Console is
accessed with a Web browser through the following URL (note the use of https://
versus http://):

https://<hostname>:<WC_adminhost>/ibm/console/Logon.jsp

You must enter an authorized user ID and password to log in. The actions that
you can perform within the console are determined by your role assignment.

9.3.2 WebSphere scripting client (wsadmin)

The WebSphere scripting client (wsadmin) provides the ability to execute scripts.
You can use the wsadmin tool to manage a WebSphere Application Server V7.0
installation and configuration. This tool uses the Bean Scripting Framework
(BSF), which supports a variety of scripting languages to configure and control
your WebSphere Application Server installation and configuration.

The wsadmin launcher makes Java objects available through language-specific
interfaces. Scripts use these objects for application management, configuration,
operational control, and for communication with Manageable Beans (MBeans)
running in WebSphere server processes.

With the release of WebSphere Application Server V7.0, the stabilized process
for the Java Application Control Language (Jacl) syntax associated with wsadmin
has been announced. This means that Jacl syntax for wsadmin will continue to
remain in the product and there is no plan to deprecate or remove this capability
in a subsequent release of the product. But future investment will be focused on
Jython.

316 WebSphere Application Server V7.0: Concepts, Planning, and Design

You can run the wsadmin tool in interactive and unattended mode. Use the
wsadmin tool to perform the same tasks that you perform with the Integrated
Solutions Console.

WebSphere Application Server V7.0 adds command assistance in the Integrated
Solutions Console that maps your administrative activities to wsadmin scripting
commands written in Jython. These commands can be viewed from the
Integrated Solution Console, and if you want, you can log the command
assistance data to a file. You can also allow command assistance to emit JMX
notifications to Rational Application Developer Assembly and Deploy V7.5.
Rational Application Developer Assembly and Deploy V7.5 has Jython
development tools that help you develop and test Jython scripts.

9.3.3 Task automation with Ant

WebSphere Application Server V7.0 provides a copy of the Ant tool and a set of
Ant tasks that extend the capabilities of Ant to include product-specific functions.
Ant has become a popular tool among Java programmers.

Apache Ant is a platform-independent, Java-based build automation tool,
configurable through XML script files and extensible through the use of a Java
API. In addition to the base Ant program and tasks, WebSphere Application
Server provides a number of tasks that are specific to managing and building
applications in WebSphere Application Server.

The Ant environment enables you to create platform-independent scripts that
compile, package, install, and test your application on WebSphere Application
Server. It integrates with wsadmin scripts and uses Ant as their invocation
mechanism.

For information about Apache Ant, see the following Web page:

http://ant.apache.org

9.3.4 Administrative programming

WebSphere Application Server V7.0 supports access to the administrative
functions through a set of Java classes and methods. You can write a Java
application that performs any of the administrative features of the WebSphere
Application Server administrative tools. You can also extend the basic
WebSphere Application Server administrative system to include your own
managed resources.

 Chapter 9. System management 317

http://ant.apache.org

JMX, a Java specification part of Java Enterprise Edition (Java EE), and the
specification for the Java EE Management API (JSR-077) are the core of the
WebSphere Application Server V7.0 management architecture. For information
about JMX, see the following Web page::

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/cxml_javamanagementx.html

You can prepare, install, uninstall, edit, and update applications through
programming. Preparing an application for installation involves collecting various
types of WebSphere Application Server-specific binding information to resolve
references that are defined in the application deployment descriptors. This
information can also be modified after installation by editing a deployed
application. Updating consists of adding, removing, or replacing a single file or a
single module in an installed application, or supplying a partial application that
manipulates an arbitrary set of files and modules in the deployed application.
Updating the entire application uninstalls the old application and installs the new
one. Uninstalling an application removes it entirely from the WebSphere
Application Server configuration.

9.3.5 Command line tools

Command line tools enable you to perform management tasks including starting,
stopping, and checking the status of WebSphere Application Server processes
and nodes. These tools only work on local servers and nodes. They cannot
operate on a remote server or node. To administer a remote server, you need to
use the Integrated Solutions Console or a wsadmin script that connects to the
deployment manager for the cell in which the target server or node is configured.

All command line tools function relative to a particular profile. If you run a
command from the directory <was_home>/WebSphere/AppServer/bin, the
command will run within the default profile when no profile option is specified.

9.3.6 Administrative agent

The administrative agent provides a single interface administration for multiple
unfederated WebSphere Application Servers in the same physical server. This
will involve creating an administrative agent profile and registering the node that
you would like the administrative agent to manage using the registerNode
command. There is also a deregisterNode command to undo the use of the
administrative agent.

318 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cxml_javamanagementx.html

Non-secure administration access
If administrative security is not enabled, the Integrated Solutions Console is
accessed with a Web browser through the following URL:

http://<hostname>:<WC_adminhost>/ibm/console/profileSelection.jsp

Select a node that you want to manage. You can gain access to the console
without entering a user name. If you enter a name, it is not validated and is used
exclusively for logging purposes, and to enable the system to recover the session
if it is lost while performing administrative tasks.

Secure administration access
If administrative security is enabled, the Integrated Solutions Console is
accessed with a Web browser through the following URL (note the use of https://
versus http://):

https://<hostname>:<WC_adminhost_secure>/ibm/console/profileSelection.jsp

Select a node that you want to manage. You must enter an authorized user ID
and password to log in.The actions that you can perform within the console are
determined by your role assignment.

For more information on the administrative agent, see the following Web page::

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/cagt_adminagent.html

9.3.7 Job manager

The job manager allows the management of multiple WebSphere Application
Server domains (multiple deployment managers and administrative agents)
through a single administration interface. It involves creating a job manager
profile and using the wsadmin registerWithJobManager command to register the
deployment manager or administrative agent with the job manager.

For more information on the job manager, see the following Web page::

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/tagt_jobmgr.html

 Chapter 9. System management 319

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cagt_adminagent.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tagt_jobmgr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tagt_jobmgr.html

9.4 Automation planning

To emphasize the need for automated administration, consider the fact that
companies typically have multiple WebSphere Application Server environments
to support activities in the different phases of the software development life cycle.
Each of these environments is susceptible to being the target of the same type of
administrative tasks. What if there was a way to do a task manually once only,
and have subsequent requests be done automatically or with a lot less effort?
That is the main goal of automation.

Automating common procedures and actions is one of the keys to maintaining a
stable and efficient WebSphere environment. You can reduce the possibility of
human error by eliminating human intervention in complicated tasks or mundane
procedures that are prone to mistakes. Automating WebSphere Application
Server installation and configuration also provides an administrator the
opportunity to schedule recurring maintenance and backup procedures, and any
other types of administrative tasks.

Every action that you can perform manually using the Integrated Solutions
Console can be automated using WebSphere Application Server’s wsadmin tool
and command line utilities.

� Installation response files

– Allow you to specify installation options once and use them for multiple
installations of WebSphere Application Server.

– Enable silent execution mode.

� Command line utilities

– Shell scripts on UNIX or batch files on Windows

– Run from standard shell or command prompt

– Allow you to control different aspects of the WebSphere Application Server
environments

� WebSphere Ant tasks

Facilitate build and deploy processes to WebSphere Application Server.

� JMX framework

– Provides standards-based capabilities to control and manage a
WebSphere Application Server.

– Allows you to create custom Java clients to access managed resources.

� wsadmin scripting tool

Scripting interface that allows you to execute administrative commands
interactively or by running a script of commands.

320 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Installation factory

Complementary tool to combine the installation of WebSphere Application
Server with maintenance packages and fix packs in a single step.

Although scripting requires up front development costs, in the long term it
provides savings through automation and increases reliability. In addition, in
many organizations, the Integrated Solutions Console is prohibited by security
policy and infrastructural constraints. Scripted administration provides an
alternative way to manage the WebSphere Application Server environment.

Automation is not necessary if the task is only a one off.

9.5 Configuration planning

This section describes global configuration planning topics. Configuring and
managing the WebSphere Application Server runtime environment can be
complex. This section addresses the following items to consider at the initial
installation time:

� Configuration repository location and synchronization
� Configuring application and application server startup behaviors
� Custom application configuration templates
� Planning for resource scope use

9.5.1 Configuration repository location and synchronization

WebSphere Application Server uses one or more configuration repositories to
store configuration data. In a stand-alone server environment, one repository
exists within the application server profile directory structure. In a distributed
server environment, multiple repositories exist. The master repository is stored
within the deployment manager profile directory structure. Each node also has a
repository tailored to that node and its application servers. The deployment
manager maintains the complete configuration in the master repository and
pushes changes out to the nodes using the file synchronization service.
Repositories are in the <profile_home>/config subdirectory.

From a planning perspective, consider the actual location of the profile directory
structures. This can have an effect on the performance and availability of the
configuration file. The location is chosen during profile creation. If you run
WebSphere Application Server for z/OS, we recommend that you use a separate
HFS for each node.

 Chapter 9. System management 321

Consider whether to use automatic synchronization to push out changes to the
nodes or to synchronize changes manually. In an environment where there are a
lot of administration changes going on, automatic synchronization might have a
performance impact on the network.

9.5.2 Configuring application and application server startup
behaviors

One feature of WebSphere Application Server is the ability to manage the startup
of applications and application servers. By default, applications start when their
server starts.

The following settings enable you to fine-tune the startup speed and order of
applications that are configured to start automatically when the server starts.

� Startup order setting

The Startup order setting for an application lets you specify the order in which
to start applications when the server starts. The application with the lowest
startup order starts first. Applications with the same startup order start in
parallel. This can be important for applications that have been split into
sub-applications that need to start in a certain order due to dependencies
between them.

� Launch application before server completes startup setting

The Launch application before server completes startup setting lets you
specify whether an application must initialize fully before its server is
considered started. Background applications can be initialized on an
independent thread, thus allowing the server startup to complete without
waiting for the application.

� Create MBeans for resources setting

The Create MBeans for resources setting specifies whether to create MBeans
for resources such as servlets or JavaServer Pages (JSP) files within an
application when the application starts.

Access these settings in the Integrated Solutions Console by navigating to
Applications → Application Types → WebSphere enterprise applications →
<your_application> → Startup behavior.

The Parallel start setting for an WebSphere Application Server lets you specify
whether to have the server components, services, and applications in an
application server start in parallel rather than sequentially. This can shorten the
startup time for a server.

322 WebSphere Application Server V7.0: Concepts, Planning, and Design

The Parallel start setting can affect how an application server starts. Access this
setting by navigating to Servers → Server Types → WebSphere application
servers → <your_server>.

The deployment manager, node agents, and application servers can start in any
order they are discovered, with the exception that the node agent must start
before any application server on that node. Communication channels are
established as they start up and each has its own configuration and application
data to start.

You can prevent an application from starting automatically at application server
startup, enabling you to start it later manually. To prevent an application from
starting when a server starts, navigate to Applications → Application Types →
WebSphere enterprise applications → <application_name> → Target
specific application status and disable auto start for the application.

9.5.3 Custom application configuration templates

WebSphere Application Server provides the ability to create a customized server
template that is based on an existing server configuration. Server templates can
then be used to create new servers. This provides a powerful mechanism to
propagate the server configuration both within the same cell and across cell
boundaries. To propagate the server configuration across cell boundaries, the
server configuration must be exported to a configuration archive, after which it
can be imported to another cell.

If you are going to need more than one application server (say, for a cluster), and
the characteristics of the server are different from the default server template, it is
more efficient to create a custom template and use that template to create your
WebSphere Application Server. When creating a cluster, be sure to use this
template when you add the first member to the cluster. Subsequent servers in
the cluster will also be created using this template. This will reduce the scope for
error and make the task of creating the server cluster much faster.

9.5.4 Planning for resource scope use

Resource scope is a powerful concept to prevent duplication of resources across
lower-level scopes. For example, if a data source can be used by multiple servers
in a node, it makes sense to define that data source once at the node level, rather
than create the data source multiple times, possibly introducing errors along the
way. Also, if the data source definition needs to change (maybe due to changes
to an underlying database), the data source definition can be changed once and
is visible to all servers within the node. The savings in time and cost should be
self-evident.

 Chapter 9. System management 323

Some thought needs to be put toward outlining what resources you will need for
all the applications to be deployed and at what scope to define each. You select
the scope of a resource when you create it.

The following list describes the scope levels, listed in order of granularity with the
most general scope first:

� Cell scope

The cell scope is the most general scope and does not override any other
scope. We recommend that cell scope resource definitions should be further
granularized at a more specific scope level. When you define a resource at a
more specific scope, you provide greater isolation for the resource. When you
define a resource at a more general scope, you provide less isolation. Greater
exposure to cross-application conflicts occur for a resource that you define at
a more general scope.

The cell scope value limits the visibility of all servers to the named cell. The
resource factories within the cell scope are defined for all servers within this
cell and are overridden by any resource factories that are defined within
application, server, cluster, and node scopes that are in this cell and have the
same Java Naming and Directory Interface (JNDI) name. The resource
providers that are required by the resource factories must be installed on
every node within the cell before applications can bind or use them.

� Cluster scope

The cluster scope value limits the visibility to all the servers on the named
cluster. The resource factories that are defined within the cluster scope are
available for all the members of this cluster to use and override any resource
factories that have the same JNDI name that is defined within the cell scope.
The resource factories that are defined within the cell scope are available for
this cluster to use, in addition to the resource factories that are defined within
this cluster scope.

� Node scope (default)

The node scope value limits the visibility to all the servers on the named node.
This is the default scope for most resource types. The resource factories that
are defined within the node scope are available for servers on this node to
use and override any resource factories that have the same JNDI name
defined within the cell scope. The resource factories that are defined within
the cell scope are available for servers on this node to use, in addition to the
resource factories that are defined within this node scope.

324 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Server scope

The server scope value limits the visibility to the named server. This is the
most specific scope for defining resources. The resource factories that are
defined within the server scope are available for applications that are
deployed on this server and override any resource factories that have the
same JNDI name defined within the node and cell scopes. The resource
factories that are defined within the node and cell scopes are available for this
server to use, in addition to the resource factories that are defined within this
server scope.

� Application scope

The application scope value limits the visibility to the named application.
Application scope resources cannot be configured from the Integrated
Solutions Console. Use Rational Application Developer Assembly and Deploy
V7.5, or the wsadmin tool to view or modify the application scope resource
configuration. The resource factories that are defined within the application
scope are available for this application to use only. The application scope
overrides all other scopes.

You can define resources at multiple scopes but the definition at the most specific
scope is used.

When selecting a scope, the following rules apply:

� The application scope has precedence over all the scopes.
� The server scope has precedence over the node, cell, and cluster scopes.
� The cluster scope has precedence over the node and cell scopes.
� The node scope has precedence over the cell scope.

When viewing resources, you can select the scope to narrow the list to just the
resources defined at the scope. Alternatively, you can select to view resources
for all scopes. Resources are always created at the currently selected scope.
Resources created at a given scope might be visible to lower scope. For
example, a data source created at a node level might be visible to servers within
the node.

 Chapter 9. System management 325

9.6 Change management topics

Proper change management is important to the longevity of any application
environment. WebSphere Application Server contains a number of technologies
to aid with the change management process.

This section highlights some topics to think about when planning for changes to
the WebSphere Application Server V7.0 operational environment. Topics are as
follows:

� Application update
� Changes in topology
� Centralized installation manager (CIM)

9.6.1 Application update

WebSphere Application Server V7.0 permits fine-grained updates to
applications. It allows application components to be supplied and the restart of
only required parts of the application. This preserves application configuration
during the update process.

Note: A common source of confusion is the use of variables at one scope and
the resources that use them at a different scope. Assuming that the proper
definitions are available at a scope the server can see, they do not have to be
the same scope during runtime.

However, consider the case of testing a data source. A data source is
associated with a JDBC provider. JDBC providers are commonly defined
using variables to point to the installation location of the provider product.

The scope of the variables and the scope of the JDBC provider do not
necessarily have to be the same to be successful during runtime. However,
when using the test connection service to test a data source using the
provider, the variable scope and the scope of a JDBC provider must be the
same for the test to work. For more information, see the test connection
service topic in the WebSphere Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/cdat_testcon.html

326 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cdat_testcon.html

There are several options to update the applications’ files deployed on a server
or cluster:

� Integrated Solutions Console update wizard

Use this option to update enterprise applications, modules, or files already
installed on a server. The update can be whole EAR files, single/multiple
modules (such as WAR or JAR files), or single/multiple file updates.

� wsadmin scripts

Use the wsadmin script to perform the same updates as the Integrated
Solutions Console wizard.

� Hot deployment and dynamic reloading

Hot deployment and dynamic reloading requires that you directly manipulate
the application or module file on the server where the application is deployed.
That is, the new files are copied directly into the installed EAR directory on the
relevant server or servers.

When an application is deployed in a cluster, there is the option to perform an
automatic application rollout. This is a mechanism where each member in the
cluster is brought down and is updated with the application changes one at a
time. When a given server has been updated, the next server is updated. Where
clusters span multiple nodes, only one node at a time is updated. This allows the
cluster to operate uninterrupted as work is diverted from the node being updated
to the other nodes, until the entire cluster has received the update. If there is only
a single node involved, it is brought down and updated.

In WebSphere Application Server for z/OS, you can use the z/OS console Modify
command to pause the listeners for an application server, perform the application
update, and then resume the listeners. If you use this technique, you do not have
to stop and then start the server to perform the application update.

9.6.2 Changes in topology

In a distributed server environment, the deployment manager node contains the
master configuration files. Each node has its required configuration files available
locally. Configuration updates should be done on the deployment manager node.
The deployment manager process then synchronizes the update with the node
agent. File synchronization is a one-way task, from the deployment manager to
the individual nodes. Changes made at the node level are temporary and will be
overridden by the master configuration files at the next file synchronization. If
security is turned on, HTTPS is used instead of HTTP for the transfer.

 Chapter 9. System management 327

File synchronization
File synchronization settings are customizable by cell. Each cell can have distinct
file synchronization settings. File synchronization can be automatic or manual:

� Automatic

You can turn on automatic synchronization using the Integrated Solutions
Console. The default file synchronization interval is 60 seconds and starts
when the application server starts.

� Manual

You can perform manual synchronization using the Integrated Solutions
Console, the wsadmin tool, or using the syncNode command located in the
<install_root>/bin directory of the note being synchronized.

The file synchronization process should coincide with the whole change
management process. In general, we recommend that you define the file
synchronization strategy as part of the change management process.

9.6.3 Centralized installation manager (CIM)

The CIM allows you to install and uninstall WebSphere Application Server
binaries and maintenance patches from a centralized location (the deployment
manager) to any servers in the network.

CIM is a new feature added in WebSphere Application Server V7.0. CIM is
supported on the following operating systems:

� Unix-based systems
� Windows
� IBM System i

Using CIM, the following tasks can be performed:

� Installation of WebSphere Application Server V7.0 and creation of a managed
profile that gets federated to the deployment manager automatically.

� Installation of the Update Installer for WebSphere Application Server V7.0.

� Installation of a customized installation package (CIP) as created using the
Installation Factory.

� Central download of interim fixes and fix packs from the IBM support side.
The downloaded packages are stored in the installation manager’s repository.

� Installation of fixes and fix packs on nodes within the deployment manager’s
cell.

328 WebSphere Application Server V7.0: Concepts, Planning, and Design

The repository for the CIM can either be created during the installation of
WebSphere Application Server Network Deployment V7.0 or afterwards using
the Installation Factory. The installation using the CIM provides a good approach
to perform centralized remote installations and upgrades. The drawback is that
you cannot control the naming of the profiles created when performing standard
installation. This problem can be avoided by using custom installation packages
created through the installation manager.

For more details about CIM, refer to the IBM White Paper Centralized Installation
Manager for IBM WebSphere Application Server Network Deployment Version
7.0, available on the following Web page:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&
product=was-nd-dist&topic=was-nd-dist-dw-cim1

Also see the Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.installation.nd.doc/info/ae/ae/tins_cim.html

9.7 Serviceability

A major challenge of problem management is dealing with unanticipated
problems. It is much like detective work: find clues, make educated guesses,
verify suspicions, and so on. The most important skills are common sense, focus,
thoroughness, and rigorous thinking. A proactive approach to problem
management is always the best. This section outlines general practices to follow.

Perform the following checks to avoid issues with the runtime environment:

� Check that you have the necessary prerequisite software up and running.
� Check that the proper authorizations are in place.
� Check for messages that signal potential problems. Look for warnings and

error messages in the following sources:

– Logs from other subsystems and products, such as TCP/IP, RACF,
Windows Event Viewer, and so forth.

– WebSphere Application Server SystemOut and SystemErr logs.

– SYSPRINT of the WebSphere Application Server for z/OS.

– Component trace output for the server.

Tip: When installing CIM make sure that the Windows firewall allows
connections from the CIM

 Chapter 9. System management 329

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=was-nd-dist-dw-cim1
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=was-nd-dist-dw-cim1
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cdat_testcon.html

� Check the ports used by WebSphere Application Server. The ports that
WebSphere Application Server uses must not be reserved by any other
system component.

� Check that enough disk space for dump files is available.

� Check your general environment:

– System memory
– Heap size
– System has enough space for archive data sets

� Make sure that all prerequisite fixes have been installed. A quick check for a
fix can save hours of debugging.

� Become familiar with the problem determination tools available in WebSphere
Application Server and what they provide.

9.7.1 Log and traces

Log files and traces need to be properly named. We recommend that you name
log files according to the application that they belong to and group them in
different directories. Clean log files periodically (saved to a media and then
deleted). WebSphere Application Server can write system messages to several
general purpose logs. These include:

� JVM logs

The JVM logs are written as plain text files. They are named SystemOut.log
and SystemErr.log and are in the following location:

<profile_home>/logs/<server_name>

You can view the JVM logs from the Integrated Solutions Console (including
logs for remote systems) or by using a text editor on the machine where the
logs are stored.

� Process logs

WebSphere Application Server processes contain two output streams that are
accessible to native code running in the process. These streams are the
standard output (stdout) and standard error (stderr) streams. Native code,
including the JVM, can write data to these process streams.

By default, the stdout and stderr streams are redirected to log files at server
startup. The stdout and stderr streams contain text written by native modules,
including Dynamic Link Libraries (DLLs), executables (EXEs), UNIX system
libraries (SO), and other modules.

330 WebSphere Application Server V7.0: Concepts, Planning, and Design

By default, these files are stored with the following names:

– <profile_home>/logs/<server_name>/native_stderr.log
– <profile_home>/logs/<server_name>/native_stdout.log

� IBM service log (activity.log)

The service log is a special log written in a binary format. You cannot view the
log directly using a text editor. You should never directly edit the service log,
because doing so will corrupt the log.

You can view the service log in two ways:

– Log Analyzer tool

We suggest that you use the Log Analyzer tool to view the service log.
This tool provides interactive viewing and analysis capability that is helpful
in identifying problems.

– Showlog tool

If you are unable to use the Log Analyzer tool, you can use the Showlog
tool to convert the contents of the service log to a text format that you can
then write to a file or dump to the command shell window.

The IBM service log is in the <profile_home>/logs/ directory.

9.7.2 Fix management

Applying regular fixes is one of the key factors to reduce the probability and
impact of problems. A fix plan establishes how you will do this on a regular basis.
In addition to regular scheduled fixes, you may also need to perform emergency
changes or fixes to a system in response to a newly-diagnosed problem. The
emergency fix plan outlines how to do this safely and effectively. Overall, the best
approach is to have a strong fix plan that outlines regular small fix updates and
reasonable re-testing before each fix. For available fixes, see the WebSphere
Application Server support at the following Web page:

http://www.ibm.com/software/webservers/appserv/was/support/

 Chapter 9. System management 331

http://www.ibm.com/software/webservers/appserv/was/support/

9.7.3 Backing up and restoring the configuration

Back up the WebSphere Application Server configuration to a zipped file by using
the backupConfig command.

For a stand-alone node, run the backupConfig utility at the node level. For a
network deployment cell, run the backupConfig utility at the deployment manager
level, because it contains the master repository. Do not perform backupConfig at
the node level of a cell.

The restoreConfig command restores the configuration of your stand-alone
node or cell from the zipped file that was created using the backupConfig
command.

We recommend running backupConfig utility before each major change to the
WebSphere Application Server configuration.

9.7.4 MustGather documents

MustGather documents provide instructions on how to start troubleshooting a
problem and what information to provide to IBM Support if opening a Problem
Management Report (PMR). MustGather documents can be accessed from
within IBM Support Assistant (ISA) or on the IBM Support Web site. See an
example at the following Web page:

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=trou
bleshooting&uid=swg21201625&loc=en_US&cs=utf-8&lang=en

On the IBM Support site, many MustGather documents are categorized as
troubleshooting and analyzing data. The troubleshooting document is what you
check before you decide that you need to go through the MustGather document.
The analyzing data document gives you pointers for how to interpret the
information that you have just collected from the MustGather document.

A majority of MustGather documents for WebSphere Application Server now
have a corresponding AutoPD script in ISA. You can either follow the steps from
the MustGather document by hand, or run the AutoPD script, which will do the
work more or less automatically.

332 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=troubleshooting&uid=swg21201625&loc=en_US&cs=utf-8&lang=en
http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=troubleshooting&uid=swg21201625&loc=en_US&cs=utf-8&lang=en

9.7.5 IBM Support Assistant

IBM Support Assistant (ISA) improves your ability to locate IBM Support,
development and educational information through a federated search interface
(one search, multiple resources). It provides quick access to the IBM Education
Assistant and key product education roadmaps, and simplifies access to the
following IBM resources through convenient links:

� product home pages
� product support pages
� product forums or newsgroups

In addition, problems can be submitted to IBM Support by collecting key
information, then electronically creating a PMR from within IBM Support
Assistant.

IBM Support Assistant includes a support tool framework allowing for the easy
installation of support tools associated with different IBM products and a
framework for IBM software products to deliver customized self-help information
into the different tools within it. The workbench can be customized through the
built-in Updater feature to include the product plug-ins and tools specific to the
environment.

For more information about ISA, see the following Web page:

http://www.ibm.com/software/support/isa

9.7.6 Information Center

The WebSphere Application Server V7.0 Information Center includes a
troubleshooting section. For more information, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/welc6toptroubleshooting.html

 Chapter 9. System management 333

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6toptroubleshooting.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6toptroubleshooting.html

9.8 Planning checklist for system management

Table 9-1 lists a summary of items to consider as you plan and additional
resources that can help you.

Table 9-1 Planning checklist for system management

Resources
The WebSphere Application Server Information Center contains a lot of useful
information about system management. For a good entry point to system
management topics, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topmanaging.html

Planning item

Create a strategy for administrative security. Identify the possible administrators and their roles. Determine
the type of user registry that you will use for WebSphere security. If you do not want to use a federated
repository, delay enabling admin security until after installation.

Review the administration facilities available (scripting, Integrated Solutions Console, and so on) and
create an overall strategy for configuration and management of WebSphere resources.

Determine where the profile directories (including the configuration repositories) will be located.

Define a strategy for automation.

Consider whether to use automatic or manual synchronization to nodes.

Plan for application server startup:
� Starting order
� Allow applications to start before server completes startup
� Create MBeans for resources
� Parallel start

Create application server templates for existing servers if you plan to create multiple servers with the same
customized characteristics.

Create a strategy for scoping resources.

Create a strategy for change management. This includes maintaining and updating applications. It also
includes strategies for changes in cell topology and updates to WebSphere Application Server binaries.

Create a strategy for problem management. Identify a location and naming convention for storing
WebSphere Application Server logs. Configure the processes to use those locations.

Create a strategy for backup and recovery of the installation and configuration files.

334 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topmanaging.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topmanaging.html

Chapter 10. Messaging

In this chapter, we discuss planning for a WebSphere Application Server V7.0
environment that uses messaging facilities. This chapter asks the following
questions in the sections that follow:

� “Messaging overview: What is messaging?” on page 336
� “What is new in V7.0” on page 336
� “Messaging options: What things do I need?” on page 337
� “Messaging topologies: How can I use messaging?” on page 340
� “Messaging features: How secure and reliable is it?” on page 350
� “Planning checklist for messaging” on page 355

This chapter briefly describes the concepts required to understand messaging.
The WebSphere Application Server Information Center contains a lot of useful
additional information. For a good entry point to messaging topics, see the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6tech_msg.html

10

© Copyright IBM Corp. 2009. All rights reserved. 335

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_msg.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_msg.html

10.1 Messaging overview: What is messaging?

Generically, the term messaging describes communication, or exchange of
information, between two or more interested parties. Messaging can take many
shapes and forms, such as sending a fax message from one point to another,
which is an example of point-to-point messaging. An e-mail sent to a mailing list
is an example of the publish/subscribe messaging concept, where a single
message is sent to many destinations.

However, for the purposes of this chapter, we define messaging as a
synchronous or asynchronous method of communicating between processes on
a computer. It provides reliable, secured transport of requests between
applications that might reside on the same server, different servers, or even
different networks across a global application environment. The basic premise of
messaging is that an application produces a message that is placed on a
destination or queue. The message is retrieved by a consumer, who then does
additional processing. The end result can be that the producer receives some
data back from the consumer or that the consumer does some processing task
for the producer.

Messaging is a popular facility for exchanging data between applications and
clients of different types. It is also an excellent tool for communication between
heterogeneous platforms. WebSphere Application Server recognizes the power
of messaging and implements a powerful and flexible messaging platform within
the WebSphere Application Server environment, called the service integration
bus.

10.2 What is new in V7.0

WebSphere Application Server V7.0 introduces some improvements to the
service integration bus. We briefly describe these here. For those new to
WebSphere Application Server messaging, we explain the concepts later in this
chapter.

� Additional option for Message Driven Bean (MDB) in a cluster

The default option is if MDBs are deployed to a cluster bus member, only the
MDB endpoints in servers that have a messaging engine started locally are
eligible to be driven by available messages. In V7.0, there is an option to allow
a MDB to process messages whether or not the server also hosts a running
messaging engine. This allow the full processing power of MDBs in a cluster.

336 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Message visibility

In WebSphere Application Server V7.0, a consumer can choose to turn on the
option of accessing all queue points of a queue. This means that no
messages are left on an unattended queue point. However, there is a
performance cost in scanning all queue points for messages.

� Enhancements in configuring cluster bus members

In WebSphere Application Server V7.0, the Integrated Solutions Console
provides consumability improvements that guide you through the
configuration of a cluster bus member. It provides you with a pattern-based
approach. You select from the patterns, and the Integrated Solutions Console
makes the configuration corresponding to the pattern.

� Improved administrative control of MDBs

In WebSphere Application Server V7.0, the Integrated Solutions Console
provides visualization between MDBs and service integration bus
destinations.

� Thin Java Message Service (JMS) client

WebSphere Application Server V7.0 updated the functionality of the thin JMS
client. You can use the thin JMS client as opposed to a full WebSphere
Application Server client installation. It supports the Open Service Platform as
instantiated by the Eclipse Rich Client Platform (RCP) level 3.2.

There are a significant number of other improvements and new additions to
messaging in WebSphere Application Server V7.0, including performance
improvements, additional clustering options, security panels, and so forth. For a
full list, see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.pmc.nd.multiplatform.doc/concepts/cjover_sib.html

10.3 Messaging options: What things do I need?

In this section, we discuss at a high level how messaging is implemented within
WebSphere Application Server and what questions need consideration. This
information helps you in the following instances:

� Messaging provider standards
� Choosing a messaging provider

 Chapter 10. Messaging 337

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.pmc.nd.multiplatform.doc/concepts/cjover_sib.html

10.3.1 Messaging provider standards

To implement messaging within your application, either as a message producer,
consumer, or both, your application needs to communicate with a messaging
provider. Examples of messaging providers include the default messaging
provider in WebSphere Application Server, WebSphere MQ, Oracle Enterprise
Messaging Service, SonicMQ, and many others.

Your application code can interact with these providers in a number of ways. We
recommend using the JMS API, but you could also use provider-specific client
libraries, or the J2EE Connector Architecture API (JCA). This section briefly
discusses the first two options.

Java Messaging Service
Java Messaging Service (JMS) is the standard API for accessing enterprise
messaging systems from Java-based applications. It provides methods and
functions that are directly implemented by the underlying messaging provider.
WebSphere Application Server V7.0 supports version 1.1 of the specification,
which forms part of the overall Java EE 5 specification. For more information
about the JMS V1.1 specification, see the Sun Developer Network Java Message
Service Web page:

http://java.sun.com/products/jms

We suggest using JMS in preference to anything else when writing an application
to run within WebSphere Application Server. We suggest this for the following
reasons:

� It is a tried-and-tested, consistent, and non-proprietary API that has been
around for enough time to have plenty of skilled resources available.

� Applications that use it remain portable across many messaging providers.

� The API, while specific to messaging, has been expanded to support many
message types and architectures, providing flexibility and versatility in the
vast majority of applications.

Important: For the rest of the chapter, we assume that JMS is the chosen
method to access the messaging middleware provider.

338 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://java.sun.com/products/jms

Vendor-specific client libraries
As the name suggests, these are libraries supplied by a software vendor so that
applications can interact with their software. These libraries are similar to
resource adaptors , with the following important exceptions:

� They are proprietary and do not usually conform to any open standard.

� The use of the client libraries renders your applications non-portable across
enterprise systems, and probably non-portable across platforms as well.

� There might not be support for certain languages such as Java, and these
libraries have no direct support in WebSphere Application Server.

We suggest that you do not use these libraries whenever possible. They are
usually only used in small, platform-specific utilities that do not run inside any
type of application server.

10.3.2 Choosing a messaging provider

WebSphere Application Server supports several JMS messaging providers:

� WebSphere Application Server default messaging provider

This fully featured messaging provider comes free with WebSphere
Application Server. It is a robust and stable messaging platform that can
handle point-to-point queues, topics in a publish-subscribe environment, and
Web service endpoints.

� WebSphere MQ messaging provider

WebSphere MQ is the premier messaging middleware provided by IBM. We
suggest WebSphere MQ when you require advanced messaging facilities and
options. WebSphere MQ has been around for a lot longer than the
WebSphere Application Server default messaging provider and is available on
many platforms, supporting many programming languages. It is fully JMS
compliant and has a large client base.

� Generic JMS provider

This is the catch-all for any external messaging providers other than
WebSphere MQ. Although WebSphere Application Server works with any
JMS-compliant messaging provider (after it is defined to WebSphere), there
can only be limited administrative support in WebSphere.

This approach is only recommended if you have an existing investment in a
third-party messaging provider, because much greater support is available in
the WebSphere Application Server default messaging provider and
WebSphere MQ messaging provider.

 Chapter 10. Messaging 339

� WebSphere Application Server V5 default messaging provider

The WebSphere Application Server V5 default messaging provider is
supported for migration purposes only.

10.4 Messaging topologies: How can I use messaging?

Choosing a topology depends largely on the answers to questions about the
topology of the application and your own messaging requirements. Some of the
more important questions are as follows:

� What is the topology of my application?

� Can I break it up into logical parts that can be separately deployed?

� Which parts need to communicate with which others?

� Are there natural divisions within the application that are autonomous,
needing separate communication channels?

� Does my application need to communicate with external systems?

� Do I need to balance the messaging workload for each part?

� Are there any critical parts that need to have high availability?

� Will I need application server clustering, or do I have it already?

The following sections outline what topology best fits your needs (depending on
the answers to the previous questions). In most cases, the topology will not be
clear cut because there will be many different ways to implement a messaging
application. However, the simpler, the better.

Note: This section provides a high-level look at messaging topologies,
focusing on the default messaging provider. Before designing anything, even
the simplest topology for messaging, it is important that you understand how
the default messaging provider handles messages.

340 WebSphere Application Server V7.0: Concepts, Planning, and Design

10.4.1 Default messaging provider concepts

This section describes some concepts briefly in order to understand the basic
intent of the topologies.

Service Integration Bus
The Service Integration Bus (SIBus, or just the bus) provides a transport
mechanism for WebSphere Application Server default messaging provider. It is a
group of interconnected WebSphere Application Servers and a cluster of
WebSphere Application Servers that have been added as part of the bus. Each
member of the bus has a messaging engine so that the applications can connect
to the bus.

Message Engine
The Messenging Engine (ME) is a component of WebSphere Application Server.
It communicates messages to destinations, in cooperation with the other MEs of
other bus members.

Destinations
A destination is defined within a bus and represents a logical address to which
applications can attach as message producers, consumers, or both. There are
different types of destinations, which are used for different message models,
such as point-to-point or publish/subscribe. Destinations are associated with a
messaging engine using a message point.

Message point
A message point is the location on a messaging engine where messages are
held for a bus destination. A message point can be a queue point, a publication
point, or a mediation point (this is a specialized message point):

� Queue points

A queue point is the message point for a queue destination. When creating a
queue destination on a bus, an administrator specifies the bus member that
will hold the messages for the queue. This action automatically defines a
queue point for each messaging engine associated with the specified bus
member.

If the bus member is an application server, a single queue point will be
created and associated with the messaging engine on that application server.
All of the messages that are sent to the queue destination will be handled by
this messaging engine. In this configuration, message ordering is maintained
on the queue destination.

 Chapter 10. Messaging 341

If the bus member is a cluster of application servers, a queue point is created
and associated with each messaging engine defined within the bus member.
The queue destination is partitioned across the available messaging engines
within the cluster. In this configuration, message ordering is not maintained on
the queue destination.

� Publication points

A publication point is the message point for a topic space. When creating a
topic space destination, an administrator does not need to specify a bus
member to hold messages for the topic space. Creating a topic space
destination automatically defines a publication point on each messaging
engine within the bus.

Foreign bus and link
A foreign bus is an external messaging product that is either another SIBus or a
WebSphere MQ network. You can set up a link to it so that messages traverse
from one bus to another. The WebSphere MQ network can be seen as a foreign
bus by the WebSphere Application Server default messaging provider using a
WebSphere MQ link.

JMS and the default messaging provider
Java Enterprise Edition (Java EE) applications (producers and consumers)
access the SIBus and the bus members through the JMS API. JMS destinations
are associated with SIBus destinations. A SIBus destination implements a JMS
destination function. Session Enterprise JavaBeans (EJBs) use a JMS
connection factory to connect to the JMS provider. Message Driven Beans
(MDBs) use a JMS activation specification to connect to the JMS provider. See
Figure 10-1 on page 343.

342 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 10-1 WebSphere default messaging provider and JMS

SIBus

Bus Member

JMS Standard API

EJB

JMS
Connection

Factory

JMS
Activation

Spec

JMS
Destination

SIBus
Destination

MDB

Messaging
Engine
(ME)

Data
Source

JDBC Provider

 Chapter 10. Messaging 343

10.4.2 Choosing a messaging topology

The following topologies are some of the ones implemented by the WebSphere
Application Server default messaging provider (in increasing complexity) using
the previously defined concepts.

One bus, one bus member (single server)
This is the simplest and most common topology. It is used when applications
deployed to the same application server need to communicate among
themselves. Additional application servers that are not members of the bus and
only need to use bus resources infrequently can connect remotely to the
messaging engine. See Figure 10-2.

Figure 10-2 Single bus with an application server member

Although this is simple to set up, there might be a performance impact for
message producers and consumers that connect to the messaging engine
remotely. Because the single messaging engine is running on a non-clustered
application server, no high availability or workload management is supported.

One bus, one bus member (a cluster)
With this variation, the bus member is a cluster. By default, only one application
server in a cluster has an active messaging engine on a bus. If the server fails,
the messaging engine on another server in the cluster is activated. This provides
failover, but no workload management.

Bus

Application server

Queue destination

Application server

Remote
connection

Messaging
application

MDB
Messaging
application

Messaging
application

Local
connection

Messaging
Engine

Queue point

Messages

344 WebSphere Application Server V7.0: Concepts, Planning, and Design

The server with the active messaging engine has local access to the bus, but the
rest of the servers in the cluster access the bus remotely by connecting to the
active messaging engine. Servers accessing the bus remotely can consume
asynchronous messages from remote messaging engine. However, an instance
of a message-driven bean (MDB) deployed to the cluster can only consume from
a local messaging engine. See Figure 10-3.

Because everything is tunnelled through one messaging engine, performance
might still be an issue.

Figure 10-3 Single bus with a cluster member: High availability

There is the concept of preferred servers with clustering, for example, a primary
server and a backup server in the same cluster. However, this must be explicitly
configured. It is possible to set this up such that only preferred servers are used.
This might circumvent the high availability advantages of the cluster if there are
no more preferred servers available.

Bus
Queue destination

Application server Application server

Cluster

Bus

Messaging
application

Application server

Messaging
application

Application server

Cluster

X
Queue destination

Messaging
Engine

Queue point

Messages

Messaging
Engine
Queue point

Messages

Messaging
application

Messaging
application

 Chapter 10. Messaging 345

With some additional configuration, you can create a topology where each server
in the cluster will be configured to have an active messaging engine, thus
providing workload management as well as failover (Figure 10-4). Note that
because messaging engines can run on any server, if one server goes down,
both messaging engines will run on the remaining server.

Figure 10-4 Single bus with a cluster member: Workload management

When a queue destination is assigned to the cluster, the queue is partitioned with
each messaging engine in the cluster owning a partition of the queue. A
message sent to the queue will be assigned to one partition. The messaging
engine that owns the partition is responsible for managing the message. This
means that requests sent to a destination can be served on any of the
messaging engines running on any of the servers in the cluster.

Bus
Queue destination

Application server Application server

Cluster

Messaging
Engine

Queue point

Messages

Messaging
Engine

Queue point

Messages

Messaging
application

Messaging
application

346 WebSphere Application Server V7.0: Concepts, Planning, and Design

One bus, multiple bus members
In this topology, there are multiple non-clustered application servers connected
as members of the bus (Figure 10-5). In this topology, most, if not all servers are
bus members. Take care to locate the queue points on the same application
server as the messaging application that is the primary user of the queue. This
will maximize the use of local connections and enhance performance.

Figure 10-5 Single bus with multiple application server members

Multiple buses
Many scenarios only require relatively simple bus topologies, perhaps even just a
single server. When integrating applications that have been deployed to multiple
servers, it is often appropriate to add those servers as members of the same bus.
However, servers do not have to be bus members to connect to a bus. In more
complex situations, multiple buses can be interconnected to create more
complicated networks.

A service integration bus cannot expand beyond the edge of a WebSphere
Application Server cell. When you need to use messaging resources in multiple
cells, you can connect the buses of each cell to each other. An enterprise might
also deploy multiple interconnected service integration buses for organizational
reasons. For example, an enterprise with several autonomous departments
might want to have separately administered buses in each location. Or perhaps
separate but similar buses exist to provide test or maintenance facilities.

If you use messaging resources in a WebSphere MQ network, you can connect
the service integration bus to the WebSphere MQ network, where it appears to
be another queue manager. This is achieved through the user of an MQ link.

Bus

Application server

Queue destination
(A)

Messaging
application

MDB

Local
connection

Messaging
Engine

Queue point (A)

Messages

Application server

Messaging
application

MDB

Local
connection

Messaging
Engine

Queue point (B)

Messages

Queue destination
(B)

Messaging
application

Messaging
application

 Chapter 10. Messaging 347

Figure 10-6 illustrates how a service integration bus can be connected to another
service integration bus and to a WebSphere MQ network.

Figure 10-6 Multiple bus scenario

In the case of the connection between the two service integration buses, each
messaging engine contains a service integration bus link configuration that
defines the location of the messaging engine on the remote bus.

For the WebSphere MQ connection, the messaging engine contains an MQ link
configuration that defines the queue manager on WebSphere MQ and identifies
a queue manager name that it will be known by from the view of the WebSphere
MQ network.

When an application sends a message to a queue on the remote bus, it can send
it to an alias destination defined on the local bus that points to the queue
destination on the second bus.

Because there is a single link to a foreign bus, there is no workload management
capability. It is important to note that an application cannot consume messages
from a destination in a foreign bus.

Application server

Bus

Application server

Messaging
Engine

WebSphere MQ

QMGR

MQ
client

Queue

Foreign bus

Application server

Messaging
Engine

Bus

Foreign bus

Queue
destination

Messaging
Engine

Foreign bus

Alias
destination

MQ LinkBus Link

Bus Link

Alias
destination

Messaging
application

Messaging
application

348 WebSphere Application Server V7.0: Concepts, Planning, and Design

Connecting to WebSphere MQ on z/OS
A second option for connecting to WebSphere MQ is to create a WebSphere MQ
server definition that represents a queue manager or queue sharing group on a
WebSphere MQ running on z/OS (Figure 10-7). The WebSphere MQ server
defines properties for the connection to the queue manager or queue sharing
group. With V7.0, this construct can also be applied to distributed (non z/OS
platforms) queue managers as well.

Figure 10-7 Multiple bus scenario

When you add a WebSphere MQ server as a member of the bus, the messaging
engines establish connections to that WebSphere MQ server to access queues
on WebSphere MQ.

To the WebSphere MQ server, the MQ queue manager or queue sharing group is
regarded as a mechanism to queue messages for the bus. The WebSphere MQ
server is regarded by the WebSphere MQ network as just another MQ client
attaching to the queue manager or queue sharing group.

Bus

Application server

WebSphere MQ
z/OS

QMGR
Queue

WebSphere MQ
server

WebSphere Application Server Cell

Messaging
Engine

WebSphere MQ
server

WebSphere MQ
z/OS

Queue Sharing Group

QMGR
QMGR

QMGR

Queue destination
Queue destination

Messaging
application

 Chapter 10. Messaging 349

WebSphere MQ server provides the following advantages over a WebSphere
MQ link:

� WebSphere MQ server allows applications to exploit the higher availability
and optimum load balancing provided by WebSphere MQ on z/OS.

� With WebSphere MQ link, messages from WebSphere MQ are delivered to a
queue destination in the bus. When a messaging engine fails, messages at
destinations in the messaging engine cannot be accessed until that
messaging engine restarts. When you use a WebSphere MQ server that
represents a queue sharing group, the bus can continue to access messages
on the shared queue even when a queue manager in the queue sharing
group fails. This is because the bus can connect to a different queue manager
in the queue sharing group to access the same shared queues.

� Messages are not stored within the messaging engine. Messaging
applications directly send and receive messages from the queues in
WebSphere MQ, making the WebSphere MQ server tolerant of a messaging
engine failure. This allows message beans to be configured to immediately
process messages as they arrive on an MQ queue. Similarly, any bus
mediations take place immediately upon a message appearing on an MQ
queue.

� With WebSphere MQ link, applications have to push messages from the
WebSphere MQ network end of the link. With WebSphere MQ server,
applications can pull messages from the WebSphere MQ network.
WebSphere MQ server, therefore, provides a better proposition than
WebSphere MQ link in situations requiring optimum load balancing.

10.5 Messaging features: How secure and reliable is it?

This section describes some of the lower-level details and requirements of
messaging. We cover three categories: security, high availability, and reliability.
These are important points that must be factored into any planning. This section
contains the following topics:

� “More messaging concepts” on page 351
� “Planning for security” on page 351
� “Planning for high availability” on page 352
� “Planning for reliability” on page 353

350 WebSphere Application Server V7.0: Concepts, Planning, and Design

10.5.1 More messaging concepts

We must briefly discuss the following concepts before discussing messaging in
more detail.

Transport chains
The term transport chain describes the process and mechanism that a
messaging engine uses to communicate with another messaging engine,
external messaging provider, or messaging application running outside of a
server with a messaging engine. They are divided into inbound and outbound,
and encompass things such as encryption and communication protocols (for
example, TCP/IP).

Message stores
At the center of a message engine is a message store. This is a repository that
allows data (messages, operational data, or both) to be stored in both a
permanent and temporary fashion. Permanent means that the data will survive a
shutdown of the message engine.

10.5.2 Planning for security

There are two main areas in messaging security:

� Authorization and authentication of users and groups that want to connect to
a bus.

� Securing the transportation of the message from source to destination.

Authentication and authorization
All access to a service integration bus must be both authorized and
authenticated if bus security is turned on.

Authentication is done through an external access registry, such as an LDAP
server, a custom database, or the local operating system. The user or group
must have their credentials validated before they can access the bus.

After the user or group is authenticated, they must still be authorized to access
bus resources. There is a role called the bus connector role to which the user or
group must be assigned. Otherwise, they will be denied access even if the
credentials are valid.

 Chapter 10. Messaging 351

Other roles that affect permissions for users and groups are as follows:

� Sender

User/group can send (produce) messages to the destination.

� Receiver

User/group can read (consume) messages from the destination.

� Browser

User/group can read (non-destructive) messages from the destination.

Address the following questions:

� What users or groups, or both, do I need to define or have already been
defined?

� What are the minimum permissions I need to assign to each one?

Secure message transportation
A message engine uses a particular transport chain to connect to a bus and
communicate a message to another messaging engine. The transport chains
have attributes such as security encryption (using SSL or HTTPS, for example)
and the communication protocol used (TCP/IP, for example).

Encryption is obviously more secure, but can have performance impacts. This is
also true for the protocols, although your choice of protocol is usually decided for
you by what you are trying to communicate with. For each bus, you choose the
particular transport chains that have the attributes you need.

Relevant questions to ask when designing secure message transportation
solutions are as follows:

� What types of messages do I need secured?
� Where do I need to use encryption, and to what extent?
� What are the connection requirements (in terms of security) of the party I am

trying to communicate with?

10.5.3 Planning for high availability

An application server only has one messaging engine for each bus of which it is a
member. There is no option for failover. An application server that is clustered will
by default have one active messaging engine. If the server hosting the
messaging engine fails, the messaging engine activates on another server in the
cluster.

352 WebSphere Application Server V7.0: Concepts, Planning, and Design

To ensure that the messaging engine runs on one particular server in the cluster,
(for example, if you have one primary server and one backup server, or if you
want the messaging engine to only run on a small group of servers within the
cluster), you must specifically configure it by defining the preferred server for the
messaging engine. Each messaging engine on a service integration bus belongs
to one high availability group. A policy assigned to the group at runtime controls
the members of each group. This policy determines the availability
characteristics of the messaging engine in the group and is where preferred
servers are designated. Be careful not to reduce or remove the high availability of
the messaging engine by having a list of preferred servers that is too restricted.

To obtain workload management across a bus with a cluster, you need to create
additional messaging engines and assign the messaging engines to a preferred
server. The messaging engines run simultaneously with queues partitioned
across them. You might need to consider clustering some application server if
you have not already.

10.5.4 Planning for reliability

The JMS specification supports two modes of delivery for JMS messages:

� Persistent
� Non-persistent

The WebSphere administrator can select the mode of delivery on the JMS
destination (queue/topic) configuration:

� Application (persistence is determined by the JMS client)
� Persistent
� Non-persistent

Messages can also have a quality of service attribute that specifies the reliability
of message delivery. Different settings apply depending on the delivery mode of
the message. The reliability setting can be specified on the JMS connection
factory and, for the default messaging provider, on the bus destination. Reliability
settings set at the connection factory apply to all messages using that connection
factory, though you can opt to let the reliability settings be set individually at the
bus destination. Each reliability setting has different performance characteristics.
The settings are as follows:

� Best effort non-persistent
� Express non-persistent
� Reliable non-persistent
� Reliable persistent
� Assured persistent

 Chapter 10. Messaging 353

There is a trade-off between reliability and performance to consider. With
increasing reliability levels of a given destination, performance or throughput of
that destination is decreased. There is a default setting that is configured when
the destination is created, but this can be overridden by message producers and
consumers under certain circumstances.

The WebSphere Application Server Information Center article Message reliability
levels - JMS delivery mode and service integration quality of service contains a
table that outlines what happens to a message under various circumstances
depending on delivery mode and reliability setting. See the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.pmc.nd.doc/concepts/cjj9000_.html

For information about how reliability levels are affected when messages flow over
an MQ link, see the Mapping of message delivery options flowing through the
WebSphere MQ link article in the WebSphere Application Server Information
Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.pmc.nd.doc/ref/rjc0014_.html

The following questions apply here:

� What is more important for each type of message, reliability or performance?
� How heavy is the workload for the messaging engines?
� What are the implications of message loss due to server failure?
� What is the expectation?

Select a message store type
Another consideration is the message store that each messaging engine
employs. This is where the messages are persisted according to the reliability
levels of the messages. This, as well as the reliability levels, will directly affect the
performance of the messaging engine.

Message stores can be implemented as either of the following types:

� File stores (or, flat files)

File stores are flat files that can be administered by the local operating
system. This is the default type of message store. File stores will generally be
faster and cheaper than data stores because of the absence of the database.
File stores have no extra licensing fees and fewer administration costs, as well
as no database administrator.

354 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.pmc.nd.doc/concepts/cjj9000_.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.pmc.nd.doc/ref/rjc0014_.html

� Data stores (or, tables inside a database)

Data stores are the equivalent of file stores, but are implemented inside a
relational database as a series of tables. They are administered by the
facilities provided by the database. You can use any supported database
product. Data stores might be preferable for larger organizations with an
existing database infrastructure and skills.

Both types of message store can be subject to security, such as file
system/database encryption and physical security access.

10.6 Planning checklist for messaging

Table 10-1 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 10-1 Planning checklist for messaging

Resources
For a good overall reference, the WebSphere Application Server Information
Center contains numerous messaging resources:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6tech_msg.html

Planning item

Determine if and how messaging will be used.

Choose a JMS messaging provider (default messaging, WebSphere MQ, or generic).

Design a messaging topology. If using the default messaging provider, determine the
number of buses to be used and if connections to other buses or WebSphere MQ are
required.

Determine what destinations (queues, topics) are required initially, and the reliability
levels for those destinations.

Determine the type of message data store to use.

Design a security strategy for messaging:
� Bus security
� Transport security

Plan for high availability. If clustering application servers, decide whether to use one
messaging engine (high availability) or multiple (workload management).

 Chapter 10. Messaging 355

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_msg.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_msg.html

356 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 11. Web services

This chapter describes Web services and the considerations administrators
should make when planning for their usage on a WebSphere Application Server
V7.0 architecture.

This chapter contains the following sections:

� “Introduction to Web services” on page 358
� “What is new in V7.0” on page 359
� “Important aspects in using Web services” on page 361
� “Web services architecture” on page 363
� “Support for Web services in WebSphere Application Server” on page 371
� “Planning checklist for Web services” on page 376

11

© Copyright IBM Corp. 2009. All rights reserved. 357

11.1 Introduction to Web services

Web services promote component reusability and a service-oriented approach to
development. Because of that, they are commonly used as part of a
service-oriented architecture (SOA). SOA is an approach to building enterprise
applications that focuses on services (or loosely-coupled components) that can
be composed dynamically. SOA is an important trend in the IT community. With
the SOA approach to application architecture, existing applications can be
converted to services that can be consumed by existing applications or new
ones. As the architecture grows and more applications are added to this portfolio,
they can be orchestrated together in flexible business workflows, enabling
businesses to better react to changes, such as the introduction of a new partner
or supplier, shifts in the business model, or the streamlining of several application
services into one.

Web services provide a standard implementation for SOA and that is the support
WebSphere Application Server V7.0 provides. Any implementation of a SOA,
including Web services, must have the following characteristics:

� Interoperability between platforms, systems, and programming languages
� Clear and unambiguous service interface description language
� Dynamic search and retrieval capabilities of a service at runtime
� Security

Web services are described as self-contained, modular applications that can be
described, published, located, and invoked over a network. More specifically, a
Web service can be said to be an application or function that can be
programmatically invoked over the Internet. For example, buyers and sellers all
over the world can discover each other, connect dynamically, and execute
transactions in real time with minimal human interaction. Web services have the
following properties:

� Web services are self-contained.

No support beyond XML and SOAP is required on either the client or server
sides to realize a Web service.

� Web services are self-describing.

The definition of the message format travels with the message itself. No
external metadata repositories are needed.

� Web services can be published, located, and invoked across the Internet.

Web services use existing network infrastructure and Internet standards such
as HTTP.

358 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Web services are modular.

Simple Web services can be chained together, or otherwise grouped into
more complex ones, to perform higher-level business functions with little
effort.

� Web services are interoperable across platforms and are language
independent.

The client and the server can be on different platforms, on different machines,
or in different countries. There are no restrictions on the language used, if it
supports XML and SOAP.

� Web services are based on mature and open standards.

The major underpinning technologies, such as XML and HTTP, were
developed as open source standards themselves, with no proprietary
technologies. As such, they have long been widely used and understood.

� Web services are dynamic and loosely coupled.

Web services are not tightly coupled, and are easily reconfigured into new
services. Therefore, Web services must be able to be dynamically discovered
in an automated fashion. This allows for additions and changes to be
implemented with minimal impact to other Web service clients.

� Web services can wrap existing applications with a programmatic interface.

Older applications can implement a Web service interface, extending the life
and usefulness of these applications. Potentially, this provides a large gain
with little effort.

11.2 What is new in V7.0

The main change in WebSphere Application Server V7.0 regarding Web services
is the previously existing Feature Pack for Web Services for WebSphere
Application Server V6.1, with added enhancements, has now been included in
the base product.

WebSphere Application Server V7.0 offers some improvements to the Web
services implementation from V6.1. Depending on whether or not you were using
the Feature Pack, the new features can be considered separately.

 Chapter 11. Web services 359

11.2.1 What was in Feature Pack for V6.1

The Feature Pack for Web Services for WebSphere Application Server
V6.1extended the capabilities of V6.1 to enable Web services messages to be
sent asynchronously, reliably, and securely, focusing on interoperability with other
vendors. It also provided support for the Java API for XML Web Services
(JAX-WS) 2.0 programming model.

The Feature Pack added support for the following features (also present in
WebSphere Application Server V7.0):

� Web services standards

– Web Services Reliable Messaging (WS-RM) 1.1
– Web Services Addressing (WS-Addressing) 1.0
– Web Services Secure Conversation (WS-SC) 1.0
– SOAP 1.2
– SOAP Message Transmission Optimization Mechanism (MTOM) 1.0

� Standards-based programming models

– Java API for XML Web Services (JAX-WS) 2.0
– Java Architecture for XML Binding (JAXB) 2.0
– SOAP with Attachments API for Java (SAAJ) 1.3
– Streaming API for XML (StAX) 1.0

11.2.2 Features added to WebSphere Application Server V7.0

In addition to the enhancements brought about by the Feature Pack for Web
services, there are other major Web services enhancements in WebSphere
Application Server V7.0:

� Web Services for Java Enterprise Edition (Java EE) 1.2 (JSR-109)
specification is now supported.

� Support for JAX-WS 2.1, extending the functionality of JAX-WS 2.0 to provide
support for the WS-Addressing in a standardized API.

� Added support for W3C (World Wide Web Consortium) SOAP over JMS (Java
Message Service) 1.0 (submission draft) for JAX-WS.

� By default, HTTP chunking is used when sending MTOM (Message
Transmission Optimization Mechanism) attachments, thus allowing for greater
scalability and improved performance. This feature does not require the
applications to be changed, but it can be disabled if desired.

� Added support for WS-Policy 1.5 and related specifications such as
WS-SecurityPolicy 1.2.

� WS-Addressing is now based on JAX-WS.

360 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Security has been enhanced with the adoption of OASIS (Organization for the
Advancement of Structured Information Standards) WS-SecureConversation
1.2.

� Enterprise Java Bean (EJB) 3.0 components may now be exposed as
JAX-WS Web services.

� The Integrated Solutions Console has been improved with enhanced support
to policy sets, application bindings, and endpoints management.

� Enhanced Configuration Archive support for Web services specific metadata
(policy sets, policy types, and bindings) has been added.

11.3 Important aspects in using Web services

There are some business and technical aspects that need to be considered
when deciding to use Web services. The following questions represent the types
of strategic thinking that needs to happen if you want to provide or use Web
services:

� Do you have business functionality that is common and can be shared?

The typical reason to use a Web service is to save time and effort by reusing
existing infrastructure. Over time, this enables the entire IT infrastructure of an
enterprise to reduce redundancy and consist of mature, well-tested
components. Does your application have this sort of functionality? Can you
reduce the complexity of your application by using other Web services?

� Do you need a more consumable interface to existing exposed function?

Web services can be used as an easier way to expose application programing
interfaces (APIs) to consumers. Wrapping existing APIs in Web services
provides a more friendly interface to them.

� What business functionality do you want to expose to external parties?

You have the option to expose as much or as little of your application as you
want. This can range from single business functions exposed as services to
the entire application wrapped up as a single Web service. It largely depends
on your business strategy. There are no technical constraints. Does the
architecture of your application allow individual business functions to be
exposed in this manner?

 Chapter 11. Web services 361

� Do you need to promote your business functionality in a common and
non-proprietary way?

Web services offer a common, non-proprietary level of abstraction between
the client and the service provider. The key benefits here are that the client
can easily discover and use business services that you provide, generating
goodwill and business opportunities, while allowing you the flexibility to alter
or replace the back-end logic transparently to the client. The importance of
this varies with the type of clients targeted. What do you know about your
potential clients? Are your clients internal or external to your enterprise? Are
there a limited set of clients?

The technical issues that might affect your decision on the use of Web services
includes:

� Does the business logic you wish to expose have state dependency?

If you intend to expose your application over the Internet, you will probably be
using the HTTP communications protocol. HTTP is a stateless protocol with
no guarantees regarding message delivery, order, or response. It has no
knowledge of prior messages or connections. Multiple request transactions
that require a state to be maintained (say for a shopping cart or similar
functionality) will need to address this shortcoming. This can be done by
using messaging middleware based on JMS or other protocols that provide
for the maintenance of state.

The bottom line is that stateful Web services are something of which to be
wary. It is best to keep Web services as simple and stateless as possible.

� Do you have stringent non-functional requirements?

Although the basic mechanisms underlying Web services have been around
for some time, some of the other newly adopted standards, such as security
and transaction workflows, are still in flux with varying levels of maturity. Take
care to ensure that only industry-adopted standards are used. This might
influence your decisions on candidate business functions for Web service
enablement.

You can find information about the current status of the different available
Web services standards on the following Web page:

http://www.ibm.com/developerworks/webservices/standards/

� What are you using Web services for?

Web services are designed for interoperability, not performance. Use Web
services in the context of providing exposure to external parties and not
internally in the place of messaging between parts of your application. Web
services use XML to represent data as human readable text for openness and
interoperability. When compared to a binary format, it is quite inefficient,
especially where it requires the use of parsers and other post-processing.

362 WebSphere Application Server V7.0: Concepts, Planning, and Design

11.4 Web services architecture

The basic SOA consists of the following three primary components, as shown in
Figure 11-1:

� Service provider (or service producer)

The service provider creates a service and possibly publishes its interface
and accesses information to the service broker. Another name for the service
provider is the service producer. The terms are interchangeable.

� Service requestor (or service consumer)

The service requestor locates entries in the broker registry using various find
operations and then binds to the service provider in order to invoke one of its
services. Another name for the service requestor is the service consumer.
The terms are interchangeable.

� Service broker (or service registry)

The service broker is responsible for making the service interface and
implementation access information available to any potential service
requestor. The service broker is not necessary to implement a service if the
service requestor already knows about the service provider by other means.

Each component can act as one of the two other components. For example, if a
service provider needs some more information that it can only acquire from some
other service, it acts as a service requestor while still serving the original request.
Figure 11-1 shows the operations each SOA component can perform.

Figure 11-1 SOA components and operations

Service
Broker

Service
Provider

Service
Requestor

Publish Discover

Request/Response

 Chapter 11. Web services 363

Before we look at the architecture from a Web services-specific view, the
following terms need a brief explanation:

XML Extensible Markup Language is a generic language that can be used to
describe any kind of content in a structured way, separated from its
presentation to a specific device.

SOAP SOAP is a network, transport, and programming language and
platform-neutral protocol that enables a client to call a remote service.
The message format is XML.

WSDL Web Services Description Language is an XML-based interface and
implementation description language. The service provider uses a
WSDL document in order to specify the operations a Web service
provides, and the parameters and data types of these operations. A
WSDL document also contains the service access information.

UDDI Universal Description, Discovery, and Integration is both a client-side
API and a SOAP-based server implementation that can be used to
store and retrieve information about service providers and Web
services.

WSIL Web Services Inspection Language is an XML-based specification
about how to locate Web services without the necessity of using UDDI.
However, WSIL can be also used together with UDDI, and does not
necessarily replace it.

Figure 11-2 on page 365 is a lower-level view of an SOA architecture, but now
showing some specific components and technologies. The UDDI and WSIL,
separately or together, become the service broker.

364 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 11-2 Main building blocks in an SOA approach based on Web services

11.4.1 How can this architecture be used?

Here we consider the common message exchange patterns (sometimes referred
to as interaction patterns) that might be employed. These patterns use the
previously discussed Web services architecture. However, some of these might
have a bearing on the type of transport used and whether or not a Web service
should be used at all.

We also look at other options of which an administrator should be aware, such as
the use of Web service gateways to implement logging and other functions at an
infrastructure level.

UDDI

WSIL

Requestor
WSDL

Provider

SOAP
HTTP

References to service descriptors

Pointers to WSDL documents

Originates from

Legend

ClientWeb
service

Discover

Publish

Discover

 Chapter 11. Web services 365

Message exchange patterns
Some transport protocols are better adapted to some message exchange
patterns than others. For example, when using SOAP/HTTP, a response is
implicitly returned for each request. An asynchronous transport such as
SOAP/JMS is probably more proficient at handling a publish-subscribe message
exchange pattern.

The remainder of this section discusses some of the common message
exchange patterns in the context of Web services and considerations for their
use. The message exchange patterns are as follows:

� One-way
� Asynchronous two-way
� Request-response
� Workflow-oriented
� Publish-subscribe
� Composite

One-way
In this simple message exchange pattern, messages are pushed in one direction
only. The source does not care whether the destination accepts the message
(with or without error conditions). The service provider (service producer)
implements a Web service to which the requestor (or consumer) can send
messages (Figure 11-3). This is a candidate to use messaging instead of a Web
service, depending on your interoperability and reliability requirements.

An example of a one-way message exchange pattern is a resource monitoring
component. Whenever a resource changes in an application (the source), the
new value is sent to a monitoring application (the destination).

Figure 11-3 One-way message exchange pattern

Asynchronous two-way
In this message exchange pattern (Figure 11-4 on page 367), the service
requestor expects a response, but the messages are asynchronous in nature (for
example, where the response might not be available for many hours). Both sides
must implement a Web service to receive messages. In general, the Web service

Service
Consumer
(source)

Service
Producer

(destination)

366 WebSphere Application Server V7.0: Concepts, Planning, and Design

provided by the Service 2 Producer component has to relate a message it
receives to the corresponding message that was sent by the Service 1
Consumer component.

Technically, this message exchange pattern is the same as the one-way pattern,
with the additional requirement that there has to be a mechanism to associate
response messages with their corresponding request message. This can be
done at the application level or by using SOAP protocol.

Figure 11-4 Asynchronous two-way message exchange pattern

Request-response
Probably the most common message exchange pattern, a remote procedure call
(RPC) or request-response pattern, involves a request message and a
synchronous response message (Figure 11-5). In this message exchange
pattern, the underlying transport protocol provides an implicit association
between the request message and the response message.

In situations where the message exchange pattern is truly synchronous, such as
when a user is waiting for a response, there is little point in decoupling the
consumer and producer. In this situation, the use of SOAP/HTTP as a transport
provides the highest level of interoperability. In cases where reliability or other
quality of service requirements exist (such as prioritization of requests),
alternative solutions might have to be sought.

Figure 11-5 Request-response message exchange pattern

There are numerous examples of this message exchange pattern, for example,
requesting an account balance on a bank account.

Service 1
Producer

Service 1
Consumer

Service 2
Producer

Service
Consumer

Service
Producer

 Chapter 11. Web services 367

Workflow-oriented
A workflow message exchange pattern can be used to implement a business
process where multiple service producers exist. In this scenario, the message
that is passed from Web service to Web service maintains the state for the
workflow. Each Web service plays a specific role in the workflow (Figure 11-6).

Figure 11-6 Workflow-oriented message exchange pattern

This message exchange pattern is inflexible and does not facilitate reuse. The
workflow, or choreography, has been built into each of the Web services, and the
individual Web services can no longer be self-contained.

Publish-subscribe
The publish-subscribe message exchange pattern, also known as the
event-based or notification-based pattern, is generally used in situations where
information is being pushed out to one or more parties (Figure 11-7 on
page 369).

Implementation of this pattern at the application level is one possible
architecture. Alternatively, the Service 1 Producer component can publish SOAP
messages to a messaging infrastructure that supports the publish-subscribe
paradigm.

Service
Consumer

Service 1
Producer

Service 2
Producer

Service 3
Producer

368 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 11-7 Publish-subscribe message exchange pattern

An example of a publish-subscribe message exchange pattern is a news
syndication system. A news source publishes an article to the Service 1 Provider
Web service. The Service 1 Provider Web service, in turn, sends the article to all
interested parties.

Composite
The composite message exchange pattern is where a Web service is composed
by making requests to other Web services. The composite service producer
component controls the workflow and will generally also include business logic
(Figure 11-8 on page 370).

This is a more flexible architecture than the workflow-oriented message
exchange pattern, because all of the Web services are self-contained. The
composite service producer component might be implemented in the
conventional manner, or can be implemented using a business process
choreography engine.

An example of a composite message exchange pattern is an online ordering
system, where the service consumer represents a business partner application
placing an order for parts. The composite service provider component represents
the ordering system that has been exposed as a Web service to consumers and
business partners through the Internet. The business process might involve
using the Service 1 to check for the availability of parts in the warehouse, Service
2 to verify the credit standing of the customer, and Service 3 to request delivery
of the parts to the customer. Some of these services might be internal to the
company and others might be external.

Service 2
Producer

Service 3
Producer

Service 5
Producer

Service 4
Producer

Service 1
Producer

Service
Consumer

 Chapter 11. Web services 369

Figure 11-8 Composite message exchange pattern

SOAP processing model
At the application level, a typical Web service interaction occurs between a
service consumer and a service provider, optionally with a lookup to a service
registry. At the infrastructure level, additional intermediary SOAP nodes might be
involved in the interaction (Figure 11-9).

Figure 11-9 SOAP processing model

Service
Consumer

Service 1
Producer

Service 3
Producer

Service 2
Producer

1

2

3Composite
Service

Producer

Application-Level
Communication

= SOAP Node

Initial
Sender Ultimate

Receiver

Node role

actor = "security" actor = "logger"

= SOAP Message Path

Intermediary
A

Intermediary
B

Requestor Provider

370 WebSphere Application Server V7.0: Concepts, Planning, and Design

These intermediary nodes might handle quality of service and infrastructure
functions that are non-application specific. Examples include message logging,
routing, prioritization, and security. In general, intermediaries should not alter the
meaning of the message body.

A typical situation where you need to use intermediary SOAP nodes is where you
have an existing internal Web service implementation within your enterprise that
you now want to expose externally. There might be new requirements associated
with requests originating from outside of your organization, such as additional
interoperability requirements, increased security requirements, auditability of
requests, or contractual service-level agreements. These requirements can be
implemented using an intermediary SOAP node, or a Web service gateway.

Web service gateways
A Web service gateway is a middleware component that bridges the gap between
Internet and intranet environments during Web service invocations. It can be
used internally to provide the SOAP node functions as described previously. It
can also be used at the network boundary of the organization. Regardless of
where it is placed, it can provide some or all of the following functions:

� Automatic publishing of WSDL files to an external UDDI or WSIL registry
� Automatic protocol/transport mappings
� Security functions
� Mediation of message structure
� Proxy server for Web service communications through a firewall
� Auditing of SOAP messages
� Operational management and reporting of published interfaces
� Web service threat detection and defense

11.5 Support for Web services in WebSphere
Application Server

WebSphere Application Server V7.0 implements the Java EE 5 and Java SE 6
standards, and therefore it provides support for SOAP and for XML. The support
for Web services in WebSphere Application Server can also be combined with
the capabilities of an Enterprise Service Bus (ESB) product such as WebSphere
Enterprise Service Bus or WebSphere Message Broker.

This section addresses how WebSphere Application Server V7.0 supports a
Web services architecture.

 Chapter 11. Web services 371

11.5.1 Supported standards

WebSphere Application Server V7.0 supports a set of Web services standards
that makes possible the creation and administration of interoperable, securable,
transactionable, and reliable Web services applications. For a complete list of
supported standards and specifications, see the Web services section in the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/rovr_specs.html

11.5.2 Service integration bus

There are many advantages to using a service integration bus that apply both to
the application and to the enterprise at large. The advantages are as follows:

� Securely externalizing existing applications

The bus can be used to expose existing applications as Web services
regardless of the implementation details of the application. This enables the
applications to be deployed deep inside an enterprise, but still be available to
customers or suppliers on the Internet in a standard, secure, and tightly
controlled manner.

� Cost savings by reuse of infrastructure

When the service integration bus is in place, any application that is Web
service-enabled can reuse this infrastructure.

� Messaging support

The bus is built around support for JMS. This allows exposure of messaging
artifacts such as queues and topics as Web services. There is also a
provision for advanced options such as asynchronous communication,
prioritized message delivery, and message persistence.

� Support for standards

The bus is part of the Java EE 5 implementation and thus supports the major
Web services standards that are also part of Java EE 5. These include the
following standards:

– WS-I Basic Profile 1.1
– JAX-WS (JSR-224)
– JAX-RPC (JSR-101) 1.1
– UDDI V3
– WS-I Security
– WS-Transaction

This enables businesses to build flexible and interoperable solutions.

372 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Support for complex topologies

Tight integration with the WebSphere administrative model means that
complex topologies with the bus, such as clustering for high availability, is an
option for use by Web services.

11.5.3 Universal Description, Discovery, and Integration registries

UDDI is a specification that defines a way to store and retrieve information about
a business and its technical interfaces. In our case, Web services.

An UDDI registry makes it possible to discover what technical programming
interfaces are provided for interacting with a business for such purposes as
electronic commerce or information retrieval. Essentially, UDDI is a search
engine for application clients, rather than human beings. However, many
implementations provide a browser interface for human users.

UDDI helps broaden and simplify business-to-business (B2B) interaction. For the
manufacturer who needs to create many relationships with different customers,
each with its own set of standards and protocols, UDDI provides a highly flexible
description of services using virtually any interface. The specifications allow the
efficient and simple discovery of a business and the services it offers by
publishing them in the registry.

Public or private?
One type of implementation is the Business Registry. This is a group of
Web-based UDDI nodes, which together form a public UDDI registry. These
nodes are run on separate sites by several companies (including IBM and
Microsoft) and can be used by anyone who wants to make information available
about a business or entity, as well as anyone who wants to find that information.

There are a couple of problems with public registries. First, companies often do
not want to show all of their interfaces to the whole world, which invites the world
to communicate with their service with unknown and possibly malicious intent.
Secondly, because the registry is accessible by anyone, it often possesses
inaccurate, obsolete, wrong, or misleading information in there. There are no
expiration dates for published information, nor any quality review mechanisms.
Given that the users of the registry are often automated processes and not
humans with the intuitive ability to separate good and bad content, this can be a
severe problem.

 Chapter 11. Web services 373

In this type of situation, companies can opt for their own private or protected
registries. A totally private UDDI registry can be placed behind the firewall for the
internal use of the organization. A protected registry can be a public registry that
is managed by the organization that controls access to that registry to parties
that have been previously screened.

Private registries allow control over who is allowed to explore the registry, who is
allowed to publish to the registry, and standards governing exactly what
information is published. Given the cleanliness of the data in a private registry
(compared to a public one), successful hit rates for clients dynamically searching
it increase dramatically.

11.5.4 Web services gateway

Web services gateway functionality enables users to take an existing Web
service and expose it as a new service that appears to be provided by the
gateway. Gateway functionality is supplied only in the Network Deployment
release of WebSphere Application Server. By using the gateway, it is possible for
a Web services client to access an external Web service hosted by the gateway.

The gateway can act as a single point of control for incoming Web services
requests. It can be used to perform protocol transformation between messages
(for example, to expose a SOAP/JMS Web service over SOAP/HTTP) and map
multiple target services to one gateway service. It also has the ability to create
proxy services and administer handlers for services it manages, providing
infrastructure-level facilities for security and logging among others.

Some of the benefits of using the gateway are as follows:

� A gateway service is located at a different location (or endpoint) from the
target service, making it possible to relocate the target service without
disrupting the user experience.

� The gateway provides a common starting point for all Web services you
provide. Users do not need to know whether they are provided directly by you
or externally.

� You can have more than one target service for each gateway service.

374 WebSphere Application Server V7.0: Concepts, Planning, and Design

11.5.5 Security

WebSphere Application Server V7.0 includes many security enhancements for
Web services. There are a number of things that can be configured within the bus
to enforce security for a Web service:

� WS-Security configuration and binding information specifies the level of
security required for a Web service, such as the requirement for a SOAP
message to be digitally signed and the details of the keys involved. The
WS-Security specification focuses on the message authentication model and
therefore it can be subject to several forms of attack.

� WS-SecureConversation provides session-based security, allowing secure
conversations between applications using Web services.

� The endpoint for a Web service can be configured to be subject to
authentication, security roles, and constraints.

� The underlying transport can be encrypted (for example, HTTPS).

� The bus can be configured to use authenticating proxy servers. Many
organizations use these proxy servers to protect data and services.

� A JAX-WS client application can be also secured using the Web Services
Security API

Note that, as always, the more security you have, the more performance is likely
to suffer.

11.5.6 Performance

Unfortunately, performance of Web services is still poor compared to other
distributed computing technologies. The main problem is the trade-off between
performance and interoperability. Specifically, this means the use of XML
encoding (marshalling and demarshalling) for SOAP/HTTP-bound Web services.

For HTTP and HTTPS-bound Web services, there is the concept of Web service
dynamic caching. This requires only a configuration change to enable a
significant performance improvement. No application changes are required to
implement caching on either the client or server side.

When planning to apply dynamic caching, one of the main tasks is to define
which service operations are cacheable. Not all of them should be (for example,
dynamic or sensitive data). This can be a complex task depending on the size of
the application and the number of operations exposed. Over a slow network,
client-side caching can be especially beneficial.

 Chapter 11. Web services 375

For SOAP, some performance improvements can be achieved with the MTOM
standard through the optimization of the messages it provides. Avoiding the use
of large messages can also help.

Finally, the StAX standard constitutes an alternative and more efficient method to
change and traverse XML data and should be considered.

11.6 Planning checklist for Web services

Table 11-1 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 11-1 Planning checklist for Web services

Note: Dynamic Caching is only included in the Network Deployment edition of
WebSphere Application Server V7.0.

Planning item

Determine if and how Web services will be used.

Determine how Web service clients will call providers (directly, through the service
integration bus, or through an ESB).

Determine if a Web services gateway will be required.

Determine if a UDDI service will be used. If so, decide whether you will subscribe to a
public UDDI service or set up a private UDDI.

Design a security strategy for Web services:
� WS-Security for applications
� Transport-level security
� HTTP basic authentication

Determine if you will use Web service dynamic caching.

Note: JAX-RPC is included in the Java EE 5 specification. If you are new to
Web services, JAX-WS should be the preferred programming model of choice.

376 WebSphere Application Server V7.0: Concepts, Planning, and Design

Resources
For a good overall reference for developing and deploying Web services in
WebSphere Application Server, refer to Web Services Handbook for WebSphere
Application Server 6.1, SG24-7257.

We suggest having a copy of this book available as you plan your Web services
environment. This book is based on V6.1 with the Feature Pack and does not
cover the additions and changes made to WebSphere Application Server V7.0.

The WebSphere Application Server Information Center also contains a lot of
useful and up-to-date information. For a good entry point to Web services topics,
see the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6tech_wbs.html

For examples of using Web services in a SOA solution, refer to Patterns: SOA
Foundation Service Creation Scenario, SG24-7240.

 Chapter 11. Web services 377

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_wbs.html

378 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 12. Security

WebSphere Application Server provides security infrastructure and mechanisms
to protect sensitive resources and to address enterprise end-to-end security
requirements.

This chapter covers the most important aspects that are inherent in planning
security for a WebSphere Application Server installation. It describes the
concepts and gives you a good look at what you need to consider.

This chapter contains the following sections:

� “What is new in V7.0” on page 380
� “Security in WebSphere Application Server” on page 381
� “Security configuration considerations” on page 402
� “Planning checklist for security” on page 405

12

© Copyright IBM Corp. 2009. All rights reserved. 379

12.1 What is new in V7.0

This section describes the major new features added to WebSphere Application
Server V7.0.

� Multiple security domains

This feature provides the possibility of having different security settings in the
same cell, therefore allowing separate security environments for
administrative applications and user applications. A security domain can be
enabled at cell, node, or application server scope.

� Security auditing

As a new subsystem of the WebSphere Application Server security
infrastructure, security auditing achieves two primary objectives:

– Confirming the effectiveness and integrity of the existing security
configuration.

– Identifying areas where improvement to the security configuration might
be needed.

� Certificate management enhancements

New certificate management functions have been provided to improve the
security of communications between a server and a client:

– Creating and using a certificate authority (CA) client to enable users to
connect to a CA server to request, query, and revoke certificates

– Creating and using chained personal certificates to allow a certificate to be
signed with a longer life span

– Creating and revoking CA certificates to ensure secure communication
between the CA client and the CA server

– For WebSphere Application Server for z/OS, performing certificate
management on System Authorization Facility (SAF) keyrings

� Security annotations

Security annotations, which are an alternative means of defining security
roles and policies, can be used instead of, or in addition to, defining roles and
policies in the deployment descriptor.

� Fine-grained administrative security in the Integrated Solutions Console

In addition to the existing support in the wsadmin command tool, fine-grained
security can now be configured in the Integrated Solutions Console as well.

380 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Kerberos (KRB5) authentication mechanism

Although not available in the base release of V7.0, support for Kerberos as an
authentication mechanism will be included in a future release.

� Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) Web
authentication

SPNEGO Web authentication has been introduced as a substitute for
SPNEGO TAI. It can be configured by using the Integrated Solutions Console.
It allows the dynamic reload of SPNEGO without the need of a server restart.

12.2 Security in WebSphere Application Server

The fundamental reason for having security in your systems is to protect them
from intruders (external or internal to your organization) and to ensure that there
is no accidental or intentional misuse of your systems or the data flowing through
your systems.

When planning security for WebSphere Application Server, it is important to have
a comprehensive security policy in place that coordinates neatly with the overall
environment security. WebSphere Application Server adheres to standard Java
Enterprise Edition (Java EE) specifications and integrates with existing security
systems. There is no single solution for security concerns. However, proper
planning and diligence can keep systems functional and minimize the impact on
business.

Security can be divided into the following areas:

� Physical security

Physical security encompasses the area where the environment is located.
The major concerns are access to the site and protection against
environmental conditions. Commonly, such areas are physically secured and
access is limited to a small number of individuals.

� Logical security

Logical security includes the mechanisms provided to protect systems and
applications from having unauthorized accesses through the system console
or through the network. User authentication is the most common logical
security mechanism but there are others like encryption, certificates, or
firewalls.

 Chapter 12. Security 381

Security policy
A security policy is a guideline for an organization that describes the processes
needed to implement a robust security environment.

There are a number of key principles of a security policy:

� Identify key assets

Identify critical areas of business and those assets that host them. By
identifying those key assets, you can adopt methods that are best for the
environment and create an effective security policy.

� Identify vulnerabilities

Complete a comprehensive assessment of the environment to identify all the
threats and vulnerabilities. Examine each and every area of the environment
to find any way the system can be compromised. It is important to be
thorough. Remember to examine the two types of security: physical and
logical. This can be a resource-intensive activity but it is crucial to the security
of the environment.

� Identify acceptable risk

After completing a vulnerability assessment, the acceptable risk must be
determined. In many instances, this will be a cost issue. To completely secure
an environment would be extremely expensive, so compromises have to be
made to complete the security policy. In most cases, the most cost effective
method to meet the required security level will be used. For example, in a
system that contains mission-critical data for a company, the most advanced
technology available is necessary. However, on a test system with no external
access, the appropriate security level can be met with simpler elements.

� Use layered security model

In complex systems, it is important to have multiple layers of security to
ensure the overall safety of the environment. A layered security model plans
for expected risk and minimizes the impact. It also ensures that all
components are protected, from the user to the back-end data systems, and
that a failure in any one component does not impact the whole environment.

Security configuration
After creating the security policy, you must implement it. Implement steps to
configure the physical and logical security as recommended in the security
policy.

382 WebSphere Application Server V7.0: Concepts, Planning, and Design

Security reviews
A timely and regular review of the security policy and its implementation is
essential to its effectiveness. As the environment evolves over time, the security
policy must also evolve. Regular appraisals of the security policy, including key
assets, vulnerability assessment, and acceptable risk, are needed to maintain
the expected level of security.

WebSphere Application Server security
WebSphere Application Server provides you a set of features to help you to
secure your systems and manage all resources.

Figure 12-1 illustrates the components that make up the operating environment
for security in WebSphere Application Server.

Figure 12-1 WebSphere Application Server security layers

WebSphere Security Layers

Access control

WebSphere Application Server resources

WebSphere Application Server security

Java platform security

Platform security
Network security

Operating system security

Java Virtual Machine (JVM) Version 6

Java security

CORBA security (CSIv2)

Java EE security API

WebSphere security

Naming
User registry
JMX message
beans

HTML
Servlet or JSP file
Enterprise beans
Web services

 Chapter 12. Security 383

These components consist of the following technologies:

� WebSphere Application Server security

WebSphere Application Server security enforces security policies and
services in a unified manner on access to Web resources, enterprise beans,
Web services, and JMX administrative resources. It consists of WebSphere
Application Server security technologies and features to support the needs of
a secure enterprise environment.

� Java platform security

– Java Platform, Enterprise Edition (Java EE) security API

The security collaborator enforces Java EE-based security policies and
supports Java EE security APIs.

– CSIv2 CORBA security

Any calls made among secure Object Request Brokers (ORBs) are
invoked over the Common Secure Interoperability Version 2 (CSIv2)
security protocol, which sets up the security context and the necessary
quality of protection. After the session is established, the call is passed up
to the enterprise bean layer. CSIv2 is an IIOP-based, three-tiered, security
protocol that is developed by the Object Management Group (OMG). This
protocol provides message protection, interoperable authentication, and
delegation. The three layers include a base transport security layer, a
supplemental client authentication layer, and a security attribute layer.

– Java security

The Java security model offers access control to system resources
including file system, system property, socket connection, threading, class
loading, and so on. Application code must explicitly grant the required
permission to access a protected resource.

– Java virtual machine (JVM) 6.0

The JVM security model provides a layer of security above the operating
system layer. For example, JVM security protects the memory from
unrestricted access, creates exceptions when errors occur within a thread,
and defines array types.

Note: Secure Authentication Service (SAS) security protocol is only
supported between WebSphere Application Server V6.0 and previous
version servers that have been federated in a Version 7.0 cell. In future
releases, IBM will no longer ship or support the SAS IIOP security
protocol.

384 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Platform security

– Operating system security

The security infrastructure of the underlying operating system provides
certain security services for WebSphere Application Server. These
services include the file system security support that secures sensitive
files in the product installation for WebSphere Application Server.

The administrator can configure WebSphere Application Server to obtain
authentication information directly from the operating system user registry.
This option is only recommended for z/OS systems. When you select the
local operating system as a registry on z/OS, SAF works in conjunction
with the user registry to authorize applications to run on the server.

– Network security

The network security layers provide transport level authentication and
message integrity and confidentiality. You can configure the
communication between separate application servers to use SSL.
Additionally, you can use IP security and Virtual Private Network (VPN) for
added message protection.

12.2.1 Authentication

Authentication is the process of identifying who is requesting access to a
resource. For the authentication process, the server implements a challenge
mechanism to gather unique information to identify the client. Secure
authentication can be knowledge-based (user and password), key-based
(physical keys, encryption keys), or biometric (fingerprints, retina scan, DNA, and
so forth).

Note: If you are interested in protecting your system from applications,
WebSphere Application Server should run as a non-root user in
distributed platforms so that access to root files and resources is not
allowed. Be aware that, in this case, the operating system registry
cannot be used.

Note: WebSphere Application Server for z/OS provides SystemSSL for
communication using the Internet. SystemSSL is composed of the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS), which
enable secure file transfer by providing data privacy and message
integrity.

 Chapter 12. Security 385

The authentication mechanism in WebSphere Application Server typically
collaborates closely with a user registry. When performing authentication, the
user registry is consulted. A successful authentication results in the creation of a
credential, which is the internal representation of a successfully authenticated
client user. The abilities of the credential are determined by the configured
authorization mechanism.

Depending on the type of client, the authentication information is sent by using
different protocols:

� Enterprise Beans clients use CSIv2.
� Web clients use HTTP or HTTPS.

Although WebSphere Application Server provides support for multiple
authentication mechanisms, you can configure only a single active authentication
mechanism at a time. WebSphere Application Server supports the following
authentication mechanisms:

� Lightweight Third Party Authentication (LTPA)
� Kerberos
� Rivest Shamir Adleman (RSA) token authentication

Lightweight Third-Party Authentication (LTPA)
LTPA is intended for distributed, multiple application server and machine
environments. It supports forwardable credentials and single sign-on (SSO).
LTPA can support security in a distributed environment through cryptography.
This support permits LTPA to encrypt, digitally sign, and securely transmit
authentication-related data, and later decrypt and verify the signature.

When using LTPA, a token is created with the user information and an expiration
time and is signed by the keys. The LTPA token is time sensitive. All product
servers that participate in a protection domain must have their time, date, and
time zone synchronized. If not, LTPA tokens appear prematurely expired and
cause authentication or validation failures. When SSO is enabled, this token is
passed to other servers through cookies for Web resources.

If the receiving servers share the same keys as the originating server, the token
can be decrypted to obtain the user information, which is then validated to make
sure that it has not expired and that the user information in the token is valid in its
registry. On successful validation, the resources in the receiving servers are
accessible after the authorization check. All of the WebSphere Application Server
processes in a cell (deployment manager, node agents, application servers)
share the same set of keys. If key sharing is required between different cells,

Note: Simple WebSphere Authentication Mechanism (SWAM) is deprecated
in WebSphere Application Server V7.0 and will be removed in a future release.

386 WebSphere Application Server V7.0: Concepts, Planning, and Design

export them from one cell and import them to the other. For security purposes,
the exported keys are encrypted with a user-defined password. This same
password is needed when importing the keys into another cell.

When security is enabled for the first time with LTPA, configuring LTPA is
normally the initial step performed. LTPA requires that the configured user
registry be a centrally shared repository, such as an LDAP or a Windows domain
type registry, so that users and groups are the same regardless of the machine.

LTPA keys are generated automatically during the first server startup and
regenerated before they expire. You can disable automatic regeneration by
WebSphere Application Server so you can generate them on a schedule.

Kerberos

Although being new to WebSphere Application Server V7.0, Kerberos is a
mature, standard authentication mechanism that enables interoperability with
other applications that support Kerberos authentication. It provides single sign on
(SSO) end-to-end interoperable solutions and preserves the original requester
identity. Kerberos is composed of three parts: a client, a server, and a trusted
third party known as the Kerberos Key Distribution Center (KDC). The KDC
provides authentication and ticket granting services.

The KDC maintains a database or repository of user accounts for all of the
security principals in its realm. Many Kerberos distributions use file-based
repositories for the Kerberos principal and policy database and others use
Lightweight Directory Access Protocol (LDAP) as the repository.

A long-term key for each principal1 is maintained by the KDC in its accounts
database. This long-term key is derived from the password of the principal. Only
the KDC and the user that the principal represents should know the long-term
key or password.

Note: When security is enabled during profile creation time, LTPA is
configured by default.

Warning: At the time of writing, the Kerberos and LTPA option is not available.
It has been included in this book because it will be supported in a future
update.

1 A principal is a unique identity which represents a user.

 Chapter 12. Security 387

There are some benefits in using Kerberos:

� When using Kerberos authentication, the user clear text password never
leaves the user machine. The user authenticates and obtains a Kerberos
ticket granting ticket (TGT) from a KDC by using a one-way hash value of the
user password. The user also obtains a Kerberos service ticket from the KDC
by using the TGT. The Kerberos service ticket that represents the client
identity is sent to WebSphere Application Server for authentication.

� A Java client can participate in Kerberos SSO using the Kerberos credential
cache to authenticate to WebSphere Application Server.

� J2EE, Web services, .NET, and Web browser clients that use the HTTP
protocol can use the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) token to authenticate to WebSphere Application Server and
participate in SSO by using SPNEGO Web authentication. Support for
SPNEGO as the Web authentication service is new to WebSphere
Application Server V7.0.

� Server-to-server communication using Kerberos authentication is provided.

Rivest Shadler Adleman token authentication
The Rivest Shadler Adleman (RSA) token authentication mechanism, new to
WebSphere Application Server V7.0, aids the flexible management objective to
preserve the base profiles configurations and isolate them from a security
perspective. This mechanism permits the base profiles managed by an
administrative agent to have different Lightweight Third-Party Authentication
(LTPA) keys, different user registries, and different administrative users.

This authentication mechanism ensures that after the RSA root signer certificate
(which has a 20-year lifetime) is exchanged between two administrative
processes, there is no need to synchronize security information among disparate
profiles for administrative requests. The RSA personal certificate (1-year lifetime)
is used to perform the cryptographic operations on the RSA tokens and can be
verified by the long-lived RSA root. RSA token authentication is different from
LTPA where keys are shared and if one side changes, all sides need to change.

Note: WebSphere Application Server can support both Kerberos and
Lightweight Third-Party Authentication (LTPA) authentication mechanisms at
the same time.

Note: The RSA token authentication mechanism can only be used for
administrative requests. As such, the authentication mechanism choices for
administrative authentication are part of the Global Security panel of the
Integrated Solutions Console.

388 WebSphere Application Server V7.0: Concepts, Planning, and Design

Because RSA token authentication is based on a private key infrastructure (PKI),
it benefits from the scalability and manageability of this technology in a large
topology.

An RSA token has more advanced security features than LTPA; this includes a
nonce value that makes it a one-time use token, a short expiration period
(because it is a one-time use token), and trust, which is established based on
certificates in the target RSA trust store.

RSA token authentication does not use the same certificates as used by Secure
Sockets Layer (SSL). This is the reason RSA has its own keystores. In order to
isolate the trust established for RSA, the trust store, keystore, and root keystore,
need to be different from the SSL configuration.

User registries
The information about users and groups reside in a user registry. In WebSphere
Application Server, a user registry authenticates a user and retrieves information
about users and groups to perform security-related functions, including
authentication and authorization. Before configuring the user registry or
repository, decide which user registry or repository to use.

Although WebSphere Application Server supports different types of user
registries, only one can be active in a certain scope. WebSphere Application
Server supports the following types of user registries:

� Local operating system

� Standalone Lightweight Directory Access Protocol (LDAP)

� Federated repository (a combination of a file-based registry and one or more
LDAP servers in a single realm).

� Custom registry

In the event that none of the first three options are feasible, you can implement a
custom registry (for example, a database). WebSphere provides a service
provider interface (SPI) that you can implement to interact with your custom user
registry. The SPI is the UserRegistry interface, which is the same interface used
by the local OS and LDAP registry implementations.

The UserRegistry interface is a collection of methods that are required to
authenticate individual users using either a password or certificates and to collect
information about the user authorization purposes. This interface also includes
methods that obtain user and group information so that they can be given access
to resources. When implementing the methods in the interface, you must decide
how to map the information that is manipulated by the UserRegistry interface to
the information in your registry.

 Chapter 12. Security 389

Lightweight Directory Access Protocol
LDAP is a directory service. The information it contains is descriptive and
attribute-based. LDAP users generally read the information more often than they
change it. The LDAP model is based on entries that are referred to as objects.
Each entry consists of one or more attributes such as a name or address and a
type. The types typically consist of mnemonic strings, such as cn for common
name or mail for e-mail address. Each directory entry also has a special attribute
called objectClass. This attribute controls which attributes are required and
allowed in each entry.

WebSphere Application Server supports various LDAP servers.

Delegation
Delegation occurs when a client requests a method on server A and the method
request results in a new invocation to another method of an object in server B.
Server A performs the authentication of the identity of the client and passes the
request to server B. Server B assumes that the client identity has been verified
by server A and responds to that request. WebSphere Application Server
provides delegation through the use of RunAs roles and mappings.

Single Sign On
SSO is the process where users provide their credentials (user ID, password,
and token) just once within a session. These credentials are available to all
enterprise applications for which SSO was enabled without prompting the user to
re-enter a user ID and password when switching from one application to another.

The following list describes the requirements for enabling SSO using LTPA. Other
authentication mechanisms may have different requirements.

� All SSO participating servers must use the same user registry (for example,
the LDAP server).

� All SSO participating servers must be in the same Domain Name System.
(cookies are issued with a domain name and will not work in a domain other
than the one for which it was issued.)

� All URL requests must use domain names.

No IP addresses or host names are allowed because these cause the cookie
not to work properly.

� The Web browser must be configured to accept cookies.

� Server time and time zone must be correct. The SSO token expiration time is
absolute.

� All servers participating in the SSO scenario must be configured to share
LTPA keys.

390 WebSphere Application Server V7.0: Concepts, Planning, and Design

Single Sign On for HTTP requests is also possible with SPNEGO Web
authentication. Microsoft Windows users can access WebSphere Application
Server resources without requiring an additional authentication process after
being authenticated by a Domain Controller. Detailed information about
SPNEGO Web authentication can be found in the WebSphere Application Server
V7.0 Information Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/csec_SPNEGO_explain.html

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) extends the Java
security architecture with additional support to authenticate and enforce access
control with principals and users. It implements a Java version of the standard
Pluggable Authentication Module (PAM) framework and extends the access
control architecture of the Java platform in a compatible fashion to support
user-based authorization or principal-based authorization. WebSphere
Application Server fully supports the JAAS architecture and extends the access
control architecture to support role-based authorization for Java EE resources
including servlets, JSP files, and EJB components.

Although the applications remain unaware of the underlying authentication
technologies, they need to contain specific code to take advantage of JAAS. If a
new JAAS module is plugged-in, the application will work without a single
modification of its code.

A typical JAAS-secured application has two parts:

� The main application that handles the login procedure and runs the secured
code under the authenticated subject

� The action that is invoked from the main application under a specific subject

When using JAAS to authenticate a user, a subject is created to represent the
authenticated user. A subject consists of a set of principals, where each principal
represents an identity for that user. You can grant permissions in the policy to
specific principals. After the user is authenticated, the application can associate
the subject with the current access control context. For each subsequent
security-checked operation, the Java run time automatically determines whether
the policy grants the required permission to a specific principal only. If so, the
operation is supported if the subject associated with the access control context
contains the designated principal only.

 Chapter 12. Security 391

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/csec_SPNEGO_explain.html

Trust associations
Web clients can also authenticate by using a Trust Association Interceptor (TAI).
Trust association enables the integration of WebSphere Application Server
security and third-party security servers. More specifically, a reverse proxy server
can act as a front-end authentication server while the product applies its own
authorization policy onto the resulting credentials passed by the reverse proxy
server.

Demand for such an integrated configuration has become more compelling,
especially when a single product cannot meet all of the client needs or when
migration is not a viable solution. In this configuration, WebSphere Application
Server is used as a back-end server to further exploit its fine-grained access
control. The reverse proxy server passes the HTTP request to the WebSphere
Application Server that includes the credentials of the authenticated user.
WebSphere Application Server then uses these credentials to authorize the
request.

12.2.2 Authorization

Authorization is the process of checking whether a given user has the privileges
necessary to get access to a requested resource. WebSphere Application Server
supports many authorization technologies:

� Authorization involving the Web container and Java EE technology

� Authorization involving an enterprise bean application and Java EE
technology

� Authorization involving Web services and Java EE technology

� Java Message Service (JMS)

� Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers
WebSphere Application Server V7.0 supports both a default authorization
provider, and, alternatively, an authorization provider that is based on the Java
Authorization Contract for Containers (JACC) specification. The JACC-based
authorization provider enables third-party security providers to handle the Java
EE authorization.

Note: SPNEGO TAI has been deprecated in WebSphere Application Server
V7.0.

392 WebSphere Application Server V7.0: Concepts, Planning, and Design

When security is enabled, the default authorization is used unless a JACC
provider is specified. The default authorization does not require special setup,
and the default authorization engine makes all of the authorization decisions.

When a JACC provider is used for authorization, the Java EE application-based
authorization decisions are delegated to the provider per the JACC specification.
Figure 12-2 shows the communications flow.

Figure 12-2 JACC provider architecture

Dynamic module updates in JACC
WebSphere Application Server handles the dynamic module update with respect
to JACC for Web modules. When the Web module is updated, only that particular
application has to be restarted in native authorization mode. In the case of JACC
being enabled, it depends on the provider support to handle the dynamic module
updates specific to the security modules.

Note: We recommend using IBM Tivoli Access Manager when an external
JACC provider is needed. WebSphere Application Server V7.0 includes a
Tivoli Access Manager client.

Provider Repository

JACC Provider
Contract

Policy Object

WebSphere Application
Server V7.0

Policy Object

Access J2EE
resource

Check
access

Yes / NoYes / No

Note: All administrative security authorization decisions are made by the
WebSphere Application Server default authorization engine. The JACC
provider is not called to make the authorization decisions for administrative
security.

 Chapter 12. Security 393

Fine-grained administrative security
Fine-grained administrative security was introduced in WebSphere Application
Server V6.1, although it was only configurable with the wsadmin command tool.
Fine-grained administrative security can grant access to each user role per
resource instance instead of granting access to all of the resources in the cell,
which allows a better separation of administrative duties.

WebSphere Application Server V7.0 includes new panels in the Integrated
Solutions Console that simplify the fine-grained administrative security
configuration.

In order for a user ID to have administrative authority, it must be assigned to one
of the following roles:

� Monitor

The Monitor role has the least permissions. This role primarily confines the
user to viewing the configuration and current state.

� Configurator

The Configurator role has the same permissions as the Monitor, and in
addition, can change the configuration.

� Operator

The Operator role has Monitor permissions and can change the runtime state.
For example, the Operator can start or stop services.

� Administrator

The Administrator role has the combined permissions of the Operator and
Configurator and the permission required to access sensitive data, including
server password, Lightweight Third Party Authentication (LTPA) password and
keys, and so on.

� ISC Admins

An individual or group that uses the ISC Admins role has Administrator
privileges for managing users and groups in the federated repositories from
within the Integrated Solutions Console only.

� Deployer

Users granted this role can perform both configuration actions and runtime
operations on applications.

Note: The ISC Admins role is only available for Integrated Solutions
Console users. It is not available for wsadmin users.

394 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Admin Security Manager

Only users who are assigned to this role can assign users to Administrative
roles. When fine-grained administrative security is used, only users who are
assigned to this role at cell level can manage authorization groups.

� Auditor

Users granted this role can view and modify the configuration settings for the
security auditing subsystem. The Auditor role includes the Monitor role. This
allows the auditor to view but not change the rest of the security configuration.

Security annotations
Java annotations, which are powerful programming tools resulting from the
JSR-175 recommendation, are a standard way to include supported security
behaviors while allowing the source code and configuration files to be generated
automatically.

In Java EE 5, the security roles and policies can be defined using annotations as
well as within the deployment descriptor. During the installation of the
application, the security policies and roles defined using annotations are merged
with the security policies and roles defined within the deployment descriptor. This
merge is performed by the Annotations Metadata Manager (AMM) facility. Data
defined in the deployment descriptor takes precedence over data defined in
annotations.

Java annotations can be used in Enterprise Java Beans (EJB) 3.0 or Servlet 2.5
components. However, some security annotations are only available with EJB 3.0
components.

12.2.3 Secure communications

In order to prevent communications against eavesdropping, some sort of security
has to be added.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as
the SSL implementation for secure connections. JSSE is part of the Java
Standard Edition (Java SE) specification and is included in the IBM
implementation of the Java Runtime Extension (JRE). JSSE handles the
handshake negotiation and protection capabilities that are provided by SSL to
ensure secure connectivity exists across most protocols. JSSE relies on a X.509
standard public key infrastructure (PKI).

A PKI represents a system of digital certificates, certificate authorities,
registration authorities, a certificate management service, and a certification path
validation algorithm. A PKI verifies the identity and the authority of each party

 Chapter 12. Security 395

that is involved in an Internet transaction, either financial or operational, with
requirements for identity verification. It also supports the use of certificate
revocation lists (CRLs), which are lists of revoked certificates.

Secure Sockets Layer
Secure Sockets Layer (SSL) is the industry standard for data interchange
encryption between clients and servers. SSL provides secure connections
through the following technologies:

� Communication privacy

The data that passes through the connection is encrypted.

� Communication integrity

The protocol includes a built-in integrity check.

� Authentication

The server authenticates the client, interchanging digital certificates.

A certificate is an encrypted, password-protected file that includes the following
information:

� Name of the certificate holder
� Private key for encryption/decryption
� Verification of sender’s public key
� Name of the certificate authority
� Validity period for the certificate

A certificate authority is an organization that issues certificates after verifying the
requester’s identity.

Certificate management
Certificates can be created and managed through the Integrated Solutions
Console.

WebSphere Application Server provides mechanisms for creating and managing
client CA clients and keystores, and for creating self-signed certificates and
certificate authority requests.

12.2.4 Application security

The Java EE specification defines the building blocks and elements of a Java EE
application that build an enterprise application. The specification provides details
about security related to different elements. A typical Java EE application
consists of an application client tier, a Web tier, a EJB tier, and a Web services

396 WebSphere Application Server V7.0: Concepts, Planning, and Design

tier. When designing a security solution, you need to be aware of the connections
between each of the modules. Figure 12-3 shows the components of a Java EE
application.

Figure 12-3 Java EE application components

For example, a user using a Web browser can access a JSP or a servlet, which
is a protected resource. In this case, the Web container needs to check if the
user is authenticated and has the required authorization to view the JSP or
servlet. Similarly, a thick client can also access an EJB. When you plan for
security, you need to consider the security for every module.

Security roles
A security role is a logical grouping of users that are defined by the application
assembler. Because at development time it is not possible to know all the users
that are going to be using the application, security roles provide the developers a
mechanism through which the security policies for an application can be defined.
This is done by creating named sets of users (for example, managers,
customers, and employees) that have access to secure resources and methods.
At application assembly time, these users are just place holders. At deployment
time, they are mapped to real users or groups. Figure 12-4 on page 398 shows
an example of how roles can be mapped to users.

J2EE ServerClient Machine

Web
Browser

Client
Container

Client

EJB Container

EJB EJB

Web Container

Servlet JSP

DatabaseDatabase

 Chapter 12. Security 397

Figure 12-4 User role mapping

This two-phase approach to security gives a great deal of flexibility because
deployers and administrators have control over how their users are mapped to
the various security roles.

Security for Java EE resources
Java EE containers enforce security in two ways:

� Declarative security
� Programmatic security

Declarative security
Declarative security is the means by which an application’s security policies can
be expressed externally to the application code. At application assembly time,
security policies are defined in an application deployment descriptor. A
deployment descriptor is an XML file that includes a representation of an
application’s security requirements, including the application’s security roles,
access control, and authentication requirements. When using declarative
security, application developers can write component methods that are
completely unaware of security. By making changes to the deployment
descriptor, an application’s security environment can be radically changed

Web Resources

JSPs

HTML

Servlets

EJB Methods

Mike

Sally

Fred

Users

Clerk

Accountant

Manager

Security Roles

398 WebSphere Application Server V7.0: Concepts, Planning, and Design

without requiring any changes in application code. The deployment descriptor
can be created and modified using Rational Application Developer for
WebSphere Software V7.5.

Security policies can be defined using security annotations as well. Security
annotations are included in Java code in a declarative manner.

Programmatic security
Programmatic security is useful when the application server-provided security
infrastructure cannot supply all the functions that are needed for the application.
Using the Java APIs for security can be the way to implement security for the
whole application without using the application server security functions at all.
Programmatic security also gives you the option to implement dynamic security
rules for your applications. Generally, the developer does not have to code for
security because WebSphere Application Server provides a robust security
infrastructure that is transparent to the developer. However, there are cases
where the security model is not sufficient and the developer wants greater control
over to what the user has access. For such cases, there are a few security APIs
that the developers can implement.

Java security
While Java EE security guards access to Web resources such as servlets, JSPs,
and EJBs, Java security guards access to system resources such as file I/O,
sockets, and properties.

12.2.5 Security domains

The WebSphere security domains (WSD) provide the flexibility to use different
security configurations in a WebSphere Application Server cell. WSD is also
referred to as multiple security domains, or simply, security domains. With
security domains you can configure different security attributes, such as the user
registry, for different applications in the same cell.

Note: You need to be careful before enabling Java security. Java security
places new requirements on application developers and administrators. Your
applications might not be prepared for the fine-grain access control
programming model that Java security is capable of enforcing.

For more information about Java security, refer to the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/csec_deleg.html

 Chapter 12. Security 399

The global security configuration applies to all administrative functions, naming
resources, and Mbeans, and is the default security configuration for user
applications. Each security domain has to be associated with a scope (cell, or
specific clusters, servers and service integration buses) where it will be applied.

The attributes that can be configured at the domain level are as follows:

� Application security
� Java security
� User realm (registry)
� Trust association
� SPNEGO Web authentication
� RMI/IIOP security (CSIv2)
� JAAS logins (application, system and J2C authentication data)
� Authentication mechanism attributes
� Authorization provider
� Custom properties

You do not need to configure all the attributes. Those not defined in the domain
are obtained from the global configuration. When planning for security, you have
to determine whether you need different security attributes for your servers or if
they can use the global configuration settings. For example, you may want to use
various user registries if you have different sets of users that can not be mixed
(for instance, when the responsibility for user administration of each registry falls
on different teams).

If you plan to use a security domain for a special application with stringent
security requirements, this application should be deployed in a dedicated server
or cluster. The scope of the domain should include only the server(s) or cluster(s)
where the application is deployed.

Note: Be aware that some configuration options are only available as global
security settings and cannot be configured in a domain, although they can be
used by multiple domains:

� Federated repositories
� JACC

Note: We suggest using at least one security domain, at cell scope, in order to
separate administrative users from application users.

Note: Deploying an application in more than one server with different security
domains may lead to inconsistent behavior.

400 WebSphere Application Server V7.0: Concepts, Planning, and Design

12.2.6 Auditing

WebSphere Application Server V7.0 introduces a new feature as part of its
security infrastructure: the security auditing subsystem.

Security auditing has two primary goals:

� Confirming the effectiveness and integrity of the existing security
configuration (accountability and compliance with policies and laws)

� Identifying areas where improvement to the security configuration might be
needed (vulnerability analysis)

Security auditing achieves these goals by providing the infrastructure that allows
you to implement your code to capture and store supported auditable security
events. During run time, all code (except the Java EE 5 application code) is
considered to be trusted. Each time a Java EE 5 application accesses a secured
resource, any internal application server process with an audit point included can
be recorded as an auditable event.

If compliance with regulatory laws or organizational policies have to be proved,
you can enable auditing and configure filters to log the events you are interested
in according to your needs.

The security auditing subsystem has the ability to capture the following types of
auditable events:

� Authentication
� Authorization
� Principal/credential mapping
� Audit policy management
� Administrative configuration management
� User registry and identity management
� Delegation

These events are recorded in signed and encrypted audit log files in order to
ensure its integrity. Encryption and signing of audit logs are not set by default,
though we suggest its use to protect those records from being altered. You will
have to add keystores and certificates for encryption and signing.

Log files can be read with the audit reader, a tool that is included in WebSphere
Application Server V7.0 in the form of a wsadmin command. For example, the
following wsadmin command line returns a basic audit report:

AdminTask.binaryAuditLogReader('[-fileName myFileName -reportMode basic
-keyStorePassword password123 -outputLocation /binaryLogs]')

 Chapter 12. Security 401

WebSphere Application Server provides a default audit service provider and
event factory2, but you can change them if you have special needs. For instance,
you could configure a third-party audit service provider to record the generated
events to a different repository.

12.3 Security configuration considerations

When planning for security, it is important to keep in mind the difference between
administrative security and application security from the WebSphere perspective:

� Administrative security protects the cell from unauthorized modification.
� Application security enables security for the applications in your environment.

This type of security provides application isolation and requirements for
authenticating application users.

In previous releases of WebSphere Application Server, when a user enabled
global security, both administrative and application security were enabled. Since
WebSphere Application Server V6.1, these security functions can be enabled
separately. Administrative security can be enabled during profile creation. The
default is for administrative security to be enabled. Application security is
disabled, by default, and must be enabled after profile creation using the
administrative tools. To enable application security, you must also enable
administrative security.

When a new application server profile or deployment manager profile is created,
you have the following options for administrative security:

� Use WebSphere Application Server to manage user identities and the
authorization policy (file-based repository).

� Do not enable security.

� Use a z/OS security product to manage user identities and authorization
policy (z/OS only).

The default authentication mechanism is LTPA, but when Kerberos is included in
the product, you can select Kerberos and LTPA later.

2 The audit service provider formats and records audit events. The event factory collects the data
associated to the auditable security events and sends it to the audit service provider.

402 WebSphere Application Server V7.0: Concepts, Planning, and Design

After the profile has been created, you also have different options for the user
account repository (or user registry):

� Federated repository (including the file-based registry created for
administrative security)

� Local operating system

� Stand-alone LDAP registry

� Stand-alone custom registry

Scenarios
In order to give a better explanation of the implications if you select one of the
previous options, we describe three scenarios with different configurations to
illustrate common setups.

Scenario 1: Enable administrative security at profile creation
In this scenario, let us say that you want to enable administrative security during
the installation process. The profile creation tools create a file-based registry in
the configuration file system (profile_root/config/cells/cellname/fileRegistry.xml),
and a user ID /password combination of your choice is registered with
administrator authority. Self-signed digital certificates for servers are created in
the configuration file system automatically and LTPA is enabled.

Additional users can be added and assigned administrative roles through the
administrative tools (for example, through the Integrated Solutions Console by
navigating to Users and groups → Manage users).

So far, only administrative security has been enabled. After the profile is
complete and the application server or deployment manager is running, you can
enable application security through the administrative console or wsadmin.

You can federate the file-based registry holding the administrative security
information with another user registry of your choice.

Scenario 2: Enable security after profile creation
In this scenario, let us say that you do not enable administrative security during
the profile creation process. Anyone with access to the administrative console
port can make changes to the server or cell configuration.

After profile creation, you can enable both administrative and application security
using a user registry of your choice.

 Chapter 12. Security 403

Scenario 3: Using a z/OS security product
In this scenario, let us say that you want to enable administrative security during
the profile creation process using a z/OS security product to manage security.
With this option, each user and group identity corresponds to a user ID or group
in the z/OS system SAF-compliant security system (IBM RACF or an equivalent
product).

Access to WebSphere Application Server roles is controlled using the SAF
EJBROLE profile, and digital certificates for SSL communication are stored in the
z/OS security product.

Summary of options to enable security at profile creation
Table 12-1 summarizes these options.

Table 12-1 Options to enable security at profile creation

Option chosen Implications

Use WebSphere Application Server to manage
user identities and the authorization policy.

� Each WebSphere Application Server user and
group identity corresponds to an entry in a
WebSphere Application Server user registry.
The initial registry is a file-based user registry,
created during customization, and residing in
the configuration file system.

� Access to roles is controlled using WebSphere
Application Server role bindings. In particular,
administrative roles are controlled using the
Console users and groups settings in the
administrative console.

� Digital certificates for SSL communication are
stored in the configuration file system.

Do not enable security. No administrative security is configured. Anyone
with network access to the administrative console
port can make changes to the server or cell
configuration.

Use a z/OS security product to manage user
identities and authorization policy (z/OS only).

� Each WebSphere Application Server user and
group identity corresponds to a user ID or
group in the z/OS system SAF-compliant
security system (RACF or an equivalent
product).

� Access to WebSphere Application Server roles
is controlled using the SAF EJBROLE profile.

� Digital certificates for SSL communication are
stored in the z/OS security product.

404 WebSphere Application Server V7.0: Concepts, Planning, and Design

12.4 Planning checklist for security

Table 12-2 provides a summary of items to consider as you plan, and additional
resources that can help you.

Table 12-2 Planning checklist for Web services

Planning item

Determine when and how you will enable WebSphere Application Security.

Create a strategy for administrative security.

Plan for auditing.

Determine if multiple security domains will be used.

Determine the type of user registry you will use and procure the appropriate products
and licenses. If you do not want to use a federated repository, delay turning on
administrative security until after installation. Populate the user registry with the
appropriate user IDs and groups for initial security.

Determine the authentication mechanism (LTPA is strongly suggested).

Determine the authorization method (default or JACC). If using JACC, plan for the
implementation of the JACC provider.

Plan where you will implement SSL in your network.

Plan for certificate management.

Plan for single sign-on.

Create a strategy for securing applications using Java EE security. Choose either
declarative or programmatic. If selecting declarative, then should annotations be used
or not? Application security requires close cooperation between application developers,
security specialists, and administrators. Plan for coordinating role definitions with
development and assigning users to roles during the application installation. Determine
individual application components that have special security requirements.

Review and incorporate security strategies for Web services.

Review and incorporate security strategies for the service integration bus.

 Chapter 12. Security 405

Resources
For a good overall reference for WebSphere Application Server security, refer to
IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316.

We suggest that you have a copy of this book available as you plan to secure
your environment. Be aware that this book is written with WebSphere Application
Server V6.1 in mind. It does not cover the new features and changes found in
V7.0.

For up to date information about WebSphere Application Server V7.0, refer to the
WebSphere Application Server Information Center. A good entry point to security
topics is the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topsecuring.html

406 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topsecuring.html

Chapter 13. WebSphere Application
Server Feature Packs

A WebSphere Application Server Feature Pack is an optionally installable
product extension for WebSphere Application Server that provides a set of new
related standards and innovative features. With feature packs, users can take
advantage of these new standards and features without having to wait for a new
release of WebSphere Application Server.

This chapter describes the feature packs currently available for WebSphere
Application Server V7.0 and discusses the important aspects to be considered
for a successful implementation.

This chapter contains the following sections:

� “Available feature packs” on page 408
� “WebSphere Application Server Feature Pack for Web 2.0” on page 408
� “WebSphere Application Server Feature Pack for Service Component

Architecture” on page 412

13

© Copyright IBM Corp. 2009. All rights reserved. 407

13.1 Available feature packs

The currently available feature packs for WebSphere Application Server V7.0
are:

� WebSphere Application Server Feature Pack for Web 2.0
� WebSphere Application Server Feature Pack for Service Component

Architecture (SCA)

Two previously available feature packs for WebSphere Application Server V6.1
have been integrated into WebSphere Application Server V7.0 and therefore you
can use their features without additional installation procedures. The integrated
features packs are:

� WebSphere Application Server Feature Pack for Web Services
� WebSphere Application Server Feature Pack for EJB 3.0

13.2 WebSphere Application Server Feature Pack for
Web 2.0

This section describes the IBM WebSphere Application Server V7.0 Feature
Pack for Web 2.0. It has a short introduction to Web 2.0 technologies and an
overview of the contents of the feature pack.

13.2.1 Introduction to Web 2.0

Web 2.0 is a term that describes a set of new technologies designed and created
to improve existing technologies in the World Wide Web (WWW). Web 2.0 is not
a specification and is subject then, to different definitions and interpretations. In
this publication we have considered those technologies included in the feature
pack.

Key technologies and concepts
The main technologies and concepts being used for building Web 2.0
applications are described in this section.

� Asynchronous JavaScript and XML (Ajax)

Ajax is an open technique for creating rich user experiences in Web-based
applications that do not require Web browser plug-ins. It is the most important
technology in the Web 2.0 world. Its main characteristic is that, by exchanging
small amounts of data with the server, it renders Web pages in the Web

408 WebSphere Application Server V7.0: Concepts, Planning, and Design

browser without having to reload entire pages, increasing the interactivity,
usability, and speed of the user experience. Behind the scenes, this means
that Ajax implements a stateful client that interacts asynchronously with the
server.

� Representational State Transfer (REST)

REST is a software architecture for building hypermedia systems. It consists
of a series of principles that outline how resources are defined and
addressed. Any internet application should follow these principles, but some
applications violate them (for instance, having large amounts of server-side
session data). Ajax, on the contrary, follows the key principles of REST.

� JavaScript Object Notation (JSON)

JSON is a human readable data interchange format that is used in Ajax as an
alternative format to XML. Although it is based on a subset of the JavaScript
language, it is language-independent.

� Atom

Atom is composed of two different standards:

– Atom syndication format

Atom syndication format is an XML language used for Web feeds, which
are a mechanism for publishing information and subscribing to it.

– Atom publishing protocol

Atom publishing protocol is an HTTP-based protocol for creating and
updating Web applications.

Atom was developed as an alternative to RSS feeds in order to overcome
RSS incompatibilities.

13.2.2 Overview of the Web 2.0 feature pack

This feature pack extends Service Oriented Architecture (SOA) by connecting
external Web services, internal SOA services, and Java Platform, Enterprise
Edition (Java EE) objects into highly-interactive Web application interfaces. It
provides a supported, best-in-class Ajax development toolkit for WebSphere
Application Server. It also provides a rich set of extensions to Ajax.

 Chapter 13. WebSphere Application Server Feature Packs 409

The included extensions to Ajax are as follows:

� Client side extensions

– Ajax client runtime

The main component of the feature pack. It includes extensions to the
Dojo toolkit for building Ajax applications.

– IBM Atom library

IBM Atom library consists of utility functions, data models and widgets for
creating, modifying and viewing Atom feeds.

– IBM gauge widgets

Two gauge widgets are provided as base objects to build other widgets on
them: the analogue gauge and the bar graph.

– IBM SOAP library

IBM SOAP library implements a simple way to create a SOAP envelope
around a request and a widget to connect to external SOAP services.

– IBM OpenSearch library

IBM OpenSearch library provides an interface to servers that implement
the OpenSearch specification.

� Server side extensions:

– Ajax proxy

Ajax proxy is an implementation of a reverse proxy that accepts requests
from a client and redirect them to one or more servers while letting the
client believe that all the responses from its requests come from the same
server.

– Web messaging service

Web messaging service is a publish and subscribe implementation that
connects a Web browser to the WebSphere Application Server service
integration bus for server-side event push.

– JSON4J libraries

JSON4J libraries are an implementation of a set of JSON classes.

– RPC adapter libraries

RPC adapter libraries are the IBM implementation for Web remoting,
which is a pattern that provides the ability to invoke Java methods on the
server side from JavaScript.

– Abdera-based feed libraries

Abdera-based feed libraries are an implementation of Apache Abdera,
which is an open-source project providing feed support.

410 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 13-1 shows the main components of this feature pack.

Figure 13-1 Components of WebSphere Application Server Feature Pack for Web 2.0

13.2.3 Security considerations

The security issues on Ajax are well known. Different forms of attacks can take
advantage of the usage of client-side scripts that can be easily forged to
consume information from untrusted sources or to collect confidential data from
the user.

Adopting some measures may led to more secure applications. Input validation,
proper coding, loading scripts only from trusted sources, encryption, and a
correct server security configuration on the server side are some of the
measures you should consider.

13.2.4 Resources

For a complete overview and detailed information about the Feature Pack for
Web 2.0, refer to the WebSphere Application Server V7.0 Information Center at
the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.web20fep.multiplatform.doc/info/welcome_nd.html

WebSphere Application
Server

JSON

Atom

Atom

External Web resources

Web
feeds

IBM RPC
adapter

Ajax
proxyBrowser Ajax

Browser Ajax

AjaxFeed reader

Services
and
JEE

assets

 Chapter 13. WebSphere Application Server Feature Packs 411

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.web20fep.multiplatform.doc/info/welcome_nd.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.web20fep.multiplatform.doc/info/welcome_nd.html

Another good source of information is IBM Redbooks publication Building
Dynamic Ajax Applications Using WebSphere Feature Pack for Web 2.0,
SG24-7635. This book contains an in-depth description of this feature pack and it
is an essential reference for those planning to use it.

13.3 WebSphere Application Server Feature Pack for
Service Component Architecture

This section describes the new IBM WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture (SCA). It introduces SCA and explains
what is in the feature pack.

13.3.1 Introduction to SCA

SCA is a set of specifications that constitute a programming model for building
applications using a service-oriented architecture (SOA). SCA extends other
SOA technologies, like Web services, while providing a platform and
language-neutral component model based on open standards specified by the
Open SOA Collaboration (OSOA).

The main objective of SCA is allowing the creation of complex composite
applications based on previously existing service components.

Key principles
SCA is based on three key principles:

� Service composition

SCA offers a composition model that allows you to build new services from
existing software components. SCA provides the metadata for describing
these components and the connections between them while hiding their inner
workings.

� Service development

SCA has a language-neutral programming model. There are
language-specific models for Java, Spring, C++, and other languages.
Because SCA defines a common assembly mechanism, the language used
for implementing a service does not need to be known by the service
consumer.

� Service agility and flexibility

The component model provided by SCA makes the composition and
assembly of business logic simple and allows a flexible reusability of
components. A component can be easily replaced by another component
providing the same service.

412 WebSphere Application Server V7.0: Concepts, Planning, and Design

Key concepts
These are the key concepts contained in SCA:

� Component

This is the basic element of SCA. It is a configured instance of an
implementation. Components encapsulate business functions. They have
three configurable aspects:

– Services
– References
– Properties

� Implementation

The implementation is the actual code providing the component’s functions.

� Composite

Also called composition or component assembly, composites are
combinations of components.

� Domain

A domain contains one or more composites running in a single-vendor
environment. Its components may be running on one or more processes and
on one or more machines.

� Service

A service is the interface used by a consumer of the component. It specifies
the operations that can be accessed by the component’s client, but it does not
describe how the communication happens.

� Property

Properties are configurable values that affect the behavior of a component.

� Reference

References describe the dependencies of a component on other software.
Like services, they do not describe the way they have to communicate with
that other software.

� Binding

Bindings specify how the communications with other components have to be
done. A component only needs bindings for communications outside its
domain because the runtime determines which bindings to use inside a
domain. Multiple bindings allow different ways of communication with the
component.

� Wire

A wire represents a relationship between a reference and a service, showing
the existing dependency of a component on another component.

 Chapter 13. WebSphere Application Server Feature Packs 413

� Promotion

When a component’s service is made available outside the composite, it is
being promoted. A promotion also occurs when a reference must become a
reference for the composite.

Figure 13-2 is an example of the main concepts of SCA.

Figure 13-2 Key SCA concepts

A complete reference for SCA specifications can be found on the Open SOA
Collaboration web site:

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifi
cations

SCA domain (Vendor A)

Composite

ComponentComponent

Component

Composite

ComponentComponent

SCA domain (Vendor B)

Composite

ComponentComponent

Component

Composite Composite

Component

Service
&

Binding

Service
&

Binding

Reference
&

Binding

Reference
&

Binding

Service
&

Binding

Client
(non-SCA application)

Service
(non-SCA application)

414 WebSphere Application Server V7.0: Concepts, Planning, and Design

13.3.2 Overview of the SCA feature pack

The WebSphere Application Server Feature Pack for SCA is based on a Tuscany
open source Java implementation and covers SCA 1.0.

Features covered
This feature pack follows the specifications as documented by the OSOA.
Because OSOA does not define a set of compliance test suites, the
implementation provided uses the following specifications as guiding principles.
However, IBM is committed to providing an implementation that adheres strictly
to the IBM interpretation of the specifications list below:

� SCA Assembly Model V1.0

This specification describes a model for the assembly of services as a
composition of tightly or loosely coupled services. It is also a model for
applying infrastructure capabilities, including security and transactions, to
services and its interactions.

� SCA Java Component Implementation V1.0

This specification defines how a component must be implemented in Java,
including its services, references, and properties. It extends the SCA
Assembly Model and requires all the APIs and annotations defined in the
SCA Java Common Annotations and APIs.

� SCA Java Common Annotations and APIs V1.0

SCA Java Common Annotations and APIs V1.0 specifies a Java syntax,
including a set of APIs and annotations, for the programming concepts
defined in the assembly model.

� SCA Policy Framework V1.0

This framework allows the definition of qualities of service (QoS). It supports
the specification of some non-functional requirements of components
(constraints, capabilities, and expectations). It is based on other standards,
such as WS-Policy and WS-PolicyAttachment.

� SCA Transaction Policy V1.0

The transaction policies defined by this specification provide transactional
quality of service to components (implementation policies) and their
interactions (interaction policies).

Note: At the time of writing, the WebSphere Application Server V7.0 Feature
Pack for SCA is a beta release. This chapter contains information based on
this beta release.

 Chapter 13. WebSphere Application Server Feature Packs 415

� SCA Web Services Binding V1.0

This specification defines how an SCA service can be made available as a
Web service and how an SCA reference can invoke a Web service.

� SCA EJB Session Bean Binding V1.0

Session bean bindings satisfy the need to expose EJBs as SCA services and
to expose SCA services to clients based on the EJB programming model.

Unsupported SCA specifications
Some sections of the SCA specifications covered by the feature pack are not
supported in this version. For a complete list of unsupported sections, see the
IBM WebSphere Application Server V7.0 Feature Pack for SCA Beta Information
Center.

Application packaging and management
WebSphere Application Server V7.0 Feature Pack for SCA adds support for
deploying SCA applications to the application server. Both JAR and WAR files
are supported.

Components that include service definitions must be packaged in a JAR file and
deployed as assets for business-level applications.

SCA WAR files can be deployed as well, provided that they do not expose
services over any binding type. WAR files must be deployed as WebSphere
enterprise applications.

The feature pack also provides support in the Integrated Solutions Console, and
for the wsadmin command tool, to install, delete, start, and stop SCA applications.

Note: As required by the SCA Assembly Model V1.0 specification, the feature
pack for SCA also provides support for SCA bindings (also known as SCA
default bindings).

About this Information Center: At the time of writing, this Information Center
cannot be accessed online. It has to be downloaded and installed on your
computer. Follow the instructions in
WAS_V70_SCAFP_information_Center.pdf, available at the following Web
page:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/so
awas61/library.shtml

416 WebSphere Application Server V7.0: Concepts, Planning, and Design

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/soawas61/library.shtml

13.3.3 Other considerations

If you plan to use the feature pack for SCA, you must take into account the
considerations detailed in the following sections.

Supported platforms
At the time of writing, the supported platforms for the beta release of the feature
pack are as follows:

� Windows 2003 SP2 Standard and Enterprise
� SuSE Linux Enterprise Server 10 on VMWare Server (1.0.x)

Profile creation
After installing the feature pack, a new set of profile types are available. These
profile types enable the features provided by the feature pack.

In order to deploy SCA applications, create a new profile with SCA enabled or
augment an already existing profile.

Application development support
A developer using Rational Application Developer for WebSphere Software V7.5
for building SCA applications has to consider the following issues:

� Use of SCA Java annotations requires a Java compiler compliance level to be
5.0.

� Needed SCA JAR files have to be added to the classpath.

� Rational Application Developer does not provide code generation utilities or
SCA tools.

13.3.4 Resources

You can get more information about the WebSphere Application Server V7.0
Feature Pack for SCA beta release at the following Web page:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/soawas61

 Chapter 13. WebSphere Application Server Feature Packs 417

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/soawas61

418 WebSphere Application Server V7.0: Concepts, Planning, and Design

Chapter 14. WebSphere Application
Server for z/OS

This chapter concentrates on the WebSphere Application Server for z/OS v7.0
features. It has the following sections:

� “WebSphere Application Server structure on z/OS” on page 420
� “What is new in V7.0” on page 432
� “WebSphere Application Server 64-bit on z/OS” on page 433
� “Load modules in the HFS” on page 436
� “XCF support for WebSphere HA manager” on page 438
� “z/OS Fast Response Cache Accelerator” on page 446
� “Thread Hang Recovery” on page 452
� “Installing WebSphere Application Server for z/OS” on page 456
� “System programmer considerations” on page 466
� “Planning checklist” on page 475

The features and functions described in this chapter are only available when the
WebSphere Application Server for z/OS V7.0 is used. The new functions and
features of WebSphere Application Server for z/OS V7.0, as well as the existing
ones described in the other chapters of this book, are implemented on the z/OS
platform but are not explicitly mentioned in this chapter.

14

© Copyright IBM Corp. 2009. All rights reserved. 419

14.1 WebSphere Application Server structure on z/OS

This section shows the added value that the implementation for WebSphere
Application Server for z/OS offers compared to the distributed versions.

For those who may be not familiar with the z/OS operating system, we have
included some boxes that explain z/OS terms or techniques in general IT
terminology and how they might add value for your business environment.

14.1.1 Value of WebSphere Application Server on z/OS

WebSphere Application Server for z/OS V7.0 combines IBMs leading application
server with the high-end server platform, z/OS. This combination offers the
following unique features that can be of great value to your environment and your
business:

� Service Level Agreements with Workload Management and local connections
to back end

The Workload Manager component that is exploited by WebSphere
Application Server for z/OS V7.0 automatically assigns resources to the
application server to achieve the performance goals set for the environment.
These goals can be set on a transaction level, assuring that your platinum
customers get the best response time.

Local connectors to databases running in the same operating system image
will enhance the throughput and decrease the used CPU resources.

� High availability reduces downtime costs

The proven technologies of the System z hardware and operating system
have the highest availability in the industry. WebSphere Application Sever for
z/OS can directly benefit from this. In addition, the structure of the application
server has been modified to expand this high availability into WebSphere
Application Server itself, by forming a mini-cluster inside each application
server, if activated by the administrator.

The usage of a Parallel Sysplex, the z/OS cluster technique, increases the
uptime of the environment up to 99.999%. In the case of unplanned
downtime, System z and z/OS offer great disaster recovery capabilities,
bringing the system to a productive, industry leading state.

� Reduced management cost through excellent manageability

The management capabilities of the z/OS platform have evolved over the last
40 years, resulting in the platform with the lowest management costs in the
industry while maintaining the highest degree of automation and transparency
for the administrators.

420 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Reduced cost through lowest Total Cost of Ownership (TCO) in the market

System z is well known for to have the best TCO in the IT market.
Independent consulting companies have shown that the usage of a modern
mainframe will outperform distributed environments that may be cheap to
purchase but more expensive to maintain. WebSphere can fully exploit
features like the System z Application Assist Processor (zAAP) to reduce the
software cost and the overall cost of the environment.

� Secure environment to stabilize operations and production

The usage of a central security repository, the z/OS Resource Access Control
Facility (RACF) will ease the security model, because it can be used for user
authentication, authorization, and the role-based security model offered by
Java.

The security model of the operating system prevents unauthorized user code
to harm the system and bringing down your environment.

14.1.2 Common concepts

Before we explain the enhancements, we introduce some commonalities to both
implementations of the WebSphere Application Server V7.0:

� All WebSphere Application Server components described in this book are
common to both distributed and z/OS platform. This includes nodes, cells,
clusters, core groups, job manager, administrative agent, deployment
manager, administrative console, and all the other components.

� Experience has shown that applications that run inside a WebSphere
Application Server on Windows, AIX, Linux, Solaris, and so forth can also run
on WebSphere Application Server for z/OS, if the application meets the
requirements common to the product. Some minor modifications might be
required when changing the underlying operating system.

� WebSphere Application Server administrators will find the usual control
options and Web interfaces on z/OS (except the update installer).

z/OS as the operating system for WebSphere Application Server:
Using z/OS as the underlying operating system for WebSphere Application
Server does not mean rebuilding your processes for administration,
operation, and development, or that your administration staff needs to
learn a new product.

The WebSphere API’s are the same, while the z/OS operating systems
offers additional capabilities that simplifies things and provides
high-availability, disaster recovery, performance settings, and management
options.

 Chapter 14. WebSphere Application Server for z/OS 421

14.1.3 Cell component—daemon

WebSphere Application Server for z/OS introduces the location service daemon
(LSD), a WebSphere cell component exclusive to the z/OS platform.

A daemon, in WebSphere Application Server for z/OS terminology, is the
Location Service Agent. It provides the location name service for external clients.
There is one daemon per cell per z/OS image. If your cell consists of multiple
z/OS images, a daemon will be created for each z/OS image where your cell
exists. If there are two cells on the same z/OS image, two daemons will be
created. See Figure 14-1.

Figure 14-1 WebSphere Application Server for z/OS daemon usage in a cell

Daemon servers are started automatically when the first server for the cell on
that z/OS image is started (actually when the first control region is started). If you
terminate a daemon, all the WebSphere Application Server components for the
cell on that z/OS image come down.

The daemon is created as part of the normal server customization process.

14.1.4 Structure of an application server

This section gives a conceptual view of an application server inside WebSphere
Application Server for z/OS.

Server A Server B

Daemon

C
el

l

Application
Server

Deployment
Manager Daemon

Node Agent Node Agent Application
Server

Application
Server

422 WebSphere Application Server V7.0: Concepts, Planning, and Design

Overview
WebSphere Application Server for z/OS in general uses the same concepts to
create and manage an application server. Each application server (or instance of
a profile) is built out of multiple building blocks, to represent a single application
server:

� Control region
� Servant region
� Control region adjunct

Figure 14-2 shows these basic building blocks and how they will form the
application server. The communication between the control region and the
servant regions is done using WLM queues, because the communication with the
outside world is ended in the control region.

Figure 14-2 Building blocks of the WebSphere Application Server for z/OS V7.0

What is a WLM queue? A WLM queue is used to queue work for further
processing. Each queue uses a first-in-first-out mechanism. Because it is
possible to use different priorities for work requests, there are multiple queues,
one for each priority. Servant regions are bound to a priority and therefore take
work from the queue with the priority they are bound to.

A WLM queue is a construct allowing you to prioritize work requests on a
transaction granularity, compared to server granularity on a distributed
environment.

Application Server

User applications
run here

Servant region 02

Servant region 03

Servant region 01Controller region

J
WLM

queues

Control region
adjunct

HTTP, IIOP, MQ

 Chapter 14. WebSphere Application Server for z/OS 423

While WebSphere Application Server profiles on z/OS are built using multiple
building blocks, it is still a single instance of an application server from an
application developer, system administrator, or user perspective. This means that
nearly all WebSphere variables can be defined against a server, and are not
defined against the servant and control region adjuncts. However some of the
settings, like heap sizes have to be done for each of the components.

All the possible profiles that can be instantiated, are built using the different
regions:

� Application server
� Deployment manager
� Job manager
� Administrative agent

Control region
The control region is the face of the application server to the outside world. It is
the only component that is reachable from the outside world using standard
protocols and port communication. For communication with the servant regions,
where the application is executed, the control region is the endpoint for TCP
transportation and switches to WLM queues.

Keep the following points in mind about control regions:

� An application server can only have one control region.
� The control region contains a JVM.
� The control region will be start- and endpoint for communication.

Servant region
The servant region is the component of an application server on z/OS where the
actual application is run and transactions are processed. The EJB and Web
container are included here.

As seen in Figure 14-2 on page 423, it is possible to have multiple servant
regions per application server. (But only one for the other profile types.) This
concept is called a multi-servant region or internal cluster. Through the usage of
this technique, it is possible to actually benefit from cluster benefits without the
overhead of a real cluster. For continuous availability and scalability, it is
suggested to build a WebSphere Application Server cluster that integrates these
mini clusters. While creating a normal cluster you can still use multiple servant
regions for each cluster member.

424 WebSphere Application Server V7.0: Concepts, Planning, and Design

Keep in mind the following information about servant regions:

� Each servant region contains its own, independent JVM.

� All servant regions are identical to each other.

� An application runs on all servant regions connected to an application server,
because it is deployed at server scope.

� An application must be WebSphere Application Server cluster-ready to use
the multi-servant concept.

� The number of servant regions is transparent to the user and the application.

� Servant regions can be started dynamically by the WLM component, if
response times of user transactions do not meet the defined goals. The
defined maximum is the limit.

� If a single servant fails, the others will still run, keeping the application alive.
Only the transactions of the crashed servant region will fail and deliver errors
to the user. The other servant regions will continue to work.

� Failed servant regions will be restarted automatically by the operating system
providing a miniature automation.

Control region adjunct
The control region adjunct is a specialized servant that interfaces with new
service integration buses to provide messaging services.

14.1.5 Runtime processes

This section describes the runtime behavior of the WebSphere Application
Server for z/OS V7.0.

Overview
The non-z/OS platforms are built on a single process model. This means the
entire application server runs in one single Java Virtual Machine (JVM) process.
WebSphere Application Server for z/OS is built using a federation of JVM’s, each
executing in a different address space. Together, such a collection represents a
single server instance, as described in Figure 14-2 on page 423.

Note: When determining the maximum number of servant regions, make
sure that the system has enough resources to use them all.

 Chapter 14. WebSphere Application Server for z/OS 425

During runtime each building block of an application server or a deployment
manager opens an address space, as seen in Figure 14-3.

Figure 14-3 Runtime architecture of a WebSphere Application Server for z/OS Network Deployment cell

What is an address space? An address space can be best compared to a
process in the distributed world. Instead of running processes, the z/OS
operating system uses a concept, called address spaces. Technically, an
address space is a range of virtual addresses, that the operating system
assigns to a user or separately running program, like the WebSphere
Application Server for z/OS. This area is available for executing instructions
and storing data.

Cell

Application Server

User applications
run here

Deployment Manager

Servant region 02

Servant region 03

Servant region 01Control region

J
WLM

queues

Control region

Control region
adjunctServant region

WLM
queue

HTTP, IIOP, MQ

Node AgentDaemon
Node

426 WebSphere Application Server V7.0: Concepts, Planning, and Design

This means that for the WebSphere Application Server for z/OS environment
shown in Figure 14-3 on page 426, there will be at least eight address spaces:

� Deployment manager control region
� Deployment manager servant region
� Location Service daemon
� Application server control region
� (Optional) Application server control region adjunct
� Application server servant region for each servant (here three)
� Node agent

A stand-alone server installation would consist of at least three address spaces:

� Location Service daemon
� Application server control region
� Application server servant (assumed that one servant is used)
� (Optional) Application server control region adjunct

Java Virtual Machine
Each control region and each servant region contains a JVM. For the installation
shown in Figure 14-3 on page 426, this means that there are six JVMs, because
we have two control regions and four servant regions.

These JVMs have special purposes. The control region JVM is used for
communication with the outside world, as well as for some base WebSphere
Application Server services. The servant region JVM executes the user
application. So we can speak of specialized JVM’s on z/OS. This specialization
reduces the maximum amount of heap storage defined for the various heaps,
because not all data and meta-data needs to be loaded and kept inside the
memory. It also separates the user data from most of the system data needed to
run the WebSphere Application Server base services.

The high number of JVMs has some implications to the system requirements as
well as to the sizing of the heap. This is described in 14.8.2, “Installation
considerations” on page 457:

� Amount of real storage
� Min/max size for the different heaps
� Shared class cache usage

Note: The shared class cache is a construct introduced with the JDK 5.0. The
shared class cache can be used to share the content of a JVM into other
JVMs. For more information about z/OS settings for the shared class cache
see 14.9.3, “Java settings” on page 469.

 Chapter 14. WebSphere Application Server for z/OS 427

14.1.6 Workload management for WebSphere Application Server for
z/OS

This section focuses on how WebSphere Application Server for z/OS exploits the
WLM subsystem of z/OS.

Workload management overview
WebSphere Application Server for z/OS V7.0 can exploit the Workload Manger
(WLM) subsystem of z/OS in the following ways:

� Workload classification

Coarse-grained workload management on server base

� Transaction classification

Fine-grained workload management on transaction level

� Servant activation

Start additional servant regions for application processing

To use fully the provided capabilities of WLM, some configuration needs to be
performed. Refer to the Information Center for a detailed step-by-step approach.

Before we go into more detail on the enhancements that the WLM offers to the
WebSphere Application Server for z/OS, lets briefly explain the concepts of
service classes, reporting classes and enclaves.

Service classes
A service class is the z/OS implementation of a service level agreement. A
service class is used to set performance goals for different work (like incoming
requests, applications or operating system tasks).

For example, a service class can be told to achieve a response time of 0.5
seconds 80% of the time for incoming requests. The WLM component of z/OS
will then automatically assign resources (processor, memory, and I/O) to achieve
the goals. This is done by comparing the definitions of the service class to
real-time data on how the system is currently performing.

You can have multiple service classes, with multiple goals. The mapping of work
to a service class is set up by the system programmer and can be based on a
variety of choices, like user ID, application, or external source.

Reporting classes
While the system is processing work, a reporting class keeps track of what
resources have been spent processing work. A reporting class is an
administrative construct, used to keep track of consumed resources. Each unit of

428 WebSphere Application Server V7.0: Concepts, Planning, and Design

work, processed by the system is charged into one reporting class. The decision
of what work should be put into which report class can be defined by the z/OS
system programmer (system administrator).

This grouping of used resources can then be used to tune the system or to
create a charge-back to the departments using the systems. To create reports,
the Resource Measurement Facility (RMF) is used.

Enclaves in an WebSphere Application Server for z/OS environment
An enclave is used to assign the user application a service class during runtime.
An enclave can be thought of as a container that has a service class and
reporting class attached to it. A thread can connect to this enclave and execute
the thread’s work with the priority of the enclave.

WebSphere Application Sever for z/OS uses this technique to pass transactional
work, the user application, from a servant to an enclave. The application then
runs with the priority of the enclave and WLM can make sure that the
performance goals for the application are achieved.

Workload classification
WebSphere Application Server for z/OS V7.0 and its prior versions are capable
of classifying incoming work on a server base. To do this, the control region of an
application server checks to which application server the request belongs. It will
then assign the request to a WLM queue. Each servant will process work for one
service class at any point in time.

As seen in Figure 14-4, incoming work is assigned a service class, based on
information of the user- work request. The granularity is on the application server
level.

Figure 14-4 Workload classification for WebSphere Application Server for z/OS

Work Request

Known information from request:
Subsystem Type...CB (WebSphere)
USERID................BBOSRV
TransactionClass..TCFAST

Service Class

Subsystem Type=CB
Userid=BBOSRV

BBOFAST

Service Class=BBOFAST
Reporting Class = WASAPPL01

Classification Rules

 Chapter 14. WebSphere Application Server for z/OS 429

Transaction classification
Transaction classification can be used to classify the transactions handled by
your application. This technique could be used to prioritize special requests. A
good example is a Web store that classifies its customers in gold and platinum
customers, giving the platinum customers a better response time than the gold
customers (Figure 14-5).

Figure 14-5 Transactional assignment of performance goals

A request that enters the system is assigned a transaction class, using the
request details like used protocol, requested URI, or other metrics. The
transaction class is then mapped to a service and reporting class inside the WLM
subsystem, using a workload classification document. This is an XML file that
has to be populated with mapping rules.

A workload classification document can be used with the following protocols:

� Internal classification
� IIOP classification
� HTTP classification
� MDB classification
� SIP classification

Request
Platinum customer

Application Server

User applications
run here

SR02 – RT 1.0 s

SR01 – RT 0.5 sController region

J
WLM

queues

Request
Gold customer

Request
Platinum

Request
Gold

TC Mapping file
Platinum SC: WASPLAT RC: WAS7PALT
Gold SC: WASGOLD RC: WAS7GOLD

430 WebSphere Application Server V7.0: Concepts, Planning, and Design

To use this technique the following steps need to be performed.

1. Talk with the application development and the business functions teams to
define what transactions need performance goals.

2. Create a workload classification document.

3. Configure the server to use the classification document

4. Modify the WLM settings to use Transaction Classes.

For a detailed information, on the transaction classification refer to the
Information Center article Using transaction classes to classify workload for
WLM. This article contains links to all information sources needed, as well as
samples. It can be found at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=
/com.ibm.websphere.zseries.doc/info/zseries/ae/rweb_classervers.html

Servant activation
As described in “Servant region” on page 424, an application server can have
multiple servant regions defined that all process the user application. If the
response time goals defined for the applications cannot be kept, WLM can start
additional servant regions. As within a normal cluster, incoming, or queued up,
requests can now be processed faster.

The minimum and maximum number of the servant regions can be defined by
the system programmer.

14.1.7 Benefits of z/OS

After reading about the deep integration you might ask: So what is the value for
me? This section addresses benefits of using WebSphere Application Server
V7.0 for z/OS from a security, availability, and performance perspective.

Security
In terms of security, the distinct area for user code offers you more protection for
other system components running in the same Logical Partition (LPAR). In
general the application server itself has more rights than the applications running
inside it. This is necessary to make sure that the server can access all needed
files, execute scripts, and so forth. In WebSphere Application Server for z/OS
these basic functions are performed in the control region. However, the user
code is executed in the servant region that generally has almost no rights. It is
not possible to negatively influence system resources and services from inside
the application.

 Chapter 14. WebSphere Application Server for z/OS 431

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rweb_classervers.html

Availability
The concept of a separate servant and control region greatly enhances the
availability of a user application.

� Multiple servant regions can form a kind of vertical cluster running your
application. In the case that one servant region goes down, users with in-flight
transactions in that servant will receive an error. The other servant regions will
continue to work and respond to requests, so the overall application is still
available and new requests can enter the system. z/OS will automatically
re-launch the failed servant.

� The control region might be identified as a single point of failure. Although the
control region is unique per application server, the risk of failure is low. Only
WebSphere Application Server for z/OS product code is executed in this
region. To remain available with your application, keep in mind that it is also
possible to create a WebSphere Application Server cluster, as in an
distributed environment.

Performance
From a performance point of view the concept of different regions and the usage
of WLM greatly enhances performance and scalability.

� Performance improvements are achieved by creating multiple servant
regions, because more requests can be processed in parallel if the system
has enough resources available.

� You can set detailed performance targets on a transactional level for the
response time. The system will automatically adjust resources on a 7x24x365
basis, to make sure that these goals are kept.

� Through the usage of multiple JVMs with smaller heaps, the penalty a single
transaction has to pay during garbage collection, will decrease and general
throughput will increase.

14.2 What is new in V7.0

WebSphere Application Server V7.0 in general offers some new concepts,
functions, and features. Refer to Chapter 3, “WebSphere Application Server
concepts” on page 51 for an overview of these concepts, functions, and features.

432 WebSphere Application Server V7.0: Concepts, Planning, and Design

The following new additions are specific to WebSphere Application Server V7.0
for z/OS:

� 64-bit default address mode
� Load modules in the HFS
� Cross-coupling facility (XCF) support for HA manager
� z/OS Fast Response Cache Accelerator (FRCA)
� Thread Hang Recovery

Each of these new features is discussed in detail in this chapter.

14.3 WebSphere Application Server 64-bit on z/OS

This section focuses on the 64-bit mode of WebSphere Application Server that
has become the default setting in V7.0.

For detailed information about the installation and checklists for the installation
go to the Installing your application serving environment article in the
WebSphere Application Server for z/OS V7.0 Information Center. The article can
be accessed on the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.installation.zseries.doc/info/zseries/ae/welc6topinstalling.html

14.3.1 Overview

With WebSphere Application Server for z/OS V7.0, a newly created application
server is automatically configured to run in 64-bit mode. This overcomes the
31-bit storage limitation.

In a 31-bit server on a z/OS system, the maximum size of the JVM heap is limited
to a value between 768 and 900 MB. Although it is theoretically possible to
address 2 GB of storage with a 31-bit server, this limitation comes from the size
of the private virtual storage under the 2 GB line of the z/OS address spaces.
The private region is limited to approximately 1.4 GB. This amount of memory is
used for the heap of the Java Virtual Machine (JVM) and other infrastructure.

The usage of 64-bit removes this limitation and allows the definition of much
larger heap sizes.

 Chapter 14. WebSphere Application Server for z/OS 433

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc6topinstalling.html

Deprecation message with 31-bit mode
Because support for running a server in 31-bit mode is deprecated, whenever a
server that is configured to run in 31-bit mode is started, a warning message is
issued to the system log, as shown in Example 14-1. The server_name is the
name of the server that is running in 31-bit mode:

Example 14-1 31-bit deprecation message in the z/OS system log

BBOO0340W: 31-BIT MODE IS DEPRECATED FOR THE APPLICATION SERVER RUNNING
ON THE Z/OS OPERATING SYSTEM. CONSIDER USING 64-BIT MODE FOR
server_name AS AN ALTERNATIVE.

14.3.2 Planning considerations

Because the 31-bit operation mode for WebSphere Application Server is
deprecated in V7.0, all planning activities for new installations should be done
using the 64-bit mode.

The points described in the following paragraphs should be taken into
consideration when planning an installation.

All components support 64-bit
Make sure that all components used in your architecture support the usage of a
64-bit JVM. While virtually all actual versions of purchased software support the
usage of 64-bit, this point might be of concern for user-built applications that are
migrated from a 31-bit environment.

Real and auxiliary storage
The usage of 64-bit does not itself imply that the amount of storage used will
increase significantly. In general there is an overhead of approximately 10% on
the needed storage of a 64-bit implementation compared to 31-bit when the
same JVM heap size should be used in the system.

Note: While the 31-bit mode can still be configured manually, it is not
suggested, because this mode is deprecated in V7.0.

The migration of a server from V6.1 to V7.0 does not change the bit mode.
New servers start in 64-bit, but migrated servers stay in whatever bit mode
they were in before.

You also can switch a server from 31 to 64-bit and back. It is not a permanent
decision made at configuration time.

434 WebSphere Application Server V7.0: Concepts, Planning, and Design

The difference from the 31-bit addressing mode is that it is theoretically possible
to use larger amounts of memory with the 64-bit addressing mode. But the
amount of storage needed only increases significantly if the heap sizes are
increased significantly. For example, if your application needs large heaps.

This is directly controlled through administrator interaction. If the WebSphere
Application Server administrator does not change the JVM memory settings,
there is no need to increase the amount of real and auxiliary storage.

If applications need to use larger heap sizes than 900 MB, make sure that there
is enough real and auxiliary storage available.

Effect on the system
Keep in mind that WebSphere Application Server for z/OS is part of a larger
system: the z/OS operating instance and the broader Sysplex. Consider the
bigger picture when thinking about increasing WebSphere for z/OS JVM heaps
significantly.

14.3.3 Administration considerations

This section focuses on the changes that need to be made in order to run
WebSphere Application Server in 64-bit (default) mode.

JCL parameters
If the application server needs an large amount of JVM heap, make sure that the
following Jobcard parameters do not restrain the system:

� REGION setting on the JCL JOB or EXEC statement.

This setting specifies the maximum size of the execution region (between 0 M
and 2 GB) for the step in this job. A value of 0 M means it will take what it
needs in that range with no limit imposed. We suggest that you specify
REGION=0M so as not to limit their size.

Note: The use of the 64-bit mode of WebSphere Application Server for z/OS
does not mean that the server needs enormous amounts of additional
memory. The amount of memory used by your environment still is based on
the following factors:

� Applications need for storage
� Memory settings defined by your administrator.

 Chapter 14. WebSphere Application Server for z/OS 435

� MEMLIMIT setting in the JCL or in the PARMLIB member SMFPRMxx.

It specifies the limit on the use of virtual storage above 2 GB for a single
address space. If you specify a JVM heap greater than 2 GB, it may extend up
into this range. A value of MEMLIMIT=NOLIMIT means it will not be limited
above the 2 GB bar.

Message BBOO0331I is issued during server startup to tell you what
MEMLIMIT value was used for the address space, and where it came from
(an exit, JCL, and so forth).

System exits
Make sure that the IEFUSI- and JES2/JES3 exits defined on your z/OS operating
system do not limit the virtual region size for the WebSphere Application Server
address spaces.

14.4 Load modules in the HFS

This section describes the new way that z/OS components are installed in
WebSphere Application Server for z/OS V7.0.

14.4.1 Overview

In previous releases of WebSphere Application Server for z/OS the product was
shipped as both HFS content and z/OS datasets. This was different from the
other platform packaging. It also required two sets of executables to be kept in
sync. If not kept in sync, difficult-to-debug code-level-mismatch problems could
occur.

In WebSphere Application Server for z/OS V7.0, the load modules ship in the
AppServer/lib directory with the rest of the runtime. This change reduces the
installation and management complexity, and eliminates a common source of
errors.

Note: Although this modification/check is stated in the installation guide, there
is sometimes the tendency to skip over basic steps when you already have a
version of the WebSphere Application Server installed on your system.

However due to the theoretically larger heap sizes the values needs to be
adjusted in most environments.

436 WebSphere Application Server V7.0: Concepts, Planning, and Design

14.4.2 Installation considerations

The contents of SBBOLOAD, SBBGLOAD, SBBOLPA, and SBBOLD2 will be
moved to the HFS or zFS, as shown in Figure 14-6. Those modules that have to
be in Link Pack Area (LPA) are placed there by WebSphere Application Server
for z/OS using directed-load and dynamic LPA services.

Figure 14-6 Load Modules moved into HFS

In addition, scripts are provided to help extract the load modules into a data set
for those customers wishing to place the native runtime in the LPA.

Keeping the modules in the HFS is equivalent to STEPLIBing in the server
PROCs today.

WebSphere Application Server for z/OS Version 7.0

WebSphere Application
Server for z/OS Version 7.0
FMID: H28W700 SBBOHFS

SBBGLOADXSBBOLOAD
SBBOxxxxX

Moved into SBBOHFS

 Chapter 14. WebSphere Application Server for z/OS 437

14.4.3 HFS structure

The HFS structure of the WebSphere Application Server for z/OS V7.0 is built out
of the components, seen in Table 14-1 (with default location).

Table 14-1 WebSphere Application Server for z/OS file system structure

14.5 XCF support for WebSphere HA manager

This section describes the WebSphere Application Server support for the z/OS
Cross Coupling Facility (XCF) protocol. It also gives an overview of WebSphere’s
HA manager and the default protocol used for discovery and failure detection in
an application server cluster.

14.5.1 XCF support overview and benefits

WebSphere Application Server for z/OS V7.0 adds the option to use the XCF
system services to monitor the status of cluster components instead of the
default common code base technique. This kind of implementation has two main
values:

� Reduced CPU Overhead

The usage of the XCF significantly reduces the overhead that comes through
the ping packets sent by each core group member. This is noticeable during
CPU idle times.

� Improved interval for failure detection

While the default interval used in the original protocol (180 seconds) was not
convenient for every environment, the usage of the XCF system service
reduces this time. The default settings provide information after 90 seconds.
These values can still be adjusted by the system programmer.

FMID Component HFS path

H28W700 Application server itself /usr/lpp/zWebSphere/V7R0

JIWO700 Optional Material /usr/lpp/zWebSphere_OM/V7R0

JDYZ700 Secure Proxy Server /usr/lpp/zWebSphere_SPS/V7R0

HHAP700 IBM HTTP Server V7 /usr/lpp/IHSA/V7R0

438 WebSphere Application Server V7.0: Concepts, Planning, and Design

14.5.2 WebSphere HA manager

The WebSphere high availability manager (HA manager) was introduced with
version 6.0 to make sure that components within the WebSphere Application
Server are always available. To achieve this, an HA manager instance runs within
each component of a cell, including application servers, the deployment
manager, and the node agent (Figure 14-7 on page 440).

Note: While the usage of the XCF system service is an option on the z/OS
platform, the default setting for the core group member failure detection is the
heartbeat technique. This default setting is chosen due to the common code
base.

Due to the benefits of the XCF support for WebSphere HA manager, we
suggest using the alternate protocol, if all prerequisites are met (14.5.5,
“Activating XCF support for HA manager” on page 444).

 Chapter 14. WebSphere Application Server for z/OS 439

Figure 14-7 Logical concept of the HA manager

A cell can be divided into multiple availability domains, called core groups. Each
server inside such a core group is monitored for startup and possible failure. To
check if a component is still alive or if a new component is available, the core
group discovery and failure detection protocol is used.

This protocol is part of the Distribution and Consistency Services (DCS). The
DCS provides the following functions:

� Distribution of information among core groups
� Failure detection of said members/groups
� Forms the infrastructure used by the HA manager

Cell01

Core Group

Node01

Deployment
Manager

HA
Policies

Node02

Application
Server

Node Agent
HA

Manager

Node03

Application
Server

Node Agent

HA
Manager

HA Manager
(Core group
coordinator)

HA
Manager

HA
Manager1 : all

1 : all

1 : all

1 : all

1 : all

DRS

DRS

DB2
DRS

440 WebSphere Application Server V7.0: Concepts, Planning, and Design

14.5.3 Default core group discovery and failure detection protocol

The default implementation for the discovery and failure detection protocol works
in two steps:

� Discovery service

The default service establishes network connectivity with the other members
of the core group. To establish the connection, the Discovery Protocol
retrieves the list of core group members and the associated network
information from the product configuration settings. If the connection is
successful, a message will be entered in the system log.

� Failure detection

The failure detection protocol uses two different techniques to monitor the
status of the core group members. It listens for sockets used by core group
members to be closed by the operating system. It sends ping packets as a
heartbeat to each member. If the ping fails for a certain number of
consecutive packet losses, the corresponding member is marked as down.
For each kind of failure, a log entry will be issued.

After a failure is detected, the corresponding HA policy for the failed member is
initiated by the HA manager to recover the member.

Because each core group member communicates with all other members of the
core group, the amount of CPU cycles that the Discovery Protocol task
consumes increases proportional to the number of core group members.
Therefore, the default settings are a balance between CPU consumption and
timely failed member detection.

While in V6 it was only possible to modify the protocol settings by creating
custom variables, WebSphere Application Server V7.0 now offers the option to
modify the values directly through the Integration Solutions Console. Simply
navigate to Servers → Core Groups → Core Group settings →
(your_core_group) → Discovery and failure detection and change the
values.

When the core group contains members that are on version 6.x of WebSphere
Application Server, then you still have to define the custom variables:

� IBM_CS_FD_PERIOD_SECS
� IBM_CS_FD_CONSECUTIVE_MISSED

Health check: If you want to check whether you have any issues with core
group members, check the server output for WebSphere messages
DCSV1113W or DCSV1111W for detection failures. Message code
DCSV1111W reveals if any core group members are marked as failed.

 Chapter 14. WebSphere Application Server for z/OS 441

14.5.4 XCF—alternative protocol on z/OS

This section describes how the XCF system service is used to enhance the
WebSphere Application Server for z/OS V7.0 DCS protocol.

WebSphere Application Server for z/OS architectural change
From an architectural side, the usage of XCF adds some components to a
WebSphere environment, as shown in Figure 14-8.

Figure 14-8 Architectural changes when using XCF support

As seen in Figure 14-8, the main changes are:

� The internal failure detection of the HA manager will be factored out of the
DCS structure. Instead, XCF’s failure detection will be used to notify the HA
manager.

� The Discovery Service, used to communicate with the HA manager now talks
to the XCF component of z/OS.

� XCF plugs into DCS to perform the alive check. This will disable the TCP/IP
ping-based heartbeat.

If a member can no longer be contacted, the protocol will notify the core group
members and issue message DCSV1032I in the SystemOut.log file.

Default HA Manager

Distribution and
Consistency Service

Failure
Detection Alternative

protocol

HA Manager with XCF

XCF Plug-In

XCF

Discovery
Service

Discovery
Service

Distribution and
Consistency Service

Failure
Detection

442 WebSphere Application Server V7.0: Concepts, Planning, and Design

Exploitation of XCF techniques
WebSphere Application Server for z/OS uses the XCF communication, which
offers three different services:

� Group services
� Signaling services
� Status monitoring services

Only the group service is used for the XCF support for WebSphere HA manager.
To use the XCF system service, WebSphere Application Server for z/OS V7.0
provides an XCF plug-in that contains XCF user routines, as shown in
Figure 14-8 on page 442.

Become a XCF group member
When the XCF-based protocol is configured as the discovery and failure
detection protocol, then for each WebSphere Application Server core group one
XCF group will be created and the core group members will become active
members of this XCF group.

To become an active member of a XCF group, during startup of a core group
member (for example a node agent) the IXCJOIN macro is executed. As a result
the member is associated with the address space in which the IXCJOIN was
issued and added to the XCF group. As an active XCF member, it can perform
the following tasks:

� Send and receive messages to other members
� Have its status monitored by XCF
� Be notified of status changes to other members of the group

Each WebSphere Application Server component that can become a core group
member can become a XCF group member.

Status change
The XCF group service has three options of recognizing that a member is no
longer active:

� The corresponding XCF macro is run that disassociates a member from the
XCF group. This happens when the core group member is stopped through
the Integrated Solutions Console.

� The address space (with the core group member in it) that is associated with
the XCF member is terminated. This will result in the termination of the XCF
member.

� The status user routine of the XCF member (and the core group member) is
no longer working. To show that a member is still running, it needs to update a
specific field. If the member fails to update this field within a specified time
interval, XCF schedules the status user routine to determine if a problem
exists.

 Chapter 14. WebSphere Application Server for z/OS 443

Member notification
To notify the other core group members of a status change, an XCF group user
routine is executed.

The group user routine enables XCF to notify active members of a group when
there is a change in the operational state of any other member in the group, or a
change to the status of any system in the sysplex.

This triggers the HA coordinator inside WebSphere Application Server for z/OS
to perform neccessary actions.

14.5.5 Activating XCF support for HA manager

To take advantage of the enhanced HA manager discovery and failure
mechanism, the following requirements must be satisfied: (Otherwise you have to
use the default policy.)

� The z/OS VTAM® component must be configured to start XCFINIT = YES, to
enable TCP/IP to use the XCF service.

� All core group members must be on Version 7 of WebSphere Application
Server

� All core group members must be running on z/OS

� Should the core group be bridged to another core group, then all bridged
groups must be reside on z/OS in the same sysplex

When these prerequisites are met, perform the following steps to activate the
XCF support in the Integration Solutions Console:

1. Select Servers → Core Groups → Core Group settings.

2. Select the core group you want to modify.

3. In the selected core group, select Discovery and failure detection.

4. Check the Use alternative protocol providers radio box and enter the fully
qualified class name for the z/OS factory that is used to create the alternate
protocol provider, com.ibm.ws.xcf.groupservices.LivenessPluginZoSFactory,
as seen in Figure 14-9 on page 445.

444 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 14-9 Activation setting for XCF support in the Integration Solutions Console

5. Click OK and save the changes to the master configuration.
6. Restart the server.
7. (Optional) If the default values for the failure detection protocol provided with

the XCF support are not convenient for your environment, you can configure
the following core group custom properties:

– IBM_CS_STACK_CHECK_INTERVAL_SECS

This property defines how often the alternate protocol provider checks the
liveness of a core group member. The default value is 30 seconds

– IBM_CS_STACK_CHECK_FAILS

This property sets the number of attempts the alternate protocol provider
will make to contact the core group member before notifying the high
availability manager that a member is not active. The default value is 3.

Note: To determine the total time that it takes the alternate protocol provider to
determine that a server has failed, multiply the values specified for the
IBM_CS_STACK_CHECK_INTERVAL_SECS and
IBM_CS_STACK_CHECK_FAILS custom properties.

Using the default values it would take 90 seconds.

 Chapter 14. WebSphere Application Server for z/OS 445

14.6 z/OS Fast Response Cache Accelerator

This section gives general information about the Fast Response Cache
Accelerator (FRCA).

14.6.1 Overview and benefits

WebSphere Application Server for z/OS V7.0 can be configured to use the Fast
Response Cache Accelerator facility of the z/OS Communications Server
TCP/IP. FRCA has been used for years inside the IBM HTTP Server to cache
static contents like pictures or HTML files.

The high speed cache can be used to cache static and dynamic contents, such
as servlets and JavaServer Pages (JSP) files, instead of using the WebSphere
Application Server Dynamic Cache.

Figure 14-10 on page 447 shows the changed flow of a request for a JSP that
can be answered from the cache, assuming that the IBM HTTP server also
resides on z/OS:

� Without FRCA exploitation a request has to be processed by TCP/IP, then by
the IBM HTTP Server on z/OS until WebSphere Application Server itself can
answer the request from its Dynacache.

� With FRCA exploitation a request to a cached JSP is recognized in the
TCP/IP processing and gets answered directly.

The benefits of using the FRCA are a reduced response time and a reduced
CPU cost for the serving of requests, compared to the Dynamic Cache. Tests
have shown that a request served from the FRCA used approximately 8% of the
processor time that the same request consumed in a Dynamic Cache
environment. These advantages come from its structure, because the FRCA
cache can directly serve incoming TCP/IP requests (Figure 14-10 on page 447).

Attention: This functionality needs z/OS 1.9 or higher to be used. It is not
planned to include this through PTFs in earlier versions of z/OS.

The z/OS Communications Server TCP/IP service updates to the FRCA
support are required for this function to work on z/OS Version 1.9. If the
updated FRCA services are not available on the system, the application
server will issue error message BBOO0347E or BBOO0348E. TCP/IP uses
CSM storage to maintain the cache.

446 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 14-10 Overview of z/OS FRCA and WebSphere Application Server for z/OS

14.6.2 Configuring FRCA

The FRCA support needs to be configured in the Integration Solutions Console
as an external cache group and in cachespec.xml. This XML file should exist for
each application in the corresponding WEB-INF directory of that application.

To configure FRCA, the following major steps needs to be performed on an
application server base (each step will be described in detail on the next pages).
Enabling FRCA on a cell level is only possible through the use of self-written
wsadmin scripts.

Without FRCA exploitation:

Web
Request

WebSphere
Application Server

V6.1

Business
Logic

Dynacache

DB2

Data
Logic

HTTP Server

WAS
Plug-in

TCP/IP z/OS

FRCA

With FRCA exploitation:

Web
Request

WebSphere
Application Server

V7.0

Business
Logic

Dynacache

DB2

Data
Logic

HTTP Server

WAS
Plug-in

TCP/IP z/OS

FRCA

Note: At the time of writing, the FRCA cache only supports non-SSL
connections.

 Chapter 14. WebSphere Application Server for z/OS 447

Perform the following steps to configure FRCA:

1. Create a external cache group.
2. Populate the cache group with your server.
3. Modify the cachespec.xml.
4. [Optional] configure logging for the cache.
5. [Optional] If objects larger than 10 MB are used, modify the

protocol_http_large_data_response_buffer user variable to a size larger than
the largest object to be cached.

Creating external cache group
Perform the following steps to create an external cache group:

1. Navigate to Servers → Server Types → WebSphere application servers.

2. Select the server that should benefit from the FRCA.

3. In the Configuration view, select Container Settings → Dynamic cache
service.

4. Navigate to Additional Properties → External cache group and select
New.

5. Enter a name that is convenient for your installation. Select OK and save
changes to the master configuration.

Best-practice: It is suggested to configure the dynamic cache disk offload.
This will prevent objects from being removed from the dynamic cache and
being removed from the FRCA cache. Refer to the Information Center article
Configuring dynamic cache disk offload, for further information, The article is
found on the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.express.doc/info/exp/ae/tdyn_diskoffload.html

448 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tdyn_diskoffload.html

Adding member to the cache group
Perform the following steps to add a member to the cache group:

1. Open the cache group just created by navigating to Servers → Server Types
→ WebSphere application servers → (your_server) → Container
Settings → Dynamic cache service → (your_cache_group) → External
cache group members and select New.

2. Select the configuration tab and perform the following steps:

a. Select Advanced Fast Path Architecture.
b. Select the Enable fast response cache adapter check box.
c. In the Port field, select zero as the port number.

3. For FRCA configuration, set the following fields:

– Cache size

The cache size is a value that specifies the size of the FRCA cache. The
maximum size is limited by the amount of available CSM memory
managed by the z/OS Communications Server. The value is rounded up to
a 4 K (4096) interval. The default is 102400000.

– Cache entries

This value specifies the number of individual objects that can be placed in
the FRCA cache. The maximum value is limited by the underlying support
in the z/OS Communications Server. The default is 1000.

– Max entry size

The max entry size value specifies the maximum size in bytes of a single
object that can be placed in the FRCA cache. The default is 1,000,000.

– Stack name

The stack name specifies the name of the Open Edition Physical File
system supporting the TCP/IP stack containing the FRCA cache. The
stack name specified must match the name on the SubFileSysType
statement in the Open Edition BPXPRMxx parmlib member. This directive
is only needed if the Open Edition Common Inet function is being used.
Contact your system programmer to determine if Common Inet is in use,
and if so, the name of the FRCA-enabled TCP/IP stack. The default is
none.

– Transaction Class

The transaction class name, which is eight characters or less, specifies
the transaction class name that is used to classify the work done by
FRCA. If the transaction class is specified, the FRCA processing is
classified under WLM. If it is not specified, no classification will occur. The
default is none.

 Chapter 14. WebSphere Application Server for z/OS 449

Update cachespec.xml
When updating the XML file, remember that both names used for the cache in
the XML file and the Integrated Solutions Console must match. Otherwise the
cache cannot be used. A sample cachespec.xml is shown in Figure 14-11. For
more information about the usage of a cachespec.xml, refer to the WebSphere
Application Server V7.0 Information Center, at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/rdyn_cachespec.html

Figure 14-11 Sample cachespec.xml for usage with FRCA

[Optional] Enabling FRCA logging
If you want to enable logging for FRCA, use the Integrated Solutions Console
and execute the following steps:

1. Navigate to Servers → Server Types → WebSphere application servers
→ (your_server).

Note: By default the FRCA cache is active on all channel chains that contain a
Web container channel and do not contain an SSL Channel.

You can disable FRCA for specific channel chains and listener ports, using the
configuration tab for transport channels. Navigate to Servers → Server
Types → WebSphere application servers → (your_server) → Web
Container Settings → Web container transport chains →
(your_transport_chain). Mark Disable FRCA caching.

450 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rdyn_cachespec.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rdyn_cachespec.html

2. Under the Troubleshooting tab, select NCSA access and HTTP error
logging.

3. Check the Enable logging service at server start-up check box.

If you want you can modify the other settings or keep the defaults.

Large object caching
If objects larger then 10 MB should be cached, you need to set the
protocol_http_large_data_response_buffer custom property. The value for this
property should be higher than the maximum size that should be cached.

For information about how to set custom properties, refer to the IBM Information
Center at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

14.6.3 Monitoring FRCA

You can use the WebSphere Application Server modify display console
command to display statistics, and to list the contents of the FRCA cache. Refer
to the Information Center article Configuring high-speed caching using FRCA
with the WebSphere Application Server on z/OS, available at the following Web
page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/tdyn_httpserverz.html

To display cache statistics the following commands can be issued:

� From z/OS console: f <serverName>,display, frca
� From z/OS console: display tcpip,,netstat,cach
� From TSO: netstat cach

For monitoring large object caching activity in the Dynamic Cache, you can use
the cache monitor. This installable Web application provides a real-time view of
the dynamic cache state. In addition it is the only way of manipulating data inside
the cache.

For more information about how to set up the cache monitor, go to the Displaying
cache information article in the Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/tdyn_servletmonitor.html

 Chapter 14. WebSphere Application Server for z/OS 451

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tdyn_httpserverz.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tdyn_httpserverz.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tdyn_servletmonitor.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tdyn_servletmonitor.html

14.6.4 Resource Access Control Facility (RACF) integration

FRCA services can be restricted. If access is restricted (the SERVAUTH class
and the FRCA resource are defined) in your environment, then WebSphere
Application Server must be granted access.

If the access is restricted, the message seen in Example 14-2 will be issued.

Example 14-2 FRCA access denied message

BBOOnnnnE FRCA INITIALIZATION FAILED. SERVER NOT AUTHORIZED TO USE FRCA
SERVICES. IOCTL RV=%d, RC=%d, RSN=%08X

The RACF command in Example 14-3 enables access to the FRCA services.

Example 14-3 RACF command to enable FRCA service

PERMIT EZB.FRCAACCESS.your_system_name.your_TCPIP_procname CLASS
(SERVAUTH) ID (your_control_reggion_userid) ACCESS (READ)
SETROPTS RACLIST (SERVAUTH) REFRESH

14.7 Thread Hang Recovery

This section describes the new Thread Hang Recovery option available on z/OS.

14.7.1 Overview

WebSphere Application Server for z/OS V7.0 contains a new technique called
Thread Hang Recovery. A hung thread will end up with one of the following
situations:

� It simply hangs around, only blocking threads and application environment
resources, such as connections, tables, and so forth.

� It ends in a loop state, not only blocking other resources but in addition
consuming CP or zAAP resources. What kind of processor is being used
depends on whether a zAAP is available at all and in what step of the
application the error occurs.

Thread Hang Recovery directly addresses both of these issues. It allows you to
define actions that should be started if a timeout occurs.

It allows you to specify thresholds for processor usage and actions that should be
performed if a single request exceeds this value. This is of real value if your

452 WebSphere Application Server V7.0: Concepts, Planning, and Design

environment uses high timeout values, due to some long running transactions,
but only with few processor resources per request. If such a transaction would
suddenly consume a high amount of CPU, due to an error, this would not be
detected by prior versions, unless the normal timeout occurs. However until the
timeout occurs this will have a performance impact to the whole environment.

14.7.2 Pre-WebSphere Application Server V7.0 technique

In releases prior to V7.0, if a request ran into a timeout, the server assumes that
the request must be hung and starts to solve the situation. Depending on the
recovery setting for your installation the server has two choices of processing.

� Terminate the servant with ABEND EC3

If protocol_http_timeout_output_recovery=SERVANT, then the servant will be
terminated and WLM will restart a new one. A dump of the servant may be
generated and all work that was running in the servant is terminated. This
option could end up penalizing work that was not having any problems. In
addition, server throughput is affected while the a dump is being taken and a
new servant is started which can take a long time

� Respond to the client and continue working

If protocol_http_timeout_output_recovery=SESSION, then it is assumed that
there was an unusual event that caused the timeout and the request will
eventually complete successfully. If this assumption is wrong, and the request
is truly hung, the servant is left with one less thread for processing incoming
work. In addition, by allowing the request to continue, deadlocks could occur
because the request is holding locks or other resources. If this problem
continues to happen on subsequent requests, multiple threads become tied
up and the throughput of the servant is affected, possibly to the point where it
has no threads available to process work.

14.7.3 WebSphere Application Server V7.0 technique

If a hung thread was detected, then the servant can try to interrupt the request.
To allow the servant to do so, a new registry of interruptible objects is introduced.
Certain blocking code can register so that if too much time passes, the servant
can call the interruptible object in order for it to attempt to unblock the thread. A
Java interruptible object will always be registered so the servant will try to have
Java help interrupt the thread if all else fails.

 Chapter 14. WebSphere Application Server for z/OS 453

The results of this can be as follows:

� Thread can be freed

If this is the case, then the user whose request hung receives an exception.
The administrator can define what dump-action should be taken (none,
svcdump, javacore, or traceback).

� Thread cannot be freed

In the case that a thread cannot be freed, the system action depends on the
administrator settings. The options are as follows:

– Abend the servant
– Keep the servant up and running
– Take a dump (defined by new variables)

See Table 14-2 on page 455.

Although the basic options if a thread cannot be freed are still the same as in
prior versions of the WebSphere Application Server for z/OS product, the
decision whether a servant should be abended or kept alive now depends on the
following factors:

� How much CPU time is consumed by the thread? (Looping or just hanging?)
� Is the servant the last servant?
� How many threads are already in a hung state, within this servant?

For more details on the corresponding parameters, refer to 14.7.4, “New
properties” on page 454.

If a thread that was reported to the controller as hung finishes, the controller is
notified of that so that it is no longer considered in the threshold determination.

14.7.4 New properties

As described in the previous section, WebSphere Application Server V7.0
introduces a set of new variables that allow the administrator to configure the
behavior of the application server if a hung thread cannot be freed.

Note: The code that is used to unblock a thread is provided by the WebSphere
Application Server V7.0. To use the Thread Hang Recovery for your
application serving environment, you do not have to implement code for the
Interruptable Objects registry.

454 WebSphere Application Server V7.0: Concepts, Planning, and Design

The new properties will be listed by default in the system log, although they must
first be created as Custom properties to benefit from them. To do so, log on to the
Integrated Solutions Console and navigate to Server → Server Types →
WebSphere application servers → (your_server) → Server Infrastructure →
Administration → Custom properties → New. This will create the properties
on a server base.

Table 14-2 Variables for hung thread related actions

Note: When modifying one of the new parameters listed in Table 14-2 make
sure to have these additional parameters configured (available in prior
versions):

� control_region_timeout_delay
� control_region_timeout_save_last_servant

Variable name Values Meaning

server_region_stalled_thread_
threshold_percent

0 -100 Percentage of threads that can become
unresponsive before the controller terminates
the servant. Default value 0 means that it
behaves as in prior versions.

server_region_<type>_stalled_
thread_dump_action

NONE |
SVCDUMP |
JAVACORE |
JAVATDUMP |
HEAPDUMP |
TRACEBACK

Specifies the dump action after hang is
detected. <type> can be http(s), iiop, mdb,
sip(s).

server_region_request_cputime
used_limit

variable Amount of processor milliseconds a request
can consume before servant will take an
action.

server_region_cputimeused_
dump_action

NONE |
SVCDUMP |
JAVACORE |
JAVATDUMP |
HEAPDUMP |
TRACEBACK

Type of documentation to take when a request
has consumed too much processor time.

control_region_timeout_
save_last_servant

0 | 1 Indicates whether the last available servant
should be abended if a timeout situation
occurs on that servant, or the last available
servant should remain active until a new
servant is initialized

 Chapter 14. WebSphere Application Server for z/OS 455

14.7.5 Display command

There is a new command to display the dispatch threads that are currently active.
The DISPLAY,THREADS command will display every dispatch thread in every
servant region associated with the specified controller. By default, it will give you
SUMMARY information but you can also specify that you want DETAILS. In the
case of the REQUEST=<value> parameter, the default is DETAILS.

f <server_name>,display,threads,[ALL | TIMEDOUT | REQUEST=<value> |
ASID=<value> | AGE=<value>]

The information is also available through a new InterruptibleThreadInfrastructure
MBean.

14.8 Installing WebSphere Application Server for z/OS

This section provides an overview of the installation and configuration process for
WebSphere Application Server for z/OS V7.0. For a detailed installation manual,
including checklists for z/OS, see the Information Center article How do I install
an application serving environment, available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.installation.zseries.doc/info/zseries/ae/welc_howdoi_tins.html

Note: If the request exceeds the specified amount of time, UNIX Systems
Services generates a signal that may or may not get delivered to the rogue
request.

The signal may not get delivered immediately if the thread has invoked a
native PC routine, for instance. In that case, the signal will not get delivered
until the PC routine returns to the thread. When and if the signal gets
delivered, a BBOO0327 message is output, documentation is gathered
according to what is specified as documentation action in the
server_region_cputimeused_dump_action property, and the controller is
notified that a thread is hung.

After the signal is delivered on the dispatch thread, the WLM enclave that is
associated with the dispatched request is quiesced. This situation lowers the
dispatch priority of this request, and this request should now only get CPU
resources when the system is experiencing a light work load.

456 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc_howdoi_tins.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc_howdoi_tins.html

14.8.1 Installation overview

To install a WebSphere Application Server for z/OS V7.0 on z/OS there are three
major steps to be performed:

1. System preparation

2. Product code installation with System Modification Program/Extended
(SMP/E)

3. Product configuration, including the profile creation, using Job Control
Language (JCL)

14.8.2 Installation considerations

This section includes general considerations when installing a WebSphere
Application Server for z/OS V7.0.

General environment considerations
Planing your environment is critical, so a dedicated chapter is introduced in this
book. See Chapter 4, “Infrastructure” on page 93.

Naming convention
When installing WebSphere Application Server for z/OS V7.0, make sure you
use a good naming convention. The operating system restriction to eight
characters limits your naming convention to the usage of abbreviations. Keep in
mind that there are new components introduced in WebSphere Application
Server for z/OS V7.0 (for example the administrative agent and job manager).
Make sure that your convention reflect this information as well.

Real memory defined
Keep in mind that the WebSphere Application Server for z/OS has a different
blueprint than WebSphere Application Server for distributed environments. See
14.1.4, “Structure of an application server” on page 422 for more details.
Because there are multiple heaps, one for every controller and servant region,
this results in different memory requirements.

It is absolutely critical that the heaps defined in a WebSphere Application Server
environment fit into real memory. The impact of not having the heap in the real
memory would be a negative performance impact due to paging during each

Note: The naming convention guidelines from the Washington System center
are included in the configuration tool for the profile creation.

 Chapter 14. WebSphere Application Server for z/OS 457

garbage collection. The garbage collection for a JVM heap requires all pages of
the heap to be in exclusive access and in real memory. If any pages are not in the
real storage they first need to be paged in.

As an example look at the environment from Figure 14-3 on page 426. This
includes a deployment manager and one application server (with three servants).
Assume each control region heap has a maximum of 256 MB and each servant
region a maximum of 512 MB defined. Then the real storage that the WebSphere
Application Server for z/OS needs is 2.5 GB. This does not consider that there
might be other middleware installed in the z/OS image.

Make sure that the LPAR that is used for the installation has enough real storage
defined. Also keep in mind to add storage for the operating system and other
applications running in this LPAR, like DB2, CICS, and so on.

Heap sizes (min/max) defined
Usually the z/OS version will need smaller maximum heap sizes than the
distributed version, because it has specialized heaps in its structure, as
described in 14.1.4, “Structure of an application server” on page 422.

This is of interest when migrating an application from another platform to
WebSphere Application Server for z/OS V7.0. Often, the memory size from the
distributed environment is carried on from the distributed environment and
reused for the controller and servant regions settings. While this may be a waste
of memory resources, it can affect the performance as well. If the heap is sized
too large, then the Garbage Collection will run less often, but if it runs, it takes up
more time. This might reduce the general throughput.

Health check: We suggest to monitor your system and check for swapping. If
you experience swapping, this will have a performance impact.

Important: If an application is migrated to WebSphere Application Server for
z/OS V7.0 from another operating system family, perform a verbose Garbage
Collection analysis. This will allow you to size the heap to a good minimum
and maximum value, so that the performance is good and no resources are
wasted.

458 WebSphere Application Server V7.0: Concepts, Planning, and Design

zAAP usage
The System z Application Assist Processor (zAAP) is a processor dedicated for
the execution of Java and XML work. There are two main reasons why you
should consider the usage of a zAAP in your WebSphere Application Server for
z/OS environment:

� Reduced software cost

Workload that runs on the zAAP does not count to the monthly z/OS software
bill. Because WebSphere Application Server is mainly written in Java, it can
use the zAAP. In most environments we see about 80% of the WebSphere
environment (WebSphere Application Server for z/OS and the applications
inside) running on the zAAP. The use depends on the amount of Java Native
Interface (JNI) calls and other non-Java functions used in the application.

� Performance gain

The zAAP implementation offers a dedicated Processor Resource/Systems
Manager™ (PR/SM™) processor-pool. This means that units of work
dispatched run in their own world. Because less units will compete for the
processor resources, they do not have to wait as long until they can access
the processor.

A zAAP has to be configured in the LPAR profile through the Hardware
Management Console (HMC) of the System z. It can be used both as a shared or
a dedicated processor, depending on the LPAR setting.

File system considerations
When installing a WebSphere Application Server for z/OS, the following things
should be taken into consideration regarding the file system, regardless of
whether HFS or zFS is used:

� Separate configuration file systems per node

Although file systems can be shared across multiple z/OS images in a parallel
sysplex, from a performance perspective, it is suggested to create dedicated
file systems for each node.

� Product file system mounted read only

This will improve performance as well as prevent the change of file system
contents.

Note: If you currently do not have a zAAP physically installed, you can use the
Resource Measurement Facility (RMF) to identify the amount of CPU seconds that
could be run on a zAAP. For detailed information refer to the documentation available at
the following Web page:

http://www-03.ibm.com/systems/z/advantages/zaap/resources.html

 Chapter 14. WebSphere Application Server for z/OS 459

http://www-03.ibm.com/systems/z/advantages/zaap/resources.html

14.8.3 Function Modification Identifiers

WebSphere Application Server for z/OS consists of the Function Modification
Identifiers (FMIDs) presented in Table 14-3.

Table 14-3 FMIDs for WebSphere Application Server V7.0 for z/OS

Available as a separate product, IBM HTTP Server V7.0 (FMID HHAP700) is
based on Apache. The older, 31-bit version based on Domino Go is included with
z/OS and is called HTTP Server for z/OS.

14.8.4 SMP/E installation

The product code of V7.0 is still brought to your system using the SMP/E function
of z/OS.

Contact the IBM Software Support Center for information about preventive
service planning (PSP) upgrades for WebSphere Application Server for z/OS.
For more information about PSP upgrades, see the WebSphere Application
Server for z/OS: Program Directory. Although the Program Directory contains a
list of required program temporary fixes (PTFs), the most current information is
available from the IBM Software Support Center.

For more information about maintenance, see the Information Center article
Applying product maintenance article, available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.installation.zseries.doc/info/zseries/ae/tins_prodmai
ntenance.html

Component name FMID Compid PSP Bucket
(Upgrade=WASAS700)
Subset

WebSphere Application
Server V7.0 for z/OS

H28W700 5655I3500 H28W700

Optional Materials JIWO700 --- JIWO700

Install Samples JIWO700 5655I3509 JIWO700

IBM HTTP Server 64-bit
plug-in

JIWO700 5655I3511 JIWO700

WebSphere Application
Server V7.0 for z/OS DMZ
Secure Proxy Server

JDYZ700 5655N0212 JDYZ700

460 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/tins_prodmaintenance.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/tins_prodmaintenance.html

14.8.5 Customization

After the SMP/E installation is complete, the next step is the product
configuration as seen in Figure 14-12.

Figure 14-12 Configuration overview of WebSphere Application Server for z/OS

This includes the creation of the server profile and the execution on the host,
using the following tools:

� (optional) Washington System Center Planning Spreadsheet for WebSphere
Application Server V7.0 for z/OS

� WebSphere Customization Tools (graphical / interactive)

� zpmt.sh z/OS script (command line / batch style / silent)

These tools are described briefly in the following sections.

Define
variables

PMT or zpmt.sh
Generate

customization jobs
DATA

CNTL

Generated
JCL jobs

and scripts,
customized

with
variables

BBOxxINSRun jobs
Directory structure
created and
populated with XML
and properties files

z/HFS

J

JCL
procs

Application serving environment

Instructions:

 Chapter 14. WebSphere Application Server for z/OS 461

Washington System Center Planning Spreadsheet
The Washington System Center created a new version of the WebSphere for
z/OS Version 7 - Configuration Planning Spreadsheet (Reference #PRS3341).
The spreadsheet can be used during the customization process. It can be found
at the following Web page:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

This Techdoc contains three planning spreadsheets:

� Network Deployment Cell
� Standalone server
� DMZ (Secure Proxy)

You can use the spreadsheet to enter multiple variables to define your
installation. The entered data can be saved and used as a response file for the
graphical WebSphere Customization Tools or the command-line zpmt.sh tool. A
response file can be used by these tools to generate the actual Job Control
Language (JCL) that will create the profiles (as seen in Figure 14-13 on
page 463).

Note: For detailed information about the installation of WebSphere Application
Server for z/OS V7.0 refer to the Information Center article Installing your
application serving environment, available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc6t
opinstalling.html

462 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc6topinstalling.html
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

Figure 14-13 Usage of Planning Spreadsheet for WebSphere Application Server for z/OS

WebSphere Customization Tools
After the product code is brought to the system, WebSphere Application Server
needs to be configured. In version 7 this is only possible using WebSphere
customization tools. The tools can be accessed by searching for WebSphere
Customization Tools (WCT) V7.0 on the WebSphere Fix site at the following Web
page:

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg
27004980#tools

Response
File

DATA

CNTL
Transfer jobs

Directory structure
created and
populated with XML
and properties files

z/HFS

J

JCL
procs

Application serving environment

Note: The ISPF panel configuration is no longer available in WebSphere
Application Server for z/OS V7.0.

There is a useful presentation that describes the usage of the WCT. Refer to
the following Web page:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3357

 Chapter 14. WebSphere Application Server for z/OS 463

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004980#tools
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3357

The set of tools is available for Windows and Linux based workstations are as
follows:

� Profile Management Tool (z/OS only)

For creation of profiles

� z/OS Migration Management Tool

For migration of nodes

For detailed information about how to install and use these tools refer to the
Installation and migration section of the IBM Education Assistant for WebSphere
Application Server V7.0. The assistant can be found at the following Web page:

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topi
c=/com.ibm.iea.was_v7/was/7.0

zpmt.sh command
The zpmt.sh script is the silent implementation of the Profile Manage Tool on the
z/OS host. You use a command line call to the script, including various
parameters. It will then create the .CNTL and .DATA members necessary to build
WebSphere Application Server corresponding to the response file. It can be
configured to allocate and to copy the members from the z/OS file system to the
z/OS data sets. The principal overview is shown in Figure 14-14.

Figure 14-14 Overview of zpmt.sh configuration script

The script can be found in the default WebSphere Application Server for z/OS
product directory /usr/lpp/zWebSphere/V7R0/bin. Executing the script places you
in the OSGI command shell.

Note: The Application Server Toolkit (AST) that was available in previous
versions of the WebSphere Application Server is not available for V7.0.

z/OS

DATA

CNTL
J

JCL
procsexecute>/usr/lpp/zWebSphere

/V7R0/bin/zpmt.sh

>/usr/lpp/zWebSphere
/V7R0/bin/zpmt.sh creates

464 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v7/was/7.0

While it might first look as though nothing is happening, the shell will come up
with status messages after some time.

14.8.6 Execute customization jobs

The second step in the customization is the execution of the JCL that was
created using one of the techniques described in 14.8.5, “Customization” on
page 461.

Table 14-4 shows the jobs necessary for the customization of WebSphere
Application Server for z/OS V7.0. The jobs are similar to V6.1, but there are
some notable differences.

Table 14-4 Installation jobs for WebSphere Application Server for z/OS V7.0

Note: An OSGI command shell is an execution environment that allows the
remote management of Java application and components. It is based on the
osgi open standard.

Note: If you have to rerun a script for a profile, make sure to delete the
profilePath directory. Otherwise you will receive the following message:

The profile path is not valid.

Job name Description

BBOxxINS Instruction member that contains the installation steps.

BBOSBRAK RACF scripts will be created and executed in this JCL. No more
“BRAJ” to create script for “BRAK” to execute.

BBOSBRAM Create /home directories for the WebSphere users in the OMVS part
and set ownership.

BBOxBRAK RACF scripts will be created and executed in this JCL. No more
“BRAJ” to create script for “BRAK” to execute.

BBOxCFS Set up file system (whether HFS or ZFS™).

BBOxCPY1 Copies the tailored start procedures to the cataloged procedure
library.

BBOxHFSA Populate the created HFS. The job will automatically create
intermediate symlinks based on the options chosen in the WCT.

BBOWWPFx No more HFSB job. Instead the file system initialization is included in
WWPFD

 Chapter 14. WebSphere Application Server for z/OS 465

14.9 System programmer considerations

This section contains some additional hints and tips for system programmers that
should be taken into consideration when installing and configuring a WebSphere
Application Server for z/OS V7.0 environment.

14.9.1 Systems Management Facility enhancements

WebSphere Application Server for z/OS is capable of writing z/OS Systems
Management Facility (SMF) records for performance tuning and charge-back.

Prior to WebSphere Application Server for z/OS V7.0
Since Version 4 of WebSphere Application Server, SMF record 120 was used to
log usage data.

SMF reserves record type 120 for WebSphere activity data. Record 120 includes
a number of subtypes, each of which contains a subset of the data. This
fragmented view of the data is due to internal divisions in the product. Some
record 120 subtypes are created by the WebSphere Application Server runtime
(subtypes 1 and 3), while others are created by the Web containers and EJB
containers (subtypes 5, 6, 7, and 8). Because each subtype provides only a
partial view of the activity, you need to correlate several subtypes to get a more
complete picture of what the server is doing. This will however increase the
overhead of SMF usage.

New in WebSphere Application Server for z/OS V7.0
In V7.0 a new subtype 9 record, called Request Activity Record, has been added.
It can be used to create/write resource usage records without unreasonable
overhead. Any data collection that adds substantially to the cost of acquiring that
data is optional. You can activate or deactivate this record dynamically.

The subtype 9 gives you the option to monitor which requests are associated
with which applications, how many requests occur, and how much resource each
request uses. You can also use this record to identify the application involved and
the CPU time that the request consumes. Because a new record is created for
each request, it is possible to determine the number of requests that arrive at the
system over a specific period of time.

About the new subrecord: Because the new SMF 120-9 subrecord
consumes less processing time than the collection of multiple subrecords, we
suggest the usage of the new subrecord. The old subrecords remain valid and
can be used with WebSphere Application Server for z/OS V7.0.

466 WebSphere Application Server V7.0: Concepts, Planning, and Design

Table 14-5 shows the new variables, possible values, and their meaning. A
browser to display the contents of the new SMF records is provided.

Table 14-5 New SMF record 120-9 variables

Modify commands
The following modify commands can be used to activate or disable the new
variables:

� F <server>,SMF,REQUEST,[ON | OFF]
� F <server>,SMF,REQUEST,CPU,[ON | OFF]
� F <server>,SMF,REQUEST,TIMESTAMPS,[ON | OFF]
� F <server>,SMF,REQUEST,SECURITY,[ON | OFF]

To show the current settings in your environment, as well as the number of
records written since the last Initial Program Load (IPL), and the last non-zero
Return Code (RC), use the following command:

F <server>,DISPLAY,SMF

For more information about the SMF enhancements refer to Whitepaper
WP101342, Understanding SMF Record Type 120, Subtype 9, available at the
following Web page:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101342

14.9.2 WebSphere Application Server settings

This section addresses the following:

� Intelligent runtime provisioning
� Workload profile setting
� Addressing mode

Variable name Values Meaning

server_SMF_request_activity_enabled 0 | 1 Turn record off/ on

server_SMF_request_activity_CPU_detail 0 | 1 Processor usage
details

server_SMF_request_activity_timestamps 0 | 1 Formatted timestamps

server_SMF_request_activity_security 0 | 1 Security information

 Chapter 14. WebSphere Application Server for z/OS 467

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101342

Intelligent runtime provisioning
The new intelligent runtime provisioning function is disabled by default. You might
want to enable it in the Integrated Solutions Console to reduce the startup time
and resource consumption. Improvements in the startup time of up to 10-15%
can be seen. For more information about intelligent runtime provisioning see
3.1.14, “Intelligent runtime provisioning” on page 72.

Workload profile setting
WebSphere Application Server for z/OS V7.0 introduces a new value for the
workload profile setting in the Object Request Broker (ORB) services advanced
settings.

It is now possible to make a user defined selection for the number of threads,
using the CUSTOM setting.

To change the value through the Integrated Solutions Console, click Servers →
Server Types → WebSphere application servers → your_server →
Container services → ORB service → z/OS additional settings.

Table 14-6 lists all possible values.

Table 14-6 Workload Profile settings for z/OS ORB service

Value # Threads Description

ISOLATE 1 Specifies that the servants are restricted to a single
application thread. Use ISOLATE to ensure that concurrently
dispatched applications do not run in the same servant. Two
requests processed in the same servant could cause one
request to corrupt another.

IOBOUND MIN(30,
MAX(5,(Number of
CPUs*3)))

Specifies more threads in applications that perform
I/O-intensive processing on the z/OS operating system. The
calculation of the thread number is based on the number of
CPUs. IOBOUND is used by most applications that have a
balance of CPU intensive and remote operation calls. A
gateway or protocol converter are two examples of
applications that use the IOBOUND profile.

CPUBOUND MAX((Number of
CPUs-1),3)

Specifies that the application performs processor-intensive
operations on the z/OS operating system, and therefore would
not benefit from more threads than the number of CPUs. The
calculation of the thread number is based on the number of
CPUs. Use the CPUBOUND profile setting in CPU intensive
applications, like XML parsing and XML document
construction, where the vast majority of the application
response time is spent using the CPU.

468 WebSphere Application Server V7.0: Concepts, Planning, and Design

Addressing mode
The Addressing Mode (AMODE) is a JCL parameter, introduced with version 6.1,
used in the START command to determine whether the server shall be started in
64-bit or 31-bit mode.

The AMODE parameter is still supported in V7.0. It is suggested not to modify
the default value. In the generated procedures during the installation, the value
00 is default. This means that the value defined inside the application server’s
XML files is used for the decision of running 64 or 31-bit mode.

If you start the server with for example AMODE=64 and the XML files reflect a
31-bit installation (or through versa), then the server will not start.

14.9.3 Java settings

The settings described here are JVM settings that cannot be directly modified by
the WebSphere Application Server V7.0. However, servers will use these
underlying techniques.

For detailed information about the topics presented in this section, go to the
Diagnostics Guide for the JVM V6, found at the following Web page:

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

LONGWAIT 40 Specifies more threads than IOBOUND for application
processing. LONGWAIT spends most of its time waiting for
network or remote operations to complete. Use this setting
when the application makes frequent calls to another
application system, like CICS screen scraper applications, but
does not do much of its own processing.

CUSTOM User defined Specifies that the number of servant application threads is
determined by the value that is specified for the
servant_region_custom_thread_count server custom
property. The minimum number of application threads that can
be defined for this custom property is 1; the maximum number
of application threads that can be specified is 100.

Value # Threads Description

Note: We suggest using the default value for the AMODE (AMODE=00) in the
startup JCL for the WebSphere Application Server components.Double-check
your automation settings.

 Chapter 14. WebSphere Application Server for z/OS 469

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

Shared class cache
This section contains special information about the shared class cache usage on
z/OS.

Overview
The shared class cache is used to share WebSphere Application Server and
user classes between multiple JVMs.

JVMs that use the shared class cache start up more quickly, and have lower
storage requirements than JVMs that do not. The overall cost of class loading is
also reduced when JVMs use the shared class cache. When a new JVM that
shares the class cache is initialized, it uses the preloaded classes instead of
reading them from the file system. A JVM that shares the class cache still owns
all the working data (objects and variables) for the applications that run in it. This
helps to maintain the isolation between the Java applications being processed in
the system.

The first JVM, after an IPL or after the cache has been destroyed, will take
between 0–5% longer, to fill the cache. The startup time of subsequent JVMs will
decrease by 10–40%, depending on the number of classes being loaded.

The z/OS implementation links pages in the private area of the address space
that uses the cache to the frames of the original location of the cache. Because
shared memory is used, BPXPRMxx parmlib settings affect the cache
performance.

Important settings
Consider these factors when using shared class cache in your environment:

� Cache size limits

The maximum theoretical cache size is 2 GB. The size of cache you can
specify is limited by the amount of physical memory and swap space available
to the system. The cache for sharing classes is allocated using the System V
IPC Shared memory mechanism. Because the virtual address space of a
process is shared between the shared classes cache and the Java heap, if
you increase the maximum size of the Java heap you might reduce the size of
the shared classes cache you can create.

� BPXPRMxx settings for shared memory

The following settings affect the amount of shared memory pages available to
the JVM.

– MAXSHAREPAGES
– IPCSHMSPAGES
– IPCSHMMPAGES
– IPCSHMMSEGS

470 WebSphere Application Server V7.0: Concepts, Planning, and Design

The shared page size for a z/OS Unix System Service is fixed at 4 KB for
31-bit and 1 MB for 64-bit. Shared classes try to create a 16 MB cache by
default on both 31- and 64-bit platforms. Therefore, set IPCSHMMPAGES
greater than 4096 on a 31-bit system.

If you set a cache size using -Xscmx, the VM will round up the value to the
nearest megabyte. You must take this into account when setting
IPCSHMMPAGES on your system.

For further information about performance implications and use of these
parameters, refer to IBM publications z/OS MVS Initialization and Tuning
Reference, SA22-7592, and zOS Unix System Services Planning Guide,
GA22-7800.

Persistence for shared class cache
WebSphere Application Server for z/OS V7.0 uses the IBM Java Standard
Edition (SE) 6. This JVM implementation offers the shared class cache that
allows multiple JVM’s to access the same classes, both application and system
classes, without loading them multiple times into the memory.

While the IBM implementation for distributed platforms (Windows, Linux, AIX)
offers the option to write the content to a file system so that it can survive an
operating system restart, z/OS only supports the non-persistent cache.

Compressed references
The use of compressed references improves the performance of many
applications because objects are smaller, resulting in less frequent garbage
collection and improved memory cache use. Certain applications might not
benefit from compressed references. Test the performance of your application
with and without the option to determine if it is appropriate.

When using compressed references, the following structures are allocated in the
lower area of the address space:

� Classes
� Threads
� Monitors

Note: The JVM uses these memory pages for the shared classes cache. If
you request large cache sizes, you might have to increase the amount of
shared memory pages available.

 Chapter 14. WebSphere Application Server for z/OS 471

Because this is a JVM technique that is separated from the WebSphere
Application Server product, you can only activate it by using a JVM argument on
a JVM level. That means that on the z/OS platform the activation needs to be
performed for all components of an application server that have a heap (adjunct,
control and servant region).

In the Integrated Solutions Console navigate to Server → Server Types →
WebSphere application servers → (your_server) → Server Infrastructure →
Java and Process Management → Process definition → server_component
(Adjunct | Control | Servant)→ Java Virtual Machine.

Then add the following statement to the generic JVM arguments:

–Xcompressedrefs

As always when changing some JVM settings, you have to restart the server
after saving and synchronizing the modifications to activate them.

14.9.4 Basic WLM classifications

The usage of WLM classification for the control and servant region address
spaces is a basic z/OS approach. It is part of the installation process of the
WebSphere Application Server for z/OS V7.0.

The following recommendations apply:

� Control regions should be assigned a service class with high priority in the
system. Control regions should be assigned a service class with a high
priority in the system such as the SYSSTC service class. A high prioirity is
needed because controllers do some of the processing that is required to
receive work into the system, manage the HTTP transport handler, classify
the work, and do other housekeeping tasks.

� The servant classification should not be higher in the service class hierarchy
than more important work, such as the controller and CICS, or IMS
transaction servers. We suggest using a high velocity goal.

� Enclaves for WebSphere Application Server for z/OS are classified using the
Subsystem CB. The performance goals set here depend on your application
and the environment. Therefore, no quantitative recommendation can be
made here. However, usually a percentile response time goal is advisable.

� OMVS components of WebSphere Application Server for z/OS needs to be
classified as well. Some OMVS scripts are executed during server startup,
therefore if these are not classified in the WLM, the server startup time will be
increased.

472 WebSphere Application Server V7.0: Concepts, Planning, and Design

Example 14-4 Service class definition for OMVS components

Subsystem Type . : OMVS Fold qualifier names? Y (Y or N)
Description . . . OMVS subsystem rules mod for WAS

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>

--------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: OMVS____ OMVSREP
____ 1 TN FTPSERVE ___ EBIZ_HI FTPSERV
____ 1 UI OMVSKERN ___ SYSSTC ________
____ 1 TN WSSRV* ___ EBIZ_HI WAS70

Information about how to set WLM service class classifications, can be found in
IBM Redbooks Publication System Programmer's Guide to: Workload Manager,
SG24-6472.

Refer to the Information Center article Controller and Servant WLM
classifications, found at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=
/com.ibm.websphere.zseries.doc/info/zseries/ae/rweb_classervers.html

14.9.5 Address Space ID reuse

Address Space ID (ASID) reuse is an operating system function, introduced with
z/OS 1.9. It allows the reuse of Address Space ID’s, including those that are
associated with cross-process services (like TCP/IP), which could not be reused
in earlier releases of z/OS. WebSphere Application Server for z/OS, starting with
V6.1 is able to use this function, thereby allowing the reuse of the ASID for
terminated control regions.

Health check: WLM classification for OMVS components.

A step in the control region start-up procedure, invokes the applyPTF.sh
script, using BPXBATCH. Because the BPXBATCH program is classified
according the OMVS rules, on a busy system several minutes might pass
before this step is completed.

You can minimize the impact of the BPXBATCH step by changing the WLM
Workload Classification Rules for OMVS work to a higher service objective
(Example 14-4).

 Chapter 14. WebSphere Application Server for z/OS 473

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rweb_classervers.html

The REUSASID parameter is automatically set to YES for any new servers that
are created in WebSphere Application Server for z/OS V7.0.

If the operating system runs with the ASID reuse option disabled, the
updateZOSStartArgs script, provided in the profile_root/bin of each profile can be
run to enable the ASID capability for a specific WebSphere Application Server for
z/OS profile. Because the script is run on a profile base, it must be run multiple
times when multiple profiles or a Network Deployment installation is used. Ask
the System Programmer whether the ASID reuse option is used in your
installation.

For more information about ASID support in WebSphere Application Server for
z/OS V7.0 refer to the information Center article Enabling or Disabling the
reusable ASID function, available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/txml_configasid.html

14.9.6 Deprecated features WebSphere Application Server for z/OS

As with every new version, some features are deprecated. For a complete list of
deprecated features, visit the Information Center article Deprecated features,
available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_depfeat.html

14.9.7 Java Command Language (JACL) stabilized

The JACL scripting language has been stabilized. This means that although no
new development will be done for this language, it will coexist with Jython in
WebSphere Application Server V7.0. Administrative scripts that use JACL do not
necessarily need to be migrated to Jython.

However this stabilized status might change in future versions of WebSphere
Application Server.

474 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/txml_configasid.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_depfeat.html

14.9.8 Application profiling

Application profiling allows you to analyze the application during runtime. It
provides detailed information about what application step uses what amount of
CPU in a graphical way. This allows you to identify critical points inside the
application. While it is intended for developers, we suggest system programmers
encourage the development team to use such a profiling technique. This will
open up the black box application on the host.

A profile tool for z/OS is JinsightLive for z/OS. The tool is capable of analyzing
31-bit and 64-bit JVM. It can be downloaded from the following Web page:

http://www.alphaworks.ibm.com/tech/jinsightlive

Another tool that provides application profiling, would be the Eclipse Test and
Performance Tools Platform (TPTP), a project from the Eclipse platform, found at
the following Web page:

http://www.eclipse.org/tptp/

14.10 Planning checklist

This section provides a short overview of what things to consider when you plan
to install the WebSphere Application Server V7.0 for z/OS.

Note: Application profiling usually requires some level of experience with the
tooling. So do not get confused when you start with the first steps. After you
get used to the technique it is a powerful way of identifying CPU intensive
points in an application. A lot of the critical points require only few changes in
the application itself.

As a starting point you might ask your local IBM representative for some
assistance.

 Chapter 14. WebSphere Application Server for z/OS 475

http://www.alphaworks.ibm.com/tech/jinsightlive
http://www.eclipse.org/tptp/

14.10.1 Planning considerations

Table 14-7 provides a list of planning considerations for WebSphere Application
Server for z/OS V7.0.

Table 14-7 Planning considerations for WebSphere Application Server for z/OS V7.0

Planning item

ISPF Customization Dialog has been removed. All profile creation has to be done using the WebSphere
Configuration Tools (WCT) or the line-mode zpmt.sh command.

Make sure you have a convenient naming convention, that can reflect the usage of the new WebSphere
Application Server V7.0 components, job manager and administrative agent. (The zPMT will use the
recommendations from the Washington System Center by default.)

Test the usage of the XCF support for the HA manager.

Make sure that monitoring is in place.

You might want to use the IBM Support Assistant with the following plug-ins:
� Visual Configuration Explorer (VCE)

A graphical view on your environment as well as to keep track of configuration changes. The usage of
this no-charge tool is recommended.

� Garbage Collection and Memory Visualizer
For analyzing verbose gc information, to identify a good heap size.

� Thread Analyzer
Provides analysis for Java thread dumps (or Javacores) such as those from WebSphere Application
Server.

Check the amount of real memory provided for the LPAR, were WebSphere Application Server for z/OS
should be installed.

Check the usage of Java Compressed references, because most of the current applications have no need
for heaps larger than 900MB.

Check with the application developers, whether the application can exploit the shared class cache.

Make sure you performed a verbose garbage collection analysis, to identify and verify the heap size.

476 WebSphere Application Server V7.0: Concepts, Planning, and Design

14.10.2 Resources

This section includes links and references to additional material intended to get a
deeper insight on the workings of z/OS in combination with the WebSphere
Application Server for z/OS.

For information about planning and system considerations required to build a
heterogeneous cell, see WebSphere for z/OS -- Heterogeneous Cells. Note that
this paper focuses on WebSphere Application Server V6.1, but the basic
thoughts are still valid for V7.0. This paper is available from the following Web
page:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

For more information about the WebSphere Configuration Tools, including the
zPMT and the zMMT, you might find the following Web pages useful:

� IBM WebSphere Customization Tools V7.0 for Windows

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg24020368

� WebSphere Application Server for z/OS V7.0 - Introducing the WCT for z/OS
Document ID: PRS3357

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3357

� WebSphere for z/OS Version 7 - Configuration Planning Spreadsheet
Document ID: PRS3341

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

To get a deeper insight on the Java options and functions used by WebSphere
Application Server V7.0, the following Web pages might be useful:

� IBM Java 6.0 Diagnostics Guide

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

� Java technology, IBM style: Garbage collection policies, Part 1

http://www.ibm.com/developerworks/java/library/j-ibmjava2/index.html

� Java technology, IBM style: Garbage collection policies, Part 2

http://www.ibm.com/developerworks/java/library/j-ibmjava3/

For a comprehensive insight on application development of Java applications
refer to the following Redbooks publications:

� Java Stand-alone Applications on z/OS, Volume I, SG24-7177
� Java Stand-alone Applications on z/OS Volume II, SG24-7291

 Chapter 14. WebSphere Application Server for z/OS 477

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg24020368
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3357
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp
http://www.ibm.com/developerworks/java/library/j-ibmjava2/index.html
http://www.ibm.com/developerworks/java/library/j-ibmjava3/
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

Various tools are available to ease the daily life of developers and system
programmers. The one listed here are free of charge:

� IBM Support Assistant.

This tool, together with some plug-ins provide a straight forward way of
checking for configuration changes, a central repository for configuration
values. In addition, you can use it to create graphical overviews of your
environment. It can be found at the following Web page:

http://www-01.ibm.com/software/awdtools/isa/support/

� JinsightLive for IBM System z

The application profiling tool can be found at alpha works, at the following
Web page:

http://www.alphaworks.ibm.com/tech/jinsightlive

� Eclipse Test & Performance Tools Platform (TPTP), a profiling tool plug.in for
the well-known eclipse project can be found at the following Web page:

http://www.eclipse.org/tptp/

478 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-01.ibm.com/software/awdtools/isa/support/
http://www.alphaworks.ibm.com/tech/jinsightlive
http://www.eclipse.org/tptp/

Chapter 15. Migration

This chapter discusses migration considerations for moving to WebSphere
Application Server V7.0. It contains the following sections:

� “Infrastructure migration considerations” on page 480
� “Application development migration considerations” on page 486
� “System management migration considerations” on page 487
� “Messaging migration considerations” on page 488
� “Web services migration considerations” on page 488
� “Security migration considerations” on page 489
� “WebSphere Application Server for z/OS migration considerations” on

page 490

15

© Copyright IBM Corp. 2009. All rights reserved. 479

15.1 Infrastructure migration considerations

When migrating from an existing environment to the new version of WebSphere
Application Server V7.0 you must create a migration plan. This plan might cover
the following core steps:

1. Project assessment
2. Project planning
3. Skill development
4. Setup of development environment
5. Application migration
6. Runtime migration of additional environments
7. Testing and benchmarking
8. Runtime migration of the production environment
9. Lessons learned session

The steps that you might take in performing a migration are shown in Figure 15-1
on page 481.

480 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure 15-1 Migration path

Note: The IBM Migration Knowledge collection provides more details and
updated information about WebSphere Application Server migration. It can be
found at the following Web page:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27008724

Assessment

Planning

Skills

Production

Review
results

Test

Development
Environment

Code
Migration

Unit Test

Runtime
Environment

Runtime
Migration

Test
Systems

Development
Environment

Runtime
Environment

 Chapter 15. Migration 481

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27008724

15.1.1 Scripting migration

Since WebSphere Application Server V5.1, two scripting languages for
WebSphere Application Server are available namely JACL and Jython.

With the announcement of WebSphere Application Server V7.0, JACL is
declared stabilized. This means it will not be removed but there will be no further
development in it. It is recommended to create new scripts using the Jython
scripting language.

15.1.2 HTTP server plug-in support

The HTTP server plug-in shipped with WebSphere Application Server V7.0 can
work with WebSphere Application Server V5.1, V6.0, V6.1, and V7.0.

15.1.3 Coexisting versions on one system

WebSphere Application Server V7.0 can coexist with older versions of
WebSphere Application Server on the same system. You can install and run
these different versions of WebSphere Application Server at the same time.

Consider the following factors before starting:

� The hardware and software of the system must be supported by all versions
of WebSphere Application Server you plan to coexist

� Each installation of WebSphere Application Server requires additional system
resources.

� Plan for unique ports for every installed version of WebSphere Application
Server.

� WebSphere Application Server V7.0 supports coexistence with WebSphere
Application Server V5.1, V6.0, V6.1, and V7.0.

Note: The Information Center article Deprecated, stabilized, and removed
features provides a detailed explanation of the terms and the product features
affected by deprecation and stabilization. It is available at the following Web
page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

Note: The URI in the routing rules section of the plugin-cfg.xml must be
unique for each machine.

482 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

15.1.4 Runtime inter operability

WebSphere Application Server is interoperable and can communicate with
multiple older versions of WebSphere Application Server. This means that
WebSphere Application Server V7.0 supports and can inter operate with
applications that use the following features:

� Security
� Transactions
� EJB workload management

This support is offered for WebSphere Application Server V5.1, V6.0, V6.1, and
V7.0, allowing incremental migration of nodes in a runtime environment.

15.1.5 Runtime migration tools

WebSphere Application Server V7.0 provides various runtime migration tools
depending on the platform on which WebSphere is installed. These tools allow
you to copy existing configuration information from existing WebSphere
Application Server installations to the new version.

The following tool support is available:

� Distributed

– Migration Wizard
– Migration Commands

� System i

Migration Commands

� zOS

System z Migration Management Tool (See 15.7.4, “z/OS Migration
Management Tool” on page 491)

Note: There exist some limitations and restrictions for mixed cells. The
Information Center provides more details about coexistence of multiple
versions of WebSphere Application Server. See the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.migration.nd.doc/info/ae/ae/tins_coexistep.html

 Chapter 15. Migration 483

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.migration.nd.doc/info/ae/ae/tins_coexistep.html

15.1.6 Mixed cell support

To ease the incremental upgrade of your environment, the support of mixed cells
can be used. Mixed cell support means that nodes on different versions of
WebSphere Application Server and on different platforms are supported in the
same cell managed by WebSphere Application Server Network Deployment
V7.0. Although it is a supported configuration to run WebSphere Application
Server in mixed cells, this is usually considered to be transitional.

15.1.7 Network Deployment migration strategies

There are three strategies for migrating a Network Deployment environment:

� Manual migration
� Automated migration with whole node upgrade
� Automated migration with mixed version use

Manual migration
To run a manual migration means that a totally new environment is configured
and the existing configuration is not considered. This is a viable option but might
be error-prone unless scripts are used comprehensively.

This approach provides the following advantages and disadvantages:

� Advantages

– Assuming that the existing scripts are correct, you have the least risk. All
the migration work can be performed independently from the running
production environment.

– The granularity of the migration is under control of the project team. The
migration team can easily control which parts of the environment are
migrated at what time.

– All the scripts are yours. You have full control over the migration and do not
need to depend on WebSphere tools.

– You can easily step back to the previous version if problems arise in the
new environment.

Note: There are some limitations and restrictions for mixed cells. The
Information Center provides more details about coexistence of multiple
versions of WebSphere Application Server. Refer to the following Web page
for details:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.migration.nd.doc/info/ae/ae/tins_coexistep.html

484 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.migration.nd.doc/info/ae/ae/tins_coexistep.html

� Disadvantages

– Creation and continuous maintenance of these scripts can require a lot of
effort and therefore be expensive.

– Requires every change in the environment to be scripted.

– Administration tasks performed through the Integrated Solutions Console
in the existing environment are not migrated,

Automated migration with whole node upgrade
This migration approach relies on the runtime migration tools provided by
WebSphere Application Server Network Deployment. As when migrating a whole
node, the existing WebSphere V5 / V6 configuration is initially recreated in
WebSphere Application Server V7.0.". Subsequently, one node after the other
can be migrated whereby you have to consider that all applications on a node are
migrated at the same time.

This approach provides the following advantages and disadvantages:

� Advantages

– There is no need for self-written scripts. All migration is done using
WebSphere Application Server tools.

– All the information of the current configuration is moved to WebSphere
Application Server V7.0. Therefore you do not have to worry about missing
something.

� Disadvantages

– All the information of the current configuration is moved to WebSphere
Application Server V7.0. The disadvantage of this approach is that you will
also move configuration items that you no longer need.

– All applications on the node being migrated must be ready for migration at
the same time. Therefore, the time of migration is triggered by application
availability.

– Manual enablement of some upgraded features is still required.

– This approach is only viable if you are not redesigning your environment

Note: It is always a good practice to have comprehensive scripts to
configure the environment available as it eases various administration
tasks (such as setting up a new environment for testing purposes,
recreating the environment in case of a disaster, and so forth).

 Chapter 15. Migration 485

Automated migration with mixed version use
This migration approach also relies on the runtime migration tools provided by
WebSphere Application Server Network Deployment. Like when using the
“Automated migration with whole node upgrade” on page 485 in the first step the
existing WebSphere V5 / V6 configuration is recreated exactly in WebSphere
Applications Server V7.0. After that, additional new WebSphere Application
Server V7.0 nodes are added and applications can be migrated one by one when
they are ready. As soon as all applications of an old node are migrated, the old
node can be removed from the configuration.

This approach provides the following advantages and disadvantages:

� Advantages

– There is no need for a self-written comprehensive set of scripts. All
migration is performed using WebSphere Application Server tools.

– All the information in the current configuration is moved to WebSphere
Application Server V7.0. Therefore, you do not have to worry about
missing something.

– Allows more flexibility for application migration as migrations can be
migrated when they are ready.

� Disadvantages

– All the information of the current configuration is moved to WebSphere
Application Server V7.0. The disadvantage of this approach is that you will
also move configuration items that you no longer need.

– Care must be taken if you want to re-factor your topology during the
migration phase.

– Manual enablement of some upgraded features is still required.

15.2 Application development migration considerations

This section provides a general overview of what needs to be considered when
migrating applications between WebSphere Application Server versions.

486 WebSphere Application Server V7.0: Concepts, Planning, and Design

Consider the following points:

� Understand the new features and use the right development and deployment
tools. WebSphere Application Server V7.0 provides two tools:

– WebSphere Application Server Deploy and Assembly V7.5
– Rational Application Developer for WebSphere Software V7.5

� Understand JDK V1.6 impacts, such as whether it will affect any of the API
commands used in the application.

� Understand the changes to the administrative deployment scripts with the
introduction of new components (such as Business Level Applications).

� Identify the deprecated APIs in WebSphere Application Server V7.0 and
determine whether any of these APIs are used in your existing applications.

For more information about deprecated APIa, see the Information Center article
Deprecated, stabilized, and removed features, available at the following Web
page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

15.3 System management migration considerations

This section highlights migration considerations from a system management
perspective.

� Understand system management constraints and limitations while performing
the migration. In the process of performing a migration, one of the possible
scenarios is that there could be a single cell with mixed WebSphere
Application Server versions. If so, will session replication work with different
versions of WebSphere Application Server?

� Understand the new features provided by the administrative agent and the job
manager through the Integrated Solutions Console. Understand the new
administrative commands to manage the administrative agent and job
manager.

� Understand the new administrative functions introduced in the Integrated
Solution Console and wsadmin so that you can use them to administer new
WebSphere Application Server objects such as Business Level Applications.

� Understand the changes in the profile creation wizard and what ports are
allocated to the administrative agent and job manager. Port information is
crucial especially when you have firewalls in place for your WebSphere
Application Server systems.

 Chapter 15. Migration 487

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rmig_deprecationlist.html

15.4 Messaging migration considerations

This section highlights migration considerations from an messaging perspective.

� Understand whether your Java 2 Enterprise Edition (J2EE) V1.4 applications
will run in WebSphere Application Server V7.0 without modifications to Java
Messaging Service (JMS) code.

� If the JMS provider is WebSphere MQ, ensure you have the right version of
WebSphere MQ with WebSphere Application Server V7.0.

� Use the WASPostUpgrade utility to a migrate V5 jmsserver to a V7 default
messaging configuration.

For more information about messaging migrations, see the Information Center
article Messaging resources, at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html

15.5 Web services migration considerations

If you are migrating from WebSphere Application Server V6.1, be aware of the
following issues:

� While JAX-RPC is still supported, some enhancements are (and will be)
based only on JAX-WS and JAXB. For example, SOAP 1.2 and MTOM
support is only available within these new programming models. Existing
JAX-RPC applications that need to use the new features will need to be
rewritten. Note that no automatic migration from JAX-RPC to JAX-WS has
been provided.

� WebSphere Application Server V7.0 supports the new industry standard for
SOAP over JMS for JAX-WS. The IBM proprietary nonstandard
implementation has been deprecated and may be removed in a future
release.

� Support for the '2006/02' WS-Addressing WSDL binding namespace has
been deprecated. Replace any uses of the '2006/02' namespace in WSDL
files with uses of the '2006/05' namespace.

� The WSDM interface has been deprecated and the other standard
management interfaces in WebSphere Application Server should be used
instead.

488 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6tech_msg.html

� Users migrating from WebSphere Application Server V6.1 with the Web
Services Feature Pack need to be aware that annotations are no longer
supported by default in pre-Java EE 5 applications. Annotation support has to
be added manually.

� Migration of the JAX-WS bindings in the WebSphere Application Server 6.1
Feature Pack for Web Services takes place during the product migration to
version 7.0. The product migration handles most of the WS-Security migration
process, but your input and action is required for specific configurations in
order to complete the migration.

15.6 Security migration considerations

There are a few security considerations to take into account when planning a
migration from WebSphere Application Server V6.1 to V7.0:

� SPNEGO Trust Association Interceptor (SPNEGO TAI), introduced in V6.1,
has been deprecated in V7.0. SPNEGO Web authentication has taken its
place and it should be used instead.

� SAS security protocol has been deprecated and is only supported between
V6.0 and previous version servers that have been federated in a V7.0 cell. We
recommend CSIv2 protocol to be adopted during the migration process.

� Multiple Security Domains add a new dimension to your security environment.
Although you are not required to take advantage of it, we recommend its use
for separating administrative security from application security.

Note: In previous releases of WebSphere Application Server, you could
associate a small set of security attributes at a server level that were used
by all of the applications of that server. This way of configuring the security
attributes is deprecated in WebSphere Application Server V7.0 and will be
removed in a future release.

 Chapter 15. Migration 489

15.7 WebSphere Application Server for z/OS migration
considerations

This section concentrates on the topics that need to be considered when
migrating an existing WebSphere Application Server for z/OS to V7.0.

15.7.1 Migration and coexistence

There are some coexistence and prerequisite conditions that must be met before
attempting a migration.The lowest release level of WebSphere Application Server
that can be directly migrated to WebSphere Application Server V7.0 is V5.1.
Prior releases must be migrated using a two-step migration, first to a version that
is supported for the migration tools.

See Table 15-1 for minimum requirements for the supported releases.

Table 15-1 WebSphere Application Server for z/OS releases for direct migration

Keep in mind that the deployment manager must always be at the highest version
level. For example, when migrating to V7.0, the deployment manager must be at
V7.0. With mixed versions in a cell, you can minimize application downtime
during migration because you can migrate one node at a time. If you have
applications that run in a clustered environment, those applications can typically
continue to run while the migration of one node takes place.

15.7.2 General considerations

Before describing the migration process in more detail, here are some things to
remember when performing a migration:

� Use the same procedure names.

– Before updating the STC procedures for Version 7, you should save your
current procedures in case you need to fallback to the previous level.

– If you choose to use different procedure names, you will need to update
the RACF STARTED class profiles. Sample RACF commands to
accomplish this are found in the migration instructions provided.

Current release Target release Minimum level

V5.1 V7.0 n/a

V6.0 V7.0 V6.0.2.12, if security is enabled

V6.1 V7.0 V6.1.0

490 WebSphere Application Server V7.0: Concepts, Planning, and Design

� Automation changes may also be required when changing procedure names.

� You should also use a separate HFS for each Version 7 node.

This might require new procedure names if you used a shared HFS in
previous versions.

� Review information in the Information Center article Premigration
considerations, available at the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.zseries.doc/info/zseries/ae/cmig_pre.html

15.7.3 Migration process overview

After the product code of WebSphere Application Server for z/OS V7.0 was
brought into the system using SMP/E, the migration is performed in a three step
approach:

1. Backup the old environment to have a fallback option.

2. Create and transfer the Job Control Language (JCL) jobs needed during the
actual migration (CNTL and DATA datasets).

3. Run the JCL jobs to perform the migration.

To create the JCL, either the z/OS Migration Management Tool (MMT) or the
zMMT.sh script can be used. Both techniques are described in the next sections.

15.7.4 z/OS Migration Management Tool

This section describes the z/OS Migration Management Tool (MMT) used during
the migration process on z/OS.

Overview
The MMT is an Eclipse-based application used to create the JCL jobs for the
migration. It uses Migration Definitions, a construct that contains all data
necessary to migrate a WebSphere Application Server for z/OS node from V5.1.x
(and later), to V7. It contains the Migration Instructions, personalized for each
Migration Definition. It can optionally be used to transfer the JCL to the z/OS
target system, if that system has an FTP server up and running.

Note: The migration is always performed on a node basis. In the network
deployment configuration, you must always start with the deployment manager
node.

 Chapter 15. Migration 491

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/cmig_pre.html

MMT is intended for use by a systems programmer or administrator who is
familiar with the z/OS target system on which the migrated Version 7.0 nodes
run. Figure 15-2 shows a high level overview of the migration process with MMT
used.

Figure 15-2 Migration process with MMT

Installing the z/OS Migration Management Tool
MMT is available for Windows and Linux-based workstations. It is included in the
Optional Material package, FMID: JIWO700. You can also download the
WebSphere Configuration Tools package from the internet. The download (130
MB) includes the Profile Management Tool for System z (zPMT) and the MMT. It
can be found at the following Web page:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368

To install the tool, extract it in a convenient directory on your local file system and
execute install.exe, located in the WCT\ directory created during the extraction.

On a Windows operating system, navigate to Start → Programs → IBM
WebSphere → WebSphere Customization Tools V7.0. Click WebSphere
Customization Tools to start the program.

Select
zPMT profile

to migrate
Generate

customization jobs

Generated
JCL jobs

and scripts,
customized

with
variables

1. Create Backup
2. Execute Jobs

J
JCL

procs

Change
profile

Transfer Jobs
to z/OS

492 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368

Creating a Migration Definition
To create a Migration Definition, follow the steps listed below. For help regarding
the MMT, see the Information Center article Using the z/OS Migration
Management Tool to create and manage Migration Definitions, available from the
following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/c
om.ibm.websphere.migration.zseries.doc/info/zseries/ae/tmig_zmmt_usemmt.
html

1. Start the z/OS Migration Management Tool.

2. To specify a location where you want Migration Definition files to be stored on
your workstation or to add another migration location to the Migration
Locations table, perform the following steps:

a. Click Add.

b. Enter the path name of the location where you want to store the migration
data. The migration location directory must be empty when you create a
new migration location.

c. Enter a name to be associated with the table entry.

d. Select the version of WebSphere Application Server to which you are
migrating.

e. Click Finish.

3. Click Migrate. This will bring up a multi-panel dialog.

4. Complete the fields in the panels using the values that you entered for the
variables on the configuration worksheet that you created, clicking Back and
Next as necessary.

Note: If you are migrating a server, make sure that you have the appropriate
version of the MMT installed. If the MMT is back-level, this might result in
migration problems due to old JCL.

Tips:

� The MMT has a good help file. Hover the mouse over a field for help
information.

� On the Server Customization (Part 2) panel there is a Migration
Definition identifier shown. Write down this number. This identifier is
used to separate the output of individual node migrations. The identifier
is also the name of the subdirectory where the JCL will be saved on
your workstation.

 Chapter 15. Migration 493

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.migration.zseries.doc/info/zseries/ae/tmig_zmmt_usemmt.html

5. When you have successfully entered all of the necessary information about
the panels for this type of Migration Definition, the z/OS Migration
Management Tool displays the definition type, location, and name on the
Migration Summary panel.

6. Click Create to build the Migration Definition on your workstation.

7. Read the information about the Migration Creation Summary panel and click
Finish.

As a result you will find a directory structure populating the path that was
specified to store the Migration Definitions. As the next step, you have to upload
the migration jobs using the MMT. See the next section.

Uploading migration jobs
To put the migration jobs on the z/OS, two options exist:

� Use the MMT to FTP the jobs up to the host. (This option can also allocate the
necessary data sets for you.) Open the MMT, select the Migration Definition
that you want to work with, and select the Process button (Figure 15-3).

� Create the jobs on the workstation and transfer them manually.

Figure 15-3 MMT options to work with a Migration Definition

For detailed migration instructions, select a Migration Definition by left-clicking it,
and then clicking the Migration Instruction tab. The instructions can also be found
on the file system of your workstation. The path is stated on the Migration
Instruction tab. The instructions reflect the variables entered in the Migration
Definition panels.

Attention: You will find two subdirectories, the CNTL and DATA directory in
the created structure at ..\profileTemplates\zos-migDmgr\documents\. These
will contain some JCL jobs. However these are not the complete set. You have
to use the MMT to process the JCL, so that it can be used to migrate a
WebSphere Application Server for z/OS profile.

494 WebSphere Application Server V7.0: Concepts, Planning, and Design

15.7.5 Migration Management Tool script

This section describes the System z Migration Management Tool script
(zMMT.sh), that can be used to create the JCL needed for a node migration.

Overview
The second option allows you to create the migration jobs completely on z/OS
using a shell script, zmmt.sh, found in the product bin directory
(/usr/lpp/zWebSphere/V7R0/bin). The script will also create the CNTL and DATA
data sets and the corresponding JCL that is needed to perform the migration.
You will need a response file. This response file contains information about the
node construction. There are two options on how to create a response file:

� Use the MMT
� Rebuild an example found in the Information Center

Command
The command can be found in the /bin directory of the product home (default is
/usr/lpp/zWebSphere/V7R0). See Example 15-1 on page 496. To run the script,
the following parameters can be used:

� -responseFile

Specifies the path to your response file. This file can either be encoded in
ASCII or EBCDIC. The shipped samples use ASCII.

� -profilePath

Fully qualified path name to an existing set of generated jobs. This parameter
cannot be used in combination with the -responsefile option.

� -workspace

Specifies the Eclipse work space directory.

� -transfer

Copy generated jobs from a UNIX System Services file system to a pair of
partitioned datasets. The zMMT.sh script first writes the customization jobs to
a UNIX System Services file system.

� -allocate

Attempts to allocate the target datasets

Note: We suggest using the MMT to build the response file. This makes sure
that any changes brought with new PTFs to the response file are used.

 Chapter 15. Migration 495

Example 15-1 Migration management command

zmmt.sh -workspace /xxx -transfer -allocate -responseFile
/xxx/ZCellcmd.responseFile

This command performs the following tasks:

� Generate the migration jobs to the location specified by profilePath in the
response file.

� Allocate the target CNTL and DATA datasets, using the high level qualifier
specified by targetHLQ in the response file.

� Transfer the jobs from the file system to the CNTL and DATA datasets.

Runtime considerations
When using the zMMT.sh script to create the migration JCL, there are two points
that you must be aware of:

� The script will be run in the osgi command shell, as seen in Example 15-2.

Example 15-2 osgi shell for the zMMT.sh script

/usr/lpp/zWebSphere/V7R0/bin#>rkspace –responseFile
/tmp/zDMgr01.responseFile

osgi>

Because the script will take a relative long time to proceed, it might look as
though nothing is happening. However, the script will write messages as seen
in Example 15-3.

Example 15-3 osgi messages when issuing the zMMT.sh script

osgi> Customization definition successfully written to /tmp/ZDMgr01
Attempting to allocate dataset: BOSS.VICOM.BOSS0173.CNTL
Allocation successful.
Attempting to allocate dataset: BOSS.VICOM.BOSS0173.DATA
Allocation successful.
Copying CNTL files to BOSS.VICOM.BOSS0173.CNTL...
Copy successful.
Copying DATA files to BOSS.VICOM.BOSS0173.DATA...
Copy successful.

Note: An osgi command shell is an execution environment that allows the
remote management of Java application and components. It is based on
the OSGI open standard.

496 WebSphere Application Server V7.0: Concepts, Planning, and Design

� If you have to rerun the command, delete the profilePath directory. If the
directory still exists, the osgi shell will show the error message, shown in
Example 15-4:

Example 15-4 MMT error message

osgi> The following validation errors were present with the command
line arguments: profilePath: The profile path is not valid.

15.7.6 Migration jobs

The migration jobs are created using MMT or the zMMT.sh script. This section
gives a short overview of these jobs.

Overview
There are multiple jobs created by the MMT. However, you only need to execute
five of them. Table 15-2 gives an overview of what jobs will be used by the
migration, depending on the node that should be processed.

Check the detailed migration manual that is created during the JCL built step for
the needed user authorities

Table 15-2 WebSphere Application Server for z/OS V7.0 migration jobs

Jobnamea

a. The value for x depends on the profile that you are migrating.

DMGR Federated
server

Standalone
server

BBOMxZFS or
BBOMxHFS

Allocates HFS or
zFS

Allocates HFS or zFS Allocates HFS or zFS

BBOMxCP Copies tailored
JCL to PROCLIB

Copies tailored JCL
to PROCLIB

Copies tailored JCL
to PROCLIB

BBOWMG1x n/a Clear transaction
logs (for XA
connectors only)

Clear transaction
logs (for XA
connectors only)

BBOWMG2x n/a Disable Peer Restart
and Recovery mode
(XA only)

Disable Peer Restart
and Recovery mode
(XA only)

BBOWMG3x Perform migration Perform migration Perform migration

 Chapter 15. Migration 497

Job BBOWMG3x
The BBOWMG3x job is the job that actually performs the migration. It is the job
that will take the longest time to be processed. Listed below are the steps
included in the job:

1. Create working directory (/tmp/migrate/nnnnn)

2. WRCONFIG: Copy dialog generated variables to the HFS.

3. WRRESP: Create a profile creation response file from dialog generated
variables.

4. MKCONFIG: Gather information from existing configuration (for instance, cell
name, server name).

5. VERIFY: Verify the variables generated from dialog.

6. CRHOME: Create a V7 WAS_HOME structure.

7. CRPROF: Create V7 default profile.

8. PREUPGRD: Backup some files in the HFS to be used by WASPostUpgrade.

9. UPGRADE: Run WASPostUpgrade to perform the migration (serverindex.xml
renamed to serverindex.xml__disabled).

10.FINISHUP: Run Config2Native, update file permissions and attributes.

A working directory in /tmp is used to do much of the processing. The nnnnn is a
unique number that was generated during the creation of your migration jobs. For
normal migration, the space used in /tmp is small, but if you turn on tracing, the
space used can be quite large. Make sure you have enough free space on /tmp.

The UPGRADE step is where the actual migration occurs and will take the
longest to complete. The VERIFY step attempts to check the information
provided so that the migration does not fail because of bad input parameters.

Tip: The BBOWMG3x job is long running and can cause certain error
conditions (such as an ABEND 522). TIME=NOLIMIT on the JCL job card
should avoid the problem. Also note that the BBOWMG1x and BBOWMG2x
jobs are only needed if you have any XA connectors defined in your
configuration. They do not apply to the deployment manager node migration.

Note: This table is intended to give you an overview on the tasks of each job,
not as a manual. For a detailed step-by-step migration guide, we suggest
printing the Migration Instruction created by the MMT. (See Figure 15-3 on
page 494 for the information how to access the Migration Instruction)

498 WebSphere Application Server V7.0: Concepts, Planning, and Design

Troubleshooting for BBOWMG3x
Because a migration is complex, errors may occur. The main source for errors is
the BBOWMG3x job, described in the previous section. Here are some
troubleshooting tips.

� If the BBOWMG3x job fails, check the output for errors.

– /tmp/migrate/nnnnn/BBOWMG3x.out
– /tmp/migrate/nnnnn/BBOWMG3x.err written to JOBLOG
– /tmp/migrate/nnnnn/logs directory can contain logs named

WAS*Upgrade*<timestamp>.log

� If you need more information, turn traces on. The trace states are disabled by
default. ‘xxxx.DATA(BBOWMxEV)’ has to be updated to enable tracing:

– TraceState=enabled
– profileTrace=enabled
– preUpGradeTrace=enabled
– postUpGradeTrace=enabled

� If the job fails in the VERIFY step, it is most likely that you made an error
when specifying information used to create the jobs. Correct the information
and rerun the job.

� If the job fails after the VERIFY step, you need to delete the WAS_HOME
directory that was created during the failed run, before re-running the job.
Check the original configuration for the serverindex.xml file being renamed to
serverindex.xml_disabled also. This is done to signal that the configuration
has already been migrated, to stop you from inadvertently migrating the node
again. This is done by default but it is possible to change this behavior during
the configuration phase. It is a check box in the z/OS migration management
tool or you can set the keepDMGREnabled parameter to true in the response
file.

15.7.7 Migration considerations for 64-bit mode

WebSphere Application Server V7.0 runs in 64-bit mode. Consider the following.

Application considerations
For code written in pure Java, the general experience is that there are no
changes necessary to the code to run it in a 64-bit application server.

If the application uses the Java Native Interface (JNI) to call a native program,
that native program must be a 64-bit program. Typically, these native programs
will be code written in C or C++, or perhaps LE compliant assembler. This point is
especially important to check for when using in-house applications that use older
native programs.

 Chapter 15. Migration 499

For more information about how to convert applications to run in 64-bit mode,
see the following resources:

� IBM Whitepaper WP101095 C/C++ Code Considerations With 64-bit
WebSphere Application Server for z/OS, available at the following Web page:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101095

� Language Environment Programming Guide for 64-bit Virtual Addressing
Mode, SA22-7569

Bigger heap needed for applications
Simply using the 64-bit addressing mode does not mean that the sizes for the
various heaps need to be increased.

In general, good minimum and maximum heap sizes should be identified by a
verbose garbage collection (GC) analysis. This technique will allow you to
identify these values, thereby reducing the GC overhead and saving CPU time. It
is suggested to perform a verbose GC analysis on a regular basis, especially if
the number of users or the amount of transactions has changed.

For more information about how to perform a verbose GC analysis refer to the
Information Center article Tuning the IBM virtual machine for Java, available at
the following Web page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm.we
bsphere.zseries.doc/info/zseries/ae/tprf_tunejvm_v61.html

Note: In general the structure of the WebSphere Application Server for z/OS
will significantly reduce the maximum heap size compared to the maximum
heap sizes used on the distributed platforms.

For more information about how this is achieved see 14.1.5, “Runtime
processes” on page 425.

500 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101095
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm.websphere.zseries.doc/info/zseries/ae/tprf_tunejvm_v61.html

Appendix A. Sample topology
walkthrough

This appendix explores a complex topology and provides general guidance on
setting it up.

It contains the following sections:

� “Topology review” on page 502
� “Sample topology” on page 504
� “Installation” on page 507
� “Deploying applications” on page 510
� “Configuring security” on page 511
� “Testing the topology” on page 513

A

© Copyright IBM Corp. 2009. All rights reserved. 501

Topology review

The topology shown in Figure A-1 takes elements from several of the topologies
found in Chapter 5, “Topologies” on page 121 and combines them. The
motivating factor for this combination is scalability, workload management, and
high availability. This topology is a common implementation according to
discussions with customers and IBM teams who are responsible for the
implementation of WebSphere environments.

Figure A-1 Complex topology

Admin Console

 App2Node

 App1Node

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

D
B

2
C

lie
nt

D
B2

 C
lie

nt

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB1b

Web
Cont.

Web1b

EJB
Cont.

EJB2

Web
Cont.

Web2

EJB
Cont.

EJB1a

Web
Cont.

Web1a

Client

IBM HTTP
Server

HTTP1

IBM HTTP
Server

HTTP2

Plug-in

Plug-incproxy

 C
ac

hi
ng

 P
ro

xy

Ba
ck

up
 C

ac
hi

ng
 P

ro
xy

lb2

 L
oa

d
Ba

la
nc

er

Ba
ck

up
 L

oa
d

Ba
la

nc
er

 fo
r

H
TT

P
Se

rv
er

s

 L
oa

d
Ba

la
nc

er

Ba
ck

up

lb1

 L
oa

d
Ba

la
nc

er
 fo

r
C

ac
hi

ng
 P

ro
xy

Client

Node Agent

 Application Server Clusters

502 WebSphere Application Server V7.0: Concepts, Planning, and Design

This configuration provides both the greatest resiliency of a site, and the greatest
administrative complexity. The topology includes the following elements:

� Two IBM HTTP Server Web servers configured in a cluster

Incoming requests for static content are served by the Web server. Requests
for dynamic content is forwarded to the appropriate application server by the
Web server plug-in.

� A Caching Proxy that keeps a local cache of recently accessed pages

Caching Proxy is included in WebSphere Application Server Edge
Components. Cacheable content includes static Web pages and JSPs with
dynamically generated but infrequently changed fragments. The Caching
Proxy can satisfy subsequent requests for the same content by delivering it
directly from the local cache, which is much quicker than retrieving it again
from the content host.

A backup server is configured for high availability.

� A Load Balancer to direct incoming requests to the Caching Proxy and a
second Load Balancer to manage the workload across the HTTP servers

Load Balancer is included in WebSphere Application Server Edge
Components. The Load Balancers distribute incoming client requests across
servers, balancing workload and providing high availability by routing around
unavailable servers.

A backup server is configured for each primary Load Balancer to provide high
availability.

� A dedicated server to host the deployment manager

The deployment manager is required for administration but is not critical to the
runtime execution of applications. It has a master copy of the configuration
that should be backed up on a regular basis.

� Two clusters consisting of three application servers

Each cluster spans two machines. In this topology, one cluster contains
application servers that provide the Web container functionality of the
applications (servlets, JSPs), and the second cluster contains the EJB
container functionality. Whether you choose to do this or not is a matter of
careful consideration. Although it provides failover and workload management
capabilities for both Web and EJB containers, it can also affect performance.

� A dedicated database server running IBM DB2 V9.

 Appendix A. Sample topology walkthrough 503

Advantages
This topology is designed to maximize scalability, workload management, and
high availability. It has the following advantages:

� Single points of failure are eliminated for many components (Web server,
application server, and so on) through the redundancy of those components.

� It provides both hardware and software failure isolation. Hardware and
software upgrades can be handled during off-peak hours.

� Horizontal scaling is done by using both the Load Balancer IP sprayer (for the
Web server nodes) and the application server cluster to maximize availability.

� Application performance is improved by using several techniques:

– Hosting application servers on multiple physical machines to boost the
available processing power

– Using clusters to scale application servers vertically, which makes more
efficient use of the resources of each machine

� Applications with this topology can make use of workload management
techniques. In this example, workload management is performed as follows:

– The Network Dispatcher component of the Load Balancer to distribute
client HTTP requests to each Web server

– WebSphere Application Server workload management to distribute work
among clustered application servers

Disadvantages
The topology has the following disadvantages:

� This appendix is an example of a standard implementation, but it should also
be noted that it is one of the most complex. Consider the costs of
administration and configuration work in relation to the benefits of increased
performance, higher throughput, and greater reliability.

� Isolating multiple components and providing hardware backups means that
more licenses and machines are needed, increasing the overall cost.

Sample topology

This section addresses a simplified subset of the topology described in the
previous section. Figure A-2 on page 505 shows the sample topology that we will
implement.

504 WebSphere Application Server V7.0: Concepts, Planning, and Design

Figure A-2 Sample topology

Characteristics

The characteristics of this topology can be summarized as follows:

� The topology has been designed to allow the deployment of the BeenThere
sample application that is included in WebSphere Application Server V7.0.

The BeenThere sample application demonstrates the workload management
and clustering capabilities of WebSphere Application Server. Because its
responses contain the application servers where requests have been
processed, it is possible to test load balancing and availability with this
application.

Server E

w2.itso.ral.ibm.com

Server D

w1.itso.ral.ibm.com

Server A

lb.itso.ral.ibm.com

Load Balancer
bc.itso.ral.ibm.com

Deployment Manager

Application
Server
AS1

Application
Server

EJBServer1

Application
Server
AS2

Application
Server

EJBServer2

Job Manager

Cluster
ASCluster

Cluster
EJBCluster

Server B

h1.itso.ral.ibm.com

IBM HTTP Server
webserver1

Server C

h2.itso.ral.ibm.com

IBM HTTP Server
webserver2

 Appendix A. Sample topology walkthrough 505

� In order to show the new security domains feature, a security domain for the
application servers has been created and configured with a different user
realm. The administrative application uses global security settings based on a
file registry. The BeenThere application uses the operating system registry.
Figure A-3 shows the security configuration.

Figure A-3 Security configuration

� A job manager has also been installed to test the capabilities of this new
component in our topology.

� Only one Load Balancer has been installed. This constitutes a single point of
failure, but one Load Balancer is enough to demonstrate its high availability
capabilities.

� No DB2 servers have been installed because the BeenThere application does
not need an external data repository.

Cell

Global security

Administrative components
Deployment manager

nodeagents

Security domain: ApplSecurity

Applications
ASCluster
EJBCluster

LocalOSRegistry

FileRegistry

506 WebSphere Application Server V7.0: Concepts, Planning, and Design

Installation

The installation process for all the components is fairly similar. All the installations
are started from the launchpad for the Network Deployment package. In the
following sections we describe the steps that had to be done to install each
component. We used a Windows environment to perform this installation.

Installing the Load Balancer (server A)

The Load Balancer component runs in server A and is used to distribute traffic
between our two Web servers.

Perform the following steps to install the Load Balancer:

1. Install the Load Balancer by performing the following steps:

a. Start the launchpad and click IBM Edge Components.

b. In the panel, click Launch the installation wizard for Edge Components
Load Balancer and Caching Proxy. This launches the installer.

c. Go through the panels accepting the default options.

2. Configure the load balanced cluster by performing the following steps:

a. Launch lbadmin.

b. Click Dispatcher → Connect to Host.

c. Click Dispatcher → Start Configuration Wizard.

d. Following the wizard panels, create a cluster with the new IP address and
add the two Web servers in it. The new IP address is the public address
that clients have to use to access the BeenThere application.

3. Configure loopback adapters in Web servers by performing the following
steps:

a. Add a loopback adapter in both HTTP server systems (server B and C).
b. Configure the cluster address in the loopback adapters.
c. Disable the Windows firewall (our servers’ operating system was Windows

XP).

 Appendix A. Sample topology walkthrough 507

Installing HTTP Servers (servers B and C)

Both servers B and C run a Web server that directs the incoming requests to one
of the application servers.

We performed the following steps on both servers:

1. Launch the installer for the HTTP server from the launchpad.

2. Click IBM HTTP Server Installation.

3. In the panel, click Launch the installation wizard for IBM HTTP Server.

4. In the wizard panels, select the default options.

5. Start the server from Start → Programs → IBM HTTP Server V7.0 → Start
HTTP Server.

Creating Deployment manager (server D)

Server D hosts the deployment manager used to administer the servers,
applications, and resources in the WebSphere Application Server cell. To build
this node:

1. Install WebSphere Application Server Network Deployment by performing the
following steps:

a. From the launchpad, select Launch the Installation wizard for
WebSphere Application Server Network Deployment.

b. Navigate through the panels in the installation wizard selecting the default
options.

2. Create a deployment manager profile by performing the following steps:

a. Launch the PMT.

b. Create a management profile of type deployment manager with the default
options.

3. Start the deployment manager from Start → Programs → IBM WebSphere
→ WebSphere Application Server Network Deployment V7.0 → Profiles
→ Dmgr01 → Start the deployment manager.

Creating Application servers (servers D and E)

Server D and E host the two application server clusters needed for the
BeenThere application.

The process for installing and building the WebSphere Application Server
components is the same for each application server node.

508 WebSphere Application Server V7.0: Concepts, Planning, and Design

We performed the following actions:

1. Install WebSphere Application Server Network Deployment by performing the
following steps:

a. In the launchpad, click WebSphere Application Server Installation.

b. Click Launch the installation wizard for the WebSphere Application
Server Network Deployment and select the default options.

2. Create a custom profile for the node by performing the following steps:

a. Launch PMT and select Custom Profile.

b. Follow the prompts taking the defaults, including the federation of the node
to the cell as part of the process (the deployment manager must be
installed and running).

3. Create the application server clusters by performing the following steps:

a. Log into the Integrated Solutions Console.

b. Click Servers → Clusters → WebSphere application server clusters.

c. Add the two new clusters with the names and member weights showed in
Table A-1:

Table A-1 Cluster names and weights

The chosen weights are those indicated in the BeenThere application
installation instructions and are intended to illustrate the workload
management capabilities of the product.

Cluster name Member name Weights

ASCluster AS1 2

AS2 3

MyEJBCluster EJBServer1 1

EJBServer2 3

 Appendix A. Sample topology walkthrough 509

Creating Job manager (server E)

The job manager runs on server E and is used during our tests to stop and start
the application servers.

Because WebSphere Application Server Network Deployment was already
installed, we only had to follow these steps:

1. Create a job manager profile by performing the following steps:

a. Launch PMT.
b. Create a management profile of type job manager taking the default

options.

2. Register the deployment manager to the job manager by performing the
following steps:

a. From the deployment manager profile, run the wsadmin command tool.

b. Execute the following command:

$AdminTask registerWithJobManager {-managedNodeName
w1CellManager01 -host w2.itso.ral.ibm.com -port 9943 -alias
SampleTopologyCell}

The parameters are as follows:

• manageNodeName

The name of the node to be registered. In our example, it is the cell
node.

• host

The host name of the server running the job manager.

• port

The administrative port number to which the job manager listens.

• alias

The name that identifies the managed node in job manager.

Deploying applications

The deployment of the application was done following the deployment
instructions included in the product for this task. See readme_BeenThere.html
under the samples directory of your WebSphere Application Server V7.0
installation.

510 WebSphere Application Server V7.0: Concepts, Planning, and Design

Perform the following steps to deploy applications.

1. Deploy the application by performing the following steps:

a. Log into the Integrated Solutions Console.

b. Click Applications → New application → New enterprise application.

c. Select the remote file system and look for the BeenThere.ear file.

d. Accept the default options, but map the BeenThere WAR module to
ASCluster and the EJB module to MyEJBCluster.

2. Generate a new plug-in for the IBM HTTP Servers by performing the following
steps:

a. Click Environment → Update global Web server plug-in
configuration.

b. Click OK to update the plug-in file.

c. Copy the new plug-in file to webserver1 and webserver2. The default
target directory is as follows:

C:\Program Files\IBM\HTTPServer\Plugins\config\your_web_server.

Configuring security

As mentioned before, we created a security domain with a different user realm for
the applications servers where the BeenThere application runs.

Because the profile for the deployment manager had already been created with
security enabled, we performed the following steps:

1. Change administrative user registry by performing the following steps:

a. Log into the Integrated Solutions Console.

b. Change the default user registry to standalone custom registry in the
global security settings. This registry is configured by default to use the
FileRegistrySample class, which allows us to use a users file and a groups
file in the local file system as our registry.

c. On servers D and E, from Windows, create two files with the following
names and content:

• c:\users.txt

Administrator:itso4you:1:1:admin

• c:\groups.txt

admins:1:Administrator:Administrative group

 Appendix A. Sample topology walkthrough 511

d. On the Integrated Solutions Console, click the Configure button and add
two custom properties:

• usersFile = c:\users.txt
• groupsFile = c:\groups.txt

e. In the Global security panel, click Set as current.

2. Enable application security. In the Global security panel, set Enable
application security.

3. Add a security domain and set its scope to application servers by performing
the following steps:

a. Click Security → Security domain.

b. Add a new domain named ApplSecurity.

c. In the new domain settings, select the Customize for this domain and
Local operating system check boxes. In the configuration for this registry,
introduce a name for it: ApplRealm.

d. Set the scope of this domain to include the two clusters. Select ASCluster
and MyEJBCluster.

4. Add a new Windows user account on servers C and D. It will be used to log
into the application.

5. Assign administrative roles.

The user account being used to log onto the BeenThere application needs an
administrative role, otherwise the application will not work. This is because
the application needs to get the node name from WebSphere Application
Server and, therefore, the monitor role is enough. To assign this role to the
user, perform the following steps:

a. Click Global security → Administrative user roles.

b. Select ApplRealm, because this is the realm defined to be used by the
application, and add the user to the list of mapped roles.

6. Assign application roles.

This application has a role (administrator) that has to be assigned to the user.
Perform the following steps to assign application roles:

a. Click Applications → Application types → WebSphere enterprise
applications.

b. Select BeenThere and click Security role to user / group mapping.
c. Map the user from the ApplRealm to the administrator role.

7. Restart application servers.

Servers in the scope of the new security domain have to be restarted in order
to get the new configuration settings.

512 WebSphere Application Server V7.0: Concepts, Planning, and Design

Testing the topology

After building the environment according to our sample topology, we were ready
to test and verify it.

We considered two different aspects to be tested:

� Service
� Administration

Service

Because the main purpose of our tests was to demonstrate the clustering, load
balancing, and high availability capabilities of our sample topology, we
challenged our environment in different conditions. For each test case described
below, we used a Web browser and typed in the following URL:

http://bc.itso.ral.ibm.com/wlm/BeenThere?weights=false&count=4

Normal functioning
In this test, every component was up and running so we could show the load
balancing features in WebSphere Application Server.

Because it was our first test, we got a window (Figure A-4) asking for username
and password. We used the credentials of the account we had created in the
operating system registry.

Figure A-4 Authentication dialog

Note: We suggest using a centralized user repository like LDAP or, in a z/OS
environment, RACF. Neither the sample file registry nor the local OS registry
should be used in production environments. These two registries have been
used in this chapter only for illustration purposes.

 Appendix A. Sample topology walkthrough 513

After clicking OK, we got the answer from the application (Figure A-5). The
request was processed by the servlet on node ws1node1, three of the four
iterations were processed by EJBServer2 and the other one by EJBServer1. This
distribution of the requests to the EJB servers is a consequence of the weights
configured when we created those servers (Table A-1 on page 509).

Figure A-5 Response from BeenThere application

514 WebSphere Application Server V7.0: Concepts, Planning, and Design

One Web server down
In this test we stopped webserver1. The Load Balancer detected this situation. In
the advisor status window, a -1 in the load column for server h1.itso.ral.ibm.com
indicates that it is not available (Figure A-6).

Figure A-6 Advisor status

Due to the load balancing mechanism, our environment was still working and
new requests to the system got correct responses. From a user point of view, the
environment behavior did not change.

 Appendix A. Sample topology walkthrough 515

One WebSphere Application Server node down
In the last of our test scenarios, we stopped server w1.itso.ral.ibm.com. The
system still responded to our requests, which were all processed by
w2.itso.ral.ibm.com (Figure A-7).

Figure A-7 All responses came from EJBServer2

Administration

Our purpose was to test some of the features provided by the new job manager
component.

Because we needed to stop the applications servers running on
w1.itso.ral.ibm.com for the last scenario of the previous section of this appendix,
we used the functionality provided by the job manager.

516 WebSphere Application Server V7.0: Concepts, Planning, and Design

The following screenshots show the steps followed to stop server AS1 after we
logged into the Integrated Solutions Console and clicked on Jobs → Submit:

1. In the first panel (Figure A-8), we selected the job Stop server.

Figure A-8 Job selection

2. We selected the node we had registered to job manager (Figure A-9).

Figure A-9 Target selection

 Appendix A. Sample topology walkthrough 517

3. We selected server AS1 (Figure A-10).

Figure A-10 Additional parameters

4. Because we wanted to immediately stop the server, we accepted the default
option in the schedule panel (Figure A-11).

Figure A-11 Job schedule options

518 WebSphere Application Server V7.0: Concepts, Planning, and Design

The next panel (Figure A-12) showed a summary of the job.

Figure A-12 Job summary

After submitting the job, we got the status window showing that our job was
still pending (Figure A-13).

Figure A-13 Job pending

 Appendix A. Sample topology walkthrough 519

We had to wait a few minutes until the job finished. Figure A-14 shows the
status window indicating that the job finished successfully.

Figure A-14 Job finished

5. We repeated the same procedure to stop EJBserver1.

Summary

In this chapter, we have reviewed a commonly used complex topology. We have
also presented a simplified version of this topology, and used it to illustrate the
installation of the different components. Finally, we have demonstrated its
excellent response to our challenges.

520 WebSphere Application Server V7.0: Concepts, Planning, and Design

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 522. Note that some of the documents referenced here may be available in
softcopy only.

� Building Dynamic Ajax Applications Using WebSphere Feature Pack for Web
2.0, SG24-7635

� Enabling SOA Using WebSphere Messaging, SG24-7163

� IBM Tivoli Composite Application Manager Family Installation, Configuration,
and Basic Usage, SG24-7151

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

� IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting
Started, REDP-4327

� Java Stand-alone Applications on z/OS, Volume I, SG24-7177

� Java Stand-alone Applications on z/OS Volume II, SG24-7291

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Rational Application Developer V6 Programming Guide, SG24-6449

� Rational Application Developer V7 Programming Guide, SG24-7501

� Solution Deployment Guide for IBM Tivoli Composite Application Manager for
WebSphere, SG24-7293

� System Programmer's Guide to: Workload Manager, SG24-6472

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Migration Guide, SG24-6369

© Copyright IBM Corp. 2009. All rights reserved. 521

� WebSphere Application Server V6 Problem Determination for Distributed
Platforms, SG24-6798

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6.1: Planning and Design, SG24-7305

� WebSphere Security Fundamentals, REDP-3944

� WebSphere Service Registry and Repository Handbook, SG24-7386

Online resources

The following Web site is also relevant as an information source:

� What's new in WebSphere Application Server V7 developerWorks article

http://www.ibm.com/developerworks/websphere/library/techarticles/080
9_alcott/0809_alcott.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

522 WebSphere Application Server V7.0: Concepts, Planning, and Design

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_alcott/0809_alcott.html

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

W
ebSphere Application Server V7.0:

Concepts, Planning, and Design

®

SG24-7708-00 0738432245

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

WebSphere Application
Server V7.0:
Concepts, Planning, and Design

Discusses
end-to-end planning
for WebSphere
implementations

Defines WebSphere
concepts and best
practices

Addresses
distributed and z/OS
platforms

This IBM Redbooks publication discusses the concepts,
planning, and design of WebSphere Application Server V7.0
environments. This book is aimed at IT architects and
consultants who want more information for the planning and
designing of application-serving environments, ranging from
small to large, and complex implementations.
This IBM Redbooks publication addresses the packaging and
the features incorporated into WebSphere Application Server,
covers the most common implementation topologies, and
addresses planning for specific tasks and components that
conform to the WebSphere Application Server environment.
The book includes planning for WebSphere Application
Server V7.0 and WebSphere Application Server Network
Deployment V7.0 on distributed platforms, and WebSphere
Application Server for z/OS V7.0. It also covers migration
considerations for migrating from previous releases.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction to WebSphere Application Server V7.0
	1.1 Java Platform Enterprise Edition (Java EE)
	1.2 WebSphere Application Server overview
	1.2.1 Application server purpose
	1.2.2 Evolving Java application development standards
	1.2.3 Enhanced management
	1.2.4 Broader integration
	1.2.5 Advanced tooling and extensions

	1.3 Packaging
	1.3.1 WebSphere Application Server - Express V7.0
	1.3.2 WebSphere Application Server V7.0
	1.3.3 WebSphere Application Server for Developers V7.0
	1.3.4 WebSphere Application Server Network Deployment V7.0
	1.3.5 WebSphere Application Server for z/OS V7.0
	1.3.6 Packaging summary

	1.4 Supported hardware, platforms, and software
	1.4.1 Hardware
	1.4.2 Operating systems
	1.4.3 Web servers
	1.4.4 Database servers
	1.4.5 Directory servers

	1.5 Related products
	1.5.1 WebSphere Application Server Community Edition
	1.5.2 WebSphere Extended Deployment
	1.5.3 Rational Application Developer Assembly and Deploy V7.5
	1.5.4 Rational Application Developer for WebSphere Software V7.5
	1.5.5 Project Zero and WebSphere sMash

	Chapter 2. Integration with other products
	2.1 Tivoli Access Manager
	2.1.1 Integration with WebSphere Application Server

	2.2 Tivoli Directory Server
	2.2.1 Lightweight Directory Access Protocol
	2.2.2 Integration with WebSphere Application Server

	2.3 WebSphere MQ
	2.3.1 Integration with WebSphere Application Server

	2.4 WebSphere Adapters
	2.4.1 Integration with WebSphere Application Server

	2.5 WebSphere DataPower
	2.5.1 DataPower appliance models
	2.5.2 Integration with WebSphere Application Server

	2.6 DB2
	2.6.1 Integration with WebSphere Application Server

	2.7 Tivoli Composite Application Manager for WebSphere
	2.7.1 Integration with WebSphere Application Server
	2.7.2 ITCAM for WebSphere architecture

	Chapter 3. WebSphere Application Server concepts
	3.1 WebSphere Application Server concepts
	3.1.1 Profiles
	3.1.2 Stand-alone application servers
	3.1.3 Distributed application servers
	3.1.4 Nodes, node groups, and node agents
	3.1.5 Cells
	3.1.6 Deployment manager
	3.1.7 Administrative agent
	3.1.8 Job manager
	3.1.9 Web servers
	3.1.10 Proxy servers
	3.1.11 Generic servers
	3.1.12 Business level applications
	3.1.13 Centralized installation manager
	3.1.14 Intelligent runtime provisioning

	3.2 Server environments
	3.2.1 Single cell configurations
	3.2.2 Multiple cell configurations
	3.2.3 Mixed node versions in a cell
	3.2.4 Flexible management

	3.3 Clusters
	3.3.1 Application server clusters
	3.3.2 Proxy server clusters
	3.3.3 Generic server clusters

	3.4 Runtime processes
	3.4.1 Distributed platforms
	3.4.2 WebSphere Application Server for z/OS

	3.5 Using Web servers
	3.5.1 Managed Web servers
	3.5.2 Unmanaged Web servers
	3.5.3 IBM HTTP Server as an unmanaged Web server (special case)

	Chapter 4. Infrastructure
	4.1 Infrastructure planning
	4.2 Design considerations
	4.2.1 Scalability
	4.2.2 Caching
	4.2.3 High availability
	4.2.4 Load-balancing and fail-over
	4.2.5 Disaster recovery
	4.2.6 Security
	4.2.7 Application deployment
	4.2.8 Servicability

	4.3 Sizing the infrastructure
	4.4 Benchmarking
	4.5 Performance tuning
	4.5.1 Application design issues
	4.5.2 Understand your requirements
	4.5.3 Test environment setup
	4.5.4 Load factors
	4.5.5 Production system tuning
	4.5.6 Conclusions

	4.6 Planning for monitoring
	4.6.1 Environment analysis for monitoring
	4.6.2 Performance and fault tolerance
	4.6.3 Alerting and problem resolution
	4.6.4 Testing

	4.7 Planning for backup and recovery
	4.7.1 Risk analysis
	4.7.2 Recovery strategy
	4.7.3 Backup plan
	4.7.4 Recovery plan
	4.7.5 Update and test process

	4.8 Planning for centralized installation

	Chapter 5. Topologies
	5.1 Topology selection criteria
	5.1.1 High availability
	5.1.2 Disaster recovery
	5.1.3 Security
	5.1.4 Maintainability
	5.1.5 Performance
	5.1.6 Application deployment
	5.1.7 Summary: Topology selection criteria

	5.2 Terminology
	5.2.1 Load balancers
	5.2.2 Reverse proxies
	5.2.3 Domain and protocol firewall
	5.2.4 Web servers and WebSphere Application Server Plug-in
	5.2.5 Application servers
	5.2.6 Directory and security services
	5.2.7 Messaging infrastructure
	5.2.8 Data layer

	5.3 Topologies in detail
	5.3.1 Stand-alone server topology
	5.3.2 Vertical scaling topology
	5.3.3 Horizontal scaling topology
	5.3.4 Reverse proxy topology
	5.3.5 Topology with redundancy of multiple components
	5.3.6 Heterogeneous cell
	5.3.7 Multi-cell topology
	5.3.8 Advanced topology using an administrative agent
	5.3.9 Advanced topology using a job manager

	Chapter 6. Installation
	6.1 What is new in V7.0
	6.2 Selecting a topology
	6.3 Selecting hardware and operating systems
	6.4 Planning for disk space and directories
	6.5 Naming conventions
	6.6 Planning for the load balancer
	6.6.1 Installation
	6.6.2 Configuration

	6.7 Planning for the DMZ secure proxy
	6.8 Planning for the HTTP server and plug-in
	6.8.1 Stand-alone server environment
	6.8.2 Distributed server environment

	6.9 Planning for WebSphere Application Server
	6.9.1 File systems and directories
	6.9.2 Single install or multiple installations
	6.9.3 Installation method
	6.9.4 Installing updates
	6.9.5 Profile creation
	6.9.6 Naming convention
	6.9.7 TCP/IP port assignments
	6.9.8 Security considerations

	6.10 IBM Support Assistant
	6.11 Summary: Installation checklist

	Chapter 7. Performance, scalability, and high availability
	7.1 What is new in V7.0
	7.1.1 Runtime provisioning
	7.1.2 Java SE 6
	7.1.3 DMZ secure proxy
	7.1.4 Flexible management

	7.2 Scalability
	7.2.1 Scaling overview
	7.2.2 Scaling the system

	7.3 Performance
	7.3.1 Performance evaluation
	7.3.2 System tuning
	7.3.3 Application environment tuning
	7.3.4 Application tuning

	7.4 Workload management
	7.4.1 HTTP servers
	7.4.2 DMZ proxy servers
	7.4.3 Application servers
	7.4.4 Clustering application servers
	7.4.5 Scheduling tasks

	7.5 High availability
	7.5.1 Overview
	7.5.2 Hardware high availability
	7.5.3 Process high availability
	7.5.4 Data availability
	7.5.5 Clustering and failover technique
	7.5.6 Maintainability
	7.5.7 WebSphere Application Server high availability features

	7.6 Caching
	7.6.1 Edge caching
	7.6.2 Dynamic caching
	7.6.3 Data caching

	7.7 Session management
	7.7.1 Overview
	7.7.2 Session support

	7.8 Data replication service
	7.9 WebSphere performance tools
	7.9.1 Performance monitoring considerations
	7.9.2 Tivoli performance viewer
	7.9.3 WebSphere performance advisors
	7.9.4 WebSphere request metrics

	7.10 Summary: Checklist for performance

	Chapter 8. Application development and deployment
	8.1 What is new in V7.0
	8.2 End-to-end life cycle
	8.3 Development and deployment tools
	8.3.1 Rational Application Developer for Assembly and Deploy V7.5
	8.3.2 Rational Application Developer for WebSphere Software V7.5
	8.3.3 WebSphere rapid deployment
	8.3.4 Which tools to use

	8.4 Naming conventions
	8.4.1 Naming for applications
	8.4.2 Naming for resources

	8.5 Source code management
	8.5.1 Rational ClearCase
	8.5.2 Concurrent Versions System (CVS)
	8.5.3 Subversion
	8.5.4 Choosing an SCM to use

	8.6 Automated build process
	8.7 Automated deployment process
	8.8 Automated functional tests
	8.9 Test environments
	8.10 Managing application configuration settings
	8.10.1 Classifying configuration settings
	8.10.2 Managing configuration setting

	8.11 Planning for application upgrades in production
	8.12 Mapping application to application servers
	8.13 Planning checklist for applications

	Chapter 9. System management
	9.1 What is new in V7.0
	9.2 Administrative security
	9.3 WebSphere administration facilities
	9.3.1 Integrated Solutions Console
	9.3.2 WebSphere scripting client (wsadmin)
	9.3.3 Task automation with Ant
	9.3.4 Administrative programming
	9.3.5 Command line tools
	9.3.6 Administrative agent
	9.3.7 Job manager

	9.4 Automation planning
	9.5 Configuration planning
	9.5.1 Configuration repository location and synchronization
	9.5.2 Configuring application and application server startup behaviors
	9.5.3 Custom application configuration templates
	9.5.4 Planning for resource scope use

	9.6 Change management topics
	9.6.1 Application update
	9.6.2 Changes in topology
	9.6.3 Centralized installation manager (CIM)

	9.7 Serviceability
	9.7.1 Log and traces
	9.7.2 Fix management
	9.7.3 Backing up and restoring the configuration
	9.7.4 MustGather documents
	9.7.5 IBM Support Assistant
	9.7.6 Information Center

	9.8 Planning checklist for system management

	Chapter 10. Messaging
	10.1 Messaging overview: What is messaging?
	10.2 What is new in V7.0
	10.3 Messaging options: What things do I need?
	10.3.1 Messaging provider standards
	10.3.2 Choosing a messaging provider

	10.4 Messaging topologies: How can I use messaging?
	10.4.1 Default messaging provider concepts
	10.4.2 Choosing a messaging topology

	10.5 Messaging features: How secure and reliable is it?
	10.5.1 More messaging concepts
	10.5.2 Planning for security
	10.5.3 Planning for high availability
	10.5.4 Planning for reliability

	10.6 Planning checklist for messaging

	Chapter 11. Web services
	11.1 Introduction to Web services
	11.2 What is new in V7.0
	11.2.1 What was in Feature Pack for V6.1
	11.2.2 Features added to WebSphere Application Server V7.0

	11.3 Important aspects in using Web services
	11.4 Web services architecture
	11.4.1 How can this architecture be used?

	11.5 Support for Web services in WebSphere Application Server
	11.5.1 Supported standards
	11.5.2 Service integration bus
	11.5.3 Universal Description, Discovery, and Integration registries
	11.5.4 Web services gateway
	11.5.5 Security
	11.5.6 Performance

	11.6 Planning checklist for Web services

	Chapter 12. Security
	12.1 What is new in V7.0
	12.2 Security in WebSphere Application Server
	12.2.1 Authentication
	12.2.2 Authorization
	12.2.3 Secure communications
	12.2.4 Application security
	12.2.5 Security domains
	12.2.6 Auditing

	12.3 Security configuration considerations
	12.4 Planning checklist for security

	Chapter 13. WebSphere Application Server Feature Packs
	13.1 Available feature packs
	13.2 WebSphere Application Server Feature Pack for Web 2.0
	13.2.1 Introduction to Web 2.0
	13.2.2 Overview of the Web 2.0 feature pack
	13.2.3 Security considerations
	13.2.4 Resources

	13.3 WebSphere Application Server Feature Pack for Service Component Architecture
	13.3.1 Introduction to SCA
	13.3.2 Overview of the SCA feature pack
	13.3.3 Other considerations
	13.3.4 Resources

	Chapter 14. WebSphere Application Server for z/OS
	14.1 WebSphere Application Server structure on z/OS
	14.1.1 Value of WebSphere Application Server on z/OS
	14.1.2 Common concepts
	14.1.3 Cell component—daemon
	14.1.4 Structure of an application server
	14.1.5 Runtime processes
	14.1.6 Workload management for WebSphere Application Server for z/OS
	14.1.7 Benefits of z/OS

	14.2 What is new in V7.0
	14.3 WebSphere Application Server 64-bit on z/OS
	14.3.1 Overview
	14.3.2 Planning considerations
	14.3.3 Administration considerations

	14.4 Load modules in the HFS
	14.4.1 Overview
	14.4.2 Installation considerations
	14.4.3 HFS structure

	14.5 XCF support for WebSphere HA manager
	14.5.1 XCF support overview and benefits
	14.5.2 WebSphere HA manager
	14.5.3 Default core group discovery and failure detection protocol
	14.5.4 XCF—alternative protocol on z/OS
	14.5.5 Activating XCF support for HA manager

	14.6 z/OS Fast Response Cache Accelerator
	14.6.1 Overview and benefits
	14.6.2 Configuring FRCA
	14.6.3 Monitoring FRCA
	14.6.4 Resource Access Control Facility (RACF) integration

	14.7 Thread Hang Recovery
	14.7.1 Overview
	14.7.2 Pre-WebSphere Application Server V7.0 technique
	14.7.3 WebSphere Application Server V7.0 technique
	14.7.4 New properties
	14.7.5 Display command

	14.8 Installing WebSphere Application Server for z/OS
	14.8.1 Installation overview
	14.8.2 Installation considerations
	14.8.3 Function Modification Identifiers
	14.8.4 SMP/E installation
	14.8.5 Customization
	14.8.6 Execute customization jobs

	14.9 System programmer considerations
	14.9.1 Systems Management Facility enhancements
	14.9.2 WebSphere Application Server settings
	14.9.3 Java settings
	14.9.4 Basic WLM classifications
	14.9.5 Address Space ID reuse
	14.9.6 Deprecated features WebSphere Application Server for z/OS
	14.9.7 Java Command Language (JACL) stabilized
	14.9.8 Application profiling

	14.10 Planning checklist
	14.10.1 Planning considerations
	14.10.2 Resources

	Chapter 15. Migration
	15.1 Infrastructure migration considerations
	15.1.1 Scripting migration
	15.1.2 HTTP server plug-in support
	15.1.3 Coexisting versions on one system
	15.1.4 Runtime inter operability
	15.1.5 Runtime migration tools
	15.1.6 Mixed cell support
	15.1.7 Network Deployment migration strategies

	15.2 Application development migration considerations
	15.3 System management migration considerations
	15.4 Messaging migration considerations
	15.5 Web services migration considerations
	15.6 Security migration considerations
	15.7 WebSphere Application Server for z/OS migration considerations
	15.7.1 Migration and coexistence
	15.7.2 General considerations
	15.7.3 Migration process overview
	15.7.4 z/OS Migration Management Tool
	15.7.5 Migration Management Tool script
	15.7.6 Migration jobs
	15.7.7 Migration considerations for 64-bit mode

	Appendix A. Sample topology walkthrough
	Topology review
	Advantages
	Disadvantages

	Sample topology
	Characteristics

	Installation
	Installing the Load Balancer (server A)
	Installing HTTP Servers (servers B and C)
	Creating Deployment manager (server D)
	Creating Application servers (servers D and E)
	Creating Job manager (server E)

	Deploying applications
	Configuring security
	Testing the topology
	Service
	Administration
	Summary

	Related publications
	IBM Redbooks
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

